a Weekiy journal 0f practical information, art, science. mechanics, chemistry and manufactures.

MACHINES TOR FINISHING FABRICS.

In the finishing of woven fabrics there are embraced a number of operations, according as the articles to be treated are of wool, cotton, silk, or a mixture of these, one forming the warp and the other the woof. The nature of the finish also varies, being hard or pliable, lustrous or dull, as the case may be. In addition, some tissues are treated with such materials as starch, dextrine, glycerine, gum arabic, gum tragacanth, etc. Two perfectly distinct operations are quite commonly confounded under the term "finish." The first of these consists in loading the threads with one of the materials above mentioned, and the second is a purely mechanical treatment. Cotton goods and some mixed fabrics of wool and cotton undergo both operations, being first charged with the finishing materials and afterward submitted to mechanical treatment to dry them. Silks of medium quality and articles mixed with cotton receive a smal quantity of size, and are afterward passed through the ma chine. Fabrics of combed and carded wocl receive a me chanical finish only. In finishing cotton fabrics the clazin banical is applied, and they are then calendered glazin material is applied, and they are then calendered on cylin-
ders heated by steam, which gives them stiffness. But usually mechanical finishing is not resorted to, although it would be a great help. For fine cotton fabrics, however, and for carded and mixed woolen articles, it is indispensable to employ machines, so that the threads of the warp, and
especially those of the woof, may be stretched, and thus given the rigidity necessary to make the fabric as stiff as it was in its raw state. The machines used for this purpose are costly, take up much room, and necessitate the employment of experienced workmen. This kind of machine applied to the treatment of fabrics, woolen and mixed, does not give a complete result, and necessitates a complementary

NEW YORK, JUNE 11, 1881.

operation. The two machines constructed by Messrs. Pier ron \& Dehaitre, of Paris, France, one of which is shown below, are a great improvement in this respect, and have been very favorably received by manufacturers of woven fabrics. The first of these consists of a large copper cylinder, four to five feet in diameter by four and a half to five and one-quarter fect long, heated by steam.
An endless felt cloth covers nearly the whole surface of the cylinder, with the exception of the places necessary for the fabric to enter and leave the machine. The tension and separation of the felt is effected by rollers. In this machine, as shown in the engraving, the piece of goods is wound on the roller in front. Pressure brakes allow the tension of the fabric to be varied. The fabric, which may be passed over a vaporizer before entering the machine, is kept at its proper width by the tension and pressure of the felt. The steam which forms in the fabric is imprisoned therein, and has the effect of isolating the filaments from each other and of swelling out the threads, thus giving the finished goods greater thickness and greater closeness of texture. The wrong side of the fabric is placed in contact with the cylinder and the right side is turned toward the felt, the result being that the wrong side is made smooth, while the grain or nap of the fabric is brought out on the right ide.
By this system such operations may be performed mechan xperien Whanty confided to special workmen of lon machine it often he operator feeds the fabric to the felt about the selvages, and when the goods are rolled up the nds are irregular; or if the fabrics are striped or printed, the lines or designs are wavy, and the goods consequently the lines or designs are wavy, and the goods consequently
do not strike the eye of the buyer favorably
also in woolen fabrics fulled pieces which have narrower also in woolen fabrics fulled pieces which have narrower
parts, that must be brought to a uniform width, an operation that, by hand, presents some difficulty. In order to overcome these difficulties mechanically, and to obtain results superior to those gained by this machine, the manufacturers have added a widening apparatus, which is represented in the annexed engraving. In this the different parts of the mechanism have been strengthened, and the apparatus is provided with a progressive movement (which llows its speed to be varied), and with various arrangements for rolling or folding the goods. This widening apparatus is composed of two disks, covered with caoutchouc, and of endless chains, designed for holding the fabric in place by pressure. These disks can be fixed obliquely to produce the widening, their distance apart being regulated according to he width of fabric desired. On entering the apparatus the abric passes between the chains and conducting disks; in turning with the oblique disks it widens, and, on reaching the other end, it enters the finishing machine, between the cylinder and the felt, where it is dried. Goods finished with this new apparatus have very even and regular edges, and the threads of the woof being well stretched and pressed, the stripes or other patterns preserve their original arrange ment. In the felt machine, as we have already seen, inde pendent of the widening, a better finish is given the goods than by other methods; and the fabric, on coming from the machine, may be folded, and is then ready for the shop. The effect of the treatment on cotton fabrics is to make號
The finishing machines made by Messrs. Pierron \& De haitre work with great regularity; and, as a consequence of the advantages that they possess over other systems in use they are being rapidly adopted by manufacturers in Europe.

IMPROVED MACHINE FOR FINISHING FABRICS.

タituntifi gmmxican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
published weekly at
NO. B'Y PARK ROW, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy one year postage included...one copy, six months, postage included
Clubs. One extra Copy of The Scirntific AMERICAN will be supplied sratts for every clut or five subscribers sat 83.20 each : additional copies at
same proportionate rate. Postage prepaid. Remit by postal order. Address $\begin{gathered}\text { MUNN } \& \text { Co., } 37 \text { Park Row, New York. }\end{gathered}$

The Scientific American Supplement

 Scientific American Export Edition.

NEW YORK, SATURDAY, JUNE 11, 1881.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 284,
For the Week ending June 11, 1881
Price 10 cents. For sale by all newsdealers.

tHe preservation of gas service-pipes.

The inconclusive discussion of the means employed for preserving gas service-pipes, by the Associated Gas Engineers tion which some thoughtful inventor may find profit in cul tivating.
Secretary Neal, who introduced the subject, laid especial stress upon the destructive influence of the salt in the soil of seaboard places. In Charlestown, Mass., the wrought iro (ungalvanized) service-pipes were sometimes found to be so
corroded that the least touch would destroy them; they were as thin as paper. He had no doubt that a great many of their service-pipes were badly corroded, but so long as they were not meddled with they continued to hold gas. A process to make them more durable was greatly needed, and he raised the question whether that end might not be attained by dipping the pipes in some substance like tar or asphalt, or by using a different material than iron for pipes. The cost of all their service-pipes had been written off, as they were considered more perishable than meters. The mains had been charged to construction account until lately, but the servicepipes were considered to be of a more perishable nature, and required to be renewed quite often. He was aware that in some places lead had been used for service-pipes, instead of wrought iron, and it had been suggested that cast iron might be employed; but there were objections to the use of cast iron for services, especially for small ones.
A member of the association said that he had been able materially to increase the life of service pipes in soft, muddy ground by dipping them in coal-tar. To do this the services were heated not quite to a red heat; the whole length of the service being placed in a trough filled with thick tar. They were dipped right under,and allowed to remain long enough for the tar to fully cover them; then they were taken out, and the heat of the pipes would set the tar so thatit was like pitch upon them. In an hour or so it would harden so that the pipes could be handled.
By another member mention was made of the fact that the Cambridge Company had been forced to abandon the use of plain pipes owing to the rapidity of their rusting in the salty soil of that place. Galvanized iron pipes resisted corrosion much better. The galvanized pipes cost fifty per cent. more than common pipes. Λ_{n} equally good result, it was thought, might be secured by using pipes lined and coated with cement, such as are sometimes used for water service. They would be cheaper, though open to the objection that the capacity of the pipe would be materially diminished by the cement lining. Good results had also been obtained by coating pipes inside and out with a mixture of rosin and tar, in about the proportion of a quarter of a pound of the former to a gallon of the latter. The pipe was dipped hot and stood up to cool, when the mixture hardened. Pipes thus treated had been in use twelve years without giving trouble. Another member had prolonged the life of wrought iron pipes by coating them with red lead; this, however, in soil that was not salt. Auother kind of soil, which is found away from the seaboard, was mentioned as giving much trouble, and that was ashes used as filling. Laid in such earth, unprotected pipes rust out rapidly.
The President was satisfied from experience that galvanized pipes were much more durable than naked pipes especially in soils containing salt. He had also learned from
experience that pipes rusted much more rapidly in gravel than in clay. Indeed, when laid in clay impervious to water, pipes were found entirely free from rust, while pipes in gravel were completely destroyed. Corroded pipes answered for the gas so long as they were not disturbed; but when the water men came along and disturbed the ground the gas company had to renew hundreds of service.pipes. He might say that five out of six were set leaking by the disturbance of the earth around them, and by the shoveling of the dirt upon them. While the water men did not go to the gutter, they disturbed the pipes sufficiently to start them leaking underneath the pavement. In putting in renewal pipes they always used galvanized iron; and his experience with them indicated that they would last very much longer. At the close of the discussion, the Secretary expressed his regret that he had not obtained more information that would aid him in obviating corrosive action of the salty soil he had to deal with. Lead pipes were too expensive.
As observed at the beginning of this article, there would seem to be a good opportunity here for investigation and invention. The interest involved is already a large one, and with the increasing adoption of gas as fuel the demand for protected pipes is likely to increase.

WHERE THE LETTERS ARE WRITTEN.

Last fall an official count was made of the letters mailed at each post office in the United States during one week. From this count an estimate has been made of the amount and distribution of the postal business of the country during fifty-two weeks, or the entire year ending Dec. 31, 1880.
The Post Office Department has just issued a statement of the results of this inquiry, which shows that the number of pieces of all classes mailed during the year was $2,720,234,252$. The whole number of letters mailed was $1,053,253,876$, or an average of 21 for each man, woman, and child in the United States; $324,556,440$ postal cards, $812,032,000$ newspapers, $40,148,792$ magazines and other periodicals, and 21,515,832 packages of merchandise.

The statement is accompanied by a table giving (in alphabetical order) the several States and Territories, the number
inhabitant. The two extremes are, naturally, Alaska, with its unlettered population, and the District of Columbia, which, as the center of the postal system and the seat of National Government, must necessarily have more than the normal or domestic and business correspondence. In Alaska only one inhabitant in five is credited with one letter a year. In the District of Columbia there are 85 letters mailed for each inhabitant.
At first thought almost any one would mention as the probable regions of most frequent domestic and business letterwriting the States containing the great business centers, the regions of abundant schools and general literary culture, but he would be wide of the mark. The most letters are written where there is proportionally the largest intelligent adult population who are away from home, namely, the newer States and Territories. Colorado heads the list of letterwriting communities, with fifty-five and a fraction to each inhabitant.
The settlers in Arizona write 32 letters each a year; Dakota (omitting the decimal and giving the nearest integer), 30; Montana, 40; Nevada, 32; California, 26; Idaho, 25; Wyoming, 42.
The States which supply most of the letter-writers of the Territories in addition to being the great seats of manufactures, commerce, and general intelligence, come next: New York, with 42 letters to each inhabitant; Massachusetts, with 39; Connecticut, with 38. In the next group we may put the States and Territories which are near the average in letter-writing activity. They are mostly thrifty agricultural and manufacturing States, with an abundant and settled population. They are Illinois, 22; Maine, 20; Michigan, 20: Minnesota, 21; Nebraska, 23; New Hampshire, 22; Oregon, 21; Pennsylvania, 25; Rhode Island, 26; Vermont, 21; Ohio, 19; New Jersey, 18; Missouri, 18; Maryland, 18; Kansas, 18; Iowa, 18; Utah, 19. [The surprisingly low figures of Ohio may be due to the heavy draught upon its writing population to fill Government positions elsewhere.]
It will be noticed that no distinctively Southern State has yet been mentioned; the people of the South are not ietterwriters generally, nor are they as much given to migration as the people of the North. They are more apt to spend their lives within hailing distance of their relatives and friends; and besides, those States carry a heavy population of blacks who are illiterate. The result is the contributions of the Southern States to the mail pouches are strikingly meager. The annual average for each inhabitant of Alabama is 7; Arkansas, 8; Florida, 11; Georgia, 9; Kentucky, 9; Mississippi, 6; North Carolina, 6; South Carolina, 7; Tenessee, 7; West Virginia, 8.
The higher rate of Florida is due, no doubt, to the new element which has gone there of recent years. The same may be said of the three or four other Southern States which markedly outrank the rest of the South in the matter of let-Ner-writing, namely, Virginia, 11; Texas, 12; Louisiana, 15; New Mexico, 13. The more northern States which write the fewest letters are: Delaware, 16; Indiana, 13; Wisconsin, 17; Washington Territory, 15.
In the total number of letters posted annually the more populous Northern States naturally lead: New York, with (in round numbers) 211,435,000; Pennsylvania, 105,237,000; Massachusetts, $69,000,000$; Illinois, 68,643,000; Ohio, 61,464,000,

trade mark notes.

In Enoland, where registration has been made very systemtically for a number of years, a question lately arose as ot the right to register words of languages not using the Eng. ish alphabet. In one case the applicant presented a drawing of a Chinese phenix standing on the bough of a tree, having explanatory words in Chinese characters underneath. In another case, a merchant had noticed that his own name, "Tod," bore the same sound with a. word in Arabic signiying "a high mountain;" the Arabic word was therefore presented to be registered. The registrar objected to registering such marks, because he did not think the distinction between different words in a foreign character sufficiently clear, and because he said that he could not be expected to know all the foreign alphabets, and be able to decide intelligently upon interferences. But the English courts said that the marks must be registered; the officer must meet these practical difficulties in the best way he could. Apparently the reason for such a decision would be even stronger under our recent law relative to trade marks in foreign commerce; for, no doubt, words which are not in English characters must often be used upon goods exchanged between the United States and some foreign countries.
Many readers have no doubt noticed the solid red triangle which is employed as a distinguishing device on the labels upon the bottles of Bass's ale. A rival firm of brewers applied to register a triangle which was not solid, but drawn be means of three broad stripes meeting at three points, and having a figure of a church edifice printed within. The court said that this device was too much like that of Bass $\&$ Company.
Every year a number of cases arise in which the courts are asked, independent of any law for registration, to grant an injunction on the ground that the claimant of the mark was the first person in the trade to adopt it. One principle which governs in these cases appears not to be fully understood; it is that words which are naturally and properly descriptive of an article, its origin, uses, etc., can not be exclusive. No one is allowed to appropriate words in their ordinary and proper meaning; such uses of them are free to all
the world. One who wishes to invent an exclusive mark ious influences are dust and irrespirable and poisonous gase needs to be careful that any words which enter into it are Hirt observed on himself and young firemen an increased employed in an entirely arbitrary and fanciful sense. In one case reported during the winter, the mark was th phrase "Rye and Rock," applied to a composition of whisky and candy. A very entertaining argument, which, for its humor and literary brilliancy, attracted a good deal of attention among lawyers, was made to show that this was an arbitrary phrase; but the court considered that it was somewhat descriptive of the components used-rye whisky and rock candy; and that whoever used those elements in a similar beverage, had the right to use the same descriptive phrase. Similar was the decision where a clothing merchant called his store the "Tower Palace." The court said that the phrase was in its nature descriptive of the peculiar architecture of the building; it might be exaggerated, but it was of descriptive tendency, and therefore that when the clothier moved away from the building to another stand, he could not object to his successor's continuing to use the name. So the letters "I X L" have been pronounced no trade mark, for the reason that their sound gives them a meaning, and they have been widely used upon various goods. But a cigar dealer who styled his cigars the "Pride Cigars," was sustained in his exclusive claim, because "pride" has no natural proper meaning in such connection. There have been one or two decisions that an arbi trary number-such as " 523 "-distinctively or fancifully printed, may be protected. There are two English decision giving considerable support to the idea that a peculiarly woven, party-colored border or selvage of calicoes, woole cloth, etc., may be a trade mark. The names "Family Salve," and "National System of Penmanship," have re ceived protection to a certain extent.
Within a few years past there have been two or three attempts on the part of manufacturers whose patents had expired, to sustain or continue to control the article, by asserting the exclusive right to the name as a trade mark, but such attempts have not been successful in the courts. Another decision of this class has just been made relative to the Singer sewing machine. As every one knows, the Singer Manufacturing Company had, for a term of years, the monopoly of making the Singer machines, by virtue of the patents; but, when the patent expired, rivals entered upon the business, and, naturally, advertised theirs as Singer machines. One of them was sued by the old company, which claimed that it had the exclusive right to the name Singer as a trade mark. But the court decided that the word "Sing er," as applied to sewing machincs, is in the nature of a description of their kind and character; hence, whoever has the right to manufacture machines of that kind has the right to advertise and sell them under the designation common in the market. After the patents expired, any person who chose might lawfully make these machines, and, as consequence, the descriptive name became common property.
A person need not conduct the manufacture himself in order to enjoy an exclusive trade mark on the goods. Such at least is a decision by the New York Court of Appeals. A chemist, who had devised a serviccable composition, sent the recipe to Paris, where the article was manufactured, and he mported it in quantities from time to time, and arranged for its sale by various druggists throughout the country. He had an interest in these sales. As soon as it became popu lar others commenced making and selling it, and they used his peculiar name for it. He sued; and the infringers con tended that, as he was not the manufacturer nor the seller he could not complain. But the court decided in his favor, saying that the advantage of a trade mark does not neces sarily consist in indicating the manufacturer. It may be useful as identifying the quality of the article; and when this is the case, it may be of value to any person interested in putting the commodity upon the market, and he may be the rightful owner of it.
deafness as a cause of railway risks.
Dr. Lawrence Turnbull, of Philadelphia, lately read paper before the Pennsylvania Medical Society, calling atten tion to the hazards to life and property due to deafness on the part of railroad men. Locomotive engineers, firemen, and conductors, he said, are liable to affections of the ear, with decrease of bearing, such deafness appearing to be, in his estimation, more dangerous than color blindness as re gards the signal code, because the latter is usually a congenital defect which can be defined precisely before the indivi duals are placed on active duty, while the deafness is an acquired discase, but slow in its approach and sometime unknown to the person affected; and a cold or injury dimin ishes the hearing more and more, or destroys it completely, if it is not properly and promptly treated.
After citing cases which had come under his persona notice, and referring to the reports of Professor S. Moos, of Heidelberg, with respect to cases of railway accidcuts through deafness, Dr. Turnbull dwelt at length upon the evidence collected by Ludwig Hirt.
In order to gain an unprejudiced opinion, Hirt traveled repeatedly on the locomotive. His longest uninterrupted journey covered 325 English miles. He notes the following causes which act on engineers and firemen when traveling First, the violent concussion; second, the uninterrupted straining of the eye and ear; third, the cutting air (less noticeable on the engines provided with a protecting roof); fourth, the continuous erect position; fifth, the frequent
change of temperature. The occasional troublesome or nox- quency of pulse and respiration, pain in the knees and the and nausea, which, henaustion, woon disappear. Whenever h traveled thirty-five to fifty miles without a stop, vertigo was perceived, associated with violent roaring in the ears, and he felt the urgent need of something to cling to. In addition to these symptoms, we have in the case of engineers and firemen the mental exertion of the most careful watchfulness and uninterrupted exertion of the higher organs of sense. Regarding the results of long years of traveling on the engine, Hirt says that, taking all in all, an engineer who averages seventy-five miles daily, or, in round numbers, 25,000 miles a year, may be as sound and robustafter twenty years service as he was in the beginning, providing lue was then healthy and that he has met with no accidents. If we examine, says Hirt, a large number of engineers who have been long in the service we find that a majority of them are robust, sunburnt men, with well developed faculties, good digestion, and in an excellent state of health. The.minority however, in whom we see the disastrous results of their call ing, must not be forgotten.
Dr. Turnbull recommended that all candidatesfor railway service should be examined by a competent physician, who should test them with special reference to their hearing. He also advised that the company's physician should report to the superintendent of the road every case of deafness discov ered in trainmen, provision being made for the transferenc of men of impaired hearing to other positions where perfect hearing is less vitally important.

DANGERS OF DENTISTRY.

Usually dental surgeons take great care to keep tbeir implements clean. Sometimes, however, the patient is disgusted with the sight of more or less ancient blood stains on orceps and other implements which are to go in his mouth A correspondent in Maine submits a local newsp ıper report of an accident to a Bangor dentist which suggests the query whether there may not be danger of blood poisoning to the hazard of the patient's life when the surgeon is not careful with respect to the cleanliness of his implements. In the case reported the accidental pricking of a finger with a sharp instrument uscd by the dentist while filling a tooth, resulted in a serious case of pyæmia. In this instance the dentist was the sufferer. Suppose the poisoned tool had pricked the gum of the patient? Whether the poison came from the diseased tooth then being operated on, or was due to some previous operation, does not appear, and would not much matter to a patient who should be poisoned in that way. In either case the injury might be fatal. From a moral point of view, however, it would make a great difference whether the patient furnished the poison or the dentist. It goes without saying that untidiness in the dentist's chair is dangerous as well as disgusting, and should not be tolerated.

