
[Entered at the Post Office of New York. N. Y., as Second Class Matter.]
a WeEkly jotrinal of practical informiation, art, scievce, mechanics, Chemistry and manufactures.

MANUFACTURE OF HARVESTING MACHINES.-MCCORMICK HARVESTING MACHINE COMPANY, CHICAGO.-(See page 30\%.)

§rixutifir gmurtinn.
 HSTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
NO. 3' PARK ROW, NEW YORK.
o. D. MUNN.
A. E. beace.

TERMS FOR THE SCIENTIFIC AMERICAN

 One copy, one year postage included.One copy, six months, postage include
Clubs.-One extra copy of The Scientific Am Erican will be supplied gratis for every cuub of five subscribers at $\$ 3.20$ each : additional copies at same proportionate rate. Postage prepaid.

The Scientific American Supplemen
Is a distinct paper from the SCIENTIFIC AMERICAN. THE SUPPLIEMENT is issuad weekly. Every number contains 16 octavo pages, uniform in size with Scientific American. Terms of subscription for SUpplemwint,
$\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the country.
Combined Rates. -The Scientific American and Suppiemment
will be sent for one year postage tree. on receipt of seven dollars. Both will be sent for one year postage tree. on receipt of seven dollars. Both
papers to one address or different addresses as desired.
The satest way to remit is by draft postal order, or registered letter. Address MUNN \& CO., 37 Park Row. N. \mathbf{Y}

Scientific American Export Edition.
The Sclivitific Amvilican Export Edition is a large and splendid peri-
dical, issued once a month. Each number cantains about one hundred odical, issued once a month. Each number ccntains about one hundred arge quarto pages, profusely illustrated, embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the ScIVMIFIC AMルRICAN, with its splendid engravings and valuable in in ormation: (2.
Commercial, trade, and manufacturing announcements of leading houses. Commercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the Terms for Export Edition, 85.00 a year, sent prepaid to any part of the
world. Single copies 50 cents. Manu facturers and others who desire to secure foreign trade may have large, and handsomely displayed an nouncements published in this edition at a very moderate cost. The SCIETTIFIC AMELICAN Export Edition has a large guaranteed circulation in all commercial places throughout the world. Address MUNN \&
CO . 37 lark Row, New York.

NEW YORK, SATURDAY, MAY 14, 1881
Contents.

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT

NO. 280,

For the Week ending May 14, 1881 .

Price 10 cents. For sale by all newsdealers.
I. ENGINEERING AND MECHANICS.-New Method of Raising
Sunken Vessels. By Dr. W. RAyDT. Sunken Vessels. By Dr. W. RaydT
Preliminary Report upon the Im

PAGE River. By Major Cias. H. Suter, U. S. Eng. A valuable and River. By Major Cras. H. SUTER, U. S. Eng. A valuable and
timely study of the physical conditions and peculiarities of the channel of the Missouri River.
The Institution of Naval
The Institution of Naval Architects. Report of Annual Meet-
ing. On the Almiante Brown, Argentine Stel.faced Corveteing. On the Almirante Brown, Argentine Steel-faced Corvette.
By J. D'A. SAMUDA.-On the Peculiarities of the steel Plates Sup By J. D'A. SAMUDA.-On the Peculiarities of the Steel Plates Sup-
plied for the Boilers of the Imperial Russian Yacht Livadia. By W. Parker.....
The Hydraulic

The Hydraulic Machinery Applied to Operate the Lock Gates of 4460 the Des Moines Rapids Canal. By r. RoLssor
Plan and sections of canal lock chambers, etc.- Pumping engine Plan and sections of canal lock chambers, etc.-Pumping engine
and distr'buting valve.-Engine house.-Plan, sections, and elevation of machinery at upper recess
Expansion Sleeve Coupling. Expansion Sleeve Coupl
A New Trap. 1 figure...
A New Trap. 1 fgure..
TECHNOLOGY and and Ampere.
The Purifc The Purifcation and Softening of Water. 8 figures.-Softening
and filtering apparatus.-India-rubber, gutta percha, and telegraph works, Silvertown. - Front and side elevation of apparatus at Edge
Hill, Liverpool.- Arrangement of apparatus for 2,000 to 4,000 galHill, Liverpool--Arrangement of apparatus for 2,000 to 4,000 gal-
lons an hour.-The Porter-Clark process at Swindon waterworks.lons an hour.-The Porter-Clark process at Swindon waterworks.-
III. ELECTRICITY, LIGHT, ETC.-Division of the Electric Light, Molera and Cebrian
Mercadier's Researches on the Photophone. The Dent Chronograph. 4 figures.-The Dent chronograph
mounted.-Details enlarged.-Details of marker. Pendulum regu-
lator.. Tele-Photography. i figures.-Apparatus for sending pictures
by telegraph..
IV. NATURAL HISTORY, ETC.-The Seaside Zoological Laboratory at Naples. 3 figures.- View of building and surroundings.-
General view of the tanks in the large laboratory. - View of the General view of the tanks in the large laboratory.- View
laboratory in which the fishing products are distributed ... The Progress of the Fur Trade,-An elaborate review of the his-
tory and present condition of the fur trade of North America.....
V. BIOGRAPHY, ETC.-Michel Chasles.
Sea Sickness.-Main causes, foul air

Sea Sickness.-Main causes, foul air and bad food.-Remed.

TORNADOES, HAILSTORMS, AND WATERSPOUTS

 At this season of the year, when storms of limited are and great violence are apt to occur, we are equally apt to suffer from outbreaks of newspaper meteorology which are sometimesalmost as appalling as the phenomena they attempt to explain. We may be excused, therefore, for assuming that the subject is one of popular interest, and for compiling some of the more significant and certain results of observation and scientific deduction with regard to the origin, conditions, and behavior of this class of storms.A favorable opportunity for doing this is furnished by the recent publication of the 10th appendix to the report of the Superintendent of the United States Coast and Geodetic Survey, for 1878, containing the second part of Mr. William Ferrel's researches on cyclones, tornadoes, and waterspouts, in which the theory of cyclones is mathematically discussed at great length, with a comparison of the results thus obtained with the facts of observation. We may safely draw from this treatise such information as may seem of interest to landsmen at this time, with reasonable confidence that we shall not be misled with respect either to facts or inferences. Although largely similar to cyclones, and governea by the same general principles, tornadoes form a distinct class of meteoric phenomena. The initial temperature conditions which give rise to cyclones generally extend over large areas. The conditions of tornadoes depend rather upon vertical re lations of temperature, under which the unstable equilibrium of the atmosphere is liable to be violently disturbed by slight local changes of temperature causing the under strata of air to burst up through the overlying strata. A cyclone is usually a broad, flat, gyrating disk of atmosphere, very many times greater in width than in altitude; a tornado may be regarded as a column of gyrating air in which the altitude is several times greater than its diameter. The enormous velocities of the ascending currents in a tor nado appear to be caused by the differences between the gyratory velocities above and those very near the earth's surface. The former largely prevent the air from pressing in tof fill up the partial vacuum near the center, while the smaller gyratory velocities near the earth allow it to rush in there to supply the draught. The tendency of friction is constantly to use up the energy of gyration so that the tor nado cannot continue very long. The ascending currents carry up an enormous amount of aqueous vapor into the upper regions of the air, where it is condensed and produces the heavy rains observed in connection with tornadoes. An ascending current of 60 meters a second, which cannot be unusual in tornadoes, would furnish, under extreme conditions of air saturation, four inches of rain a minute, if it were to fall directly back. With such an ascending velocity, bowever, no rain could so fall. It would be thrown outside the vortex, giving an immense though lighter fall of rain over a larger area, especially if the tornado in its irregular progressive motions should remain stationary or nearly so for several minutes. If the velocity of the ascending current is not so great that the water is all carried up to where the currents are outward from the vortex, and yet great enough to prevent its falling back, there may be in the lower part of the cloud a vast accumulation of rain, prevented from falling by the ascending currents and from being dispersed by the inflowing currents from all sides toward the vortex. When the sustaining energy of the tornado is exhausted by friction or by the weight of water accumulated in the cloud, the water is liable to fall in mass, causing what is called a cloud burst. This is especially liable to occur in mountainous regions, for contact with a mountain must greatly interfere with the gyratory motion of
the tornado and the inflowing currents below, and tend to break up the system at once and let the whole load of water drop suddenly.
The water in cloud bursts is generally poured down. Long before the ascending currents are reduced so as to allow the waterto fall in drops it seems to collect at certain places and force its way in a solid stream down through the ascending air. Having once made an outlet for itself the water is necessarily accelerated in velocity, so that before reaching the earth the stream may be pouring with irresistible force, cutting, when it strikes, the sharply marked and often deep chasms left by cloud bursts, especially on hillsides.
When the ascending current carries the vapor into the region of frost-which is at a lower altitude within the gyrating funnel than outside of it-the condenser vapor is converted into hail. The small hailstones may then be kept suspended near the base of the snow cloud and enlarged by additions of freezing rain. In this way compact homogeneous hailstones of ordinary size are formed. At the height of 7,000 yards the air has lost more than half its density, yet an ascending velocity of twenty yards a second, which must be no unusual one in tornadoes, would sustain even at that altitude hailstones of considerable size. It is not necessary that the bailstones should remain in the freezing region a long time, or remain stationary. They may be carrial,
from this vortex out where the ascending current is small, and, dropping down some distance, may be carried into the vortex by inflowing currents and again thrown up to the region of frost. The nucleus of large hailstones is usually compacted snow. A small ball of snow saturated with rain is carried higher and freezes; and being of less specific gravity than compact hail it is kept where it receives a thick coating of ice from the unfrozen water dashed against it, and afterwards falls to the earth. either at a distance
near it after the uprush has been sufficiently exhausted. Sometimes, as in the case of the cloud burst, an almost incredible amount of accumulated hail may fall in a short time, when the energy of the system is suddenly spent.
The formation of large hailstones by concentric layers of clear ice and white snow, laid on like the coats of an onion, will be readily understood from the foregoing. As many as thirteen layers have been observed in large hailstones, showing that they must have made half a dozen circuits, heing successively thrown out of the froty vortex above and sucked in below by the inflowing currents, each time adding to their oatings of snow and ice before their final fall to earth.
When the tornado is very small in the area covered by the gyratory motion, a land spout or a water spout is formed, as it may happen to occur on land or at sea. In these the gyratory velocity rapidly diminishes with distance from the center. Their destructive effects are sudden and often great, but the area of violence is small. In the center of a waterspout, as in that of a tornado when in full force no rain falls or water descends in any form, though a beivy shower often falls in the vicinity. On land dust and lisht shower often falls in the vicinity. On land dust and list
substances are carried up, and as they are being collectel substances are carried up, and as they are being collectel
from all sides by inflowing currents toward the vorte: below, they assume the form of a cone, which meets the descending spout, falling apparently from the clouds, and thus give the whole phenomenon the appearance of an hourglass.
The observed diameters of waterspouts range between two and two hundred feet or more, and their heights from thirty to fifteen hundred feet, sometimes very much more; but none of these observations can be regarded as at all exact. With a high temperature and a very low dew point Mr. Ferrel calculates that a water spout might reach a mile in height, but such conditions must occur rarely. Waterspouts are often observed to drop down from a cloud in an incredibly short space of time, and to be drawn up again in the same manner; but this is all an illusion. When the gyrations are such as to not quite reduce the tension and temperature in the center, so as to condense the aqueous vapor and make it visible, a very slight increase at once reduces the temperature sufficiently, and the spout appears from top to bottom almost instantaneously. Just the reverse of this takes place, when the spout breaks, and it seems to be drawn up instantly; it is dissolved, not lifted. Tornadoes and waterspouts originate only in an unstable state of equilibrium of the air, which requires an unusually rapid decrease of temperature with increase of altitude. This can take place only when the strata nearest the earth are unusually heated; accordingly they never occur at night, or in the winter, and but rarely in cloudy weather. If any agitation of the air, such as thatarising from the discharge of cannon, tends to break up these meteors, then any considerable disturbance of the air from any cause must tend to prevent their formation. Hence they occur at sea and on the lakes nly when there is little or no wind.
White squalls are invisible spouts. In such cases the dew point is so low, and the cloud when formed so high, that the gyrations are invisible. Still the gyrations and the rapidly ascending current in the central part are there, and also the rising and boiling of the sea. Over the boiling sea, high up in the air, is a patch of white cloud, formed by the condensation of the vapor when it reaches the required height. The bulls-eye squalls on the west coast of Africa are of precisely the same nature. In these cases the air is too dry to furnish the cloud necessary to make the spout, or center of the gyratory movement, visible
In hot dry climates these ascending whirls of air form sand spouts or pillars of sand. Both water spouts and sand spouts are hollow.

HEAT, LIGHT, AND POWER WITHOUT COST
One of the greatest difficulties that beset the progress of the brave men who venture upon explorations in the Arctic regions is the terrible cold and the deprivation of light. But if we may believe in the theories of Professor Gamgee, as set forth in the remarkable specification of the patent for his new thermo-dynamic engine-date of April 19, 1881the future Arctic investigator will have no trouble in keeping warm, nor will darkness trouble him, for the harder everything freezes the faster the engine will run.
Says the Professor in his patent: "I utilize heat in this system downward to 0° Centigrade, and below towards absolute zero."
Since both heat and electricity may be produced by means of a rotating wheel, in degrees proportionate to the power of the wheel, it follows that explorers to the north may hereafter make themselves entirely comfortable by taking along a few of Professor Gamgee's self-running engines. These extraordinary machines depend on cold for their motive power, the very article that the northerly world supplies in the greatest abundance, and that has heretofore been regarded as a drug in the Greenland market.
If Gamgee and the Patent Office are right, then the owners of coal mines may as well shut up shop. Fuel will no longer be required to produce either motive power, heat, or light. These great factors in human welfare will in future be enjoyed by mankind without labor or cost, all the industries of the world will be revolutionized, and a majority of them discarded for lack of further use.
In view of these considerations we would ask the Commissioner of Patents if be considers that he bas done the fair thing in granting a patent to Gamgee, while rejecting the ap plication of poor Keely, the prior inventor?

ANOTHER NEW MOTOR.

The latest candidate among inventors for immortal honors is Prof. John Gamgee, of London, now residing in Wash ington, for he claims to have found out how to prevent a large part of that celebrated ninety per cent of loss which has hitherto been incidental to the use of steam for dynamical purposes. We learn from the newspapers that President Garfield, Secretary Windom, and others, have examined the new engine, and that Chief Engineer Isherwood has prepared a report on the subject to Secretary of the Navy Hunt.
A correspondent of the Evening Post says: "One of the examiners of the Patent Office tells us he regards it as the most important patent since the telephone. If it succeeds at all, however, it will be of far greater consequence than that or any other invention of modern time." The patent is dated April 19, 1881, and is entitled "Thermo-dynamic engine;" also the new engine is called a zeromotor, in recognition of the fact that it is designed to operate it at about the temperature of zero
The patent clearly and fully describes the invention, and the few paragraphs which we quote will make the matter pretty plain.
"My invention," says Prof. Gamgee in his patent, "re ates to the employment as a motor fluid of a liquefiable gas or vapor of adequate tension, the product of a liquid which boils at or near the temperature of surrounding ob jects.

I find that by working such a gas or vapor expansively in one or more engine cylinders, its heat can be converted to such an extent into mechanical energy or motion that a the exhaust it will have returned in great measure to its original liquid condition, from which state it may be again caused to assume the condition of a motor vapor or gas by exposing it to the needed temperature.
'It is this feature, viz., the working of such a vapor or gas expansively to the extent of more or less complete lique action, and the reconverting it from the liquid to the vapor ous or gaseous condition for use again as a motor fluid, wich mainly characterizes my invention.
'The vapor having expended its energy, and being mostly liquefied by the conversion of its heat into motion, is discharged from the engine cylinder into a close exhaust vesse protected or insulated from environing heat. The main tenance of the exbaust at the boiling point (for at mospheric pressure or thereabout) of the liquid used may be insured in various ways; for instance, by means of an injector or pump.
' By the injector or pump, or both, the cooled vapor i forced into an apparatus for convenience sake termed a
' boiler,' where it is exposed to the temperature needed to ' boiler,' where it is exposed to the temperature needed to
restore it to its original tension, and thence returns to the engine.

It will thus be seen that it is my object to obtain in a motor engine the conditions of a closed circuit with a liquid boiling at a low temperature relatively to water transformed into vapor, the molecular energy of which is converted into the mass as molar motion of the piston, so that its initial condition is restored.
' In this way in a heat engine I expend the temperature within which the heat is utilized downward in the direction of the absolute zero, instead of upward above the tempera ture of surrounding objects.
"The intense heat of boiler furnaces, the internal work heat necessary to the formation of water steam, the abund ant exhaust waste of the steam engine, difficulties of lubr cation, etc., are one and all avoided by my invention.

- The cycle I propose can be performed more or less satis factorily with almost any liquid yielding expansive vapor below the temperature at which water boils; but in develop ing most power with most compact apparatus it is essential to use a compound which has a maximum amount of latent heat.
' The agent which I find in practice most available for this purpose is anhydrous ammonia, the boiling point of which atmospheric pressure approaches closely to $34 \cdot 4^{\circ} \mathrm{C}$. At 0°. its vapor tension is about four atmospheres, while at 10° it attains to six atmospheres. When the mean temperaure attains $20^{\circ} \mathrm{C}$., no less a pressure is exerted than nine atmospheres, and at 30° C., or tropical heat, it reaches over
ten and a half atmospheres in tension. Since at blood heat two hundred pounds to the square inch is available it is evi dent that the usual temperature of ocean or river water is most desirable in practice and best in my opinion when below $0^{\circ} \mathrm{C}$.
"The latent heat of ammonia is about 900°, as against 960° for water. It is this latent heat which I use in developing energy so as to reduce the amount of rejected heat to a minimum and obtain a maximum rate of liquefaction. Although high pressures are attainable at low temperatures, it will always be found best in practice to work below rather than over 100 pounds to the square inch.
" From the fact that I utilize in this system downward to 0° C. and below toward absolute zero, I propose for convenience to name the apparatus which I employ 'zeromotor.'

The operation is as follows: The ammonia gas or vapor passes from the boiler into the smaller or high pressure cylinder, where it is worked expansively, the cut-off being adjusted, for instance, to one tenth of the stroke. In thus
expanding and doing work, the gas parts with its heat to a considerable extent. It then exhausts into the second or low pressure cylinder, where it is cut off, say at one-balf the
stroke, and is thus caused to do further work expansively.
The result is that the vapor, by the time that it passes from the resul hat the vapor, by the the liquefied, only an exceedingly small proportion of the ammonia retaining vaporous form. The engine thus may be said to act not only as a motor, but as the condenser. From the exhaust vessel the ammonia is, by means of the compound pump and injector, forced back into the boiler, to be again rought to the condition of a motor or gas.
The specification continues the subject through variou details of construction, but the matter quoted above is suf ficient data for a full consideration of the pros and cons. We are obliged to find, however, that Gamgee's motor is mostly delusion; it is likely to be literally a zero-motor. The trouble is not with the ammonia. Dr. Lamm, of New Orleans, Tellier, of Paris, and others have made am monia motors which had a measure of success. Gamgee theory would fail with steam or air. A motor vapor dur ing its expansion is a useful source of power, but after it has expanded it is wholly unavailable. It may be brough again to the expanding or condensed condition, but if the cost of the restoration be computed, noi the smallest frac tion of gain can be discovered. Gamgee's motor would make one stroke, but never another of its own accord. Think of a steam engine which exhausts directly into its boiler Prof. Gamgee has made an interesting invention, and if h can find some spot in nature where it may rest it promises to make a seusation.
It is certainly a curious incident of this matter that Chie Engineer Isherwood may become an advocate of workin engines expansively, the cut off being adjusted, for instance, to one-tenth of the stroke.

