
a WeEkiy jotrrala 0f prartical information. art. ScIence, mechanics, chemistry and manufactures.

Vol. NLIV.-NG. 13. [NEW series.]	NEW YORK, MARCH 26, 1881.	

PROPRIETARY SPECIALTIES-A VOGELER \& CO. BALTIMORE MD -[See page 194.]

§rientifici Smurixam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
PUBLISEED WEEKLY AT
NO. B'7 PARK ROW, NEW YORK.
o. D. MUNN.
A. E. BEACH

TERMS FOR THE SCIENTIFIC AMERICAN

 One copy, one year postage included.One copy, six months, postage included
Clibs.-One extra copy of The Scientific Anerican will be 160 gratis for every cub of five subseribers at $\$ 3.20$ each: additional copies 2 Remit by postal order. Address
Rrepaid.
 is issuod weekly. Every number contains 16 vetavo pages, uniform in size
with ScieNTIIC AMERICAN. Terms of subscription for SuPPLEMENT, with Scientipic Americhin. Terms of subscription for supplenlent,
$\$ 5.00$ a year, postage paid, to subseribers. Single copies, 10 cents. Sold by ail news dealers throughout the country.
 will be sent for one year postage tree. on receipt of
papers to one address or different addresses as desired. The safest way to renit is by draft posta
Address MUNN \& CO . 37 Park Row. N.

Scientific American Export Edition, The ScisNTIFIC AMLRACAN Export Edition is a largeand splendid peri- odical, issued once a month.

NEW YORK, SATURDAY, MARCH 26, 1881.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 273.

For the Week ending March 26, 1881

Price 10 cents. For sale by all newsdealers.
engineering and MECHANICS.-The Proposed Tehuantepec Ship Railway. By Chas. W. Zaremba, Mexico.-Position of the Mexican Government.-P'anorama of the Isthmus of Tehuantepec.
-The Atlantic plains.-The central part.-The Pacific plains.-Will it pay?-Distances.-Climate.-Vegetation.-Trees and plants.Geological structure.-Rivers and harbors
Fulton's First Steamboat. Plan and elevation from the inventor's origiua drawings.
Calvert Sireet B
The Washing of Fine or Pulverized Coal. 4 digures. - Machinery -Longitudinal section.-Plan.-Sectional end view.-Transverse . NatURAL history, etc.-Don Cossack, the Fast Trotter. illustration.
Scientific Breeding. By J..
A Buffalo Race in the Philippine Islands. 1 illustration.-The caraboo, or buffalo, of the Philpppines.
 Animal Life. By Dr. J. H. BARKER
Export of American Hogs
i. PHYSICS AND ASTRO

Prof. S. P. Lavgley.
Recent Studies Among the stars. By Prof. IsAAC SHABPLESS. Variable stars.-Star systems.-Distances.-Substance of stars.-Colors.-Stages of star change.-Physical condition of stars.-V ariations of brightness.-The sun--Motion of stars.-The Milky Way.
-Star development and destruction.......................
V. ARCHEEOLOGY.-Egyptian Antiquities. 10 large illustrations.
Temple at Esneh.-Pylon of Ptolemy Euergetes.-Front of the Temple at Esneh.-Pylon of Ptolemy Euergetes.-Front of the Whirling Dervishes.-Colosss at Thebes.-Rameseum, with fallen figure of Ramses II.-General V lew of Philæ from the Island of Biggeh.......................
The Pyramids of Egypt.

Diggings in Bœootia.

. MEDICLNE.-The Early Practice of Medicine by Women. By Prof. H. Carrington bolton. Egyptian Female Gynecologists the Middle Ages. - Eminent female physicians of modern times.... On the Beneficent and Toxical
Rhus. By T J. W. Burgess..

1. TECHNOLOGY.-Modifcation of Emulsion Processes..... Tanning in 1880. A paper on
and upon mineral tanning...
VII. miscellaneous.-

Industrial Education..........
The Swill Tubs of New York.

```
*.............................................................
```


A NEW TRADE MARK LAW

By act of Congress, July 8, 1870, provision was made for the registration at the Patent Office of all descriptions of trade marks; and by subsequent legislation some very peculiar, we might almost say savage, additions were made for the pursuit and punishment of trade mark infringers. Except as to these last features, the law for trade mark registration proved to be very popular; hundreds of applications were made, and the official rules and machinery for issuing trade mark certificates had become well established, when, on November 18, 1879, the Supreme Court of the United States, in the case of the U. S. vs. Steffens, and the same $v s$. Wittemann, to the public surprise, decided that the whole legislation respecting trade marks must fall, as being void for want of constitutional authority. The court held that a trade mark is neither an invention nor discovery nor the writing of an author within the meaning of the constitution; that no law made under the constitutional athority to issue patents was applicable to the registration of trade marks; that " if trade marks can be in any case the subject of congressional action, that action is limited by the constitu ion to their use in commerce with foreign nations, amon the several States, and with the Indian tribes." Nothing of this kind appeared in the legislation as established, and it was accordingly declared void. The last Congress passed a new trade mark law-approved March 3, 1881-which is intended to avoid the objections raised by the Supreme Court gainst the former law.
The new law retains the principal features of the old but he inquisitorial provisions of the old law for the purs uit and punishment of infringers are struck out.
The new law provides that owners of trade marks used in commerce with foreign nations or with the Indian tribes may obtain registration, at the Patent Office, by paying an official fee of twenty-five dollars, and complying with such rules and regulations as the Commissioner of Patents may prescribe. The duration of the registration is thirty years, with right to renewal for thirty years more on payment of twenty-five dollars additional. Infringers are to be dealt with by the courts.
Persons who have obtained registration under the old law may apply for new regstration under the present law, and in such cases the money formerly paid in by the applicant ball be credited on the new application.
The new rules and forms for practice under the new law are now in course of preparation by the Commissioner of Patents, and will be duly promulgated. In the meantime all who desire to obtain registration, or who wish to have their old trade marks re-registered, are advised to consult with the proprietors of this journal, Messrs. Munn \& Co., 37 Park Row, New York, who will promptly attend to all busiuess thereto pertaining.
The full text of the new trade mark law, and also the new census of the United States (1880) by States and counties, will be found in the new edition of the Scientific American Reference Book, now going through the press Price 25 cents. To be had at this office and of all news dealers.

THE ACTUAL COST OF MAKING ILLUMINATING GAS.

An investigation is going on in Philadelphia touching the management of the city gas trust, the gas works being owned by the city and operated by official trustees. A recent witness before the investigating committee was Mr. E. S. T. Kennedy, expert of the New York Mutual Gaslight Company. Mr. Kennedy said that this company manufactured last year $721,000,000$ cubic feet of gas, 30 per cent of which was from wood, 30 per cent from Youghiogheny coal, and 40 per cent from naphtha. During the year the amount of gas got from a ton of coal $(2,240 \mathrm{lb}$. was 15,000 cubic feet.
The gas averaged 27 candle power, and the price charged was $\$ 2.2 \bar{j}$ per 1,000 cubic feet.
The present process with coal, wood, and naphtha was introduced in August, 1878. It deposits no lampblack, and no heavy oil beyond about 1 per cent, and that is so heavy tbat it is used to great advantage as a fuel in the works. To enrich coal gas, Mr. Kennedy said the method was. to add a certain percentage of cannel coal to the common coal.
The gas is entirely free from smoke, and does not blacken a ceiling unless within three feet of the flame when it scorches. With 120 miles of pipe the loss by leakage is about 8 per cent; it is called " unaccounted-for gas," and the amount of it is determined by deducting from the amount registered in the station meter at the works, the gas consumed in the public lamps, in the of fices and works, and the amount of gas paid for by con umers. The average power of the gas from coal alone is about 16 candles
In the Mutual Works there are three separate depart ments: for coal, wood, and naphtha. In the coal gas de partment the coal is brought into the retort room, and is charged into the clay retorts every four hours. That charge will weigh from 215 to 230 pounds. The retorts are set six to a bench, and in drawing the coal one-half of a bench is opened every two hours. As the gas come off it ascends through a stand pipe to a hydraulic man which receives a portion of the tarry vapors; the gas then passes off, is cooled, and goes through a double purifying process. It is then measured and stored in the holders. The abor is subdivided, so that there is an average of nnety-one one hundredths of a man to a bench. The average produc
tion of coke on a ton of coal is 70 per cent of the original weight of the coal, or a long ton of 2,240 pounds ought to produce 1,500 pounds of coke, or thirty-five bushels. That is the average and ordinary amount produced to-day by the Mutual Gaslight Company.
The average production of gas tar and ammoniacal liquor is 12 or 14 gallons per long ton. The product of ammoniacal liquor varies, some companies producing as low as 15 gallons and others as high as 40 ; the average would beabout 30. The present price of coke is between 8 and 9 cents a bushel; from 2 to $21 / 2$ cents a gallon for tar, and about 1 cent gallon for ammoniacal liquor.
A double system of puritication is employed by the Mutual Company. First, with an iron mixture, and afterward with oyster-shell lime. There are two principal impurities to handle-sulphureted hydrogen and carbonic acid. The ime is used to remove the latter. After it becomes tho roughly charged it is treated to a process of Dr. Wilkinson, the result of which is a lime that does one third more work than any lime that can be bought, and at one-half the cost of the new lime. The same quantity of lime has been used one hundred and fifty times, and the chemist of the com pany thinks it will go on forever. There is no depreciation in quantity or quality. They have been using this process for two years without any increase of the lime.
On the following day, after Mr. Kennedy had inspected the plant and processes employed at the Philadelphia gasworks, he took the stand again. In reply to the question: "What does it cost to manufacture gas?" Mr. Kennedy said:
"The average cost of gas per 1,000 cubic feet in the gasholder is 65 cents; that does not iaclude the cost of distribution. That I consider a fair average price based upon present prices of material and labor. I say 65 cents; it may be a cent or two more or less. I will undertake the management of your gasworks and produce coal gas at the present prices of coal for 65 cents in the holder. My calculation is based upon 16 candle gas.
In reply to the question, "What does it cost your company to put gas in the holders under your processes?" Mr. Kennedy replied: "Less than 50 cents a thousand." The Mutual Company expect eventually, he said further on, to manufacture from wood and naphtha exclusively, when the cost would be from 35 to 40 cents.

LAGER BEER

Lager beer, the beer of Bavaria (and the United States), is prepared by a slow process of fermentation from strong infusions of malt, barley, and hops and grape sugar or glucose. The beer is usually fermented in winter, as it re quires a temperature of not more than from 40° to $50^{\circ} \mathrm{Fah}$.; and in hot weather the rooms must be cooled by means of ice or ice machines.
This kind of fermentation is what is called sedimentary or under fermentation, in contradistinction to ordinary or surface fermentation-the scum or yeast collecting at the bottom instead of at the surface, so that the air has free access and the gluten is more completely converted into yeast. This bottom yeast is quite different from ordinary yeast, and has a tendency to induce the kind of fermentation by which it was produced.
The following is a brief outline of the process employed at one of the largest lager beer breweries in New York city:
The barley is placed in wooden cisterns, covered with water, and allowed to remain for two or three days in soak, the water being changed once in twenty-four hours. It is then allowed to drain, and is subsequently thrown out in heaps on stone floors, where it heats spontaneously and soon begins to germinate, throwing out rootlets and shoots and evolving part of its absorbed water-sweating. It is then spread out and the germination allowed to proceed for from six to ten days, until the rootlets become brownish; then spread and tossed about to cool and check the fermentation. It is then put into large brick ovens or kilns, at a temperature of about 125° Fah., to dry.
The barley is now malt. It is first crushed by passing between a series of large rollers, and next is transferred to the mash tubs, where it is stirred about with water at 120° to 140° Fah., and boiling is then gradually added until all is heated to about 170° Fah. The infusion or wort is allowed to stand until the suspended matters have settled, when it is drawn off, and a second wort is obtained by treating the residuum with hot water. The first wort is boiled with the hops, the second wort is then let in, and the whole is boiled for about four bours. It is then run into the cooler, where it is quickly chilled to between 44° and 50° Fah., by running over small pipes through which cold water is continually flowing. As soon as it is properly cooled it is run into the fermenting tuns, where it is mixed with one gallon of yeast for every 20 to 25 bbls. Fermentation continues for about 20 days. At first there is a healvy froth, which soon subsides, however, leaving the surface clear. At the end of this period it is racked off into hogsheads, the yeast remaining at the bottom of the tuns. These hogsheads are allowed to stand with the bungs open until a few days before the beer is put into barrels for use, when the bungs are driven in to accumulate carbonic acid for life. Three varieties of beer are made.

1. "Lager," or summer beer, is prepared from the following:
[^0]Grape sugar or glucose can be made to substitute part of the malt, and is very commonly used for this purpose; in some cases to fully one-fourth the weight of the malt Lager beer is usually stored from four to six months:
2. "Schenk," winter, or present use beer:

Water	1 barrel.
Malt.	2 to 3 bushel
Hops .	1 lb
Yeast.	out $\frac{1}{3}$ pint.

It is ready for use in from four to six weeks.
3. "Bock" beer, an extra strong beer, made in small quantities and served to customers in the spring, during the interval between the giving out of the schenk beer and the tapping of the lager. In its preparation are used:

Bock beer requires about two months in its preparation.
Starch, grape sugar or glucose, glycerine, and molasses re not unfrequently introduced into beers to replace part of the malt, while pine bark, quassia, walnut leaf, worm wood, bitter cloves, aloes, etc., are sometimes used to neu rralize acidity or conceal dilution.
The color of the beer depends much upon the care with which the malt is handled and the temperature with which it is kiln dried. 90° to 100° Fah. produces pale malt; 120 o 120°, amber malt. At temperatures above this the mal becomes brown, and the wort produced from it has a simi lar color. The malt should be dried so that every part of it becomes crisp.

TO MAKE AND MAINTAIN A LAWN.

Nothing gives a greater charm to a country home than a nice lawn. Its soft green is a delightful relief from the bright glow of the sun and the reflected light of summer skies. To secure it requires considerable pains at the outset, and constant painstaking thereafter, but the owner will be amply rewarded for his labor and trouble.
The preparation of the soil must be thorough, as it is the very basis of success. If there be a good natural clay subsoil, with a covering of loam, this part of the work will prove comparatively easy; but if, as is often the case in newly improved grounds, there is only the bare clay to begin with,- or if the subsoil be a leachy gravel, the task of pre liminary preparation is not light.
Suppose the plat to be a bald piece of clay from which n the grading, every vestige of the superficial soil has bee removed. If beds of rich loam are at hand and available the loam may be carted upon the plat to a depth of from eight to ten inches, and leveled by thorough barrowing and olling. If good sods are convenient, small lawns may be made by sodding, in which case a depth of three or four inches of loam upon the clay, underlining the soil, will be sufficient. If suitable loam is not attainable an artificial soil may be made. The clay should be plowed when moist, or spaded into clods and allowed to bake in the sun till the umps can be pulverized. A heavy wooden mallet or beetle s a good tool for breaking the lumps. Upon the surface of the broken clay a layer of from three to four inches of screened coal ashes should be spread and thoroughly mixed in. The pulverizing and mixing should proceed together, for if rain should chance to fall on the clay after it is beaten fine it will again form a coherent mass. The mixture of clay and coal ashes will not compact like the raw clay. The ground so prepared should next receive a layer of two or more inches of well rotted manure, or from three to four inches of street dirt, which is better if it has lain in heap for a year or so. The manure, whether it be from the stable or from the streets, should be thoroughly mixed with the pounded clay and ashes by forking if the plat is small, or by harrowing and cross-harrowing if large and after seeding or sodding the surface should be well rolled.
Gravelly leachy soils are the worst for lawn purposes. It will be cheaper in the end to cart clay upon the gravel to make an impervious stratum, when clay can be cheaply obtained, superimposing a suitable soil upon the clay. No matter how thorough the preparation may be, a good deal of attention is required every year to keep lawnsin perfect condition.
When weeds have made their appearance, as they are sure to do when animal manure has been used or when natura sods have been laid, they must be carefully removed; and to avoid their reappearance, the subsequent fertilizing should be by artificial fertilizers. We find in the Boston Journal of Chemistry a recipe for a lawn fertilizing mixture which com mends itself to our judgment as being among the best:

Nitrate of soda.

This amount is sufficient for one acre, and should be applied once a year, or twice on poor soils. The best time is early in the spring, after the snows have melted. It must be distributed evenly and with care. Those who have small plats of ground devoted to a lawn can readıly estimate the amount of fertilizing material needed if they will measure he plats. The mixture of the materials should be as per fect as possible
A mixture of 125 lb . nitrate of soda with 150 lb . super phosphate of soda, also makes a good top-dressing for a acre of land.