A MUSHROOM FARM IN MAMMOTH CAVE

у н. с. но

A novel proposal has lately been laid before the trustees of Mammoth Cave, Kentucky, and is now held under consideration by them with some prospect of a favorable answer An enterprising Frenchman, who has already had experienc in mushroom culture in the vicinity of New York city, com plains that he finds no cellars sufficiently large for his in creasing business, and also that the conditions of temperatur and moisture are not uniform enough to insure the best results; and therefore seriously offers to rent a portion of the cave for the purpose of raising such varieties of edible fungi as may be found best suited to the locality.
This will not in the least interfere with the exhibition of the wonders of the great cavern to visitors. Many square miles of it are never seen by tourists at all, for the reason that their time is usually limited, and they have enough to do to follow the guides through the selected routes. The portion mentioned as possibly to be devoted to mushroom
beds is what is known as "Audubon's Avenue," the first beds is what is known as "Audubon's Avenue," the first
passage to the right after entering the cave, and therefore quite convenient of access. This avenue is said to be about half a mile long; and formerly cottages stood at its entrance built for the use of consumptive patients, under the erroneou impression that the chemically pure air and the uniformity of temperature would more than compensate for the absence of sunlight and the cheerful sights and sounds of the uppe world. The cottages are now forsaken and most of them demolished, and the long tunnel beyond contains little of special interest, unless it be the swarms of bats that hiber ate in what is for that reason called " The Great Bat Room.' The rich deposits of bat guano, that have been accumulating for centuries, lie as yet undisturbed, and if properly mixed with other fertilizers, might no doubt be used to facilitate the propagation of fungi.
The soil, which at present is extremely dry, might be easily morstened to any desired degree, as was done in working the saltpeter mines in former days, by conducting wate hrough pipes from the cascade at the mouth of the cave. The idea of thus turning caverns to profitable account for the cultivation of mushrooms, though new in America, ha ong been a familiar one in France, and has been demonstrated to be entirely practicable. One of these caves, at Montrouge, is said to have six or seven miles' run of mushroom beds, and the daily yield of marketable fungi is about 400 pounds weight. Another such cave, near Frepillon, is reported as sending, on favorable days, as many as 3,00
pounds of mushrooms to the Paris market, from beds aggregating sixteen miles in length. Still another, at Mery, and belonging to \mathbf{M}. Renaudot, is said to have had under cultivation in 1869, over twenty-one miles at once, and afforded employment to a large class of laborers, who devoted themselves wholly to the business of raising mushrooms, not only for the French markets, but also for exportation. One house alone reports $14,0 \cdot 0$ boxes of preserved mushrooms as sent to England in a year.
The special advantage of subterranean over open air culture lies in the fact that, owing tothe uniformity of temperature, which in Mammoth Cave hardly varies from $56^{\circ} \mathrm{Fah}$. either winter or summer, the business can be pursued with equal success at all seasons of the year and in all kinds of weather.
It is the supposition that.when choice mushrooms are known to be raised by responsible parties, and with every guaronsee of freedom from the admixture of poisonous fungi, they would find a ready market in Louisville, Cincinnati, and other Western and Southern cities; or, if not, they could be hermetically sealed or made into catchup and easily sent to more distant markets, where such esculents are appreciated. The business has become highly remunerative in England as well as France; a fact brought out lately in the trial of the Metropolitan Railway Company, for taking possession of a mushroom uursery, showing that this curious branch of horticulture yields from 150) to 200 per cent. One witness is quoted as saying that, "if $\$ 250$ were expended, in twelve, or possibly in six months, the sum of $\$ 1,000$ would be realized."
It is probably an error to regard the economic value of fungi as of unimportant character; and it is worth considering, in these days, when so much has been said on the importance of multiplying the materials of cheap and wholesome food, whether such immense quantities of nutritious fungi ought to be annually lost, either by reason of ignorance of their excellent esculent qualities, or through fear of serious consequences arising from eating those kinds that are unfit for food. Caution should not degenerate into prejudice. And really the difficulty of telling edible from poisonous fungi is no greater than that of discriminating between the poison ivy and harmless ampelopsis, or between the wild and cultivated parsnip. A very little attention to the subject will enable any one to tell at sight a few of the best and most common varieties as readily as he now tells the vegetables from the weeds in his garden. It may be added that, in fact, the cultivation of the mushroom has been mainly restricted to a single species, so that most people who are fond of it, will hardly recognize any other as fit for food; while there are many varictics of esculent agarics known to the mycophagists, some of which, no doubt, might befound by experiment to be as suitable for cultivation as the common Agaricus campestris.
Our knowledge of American fungi is known to be exremely meager, being mainly limited to the results of researches in the Carolinas, Texas, and Cuba, made by Curtis and Ravenel; and a wide field of investigation is open to any competent person who will specially devote himself to this branch of botany.

Increased Importance of Iridium

Mr. Holland's process for fusing and moulding iridium enormously widens the scope of the useful applications of iridium, and gives increased importance to any natural sources of the metal that may be discovered. The Standard, of Portland, Oregon, states that certain heavy black particles associated with gold in that Stato, and hitherto supposed to be iron, have been found to be iridium. The Standard says that the iridium appears as a black shiny sand in the gold washings, in particles a little coarser than blasting powder, and adds: "There are portions of this State and the adjoining Territory where this metal may be found in abundance. So that we have in our midst an undeveloped source of wealth that may outshine anything ever before known."

Moth Preventive.

A correspondent of the Turniture Gazette recommends the following remedy for exterminating moths in carpets and furniture: After some years of experience with the troublesome pests, says the writer, I found a sure preventive of moths in pitch paper, the same as roofers use. The moth will live and grow on cayenne pepper and tobacco, while I never could see that the use of these articles kept the moth miller out. The plan for the furniture dealer or house wife is to cut the paper in slips and place about the room, under and behind sofas, chairs, etc.; this should be done as early as the middle of April, and in warm climates earlier. If the dealer wishes to make parlor suits moth proof, he should place on the inside of backs of chairs and seats, small strips of the pitch paper, and rest assured that the miller will not select these places to deposit eggs. It is the miller that is the foundation of all the mischief.

A Heavy Mississippi Tow

The towboat Oakland left St. Louis for New Orleans May 15, with the heaviest tow yet taken seaward that way, namely, eight barges carrying freight as follows: 160,000 bushels of wheat, 140,000 bushels of corn, 5,000 barrels of flour, 3,000 sacks of bran, 6,000 sacks of oats, 5,000 packages of general freight. The total tonnage exceeded 10,000 tons. Most of the grain was for export.

The Lyman-Haskell Multicharge Gun

Work has been begun, in the pattern room of the Reading Iron Works, on the first Lyman-Haskell accelerating or multicharge cannon. The gun will be twenty-five feet long and have a bore six inches in diameter. Along the bore fnur pockets will be located, in each of which a charge of powder will be placed, with the view of accelerating the speed of the ball after it leaves the chamber of the gun and during its progress through the bore. 'The charge of powder will be 130 pounds, and the weight of shot 150 pounds. It is calculated that a shot from the gun will penetrate through two feet of solid wrought iron. The expected range of the gun is ten or twelve miles.

NEW BENDING MACHINE

The common method of bending wrought iron bars practiced in many shops is to make a cast iron form, around which the heated bars are bent by hand. In th way, uniform shapes are produced at a slow rate, and with severe and exhausting labor, and withal requi ing considerable skill on the part of the workman.
We illustrate a bending machine to which cast iron forms are attached, between which the work is bent by power with great rapidity and accuracy, re quiring no skilled labor in the operation. Its capacity is limited only by the amount oif work that can be hcated and placed in or removed from the machine
The engraving shows a pair of cies or forms at ached for bending iron plow beams, and at the side o the machine a plow beam after it has been bent is also shown
There is hardly a crooked piece of wrought iron about a plow, wagon, thrashing machine, engine, min ing or railway car, reaper, seed drill, or other machine using bent pieces of wrought iron that cannot be bent on this machine with a great saving of time and labor. Much of the work that has been done on punch ing and drop presses is being done on this machine It covers an area four by thirty-six inches
The cross head moves seventeen inches and gives on stroke, while the tight and loose pulleys make forty eight revolutions, thus giving a great leverage. Its weight is five thousand pounds.
We are informed one purchaser of this machine has over forty different patterns of dies or forms. It is manufactured at the Moline Iron Works, of Williams, White \& Co., and is used in many of the largest works in the coun Co.,

Coal in Manitoba

The people in Manitoba are rejoicing over the discover of an important bed of coal, twenty-five miles northwest of Emerson. The bed is six feet thick, for two-thirds of its thickness very pure. Prof. Tilley describes it as a first-rate coal for general purposes. The bed is nine feet below the surface, under a stratum of red fire clay. It is thought to extend over a large area, and great advantage to Southern Manitoba is anticipated from it

NEW PUMPING ENGINE.

In many cities and villages the water supplied by the pub ic works is unsuitable for toilet, potable, aud culinary pur poses, because of its hardness or the presence of e:rrthy or vegetable impurities, and many familie continue to use rain water from reservoirs or tank placed in the attic, and others would prefer to do so but for the labor of pumping. Generally these re servoirs are supplied by pumping by hand from a cistern in the basement-a laborious operation, af fording an unreliable supply, because it is frequent y neglected by the person having it in charge.
The engine shown in the engraving is designed to do this work by using the hydrant water for power It will be noticed that the apparatus bas two cylin ders, one being a hydraulic or water engine, ope rated by the water from the street mains, and con veying power through the piston rod to the other cylinder, which is a pump, taking water from the cistern and discharging it through suitable pipes nto the reservoir above. It can be set in motion or stopped by hand, or it may be automatically controlled by a float in the reservoir arranged to open or close a valve in the service pipe
The water from the engine may be used for irri gating lawns, or other purposes that do not require it to be raised to any considerable height. A num ber of these engines have been in use for one to two years, with the most satisfactory results.
The size of cylinders must be in proportion to the pressure in the service pipe, and height of reservoir above the cistern. A safe rule is to calculate that one pound pressure on the engine will raise the cis ern water one fort, the two cylinders being of equal size. Unless otherwise ordered, cylinders of equal dimensions, 3 inches diameter by $41 / 2$ inches stroke, are supplied. This size will pump from 75 to 100 gallons per hour from the cistern into the reservoir, and will require about the same quantity of hydrant water for power. Larger sizes for hotels and factories are made to order
The Holly Manufacturing Company, of Lockport. N. Y., are makers of this pumping engine. New York office, 157 are makers

The Sub-Treasury Gold Wagon.

The little dingy-looking "gold wagon," which has been used for twelve years past to carry the money received for duties from the Custom-house to the Sub-Treasury, has been retired from service. Somctimes it made as many as a dozen trips daily, carrying as much as $\$ 80,000$ in glittering gold coin each time. The money was usually put up in bags of $\$ 20,000$ each, which were placed in heavy oaken boxes with massive rod-iron handles. These boxes were then put into he wagon-box, and a lid with clamps of iron was locked down over it. The wagon was pushed like a hand-cart by two Custom-house porters, accompanied by an armed watch man, whose duty it was to see that the load of treasure was not interfered with by thieves. The little used-up wagon has carried in its time probably not less than $\$ 500,000,000$ or about 4,500 tons weight in gold, and the dead weight and strain of the precious freight had rendered it rather m

BENDING MACHINE

rickety and unsafe. In its place a new wagon has been pur ased, with solid wheels girt with iron tires half an inc thick, painted a deep blue color, and marked with the sov ereign letters " U. S." in front.

When Men are at their Best.

Dr. Beard states that from an analysis of the lives of a thousand representative men in all the great branches of the human family, he made the discovery that the golden decade was between forty and fifty; the brazen between twenty and hirty; the iron between fifty and sixty. The superiority of youtb and middle life over old age in original work appear all the greater when we consider the fact that all the positions of honor and prestige-professorships and public stationsare in the hands of the old. Reputation, like money and position, is mainly confined to the old. Men are not widely position, is mainly confined to the old. Men are not widely
known until long after they have done the work that gave them their fame. Portraits of great men are delusions them their fame. Portraits of great men are delusions;
statues are false! They are taken when men have become

GASKILL'S HYDRAULIC PUMPING ENGINE

 trees. rees.
MISCELLANEOUS INVENTIONS.

An improved saw tooth has been patented by Mr. Elisha S. Snyder, of Snyder's Mills, W. Va. This invention is designed to protect saws from all unnecessary wear; it consists in an expansible concavo-convex steel plate, which is inserted endwise between the ribbed edge of a slot cut in the periphery of a saw and the grooved edge of a false tooth which is Feyed in the slot.
An improved $v \subset$ hicle spring brace has been patented by Mr. Zachriah T. Bush, of Stanton, Mich. This invention relates to that class of vehicles in which the springs are arranged at the sides instead of parallel with the axletrees. It consists in a brace of novel construction combined with the side springs and with reaches extending from the axle-
Mı. Louis E. De Grand-Val, of Jersey City, N. J., has atented a simple and efficient jar for the package and trans. portation of fresh milk, but which may also be used for other purposes; and the invention is embodied mainly in the device for clamping the cover thereon.
An improved life raft, which is made of very few
parts, can be folded and disconnected for storage, or built up for use very easily, and is so constructed that either side will serve as a top, has been patented by Mr. Frederick S. Allen, of Cuttyhunk Island, Mass. The life raft is formed of two like frames, which are attached to empty casks by means of clamps, and thus form a double raft supported by three casks. A series of guide rods pass from onc frame to the other and through a sliding floor, which can be drawn to either frame by means of ropes, thus permitting the raft to be thrown overboard without regard to its position, as the sliding floor is drawn to the upper frame as soon as the raft has been launched. Oars, masts, etc., are attached to the ends of the sliding floor. Bars or rods are pivoted to the ends of each of the frames, and are connected at their outer ends by ropes, thus forming railings when erected.
Mr. James Forsyth, of New York city, has patented a currycomb so constructed that it can be readily adjusted for combing the manes and tails of horses and scraping sweat, dust, and mud from the animals. The
invention consists in a currycomb with a reversible
comb upon its back, projecting arms to support the
comb, and a spring catch for holding the reversible comb in either position.
Mr. William A. Roos, of New York city, has patented a simple and convenient attachment to a chair. The device is so contrived that a slight movement of a pedal will operate the fan.
An improved double-acting force pump has been patented by Mr. Andrew J. Hopkins, of Richmond, Ind. It is of the class of submerged force pumps in which a single doubleacting cylinder is used. The object of the improvement is to provide a pump which shall be simple and efficient in its action, and at the same time so constructed as to avoid the nconveniences incident to freezing.
Messrs. William H. Leininger and Oliver H. P. Corncius, of Salem, Oreg., have patented an improvement in whiffletrees. The invention consists of springs set about the drawing bolts in the ends of the double and single
r. Joseph D. Paldi, of Brockway, Mich., has patented a cheap, simple, and efficient means for fastening two parts of a rope together, no matter whether this rope be of a fibrous character or made of wire. The invention consists in a strong flattened tube of wrought or malleable iron, through which the two parts of the rope are passed. In this tube are combined two metal wedges, which are driven in at opposite ends of the tube, so as to pass between the two sections of the rope and crowd it tightly against the sides of the tube, to firmly hold the two parts of the rope and the tube together, the wedges being so arranged that the pull on the two parts of the rope always tends to draw the wedges more tightly into the tube.
An improved window guard for the safety of per sons engaged in cleaning or repairing windows. has been patented by Mr. George Neu. of Cincinnati, 0 . The invention consistsin a bar having a swiveled fork attached to one end, and a screw passing into a fork attached to the other end, to lock this bar in the window frame, so that it can hold the person by means of a strap passing around the bar and attached to a belt passing around the person engaged with the window.
An improvementin rowing gear has been patented by Mr. Fred D. Smith, of New Carlisle, Ind. The object of this invention is to provide a device by means of which a boatman may pull a boat in the direction in which he is facing.

A mill especially designed for grinding feed, opefamous, which, on the average, is at least twenty five years rating with a reciprocating motion, and adapted to be atafter they did the work which gave them their fame. Original tached to the pumprod of a windmill, has been patented by work requires enthusiasm. If all the original work done by Azel H. Bell, of Belle Plaine, Iowa. men under forty five was annihilated, they would be reduced to barbarism. Men are at their best at that time when enthusiasm and experience are almost evenly balanced. This period, on the average, is from thirty-eight to forty. After this the law is that experience increases. but enthusiasm decreases. Of course there are exceptions.-Christian Intelli-
gencer.

An improvement in nose feed-bags has been patented by Mr. Charles J. Gustaveson, of Salt Lake City, Utah Ter. The invention relates to improved seams for uniting the sides and bottom of a nose bag, and also to a ventilator formed in the bottom of the bag and provided with a hiaged cover to tightly close the bag when it is to be used for holding water or chop-feed.

THE KEELY MOTOR DECEPTION.

Three lectures on the Keely Motor were delivered in thi city-May 16, 18, 20-at Chickering Hall, by Mr. O. M. Babcock, of Philadelphia, for the avowed and singular pur pose, first, of showing to the New York public how grossly they have been defrauded by the Keely Motor Company second, to show the hardship that the inventor of the "motor" now suffers in having lost or surrendered some fifty thousand dollars in money, being part of his share of the financial plunder originally derived from his stock; third, to explain the exact nature and practical operation of the motor, and thereby to let the people see for themselves that the thing is not a myth or a deception, as so many believe, but a real, enuine discovery, of remarkable, farreaching, useful character.
It was in respect to the explanation of the practical working of the pretended motor that we were chiefly interested, and we accordingly sent our reporter to the several meetings. We regret to be obliged to say that all three of the performances were puerile and empty so far as the delivery of any actual information was concerned.
The first evening was almost wholly devoted to the recitation of a mass of indefinite charges of fraud alleged to have been practiced, from the very organization of the Keely Company, in 1871, down to the present time, by its managers. But the speaker did not venture to name any of he guilty individuals.
The second lecture was mainly a preface to the great and astounding revelations concerning the practical working of the motor. It consisted, however, only of a collection of extracts from the lingo with which Keely and his followers have always been accustomed to mystify their hearers. Here is a specimen from the evening's palaver:

Water moved earth, air moved water, ether moved air Vibrations natural to air would disintegrate water, whileai was broken into pieces if it were forced into vibrations com mon to ether in transmitting light. The compressibility of an elastic fluid was in the exact ratio of the tendency to expand. This was the secret of the Keely Motor."
There we have the general principles of the machine in a nutshell; and now we come to the third lecture, in which large diagrams of the motor were exhibited, with which the speake pretended to explain the practical operation of the contriv ance as follows, which is as near as possible a verbatim re port:
Fig. 1 represents the first practical engine Mr. Keely made He had built seven or eight engines before this was con structed, each being in turn rejected; and the one now in use (Fig. 4) was the tenth or eleventh. Fig. 2 represents th lever upon which the pressure was indicated. When a pressure of thirty thousand pounds was indicated on the lever, you had a pressure of ninety thousand pounds in the "stand-up tubes" in the "generator" (Fig. 3). That was the first time this fact, the speaker said, had ever been stated in public; and he thought that if the gentlemen who had witnessed the experiments had been told of it at the time they would not have been anxious to remain in the room to the close of the exhibition.
Fig. 3 represents the "generator" in which the gas or ether was obtained, and was the fifth that had been con structed. It consisted of a " central column," A, having fou chambers;two"'side columns," BB, each having one chamber, with descending tubes connecting with the lower cham bers of the central column; two "stand-up tubes," the " front stand-up tube," C, and the " back stand-up tube, C ;" "copper leads or tubes," D, bringing all the chambers of the generator into connection; the "hand lever," E, attached to he starting bar, \mathbf{F}, the bar communicating with all the chambers and leads. The chambers inside the apparatus contained water, and were filled to a definite height, slightly compressingair into the upper portion of each chamber, thu producing an air cushion, which operated to give an introduc ory impulse to the agitation of the water, which, being expelled downward, aided by the action of gravitation, passed through a complex device situated in the center of the cen ral column (a "core" running perpendicularly from top to ottom), which dispersed the water into " tenuities," increas ng as it proceeded downward through the stages of spray mist, vapor, etc., into a highly elastic gas or ether. Th urning of the hand lever, E, opened a "four-way" valve in the center of the "starting bar," and disturbed the equili brium of the water, the opening of the valve producing what might be termed a "vibratory undulation" in the water throughout the entire apparatus. It was produced by the "impulsion" from the air cushions in the upper portion of the chambers, compressed slightly by the filling of the chambers with water. By means of the agitation thus produced, a minute globule of water was forced through the portion of the apparatus called the "expulsion tube" (the core of the central column), and dispersed from the "lower cell" at the base of the central column into an adjacent chamber called the " undulating" or "cord" tube, G, and through a copper lead into the adjacent chamber marked C, by means of the compressing cock, H , which could be operated and closed instantaneously. The globule of water,
in its descent through the "central column" and "expulsion ube," expanded into vapor, and was forced successively into smaller chambers. It was met in its course downward by opposing currents from the side chambers, coming from the "molecuiar leads," I, and "atomic leads," K, and concentrated in a chamber at the bottom of the "central column," not larger than an ordinary walnut, and from column," not larger than an ordinary walnut, and from compathies," and a
he " compound vitalizing medium," another the " vibrator lliptic," and another the "elliptic shaft," "six ellipti vibratory cells," a " positive wave plate," and " three vibra tory transmitters." The second compartment contained what were denominated "triple vibratories" for transmitting compartment, a pulley, C, upon which the belting run, con tained a number of devices called "sex trum," "triple vibratory tubes," and "rum," "triple vibratory tubes," and "vibratory bar" passing through the cen er. "The fourth compartment was called he "spiraphone box," and contained the "spiraphone" and "wave plate." All the devices in the several compartments were within casings, and of course could not be seen in the cut. These several deices were constructed in sets of threes and, in fact, the different portions of the whole apparatus seemed to be arranged in hrees; there were only three movable prts, the valves; the negative tube bat capacity of three pints of water, as com pared with the nine pints of the positive tube. They all seemed to be arranged in a sort of "rule of three." The power was transmitted by a belt running over the third compartment. The vapor passed from the generator (Fig. 3) to the engin (Fig. 4) and into what was called th 'negative tube," upon the bedplate, ad jacent to the spiraphone box E . Thi "negative tube" had a capacity of thre pints. This was connected with a tub near the center of the engine, under th bedplate, called the " positive tube," whic had a capacity of nine pints. From th thence dispersed through a minute orifice into what was "positive tube " tie vapor passed to the "positive" end of called the "undulating tube" or "cord tube," G. The mo- the engine through "copper leads," and there acted in ment that this expulsion took place from the lower cell into succession upon the various devices in the four compartment the "cord tube," it was closed by means of a compressing cock or "compressor," H, and the vapor in the "cord