THE KEELY MOTOR DECEPTION

The stock in this lunary enterprise has of late fallen very low, and a new exhibition of its incomprehensibleness ha been deemed necessary. The last performance, given on the vening of April 22, in Philadelphia, is thus described by eporter of the New York Herald.
" The first public exhibition of the Keely ^ngine was given his evening, in the presence of a large body of New York men. Among others present were J. Nelson Tappan, City Chamberlain of New York; Thomas Rowland, of the Con tinental Iron Works; George H. Peabody, E. F. Searls, General John Carrier, secretary of the American Wrecking Company; J. J. Smith, Edward W. Denny, and others. A private showing was given a few days ago before Major Conway, United States Ordnance Department; Commander Gorringe, United States Navy; Mr. Blanchard, vice president Erie Railway; Commodore Kane, New York Yacbt Club; President Sayre, of the Lehigh Valley Railroad; E. J. Randall, Erie Railway, and twenty others. Commande Gorringe frankly declared that Mr. Keely had thoroughly removed the strong prejudices which he had bad agains both inventor and discovery, and that the exhibition was a wonderful one. To a Herald correspondent Com mander Gorringe said: 'I am amazed at what I have seen. It is certainly one of the most remarkable curiosities I have ever looked upon, and appears bona fide.'
'To-night's exhibition was a very extended one. The wo parts of the 'motor,' called the 'generator' and the engine,' stand in separate rooms on the second floor of a building on Twentieth street, in the vicinity of Girard Colege. Without expressing any opinion whatever regarding he scientific principles alleged to be involved, a simple nar rative of the evening's occurrences may be set down as fol oms

CURIOUS EXPERIMENTS.

"When the visitors, almost completely filling the front room, had been seated, they saw before them an odd-looking machine built of steel, that shone like a mirror. The only description possible to give without an illustration to ac company it is, that it is wholly unlike any other collection of globes and tubes that has ever been exhibited. The first ct was to remove every cock and tube, ostensibly to show that the apparatus was empty. Lights were placed under neath it and the visitors were invited to look into and hrough the various chambers. All the plugs and attach ments having been replaced, one of the company drew glass of water from the hydrant and poured the contents into half a dozen funnel-topped tubes, and in exactly twen y-nine seconds a force was generated sufficient to raise a six-foot lever (one inch fulcrum) upon which were hung 700 pounds of iron. The pressure was asserted to be fifteen thousand pounds to the square inch. The vapor said to create this pressure was then stored in a steel cylinder about hirty inches long and five inches thick, through the center of which is stretched a piece of piano wire. The vapor thus confined was then further 'vivified' by external vibrations greatenergy obtained from a tuning fork of immense ize. This done, a long tube of very constricted orifice was attached to this steel chamber, to form the connection with the engine in the rear room. Thither, then, all the visitors moved. The engine is called a ' compound 'one, which is explained to mean that 'it can be worked with equal effect by positive or negative energy.' After a few cocks bad been opened, the 'spirophone' contained in one of the drums began to roar, and the shaft, carrying a belt-wheel, began to revolve with great velocity. The whirring sound much resembling the rising of a flock of quail), gradually became regular and harmonious, and the engine settled ute. Some curious experiments were then made, to exhibit
what was denominated 'vibratory energy.' The revoluons the engine were increased or diminished at will Mr. Keely striking an iron disk or a gigantic tuning ork, or drawing a bow over a tightly stretched steel wire. The cbange from the negative to the positive 'energy' was made, resulting in an almost instantaneous reversal of the engine. This reversal, Mr. Keely declared, could be made at the very highest velocity without breaking anything. A brake, specially made with wooden lining, was then applied to the belt wheel with a leverage of five fect and the weight of two of the heaviest of the party, but no perceptible diminution in the speed resulted. Many other strange experiments with the vapor gun and other appliances of the alleged invention were given, after which the party separated.
"The experiments lasted three hours, and were in every way successful. A vote of thanks was given Mr. Keely, on motion of Mr. Tappan. The party returned to New York on the midnight train."
It will be seen from the foregoing that the Keely managers still look to the New York men. It was from them that their first treasure was extracted after the original first exhibition; and the new show is doubtless expected to yield another yellow harvest.

the gamgee perpetual motion

In another article we give the substance of Professor Gamgee's ideas, as expressed in his patent, concerning the principles and operation of his new motor, the practical value of which is alleged to be indorsed by the Patent Office Examiner, by Chief Engineer Isherwood, and by prominent officials of the American Navy Department.
In Professor Gamgee's engine the ammonia vapor expands against and drives the piston, then issues from the back end of the cylinder as a liquid, which runs to the front end of the cylinder, where it expands again as vapor against the piston, then runs back to the front end, and so on, in one perpetual round or "cycle" of duty, without any vulgar assistance from artificial condensers, or from coal, oil, gas, or other common fuel. Cold water-below 66° Fahr.-is the best fuel for him, says Professor Gamgee, in his patent. Water at 66°, he avers, gives heat enough to yield 100 lb . pressure per square inch on his piston. Water at blood heat, or 98° Fahr., would give him, he says, 200 lb . pressure per square inch, more, in fact, than he requires.
A correspondent of the Tribune lately asked Professor Simon Newcomb, the eminent physicist, for his opinion of the new device of Professor Gamgee.
Professor Newcomb said: "The question is purely one of physics, and not of steam engineering. The proposed machine, as Mr. Gamgee has explained it to me, and as I see it described in Mr. Isherwood's report, lacks the essential conditions which all experience shows a steam engine must fulfill; not merely because ammonia is used instead of steam, but because no source of external cold or exit for the vapor is employed, except that furnished by the engine itself. I think there is some mistake in describing the respective functions of the high and low pressure boilers in the printed remarks in the Tribune; but I think I see clearly what the essential principle is. We have a boiler of liquid ammonia exerting an enormous pressure at crdinary temperatures. A quantity of the vapor from this boiler is admitted into the cylinder of the engine, and thus presses upon the pirton, expanding and moving the piston. Its heat is changed into force communicated to the piston, and it thus becomes in the cylinder intensely cold, so cold that a portion of it liquefies.

So far there is $n 0$ trouble in the action of the engine. It will make one stroke without doubt. The question now is to dispose of this cool and expanded vapor. The great mistake made by the promoters is in supposing that they can, by some ingeniously contrived machinery, force the vapor back again, so as to act again on the engine and still have a surplus of force left over. It is a perfectly established law of gases-as certain and universal as that of gravitation-that a gas when condensed generates the same amount of heat and exerts the same pressure as in expanding. The consequence is that, when the gas is condensed withcut some external source of cold, all the power expended in its expansion is used up again in contracting and heating it. Unless, therefore, as in the ordinary steam engine, some external source of cold is provided to absorb the heat which would thus be generated, the machine cannot act. Now this is the very condition which Mr. Gamgee proposes to dispense with. With the ammonia engine working at ordinary temperatures, the external source of cold must be as lowin te mperature as the expended ammonia itself, and therefore the ammonia cannot be used for the cold.

To judge of all this we must remember that there is absolutely no new principle claimed in connection with the machinery, and claims made for it are in direct contradiction to the second law of thermodynamics. Yet I do not think a prudent physicist would claim that it was impossible to find in nature some mechanism by which this law could be evaded. All we can say is that to reach this result some radically new discoveries in the properties of matter must be applied. As there is nothing new in any of the principles called into play in the proposed engine, it may be pronounced a climera with as much safety and certainty as we call perpetual motion machines by that name."
The Tokio Exhibition.-The National Industrial Exhi bition at Tokio, Japan, was opened by the Mikado March 1. The attendance is said to be large.

DOSE-MEASURING BOTTLE.

The engraving shows a novel form of bottle for con taining liquid medicines, such as are usually taken in prescribed quantities. It is designed to enable the user to measure and pour out only so much as may be desired, it being provided with a measuring receptacle, formed in the neck in such way that, by first tilting or turning the bottle so as to cause the liquid contents to flow into the me portion of the contents in the measuring recent cle, they may be poured out without discharging any cle, they may be poured out without discharging any
portion of the liquid contained in the body of the portion
bottle.
The neck is suddenly and considerably enlarged or bulged out at one side, immediately beyond the ,oint of its junction with the body of the bottle, so as to form a hollow or receptacle designed to bold a given quantity of the liquid from the bottle. The neck of the bottle may be provided with indicating lines or a scale. This design may be considerably varied without affecting the efficiency of the devaried
vice.

The engraving shows modifications of the bottle in which there is no bulging receptacle in the neck, which in one case is placed at one side
A perforated partition divides the body of the bottle into two compartments, and by holding it in a sub stantially horizontal position, with its shorter side down, aud then turning it axially to bring the longer side or line of the body down, the chambers will stand full to the same level, but their content will be separated by the partition.
Another modification is shown in the engrav ing, in which the bottle has its interior divided into two compartments by a solid partition, a tubular passage being provided between the compartment this form of bottle the measuring and separate discharge of the desired quantity of the liquid contents of the bottle may be accomplished in the manner above described. This invention was lately patented by Mr. James M. Dodge, of Chicago, IIl.

IMPROVED POST HOLE DIGGER

The engraving shows an improved implement for digging fence post holes, which can be inserted in the ground like an ordinary spade, and when inserted to the proper depth can be transformed into a lifter, by which the earth may be

POST HOLE DIGGER.
readily removed. The handle, A, carries a blade, B, at its lower end, which is hinged so that it can be made to assume any position with respect to the handle, varying from a straight line with it to a right angle. The shovel, at its shoulders, is provided with extensions, b, reaching forward at or about right angles to the blade, which form stops to limit the extent of its insertion into the ground to permit of shift ing the position of the blade without hinderance. To the
blade of the shovel is secured a bent arm, to which is pivoted the end of a curved rod, C, extending backward to the handle, and provided with a sliding rack, D. To the handle is secured a sleeve, G, having a longitudinal slot and two parallel standards, between which is pivoted a lever, E, having a toothed segment, by means of which the rack may be moved back and forth to operate the shovel blade. The rear edges of the standards are provided with ratchet teeth, |f

DOSE-MEASURING BOTTLE.

and the lever with a pawl, F, adapted to engage the teeth so as to hold the lever and other parts in any desired position. When the blade is in line with the handle it may bedriven into the ground after the manner of an ordinary spade, and when inserted to the proper depth, by operating the lever it may be brought at right angles to the ha
earth may be lifted vertically and removed.
This invention was lately patented by G. B. Van Vleet, of Lodi, N. Y.

Microscopic Tests for Poisons.

Professor Rossbach has just published, in the Vienna Klinische Wochenschrift, some remarkable delicate tests for the presence of poisons when they are in too minute quantities to answer any chemical tests.
As small animals, like frogs, mice, etc., are known to be very susceptible to the action of certain of the poisonous alkaloids, so this fact is taken advantage of and very weak solutions introduced into their circulation. Delicate and wonderful as the tests are as applied to frogs, etc., still Pro$\dot{f e s s o r ~ R o s s b a c h ~ g i v e s ~ f a r ~ m o r e ~ d e l i c a t e ~ o n e s . ~} \Lambda$ drop of water containing infusoria is placed on a glass slide and examined uncovered. The infusoria are examined carefully as to size, form, color, etc. Then a drop of the solution is placed just to the edge of the fluid containing the infusoria. If organic poisons be present the infusoria are instantaneously destroyed, becoming a formless sediment. He startles u with his figures. "If a drop of water containing infusoria and weighing 0.001 grain be used as a test the quantity of strychnine required to cause remarkable changes will be $0 \cdot 00000006$ of a grain. In this way one fifteen-millionth of a grain of atropine can be detected." Thus, he says, if the stomach of a person poisoned by strychnia contains a liter of fluid and only three-quarters of a grain of the alkaloid, a single drop of this fluid will contain forty times as much strychnine as necessary for the test.

The Bending of Glass Tubing.

When glass tubes are not too wide they may be easily bent over a common gas jet. A burner, made by attaching a lava tip (such as are now commonly used in illuminating burners) to the stand or base of the ordinary Bunsen burner, will be found convenient. The tube is held horizontally in the flame in such a manner as to be entirely surrounded by the flame, and so all possible draughts are avoided and the flame does not flicker. The tube is soon covered with carbon; then it becomes glowing, and bends, in consequence of the weight of its free end, in an even and uniform manner, without making any wrinkles inside the bend or angle. Wide tubes are first filled with sand, and then suspended over a broad flame burner. A broad tube with flattened end, which exflame burner. A broad tube with flattened end, which ex
actly fits the Bunsen burner, may easily be procured. Thin glass tubes may be bent in the flame of a simple spirit-lamp, but if they are at all thick a Berzelius lamp becomes requisite. In this case the tube must be held across the flame, for then it would become heated in two places and remain cold in the center (i.e., between). It is, therefore, best to hold it tangent to the flame. If it does not bend freely, it is well to assist the operation with the hand, by slightly pressing the free end in the desired direction. This operation requires a certann amount of skill and dexterity in order to prevent the formation of wrinkles on the interior surface of the bend. These wrinkles not only offend the eye, but so contract the tube that a free current of the gas is prevented, and, in case of distillation, etc., condensable products are caught in the Education.

British Scientists to be Invited

It is rumored that at the next meeting of the American Association for the Advancement of Science, to be held in Cincinnati in August of this year, a proposition will be brought forward to extend an invitation to the British Association to depart from their usual custom so far as to come ver to this country in 1883, and hold their annual meeting yar conjunction with the American Association, at some place hereafter to be fixed upon. A number of the most prominent scientific men in the the plan, and doubtless the members of our associathe plan, and doubtless the members of our associa-
tion will be glad to send such an invitation as a tion will be glad to send such an invitation as a
mark of our cordial feelings toward the students of science in the mother country. It will give u : great pleasure if it should prove practicable for the English body to accept. We hope that the proposition may be happily successful. The advantages of sụch a gathering of scientific men from two countries having a common language, are as evident as they are great. The meetings of the American Association have proved of inestimable value by bringing the investigators of the continent into personal contact with one another. Every scientific man has not only new facts to present, but also theories and hypotheses which may not be sufficiently complete, or justified by positive knowledge, to be put into print, yet it is precisely these vague ideas which are the most valuable stimulants of discovery, because they are the store from which new and sound ideas can be selected. By no other process can this selection be rendered so efficient as by personal discussion with others whose studies are in the same direction. If the suggested meeting be actually held, it will certainly prove as profitable as delightful. There is no room to doubt that on our part we would be lavish of pains to make the meeting successful, and we think our reputation for hospitality is a guarantee that our guests will have a pleasant as well as a profitable visit.-American Naturalist.

IMPROVED DOOR FASTENER.

We give an engraving of a very simple and effective do $\neg \mathrm{r}$ fastener, patented by Mr. F. M. Alexander, of Marshall, Texas, and intended more particularly for application to car doors.
The staple is fastened in the side of the door frame with its outer end in a recess of the frame. The stile of the door is traversed by an oblique mortise covered on the outside by an iron plate having a slot, through which passes a short flat bar or hasp having a hook turned on its inner end and having in its outer end a rivet which prevents it from slipping inward through the plate attached to the door. The hasp has a mortise for receiving a key or pin attached to the car door by means of a chain. This key is mortised transversely for receiving a lock or seal. The staple is flush with the front of the door frame, and the locking of the door is effected by hooking the hasp over the staple and inserting the key as shown in the engraving. It will be

ALEXANDER'S DOOR FASTENER.

seen that by means of this device the car door may be drawn tightly against the door frame, and the car will be securely ocked.
When the hasp is disconnected from the staple it hangs down upon the car door, its hooded end engaging the plate on the face of the door.
This fastener is very strong and effective, and at the same time inexpensive. The inventor informs us that railroad men who have seen it fully indorse it.

AMERICAN INDUSTRIES. - No. 73

 harvesting machines.Inventions which have resulted in great industries and the development of great natural resources will always be subjects of deep interest to the student of history and political economy. The cotton gin rendered available the vast agricultural resources of the Southern States, and the correspondingly great cotton manufacturing interests of England and New England. The reaper did as much for Northern agriculture, making possible the harvests which have taxed the powers of transportation reversed the balance of our trade with Europe, and carried our national pros perity to the highest level.
America is the birthplace and home of the reaping machine. Here it was in vented and first successfully introduced, here its greatest achievements have been won, and here it has proved itself one of the factors in transforming a continent from a state of primitive solitude to be the home of fifty million enterprising people engaged in all the arts and manufactures of civilization
When we look back fifty years and remember that the reaping hook and grain cradle were the only means the farmer then had of securing his crop, we are led to wonder how many centuries must have elapsed before the land west of the Alleghanies could have been settled as it is to-day, not only to the Mississippi, but from ocean to ocean. The reaping machine bas not only made this possible, but has made farm ing profitahle on a scale never dreamed of before. In Minne sota and Dakota there are grain farms of from ten to thirty thousand acres, whose princely owners purchase and oper ate reaping machines by the score and by the hundred.
The first successful reaping machine put in use was invented and constructed by Cyrus H. McCormick, a native of Rockbridge County, Virginia, in 1831, a patent upon which was granted by the United States in 1834, and this original machine is recognized as the type and pattern after which all others of subsequent date have been modeled.
The manufacture of this machine was com menced in Virginia, but not until 1845 at Cincinnati, Ohio, did the annual product reach a large number. During that year 500 wer constructed and sold. In 1846-7-8 some ma chines were manufactured at Brockport, N. Y., on "royalty." With discriminating judgment Mr. McCormick foresaw that Ch cago was to be the center of trade in the Northwest, by reason of its favorable geo graphical position and superior shipping faci lities, and he therefore transferred the manu facture to that city in 1847, building 500 ma hines in the new shops. In 1848, 700 ma chines were made and sold, and in 1849 the figure reached 1,500. Here the first works fo making the reaping machine were erected and the improvement of the machines them selves vigorously commenced, and from that time onward the development of this great industry has been commensu rate with the strides which Chicago has made.
Soon after this, Mr. McCormick induced his two brothers, Wiliiam S. and Leander J., to come from Virginia to Chicago to assist him in the manufacture of the machine The former continued with him until his deat one-fourth in the corporation the remaining three-fourths belonging to Cyrus H. Mc Cormick.
The works of the McCormick Harvesting Machine Company, a view of which, together with the various departments, we have repre sented on our first page, are situated in the southwestern portion of the city of Chicago, upon the bank of the river, and at a point where all the vast network of Chicago railroads centers.
Ten rooms, 100×60 feet, occupied by the wood working department, are fitted with the most improved machinery for planing sawing, shaping, and dressing the various wood parts of the machines. The construc tion of the main wheels for the barvester an interesting study in itself, and in this alone are involved more than a dozen processes in wood and ron work. We have shown in the engraving the last operation in its con struction that of putting on the tire
The greatest interest to an observer centers in the machine shop. Looking down the long alsles of machinery, the attention of the visitor is drawn to the many curiously shaped ma chines of special design necessary in the vari ous processes of the ron work.
The tency The extensive chines, which insures greater strength and

BOLT AND NUT DEPARTMENT.