The substances named should be of prime quality to render the quantities named sufficient. The superphosphate of not be less than 90 per cent pure.
These fertilizers will also renovate lawns when they have partially run out, and are considered by some as better than manuring with stable manure, turning it under and seeding again, a course which is enriching, but apt to disfigure the lawn with unsightly weeds. A top-dressing with stable manure will also renovate a lawn, but it also restores the weeds, and is offensive to sight and smell. Bone meal is a capital thing for a lawn. It is odorless, clean, and gives a rich green color to the grass.
Lawns should be mowed as often as once a week, leaving the short cut grass on the plat. The wilted cuttings protect he roots from
A lawn which has a good clay subsoil will stand ver dry weather, but there are occasional seasons when it is absolutely necessary to water artificially in order to prevent the appearance of unsightly yellow spots. On small lawn this may be easily done by a garden hose; large lawns may be watered by an ordinary street sprinkling machine having wheels with very broad tires to prevent cutting the urf. Just before nightfall is the proper time for watering. During the night the water will soak down to the oots instead of evaporating rapidly, as it would in the hot sun.

an interesting region

In Western Pennsylvania can be found two regions utterly unlike in their industrial characteristics, and which at the same time cannot find duplication in the world. The oil region of the Northwestern part of the State, with its wells, tanks, and pipe lines, is unique in itself, but no less so than the more restricted area. in Southwestern Pennsylvania, known as the "coke" regions. From a strip of territory three miles in width and fifty in length is drawn the solid carbon which feeds blast and smelting furnaces from Lake Champlain on the east to Omaha and St. Louis on the west, and from Canada to Tennessee. At no time since the trade was founded, some twenty years ago, has there been such activity in the Pennsylvania coke regions as at present, hence an out line of the nature and peculiarities of the industry is not out f place.
The vein of soft coal from which the famous "Connells ville" coke is wholly made, is a magnificent deposit, well defined, and easily worked. Its average thickness is 11 feet, though but 8 feet is found adapted for coking purposes. This deposit is in the form of a shallow trough, preserving a parallel with the trend of the Allegheny mountain ridge and cropping out at its northern limit, at Blairsville, Indiana County, Pa . The southern limit is found near Morgantown, W. Va. Before referring to the extent of the trade it will be as well to state what are the peculiar virtues which win for this fuel so wide a market. Its elements of excellence are threefold, namely, great proportion of fixed carbon, free dom from sulphur, free open texture, strength of fiber, and ability to resist crushing pressure. The last quality renders invaluable in furnaces charged with immense weight of re or metal. An analysis of the best coke of the region gives the following: Fixed carbon, 89 80; ash, $9 \cdot 44$: bitumen and moisture 0.52 ; sulphur 0.24 ; total, 100 .
The growth of the trade has recently, owing to the exten sion of railway shipping facilities, been rapid, and from few hundred coke ovens in 1860 , the industry to day shows a total, in round numbers, of 6,000 ovens in active operation and between 1,500 and 2,000 ovens in process of construction. Each active oven having a weekly capacity of nine tons of coke, the present output of the region is easily found to be $\times 53 \times 6,000$, or nearly $3,000,000$ tons per year The value of the article at the ovens is at present $\$ 1.75$ per ton, showing the year's output to be worth five and a quarter million dollars. Each oven represents an investment in lands, machinery, horses, cars, etc., the sum of $\$ 800$, and the value of the best coke-coal lands is from $\$ 300$ to $\$ 500$ per acre, the last figure being only obtainable for giltedged property, self-draining, and near to shipping facilities. To perate these 6,000 ovens requires an army of 10,000 miners, "drawers," drivers, etc. The process of coking is one of primitive simplicity. The freshly mixed coal, without preparation of any kind, is dumped into the opening in the apex of a "beehive" oven of fire brick, and of the following dimensions: Diameter at base, 12 feet; height in center, 8 feet; opening at apex, circular and 2 feet in diameter. A "charge" of coal is 1.00 bushels, covering the bottom of the oven to a depth of about 18 inches. No fire is applied, the heat from the previous charge serving to ignite the coal. The "coking" process goes on for 48 hours, a limited amount of air being admitted through temporary brickwork built in the arched doorway at the base of the oven wall. Two charges of " 48 hour" coke and one of " 72 hour" complete an oven's weekly record, the longer charge occupy ing the oven during Saturday, Sunday, and Monday, and the result being a harder and more desirable grade of coke. From the 100 bushels of coal, weighing 76° pounds per bushel result 120 bushels of coke, weighing 40 pounds to the bushel.
To transport the product of this region is a rich prize for which the three great railway lines of the country are competing. The Baltimore and Ohio for a time enjoyed a mo nopoly by virtue of the nearuess of the Pittsburg branch the Pennsylvania Railroad, by a branch-the Southwesters

Pennsylvania Railroad-recently tapped the coveted trade and still later the N. Y. Central, N. Y., Lake Erie and West ern, and N. Y., P. and O. roads, by way of the Pittsburg and Lake Erie road, are found pushing forward toward this egion of perpetual fire, sulphurous smoke, and fat freights. At present cars cannot be obtained as fast as desired, many coke firms being restricted to three days' shipments each week instead of six. Rates on coke are $\$ 1.162 / 3$ per ton to Pittsburg (50 miles), $\$ 3.50$ per ton to Chicago, and $\$ 4$ to New York. This is at the rate of $\$ 14, \$ 42$, and $\$ 48$ per car espectively.
Even to the stranger hurrying by rail through this part of Pennsylvania the region is full of interest, the ceaseless fires lighting up the rugged hillsides, and the smoke covering the land like a pall. This outline of the region would be incomplete without reference to a novel project just set on foot for utilizing the daily waste of $100,000,000$ cubic feet of gas hrown off by the coke ovens. Two Pittsburgers, Messrs. R. H Smith and C. C. Markle, have organized a company, applied for a charter, and also asked right of way through Pittsburg streets for their gas pipes. The gas will be brought from the coke ovens through a 24 inch main, 50 miles long, and furnished to consumers for heating purposes, also to the 971 puddling furnaces and 1,000 steam boilers of Pittsburg. By a system in which superheated steam plays a part, folowed by washing, the projectors get a gas at the ovens rich in heating properties, but not suitable for illuminating purposes.

A NEW AMERICAN GEM.

At the last meeting of the New York Academy of Sciences, Mr. G. F.. Kunz read a short paper upon the new mineral ' hiddenite," discovered not long ago in North Carolina by Mr. Wm. E. Hidden, mineralogist. The minral constitutes a new gem, of the emerald class, and is known in the trade as lithia-emerald, owing to the presence of lithia as one of its chemical constituents. We have seen some specimens of this gem, and they are indeed most beautiful objects to the eye. The stone has a pure delightful green tint with a liquid brilliancy that is quite distinctive and remarkable. It sells for about the same price as the diamond. Mr. Hidden tells us that the mineral is found in a narrow chimney in the rocks, not more than two feet long by two and a half inches wide, and having an inclination of almost seven degrees. We give a report of Mr. Kunz's paper in another column, and in our next Supplement we shall publish the remarks upon the same subject by Prof. J. Lawrence Smith.

A Reporting Machine.

An interesting trial of a stenographic machine was made in the Chamber of Deputies, Paris, February 18, in the presence of M. Gambetta and a number of other officials and members. The mechanism, which is an Italian invention, is worked by a kind of key board similar to that of a small piano, and the stenographic signs, not unlike those used in the ordinary French short-hand, are automatically printed on a continuous ribbon of paper. The signs registered, of course, represent sounds, irrespective of spelling, and the machine can be used by a person unacquainted with the lan guage spoken. The daughter of the inventor worked the machine successfullyं, taking down a speech read, at average speed, in Italian, and one read in French by M. Gambetta, she being ignorant of the latter language. A comparison between the speed of the machine and that of the short-hand writers of the Chamber proved favorable to the former. Further experiments will be made with a view to a possible doption of the apparatus, which is already in use in the Italian Chambers.

The Arlberg Tunnel

The preparatory operations having been finished, the work of boring the great tunnel through the Arlberg has now actually commenced. This tunnel will be one of the longest in the world, though not so long as that of St. Gothard. So far the operations on the eastern side af the Arlberg have progressed very favorably. The rock there found is a micaceous slate, through which the contractors find it possible to advance at the rate of from three to four meters a day. On the western side, on the other hand, the advance of the tunnel is retarded and the operations frequently disturbed by the repeated downrush of large quantities of water. The contractors were warned before commencing the work that this was only to be expected. The geologists further advised that the tunnel should be carried through a lower stratum of rocks, which are of denser material and watertight, but their warnings were, unfortunately, disregarded.-Swiss Times.

Pulverized Coal in Furnaces.

The Iron Age learns that Messrs. Alexandre \& Sons are making some very successful experiments at the Washington Iron Works with pulverized coal. The coal is blown into a furnace and burns freely with a strong heat, but the apparatus is being altered to secure still better results, after which the process will be practically tested on one of the Havana steamers. The coal is fed from a perpendicular funnel, and the air enters horizontally from the side.

L. B. Boomer.

Mr. L. B. Boomer, of Chicago, late President of the Ame(an Brige Company, died in this city, March 6. A large number of the great railway and other bridges in Illinois, owa, Wisconsin, Michigan, and other Western States were built by him.

AMERICAN INDUSTRIES.-No. 68 proprietary specialities.

While the production of that class of articles known as proprietary specialties may involve no machinery or processes not in common use by all manufacturers of drugs, chemicals, and the like, the business of advertising and selling them in a large and successful way does in volve industrial operations of such magni tude and completeness of organization as to bring the business fairly within the scope of great industries. And since the business methods developed in creating and supplying a world-wide market for a proprietary specialty are in a large measure applicable to the work of making known any article of manufacture the general use of which is desired, a study of the operations of a representative house in this branch of trade must have at least a suggestive value to all manufacturers whose products are capable of winning general acceptance if properly placed before the public. The accompanying illustrations exhibit the principal departments of the business of Messrs. A. Vogeler \& Co., Baltimore, Md., one of the largest manufacturers of proprietary specialties in the country. The offices and works of the firm are situated on West nord street (Nos. 184 and 186) , West Lombard street (Nos. 184 and 186), and run back the distance of a long business block to a
shipping street in the rear. The main buildshipping street in the rear. The main build-
ing has a front of fifty feet, is four stories high above ground, and is constructed of pressed brick with Ohio stone trimmings. In he front part of the ground floor is a suite of admirably appointed offices, beautifully fitted up and handsomely furnished. The reception parlor is especially noticeable for the richness of its furnishing and its perfection of comfort.
Along the front hall are grouped the offices of the managing partner, his private secretary, and the cashier, separated from the other departments on the same floo
 partition is the literary department, to which the corps of translators, and the staff of correspondents and reporters throughout the world, submit their work for revision and approval, and where the advertisements and other work pertaining to the department are prepared The offices of this department contain comprehensive and carefully selected li brary of books and periodicals, and in all their appointments would do credit to any publishing house. On the same floor is the mailing supply department, where a corps of lady assistants make ready for the mails the vat correspondence of the house, circulars, documents, and the like. The shipping department, bindery, box actory, frame and show card factory tc., are in the rear building, which is three-fourths the size of the man struc ture; also a large fireproof storage vaul for chemicals and an extra laboratory.
The main laboratory is on the fourth Ther of the front building connected with the extra laboratory by a bridge or corri dor. Here, as shown in our illustration, are the retorts, stills, and condensers, per olators and funnels, stock and distribut ing cans, and other appointments of well-ordered laboratory, with ample fac lities for the swift and easy handling of crude products and completed prepara ions, particularly the St Jacobs Oil which is the chief specialty of Messrs.

Vogeler \& Co. The employes of the laboratory are under the training and supervision of a skillful chemist, who assays produchstituent of the Oir to insure uniformity in the into large supply cans, whence it is drawn into patent bot tling machines in its passage to the bottling and labeling department.

single glance the exact state of the work is comprehended. This system involves the maintenance of a set of large books-22 in number-containing over (2,005) accounts, for the preservation of which a safe specially constructed is provided. Every letter and every contract is dictated to stenographic correspondents by the manager, and thus the vast amount of correspondence is practically under the control of a single head. The house points with especial pride to the expressed opinions of reliable advertising experts that its advertising department has not its equal anywhere. As an evidence, we cite from the Chicago Inter-Ocean on this point. "In its magaitude, conception, system, and originality it is vastly superior to anything of the kind in America. Any one familiar with this kind of business can understand the vast amount of detail in such a department, and only such can appreciate the tact and business ability that systematized and organized it so perfectly."
Every possible convenience to facilitate business is here seen. Spcaking tubes, dumb waiters for communicating with the various other departments, libraries of reference, safes for the preservation of valuable documents and books, and other conveniences are provided.
The bottling and labeling department is situ ated in the main building, and is noticeable chicfly for the swift and very expeditious manner in which the product is prepared for the dealer after leaving the hands of the compounders. Connected with the main supply cans in the laboratory by tin lined pipes, The distinguishing feature of the house, however, and the are ball-faucet boxes with adjustable automatic stop cocks one in which it takes great pride, is the adverti-ing depart- governing the flow of the liquid through which the oil runs ment, the administration of which is a vast business by itself. into patent bottle filling machines. One attendant to each This department occupies the second floor of the main build- machine is kept constantly busy in removing the bottles as ing. Approaching this floor by an ample stairway from the they become filled
front one passes through a wide hall, from which, at riyht The bottles come to the filling room from the factory read angles, a narrower hall leads to the manager's office. This for immediate use. After they have been filled as described, oftice, like those on the main floor, is one of a communicating series, and is well equipped and comfortably furnished as to decoration and fitting, the floor being covered with Brussels carpet and the walls with pictures. Adjoining are the offices of the stenographic reporters, corresponding clerks, and bookkeepers, all perfectly appointed. Separated from the offices by a handsome walnut and ground glass partition is a pacious room 90 by 50 feet, which is devoted to the filing and control of newspapers. This room contains 10,000 pigeonholes, each one having over the top a small sliding sign, upon which is printed the name of the paper for which it is intended. Every paper in which the advertisements of this house ap pear comes regularly to this department, and is carefully examined, marked, entered, and filed. A corps of lady clerks are engaged in this special service, under the supervision of a gentleman of long experience in such matters. All derelictions on the part of advertising papers are reported to the manager, who at once presents his complaint to the paper in fault.
The unvarying courtesy exhibited toward publishers, and the exceptional method of paying advertising bills without waiting for the rendering of statements, have established the most cordial relations between the press and the house. No house could be more strict and exacting in it.s demands, and surely none is more prompt in fulfilling its obligations.
The system of book-keeping, carrying on correspondence and conducting newspaper advertising which obtains here
 is original in conception and exccution. Of the many thou sands of letters and documents always on file, any one of they are removed in large trays to the corking tables, where hem, whether unimportant or otherwise, can be instantly they are securely corked and passed on to the long labeling referred to, considered, and returned to its proper place. A tables. Here young ladies deftly landle the bottles, applydaily and weekly permanent account is kept with every paper ing to each the regular label, wrap round it a circular of in which the advertisements of the house appear, and at a directions in eleven languages, and put on it an attractive lithographed wrapper. The finished bottles, in immense heaps, are then carried along to the packing tables and placed in machine-made wooden boxes, one dozen bottles in each box, and these boxes are then packed in a stout wooden case, eacb containing six of the smaller boxes or onehalf a gross of the article ready for ship ment.

One of the most interesting features of the whole establishment is the printing department. It is in the basement of the main structure, and is well appointed m every respect and admirably ventilated. Windows admit the light from three sides, and the apartment is wainscoted in solid wood. Here the printing of the house is done, for which purpose thirteen steam presses are kept rumning day aud night, printing labels, posters, medical almanacs, and advertising work of every description, including a very considerable amount of "color" work, etc., all of which is "set up" by their own com positors. This advertising matter is furnished to patrons in eleven different lan guages. In this department also, are steam binding, stitching, cutting, and book served in the working of this branch of the establishment as in every other. The bindery is located in the rear building or annex. Here the pamphlets, almanacs,etc., are stitched and covered, giving employed and covered, giving employment to a large number of young
women, whose skill and swiftness women, whose skill and swiftness
in their work are admirable to witness.
The show card department occupies two floors of the rear building. Framed chromo-lithographic show cards and other work of a similar nature are turned out here in immense quantities. The moulding is bougbt in the rough, and then bougbt in the rough, and then
smoothed, polished, and finished, plain, in gilt, or in colors, as orplain, in gilt, or in colors, as or-
dered. It is then cut into proper lengths by suitable machinery, mitered, and joined, and made ready for the reception of the lithographed cards and other devices for
trimming machines, driven by a fifty-five horse power and its action is quick and sure. The operation of the gate engine manufactured expressly for the firm. The boiler is is as follows: The vehicle wheels operate, through the trip located under the rear pavement, remote from the press \quad rods, E, and the connecting rods to turn the vertical rod, located under the rear pavement, remote from the press
room, thus preventing the heat and dust from entering the department. The same exact methods and system are ob- \mid stood by those familiar with such devices that the vehicle
framing. These cards, as received from the printing de- |wheel forces the trip rod entirely down almost instan partment and chromo priuters, are stretched, sized, var- taneously, and retains. it there only momentarily, and nished, and mounted, and then are passed to the packing department, where they are boxed, an abbreviated descripion being stenciled upon the package. Thence they go to the shipping department for address and shipment.
It might appear upon cursory thought that a business of so much detail, and separated by necessity into so many departments, each distinct in its nature and methods from all the others, would unavoidably run into confusion at some points, but such is not the case in this concern. While each department is responsible to ts particular head for its runuing and resuts, the arl heads or chiefs are responsible in retum directly to the managing partner of the house, o that, though the operations of the house extend nearly over the whole world, the vast business is carried on with the utmost smoothness and regularity.