ube " was held intact. In order to repeat the filling of the "cord tube," the compressor had to be opened and closed again. The vapor in the "cord tube" then passed through the " front stand tube," C, being intensified in its action i the passage by means of a device which increased its tenu

ity as it passed upward. From the upper portion of the stand tube it was carried by the tube, L, to the engine.
Fig. 4 represents the engine as now constructed. It con sisted of four compartments, A, B, C, D, upon a bed plate. The first compartment. A, was a cast-iron casing, called

he "positive casing," because it carried the "positive portion of the apparatus, named as follows: "suspension plate," "wave ring," 150 pins in a "descending vibratory cale," embracing six chords or notes, each chord or note , wenty fifth of a tone; also six tuning forks, a device called
not by pressure but by vibratorv waves or "impulsions." The generator occupied a space five feet long and high by wo feet wide. The engine occupied a space four feet long by two feet wide and high. A fifty horse power engine would not occupy more than this amount of space, and an engine f two thousand horse power could be contained in a room ten feet square. Being rotary in motion, it required no extra room for the movements of its parts; and water and air being the only materials consumed, the cost of running was practically nothing. If the generator were sunk in water it would displace a quantity of water equal to about hree hundred times the amount required to fill it from thi the audience could understand how small were the cham bers within as compared with the walls. One quart o vater would fill ay the tubes and chambers. Mr. Keel had produced a pressure upon the tubes alone of fifty-fou thousand pounds to the square inch. When you compared this pressure with the eighty or ninety pounds pressure of he steam engine you could appreciate some of the difficul ties Mr. Keely had had to contend with in constructing an apparatus strong enough to withstand such enormous force
The lecturer was asked if it was not possible to construct machine that would run at a much less pressure than $54,000 \mathrm{lbs}$. to the inch, and so avoid the dangers and difficulties 54,0 so enormous a power as that stated. The reply was that a small pressure machinc might be easily made, but what Mr. Keely wanted was to find out the extreme limits of the capacity of his discovery.
Having thus given the "full explanation" of the Keely motor, as publicly delivered by Mr. Keely's chosen repre sentaiive and bosom companion, the man, according to his own statement, of most authority in the knowledge of the thing, next to Mr. Keely himself, we leave it to our readers to ascertain whether they know any more about it than the did in the beginning. For oursclves we confess that we do not

New Merhod ofinlaying wrod.

A new method of inlaying wood has been contrived by a furniture manufacturing house in England. The process is as follows: A veneer of the same wood as that which the design to be inlaid consists-say sycamore-is glued entirely over the surface of any hard wood, such as American walnut, and allowed to dry thoroughly. The design is then cut out of a zinc plate about one-twentieth of an inch in thickness, and placed upon the veneer. The whole is now subjected to the action of steam, and made to travel between two powerful cast iron rollers of eight inches in diameter by two feet long, two above and two below, which may be brought within any distance of each other by screws. The enormous pressure to which the zinc plate is subjected forces it completely into the veneer, and the veneer into the solid wood beneath it, while the zinc curls up out of the matrix it has thus formed and comes away easily. All that now remains to be done is to plane down the veneer left untouched by the zinc until a thin shaving is taken off the portion forced into the walnut, when the surface being perfectly smooth, the operation will be completed. It might be supposed that the result of this forcible compression of the two woods would leave a ragged edge, but this is not the case the joint being so singularly perfect as to be unappreciable to the touch; indeed, the inlaid wood fits more accurately than by the process of fitting, matching, and fill ing up with glue, as is practiced in the ordinary mode of inlaying.

Manuscripts on which the Bible Revision is Based.
In a sermon on the revision of the Bible, Rev. Dr. Rylance, of St. Mark's Church, this city, made the following interesting statement respecting the existing early manuscripts of the New Testament. The learned doctor speaks also approvingly of the new version, remarking that the revision was necessary in order that the common people as well as the learned might understand exactly on what ground they stood. Hitherto it has been thought that every word of the English version of ihe Bible was inspired; this belicf is passing away as people become educated and know that no work of a translator can be absolutely perfect. The autographs of the Apostles have long since faded and disappeared. All we have to depend upon for our translations are copies, ancient versions, translations, and the quotations made by the Fathers of the Church. The manuscripts of the New Testa ment are of two kinds-the uncial, the oldest class of manu scripts, written in capitals and without punctuation, and the "cursive" manuscripts, so called from their being written in a running hand that legan to be used in the tenth century. Those of the old class were written between the fourth and tenth centuries, the others after the tenth century.
Of the old there are 130 in existence; of the new about 1,500 . The very old and very valuable manuscripts are only five. Of these the Alexandrian Codex was originally discovered at Alexandria, and was sent to King Charles I., in'1828. It is now in the British Museum. Nothing is known of the origin of this, but it is usually assigned to the middle of the fifth century. It is much mutilated, twenty-four chapters of he first Gospel, two of the fourth, and eight of one of the Epistles being missing. The next is the Vatican manuscript, supposed to have been written in the fourth century. A copy of this was never made till 1868, when a fac simile was issued. The condition of this is much more perfect. The third manuscript is that in the National Library at Paris whither it was brought by Catharine de' Medici. This had been overwritten-that is, the parchment had been used for other writings; but, spite of that, the original has been deciphered. It is assigned to the early part of the fifth century. The fourth manuscript is that now at Cambridge This is the least valuable, as it is much mutilated. It belongs o the sixth century. The manuscript found in 1844 in the Convent of St. Catharine on Mount Sinai by Tischendorf, and copied by him in 1859, is the most valuable of the five as it contains the New Testament complete. This is sup posed to have been written in the fourth century. None of these most valuable authorities were consulted in any of the English versions of the Bible, even in making that of King James' time. The Latin Vulgate, the plentiful cursive manuscripts, and the translations were used. Errorslike the Dox ology at the end of the Lord's Prayer had crept into the translations, even into the Syrian, which was as old as the second century. The Latin Vulgate was probably an excel lent translation, as it must have been made within a few years of the death of St. John. The changes that have just been made have only been made when the weight of authority left no doubt of their necessity. The text is not a question of taste, of like and dislike, but of historic testimony. I expect to see the corrected version win its way into the con fidence and the respect of the English speaking people.

Government Examinations of Gun Inventions.
By the act making appropriations for "fortifications and other works of defense, and for the armament thereof, for the fiscal year ending June 30, 1882, and for other purposes," approved March 3, 1881, the President is authorized to select a board, to consist of one engineer officer, two ordnance offi cers, and two officers of artillery, whose duty it shall be to make examination of all inventions of heavy ordnance and improvements of heavy ordnance and projectiles that may be presented to them, including guns now being constructed or converted under direction of the Ordnance Bureau; and said board shall make a detailed report to the Secretary of War, for transmission to Congress, of such examination, with such recommendation as to wh ich inventions are worthy of actual test, and the estimated cost of such test, and the sum of $\$ 25,000$, or so much thereof as may be necessary, is hereby appropriated for such purpose."
In conformity with this act the War Department has issued an order for a board of officers to assemble at the Armory Building, New York city, July 13, for the purpose of making examinations of all inventions referred to in the law and making a detailed report of such examinations, with recommendations as to what mentions are worthy of actual test and the estimated cost of such test. The following is the detail for the board: Brevet Major-General George W Getty, Colonel Third Artillery; Colonels Z. B. Tower, Corps of Engineers, and J. G. Benton, Ordnance Department Majors A. R. Buffington, Ordnance Department, and John Mendenhall, First Artillery. Second Lieutenant Frank E Hobbs, Second Artillery, will report to the president of the board for duty as recorder. The Chief of Ordnance, at Washıngton, will furnısh the board with all the information on the subject in his possession, and all persons interested in such inventions are invited to submit to the board plans, specifications, and models, the mode of construction, cost, etc.

Simple Illustration of Critical Pressure
Herr Haass describes in the Berliner Berichte a simple method of illustrating the existence of the so-called "critical pressure" discovered by Carnelley. A small piece of meroure chloride is placed in a glass tube which is closed at one

So long as the manometer registers less than about 400 mm pressure it is not possible to melt the mercuric chloride by heating it; the salt passes at once from the solid to the gaseous state. But immediately the pressure rises above about 420 mm . the mercuric chloride melts.

The Gamgee Motor Scientific American .

To the Editor of the Scientific American
A great many persons are under the erroneous impression hat the ammonia engine of Prof. John Gamgee is being built, and the experiments conducted at the public expense; also, that "the lunacy of the author is shared by prominen officials at the Navy Yard in Washington." Permit me to state, through your valuable journal, that the total expense of material and labor is defrayed by Mr. Gamgee; that "the prominent officials at the Navy Yard in Washington " would be pleased to chronicle the successful operation of the "zeromotor," but, like other skeptics, we are willing to wait "few weeks until all is ready.
U. S. Navy Yard, Washington, May 21, 1881.

Non-Rotation of the Earth.

To the Editor of the Scientific American
You will doubtless think that I am presumptuous when I ell you that I do not believe the earth rotates. My reason or not believing that the earth turns around every twenty four hours are simply these: When two objects pass each other, going in opposite directions, they pass very quickly, as or instance a bird flying west ought to pass objects upon the earth much more rapidly than when it flies east. But his is not the case. A bird passes no more rapidly going west then when it flies east; a ball thrown against a house in westerly direction does not rebound any more than when thrown east.
You may send a balloon up above your head and let it stand twenty-four hours, and at the expiration of the twenty our hours the balloon will be directly over your head. have studied the reasons given in astronomy and find noth ing to refute my observations. Hoping, if I am wrong, yo will write to me and set me right, I am yours, etc.,

Franconia, Pickens County, Ala.

Compound Stern-Wheeler

o the Editor of the Scientific American:
In your issue of the 15th January last, you have an article headed "Steamboats for South American Rivers." Afte describing the hull, boiler, and engines of steamer referred o, you state: "They are probably the first compound en gines ever fitted to stern-whecl steamers." I now beg to nform you that in 1866 I had a stern-wheel steamer made, in which was put a pair of compound engines made in 1864 by Mr. F. H. Wenham, of London. Wenham's paten double and triple cylinder steam engines are described in the Practical Mechanic's Journal, Nov. 1st, 1863, pages 220 Practical
and 221.
This steamer, Tadorna Radjah, bas been at work ever since, and is probably the most economical and efficien little steamer on this coast.
Brisbane, Queensland, March, 1881.
Wm. Pettigrew.

Oleomargarine and the Butter Trade.

The strongest objection raised against the manufacture and ale of oleomargarine has been that it would ruin the profit able export trade in butter. The alleged danger has been insisted on with much emphasis during the past winter in the Legislature at Albany. The official reports of the United States Bureau of Statistics show, on the contrary, that the quantity of butter exported from year to year steadily and very rapidly increases, while the average price received shows no fluctuations which are not explainable on othe grounds than the competition of olcomargarine. The officia figures are as below

Fiscal Year.	Quantities exported in pounds.	Value of Exports.	$\begin{gathered} \text { Average } \\ \text { price in cur- } \\ \text { rency per } \\ \text { pound. } \end{gathered}$
1870	2,019,288	\$592.229	
1872	$7,746,261$	1,498,812	${ }^{\frac{4}{10}}$
1874.	${ }_{4.3677883}^{4,518.844}$	1,092,381	${ }_{25}$
1875	6,360.827	1,506.996	${ }_{23} 3^{\frac{7}{10}}$
1876..........	4,644,894	1,109,496	23, ${ }^{\circ} \mathrm{O}$
187.	${ }_{21837117}^{21,527,242}$	$4,424,666$ 3,931822	20.
${ }_{1879} 187$.	${ }_{38,248,016}$	${ }_{5} 5,421.205$	${ }_{14}^{14}$
1880	39,236,658	6,690,687	${ }^{17}$
1881 (8 m	25,793,131	5,214,663	20%

Postal Cards.

The contract for supplying the Post Office Department with postal cards during the four years beginning the first of next July has been awarded to Woolworth \& Graham, of No. 76 Duane street, this city, who are the manufacturer under the contract now existing. The first contract for
postal cards was made in 1873, providing that one cent cards should be supplied for four years at the rate of $\$ 1.397 / 8$ per 1,000 cards. The price under the second contract, which 000 cer the 304 of next June, has been $6956-100$ cents per will be $5443-100$ cents. While the contract from July 1,

1873, to June 30, 1877, was pending, the number of cards issued was $550,619,50$). Under the contract for the four years' term which will expire June 30 , 1881, the number issued will reach about $990,009,000$. The number required during the next four years will be, it is estimated, 2,000,000, 000.

A representative of the Evening Post, in an interview with the person in charge of the postal card department, is informed that more postal cards are used in this country than in any other, and probably at least half of them were mployed for business purposes, such as advertisements, otices of meetings, etc. Immense quantities of them were taken by the Post Office in Chicago, which received more than any other city except New York, and he said that the sales of one cent postal cards at the New York office now averaged about 100,000 a day. The domestic cards wer disposed of chiefly in lots of from 1,000 to 10,000 , fully three quarters of all which were sold being used by business firms, companies, associations, etc. Lots of 5,000 were ver commonly taken, those of 25,000 were not infrequent, and even $50,000 \mathrm{had}$ been sold in a single installment. Reference the books of the office showed that $25,377,150$ one cen cards were sold in this city during 1879, and $28,082,800$ during 1880, making the total for the two years $53,459,950$ The increase in 1880 over 1879 was 2,705,650

Comet 1. 1881.

Thus far comets have played a small part among the por ents of this momentous year. Four months have passed without one trailing wanderer in the celestial depths. That inveterate comet seeker, Professor Swift, succeeded on the first day of May in picking up an infinitesimal member of the family, too small to be seen in anything less than a pow erful telescope. No other observer has thus far had a peep at the stranger, and there seems to be little probability of it growth into one of those monstrous prodigies, spanning the heavens, that a few centuries ago were such frightful omens of evil to those who witnessed them. The comet that made its appearance May morning will probably do little harm to our planet. It seems to be a bearcr of good fortune, instead of a prophet of disaster, for the discoverer will win prize of two hundred dollars, as well as a gold medal Comets must hurry their footsteps to make this a come year. More than one-third of the "great year," 1881, a astrologers call it, has already slipped away, with only one iny cornct recorded on its annals. Prizes of two hundred dollars each are in readiness for seven more comets to be discovered before the year fulfills its course. These astronomical tidbits are therefore more earnestly desired by come seekers than they are dreaded by those whose superstitiou ears regard them as heralds of destruction. The nineteenth entury chronicles the advent of two superb comets, that 1858 or Donati's comet, and that of 1861 . According to he law of averages, we can hardly expect again visits from such distinguished members of the family before the century closes. But we shall see as time passes what the future has in store, for nothing is more uncertain than the advent of these mysterious strangers, and one may suddenly beam upon our vision when we least expect it. There are but two things to fear, a great comet plunging headlong into the sun, or one coming into collision with the earth. The probabilities that these events may occur are of the slightest kind, and need not give the least anxiety.-Providence Journal.

Grinding Chilled Car Wheels.

The following statements in regard to the economy of grinding the chilled treads of car wheels are officially cer ified to by officers of the motive power and machinery de artments of the roads named.
During the year 1880, the number of wheels ground a the Sacremento shops of the Central Pacific road was 3,400 of which 510 were new wheels. Of the 2,890 old wheels round, ninety per cent were more or less flattened. The cost of grinding is estimated as follows:

Labor in running the Gowan machines.
$\$ 1,347.13$
$1,075.34$
Emery wheels.
$1,075.34$
438.00
Repairs of machines, and lubrication
Royalty, 50 cents per wheel
Yearly denceciation mact 438.00
250.00
1

Yearly depreciation of same $1,700.00$
320.00

Total cost
The cost of replacing with new wheels the 90 per cent 2,601 flattened wheels that were worthless except as scrap (including interest on 1,300 new wheels to be kept in stock, and deducting value of old wheels as scrap at $\$ 8.50$ eacb), is estimated at $\$ 24,578.77$, from which deduct $\$ 4,653.19$, or $\$ 1.78 \cdot 9$ per wheel, for grinding the 2,601 wheels, leaves $\$ 19,925.58$ as the total saving by the use of the machines.

A New Method for the Analysis of Oils.
The author treats a measured quantity of oil with a measured quantity of standard caustic alkalı. Ten c.c. of oil measured with a pipette were heated in a bolling water bath for an hour with 20 c . c. of a solution of potassa which would neutralize 123 c . c. of sulphuric acid at 98 grms. $=1000 \mathrm{c}$. c. At the end of this heating the linseed oils mentioned in the previous memoir all yıelded a cake of soap solid or very firm when hot, always solid when cold, and easily separated by mere draining. The alkaline solution is very differently acted upon by different samples. It still neutralizes smaller quantities of acid, differing in case every sample.-E. J. Maumene.

RECENT INVENTIONS

Mr. Jeppe Jeppesen, of Provo City, Utah Ter., has patented an improved machine for dressing both sides of boards at once for dressing the edges at any angle desired, for tonguing and grooving, cutting mouldings, and other varieties of work in wood. The inventor makes use of two endless chains of links, fitted with cutters, combined with an adjust able bed, above and below which the chains are fitted to move in adjustable guides. A feed bed and feeding device are combined with circular saws, for carrying the materibl to the cutters and squaring the ends at the same time. The links of the chains are of peculiar construction, each being a plane baving cutters adapted for doing the work required. Mr. Bernard H. Hilmes, of Altamont, Ill., has patented a screw-cutting machine or implement, the dies of which are reversible and so held and operated that after the formation of the thread the bolt may be removed from between the dies without the necessity of unscrewing the bolt or turning the machine back.
An improvement in biscuit machines bas been patented by Mr. Daniel M. Holmes, of Cincinnati, O. The object of this invention is to crimp the sheets of dough upon the under side or upon both sides before the sheets are cut into cakes. The invention consists in a biscuit machine with two crimping rollers placed at different levels, and in such positions that their faces can be brought into contact with each other, or nearly so, and a smonth roller placed above the upper crimping roller, so that a sheet of dough will be crimped upon both sides or upon the lower side, according as it is passed between the two crimping rollers or between the upper crimping roller and the smooth roller.
An improvement in thrashing machines bas been patented by Mr. James C. Keith, of Battle Creek, Mich. The object of this invention is to prevent winding of the straw upon the thrashing cylinder when the machine is being used where the straw is long and flexible. It consists in a novel construction and arrangement of a revolving comb and stationary but adjustable comb shield combined with the thrashing cylinder, so that any straw which may be disposed to wind upon the cylinder is arrested and combed out and thrown iuto the separator.
In making coffeepots the lip or spout has usually been constructed separately from the body and attached thereto by means of solder. This method involves skilled labor, and is also expensive, and the attachment is in a measure insecure, besides detracting from the appearance of the vessel. Messrs. Gibson T. Ayer and Benjamin W. Taylor, of Delaware, Ky., have patented an improved coffeepot, in which the body and spout of a coffeepot are made from one piece of sheet metal without stretching, spinning, or swaging the metal for that purpose.
Messrs. S. M. Wilkes and W. H. Hyer, of Staunton, Va., have patented a bed lounge having a seat or bottom which is adapted for reversal, so that it may be conveniently and quickly adjusted with the mattress side uppermost, thus tem porarily converting the lounge into a bed. The head of the bed or bottom is swiveled to a bifurcated support formed of a metal rod whose ends are pivoted in the sides of the frame of the lounge, so that by drawing the seat back from the head of the lounge it will be raised on the support, and may then be reversed.
An improved anti-chating gear for horses and mules has been patented by Mr. Wheelock Winspear, of Mount Pis gah, Ohio. The invention consists of an endless band, of leather or other suitable substance, shaped to fit upon the shoulders and neck of the animal, beneath the collar, and held in place by attached straps that buckle to the surcingle.
An improved instrument for taking observations at sea, either at day or night, to determine the ship's position, has been patented by Mr. Charles M. Hellberg, of Jersey City, N. J. The invention consists of a frame hav ing an arc of 180°, suitably and adjustably mounted, in combination with a day and night binocular telescope and reflecting glasses, the instru ment being designed as a sub stitute for the ordinary sextant or quadrant.
Mr. Charles J. Gustaveson, of Salt Lake City, Utah, has patented an improved spur having simple strap connection, so that a beavy strap may be employed that may be readily connected or disonnected from the foot. The improvement consists in se curing a pointed hook or horn upon the end of the rim in a peculiar manner, that may be readily inserted into unslit perforations through the heavy leather.
Mr. Joseph P. Smithers, of Brooklyn, N. Y., has patented an improved electric lamp. This invention relates mainly to carbon-point lamps, but a portion of it is also applicable to incandescent lamps. The invention aims chiefly to pro-
vide an electric lamp of the former class with such regulat ing mechanism as will be sensitive to slight changes in the carbon points, and cause them to approach or separate, as their condition may require, by frequent but infinitesimal motions, so as to maintain the relative positions of the points uniform, and consequeutly render the light absolutely steady.