The boring of the rake posts, cams, iron frames of binders and reapers, and many other parts of the machines needs such special machinery as we have alluded to.
This perfection of the work renders easy the renewal of any part in the field, should any piece become broken or worn, and insures the exact duplication of it at any time thereafter, so long as the patterns may be preserved. The blacksmith shop is a large building provided with a

SETTING UP MACHINES. work being a scjence peculiar to itself boxes ar of such varied shapes and sizes that only long ex perience and practice on the part of the packers enable them to place them in perhaps one-half the cubic space that an unskillful person would require. The ship ping is conducted with great system, and the facilities are such that from twelve to twenty cars can be loaded and dispatched each day. The repair department is a small orld of business in itself, embracing as it does the parts of all the McCormick machines made during the past twenty years. All the duplicate parts on hand can be known at once, and any part that is wanted for repairing any McCormick machine can be produced on demand.
That the machines may constantly meet the requirements of the farmer in every respect, and for experimenting with new devices, a corps of draughtsmen, pattern and model makers are employed.
The company finds itself under the neces sty of enlarging its manufacturing facilities during the coming season to meet the natural ly increasing demand for its productions.
A most interesting department to all scien tific persons, in this manufacture, is found in the patented inventions which enter into the construction of the machines, and in the patents which the company hold for the use and protection of their business. To one not familiar with the details of this interest, the importance and magnitude of the operations herein involved would be almos incredible. The original patents of Cyrus H. McCormick, granted in 1834, 184.7, and the appliances for cutting, punching, forging, and shaping | 1847, expired before any material return for his labors the various pieces of wrought iron used in the construction accrued to the inventor, and when endeavoring to obtain f the machines.
The foundry is a fine structure. 245x90 feet, with two wings, one of them 80×60 feet. Here about 75 tons of pigiron, from its two cupolas, are daily transformed into cast ings of all descriptions.

MAKING HARVESTER WHEELS.
accrued to the inventor, and when endeavoring to obtain
their extension at the Patent Office-a right which their extension at the Patent Office-a right whicl
was accorded almost every other inventor of such promi was accorded almost every other inventor of such promi
nence-Mr. McCormick's claim was refused, not on the ground of its invalidity, but because the invention was o too great importance to the world at large to admit of being placed virtually under the control of one man, as vould be the case should the patents referred to have been extended. Thus wer the essential features of his invention made public, and the inventor was forced to come into competition with other manufactures of the product of his own brain. In improve ments upon the original, therefore, lay his greatest chance of success, and in this, as in the first machine, he was foremost. With the introduction into general use of the reaping machine, the attention of inventors on every hand was drawn toward further im provement in this direction, and applications for patents upon every conceivable mechani cal devices which could be utilized in connection with harvesting machines have flooded the Patent Office from that time to the present. To the extensive manufacturer therefore, it becomes a matter of necessity to protect himself from being assailed on every hand by speculators in patents upon every important new feature developed by him, and by obtaining control of or interests in such patents as might bear upon the forms of his construction and manufacture. It affords, therefore, to the McCormick Harvesting Machiné Company a power not possessed by other competing manufacturers, that they are the owners of and hold interests in bundreds of patents of this nature. Especially in the development of their twine binder is the
value of this self-protection evident, for claimants are the sun is above the horizon. Hence, the attention of in constantly arising to share, if possible, in any advantage which may accrue from the use of a particular device tend ing toward the improvement of the machines.
Comparing the machines which the McCormick Harvest ing Machine Company and all their competitors now manu-

the 1847 machine
the sun is above the horizon. Hence, the attention of in
ventors is chiefly concentrated upon improvements in lamp for signaling at nigbt. As our readers are a ware, the alpha bet used is a combination of short and long flashes, corre sponding to but not exactly identical with the dots and dashes of the Morse telegraph system. The most obvious plan for signaling at night is to use a lamp with a movable diaphragm, which will shut off the light for long or short periods as may be required. An English in ventor some time since contrived lanip in which a jet of pyrotechnic mixture, consisting largely of pow dered magnesium, was propelled into a spirit flame by means of bel lows. This arrangement gives long or short flashes of intense light which would be visible for many miles. M. Mercadier has lately pro posed a cheaper, and at the same time an efficient form of apparatus for the same purposes. It consists of an argand burner for oil or gas, to which is supplied on pressure o a key (like a Morse key), a stream
facture with the original reaper invented by Cyrus H. of oxygen. This gas of course at once intensifies the light, McCormick, as constructed by him in 1847, it will be found and signaling can be carried on without difficulty. that all the vital elements of successful and practical work are retained intact, namely, the cutting apparatus, divider reel, platform, attachment of the horses; yet from step to step the advancement has been in taking away all manual assistance from the machine, making it as far as possible entirely automatic. The addition of a seat or stand enabling the raker to ride on the machine instead of walking by its side; the substitution of the self-rake for the hand rake; the placing the binder stand upon the machine, whereby the men bound the sheaves while riding, instead of lifting them from the ground; the substitution of the automatic binder for the manual labor; and, finally, the automatic trip, whereby the size of the sheaf throws the binding mechanism into opera tion, are all consecutive steps in the progress of invention and development of the reaping machine.
Few of our readers can have any idea of the magnitude of this branch of industry. In all the harvest fields of the world the McCormick machines are at work, and the farm ers of Australia, New Zealand, France, Italy, and Russia are as familiar with their superior merits as are the farmer of Illinois, at whose doors they are manufactured. We be lieve that the verdict of the leading scientific and mechani cal authorities of the present day is unanimous in placing the McCormick machines in the lead of all others. At each successive World's International Exposition, from the World's Fair at London, in 1851, to the Melbourne Exposi tion of 1880, the highest honors have been without excep ion awarded to the McCormick reaper.
The great extent of this trade at home and abroad will be better understood when we say that there have been buil and sold over 300,000 of the McCormick machines since 1849, beginning with an annual product of 1,500 machines and increasing as the country developed, until the presen annual production exceeds 30,000 machines.
It is estimated that there are at this time $200,000 \mathrm{McCor}$ mick machines in existence, capable of harvesting annually $60,000,000$ acres of grain and grass, an area equal to th entire surface of the great States of New York and Penn sylvania, requiring an army of 200,000 men and 400,000 horses, and furnishing employment for tens of thousands engaged in handling and transporting the vast grain crops of the world. And the man whose brain evolved the idea of a successful reaping machine, and who carried the thought into deeds, and whose energy and shrew dness put this vast force at work, is alive among us to day, enjoying his well-merited honor and success. His name will go down to posterity as one of the great benefactors of the human race whose victories hav been won in the successful effort to lessen toil and bles mankind. What the future of the reaping machine will be when the vast territories of the unexplored far away North west-the great grain belt of the world-shall have been brought under cultivation, we leave to the imagination of the reader, our duty as journalists being to trace the early history and present standing of this very important branch of national industry.

Simple Ventilator

Dr. McKinnon, of Windsor, Ont., has sent to the Canadian Lancet a sketch of a stovepipe ventilator, which may not be new in principle, but which will, no doubt, be found useful a it is simple. The stovepipe is surrounded by a cylinder of sheet iron, having a diameter large enough to leave $21 / 2$ inches of space between it and the pipe. The vitiated air of the room is admitted through an opening or openings at the lower part, and it passes upward as it is heated between the pipe and cylinder for 18 or 20 inches, according to the height of the latter, and then enters an opening in the stovepipe and passes away with the smoke.

The Heliograph in War

The extensive use of the heliograph by the British forces in the Zulu and Afghan campaigns has given a wonderfu impetus to the art of signaling by means of flashes of light. The heliograph itself as now perfected leaves little to im prove upon; butit is of course only applicable so long as

RECENT DECISIONS RELATING TO PATENTS. United States Circuit Court.-District of New Hampshire.

lark, J.:
Letters patent No. 91,150 to S. G. Monce, June 8, 1869 or tool for cutting glass, declared invalid in view of testi mony establishing the fact that similar tools had been made and used before the invention thereof by Monce.
This patent was for the rotary disk glass cutter-a stee cutting wheel set in the end of a handle.

Supreme Court of the United States.

crouch, appellant, vs. roemer.-Patent shawl han DLE and straps.
Shawl straps with handles attached to a leather cross.piece having loops at the ends being old, it is no invention to tiffen by artificial means the leather cross-piece, which had before been made as rigid as it could be by thickness, doubing, and stitching. The use of known equivalents for some of the elements of former structures, to make them some what better, is not invention.
Appeal from the Circuit Court of the United States for the District of New Jersey.
Mr. Chief Justice Waite delivered the opinion of the court.

United States Circuit $\overline{\text { Court.}}$-Southern District of

 New York.WARING, JR. vs. JOHNSON.-PATENT CHECK BOOK.
Blatchford, J.:

1. Reissue of letters patent No. 8,199, granted to G. War ing, Jr., April 23, 1878, held to be valid.
2. Where an invention is claimed as the "combination, in a check book, of checks and stub-pieces of substantially the ame size, so united that two checks lie between every two stub-pieces, substantially as specified and set forth," it is im material, in view of the state of the art, whether the defendant's book has the line of perforation between the check ad the stub leaf at the top or bottom of the stub leaf or the leaf end of the check.
3. It will not invalidate the reissue that the claim is broade than the claim of the original patent, provided that it is "fo the same invention" shown and described in the specifica ion and drawings.

William Eunis.

William Ennis, inventor, of Troy, New York, died at sea, March 29, in his fifty-ninth year. Like so many of our per istent and successful inventors, Mr. Ennis acquired the knowledge utilized in his inventions by actual experienc and personal study and investigations, his opportunity to early schooling having been but the slightest. Most of his inventions were improvements in furnaces and related appa ratus for domestic and manufacturing purposes. For many years he was engaged in the manufacture of hot air fur naces. He invented the duplex heating furnace, and took out a number of patents for improvements in metallurgica rocesses. His later work was in connection with an appa atus for economizing fuel, and the sea voyage which ended his life was undertaken to make the necessary preparation or the application of his invention to the steamship Rich mond, of the Old Dominion Line

Phenomena of Optics and of Vision.-M. Treve.The author mentions the fact that the flame of a lamp appears brighter, and that a vertical shaft, a post, or mas is seen more distinctly through a vertical than through horizontal slit, while a house, a landscape, or the disk o the sun or moon is perceived more clearly through a hori zontal slit. He finds similar differences in photographs according as the light passes from the object to the plate through a vertical or a horizontal slit, and ascribes the results to the action of diffused light.

Fuel from Hay, straw, Flax, Etc.

To the Editor of the Scientific American

In the Scientific American of the 16 th inst., you refe to the want in parts of the West of a machine for preparing lax straw for burining as ordinary fuel. This is true. No only is a machine needed for preparing flax straw, but al ther kinds of straw and also prairie bay
In a large portion of the West straw of all kinds is allowed to rot in the field or is burned in the stack. Thousands of tons of wheat straw are burned every year as soon as thrashed, and this, too, in a country where fuel is scarce and igh. Prairie hay that costs only the cutting and stackin also goes to waste in vast quantities. If this wealth of hay and straw could be compressed into bricks convenient for burning in an ordinary stove, thousands of dollars might be aved to the hard working farmers on our Western prairiesprovided, of course that the desired machine be not too ex pensive, or could do its work cheaply. Possibly it would be best to have the hay or straw cut into short pieces before being compressed.
Hay stoves have been invented and are in use in some localities, but it takes a large amount of time to twist up the bay by hand and feed the stove, besides keeping the room constantly littered with loose particles.
The market value of prairie hay in this portion of the West is from $\$ 2$ to $\$ 3$ a ton. Plenty of it may be contracted now for $\$ 2.50$. Straw has no market value. The writer o this, last fall, burned the straw from 163 acres of wheat land as soon as it was thrashed in order to get it out of the way, and in doing this only followed the common practice of the country. At the same time wood is worth $\$ 6$ to $\$ 6.50$ a cord, soft coal $\$ 4$ to $\$ 6$ a ton, and hard coal $\$ 10$ to $\$ 14$ a cord,
ton.

Garner, Iowa, April 18, 1881.
W. C. Hayward
[Our correspondent's suggestions are useful, and we hope that some of our ingenious readers will be led to study the subject of utilizing the products he mentions. But if soft coal can be had at $\$ 4$ a ton, we doubt whether hay fuel, no matter how compressed, could compete with it. The fiber will probably have to be utilized in some other way than fuel. Paper pulp might be made, for example.-EDs.]

The New Mineral Hiddenite.

To the Editor of the Scientific American:
A late publication in your " Correspondence" column from Mr. J. M. D. Stephenson, of Statesville, N. C., in which he claimed the discovery of this mineral, demands answer from me.

The definition of hiddenite in Dr. J. Lawrence Smith's own words is, " an emerald-green variety of spodumene,' and it is this variety only that I consider myself the discoverer of.
To show to you that it was in truth a discovery, I will state that I was not searching for the mineral when I dis covered it. It was while I was at work here with a corp of men pushing forward a systematic investigation of thi mineral belt for the purpose of discovering a mine of the true emerald (species beryl), that I unexpectedly came upon the vein eight feet below the surface that contained the new mineral.
Mr. Stephenson said to me last week that " the specimens he obtained were either colorless or only slightly yellowish green." He had never seen them having a pure emerald green color until he saw those I had unearthed.
Now it follows, then, that the mineral he obtained was not hiddenite, but simply a variety of spodumene, no characteristic enough in color to merit a new name.
Mr. Stephenson has never made or caused to be made any cientific investigation of either the locality or of the mine ral, and by reason of such neglect has forfeited any rights he may have had in this matter.
As you are well aware, it is to the person who gives the animus or momentum to an investigation that leads to a dis overy who receives the honor
Even the discovery of the variety Mr. Stephenson obtained does not belong to him, but very properly, under the laws of priority, to the farmer (Mr. J. W. Warren) who first found it in the soil here and subsequently sold it to Mr. Stephen son.
I would only too cheerfully accord to Mr. Stephenson any rights he might have in this matter; and I do freely accord to him, and to the mineral specimens he has sent North from this interesting region, the incentive to my present wor here, and whatever, if any, success I have attained.

Stony Point, N. C., April 26, 1881.

A Remedy for Scale Bugs.

At a recent meeting of the California Academy of Sci ences, Dr. Gibbons exhibited a large bunch of beautifu roses of exceeding fragrance, and in full bloom, which he gathered from a bush in bis garden which two months before was overrun with scale bugs and nearly dead. He applied to it a mixture of crude petroleum and castor oil with a feather, daubing it slightly on the leaves and stem not allowing any to fall to the ground or reach the roots Rain followed, and the plants were throwing out their frst growth of leaves, to which the scale bugs were directing their attention. Now no sigg of any scale insect can be seen in the whole garden.

NEW INVENTIONS

In the concentration of certain liquors or extracts in vacuum pans, where very dense or thick extracts are re quired-such, for instance, as in the case of dyewood ex-tracts-it is found that, owing to the low temperature that exists in the vacuum, it is impossible to remove sufficient of this moisture to secure the required concentration. Hence it is usual to destroy the vacuum at intervals by opening the valves and admitting air, and then allowing the mass to heat up to the temperature allowed by atmospheric pressure, after which the exhaustion is again effected, which insure an increased disengagement of the moisture from the mass, now heated much beyond the vacuum temperature, so that a more deuse concentration is thus effected. As this system, however, requires repeated and alternate stages of heating and exhausting, its action is slow, and the repeated abrup renewals of the vacuum are manifestly wasteful of power. Mr. Jacob G. Reed, of New York city, has patented certain means whereby the vacuum or partial vacuum in the pan may be kept constant, or nearly so, while at the same time an influx of hot dry air is discharged in regulated jets up through the mass of fluid, so that the moisture is absorbed or evaporated from all parts of the mass, and the mass kept at the same time in constant motion during the influx and exhaustion, insuring uniform liquidity and the reduction of the mass to the desired density in a constant, rapid, and economical manner.
Mr. George W. Thorp, of Wellington, Kan., has patented an improved holdback, in which the tongue cap is provided with screw holes in its lower part and the separable hold back stop with a screw thread upon the end of its uprigh arm, to screw into one of the screw holes of the cap, and a hole in the end of its inclined arm, through which a screw passes into a hole in the cap or into the tongue, so that the stop can be adjusted forward or back as the size of the horses may require.
An improved ore-washing apparatus has been patented by Mr. James H. Totman, of Plattsburg, N. Y. The object of this invention is to provide a simple and effective device for keeping the journal bearings in ore-jigs and other machines free from dust, sand, and other substances that otherwise get in them and cut the journals and bearings. It consists of a double ring or annular box closed at the bottom and open at the top of the annular space between its sides, and having a lateral opening from said space for the introduction of water therein, it being designed to set said water box about a journal or journal bearing, and to force a constant stream of water through the lateral opening, so that said water shall flow out of the annular space in the box against the journal or bearing, and thereby keep off all dust, sand, etc., which might otherwise lodge on or in it.
An improved device for feeding fine fuel to furnaces, forges, etc., has been patented by Mr. Augustus Greiner, of Somerset, Obio. It consists of an air-tight coal dust vessel provided at one end with an inlet adapted to be connected with an air or steam supply, and at the other end with an outlet adapted to be connected directly with the furnace.

A Long-Lived Community

Some curious statistics of local longevity are furnished the Providence (R. I.) Journal by a correspondent at Thompson Center, Windham County, Conn. At the beginning of April-the letter is dated the 11th-the resident population of the school district-excluding transient " help "-was 331 Of these 5 were over 90 years of age, 14 were between 80 and 90 , and 28 between 70 and 80 . The average of the first five (all men) is 93 years. The average of the next $14(4 \mathrm{men}$ and 10 women) is 82 years. The third group (8 men and 20 women) average $751 / 2$ years of age.

The first houses beyond the district limits, in three direc tions, are occupied by aged women, two of them of 87 years the other 83 years old.
Evidently the district is a bealthy one. It is pretty evident also that, like so many New England districts, it is a good one to go away from. So large a proportion of aged inhabitants indicates the early migration of most of the youth of the community to more active though possibly less healthy towns.

Mountain Mahogany

This wood is indigenous to Nevada. The trees do not grow large; one with a trunk a foot in diameter is much above the average. When dry the wood is about as hard a boxwood, and of a very fine grain. It is of a rich red color and very heavy. When well seasoned it would be a fine material for the wood carver. In the early days it was used in making boxes for shafting, and in a few instances for shoes and dies in a quartz battery. Used as a fuel it creates intense heat, it burns with a blaze as long as ordinary wood would last, and is then found (almost unchanged in form) converted to a charcoal that lasts about twice as long as that of ordinary wood.

L'Electricité states that M. Dohrn has introduced the telephone in connection with his scientific explorations of th bed of the Bay of Naples. By its use the diver and the boatmen overhead are able to communicate with each other quickly and intelligibly.

