

A WEEKLY JOURNAL OF PRACTICAL INFORMATION. ART. SCIENCE, MECHANICS. CHEMISTRY AND MANUFACTURES.
Vol. $\underset{\text { [NEW }}{\text { NELIV.-NG. }}$ (19.]
NEW YORK, MAY 7, 1881.

THE CHICAGO WATERWORKS.
The city of Chicago is justly noted for its business activ
 rall its bold enterprises, its live way of doing things gene- ble near source of supply, the engineers encountered excep rally; and the history of the city water supply system, from tional difficulties in planning and executing the work. its comparatively small beginning to its latest development, Finding the first means of water supply inadequate, imis characteristic of the progressive spirit that pervades the provements were immediately made, and these in time provgreat Northwest. Lying, as the city does, on a flat prairie, ing insufficient, furtherimprovements were instituted, involv-
ing a tunnel extending two miles into Lake Michigan. An accident having occurred which cut off the supply of water for a time, rendering a large area liable to the dangers of an uncombated conflagration, steps were taken to provide water supply of such character and extent as to render the possibility of even a temporary interruption very [Continued on page 290.]

NORTH SIDE WATERWORKS, CHICAGO.

sixuntific ©mmeram.

HSTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

PUBLISHED WEEKLY AT
 NO. B'7 PARK ROW, NEW YORK.

O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN

 One copy. one year postage included.....ne copy, six months, postage included.
Clubs.-One extracopy of The Scientific Am ERICAN will be supplied gratis for every cuub of five subscribers at $\$ 3.20$ each : additional copies at Remit by postal order

MUNN \& CO., 37 Park Row, New York.
The Scientific American Supplement
Is a distinct paper from the ScIENTIFIC AMERICAN. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size
with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEM ENT, $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by ll news dealers throughout the country.
cill be sent for one year postage free, on receipt of seven donars. Both papers to one address or different addresses as desired.
The safest way to remit is by draft postal order, or re The safest way to remit is by draft postal order, or registered letter.

Scientific American Export Edition.
The Scientific Amlrican Export Edition is a large and splendid periodical, issued onee a month. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing : (1.) Most of the plates and pagese of the four preceding weekly issues of the Sccevictiric
AMvRICAN, with its splendid engravings and valuable information: (2. AMVRICAN, with its splendid engravings and valuable information: (2.
Commercial, trade, and manufacturing announcements of leading houses. Commercial, trade, and manufacturing announcements of leadne pro of the o secure foreign trade may have large, and handsomely displayed an nouncements published in this edition at a very moderate cost. The SCIENTIFIC AMEleican Export Edition has a large guaranteed circu-
ation in all commercial places throughout the world. Address MUNN \& Co., 37 'ark Row, New York.

NEW YORK, SATURDAY, MAY 7, 1881.

Contents.

(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF
the scientific american supplement
INO. 279,
For the Week ending May 7, 1881 .
Price 10 cents. For sale by all newsdealers.

ENGINEERING AND MECHANICS.-A Simple Single Acting Steam Engine. ing five dollars.
Goubet's Sleeve Coupling. 4 figures. -Longitudinal section, plan,
 Compressing Air. By Join Stcrgeov. Tigures, with table of ure, etc., of compressed air and permanent gases Seamless Tubing. 88 figures.- Cross sections of s
Smith's Two Ton Anchor. 2 figures............
Mechanical Refrigeration. By J. K. KiLboURN
I. PHYSICS AND CHEMISTRY.-Physics without Apparatus. 6 fig tng air currents.- Napkin ring raised by centrifugal force.-Center ing air currents.-Napkin ring raised by centrifngal force.-Center
of gravity.-Concave and convex mirrors.- Phenomena of Colored $\underset{\text { Elings.... }}{\text { Eleme }}$. The Chemistry of Building Materials Unycerine Barometers.. Gnycerine Barometers.........
Simple Holtz Electric Machine, and some Experiments in static
Electricity. By GEO. M. HOPKINs. 22 Lllustrations. representing Electricity. By Geo. M. Hopkins. 32 Ulustrations. representing
the Machine and a variety of simple experiments. (Continued from No. 278)...
iI. ethnology, natural history, etc.-The Past in the Present... Jist and Gould, F.R.S. Life and labors of a remarkable ornitholo. Behring Strait. From Dall's Coast Survey Report, with Chart of Behring Strait
Hiddenite
 The Banyan Tree \qquad among the ruins of a convent at Bassien, India. Dwarf and Monstrous Trees in China a
Japanese trees dwarfed Japanese trees dwarfed by culture...........
Cultivation of Caoutchouc Trees in India.
Plant Labels.
Plant Labels.
The Cultivation of Celery.
Vitality of Carbuncular

" PATENT PERFIDY.

Under this heading the Prairie Farmer devotes a long column to a denunciation of the patent system, exhibiting in its worst phase the spirit of anreason which just now pervades so large a portion of the agricultural world with respect to patent rights.
The grounds for complaint against the patent system appear to be in substance two: First, under its fostering influence inventors are continually introducing new machines, and improvements on old ones, which farmers cannot afford to do without; Second, the manufacturers of the improved machines actually charge money for them, and often get rich by making and selling them in large numbers. Incidentally the manufacturers are given to the wholesale purchase of patent rights from inventors, and erecting upon them greater " monopolies," to " the vexation of the public." In this way the beneficent purpose of the Patent Office, they tell us, has been and is constantly perverted, and the institution turned into an "engine of fraud and oppression.'
This perversion of patent rights, our contemporary goes on to say, "presses harder on the farmers than upon any other class of the community. The necessities of existence compel the farmer to keep abreast of the times in all the mechanical improvements in the implements of his business. The penalty of not keeping up is worse than falling behind: it is that of going under. If he does not use the average quality of labor-saving machinery he cannot compete with those who do, and if he cannot compete he cannot live in a country where labor and the cost of living are high. Even his manual labor, separated from machinery, is comparatively valueless, so that, if he cannot use improved im. plements of his own, he must perforce hire out to use those of his more fortunate or more enterprising neighbors."
It is terrible to contemplate the pressure thus brought to bear upon farmers by this fertility of our inventors, and regards thamazing to see how tenderly the Prairstem had become an engine for the oppression of the farmers only, the perversion of its function evidently would not be so grievous or unbearable; but it bears even harder upon the inventor, and for his sake its immediate abolition is demanded.
In the words of the Farmer, "the patent laws were designed to reward the original inventor of a valuable contrivance; but it is a rare, not to say phenomenal, case in which such intention is carried out. The design is almost invariably stolen by some tricky associate of the inventor, or boldly taken out of his possession by a superior in the establishment in which he works, or wheedled out of him for a song by some speculative capitalist. The sentimental arguments for granting patents may be dismissed summarily. The real inventors never get the benefit of their inventions, and the further pretense of protecting them is a bollow mockery."
Strange that the 20,000 inventors who apply for patents every year, and keep on inventing and taking out patents lifetime, do not discover the extent to which they ar swindled, and strike hands with the Grangers in securing the overthrow of this terrible " engine of fraud and oppression!'
Forgetting syntax and all save the enormity of the crime which the Patent Office commits in giving the deluded inventor his letters patent, the Farmer says: "The government takes the applicant's money, the agents takes all he can beg and borrow, and his return is a document seldom worth the paper its matter is printed on."
To put a stop to this official injustice, what remedy can be more summary and logical than the one the Farmer proposes when it says, " An act of Congress should declare all existing patents forfeited to the people!" and what proposition could more fitly fall under the heading "Patent Perfidy "?
The immediate occasion of this outburst against the patent system is the recent decision of the Supreme Court sustaining the barbed wire fence patents owned by Washburn, Moen \& Company.
"The sweeping character of that decision," says our excited contemporary, " is almost beyond comprehension. The use of barbed wire will be practically unlimited for some years, and the profits of this one firm will distance the tales of the Arabian Nights, the treasures of Monte Christo, or the fortunes of the Bonanza kings. Allowing one firm to bleed hundreds of thousands is all the more doubtful policy from the fact that the firm produces nothing, but simply preys on the work and needs of others, under the protection of government, like the highwaymen and freebooters of the Romantic period.
That the company which own the barbed wire fence patents have a most desirable property is beyond question. That they may make a good deal of money out of their property, if their business is wisely conducted, is altogether probable. But where the bleeding and robbery of hundreds of thousands come in is not so apparent.
The company offer the Western farmers an excellent fencing material, and the farmers will buy it when they cannot do better. If the barbed wire fencing is so much cheaper and more efficient than any other to be had that the prairie farmers cannot do without it, the company are to be congratulated, and the farmers have no obvious reason for complaining. There are a great many species of property
paying therefor the market price-land and cattle and corn, as well as fence material-but the intensity of that desire is no just ground for the legal or illegal seizure of such property; and any arguments which go to justify the confiscation of intellectual property justify with infinitely greater force the abolition of property in land. The champions of the farmers will do well, in this connection, to keep in mind the proverbial advice to those who live in glass use
In any case the objection to the barbed wire patents is largely sentimental and grossly exaggerated. The Western Rural cries out against the "barbed wire fence outrage" as loudly as the Prairie Farmer, and demands as shriekily the overturning of the patent system; yet, at the close of a long editorial on the "barbed wire fence monopoly," as an illustration of this "reckless disregard of justice and the interests of our farmers in the management of the patent shop at Washington," it says:
'Some of our subscribers in Iowa inform us that they intend to resort to the use of plain telegraph wire for fence purposes, setting the posts closer together, and using five wires, which they claim will answer the purpose just as well as barbed wire. It will be found, however-we think -that the additional wire, and the additional posts needed, will bring the cost up to a figure that will not be much under that at which barbed wire ought to be sold for, if indeed it comes much below what it now actually is sold for." This plain statement of fact simply cuts the ground from under the anti-patent complaint. Thanks to the inventions which the barbed wire people legitimately control, they are able to set before the farmers of the West as good a fence as, if not a better fence than, the farmers can otherwise obtain, and in doing this they lessen in no way the freedom of the farmers to invent or construct a better and cheaper ence if they can.
No doubt it would be money in the pockets of the farmers if they could get their fences for nothing, or at prime cost; so it would be apparently to the profit of fence makers and other manufacturers to get their wheat and corn and beef and butter on the same terms. But useful things are not to be had in this world in that way, and fortunately sensible and sober-minded farmers are aware of the fact. The unthinking may be temporarily deluded by the sophistries of those who assume to guide them, but their common sense and sense of justice will dominate in the end.

OZONE AND THE SANITOLOGY OF ODORS

At the meeting of the (Homeopathic) County Medical Society in this city, April 13, Dr. John S. Linsley read a paper on the "Sanitology of Odors," in which some astounding results were attributed to the influence of ozone in the

The
The old theory of the superior healthfulness of an ozonized atmosphere was not only enlarged upon, but it was shown to the doctor's satisfaction that the more or less remarkable careers of such men as Moses and John Adams and Daniel Webster and Horace Greeley and some of our popular poets, might be traced to the energizing property of an ozonic atmosphere. The atmosphere which "energized" Moses, we presume, must be accepted as specially ozonized, only by inference from its inferred effects, which is a somewhat unsatisfactory basis for an argument; but the doctor was able to point to the fact of more recent observation that the celebrated New Englanders he mentioned were all natives of what he called the ozonic region.
A considerable source of the ozone which is supposed to exert so beneficial an effect upon the atmosphere by disinfecting and "vitalizing" it, was attributed to plants whose foliage, fruit, or efflorescence emits fragrant volatile oils or resinous matters which yield ozone by oxidation. Among our native trees worthy of cultivation for the production of atmospheric ozone, the doctor mentioned Oregon maple, magnolia, pine, basswood, locust, and sassafras; and among the beneficent shrubs and plants, the golden currant, spice bush, azalea, wisteria, clematis, thyme, celery, sweet vernal grass, and clover.
The natural inference is that intending parents who wish to be progenitors of great men-national leaders, statesmen, poets, or what not-will do well to set their homes in ozonic regions, and surround them with as large a variety as possible of ozone-making trees and flowering plants.
It would be cruel to needlessly discourage any enterprise in this direction, for the world needs great men badly, and the suggested method of getting them is not an expensive or unpleasant one. Still it is but fair to say that it is not quite so certain, as the doctor appears to think, that there is ever any large ozone in the air, or that its effects would be as intimated.
A great many pretty hypotheses have been based upon supposed evidences of the occurrence of ozone under certain atmospheric conditions, and the supposed oxidizing and other effects due to its presence; but the whole subject has been thrown into confusion by the discovery that the trusted ozone tests are unreliable, and that the oxidizing principle of the atmosphere may be and probably is in large part, if not wholly, bydrogen superoxide. It appears that most of the reactions formerly relied upon for the detection of ozone are also produced by the hydrogen compound whose existence in the air has been demonstrated; and also that the remaining reactions may be due to other compounds known to occur in the air, as carbonate of ammonium and certain sulphides. The odor sometimes observed and ascribed to ozone is not a trustworthy evidence of its presence, since
most observers, according to Schoene, are liable to confound the odors of ozone and hyponitric acid. It is alleged further that ozone is not produced by the electric spark in a mixture of oxygen and nitrogen, but only oxide of nitrogen, and it is probably to the latter substance and not to ozone that we must attribute the odor sometimes observed after lightning discharges and sparks from an electric machine. Ozone, however, would appear to be produced by the silent discharge of electricity; but it has been justly observed that we know too little of this form of electrical action as an atmospheric phenomenon to justify our regarding it as a probable source of supply of ozone.
In view of all these uncertainties touching the occurrence and action of ozone in the air, it may be prudent to wait a while before admitting ozone to be quite so powerful a factor of individual or national genius, health, or social de velopment as Dr. Linsley and others would have us believe

PUBLIC WORKS IN NEW YORK CITY.

The report of the New York Commissioner of Public Works for the last quarter of 1880 contains many facts of more than local interest.
New York now has, south of Harlem River, $3341 / 2$ mile of paved streets, classed as follows: Stone-block pavements, $2291 / 2$ miles; cobble stone, 80 miles; macadam, $241 / 2$ miles concrete, $1 / 2$ mile. There were laid last year 244,807 squar yards of pavement, covering twelve miles of streets. During the past four years $\$ 1,100,000$ have been spent upon new pavements and in restoring old ones, 641,957 square yards of worn out and rotten pavements having been replaced by stone blocis.
An appropriation of $\$ 400,000$ will be devoted this year to the ubstitution of stone-block pavement for the old cobble stones, which are all to be removed as fast as they can be. Mor than nine-tenths of the streets of New York will be paved with stone-blocks when the plan is carried out. All plans or concrete and wooden pavements have been dismissed a unadapted to the city, and the macadam roadbed is used to only a very limited extent.
The sewerage system of the island embraces $3761 / 2$ miles of sewers, with 4,573 receiving basins. Over 5 miles of wers and culverts, with 62 receiving basins, were added las year. In the older and more densely populated parts of th eity the sewers are in anything but a suitable or desirabl condition.
A large amount of work in the way of grading, curbing, guttering, and flagging new streets was done during th year, and a large area of new ground was made available for building.
Over 402 miles of streets are lighted, besides $21 / 2$ miles of piers and 61 acres of parks. The number of public lamps was 23,511 , an increase of 374 . Nearly 14 miles of new ga mains were laid, the entire length of gas mains now exceed ing 874 miles. The cost of the public lamps was a littl hort of half a million dollars. The gas consumed wa $321,583,860$ cubic feet. One mile of Broadway has bee ighted by electric lamps on the Brush system, and man private electric lamps help to illuminate the streets.

THE NATIONAL ACADEMY OF SCIENCES

The annual meeting of the National Academy of Science began in Washington, April 19, the venerable President of the Academy, Professor W. B. Rogers, of Boston, in the chair. The list of papers read included: "The Domain of Physiology," T. Sterry Hunt; "The Compass Plant of the Western Prairie," B. Alvord; "The Solar Constant,"
S. P. Langley; "The Color of the Sun," S. P. Langley S. P. Langley; "The Color of the Sun," S. P. Langley
"On Mountain Observations," S. P Langley; "On the Relation of Soils to Health," R. Pumpelly; "Reduction to Sea Level of Barometric Observations made at Elevated Stations," Professor Abbey; "Electric Light Photometry George F. Barker; "On the Relations between Strain and Impact," and "On the Structure of the Feet of Mammals," E. D. Cope; "On the Progress of Pendulum Work," C. S Peirce; "The Production of Sound by Radiant Energy, A. G. Bell; ' On the Carbon Lamp Fiber in the Thermo Balance," G. F. Barker; "Memoir of Count S. F. d Pourtales," Alexander Agassiz; "On the Utilization of the Sun's Rays in Heating and Ventilating," E. S. Morse; " On the Later Tertiary of the Gulf of Mexico," E. W. Hilgard "An
At the Executive Session of Thursday, Professor A W Wright, of Yale College, and Professor H. A. Rowland, of Johns Hopkins University, were elected members, and the following were elected members of the council; Professo S. F. Baird, Professor Wolcott Gibbs, Cambridge; Professor A. Hall, United States Navy; Professor J. E. Hilgard, Coast Survey; Professor Clarence King, Professor Fairman Rogers Philadelphia. Professor Simon Newcomb was elected Hom Secretary, and Professor J. H. C. Coffin, United States Navy, Treasurer.

THE DATE OF THE GLACLAL ERA IN EASTERN NORTH AMERICA.
Mr. G. F. Wright, in a paper read before the American Association for the Advancement of Science, and published in the February number of the American Journal of Science and Arts, has made an attempt to calculate approximately the date of the glacial era in Eastern North America, by studying the depth of one of the bowl-shaped depressions
which abound in the moraines and kames of New England.

These depressions are of all shapes and sizes, from symme trical "kettle holes" to ponds and lakes of no mean dimen sions. It is evident that they cannot always exist, for the re wearing down at the top and filling up at the bottom. For the same rea
The basin chosen by Mr. Wright for his investigations as one located near Pomp's Pond, in Andover, Mass., with diameter of 380 feet, and having an accumulation of peat 6 feet in diameter at the bottom. It is evident that sinc the first formation of the crater-like depression no materia an have reached the bottom except from three sources: (1) The wash from the sides; (2) the decay of the vegetation rowing within the rim; and (3) the dust brought by the winds. The problem is to determine the time it would re quire these three agencies to fill the bottom of this bowl to a depth of 24 feet, which would be equal to a depth of only feet over its present surface-the present depth (17 feet) being estimated from the angle of declivity. Mr. J. Geikie ollowing the lead of Mr. Croll and others, who look to astronomical data alone, supposes that the so-called glacia period, whose marks we now study in these low latitudes, synchronized wiuh the last period of high eccentricity of the arth's orbit, which closed about 80,000 years ago, and whose maximum influence must have been exerted abou 200,000 or 210,000 years since. But once in 21,000 years the astronomical conditions dependent upon the precession of the equinoxes for a glaciation of the northern latitudes occur, hough owing to the present low eccentricity of the earth' rbit this influence is now at its minimum
The question with the crater-like depression above-men tioned is: Could this have stood with so little change for 0,000 years? or even for 40,000 years, as supposed by Prof Hitchcock? If the close of the great glacial period be so ar back as Mr. Croll and Mr. Geikie estimate, we must be leve that detritus could accumulate, in the situation above described, over a surface of the area of the present peat bog nly at the rate of one inch in 1,000 years; while, if we put the close of this period back 10,000 , the rate of accumula ion would seem as slow as the imagination can well com rehend-one inch in 100 years. These considerations hav ed Mr. Wright to look with increasing distrust upon the stronomical calculations which are made concerning the lacial period, unless the moraines mark the limit reached the last semi-revolution of the earth's equinoxes about 0,000 years ago. He believes it evident that the glacia heir origin.

PHOTOPHONIC AND SPECTROPHONIC DISCOVERIES.

A.