NEW IRON FENCE.

The fence shown in the annexed engraving is light, strong, and equally well adapted to the requirements of town or

panel and terminal posts.

country. When used on farms the pancls will generally be composed of long stretches of wire, but for gardens and city places the panels are shorter, and diagonal wires are stretched across them to render them more showy and ornamental In a farm fence the posts may be set and then horizontal wires may be run to inclose a given area, and if after a time it is found desirable, two more horizontal wires may be added, and the fence may finally receive diagonal wires in is found necessary or desirable. It will thas be the exten ion of the system of diagonal wires the fence may be made as close as necessary for the confinement of the smaller animals.
The principal feature of the fence is the post, which is made in two forms, one for the ends or corners, another for the panel. In both of these forms the post is made with the smallest quantity of material consistent with the require ments, and the metal is so disposed as to insure great strength and rigidity

REICHENEKER'S METALLIC FENCE.

A glance at the engravings will give an idea of the construction of the post and the manner of setting it.
The corner post consists of two metal bars, each bent mid ay of their length to form the two sides of a rectangula haft. These bars thus bent are placed together, the top of one coming beneath the top of the other, and the sides of the
one partially closing the sides of the other, so that when seured togetherat their tops the two united form a rectangular post having corner openings through most of their height. The portion C of the post (Fig. 3) is perforated at a for the reception of the wires, and the part D is provided with transverserotating tighteners having their bearings in the side bars as shown. The bars forming the posts are provided with half-twists just below the ground line of the posts, and at this point is placed a knee plate, E, which is slotted for each arm of the post. Each arm of the post is first given a quarter twist to the right, and then, by slightly compressing the lower ends of the four arms, the slotted plate may be slipped upon them and pushed up until the twists in the arms have been reached. When releasing the arms will expand and hind the knee plate, G, in place. Each arm of the post is then given another quarter turn to the right below the knee plate, which brings their faces back in ine with the upper portions of the arms and securely locks the knee plate in place, thus dispensing entirely with the use of bolts or screws to secure them.
The lower ends of the arms of the post are provided with nibs, and a slotted foot plate is secured to the foot of the post by passing the nibs through the slots and clinching them on the under side.
The tighteners (shown in detail in Fig. 1) are provided at one end with a post for the wrench or key by which they are wound to tighten the wires. Near the other end of the tightener is square portion is formed, which enters a square opening in that side of the bar; and at the extreme end of each tightener is a cylindrical portion having a perforation through which i. key is passed to Incl: the square portion in through which io key is passed to ircl the square portion in its rectangular opening in the arm of the post. When it
becomes necessary to tighten the wire the key must be withbecomes necessary to tighten the wire the key must be with-
drawn and the tightener pushod inwardly from that end until the squar: portion leaves the rectangular opening in the post, when t'ie tightener may be turned until the wire is sufficiently taut, when the tightener is pushed back to its normal position.
After what has been said in regard to the corner post, the construction of the panel post, shown in Fig. 2, will be readily understood.
Of course either plain or barbed wire may be stretched on the posts, and thc metal ribbons, either plain or twisted, may be applied with equal facility.
This improved fence was recently patented by Mr. William C. Reicheneker, of Denver, Col. Further information may be obtained by addressing the inventor, at present at Kansas City, Mo.

Capacity of Cathedrals and Churches

In Forbes' "Tourists" the capacity of the larger European churches and cathedrals is given as below: St. Peter's Cliurch, Rome, holds 54,000 people; St. Paul's, London, 35,000 ; St. Sophia's, Constantinople, 33,000; the Florence Cathedral, 24,300; St. Petronius, Bologna, 24,000; St. Paul's, Rome, 32,000; St. John Lateran, 22,900; Notre Dame, Paris, 20,000; the Pisa Cathedral, 13,000; St. Stephen's, Vienna, 12,400; St. Dominico's, Bologna, 12,000; St. Peter's, Bologna, 11,500; the Cathedral of Vienna; 11,000; St. Mark, Venice, 7,000 ; the Milan Cathedral, 7,000 These figures, it will be remembered, do not refer to seating capacity.

The " Cry ot Tin."

If a piece of tin be bent, it emits a sound; this, being regarded as a property peculiar to tin, has been termed the "cry of tin." This pheno menon is explained by the peculiar crystalline structure of the metal. Reasoning that if this explanation be the true one, then other metals, obvi ously crystalline in structure should also exhibit the phenomenon, Mr. J. C. Douglas, who records his observation in the Chemical News, heated a piece of rolled zinc for a few minutes to a temperature somewhat below its melting point, when the metal becam much less tough, and its fracture decidedly crystalline. On bending a piece so treated, it emitted a sound weaker than that emitted by tin, but of the same nature. Cast zinc cannot be bent readily; but if pinched between the teeth or with pliers, it emits the sound distinctly. The conclusion, therefore, is that the cry of tin is due to crystal line structure, and may be emitted by zinc and probably by other metals when crystal line in structure. The prac tical application is, that by the sound a metal emits "we may draw conclusions as to its texture, and hence its fitnes for certain purposes, or, by the sound emitted by a beam when bent, we may draw conclusions as to its safety, the microphone or other appliance being called in to aid us where the sounds are exceedingly weak."

The Floods of the Missouri.

The spring floods of the Missouri River were severer than usual, owing to the vast amount of snow to be melted, and the high water was made more than ordinarily disastrous by the frequent ice jams. For some weeks the local papers were filled with more or less exaggerated reports of destruction and loss of life. The hazards of life were undoubtedly many, but fortunately very few people were actually drowned. The commander of the military department embracing that region, General Terry, promptly sent Captain Claque, Commissary of Subsistence, to investigate the losses and provide for the relief of sufferers. In his report Captain Claque says that from the mouth of the Big Sioux River to Yankton, the bottom land on both sides of the river was covered with water its entire width, and looked like an inland sea, with occasional huge drifts of black ice somewhat resembling lava beds. Such sudden and merciless destruction is seldom witnessed in a lifetime. On the Dakota side alone it is estimated that about 225,000 acres of fertile land were submerged. Some idea of the destruction may be conceived when it is known that here was one of the oldest and most prosperous settlements in Dakota, said to average a family o about every 20 acres, and having a railroad transverse its length for about 50 miles, passing through six thrifty villages, now all submerged with water or entirely washed away, Elk Point Station suffering the least on account of its elevation. It may safely be said that no one living on this bottom was left free from serious loss, many having their all swept away-lands, houses, grain, and stock. On the Nebraska side the destruction was much less, as the bottom was not so thickly settled, and did not contain so much land. The most wonderful thing in this whole catastrophe is the small loss of human life.

Wool Sorters' Disease

For some time past considerable discussion has arisen in the manufacturing districts of England over a malady called wool sorters' disease. Mr. Roberts, the medical officer of health for the district of the Keighley Local Board, treats at considerable length in his annual report for 1880 of the nature and preventives of this disease. In summing up from the report it is recommended that the following precautions be taken without fail by wool sorters: "(1) Wool sorters not to sort dangerous wools when they have any sore places or cracks on their hands or fingers; (2) to be careful not to wipe or rub their faces with their hands while sorting, especially if they have any cracks or pimples on the face or ips; (3) to wash their hands before eating, and to take ips; (3) to wor the the the sorted." The sorting room, he adds, ought to be well ventisorted." The sorting room, he adds, ought to be well venti-
lated, to be swept regularly, and to have the walls and ceilings whitewashed twice a year.

Seats for Shop Women.

The Legislature of New York has passed a bill requiring employers to provide seats for women in their employ. The absence of any seating contrivance likely to prove convenient and usable in the narrow spaces between shelves and count ers is more likely to make the new law practically inoperative than any indisposition on the part of employers to deny rest to the saleswomen, for whose relief the law is chiefly intended. Why cannot some bright shop girl utilize the experience she has painfully acquired behind the counter and contrive a seat that will meet the requirements of the case? The market is ready, and the profit might be consideraile.

IMPROVED CONNECTING ROD*

The engraving represents an improved connecting rod lately patented by Mr. Jacob J. Anthony, of Sharon Springs, N. Y., and designed for all varieties of machinery in which connecting rods are used. It consists of a straight tube forming an oil chamber, and havng on each end a journal box communicating with the interior of the tube. The caps of the journal boxes are held in position by straps extending parallel with the tube on opposite sides of it. In each end of the tube is placed a quantity of fibrous material which acts as a strainer and prevents any impurities that may be suspended in the oil from entering the journals. The fibrous packing is held in place by a pin passing transversely through the connecting rod, and oil is introduced through a hole closed by a screw plug. When this connecting rod is used vertically an oil cup is placed in the cap of the upper box. This rod has the advantage of being very light and yet strong and free from vibrations, while it is at the same time self-lubricating.

Lead Pipes Corroded by Lime.

It is a common practice with plumbers and house builders to embed lead pipes in lime mortars and cements. A writer in the London Globe says that when in contact with lime, lead pipes are rapidly corroded, in some cases so as to become porous and brittle within a space of fifteen or sixteen months. Obviously the careful testing of pipes in such position is in order; and if the facts are as stated, the exposure of lead pipes to lime should be carefully avoided.

NEW STYLE POWER MORTISER

The annexed engraving shows a power mortiser for mortising doors, sash blinds, furniture, etc. The frame is cast in one solid piece, and the machine is built in the most substantial manner, and can be run at a higher rate of speed than other machines for doing the same work.
In all other mortising machines the cap of the box on crank shaft has to withstand the full effects of the blow of the chisel, thus bringing all the strain upon the caps of the

machine is run permits of doing a large amount of work in given time.
The several improvements on this mortiser make it very valuable and desirable. The manufacturers of this machine call especial attention to their patent three-part sliding cap box, as shown in the detail cut. This box requires noliners, and the side as well as top wear can be taken up by setting down the governing screw.
Rowley \& Hermance, the well known manufacturers of woodworking machinery, Williamsport, Pa., are makers of this machine.

Henry Chisholm.

In the death of Henry Chisholm, May 10, Cleveland, Ohio, lost a useful citizen and the iron trade one of its most deserving and capable pioneers. Mr. Chisholm was born in Scot. land in 1822, and at the age of twenty emigrated to Montreal, Canada. In 1850 he removed to Cleveland to build a breakwater for the late terminus of the Cleveland and Pittsburg Railroad Company. For several years he was engaged upon the improvement of the Cleveland docks and piers. In 1857 he turned his attention to the manufacture of iron, forming the company of Chisholm, Jones \& Co , setting up a rolling mill. Two years later the company which he founded set up the first blast furnace in that part of Ohio, and in the years immediately following several other furnaces and mills were established by this firm at Chicago and in Indiana.
In 1864 the firm of Stone, Chisholm \& Jones organized the Cleveland Rolling Mill Company, and the year after they constructed the second Bessemer steel works in the United States. In 1871 Mr. Chisholm organized the Union Rolling Mill Company, of Chicago, and in connection with his Chicago partners erected another rolling mill at Decatur, Ill. These enterprises, the outgrowth of the original establishment in Cleveland in 1857, gave employment directly to 2,500 men. Mr. Chisholm was much esteemed by his neighbors and employes.

Arsenic Sulphide as a Poison, and its Import in

Judicial Investigations.
The question was raised whether in a certain dish of cabbage containing arsenic sulphide, there was poison enough to prove fatal to a man. From a number of experiments the author concludes that arsenic sulphide, whether prepared in the moist way, or the orpiment of commerce used hy painters, forms, in contact with putrescent organic matter, arsenious and small quantities of arsenic acid. In cases of poisoning wlth arsenic sulphide these oxidation products appear sooner or later according to circumstances. Hence, if articles of food, vomited matter, etc., are only sent for chemical examination after the interval of weeks, or perhaps months, the expert cannot give a definite answer to the question whether the poison was sufficient in quantity to prove fatal to a man.-J. Ossikovsky.

ENGINEERING INVENTIONS.

An improvement in that class of devices which are designed to be applied to boilers for automatic extinguishment of the boiler fires when the water in the boiler evaporates to a point below the low water line, has been patented by Antonio A. Amuedo, of Algiers, La.
Mr. Reuben Jones, of Mountville, Ga., has patented an improvement in horse powers which consists in the peculiar construction of the driving wheel, carrying an endless rope, whereby the latter is prevented fromslipping on the driving wheel.
Mr. Thomas Trimble, of Albia, Iowa, has patented a removable platform and arm loop, to be used on freight cars to prevent accident to life while coupling the cars together. The invention consists in a light narrow platform removably attached to the outer end of a freight car, and a suitable loop for the brakeman's arm secured to the platform.

An improvement in dumping cars, patented by Mr. David E. Small, of York, Pa., consists in the peculiarconstruction of the plate for connecting the tilting body of the car to the truck, the plate being made with elevated side supports, which raise the pivotal point of the car body sufficiently high to enable it to be tilted without striking the truck too soon, and the supports have an offset at one side of its fulcrum, which catohes and sustains the car body when in a horizontal position.

An improved automatic valve operator for tanks has been patented by Messrs. Alexander Jones, Charles Collins, and Hartwig A. Cohen, of New York city. The object of this invention is to provide a device for preventing the waste of liquids caused by the overflowing of tanks on account of the

LUBRICATING CONNECTING ROD.

mortising. It is provided with the belt friction reverse known as the " Smith reverse," which reverses the chisel instantaneously, whether working or at rest. This reverse motion is acknowledged to be the best in use.
The shafts are all of the best cast steel, and the bearings nut lock particularly adapted to bolts for connecting the are made very long. The high rate of speed at which this ${ }^{\text {ends }}$ of railroad rails, but capable of being applied to bolts
and nuts generally; and the invention belongs to that class of nut locks wherein a ratchet block or spring stop is em ployed between the inner face of the nut and its contact sur face, and engages with grooves upon the said inner face of the nut to admit of the free movement of the nut in one direction and prevent it from moving in the other direction.

The Yellow Pine of the South.

The average height of the yellow pinc, says a southern writer, in the virgin forest is from 60 to 70 feet, with a diameter of 12 to 18 inches for two-thirds of its height. It is of slow growth, particularly at the later periods of its life. According to the number of annual rings, trees of the above dimensions must have reached an age of 60 to 70 years. The reproduction of a tree from the seed, furnishing an equal supply of timber, would at this rate take two generations. It is a poor seeder, as the younger Michaux observed. In unfruitful years, a forest of hundreds of miles may be ransacked without finding a single cone, and these, according to my observations, are far more frequent than fruitful ones. In its struggle for existence in our days, the odds of a survival of its kind among the arborescent vegetation that disputes its ground are greatly against it. Taken from the lat and moist lands, and it is replaced almost exclusively by the pond and old-field pine; the hilly, broken, dry upland, denuded of the grand old pine forest, is with surprising rapidity covered by a dense and scrubby growth of blackjack, turkey oak, scarlet, and upland willow oak, above which seldom a young pine raises its head, crowned with its large white-fringed terminal bud.
Full of resinous juices through all stages of its life, the young trees are not as able to withstand the raging fires that annually devastate the woods as the less resinous species and the deciduous-leaved trees; besides that, being of much slower growth, this noble tree is doomed to extinction if not protected by the aid of man. On tracts sheltered from the invasion of fire, groves of young trees from 15 to 25 feet high, can be observed around Mobile, testifying that its exist ence for the future can in some measure be secured if protected from these destructive influences, unnecessarily caused by man. The utmost efforts by an enlightened community should be made through active and efficient State legislation without further delay, to guard against the calamity of a total destruction of such a magnificent estate intrusted to the hands of our people. Besides its contributions to the manifold necessities of the agriculturist, the builder in naval architecture, the construction of railroads, the arts, medicine, and the innumerable smaller demands of domestic economy, and the varied industries of the world, the influences of this great belt upon the climatic conditions and the salubrity of the Southern coast, are even of more far reaching importance to the interest of the community at large, extending far out of its confines. Rearing its horizontally outspreading limbs high up into the atmospheric ocean, their branches densely clothed with the long, slender leaves, the forests of these trees present to the canopy of heaven, for many hundreds of square miles, an unbroken sheet of perpetually active vegetation, whose forces at such an altitude affect a constant attraction of the fleeting clouds, causing them to deposit their life-giving and supporting humidity in grateful showers over a large area with wonderful regularity during all seasons. To this fact is due the delightful climate of bis part of our coun try, equalizing its temperature, particularly in tempering the rigors of the long summers of a region near the tropics.
During the great progress of meteorological science of late vears, he fact has been estab lished that in this exer ise upon the condi tions of the atmo sphere, as regards the precipitation of its moisture, the pine trees stand unrivaled among all other trees of the forest. Robbed of this protection, the hills and prote pion, the hils and he plains of the Gul egion, now bloomin nd clothed with th ichest verdure, would be arid and parched, presenting as forbid ding and austere an aspect as those of the denuded coast of Africa along the Mediter rane:n Sea, devoid productive power and unfit for the babitation of civilized man. The efforts of nature are ever directed to recupera ion in its aims to insure the existence of different forms of the living organisms from generation to generation.
To secure to our posterity the blessings enjoyed by us in its bounty in assisting these efforts as directed by her hows, is a stern dutv imposed upon us. Its discharge in the provention of a wanton destruction of our forests and the
adoption of measures regulated by the light of science, com mon sense, and the proper regard to the future, should en gage the attention of every intelligent and patriotic citizen, appealing particularly to the owners of the soil. Of littl importance to agriculture and industry are the other specie of pines found in this region. Of considerably smaller dimensions than the yellow pine, and of a soft and sapp wood, they have, as timber trees, but a small value. $-N$. W Lumberman.

ENGLISH SOFT PORCELAIN

In England no regular hard porcelain is made, but a sof porcelain of great beauty is produced from kaolin, phos

ENGLISH SOFT PORCELAIN VASE.
phate of lime, and calcined silex. The principal works are ituated at Chelsea. The export of these English porcelains is considerable, and it is a curious fact that they are largely imported into China, where they are highly esteemed.
Our engraving shows a richly ornamented vase in sof porcelain from the works at Chelsea.