NEW sWINGING GATE.

A simple and very effective automatic gate is represented in the annexed engraving. It presents none of the objectionable features found in the class of gates operated from overhead, and has but few parts. all of which are substantial and durable.
Fig. 1 shows the gate in perspective, the horizontal connecting rods being exposed to show the connection of the various parts. Fig. 2 is a side ele vation of the upper gate hinge, and Fig. 3 is a plan view of the same. Fig. 4 shows the latch used in connection with the automatic gate. This gate can be made of wood or iron, or of both materials combined, and it may be of any style to correspond in general design with the fence to which it s applied.
hich it: s applied.
The gate is supported at the top by a bracket, A, attached to the style and apertured to receive the pintle of the bar, B, he latter having a heart-shaped opening for receiving the pintle of the bracleet, C. The bar, B, is rigidly attic bed to the upper end of vertical rod, D , which is offset to bring its lower portion axially in line with the pintle of the bracket, C. The rod, D, is journaled near its lower end in a bracket secured to the bottom of the post, and carries a horizontal stud upon which rests the portion of the hinge attached to the lower part of the gate. This part of the hinge is forked to embrace the rod, D , and bent down ward forming inclined planes, and when the rod is turned the horizontal pin passes under one or the other of the inclines. This combination assists in openıng or clos ing the gate, as will presently be described. The trip rods, E , consist of iron or steel rods bent so as to form two cranks at right angles to each other, and one end of each rod has a lever arm connected by a horizontal rod with a T-lever secured to the bottom of the vertical rod, D. The horizontal connecting rods are made adjustable as to length to com pensate for any accidental change in the position of the trip rod.
This gate is readily operated by a light carriage containing one person, wheel had left the trip rod. By means of the bar, B, having the heart-shaped orifice and catch formed on the bracket, C, this difficulty is avoided. The mechanism is operated at once to its full extent by the wheel impact unon the trip rods, and the vertical rod, D , is consequently piven the one fourth revolution necessary to turn quently given the one the gate instantaneously and before the gate has acquired

on its pivot, so that the pivot occupies one of the sides of the heart-shaped orifice instead of its apex, and the bar is thus made to move rearwardly a sufficient distance so that its point will engage with the catch formed on the bracket, C, point will engage with the catch formed on the bracket, C,
and is thereby held in position until the gate swings into position, when it draws the bar forward and the pivot resumes its place in the apex of the heart-shaped opening.
The horizontal stud in the rod, D , turns around under the inclined portion of the lower hinge, so that its face, which rests upon the stud, has a tendency to slide upon the stud, and thus accelerate the motion of the gate, or enable the same to be operated when tilted to a less angle than would other wise be necessary.
The gate latch is lifted out of its notch when the free end of the gate is raised by the tilting mechanism, so that it offers no impediment to the opening of the gate by a passing carriage.
A double gate may be made on this plan by simply adding another arm to the lever at the bottom of the rod, D , and connecting it by a rod to a corresponding arm of a similar mechanism on the second gate. This gate was recently patented by Mr. Nathan H. Long, of Muncie, Indiana.

MISCELLANEOUS INVENTIONS.

Mr. William Dewart, of Fenelon Falls, Ontario, Canada has patented an improvement in ventilating houses, by which purer outside air than that im mediately contiguous to buildings is supplied to interiors. He passes the air through a conserva tory, in which the plants purify the air, using a pipe with an outside flaring end for introducing the air to the plants, and pumping the air so purified into the building to be ventilated.
Mr. Harrison Owens, of Fort Worth, Texas, has patented a coffee roaster, which can be used in the oven of an ordinary stove, and which retains the aroma of the coffee. The coffee is roasted in a revolving cylinder provided with a hollow trunnion and a semi-tubular tester introduced through the trunnion, which tester serves as a handle for revolving the cylinder, and can be withdrawn with sample to determine the progress of the roasting.
Mr. Francis A. Dupuy, of Ironton, Ohio, has patented a leather blacking frame, which enables the flesh side of the leather to be kept clean, and saves the time usually expended in wiping the table commonly used. It is a rectangular frame with cross pieces and longitudinal open by reason of a reaction of the mechanism after the \mid wires tightened over the crosspieces by a taking-up device.

Mr. Charles F. Stillman, of Plainfield, N. J., has patent ed a trotting sulky in which the frame, axle, and shafts are so constructed and arranged as to afford more room for the rear part of the horse and permit the animal to be hitched nearer to the axis of the wheels than has heretofore been possible, thus avoiding interference with his gait and obtaining greater ease of draught
Mr. William B. Runyan of Pensacola, Fla, has patented a timber crib designed to prevent loss from the breaking asunder of timber rafts. It is a rectangular crib or cage composed of timbers securely fastened together, and a series of cross-clamps, with screws and nuts for holding the confined timber in place, one end of the crib being hinged, so that it may be opened for loading and unloading, the hinged end being provided with a roller to facilitate the moving of the timber. Both ends of the crib may be hinged when three lengths may be hinged when three lengths
of lumber are desired to be loaded. Mr. James A. McCaffrey, of Philadelphia, Pa., has patented an ice sandal. The sole is of wood, leather, or rubber, etc., perforated with numerous small holes. The objection to metal spikes is thus avoided. The sandal can be worn over other foot gear.
Mr. Frank S. Osborn, of Bolivar, N. Y., has patented a horse poke. An adjustable sectional collar is held in place upon the horse by suitable bands or straps, and has a forward and upward projecting pivoted bar or stale whose butt rests on a sharppointed spring, which pierces the horse's breast when the free end of the stale is pressed downward as the horse attempts to get over a fence.

HIDDENITE. - A NEW MINERAL.*

When Dr. J. Lawrence Smith wrote his paper on hidden ite, he embraced in it all the facts then developed.
His ainouncement was written fully two months prior to its publication, and it was in this short interval, and also from subsequent work at the locality that the points I have to add to this paper have been developed by Mr. W. E. Hidden.
The mistake of calling this mineral diopside was a very excusable one, as spodumene had never before been found unaltered, transparent, and of such color, and as here discovered resembling nothing so much as diopside, which latter mineral is always transparent, green, and often worthy of use as a gem. Spodumene is also closely isomorphous with diopside, differing only a fraction of a degree in its prismatic angle, and like it also in its easy cleavage in two directions.
The true character of this new variety of spodumene was only discovered when an attempt was made to find the cause of its beautiful color by chemical analysis.
Hiddenite or lithia-emerald is to the species spodumene preciscly what emerald is to the species beryl, being only a beautiral green variety.
Beryl, as a mineral species, is of very common occurrence, much more so than the species spodumene; both are found in large crystals, but either opaque or with only a trace of color.
t is strange, in fact remarkable, that the species spodu mene, which has always been to mincralogists a very unsatisfactory mineral in form and color, should at last prove to be one of the most beautiful of minerals, in fact, a new gem stone.
It is to-day not only the finest and most beautiful of American gem stones, but like the emerald, has taken its place among the gems of highest rank and value.
Its color is one peculiar to itself, differing from the beryl emerald in its vividness or in a quality of color that I might better term ethereal.
I know of nothing that I can better liken the color of this new gem to than the beautiful color produced by falling bits of uranine in water. It is a green of rare brilliancy.
The cause of color is not as yet known, but it is probably caused by the same agent that produces the color in variscite i. e., vanadium.

It might be asked why the new mineral has been so readily accepted as a gem of the first rank. I would answer, that it possesses all the characteristics which are considered vital in a gem stone, i. e., perfection of color, hardness, transparency, and rarity.
Only a very small number have thus far been found, scarcely more than enough to properly introduce it as a gem.
As regards value, it has been sold for the price of diamonds of equal size, and in one instance a stone not entirely perfect, of about $21 / 2$ karats weight, was sold at the rate of over $\$ 125$ a karat.
As yet the only dependence for procuring these gems is the narrow vein (only $21 / 2$ inches thick and 2 feet in lateral extension) found by Mr. Hidden in Alexander County, North Carolina.
The lapidaries have had some difficulty in cutting this stone, its perfect cleavage in two directions sometimes caus ing it to cleave while undergoing the strain and pressure necessary in the cutting process.
They also find the stone harderacross the ends than across the sides.
Its name in the gem mart is lithia-emerald. It was so named from the presence in it of over seven per cent of lithia, an element wholly absent in the beryl emerald.
The crystals in their natural state will be known to miner alogists under the name given to it by Dr. Smith, viz., hiddenite.
This is the first purely American gem, and its remarkable beauty merits our highest praise.

Earache.

"In the course of practice you will often be called upon to attend a case of earache. Tbis means, pathologically speaking, acute inflammation of the membrana tympani. Now, in such a case you may quickly subdue the inflammation, relieve the patient from the excruciating pain he is suffering, and save him, perhaps, from subsequent confirmed deafness. The treatment from which such a very desirable result may be obtained is similar to that which you will find so beneficial in analogous cases of eye disease; viz., leeches behind the car, hydrarg c. cretâ and belladonna powders, with warm fomentations."-Prof. Wharton Jones, F.R.C.S., F.R.S., in London Lancet.

The Wasted Energy of Springs.

The State of Missouri contains a large number of strongflowing fountains, Bryce's spring, on the Niaugua river, being, the Age of Steel says, probably the largest. It discharges $10,927,000$ cubic feet a day, and flows away a swift stream forty-two yards wide. Its temperature is steady at
$60^{\circ} \mathrm{Fah}$., and ice never forms near it to impede machinery. 60° Fah., and ice never forms near it to impede machinery.
Its flow is regular. Though the average annual rainfall of Its flow is regular. Though the average annual rainfall of
the State is forty-one inches, springs constitute the reliance of the streams for a steadfast flow of water. Several hundred springs are known to be large and forcible enough to supply the power required to run an ordinary mill or factory. * Read before the New York Academy of Sciences, at a regular meeting held on March 7, 1881, by Geo. F. Knnz (mineralogist), with Tiffany \& Co
New York.

SINGULAR FLOWER-LIKE FORMS OF ICE

In the beginning of December of the past year, says
Prof. Bombicci, in the Rivista Scientifico-Industriale, the whole surface of Southern Italy may be said to have been converted into a vast field of crystalline frost, giving the country an aspect at the time well deserving of the appellation of the garden of Europe. Infinite numbers of white and semitransparent corollas, resembling camellias and roses, of dazzling whiteness, and not rarely of very large size (since they were nearly a decimeter across), were seen spread in the form of a pure white and semitransparent sheet over a deep layer of snow throughout Lombardy, Piedmont. the province of Emilia, and the valley of the Po. Everywhere that this curious sheet of frost appeared there were seen these beautiful snow flowers. Their leaves and petals covered the fields in the country and the streets and squares of the city, the roofs and balconies of every house, and every hill and vale. Every hillock of turf was ornamented with corollas having transparent petals, and every cavity in the earth became a geode. One might have imagined that there had been a magic apparition of petrified flowers, some of them transformed into marble or alabaster, and others into porcelain or glass. Either in their masses or in their separate parts was reproduced the graceful curve of the most beautiful camellia, along with angularity of the ligneous scales of the pine cone, and the plane and intricate laminate crystallization of certain salts. Two types of aggregations of

SNOW FLOWERS.
laminæ could be always distinguished: (1) that of the rose corolla, in whose laminæ, as in true petals, a very delicate curvature characterized both the superficies and the margin; and (2) the type with intricately-converging plane laminæ, in all of whose rigid diaphanous plates were exhibited striæ radiating from the base to the cir cumference, and zones of various degrees of transparency running around the circumference. Both of these re markable forms are shown in the accompanying figure. In addition to these forms, the phenomenon, which lasted eleven days, was accompanied by the usual beautiful starlike snow crystals and myriads of plane hexagonal laminæ, with facets that presented a brilliant appearance as the sun shone upon them.

The Hudson River Tunnel.

The Hudson River Tunnel Company, after numerous delays, have, according to the Daily Graphic of March 8, ucceeded in securing the lease from the Dock Department a strip of land 100 feet square at the foot of Morton street in this city, and will begin work within the next fortnight the staft on this side of the river.
The working shaft will be sunk at the foot of Morton street, near Pier No. 42, and will be much larger than the one on the New Jersey side of the Hudson, being forty feet in diameter, and will be excavated to a depth of seventy feet. On March 7 the engine to be employed in furnishing air for the air lock and in hoisting the earth from the well, was placed on the grounds, which have been inclosed, and another cargo of Haverstraw brick, in addition to $1,000,000$ lready stored there, has arrived.
The experience gained on the New Jersey side will render the work on this side of the river comparatively easy The only obstacle of any account to be encountered and overcome is the loose silt and mud which extends thity feet below low water mark. At a depth of sixty feet solid ground is found, but to make assurance doubly sure, the excavation of the shaft will exterd ten feet further down, and from that point work will begin under the bed of the river. It is confidently expected that the shaft will be so ar completed by the middle of June that work on the tunel on this side will be begun, and if present calculations re not at fault, the New York and the New Jersey end will meet in about the middle of the river early in 1884.
Work on the New Jersey side has been pushed ahead with out intermission, day or night, since the fatal collapse of last fall, and on March 8) the assistant engineer in charge of the works reported that the south tunnel is now completed 330 feet under the river, and that the north tunnel is arched and walled for a distance of 300 feet. Two hundred men are employed, and an average of four feet is accomplished
eight and ten feet of tunnel will be completed per day. The precise route to be adopted from the foot of Morton street to Broadway, the New York terminus, is yet to be decided upon, but it is generally believed that it will be either through Bleecker street, Amity, or Fourth street.

LONG DISTANCE TELEPHONE SYSTEM OF DR. HERZ.

A new system of telephony, invented by Dr. Herz, is at tracting a great deal of attention among electricians in Europe, on account of the surprising distances through which telephonic communication has been maintained by it. The first announcement of the invention in the papers of September last stated that conversation had been carried on through the cable convecting Brest and Penzance, a thing generally considered impossible, on account of the comparatively sluggish action of the electric current in submerged cables. The experiment proved sufficiently successful to encourage Dr. Herz to push forward his investigations, and, according to foreign advices, he has been rewarded by being enabled to carry on conversation through an actual distance of over six hundred miles over circuits having no special adaptation to telephonic communication.
Dr. Herz has apparently solved two difficult problems: that of increasing the amplitude of electrical vibrations, and of neutralizing currents foreign to the telephonic circuit. The first he accomplishes by a microphonic transmitter with multiple contacts, and a system of derived currents; the second by interrupting the line and interposing condensers or diffusers. We have received an extended illustrated description of this interesting invention, written by Th. Du Moncel, which will be published in full in Supplement 274.

American Manufactures in India.
 To the Editor of the Scientific American:

It is a pleasure to me to be able to tell our American manufacturers that their goods, in all branches of trade, find $\dot{\text { a }}$ ready market and have a preference here in India. There is a lack of goods sent. out here, I mean of everything which would be adaptable to the country. I have given the subject due consideration, and what I would recommend would be the establishment of an amalgamated company, to consist of all departments of manufactures. All classes of American wares are preferred. Look, for instance, at the large number of stoves that have been sold out here; also, hardware of all kinds, ironmongery, etc. I need only refer you to the exports from the United States to India. The establishment exports from the United States to India. The establishment
of an American emporium here of purely American manuof an American emporium here of purely American manu-
factured goods and products would be a success finarcially. Look at the demand for American dried fruits, for instance. What little does come gets into the hands of a very few dealers; and I can tell you I have often paid 50 cents a pound for dried apples, while only the other day I paid $\$ 1.50$ for a two-pound tin of Chicago salt beef.
Great quantities of goods are sold here labeled American, when they are not; for instance, I went into what is called a respectable establishment about a month ago to purchase an American stove. I was shown bogus articles. I told the dealer that no American would ever export such rubbish. I put the big blade of my knife full length into many of the joints, and others were filled in; the utensils were cut so uneven that on one side of a pot I looked at it was scarcely one-sixteenth, while on the other it was fully three-eighths. The way to stop this would be to establish a real sound American trading company to embrace every description of manufactures.
A. Lile.