 April 21, Prof. A. Graham Bell read an important pape escribing at great length the recent investigations made by Mr. Tainter and himself in the field so brilliantly opened by them a year ago. After referring to their earlier observation on the production of sound by radiant energy, Prof. Bel said that at his suggestion and during his absence in Europe Mr. Tainter had pursued the investigation of the sonorous ness of matter under the influence of radiant energy, em ploying a vast number of substances inclosed in test tube in a simple empirical search for loud effects. He was thu ed gradually to the discovery that cotton-wool, worsted, ilk, and fibrous materials generally, produced much loude ounds than hard rigid bodies like crystals or diaphragms uch as had hitherto been used.Mr. Tainter next collected silks and worsteds of differen colors, and speedily found that the darkest shades produce the best effects. Black worsted especially gave an extremely oud sound. As white cotton wool had proved itself equal f not superior, to any other white fibrous material before ried, he was anxious to obtain colored specimens for com parison. Not having any at hand, however, he tried th effect of darkening some cotton wool with lampblack. Such marked re-enforcement resulted that he was induced to try lampblack alone. About a teaspoonful of lampblack was laced in a test tube and exposed to an intermittent beam of unlight. The sound produced was much louder than any heard before. Upon smoking a piece of plate glass an holding it in the intermittent beam, with the lampblack surface toward the sun, the sound produced was loud enoug to be heard, with attention, in any part of the room. With the lampblack surface turned from the sun the sound wa much feebler
The experiments were repeated when Prof. Bell returned nd were continued by the two gentlemen together. It was found that when the beam was thrown into a resonator, the interior of which had been smoked over a lamp, very curiou alternations of sound and silence were observed. Th interrupting disk was set rotating at a high rate of speed, and was then allowed to come gradually to rest. An extremely feeble musical tone was at first heard, whic gradually fell in pitch as the rate of interruption grew less. The loudness of the sound produced varied in an interesting manner. Minor re-enforcements were constantly occurring which became more and more marked as the true pitch of he resonator was neared. When at last the frequency of the interruption corresponded to the frequency of the funda mental of the resonator, the sound produced was so loud that it might have been heard by an audience of hundreds of people.
The extremely loud sounds produced from lampblack demonstrated the feasibility of using this substance in an
articulating photophone in place of the electrical receiver formerly employed. In regard to the sensitive materials that can be employed, the experiment indicated that in the case of solids the physical condition and the color are two conditions that markedly influence the intensity of the sonorous effects. The loudest sounds were produced from substances in a loose, porous, spongy condition, and from those that had he darkest or moist absorbent colors. The materials from which the best effects have been produced are cotton-wool, worsted, fibrous materials generally, cork, sponge, platinum, and other metals in spongy condition, and lampblack.
The explanation suggested for the superior loudness of the sounds produced by a dark porous substance, for example, lampblack, was as follows. Said Professor Bell:"I look upon a mass of this substance as a sort of sponge with its pores filled with air instead of water. When a beam of sunlight falls upon this mass, the particles of lamp black are heated, and consequently expand, causing a con traction of the air spaces or pores among them. Unde these circumstances a pulse of air should be expelled, just s we would squeeze out water from a sponge. The forc with which the air is expelled must be greatly increased by the expansion of the air itself, due to contact with the heated particles of lampblack. When the light is cut off the converse process takes place; the lampblack particles cool and contract, thus enlarging the air spaces among them, and the inclosed air also becomes cool. Under these circumstances a partial vacuum should be formed among the particles, and the outside air would then be absorbed, as water is by a sponge when the pressure of the hand is re moved. I imagine that in some such manner as this a wav of condensation is started in the atmosphere each time beam of sunlight falls upon lampblack, and a wave of rarefaction is originated when the light is cut off. We can thus understand how it is that a substance like lampblack produces intense sonorous vibrations in the surrounding air, while at the same time it communicates a very feeble vibra ion to the diaphragm or solid bed upon which it rests.
As intimated above the lampblack proved to be an efficient as well as economical substitute for selenium and ellurium in the electrical receiver of the photophone.
The investigation of the influence of radiant energy upon arious substances, solid, liquid, and gaseous, placed in different parts of the solar spectrum, resulted in the pro duction of a new instrument of physical research which has been called the spectrophone. When different substances were used as receivers it was found that the loudness of the sound varied in point of position upon the spectrum in a re markable manner. With the lampblack receiver a continuous ncrease in the loudness of the sound was observed upon moving the receiver gradually from the violet into the ultr ed. The point of maximum sound lay very far out in the ultra red. Beyond this point the sound began to decrease, and then stopped so suddenly that a very slight motion of the eceiver made all the difference between almost maximum sound and complete silence. With red worsted entirely different results were obtained. The maximum effect was produced in the green at tiat part where the red worsted ap proared to be black. On either side of this point the sound radually died away, becoming inaudible on the one side in the middle of the indigo, and on the other at a short distance outside the edge of the red. With green silk the maximum was found in the red, with the limits of audition in the blue on the one hand and the ulta red on the other. Hard rub ber shavings gave a maximum in yellow. Vapor of sul phuric ether produced no audible effect, until a point far out in the ultra red was reached, when suddenly a musical tone became distinctly audible. Vapor of iodine disclosed its maximum in green. With peroxide of nitrogen distinct sounds were obtained in all parts of the visible spectrum but no sounds were observed in the ultra red
The repetition of these tests in connection with an undis orted spectrum, that is, one produced by a diffraction grat ing, will obviously be necessary before any positive conclu sions can be arrived at touching the exact relations of colo or wave-length to the sonorousness of different substances. In its present form the spectrophone is a modification of the ordinary spectroscope, made by substituting for the eyepiece a sensitive substance placed at the focal point of the nstrument behind an opaque diaphragm containing a slit, he sensitive substance being put in communication with the ar by means of a hearing tube. With reference to th probable utility of the spectrophone, Professor Bell said:

Of course the ear cannot for one moment compete with the eye in the examination of the visible part of the spec rum, but in the invisible part beyond the red, where the eye is useless, the ear is invaluable. In working in this region of the spectrum, lampblack alone may be used in the pectrophonic receiver. Indeed, the sounds produced by his substance in the ultra red are so well marked as to con titute our instrument a most reliable and convenient subst tute for the thermopile. I recognize the fact that he spectrophone must ever remain a mere adjunct to the pectroscope, but I anticipate that it has a wide and inde pendent field of usefulness in the investigation of absorption spectra in the ultra red."

Hot Water Compresses in Tetanus and Trismus. porer has successfully treated cases of tetanus by merely applying to the nape of the neck and along the spine large pieces of flannel dipped in hot water, of a temperature just bearable to the hand ($50-55^{\circ} \mathrm{C}$.)-Allg. med.-cent. Zeit.

THE CHICAGO WATERWORK
 \section*{[Continued from first page.]}

remote if not impossible. The first water works in Chicago were commenced in 1851, when the population of the city was about 35,000 .
It was then thought that the small quantity of water discharged from the river would not affect the quality of the water in the lake at a point $11 / 2$ miles south. The works were put in operation in February, 1854, and consisted of one reservoir, containing about a half million of gallons, and eight and three-quarters miles of iron pipe, beside the pumping engine. The population at this timehad increased to about seventy thousand, and the growth of the city, together with the introduction of sewerage and the establish ment of packing houses, distilleries, etc., increased the quan tity of filth flowing into the lake to such an extent that complaints of the impurity and offensiveness of the water were frequently made, and it was proposed to extend an iron pipe, five feet in diameter, one mile out into the lake, to obtain a supply beyond the effect of the sewage. Various other experiments were discussed, but it was finally decided to extend a tunnel two miles into the lake. The work wa commenced May 26, 1864, and the tunnel with all of its appurtenances was completed in March, 1867. In this tunnel provision was made for extension either lakeward or land ward without interrupting the supply through it, except for a very short time; but it was not supposed that an extension would be required for many years. The breakage of a siphon under Chicago Avenue Bridge, August 18, 1869, deprived the west division of the city of water for about sixty hours greatly endangering a large portion of the city.
This circumstance led the City Council to direct the Board of Public Works to take immediate. action with reference to the wants of the city in this respect.

It was decided to build a new tunnel, seven feet in diameter, parallel with the cld one, extending six milesinto the lake. This great work was commenced July 12, 1872, and finished July 7, 1874. Great difficulty was experienced in sinking both shore and crib shafts, but the work was finally accomplished in the most satisfactory manner. In the construction of the new tunnel, as in the old, provision was made for extending it lakeward should sewage contaminations hereafter make it necessary or desirable.
The crib is a substantial structure of solid masonry, the three lower courses of which are built of granite, on account of its superior frost resisting qualities. The upper courses are of limestone, the arches are of brick, the filling of rubber, and the deck is composed of ordinary concrete, on the top of which is placed a layer of asphalt concrete. The light-house tower is of brick, with an iron stairway. Upon the deck is built a brick house, in which the family of the person in care of the crib resides. No more desolate and isolated place of residence could be imagined than this is in winter. One might as well be on a desert island as far as human companionship is concerned, although there is a telephone line to the shore. But there are many days when the storms blow and the waves beat in their fury, and the broken, floating ice dashes against its sides, that no one goes out from the shore. It is said that some of those who have lived at the crib have found the isolation so intolerable as to almost drive them insane. In the summer, however, boats constantly ply between the shore and the crib, carrying visitors, it being a favorite resort for boating and sailing parties.
Since the completion of the tunnel the immense growth of the city has so increased the sewerage flowing into the lake that it is believed that at times it extends as far as the crib, and contaminates the water. Many plans have been suggested to remedy this, and on all hands it is confessed that the problem is a very grave one. It is probable that in ten years from now, with the present rate of increase, Chicago will have a million of inhabitants, and in that case no tunne extending directly into the lake could insure pure water. The latest suggestion for procuring pure water for the city is that of Chicago's eminent architect, Mr. W. W. Boyington, who proposes that the city shall purchase 100 acres of land in Highlands, some 20 miles north of the city, where the ground is 130 feet higher than the city level. Here should be built an immense reservoir, into which water should be pumped from the lake, and thence conducted by a viaduct to the city The shore end of the tunnel is connected with the new North Side pumping works shown in our engraving, and extends to the West Side works. The building is a model of architectu ral beauty. Its style is castellated, and the tal water tower gives it a very imposing appear ance
The building contains four large pumping engines, two of which are in continual use, while the other two are held in reserve. The general appearance of these magnificent machines is

THE CRIB.

These engines are supplied with steam from five boilers 12 feet in diameter and 20 feet long.
In 1871 Chicago had 271 miles of pipe, now it has 500 miles, and it has over 3,000 fire hydrants. This extensive system of water supply has been perfected at an expense of about $\$ 8,000,000$.

The Value of Authenticity.
The British Government has bought of Lord Suffolk, for $\$ 45,000$, a picture by Leonardo da Vinci. Some twenty years ago the picture was stolen from Lord Suffolk's country seat, being cut from the frame. Afterward it was offered for sale in London. When shown to the President of the Royal Academy he pronounced it a copy of the well known "La Vièrge aux Rochers," and no one would buy it. Some one, remembering the robbery, subsequently took pains to inquire into the matter, and traced the picture to the posses sion of a messenger or door porter at the Foreign Office, Downing street, who produced it, rolled up, from one of the servant's closets there. The picture was taken to Lord Suffolk's, and fitted exactly the cut part, proving incontest ably that it was the stolen chef d'euvre of Leonardo da Vinci. That $£ 9,000$ is not too much for this picture is in ferred from the fact that, at the time when it was restored to its owner, it was remarked that while not authenticated as an original work, £5 could not be got forit, but when it was authenticated it was well worth $£ 10,000$.

The Telephone.

The national gathering of telephone men at Chicago, on the 5th April, emphasizes better than anything else the rapid and prodigious growth of that very recent invention. n At their previous meeting, held at Niagara Falls, September $7-10,1880$, there was represented $\$ 10,000,000$ of stock, which, after an interval of only seven months, now repie ients something like $\$ 17,950,000$ of stock, all being unpurchas able. Indeed, among all the wonders of the age, there is nothing more wonderful than the invention and progress of the telephone, made practicable only five years ago. Prof. Bell claims that the date of the invention of his method of articulate speech was Jan. 15, 1876. It is already found in use in all parts of the world, as popular and useful in Egypt, New Zealand, and China as in America and Europe. This year alone the English post office authorities have given orders for 20,000 telephones, while its rapid spread in this country is almost beyond calculation. It is introduced with equal eagerness for commercial and domestic uses; it is fast driving out the old firealarm telegraphs, while for purely scientific purposes-such as detecting faults in ocean cables without resorting to the old and expensive process of cutting and splicing them-its availability seems beyond calculation.
Much of this is due to the restless cnergy and genius of its inventor and promoters, for the telephone has drawn to its assistance some diameter, stroke 10 feet. The working beams are each $28 /$ of our most profound scientists and brightest business men. feet long and weigh 20 tons. The fly wheel is 26 feet in diameter and weighs 40 tons.
The first engine was erected at these works in 1853. It had a capacity $7,500,000$ gallons in twenty-four hours. The second engine, erected in 1857, had a capacity of $13,000,000$ gallons in twenty-four hours, and the third had a capacity of $18,003,000$ gallons daily. The first and

SECTION OF TUNNEL.

It has, in return, brought them in one short lustrum wider fame and ample fortune; the latter statement being best illus-
trated by an incident which recently occurred in England. At a meeting of the United Telephone Company, last autumn, the discussion developed the remarkable fact that two men who had paid $\$ 3,500$ for their privilege of acting as the company's agents for the sale of telephones had refused $\$ 150,000$ offered by the company to cancel that engagement. The number of exchanges in operation in this country has increased in one year from 138 to 408 , and the number of instruments in use from 60,873 to 132,692 , so that in the United States only one city having a population of over 15,000 is now without a telephone exchange. Other items in the same department show how the introduction of the telephone is being extended abroad as well as at home.
But the uses of the telephone must still be widely extended. Rapid strides are already being made in long-distance telephoning, speech having been recently transmitted from Tours to Brest, a distance of orer 800 miles, with a single Leclanché element, the experiment being witnessed by Prime Minister Jules Ferry and other dignitaries. These experiments must be pushed further, for the application of the telephone to long distances has become a necessity, and its use must nat stop with the shore. It must be applied to ocean cables, and made audible during the noise of military operations, and even above the roar of battle. Connecting the most remote corners of the earth, like the telegraph, it must rise superior to that invention, and bring them virtually within speaking distance.
We have taught ourselves to believe that there is no such word as fail, and with so many men of genius at work perfecting the details of this new agent of intercommunication, with so much capital eager to back their enterprise, and with so much organizing talent and executive ability as is displayed to-day in the telephone business, the great invention of Alexander Graham Bell is
springing forward to success unparalleled in the history of scientific discovery.-The Operator.

improvement in the construction of fences and

 Posts.The engravings illustrate several forms of iron fence and rilings, together with constructive details of the fence fast enings, which have been patented by Mr. J. B. Wickersham, of 505 Cherry street, Philadelphia, Pa., who is manufacturing and has pretty thoroughly introduced the various forms, which have proved highly satisfactory wher ever used.
Figs. 1 and 2 show different forms of railing and fencing. Fig. 5 shows a double fastening for holding the two rods forming the rail of an ornamental iron fence, the fastening being effected by nails, which are broken off and do not show after the fence is finished. The wrought iron bars project through the cast iron ornaments of the railing, as shown in detail in this figure, thereby strengthening the cast iron portions of the iron railing, preventing them from being broken off by mischievous an incline supported by Mr. Wicke on a level, also on $\$ 270,000$ for another general hospital, to be locted in the ost The fatening of the fene rods is effect by ail thre beg has opposite sides of the post, as shown in Fig 4 The rods are grooved longitudinally, so that nails may be driven in a every post through which the rod passes.
Fig. 6 shows the method of fast. ening flat bars in the posts, also fast ening the pickets to the bars. The bars are grooved upon one side to receive the fastening nails
This iron fence is suitable for farms, lawns, and country places, as a substitute for the barbed wire fences; at the same time it is a more visible fence than strands of wire produce, enabling horses and cattle to see it and avoid injury.
Fig. 9 shows in perspective and in section a fastener for securing a pick et to an angle-iron rail by means of an eye, a washer, and a nail.
an eye, a washer, and a nail.
Either wrought or cut nails are

Fig. 2.-IRON FENCE.

The Channel Tunnel
Close to the western entrance in the Abbot's Cliff, near Folkestone, are the Channel Tunnel works, now progressing under Colonel Beaumont, R.E., by which it is hoped ultimately to realize railway communication between France and England-distance 22 miles. The project, both in design of plan and mode of execution, is practical and ingenious. The chalk strata of Eng land and France are geologically continuous, and the dip of the beds is the same, namely, toward the east, on both sides of the English Channel. The lowermost portion, known as the 'gray chalk," is of more clayey nature than the other portions of the chalk formation, and is sufficiently impervious to water to render perforation feasible. The plan proposed is to folow by a descending tunnel the natural dip of the gray chalk towards Dover, until a depth of 200 feet below the sea bed of the Channel is attained. The Channel Tunnel will then be driven horizontally right across from shore to shore. A similarly inclined tunnel on the French side, rising along the direction of the dip of the strata, will make communication again with the upper surface of the land. The gray chalk is thus entered and followed throughout along its natural position-from daylight on the one side, and in its subterranean and submarine depths, to daylight on the other side of the Channel. The works at Abbot's Cliff consist of a short drift-way from the sea front of the "Warren" to the commencement of the trial tunnel, which is circular, 7 feet in diameter, and runs parallel with the existing line of the South-Eastern Railway. It has already attained a length of 300 yards. The chalk is drilled by a circular disk of iron cutters, worked by a compressed air engine by means of a shaft with bevel wheel gearing, the shaft and engine extending for a length of 30 feet. The cutting disk makes two revolutions per minute, and is fed forward a quarter of an inch at each revolution. The total advance of the whole face of the boring is half an inch per minute. The débris cut out by the revolving disk is received arts of fastening the located and treated apart. Possibly one of these buildings in a sort of large iron tray, which is hauled back every now gether as reidily and easily as pieces of hard wood. The room; another may be devoted to contagious diseases, for the water which percolates the chalk is easily kept under by process might properly be termed keying, but the inventor \quad which at present there is absolutely no provision within the a small donkey pump. The promise of success so far seems has appropriately named it "nailing iron to iron." Key- city limits. The plans will be matured and work begun good, but the 7 -foot tunnel has not yet been driven much, if seats are formed in the iron to receive the nails; a hammer within a few months. lanything, below low-water tidal ievel, and we have yet to and nails are all that are required, with the several parts of the work, to form and erect handsome and durable iron railings and fences of either heavy or light patterns.
Fig. 7 shows a post with a semicircular notch for receiving barbed wire or wire cable, and a hole for receiving the fastening wire. In Fig. 8 is shown a post having a square notch for receiving a fence wire rod or cable.
The improved posts, shown in Fig 3, have been adapted for round, flat, or square iron, also for barbed and plain wire, to meet the requirements of cheapness, combined with strength and durability. By the methodillusrated the parts of the fence and posts a quickly and e quickly and strongly fastened together. posed of hour posed of horizontal bars or rods for farm purposes, the joints of the rails at the intersections with the posts are secured by various ways in lapping of the rails and by nailing the parts securely together, at the same time allowing the rails and pickets to grade to any inclination of the ground or to expand and conract under changes of temperature. An mportant feature is the construction and planting of the improved iron post for farm purposes. The object has been to make an iron post which will resist the action of the frost, being so constructed that when planted the parts act in the same capacity as the roots of a tree in sustaining it in an upright position. The brace at the lower part of the post is buried under the ground, and assists in holding. It has been shown that where these posts have been in actual use for several years past they keep their vertical position.
We are informed that these iron posts cost no more than wooden posts. Being of iron they cannot burn in times of fire, or float away in a freshet, and will outlast any post made of wood; besides, there is always an intrinsic value in the old iron:
A large industry has been developed under
 learn whether any powerful jets of water may get in through fissures as the subterranean depth is increased. Trial shafts have been driven vertically down a considerable distance both on the English and French shores, and there have been no signs of extraordinary difficulty from such sources. Nevertheless, the question of a possible fissure or deep crack in the continuity of the gray chalk itself in mid channel, along a line passing between the "Varne" and the "Ridge," can only be actually settled when the Channel Tunnel itself solves it, and ends, once and for ever, all discussions upon the subject.-Building News.

Coal in Venezuela

In a report by Mr. Plumacher, of the United States Consulate, at Maracaibo (VenezueIa), some information is given concerning coal deposits in that country. It is stated that those parts of the country lying between Rio Zulia and Rio Gantatumbo and the Cordilleras, abound in asphalt mines and fountains of petroleum, and generally what is described as a large coal formation. Beyond the Rio Zulia, in the upper part of the department of Colon-that does however not extend to. the foot of the Cordilleras-there are stated to be no coal mines, but Mr. Plumacher states that he has been informed by persons of truth and respectability, that the valleys of Cucuta, and the territories of the State of Tachira, abound in coal mines. Near San Antonio, in the ravine called " La Carbonera," exist some of considerable size, froin which is frequently dug coal for the use of the smiths' forges in that place; and at the foot of the Cordilleras, on the northern side, there are a considerable number of coal mines, asphalt deposits, and also some fountains of petroleum. In the territory of the department Sucre, just opposite Gibraltar, at the foot of the mourtain line, a large quantity of coal and asphalt is found. Mr. Plumacher states that among the samples of coal which he has examined during his
residence in the State of Zulia, he has only met with one true specimen of lignite. This specimen was found near the Cordilleras and in the direction of the Rio Torondoy, and its quality greatly interested those who examined it. It was ultimately sent to Caracas to be thoroughly examined and tested. The northern basis of the Cordilleras is not much known, and Mr. Plumacher reports that he is not aware whether it contains any coal; but between Escuque and Bettijoque, in the town of Columbia, petroleum wells of an inferior quality are abundant. Reporting generally on the coals which have been so far discovered in this district, Mr. Plumacher states that the driest and most compact of all is that of Tule, and after the many trials to which he has submitted it, he is able to place it among the coals of the best quality, serviceable for all those purposes for which the best lignites are advantageously employed. We further note that, however great the riches manifest on the surface of this region may appear to be in the innumerable fountains and deposits of petroleum, bitumen, and asphalt, such riches cannot be compared with those contained in the immense coal deposits from which those substances proceed. This conviction, which is derived from the nature and cir umstances connected with the inexhaustible fountains of petroleum, asphalt, bitumen, and coal already mentioned, supports the opinion that few countries possess the mineral wealth that abounds in the regions around the lake of Maracaibo; and the opinion is expressed that if these coal depo sits, which really form the greatest wealth of the State, have not yet been discovered, it is owing to the fact that by far the greater part of its territory is at present in the wild and desert condition in which it was found at the conquest The government has never interested itself in an exploration of the district, neither have individuals done so, although many may have possessed the means and the knowledge adequate to such an undertaking.