ARAOMETRIC METHOD FOR THE ESTIMATION OF FAT IN MILK.*
The principle of this method does not occur in any of those in use. It is as follows: A known quantity of milk caustic potash solution, and ether are shaken together; the fat, as is known, dissolves completely in the ether, which fter standing for a short time rises to the surface 1 small portion of the ether, which is always constant, remains disportion of the ether, which is always constant, remains dis solved in the alkaline solution, but does not contain any fat,
as the ether in the water does not dissolve the slightest trace of fat. The remaining portion of ether forms with the fat a solution whose concentration varies as the amount of fat present in the milk. The concentration of this ethereal solution of fat can be ascertained by the estimation of its specific by estimating the amount of alcohol in an aqueous solution with the alcoholometer, as the difference between the specific gravity of fat and ether is as great as between that of wate and alcohol.
Apparatus and Materials.-(1.) Apparatus for the determi nation of specific gravities, with three pipettes for measuring the milk, caustic potash solution, and ether respectively, and several bottles in which to agitate the mixtures. (2.) Caus tic potash solution, of sp. gr $1 \cdot 26$ to $1 \cdot 27$, prepared by dis solving 400 grms . fused caustic potash in a half liter of water, which after cooling is made up to one liter; or by dis solving 400 grms. caustic potash in 870 grms. water. (3.) Ether saturated with water. This is obtained by shaking commercial ether with one-teuth to two tenths of its volume

Dr. Soxhlet's Apparatus for the Estimation of Fat in Milk.
of water at the ordinary temperature. (4.) Commercial ether. (5.) A large vessel of at least 4 liters capacity, filled with water at a temperature of 17° to $18^{\circ} \mathrm{C}$. When several estimations are to be made at the same time the vessel must be larger. When the temperature of the room is warmer the temperature of the water should at first be 17°, when cooler, 18° C.
Manner of Procedure - The miilk being thoroughly mixed and at a temperature of 17.5° C., 200 c.c. are measured by he largest pipette and discharged into one of the bottles for gitating, which should have a capacity of 300 c.c. In the ame manner 10 c.c. of the potash solution are measured discharged into the bottle containing the milk, and mixed 60 c.c. ether saturated with water are then added. The ether when measured, must be between 16.5° and $18.5^{\circ} \mathrm{C}$. The bottle is now closed with a cork or India-rubber stopper shaken violently for half a minute, placed in the water a $17.5^{\circ} \mathrm{C}$., and shaken every alternate half minute for a quarte of an hour. After standing a quarter of an hour longer, clear layer of the ethereal solution of fat forms in the conical part of the bottle, the collection and purification of which is accelerated by giving to the contents of the bottle a gentle circular movement. It is indifferent whether the entire solu tion of fat, or only a portion, has collected, if there be sufficien to cause the aräometer to float. The ethereal solution must be
*By Dr. F. Soxhlet in Chemical News.
perfectly clear. With milk containing a large amount of fat ($41 / 2$ to 5 per cent) the separation takes longer than a quarter of an hour; sometimes, buc exceptionally, from one o two hours. In such cases, if the vessel containing the water is large enough, it is judicious to lay the well-closed bottle in a horizontal position in the water; the way for the ascending drops is thus considerably shortened, and the col lection of ether hastened. When the bottle can again be placed in an upright position, the purification may be assisted y the gentle circular movement.
In order that the following manipulations may be under stood the apparatus for the estimation of the specific gravity of the ethereal solution will be described.
The stand has a holder fitted with a movable screw for oolding the cooling tube, A, to the tubes of which are at tached two short India-rubber tubes. The holder of the tube, A, turns on its axle so that A can be placed in a horizontal position. In the center of \mathbf{A} is fastened a smaller tube, B, whose diameter must be 2 mm . greater than that f the float of the aräometer. At the lower end of B ar fastened three small pieces of glass, to prevent the aräomete from adhering to the sides, while the upper end is closed by a cork. The scale of the aräometer, C, is divided into de grees from 66 to 40 , corresponding to the specific giavitie rom 0.766 to 0.743 at $17.5^{\circ} \mathrm{C}$.; these, again, are further divided by smaller and finer lines into halves. In the float of the aräometer is fastened a small thermometer, so graduated that $0 \cdot 1^{\circ} \mathrm{C}$. may be read off. The drawn-out end of the tube B, which passes through the cork in the bottom of A, is connected by means of an India-rubber tube to the glass tubes D, which passes through the cork, \mathbf{E}, of the agitating bottle The glass tube, F , to which is attached the small hand bel lows, \mathbf{G}, also passes through the cork. The stand also holds the three pipettes, I, for measuring the milk, caustic potash solution, and ether.
The apparatus is now used as follows: The India-rubber tube connected to the lower tube of \mathbf{A} is placed in the vessel containing the water at 17° to $18^{\circ} \mathrm{C}$. A is now filled with water by suction at B , and closed by connecting both end with a glass tube. The stopper of the agitating bottle is now replaced by the cork, E , and the tube, D , so inserted as to dip nearly to the bottom of the clear ethereal solution. The cork at the top of A and the clamp, H , being opened, a quantity of ether, sufficient to cause the aräometer to float is forced by means of a gentle pressure at G into the tube B. The clamp is now closed, and the cork inserted in B, in order to prevent any evaporation of ether
After waiting from one to two minutes till compensation of temperature has taken place, the aräometer is brought as nearly as possible into the center of the tube, and the posi tion of the scale read off. That part of the scale is read off which coincides with the middle part of the deepest curved line on the surface of the liquid (meniscus). As the specific gravity is diminished by a higher and increased by a lowe temperature, the temperature during the estimation of the specific gravity of the ethereal solution must be noticed. Therefore, shortly before or after ascertaining the position of the aräometer, the temperature of the liquid is obtained to within $0 \cdot 1^{\circ} \mathrm{C}$. from the thermometer in the aräometer If the temperature be exactly $17.5^{\circ} \mathrm{C}$., the specific gravity will, of course, require no further correction; in other cases, however, the specific gravity obtained by the aräometer can be easily calculated to that at the standard temperature $17.5^{\circ} \mathrm{C}$. For each degree Celsius over $17.5^{\circ} \mathrm{C}$., one degree is added to, and for each degree under $17.5^{\circ} \mathrm{C}$., one degree is subtracted from, the statement of the aräometer; e. g., 58.9 degrees at $16.8^{\circ} \mathrm{C}$., at standard temperature become $58 \cdot 2 ; 47.6$ degrees at $18.4^{\circ} \mathrm{C}$., at standard temperature be come 485 . The temperature of the water in A may fluctu ate between 16.5° and $18.5^{\circ} \mathrm{C}$. The specific gravity of the ethereal solution at 175° C. being found, the amount of fat in weight per cent is obtained directly from table I
After finishing the determination, in order to prepare the apparatus for a second, the cork of B, and the clamp, H. are opened to permit the ether to flow back into the agitating bottle. B is now filled from the bottle with commercial ether, which is allowed to flow back again. The tube, B, India rubber tube, etc., are now thoroughly dried by forcing a current of air through the apparatus by means of a hand bellows, G. A.s the aräっmeter is apt to be injured by coming in contact with B , it is advisable, before forcing the air through, to turn the tubes A and C to a horizontal position.
The estimation of the specific gravity, including the preparation of the apparatus for another estimation, scarcely takes five minutes. From the description of the manner of cleaning the apparatus, it will be seen that there is little risk of the aräometer being injured, as it is never taken out of the tube, B. Allowing half an hour for the mixing and separation of the ethereal solution, an estimation of fat may be made in from forty to forty-five minutes; but five estimations can be made as easily in an hour, when they are carried on at the same time. The method, therefore, not only allows several estimations to be made at the same time, but is also very expeditious.

Steam Sledge for Arctic Use.

A dispatch from Washington relative to the outfit of the relief steamer Mary and Helen, states that Chief Engineer George Sewell, of the Navy, now on duty at New York, has, upon official request, forwarded to the Navy Department designs for a steam sledge which is intended to be self-propelling and capable of towing a number of sledges.

The engraving shows a portable bath chat for hot air in the treatment of disease. The inventor claims that during many years of medical practice in the most unhealthy por tions of the South he has used heat as a remedy with suc success that he now considers it far more valuable than al other curative agents combined.

Steam being objectionable, he proposes to make the gene ral use of the hot-air bath, among physicians and families, practicable and cheap.
The portable chamber consists of a detachable top in thre parts or sections, and the walls are made up of four corne sections, with the doors bung to the free edge each one of the wings, which, hinged to ether in pairs, make the corner sections. When required the chamber sets upon a bas ame containing the heating apparatus; bow ver, the chamber may be used independentiy of the base frame and furnace, when a pa lor, office, or cook stove already in use is avai able.
There is a space or recess cut in the top of one of the doors, and also in one of the roof or top sections, the former to fit over the stovepipe if horizontal, the latter if vertical, and are both provided with square shutter fitted to the stovepipe. By means of this in enious arrangement the chamber can be re dily set up about a hot stove without touching the pipe, and where families have ven a cookstove in daily use they can avail themselves of the chamber alone without the xpense of base frame, furnace, and extra fuel and when done bathing, the chamber may be emoved from the cookstove and set up else where and for other purposes if desired.
This chamber can be taken down in de tached parts without the aid of tools; is easily carried from place to place; and may be set up in any room, or, if necessary, around the bed upon which the patient is lying, withou creating any disturbance.
The plan of construction is so simple and perfect that each part, whether door, corner, or top section, is interchangeable with all other similar parts, and the door containing the window may be readily changed from one side of the chamber to the other, when desirable. The same is true of the door containing the square shutters for the pipe opening.
It is adaptable to any place or circumstance, and will ren der the hot-air and Turkish baths practicable with both phyicians and families.
Full information in regard to this novel chamber may be obtained by addressing Dr. Andrew Walker, Natchitoches, La.

NEW ROAD CAR

The road car shown in our engraving will shortly com ence running on various routes in different parts of London, the London and District Omnibus Company (Limited) having entered into arrangements for the purpose with the inventor, Captain Molesworth, R.N. The chief difference between the old and the new vehicles is that the latter are principally supported on the two large wheels, which arrangement not only gives greater facility in running, but by means of the crank axle also brings the car much nearer the ground, passengers being thus able to step easily from the pavement on to the platform in front, which is no higher than an ordinary curbstone. An additional, and perhaps a more acceptable advantage gained in adopting this principle, is that, however rough the ground or however the load may be distributed, the car glides forward with an undulating, easy motion, most enjoyable compared with the rather "rough and tumble" jolting of the old omnibus. The two small wheels in front act rather as a foundation for the driver's seat than as an additional support to the car. This new arrangement affords great facili ties for rapidly turning and changing the vehicle's course in crowded tho roughfares, and also en ables the driver to have proper command of his horses, to be free from interference from passengers, and also to be in close communication with the conductor, who stands on the platform in front, where, in contrast to the old style, is the door. We have seen and traveled in one of the new vehicles, were much pleased with its comfort, roominess, and brightness, and especially with the novel arrangement of the seats on the top; the "knife board" being abolished for a double row of comfortable
garden chairs, so placed as to allow of every one sitting with

MOLESWORTH'S ROAD CAR.
harmony and fraternal feeling that had characterized their deliberations, were matters for congratulation. The members of the Academy, he said, as indeed all scientific men, constitute a republic; and its government is necessarily attended with some of the inconvenience that attends such a form of government. which encourages the development of strong individuality. The history of the Academy is one of
progress, and there lies a grand and brilliant future before progress, and there lies a grand and brilliant future before
his or her face to the horses. These chairs are not shown in the illustration, but the majority of the cars are fitted with them.-London Graphic.

Proposed Electric Postal Railway.

Models of a proposed electric railway and letter post deliv ery were recently exhibited before a scientific club in Vienna A Siemens electro-dynamic machine was used to furnish the motive power. The chief advantage claimed for the sys tem was that the power was generated at the stations and not carried along the line by locomotive engines. The lette post was intended to supply for long distances the want no filled for short distances by pneumatic tubes. Miniature line

RECENT INVENTIONS.
Mr. Henry S. Norse, of 2238 Third avenue, New York city has patented an improved duplicating press. The objec of this invention is to furnisb a foot or power press for use in printing from stencil plates, particularly stencils pre pared with the Edison electric pen, so that the labor and ime heretofore required in such work shall be reduced The invention consists in a hinged frame carrying the sten cil plate, and a vibrating lever carrying the ink roller com ined together and with fixed platen or bed and operate y mechanism of novel construction, by which the hinged frame is raised for insertion of the paper, dropped upon the rame is raised for insertion of the paper, dropped upon th paper, the ink roller brought over the stencil plate with th required pressure, and then withdrawn whil the frame is again raised
An improved barrel hoop making machin has been patented by Mr. Edward E. Tbresh er, of Reed City, Mich. This machine is designed especially for cutting hoops from boards or planks, and is so constructed as to cut the timber into oval strips and cut each strip into two beveled hoops. The machin can be readily adjusted for sawing lath and making mouldings.
An improved horse power has been patented by Mr. Benjamin F. McCarty and Richard E Lindsay, of Seale, Ala. The object of this invention is to furnish horse powers designed especially for driving cotton gins, but which can be used with advantage for various othe purposes. They are so constructed that the can be built upon the drive wheels of ordina ry horse powers.
An improved crate for the transportation of fish, meats, and other like perishable art cles, so as to protect them from decomposi tion during transportation or storage, has been patented by Mr. William S. Braman, of Key West, Fla. It consists of a crate made of a network of galvanized iron, and pro vided with a series of knees or projection which keep the sides of the crate from com ing in contact with the sides of the box
Mr. John Flanagan, of Newburg, N. Y., bas patented an improvement in hydrant valves. The invention consists in combining with a hydrant case having a side aperture and an

PORTABLE HOT-AIR BATH CHAMBER

railway v.ere to be built along the passenger lines, and apertured extension a cross slotted cylinder provided wit on them, at an exceedingly high rate of speed, would be run annular exterior packing grooves and a valve sustained at small electric engines and cars to take up letiers. It would have the advantage of being entirely independent of the regular passenger road, and could be used at any time.

The National Academy

The closing session of the National Academy was held Friday, April 22. The following papers were read: "Additions to our Knowledge of the Currents and Temperature of the Ocean in the Vicinity of Behring Straits," W. H. Doll; "Results Obtained with Regard to the Molecular Weight of Hydrofluoric Acid," J. W. Mallet; "A Method of Finding the Proximeters of the Orbits of Minor Planets," C. H. F. Peters; "Incandescer.t Lighiing," G. F. Barker; "The Auriferous Gravels of California," T. Sterry Hunt. At the Anclusion of the last named paper, President Rouers said that before announcing the adjournment of the Academy he wished to express his gratification at the variety and excel ence of the communications presented during the session. The brilliancy of some of the results, the large beneficence that
nnular exterior packing grooves and a valve sustained a the
disk.
Mr. Albert Rousseaux, of Brussels, Belgium, has patented an inhaler by means of which air impregnated with tar or other medical odors can be inhaled for penetration to the bronchial tubes and lungs. The invention consists in a cigar holder or mouth piece fitted with a cigar-shaped portion containing tar or other materials formed with air conduits, and provided with a cover perforated for admission of air, so that by being held in the mouth the user can inbale the exterior air, which, on passing through the cigar and holder, becomes impregnated with the tar, medicine, or other mate rial used.
An improved curtain fixture has been patented by Mr Benjamin Landon, of Canton, Pa. The object of this invention is to improve the construction of the window shade fixtures for which Letters Patent No. 132, 726 were granted o the same inventor under the date of November 5, 1872 . in such a manner as to simplify the construction and
promote convenience in operating them.

An improved engraving machine bas been patented by Mr. Allan E. Francis, of Garrettsville, Ohio. The improvement relates generally to engraving machines employing a pantograph to which are connected the tracer and the graving tool, and particularly to the means for facing the tool properly and the lever for operating the tool to the construction of the pantograph; to the construction of the tracer arm and the means for adjusting the tracer, the bed and supacer; to the machine, and the means for adjusting the pantograph and the work. This invention cannot be described without engravings.
An improvement in wagon gear has been patented by Mr. Horace L. Kingsley, of Racine, Wis. The object of this invention is to provide a cheaper and more durable oscillating gear for platform spring wagons, whereby greater elasticity and freedom of movement is given to the wagon bed. The invention consists of the combination, with the bed piece, of horizontal rocking bars baving their inner ends supported in a revolving king bolt plate, and their outer ends in segments that travel over the fifth wheel on the platform.

THE ELECTRIC LIGHT IN AN ART GALLERY.
At a reception held at the Union League Club House, in this city, a few evenings ago, the experiment of lighting a portion of the picture gallery with electric lights was tried with satisfactory results.
One part of the gallery was lighted with gas and the other portion with Maxim's incandescent burners, supplied by the United States Electric Ligbting Company, who also illuminated the street and avenue fronting the building with one of their powerful are lights.
It was considered doubtful if the commingling of the two lights --gas and electric--would be sufficiently harmonious to admit their use together without destroying the harmony of color or richness of tint in some of the ninety beautiful paintings-valued in the aggregate at $\$ 265,000-w h i c h$ adorned the walls of the Club House on this occasion. But the result has proved that the electric light is feasible for illuminating galleries of art, and in many respects that it is far better than gas for the purpose.
The quality of the light approaches very closely to that of daylight, hence the artist's conception of color is not distorted as by the yellow tint which gas produces. The picture appears to the observer as it did to the artist when it lefi his easel.
The electric light takes up none of the oxygen of the room, the exbaustion of which in galleries where gas jets are used renders them uncomfortably warm, vitiating the atmosphere, and thus detracting from the pleasure of visit ing such places at night.
The result attending the exhibition the other evening, of using the electric light and gas light together, and then either separately, establishes the feasibility of using the electric light alone for exhibiting pictures to the best advantage or of blending the two and heightening the brilliancy.
The Maxim incandescent burners were placed at intervals hetween the gas jets on the main pipe which extends around the room, so that the rays of light were projected from the same line, thus avoiding a cross-light, which artists and exhibitors so much abhor.

Summer School of Natural Sclence

The Boston Society of Natural History will open a seaside laboratory at Annisquam, Mass., June 15, the session to end September 15. There will be no stated course of instruction and no lectures, the purpose being to afford opportunities for the study and observation of the development, anatomy, and habits of common types of marine animals under suitable direction and advice.

MISCELLANEOUS INVENTIONS

Mr. Joseph L. Camp, of Cannonsburg, Pa., has patented a device for facilitating the sealing of cans with wax, whereby the objections to the old method are avoided. It consists of an upright metallic lamp chimney having an inclined open spout or conductor attached at one side, near its base, both chimney and spout being heated by a lamp. There is a slide supported by suitable standards on the lamp holder or case, and inclined toward the chimney, in which slide is placed a stick of wax with its lower end resting against the chimney, above the spout, and as the wax is gradually melted by the heat of the chimney it drops into the spout, and may be poured thence upon a can to seal it.

Mr. Charles G. Trafton, tof Slatersville, R. I., has patented an improved thread guide for spooling machines for guiding the thread as it runs from the bobbin to the larger spool. The object of this invention is to relieve the self-adjusting guide of all pressure tending to increase the friction of its movement, so that the action shall be most de licate. It cousists in a guide plate pivoted to a supporting rod that is formed with the friction surface over which the yarn runs.

Mr David Gaussen, of Brouglaton Hall, Lechlade, County of Glouces ter, England, has patented an im provement in the manufacture of vulcanized India-rubber, etc., which consists in corrugating such sheets on both sides, so as to produce a series of hollow arches or hollow semi-cylindrical formations, such as those usually formed by the corru gation of sheets of galvanized iron, the grooves on the one side being alternate with those on the opposite side of the same sheet, that which is a convexity on one side being itself a concavity on the other side, and on one and the same side a rid of them. They preyed upon the fish, and also came to convexity or ridge being followed by a concavity, and a concavity by a convexity

KRUGG JUGS.

The jugs shown in the annexed engraving are made by the celebrated manufacturer whose name they bear. They are fäience and gris, and exbibit the odd forms and curiou decoration once so popular in Austria. The work is minute and the execution fine, and the quaintness of the de vertu

THE ALLIGATOR SNAPPING TURTLE.