LOBSTERS.

by a. W. robert

Previous to the establishment of the oil works at Hunter Point and Greenpoint, the lobsters caught at Hell Gate wer considered to be the finest that came to the New York markets. But the few caught now are so strongly impregnated with sludge, acid, and coal tar, that it is next to impossible

to eat them. There is no doubt that the blastings at Hell
Gate destroyed immense quantities of lobsters; so great a dread have lobsters of thunder that they will cast off their large claws when a loud clap occurs or when a gun is fired In olden times captains of vessels often extorted blackmail from lobster fishermen by threatening to fire cannon over their fishing grounds, knowing full well that the concussio would cause the lobsters to cast their claws, thereby destroy-
ing their value. Our common lobster (Homorous Americanus) belongs to the order of long-tailed crustaceans (Macroura), which includes the crayfish, prawns, and shrimps. As an article of food the lobster is the most important of all crustaceans, and dates back to the early ages of the world. Latium was famous for its lobsters, and Athenæus, whose cook book is the oldest in the world, mentions Apicius, who spent much of his time at this place on account of its lobsters.
Fifty years ago large quantities were taken on the reef of rocks that extended from Castle Garden to Pier 4, North River, and also on the reefs off Governor's Island; now only a few are taken in the neighborhood of Fort Lafayette, our markets being supplied from Maine, Nova Scotia, and Massachusetts, the lobsters reaching here alive in "well" smacks. Large quantities are sent to New York from Boston, all ready cooked, during the winter season. On the Maine and Nova Scotia coasts thousands of girls, women, and boys, are employed in the canning of lobsters. On the first floor of these canning establishments are brick furnaces, in which are placed large copper boilers filled with sea water kept at boiling heat. As fast as the lobsters are received fresh from the fishermen they are plunged into the hot water for a few minutes, after which they are distributed on long benches covered with zinc. The women and girls then break them up and extract the solid meat from the tails and large claws, the only parts used in filling the cans, which are then placed in shallow boilers to expel the air before sealing them up, after which they are taken to the second floor to be labeled and packed in boxes capable of holding four dozen cans; these sell at four dollars per box. The number of lobsters boiled per day varies from one thousand to three thousand. The American canned lobster goes to all parts of the civilized world
The usual way of catching lobsters is in what are known as "pots." The "lobster pot" is made of a variety of materials, laths, netting, and wicker work. On the Eastern coast nearly all the pots are made of laths, forming a long semicircular cage; at each end is a door, which lifts up when the lobster presses against it; after he has passed in the door drops back into its place, and the lobster is imprisoned, as the door cannot be raised from the inside; others have a fun-nel-shaped netting of rope. The pots are weighted with stones and fastened on set lines, which are buoyed at each end to mark their positions. A smart fisherman can fish one hundred and fifty pots on a single line, but it is very hard and laborious work liftiñg and hauling up from the deep water into the boat so many heavily weighted pots; each pot has to be rebaited and emptied of its lobsters, also cleared of all seaweed and drift. The pots are baited with what are known as "evil" fish, such as stinging rays, skate bonkers, etc., which cost the fishermen a few cents per hundred. weight. After the lobsters are caught they are placed in large stationary cars provided with a hopper on the top, the lobsters are thrown into the hopper and pass into the car, where they remain until the "well" smack returns from New York for a fresh load. Lobsters are in season all the year round, but are the fattest from April to October. It is a mistake that any part of the lobster is poisonous; although the "lady," which is the stomach of the lobster, is very tough and indigestible, it is not poisonous. The bluish vein situated along the back and tail is to be avoided, as it often causes sickness. sters are prepared for the table in many ways, the flesh is boiled, fried, pickled, scalloped, and is used for soups, sal ads, sauces, croquettes, pies, and pastry,but the most delicious of all is a fried "shedder"loba fried "shedder "lobter. A "she is a lobster who is within one or two days' time
of casting its shell, of casting its shell, which is removed arti-
ficially from the lobster ficially from the lobster before cooking. The composed of an unyielding calcareous substance, which, without doubt, is a most excellent defense for full grown lobster, but it leaves no room for growth. To overcome this, all crustaceans possess the power of shedding their shells at certain scasons of the year, after which a new shell is formed; this again is cast off, and so continually until the animal has attained its full growth. Not only is the shelly coat of the body and limbs cast off, but also the following portions of the body: The foot-stalks of the eyes, external cornea of the eyes, internal thoracic bones, membrane of the ear, membranous covering of the lungs, tendons of all the claws, lining of the stomach, and the stomachic teeth. There can be but little to wonder at that a lobster often experiences great difficulty in shedding
ts old coat, when so many organs are involved. Sometimes the legs are torn off or badly lacerated in drawing them through the narrow joints, and when successfully accomplished the lobster is the most helpless and defenseless of all living creatures; the limbs, being soft and pliant, are incapable of offering the slightest defense. For some days previous to casting, the lobster begins to excavate a cavity under a rock; as soon as the cavity is of sufficient size he closes the entrance by pushing from the inside with his large claws a number of stones, through which enough water passes in and out for a constant supply of oxygen. He now rests for three days, refusing all food, and preparations are going on for forming a new shell. The membrane which lined the shell has become more dense, and has collected a quantity of liquid material for the consolidation of the new shell. These materials are mixed with a large quantity of coloring matter. As soon as the shell is cast off, the membrane is suddenly expanded by the pressure from within, and by the rapid growth of the soft parts the lobster soon acquires a much larger size than that of his cast-off shell. Lobsters are of a very quarrelsome disposition, and it of ten happens that when they fight they snap off one another's claws; in such cases the injured member is ampu tated to the next perfect joint, from which, in a short space of time, a new limb makes its appearance, at first very small, but constantly increasing in size. This new limb being soft and tender, all the defensive qualities of the lobster are displayed in protecting it from enemies, till next shedding time, when it comes forth a hard claw, much smaller in size than the rest, but which, in the course of several sheddings (if the lobster is young) attains its full size. It is, for this reason, a common circumstance to find a lobster with one very large claw and one small one. The amputating of the injured limb is for a very wise purpose. The blood vessel are but slightly contractile, and a wound inflicted on the most fleshy part of the claw would continue to bleed freely By amputation at the joint the surface of the wound is re duced to a very small space, which heals quickly. A few years ago the enterprising (but not over-scientific) fisherme of the New England coast expended considerable mune uselessly in constructing establishments wherein to breed obsters. No breeding establishment in which it was neces sary to bave a free passage of the sea water in and out, on the rise and fall of each tide, could possibly answer for rais ing young lobsters, for the reason that they are so minute after leaving the egg as to be known as very inte resting objects for the microscope. Again they are fre wimming animals in their early stages, and what makes it still worse is that they are surface swimmers when passing through the larval stages. Most fishermen believe that afte the young lobsters leave the egr they fasten on to the curiously silk-fringed appendages attached to the under side of the abdomen (erroncously called the "tail") until they re strong enough to shift for themselves. Another general belief was, that when the young lobster left the egg he was in form and color the same as the parent.
But thanks to Professor S. I. Smith, who has made special study of the development of the lobster, there is no onger an excuse for the general ignorance on the subject hat has existed. Professor Smith divides the larval condi tion of our native lobster intothree stages. There are prob ably two succeeding stages before the adult form is attained One is described by Professor Smith, while the first of the wo he supposes to have existed, but has not discovered After this the animal ceases to swim on the summerand late in the summer it seeks the bottom of the sea, where it feed on the young of various marine animals, the larvæ of crustacea, etc. When much crowded in captivity the larva will feed on its own kind. In the first stage of the adult form, when the animal is about three-fifths of an inch long still differs from the adult so much that it would be re garded as a different genus. In this stage the young lobster move very rapidly by means of their abdominal legs, darting backwards when disturbed by means of their abdominal ap pendages, and frequently jumping out of the water like shrimps, which in their movements they much resemble They appear to live a large part of their time on the surface and are often scen swimming about with other surface ani mals. Professor Smith thinks they pass through all the stages he figures in a singlc season. How long the young retain their ree swimming habits after arriving at the lobster-like form is not known. Specimens thrce inches long have acquired near all the characters of the adult. Of all the larval stages of other genera of crustacea there are none which are closely llied to the early stages of the lobster.
In the neighborhood of Southampton, England, are several storage ponds capable of holding 50,000 lobsters in good condition for a month. Fishing (well) smacks holding 10,000 lobsters each collect the lobsters off the coasts of Scotland, Ireland, and France for the storage ponds. In the reign of Genrge II. a close season was established in Scotland, extending from June 1 to September 1. There still exists a fine of five pounds for taking lobsters during the close season, but its not having been enforced of late years the number of lobsters has gradually decreased. The quanity of lobsters taken on the Irish coast is less now tha 20,000 per annum A law exists in England regulating the length of salable lobsters to eight inches, and the penalty of exposing them for sale under eight inches is confiscation. The number of lobsters shipped from the coast of Norway to London amounts to over a million a year, for which the sum of $\$ 100,000$ is paid. The English lobster companies have agents along the entire coast of Norway to buy up all
the lobsters caught, which bring at Billingsgate from 18s. to 20s. per dozen. The number of lobsters sold in England has averaged $3,000,000$ per annum.
In the State of Rhode Island lobster fishermen are pro hibited by law to "lift" their lobster pots from Friday night to Monday morning.
In the State of Maine there exists a close season which covers the period of time in which the female is carrying her eggs and the release of the larvæ from the egg.
The law of New York State, which is based on that of Massachusetts, has been mailed to every lobster fisherman in New York State by the fish dealers of New York city:

Dear Sir: The Legislature of the State of New York has passed a law, which has been signed by the Governor, prohibiting the sale of small lobsters, as follows:

N ACt PROVIDING FOR THE PRESERVATION OF LOBSTERS

 Be it enaas follows:
SEc. 1.-Whoever sells or offers for sale, or has in his or her possession, with in extremity of the body to the other, exclusive of claws or feelers, shall for every such lobster be fined to an amount not less than five dollars (\$5), nd in all prosecutions under this act the possession of any lobster not of the length hereinbefore required, shall be primafacie evidence to conof
vict.
SEC.
SEc. 2.-All forfeitures accruing under the act shall be paid one-half to the person making the co

SEc. 3.-This act shall take effect on the first day of June, 1880.

You will therefore please see that there are none of less size than allowed by law- $101 / 2$ inches in length-in any of your shipments to us.
To show how prolific lobsters are, it is stated that no less than 12,000 eggs were counted in a single female. The eggs are carried by the female under the abdomen, and are fastened and entangled to the silk-fringed appendages previously mentioned. As the outer layers of eggs become ripe the mother constantly stirs them with her small hind claws, either to clear them of sediment or parasites or else to aid the larvæ in breaking through the shell. The "coral" formed in cooked lobster is the roe or egg masses of the female lobster. As to the sight of the lobster it may well be good, for he is possessed of compound eyes like those of insects, only the lenses are square instead of hexagonal. The lobster often freaks both in colors and the form of the large claws. When in charge of the Aquarium I had several specimens of deep blue and a beautiful light blue lobsters, also three of a brigh crimson, and many with double large claws.

OXYGEN FROM BLEACHING POWDER

Hitherto oxygen when required in anything like a pure or undiluted state-as for the lime light, oxyhydrogen blow pipe, etc.-has been obtained almnst exclusively from

APPARATUS FOR MAKING OXYGEN GAS FROM BLEACHING POWDER.
potassium chlorate by heating that salt to decomposition in he presence of peroxide of manganese.
Pure potassium yields nearly one-third its weight of oxygen. The commercial is never chemically pure, however, and in practice it rarely yields more than twenty-three gallons pound (at 60° Fah. and normal pressure) of gas, the latter frequentiy containing much chlorine
The salt costs at wholesale twenty-five cents a pound, and requires to be mixed with about one-quarter its weight of peroxide of manganese, costing eight cents a pound, thu making the cost of the gas for materials alone about nine ents a cubic foot.
Where economy is considered, common bleaching powde or chlorinated lime can be made to profitably take the place the more expensive salt as a source of oxygen. An average sample of bleaching powder (fresh) contains
t least twenty-six per cent of calcium hypochlorite. This substance when heated to the boiling point of water splits up into calcium chloride and calcium chlorate. If the heat is increased to low redness the chlorate is decomposed into calcium chloride and oxygen.
During the elevation of temperature some hypochlorous cid is apt to pass off; but if the apparatus is so arranged that the gas is forced to pass over or through a small quantity of heated lime it is arrested, decomposed, and the oxygen iberated-oxygen and steam only passing over.
In a series of late experiments with an apparatus similar o that described below, the yield in oxygen per pound of common commercial bleaching powder, costing one and threequarter cents, averaged four gallons, making the cost of materials for oxygen from this source about three and onequarter cents per cubic foot, as compared with nine cents where potassium chlorate is used.
The gas after passing through the wash bottles is perfectly odorless and nearly pure.
Where the gas is required in small quantities, a few cubic feet at a time, the following simple and inexpensive apparatus answers very well:
The retort, A , is made of common sheet iron, doubly lapped and riveted. The short neck, B, is slightly flaring so as to admit of the luting in of a piece of inch steam pipe. This pipe, C, is connected by a screw cap or elbow with a longer piece of similar pipe bent somewhat and extending downward two or three inches below the bottom of the retort, where it is joined by a U cap at its lower end with a third piece of iron pipe extending upward above the bottom line of the retort. A fourth piece of pipe is connected with this latter at right angles for convenience of attachment to condenser and wash bottle. The space from \mathbf{D} to E in the tube is loosely filled with fragments of quicklime, each somewhat larger than a pea.
Two or three pounds of the chlorinated lime having been put into the retort, the pipe, B, is loosely inserted in the neck and the joint made tight with a stiff luting of clay or plaster of Paris. The retort is then placed on a charcoal or other moderate fire, the portion of the pipe containing the lime being in the fire. Connection is made with the condenser and wash bottle as soon as steam begins tocomeover, and as soon as the air in the apparatus has been displaced connection is made by rubber tubing with the gas bag or reservoir.
The moisture in the heated substance first passes off together with some gascous matter, the latter being decomposed by the lime; then as the temperature rises and approaches low redness oxygen is rapidly disengaged, and if the fire is good ten minutes' heating will suffice to exhaust the charge.
The stop cock at bag or reservoir having been closed the retort may be slipped out, another similar one already charged put in its place, and the operation repeated if desired.
The chloride of lime should not be too moist when placed in the retort, or the charge greater than will loosely cover the bottom of the vessel to a depth of one and one-half inches.
If a sudden pressure greater than the delivery pipe can relieve is developed in the retort the luted joint acts as a safety valve.
The sheet iron retorts do not, of course, last very long under such treatment. If the pipes are well washed on the inside with a thin paste of ocher and water and allowed to dry the gas and vapors passed through will not affect them much after the first charge.
The lime in the tubes is usually sufficient for two or three charges. It is better to renew it frequently, as it is gradually converted into calcium chloride, which melts on heating and when cooled requires to be washed out.
On a larger scale retorts similar in form to those used in making coal gas may be advantageously employed, the large delivers tube, partly filled with fragments of quicklime, being arranged so as to pass over the fire and be kept at a low red heat.

The Crater of Popocatapetl.
In a letter to the Philadelphia Record, Mr. Nathan E. Perkins, of Merchantville, N. J., describes at great length an ascent of the Mexican volcano Popocatapetl, having reached the crater after a toilsome climb and descended as far as he could without a rope. From this position a good view was obtained of the crater walls; the bottom was hidden by ascending smoke and steam. The lower walls were hung with large masses of sulphur interspersed with icicles hundreds of feet long.

The crater is about one mile across, and has the appearance of a large funnel whose sides are but little inclined, and the bottom not visible. There seem to be three distinct rings, which divide it into four zones, the largest being that nearest the mouth. From the summit, the City of Mexico, although over 100 miles away, was plainly visible, and, surrounded by lakes, as it is, seemed like a magnificent gem set around with pearls. The whole great Valley of Mexico can be seen at a glance. At our feet lay Ameca, over 30 miles distant, with its luxurious growth of tropical plants and orange groves and banana plantations, and on the right Puebla and the old cities of Chilulo and Tascalla, with their 365 churches and spires. The distant mountain of Orizaba, nearly 200 miles away, the snowy peaks of Melencha, the White Lady, and several others in the distance, stood arrayed before me. I felt fully repaid for my toil in having climbed the highest mountain in North America, whose summit is about 18,000 feet above the sea level.'

AGRICULTURAL INVENTIONS.

Mr. William D. Ferguson, of Blue Mound, Ill., has patented an improvement in check-row corn planters of that class in which the seed-dropping slide receives motion from a rope stretched across the field, so constructed that they can be operated to drop the seed at uniform distances apart by means of a smooth rope.
Mr. Solomon P. Baughman, of Herring, O., has patented a simple device for regulating the depth of the furrow made by the plow. It consists of a clevis whose inclination is adjusted by a jointed screw on the plow beam.
A combined plant setter and fertilizer distributer has been patented by Mary I. Goldsmith, of The Plains, Va. The object of this invention is to facilitate the operation of setting tobacco and other plants, and applying fertilizers thereto.
Mr. John W. Witt, of Grenola, Kan., has patented attachments for connecting plows to sulkies which are so constructed as to be used with a right-hand plow and a lefthand plow, and which will allow the plow to work with entire freedo
may require
Mr. Henr
Mr. Henry Parker, of Gananoque, Ontario, Canada, has patented an improved potato digger so constructed as to
raise the potatoes and soil from thc ground, separate them, and deposit the potatoes upon the top of the ground at the side of the digger.
Mr. Lovell A. Richards, of Grayson, Cal., has patented an improved feeder for thrashing machines, so constructed as to feed the stalks of grain to the thrashing cylinder regularly and continuously, and to prevent the machine from being choked or jarred by irregular feeding.
Mr. Julius Hartmann, of New York city, has patented an improved reversible plow which is constructed so that it can be reversed at the end of the furrow, can be adjusted in height as may be necessary, and is provided with a carriage that can be adjusted in width to suit the furrows.
In potato diggers as commonly constructed scoops and vibrating screens have been used, but they have generally been only partially successful in separating the potatoes from the dirt, in consequence of the great accumulation upon the apron, which not only hinders the separation, but adds to the weight and draught of the machine. Mr. Henry Arnold, of Peru, N. Y., has patented a potato digger in which
any accumulation of soil upon the screen or apron is prevented by commencing the separation at the moment the potatoes and dirt are taken up.

The Pressure of Wind.

In a paper before the American Society of Civil Engineers, Mr. C. Shaler Smith gives the results of many years observations of wind pressure and its effects. He has personally visited the tracks of destructive storms as soon as possible after their occurrence, for the purpose of determining the maximum force and the width of the path of the storm in every instance. The most violent storn in Mr. Smith' records was at East St. Louis, in 1871, when the wind over turned a lncomotive, the maximum force developed in so doing being no less than 93 lb . per square foot. At St. Charies, in 1877, a jail was destroyed, the wind force required being 84.3 lb . per square foot. At Marshfield (Mo.), n 1880, a brick mansion was leveled, the force required being 58 lb . per square foot. Below these extraordinary pressures there were sundry cases of trains blown off rails,
and bridges, etc., blown down by gales of wind of from 24 and bridges, etc., blown down by gales of wind of from 24
lb. to 31 lb . per square foot. Mr. Smith observes that in lb . to 31 lb . per square foot. Mr. Smith observes that in
all his examples he has taken the minimum force required to do the observed damage, and has considered this as the maxi mum force of the wind, although, of course, it may hav been much higher. Some of the hurricanes were very destructive, the one at Marshfield having cut down everything along a path 46 miles long and 1,800 feet wide, killing 250 people. Mr. Smith has formed the conclusion that notwithstanding these examples, 30 lb . per square foot is sufficient wind pressure to allow for in a working specification. As reasons for this conclusion, Mr. Smith expresses doubts as to whether a direct wind or gale ever exceeds this pressure. Whirlwinds may exceed it, but the width of the pathway of maximum effort in these is usually very narrow. Mr. Smith has only found one example, already quoted, wherein the path of pressures over 30 lb . per square foot exceeded 60 feet wide. This pressure is in itself very unusual, and, referring more particularly to railway bridges, it is stated that a loaded passenger train will leave the rails at this pressure of wind, and consequently not much could be gained by making the bridge strong enough to resist a storm which would blow a train off it.

Clocks in the Earthquake

The most curious circumstance connected with yesterday morning's earthquake was the stoppage of all of the pendulum clocks hanging against eastern walls, showing that the vibration was north and south. Clocks hanging against other walls were not affected. In the jewelry store of Charles Haas there is a calendar clock, which on Saturday night was about five hours fast. It was impossible to put the hands back without disarranging the gearing, and he only way in which it could be regulated was to turn the hands forward until they marked the right time. As this process required about 15 minutes, and was exceedingly tedious, Mr. Haas, when he left at 9 o'clock, stopped the pendulum, intending to regulate the clock on the following day. The earthquake saved him the trouble. When he
ing away like a pawnbroker, and what is still more remark able, it was correct to a second. The town clock is pro pelled by a pulley and tackle, and consequently such a mild
convulsion as that of yesterday morning did not convulsion as that of yesterday morning did not disturb the serenity of its equanimity. The final cataclysm will prob ably set the old Janus-faced chronometer back a few moments, but earthquakes never will. No material damage was effected by the trembler, as far as we can learn, except the shattering of a few nerves and the loss of sleep attendant upon the excitement. The plastering of ceilings in several houses was badly cracked, crockery thrown from shelves, chimneys toppled from lamps, besides numberless unimportant occurrences of a similar character. At the jail, Officer Fields thought, upon awakening from a sound sleep, that the prisoners were trying to break out. The prisoners
thought somebody was trying to break in.-Stockton (Cal.) thought somebody was trying to break in.-Stockton (Cal.) Independent, April 11.

Explosion of Gas on Coal Ships.

There can scarcely be a doubt that many of the coal-laden vessels that annually leave our ports and are no more heard of are destroyed by explosions of gas. Therefore the caution which lately emanated from the Marine Department of the Board of Trade, and which appeared in our columns, pointed out the necessary measures that should be taken for prevent ing explosions of coal gas, as recommended by the Roya Commission appointed to inquire into the spontaneous combustion of coal in ships, should not pass unnoticed as such warnings usually do. But there are other considerations in connection with coal cargoes that shippers and captains should be acquainted with. There are some descriptions of coal that give off a great deal more gas than others, and consequently require more attention on a voyage. Soft, bituminous coal on its transmission from the colliery to a port and then thrown down the hold of a vessel, is much broken and getting to something nearly akin to slack, gives off the gas freely, while such would not be the case were the coa hard and in large lumps. Some vessels having cargoes of soft coal are more dangerous than a colliery, for, while the atter is ventilated by copious volumes of fresh air being sent to dilute the gases, the coal on board a ship is kept from the air, the hatches being fastened down as if they were for that express purpose. After being kept in that state it may be for weeks, something is required, the hatches are taken off, and the object is sought for with a light, at which the gas at once fires, dealing destruction around, so that not a vestige of the vessei may be left to tell of the catastrophe. There is also the spontaneous combustion of coal to guard against, and in respect to which we believe not much attention is paid, while some descriptions are liable to take heat and fire the same as is the case with hay-stacks at times.
One of the means recommended by the commission for ascertaining the state of a hold of a vessel having a heavy onnage of coal was the use of the thermometer, so as to ascertain the temperature. For our part we think that the hatches should be frequently removed, and some means adopted for having communication with the coal lying at the top and intermediately to the bottom, so that the gas
could find its way to the atmosphere, which it would do if it had the means and was not contined. But where the gas is pent up, especially as is the case where the coal is small, it only requires the means of escape and a naked light to lead to a conflagration that would soon destroy a vessel and every thing connected with it. Ventilation is not more necessary in a mine than on board a coal-laden ship, so far as the cargo is concerned, and this should be strictly laid down by rule on the part of owners, for the danger resulting from the gas in coal, either from explosions or spontaneous combustion are either not sufficiently known or sufficiently guarded against.-Colliery Guardian.