Big Load of Cotton.

On Saturday, April 2, there arrived in New Orleans the Mississippi River steamer Henry Frank, with the larges cargo of colton ever brought into the Crescent City-9,223 bales. Other freight brought this cargo up to an equivalent of over 10,000 bales. The Frank is a stern-wheel steamer of not unusual size, but specially designed for the transporttion of baled cotton. Of this tremendous cargo, only 2,500 bales were stored in her hold, the balance being built up over the entire steamer, so that her appearance was that of a floating fortress. Only her smokestacks, escape pipes, pilot house, and wheel were visible. Here and there port holes were located to admit air to the furnaces, or ingress and egress to and from the cabin. The bales were tightly packed, fourteen tiers high, the joints being broken as in brickwork. A force of twenty men were constantly on the alert with appliances for quenching any fire that might hreak out. The cargo was insured for $\$ 400,000$, and the hreak out. The cargo was insurea for $\$ 400,000$, and the
average weight of each bale was 450 lb . The Henry average weight of each bale was 450 lb . The Henry
Frank's cargo was picked up between Memphis and New Frank's cargo was picked up between Memphis and New
Orleans, and its arrival safely at the latter city evoked great interest. When it is remembered that 4,000 bales of non-compressed and 6,000 bales of compressed cotton is considered a large cargo for an ocean-going steamer, the size of the Frank's load of the non compressed article becomes more apparent. The freight would average $\$ 1.2$ ccount on this trip was over $\$ 20,000$.

A cracked Volcano.

Within the space of ten months Mount Etna had five abundant eruptions of smoke and sand, without any subse quent flow of lava. In one instance, after profound subter ranean rumblings and numerous earthquake shocks, ther appeared on the eastern side of the mountain a great cloud of vapors and ashes, which escaped by a crevice nearly thre miles long. The snows melted suddenly around the summit of the mountain, jets of hot vapor escaped at many places, and the small muddy craters of the western declivity became very active, as is usually the case on the approach of a grea eruption. But to the surprise of all observers, withinthirty six hours afterward the volcano had returned to a state of perfect calm. Such a phenomenon has never before occurred within the memory of man. Vicenzo Tedeschi di Ercole attributes it to the existence of an immense opening, which appeared upon the mountain at the time of the eruption of May 26, 1879. He concludes that a very strong pressure is required for the formation of liva, and that a great tension of gas is indispensable in order to raise the lava to the surface of a mountain. It appears probable, therefore, that there will be no reason to fear any further eruption in the one of Etna as long as the present crevice is open.-Ann de Chim. et de Phys.

Diphtheria.

Dr. Gauthier, of St. Paul, Minn., tells in the Chicage Medi cal Revien of his success in an epidemic of diphtheria by the use of iodine. He has treated 200 cases with but two deaths, while before adopting this method he lost onethird of all his cases. The treatment is as follows: The patient is ordered incture iodine in ten to twelve drop doses every hour, well diluted with water, so long as the fever lasts, subsequently reducing to ten drops every two, and finally every three hours. Local applications are made use of at the same time. These latter should be made by the physician at least twic a day. For internal use the decolorized tincture is used. Bread and starchy articles of diet are used in abundance.

Trial or a Fire Nozzle
Alor or Uniis of the same nattern as that used upon the fire bo nozzle ders, and this exhibition was given to demonstrate its value or street service, whether operated by steam engines, or by a powerful pump in the basement of stores. The trial wa given under the directions of District Engineer William H Cunningham, of the third district, and a detail from Engine No. 25, under Captain George W. Frost. Mr. Morse, the inventor, was present, as well as District Engineer Regan and Chief Green, who expressed himself more than satisfied with the results attained. The nozzle, which was securely fastened to a heavy section of plank, was bolted to the pavement, and the power was furnished by the engine in the basement of the Mechanics' Exchange, on Hawley street. The pressure, each trial, was 160 pourds. The first trial was with a $13 / 8$ inch nozzle, through a single line of hose; the second with a $11 / 2$ inch nozzle and a single line of hose; the third with a 2 inch nozzle and three lines; and the last through a $1 \frac{5}{6}$ nozzle and two lines. The stream in each case was more than expected. Upon the level a tremendous volume of water was thrown for a distance of at least 250 feet, and when played in a vertical direction he water was thrown completely over the five story build ings on Franklin street. The handling of the pipe was conducted by one man, who had not the slightest trouble in directing the torrents of water that came from the nozzle It is the inventor's idea that for street service the nozzle should be mounted on a four-wheeled hose carriage, which could be separated at will, the rear wheels having the noz zle and the front wheels the hose.

Orchid Hunting along the Rio Negro
In a recent letter to the World, written at the little settl ment of Tauapassua, Rio Negro, Brazil, Mr. Ernest Morris corrects the statement made in a previous letter, that the prince of cattleyas, C. ElDorado, is a habitat of high for ests. It is a native of the lowlands only, the error now cor rected having arisen from his mistaking a schomburgkia for the cattleya. Cattleya El Dorado, he says, is found only on the Negro, but C. superba has an immense range, being found not only throughout the whole Rio Negro region, but up the Amazon as far as Teffe and at the mouth of the Japaru There are several varieties of C. El Dorado. The most beauiful has sepals and petals of a clear rose, with lips of a mos beautiful crimson and throat of deep orange. The flower are large and delicately fragrant, and bloom in January or February. Among other orchids collected (and the first that Ihave seen) was a tall growing epidendrum (?) which pro duces its flowers from the top of the stem. Six specimen of this plant were found near Tauapassua, every one grow ng in an ants' nest.
Speaking of his collections, Mr. Morris says: "Besides he orchids I brought with me numerous twigs and branche which were covered with cauchy (a sediment deposited by he water, and very common in low forests), which has poi soned my hands and face. I propose to distribute among the orchid growers at home specimens of this cauchy. It should be found in every hothouse, and it would show the lover of orchids, did he but touch it, what a collector undergoes."

New Method of Packing Fish Eggs for Shipment.
Under the supervision of Professor Baird, U. S. Fish Com missioner, a shipment of 40,000 eggs of the whinnish, or land locked salmon of Maine, was recently made to Germany, by Mr. Fredrick Mather, of this city. Half the eggs wer consigned to the Berlin Fishery Association, and the rest to he Société d'Acclimatation, of Paris. Mr. Mather has re cently adopted a mode of packing for shipment which dif ers materially in detail from that employed last year, in the course of which he shipped 700,000 eggs with a loss of only to 8 per cent. It was the earlier practice to place the ova in shallow trays composed of a wooden frame with a bottom f canton flannel. The trays were placed one upon anther in a vertical position in a compartment directly beneath an ce box, from which water a little above the freezing point and well charged with oxygen constantly percolated. In the new method the trays are put into tin boxes one upon the other until each box is full. Λ well fitting cover is then placed over them, and the boxes, thus nearly hermetically sealed, are packed in ice. There is no percolation of water upon the eggs in this mode of packing. But as the box de ains and condenses all moisture arising from the trays, and the supply of air is sufficient for a number of days, it is be lieved that it will save a larger percentage of the eggs than was possible under the old method, besides occupying som what less space.

Climbing Trees for Fish Bait

In his search for orchids in the forests along the Rio Negro, in Brazil, Mr. Ernest Morris was surprised to see his low rowers run his canoe ashore and proceed to climb a tree covered with bromelias and large tillandsias "Those are not orchids," he said. "No matter, patron," replied the Indian; "we want iscal (bait)." Wondering at thi Mr. Morris watched the boy as, hand over hand, with knife held between his teeth, he passed from limb to limb. Soon large tillandsia, several feet square, fell to the ground ' Where is your bait?" said he. "Look," said the Indian who was cutting the leaves close at the base, where the ex
plorer saw between the leaves a mass of worms resemblin our common ground worm. How they got there puzzled
him. The Indian said they climbed the tree, but this he doubted. At all events, there was bait. What a blessing it would be considered by the American small boy if, instead of digging up flower-beds or turning over old boards, thus losing much valuable time, he could fill his can of bait by climbing a tree? Mr. Morris adds that he has caught fish with the fruit of the tucuma (Astrocaryum tucuma), but this was the first time he ever found actual live bait in the trees.

RECENT DECISIONS RELATING TO PATENTS.
 United States Circuit Court.-District of

 Maryland.EMIGH v s. baLtimore and ohio railroad company ste Vens vs. same. stevens, use of emigh, vs. same.patent railway brake,

Bond and Morris, Judges:

1. The question in controversy is, "What saving did the defendant derive from the use of the Stevens brake for the period covered by that patent above what it would have derived from the like use of the Hodge brake during that period?
2. The difficulties of proving the exact money value of this saving are exceptionally embarrassing.
3. Although this rate may possibly be less than the de endant's actual gain, in the absence of more exact means of computing what that gain was, the court determines upon wenty-five dollars per car per year as the proper rate of profits to be decreed to the complainants in all three of these
4. On these sums the court does not allow interest.

United States Circuit Court.-District of Massachusetts.
 ROot et al. vs. LAMB.-SPIRAL TUBES.

Lowell, J. :

1. Where an invention relating to the method of forming siral tubes was described in terms used in the art of making welded tubes, it not appearing that sheet metal tubes could be made in the manner described: Held, that the invention is thereby limited to the making of spiral welded tubes.
2. In describing his invention a patentee may misus vords, but in seeking his meaning the ordinary signification of the words he uses must have weight.
3. A patentee's invention cannot be given a broad con struction, so as to cover later inventions, when it appear rom the state of the art that there was no opportunity for great original discovery and the claim is properly limited to he specific improvement.

Bill dismissed.

Mexican Pyramids.

On his return from his tour of antiquarian research in Southern Mexico, M. Charnay reported the discovery of a ruined Toltec city in Tabasco, near the Gulf coast, a city which covers a wide area and must have been in its day place of considerable importance. The long forgotten town is surrounded and dotted over with small hills, and the buildrs had utilized these natural elevations by erecting thereo number of temples, pyramids, and palaces, and had con nected their sites by bridges. The largest of the pyramid is 500 feet in height and a second is fully 300 . Nature had had more to do with these monuments than art, as the builders had merely shaped the hillocks into pyramidal form and afterward faced them with stone, and steps were also cut in the sides, paved with a mixture of cement and pebbles. From a careful study of the remains of this ancient city \mathbf{M} Charnay is inclined to believe that it was founded betwee 150-1180, and that it was in a perfect state of preservation t the time that Cortez invaded Mexico. This opinion was strengthened by a conversation with two well-informed Spaniards whom the explorer encountered in San Juan Bautista, who declared that there were to be found in ancien Spanish records statements to the effect that this city wa not destroyed until after the town of Vera Cruz was laid out. M. Charnay is satisfied from indications he observed that there are remains of at least two other Toltec citie further up in the adjacent mountains, but further investi gation is postponed for the present.

The Moquis

In the history of the aboriginal races of this country little is said regarding the Moquis, a branch of the Pueblos, living where possibly they have lived for a thousand years, in a rocky stronghold in a sandy desert of Arizona. This people number about two thousand five hundred, and occupy six villages, with houses built of stone cemented with sand and clay. These villages, says Dr. Loew, of Wheeler's surveying expedition, are built on the tops of four sandstone mesas, which are separated from each other about eight miles. They occupy the entire width of the mesas, and, standing immediately before the houses, one may look vertically down a depth of three hundred feet. In many places the sides of the mesas are terraced, being used as sheep corrals. In appearance the Moquis come rather nearer to the Caucasian than the rest of his race. These Indians are well clad, and the females especially so. Indian corn is the principal food-the sheep are raised for their wool rather than for the table. From the wool a good blanket is made. The seed corn is planted about one and a balf feet from the surface, at which depth sufficient moisture is found to developand sustain the plant The Moquis have neither church nor any other place of worship, and the Spanish Jesults were unable to gain a foothold among them.

Engineers, Club, Philadelphia

At a recent meeting Mr. C. W. Buchholz read an interesting paper, calling attention to the rapid increase, during late years, in the weight of the rolling stock of railroads, especially in the locomotive, in the concentration of enormous loads upon one pair of drivers. He described the effect of this heavy weight, when hurled at the rate of 60 miles per hour, or 88 feet per second, upon a light iron bridge. He urged the great necessity of employing competent engineers to design and build such bridges, and of holding them to a rigid responsibility. He doubted the efficiency of trussed bridges with parallel chords and pin connections for spans under 150 feet long, under the present
condition of large railroads using modern condition of large railroads using modern locomotives and running at a high rate of speed. He suggested solid plate girders and riveted arched trusses as being stiffer and more permanent. In conclusion, he drew especial attention to the great care the modern locomotive imposes upon the engineer in designing the details of all bridges and in determinneer in designing the details of all bridges
ing and proportioning their floor systems.
Notes on the sewerage of Memphis were read by Mr. Wm. Henry Baldwin, giving some personal experiences while engaged in the construction of the work, and also describing some experiments and observations recently made by Major Humphreys, engineer, in charge of the sewers, show ing their present condition.
Some topographical features of Memphis were described, showing that, although situated on a bluff, it does not overlook the river, but its surface descends rapidly to a small stream of water in the interior, separating the business from the suburban and rural parts of the city. To avoid polluting this stream, intercepting sewers were placed on each side. Their location, through private property for much of their length, was described, showing how, by avoiding all angles and using curves of 100 feet or more radius, these mains were reduced, practically, to straight lines.
The Memphis sewers being intended to carry off only household waste, the adjustment of their size was shown to be so proportioned that the nearly uniform supply of water afforded a sufficient midday flow to fill the sewers at least half full every day, thus keeping them constantly flushed. half full every day, thus keeping them constantly flushed.
Hence the necessity for the entire, and not the partial, exclusion of rain water; for its admission, even from the roofs of dwellings, would render this adjustment of size, and hence the daily flushing of the sewers impossible.
The entire system is thus shown to be self-cleaning, except the upper end of the smaller branches where the water furnished by houses is not sufficient to half fill a six inch pipe, and here the flush tank is required to discharge once a diay
water enough for this purpose. The operation of flushing being required only at the dead ends, it will be scen that the being required only at the dead ends, it will be scen that the
tanks are widely distant from each other, that their action is tanks are widely distant from each other, that their action is
entirely independent, and that the failure of any of them to operate would cause only local inconvenience, and have no
possible influence on the rest of the system. possible influence on the rest of the system.
The fact that the pipes are entirely clear has been established by passing through them metallic balls but little smaller than the sewers themselves. The velocity of flow in the mains, as determined by recent gaugings, was shown to be such that any substance introduced into any part of of two or three hours, in fact, long before it would have time of two or three hours, in fact, long before it would have time
to stagnate or become foul; and this, together with the comto stagnate or become foul; and this, together with the com-
plete system of ventilation described, by which a burning piece of paper is drawn into the sewer and not blown out, shows the complete success of the Memphis system of sewer age as a sanitary work.
Mr. Chas. G. Darrach read extracts from the reports of the chemical experts on the present condition of the water supplied to the citizens of Baltimore. This water is supplied from Lake Roland, and when drawn from the taps has such a disagreeable taste and odor as to be useless for domestic purposes. One of the experts found that there was presen a volatile nitrogenous substance unknown to chemistry,
which he believes to have been the cause of the offensive which he believes to have been the cause of the offensive
smell and taste. Whether this organic substance is injurious to health or not he is unable to say, that being a question for physicians. The other expert thought that, as the water was taken from near the bottom of the reservoir (some 25 or 30 feet below the surface), the water needed air. Mr. Darrach advanced the same theory, and in proof stated that the surface water of Tumbling Run Dam in Schuylkill Co., when visited in 1875, was good, while that drawn from the bottom was very offensive to both taste and smell. The water taken from the Fairmount pool during winter, when the ice remains for any unusual length of time, becomes very disagreeable.

Disinfection of Ships.

In devising a system for the thorough disinfection of vessels on board of which cases of smallpox had occurred, the Austrian Government, through its medical experts, resorted to the following method: Sulphur to the extent of twelve grains per cubic meter of the space to be disinfected was first burned in an earthenware vessel or basin, placed in the center of a mass of sand to prevent all risk of fire; every article of clothing, all the linen, etc., were hung across the cabin, the latter being then hermetically closed for three hours, and afterward exposed to the strongest possible
draughts of. air for twelve hours; finally, the walls, floor, draughts of. air for twelve hours; finally, the walls, floor, ceiling, etc., were washed with one kilogramme of lime, or liters of water.

An interesting and suggestive paper by Dr. Bell Pettigrew F.R.S., was lately read at a meeting of the Balloon Societ of Great Britain in the Royal Aquarium. Mr. W. H. Le Fevre, C.E., president of the society, took the chair. Reviewing the principal structural differences of the bodies and limbs by which animals were fitted to move on land, through water, or in air, Dr. Pettigrew pointed out that the analogy which obtained between water and the air as supporting media had strangely and gravely complicated the problem of flight, the idea uppermost in most minds being that a flying creature must float upon the air as a ship floats upon the water. It was this idea that led to the discovery of the balloon, though the balloon could not in any sense at present be regarded as a flying machine. Until endowed with the means of moving from one place to another independently of the wind, as he hoped it would soon be by the ingenuity of a member of the society, a gallant officer, whose plan had not yet been made public, the balloon would remain merely a lifting apparatus. The balloon was inefficient because of its levity; the flying creature was efficient because of its
weight. The manner in which wings produced what weight. The manner in which wings produced what
was practically a solid basis of support in the thin air raised the whole subject of flight.
After describing minutely the structure and action of natu ral wings, he said, with regard to the speed at which they were driven, that the common housefly moved its wings 330 times per second, or 19,800 times per minute, the butterfly managing only 9 movements per second, or 540 per minute. That the wing was driven more slowly in proportion to its length had been proved by experiment, and this fact was opeful for the future of flying machines, as there could be no doubt that comparatively slow movements would suffice for driving the long powerful wings required to elevate and propel flying machines. It was evident from what was seen in nature that flight was to a large extent a question of
weight and power of body and size and speed of wing. It was satisfactory to find that a solution of the difficult and important problem of artificial flight was being attempted by men of the highest scientific attainments, and that aeronau ical societies had of late years been estabTished in France, Austria, and this and other countries. Classifying the various machines by which aerial locomotion had been attempted, he pointed out the causes of failure and the means by which partial success had in some cases been obtained. One of the main difficulties in the way of constructors of machines for aerial transit was the want of a sufficiently powerful and light motor, and in the use of compressed air for this purpose he lectric lectric engine. Aerial navigation might well appear U topian to the mass of mankind. It was not, however, on that ac-
count impossible. It was a question of time, perseverance, count impossible. It was a question of time, perseverance,
and ingenuity, simply a very complex physical problem, and the data for its solution were being slowly but surely accumu lated.

Pasteur's New Disease.

In the Lancet for February 5, we called attention to the remarkable effects which M. Pasteur had obtained by inocu lating rabbits and guinea pigs with the saliva of a child which had died from hydrophobia. The animals, it will be remembered, died thirty-six hours after inoculation, and in their blood was found a bacterial organism, which was quite pecuiiar, which could be cultivated, and then produced, when noculated into other animals, symptomsidentical with those observed in the others. M. Pasteur did not assert that this was the special microbic organism of rabies, but he consid ered that his experiments and the microscopical characters of the organism warranted the assertion that the disease was
not septicæmia, buta malady altogether new to experimental not septicæmia, but a malady altogether new to experimental pathology. In order to ascertain whether a similar affection can be produced by the inoculation of the saliva. of persons made some inoculations with such saliva, but without any results. But since the case of hydrophobia was in a child, M. Pasteur applied to M. Parrot for some saliva from chil dren dying from diseases which are regarded as non-specific, and received some from the bodies of three children who had died the preceding day from broncho-pneumonia. In rabbits inoculated with this saliva there was found precisely
the same organism as had been discovered in those which had the same organism as had been discovered in those which had
been inoculated with the saliva from the case of hydro phobia. He thinks it certain, therefore, that this organism may often be found, and that it is one of those which have heir habitat in the commencement of the alimentary tract Hence, as be points out, it is not in any way connected with rabies, but it is a surprising fact there should exist in the saliva, at least of children, a special organism which is capa ble of causing so rapidly the death of rabbits and dogs, even when inoculated in very small doses. It is a fact of very great importance in the etiology of diseases
ascribed to microscopic organisms.-Lancet.

The Treatment of Tetanus.