Secunderabad, Nizam Dominions, East India.
Heavy Shipment of Grain on the Mississippi.
On the morning of March 6, the towboat Oakland, of the St. Louis and New Orleans Transportation line, left the former city with 263,000 bushels of corn and 90 bushels of wheat for foreign account. The grain was stowed in eight barges. The shipment exceeded by over 50,000 bushels any previous shipment, and the tow was the largest ever floated on the Mississippi River. It is said that three-quarters of the $1,100,000$ bushels of wheat in the elevators of St. Louis will be exported by way of New Orleans.

Scratches or Cracked Heels in Horses.

A Canadian correspondent gives the following simple emedy for scratches in horses: "Having tried many lotions, etc., only to obtain temporary relief for my horse, I concluded to try a mixture of flow ers of sulphur and glycerine, which I mixed into a paste, using sufficient glycerine to give it a glossy appearance, and the results I obtained in a short time were truly wonderful. I apply this paste at night, and in the morning before going out I apply plain glycerine."

Beet Sugar Industry in Canada.-The Canadian House f Commons has passed a resolution to exempt beet sugar from excise duty for eight years. This to encourage the manufacture of beet sugar in Canada.

The Banishment of Bees.-At the petition of the Pariian refiners of beet root sugar, the Prefect of the Seine has proscribed bees in the neighborhood of the city. Λ single refiner in the 13th arrondissement estimates his losses at 25,000 francs.

Professor Klebs, of Prague, has discovered peculiar microbia in the remains of patients who have died of yphoid fever. They do not occur in the bodies of persons who have been carried off by other diseases.

UTILIzATION OF THE WASTE OF CITIES.
This has become a very trite subject, for in so far as our city is concerned, it ever and anon comes up for discussion in our newspapers and magazines, and yet the problem, what to do with our city waste, is not yet the shape of street sweepings, sewage, garbage, and ashes goes to waste, and at the same time imposes an enormous cost upon the city for its removal, is apparent to all tax pay ers. How to get rid of it without involving such a cost, and, if possible, to realize some pecuniary profit from it, is the problem we so frequently hear discussed without any available results arising from the discussion. There are va rious reasons for this. Too often the subject is approached by men who, seeing the immense quantity of fertilizing ma terial going to waste in a city of a million inhabitants, won der why the farmers and gardeners in our .immediate vicin ity do not clamor to get it, and compete for it to such an ex ent as to make it a source of revenue to the city. These entlemen who know far more about law, banking, and sell ing goods than they do about agriculture, abuse the city authorities for expending large sums of money in throwing t away instead of making a profit from it. The authorities are indeed as ignorant as themselves on agricuitural matters, but having to get rid of it, they take the, to them, shortes and easiest course of carrying much of it to sea and throw ing it overboard, to assist in making bars and similar impe diments to a safe approach to our harbor, or in rendering our beaches filthy and malarious. Now we do not propose to solve the problem we have approached, but only to offe ome suggestions and data that may assist in its solution and turn the attention of those who have given it some consideratton to other means of attaining the endsthey hav in view.
In the first and most important place, the whole subjec becomes one of merely pecuniary consideration as to values, the same as any other article of merchandise
The question then arises: Is the material worth to the farmer or gardener the cost of collecting, handling, and trausportation? Now, the fartuers and gardeners in the vicinity of our large cities are as intelligent and shrewd business men in their line as are our city residents in buying and selling merchandise. They quickly invest $\$ 10$ or $\$ 15$ in a barrelful of some new variety of potato, if they are assured that it is really earlier or a better late keeper than any other they know of. Four to fifteen dollars a pound for the right kind of cabbage seed for their purposes they do not begrudge; and a dollar or two an ounce for tomato or cauliflower seed is a mere bagatelle, so that it be just, what they want. They try and use the best manures, thinking nothing of spending $\$ 50$ to $\$ 100$ per acre every year on their crops, knowing well that without the expenditure of capi tal in crude material and labor they cannot carry on their business, and especially when they have to compete wib distant sections which steam navigation and railroads liav almost brought adjoining us. As in every other business, a dollar saved is a dollar gained; so with these men, they look keenly to every saving. If, therefore, these men could save money by using the city's waste they would most assuredly do so. But they do not use it, simply because it is not worth the money it costs to get it, on account of its small fertiliz ing power and its great bulk as compared with other ma nures. Great stress has been laid upou the manurial valu of the

street sweepings.

Let us see of what they are composed. Mainly of horse droppings, it will be said. By но means so; two-thirds of it is sand, and the one-third left has been ground into fine powder by the wheels of the velicles, and its fertilizing qualities largely dried ouv of it by the sun or wind, o washed out of it by the rain or snow. A large quantity of the sand works up through the interstices of the paving blocks; in every repair to a street the sand is spread over it, and when swept up it is put with the better sweepings from other streets; it is so when gas or water pipes are laid, or when houses aic built or repairing; the débris goes with the sweepings, overloading it witl material which is of no earthly use to the farmer, and for which he must pay for the handling and transportation. If laws were passed and strictly enforced requiring builders and those who upturn the pavements to remove the debris as fast as it accumulates and every street was swept every day or two, the horse drop pings would have some manurial value and be worth paying for. But another element comes in which would de teriorate their value for some soils; and that is, the grea amount of iron in them, produced by the constant attrition of the tires of the wheels of the vehicles and the shoes of the horses upon the stone pavement. It is something astonish ing, the quantity of iron that can be got out by a magnet from a pound or two of dry sweepings taken from a much traveled street.

the garbage

of the city consists of vegetable matter, such as the refuse of the fruit and vegetables used, tea ieaves, coffee grounds, and such like, with a large percentage of bones. It has been proposed to burn all this and use the ashes as manure. But this, so far as tried, bas not been a success, because of the cost, as necessarily all the water must be dried out of it be fore it can be burned to ashes. If it were partially dried by passing superheated steam through it, and so also be par tially cooked, it might be compressed into bales and so be readily and cheaply transported. Composted with animal
manures it would become a very efficient manure. Here again the law would have to be strictly enforced, requiring the garbage to be kept in vessels unmixed with ashes or similar materials. Proper machinery could be constructed by which the bones could be taken out of it; these amount to a very large quantity daily in a cily like this, and as every body knows, form, when grounod dissolved, one of the best manures known. Less the water, the green vegetable matter composing the garbage is a good manure, as it contains a much greater percentage of potash than does the woody trunks and branches of the trees from which we derive our principai supply of that article. It is to this that the efficiency of the practice of plowing under green crops for fertilizing purposes is principally due. The garbage of the city is of far more value than the street sweepings, and at the same time it is more troublesome to manage. Towing it out to sea and throwing it overboard is a most egregious act of ignorance and stupidity.
Sugsestions as to the disposal of city sewage and ashes we reserve for a future article.

The Grand Canal de lest.

A complete history of the origin and construction of the great French canal from the Marne to the Rhine and the Canal de ${ }^{1}$ 'Est, is now nublished under the title of "Aliment tion du Canal de la Marne au Rhin et du Canal de l'Est" by M. Alfred Picard. This canal was conceived by M Frécot, and undertaken for the purpose of making good the oss of the Strasburg junction of the two canals from the Rhone and the Marne to the Rhine, by the secession of Alsace and Lorraine after the war of 1870 . It provides a waterway within the limits of the new frontier between the North Sea and the Mediterranean. Commencing on the Me ase, near the Belgian frontier, a little below Ginet, it skirts Mezieres, Sedan, Commercy, Toul, and Nancy, passes near Epinal, and terminates at Port-sur-Saône, on the well known tributary of the Rhone. The total length is about 290 miles, and the estimated cost is a million francs. The section between the Meuse and the canal from the Marne to the Rline has been constructed, and the whole work is ex pected to be finished in less than two years.

Use of the Salts of Vanadium in the Arts.
This paper, a compilation by the Swedish Vanadium Company, Aktie Bolaget Urda, of Stockholm, contains some mportant information on aniline blacks. For an aniline black which does not turn green, which requires no subse quent treatment liable to degrade the black and soil the whites, the following process is recommended:
Water, 5,500 grammes; white starch, 1,250 grammes; dark calcined starch, 420 grammes. Boil, and when cooled down to 50 add aniline oil(of d' Andiran and Wegelin, Mulhouse) 800 grammes; hydrocbloric acid, 21° B., 80 J grammes When cold add further: sodium chlorate, 420 grammes boiling water, 500 grammes. And, at the moment of using add vanadic solution, 10 grammes per liter, 200 grammes The goods are aged for two days, passed through bichro mate solution at 5 grammes per liter at 70°, and snaped. Instead of adding to the aniline oil the above-mentioned proportion of hydrochloric acid, it is well to neutralize the aniline by adding the acid gradually, till a few drops of the liquid introduced into a very dilute solution of Paris violet (1 gramme per liter) turns the violet color to a greenish blue The "vanadic solution" above mentioned is obtained by dissolving, e. g., 10 grammes ammonium vanadiate in 40 grammes hydrochloric acid, slightly diluted, in a porcelain capsule at a gentle heat, and adding gly cerine in small dose, keeping the liquid to a boil till its color passes to a deep ade up with the particles are dissolved. To 1 liter and preserved in a stoppered bottle.

Electric Light on a Buoy.

Rear Admiral Nichols has issued the following: " An auto matic buoy, having a ten-inch whistle, and a glass globe for n electric light on the top, has been moored in thirtee athoms of water, south half east from the Sandy Hook Lightship, and about three cables' distance from her. The inventor of this buoy claims that it will show an intermittent electric light, the gerieration being operated by the action of he waves. The Lighthouse Board has permitted this buoy (the private property of the iuventor) to be placed where it is in order that its practical advantages, if any, may be tested, and that its operations may be observed and reported upon by the people on board the lightship. The Lighthouse Board is not responsible for it as an aid to navigation. Pilots and navigators are respectfully requested to send to this office the results of their observations on this buoy."
The general construction is understood to be as follows By the motion of the buoy, due to its rise and fall on the waves, air is compressed within the buoy, which acts intermittently to drive an electric engine and also to sound a whistle. When the air reaches a certain degree of compres sinn the engine rotates and the carbon in the globe brilliantly glows; at the same time the whistle sounds.

The cat as a Pest Distributer - The domestic cat again charged with spreading disease, this time by the physicians of a district in Sullivan county, this State, where small-pox is epidemic. In several cases the proof is pretty have been warned to keep them from roaming about.

The Castes and Trades of India.

On the 10th of February a lecture on Indian castes and trades was delivered at the London Institution by Professor Monier Williams ${ }_{2}$ C.I.E. He said India had been described a a poor country on the verge of bankruptcy, whereas it was really a rich country, with a poor population. Its potential wealth was incalculable. Indian art was in an advanced state long before Europe had emerged from barbarism; but at present the want of capital and the dislike to machinery were fatal to successful competition with European artisans, hough Indian workmen were content with far lower wages. The secret of the beauty of Indian art lay in delicacy of touch and manipulation. The hand was still the chief implement in India. No European machinery ought to supersede it, and Indian art ought never to abandon its own ational traditions and pure taste for meretricious ideas derived from Europe.
The lecturer exhibited several exquisite specimens of Indian industrial skill, lent for the occasion by the South Kensington Museum, such as Dacca muslin, Kincol work, silver work, wooden carvings, pottery, and jewelry. Coton cloth imported from Manchester was far inferior to that woven and decorated with patterns by man's hand in India, but was cheaper. Spiuning and weaving mills had lately been erected at Bombay, but native artisans were organizing bands of minstrels who went about the bazaars singing songs ridiculing the vulgarity of taste displayed in European textile fabrics. The connection between trades and castes was then explained. Every caste originally had its fixed occupation, and many castes were merely trade-guilds. Some castes, however, had changed their occupations. All the low castes might be tillers of the soil; these constituted three-fourths of the whole population; the higher castes might engage in almost any industry. The Indian village system was the germ out of which the present castes and trades were developed. The various functionaries of an autonomous village community were then described. If any one offended against caste rules, he was "Boycotted." No one would buy from him or sell to him. "Boycotting" was a bad imitation of a custom.practiced in India for centuries. Modern castes, trades, and industries, were innumerable. Some new ones reported in the recent census were rather strange-such as "professional speech-makers" and "professional givers of evidence." Indian art and industry ought not to be denationalized; the evil of caste should be neutralized by corrective influences rather than by government interference. Caste had its good side, which should be retained.

The alphabet in writing and Printing.
The proportionate use of letters, as given in Brewer's "Dictionary of Phrase and Fable," is as follows:

${ }^{0001}$			
D,	${ }_{3929} 39 \mathrm{Y}$,	184 Q ${ }^{\text {a }}$	00
U',	${ }_{296} \mathbf{3 0 6}$ G,	${ }_{168} 168$,	${ }_{22}$
${ }_{670} 6$	${ }_{22}^{280}{ }^{28} \mathrm{~V}$,	1200	

Consonants, 5,977 ; vowels, 3,400 .
The proportion for initial letters is as follows:

Waste Paper

Areceat report of the controller of the British Stationery ffice, whose function is to provide the paper used in all the government offices, states that the value of the waste paper collected from the various offices and sold for the public account averages $\$ 50.000$ a year. Hitherto it has been the rule to turn the bulk of this paper over to a single firm, under bond to reduce it to pulp in the United Kingdom. Under such conditions, the price received was less than the paper was worth in open market. The paper is now sent to the state prisons, where it is sorted and torn up, so as to be rendered practically illegible, and then sold unconditionally at much better prices than before.
At first thought it might seem to be more economical to burn the paper at once, and thus save all the expense of col ection and transportation; but the controller states that the money received for waste paper in some years amounts to more than the total salaries of the controller. assistant conroller, and staffs of the department in both England and Ireland.

A N wnow Melter.

A Pbiladelphia eng:neer, Mr. Leonard Pbleger, has had constructed a snow mc ting machine, described as a wagon with an iron body, surmounted by a smokestack. At the rear of the body, like a fire engine, is a firebox, the heat from which ascends to a space eight inches high, which extends he length and width of the body. Above this space is the now box, which is two feet deep and fourteen and one-hal feet long. The theory of the inventor is that the heat, which asses through the narrow space immediately beneath the box, will keep the floor of the box heated to such a degree that the snow will melt as fast as it can be thrown into it On one side of the box is a line of holes three incles wide hrough which the water from the melted snow will run into the street. The smokestack can be placed in either a horizontal or a perpendicular position. The entire apparatus is sixteen feet long and the body three feet deep. Unfortunately the snow thawed before the machine was ready for trial.

A NOVEL MOTOR.