The alligator snapper (Macrochelys lacertina), the largest of fresh water turtles, has its headquarters in the shallow tepid bayous of Louisiana, although it ranges up the Missis sippi to the Missouri. It bears a strong resemblance to common snapping turtle greatly magnified in size and ugli ness, and in this latter quality might well contest the palm with the South American matamata, a turtle, by the way of which no correct cut has fallen under our notice. It is usually represented with a thick head and neck, whereas they really look as if a log had fallen on and flattened them. In our present species the head and neck are out of all pro ortion to the body. giving it an overbalanced appearance

the alligator enapping turtle.
and rendering it impossible for the animal to more than slightly draw the neck beneath its shell. As far as protec tion is concerned this is of small consequence, for none of the coresidents of its haunts would think of attacking it, their chief concern being to avoid falling into his clutches. Lurking in the shadow of some rock or log, or partly buried in the mud, with neck retracted as far as possible, its rough brown skin and moss-covered back give it so much the appearance of an old stump that it is unnoticed by the fish sporting in the vicinity, until, perhaps, one ventures too near. Then, with a sidelong spring, at the same time darting out its neck, the turtle seizes his prey, which he devours at leisure, holding the fish down and under him as a dog
would a bone. It is so voracious as to cause sad havoc among the fish, while its wariness renders it difficult to cap ure. A gentleman who had introduced a pair into a smal fish pond found them so destructive that he wished to ge
the sun. If the eggs are broken the immature young will snap in a feeble way, showing that this part of their disposition is inborn and not the result of education.

Frederic A. Lucas.

New Rust Preventive

A new method of protecting the surface of iron from rust has been brought forward by Mr. Ward, of London. The new "inoxidizing" process, as it is termed, consists in combining a silizate with the metal by the aid of heat. Cast or wrought iron objects are first coated, by painting or dip ping, with a silicate glaze, which quickly dries, and the articies are then passed through a furnace, or rather oven In this way the silicate composition is said to be fused and absorbed into the metal, which upon cooling is found to have assumed a dull black appearance. The coating is said to be so far homogeneous with the metal as to protect it from any change from long exposure to the atmosphere; and at the same time the silicate is not liable to disintegrate or separate from the iron. The articles treated in this man ner may be ornamented by combining the silicate wash with any vitrifiable colors. Thus smooth polished colored sur faces may be produced upon iron, which, while possessing features distinct from ordinary enameling, yet present supe rior and more durable results than those obtainable by ordi nary painting and varnishing

The Matanzas Exhibition.

Late advices from Havana state that the Matanzas Exhi bition is likely to prove a financial failure. The attendance is very small, except on Sundays. In the department of industrial products the Exhibition is pronounced a success, but it fails in its display of machinery and agricultural products The exhibit of the Havana Arsenal is particularly full and well arranged, so that visitors can readily study the successive stages and processes of manufacture of each object The models of cannon of all sorts and periods, from the earliest to the most modern, are regarded as particularly creditable; but it is not an encouraging sign to see the post of honor accorded to such things in an industrial exhibl tion.

The Beef Juice Furor

In the present furor for fluid beef juice, says Dr. Fothergill, he necessity for starchy matters is being quite overlooked or, to be very safe, underestimated. These meat products furnish-the best of them-little glycogen or animal starch, and yet that is the fuel food of the body par excellence. We must be guided by rational knowledge, by physiology and not by fashion, in our dietetics. When there is very feeble digestion, then the digested milk and milk gruel advocated by Dr. Roberts is to be employed. -- The Practitioner

Kentucky Horses.

It is claimed that the fastest horses in the world have been bred in the neighborhood of Lexington, Ky. Among the more notable are Maud Stone, better known as Maud S. record, 2:1034; Wedgwood, 2:19; Woodford Mambrino, 2:24; Trinket, 2:1914; Dick Moore, 2:22: John Morgan 2:24; Indianapolis, 2:21; and Voltaire, 2:21
The number of superior carriage, saddle, and trotting horses sent out from this part of Kentucky is very great A prominent lireeder was lately asked the secret of their superiority. He replied: "There is a combination of causes. The great majorityof the horses here have some good blood in them, and you will find it crossed somewhere back in their pedigrees. The best strains of running and trotting blood have been taken from here to other States, and they there fail to produce the desired results. There is some thing in the blue grass, the water the atmosphere, and the general climatic influence, and much in judicious brecding and training We force our horses to a gait when they are one year old, and at three years old they are pretty well developed. The Northern men, how ever, always improve them." "How long have Kentucky horses held their high place?" was asked. The breeder replied: "No one here about can tell. I know men who have lived here eighty-five years and they state that from their earliest childhood they have heard of the superiority of our horses, Their fathers before them had the same story to tell. The fact is that somewhere in the past there was brought into this State a pure strain of thorough blood, derived from the best stock of the mother world, and it has transmitted it qualities from sire to son to the present time. It is a lament able fact that we have not the exact data upon which to base a history of the Kentucky horse."

The Manufacture of Bromide.
Fifteen years ago a few hundred pounds of bromide per year, imported from Europe, sufficed for the wants of the trade, and the price of the article was about $\$ 5$ per pound. Since that time the value of bromide of potassium as a
nervous sedative has caused such a demand that a supply of nearly 50,000 pounds per month is absorbed. Bromine, from which bromide and bydrobromic acid is made, is found in the "mother" or "bitter" water yielded by the salt wells of the Ohio valley at Pomeroy, O.; also the Kanawha and Monongahela valleys, tributary to the Ohio from West Virginia and Southwestern Pennsylvania. The two first named regions furnish the wells whose water is richest in bromine, and this element is almost entirely wanting in the salt waters of the Saginaw and Syracuse salt regions. The price of the article has, in the time stated, fallen to less than one-tenth that given above, and the demand for bromide shows a steady increase.

botanical notes.

Insectivorous Plants.-Last year attention was called in the Cronica Cientifica to the fact that Vayreda, in his work on the "Noteworthy Plants of Catalonia," had asserted that certain Spanish species of catch-fly (Silene crassicaulis, S. aperta, and S. nutans) possess the property of digesting the oft portions of the bodies of the insects that they capture by means of the viscid secretion which invests their stems. In a recent number of the Cronica Sig. Vayreda gives the results of certain experiments made by him on one of the abovenamed species last summer, for the purpose of verifying his original statement. He found that the viscid secretion on the internodes of the stem began to make its appearance nbout twelve or fifteen days before the flower buds opened. 'This secretion is transparent, colorless, and has a faint characteristic odor. Its viscidity is about the same as that of birdlime. It is partially soluble in water and almost entirely so in alcohol, and appears to be an oleo-resin mixed with a vola tile oil. It produces a marked narcotic action on insects that come in contact with it. Sig. Vayreda having selected a number of plants of Silene crassicaulis of the same age,
size, and vigor, dusted the viscid substance of some of them with plaster of Paris and covered that of others with cotton fibers so as to entirely prevent the access of insects to it; other plants he left in their natural state, and carefully watched the results in both cases. After numerous and attentive observations on the plants fed with insects and on those deprived of them, the author was obliged to confess that he could perceive no appreciable difference between them in development, dimensions, color, or physiological evolution, all having thriven equally well. When the seeds
were mature, these were likewise compared microscopically and also weighed, but no difference could be distinguished between them. Sig. Vayreda hence draws the conclusion that while there is no doubt at all that the viscid secretion of Silene possesses the power of capturing and killing insects and of discoloring their bodies, its purpose is not to prepare nourishment for the plant, but rather to serve as a protection to the floral organs against unwelcome visitors; and, further, he believes that the secretions of other alleged insectivorous plants, such as Drosera, are provided for a like purpose. It would prove an interesting matter if some one, following
Sig. Vayreda's example, should pursue a series of investigations on some of our American viscid species of Silene, the wild pink (S. pennsylvanica), for example, with a view of ascertaining whether the viscid secretion possesses the property of dissolving the soft portions of insects' bodies, and, if so, whether this proves of any special benefit to the plant.

Absorption and Diffusion of Heat by Leaves.-In a recent number of the Annales Agronomiques, M. Maguenne gives an account of an elaborate series of experiments undertaken by
him with a view to ascertain the amount of heat absorbed by him with a view to ascertain the amount of heatabsorbed author's paper is so long that we can merely give an abstract of his conclusions, which are as follows: "All leaves, it appears, diffuse a portion of the heat which they receive, more or less, according to the source of heat. Generally, but not universally, the lower surface gives off more heat than the upper. The absorption of the heat is due to the presence in the leaf of absorbent substances, such as water and chlorophyl. Thick leaves absorb more than thin ones; but the latter, however, transmit heat better than thick ones."
Changes in the Diameter of Trunks of Trees.-According to the Gardener's Chronicle, MM. Kraus and Kaiser have been making some researches, from which it appears that the trunks of trees undergo daily changes in diameter. From early morning to early afternoon there is a regular diminution
till the minimum is reached, when the process is reversed till the minimum is reached, when the process is reversed then again comes a diminution, to be succeeded by an increase about dawn-an increase more marked than that in the evening. The variations in diameter coincide, therefore, with those of the tension, but they are shown to be inverse to the temperature, the maximum of the one corresponding roughly to the minimum of the other, and so on.
Action of Ancesthetics on Plants.-Claude Bernard has shown, says the Lancet, that the vapor of chloroform and of ordinary ether hinder the germination of seeds, and M. Rabuteau has found that this is equally true of bromide of ethyl and bromide of amyl. He finds, also, that all the ethers have the same effect. The experiments were made with grass seeds; but the property of germination is merely restrained. Seeds kept thirty-seven days exposed to the vapor of bromide of ethyl or bromide of amyl germinated, when placed under proper conditions, in two days. The question then presents itself: Have these substances a similar action
upon plants which are in full progress of growth? Growing upon plants which are in full progress of growth? Growing
cress was exposed for two hours to an atmosphere saturated with vapor of bromide of ethyl. It then appeared feeble,
the leaves hanging down, and it continued in this condition
for a day or two, and then revived, but exhibited considerfor a day or two, and then revived, but exhibited consider-
able retardation in its growth compared with other plants of the same age. The leaves of heliotrope become brown, and die in the course of two hours. Acetate of ethyl is somewhat less powerful. Cress lives after it has been exposed to the vapor for three hours, but does not survive an exposure of six hours. Heliotropes are only killed by an exposure of three or four hours. The action of acetate of ethyl is also correspondingly less active on animals.

A Western Oil Flood.

O. P. Yelton, now in Laramie City, Wyoming Territory, has kindly sent the Era a copy of the last issue of the weekly Boomerang, published in that city, from which the following article is taken:

We have frequently spoken of the extensive oil wells now being worked by the Rocky Mountain Oil Company, in Sweetwater County, but the facilities for obtaining particulars have been so few that our people are not fully aware of how much is really being done toward developing so rich a deposit as is known to exist there. The company referred to is composed of Omaha capitalists, with Dr. Graff at its head. For the past month he has been superintending the work at the wells in person, and a report of a lengthy interview, on his return to Omaha the other day, appears in the Herald.

Last season the company bored in several places, and collected the oil at other spots where it exuded from the ground, and built six or seven reservoirs to contain it. They stored two or three thousand barrels, but were fated to lose part of it through an unforeseen casualty. About two weeks go an ice gorge formed in Popajie Creek, above two reservoirs which held an aggregate of 1,200 barrels. The water poured over and into the reservoirs, and being heavier than the oil displaced it wholly.
'The sea of oil ran over the meadows for several miles about, blackening them as if a prairie fire had swept across. The farmers were incensed, but it was such a loss as the inurance companies would have classed under the heading of Acts of God,' and no one charged with fault. Since the gorge passed out the water is being pumped from the wells, which will soon fill to the brim again.
''The company can store from 1,000 to 1,500 barrels of oil a day, when they desire, and can dispose of it, and have rea son to believe that theirs is an oil interest larger than that of the whole of Penusylvania and far easier developed. The president of the company guarantees that they can produce 50,000 barrels per day when they require it.

The value of Wyoming oil has already been tested. In its crude state, without the least refining or treatment, it serves as an excellent lubricating oil, and the Union Pacific engines are using it. This summer the oil company pro pose to erect a refinery alongside the Union Pacific railway track, where they will refine it for illuminating purposes, making an excellent head light oil. Dr. Graff has been ou to see about building a direct wagon road from the wells to the railroad, instead of following the present roundabout way, the length of the former being seventy-six miles. He was driven back by the winter, the season being too little advanced. Dr. Graff is looking forward to the time when these wells shall supply all the country west of the Mis-souri."-Bradford Era.

Venus and Mercury at Noon-Day.

We had a superb telescopic view of these two planets a few days since nearly at the time when the sun passed th meridian. We first took a peep at our brilliant neighbor Venus with the naked eye, for she may be seen any clear day in the bright sunshine, if one knows where to look. A pin head of filmy cloud or a dot of molten silver was the modest form assumed by our sister planet in the sun's majestic pres ence, as after looking intently, she suddenly came into view from the depths of the blue sky. The telescope was then turned toward her, and the cloudy speck was transformed into a charming crescent as large as the moon. The color was pale gold, and the crescent as slender as the waning moon two or three days before her change. The terminator or line between the light and dark portions of the disk was slightly irregular, so that, though twenty-three million miles distant, we were actually seeing the summits of the mountains on Venus illumined by the sun. The crescent Venus comes next to Saturn and Jupiter as an object of telescopic interest.
Mercury was the next subject for observation, and the shy planet, difficult to find even when the sun is below the horizon, quickly made his appearance under the magic spell of the glass. He did not take on a grand aspect, for he is far away and comparatively small in size, but he looked much as Venus now looks to the naked eye, perhaps not quite as large and far less brilliant. He had, however, a distinctly gibbous phase, like the moon after she has passed her first quarter, for both Mercury and Venus, revolving within the orbit of the earth and being nearer the sun, pass through all the phases of the m
Only a short time remains in which Venus may be studied in her present phase, for she is rapidly approaching the sun, and will soon be hidden in his light. A good spy-glass will
show the crescent form of this bewitching planet This show the crescent form of this bewitching planet. This was all the help that Galileo had, and with its aid he was the glass will accomplish the feat with sharp-sighted observers.

A few instances are on record where the srescent has been seen with the naked eye, but this, like detecting the moons of Jupiter, is an exceptional visual gift, which ordinary stargazers may not hope to enjoy.-Providence (R. I.) Journal.

Product of an Iowa Creamery.

The Farmer's Review prints the following table showing the amounts of milk received each month last year by an Iowa creamery, with the amount of butter made therefrom, and the percentage of the yield. The average for the twelve months was $41 / 8$ pounds of butter for each 100 pounds of milk. During six months the milk was received twice a day, the rest of the year but once a day. It was set in cooling cans, in water at a temperature of from 50° to $55^{\circ} \mathrm{Fah}$.

	$\begin{aligned} & \text { No. of lb. } \\ & \text { milk. } \end{aligned}$	Lb. of butter.	$\begin{aligned} & \text { Yield per } \\ & 100 \mathrm{lb} . \end{aligned}$
January	50,193	2,225	423
February.	47,643	2,003	4:20
March	. 66,986	2,779	4.00
April	. 98,691	3,795	3.74
May..	. 194,166	8,069	4.15
June..	. 245,047	9,695	4.07
July.	. 244,973	9,977	4.07
August.	. 215,177	8,371	3.90
September	. 200,437	8,923	$4 \cdot 44$
October..	. 169,195	6,793	$4 \cdot 01$
November	. 110,383	4,737	4.29
December	77,597	3,434	442
The Second Bridge Between New York and Brookiyn.			

The bridge from New York to Brooklyn, crossing Blackwell's Island, is under contract, and the contractors are now mated cost of the bridge is $\$ 5,000,000$; the time fixed for its completion is three years. There will be four piers, one at Ravenswood, another at the coal dock on Blackwell's Island, Ravenswood, another at the coal dock on blackwells island, a third on the west side of the island, and the fourth on the
New York side, between Seventy-sixth and Seventy-seventh streets. It is intended that the New York approach shall form a junction with the railroads in the Fourth avenue tunnel, a mile and a quarter above the Grand Central Depot, and that the Long Island approach shall connect with a spur of the Long Island Railroad. The bridge will be 74 feet wide, and will be arranged for two sidewalks, two carriageways, and two steam railroad tracks. The span over the water from Ravenswood to Blackwell's Island will be 618 feet, that across the island 700 feet, and that over the river to New York 734 feet. Each pier will rest on bed rock, the to New York 734 feet. Each pier will rest on bed rock, the
dip of whose strata at all points is nearly vertical. The Ravenswood pier only will stand in the water, and a coffer dam will be placed in position next week to prepare the rock for its reception. One corner only of the New York pier will truch the water. The roadway will be 154 feet above the river at high tide, and 160 feet at low tide. A commission to appraise the land needed on Blackwell's Island bas been appointed by the Supreme Court.

Cutting Holes in Glass.

The operation of making holes and sections in glass and porcelain is often a troublesome and unsatisfactory one The firm of Richter \& Co., in Chemnitz, have found a way of so impregnating thin German silver disks (15 to 25 mm . diameter) with diamond, that when fitted to a quickly rotating tool, these cut through glass or porcelain in a few seconds, or effect any desired carving with great accuracy. With cylinders made on the same principle, round holes can be quickly and exactly made. The wear of the implement even after much use, is hardly perceptible.

Lack of Air.

Some workmen think themselves "tired" when they are only poisoned. They labor in factories, breathe air without oxygen, and live in an atmosphere of death. They are, too often, allowed to smoke, and thus add fuel to the flame which is consuming them. They knock off work "tired" and listless, when they are merely weakened by foul air and made dull and heavy by an atmosphere charged with disease They keep the windows shut and close the door on health, while they lift the gratings of the tomb by breathing and re beathing the poison from their own lungs, and the floating particles of matter about them. Open the windows-let in the sunshine and the breeze, stop smoking, and you will soon find that it is the poison of confinement, and not labor, that wearies and tires.-Montreal Herald and Star.

Magic Mirrors.

The magic mirrors, which have been a good deal discussed f late, are all of metal. M. Laurent has succeeded in mak ing them of glass, which is sufficiently elastic for the pur pose. At first he used pressed glass, polishing the surface opposite to the projections; then he tried the thin glass of commerce, engraving a hollow design. The two methods may be combined. When at rest the mirror is plane, and gives good images. By a blowing or sucking action the characteristic features are brought out. Both sides of the mirror are silvered.

Maple Sugar.

From two groves of maples in North Harpersfield, Dela ware County, New York. the yield this year has been seven tons of maple sugar. The groves contain 4,200 trees. In 1875 the town of Harpersfield produced 200,000 pounds of sugar, an amount which this year's crop is thought to exceed.

A New Alkalimetric Indicator

by H. $_{6}$ w. langbeck.
Nitro-phenic acid dissolved in 100,000 parts of distilled water presents a nearly colorless liquid, but if a trace only of an alkali be added a distinct yellow color appears. This delicate indicator is, of course, only useful if colorless or slightly colored fluids are to be examined. In determining for instance, the temporary hardness of water, I dissolve part of nitro-phenic acid in 5,000 parts of distilled water; I also prepare centinormal potash and acetic acid solutions. 100 c. c. of distilled water are put into one Nessler glass, the same quantity into another, and again 100 c . c. of the water to be examined into a third. To each of them 5 c . c. of nitro-phenic acid solution are added (one is kept for compar ing), which leaves the distilled water nearly colorless, while the common water turns yellow to deep yellow according to hardness. From a burette centinormal potash solution is then added to the one glass of distilled water until the color is of the same shade as the common water; each c. c. used is equal to 0.00028 of lime, CaO . To verify the result, cen tinormal acetic acid is added until the first shade (nearly colorless) returns; the quantity of acid required is, of course, the same as the alkali. The common water is now also treated with the centinormal acid until the first shade is reached; each c. c. used equals 00005 of carbonate of lime. compared, for instance, 100 c. c. of distilled water with 100 c. c. of water of the East London Company. The dis tilled water required 1.9 centinormal potash solution to color it the same shade as the common water, and also 1.9 c . c. of acid to become nearly colorless again; the water in question contained, therefore, 0.532 lime (CaO) in 100,000 parts. The common water required 29.8 c . c. to return to the first shade. From this quantity $1 \cdot 9=$ lime found must be deducted Each of the remaining c. c. is equal to 0.0005 carbonate of lime $=13.95$ in 100,000 parts, or total temporary hardness $=14 \cdot 482$.-Chem. Newos.