Dr. Ria believes that tetanus consists essentially of an exaggerated reflex irritability of the spinal cord, which may be indifferently caused by traumatisms, toxic influences, or so called rheumatic action. Since the motor tracts of the cord respond in a morbidly exaggerated manner to all sensitive impressions, the main object of treatment will have to be to lessen sensory excitation; for, if this be accomplished dition will be made possible. a return to its normal con
strict isolation of the patients. They are to be separated from their friends, and to be kept from all possibility of sensory impressions. Even the physician or attendan should exercise great care in his intercourse with the patient, lest the latter be disturbed.
Four cases have been successfully treated by the author. In addition to complete and prolonged isolation, several drugs were employed. Thus, in the first case, in which tetanus developed after an amputation of the thigh, chloroform was applied externally by the use of the atomizer. Nearly three ounces were used daily. A gentle sleep was also maintained by the exhibition of chloral hydrate and morphine. The cure was complete in two weeks. In the second case, that of a youth twenty years old, the same plan of treatment was adopted. But one-sixtieth of a grain of atropine was given in conjunction with the chloral hydrate. A cure took place in twenty days. In the third and fourth cases the external use of chloroform was not enforced, and the last case was treated by bromide of potassium and isolation. This one recovered after forty days.-Medic.chir. tion. This one recovered
Rundschau, January, 1881.

Strength of Bronzes.

In a paper lately read before the American Society of Civil Engineers, Professor R. H. Thurston describes a new bronze alloy of maximum strength. The properties of this alloy were ascertained by Professor Thurston in the course of his examination in the mechanical laboratory of the Stevens Institute of Technology of a series of 36 alloys of copper, tin, and zinc, in which the proportions of the copper were varied from 10 to 80 per cent; of the tin, from 10 to 80 per cent; and of the zinc, from 10 to 70 per cent. The results of these experiments pointed to an alloy of the proportions of copper, 55 , zinc, 43 , and tin, 2 , as likely to be that possessing maximum strength, and on Professor Thurston making the alloy he found it to possess a good color, to be close grained, and susceptible of high polish. It was also found to have immense strength, considerable hardness, and found to have immense strength, considerable hardness, and
moderate ductility, while it could also be forged if carefully moderate ductility, while it could also be forged if carefully
heated. For purposes demanding toughness as well as heated. For purposes demanding toughness as well as
strength, Professor Thurston found, however, an alloy with css tin to be preferable, and he gives the proportions of copper, 55 , tin, 0.5 , and zinc, 44.5 , as affording the best results. This alloy, he states, has a tensile strength of $68,900 \mathrm{lb}$. per square inch of original area, and $92,136 \mathrm{lb}$. per square inch of fractured area, while it elongated from 47 to 51 per cent (length of test sample not stated), and reduced to 0.69 to 0.71 of its original diameter before fracture. He also tates that the shavings produced by the action of the turn ing tool on this alloy curled closely, and were tough and strong like those of good iron. Professor Thurston also refers to an alloy discovered several years ago by Mr. J. A Tobin, but which appears not to be generally known. This alloy, which consists of copper, $58 \cdot 22$, tin, $2 \cdot 3$, and zinc $39 \cdot 48$, had, when cast, a tensile strength of $66,500 \mathrm{lb}$. per square inch of original section, while when rolled hot its tenacity rose to $79,000 \mathrm{lb}$. per square inch, and when moderately and carefully rolled cold, to $104,000 \mathrm{lb}$. per square inch. It could also be bent double either hot or cold, and was found to make excellent bolts and nuts, while it could be forged at a low red heat.

Fight with a Porpoise.
Mr. R. R. Tanguey, the veteran Rochester sportsman, ecently had a fight with a porpoise. In a letter from St. John's River, Florida, he says:

I will write you of my last struggle with a large porpoise. I was rowing up in what we call the 'witch-tide,' when thi monster came running between me and the bluff. I struck him on the head with my oar. He gave a sudden dart and went ashore like Jersey lightning, and I went almost as quickly after him. Then he rushed for the deep water again, but chanced to open his huge mouth. This was my chance, and I rammed the ore in his mouth and down his throat. Then came a tussle-he pulled and I pried. After a long struggle he quieted down; I ran for the boat and got my largest sword. With it I gave him a gash in the throat which made him wild with pain. After a while I got a chance to make him fast to the boat with a line around hi tail. A man came to my assistance and we pounded him with clubs until he was dead. We waited for the next tide, as it was hard work to tow a dead porpoise. He doesn't float when dead. By hard work we got him ashore and to camp. Then we measured him. He was nine feet ten inches long, two feet three inches in diameter, and would probably have weighed more than six hundred pounds."

Foreign Bodies in the Eye.

Dr. Thos. R. Pooley (Archives Ophthalmology) reports some interesting experiments with the magnetic needle for detecting fore!gn substances in the eye. He concludes: 1. The presence of a steel or foreign body in the eye, when of con siderable size, and situated near the surface, may be de termiried by testing for it with a suspended magnet. 2. The presence and position of such a body may most surely be made out by rendering it a magnet by induction, and then testing for it by a suspended magnet. 3. The probable depth of the inclosed foreign body may be inferred by the intensity of the action of the needle near the surface. 4. Any change from the primary position of the foreign body may be ascertained by carefully noting the changes indicated by the deflection of the needle.

IMPROVED OPTOMETER.

We give an engraving of a novel instrument for measuring the focal lengths of lenses, which is capable of measuring the focus of any lens from three inches to seventy-two inches, while the length of the instrument is only thirteen inches. This is effected by the employment of a convex lens of short focus which shortens the focus of the lens under test. The instrument is in some respects similar to a camera, the object being held in the short detached tube, the lens to be tested being placed between the two tubes; the image of the object is formed on a ground glass carried by the movable tube. There is a scale on the movable tube, and when the image on the ground glass is sharp, the scale indicates the focal length of the lens.
The great utility of this instrument will be understood when it is known that scarcely any spectacle or eye glass has the correct focus marked upon it; and it is often very essential that the exact focus of a lens be known, for example, in matching a glass when its mate is broken, or in supplying spectacles which are but very little different from those already worn.
This instrument is as well adapted to testing concave as convex lenses, and it may be used by any light. It is an ornament to the showcase of a dealer, and will be found very useful by any one dealing in spectacles as well as the regular optician.
This invention was recently patented in this country, and is manufactured by Messrs. Scharpf \& Adam, Smith's Arcade, Rochester, N. Y.

IMPROVEMENT IN ANIMAL SHEARS

The shears shown in the engraving differ from ordinary sheep shears in having the blades separable from the handle. This construction ad mits of readily detaching the blades so that they may be ground separately, sav hat they may be ground separately, savng a great deal of time in grinding and avoid ing rounding the points and corners and breaking the spring, a thing that of ten hap pens with shears of the ordinary construction
The construction of the shears will be understood from the engraving, Fig. 1 showing the article complete, Fig. 2 being a detail view of a portion of the spring and the end of the shear blade.

The handle of the shears is made with a central spring in the usual manner. On the outer and inner ends of the arms of the handle are formed sockets to receive the shanks of the blades. The apertures of the eyes are made square and slightly tapering, and the shanks are made square and are tapered, so that when the shanks have been drawn snugly into the eyes the blades will be held firmly and rigidly. On the ends of the shanks are cut screw threads to fit wing nuts, by which the shanks can be drawn snugly into the eyes and \mid ette, Ind., is $\$ 24,236,135.17$; that of the second, from Toled held securely. The backs of the blades project a little be yond the shanks to form shoulders to rest against the ends of the arms of the bandle, so that the backs of the blades and of the arms of the handles will be in line and will form a smooth surface.
This invention was lately patented by Messrs. C. Benavide and J. P. Arthur, of Laredo, Texas

The Piute Census.

The statistics of the Nevada Indians were collected by Indian enumerators, whose outfit consisted of a pencil and a sheet of paper. A circle on the paper represented a wigwam or a camp. Within each circle the enumerator placed figures to represent the number of persons counted, squaws and children being represented by different signs. Chief Numana the supervisor of the Indian count, made up his report from the paper sheets by taking a number of sticks of variou lengths to denote adults and children of different sizes, notching those representing females, and sending the sticks in bundles to the Census Office.

This method, though rude, has served to furnish an accurate census of the Piutes.

Proposed Lake Erie and Ohio River Ship Canal. A report of surveys made hy Major John M. Wilson, U. S Engineers, describes two possible routes for a ship canal con necting Lake Erie with the Ohio River.
The first is by way of the Erie and Wabash Canal to the navigable waters of the Wabash River, which would then make the connection through to the Ohio. This would necessitate the enlargement of the entire route from Toledo to Lafayette to a width of 70 feet at surface and $521 / 2$ feet at bottom, with double locks 11 ग feet long, 18 feet wide, with a depth of 7 feet on the miter-sill, enabling it to pass boats of 240 tons burden, capable of carrying 8,000 bushels of grain, the amount transported by a train of 20 ordinary freight cars.
The second route is by the Miami and Erie Canal, which joins the Wabash and Erit Canal, $101 / 2$ miles south of Defi ance, thus connecting Toledo and the Lake with the Ohio

NEW OPTOMETER.

River. It is proposed to enlarge the entire canal from the \mid bucket. The old-fashioned devices entailed considerable Ohio River to Junction City, Ohio-where it unites with the labor in raising the filled bucket, but no one doubts that the Wabash and Erie-to the dimensions of the New York and water was sweeter and better than it would have been had Erie Canal: the prism to be 70 feet wide at water surface, it been drawn from a closed well with a pump of any kind. is good in the old open bucket, and having new features which avoid all objections to the wind lass and bucket. In this elevator there ar neither brakes nor springs, and the mechanism is so contrived that no accident can occur from the running back of the empty buckets. There are two buckets, worked by the same windlass, on ascending while the other is descending, thu insuring a perfect balance of the buckets and doubling the capacity of the elevator. Ratchets and pawls are dispensed with and noise avoided yet the bucket is stopped automatically at an given point in its ascent or descent. The me chanism by which this is accomplished is exceed ingly simple, consisting of rubber balls placed in tapering pockets on opposite sides of a wheel on the windlass shaft, and in a lever operated by the tilting bucket so as to displace one or the other of the balls and allow the empty bucket to descend, while the ball, remaining in contact with the wheel, serves as a check on the filled bucket being raised.
This elevator is adapted to a well of any depth since its buckets are perfectly balanced. Th shaft of the windlass is mounted on roller bear angs, reducing the friction to a minimum.
For the sake of convenience an indicator is
double, with a length of 110 feet, width of 18 feet, and a placed on top of the housing and connected with the lever that depth of 7 feet on the miter-sill; all canal structures of solid masonry, the superstructure of highway and railroad bridges of iron.
The estimated cost of the first plan from Toledo to Lafay.

IMPROVED ANIMAL SHEARS

to the Ohio River at Cincinnati, is $\$ 28,557,173.13$

IMPROVEMENT IN WATER ELEVATORS.

Although the devices that have been invented for elevat ing water are almost numberless, it must be admitted that there is nothing so free from objections as the old open

placed on top of the hnusing and connected with the lever that
shifts the rubber balls, and shows which way the handle of the windlass should be turned. The size of the curb is two feet by two feet four inches.
Further information in regard to this useful invention may be obtained by addressing Mr. Samuel I Demarest, agent, Englewood, Bergen county N. J.

Dangers of Athletic Training
Absolute kealth is attained only by the symmetrical development of all parts of th body. The man with muscles of steel and diseased heart cannot be said to be in good health, and diseases of stomach, heart, and nervous system are often-it may even be said usually-produced by that system of devel usually-produced by that system of deve ing match in Pliiladelphia, two plucky lads in ing match in Pliladelphia, two plucky lads in contesting boats fainted as soon as the rac was over. Their condition, which was appa rently good, was actually abnormal, and thei systems gave way because the strain which their muscles met was too great for their vital functions. Recently a similar but more se rious calamity occurred at Sag Harbor. A Brooklyn lad who had taken part in a pedes trian contest, when removed from the track, fell down dead. He had prepared himself for walking and running, and depleted his vital organs to build up his limbs. When the strain came the impo build up his limbs. When the strain came the impo-
verished and most important part gave way. The severe muscular exercise of college athletes has carried off many tine young men by consumption, heart disease, and othe disorders, directly traceable to the absurd overwork required of their bodies. There is a limit of human endurance That limit is reached when the body is impaired in one quar ter to benefit special organs. The severity of the test by which athlete prizes are won seems designed rather to award the laurels to him who is the least healthy because mor nevenly developed, than to the really best man.-Boston Jour. Chem.

MISCELLANEOUS INVENTIONS

With vulcanizers in which the required temperature is obtained by confining the steam, especially those used by dentists, the proper regulation of the temperature is of th utmostimportance, and has heretofore been attended with difficulty. The usual method is to regulate the flow of gas to the steam generator by hand; but such method is unre liable. Mr. William E. Gwyer, of New York city, has pat entedan improved governorfor vulcanizing apparatus worked by the steam pressure, by which the pressure, and conse quently the temperature, is maintained at a nearly uniform point. The invention consists in a gas cock opened by spring and closed by steam pressure, for regulation of the flow of gas.
An improved snow shovel, which is simple, light, and durable, has been patented by Mr. Henry E. Vosburgh, of Auburn, N. Y.
Mr. James H. Egan, of St. Johnsville, N. Y., has patented an improved cone attachment for stoves which is designed as an improvement on the cone attachment for which letter patent No. 229,684 were granted to the same inventor July 6, 1880, and its object is to supply air to the cone without in terfering with the draught through the grate
An impro ed umbrella and sunshade has been patented by Messrs. J. T. Liley and F. S. Liley, of London, England This umbrella or sunshade is provided with means for auto matically expanding or opening it when released from the catch or tip cup which retains it in the closed position.

Mr. Charles R. Gorgas, of Wooster, Ohio, has patented an apparatus that may be readily used by the surgeon without assistance, and in the case of fractures dispenses with bandages. The invention consists in a frame provided with an extension slide that is fitted for operation by a rack and pinion, so that the power required may be readily applied.
An improvement in spoons and forks has been patented by Mr. Norman S. Boardman, of East Haddam, Conn. The invention consists in combining with the bowl of a spoon or tines of a fork a brass wire and glass tip. The wire is soldered to the bowl at one end, and provided at the other with a glass tip cast on.
Mr. Thomas Harding, of Brooklyn, N. Y., has patented an improved reclining chair that may be readily adjusted to form a reclining chair or bed, and also folded closely for transportation.
An improved road grader has been patented by Mr. James F. McGarry, of Caldwell, Ohio. The object of this inven tion is to furnish a road grader so constructed that it can b readily turned and used in narrow places, will throw no weight upon the horses' necks, either when loaded or unloaded, and when dumped can be readily drawn back to the place of loading.
An improved nose piece for eyeglasses has been patented by Mr. Fred Terstegen, of Elizabeth, N. J. The object of the invention is to allow the nose rest to be moved in or out of the same plane with the glasses, and by the pressure of a spring to be confined in any particular position, thus insuring firmness to the nose rests, and avoiding the chance slip ping of the glasses from their position, and thus injuring the wearer
An improved stove board has been patented by Mr. A. I. Griggs, of New York city. The object of this invention is to produce a stove board that will not tarnish, and that may be made ornamental without the labor and expense of varnishing and baking the boards.
An improved steam chest for hot-air drying, patented by Alexander Winward, of Accrington, county of Lancaster, England, consists in a sheet of tubes provided with cross pipes as well as inlet and outlet pipes. These tubes may bc separate for the greater portion of their the greater portion of their ng and con the each ther at either end, the tubes opening at each end into a cross pipe or steam way, in such a manner that the steam may pass through them all; or the outsides of the tubes may be joined to each other by a central web extending the whole of their length.
An improved self-chalk. ing holder for chalk lines which chalks the line perfectly, and does not waste or break the chalk, has been patented by Mr. Chauncey Wing, of Greenfield, Mass. The invention consists in a tubular roller or barrel, upon which the string or line is wound, the barrel being provided with two loose end pieces united by a spindle, upon which a cylindrical piece of chalk is loosely mounted and pressed against and into one end of the end pieces by an adjustable spring in such a manner that theend surface of the piece of chalk is pressed against the string or line, which passes through a recess formed by the end surface of the piece of chalk, and a laterally projecting flange of the corresponding end piece.

Mr. John Nagele, of Clar endon, Ark., has patented an improved vehicle wheel hub designed especially for buggies and light wagons, and also adapted to heavy vehicles. The invention consists of a hub provided with opensided spoke mortises for stargering spokes, of annular caps or flanges fitted over the ends of the hub against the outer faces of the spoke tenons, and of a projecting band or collar, in combination therewith, that encircles the hub between the two sets of spokes and supports them on their inner faces,
ciennes lace made with this machine, also a study of the rounded mesh of Valenciennes from Bruges. The pattern
MANUFACTURE OF REAL LACE BY MACHINERY Considerable attention bas lately been paid in Europe to been organized in Paris with a capital of $2,500,000$ francs to develop M. Malhère's lace loom
This loom is a marvel of mechanism, having from 1,800 to 2,000 spindles, which are put in motion at the same time

Fig. 1.
that 200 to 300 pins are placed or displaced. But the inevi table complication of the members of which it is composed, though a just object of admiration, is a legitimate cause of apprehension as to the regular working of the apparatus In order to work economically the lace machine must move with great rapidity, and without very frequent interruptions; but whether these conditions can be realized is a mat ter that can be proved only by experiment.
ve a plotographic reproduction of a sample of V .

Fig. ©.-MALHERE'S LACE LOOM
is not the work of a regular designer of lace, but was com-
posed spontaneously by M. Malhere, who invented the loom: this explains its lack of elegance.
It is claimed that this loom can produce all kinds of lace, and that competent judges, and even lace-makers, confound the lace which it produces with that made by hand The microscope demonstrates to the incredulous that th weaving is the same as hand-made lace, without the least resemblance to the imitation.
.For the principal facts we are indebted to the report writ ten on this subject by M. Jousselin, engineer. The report begins by explaining how the inventor was led to construct the machine.
M. Malhere, in studying with a magnifying glass the inter twining of the thread of the lace made by hand, ascertained that in all kinds of lace, in the network and in the flowers, the thread is subjected to the same operation. This was the first conception of the possibility of producing these opera tions mechanically. Indeed, if one considers a twist form ing the mesh of the Valenciennes and the knot of the figure constituting the flower, it is ascertained that the thread No. 1 (Fig. 1) crosses successively over thread No. 2, over thread No. 4 (which was crossed over No. 3), and under No. 3, in order to return, passing over and under the threads until it resumes its original direction, forming thus, with the three other threads, a twist of four threads. In Fig. 2, the adja cent threads, 1 and 2 , pass suddenly in a transverse direc tion, twisting with a half revolution, and passing in alterna tion over and under threads $3,4,5,6$
This problem, then, is reduced to making a twist of two contiguous threads from right to left or from left to right, according to the requirements of the design, and mak ing it in such a manner that this twisting will be effected a will from right to left or from left to right in order to reverso the thread below or above.
In consequence of this it is necessary to accomplish me chanically the transposition of the threads in order to put in proper relation those threads which are destined to be worked together, and M Malhere conceived the funda mental idea of making a machine employing rotativ disks, which contain two threads capable of being twisted together by a half revolution or a complete revolution. These disks are tangent and in pairs, capabl of transferring the thread from disk to disk, and are ar ranged in the segment of cylinder, in order that the threads between the disks and their converging point may be as nearly as possible of a uniform length. The lace is produced in the geometrical center of the segmental frame Several bands of lace are produced simultaneously by the superposition of the thread carriers. M. Malhere has also invented a comb with independent teeth which re places the pins of the hand lace worker. The movement of the several independent members of this machine are controlled by the Jacquard arrangement of perforated cards. Such is the succes sion of ideas which led to the invention of the lace loom
The lace from the spindles of the hand lace-worker is not madelike net or imitation lace, by two distinct groups of threads, warp and woof, but by veritable twisting, in the interlacing of which all the threads may concur, follow ing the fancy of the designer
The interlacing threads are collected and fixed in the cen tral part of the machine (cor responding to the pillow of the hand lace-maker by means of pins. This hand method of making lace sug gested to M. Malhere the pe culiar form which he has adopted for the frame of his automatic loom. It consist of two concentric cylinde segments supported at a con venient height upon a cast iron table. As all parts of
the segmental frame are nearly equidistant from the con verging point of the threads, the tension of the thread i uniform, and this arrangement allows each one of the bobbins to circulate in the interior of the cylindrical surface without any displacements of the threads. In the work by hand the lace-maker chooses among the suspended spindles around the drum those that she needs successively; she rolls them between her fingers, either to the right or to the left, in order to twist the threads and interlace them; then she sets the pin which fastens this portion of the mesh, until by another interlacing another mesh is formed, when she withdraws the pins from the portion of the work already finished. Then three kinds of movements are required: A conveying or removal of the selected spindles; rotation of the spindles to the right or to the left; the fixation and displacement of the pins

Fig. 3.-Bruges Valenciennes made by the Lace Loom.-From a Photograph.

From what has been said, it will be seen that each thread must work in a manner absolutely independent, and this independence of the different elements constitutes the great difficulty of the mechanical problem.
If one places himself in the center of the Malhere loom, having in front of him the lower segment, it will be seen that this segment is perforated over all its circumference, and that each one of the holes is filled by a metallic cylinder which manipulates the thread, and is operated and controlled by the Jacquard mechanism. According to the pierc ing of the pasteboard of the Jacquard band, the carriages carrying the bobbins are pushed from the groove of one pin to the groove of another, by little pushers, and may occupy successively all the disks.
In order that the threads leading from the bobbins to the rollers, which occupy the center of the loom, may be inter laced or twisted, the transposition of the bobbins must be ly circular motion.