Testing Malts for Acidity.

At the risk of being charged with repeating in this column what has already been several times urged, we again draw the attention of brewers to this subject. The existence of abnormal acidity in malt is not only injurious in itself, but
this very excess of acidity undoubtedly hastens changes in this very excess of acidity undoubtedly hastens changes in
the resulting wort and beer, which tend to their ultimate destruction as drinkable fluids. From the commencemen of the malting season till the warmer weather of spring sets in, the development of acidity in malts proceeds but slowly, but after April, and especially in malts which have been stored for some time, the amount of acidity will be found to have increased. To determine with accuracy the absolute quantity of acid in a sample of malt is an operation attended with some difficulty, and requires the skill and appliances of a practical chemist; but a valuable comparative test for acid
ity can be made by any brewer with but few appliances and ity can be made by any brewer with but few appliances, and with but little knowledge of chemical manıpulation. We say comparative test in contradistinction to an absolute test, because the former will really give the brewer all the information he requires; he wants to compare one malt with another, and he is generally able to fix his own standard of excellence. Therefore in testing malts for acidity (and the remark applies equally to other qualities) all that is necessary or the brewer to do is to submit them all to precisely the same treatment. Two infusions of the malt are prepared, ne with cold water and the other at the average mashing temperature, say 160° Fah.; all samples to be tested must be reated in exactly the same manner as regards quantities, time, and temperature, and they are then passed through filter paper, and the acidity determined in each by means of a standard alkaline solution, using delicate litmus papers a
the indicator. It is not well to operate upon ton small a quantity, and in practice 1,000 grammes to a liter of water will be found convenient. Every sample of malt must be crushed to the same state of fineness, and for this purpose an ordinary coffee mill answers admirably. The water used in making the infusions should be pure distilled water, unless water of very constant composition, such as is supplied to London, is at hand.
The standard alkaline solution is best made with ammonia, and can be of any desired strength, but of course very dilute; it may be titrated so that every cubic centimeter corresponds to 0.01 per cent of lactic acid, but any other strength will do equally well, as the tests we suggest are only for the purpose of comparing samples of malt one with another. The acidity of the cold infusion gives the actual amount of acid existing in the malt, but that of the hot infusion gives, in addition, the amount of acid developed during the mashing process. From the experience derived in the examination of many hundred samples of malt, we are able to assert that the presence of an excessive amount of acidity in the hot infusion is an almost sure sign of unsoundness in the malt. The difference in the acidities of the cold and hot infusions ought never to exceed one-fourth of the acidity of the cold infusion; thus, supposing a malt gives a cold infusion requiring 20 cubic centimeters of the standard solution to exactly neutralize it, the hot infusion ought not to require more than 25 c c. This method of comparative testing may also be extended to the color and gravity of the resulting worts, and much useful information as to the quality of the malt can thus be ob-tained.-Brewers' Guardian.

Overworking the Undeveloped Brain.

' Overwork," properly so-called, can only occur when the organ upon which the stress of the labor falls is as yet immature, and, therefore, in process of development. When an organ has reached the maturity of its growth it can only work up to the level of its capacity or faculty for work! Fatigue may produce exhaustion, but that exhaustion will come soon enough to save the organ. Repeated "efforts" may, under abnormal conditions, follow each other too rapidly to allow of recuperation in the intervals of actual exertion, and as the starting point will, in each successive instance, be lower than the previous state, there may be a gradual abasement; but even this process should not seriously injure a healthy and well developed organ. In short, a great deal of nonsense has been said and written about the "overwork" of mature brains, and there are grounds for believing that an excuse has been sought for idleness, or indulgence in a valetudinarian habit, in the popular outcry on this subject which awhile ago attracted much attention. Nevertheless here can be no room to question the extreme peril of "overwork" to growing children and youths with undeveloped brains.
The excessive use of an immature organ arrests its development by diverting the energy which should be appropriated to its growth, and consuming it in work. What happens to horses which are allowed to run races too early happens to boys and girls who are overworked at school. The competitive system as applied to youths has produced a most ruinous effect on the mental constitution which this generation has to hand down to the next, and particularly the next-but-one ensuing. School work should be purely and exclusively directed to development. "Cramming" the young for examination purposes [college students at this time of year take heed.-Ed \rceil is like compelling an infant in arms to sit up before the muscles of its back are strong enough to support it in the upright position, or to sustain the weight of its body on its legs by standing while as yet the limbs are unable to bear the burden imposed on them. A crooked spine or weak or contorted legs is the inevitable penalty of such folly. Another blunder is committed when one of the organs of the body-to wit, the brain-is worked at the expense of other parts of the organism, in face of the fact that the measure of general health is proportioned to the integrity of development, and the functional activity of the body as a whole in the harmony of its component systems. No one organ can be developed at the expense of the rest without a corresponding weakening of the whole.-Lancet.

Vanadium Ink.
Berzelius found that by treating an infusion of galls by a solution of vanadate of ammonia, in place of sulphate of iron, he could produce an ink of remarkably good quality. At the time of his discovery, in 1831, it was of no practical interest, because the vanadates were very costly. At the present time their cost has been so much reduced that his recipe can be employed for ordinary inks, which have the additional advantage of presenting great resistance to most reagents and destructive materials. Gum arabic can be dis pensed with, and the chance of moulding or alteration thus reduced.-Chron. Industr.

To Harden Finishing Varnish.

A newly varnished carriage is liable to spot. To preven this, some wash the carriage two or three times in clean cold water, applied with a sponge instead of using a hose; this will help harden the surface, and prevent it, to some extent, from being injured by the mud or water getting splashed on he job. Never let mud dry on the surface, and then wash off expecting to see no spots on the varnish. You will cerainly be disappointed, and the only way to remedy the evil will be to have it revarnished. Soft water is better than hard water for the washing of carriages, as the lime which is in the hard water is very liable to injure the varnish.

象usitess and ertiout．

The Charrgefor Insertion under this head is one Dollar a inefor each insertion；about eight words to a line Avvertisements must be received at publication offic

The splendid Patent Hot Air Bath illust paper May 14，paze 310，is offered very low．

Combination Roll and Rubber Co．， 27 Barclay St．
 It drives diseasc awa
Bell＇s＂Rye and Rock．
Ladies can save the annoyance and expense of visiting Sewing Machines and Gun Machinery in Variety．
The Prate \＆
Wanted．－A responsible business man would be pleased to represent a manufacturing company in Sait
Lake City．Centrally located for Utah．Idaho，and ontana．Address J．P．，Box 755，Salt Lake City，Utah． Houghton＇s Boiler Compound contains nothing that can injure the iron，but it will remove scale and prevent
Its formation．Houghton \＆Co．， 15 Hudson St．，N．Y． To Business Men．－An intelligent young man，of some
business experience．would like a situation．Anything business experience，would like a situation．Anything
honorable．Unquestionable reference．Box 98 j，Provi－ honorable．
dence，R．I．

Wanted－An old established machinery firm on Cort land street would be pleased to represent，in New York
city，a firm or company manufacturing a variety of En－ gines，Boilers，etc．Address Engine，Box 773，New York．
Why risk boiler explosion from mud？It can be avoid－ ed，at nominal cost，by Hotchkiss＇Mechanical Boiler
Cleaner， 84 John t．，N．Y．Engineers make ten per cent Cleaner， 84 John t．，N．Y．Engineers make ten per cent
selling other parties than employers．Send for circular
Lead Mine for Sale．－Undeveloped，but believed to be very rich．Short distance from St．Louis，Mo．Un－
divided half interest for sale to some one who will de velop it．A fortune quickly made．Full particulars fur－
nished only to those who have a few thousand dollars cash．Address W．W．Davenport，Oregon，Holt Co．，Mo Genuine GermanCorn Remover；not a salve，ointment，
or plaster．It eradicates the corn by four applications． Use the Vacmun Oils．The best car，lubricating，en gine，and cylinder oils．made．Address Vacuum Oil
No． 3 Rochester Savings Bank，Rochester，N．Y． Wiley \＆Russell M＇f＇g Co．See adv．，p． 333. Tarred Roofing and Sheathing Felts．A．Wiskeman， Portable Railway Track and Cars．Contractors，Plant－ ers，Miners，send for circulars．Francis W．Corey \＆Co．
$5 \& 7$ Dey St．，New York； $59 \& 61$ Lake St．，Chicago．．．Ill． Punching Presses \＆Shears for Metal－workers，Power
Drill Presses． 225 upward．Power \＆Foot Lathes．Low Prices．Peerless Punch \＆Shear Co．，115 S．Liberty St．，N．Y． Books on Practical Science．Catalogues free．Pocke
Book of Alphabets， 20 cts．Workshop Receipts；a reli abok of Alphabets， 20 cts．Workshop Receipts；a reli－
able handbook for manufacturers．$\$ 2$, mail free．E．\＆
F．N．Spon， 446 IBroome St．，N．Y． Essay on Inventions．－What qualities will make them proftable，and how to incorporate these qualities in in－
ventions． 25 cts．postpaid．Address N．Davenport，Val－ ventions．
paraiso，Ind．
Improved Skinner Portable Engines．Erie，Pa ＂Rival＂Steam Pumps for Hot or Cold Water；$\$ 32$ The Eureka Mower cuts a six foot swath easier than a side cut mower cuts four feet，and leaves the cut grass standing light and loose，curing in half the time．Send for circular．Eureka Mower Company，Towanda，Pa． The Newell Universal Mill Co．，Office 34 Cortlandt St．，
New York，are manufacturers of the Newell Universal Grinder for crushing ores and grinding Nowesphates，bone， plaster，dyewoods，and all gummy and sticky su
Circulars and prices for warded upon request．
Pure Oak Leather Belting．C．W．Arny \＆Son，Ma－ Pact Presses \＆Dies．Ferracute Mach．Co．，Bridgeton，N．J． Wood－Working Machinery of Improved Design and Experts in Patent Causes and Mechanical Counsel． Split Puleys B，Astor How Yor Split Polleys at low prices，and of same strength ani
appearance as Whole Pulleys．Yocom \＆Son＇s Shafting appearrance as Whole Pulleys．Yocon
Works．Drinker St．，Pbiladelphia．Pa
Malleable and Gray Iron Castings，all descrip
National Steel Tube Cleaner for able，durable．Chalmers－Spence Co．，10CortlandtSt．，N． \mathbf{Y} ． Corrugated Wrought Iron for Tires on Traction En－
gines，etc．Sole mfrs．，H．Lloyd，Son \＆Co．，Pittsb＇g．Pa． Best Oak Tanned Leather Belting．Wm．F．Fore－
paugh，Jr．．\＆Bros．， 531 Jefferson st．，Philadelphia，Pa． Stave，Barrel，Keg and Hogshead Machinery a spe cialty，by E．\＆B．Holmes，Buffilo，N．
Wright＇s Patent Steam Engine，with automatic cut off．The best engine made．For prices，at
Wright，Manufa．cturer，Newburgh，N．Y．
Nickel Plating．－－Sole manufacturers cast nickel an． odes，pure nickel salts．importers Vienna lime，crocus．
etc．Condit．Hanson \＆V an Winkle，Newark，N．J．，and etc．Condit．Hanson \＆V an
92 and 94 Liberty St．，New York．
Presses，Dies，Tools for working Sheet Metals，etc．
Fruit and other Can T＇ools．E．W．Bliss，Brooklyn，N．Y． Cope \＆Maxwell M＇f＇g Co．＇s Pump adv．，page 332. The I．B．Davis Patent Feed Pump．See adv．，p 332. Moulding Machines for Foundry Use．33 per cent
saved in labor．See adv．of Reynolds \＆Co．，page 334 ． Machine Knives for Wood－working Machinery，Book Binders，and Paper Mills．Also manufacturers of Sollo－
man＇s＇arallel Vise，Taylor．Stiles \＆Co．．．Riegelsville．N．J． Skinner＇s Chuck．Universal，and Eccentric．See p． 333. Blake＂Lion and Eagle＇’ Imp＇d Crusher．See p． 350. or best or best Duplex Injector，see Jenks＇adv．，p． 349. C．B．Rogers \＆Co．，Norwich，Conn．．Wood
achinery of every kind．See adv．，page 349. Eclipse Fan Blower and Exhauster．See adv．，p． 348. The Sweetland Chuck．See illus．adv．，p． 349
4 to 40 H．P．Steam Engines．See adv．p． 349.

For Sale．-13×30 and 16×48 inch Horizontal En－
gines，complete and ingood order．Prices， 8700 and 8950
 70 feet $31 / 2$ inch Shafting，with Hangers order，\＆1， 1,200 Couplings， 5 cts．Belcher \＆Bagnall， 40 Cortland St．
Peck＇s Patent Drop Press．See adv．，page 366 Fire Brick，Tile，and Clay Retorts，all shapes．Borgne Brien，M＇f＇rs，23d St．，above Race，Phila，Pa． S． Y ．
N.
Turbine Wheels；Mill Mach＇y．O．J．Bollinger，York，Pa For best Portable Forges and Blacksmiths＇Han The Brown Automatic Cut－off Engine；unexcelled fo workmanship，economy，and durability．Write for in
formation．C．H．Brown \＆Co．，Fitchburg，Mass． The None－such Turbine．See adv．，p． 350. Brass \＆Copper in sheets，wire \＆blanks．See ad．p． 365 The Chester Steel Castings Co．，office 407 Library St．， 0．000 Gear Wheels，now in use，the superiority of thei astings over all others．Circular and price list free Wren＇s Patent Grate Bar．See adv．page 365，
Diamond Engineer，J．Dickinson， 64 Nassau St．，N．Y The Improved Hydraulic Jacks，Punches，and Tube Eagle Geise 1 Geiser＇s Patent Grain Thrasher，Peerless，Portable Houston＇s Four－Sided Moulder．See adv．，page 364. Long \＆Allstatter Co．＇s Power Punch．See adv．，p． 365 or Mill Macb＇y \＆Mill Furnishıng，see illus．adv．p． 364 For Mining Mach＇y，see ad of Noble \＆Hall，p． 366. ew Economizer Portable Engine．See illus．adv．p． 365. Rue＇s New＂Little Giant＂Injector is much praised Eue Manufacturing Co．，Philadelphia，Pa．
Saw Mill Machinery．Stearns Mfg．Co．See p． 364.
Saunders＇Pipe Cutting Threading Mach． For Shafts，Pulleys，or ept at 79 Liberty St．，N．Y．Wm．Sellers \＆Co． Wm ．Sellers \＆Co．，Phila．，have introduced a new ，
Sequeira Water Meter，see adv．on page 364. Toope＇s Pat．Felt and Asbestos Non－conducting Re－
ovable Covering for Hot or Cold Surfaces ；＇Joope＇s Pat Grate Bar．C．Toope \＆Co．，M＇f＇g Agt．， 353 EE ．78th St ，N．Y Use Vacuum Oil Co．＇s Cylinder Oil，Rochester，N．Y Don＇t buy a Steam Pump until you
ey Machine Co．，Easthampton，Mass．