Judgment and Forethought in the Education of Children.

In a very thoughtful and suggestive inquiry as to the reasons why "promising" children so seldom turn out a parents and friends anticipate, the Philadelphia Public Ledger discovers a potent cause of failure in the man which parents will find worthy of serious consideration. After speaking of the more familiar ways of spoiling children by unwise management or improper training, the Ledger says:
The truth is, we need more forethought and less self-indulgence in the training of our youth. We please ourselves too much, and study their future too little. It is so easy and pleasant to gratify our own vanity or ambition by stimulat ing and exhibiting them in points where they excel; it is so hard and comparatively tame to exercise them in what they are deficient, and to foster their most meager abilities. Yet until educators acquire the necessary self-control and patience to do the latter; until they can work quietly and steadfastly without display, and fix their aim on future results instead of present glitter, the most promising children will continue o sink down into inferior men and women.
The qualities that are the most attractive in childhood are not by any means the most valuable in maturity. We look for determination, will, decision of character, firmness in the man, and refuse him our respect if he have them not. But when the child exhibits these qualities, even in their incipien tages, we are annoyed, and, perhaps, repulsed. Instead o rejoicing in his strength of will and guiding it into right channels, we lament it as a grievous fault in him and a mis fortune to us. It is the meek and yielding child who care not to decide anything for himself, in whom we delight, and whose feeble will we make still feebler by denying it all exer cise. Yet, when he grows up and enters the world and yields to temptation, and, perhaps, disgraces himself and his family, we look at him in imbecile wonder that so good a child should have turned out to be so bad a man, when, in truth his course has only been the natural outcome of his past life and training. The porer of standing firm and going alon we know tc be desirable in the adult, but the child seem more lovable who is utterly dependent upon us, and we there fore strive to cherish this dependence, shutting our eyes to the fact that we are thus actually unfitting him for the life that awaits him. Concentration, too, is a quality that we admire in the adult, but greatly undervalue in the child. We prefer that he may be easily drawn away from what he is engaged in, and quickly turned from one thing to anothe at our pleasure; and while we praise him for his ready obedi nce, or rebuke him for seeming absorbed, we are reall breaking down the power of concentration, and depriving him of its invaluable results.
It is true that many things are suitable for manhood that are not for childhood, but this is not the case vith mental
and moral qualities. If it were there could be no such thing as consistent preparation for a good and useful life. Every quality that the man or woman needs is incipient in the child, and needs development and exercise. Our part in his training is not to cherish in him simply what is most attractive to ourselves, or what feeds our own and his vanity, but rather to study his future needs, and to help him to supply what is most lacking. It is where he is deficient, not where he excels, that our earnest efforts are demanded. Not until parents and teachers realize this so fully as to identify with it their highest interest and pleasure in their charges, will promising children fulfill their promises, and the question no longer be asked, "What has become of them?"

Paper Pulp from wood.

The following is a description of the process of making wood pulp: The wood, four feet in length, and of any thick ness, is brought in at the basement of the manufactory, placed in the barking jack (one stick at a time), where two men with draw-knives rapidly peel off the bark. It is then conveyed by an elevator to the first floor, sawed in two-foo engths with crosscut saws, and passed on to the rip-saw where it is slabbed (that is, a small portion of wood on oppo site sides taken off), to permit it resting firmly in the grind ing engine. It is then passed to the boring machine (an up right $11 / 2$ inch auger, with foot attachment, driven by power), where the knots are bored out. The wood is then placed in acks of the same size as the receptacle in the grinding engine, and carried out to be ground. The grinding engines are upright, and receive at a filling one-twentieth of a cord of wood. The wood is placed in a receptacle, and by a simple, variable, automatic feed process, is pressed flatwis between two outward revolving rolls, composed of solid mery, which are flooded wi'n a spray of water, carrying off the fibrilized pulp in a strec m through revolving screens to he tank or stuff-chest in the basement. It is then pumped up into a vat that forms part of the wet machine. In this vat is constantly revolving a large cylinder faced with fine brass wire-cloth, which picks up the particles of pulp out of the water and places them on the felt (an endless piece of woolen goods which makes between rolls, for different purposes, a continual circuit of the wet machine). On the cylin der is turned a heavy roll, called the " couch;" between the two, where they meet, the cylinder leaves the pulp, with most of the water pressed from it. The pulp now makesits appearance on the felt above the concha roll in a beautiful heet, 38 inches in width, and is carried along in a steady low a distance of about 8 feet, where it passes between (the water here agaiu being pressed from it) but not beyond two heavy rollers, the upper one iron, the lower one wood; it adheres to the upper roll, which is constantly turning, wrapping it up, and when a sufficient thickness is attained, is cu off by a knife being pressed to the roll, which is attached to the machine for that purpose. It now leaves the roll in hick white sheet, 36×38 inches, which is received by a boy in attendance on a table conveniently attached to the machine, and folded into a sheet 14×26 inches. It is the placed on scales until the weight is 100 pounds, when it is placed in ¡a press and firmly tied into square, compact bun dles. It is now ready for shipment to the paper mill.

Adventure in the Cave of Cacahuamilpa.
A serious but fortunately not fatal termination came to a
City of Mexico to the Cave of recen excursion from the City of Mexico to the Cave of
Cacahuamilpa, in honor of some American visitors. About fity persons left Mexico, but the party received so man accessions by the way that when the cave was reached ther were as many as 500 persons in the company, including the military guard.
It appears that Señor Carlos Quaglia, Governor of More los, had ordered a banquet to be prepared in that portion of the grotto which bears the name of "The Organ Salon," on account of the stalactites which have there assumed the for of an organ. The place was illuminated by electric lights, yet
there were also many torches of resinous wood burning. The there were also many torches of resinous wood burning. The
élite, who numbered perhaps ninety persons (there were also great many servants), occupied the Organ Salon. In close proximity were placed several shelter tents for the ladies and children to sleep in. These were filled with sleepers, and along one side of the banqueting hall many gentlemen were ying on mattresses, mats, or blankets. A few of the more animated guests lingered over the table until 2 o'clock in the morning, and were chatting, when Governor Quaglia fainted. All efforts to restore him to consciousness seemed futile. While he remained in this condition some ladies complained of illness, others were asphyxiated, and a gentleman sug gested that all this might be due to mephitic exhalations. Mothers at once hastened to their children, and, finding some in a stupor, comprehended the danger. Λ panic ensued. General Diaz ordered an instant retreat from the grotto. General Ord and others instructed the soldiers to carry out he ladies and children. Ex-Governor Romero Vargas aided Señor Mariscal, Minister of Foreign Relations, to scramble ver the rocks. In fact, all who had strength assisted thos who were asphyxiated, and every person was removed to purer atmosphere. Some persevered until they reached the entrance of the cave (three miles distant) and threw them selves down on the bare ground, almost exhausted with fatigue, but safe.

George Stephenson.

At an influential meeting lately held in the Town Hall Newcastle-on-Tyne, the following resolutions were carried nanimously:
'That this meeting is of opinion that it is desirable to ommemorate the centenary of the birth of the late George Stephenson on the 9th of June next, and expresses the view that Newcastle-on-Tyne, being practically the place of his nativity, and where his first and most important engineering triumphs were won, is the most fitting center where such elebrations should be held

That this meeting is of opinion that there is no better way of doing honor to the name of Stephenson and perpetuating his memory in this district than by erecting a building
for the use of the University of Durham College of Physical Science, to be called the Stephenson College."

A Yellow Crow Lost in the Mails.

A white crow is a rare bird, but a yellow one is rarer still, and yet a bird of this color has been lost in the United States mails, that general receptacle for all sorts of merchandise to be transported over the country. One of Uncle Sam's officers in this far Western country, while perambulating the Rocky Mountain region (in the southern part of Colorado came upon a rare bird, a yellow crow, which he succeeded in capturing. The bird was carefully skinned, the skin horoughly cured and prepared for shipment to the Snith sonian Institution, at Washington. There being no way ave the mails for shipping such articles from the wilds of L Plata County, this rare and valuable specimen of ornithology was intrusted to the care of the Post Office Department, and there the story ends for the present. The yellow crow still emains unknown, except to the very few who saw the bird before shipment, butearnest and determined efforts are being made to find the lost specimen, and Gen. Cameron, the Post Office Inspector for this division, to whom the case has been intrusted, expresses a determination to find the missing bird, nless the same has been stolen outright by some dishone official.-Denver News.

Automatic Fecording of Telephone Messages.

In a book on the application of the telephone and microphone to physiological and chemical uses, Dr. Boudet describes his method of automatic recording of telephone messages. To do this he removes the diaphragm of the Bel elephone, screws to the wood one end of a steel spring, the ther end being opposite the pole of the magnet. To the free end he solders a small piece of soft iron, weighing one-tenth of a gramme. Attached to this piece, and in the prolongation of the axis of the spring, he fixes a light bam oo arm, ten centimeters long, and terminated by a needle fi whalebone. In fact, the diaphragm is replaced by a mov able armature resembling the interrupter of an induction coil. The tracings are made on smoked paper, and trans ferred to glass. There are some points of difference, as well as resemblance, which make it probable that tracing of this kind may be deciphered, but the matter is in embryo yet.

mperfect Eyes among School Children

Three years ago the Philadelphia Medical Society ap pointed a committee to investigate the condition of the eye of the children in the city schools. The report of the com mittee was read by the chairman, Dr. Risley, at a recent meeting of the society. The committee had examined about 2,000 pairs of eyes. The condition of those examined, Dr. Risleysaid, had proved better than had been expected by the committee. The cases of impaired sight ranged from 25 per cent among the smaller children to 40 per cent among the older scholars. The average of diseased eyes ranged corre spondingly from 30 to 60 per cent. The instances where any blame attached to the Board of Education or their sectiona boards for want of care for the eyes of the children were only two, one of which was the case of the primary practic ing class in the Normal School. The room is lighted by one arge western window, which, owing to the position of the desks and the master's table, the children are obliged to face.

Fusion of Metals by Electricity.

M. Imbert describes Siemens' method of fusing large metallic masses by means of electricity. He uses a plumbago crucible, surrounded by a thick refractory wall, the cover being traversed by a carbon rod of 20 millimeters (0.79 inch) diameter. This rod is suspended by one of the arms of a balance beam, the other arm carrying a cylinder of soft iron sliding freely in a solenoid and plunging into a liquid, in order to moderate the oscillations which might arise from sudden variations of current. In one experiment 500 grammes ($1 \cdot 102$ pounds) were melted into a compact ingot in four and one-half minutes. In melting large quantities the electrical method is rather more than twice as costly as the ordinary furnace, but for the fusion of precious or refractory metals, for chemical purposes, and for other applications where the question of economy is secondary, the new method is very convenient and practical. In melting small quantities it may even prove economical.-Ann. du Gen. Civ.

Excess of Fat.

Dr. George Johnsun's diet for excess of fat: The patient may eat: lean mutton and beef; veal; lamb; tongue; sweetbread; soups, not thickened; beef tea and broths; poultry; game; fish; cheese; eggs; bread, in moderation; greens; spinach; watercress; mustard and cress; lettuce; asparagus; celery; radishes; French beans; green peas; Brussels sprouts; cabbage; cauliflower; onions; broccoli; sea-kale; jellies, flavored but no sweetened; fresh fruit in moderation, without sugar or cream; pickles.
May not eat: Fat bacon and ham; fat of meat; butter; ream; sugar; potatoes; carrots; parsnips; beet root; rice; rrowroot; sago; tapioca; macaroni; vermicelli; semolina; custard; pastry and pudding of all kinds; sweet cakes.
May drink: Tea; coffee; cocoa from nibs, with milk, but ithout cream or sugar, dry wines of any kind, in moderaion; brandy, whisky, or gin, in moderation, without sugar; light bitter beer; Apollinaris water; soda water; seltzer water.
May not drink: Milk, except sparingly; porter and stout; sweet ales; sweet wines. As a rule, alcoholic liquors should be taken very sparingly, and never without food.

Express Atlantic steamers.

A company is being formed, with a nominal capital of two and a half millions, to work a line of express steamers between Milford Haven and New York. Although certain statements have been made concerning the proposed dimensions of these ships, we may say at once that nothing has been settled concerning this point; the size of the company's steamers is still an open question. The idea is that they will be about 550 feet long, 45 feet beam, and that they will draw about 25 feet when loaded; but these figures must be taken as approximate, as well as the statement that they carry 5,000 tons of goods and 400 first-class passengers. or can at present be settled, but it forms the pivot round which all or nearly all other questions connected with the new ships and their construction must turn. This is their speed, which is to be ${ }^{2}$) knots, or about 23 miles an hour. No such speed has ever been attained by any screw steamer of large size; and it has only been reached by a very few paddlewheel yachts on rare occasions. The first ship driven at this speed across the Atlantic will have performed a feat without, for the time, a parallel; and when we bear in mind in what a rapid ratio the resistance of a ship increases with each augmentation of speed, it will be seen that the construction of the proposed express Atlantic steamers presents a tremendous problem for solution to naval architects and engineers.
Calculations have been made, which appear to be accurate, and they go to show that 16,000 indicated horse power, and probably more, will be required to drive a ship of the stated dimensions at 20 knots an hour across the Atlantic. It is very doubtful if the required velocity could be got at all with a ves

placement.

It will be understood that the conditions of the problem are very different from those affecting the design of a torpedo boat. The latter can only attain a high velocity in comparatively still water; but these great Atlantic liners must be driven at full speed through head seas; and sheer dead weight and great length must be present in them to enable them to preserve their way steadily, instead of being coustantly checked and beaten off their course by the waves. If large dead weight and great length are necessary, it follows that the engine power must be in proportion; and for these reasons the idea that a small steamer of little power may be made to attain a high speed in a sea like the Atlantic, is well understood by all naval architects and engineers to be futile.
We may thus consider it as certain that engines exerting 16,000 horse power at least will be a necessity in the proposed ships. We have said that these vessels will draw only about 25 feet. They cannot be fitted with propellers of more than about 22 feet or 23 feet in diameter; and it is a very grave question if anything like 16,000 horse power can be sent through such a propeller without great loss. The shallow draught has been adopted no doubt for good reasons, and it may be taken that a propeller of greater diameter than we have stated cannot be used.
Let us suppose, however, for the moment that 16,000 horse power can be sent with economy through a single propeller, and we are face to face at once with the question, Where is a crank shaft to be had which can transmit this power when revolving at a moderate speed?
Making every allowance for the skill of modern smiths, we cannot help regarding it as somewhat doubtful that a trustworthy shaft of the kind can be made. Allowing that steel is to be used, and that the shaft will be built up on the most approved principles, we shall find that many porions of it cannot be less than 2 feet 6 inches in diameter by about 7 feet long. Sound forgings of these dimensions have never yet been produced. The weight of such a block would be when finished nearly 8 tons. It is true that heavier forgings have been made for years, but they have not been solid. We do not assert that a sound crank shaft, with a minimum diameter at any place of 2 feet 6 inches, cannot be made; but we do say that no such shaft has yet been made, and that it will not be easy to produce one. Such a shaft might, perbaps, be depended upon to transmit power safely at the rate of 250 horses indicated per revolu tion per minute. This means 64 turns per minute to proide for 16,000 horse power, and this velocity implies a grea deal more than appears at first sight. If the engines are to be kept down to reasonable dimensions they cannot well have a stroke of less than 6 feet, corresponding to a piston speed of 768 feet per minute.
Considering the enormous dimensions of the masses to be moved at this velocity, it is evident that unusual precautions will have to be taken in arranging the lead and in balancing the engines. Apparently the only type of engine that can be used is that of the Britannic, repeated and modified for the better, either on the system designed by Mr. W. Allen, of Sunderland, for the City of New York; or by Mr. Humphries, of Barrow-in-Furness, for the City of Rome. That is to say, the engines must have at least six cylinders-the three high pressure above the three low pressure, and the main shaft fitted with cranks arranged at 120°.
But the engines of the City of Rome, to indicate 10,000 horse power as a maximum, are probably about as large as engines of the type can be conveniently made; and consequently, unless the builders of the engines of the new teamers are prepared to use cylinders of much, greater
diameter than those of the City of Rome-namely, 43 inch and 86 inch-eight cylinders, or four engines. will be
required. More would be necessary, but the velocity we
have named, 64 revolutions per minute, is greater than that of the City of Rome's engines by some 14 or 15 per cent With six cylinders of 55 inch and 110 inch we think the requisite power might be got, but the strain on the crank slaft would be proportionately augmented. The crank shaft of the City of Rome is built up of hollow forgings of fluid compressed steel; it is 25 inches in diameter, or but 5 inches smaller than the dimensions which we have named as the least possible for those of the proposed boats.
No matter what point of view we regard the problem from, it will be found fraught with doubt and trouble, and we still hesitate to say that a trustworthy shaft can be made to transmit 16,000 horse power at 64 revolutions per minute. It is questionable, however, if this speed will suffice. Making a small allowance for slip, the screw must have a pitch of at least 36 feet, which is fully sharp for a diameter of about 23 feet; a higher velocity would give a lighter engine, a smaller crank shaft, and a better screw. But on the other hand, is it certain that colossal machinery of this kind can be made to work at a much higher speed than 64 revolutions per minute with ease and safety for a week at a time? The experience to be had in men-of-war is of no use whatever in this connection. It is one thing for engines to make a six hours' full power trial, and another to run at full power for a week at a time in all weathers, and to do this month after month without accident or heavy repairs.
All that we have said seems to indicate the use of twin screws instead of a single screw. In this way we should have two 8,000 horse power engines instead of one of 16,000 horse power; but, tempting as the advantages are thus held out by the twin screw system, we hesitate to say they are worth having at the price to be paid for them. Indeed, it is more than doubtful if it be possible to obtain under any circumstances 20 knots with twin screws. They give handiness, no doubt, and they render the use of comparatively light machinery compatible with the development of great power; but none of the great ocean companies have adopted
them, and there are objections to their use which are, we them, and there ar
think, insuperable.
All things considered, we think engineers will find it more easy to get a sound crank shaft of the required size, han to drive a ship at 20 knots with twin screws. Whether 6,000 horse power can or cannot be used up by single fourbladed propellers, 23 feet in diameter and 35 feet or 36 feet pitch, remains to be seen. Assuming that 50 per cent of the whole power developed is, as is usual in screw ships, wasted, the screw would still exert a thrust of not less than 130,000 pounds, or over 58 tons. It is not easy to see how so enormous a thrust can be got out of so small a propeller. It would be very mortifying if, after the ships were finished, it was found that their screws were quite inadequate to utilize the power of the gigantic machinery which turued them round.-The Engineer.