Fig. 4.-Bruges Valenciennes
An arrangement of rack work and pinions worked by double chain is controlled by another set of perforated cards, giving an intermittent traction to the chains. This latter Jacquard arrangement is capable of imparting to the cylinders a quarter or half revolution as is needed. We have said that the heads of the pins are tangent in a vertical direction and in a horizontal direction. This construction is not only designed to increase the height of the segments and the number of rows of pins, but to allow the transport of the bobbins from a determined horizontal row into the row situated immediately below or above it. When a bobbin is to be transferred from one row to another, the pins in the Jacquard mechanism corresponding to the motion required cause the pin in the segmental frame to turn a quarter of a revolution only, the sljding groove assuming a vertical posi
tion, then the bobbins are moved forward in a vertical direction, and a second quarter revolution of the pin places the bobbin in a horizontal position in such a way as to renew the interlacing of the threads.
The heads of the pins may be compared to the turntable of a railroad. The aim is to remove or add threads, as cars are added or removed in the composition of trains.
The insertion of the retaining pins may be from above or below. The inventor has preferred the latter method, as it furnishes a solid base for the pins and facilitates the removal of the finished fabric. These pins have a lateral and vertical notion.
At the moment that the interlacing of the threads is ffected, the retaining pins placed behind and at a little dis tance from the roller must remain pressed down in order not to interfere with the play of the thread. When the interlacing is accomplished the pin rises in the angle formed by the threads, and the threads are separated by the horizontal movement of the carriages which carry them.
Arriving at a beight a little above the upper net of threads, the pin is maintained laterally by a metallic platform, which is traversed over all its surface by radial slots equal in number to the pins, and the lower end of each pin is attached to a slider, moving in a vertical guide which is capable of moving towards the roller, bringing the pin against the twist previously formed, where it is arrested by a stop, and the pin continues stationary as long as it is necessary to maintain the mesh. In order to release itself and before returning to the point of departure, it falls below the net of threads, in such a way as not to touch them in its retrograde movement. These quadrangular displacements of the pins are effected independently being controlled by Jacquard mechanism.
Such, in general terms, is the lace loom of M. Mallere which has been recently exhibited in Paris. The apparatus is certainly a masterpiece of mechanism, and is an ingenious conception. The accompanying engraving indicates in some measure the intricacy of the machinery.-La Nature.

Bro. Gardner on Labor and Capital.

The Lime-Kiln Club is a facetious creation of the Detroit Free Press, and the reports of the imaginary meetings of the club, under the imaginary presidency of Brother Gardner, furnish the readers of the Press with perennial supplies o wit. The following is a specimen:
The Secretary read the following:
Chicago, March 30, '81.-Bro. Gardner-Please inform your friends whether you sympathize with capital or labor, and oblige a

Workingman.
"In the fust place, dar' am no call for me to sympathize with either," replied the old man in answer. "Onc am jist as necessary to the odder as two wheelsto a wagun. Capital
cl'ars away a spot an' builds a factory an' gins fifty or a hundred men a chance to airn a fa'r support fur demselves an' families. Dat factory wouldn't be dar' 'cept fur capital, an its wheels can't move widout labor. If dis' workin' man wanted to draw me out on the question of strikes I has only a word to say. I believe dat de average employer pays his help a f'ar price an' all he kin afford to. I b'lieve he knows his business, an' am mo' competent to run it dan de men who labor fur him. If I can't work fur a man fur de price be offers I stan' aside. If I hire a man I pay him do goin' price, an' I doan' let him tell me dat I mus' do thus an' so. Men strike bekase dey can't dictate, but de same men wouldn't be willin' dat deir employers should dictate to dem how much rent to pay, what close to buy, and how to spen' deir wages. As I said befo'dar am no call fur sympathy in de case. De mo' strikes we have de less money will be put into manufactures. When a capitalist kin loan his money at good interest he am foolish to put it into a factory whar' demagogues kin hariss an' ruin him. Jist you remem ber what I'm talkin'. De mo' unions de less factories. De mo' strikes de less work. Do you fink I'm foolish 'nuff to
take my $\$ 800$ out'n de bank, whar' principal an' interest am safe as a rock, an' put it into a coopershop, whar' three workmen could sink de hull of it in one strike bekase I couldn't pay mo' fur makin' de bar'ls dan de same would sell fur? Shoo! Fings am comin' to a putty pass when de man wid a shovel on his shoulder kin boss de man whose factory turned out dat identical tool!"

AGRICULTURAL INVENTIONS

Mr. Bishop L. Smith, of Loogootee, Ind., has patented a riding revolving horse rake for raking stalks, grain, and hay, so constructed that it can be easily and conveniently controlled by the rider.

Mr. Charles S. Giger, of Highland, Ill., has patented an improved harrow, so constructed that either side or the whole harrow can be readily raised from the ground to clear the harrow teeth of trash.
An improved mower and reaper has been patented by Mr . Milan D. Farnam, of Ira Hill, N. Y. The invention consists in the peculiar construction of the mechanism for connecting the cutter bar and shoe, and also for connecting the pitman with the shoe and the cutter bar; also in the combination with the various bearings of mechanism for taking up the wear; and in the combination with the brace or coupling of a mechanism for holding the brace bar and the shoe at the desired distance from the ground.
An improved cultivator has been patented by Mr. Lafay ette K. Tipton, of Maysville, Mo. The object of this invention is to furnish a cultivator so constructed that it can be
readily adjusted to work deeper or shallower in the ground, that the points of draught attachment can be adjusted directly in front of the centers of resistance, and that the mechanism will not be broken should the plows strike obstructions.
Mr. William J. Powell, of Marshfield, Mass., has patented cotton harvester, which gathers cotton from the plant while in the field by means of a vacuum.
Mr. John L. Scharff, of Womelsdorf, Pa., has patented a bean pod stringer for removing the string or threads from bean pods, and cutting off the ends of the pods. It consists in three bars, forming a clamp, clamping screw, a block or blocks having a semicircular flange, and a curved knife for removing the strings from the pods.
Mr. Tho
Mr. Thomas W. Hogsett, of Edray, West Va., has patented an improved churn, which is simple, easily operated, and the working parts of which can be adjusted for the operator while either sitting or standing, and which working parts can be placed aside altogether when the churn is to be can be planed.
cleaned

Exploration of the Beni River.

The April number of the Kansas City Revievo of Science contains an article by Professor John D. Parker announcing the recent important discoveries by Dr. E. R. Heath in South the recent important discoveries by Dr. E. R. Heath in South
America. Dr. Heath has solved the problem of the Beni America. Dr. Heath has solved the problem of the Beni
River, and completed in this respect the work of Professor River, and completed in this respect the work of Professor
Orton, left unfinished by his untimely death. He has discovered two new rivers, one of which has been named in honor of Professor Orton, and explored the hitherto unknown mouth of the Madre de Dios, which is 2,350 feet wide where it empties into the Beni. The "multitudes of man eating savages," so long believed as existing along the Beni River, proved to be a myth, and the superstitious fear that has so long hung over this portion of the Beni River has been dissipated. He accomplished this perilous exploration in a frail canoe with two Indians, at his own expense. Dr Heath will hereafter be remembered and counted among the discoverers of South America.

The Chagres River Dam.

Late advices from the Isthmus of Panama state that the engineers of the proposed ship canal have sunk a shaft 100 engineers of the proposed ship canal deep, where the Chagres River dam is to begin, and have not yet found bed rock. This is not an encouraging sign, as the possible success of the canal hinges on the feasibility of diverting the course of the river by the proposed dam. The dam will have to be over a mile long and 150 feet high. It is proposed to make it 3,150 feet wide at bottom and 780 feet at top, the lake created by it to contain a thousand million tons of water. This is a stupendous project at best; and if the foundations of the dam must be laid more than a hundred feet below the surface, the successful issue of the undertaking to which it is preliminary becomes more than ever problematical.

Corrvspundemts.

A Remarkable Hailstorm in Arkansas.
 To the Editor of the Scientific American:

We were visited on the afternoon of April 11 by the most terrific hailstorm ever witnessed in this region. The atmosphere had been oppressive for twentr-four hours, the hermometer reaching 73° Fah. at 2 P.M., and the hygrometer showed the air to be nearly saturated with moisture About 5:30 P.M. the air was "hot" and suffocating. Two cloud masses appeared moving upon us, the one from the southwest soon presenting the peculiar "boiling," jagged appearance so often noticed in precursors to hail; the other, from the northwest, very black and moving rapidly. A little before the time of meeting the sky overhead was of a livid green color. The first dash of hail was from the west, but the direction of the falling stones was quickly shifted to northwest, and finally almost from due north. It was observed that the stones fell, for the most part, at an angle of not more than 10° or 15° from the vertical, and their effect ve force indicated a fall from a considerable height. The storm continued about fifteen minutes, and the noise produced was almost deafening. I was able to make some measuremeuts, which will convey a better idea of the size and nature of this hail. One stone measured 7 inches in circumference, and weighed $5 \cdot 6163$ ounces avoir. Six stones showed an average diameter of $2 \cdot 2$ inches, and together weighed $14 \cdot 119$ ounces avoir. Other stones were picked up later which would measure nearly 3 inches in diameter.

The stones were formed by ten to fourteen concentric layers of snow and ice around a single nucleus, the outside layers being chiefly snow, and deeply corrugated. The shape, in many cases, was not spherical, but more like that of an apple, having two flattened and pitted surfaces opposite. The average number of stones found upon the level ground was about 135 per square foot. I hardly need say that the damage has been very great. The iron roofs in the town have been well nigh ruined. The tin roofs fared, in some cases, better, but present very much the appearance of a waffle iron. The destruction of glass has been im mense, the heaviest double thick offering no effective resist ance. A number of small animals were killed or injured. Men exposed to the storm were badly bruised. Is not this the champion bailstorm of the season?
C. P. C.

Fayetteville, Ark., April 13, 1881.

COFFEE.-ITS USES AND MEDICINAL QUALITIES.

by henry seaur, m.d.

Doctor Bock, of Leipsic, says:* " The nervousness and peevishness of our times are chiefly attributable to tea and coffee;" he says that " the digestive organs of confirmed coffee drinkers are in a state of chronic derangement, which reacts on the brain, producing fretful and lachrymose moods. Ladies addicted to strong coffee have a characteristic temper, which may be described as a mania for acting the persecuted saint," etc.
I cannot agree with Dr. Bock that the nervousness and peevishness of the present time are to be attributed to the use of coffee. If people are more nervous or in worse humor now than formerly, we may find other causes arising from the customs and habits of society much more likely to produce such a state of things than the use of this particular article of diet. I have no intention of pointing out many cbanges and peculiarities in the habits of the age to show many other more prominent reasons for people being in bad humor besides the use of coffee. My object is to defend coffee from a slander aimed at one of our best friends-a friend more likely to relieve the morbid state of things complained of than to produce it. Who that has experienced the good effects of coffee can sit quietly and hear it abused? especially by an estimable physician who has written learned books on the nervous system. The nerves of every honest friend of coffee tremble with the shock of an attack from such a quarter.
Let us examine the effects of coffee on the economy Taken in moderation it is a mental and bodily stimulant of a most agreeable nature; and, followed by no harmful reaction, it produces contentment of mind, allays hunger and bodily weakness, and increases the incentive and capacity for work, makes man forget his misfortunes, and enables those who use it to remain a long time without food or sleep, to endure unusual fatigue, and preserve their cheerfulness and contentment.
Jomand says: "An infusion made with ten ounces of cof fee enabled me to live without other food for five consecutive days, without lessening my ordinary occupations, and to use more and more prolonged muscular exercise than I was accustomed to without any other physical injury than a slight degree of fatigue and a little loss of flesh.'
The mental exhilaration, physical activity, and wakefulness it causes, explain the fondness for it which has been shown by so many men of science, poets, scholars, and others devoted to thinking. It has, indeed, been called " the intellectual beverage.
Itsupported the old age of Voltaire, and enabled Fontenelle to pass his hundred years.
The action of coffee is directed chiefly to the nervous system. It produces a warming, cordial impression on the stomach, quickly followed by a diffused, agreeable nervous excitement, which extends itself to the cerebral functions, giving rise to increased vigor of imagination and intellect, without any subsequent confusion or stupor, such as are characteristic of narcotics.
Coffee contains essential principles of nutrition far exceeding in importance its exhilarating properties, and is one of the most desirable articles for sustaining the system in certain prostrating diseases; as compared with the nutrition to be derived from the best of soups, coffee has decidedly the advantage, and to be preferred in many instances.
Liebig says: "We shall never know how men were first led to the use of coffee, but that we may consider the article so remarkable for its action on the brain and the substance of the organs of motion, and as an element of food for organs as yet unknown, which are destined to convert the blood into nervous substance, and thus recruit the energy and the nervous moving and thinking faculties.'
The medicinal effects of coffee are very great. In inter mittent fever I have used it with the happiest effect in cutting short the attack, and if properly managed is better in many cases than the sulphate of quinine. In that low state of intermittent, as found on the banks of the Mississippi River and other malarial districts, accompanied with enlarged spleen and torpid liver, when judiciou-ly administered it is one of the surest remedies. In these cases it-should be given in decoction made with four ounces of well roasted and ground coffee, boiled in a quart (16 ounces) of water in a covered vessel, down to half a pint (4 ounces), and two tablespoonfuls given hot every two hours, commencing six hours before the expected attack, and keeping the patient well covered in bed
It has been found that in typhus fever coffee increases the elimination of urea, and so far purifies the blood without increasing the destructive metamorphosis of tissue, and that it lessens coma and low delirium.
In yellow fever, from a long experience, I consider coffee as my chief reliance, after other necessary remedies have been administered; it restrains tissue change, and thus becomes a conservator of force, in that state in which the nervous system tends to collapse, because the blood has become impure; it sustains the nervous power until the depuration and reorganization of the blood are accomplished, and has the advantage over other stimulants in inducing no injurious secondary effects.
In spasmodic asthma its utility is well established, whooping cougū, stupor, lethargy, etc.
In the hysterical attacks of some females, for which the physician can form no diagnosis or cause for the peculiar
and eccentric symptoms manifested; a screaming, crying, staring, kicking patient, with no coherent answer for the medical adviser, at the same time with an evident tendency to act the persecuted saint-give her a cup of well made, strong, black coffee, she becomes quiet, revives, smiles benignly, as if she had swallowed a panacea that had suddenly delivered her from the clutches of the imps of Satan and wafted her from all the miseries of a condemned and tortured spirit to the Elysian fields of Houris.
We have used it as a remedy in croup, diphtheria, nephritis, chronic dirrhea, etc. In poisoning from opium it is well known as the best remedy, and always on hand.
Hayne says: " That in a case of violent spasmodic disease, attended with short breath, palpitation of heart, and a pulse so much increased in frequency that it could scarcely be counted, immediate relief was obtained from a cup of coffee, after the most powerful antispasmodics had been used in vain for several hours," etc.
After a hearty meal a cup of coffee will relieve that sense of oppression so apt to be experienced, and enable the stomach to perform its offices with comparative facility.
In fact, coffee carries healing on its wings. It is opposed to malaria, to all noxious vapors; as a disinfectant it has wonderful powers; as an instantaneous deodorizer it has no equal; for the sick room, the fetid odors arising from cutaneous exhalations are immediately neutralized by simply passing a chafing dish with burning coffee grains through the room.
It may be urged that an article possessing such powers and capacity for such energetic action must be injurious as an article of diet of habitual employment and not without deleterious properties; but I have never noticed any corresponding nervous derangement after its effects have disappeared, as is seen in narcotics and other stimulants. The action imparted to the nerves is natural and healthy, and I must positively deny that the habitual use of the article is injurious.
Habitual coffee drinkers generally enjoy good health and live to a good old age. Some of the oldest persons I have ever known have used it from earliest infancy without feeling any depressing reaction, such as is produced by alcoholic timulants.
In Porto Rico our fairest part of creation, at the tenderest age, have been induced to forget the delicious draught from the maternal fountain by the substitution of a deco tion of coffee, which soon becomes the daily beverage.
Mayaguez, Porto Rico, 1881.

What is the Legal Fence?

The Indianapolis Journal has taken pains to gather information as to the laws regarding the fencing of railroads in sister States. In Massachusetts the legal fence is four feet high. A "sufficient barrier" only is demanded, whether the equivalents be furnished by streams, ditches, live growths, or constructions in wood, stone, or other material. Vermont and Connecticut legal fence is five and a half feet high, with provisions essentially as above. In Maine and New Hampshire the legal fence is four feet high; Rhode Island, stone or wood fences must be four and a half feet high; hedges and ditches are elaborately described.
New York.-The town meetings prescribe what shall be deemed a legal fence in each town. Assessors and commissioners of highways perform the duties of fence viewers. Four and a half feet is the usual height prescribed.
Pennsylvania.-Towns and counties secure special legisation for fencing railway lines, and to prevent running of the stock at large.
New Jersey.-Fences are to be four feet two inches high, of wood, brick, or stone, and four and a half feet if of other materials.
Delaware.-Four feet, with a ditch within two feet, is a lawful fence. Wood or stone fences, or hedge, four and a half feet high.
Maryland, Virginia, North Carolina, Georgia, Florida, Alabama, Arkansas, Tennessee.-Legal fences five feet high. West Virginia.-Legal fences four and a half feet high.
South Carolina.-Fences must be six feet high, of wood or hedge, or ditches equivalent as barriers.
Missouri.-Hedge five feet, fence four and one half feet.
Kentucky.-"All sound or strong fences five feet high, so close that stock cannot creep through," is the definition of the legal fence.
Ohio.-"A fence, of whatever material, constructed in all respects such as good husbandmen ought to keep." Statute of 1865.
Illinois. - "Fences four and one half feet high, of whater material the fence viewers shall deem sufficient."
Michigan. - "Fences four and one balf feet high of rails, timber, boards, stone, or other things deemed equivalent thereto in the judgment of fence viewers."
Wisconsin.-"Fences four and one half feet high," etc. By act of April, 1878, barbed wire fence is defined as a legal fence.
Minnesota.-"Fences four and one half feet high," etc. Barb fence defined by the act of 1877
Iowa.-" Four and one half feet high, or fifty-four in ches." Barbed wire fence prescribed as legal fence, 1876. Texas.—"Five feet high." Barbed wire defined as legal ence.
Kansas.-"Worm fences four and one half feet; turf, four feet with ditches; wire fence; posts twelve feet apart."
Nebraska.-The legal fence is described as "such a fence sood husbandmen generally keep."

California.-The iegal fence is described with great particularity. Wire, post and rail, brush, picket; ditch and pole and hedge wire rences, not less than three separate strands, the first eighteen inches from the ground, the others two and one foot apart.
Colorado, Arizona, Montana, and Utah.-Four and one half feet high.
New Mexico, Idaho, and Washington.-Four feet high.
In Washington Territory barbed wire fence must carry In Washington
Indiana.-Any structure in the nature of a fence, such as good husbandmen generally keep.

Tobacco smoke.

In further research on this subject Dr. LeBon finds that collidine, the new alkaloid existing in tobacco smoke (with other aromatic principles, and prussic acid, as well as nicotine), is a liquid of agreeable and very penetrating odor, and as poisonous as nicotine, the twentieth part of one drop sufficing to paralyze and kill a frog. It is the prussic acid and various aromatic principles that cause headache, giddiness, and nausea in smoking certain tobaccoes that contain little nicotine. Other tobaccoes, rich in nicotine, have no such effects. The tobaccoes containing most prussic acid and collidine are those of Havana and the Levant. The dark semiliquid matter which condenses in pipes and cigar-holders contains all the substances just named, as well as carbonate of ammonia, tarry and coloring matter, etc. lt is very The combastion of tobacco destroys but a small part of the nicotine, and most of this appears in the smoke. The proportion absorbed by smokers varies according to circumstances, but hardly ever falls below 50 centigrammes per 100 grammes of tobacco burnt. About the same quantity of ammonia is absorbed at the same time. Naturally, more of the poisonous principles are absorbed where the smoke is breathed (as in a room); less in the open air. A frog placed in a receiver containing a solution of nicotine, with about one drop of that substance to a little of water, succumbs in a few hours. Tobacco smoke contains about 8 milliliters of carbonic oxide per 100 grammes of tobacco burnt. The poisonous properties of tobacco smoke are not due to this gas, as has been maintained in Germany.