The engraving shows a means of imparting motion to vehicles and machinery by the employment of soft tubing beneath a flexible bearing surface for traction wheels. The tubing and flexible bearing, under the influence of steam, water, air, or other expansible or compressible fluid forced into it, will form a wedge-shaped or inclined wall or abutment in the rear of the tangential bearing of the wheel, and propel it with greater or less speed according to the pressure of the propelling medium.
Fig. 1 shows the application of the principle to a rotary steam or air engine. Fig. 2 shows the rotary engine in a horizontal position adapted to running a millstone. Fig. 3 shows the device applied to the propulsion of wagons or cars, and Figs. 4, 5, and 6 show the application of the motor to elevated railroads.
The annular casing of the rotary engine is divided into two compartments, C C , in each of which is placed a very strong flexible hose connected at one end with the branched supply pipe, A, and at the other end with the branched exhaust pipe, B. These pipes, although designated as supply and exhaust, may be employed for either, as the motor is capable of running equally well in either direction. The hose in the compartments, C C, are provided with a flexible metallic bearing plate, which may be of steel or other suitable mate rial, and upon these plates the wheels, D. press so as to bring the interior surfaces of the flexible hose into contact at that point. These wheels are supported by arms con. nected with the engine shaft, and when steam is admitted by either of the pipes, A B, and allowed to escape by the other, an inclined abutment is formed behind the wheels, which push them forward with greater or less force depending on the pressure of the steam, air, or water used in the motor.
We are informed that these motors are capable of running at a very high velocity, and that they are efficient and may be applied to a large number of uses where the ordinary steam engine would be impracticable. Certainly nothing could be more simple, no piston, no valves, no stuffing boxes being required. The position in which this motor is placed is immaterial. It is shown in Fig. 2 placed in a horizontal position and adapted to the driving of millstones and vertical slafts. In this view the engine is shown in section, and he relative position of the fexible hose C he relative position of the texible hose, C, ts metallic covering, and the wheels, D, is learly shown
When the device is applied to railways the flexible tube or hose, E, is laid in a grooved track, F, and is protected by a straight ribbon of steel, upon which the wheels of the vehicle roll. This arrangement is adapted to light traffic, and for many purposes will answer admirably, but where the traffic is great the car is supported upon wheels running on an ordinary rail, while the driving wheel presses upon the hose with only enough force to bring the hose together, steam, water, or air tight, immediately beneath the driving wheel.
The hose is divided up into sections of fifty feet or more each, and each section is supplied by air from a main supply pipe, G, run ning below the track and connected with the air compressing station. At suitable intervals lateral pipes lead to valves at the sides of the track, with which the hose is directly connected. At this point there is a valve connected with the lever, H, and at the ends of the car there are levers which may be thrown out to engage the lever, H , and operate the valve so as to admit air to the section of hose upon which the car is just entering. The auxiliary lever at the side of the lever, H, is connected with the lever at the end of he filled section of hose, and as the driving wheel is lea ing the filled section the lever carried by the car trips the auxiliary lever, moving the remote lever, H , and almost immediately touching the lever, H , of the section just entered
It will be seen that by this arrangement collision is avoided, as the car on any particular section of the road has absolute control of that section. This system permits of running cars as frequently as may be desired, avoids al smoke and noise incídent to steam propulsion, and is of necessity cheaper, both in re pect to the road, propelling power, and rolling stock than any of the existing systems.
This invention was recently
patented by Mr. M. M. Conger, of Wellsville, Mo. Furthe nformation may be obtained by addressing Messrs. Conger $\&$ Bro. as above.
per cent of potassa, a very high average; and it has been lately stated that they will give a large amount of fiber useful for textile purposes or for paper making. The seeds are also an excellent food for poultry, who are very fond of them.

The Sunflower.
This plant absorbs, both from the soil and atmosphere, an
normous amount of branched $I t$ is from the evaporation

CONGER'S MOTOR.

RECENT INVENTIONS

Mr. Charles A. Simpson, of Saxonville, Mass., has patented a picture-cord attachment. The cord has a piral spring attached to one end and a flat hook attached to the other end, this spiral being screwed on the picture cord near the lower end, and a hook passed through an eye near the bottom of the rear of the same, and then passed up and hooked on to the cord lower or higher, according to the desired inclination of the frame.
Mr. Jacob C. Landes, of Souderton, Pa has patented a shutter worker, which consists in a novel combination of a U shaped double cam fixed on the outer end of the crank rod passing through the side of the window frame, with a rod hinged on the outside of the win, dow frame at right angles to the crank rod, and embraced by the cam, and extending horizontally along the face of the blind or shutter, so that the open blind or shutter may be unlocked, closed, and locked, or the closed blind or shutter be unlocked, opened, and locked.
Mr. Charles Chevalier, of Brooklyn, N. Y., has patented an engraving or chasing machine, designed for engraving or chasing on metals, stones, etc. The invention consists of a revolving engraving or chasing tool operated by a cam-actuated trip hammer, and of novel devices for guiding and adjusting the tool.
Mr. Slubael Cottle, of New York city, has patented a die for making bracelets, by the use of which he is able to make band bracelets of the moisture charged with the gases emanating from the so much chaper than has heretofore been done that their fermentative decomposition of such materials as street cost, in proportion to the metal contained in them, is very sweepings and garbage that diseases due to air charged with much reduced. The bracelets made by this die are strong, uch vapor are inhaled and produced. An average sized |durable, and finished in a superior manner
sunflower plant will give off twenty ounces of water in Mr. Antoine Guipet, of Courbevoie, near Paris, France, has wenty-four hours, all of which it must derive from the soil patented a window frame. It is of cast iron, and of such the air. It is nothing strange, therefore, that it has been
 construction as will render it convenient in handling, trans portation, etc. The architectural design presents a pleasing appearance. The sill is constructed to prevent water from penetrating from the outside.
Mr. Samuel H. Everett, of Macedon, N.Y., has patented an improvement upon a ferti-lizer-distributer for which letters patent No. 222,478 , dated December 9,1879 , were granted to him. The present improvement enables the mechanism for discharging the fertilizer to operate more perfectly.
Messrs. George H. Hastings and Robert H. Crean, of Toronto, Ontario, Canada, have patented an improsement in the manufacture of hats, caps, and bonnets, which relates more particularly to head gear manufactured from textile materials. The invention consists in cutting the shoddy or other material into strips, which are then sewed together in squares of any desired size. The squares are then stiffened with glue or shellac, or any other suitable material, and pressed out in MOTOR APPLIED TO MILLSTONE. MOTOR APPLIED TO RAILROAD. dies into any shape that may be required. The strips may also be sewed to any desired
pre malious effects. It also shades the ground, and thus apents very rapid evaporation of such injurious vapors Apart from this the produce of the crop is very valuable if properly managed. The average yield of seeds is about fifty bushels to the acre, yielding one gallon of oil to the bushel The oil is good for table use, burning in lamps, and for the manufacture of soaps. The yield of marc or refuse after the oil has been expressed is about 1.500 pounds from an acre, and is an excellent food as oil cake for cattle, or as a manure. The stalks, when burned for alkali, will give 10 lape (instead of being sewed in blank) prior to being stiffened to that shape, and afterward pressed either by hand or by machinery. The material may be cut and sewed in parallel lines or liagonlly in combintion or in seed in parallel lines or diagonally in combination or in any shape hat taste may suggest, and it may also be sewed in such a

The Wyoming Valley Salt Bed.
A correspondent of the Tribune, writing from Wyoming, N. Y., gives the following information concerning the rich deposit of salt which has been opened there. About three years ago a company boring for petroleum struck, at the depth of 1,250 feet, a bed of pure rock salt 70 feet in vertical thickness. Its lateral extent is not known; all that has been observed of the deposition of salt, as well as the working of salt mines in Europe, leads to the conclusion that causes which deposited such a depth of,salt must have operated over an extensive area. It seems evident that the Wyoming salt mine and the salt springs of Salina, Syracuse, Western Canada, Michigan, Wiscon\sin, and Iowa belong to the same geological formation, namely, that known as the

Onondaga Salt Group; which was deposited during the Salina period; in a series of shallow, land-locked seas, extending east and west from Eastern New York to Iowa. Evaporation caused a deposition of salt in the bottom of these seas; occasional incursions of ocean water in tides and waves kept up a supply of brine, and the deposition went on so long as favorable conditions continued. The slight dip of all the rock strata of Western New York, fifteen to thirty feet to the mile, in connection with the gradual rise of the surface of the country in the same direction, explains the greater deptl of the salt formation at Wyoming than at Salina, the springs at the latter place being about 200 feet deep.
The well, eight inches in diameter, is cased with an iron tube. Inside of this is a two-inch tube. Pure water from a spring in the near hillside is caused to run into the larger tube. The water, descending to the mine, becomes saturated with salt and is then driven up the smaller tube, from which it is pumped into a huge reservoir and from that drawn into an evaporating pan, thirty by twelve feet, over a furnace, in which seventy-five barrels of salt can be made in a day. The salinometer shows the brine to have a strength of 90 , complete saturation being denoted by 100. Analysis shows the salt to contain only 3 parts of impurities in 1,000 .

Waterproof Artificial Flowers.-Mrs. Rosa Har den, of Baltimore, Md., has devised a new method of mak ing artificial flowers, by which the natural beauties can be imitated as with wax, while the flowers are durable and washable. The basis of the leaves would appear to be gelatine chemically treated. Very pretty and promising results are said to be possible by the new process.

the parasites of a monster jelly fish

The discophore known as the Cyanea artica is familiar to very frequenter of the sea shore, where their stranded jelly-like forms can be found after every tide evaporating, as it were, in the summer sun. While afloat and active in the water they afford protection to several parasites that are figured in the accompanying engraving. The large creature hanging from the inner lobe of the jelly fish is a parasitic sea anemone called the Becidium parasiticum. In the engrav ing it is life size, while the Cyanea is reduced greatly. The Actinia is generally found in the larger specimens concealed in the mouth folds, where it shares the food brought up by the tentacles of its protector. In appearance it resembles an elongated cone strongly ribbed along its sides; around its mouth are a few short tentacles. The body is covered with innumerable wrinkles, with which it attaches itself to its post, and to which it is a strong contrast, being violet or brownish-red in color. Two or three can generally be found on them.
The little worm-like creature shown on the outer edge of the Cyanea is a true parasitic worm, the Monopus medusicola -with a depressed subcylindrical body armed with two suckers. The fore one, strange to say, is imperfect, while he latter-one-third the total length from the tail-is columnar and truncate. In the engraving it is magnified twelve fold.
Besides these, numerous little fishes are found up under the tentacles, that with their terrible lasso cells would seem the last place for a fish to choose as a home, but here we find them, darting in and out among the treach crous tentacles, perfectly at their ease.
The Cyanea is a giant among its fellows and attains a diameter of seven feet, with tentacles two hundred feet long. Mrs Agassiz thus speaks of one: "He was quietly lying near the surface, and did not seem in the least disturbed by the proceeding, but allowed the oar, eight feet in length, to be laid across the disk, which proved to be about seven feet in diameter. Backing the boat slowly along the line of the tentacles, which were floating at their utmost extension behind him, we then measured these in the same manner, and found them to be rather more than fourteen times the length of the oar, thus covering a space of some hundred and twelve feet. This sounds so marvelous that it may be taken as an exaggeration; but though such an estimate could not, of course, be absolutely ac. curate, yet the facts are rather understated than overstated in the dimensions here given. And, indeed, the observation was more careful and precise than the circumstances would lead one to suppose, for the creature lay as quietly, while his measure was taken, as if he had intended to give every facility for the operation."
The different stages of the young of this animal are so totally different that they have been described as separate animals, namely Scyphisto. $m a$, Strobila, and Ephyra. Thisenormous creature is produced by a hydroid measuring about half an inch in height. The eggs are laid in the autumn, and the young, when first hatched, are oval, soon they become pear-shaped and attach themselves to the bottom. Now ininute tentacles (never over sixteen) appear, and the creature resembles a simple polyp. It grows rapidly, constriction taking place along its entire length, each one being lobed around its margin, until it finally looks lake a ple of inverted scalloped
saucers. The top one dies and falls off, and the others soon
separate by the deepening of the constrictions, and swim off, separate by the deepening of the constrictions, and swim off,
perfect infantile cyaneas, that soon reach a large size, and in perfect infantile cy
turn deposit eggs.

NEW LIME LIGHT.
The lime light illustrated herewith possesses a few novel features of considerable value, not the least among which are that it will take a block of common lime of any shape and of any reasonable size, instead of the expensive cylinder usually employed, and that the light being once regulated,

NOVEL LIME LIGHT.
it may be turned up and down from a distance without the necessity of approaching the light for focusing and adjustment.
The particular form of apparatus illustrated is intended chiefly for theaters and other large inclosed areas. The chamber in which the combination of the gases takes place contains a series of perforated metal tubes, one within an other, the function of which is to insure the complete admixture of the two gases before they arrive at and issue from the burners, which are fixed upon the upper part of the cylin drical chamber.
This feature of the invention is an important one, as it \boldsymbol{i}_{1}

THE PARASITES OF A MONSTER JELLY FISH.
res the perfect union of the gas without introducing an lement of resistance to its flow as occurs wher gauze, coil of wire, shot, and other obstructions are employed with the idea of deflecting the currents and so of securing combination.

For the purpose of regulating the light two levers are provided, one on each side of the apparatus. These levers have engraved upou them the names of the gases (oxygen and hydrogen) which they respectively control by means of stop taps. These taps being once adjusted require no further attention, and the light may be turned up and down and regulated at will by means of the tap shown at the bottom of the apparatus, and which controls the supply of both oxygen and hydrogen. This tap may occupy any convenient position when the light is situated where it is not readily or cionveniently accessible.
The pipe shown in the center ff the apparatus is connected with the ordinary gas service, and supplies gas for the purpose of warming the block of lime, igniting the mixed gases, and preventing explosions. It is stated that the apparatus is so simple that any one may work it with perfect safety, and that it gives ten to twelve times more light than an ordinary burner using the same amount and quality of gas.
The apparatus is being made and int:oduced by the invent ors, Messrs. Allen \& Co., of Cardiff, England.

Chimborazo and Cotopaxi.

A large and distinguished company lately assembled at the Royal Institution, Albemarle street, to hear Mr Edward the Royal Institution, Albemarle street, to hear Mr Edward
Whymper describe his ascents of these mountains. His Royal Highness the Prince of Wales, who was attended by Colonel Teesdale, the Marquis of Queensberry, Lord Aber dare, Sir Beaumont and Lady Florence Dixie, Sir Allen Young, Sir T. Fowell Buxton, Mr. W. Spottiswoode, Colonel Grant, and the Dean of St. Paul's, were among the audience that filled the lecture theater. Mr. C. E. Mathews, late president of the Alpine Club, took the chair.
It is, unfortunately, impossible in a necessarily short report to give any idea of the charm of the narrative which Mr Whymper had to relate, brightened as it was by many quiet-ly-given touches of humor. Personal matters, however, ly-given touches of humor. Personal matters, however,
were only introduced when they served to illustrate some scientific observation. While purely athletic mountaineers had his sympathy in the practice of mountaineering as a sport, Mr. Whymper confessed that his sympathies were much more with those who employed their brains as well as their muscles. His journey to the Andes was to be one of work, and all its arrangements were devised so as to economize time to the uttermost. In observations for altitudes and position, in studying the manners and customs of the country, in photography and sketching, in the collection of objects of interest, from beetles on the summits of went tains to antiquities buried in the ground, he found quite sufficient to occupy his time. From Bodegas the party was composed of two Swiss mountaineers, the cousins Carrel, of Val Tournanche, Mr. Perring, some muleteers, and their leams. About two tons weight of the most portable and most condensed provisions went out for their use, and irrespective of the things which were bought already tinned, more than 2,000 tins were soldered down. When they reached the summit of Chimborazo, on the 3d of January, after a most arduous climb, they found the wind blowing at arduous climb, they found the wind blowing at
the rate of 50 miles an hour from the northeast, and driving the snow before it. With extreme difficulty a reading of the mercurial barometer was effected. The mercury fell to $14 \cdot 1$ inches with a temperature of 21° Fah. This being worked out, in comparison with a nearly simultaneous observation at Guayaquil, gave 20,545 feet for the beight of Chimborazo. They began the descent at 20 minutes past 5 , with scarcely an hour and a quarter of daylight, and reached their camp (about 17,400 feet above the sea level) about 9 P. M., having been out nearly 16 hours, and on foot the whole time.
Passing from an extinct to an active volcano, Mr. Whymper next gave an account of his journey to the crater of Cotopaxi. Observing with the telescope, during an enforced stay at Macha. chi, that much less smoke or vapor was given off at night than by day, he resoived, if possible, to pass a night on the summit. On the 181 h of February the party got to the edge of the crater, having passed almost the whole way from their camp, at a height of 15,000 feet, to the foot of the final cone over snow, and then over ash mixed with ice. The final cone was the steepest part of the ascent, and on their side presented an angle of 36°. When they reacbed the crater vast quantities of smoke and vapor were boiing up, and they could only see portions of the opposite side at intervals, and the bottom not at all. Their tent was pitcbed 250 feet from the edge of the crater, and during a violent squall the Indiarubber floor of the tent was found to be on the point of melting, a maximum thermometer showing a temperalure of 110° on one side of the tent and of but 50° on the other; in the middle it was $72 \cdot 5^{\circ}$. Outside it was intensely cold, and a ther mometer on the tent cord showed a mirimum of 13°. At night they had a fiue view of the crater, which has a dameter from north to south of

2,000 feet, and from east to west of about 1,500 feet. In the interior the walls descend to the bottom in a series of steps of precipice and slope a good thousand feet, and at the bottom there was a nearly circular spot of glowing tire, 200 feet in diameter. On the sides of the interior higher up, fissures, from which flickering flames were leaping, showed that the lava was red-hot a very short distance below the surface. The height he found to be 19,600 feet. The party remained at the top for twenty-six consecutive hours, sleep ing about 130 feet below the loftiest point. At first they had felt the effects of the low pressure of the atmosphere, and again, as at Chimborazo, took chlorate of potash with good effect. All signs of mountain sickness had passed away before they commenced the descent, and did not recur during the journey. Nearly five mouths later Mr. Whymper returned to Chimborazo, and from a second reading of the barometer at $14 \cdot 028$ inches, with a temperature of 15° Fah, he made the height 20,489 feet, the mean of the two readings giving 20.517 feet. While on the side of Chimborazo he witnessed a maynificent eruption of Cotopaxi, ash rising in a column 20,000 feet above the rim of the crater and then spreading over an area of many miles. Professor Bonney had submitted the ash to microscopic examination, and found that the fineness varied from 4,000 to 25,000 particles to the grain in weight, and from observation of the area over which the ash fell Mr. Whymper calculated that at least two million tons must have been ejected in this one eruption.
The Prince of Wales, in proposing a vote of thanks to Mr. Whymper, said the matter which he had laid before them that evening was such as must be of deep interest even
to those who had not had any experience of the ascent of bigh mountains. After remarking upon the pleasing and entertaining manner in which the subject had been treated, his Royal Highness, for lis own part, thanked the members of the Alpine Club for the treat they had given him by inviting him to hear the lecture.