The Coming Bleach

When Thenard succeeded in adding another equivalent of oxygen to water, converting $\mathrm{H}_{2} \mathrm{O}$ into $\mathrm{H}_{2} \mathrm{O}_{2}$, he had made one of the most brilliant of modern discoveries. Sixty-three years have passed since that event, yet oxygenated water, peroxide of hydrogen, hydrogen dioxide, as the compound most remarkable products of chemistry. Resembling wate in its freedom from color and odor, and mingling with it in ll proportions, it is distinguished from that liquid by its irupy consistency and by its higher specific gravity ($1 \cdot 452$). When pure it begins to undergo decomposition at $70^{\circ} \mathrm{Fah}$. giving off bubbles of oxygen and being converted into water This change is quickened by the addition of an alkali, and retarded by that of an acid. When dissolved in water it is much more stable, and its aqueous solutions are prepared and sold for medicinal and photographic purposes.
For the preparation of hydrogen dioxide, baryta is still found indispensable, and a clearer conception of the process and its probable cost will be gained if we remember what is the source and what are the properties of baryta. This substance occurs as the sulphate, called heavy spar, in various paris of the United States, notably at Hopewell, New Jersey, on the line of the Bound Brook Railroad, about 30 miles from Philadelphia. When pulverized, mingled with powdered charcoal, and strongly heated, the sulphate of barium becomes the sulphide, and if this be treated with hydrochloric acid and water added, we have a solutiou of barium chloride. By decanting this and adding a solution of an alkaline carbonate, barium carbonate is precipitated, and if we collect the precipitate and calcine it in a crucible, the oxide of barium-baryta- BaO , results. Now this oxide when placed in a tube, heated to dull redness, and suljected to a current of atmospheric air, takes up another portion of oxygen, becoming that interesting substance, barium diox Ide or peroxide of barium, BaO_{2}, which, as some of our
readers will recall, was brought into use by Tessie du Motay for bleaching silk, eathers, etc., and which is rapidly grow

ing in practical importance.

Powdered barium dioxide, made into a paste with water and put by portions at a time into cold and dilute hydro chloric acid, dissolves without disengagement of gas, yield ng barium chloride and hydrogen dioxide. The change may be thus expres ed:

form of the sulphate by the careful addition of dilute sul-

The hydrochloric acid thus reproduced now admits of more barium dioxide being added, and the operation may be many times repeated if the vessels are kept cool. If the hydrogen dioxide be required pure and concentrated, the remaining barium chloride is precipitated by sulphate of silver, the solution poured off, and evaporated in vacuo. The concentrated hydrogen dioxide is not demanded for industrial purposes. Solutions containing 3.04 per cent by weight suffice for the English market. They are called ten-volume solutions, because 1 cubic inch evolves 10 cubic inches of oxygen when fully decomposed. Twenty-volume and thirty-volume soutions are made in England to order.
It is said that when the Empress Eugenie, who was a blonde, led the fashion, certain dark-haired belles of Paris, anxious to emulate her even in the color of her hair, had theirs bleached to the " golden" tint, by a hairdresser of that city, who employed for the purpose hydrogen dioxide. In London it is used for a like object on dark false hair, which is saturated with a ten-volume solution and then exposed for two or three days, when the oxygen is liberated and the lighter shades are obtained. Hydrogen dioxide effectually bleaches blood serum in one of the processes for obtaining colorless blood albumen. It is also used for cleaning and bleaching oil paintings and engravings, and for bleaching oil, wax, and ivory, especially the last. Of this, the inferior qualities used in Sheffield for knife handles are put first into a solution of sodic carbonate to remove the grease and open the pores; then washed and immersed in a solution of crude hydrogen dioxide containing about 2.9 per cent, to which one-eighth part of strong aqua ammonix bad been added. This is kept in a warm place for two or three days, when the handles are removed and slowly dried in the air. The deep color is thus removed, and a beautiful pearly-white ivory, when polished, is the result.
The action of hydrogen dioxide in bleaching is to destroy the color directly by oxidizing it, and this, without the introduction of any foreign body into the vat, an action altogether different from that of the principal bleaching agents, sulphurous acid and chlorine. The former does not destroy the coloring matter, it merely combines with it to form a colorless compound which is prone to undergo decomposition and therefore to return to the original color. Chlorineactsonly in the presence of water, from which it takes the hydrogen to form lydrochloric acid, leaving the oxygen thus liberated to do the bleaching.
That hydrogen dioxide, either under a true or false name, is employed in the bleaching processes of print works, and that its cost alone prevents its general introduction, there is no doubt. Anticipating its extended use, and recognizing its unrivaled advantages, the Socièté Industrielle de Rouen offers a prize open to competition until the ${ }^{*}$ st of October, for a process of manufacturing a hydrogen dioxide which shall possess the power to decolorize indigo equal to that of chlorine, and which shall not cost more than ten times as much as that bleach. Left to itself, the perfecting of such an invention may linger for a generation. The prize offered is a gold medal, and the prize winner retains the exclusive right to his invention. This may be all that the Rouen Society can afford to offer, but in view of the greatand general benefits to be anticipated from such an invention, the prize should be made international, and societies in Belgium, Austria, Germany. England, and America ought to co-operate with their French sister, and so swell the amount that experts in all nations shall feel the stimulus. - Textile Record.

A Remarkable Discovery of Natural Coal Tar
The Titusville, Pa., Herald reports the discovery of a tar-
ike oil in sinking a well ike oil in sinking a well seven miles west of Foxburg, Pa. Tie oil is jet-black, and has a strong odor like that of "spirits of tar." In its natural state the vil emits on burning a dense black smoke carrying much soot, which suggests its use in the manufacture of lampblack. It is also thought that it may be available in the manufacture of aniline dyes. The Herald adds: The strike is certainly an extraordinary one, and as far as we can learn, nothing like it has ever before been known in the history of the oil trade. No other well in or near the vicinity has anything approaching to it. The oil seems to be found in the slate at a depth of $2 \pi 0$ feet, and what is the more singular is that, although the drill passus through the same kind of slate and at the same depth in adjacent wells, no such yield as we have been describing has come from any other.

Florida Oranges in England.

London papers are noticing a new American product in the English markets, and, as it threatens no competition with anything raised at home, they seem disposed to give the new comer a hearty welcome. The Pall Mall Gazette says: A trial box of Florida oranges, dispatched from Jacksonville, Fla., to this city, arrived in prime condition after a journey of three weeks. Only three oranges were damaged en route. The experiment is likely to be repeated on a larger scale, and before long it is quite possible a thriving fruit trade may spring up between England and the Sou'hern States. The supply of oranges in Florida is almost inexhaustible; their quality is said to be much finer than those from the Mediterranean, and if once the trade was established, the time of transit would be materially was estab.
reduced.

dusiness and extanal.

The Chargefor Insertion under this head is one Dollar a line for each insertion ; about eight words to a line. Advertisements must be received at publication office as early as Thursday morning to appear in next issue.

Comfort and happiness after using one bottle Germa orn Remover. Price, 25 cts . Sold by druggists. The clergy, as olso the temperance le
Beil's "Rye and Ruck" for the throat.
Hand and Power Bolt Cutters, Screw Plates, Taps in great variety. The l'ratt \& Whitney Co., Hartforc', Ct. For Sale.- A Valuable Patent for Photographers' use or can be manufactured
Baker, Wilmington, Del.
Use the Vacuum Oils. The best car, lubricating, en Use the Vacuuin Oils. The best car, lubricating, en-
gine, and cylinder oils made. Address Vacuum Oil Co.,
No 3 Rochester No. 3 Rochester Savings Bank, Rochester, N. Y. If your hoiler requires frequent cleaning, it can be ob
viated by removing the sediment continuously by circulation to mud drum on top of boiler by Hotchkiss Me-
chanical Boiler Cleaner. 84 John it., N. . Circulars free. Send to Geo. W. Loss \& Son, Fashionable Clothiers, 70 Fulton St., New York. for samples of Cloths, from which they make (men's) garments to order in superior
style and workmanship. Business suits from $\$ 20$ to $\$ 30$; style and workmanship. Business suits from $\$ 20$ to $\$ 30$;
dress suits from $\$ 25$ to $\$ 40$. Samples and fashion plates sent free.
A $\$ 2$) Breech-loading Shot Gun for $\$ 7$. The Champion Imported Breech-loading Shot Gun, advertised in
this issue by the reliable well known frm of E. G. Rideout \& Co., New York, is pronounced by sportsmen to be
unrivaled in every detall, well worth $\$ 20$, and the bigthe offer is only good until July 15 .
Gerinan Corn Remover-cleanly to use, easily applied, perfectly harmless, but cures every time. 25 cts. Maker of Forged Taper Keys send address to M. E. Card, Cazenovia, N. Y
A Business Man would like to make arrangements with some party to handle their goods on commission.
Address K., P. O. Box 985 , Providence, R. I. Propellers, 10 to 26 in. Geo. F. Shedd, Waltham, Mass. Bradford Reduced Oils for Lubricating and Manu facturing Purposes. Ma. Lewellyn \&o Co., Olean, N. Y.
For the best Jig Saw Blades, go to Wm. Cuddy, 108 For the best Jig Sa
Hester St., New York.
Gardiner's Pat. Belt Clamp. See illus. adv., p. 284. Portable Railway Track and Cars. Contractors, Plant ers. Miners, send for circulars. Francis W. Corey \& Co..
$5 \& 7$ Dey st., New York; 95 Washington St., Chicago, III. Essay on Inventions, - What qualities will make them proftable, and how to incorporate these qualities in inprontane, and how tos. postpaid. Address N. Davenport, Val-
ventions. 25 ats
Improved Skinner Portable Engines. Erie, Pa.
"Rival" Steam Pumps for Hot or Cold Water; $\$ 32$ Skinner's Chuck. Universal, and Eccentric. See p. 268. Inventors sending a three cent stamp to Inventors' Institute, Cooper Union. New York city, will receive a copy the Industrial News fre
The Eureka Mower cuts a six foot swath easier than
side cut mower cuts four feet, and leaves a side cut mower cuts four feet, and leaves the cut grass
standing light and loose, curing in half the time. Send for circular. Eureka Mower Company, Towanda, Pa. The Newell Universal Mill Co., Office 7 Cortlandt St., New York, are manufacturers of the Newell Universal
Grinder for crushing ores and grinding phosphates, bone, Grinder for crushing ores and grinding phosphates, bone, plaster. dyewoods, and all gummy and sticky sat
Circulars and prices forwarded upon request.
Pure Oak Leather Belting. C. W. Arny \& Son, MaJenkins' Patent Valves and Packing " The Standard." Jenkins Bros., Proprietors, 11 Dey St., New York.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Wood-Working Machinery of Improved Design and Wormanship. Cordesman, Egan \& Co., Cincinati, 0 . The ' ' 1880 '" Lace Cutter by mail for 50 cts.; discount Experts in Patent Causes and Mechanical Counsel. Park Benjamin \& Bro., 50 Astor House, New York
Split Pulleys at low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting appearance as Whole Pulleys. Yocom \& Son's Shafting ras, Dher
Malleable and Gray Iron Castings, all descriptions, by
Erie Malleable Iron Company, limited, Erie, Pa Power, Foot, and Hand Presses for Metal Lowest prices. Peerless Punch \& Shear Co. 52 Dey St.,N.Y. National Steel Tube Cleaner for boiler tubes. AdjustCorrugated Wrought Iron for Tires on Traction Engines, etc. Sole mfrs., H. Lloyd, Son \& Co., Pittsb'g. Pa. Best Oak 'Tanned Leather Belting. Wm. F. Fore-
paugh, Jr.. \& Bros., 531 Jefferson St., Philadelpbia, Pa. Stave, Barrel, Keg, and hogshead Machinery a spe cialt.y, by E. \& B. Holmes, Buffulo, N. Y.
Wright's Patent Steam Engine, with automatic cut off. The best engine made. For prices, address William
Wright, Manufacturer, Newburgh. N. Y.
Nickel Plating. - Sole manufacturers cast nickel an.
odes, pure nickel salts, Importers Vienna lime, crocus. odes, pure nickel salts, Importers Vienna lime, crocus,
etc. Condit. Hanson \& Van Winkle, Newark, N. J., and 92 and 94 Liberty St., New York.
Presses, Dies, Tools for working Sheet Metals, etc.
Fruit and other Can Tools. E. W. Bliss, Brookn. N. Y. Cope \& Maxwell M'f'g Co.'s Pump adv., page 252.
The I. B. Davis Patent Feed Pump. See adv., p. 269. Moulding Machines for Foundry Use. 33 per cent
saved in labor. See adv. of Reynolds \& Co., page 269. The Sweetland Chuck. See illus. adv., p. 269. Machine Knives for Wood-working Machinery, Book Binders, and Paper Mills. Also manufacturers of Sook
man's Parallel Vise, Taylor. Stiles \& Co...Riegelsville.N.J. For best Duplex Injector, see Jenks' adv., p. 269. Blake " Lion and Eagle " Imp'd Crusher. See p.284. 4 to 40 H. P. Steam Engines. See adv. p. 286. C. B. Rogers \& Co., Norwich, Conn., Wood Working
Machinery of every kind. See adv., page 285.
ong \& Allstatter Co. 's Power Punch. See adv., p. 285 Eclipse Fan Blower and Exhauster. See adv., p. 28 Peck's Patent Drop Press. See adv., page 300
Fire Brick. Tile, and Clay Retorts, all shapes. B Fire Brick. Tile, and Clay Retorts, all shapes. Borgne Turbine Wheels; Mill Mach'y. O.J.Bollinger,York,Pa For Mining Mach'y, see ad of Noble \& Hall, p. 301. Silica Paints (not mixed); all shades. 10 Bleecker St

For best Portable Forges and Blacksmiths' Han
Blowers, address Buffalo Forge Co., Buffalo, N. Y. The Brown Automatic Cut-off Engine; unexcelled for orkmanship, economy, and durability. Write for in
ormation. C. H. Brown \& Co., Fitchburg, Mass. Wren's Patent Grate Bar. See adv. page 300 Brass \& Copper in sheets, wire \& blanks. See ad. p. 300 The None-such Turbine. See adv., p. 286
The Chester Steel Castings Co., office 407 Library St . 000 Gear Wheels, now in use, the superiority of the Castings over all others. CIrcular and price list free Diamond Saws. J. Dickinson, 64 Nassau St., N. Y. The Improved Hydraulic Jacks, Punches, and Tube Eagle A. R. Duageon. 24 Columbia St., New York. Geiser's Patent Grain Thrasher Peerless, Portable, and Traction Engine. Geiser M'f'g Co., Waynesboro. P Blake's Belt Studs are the best fastening for Rubbe nd Leather Belts. Greene, Tweed \& Co.
Houston's Four-Sided Moulder. See adv., page 301. For Mill Macb'y \& Mill Furnishung, see illus. adv. p. 300 . New Economizer Portable Engine. See illus. adv. p. 301 Rollstone Mac. Co.'sWood Working Mach'y ad. p. 301. For Light Machinists'Tools, etc., see Reed's adv., p. 301. Rue's New "Little Giant" Injector is much praised ue Manufacturing Co., Philadelphla, Pa
Saw Mill Machinery. Stearns Mfg. Co. See p. 300.
Skinner \& Wood, Erie, Pa.. Portable and Stationary Engines, are foll of orders and withdraw their illustra Engines, are full of orders. and withdraw their
ted advertisement. Send for their new circuars.
Saunders' Pipe Cutting Threading Mach. See p. 301 For Shafts, Pulleys, or Hangers, call and see stock have introduced ector, Sellers \& Co., Pha.,
Toope's Pat. Felt and Asbestos Non-conducting Renovable Covering for Hot or Cold Surfaces; 'Joope's Pat.
Grate Bar. C.Toope \& Co., M'f'g Agt., 35 E E. 78th St., N.Y. Use Vacuum Oil Co.'s Cylinder Oil, Rochester, N. Y Walrus Leather. A choice lot for Polishing Metal eene, Don't buy a Steam Pump until you have written Val
Machine Co., Easthampton, Mass. Green River Drilling Machines.
Green River Driling Machines. See ad. p. 286. Akron Rubber Works, Akron, O., Manufacturers For Machinists'

 HIN'S TO CORRESPONDENT

No attention will be paid to communications unles accomp
ven to inquirers
We renew our request that correspondents, in referring to former answers or articles, will be kind enough to name the date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear after
reasonable time should repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and labor obtain such information without remuneration Any numbers of the Scievtific American Supple MENT referred to in these columns may be had at this Price 10 cents each
(1) A. S. writes: One of your correspond ents asks for a cure for warts. Some years since a corn doctor advised me to use coal oil. My hands were ting a drop on each of common kerosene and letting it absorb; where there was a hard crust, scraping it to facilitate absorption. In a fortnight, after twice daily treating them thus, they began to lessen, and finally disappeared without scar. Then the right hand, in part, leaving one which remained after all others had passed away, and then that one. Have advised others to try it, top, dropped the oil on, and let it be, for some minutes to absorb. Let S. R. B. try it; itmay relieve
(2) S. L. J asks (1) for a receipt
(2) S. L. J. asks (1) for a receipt for gond black ink. A. Forblack inks see "Inks," Supplement,
No. 157. 2. For good black or blue black writing fluid A. For blue-black writing and copying ink-Blue Aleppo galls, free from insect perforations, $5 \% \mathrm{z}$ oz.; bruised cloves, 1 drachm; cold soft water, $31 / 2$ pints; purified sulphate of iron, $11 / 2 \mathrm{oz}$; sulphuric acid by measure, 35 minims; sulphate of indigo in the form of a thin paste, and which should be neutral or nearly so, $1 / 4 \mathrm{oz}$. Digest together in a closed tation, for two walls, cloves and water Then filter the liquid through a piece of cotton cloth, and press out as much of the liquid as possible from the sediment. Dissolve in this completely the
powdered sulphate of iron, stir in briskly the acid, then the indigo, and filter the liquid through the paper (filter
paper).
(3) E. H. R. asks: Can I clean silver ware
tea set, etc., in daily use, with receipt given in answer
to W. H. P., page 251 (32), and how can I keep the silver
clean ? A. No. Cyanide of potassium cleans silver lean? A. No. Cyanide of potassium cleans silve
readily, but it is very poisonous and consequently danerous to use for such purposes or to have about the house. Lacquer or varnish is never used on such artiles. The best way to clean domestic silver ware is to ightly scour it with a little fine whiting or tripoli noistened with sweet oil (olive oil). This is washed off by dipping in a strong hot solution of washing soda.
then in clean hot water, on removing from which it then in clean hot water, on removing from which
dries quickly without rubbing. 2. What is used to tiffen washed lace and make it look new ? A. thin clear starch or gum water.

English Patents Issued to Americans.
From April 8 to April 12, 1881, inclusive
Carding machinery, J. Pollitt, Philadelphia, Pa.
Design, process of producing. I. S. I yatt, U. S. A Ivors, imitation of, I. S. Hyatt, U.S. A.
Lead pencils, B. A. Fiske, Naperville, ill. Locks and staples, G. M. Hathaway et al., Jersey City,N.J. owdered substanc
Hyatt, U. \& A.
Shoe fastening, 'r. L. Jacobs. New York city. Shoe machinery, D. C. Knowiton, Boston,
Spectacles. R. A. Carter, New York city.
[OFFICIAL.]

INDEX OF INVENTIONS

or which

Letters Patent of the United States April 12, 1881 ,
AND EACH BEARING THAT DATE [Those marked (r) are reissued patents.] A printed copy of the specification and drawing of any patent in the annexed list, also of any patent issued since 1566 , will be furnished from this office for one dollar. In ordering please state the number and date of the patent desired and remit to Munn \& Co., 37 Park Row New York city. We also furnish copies of pase fications not being printed, must be copied by hand.