The Absorption and Scattering of Heat by Leaves

In order to rightly understand the role of heat in the growth of plants, it is important to know what part of the growth of plants, it is important to know what part of the
heat rays wnich strike the leaves is absorbed by them, what heat rays which strike the leaves is absorbed by them, what
part is thrown back and scattered, and what part passes through them to lower organs. An inquiry of this nature has been recently made by M. Maquenne. Of his method we will merely say that he used as constant heat source a Bourbouze lamp (in which a platinum wire is kept glowing by a regulated mixture of coal gas and air); and for some experıments with low temperatures he employed Leslie's cubes. The results of the research are briefly as follows:

1. All leaves scatter a part of the heat they receive vertically to their surface; with the Bourbouze lamp this diffusion is about 0.25 of the whole heat, with a Leslie cube a small percentage.
2. Generally the under side scatters more than the upper, but the reverse sometimes occurs.
3. Leaves absorb a good deal of heat from the Bourbouze lamp, the absorption being due to the presence of absorbing substances, especially chlorophyl and water, in the tissue, and to the diffusion taking place internally at the surface of each cell; it is generally greater at the upper side than at the lower.
4. Thick leaves absorb more than thin leaves.
5. The absorptive power of leaves for the heat of boiling water is very nearly equal to that of Jampblack.
6. Leaves let heat pass through better the thinner or younger they are.
7. The radiating power of leaves with a great excess of temperature is pretty near that of lampblack; it decreases a little when the inclination increases.
8. The absorptive power of chlorophyl is, on an average, equal to that of water for rays of the Bourbouze lamp, and increases proportionately to withdrawal, in one direction or the other, from the heat maximum.

Lime in Agriculture,

All writers on agricultural subjects seem to agree that the use of lime on clayey soil is of great benefit, crops thus treated showing the advantage of its mixture with the soil. A correspondent to the Farmer's Revien writes from France that the European farmers coincide with our agriculturists in this respect, and concludes as follows:
The extending use of lime is excellent for clay soils. Argil augments in volume when moist-diminishes when dry. Carbonate of lime possesses neither of these properties; applied then to cold clay soils it enables the air and heat to penetrate more readily, thus making the land friable. On light soils the action of lime is weak, and on those very light the use of lime is misplaced. But as the action of lime rapidly transforms the nutritive capital of the land, its success cannot be permanent unless rationally supplemented by direct fertilizers, as farm yard manure, etc. Hence, the adage, Lime enriches the father, but ruins the children. If
the soil have an excess of acids, lime "sweetens" by neutralizing them; all cultivated soils are slightly acid, such being necessary for vegetation. Too much, however, acts directly on plants, and indirectly by the formation of soluble and noxious salts of iron.

fusiness and extand．

The Chargefor Insertion under this head is one Dollar a line for each insertion；about eight words to a line． Advertisements must be received at publication office asearly as Thursday morning to appear in next issue．

The Medart Pat．Wrought Rim Pulley．See adv．，p． 284 Gardiner＇s Pat．Belt Clamp．See illus．adv．，p． 285. Light Tramway Engines，flexible wheel－base，wood or German Corn Remover will allow nicer fitting boots German Corn Remover will allow nicer
Take no other．Sold by druggists． 25 cts．
Grain Nickel，Nickel Anodes Rolled o
Grain Nickel，Nickel Anodes Rolled or Cast，Nickel
Salts．Greene，Tweed \＆Co．， 118 Chambers St．，N．Y． For Sale．－Two Locomotive Boilers，by Danl．W． Fichards \＆Co．， 92 Mangin St．，New York． If your brain is overtaxed，use Van Beil＇s＂Rye and Cutters for Teeth of Gear Wheels formed entirely by
machinery．The Pratt \＆Whitney Co．，Hartford，Conn． Portable Railway Track and Cars．Contractors，Plant－
ers．Miners，send for circulars．Francis W．Corey \＆Co．， ers．Miners，send for circulars．Francis W．Corey \＆Co．，
$5 \& 7$ Dey St．，New York； 95 Washington St．，Chicago，IIl． Why be tortured with hard or soft corns？German Emery，Glue，Composition，Pumice，and all Goods Esay on Invention．What qualities will Essay on Inventions．－What qualities will make them
proft table，and how to incorporate these qualities in in－ ventions． 25 cts．postpaid．Address N．Davenport，Val－ ventions．
paraiso，Ind．
Second－hand Lathes，Planers，Boring and Turning Mills，good as new．for sale cheap．Apply to Barbaroux For the best Jy
For the best Jig，Saw Blades，go to Wm．Cuddy， 108
Hester St．，New York． If your boiler foams，
If your boiler foams，it is caused by impurities sus－
pended upon the surface of the water．It is a foul pro－ pended upon the surface of the water．It is a foul pro－
ceeding，and can be entirely obviated by the Hotchkiss Mechanical Boiler Cleaner． 84 John St．，New York．
＂Rival＂Steam Pumps for Hot or Cold Water；$\$ 32$
d upward．John H．MeGowan \＆Co．，Cincinnati， 0 ． kinner＇s Chuck．Hi． Satety Boilers．See Harrison Boiler Works adv．，p． 252. Inventors sending a three cent stamp to Inventors＇In－ stitute．Cooper Union，New York city，will receive a copy of the Industrial News free．
The Eureka Mower cuts a six foot swath easier than a side cut mower cuts four feet，and leaves the cut grass
standing light and loose，curing in half the time．Send standing light and loose，curing in half the time．Send
for circular．Eureka Mower Company，Towanda，Pa． The Newell Universal MillCo．，Office 7 Cortlandt St．， New York，are mauufacturers of the Newell Universal
Grinderfor crushing ores andgrinding phosphates，bone， plaster．dyewoods，and all gummy and sticky su．
Circulars and prices forwarded upon request．
Pure Oak Leather Belting．C．W．Arny \＆Son，Ma－ Jenkins＇Patent Valves and Packing＂The Standard＂
Jenkins Bros．，Proprietors， 11 Dey St．，New York．
Presses \＆Dies．Ferracute Mach．Co．，Bridgeton
Wood－Working Machinery of Improved Design and The＂ 1880 ＂Lace Cutter by mail for 50 cts．；discount
the trade．Sterling Elliott，262 Dover St．，Boston，Mass． Experts in Patent Causes and Mechanical Counsel． Park Benjamin \＆Bro．， 50 Astor House，New York． Split Pulleys at low prices，and of same strength and
appearance as Whole Pulleys．Yocom \＆Son＇s Shafting Works，Drinker St．，Philadelphia．
Malleable and Gray Iron Castings，all descriptions，by Erie Malleable Iron Company，limited．Erie，Pa．
Power，Foot，and Hand Presses for Metal Workers．
Lowest prices．Peerless Pmech \＆Shear Co． 52 Dey St．，N．Y， National Steel Tube Cleaner for boiler tube．s．Adjust－
able，durable．Chalmers－Spence Co．， 40 John St．，N．Y． Corrugated Wrought Iron for Tires on Traction En－ Best Oak Tanned Leather Belting Wm F For Best Oak Tlanned Leather Belting．Wm．F．Fore－－
paugh，Jr．，\＆Bros．， 531 Jefferson St．，Philadelphia，Pa． Stave，Barrel，Keg，and Hogshead Machinery a spe
cialty，by E．\＆B．Holmes，Buffalo，N．Y．
Wright＇s Patent Steam Engine，with automatic cut off．The best engine made．For prices，address William
Wright，Manufacturer，Newburgh．N．Y． Nickel Plating．－Sole manufacturers cast nickel an．
odes，pure nickel salts．Importers Vienna lime，crocus． odes，pure nickel salts．importers Vienna lime，crocus．
etc．Condit．Hanson \＆Van Winkle，Newark，N．J．，and etc．Condit．Hanson \＆Van W
92 and 94 Liberty St．，New York．
Clark Rubber Wheels adv．See page 236. Presses，Dies，Tools for working Sheet Metals，etc．
Fruit and other Can＇oools．E．W．Bliss．Brooklyn，N．Y． For the Cheapest Process of Manufacturing Bricks， For the Cheapest Process of Manufac
see Chambers Bros．\＆Co．＇s adv．，page $2 \overline{4} 4$ ．
Cope \＆Maxwell M＇f＇g Co．＇s Pump adv．，page 252. For Pat．Safety Elevators，Hoisting Engines．Friction
Clutch Pulleys，Cut－off Coupling，see Frisbie＇s ad．p． 252. M incral Lands Prospected，Artesian Wells Bored，by
Pa．Diamond Drill Co．Box 423 ．Pottsville，Pa．See p． 252 ． For Thrashing Machines，Engines，and Horse Pow
ee illus．adv．of G ．Westinghouse \＆Co．，page 253.
The I．B．Davis Patent Feed Pump．See adv．，p Moulding Machines for Foundry Use． 33 per cent
saved in labor．See adv．of Reynolds \＆Co．，page 269． The Sweetland Chuck．See illus．adv．，p． 269 Machine Knives for Wood－working Machinery，Book Binders，and Paper Mills．Also manufacturers of Sol So－
man＇s Parallel Vise，Taylor．Stiles \＆Co．．．Riegelsville．N．J For best Duplex Injector，see Jenks＇adv．，p． 269. The American Electric Co．，Proprts Mfrs of Thomp－
son Houston System of Electric Lighting the Are Type． See Bentel，Margedant \＆Co．＇s adv．，page 285 ． Clark \＆Heald Machine Co．See adv．，p． 286. For the best Diamond Drill Machines，address M．
Ballock， 80 to 88 Market St．，Chicago，Ill．

Blake＂Lion and Eagle＂Imp＇d Crusher．See p． 284. Diamond Planers．J．Dickinson． 64 Nassau St．，N．Y．
Steam Hammers，Improved Hydraulic Jacks，and Tube Expanders 50，000 Sawyers wanted．Your full address for Emer and pages of valuable information．How to straighten saws，etc．Emerson，Smith \＆Co．，Beaver Falls，Pa．
Peerless Colors－For coloring mortar．French，Rich－ ards \＆Co．， 410 Callowhill St．，Philadelphia，Pa
See Special Bolt Forging Machine Notice，page 300.
Tight and Slack Barrel machinery a specialty．John
Greenwood \＆Co．，Rochester，N．r．See illus．adv．p． 284 ． For the manufacture of metallic shells．cups，ferrules blanks，and any and all kinds of small press and stamped
work in copper，brass，zinc，iron，or tin，address C．J．God－ work in copper，brass，zinc， ，ron，or tin，address C．J．God－
frey \＆Son，Union City，Conn．The manufacture of small wares，notions，ard novelties in the above line，a spe－
cialty．See advertisement on page 253 ． Elevators，Freight and Passenger，Shafting，Pulleys
and Hangers．I．s．Graves \＆Son，Rochester，N．Y． For all kinds of Special Rubber Goods，address Akron Gear Wheels for Models（iist free）；Models，Experi－ mental Work，etc．D．Gilbert \＆Son， 212 Chester St．，
Philadelphia，Pa． Gould \＆Eberhardt＇s Machinists＇Tools．See adv．，p． 284 For Heavy Punches，etc．，see illustrated advertise－
Comb＇d Punch \＆Shears：Universal Lathe Chucks．Lam－
bertville Iron Works，Lambertville，N．J．See ad．p． 253 ． Reed＇s Sectional Covering for steam surfaces；any ne can apply it；can be removed and replaced wit，
njury．J．A．Locke，\＆Son， 40 Cortlandt St．，N．Y． 4 to H．P．Steam Engines．See adv．p． 286. C．B．Rogers \＆Co．，Norwich，Conn．，WQod
Machinery of every kind．See adv．，page 28g． Long \＆Allstatter Co．＇s Power Punch．See adv．，p．285． For best low price Planer and Matcner，and latest improved Sash，Door，and Blind Machinery，Send for
catalogue to Rowley \＆Hermance．Williamsport，Pa． Rowland＇s Vertical Engine．Wearing parts of steel Broad bearings．F．C．\＆A．E．Rowana，New Haven，Conn．
The only economical and practical Gas Engine in the market is the new＂Otto＂Silent，built by Schleiche
Schumm \＆Co．，Philadelphia．Pa．Send for circular Tyson Vase Engine，small motor，1－33 H．P．；eficicien and non－explosive；price $\$ 50$ ．See illus．adv．，page 284. Ore Breaker，Crusher，and Pulverizer．Smaller sizes
run by horse power．See p． 285 ．Totten \＆Co．，Pittsburg run by horse power．See p．285．Totten \＆Co．，Pittsburg．
Use Vacuum Oil Co．＇s Lubricating Oil，Rochester，N．Y． Lightning Screw Plates and Labor－saving Tools，p． 286. Good Machinists and Vise Hands wanted．Address
Vatertown Steam Engine Company，Watertown，N．Y． Catechism of the Locomotive， 625 pages， 250 engrav－ Catechism of the Locomotive， 25 pages，
ings．The most accurate，eomplete，and easily under－
stood book on the Locomotive．Price $\$ 2.50$ ．Send for a catalogue of railroad books．The Railroad Gazette， 73 Eclipse Fan Blower