Preparation of the Salts of Uranium and Vanadium at Joachimsthal, Bohemia.

by c. LALLEMAND.

The uranium ore is pitch-blende of the sp. gr. 7. It contains on an average 40 to 55 per cent of urano-uranic oxide $\left(\mathrm{U}_{3} \mathrm{O}_{4}\right)$, besides vanadium, arsenic, sulphur, molybdenum, tungsten, cobalt, nickel, copper, bismuth, lead, silver, iron, manganese, lime, magnesia, alumina, and silica. The analy sis of the sample is thus performed: a portion of 3 grms . is heated on the sand bath with moderately concentrated nitric acid. At the end of two hours the reaction is complete; the solution is decanted, and the residue filtered and washed with hot water till the washings no longer give the characteristic red color with potassium ferrocyanide. The collected liquid is then mixed with sodium carbonate in excess, and boiled to expel free carbonic acid. The totality of the vanadium, iron, lime, lead, copper, etc., is thus precipitated, while uranium remains in solution. The sediment is allowed to settle for some hours, after which it is decanted, washed with hot water by decantation, filtered, and washed upon the filter with hot water until the washings, after slight acidulation with hydrochloric acid, no longer give a red coloration with potassium ferrocyanide. The excess of sodium carbonate is then decomposed by the addition of hydrochloric acid, the free carbonic acid being expelled by boiling, and caustic soda is then added, which throws down all the uranium as sodium uranate with excess of alkali. The mixture is decanted, filtered, and washed very slightly on account of the ready solubility of sodium uranate in pure water; it is dried, the filter detached and burnt, its ash added to the precipitate, and the whole ignited at dull redness in a platinum crucible. When cold it is washed in cold water to remove excess of soda, filtered, dried, ignited, and weighed. We have thus a certain weight p of sodium uranate, NaO , $2 \mathrm{~N}_{2} \mathrm{O}_{3}$. The corresponding weight of $\mathrm{U}_{3} \mathrm{O}_{4}$ is found by calculation. The practical treatment of the ore comprises five operations: Roasting the ore with sodium nitrate and car bonate, lixiviation of the roasted mass, treatment of the residues with sulphuric acid, precipitation of the foreign metals with sodium carbonate, and purification of the liquid and precipitation of the uranium. This precipitation is effected differently according as it is desired to obtain the product in a light yellow or the orange state. For the former the liquid is precipitated with caustic soda, until a portion of the liquid on acidulation no longer gives the red reaction with potassium ferrocyanide. To obtain the orange-colored variety the carbonate of soda is very gradually neutralized with sulphuric acid, avoiding excess. The precipitation is complete. Six different preparations of uranium are pro-duced-uranate of soda, of a light yellow, an orange, and a bright orange; uranate of potash, of a bright orange; uranate of ammonia, of a light yellow; and black uranium oxide. The vanadium present in the Joachimsthal ore doos not exceed $0 \cdot 1$ per cent, and the methods tried for its extraction do not appear to have been commercially successful.

Sulphate of Iron

The salt, protnsulphate of iron-or, as the more recent terminology has it, ferrous sulphate-is a purer form of the copperas or green vitriol which can be purchased at the drysalter's at about a penny per pound, and it is a chemical possessing many very interesting properties apart from its photographic qualities. It is singular-but not less singular
chemistry, as also in that special branch of applied chemistry
which most interests our readers, there are, even yet, man which most interests our readers, there are, even yet, many ter for discussion among chemists. Sufficient, however, is known to show its usefulness and importance, the many changes it undergoes, and the varieties in its forms that may be met with. It usually occurs in commerce in the form of nice, dry,
ompact crystals, not very large in size and of a bluish-green color, in which shape it is fairly permanent, though expos ure to air, if the crystals be at all damp, is apt to lead to their decomposing with the formation of the brown basic salt, much to the detriment of the appearance of the crystals. Some time ago there was to be found in commerce a sulphate of iron crystal quite different from that we de scribe, and which was practically free from tendency to decompose. The crystals were very even in size, but of a color quite different from the usual or more familiar kind being, in comparison, a green of a decidedly yellow-not rown-cast. We have not seen it lately, and cannot say if it be now produced at all, its permanency being its chief
passport to use; but, that property being gained at the expassport to use: but, that property being gained at the ex-
pense of the presence of a considerable amount of free acid with the crystals, there need be no regret, from a photo graphic point of view, if it were entirely banished from com merce.
It is customary for photographers to purchase these crys tals in the pure form; but if they choose to take a little trouble theie is no reason why they should not become their own ing only in recrystallization. If a dozen poinds of clean and fresh copperas be purchased at the dry-salter's, dissolved in about four gallons of hot water, filtered, a little sulphuric acid added, and then the whole set aside to crystallize in a place where it would not cool too rapidly, a crop of crystals would be produced which, drained and placed on picces of blotting paper to dry, would be equal, for photographic purposes, to the best to be bought, and at a considerably reduced cost-the process of crystallization, too, being very interesting to watch. The crystals would be still better if pieces of string or thin sticks were placed in the liquid for the crystals to form upon. For further economy, the mother liquid-that is, the solution left after crystallization -might be boiled down in an iron saucepan till crystals begin to form, and then again put aside for a fresh crop to be produced. The last mother liquid will contain most, if not all, of the impurities present in the original crystals of opperas.
The solubility of sulphate of iron is represented in a sin ularly variable light, some authors giving tables remark ably different from others. Perhaps the following, which is on the authority of Herren Brander and Firnhaber, may be considered as nearly correct as possible:

Temperature in
Degrees Centigrade.
Quantity of Water require
to Dissolve One Part

10	$1 \cdot 64$
14 ${ }^{1 \cdot 43}$
25 0.87
32.5. 0.66
46	. 0.44
60	. 0.38
84 0.37
90	. 027
100	0-30

It will thus be observed that a singular property is shown to be possessed by this salt, its solubility increasing till it reaches within somie little distance- 10° Centigrade-of the boiling point, when it quickly begins to get less soluble, so that a solution saturated by treatment at 90° over an excess of crystals will be found to have a crust upon its surface when raised to boiling point.
This solution of ferrous sulphate gradually becomes brown colored by keeping, and quickly so if exposed to the air. It, however, strange to say, does not pass beyond a certain stage of change. When that point has been reached no further alteration in its appearance and qualities takes place, and the solution may be kept for a long time-if evaporation be pro vided against-without subsequent change. The deposit which has been formed is variously stated to be of a basic character, with greater or less proportions of acid.
We have called the commercial crystals "dry ;" but, strictly speaking, they will be found to have a slight amount of water clinging to them; and to this is owing the gradual oxidation and browning that occurs when they are kept for any length of time. If the crystals are well dried by pressure between cloths and placed in a dry bottle they will keep
for a long time unaltared.
It may be obtained in the form of a slightly blue tinted powder by adding a strong soluticn to a small quantity of
alcohol; the salt, being insoluble in that liquid, is thrown down as a powder, which may be preserved well withou oxidizing if kept in a dry place. Another method of obtaining it in powder is to spread a number of crystals out before a fire with occasional turning, when they will part with most of their contained water-seven molecules of water usually crystallizing with it-and effloresce till white through the whole crystal. At this stage it may be easily powdered, and should then be put in a stoppered bottle, in which manner it
may be kept almost indefinitely. This powder will, we need scarcely say, be stronger than an equal weight of the crystals, bree grains being equal to five.
We may close our remarks by noting that a solution of sulphate of iron that has been kept till well oxidized forms
a good antidote against cyanide of potassium, if swallowed directly afterwards. - British Journal of Photography.

Action of Certain Chlorides on Aniline Colors.

by girard and J. a. pabst
The authors introduced into tubes the chlorides of silicon, SiCl_{4}, of carbon, CCl_{4}, and of tin, SnCl_{4}, with four times their respective volumes of chemically pure aniline, which, with arsenic acid, yielded not more than one five-hundredth of its weight of mauvaniline without a trace of red or yellow. The tubes were sealed and heated for twelve hours to 225° to 230°. No pressure was observed when they were opened. The carbon perchloride had produced triphenyl. guanidine, rosaniline, and a brown matter, offering all the reactions of Bismarck brown, which is well known to be produced by the action of aniline hydrochlorate upon rosaniline. Tin perchloride yield violaniline and mauvaniline in small quantity, a large proportion of rosaniline or pararosaniline; also Bismarck brown, and a trace of green matSilicon chloride yielded violaniline, and especially triphenylene diamine blue, as well as a trace of mauvaniline. Antimony perchloride, heated with aniline to 125°, reacted very violently, forming violaniline, a small quantity of triphenylene diamine blue, and a certain quantity of a blue matter, analogous to that produced by the action of hydrochloric acid upon the azoic compounds. Thus, notwithstanding the parallelism of their properties and constitutions, carbon chloride yields rosaniline; silicon chloride violaniline; and tin chloride, both these coloring matters.

Industrial Society of Mulhouse.

At a special meeting of the society, a letter was read from M. Caro, contending that Messrs. Lloyd \& Dale, and not Mr. Thomas Brooks, invented the process for fixing aniline colors by the joint action of tannin and tartar emetic. A silver medal was offered for a decided yellosv color equal in permanence to alizarine, and fixed in the same manner. A note from M. Brandt was read on the preparation of stannic sulphocyanide by the double decomposition of calcium sulphocyanide and stannic oxalate. It is likely to find extensive applications in calico printing. M. Dollfus read some extracts from a report on cadmium yellow. M. Jacquet has observed that a few grms. of a salt of cadmium added to a chromate of lead color considerably retard the sulphuration of the latter during steaming. MM. Noelting and De Salis communicated investigations on the nitrized cresylols. On treating the diazoic derivative of ortho-toluidine with nitric acid they obtained a binitro-cresylol fusible at 86°, and yielding crystalline yellow salts. It appears to be identical with a compound discovered by M. Piccard in a commercial product known as saffron substitute.

A Novel Actinic Phenomenon.

by dr. phipson.

The author describes a zinc-white of a dazzling purity obtained by precipitating a solution of zinc sulphate by means of barium sulphide, submitting the precipitate to strong pressure, and igniting it with limited access of air. If any barium sulphide escapes oxidation, the white compound, on exposure to the sun, begins to darken, and in about twenty minutes becomes of a deep slate color. If removed into a minutes becomes of a deep slate color. If removed into a
dark place it gradually loses color, and in about five or six dark place it gradually loses color, and in about five or six
hours it becomes again snow-white. This experiment may hours it becomes again snow-white.
be repeated with the same specimen as often as desired. Further, this change of color does not take place under a slip of common glass, whether thick or thin; at most the compound takes a slight yellowish brown color on exposure to the sun for two hours. The sample on analysis was not found to contain silver or any other substance known as actinic.

Manufacture of Soda from Sulphate

Salt cake is produced in quantity in California in the manufacture of nitric acid. As coal and limestone are dear in California, Le Blanc's process is not economical. The author therefore proposes to mix a solution of salt cake with calcium sulphite and pass in sulphurous acid. Soluble calcium bisulphite is formed, and by decomposition calcium sulphate and sodium bisulphite. The two salts are separated by filtration, and the sodium bisulphite is treated with milk of lime. The result is a solution of caustic soda, retaining certain quantity of sodium sulphite and sulphate, which is evaporated down in the usual manner, and calcium sulphite, which is used again in the process.-J. Putzkow, in Dingler's Pol. Journ.

Hardening Steel.

According to a Sheffield paper a very fine preparation for making steel very hard is composed of wheat flour, salt, and water, using, say, two teaspoonfuls of water, one-half a teaspoonful of flour, and one of salt. Heat the steel to be bardened enough to coat it with the paste by immersing it in the composition, after which heat it to a cherry red and plunge it into soft water. If properly done, the steel will come out with a beautiful white surface. It is said that come out with a beautiful white surface
Stubs' files are hardened in this manner.

A Costly Letter Envelope.-Among the curious articles in the Indian Court of the Melbourne Exhibiton are two hollow elephant tusks, fitted with a gold cover. They were sent to the Viceroy of India by the Rajah of Burmah, who used them as an envelope for an official communication. They are valued at $\$ 1,000$.

Four Years of Industrial Progress.

The following interesting statistics are taken from a Treasury Department statement of the financial and economic transactions of the United States during the past four years:

	(For Year ended ${ }_{\text {March 1, } 1878 .}$	($\begin{gathered}\text { For year ended } \\ \text { March 1, 1879. }\end{gathered}$	For year ended March 1, 1880.	${ }_{\text {For }}^{\text {For year ended }}$ March 1, 1881.	Total.
Exports of five stock	${ }^{84} 4205589300$	10,883,241	\$12065,45	\$20,681,738 00	06,331 00
Txxports of other food	269,48,2,29000000	\% 2525856,929600	${ }_{767 \text {, } 875,740} 000$	${ }_{9}^{465,2,241.563}$ 00	
Specie ${ }_{\text {Total }}$ imporits merchandise....		- $\begin{array}{r}26,391,143 \\ 4320941,19 \\ 000\end{array}$	-		2,166,64,232000
Specie. ${ }^{\text {Stio }}$,	26,999,280 ${ }^{\text {a }}$ (11200			43,492, 27650001
Production of wool, number of pounds:	20:7.000, 4000	211,000,000	${ }_{2} 332.500,5600$		914.500,000
Production of wheat, number of bushels		1,388.2318,500	1,577, 9171,7909	1,537,535,900	5,816,214.440
Production of pig iron, number of tons.		$\stackrel{\substack{2,301,215 \\ 5,230,554}}{ }$			${ }_{\text {241,448,166 }}$

NEW INVENTIONS.

Mr. J. F. Smiths, of Zionsville, Par, has patented a fiy net for horses, so constructed that the lash cannot slip into the ribs, but will be firmly knotted thereto in a simple and effective manner. The lash of the nettings is attached by passing it through the ribs from the outer to the inner side, then passing it over the lower edge, outer side and upper edge of the rib, and then through the same from the inner to the outer side.
Messrs. John Dimelow and Robert M. Peadro, of Round Rock, Texas, bave patented an improvement in the manufacture of hydraulic cement and lime from rotten or decomposed limestone. They first burn the decomposed stone, then subject it to currents of air or steam in a tightly closed receptacle, and finally sift the material either with or without grinding, by which a strong cement is obtained.
Mr. Elisha S. Griffith, of Ghent, Ky., has patented an in-sect-killer which consists of a bar or rod having a bowl at each end and pivoted in the middle, so that the heavier bowl descends. The device is placed in a tobacco or other field at night, both bowls filled with fuel, and fuel in one of the bowls is ignited. As the fuel burns the bowl containing it rises, and finally assumes a position above the other bowl, whereupon its embers will drop upon and ignite the fuel in the lower bowl. The insects are attracted to the flames and are destroyed.
Mr. Charles Hill, of Sodus Point, N. Y., has patented an apparatus for drying fruit by means of artificial heat. An asbestos lined case is provided with a novel elevating arrange ment for carrying trays for holding the articles to be dried The trays have net-work bottoms, and the circulation of heated dry air through the case (which latter, by virtue of its asbestos lining, retains the heat) is relied upon for desiccating the fruit.
Mr. Silas M. Bragg, of Hickman, Ky., has patented an djustable sawing and routing machine for the more rapid manufacture of bed-rails, friezes, etc. The table of the ma chine has a circular saw and router at each end, with a mov ble carriage, whereby the piece is presented in such man ner as to be operated upon at both ends simultaneously. The table may be shortened or lengthened to operate on dif ferent lengths.
Mr. Thomas T. Lotherington, of Houston, Texas, bas patented a stencil-brush by which the waste of ink accom panying the use of ordinary stencil brushes is avoided; and whereby the time commonly lost in dipping the brush is also aved. A reservoir for ink is formed in the handle of the brush, and a valve feeds the ink to the bristles at such times and in such quantity as may be desired by the operator
Mr. William B. Atkinson, of Franklin, Ky., has patented a fish trap of the kind composed of two hollow skeleton or wire jaws hinged together and closed by cords for trapping fish. He has provided improved means for suspending and pening the trap, and holding the jaws at such an angle as will facilitate their closing.
Mr. Edward P. Haff, of Brooklyn, N. Y., has patented a device for putt'ng up cord balls, such as balls of twine, knit ting cotton, etc., which protects the balls from soiling when exposed for sale or in use, and controls the unwinding in such manner as to prevent tangling. For this purpose a protective case guard or wrapping constructed of paper or othe analogous cheap material is employed.
Mr. Benjamin Slusser, of Siduey, Ohio, has patented an improvement in excavators, which is an improvement upon a self-loading ditching machine or excavator for which let ters patent No. 72,098, dated December 10, 1867, were granted to him. The present improvement secures a more perfect co-operation of the apron with the plow, and greater convenience in discharging the contents of the machine when loaded.
Mr. Orlando E. Lewis, of Urbana, Ohio, has patented an improvement in boots and shoes, by which leather is economized, durability is increased, and comfort to the wearer is secured. The front portion of the upper is turned outward at the lower edge and stitched to the sole. The front or wearing part of the sole is made of two pieces of leather of equal dimensions aud similar shape, extending backward t form the shank, which latter is stiffened in the ustual way.
Mr. George F. Newell, of Greenfield, Mass., has patented an improved feeding mechanism forsewing machines, which relates to that class of feeds in which a longitudinally-reciprocating rod or bar is arranged at right angles to the feed bar and imparts motion to the latter through a bell crank lever. The invention consists in a novel construction and arrangement of mechanism for raising and lowering the feedbar, pushing it forward and backward, giving it an int of rest, and for shortening and lengthening the stitch.