Abdominal supporter, S. A. Drewry

 Acid, preparation of hydrochloric. E. Solvay.......iir, apparatus for using compressed, C E. Bu. Amalgamator, J. Wilkins.
Annunclator for telegraph lines, G. Rein
Auger, earth. J. F. Doud.................. Awl and awl plate, pricking, C. H. Inman.....
Bag, T. H. Mayhew.....................
Baking pan Baking pan, A. S. Jackson..
Baling press, W. A. Wright.
Ben Bat for rackets. lawn tennis, etc., II. Richardson. Bed lounge, Wilkes \& Hyer Bedstead rastening, A. Roggy.........................
Bedstead, invalid. . A. Kittel.........2014,
Beer barrels, air pressure apparatus for, A. Storck Bell and alarm, combined door, M. Truby Bolt making die, Pond \& Frost Book stand, B. V. Buffington Books, binding. H. Brehmer
 Boots and shoes, manufacture of, A. Altmayer. Bottle holder, M. B. Hood.
Bottle wrapper, J. Shellenberger
Bottles or glass, transferring and stamping de
signs, etc., upon, B. D. Baldwin. Bracelet. Vester \& Becker...
Brick, kiln
 Bristles, method of and machin A. S. Miles.......
Brush, J. M. Dennts

Burglar alarm, H. Holeroft.
Butter, preserving J. Hare
Butter, preserving, J. Harger...
Button, sleeve or cuff, C. A. Fost
Button, sleeve or cuff, C. A. Foster...
Calendars, manufacturing, J. Cussons
Camera plate holder, M. Flammang
Candy package, A. E. Isham....... .. 239,943
i. 240,196
240,084

Cans, apparatus for filling fruit and vegetable.
Car brake, O. B. Bussey.
Car brake, J. F. Mallinckrodt.
Car coupling, S. T. \& S. D. Aute.e.
Car coupling, Gilbert \& Prather
Car coupling,
Car coupling, J. Martz...
Car coupling, J. . Smith
Car coupling, J. . . Smith..........
Car platform, reight, T. Trimble..
Car wheel, w. H. Smith
Carding machines, burr conveyer for, I. Newell.
Carpet linings, machine for making, C. K. Stins. Carpet stretcher, H. Z. Coles
Carpet sweeper, M. R. Bissell................
Carriage curtain fastening, J. G. English.
Carriage seat. J. M. Perkins.
Carriage top staradard, C. C.
ns.... ...
c. Egerton..

Baird (r)............
Carrousel, A. Wellard.
Cartridge closing machine, c. Buckley
Casting machine, type, Pavyer \& White
Chain, E. L. Howe....................
Chain, ornamental, E. F. No
Cigar pipe, H. A. Hutson...
Circuit closer, T. N. Vail.
Clipping machine, animal, E. W. Noyes.
Clock, alarm, W. K. Chase......................
Clock, alarm, W. K. Chase
Clock movement. A. E. Hotchkiss (r).
Clock striking mechanism, S. F. Estel
Clutch, friction, T. F. Carver....
Coaches, step for passenger, S. S. . Tuc
Coin holding trinket, \mathbf{c}. Gullberg....
Collar pad, J. R. Jones.
Cooling and refrigerating apparatus, H....................
Cooling board, B. F. Gleason
Corn popper, A. B. Wood....
Corset, M. P. Bray.

Corsets, former for shaping, w
Cotton chopper, M. . Rudasill
Crane, water, Morris \& Cook

Crupper, Poe \& Fugate...
Cultivator, D. O. Everest
Cultivator, J. L. Shaw...........
Cultivator tooth. J. J. McClen
Cupola furnace, G. Ibriigger......................... 240,135

Dentist's chair, E. T. Starr....
Ditching machine. F. W. Hales
Electric call, Currier \& Rice..
Electric conductor, J. Reese..
Elevator safety device
End gate, wagon, S. Whitehall
Envelope, C. Künig, Jr.
Excavator, J. C. Dillon...
Excavator, J. C. Dillon...........
Fan attachment, W. A. Ros.,
Feed bag nose C.
Feed bag, nose. C. J. Gustaveson......................... 240,122
Feed basket, o. Nowell
Feed basket, o. Nowell.......... 240.169
Feed water heater, A. J. Stevens.............. 240,99
Fence wire spike, T. J. Hovell-Thurlow-Cummin

Filters, apparatus for recarbonizing charcoal in.
R. S. Jennings.
Filters, cleansing, R. s. Je........................ 23.962
239............
Filters, cleansing, R. S. Jennings........................... 239.964
Fire alarm repeater, G. . Ballou............ 20.044
Firearm, breech-loading. D. Kirkwood............ 24014
Fire alarm repeater, G. F. Ballou 240.074
Frearm, breech-loading. D. KIrkwood........... 240,147
Frie escape. Moore \& Brown 240,16.
Fire escape ladder, H. C. Bender. 239,921

Gate, Baker \& Jackson...............................
Gear wheels, cutter for forming the teeth of, w.
Heckert................................. 240,129
Miller............... $240,0,2$
Grain, cleaning and separating, s. Truax 239,99
Grain drills, grass seed attachment to, J. P. Fulg-
 9.651
240.975
240035

Grate and fireplace, E. D. Merrick....
Stevens, ... 240,06
240.

Hats, brace for packing, R. F. Hayes,
Heel trimming machine, o. W. Hall..
Holdack, A. F. Limbright
Hopple, C. J. Gustavesen
Hopple, C. J. Gustaveson...
Hub, wheel, J. R. Anderson.
Hydrocarbon burners, automatic safety reservoir
for, M. A. Shepard. Ice crusher, N. Richardson.
Ink, indelible, A. N. Morse................................
Inks, base for safety lithoraphi, J. Hendrichs..
Injector, steam engine, E. Davies.
Injector, steam engine, E. Davies....
Insulating telegraph wires or cables, process of
and apparatus for, A. K. Eaton..................
Interlocking switch and signal apparatus, H.
Tliden..
Jeweler's braded
Kneader, dough, M. E. Ewell....
Knitting machine burr, S. Cond
Knitting machine burr, s. Condé
Lacing hooks for boots, shoes, etc., M. Bray....
Lamp burners, extinguisher for tubular, C. H.

Lathe, spinning, I. F. Kerns et al.........................

Leather stretching machie, W. Coupe.....
Locomotive exhaust nozzle, II. K. Austin.. Locom, R. Colinn.....
Loom. G. Crompton
Loom, G. Crompton...................
Low water indicator, W. L. Parker.........
Lounge, folding, Fischer \& Nonnenmacher Lounge, folding, Risch.
Lubricator, I. T. Hardy.
Metallurgic and
Metalurgic and other furnaces, c. Pernot..........................
Metals from ores, separating, E. Crocke
Middlings purifer, Dorsey \& Mowrer.
Monument, D. Schuyler........................240,04,
Mowers, cutting apparatus for lawn and other, E.
Musical instrument, mechanical, R. W. Matthe
Nails, machine for making string, L. Goddu.... Nut wrench, reducing socket ratchet, J. A. Mi.
Oil cup, J. L. Winslow........................ Oil cup, J. L. Wins.
Oiler, J. M. Shew..
Oyster package. O. P. Johnson..............
Paint burner, Easterbrook \& Schnitzler.
Paper box and partition, G. L. Jaeger... Paper perforating machine, k. T. Smith (r)......
Paper pulp for floors, brake shoes, jourrans, etc.,
plastic composition fiom, W. M. Graze... Parer and slicer, apple, W. Robb............. Parer and ratchet mechanism. A......................
Prewer.....
Petroleum, deodorizing and refining, M. Connelly l'etroleum products and process of obtaining and deodorizing the same, M. Connelly. Photographic camera. T. H. Blair............
Photographic printing frame, A. H. Atwood Photographic printing frame, A. H
Piano frame, G. E. Freudentheil... Picture name, G. E. Freuden
Pillow block, A. S. Sinnamamotte
Planing machines, feed motion for metal, $\mathbf{~ M}$.... 240 Matthews
Planter, combined corn and cotton, H. H. Carter (r) ... 9,648

 Post office box lock, L. Yale, Jr. (r)..... Pressure regulator and filter, J. Gruber..........
Pressure regulator for automatic brakes. fluid, 240,060
240,018 G. Westinghouse, Jr........................... cles from, w. L. Chase Pump, P. E. Jay.........
Pump, Millard \& Tainter.
 Pump, force, G. R. Hunt...
Pump, windmill, G. м. Bear
Pyrotechnic signal and gun wad, combined, G.J.
Carney ...
Rails, apparatus for bending and straightening
hot, H. C. Kriete
hot, H. C. Kriete............................ 239
Railways, hydraulic cushion buffer for, T. Shaw..

Railways, interlocking switch and signal device
for, J. Marston, 3d.........................
 Rein attachment, c. C. Miller Rocking chair, A. C. Brittan (r Rocking chair, W. Seng..
Rotary engine, Hause \& Rotary engine, Hause \& Granger
Rowing gear, F. D. Smith Saddle clips, die for forming, w. Pearce Salve, A. T. La wrence
Satchel. etc., strap, P. W. Lambert Saw, C. W. Hubbard (r)...........................
Seams of sheet metal cans, rotary machine for closing the, G. H. Perkins..
Seed dropper, Morton Seed dropper, Morton \& Spaulding (r)
Seed linter, cotton, O'Brien \& O'Keet Seeding machine, J. J. Esler (r)............... De
Sewer gas in buidings, disposig of, W. M. De
Sewing cordage, machine for, T. J. Mayall.. Sewing cordage, machine for, T. J. Mayall.
Sewing machine, I. P. Hicks (r).......... Sewing machine, E. T. Thomas
Sewing mater Sewing machine, c. H. Thurston.....
Sewing machine, boot and shoe, M. V. B. Ethridge binson .. Shade roller. spring, w..... L.
Shafting for nulleys and whe Westgate.
Shaafts, stop pearing for vertical , C. H. Thurst Shawl strap and valise, Crofford $\&$ Van D, ke.. Sheet metal folding machine, Slaughter \& Riliey.
Sheet metal trimming and shearing apparatus, H. Perkins.

Shelf for preserving bodies atter death, suspenshingy, P. Jarrait..... Shirt, J. Herzog
Shot, etc., receptacle for, C. K. Hall Shovel or scoop, A. Berney...................
Sidewalks, roofs, etc., phate for, J. Jacobs Signal light, floating, R. Pintsch (r)..............664, Skate, J. A. Whelpley

Skins, machine for clipping seal and other, G.

 Smokestack saddle, A. Berney Soldering apparatus, can, U. A. WoodbuSole channeling machine, J. F. Ames.... Spectacles, clip for frameless, B A. Carter Speed recorder and indicator, M. B. Edson Spoke shave, L. Bauer..

Estes. Spring pla

${ }^{\text {spur, C. J. Gustaveson }}$
Friedrich...................... Hoffmeister Steamboat chimneys,
lowering, N. Joseph
simonds (r).
Sting (f................ Store counter seat, A. E. Francis.
Stove. J. F. Wolven,
Stoves and furniture Jones......... Stoves, extension magazine for coal, D. Van Straw burning furnace, W. J. F. Liddell............
Streams, apparatus for protecting the banks of Sugar evaporator, D. \& C. W. Smouse Suspenders, C. M. Römpler
Swing, balance, F. Medart. Syringe, J. Burbridge et al. Telegraph wire. compound, A. K. Eaton T'elephone signal, T. A. Watson Telephone signal apparatus, G. L. Ander Tellephone, transmitting, s. Russell Telephone, voltaic transmitting Thermometer, W. A. Wales Thrashing machine, I. Sherck.
Thrashing machine sieve, M. F. Lemonnier
Tongs, pipe, D. Worden
Tool rest, E. Elliott

Trace clip and hook, Haines \& Stratton Flanders.................. Truck, warehouse. D. M. Cole
Trunk lock, G. B. Cowles Tub, Johnson \& How. ing, P. Dillon
Universal joint coupling. M. Harve Valve, safety, F. B. Scovill....
Vapor burner, A. H. Watkins Vapor burner, A. H. Watkins
Vehicle wheel, J. B. Neff..... Wagon brake, D. E. McKee Wagon brake Iever. \mathbf{W}. O. Albert
Wash bench, J. Benedict Wash bench, J. Benedict. Washing machine. G. Jackson. Washing machine. G. Jackson
Washing waste. cloths, etc. Johnston.
Watch regulator, C. Teske
Water wheel, I. F
Wells, boring and drilling, J. P. Wells, heating oil. P. H. Murray
Wetrimmer, W. J. Martland.. Whiffetree. Leininger \& Cornelius Windlass, C.E. Osenbur
Window guard, G. Neu.
"ire rolling machine.
Wood polishing machine, J. L. Perr

DESIGNS.
 Type, font of printing, C. E. Hejer

 CuRIS RUBBER MEBELS.
 This Wheel is unrivaled in
the world for durability, sim-
plicity, and chin plicity, and cheapness, and is
being largely inquired for and being largely inquired for and
introduced in both this and foreign countries on account o its immense saving of the wea and tear of floors. Adapted for warehouss and
Platform Trucks, Scales, Boxes Platform Trucks, scales, Boxes,
Baskets, Tables, Heavy Castors,
and for all purposes for which Wheels are used.
Send for Circular and Price

GEO. P. CLARK, Windsor Locks, Conn.

 PATING

\qquad

 Rupture

Wesley Phillip's Case
 Its Relief and Cure as Certain as Day

DR. J.A. SHERMAN-Dear Sir: I am happyto inform
you that I am entirelc cured of my large scrotal rupture.
 Since the reduction of Dr. Sherman's, terms, thousands
are crowding upon him for treatment, gladiv throwing
warthein
 etc. We also send, free of charge, a Synopsis of Foreign Patent Laws, showing the cost and method of securing
patents in all the principal countries of the world patents in all the principal countries of the world.
MUNN \& CO., Solicitors of Patent 37 Park Row, New York. BRANCH OFFICE.-Corner of F and 7th Streets,
\qquad PATENT QUICK SHIA PARS E. GOULD \& EBERHARDT

Founded by Matheu Carey, 1785
 Born 1760. Died 1839

 BAIRD'S BDOMS

FOR PRACTICAL MEN.

Ceo. W. Read \& Co, MAHOGANY,
Cabinet WVoods. CUT AND PRESS DRIED

THINLUMBER,

CIGAR BOXES,
Panel Stock. Fto., Fic.
186 to 200 Lewis St., New York. The Phosphor-Brouze Smelting Co, Limited.
 New Offices and - Salesroom,

512 Arch Street PHILADELPHIA

PHOSPHOR-BRONZE

Wire, Rods, Sheets, Bolts, etc.

OWNERS OF THE U. S. PHOSPHORSole Mannfacturers of Phosphor-Bronze in the U.S THE BAKER BLOWSR. The best in the World Po Alsofor melting Iron in Also for melting Iron in Cu
polas for Stove Foundries, etc. WILBRAFAM BROS, SEND FOR OUR CATALOGUE.

THE CHMPMON IMPORTED BREECH-LOADNG SHOT GUN, TENGTH AIT.4NS. NoI. PRICE ${ }_{4}^{\$}$
 00 0

A $\$ 20$ BREECH-LOADING GUN FOR $\$ 7,00$.

SURFA CE FILE HOLDERS. BELT FRICTION CLUTCH

 $\$ 66 \begin{aligned} & \text { n. week in your own town Terms and } 85 \text { outfil } \\ & \text { free. Address H. HALLEFT } \& \\ & \text { Co., Tortland, Me. }\end{aligned}$

MACHINERY

 Home st., cincinnati, Ohio BOOKWALTER ENGINE. Compact, Substantial, Econom-
1cal, and easily managed ; guar
 eof Tieme

Liberty st., New york.

"BLAKE'S CHALLENGE" ROCK BREAKER.

Pond's Tools, Ene ine Lathes, Planers, Drills, de. DAVID W. POND, Worcester, Mass.

 ger, no extra insurances THE NEW OTTO SILENTT GAS ENGINE.

 MusTcur And whistres.
 En WHesRs a

The WESTINGHOUSE THRASHING MACHINES,
Rincines, AND HORSE POWERS.

,
Man. HOL LAND \& CO. Rurlington, V1.

 NO FAILURE IN SIXTEEN YEARS HEALD \&MORRIS, CENTRIFUGAL 00 T0 35.000 GALLS. PER MINUTE GAPAGITY HEAld\& MORRISBaldWinsville N.S.

SWEEPSTAKES, WITH THE ELLIS

Roots' New Iron Blower.
 IRON REVOLVERS, PERFECTLY BALANCED IS SIMPLER, AND HAS FEWER PARTS THAN ANY OTHER BLOWER.
P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.
 WM. cooke, Selling Agt., 6 cortlandt street, JAS. BEGGS \& CO., Selling Agts., 8 Dey Street,
CGEND FOR PRICED CATALOGUE,

WITHERBY, RUGG \& RICHARDSON, Manufacturers

STEL STAMES

50 Al Gold, Chromo and Lit' Cards (No , allke)
Horizontal Steam Engines,
 For Economy, Durabilit
Superior Design, Complete in Every Respect, ADDRESS
LAMBERTVILLE IRON WORKS,

The attention of Architects. Engineers, and Builders

 thereby saving insurance and avoiding ail risk of inter-
runtion to businessin oconsquence or fre.
taile information furnishoed to Architects, Engineers,
and Builders, on application.

New York Ice Machine Company, 21 Courtland St., New York, Roonis 54, 55. LOW PRESSURE BINARY ABSORPTION SYSTEM.

Machines Making

ICE AND COLD AIR.

SHAFTS POULEEYSHANEESS

THE J. L. MOTT IRON WORKS,

PAYNE'S AUTOMATIC ENGINES.

TIDY SPOOL CASE.

PATENTS SOLD

Partiners
Secured.

BOYLE ICE MACHINE CO., Ice Machines
Refrigerating Apparatus.

provinen in . Hartis

 HA RMIS-CORLLISN' ENGUINE

ERICSSON'S

 New Calaric Panning Enginedwblungs and coin contry seats.
 DELAMMATER IRON WORZS

 PICRE ATETEOO PER TOV.

ROCK DRILLS, COMPRESSORS, FUSE, BATTERI
POWDER.

H.W.JOHIS
 Liguld paints, roofina,

FORSTERS CRUSHEE AND CRUSHER RND PUUEERIZER
 Boiler Feeder

Simple, reliable, and Effective 40,000 IN ACTUAL USE. NATHAN \& DREYFUS, Sole Manufacturers, NEW YORK. Send for Descriptive Catalogue

Machinists' Tools.
 ROOFINC.

 Steam Fitters' \& Plumbers' Supplies.

ITHE NEW PULSOMETER. Long Island Bliewery, 81 to 91 Third Ave.. Brooklyn, N. Y., March 8, 1881.

 ROBERT ADAMS, Derby Cotton Mills, Birmingham, Conn. writeremenastand 83 John Street, New York.
 The Bicycle has proved itself to be the number in daily use is rapidiy in-
creasing. Professional and business
men, seekers after halt or pleasure

boller coverings.
Patent "AAR SPACE"' Method ASBESTOS MATERIALS.

1CATALOGUED. THE FOLLOWING MANUFACTURERS ARE PRO
MINENT IN THEIR RESEECTIVE LINES; IN SHORT, ARE HEADQUARTERS:
NIRE EOE
 HOISTING ENGINES. COPELAND \& BACON VALVES AND FIRE HYDRANTS.
 ROCK DRIILS \& AIR COMPRESSORSS.
 Lehigh Valley Entin wimic. Establid EACLE ANVILS. 1843.
 Double Screw, Parallel. Leg Vises.

 The Grateost Fock Bralker on Earth

STEARNS SAW MILLS.

 STEIRNS MANUFACTURING COMPANY, Erie, Pa

KORTIMG'S UNVERSAL INEETORS
 HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY
 J. B. PIERCE. See'y.