H2 Hext thariss
 HINTS TO CORRESPONDENTS．

No attention will be paid to communications unless writer．
Names and adaresses of correspondents will not be given to inquirers．
We renew our request that correspondents，in referring to former answers or articles，will be kind enough to name the date of the paper and the page，or the number
of the question． a reasonable time should repeat them．If not then pub－ lished，they may conclude that，for good reasons，the Editor declines them．
Persons desiring special information which is purely of a personal character，and not of general interest，
should remit from $\$ 1$ to $\$ 5$ ，according to the subject， ab we cannol be expected to spend time and
any numbers of the Scientific American Supple－ MENT referred to in these columns may be had at this
office．Price 10 cents each．
（1）E．L．asks：Which is the strongest cid， $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$ ，or HCl ？Please state their respect－
ve strengths．A．If you mean which acid most ra－ pidly corrodes or dissolves metals，a mixture of nitric $\left(\mathrm{HNO}_{3}\right)$ and hydroctloric（ HCl ）acids（aqua－regia－ HCl 3 ，
$\mathrm{HNO}_{3}{ }^{1}$ ）would head the list，followed by nitric，hydro HNO_{3} 1）would head the list，followed by nitric，hydro－
chloric，and sulphuric acids．Hydrochloric（cold）acid chloric，and sulphuric acids．Hecmposes a solution of
does not attack silver，yet it decom that metal in nitric acid，forming silver chloride．Sul－
phuric acid does not attack lead，yet it is capable of de－ phuric acid does not attack lead，yet it is capable of de－
composing the nitrate or chloride of that metal to form a sulphate．
（2）C．H．L．asks how to make white 2 parts dry ammonia alum，dry tioronghly，and calcine in a shallow dish over the fire to whieness．Cool，wash， and rub up with enough gum water for use．Pearl white
（nitrate of bismuth）may be used in a similar manner． （nitrate of bismuth）may be used in a similar manner．
（3）J．S．T．asks bow to make a good drier for printer＇s ink．We frequently get ink，espe－
cially job ink，that is off set；can hardly handle the work． cially job ink，that is off set；can hardly handle the work．
If drier is not what it needs，please state what it does need．A．A small quantity of perfecily dry acetate of
lead or borate of manganese in impalpable powder will had or borate of manganese in impalpable powder w． should be thoroughly incorporated with the ink，by tri－ turation in a mortar．
（4）W．J．B．asks for a receipt for making a gent is made of gum arabice，but I am not positive．A．
The gum on your samples is gum dextrine or British gum，a commercial article．It is simply dissolved in hot water to mucilaginous consistence，applied with a
brush and allowed to dry．
（5）J．P．M．asks：Which do you consider best for the arch of press，a heavy cast iron one or a lighter one of cast steel，malleable iron or a wrought
iron forging？A．Use steel or wrought iron．They will spring under the pressure and not break．
（6）G．A．W．asks：1．How can I get the manganese oxide out of some coke，which I had in a
Leclanche battery？A．Coarsely powder and wash in a gentle stream of water．With care the lighter coke may be washed away from the heavier oside．2．Can you refer me to a paper which describes the ice ma－
chine？A．See＂Ice Making and Ice Machines，＂Sur． chine A ．See＂Ice
PLEMENTs 85 and 91.
（7）J．C．B．asks：What composition is used in the manufacture of articles made of sawdust，
for holding the particles together？A．Blood，or blood for holding the particles together？A．Blood，or blood freshly mixed with a little finely powdered lime．Weak
glue size has also been used with sawdust in a similar glue size has also been used with sawdust in a similar
manner．The articles are moulded under heavy press－
（8）D．Bros．ask：Can you inform where to get some red indelible ink to use with stamps
on linen？A ．Liquefy 1 pint of balsam of capivi by aid of heat and gradually stinin of capivi by aid white curd soap cut in thin shavings，and stir unti properly diffused．Then introduce a sufficient quantity of vermilion，and stir occasionally until cold．This ink is suitable for stamps．
（9）J．H．W．asks：1．Please give some formula by which I can prevent the fungus growths
on cedar trees．A．Wash the trunks occasionally with on cedar trees．A．Wash the trunks occasionally with
lime water． 2 ．How can I cheaply extract nitrogen lime water．2．How can I cheaply extract nitrogen
from the air and hydrogen from water？A．Pass dry air slowly through granular charcoal heated to redness
in an iron tube，then through several in an ing red hot oxide of copper，then copper tubes con－ lime．The hot carbon forms carbonic acid and carbonic oxide with the oxygen of the air；the carbonic oxide is converted into carbonic acid by the oxide of copper，
and the carbonic acid is absorbed by the lime leaving and the carbonic acid is absorbed by the lime leaving
nearly pure nitrogen．Pass steam through a large nearly pure nitrogen．Pass steam through a large
quantity of red hot iron turnings；a portion of the steam quantity of red hot iron turnings；a portion of the steam
is decomposed by the hotiron．The hydrogen resulting may be collected in a reservoir with the unchanged steam，the latter condensing on cooling．3．If hydrogen is compressed to one－half its natural volume will it be one－fourth as light as
one－seventh as heavy．
（10）R．T．asks：Which are the best acids for tin．lead，and antimony，or an acid for a composi－
tion of these three metals together？A．A warm mixture of 1 part nitric and 3 parts hydrochloric acid will dis－都 these metals with the greatest facility
（11）A．R．writes：Having broken my 17×21 glass bath from top to bottom（the zigzag or center lines
show the breakage），I would like to know if you have show the breakage），I would like to know if you have
any sure means of cementing it together． 1 have thought of gutta percha，but as this should be put on hot am afraid that parts would get cool．Ihave also thought A．Dissolve shellac in alcohol enough to form a liquid of the consistence of molasses．Clean the parts dry，
smear them with this，press the paris firmly together smear them with this，press the paris firmly together，
and allow to remain under pressure twenty－four hours； and allow to remain under pressure twenty－four hours；
then coat the inside over the joint with a strong solu－ tion of gutta percha in benzole，and let it harden before
wetting．The shellac solution should be perfectly wetting．The shellac solutit
smooth and free from lumps．
（12）E．L．H．asks：How can a physician＇s thermometer be tested to know if it is correct？A．Only
by comparison with the indications of a standard ther－ by comparison with the indications of
mometer under similar circumstances．
（13）R．H．C．asks：What is the prop
（14）R．H．B．writes that A．S．R．will find on page 57，vol．zli．，Scientific Anerican，an elabo－ rate article on the＂Mang．＂by F．H．Cushing．
（15）A．S．writes：We have standing throughout our factories water barrels in case of fire． and I should judge unhealthy．Will you please tell me what preparation put in fresh water will keep the water sweet for any length of time？A．The solution of a
quarter pound ordinary green copperas sulphate of roarter in pound ordinary green copperas（suld
（16）E．H．asks：Is it necessary to have the brass tubing or condenser of a steam yacht tinned？
If so，how is it done？A．It is better to have them If so，how is it done？A．It is better to have them
tinned．You can purchase them already tinned much better and cheaper than you can do it yourself．
（17）H．E．asks：Will polished steel plated by being immersed in a solution of sulphuric ether and gold
chloride last long？A．The film of gold deposited in this way will not wear as well as an electro deposit．See page 116 current volume．
（18）E．D．V．writes：You recently ad－ vised to use No 30 copper wire for acoustic telephone．
My experience suggests otherwise，and I submit it．No． My experience suggests otherwise，and I submit it．No．
22 is generally sold for this use．On a very short line No． 30 would answer，but on lines of usual length it
will break too easily between supports，and too many supports interfere with the transmission of sound．On a line of 3.600 feet I use No．22，and six supports be－ tween the terminal ends；that is，supports are 500 feet apart．The wire has stood for four years，worked well，
and no breakage．No． 30 would not do at all．I have tried many varieties of telephone－wood，metal，leather， and cloth for diaphragm；steel，iron，and copper wire．
No． 22 copper wire，and wood diaphragms，one－sizteenth inch thick and 3 inches diameter，make the best combi－ nation．Chamois skin for longest lines makes best diaphragm，but it soon needs replacing．Steel wire pro－ duces too much roaring．
（19）R．B．writes：About two years ago put down in my well a donble cylinder pump．The hose （water level only suction pipe is 18 feet from the pump
feet feet high in a tank which is 12 feet above the well and
ground level．The suction pipe is 3 inches，delivery
pipe $21 / 2$ inches，each cylinder of pump 4 inches diameter
stroke $81 / 2$ inches．The pump worked well for six stroke $81 / 2$ inches．The pump worked well for six
months，but since then has worked by fits and starts months，but since then has worked by fits and starts
that is，it will work for half an hour，and suddenly stop forcing water；it always draws water as high as the stop forcing water；it always draws water as high as the
pump，but will not force it up． 1 have had some of the best pump fitters at work at it and they can do nothing There is no leak whatever anywhere；all joints are tight．
The pump is worked by a three horse power horse The pump is worked by a three horse power horse
wheel．Can you or any of your correspondents say whee．Can you or any of your correspondents say why
the pump will not work，and what I should do to get it to work？A．There is probably some defect in the de livery valves which permits the water to fall back into
lat the pump on the return stroke．
（20）C．B．C．asks for a receipt for making ink fireproof，and also one for making paper fireproof A．We know of no means by which ordinary paper may be made practically fireprool．Paper made of pure asbestos fiber resists a high temperature without ma－
terial alteration．An ammoniacal solution of nitrate of terial alteration．An ammoniacal solution of nitrate of
silver，colored with a little India ink，will preserve a silver，colored with a little India ink，will preserve a
legible copy when written with on such paper and sub－ legible copy when written with on such paper and sub－
jected to strong heat．Ordinary writing inks cannot be jected to strong
made fireproof．
（21）G．C．F．asks：1．Is pulverized raw A．The old slakedrned slaked lime as a fertilizer？ A．The old slaked lime is best．2．How much press
ure can be produced at the bottom of 1,000 teet of tub ing in an artesian well by a rotary pump with a cylinde one foot in diameter run at 200 revolutions per minute pumping air？A．The limit to the pressure would de－
pend entirely upon the perfection of the pump and of pend entirely upon the perfection of
the joints and connections of the pipe．
（22）H．B．S．Co．writes：We have two steam pumps running at our store for the purpose of ex－
hibition．They pump Schuylkill water from a tank in hibition．They pump Schuylkill water from a tank in the cellar and return it to the same tank continiously
The water，although in constant circulation during the day，becomes very offensive．We have been unable to day，becomes very offensive．We have been unable to
correct the trouble with lime，etc．Please suggest some－ thing that will keep it sweet and harmless，without in－ juring the working parts of the machinery．A．A
small quantity of copperas（ferrous sulphate）will no small quantity of copperas（ferrous sulphate）
injure the pumps and will deodorize the water．
（23）A．P．H．asks（1）for a receipt for a good harness blacking oil．A．Melt together 2 oz． asphaltum and 3 oz ．beeswax；remove from the fire and
add $\nleftarrow \mathrm{oz}$ ．fine lamp black and 15 dr ．of Prussian blue add $\not \mathcal{L}_{2}$ oz．fine lamp black and $1 / 2 \mathrm{dr}$ ．of Prussian．blue
in fine powder；then reduce to a thin paste with neats－ in fine po
foot oil．
（24）P．P．writes：I have several hundred pounds of metal，principally lead，with some tin and antimony，which comes from a smelter but is not re fined，and therefore does not run freely．Can you tell me some work from which I may obtain the desired in formation？A．Melt and heat the metal nearly to red－ 1ormation？A．Mo． 2 well annealed sand pets，and for every
ness in Not
10 Io．metal stir in（gradually）about 6 oz．dry nitrate of 10 Io．metal stir in（gradually）about 6 oz ．dry nitrate of
soda．Cool somewhat and skim off the dross before soda．Cool somewhat and skim off the dross before
pouring．Save the latter for reduction，as it contains uch lead oxide，beside stannic and antimo
（25）E．E．P．asks how to dissolve isinglass． A．If you mean fish geltin．dissolve in hot water， sometimes improperly called isinglass，cannot be dis－ sometimes improperly called is
solved without decomposing it．
（26）A．G．B．asks how to make ammo niated opodeldoc．White soap，cut in small shavings，
2 lb. ；camphor， 5 oz ；oil of rosemary， 1 oz ；oil of origanum， 2 oz．；wine spirit， 1 gallon．Heat over a origanum， 2 oz．；wine spirit， 1 gallon．Heat over a
water bath until solution is effected，cool somewhat，
strain，and add 11 oz．ammonia water．Bottle and strain，and add 11 oz．ammonia water．Bottle and stopper immediately．
（27）R．G．asks for a receipt for making paint for roofs，etc．，composed of coal tar or pitch， and ground slate or oxide of iron．A．Melt in a capa－
cious iron vessel for at least four hours， 28 lb ．each com－ mon pitch and asphaltum；then gradu ally stir in 20 ib． of finely powdered and dry iron oxide or red ocher，and
continue the heat another hour or until a drop of the contimue the heat another hour or until a drop of the
mixture on cooling rolls up very hard．Then remove mixture on cooling rolls up very hard．Then remove
from the fire，let cool somewhat，and stir in gradually avoid accident）a sufficient quantity of good benzine
（28）J．C．B．asks：Has the question of the formation of ice been conclusively settled，that is， whether it forms on the upper or lower surface？A．
Ordinarily ice forms at the surface of water．On cool－ ing，water contracts in volume－becomes denser－until it reaches a temperature of about $39 \cdot 2^{\circ} \mathrm{Fah}$ ．；if cooled below this point it gradually expands－becomes lighter
－until at about 32° Fah．，it congeals．Water chilled at the surface contracts and sinks，the warmer and lighter water rising to the surface．This continues until the whole body of water is chilled to $39 \cdot 2^{\circ}$ Fah．From this
point to 32° the colder water remain at the surface and point to 32° the colder water remains at the surface and
there congeals．In shallow and turbulent water ice there congeals．In shallow and turbulent water ice
sometimes forms at the bottom，and，becoming attached to stones，rocks，eic．，does not rise．See answer to D． to stones，rocks，eic．，does not
M．，page 202 （21），current volume．
（29）D．S．writes：In the construction of wrought iron cylinders，as the flues or shell of a boiler，
what is the correct rule for the shrinkage or in what is the correct rule for the sbrinkage，or，in othe
words，how much is allowed for the bending of the iron over and above the circumference of a given circle For instance，for a shell 60 inches diameter， $3 / 2$ inch
thickness of iron，how many inches of iron will it take thickness of iron，how many inches of iron will it take to form the above？A．If the iron is laid out correctly for 60 inches diameter inside，it，is supposed that in the
bending the outer part of the plate will draw or stretch to its proper length．
（30）R．I S S．asks • 1．Can you give me a solution that will take the taste out of pine wood
vessels？A．Washing with hot dilute hydrochloric vessels ？A．Wasking in in in measure effect this．They treatment．2．Have you a receipt for making a paste that will．make lahels stici on a polished surface for any length of time？A．See answer to R． S ．，page $203(26)$ ， current volume；also cements，SUPPELEMENT，No． 158 ．
3．Is there any method．besides sealing air tight and
drying, for preserving fruits so they will keep in any
climate? A. There is no other practical method, we
(31) W. M. L. asks (1) if there is any way by which a large tower bell that is cracked can be mended
so as to be serviceable and also sound well. If so, how? so as to be serviceable and also sound well. If so, how?
A. A mode that will improve (but not restore) the tone of a cracked bell is, to drill a small hole at the extremity of the crack and make a saw cut the whole length o
the crack. 2. What is the best compound for setting the crack. 2. What is the best compound for setting
iron posts in stone? A. Salammoniac (powdered), oz.: flowers of sulphur, 1 oz .; iron borings (free from oil), 5 lb .; water, q. s. to moisten.
(32) C. T. W. asks: 1. What is the horse power of a steam engine, cylinder 2 inches bore by 4
inches stroke, with 60 lb . of steam in the boiler, and running at the rate of 200 revolutions per minute? A About two-thirds of one horse power. 2. What size
boiler is needed for the same ? A boiler with 25 boiler is needed for the same? A. A boiler with 25 square feet heating surface. 3. If such an engine be
made to run the largest possible electric machine. how made to run the largest possible electric machine, how
many lamps would the machine supply \boldsymbol{P} A. One, and many lamps would the machine supply P A. One, and
possibly two. With small machines and small power possibly two. With small machines and small power,
electric lighting is not economical. 4. What is the candie power of an ordinary Edison lamp, such as is used for lighting dwellings? A. About 16 . 5 How many
candle power would be required to properly light a room 26 feet long by 17 feet wide by 13 feet high ? 100 would do it well
(33) W. B. A. writes: A firm in this city use three boilers in one battery, set in brick work
the usual way. They now intend to do away with the water line, tile, and back plates, put cast iron arches over
the top, and fill with brick, leaving the boilers naked the top, and fill with brick, leaving the boilers naked and exposed to the action of the fire. The boilers are
25 feet by 42 inches, 4 flues; have been in use about eight years, and fired hard. Do you think this a safe plan and is there any benefit to be gained by so doing ? A accident. 2. If the fire flue of a Cornish return flue boiler be 24 inches diameter and 16 feet long, working pressure 100 lb., what kind of iron should be put in
the flue? A. Half-inch or nine-sixteenti inch thick, and should have strengthening rings.
(34) H. T. asks how to make dynamite. A. Dynamite is prepared by mixing infusorial silica (a fine silicious sand resembling tripoli) with about 75 per
cent of nitroglycerine, which it readily absorbs. It is exploded by percussion priming. See answer to F. \&S
extrer page 202 (3), current volume.
(35) R. I. M. asks: 1. Will coke injure a boiler? A. No. 2. How can I prevent coke from
clinkering? A. Pure coke will not clinker, there must clinkering? A. Pure coke will not clinker, there must
be some impurity in your coke. It might be beneficial
to burn it at a lower temperature.
(36) R. H. M. asks if the linear expansion of thick iron is greater than that of small wires. A.
No. 2. What would be the probable linear expansion of one-eighth inca wire 100 feet in length ? A. Iron wire for an increase of temperature of 180° expards $\frac{\sigma^{\frac{1}{12}}}{}$ of its length. 3 Does expansion in length cause correspond-
ing contraction in thickness 9 A. No. 4. Does coning contraction in thickness ? A. No. 4. Does concules ? A. No permanent displacement, unless the iron is under strain. 5. Is there a point in temperature where heat and cold cease to expand and
No such point has been discovered.
(37) J. H. H. asks: 1. How much bitumi nous coal is required under a tubular boiler to evaporate
one gallon water ? A. With a good boiler you should one gallon water ? A. With a good boiler you should
evaporate from three-quarters to one gallon of water per pound of coal. 2. What power would be required to
put the water at 60 horse power into boiler at 90 lb . pressureto the inch. Does it require more power to put in water at 200° to 212° than at 75° Fah.? A. It does not the power required we must know the quantity of water to be delivered in a given time.
(38) J. F. S. asks: Does the piston in engine driving machinery stop while the machinery is in
motion ? A. Yes, it stops twice every revolution of the crank.
(39) A. H. H. asks: 1. Can anything be done to apple trees, the bark having been eaten off above the ground by rabbits? A. Wrap with common
gunny or jute bagging and whitewash. 2. Can you heat, which will be cheap and more efficient than a low and what is the philosophy of its action ? A. Try the following: Fuse together in a crucible, at a quick heat,
borax, 2 parts; potassium chloride, 3 parts; boracic acid, borax, 2 parts; potassium chloride, 3 parts; boracic acid,
1 part; cool and powder. It melts at a low redheatand 1 part; cool and powder. It melts at a low redheatand
readily dissolves iron oxide, thus cleaning the metal.
(40) H. L. writes: On our line shaft is a pulley 42 inches in diameter, fastened by set screws,
which supplies power to our exhaust fan. These set screws are constantly slipping, and I propose to reduce strain on them by substituting a smaller pulley on line
shaft, and interposing a counter shaft geared so as to give same speed to exhaust as before change. Please inform us through your paper if this arrangement will reduce strain on set screws holding driving pulley to
line shaft or not ? At will not reduce the strain on line shaft or not? A. It will not reduce the strain on
the set screws, if the fan runs at the same velocity. the set screws, if the fan runs at the same velocity.
It is the resistance of the fan that determines the strain on the set screws, and not the mode of belting or gear-
ing. Better slot your wheel, put a key seat in your ing. Better slot your wheel, put
shaft, and drive in a well fitted key.
(41) A. D. writes: I wish to know how I can prepare pulp for casting papier mache heads, similar to masks or false faces. in a plaster cast; or would it be better to make the cast out of some other composition.
A. Paper is pulped in a mortar (or pulping engine) and hot water. Remove the pulp and let it partially drain upon a linen covered frame. Put a quantity of thisinto the mould under strong pressure, and let it remain until
it becomes hard enough to handle. A counter mould it becomes hard enough to handle. A counter mould
is used in casting such thin sheets. Plaster moulds are
too fragile. Casts in type metal or fu
much better. See SUPPLEMENT, No. 17.
(42) J. W. asks (1) if there is any cloth or knit work that will conduct electricity. A. Cotton and linen are conductors of static electricity. Cloth having Is there any cloth that will not conduct it, the cloth ogoods being dry? A. Silk is a non-conductor of elec tricity, but of course a static discharge would pass
through a silk fabric. 3 . Give some simple method of or not. A. Tonch the ends of the wires of when they are cornected with the battery, and then d the same thing when they are detached from the bat
tery. If you discover no difference the current must be tery. If you discover no differe
very feeble or absent altogether.
(43) S. B. D. asks: 1. How can I regain the silver from an emulsion as described under the head
of ". Emulsion for Amateurs," in Scientific American of "Emulsion for Amateurs"" in Scientific American
Supplement, No. 226? A. Mix with about three times its weight of warm water, slightly acidified with hydrochloric acid, and let it stand. Collect the chloride of with a few fragments of clean zinc and enough dilute sulphuric acid to cover it. When the chloride is re duced pour off the acid liquid, pick out what remains of
the zinc, wash the spongy metal with hot water, and the zinc, wash the spongy metal with hot water, and
dry it. It may be obtained in the form of a button, if dry it. It may be obtained in the form of a button, in
desired, by muxing it with a little borax and heating the desired, by mıxing it with a little borax and heating the
mixture strongly in a small black lead crucible. 2. How can Imake the iron develop for the same ? A. Proto sulphate of iron, 2 drachms; dissolve in 8 oz. water and How is albumen paper made? A. Albumen can be
obtained from any dealer in photographic goods obtained from any dealer in photographic goods.
It is ordinarily prepared by beating up ego albumen It is ordinarily prepared by beating up egg albumen
to a froth with a little floured salt (about 15 grs . salt to each egg), and after this has stood twelve hours to subside, floating the paper upon its siface coated, after which it is fastened to frames to dry in the air. 4. Can I use French gelatine? If not, where can I obtain Nelson's? A. Yes. See our advertising columns
and Hints to Correspondents. 5. I am making an inand Hints to Correspondents. 5. I am making an in-
duction coil of the following dimensions: Core 3 inches long iy $1 / 2$ inch diameter of No. 18 annealed iron wire primary, two layers of No. 18 copper cotton covered wire, with a condenser of 300 square inch surface What size spark can I get using two Lec lanche batteries? A. You may be able to get a spark from one-eighth to
three-sisteenth inch long. The coil is rather small three-sisteen
for sparks.

NEW BOOKS AND PUBLICATIONS

The Magazine of Art. Cassell, Petter,
he Aprilnumber of this Art Journal is, like The April number of this Arionournal is, like the previous issues, full of engravings of choice and artintic
works, consisting of elaborately carved oak furniture, ancient mosaics, and other art objects of rare beauty.
The most interesting of the various subjects illustrated The most interesting of the various subjects illustrated
is an engraving of the French artist, Bonnat's, famous is an engraving of the French artist, Bonnat's, famous
painting of "Ribera at Rome." which was recently painting of "Ribera at Rome," which was recently
sold by Knoedler \& Co. for about $\$ 12,000$ to a gentlesold by Knoedler \& Co. for about $\$ 12,000$ to a gentle-
man in this city well known in art circles, as a collector of rare and costly pictures. This number also contains a portrait of Bonnat the artist.
Swinton's Supplementary Readers. In Six Booys. I. Easy Steps for Little
Feet; II. Golden Book of Choice Reading; III. Book of Tales; IV Seven american Classics; VI. Seven
British Classics. Edited by William British Classics. Edited by William York and Chicago: Ivison, Blakeman, Taylor \& Co
These readers are intended to supplementany series of school readers, the volumes falling in severity of re-
quirement between the several numbers of the more technical and formal school books in use. In this way they offer half a dozen oases in the ordinary desert of elementary instruction in reading, and are open only to
the possibleobjection that children may not take kindly the possible objection that children may not take kindly
to the less charming books of the regular series after to the less charming books of the regular series after
enjoying these. Certainly in leauty of mechanical make up and illustration, as well as in the excellence far surpass anything in the line of school readers that have come to our table.

The Microscope.

Charles H. Stowell, M.D., and Lonisa Reed Stowell,
M.S., both of them writers and guished ability, have commenced the publication, at Ann Arbor, Mich., of a new bi-monthly magazine, entitled "The Microscope and its Relations to Medicine and Pharmacy." It is a handsome periodical, and welcome this new work. The first number is highly

The Diet Cure. By T. L. Nichols, M.D. New York: M. L. Holbrook \& Co. An essay on the relations of food and drink to health
and disease. The author believes that men eat and drink too much, both in quantity and variety, and that the average death rate is double what it would be were drinking. He also has a vast assortment of notions and crotchets about food and drink which are much less worthy of general acceptance. The professional and dislikes as rules for all men, overlookir, the ob vious fact that, injurious as indiscriminate and excessive eating and drinking may be,the extreme of water
drinking vegetarian dietetics is quite as bad; if any drinking vegetarian dietetics is quite as bad; if any-
thing the latter is less conducive to, or at any rate less associated with forceful and enjoyable living than the former. The men and women who determine and con trol the world'saffairs, who are strongest in thought and deed, are not gen
bread and roots.
[OFFICIAL.]
INDEX OF INVENTIONS Letters Patent of the United States April 5,1881 ,

AND EACH BEARING THAT DATE

 [Those marked (r) are reissued patents.]A printed copy of the speciflcation and drawing of any patent in the a anexed dilist, also of any patent issued
since 1866, will be furnished from this office for one do lar. In ordering please state the number and date of the patent desired and remit to Munn \& Co., 37 Park Row New York city. We also furnish copies of patents granted prior to 1866; but at increased cost, as the sp.
flcations not being printed, must be copied by hand. Advertising device, automatic, W. Akin........... 23 Anthracite waste, etc., for combustion, preparing,
A. Berney

Axle box, car, S. A. Bemis.
Bales, cover for cotton and other, R. Jening.
Bag holder, W. H. Hockensmith.................. Bag holder, W. H. Hockensmit
Baking powder, C. A. Catlin Baking powder, C. A. Catlin
Ballot box, S. T. Bacon ...
Band cutter, wire, B. F. McCarty.
Bed bottom, spring. J. W. Forton.
Bed bottom, spring, E. Oberndorfer
Ned, itter, and chair, combined folding cot, \mathbf{C}.
Bedstead, Grégoire \& Hebert
Beer preserving apparatus, C. W. We............
Billiard cue tips, fastening, G. Zittel Blind wiring machine, C. Hinz
stand attachment for removing sediment from
Boot and shoe sole buffing machine, J. Stevens Boot and shoe sole shaping machine, N. J. Roop..
Bottle wrapper and material therefor, Yocum \& Bottle wra
Kacer..
Bracelet, H.
Bracelet, H. Unger.......................................
Brick machine, L. B. Kenned
Brush holder, H. H. Hurlburt
Buildings, construction of, J. M. Pe.c.........
Burnishing machine head block P. D. Allen Burnishing machine head block, P.
Bushing, anti-friction, H. Loud (r)
Button and stud, W. W. Covell. Button and stud, W. W. Covell............
Button polishing machine, H . W: गerry
Button Buttons, etc., mould or die for forming, J.
Hyatt Buttons,
Hyatt.
Cableway,
Cableway, endless. H. Case
Cake machine, H. Duesh...
Cake machine, H. Duesh.
Calisthenic implement, R. S. Jennings Cap, D. Fox...................
Cap, winter, D. Fox.... Cap, win'er, I. B. Kleinert...
Car coupling, W. L. Nuckols
Car coupling, M. Steffy.
Car heater, P. F. Randolph.
Car spring. J. W. Evans.
Car spring, J. W. W. Evandolp.
Crans.
Car starter, F. Dawson.
Car, stock, W. S. Bright
Car, stock, W. S. Bright..
Car, stock, Eitsee, Illoway \& Keck........
Card, game, W. Stranders
Carpet, pad, and mat, G. L. Witsil Carriage seat backs, c
C. C. Bailey.......
Carrousel, T. A. Carl.
Cartridge holder
Cartridge holder for revolvers, G. W schofeld Cartridge loading machine, w. H. Whitehead.
Celluloid, hard rubber, bonsilate, etc process and apparatus for moullding, J. W. Hyatt Chain, drive, W. D. Ewart. Churn, J. w. Neal.
Cider and wine press,
Cigarette package, J. Straiton
igars, machine for coloring and flavoring, J.
Circuit closer, S. H. Wood
Clevis, S. P. Baughman
Coal and ore breaker, P. H. Shar Coat, N. Malmar
Cock, steam, W. Bronk............
Cock, steam heated water, J. Burn
Coffee pot, Ayer \&s Taylor
Copying press, P. Lehmann....
Corn sheller, J. N. Wolfe
Corset, T. P. Taylor
Corset and dress stay, T. B. De Forest
Cotton and corn scraper
Cotton chopper, E. Hutson
Cotton chopper, e. Hutson
Cotton gin, I. F. Brown...
Cotton gin brush, I. F. Bro
Cotton gin brush, I. F. Brown.
Cotton gins, breast for, C. C.
Crane, hydraulic, J. Hemphill.
Creamer, centrifuga, Bouston \& Thoms
Crib or bedstead, wardrobe, J. W. Knapp
Crucibles, repairing steel and other, J. Pedder
Criter
Cultivator, R. A. Johnson
taching, Workman \& Hitchcock (r)
Currycomb, J. Forsyth..
Cutter head, J. H. Eddy
Cutter head, J. H. Eddy
Cylinder heads, machine for welding, R. A. Carter
Damper, stovepipe, J. H. Goodfellow
Damper. stovepipe, H. H. B. Vincen

Distilling petroleum product
paratus for, A. Neilson
paratus for, A. Neilson...........
Door mat and foot scraper, combined, F, Gree.
land...........