accompanied with the full name and address of the
Names and addresses of correspondents will not be iven to inquirers．
We renew our request that correspondents，in referring to former answers or articles，will be kind enough to of the question． Correspondents whose inquiries do not appear afte lished，they may conclude that，for good reasons，the Editor declines them．
Persons desiring special information which is purely or personal character，and not of general interest， houlk remit from $\$ 1$ to $\$ 0$ ，according to the subject， as we cannol be expected to spend time and lat
obtain such information without remuneration．
Any numbers of the Scientific American Supple－ MENT referred to in these co
office．Price 10 cents each．
（1）A．A．R．asks if either gun or powder is injured by leaving the gun loaded，the gun being the ordinary iron barrel．A．If the gun is not per
fectly clean（freed from the remains of burnt powder） and well oiled it is not well to leave the charge in any
length of time．2．I want a simple test for cistern length of time．2．I want a simple test for cistern
water to tell whether or not there is sewer poison in it． A．Dissolve in a pint of distilled water half an ounce of pure tannic acid and filter the solution through filter
paper into a clean bottle．Dissolve in another pirt of distilled water a quarter of an ounce of pure perman－ ganate of potash，and filter into a clean bottle as before． Draw off two separate pints of the well water in clean
clear clear glass bottles；add to one about two fluid ounces of
the tannin solution，put a new stopper in the bottle，and the tannin solution，put a new stopper in the bottle，and
set it aside for forty－eight hours．To the other sample add set it aside for forty－eight hours．To the other sample add
a few drops of the permanganate solution（just enough a few drops of the permanganate solution（just enough out at once or on standing haif an hour．Add to an out at once or on standing half an hour．Add to an－
other sample of the cistern water a few drops of a fil－ tered solution of a quarter of an ounce of pure nitrate of silver in a gill of distilled water，and note whether a white precipit ate or an opalescent cloudiness forms
immediately or on standing half ain hour in the dark．If immediately or on standing half ani hour in the dark．If
an appreciable quantity of sewage is present in the an appreciable quantity of sewage is present
water the tannin will occasion a flocculent or curdy pre－ cipitate，at first a mere cloud，which finally settles to nate test the color imparted will soon fade out if it does not do so at once．The white precipitate or clond form－ ing on the addition of silver nitrate also indicates the presence of contaminating substances，especially if the
other tests are positive．If the tannin and permanga－ nate reactions indicated are marked the water is unfit or potable purposes．
（2）F．B．asks：How can I keep a tent made of thin cotton cloth from mildewing without coloring the cloth？A．Saturate the cloth first with a
solution of soap and then with a strong aqueous solution of lead acetate or alum．Let it partially dry，then rinse with clean water．
（3）A．V．R．asks：Can you tell me of glue to nse for cigarettes？I have used flour paste，but
it is not quick enough．The glue must not discolor the it is not quick enough．The glue must not discolor th meer，and when dry must not show．Could you inform me what is used by the manufacturers of cigarettes
Thick starch paste free from lumps and contaning
． trace of clove oil to keep it sweet answers admirably
（4）H．C．F．asks for a receipt for pack ing eqge in summer to keep for winter．A．Dip the egg，
in a solution of 2 oz gum arabic in a pint of cold water in a solution of 2 oz．gum arabic in a pint of cold water let themdryand pack in powdered well burned charcoa．
（5）C．H．H．asks how to make potas waterglass？A．．
timately mixing two parts，by weight，of pure white silicious sand or clear quartz，and six parts of anky
drous carbonate of potash，all ground to a very fine drous carbonate of potash，all ground to a very fine
powder，andmelting the mixture in a large clay cruci－ powder，andmelting the mixture in a large clay cruci－
ble at a bright red heat．Carbonic acid gas is given off rapidly，and as soon as this ceases and the mass is in a state of calm fusion it is poured out on an iron plate to cool．This glass dissolves readily in boiling water，and cool．cooling the solution a sirupy liquid
This is the potash water－glass referred to．
（6）C．J．H．asks（1）how aniline is pre－ pared and shaped which is used with the indelible writ ing pencils．A．A misture of chalk and kaolin is made into a stiff paste with a atrong aqueous solution of ang a
line violet（or other soluble aniline dye）containing a little gum dextrine，pressed into shape and slowly dried nd sleeve buttons，that will keep its luster and not make the fingers and cuffs black？A．We know of no practical way．3．How celluloid is prepared and put on linen such as is used for waterproof collars and cuffs A．Celluloid is composed of nitrocellulose or soluble
cotton combined with camphor by means of strong cotton combined with camphor by means of strons
pressure and heat，under which conditions it is quite plastic．
（7）A．K．asks：1．Does water ever get too cold to freeze？It so，under what circumstances does
it pass the freezing point without congealing？A．At it pass the freezing point without congealing？A．At
a temperature of about 32° Fah．pure water congeals under all circumstances．2．Is the sugar that is in the maplesap taken from the ground，or is it manufactured from the material taken from the ground by the organs of the tree？A．A portion of the substances of which
maple sugar is composed is derived from the soil，and a maple sugar is composed is derived from the soil，and a
larger port on from the air．The sap is formed by larger port on from the air．The sap is formed by
chemical reactions within the tree．3．Will evapora－ tion be more rapid if a lid be placed over vessel while tionbe more rapid if a and be
boiling？A．No；the contrary．
（8）J．D．S．asks how to make brick burn a dark color．I have been using coal dust，which does
not prove satisfactory．I have an amount of fire clay not prove satisfactory．Thave an amount of fire clay
among the clay，which，when moulded，burns a very light among the clay，which，when moulded，burns a very ligh
color．A．Spray the clay while mixing with a smal color．A．spray
quantity of a solution of 1 lb ．common green copperas
in 4 gatlons of water．Or use as a cheap substitute for in 4 gallons of water．Or use as a ch
this，ordinary acetate of iron liquor．
（9）J．S．H．writes：I have a large marble slab，with two large hair oil stains on same．What can
I use to take out the oil or to make it all oil？Have tried several oils but with no cffect？It has been on for six years，and has soaked through．What is a cheap way
to fix it？A．Make dry slaked lime into a paste with one ounce of washing soda dissolved in half a pint of over night．Then wash off with clean water．Repea if necessary．
（10）C．W．K．asks how to remove common black ink from parchment．A．Moisten the spots first with a strong solution of oxalic．acid，then with a clear
saturated aqueous solution of fresh chloride of lime （bleaching）．Absorb excess of the liquids from the paper as quickly as possible，with a clean piece of blot
ting paper．Repeat the treatment if necessary，and dry ting paper．Repeat the treatment if necessary，and
thoroughly between blotting pads under pressure．
（11）C．L．asks：Can you tell me how to dissolve rubber so as to make rubber stamps？A．The rubber is not dissolved．See＂
Stamps，＂Scpplement，No． 83.
（12）H．E．writes：I have some receipts for making colored fires；among them are some articles
termed meal powder and Chertier＇s copper．What are these substances？A．The first is gunpowder reduced to a fine flour；the second，fine copper filings made into a paste with an equal weight of finely powdered potassium （13）W．W．asks about what steam press ure a mercury flask will stand．Will it be safe to put
10 to 50 lb pressure in them ？A．It will be safe at three times 40 or 50 lb ．
（14）＂Subscriber＂asks：What would be he cheapest and best style to make a boiler for an
ngine $11 /$ inch cylinder，3inch stroke；whether npright engine $1 / 2$ inch cylinder， 3 inch stroke，whether apright
or horizontal，and of what material？Also，would oil
and lamp or lamps give out sufficient heat，and what part of a horse would the above be boiler of iron．Petroleum or kerosene lamps might be arranged to heat it．Engine would be half horse powe velocity at which it is run； 2 inches by 4 inchescylin－ double the powe
（15）C．E．T．asks：Is there any difference inch in diameter and one inch thick，and the power re quired to punch a hole two inches in diameter and one－ half inch thick？A．According to the result of experi ments，the power required for punching iron plates is
directly as the area of the boundary of the hole，or as directly as the area of the boundary of the hole
the crrcumference multiplied by the thickness．
（16）J．D．S．writes：My engineer and I are in dispute on the following points，and appeal to you for an opinion．We wish to draw water from a stream to the sugar house，four hundred yards distant．Have a
Blake pump，and will use a three－inch iron pipe for the Blake pump，and will use a three－inch iron pipe for the
suction．From the level of the water to the pump is 20 feet perpendicular．From the level of the water to the top of bank，near the stream， better to lay the pipe with a gradual fall throughout from the pump to the water，or to make a perpendicu
lar lift at the stream which will carry it over the
bank，and then fall gradually back toward the pump which is two feet lower than the top of the bank near the stream？My engineer says it should be put with the fall from pump to water，and use thin check valves in the length of the pipe．I hold the contrary opinion，and specially that more than one check valve is worse tha aseless，as it is only an additional weight for the pum
to lift．He insists that he can，by laying a pipe as h ays，and with several check valves，make a pump ras water forty feet perpendicularly with ease．A．If the plpe is tight，it makes little difference which plan is adopted．Your engineer is＂all wrong＂in saying that e can lift the water 40 feet by using a number of check valves．A multiplicity of check valves increases the
difficulty．
（17）J．R．D．asks：1．What is the best labricant for two wood surfaces？A．Pure refined tal－
low or lard，with a little black lead．2．What is the ormula for finding the theoretical horse power of given head of water？A．One horse power is 33.000
lb．lifted 1 foot high per minute．For water power mul tiply the weight of water falling over the dam pe minute by the amount of fall and divide by 33,000 ，the result is the theoretical horse power．When applied to water wheels the net power is from 60 to 80 per cent， （18）G．E．asks：How can I make the so called liquid slating for blackboards？A．Shellac， 1 lb borax， 4 lb ．；water， $4 / 2$ gallons．Heat the water to boil－ ing，add the borax，and when this is dissolved gradually is dissolved；then introduce lamphlack，antil the latte is dissolved；hen introduce lampblack， oz．；silicate
of soda（a sirupy solution）， 8 oz；fine silica， $11 / 2 \mathrm{lb}$ ．
Stir well together and add enough hot water to reduce to the proper cons and enoug
（19）S．C．D．asks if brass pipe for conduct ing water for domestic use would be safe；would water pipes，be perfectly free from any poisonous or injuri ous properties，and positively safe to use？A．Brass i not a proper material for pipes conveying potable water Water that has remained in such pipes for any length o
time is not fit to drink or for cooking．Use iron o time is not fit
wood pipes．
（20）M．R．P．writes：I am painting with oil colors on gold and silver leaf．To preserve the bright ess of the painting some kind of varnish is necessary silver leaf？A．Photographer＇s clear plain collodion silver leaf？A．
answers very well．
（21）W．II．B．asks：Is there anything that nelting renders the oside of iron in glass sand，which in er small blisters？A．The introduction of a little oxide of manganese will improve though it will not eradicate the c
sand．
（22）G．M．P．asks：What is the proportion coal to the amount of glass melted in the manufac ture of glass table ware？A．In the old method of
melting glass it required $11 / 2$ pounds of coal to melt a pound of glass；in Germany，where coal is expensive the glass manufacturers claim to be able to melt a
pound of glass with a pound of coal．There are glass melting furnaces running successfully in Pittsburg． with one pound of coal．
（23）E．W．M．asks：What is the nutritive value of fish as food as compared with other articles of medium beef at 100 ，we thould have，as the nutritive value of like weights of fish free from bone：Medium beef，100；fresh milk，23 8；skimmed milk，18．5：butter． 124；cheese，155；hens＇eggs，72；codfish，fresh，68；
flounders， 65 ；halibut，88；lake trout， 91 ；eels， $95 ;$ flounders，65；halibut，88；lake trout，91；eels，95；
sbad，99；salmon，104；salt mackerel，110；dried cod－ sbad，99；
fish， 346 ．
（24）R．H．asks：Are there any coal mines successfuly worked under the sea 9 A．A number of English coal mines are being worked under the ocean．
In Northumberland the net available quantity of coal In Northumberland the net available quantity of coal
under the sea is estimated at $403,000,000$ tons，and on the Durham coast under the sea，including a breadth of three and a half miles with an area of seventy－one square miles， $734,500,000$ tons．The latter mine is in a vein of an aggregate thickness of thirty feet，distributed in six
（25）T．A．W．asks how much lap there is on the steam and exhaust valves of the Corliss
ngine；also，if there is any way of setting the valves engine；also，if there is ary way of setting the valves
except to take off the cylinder heads．A．The lap is except to take off the cylinder heads．A．The lap is
different in the different sizes of engines and engines different in the different sizes of engines and engines
running at different velocities．You can set the valves by having the position of the openig place on the out－ $\begin{aligned} & \text { of the } v \\ & \text { side．}\end{aligned}$
（26）
（26）W．L．asks why the screw propeller and gation．A．Because：1．The machinery weighs less and pelling power is not than for paddlewheels．2．Is pro－ draugnt of water．3．Its propelling effect is not reduced in a sea way and by the rolling of the ship，as is the case
with paddle wheels．4．It is much less liable to damage with paddle wheel
from heavy seas．
（27）J．B．asks if an engine of the follow－ ing dimensions is well proportioned：Cylinder 7×20 ， engine and what sized boiler is required？A．Your proportions are very good，unless you wish to run at a high velocity，then a shorter stroke will be better．The tions per minute．Boiler 38 nches diameter by 22 feet long， 2 flues 12 inches diameter．Of the speed of the （28）W．E．F．L．asks：What is the cheap群 The bars are from 2 to 3 oz ．in weight．A．You will
find full information on th）s subject on page 379 （36） find full information on this subject on page 379 （36），
SCIENTIFIC AMERICAN，for December 11，1880，vol．xlui．
(29) W. B. R. asks how to soften hard cast iron so that it can be filed and fitted easily. The castings we want to use are so thin that heating breaks
them. A. The metal may be superficially softened by them. A. The metal may be superficially softened by
packing the pieces in dry oxide of iron or powdered hematite iron ore in an iron box, heating the whole to redness and keeping up the heat for twenty-four hours
more. The contents of the box must be allowed to cool down slowly
(30) T. M. inquires as to the action of glue on porcelain, when allowed to dry in a porcelain evaporating dish. The glue causes the glazing to crack and flake off. I placed some glue in a glass vessel, and
found that when it solidified and contracted it caused the glass to flake. If this is a common case I have failed o notice it before. Is it due to mechanical action alone? A. The flaking of porcelain and glass surfaces
by glue in drying has been frequently noted. The by glue in drying has been frequently noted. The only sel clean. It is due to mechanical action.-Your minerals were reported under appropriate headings in a recent issue.
(31) C. H. asks for a good work on amalgamating and milling. We are running over silver plated copper plates, using cyanide of potassium to clean
with, but cannot eet the plates in good order, the quicksilver running off. What should we use to prevent this? A. Consult, Percy's "Metallurgy of Gold and Silver." Address the book dealers who advertise in this paper
Wash the plates with a strong hot aqueons solution of caustic potash. Rinse off thoroughly with water, then try the mercury, with a little dilute nitric acid if necessary, at first.
(32) J. H. asks: 1. Is it lawful for any one
o makea patented article, without permission from the o makea pat ask his own use solely, and not to sell ? A. Any one may
make a patented article for experimental purposes, but notfor actual use. See "Rights of Investigators," page 128 , vol. xxxix. 2. What would be proper size, bore of cylinder, and stroke for engine of steam launch, 33 feet
keel, 8 feet beam, to make seven miles an hour? A. keel, 8 feet beam, to make seven miles an hour? A.
7 to 8 inch cylinder by 8 inch stroke. 3. The amount of pipe necessary to make a coil boiler for such an engine A. There should be pipe enough in coil boiler to give not less than 300 feet surface
(33) W. F. K. writes: I have a small stream of spring water about 20 inches square, or rather 20
square inches as it runs, that is 10 inches wide and 2 inches deep, could raise the head to 20 feet high. Would like to know the best water wheel to get, and what
would be the greatest amount of power that could be would be the greatest amount of power that could be
got out of the water under a 20 foot head? A. We cangot out of the water under a 20 foot head? A. We can-
not tell anything about the power, as you do not give the quantity of water per unit of time. A turbine is in our columns.
(34) M. F. J. asks: 1. Can a reliable watch be affected or made to go faster, on account of its owner 2. Can an induction coil be compared to a dynamic machine for lights? A. No, it would be impossible to
substitute onefor the other. An induction coil is not substitute one for the other. An
adapred to electric light purposes.
(35) W. C. B. writes: 1 have tried to put up an acoustic telephone, from office to dwelling, distance about 200 feet, and cannot get it working satis-
factory. There seems to be too much vibration or buzzfactory. There seems to be too much vibration or buzz-
ing noise in the diaphragm, as though the words spoken could not get out fast enough. Will you please American, where the fault lies? My boxes are 6x6x6 inches,with drumhead diaphragm 6 inches square,forming a slight cone, with a cover over the front and
around hole of $4 \not y / 2$ inches in that cover, forming a small chamber in front of diaphragm of about half an inch. Back of diaphragm I have packed cotton to partly take with string (wire is about one-thirty-second of an inch thick), forming four right angles. Wire is moderately taut and does not touch anywhere but the diaphragm and strings to form the angles. There seems to be no difficulty as to quantity of noise: we can hear that very
plainly 20 feet away from box; only as to distinctness plainly 20 feet away from box; only as to distinctness,
we have experimented every way, and cannot strike the we have experimented every way, and cannot strike the
right thing. A. Your diaphragm is too large. Make it (ferrotype plate) in diameter, of thin angle less acute than a right angle; that is, use two o three suspenders at the corners instead of one
(36) Dr. N. J. S. writes: When sheets, handkerchiefs, and other linen or cotton fabrics are soiled with vaseline, and afterwards washed in soap
suds or boiled in lye. the stain disappears. When the articles are ironed, however, the heat causes the stain which looks like a grease spot, to reappear. Neat patients complain that their bed linen and clothing is
thereby rendered unfit for use. What is the remedy ? A. The best way is to put the stained pieces to soak for ten or fifteen minutes in a quantity of deodorized benzine (a common commercial article) sufficient to
completely cover them. Wring out aud hang up the completely cover them. Wring out and hang up the
pieces for about ten minutes, when they will have dried pieces for about ten minutes, when the
sufficiently to put in the soap suds.
${ }^{(37)}$ J. A. D. writes: I have a Niagara pump. 4 inches suction and 2 inches discharge, and I can-
not make it pump hot water it pumps cold water all not make it pump hot water it pumps cold water all
right. Can it be made to pump hot water? The valves and rings are all metal. The heater is an old boiler (with the flues taken out and the ends closed up), 24 feet long,
40 inches diameter, and the exhaust goes through it Cold water is pumped into the heater with a Blake pump. The heater sits 4 feet above the pump, and it is to supply seven boilers 25 feet long, 40 inches dameter, with
two flues carrying 90 lb of steam. gets hot in the heater, after running half an hour it pounds bad and blows out the packing from the water cylinder. I took off the air chamber, and it worked a
little better, but not much. A. The hot water produces a vapor in the pump which prevents the valves from acting, especially if there are large vacant spaces in the pump; it would work better if the tank were 10 or 12
feet or more above the pump instead of 4 feet; any
good force pump will pump hot water if the supply of
water is a good height above the pump. Write the nufacturers of your pump
(38) H. O. asks how to charge horseshoe and bar magnets. A. The quickest and best way to magnetize steel bars is to place them centrally in wires from a dynamo-electric machine or powerful battery for a few seconds, remembering to break the current before removing the magnet from the coil. If the source of the current is a dynamo machine, the coil should be about $2 \not / 2$ inches long, and should consist of in or twelve layers of No. 12 magnet wire. If a battery is used, a coil $11 / 2$ inches long, composed of fourteen or
sixteen layers of No. 16 magnet wire, will be the best. The nternal diameter of the coil should be only large enough to admit the bars easily. A battery of six Grenet elements, each having an effective zinc surface of 30 square inches connected in series, will do the work very well
on small magnets; such, for instance, as are used in telephones. Where a number of magnets are to be made at one time the bars may be passed in a continuous line through the coil, always keeping three bars in
contact end to end, adding one above the coil before taking one off below. In this manner sixty bar magnets have been strongly charged in ten minutes. Horseshoe or three ways of charging them. One way is to place them in contact with the poles of a very strong electro magnet, removing them after breaking the current; coil adapted to the current to be used; and still nother method is to employ a single coil, inserting one pole of the magnet into the coil in one direction, thus breaking the current, and inserting the other pole into the coil
from the opposite direction. It is well to remember that the magnet will be very much impaired if the current is not broken before removing it from the coil. The current. It is impossible to make magnets satisfactorily without this all-important requisite. As to the quality of steel best adapted to this purpose, machinery steel, hardened and not tempered, answers admirably. For horseshoe magnets German spring steel is the best. Tool steel answers well if hardened and drawn 10 a straw color. The steel receives its maximum charge almost influence of the magnetizing current more than a few
(39) E. R. T. asks how to make pure oxy gen gas. A. Mix pure crystallized potassium chlorate of manganese, and heat the mixture in a copper retort with large delivery tube, until the gas begins to come over. Conduct the gas through a large empty bottle (to avoid accident by back pressure), then through a strong solution of iron sulphate (copperas), and then through an iron tube several feet in length, filled loosely with fresh quicklime in granula lomps (free from dust) swers well enough if the air from the lungs is expelled through the nostrils, or so as not to contaminate the contents of the bag. The heat should be continued
under the retort with caution to avoid too rapid a disengagement of the oxygen until no more gas comes
(40) O. E. C. asks for a receipt for white dash for out-of-door work. A. For brickwork exposed
damp take one-half peck well burned quicklime, fresh to damp take one-half peck well burned quicklime, fresh
from the kiln, slake with hot water, enough to reduce it from the kiln, slake with hot water, enough to reduce
to a paste,and pass it through a fine sieve; add a gallon of clean white salt which has been dissolved in a small quantity of boiling water, and a thin smooth paste, also hot, made from 1 pound fine rice flour; also one-quarter pound best white glue, made in the water bath. Mix
together, stir well, and one-quarter pound best Spauish whiting in 5 quarts boiling wuarter pound best Spanish tain heat and exclude dust, and let it stand a week. Heat to boiling, stir, and apply hot. The above propor to refine cider for family use? A. See pp. 394 (7) and (15), vol. 39, and 299 (24) and 28 (46), vol. 38, ScIEN-

Minerals, etc.-Specimens have been recei ved from the following correspondents, and examined. with the results stated:
F. C. R.-Iron pyrites-sulphide of iron-contains traces of gold.-A. M.-A variety of bituminous coal
containing mucb sulphur.-E. S. H.-1. Encrinites or stone lilies. 2. Niagara limestone. 3. Fibrous talc. -R. McA.-A variety of fine silicious clay.

COMMUNICATIONS RECEIVED.
On the Mound Builders. By w.
[OFFICIAL.]
INDEX OF INVENTIONS

Letters Patent of the United States were Granted in the Week Ending

May 10. 1881

AN EACH BEARING That date

[Those marked (r) are reissued patents.]

A printed copy of the specifleation and drawing of an
patent in the annexed list. also of any patent issued mber and date of the patent desired and remit to Munn \& Co., 37 Park Row New York city. We also furnish copies of patents
granted prior to 1866; but at increased cost. as the speci granted prior to 1866; but at increased cost. as the
fications not being printed, must be copied by hand Advertising inkstand, A. I. $\mathbf{\text { E. }}$ Knight........ 241,38
A ir brake apparatus, F. W. Eames........241,323, 241,325
 Animal trap, J. Quigley........
Annunclator index , eletric, w. R. Cole. tomizer, A. F. Elliot... Axle, wagon. J H. \& E. M. Keller Bag machine, D. Appel.......
Baling press, P. K. Dederick
Band wheel, J. W. McKee..

Barb making machine. M. W. Watkins....
Barrel trussing machine, E. \& B. Holmes.

Bed bottom, spring woven wire, Dunks \& Rya

Bed. folding. E. S. Grifith Bed, folding cot, E. S. Grimfth.
Belt, grain conveyer, L. R. Fix Belt, sand. J. Obart.
Bent
Belting, A. E. Foth.................
Blasting powder, T. P. sleeper. Bleaching and dyeing cotton,
ratus for, F. Wilkinson.. ratus for, F. Wikinson..................... Kinder
Boiler fur
Boiler furnace, steam, H. McElroy. Boiler furnace, steam, O. D. Orvis
Bookce Book case, revolving, J. Danner........
Boot and shoe guard, D. A. MeDonald Boot and shoe soles, machine for moulding, J. B Bot and shoe tip, J. W. . Rogers Boot cleaner, J. W. Dowle
Bottle cooler, W. Keech Bottle cooler, W. Keech
Bottle stopper, R. F. Osgood
Bottles Bottles, crate or basket for carrying, J. C. Close.
Boxes and cases. provision and other, F. S. Bridle bit. R. W. Jones..
Buckle, tug. J. S. Nelson.
burial caskets, outer cas
Burial caskets, outer case for, G..............
Cable ways, switch for endless, H. Cable ways, switch for endless, H. Casebolt
Can, nozzle, J. W. Farrell........... Can sealing apparatus, U. A. Wood .
Cane and umbrella, combined, M. A. Dees. Cap and process of manufacture, D. W. North Car and feeding device, stock, J. A. Ha
Car brake, automatic, D. S. Randolph.. Car brake, reel attachment, I. H. Randall Car roue ree, attachment, I.
Car couping, W. J. Stethem
Car, stock, H. Illowayet al.

Car, stock, H. H. Howay et a Car, stock, I. Kitsee et al.

Car, stock, M. F. Seeley Carbon black, manuf. o
 Card cutter, A. Johnson.......

Carriage curtain fastening, F. J. Flowers....
Carriages, parasol attachment for childre

A. Crandall.

Cart, self-loaading, J.....
Chain, ornamental, H. A. Church.

Churn power, C. M. Trautmann. Cigar bunches, machine for assisting in making, A. C. Schutz...
A. Cigarette machine, pocket, H. W. Thurston.........
Cluth, automatic, C. J. B. Wara

Coffee, etc., machine for cleaning, scouring, and
polishing, J. Burns
Coffee roaster, J. Burns...
Collyrium. M.S. Judah...
.241,294,
Collyrium. M.S. Judah
Comb. P. H. Drake.
Comb, J. Hart............
Comforter, H. A. Stearns
$\begin{array}{r}\text {............. 241,222 } \\ 241,126 \\ \hline \text {.....295 }\end{array}$
Compounds for treatment of piles, making, A. W

Brinkerhoff........ Cone press, J. Selwig.