Mr. Walden Pickett, of Andover, Ohio, has patented an improved fruit crate, more particularly intended for holding boxes or baskets of small fruit, but which may also be used for peaches and other fruits The crate is made in two sections and provided with a lidor cover. Each section accommodates a prescribed number of boxes, and is provided with removable bars having rabbeted ends, which permit their easy nsertion between the slats of the sides of the sections. When baskets are packed the bars are removed; but when boxes are packed, which require less space than baskets, the bars are placed between the side slats to fill the space. The sections bave also slatted bottoms, and are provided with false bottoms with slats made to fit between the slats of the principal bottom, which are used when large fruits are packed. Mr. David Williams, of Eagleport, Ohio, has patented an mproved kettle holder for supporting kettles and oth kitchen utensils of different sizes over a fire. It consists of kitchen utensils of different sizes over a fire. It consists of
a legged ring and one or more inwardly beveled rings proa legged ring and one or more inwardly beveled rings pro-
vided with downwardly and vertically projecting pins, the vided with downwardly and vertically projecting pins, the
latter rings fitted to rest in and upon the legged ring, the pins serving also t to keep the smaller rings in place.
Mr. Thomas F. Darcy, of New York city, has patented a reversible center-plate for furniture, such as the seats and backs of chairs, sofas, and the tops of tables, which permits of one side being upholstered in one style while the opposite side may be upholstered in another style. Devices for holding the plate firmly when reversed are supplied.
Mr. John D. Parker, of Kansas City, Mo., has patented a composing-stick gauge for printers' use, by which instead of setting the composing stick by leads (which often vary in length from imperfect cutting, thus giving trouble in locking forms), it is accurately set. The gauge consists in a me-
tallic plate divided into rectangular sections of different lengths in " em " measurement.

Value of Sawdust

We should hardly credit so large a story from a less reliable source than the N. W. Lumberman, but we presume the editor has the statistics at hand to confirm his asser tions:
"In New York there are about 500 venders of sawdust, having a capital of $\$ 200,000$ invested, and doing a business mounting to more than $\$ 2,000,000$ annuaily. Forty years go the mills were glad to have sawdust carted away; twenty five years ago it could be bought for 50 cents a load, bu the price has increased, and now it brings $\$ 3.50$ a load at the mills. It is used at the hotels, eating houses, groceries, and other business places. It is wet and spread over floors in order to make the sweeping claner work. Plumbers use great deal about pipes and buildings to deaden walls and floors. Soda-water men and packers of glass and small arti cles of every kind use it, and dolls and some living creatures are more or less stuffed with it. Yellow pine makes the best sawdust, as it is the least dusty, and has a pungent, healthy smell. But any white wood dust will do. Black walnut sawdust will not sell and is burned."

How to Grind a Glass Plate.
It is sometimes useful to know how to impart a finely ground surface to glass suitable, say, for a focusing screen. Mr. C. S. de Joux good-naturedly sends us, all the way from Mauritius, a simple method he has practiced which certainly deserves to be recorded. Finely-ground and or river mud-or, what is better still, the sedimen rom a grindstone-is well stirred up in a bowl of water and after a few minutes the upper half of the liquid de canted off. The decanted liquid contains all the finer parti cles, and these, after subsiding, are collected in a watch glass. The sheet of glass is laid on a damp cloth spread upon a table, and the watch glass and mud used as a muller, the convex side of the watch glass supplying a good hold for the fingers. In a quarter of an hour a satin-like polish will be obtained, admirably adapted for focusing. A rinse with water
Neovs.

Cheap Paint.

Three hundred parts washed and sieved white sand, forty parts of precipitated chalk, fifty parts of rosin, and four parts of linseed oil are mixed and boiled in an iron kettle, and then one part of oxide of copper and one part of sulphuric acid are added. This mass is applied with an ordinary pain brush while warm. If it is too thick, it is diluted with lin seed oil. This paint dries very rapidly and gets very hard, but pro.

Malaria in Italy

The question whether it is possible to saturate the human system with some substance which, without prejudice to general health, would counteract the germs of malarial infection and enable persons to live in malarial districts with impunity at any time, is being studied by M. Tummasi-Crudeli. In the end of the seventeenth century arsenious acid (commonly called arsenic) was largely employed in the treatment especially of the graver forms of the disease, and though displaced to some extent since the discovery of quinine, is still used as being cheaper and sometimes efficacious where quinine is not. In some cases, too, the system will not bear the dose of quinine necessary. Now, M. Tommasi-Crudeli knows of cases where men had to pass the summer in the most unhealthy districts of the Agro Romano, and who were every year attacked by the fever till the last two years, when by a regular use of Fowler's arsenical liquor they have both enjoyed immunity and regained appetite and vigor. He is about to make experiments on animals to find (1) whether such immunity may be secured in a constant way; (2) what is the minimum daily dose of arseniousacid (in proportion to the body weight) which will make the system refractory to the malarial ferment. An extensive distribution of such a poisonous substance among an agricultural population would, no doubt, be attended with danger; and M. TommasiCrudeli suggests the use of the arsenic in some such way as that lately adopted at Caserta in the treatment of a grave malarial epidemic. The substance was suppiied in the form of gelatine tablets (made by Decian, of Venice), each divided into 50 square pieces, easily detached, and each piece containing so much arsenic (2 mgr .). For the preventive purpose the proportion would be reduced.
The nature of malarial fever has been further elucidated by the researches of MM Cuboni and Marchiafava. In the former researches by MM. Tommasi-Crudeli and Krehs (1879) it was a curious fact that the characteristic form of the bacillus was not found in the circulation of persons who had the fever, though largely in certain parts, the spleen and bone-marrow especially. It now appears that during the ingress of the fever, and also during the last period of the febrile intermittence, the blood of the whole body contains a considerable number of individuals of the parasitic species. These are mostly spore producing; and when, in the second period (up to the crisis) they are all, or nearly all, destroyed,
one sees in the blood merely a number sometimes enormous, one sees in the blood merely a number, sometimes enormous,
of the small spores which bave been liberated, and which in favorable conditions produce a new generation of bacilli in the same blood.

Think while you Read.

The Teacher's Journal, in an article on methods of study, reminds the student that the first essential tosuccessful study is the power of concentration of thought. This power is largely a matter of habit and cultivation. Read five pages of history in a lackadaisical manner. Close the book and write out all you can remember. Then compare your pro. duction with the printed matter, and you will be able to judge of your proficiency. Read five pages more with fixed attention and a resolution to retain the subject, and compare as before. You will find a marked improvement. If your memory is treacherous read but very little, and always write out the subject. When you hear a sermon or address, hear it, and afterward reduce it to writing. Read no novels, and do not read aloud to please others unless you care (nothing) for the article yourself. A practiced reader can read aloud for hours and carry on an independent train of thought all the time. This ruins the faculty of study as well as the memory. Dismiss all other subjects but the one in band. Let the ear be deaf to all sounds, and the eye blind to all sights. Let the sense of touch sleep, and smell and taste be as though they were not. A lesson learned in this state of mind will stay with you, and will not need to be "crammed" again the night before examination. It will be like lines carved deep into the rock, or chiseled on the Rosetta stone. The other method is the dim tracing of obscure letters in the sand, which the next wave obliterates.

Medical Gymnasium.-A medical gymnasium was lately opened in Paris. It has been built in the Chausee d'Antin, at an expense of $£ 20,000$, by a public company. About seventy mechanical contrivances of different descriptions have been arranged in a series of rooms. The greater number of these are worked by a steam engine, and all of them can be graduated by screws, so that the extent, duration, and velocity of motion can be regulated according to the direc. tion of the physicians.

Photographing Music.

An English paper tells of a gentleman, who, on being asked to sing, produced from his pocket a little case which contained his music, photographed down to the size of note paper. He had duplicate copies of each song, and handed one to the accompanist, singing from the other himself. The expedient saved all the bother of bringing a roll of music, unfolding it, collecting it again, and so forth.

Drfing Potatoes.-Benjamin Wing, of Rochester, has been largely engaged in the business of supplying the Northwestern army, and his practice is to first slice the potatoes, then put them in a steam box three or four minutes to keep the starch in. and then subject them to drying. If not placed in the steam box, the starch would come out. When used, they are soaked, and are then like fresh potatoes.

Qugness and dersout

The Charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Advertisements must be received at publication office as early as Thursday morning to appear in next issue.

Cope \& Maxwell M' f 'g Co. 's Pump adv., page 188. The American Electric Co.., Proprts Mfrs of Thomp see adv.. page 189 .
Foot Power Printing Press; Chase, 8×10; Price, $\$ 65$.
The New System of Bee Keeping, Every one who has a farm or garden can now keep bees with pleasure
and profit. For particulars address Mrs. Lizzie E. Cotha west. Gorham, vaine.
N. C. Baughman's Climax Wash. Mach. See adv., p. 188.

For the Cheapest Process of Manufacturing Bricks, ers Bros. \& Co.'s adv., page 190.
Rowland's Vertical Engine. Wearing parts of steel
Broaid bearings. F.C. \& A.E.Rowland, New Haven, Conn 50 cents each will de paid for the following numbers of London Engineering. Jan. 14, 28, and Feb. 18, 1
Sept. 14, 1877. B. R. Western, No. 8 Broad St., N. Y.
Boomer \& Boschert's Cider Press will perform better work and produce more cider from the same quantity of
apples than any other press in the world. Farmers and others interested, send for illustrated circulars to th New York Office, 15 Park Row.
Any one having a first-class new Sewing Machine, well protected by patents. can find a responsible party to make on royalty or purchase patents, by addressing
"Advertiser," Box 773 , New York. See Special Bolt Forging Machine Notice, page 204.
Blake's Belt Studs are better than lacing or any othe stening forbelts. Greene Twed $\& \mathrm{Co}$ New York. The New York Assay Laboratory.-Short, practical courses of instruction in Iron Chemistry and Assaying Broadway, N. Y.
Gear Wheels for Models (list free); Models, Experi mental Work, etc.
Philadelphia, Pa.
R. J. W.-Froth or scum in your boilers caused by sediment in water from driven wells, entirely obviated
without loss of water, by Hotchkiss' Mechanical Boiler

Telephone and Call Bell, complete set, only $\$ 3$. Model ,
For Machinists’ Tools, see Whitcomb's adv., p. 173. For Light Machinists'Tools, etc., see Reed's adv., p. 150 Large Slotter, $72^{\prime \prime} \times 18^{\prime \prime}$ stroke. Photo on
tion. Machinery Exchange, 261 N . 3d St., Phila.
Buy the Buffalo Port. Forge. Have no other
Presses, Dies, and Tools for working Sheet Metals,
etc. Fruit and other Can trools. E.W. Bliss, successor to Bliss \& Williams, Brooklyn, N.
L. Martin \& Co., manufacturers of Lampblack Send to John D. Leveridge, 3 Cortlandt St., New York for illustrated catalogue, mailed free, of all kinds of
Scroll Saws and Supplies, Electric Lighters, Tyson's Scroll Saws and Supplies, Electric Lighte
Steam Engines, Telephones. Novelties, etc.
Pure Oak Lea Belting.
Philadelphia. Correspondence solicited.
Star Glue and Pure Turkey Emery for Polish
Greene, Tweed \& Co., 118 Chambers St., New York.
Within the last ten years greater improvements have been made in mowing machines than any other agricul-
tural implement. It is universally acknowled ged that tural implement. It is universally acknowledged that
the Eureka Mower Co., of Towanda, Pa., are making the best mower now in use, and every farrmer should
write to the manufacturers for catalogue, with prices. Jenkins' Patent Valves and Packing "The Standard." enkins Bros., Proprietors, 11 Dey St., New York. Presses \& Dies. Ferracute Mach. Co., Briageton, N. J Wood-Working Machinery of Improved Design and The " 1880 " Lere Cuilt for 50 cts.; discount the trade. Sterling Elliott,,262 Dover St.. Boston, Mass. Experts in Patent Causes and Mechanical Couns

Park Benjamin \& Bro, 50 - Astor House. New York. | Split Pulleys at low prices, and of same strength and |
| :--- | appearance as. Whole Pulleys. Yocom

works, Drinker St., Philadelphia. Pa.
Malleable and Gray Iron Castings, all descriptions, by Erie Malleable Iron Company, limited. Erie, P’a. Power, Foot, and Hand Presses for Metal Workers.
Lowest prices. Peerless Punch \& Shear Co. 52 Dey St.,N.Y National Steel Tube Cleaner for boiler tubes. adjust ble, durable. Chalmers-Spence Co., 40 John st,
Wren's Patent Grate Bar. See adv. page 173. Corrugated Wrought Iron for Tires on Traction En gines, etc. Sole mfrs., H. Lloyd, Son \& Co., l'ittsb'g. Pa Eclipse Portable Engine. See illustrated adv., p. 158 Best Oak T'anned Leather Belting. Win. F. Forr
paugh. Ir. \& Bros., 531 Jefferson St., Phiadelphia. Pa. Stave, Barrel Keg and Hogshead Machiniery a spe calty, by E. \& B. Holmes, Buffalo, N.
4 to 40 H P. Steam Engines. See adv. p. 158. Rollstone Mac. Co.'s Wood Working Mach'y ad. p. 158. Wright's Patent Steam Engine, with automatic cut off. The best engine made. For prices, and
Wright, Manufacturer, Newburgh. N. \mathbf{Y}
The Brown Automatic Cut-off Engine; unexcelled for workmanship, economy, and durability. Write for
formation. C.oH. Brown \& Co., Fitchburg. Nass.
Saunders' Pipe Cutting Threading Mach. See p. 173
Nicked P:ating.--ole manufacturers cast nickel an odes pure nickel salts. importers Vienna lime, crocus,
etc. Condit. Hanson \& Van Winkle, Newark, N. J., and $9 ?$ and 94 Liberty St., New York
Saw Mill Machinery. Stearns Mfg. Co. See p. 141.
Clark Rubber Wheels adv. See page 172.
or Mill Mach'y \& Mill Furnishing. see illus. adv. p. 172
See Bentel, Margedant \& Co.'s adv., page 188.

For Sale-Two New 66-inch Stevenson Turbin Wheels composition buckets: 200 H. P.; price, Diamond Saws. J. Dickinson, 64 Nassau St., N. Y. steam Hammers, Improved Hydraulic Jacks, and Tub 50,000 Sawyers wanted. Your full address for Emer son's Hand Book of Saws (free). Over 100 illustration nd pages of valuable information. How to straighten
aaws, etc. Emerson, Smith \& Co., Beaver Falls, Ia. saws, etc. Emerson, Smith \& Co., Beaver Falls, 1'a.
Peerless Colors-For coloring mortar. French, Ri
ards \& Co, 410 Callowhill St., Philadelphia, Pa, For Pat. Safety Elevators, Hoisting Engines, Frictio Tight and Slack Barrel machinery a specialty. John Elevators, Freight and Passenger, Shafting, Yulleys For the manufacture of metallic shells, cups, ferrules blanks, and any and all kinds of small press and stamped
work in copper, brass,zinc, iron, or tin, address C.J. God rey \& Son, Union City, Conn. The manufacture of sma wares, notions, and novelties in the ab.
cialty. See advertisement on page 188 .