Drying apparatus,
Dust collector, W. H. Foote.
Eaves trough hanger, J. Stricke
Electric light, W. G. Levison...
Electric machine, dynamo, w. L. Voelker
Embroidery, lace, etc packing lengths of, J. W.
Mason (r)
Excavating ma
Fan, M. Rubin
Fan, M. Rubin (r)
Farm gate, C. A.
Ence. J. Fisher...
Fence. L. B. Mesn
Fence. L. B. Mesnard..
Fence lock, W. P. Green

Fencing, metallic barb, A.J. Upham.......239891,

Firearm, breech-loading, A. Martin.
Firearm lock, B. A. Fiske..........
Firearm, magazine, W. H. Elliot.
Firearm, magazine, W. H. Elliot.
Firearm, revolving, F. H Allen..
Firearm, revolving, F. H Allen.....................
Firearms, cyolving, R. L. Brewer................
Fire extinguisher, automatic, C. Barnes..
Fire extinguisher, automatic, F. Grinnel
Fire extinguisher. automatic, F. Grinnell..
Fish plate, G. H. Waring.............
Fish plate and bolt. combined, J. M. Ay er.
Flagstaff holder, B. Smith..
Flax dra wing machine, F. Mahler.
Floor, portable, J. Ring
Flue cleaner, boller, D. H. Sweene
Fog horn. H,
Flue cleaner, boler, D. H
Fog horn. H. . Langrehr
Foot rest, L. Wittich.....
Furnace, F. Hundt...

Gas generator, R. H. Smith.....................
Gatighting apparatus, automatic electric, w.
Vogel 239,896
Gas lights, apparatus for automatically igniting,
extinguishing, and regulating. J. Schülke....
extinguishing, and regulating. J. Schülke.....
Gasoline burner, w. E. Vernon.
Gasoline burner, W. E. Vernon.................... 239,
Glass melting furnace, J. J. Gill.............
W. Haley..
Glove fastener, D. J. Bard

Glutinous or plastic materials, manufacture of
articles from. H. G. Guild
Grain binder, I. Lancaster (r)..............................
Grinder, feed, L.J. Caldwell..
Grinding mill, A. H. Bell.
Grinding mill, feed, A. S. Bake
Grinding mill, feed.
Gun, blow,. Alex...

Heel and
Heel protector, T. L. Keif.
Hides, machine for unhairing,
Hinge joint, etc., J. M. Dodge.
Hod elevator, G. W. Brown
Hod elevator, G. W. Br
Hod elevator, J. Smith
Hog seraping machine, R. C. Tompkins.
Hoop cutting machine, c. E. Cbittenden.
Horse litter, T. M. McDouall..........
Horse litter, 'T' M. McDougall
Horseshoe pid, C. A. Wells...
Hose air furnace, G. E. Hopkin
Hot water generator, J. D. Carmod
Hub boring machine, A. O. Withey
Hydrocarbon burner, C. Holland.

Hydrocarbon furnace, b. burner, J. J. Wa............... 239,783
Ice cream freezers, holder or clip for, T. sands.... 239,674
Ins.
Iee machine, C. C. Palmer
Insulating electrical conductors, W. T. Henley
Iron, apparatus for dephosphorizing, E. \& E
Ironing board, E. L. Schlotterback..
Ironing board, shirt, E. Birmingham
239,621
239853
239,704
Ivory, manufacture of a factitious material to imi-
Joint or hinge for
derhill........

Johnson.

Level road, engineer's, M. L. Lynch
Lock case, indicator, F. W. Mix.
Lumber, etc.. drier, E. V. Wingard ..
Meat cutting machine. 'T. Williams, Jr..

Millstone ventilating apparatus, etc., self-acting
screen cleaner for, G. Behrns
Moth and waterproofing compound, , D. M. Lamb........ \mathbf{r})
 Nails and tacks, machine for affixing caps to, H .
Necktie, A. F. Chase...........
Necktie fastener, H. Selvage
Necktie fastener, H.
Nut for power screw of pressese, R. H. Butler.
Opera, school, and office chair, E Shup
Opera, shool, and office chair, E. Shupe
Ore treating apparatus, C. C. Coats.
Ore treating apparatus, C. C. C
Paddlewheel, T. C. Robinson .
Paper cartridge machine, G. P. Salisbury......
Paper machine screen plate, Pinder \& Hard
Paper machine sereen plate, Pinder \& Hardy...
Paper pulp from wood, machine for making, R.
Lane.
Paper watch dial, A. Bitner.

Piano action, Guillaume \& Beunon.......
Planing machine, rotary, E. F. Gordon..
Planing machine, rotary, E. F. Gordon................. 2399,65:
Plant setter and fertilizer distributer combine,
M. I. Goldsmith................................... 239.764
Planter and cultivator, combined seed, J. H. Jones 239799

Planter, check row corn, w. D. Furguson 239,751
Planter check rower, corn, L. D. Benner..... ${ }^{239}$
Planter, combined corn and pumpkin seed, J. P.
Van Vleck.
Planter, cotton, M. M. McFall..
Planter, cotton, M. M. McFall...................... .. 239,1 . Crow............ 239,

Plow beam attachment, J. T. Cun
Plow, reversible, J. Hartmann..
Poison plate, fly, W. E. Hingston
Potato digger. .. Arnold..
Printing machine, c. Machris
239,735
$\times 23973$
.239781
.23969
Pump, oil and liquid, Nichols, Manwaring \& Live
Railway brake. W. P. Thompson.
Railway rail fastening, Clements \& Light.
Railway time signal, A. P. Burroughs
Railway time signal, A. P. Burroughs..................
Reféctor, heat. J. Southward...............
Refuse and other material, machine for separa
ing and other, H. Newlin.
Register font rest, G. W. Woodwar
Rocking chair, platform, J. Flinn.
Rocking chair, platform, J.
Rope fastening. J. D. Paldi.
Rowboat seat, C. T. So
Saddle, C. H. Veder.
Saddle tree, P. Bottge
Saddle tree, P. Bottger...........
i Sails, reefing, T. B. Wilson...
239.828
239887
239731

2393731
239719
239.873
239.719
-239873
$-\quad 23989$

239826
239,09
239,754
239,754
239834
239872
239,29
29309

Sash fastener, E. E. L. Barbe	
w teeth, machine for dressing. H. F	
Simonds et	
Sele, dividin, L. Ap	
neck,	
Scraper, road, J.P. Summers	
ing machine, J.P. Fulgham.............	
ham... 2	
Shingle gauge. E. R. Gay.........................	
ns, device for ornamenting, Lepine, Fils \&	
Sling. J. Smith.......	
Sound by electricity, apparatus for transmitting, A. E. Dolbear.	
Spark arrester, J. S. Oliver. Speaking tube mouthpiece G. F Richter	
Dodsworth \& Holdsworth.	
C. Crocker	
Spoke socket and felly plate, combined.J.S.Shinn 239 Stand B. B. Hill	
Staples, manufacture of, C. W. Dean...Station indicator, G. F. Woolston.....	
Steering apparatus for ferry boats, J. Gates.........	
Steering apparatus for vessels, friction brake for, . J Stevens. 239 .	
Step or mer cutting cylindrical forms	
Stone, machine for working natural, G. . J. SchmiatStool foldine Butler $\&$ Blood	
Stoves. fre back plate for cooking. W. I. Perkins.. $23,8,36$	
Strainer and stopper for wash basins, etc., C. C. l’arker \qquad	
Straw cutter, L. Becker (r)...............99,642	
Sulky, F. Terbush........ 239,888	
Table G. Pleukharp	
Telegraph key, J. Cain.. Telegraph lines, construction of aerial, O. F.	
Telegraph wires, mechanism for laying, E. T Greenfleld.	
lephone, J. T. Mc	
Tellurian, J.A.	
luri	
rashing	
cket case	
Toba coo, manufactur	
硡	
Triple w	
ehicle	
veneer cutting machine, F.L. Wison.............	
	Ventilating furnace for mines, J. R. McBroome..
Wagon, dumping, L. Rodenhausen ${ }^{239}$	
ashing machiWatch. L. Dee.	
Watch pendants, attachment of. C. K. Colb	
Water closets, W. Blackwood, Jr	
Water wheel, turbine, C. Angs	
ck, lamp, C. A. Schneide	
Wine manufacturing, F. A. A. Reilien	

DESIGNS.
$\underset{\text { Blind pull, R. E. Goodrich.... }}{\text { Mirror frame. J. J. C. Smith }}$

Stage seene, T. Dals
Toilet ware handile, L. Berger.

English Patents Issued to Americans.

From April 1 to Apri15, 188, inclusive.
Mass
Electriclighting apparatus,
Electrichighting apparatus, A. G. Hoccombe, Danelelso
Grille conn.
Grin elenning machinery, L. Gathman. Chicago..Il. Harvester rakes, Johnston Harvester Company, Brock Lock, L Hunt. New York city.
Mining machinery, F. M. Lechner,
Motor, L. Gampee, Washington, D. C
 Spinning frame, J. Y. Anthony, Taunton, Mass
Thermometer, W. B. Fowle Newton, Mase.

HOL TV Latest Improved Electrical Machines

Toonds s Patodit Rofniognator

w. c. wren's
Pat. Grate Bal D. S. CRESWELL, Eagle Iron Foundry PhILADELPHI, PA

PATESTSSODD Partuers

 TTh only etabilikment making a SPECAL Rose THE DNGEE \& CONARD CO
 102
 YOUR NAME In Noem Type on 10 Oit

 DO YOUR OWN PRINTINE
 Over 2,000 atyle os of type. Catalogue and reduce price ilist free, H. HOOVER, Phila., Pa.

 Harrington, and sed in Unverityt of seem. ANDREW CLIMIE, Ann Arbor, Micl

FOUND
The steam pumps made by
ALLESTMACHINE CO., re the best in the world for Boiler

MANUFACTURERS OF IMPLEMENYTS
to barrel Petroleum out of large tanks with self-regu-
lating villes

GLUCOSE-A COLLECTION OF VAL

THE STEARNS MANUFACTURING CO. ERIE, PENNSYLVA NIA, make a specialty of improved SAW MILL MACHINERY.

ORNAMENTAL INITIALS.-A pom-

 THE EGYPTIAN OBELISK IN AMERICA.

 SCIENTIFIC AMERICAN SUPPLE
 the eonntry.

PERIN BAND SAW BLADES,
 DRAUGHTSMAN.-WANTED, AN EX-

 ICE-HOUSE AND REFRIGERATOR.

SNOW'S BEST Water Wheel Governor, MANVFACTURED BY
COHOES IION FOCNDRY
AND MACHINE CO.D соноеs.

DRUNKENNESS OPIUM TTADOIt

MESSRS. MUNN \& CO., in connection with the pub.
 or Inventors.
In this line of business they have had thirty-fve years' experience, and now have unequaled facilities for the preparation of Patent Drawings, speciifcations, and
the proseution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats,
Copyrights for Books. Labels, Reissues, Assignments, Copyrights for Books. Labels, Reissues, Assignments, and Reports on Infringements of Patents, All buisiness intrusted to them is done with
ness, on very reasonable terms.
A pamphlet sent free of charge, on application, containing full information about Patents and how to pro-
cure them; directions concerning Labels, Copyrights, Designs, Patents, Appeals, Reissues, Infrigements, A8ents, etc.
We also send, free of charge, a synopsis of Foreign Patent Laws, showing the cost and method of securing
patents in all the prineipal countries of the world mUNN \& CO., Solicitors of Patents,
${ }_{37}$ Park Row, New York.
BRaNCH OFFIC

 RUBBER BACK SQUARE PACKING.
$\overbrace{\text { B. }}^{3}$ For Packing the Piston Rods and Valve Stems of Steam Engines and Pumps. A the elastic baatk, part of the packing which, when in use, is in contact with the Piston Rod.
creates but iltile triction part B against the rod with sufficient pressure to be sieam-tight, and yet
this Packing is This Packing is made in lengths of about 20 feet, and
JOHN H. CHEEVER, Treas. NEW YORK BEL
W. S. HOLLAND \& CO., Burlington, Vt.g W. S. HOLLAND \& CO., Burlington, Vt.,
Manufacturers of all kinds Hive and Hong Sections.
Alsoll Walnut Cabinets for Druggists and Merchants,

 WOOD PRESERRVED

 ORGANS shepards celebilated Sbi Screw Cutting Foot Lathe

 SURFACE FILE HOLDERS.

The BELMONTYLE OIL

FOUR SIDED MOUDER, WITH OUT

To Electro-Platers. $B_{\text {ATMe }}$ ATERISS, CHEMICALS, AND MATE

ERICSSON'S

New Caboic Pamining Engino
DWELLINGS AND COUNTRY SEATS. Simplest cheapest, andmost economical pumpingen ine
for domestic purposes. Any servant fri cang operate
DELAMATER IRON WORKS C. H. DELAMATER \& CO., Proprietors,
No. 10 Cortlandt Street, New York, N. Y.

F. E. REED,

 Drills, Planer centers, etc.
Foot Power Lathes
a Specialty. WORCESTER, MASS
Pond's Tools,
DAVID W. POND, Worcester, Mass. MACHINERY
of every description. 121 Chambers and 103 Reade Sts.
New York, THE GEORGE PLACE MACHINERY AGENCY WAYMOTH LATHE.

 HARRKISNCOHLINS ENGINE With Harris' Patented Inprovements,
from 10 to 1,000 H. P.

MACHINISTS' TOOLS.

 THE BAKER BLOWER.
 The revolving parts are Warranted Superior to any WILBRAHAM other. 2318 Frankford Avenue SEND FOR OUR CATALOGUEz

Roots' New Iron Blower.

positive blast.
IRON REVOLVERS, PERFECTLY BALANCED Is SIMPLER, AND HAS fewer parts than any other blower. P. H. \& F. M. ROOTS, Manufrs, CONNERSVILLE, IND
 a-send for Priced catalogue

WITHERBY, RUGG \& RICHARDSON Manufactur er
of Patent Wood Working Machinery of every descrip

 $\xrightarrow{\text { Poarter it }}$

SHAPINC MACHINES.
 Shafts, Pulleys, Hangers, Etc.
 VOLNET W. MASON \& CO. PRICTION PULLERS, CLUTCHES, and RLEVATORS, providence, r.i

GOLD

The CALLI-GRAPHIC' Pen.
 luxury for person MABIE, TODD \& BARD, 1SO BROADWAY, for Price-Litt. NEW YORK.

ginoles

 ellers, Model Makera, Blackemithe, ,Oanchmakers, otc TLLMAN \& MCFADDEN, $\mathbf{6 0 7}$ Market St., Philad's.MACHINISTS' TOOLS. Iron Planing Machines c. whicconis speath, Woreser, Mase
"The 1876 Injector."

The attention or Architects, Encineers, and Builders

 ruption io business in consequance or fre. Boo or de.
tanlod information furnished to A rchitects, Engineers,
and Bullders, on applicatlon.

New York Ice Machine Company, ${ }_{21}$ Conrtand St, New York, Rooms 54, 55. Low PREssure binary absorption system.

ICE AND COLD AIR.

Diamonds ${ }^{2}$ Carbon

For all kinds of
Mechanical Purposes. Carbon for Mining Drills
Sest quality at the lowes
price.
Established House in the U. S.
G. DICKINSON,
Nassar Street

BOYLE ICE MACHINE CO. Ice Machines

Refrigerating Apparatus. No. 10 N. Jefierson street, Chicago, lll.

BOILER COVERINGS. Patent "AIR SPACE"’Method
ANBESTOS MATERIALS.

THE BACKOS WATERMOTOR

WATLR Moficis

ICE AT \$1.00 PER TON.
 Mill Stones and Corn Mills. We make Burr Millstones, Portable Mills, Smut Ma-
chines, Daccers, Mill Picks, Water Whe wis, Pulleys, and
Goarins speciall adapted to Flour Mills Seld for Gearing specially adapted to Flour Mills. Send fo
catalogue.
J. T. NOYE \& SONS, Buffalo, N. Y.

EJECTORS

are the cheapest and most effective machines
in the market for
Elevating Water and Convejing Liquids

 ies, Chemical Works, etc. Send for illus. catalogue Sole Manufacturers, NEW YORK.

THE NEW PULSOMETER AS A STUPFF PUMP.
 PULSOMETER STEAM PUMP CO, 83 John St, N. y.

The Cameron Steam Pump,

 COID, sinvism, io MIINES,also for general manufacturing and FIREPUMPS
 Aateen THE A.S.CAMERON STEAM PUMP WORKS;

JERSEY AND GUERNSEY CATTLE, EDWARD PHLLIP PARSONS FOWLER,
ON THUREDAY MORATING, MAAY 12, 1881, herkness' bazaar, ninth \& sansom streets, erend for a Catalogee. - phladelpha.-

JOSEPFIC TODD, TODD \& RAFFERTY, PATERSON, N. J., Engineer and Machinist.
 The New Baxter Patent Portable Steam Engine. PRINTING PRESSES,
 ${ }^{1}$ Hases Power siso
 J. C. TODD, Paterson, N. J., Or No. 10 Barclay St., New York.
ARNOUX-HOCHHAUSEN ELECTRIC CO. [ELECTRIC LICht.] Offer theirmachines for single and serie
ing their successful operation. Refer t Iron Pier, Coney Island,
Faul 1 Bauer, Faul Bauer,
Messrs. . . Ridley \& Sons,
 OFFICE AND SALESROOMS, 227 EAST 20th STREET, NEW YORK.

HYY.JOHIS' ROOFING.
 HW.JOHIS Ms8EsFos bulen Coveringo

 fireproof coating) is now in use in all parts of the consist of Asbestos Cement Felting, a light, porous, fireproof coating) is now in use in all parts of the fireproof material, partaking of the nature of aworld, and is the only reliable substitute for tin. Felt and a Cement, to be applied with a trowel; and world, and is the only reliable substitute for tin. Asbestos Air-Chamber Cwering, a combination of It is intended especially for Factories, Foundries, HairFeltand Asbestos. They are prepared ready
warehouses, Railroad Buildings, Bridges, Car and for use, can be easily applied by unskilled workWarehouses, Railroad Buildings, Bridges, Car and for use, can be easily applied by unskilled work-
Steamboat Decks, etc., and is adapted for steep or men, and form the most durable, effective, and Steamboat Decks, etc., and is adapted for steep or flat roofs in all climates. It costs only about half as much as tin, and can be easily applied by any

.

and get the GENUINE, which are manufactured only by
H. W. JOHNS M'F'G C0., 87 Maiden Lane. New York, Manufacturers of Genuine Asbestos Paints, Steam Pipe and Boiler Coverings, Boards, Gaskets, Steam Packin
Sheathing, Fireproof Coatings, Cements, etc. Illustrated Catalogues and Price Lists free by mail.

SHAFTS PULLEYSHANEEAS

CATALOGUED.
THE FOLLOWINQ MANUFACTURERSARE PRO-
MINENT IN THEIR RESPECTIVE LINES; IN MINENT IN THEIR RESPPETIVE LINES; IN
SHORT, ARE HEADQUARTERS:
WIRE ROPE
 HOISTING ENGINES. COPELAND EX BACON, MACHINIST' 'Tools AND SUPPLIES.
 ROCK DRIILS \& AIR COMPRESSORS.

Iehigh Valley

Establid EACLE ANVILS. 1843
Solid CAST STEEL Face and Horn. Are Fully War-
Double Screw, Parallel, Leg Vises.

The Greatest Rock Breaker on Earth

STEARNS SAW MILLS. Sawn
STEARS MANIFFACTIRING ComPANY, Erie, Pa
howard mavufacturing co. Manufacture and Introduce Patented Novelties THE DIADEM COMB

KORTINGS UNVERSAL NEETORS $=2$ HARTFORD
STEAM BOILER Inspection \& Insurance COMPANY
W.b. Franilin.V. Pres't. J. M. Alle J. B. PIERCE. Sec'y

BRADLEY'S CUSHIONED

 " buckeye, LAWM MOWER The lightest and easiest run
ning MowER ever made.
STRICTLY FIRST CLASS.
 springfield,
Send for catalogue.
Jawvis Furnace Co.

PRINTING INKS,