Cenveyer, H. A. A. .arnard
Cork cutter, R. S. .
Corn husker, fleld, C. A. Pennington
Cornice, window, J. M.
Corset, W. J. Brewster
Corset J A. Ordway
Corset, J. A. Ordway.
Crozing machine, R. B. Mitchell
Cuff or wristlet, I. B. Kleine
Cultivator, sulky, N. Dulane
Cutter body, C. R. Wilson ...
Cutter frame, w. Bruening
Cylinders, machine
sheet metal, D. Rolston

Door check, J. H. Coffman
Drums, hook attachment
Drums, hook attachment to, E. J. Cubley ..
Ear jeweis, fastening for, G. W. Washburn
Earring fastener, G. Krementz....
Edible composition, L. M. Haskins
Ejector, air, F. W. Eames....
Electric machine, dynamo. W. Elmore 241,371
Electric machine, dy amamo, W. Elmore
\& Knowles
$\&$ Knowles....
Electric wires an
End gate, wagon, A. C. Badgley
End gate, wagon, A.C. Badgley
End gate, wagon, w. Emery....
Evaporating pan, J. E. Weaver
Evaporating pan, J. E. Weaver
Evaporating saline
vaporating saline and other liquids, process o
Faucet, T. F. Conklin.
Faucet, I. F. Conklin.
Faucet,
Filtering, W. M.
Fellies, machine for troughing metal plates for
the manufacture of, D. \& A. W. Davis.........
Fences, machine for twisting barbed wire for,
Fences, machine for twisting barbed wire for
T. V. Allis......................................
Fertilizers from blood, manufacture of, R. Wer
Fertilizers fro
dermann.
Fifth wheel, vehicle. J. J. Cobb. .
Fifth wheel, vehicle, J. G. Ebken.
Fifth wheel, vehicle,
File, bill B. Tainter.
File, bill, J. E. Gorman
File, bill, C. W. Lord ..
Filtering tank, A. G. Fell.
Filtering tank, A. G. Fell...
Finger ring, D. Untermeyer
Firearm, breech-loading. J. W. Wilson................. 2411,456
Firearm,
241,
Firearm. revolving, A. L. Sweet (r)..................
Fireproof material for building purposes, W. H.
Beers
 Flower pots, wire window rack for. H. R. Van Eps.
Fluted trimmings, machine for making, Kersten \& Schaupp.....
Fruit drier, G. C.De La
Fruit drier, G. S. Grier
Fruit in boxes, machine for 2
Furnace door attachment. A.J. Simmons.
Furnace door attachment. A. J. Simmons.....
Gas apparatus, Granger \& Collins, Jr..............
Gas, apparatus for obtaining an illuminating as, apparatus for obtaining an illu
heating. E. B. Neynolds.......... Gas burner cleaner, J. B. De Luna...............
Gas sighting apparatus, electric, O. S. Armstrong Gases and vapors, apparatus for combustion of

241,256
241.139

Governor for cotton gins and cotton gin feeders.
L. D. Forbes. L. D. Forbes.................................... lating, A. Nechwart
Grain binding machine, C. L. Grain conveyer, L. K. Fix.
Grate, fire, T. R. Houston Gun, machine, D. C. Farring
Hame fastener, J. Gilson. Hame fastener, J. Gilson..
Hame fastener, J. Lépine. Hame fastener, J. Lepine..
Hame loop, A. Arter
Hammer, bush, J. B. Sulliva Hammer, bush, J. B. Sulliva
Hammer, power, L. Brady.. Harrow, spring tooth, A.
Harvester, J. P. Adriance. Brady.....
th, A. J. Ne
riance.......
loe
\qquadHarvester, J. . . Adria
Harvester, C. J. Lilloe
Uarvester guard flnge${ }_{436} 229$Hat bodies, etc., machinery for fetting, J. T. War241,461
241,266
ing..............
Hat felting process and apparatus, G. Yule..
Hat sizing machine, G. Yule.
Hay and cotton press, w. J. 241,267
241,384
Heat and powe
J. Newton.241,404
241,322
$.241,171$
Hide and pelt working machine, E. D. Warren.
241,308
2 21280
Hinge, Baush \& Fleming....
Hoof parer, H. L. Watts....
Horse detacher. H. L. Watts
Horse detacher. H. L. Watt....
Horse toe weight, P. Broadb
Horse toe weight, P. Broadbook
Horse toe weight, J. H. Fenton.Horseshoe, E. S. Folger..............................
Hub band, detachachie ine for forging, L. S. Parre
Hydrocarbon burner, J. S. Hull
Hydrocarbo
Donald.
Hydrocarbon burner,
Inkstand, w. C. Hicks.
Iridium, fusing and moulding, J. Hollan
Knit fabrics while being cut and sewed, device
for securing, S. Arnold..... 241,116
241,162
Lamp, S. M. Carnahan
Lamp. .v. M. Jackson 241,298
.. 241,140
241,422
Lamp. W. B. Rnbins. $\ldots 241,417,{ }_{2411,418}^{241,416}$
Lamp, electric, C. A. IHussey 241
Lamp, electric, Sawyer \& Street
241,430
241,127
Lantern, A. M. Duburn
Lantern lighting device, G. L. Sackett...
Lantern, signal, J. H. \& J. M. Williamson 241,127
241,423
Last, F. H. Holden214,136
241,225
241,362
Latca, ocking, P. Lacroix.....
Lead and crayon holder, I. Ioffman.
Leather scalloping machine, II P. Hall ${ }_{241,135}^{241,562}$
Amazeen......
Lever, adjustable 241.178
241,236
241,268
Lime and cement kiln, E. Ziegler................
Loom pickers to their staves, attaching, P. т.
Mackerel, etc.,....................................241.345
241,187
21147
Meat chest, O.C. \& W. A. Frame
Measuring machine, cloth. A. \& 211,34
241,426
241,144
Metallic objects from rust, etc., protecting, 'T.Meter, B. Holly241,230
241,217
241,133
Middlings purifier, L. Gathmann

Middlings puritier, W. Tucker... | 241,133 |
| :--- |
| 241,252 |

Milk cooler washer, Brown \& Gaige....
Millstone driver and rynd. H. W. VittMillstone sharpener, P. Grahan
Mitten, knit, C. E. Wakeman.Mitten, knit, C. E. WakemaMordant, S. Mellor.. J. S. Adams et al
Motion, device for converting,Musion, deveses spring motor for, R. Karrer........Music rack, C. ParentNut lock and bolt, A. McKenney
Oatmeal machine, L.Oatmeal machine, L. G. Thorp......................... 241.394
Ore concentrating machine, A. M. Rouse
Ore roasting furnace, N. M. Langdon............. 241241,24Ore roasting furnace, N. M. Langdon............. $241.240,2 \%$
Ore separator, A. M. RouseOre separator, A. M. Rouse
Packing, piston, w. TemplePacking, piston, w. Temple 241.247
Packing, valve stem, C. C. Jerome (r)................................. 241,27
Padlock, G. M. Barth.

Rocking chair, W. E. Buser.........
Rocking chair. reclining, E. J. Smit Rolling pin, G. A. Twele.
Rubber spring, India, D. F. Turne Rubber spring, India, D.F. Turner. Sadde, harness, A. Gilliam sanding machine, O. Sawy Saw teeth, machine foi setting, J. W. Wilt Sawing machine, C. M. Trautman Seal, car, F. O. Minor
Seams of cans, machine for closing the, R. Wag
Seeding machine seed cup, J. R. Rude
Sewing machine clutch, W, P. Barker Sewing machine, shoe, Sawyer \& Estey Shaft bearing, C. B. Richard Shoe, T. A. Collins..
Shot case, B. Corwin...
Sign, changeable, J. O. Belknap
Skate, roller, W, Akin
Sluiceway gate, automatic, J. B. Tainter Slate, double reversible, Hyatt \& Pruyn.......
Smelting ores containing iron and precious tals, H. A. Sp
Soap, J. Wright.
Soap, J. Wright.
Soda, perfumed caustic, G. T. Lewis...................
Solder, machine for revolving cans in, D. Klump.
Sorghum or ribbon cane, treating, W. L. Gebby... 241,20 Spark arrester and consumer. A. Berney ing rail of, J. Birkenhead (r). Spring motor, G. Duncke
Stanchion, M. H. Barnard d......... Stanchion, M. H. Barnard......... Stt ve dressing machine..........
Stave jointing machine, E. \& B. Holmes. Steam boilers, device for
from, S. J. Hayes sterentype block, C. Wt E. Eb....... Stirrup bar for saddis
Stirrup strap loop, R. N. Applegate
Stove, W. Clark
Stove, portable, N. Crotsenburg. . Straw board lining machinę,. H. Inman Straw cutter, J. A. Cornish Sucker rod joint. W. H. Philli Telegraph sounder C. Herrman Telegraph key, J. H. Bunnell Telephone, G. W. Foster... Telephone transmitter. Lockwood \& ... Telephonic receiver, A. G. Bell.................... Thill coupling clamp, B. N. Torrey
 Toy horse, F. w. Carpenter Trace carrier, V. Stepp Trace coupling, J. Tegart.. Train indicator for railway stations, s. L. . Palmer Udell.
Truck bars, machine for bending. J. Letzkus. Tunnels, construction of, J. F. Anderson Valise, convertible, M. Loomis. 241,326 to $241,330,241,332$, Valve, P. White ...
Vehicle brake, M.
Vehicle wheel, Ball \& Davis.
Vehicle wheel, I. H. Bradshaw.
Vehicle wheel, Soule \& Manuel
Velocipede, W. Hillman...
Velocipede. J. A. McKenzi
Wagon dash, A. Lobdell..
Wagons. circle iron support for, P. Sames
Washing machine, C. C. Waste or sewer trap, C.Lightbody Water bag, M. Mattson
Water meter, P. Wells

Wheelbarrow and truck, combined, J. W. Marsh
Wind engine, A. Thomson
Windlass for oyster dredges, C. o. Dougherty
Wood drying apparatus D. . Ftover.
Wrench, J. Grein ...
Yoke, horse, J. Terr

DESIGNS.

Album cover, C. Wagenfohr
Burial casket, w. M. Reid...
Cigar box, Winterberg \&
Clock case, H. J. Davies
Clock stand, H. J. Davies
Fork and spoon handle, H. B. Dominick................. 12,10 ,
Game board, D. W. .
Sign, watch, L. S. Grout.

Stove, cook, J. Beesley...

Euglish Patent Issued to Americans Boot heel burnisher, Z. Beaudry et l. Boots and shoes, waterproofing, G. Spencer, Chicago,IIl Electric lizht (2), T. A. Edison, Menlo Park, N. J. Harvester, S. D. Maddin, St. Paul, Minn. Jacing hooks. G. W. Prentice, Providence, R. I.
Middlings purifer, Christian Bros., Minneapolis, Minn Ore crusher, P. W. Gates, Chicago, Ill.
Ores, desulphurizing, F. W. W iesebrock, New York cit Paper folding machine, W. C. Cross, Boston, Mass. Refrigerator. pneumatic, M. J. Klein, New York city. Separators, J. Sternberg, Boulder, Col.
Springs, car, B. S. Clarket al, New York city.
Springs, car, B. . . Clark et al., New York city.
Sugar, manufacture of, A. Brear. Saugatuck, Conn. Terra cotta blocks, manuf. of, A. Reeve, Camd
Zinc pikment, white, J. Cawley, Newark, N. J.
 411,148
 Windsor Locks, Conn

GOOD MECHEANICE

UMBOLIDT LIBRARY. LATE ISSUES

 form price of 15 cts. each.
*. FITZGERALD \& Co., Pub-
lishers, 143 Hy Hewismen. For Best. Low-Priced, Reliable Watch Clocks, address
Jerome Redding \& Co., 30 Hanover st., Boston, Mass.

 CONSTIPATION VIEWED AS A DIS

DO YOUR OWN PRINTING

H. HOOVER, Phila.. Pa BELT FRICTION CLUTCH For Gears, Shaft, Couplings, and Pullegs. w. OESTERLEIN, FOR $\mathbf{G A L E}$

 THE NEW OTVIO SILEN'I GAS ENGINE.

QUEEN's
 Toepler Holtz Electrical Machine

certain in operation.

 James w. queen \& co. Chestnut Street, Philadelphia, Pa

DEAF

 HEAR

REAL COMFORT

IGFTS WANTED,
STATE rights or the whole right

TELEP HONE

engineer who has a practical knowledge of
and Chaudron "methoc of sinking shaftst hro
bearing strata, will receive promp attention

Refrigerator, Filter, \& Water Cooler.

Address M. GREENEBAUM,

WANTED

VATOR BUCKET
DUC'S ELEVATOR BUCKET,
THOS. F. ROWLAND, sole Manufacturer, Brookly

WAYMOTH LATHE.

TYPHOID FEVER.-A CLINICAL LEC

OTLDELEALE NO FAILURE IN SIXTEEN YEARS HEALD \&MORRIS, CENTRIFUGALS 1007035.000 GALLS PER MINUTE CAPACITY HEA LD \& Morris:Bald́winsville N.:

ORNAMENTAL INITIALS.-A COM-

 ICE-HOUSE AND REFRIGERATOR.

The Literary

 Revolution.

June ii, 188i.]
Suinuific American.

Starch, Glucose, Starch-Sugar, and Dextrine Manufacture Unfolded.

NEW YORK BELTING AND PACKING COMP'Y

All other hinds Imitations and Inferior. Our name is stamped in full upon all our
standard BELTING, PACKING, and HOSE. Address NEW YOR
JOHN H. CHEEVER, Treas.
Pond's Tools, Davil W. Pono, Worcester, Mass. W. S. HOLLAND \& CO., Burlington, Vt. Manufacturers of all kinds Hives and Honey Sections
Also Walun Cabinets for Drugists and Merchant
Small Packing Boxes, etc.

BARNES PATENT FONT POWER MACHINERY.
Complete outfts foractual Workshop business. Lathe

MACHINERY

RgF Universal Wood Workers. Planing, Matching,
Moulding, Band and Scroll Sawing Machines, etc. HAMILTON, OHIO, U.'s. A.

PATENTS.

MESSRS. MUNN \& CO., in connection with the pub-
lication of the ScIentiric American, continue to examine Improvements, and to act as solicitiors of Patents for Inventors.
In this
line
years ervereienece busd noes they have had thirty:fve
 the preparation of Patant Drawings. Speecicications, and
the prosecution of Applications for Patents
in the Une proseculon on appicatons or Patents in the Muun $\&$ Co. also attend to the preparation of Caveatse Conyrights for Books, Labels, Reissues, , Aseignments, arit Reports on Infringements of Patens. All business intrusted to them is done exth special care and prompt.
ness, on very resenonable term.
ness, on very reasonable terms.

A pamphlet sent free of charge, on application, con taining full information about Patents and how to pro cure them; directions concerning Labels, Copyrights
Designs, Patents, Appeals, Reissues, Infrigem, signments, Rejecud Cases, Hints on the Sale of Pa-

We also send, free of charge, a Synopsis of Foreign Patent Laws, showing the cost and method of securing patents in all the principal countries of the world.
MUNN \& CO., Solicitors of Patents, BRANCH OFFICE.-Corner of F and 7th Washington, D. C.

PROVIDENCE, A. HARRISIS HARRIS-CORLISS ENGINE With Harris' Patented Improvements,

MACHINISTS' TOOLS.
send tor ner iusus rated catalogue
Laihes, Planers, Drills, \&o NEW HAVEN MANGFACGHENG, co,

ERICSSON'S
Ner Canicic Puminis Bigia DWELLINGS AND COUNTRY SEATS.
Polest cheapest, and mosteconomicalpumpingengine

DELAMATER IRON WORES C. H. DELAMATER \& CO, Proprietors,

SURFACE FILE HOLDERS

 Johnson's Patent Universal Lathe Chnck.
 C. J. GODFREY \& SON,

7 YOURNAMEINNEwTypeIO

"BLAKE'S CHALLENGE" ROCK BREAKER.

Roots' New Iron Blower.
 IRON REVOLVERS, PERFECTLYBALANCED IS SIMPLER, AND HAS fewer parts than any other blower. P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.
S. S. TOWNSEND, Gen. Agt., $\left\{\begin{array}{l}6 \text { Cortlandt St., } \\ 8 \text { D Dey Street, } \\ \text { WM }\end{array}\right\}$ NEW $\left.\begin{array}{l}\text { WM. COOKE, Selling Agt., } 6 \text { Cortlandt Street, } \\ \text { JAS. BEGGS \& Co, Selling Agts., } 8 \text { Dey Street, }\end{array}\right\}$ YORK - SEND FOR PRICED CATALOGUE.
 \% GLUCOSE-A COLLECTION OF VAL able technical papers on the manufacture of thisim

 SETVITONDON.BERRY₹ORTOM THE BESTBANDSAWBLADE Ceo. W. Reade Con, MAHOGANY, Cabinet WToocle. CUT AND PRESS DRIED
THIN LUMBER,
CIGAR BOXES, Panol stocki, Etc., Ito.

186 to 200 Lewis St., New York.
 PAYNES AUTOMATIC ENGINES.

 norime buit not ated with a, automatic cat--ofn. Send

DR. SCOTT'S ELECTRIC FLESH BRUSH. ASTONISHING CURES!

MENTION

MONEY RETIURNED IF NOT AS REPRESENTED.
As soon as Jou receive the Brush, if not well gatisfed with your bargain, write us, and we will return the mones. What can be fairer? The P

 ,

New York Ice Machine Company, 115 Broadway, New York, Room \%8. Low Pressure binary absorption system. ICE AND COLD AIR. Low Pressure when running. No pressure at res Ma-
chines guaranteed by C. H. Delamater \& Co. HOLDS INK
FOR A
WEEKS USE.
ood ink
GOOD INK

SHAFTS PULEEYSHACETAS

 STuTperivg ared bites apliances. Send for

BOYLE ICE MACHINE CO., Ice Machines Refrigerating Apparatus. No. 10 N. Jefferson Street, Chicago, Ill. $\frac{\text { Estimates and Circulars upon Application. }}{\text { Jenkins' Patent Packing and Valves }}$ Jenkins' Patent Packing and Valves. Jenkins' Packing has never failed to make a perfect
joint where firections were toloured. Jenkins Valves
are warranted steam tight and are made of the best joint where directions were toilowed. Jenkins arives
are warrante steam tight and are made of the best
steam metal. JENKINS BROS., 11 John St., New York. Mill Stones and Corn Mills. We make Burr Millstones, Portable Mills, Smut Ma-
chines, Packers Mill Picks, Water Wheeds, Pulleys and
chatring specially adapted to Flour Mills. Send for
catalogue. catalogue. J. T. NOYE \& SONS, Buffalo, N. Y.
 COLUMIBIA BICYCLE

ROCK DRILLS, COMPRESSORS, FUSE,
BATTERIES,
POWDER.

ROOFING.

For steep or flatroofs. Applied by ordinary workmen
at one-tinir the cost of tin. Cor culars and samples free
Agents Wanted.
C. NEW. 32 John street, New York ICE AT 11.00 PER TON.

FRIEDMANN'S PATENT INJECTOR

Boiler Feeder

Simple, Reliable, and Effective.
40,000 IN ACTUAL USE. NATHAN \& IREYFUS,
Sole Manufacturers, NEW YORK. Send for Descriptive Catalogue

JонN HoLLAND, Mfr., $19 \begin{gathered}\text { West4th St., Cincinnati. }\end{gathered}$

THE d. L. MOTT IRON WORKS,
88 and 90 Beekman St., New York. Demarest's Patent Water Closets used almost
exclusively in and fine work, Demarests
Closets, Latrine, Closets, Latrine's and Hopper's for public buildings and
factories.
NIIttis Celebrated Porcel ain Lined Bactus unequaled for bea
bary Goods of all kinds.

Plastic Cement and Hair Felt, with or without the
Patent 6 AIR S PACE M M ASBESTOS MATERIALS,

REW YORK beltivg and packing

For Enunines.Boilese Paung. and bill other me-
3γ \& 38 PARE

HY.JOHIS nsersiaz

LIQUIDPAINTS, Roofing boiler coverings,

CATALOGUED.

THE FOLLOWING MANUFACTURERS ARE PRO SHORT, ARE HEADQUARTERS:
Wire rope Works at Wilke Barre, Pa. MA Liberty St., n. Y. HOISTING ENGINES. COPRELAND \& \& BACOIN,

VALVES AND FIRE HYDRANTS. THELUDLOW VALVEM'F'G CO., ROCK DRILLS \& AII COMPRESSORS. ingersoll rock drill co.,
Park Place,
-
New York. Establ'd EACLE ANVILS. 1843. Solid CAST STEEL Face and Horn. Are Fully War-
ranted, Retail Price, 10 cts per lb.
Double Screw, Parallel, Leg Vises.

湦EXETERMACHINE OVORKS, Steam Engines, Blowers, and
Steam Heating Apparatus. $+9$ The Greatest Rook Breaker on Earth.

STEARNS SAW MILLS.

 STEARNS MANUFACTURING COMPANY, ERie, Pa. The Howard Manufacturing Co. manufacture and introducePATENTED NOVELTIES.

Parker's Pocket Scale.

COMPACT, STRONG, DURABLE. CARRIED IN THE VEST POCKET PRICE 25 CENTS.

MIPE ROPE

Address JOHN A. ROEBLING'S SONS, ManufacturIUhels and Rope for conveying power long distances.
send for circular KORTIMG'S UNYEESSAL INEETTOAS
 HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY
W. b. Franilin.v. Pres't. J.m. ALLEN, Pres't. J. B. PIERCE. Sec'y.

Jarvis Furnace Co.

PRENTMING INKE;