For Heavy Punches, etc., see ill ment of filles \& Jones, on page 188.

Comb'd Punch \& Shears; Universal Lathe Chucks. Lam bertville Iron Works, Lambertville, N. J. See ad. p. 189
Best Band Saw Blades. See last week's adv., p. 189. Reed's Sectional Covering for steam surfaces; an ne can apply it; can be removed and replaced wit
jury. J. A. Locke, \& Son, 40 Cortlandt St., N. Y. Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423. Pottsville. Pa. See p. 189 For best low price Planer and Matcher, and latest mproved Sash, Door, and Blind Machinery, Send fo
atalogue to Rowley \& Hermance, Williamsport, Pa.

The only economical and practical Gas Engine in th market is the new "Otto" silent, built by Schleicher Penfield (Pulley) Blocks, Lockport, N.Y. See ad. p. 189 Tyson Vase Engine, smallmotor, 1-33 H. P.; efficient d non-explosive price $\$ 50$. See illus. adv., page 188. Use Vacuum Oil Co.'s Lubricating Oil, Rochester, N.Y. For Thrashing Machines, Engines, and Horse Powers ee illus. adv. of G. Westinghouse \& Co., page 189.

HINTS TO CORRESPONDENT:
accompanied with the full name and address of th writer.

Names and addr iven to inquirers

We renew our request that correspondents, in referrin to former answers or articles, will be kind enough to of the question.
Correspondents whose inquiries do not appear afte a reasonable time should repeat them. If not then published, they may conclude that, for good reasons, the
Editor declines them. Editor declines them
Persons desiring special information which is purely
of a personal character of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, should remit from $\$ 1$ to $\$ 5$, according to the subject,
as we cannot be expected to spend time and labor to obtain such information without remuneration
Any numbers of the Scientific American supple MENT referred to in these col
office. Price 10 cents each.
(1) E. S. M. writes: I am about to build steam velocipede of three wheels of abont 4 feet in
diameter. Would we have more power to have the pis ton rod connected right to the back axle? A. No. 2
Would it be best to have one or two cylinders, and what size to carry three persons? A. Two, about $2 \frac{1}{2}$ inches diameter by 4 inch stroke. 3. The size of boiler, and of what material? To be plain or tubular? A. Tubular
Size depends on speed and weight of vehicle. 4. Can Size depends on speed and weight of vehicle. 4. Can
that be heated by lamps, or would it be best of coal or that be heated by lamps, or would it be
(2) J. H. P. writes: 1. I want a cheap cement for uniting half-inch lead pipe that will last six months and stand a water pressure of six feet? A.
Join the pipe with a piece of stout canvas or duck Join the pipe with a piece of stout canvas or duck
smeared with red lead in oil, wrapped several times about the joint and bound with copper wire. 2. What is the purport of the term "limited "as applied to a firm or company? A. The term limited signifies a limita-
tion of the individual responsibility of members of a firm or company.
(3) F. \& S. ask: What is dynamite, and how is it made? A. The name was originally applied
by Nobel to a preparation of infusorial silica partially saturated with nitroglycerine. Other earths and gun powder mixed with nitroglycerine are now frequently "Tlassed under the
(4) J. H. N. writes: We have exhausted part of the steam from our engine into the cistern that catches the rain water. Examination shows that the
cement has all scaled off and the cistern is worthless. I am told that thisresult always follows such treatment, also that no cement exists that will make the cistern tight if steam is admitted. Would like to learn through the columns of the Scientific americin, if with such management a cement is known that will cause the cistern to hold water, or is our only course to line it up with wood or iron? A. Few cements applied will re-
tain their integrity under such conditions for any length tain their integrity under such conditions or any length
of time owing to the excessive alterations of temperature and the action of the steam and heated water (5) E. M. T. writes: 1. I want thorough light on the subject of "luminous paint." A. Experi
proved successful in this country so far. We believe
the imported article is now for sale by some of our dealers in colors. See our advertising columns. 2. want to bleach thin sheets of wood quickly and cheaply. A Scour lightly with hot solution of caustic soda,rinse submit to a strong bath of chloride of lime (calcium hy ochlorite) in cold water, then to a dilute solution oxalicacia. Repeat the two last if necessary, rinse
and dry. ${ }_{(6)}$ and J. J. M. writes: In answer to inquirer, 21 , in your paper of March 5 , 1 would say that refined
benzine will dissolve the disagreeable odorous oily enzine will dissolve the disagreeable odorous oil
ubstance which is secreted from some people's skin After which plenty of soap and water will remove it
This persevered in will make the skin inodorous. This persevered in will make the skin inodorous.
(7) P. Y. asks: What ingredients are re quired to make mirror glass and how to prepare them
A. The proportions are as follows: Finest white quart sand, 720 parts; best soda, 450; lime, 80 ; niter, 25 ; cullet (broken plate glass), 425. Powder, mix, and heat he crucible for 48 hours.
(8) J. H. W. asks: What is the best pre paration used to produce a polish on bone and horn and ive a glossy appearance, and how applied? A. Fir felt polishing wheel; finish with rotten stone ap pied in the same way
(9) L. A. asks for a receipt for stove pol sh paste as known under various names in trade lace graphite (blacklead) to an impalpable powder by g fnding in a mill with a little water, and dry. In using
moisten with water first, and finish with the dry pow-
(10) E. G. A. asks: Is there any chemica rocess or other mode of extracting the dextrine or sap
from green lumber? A. Boil in a solution of 1 lb . caustic soda to the gallon of water.
(11) J. H. K. writes: Myself with some thers have need to use some blue colored fire for out -door use, but cannot obtain a good blue color; it ha whitish shade. Could yon give me a receipt for mak ing a good color? A. Blue fires: I. Sulphur, sulphat potassa, and ammonio-sulphate of copper, each 18
parts; niter. 27; chlorate of potassa, 28. 2. Niter, 5 , sulphur, 2, metallic antimony, 1. 3. Fine gunpowder, 4 parts; sulphur and metallic zinc, each 3 parts; niter 2parts. 4. Nitrate of baryta, 77 parts; sulphur, 13
chlorate of potassa, 5; charcoal, 3 ; realgar (sulphide o arsenic) 2 parts. 5. Chlorate of potassa, 69 parts; su phur, 24; sulphate of copper, 7. 6. Black sulphide o antimony, 4 parts; niter, 12; sulphur, 16 ; charcoal and
orpiment (sulphide of arsenic) $1 / 4$ part. The purity of he color of these fires depends very much upon the car in mixing the prepared substances.
(12) M. M. asks: What is the action of ar senic in the human system? What are the symptoms of arsenical poisoning, and how large a quantity is required
to produce fatal results? A. "Arsenic is a non-accumulative irritant poison, and exerts no decided chemical o corrosive action on the tissues." (Taylor.) Its action to inordinately increase the secretions and diminish the contractility of the voluntary muscles. The symppoison has been administered. The average time a which they appear is generally from half an hour to an hour after the poison has been taken. It produces a first a nameless feeling of illness, failure of strength, and aversion to eat or drink, followed by nausea and in
tense burning pain in the region of the stomach intense burning pain in the region of the stomach in-
creased by pressure. These symptoms are soon fol lowed by retching, vomiting, sense of constriction in the throat with intense thirst; diarriea, more or less the legs; matter discharged from the stomach dark greenish or yellow, sometimes streaked with blood.
There is tenesmus and sometimes excoriation of the There is tenesmus and sometimes excoriation of the anus; pulse small, very frequent, and irregular; skin very hot; respiration painful; eyes red and very bright very hot; respiration painful; eyes red and very bright
sometimes coma supervenes, with paralysis and tetanic convulsions,precursors of death. $21 / 4$ grainshave caused convuls
death.
(13) D. F. C. asks: Can I melt zinc clippings in an iron ladle over a coal fire? I want to cast used? A. You can readily melt zinc clippings in the way you propose. A sand mould will answer, but etal mould would be better
(14) C. D. M. asks: 1. Please describe a practical mode of electro-engraving. A. Clean the pol the dark a flowing coat of the following solution; Fine gelatine, 5 ; isinglass, 5 ; bichromate of ammonia, 11/2, water, 200; mix, and dissolve by aid of heat over a water
bath. When dry, cover with a glass photographic positive (strong), of the reduced design (in limework), and expose to sunlight for about 20 minutes. Remove to a dark room, take off the glass, and put the plate in water, first warm, then hot, clange the water several times;
then connect the plate by means of copper wire with then connect the plate by means of copper wire with
the carbon pole of a moderately strong bichromate bat the carbon pole of a moderately strong bichromate bat
tery, the other pole of which is joined to a large copper plate. Immerse both plates in sulphuric acid diluted properly engraved. Clean in a hot caustic potash dip. Why will not a silver coin do ior the anode in a sil ver-plating solution? A. Because it is not pure silver 3. Please give a good method of gold plating. A. See article on electro-metallurgy, gold deposits, page 116
current volume. 4. In plating gold on silver is it ne current volume. 4. In plating gold on silver is it ne cessary to first wash the silver with any solution to
make the gold adhere firmly? A. No. 5. To obtain a brilliant polish is it necessary to use greater ntensity in silver plating? A. See articleonele. 6. In the ele silver deposits, page 81, current volume. 6. In the elec
tric light should Grenet or Fuller batteries be coupied or intensity or quantity? A. Iutensity.
(15) C. P. K. writes: 1. I have a yacht, moulded. Will two36-inch wheels (propellers) ran it 22
miles an hour, and what size engines necessary to do so
A. No. We doubt if any power you could put in, wcul A. No. We doubt if any power you could put in, wculd
drive it 22 miles per hour. 2 . have a double cylinde engine, bore 8 inches and stroke 8 inches, running at 30 revolutions per minute. Is the engine too large? Wist to make the boat as fast as possible, without regard as o cost of running it. A. A pair of 8 inch by 8 inch en ines would be too small for high speed, but a very fa peed conld be obtained (with good model) by carry ing 140 or 150 lb . steam, and running $30 G$ revolutions per minute that will run 15 of Edison's electric burners, and if so, in what number? A. Edison's generator, described on pp. 239 and 243. vol. xli., Scientific American, would nswer your purpose. No detailed description of hi ater machine has been published. 4. Would an engine inch stroke and 3 inch bore, ran the machine describe nd, if not, what sized engine would it take to attach direct? Or in other words how much must the machin be enlarged to run 15 of the above named lamps, an hat sized engine? A. This machine is not adapted to he Edison light. An engine of the size given would un a machine of this kind three or four times as larg (16) C. H. asks: 1. How can I make a gal on of nickel plating solution? How i. copper and
brass prepared or cleaned before plating? How is iron brass prepared or cleaned before plating? How is iro repared before plating so as to make the nickel plat ol. zliii., Scientific amierican. 2. How is nicke stripped" from articles that are to be replated" se nitric acid diluted with half its volume of wate What is a simple test to find out whether an article is silver or nickel plated? A. Nickel and silver can
easily be distinguished by their appearance. 4. Will coin nickel answer the purpose of making solutions an node ? A. No. 5. What kind of battery is the best medals, and thimbles? A. One of the modifications Bunsen's battery. 6. In making the mercurial air pum escribed in the Scientific American Supplement, o. 224, vol. ix., will it affect the working of the pump the glass tubes are made a few inches longer or (17) R. J. W. asks (1) how gold leaf on rames is burnished. A. The burnishers used by the rame gilder are either of flint or agate, generally th former. They are made of various sizes and shapes suit the work. These are passed lightly over the gilde
and dry work until properly burnished. sually given a thin gilding requires much practical experience to do pro perly. 2. What kind of varnish is put on silver leaf to make it appear like gold? A. Dissolve, by digestion
fine pale shellac in alcohol, and color with turmeric and
(18) C. P. F. writes: The rise in coal in the ver towns from $\$ 4.50$ to $\$ 9$ a ton, has made it a matte general interest as to the respective value of coal an wood for steaming purposes. The books give from 1 to
$11 / 4$ cord as the equal of 2.000 lb . coal, but the engine sers say it takes $11 / 2$ to $13 / 4$ cords wood to produce the ffect of a ton ($2,000 \mathrm{lb}$) of coal. A. Experiment ha f coal ($2,240 \mathrm{lb}$.), but this can only be considered ap proximate, as very much depends upon the characte (19)
(19) G. H. S. asks how to produce pris atic colors on brass buttons like sample senit. A. The atton is brass; it has been thinly coated with a dilut ard gum lacquer to which has been added a sufficien dipped in alcohol, quickly dried, and thinly washed with
(20) C. B. T. asks: 1. What is the horse power of an engine with a $11 / 2$ inch bore and $21 / 2 /$ inch le for calculating the her in Se plement, No. 253. 2. What size fly wheel would yo put on an engine of the above dimensions and what weight ? A. About 12 or 14 inches diameter and 50 o (21) D.
(21) D. M. writes: In a brook over which I pass I notice that where there is a strong current the ice
forms on the bottom. The depth of water is from fou orms on the bottom. The depth of water is from fou
to six inches. Can you explain this? A. The ice you al lude to is what is termed anchor ice. The stream bein shallow, the water is the same temperature the entir depth, and while the surface current prevents freezin at the top, the more quiet waters below freeze and the
ice attaches to rocks and stones, thus preventing it from ice attaches to rocks and stones, thus preventing it from
(22) H. C. P. asks: Will water run down e 45° to 20°, for half a mile, provided of course the supto be plenty? A. Yes.
(23) A. J. A. asks: 1. What is sailing dis tance made by the Cunarders between Boston and
Europe? A. Boston to Queenstown, 2,668 nautical miles. 2. And also between New York and Europe Queenstown to Liverpool 248 nautical miles is the quickest recorded time? A. Arizona, 7 days hours and 8 minutes, July, 1879. 4. What is the sailing distance between San Francisco and Sandwich Islands A. San
miles.
(24) C. K. S. writes: 1. I am making
(2iles. fifteen dollar canoe according to the directions given in
the Scientific American Supplement, No. 39. Wi you please answer the following questions: I have would answer exceedingly well for the sides of a canoe.
Is t so ? ${ }^{\text {.. Yes. }}$ 2. If I use cotton drilling or canvas wich way must I put the use cotion drilling or canva so the length of the piece of canvas goes the way o he length of the boa;, that is from stem to steru, or or not a paddle be used instead of sculls, and if so. how long would a double padde have of such length as you can conveniently. handle, if yo wish to use it standing; it must be longer than of used
(25) G. H. M. asks: 1. How long should work be left in the plating bath to give as thick and battery? I bave used the information from your article on nickel plating, but have no idea how long the articles should remain in the plating bath. A. Expose from one to three hours according to requirements. 2
Should the articles be removed from the bath and scratch brushed or scoured, or simply allowed to remain undisturbed? A In most cases it is not necessary to
remove them. 3. Can an article once nickel plated and still covered all over with nickel be replated without stripping or removing the old plating? These question I can find no satisfactory answer to in any work at my command, and living away from a large city can consult with no nickel plater. A. Yes, if the coating is perfect,
In most cases it is better to strip. 4. Can a substan tial silver coating be applied to an article with a bath and battery, but without using a silver anode, and if so questions will solve some difficulties if you will answe them. A. Yes. Use carbon or platinum anode The sath cannot be depended up
(26) R. S. writes: I would like to know how to make a strong mucilage, that I can put on the back of paper, and use it after it is dry, by moistening it as you would a postage stamp. A. Try the follow-
ing: Cooper's liquid glue, gum arabic, and white sugar equal parts, hot water, q. s.
(27) W. S. writes: I have the charge of a 35 horse power engine, stationary, making 165 revolu tions per minute, slide valves. There is a di-pute among most power. A. Without knowing the dimensions and proportions of the engine, we could not advise you fully but at thespeed you run the engine, the valve should have considerable lead.
(28) E. S. C. asks: 1. What is the best size of wire for line for acoustic telephones? A. No. 30 any other wire beside copper answer for line? A. Soft brass wire will answer. Soft iron wire serves a good
purpose, but is not durable. 4. What kind of type is used by bookbinders for printing gold letters on cloth or leather. Will common printing type do? Brass
usually. Common printing type may be used, but great usually. Common printing type may be used, but great them. 5. What is the powder composed of which they dust on the leather previous to applying the gold Jeaf A. Well beaten white of an egg diluted with water is used for this purpose. 6. How can I transfer newspaper cuts
to wood to be engraved $? ~ A . ~ T a k e ~ a ~ s a t u r a t e d ~ a l c o h o l i c ~$ solution of potash, pour it on the engraving, and imme diately remove all superfluous liquid by means of blotper. Lay the engraving while damp upon the best). Thetransfer will be obtained immediately. The engraving nust be immersed in clear cold water after the transfer is mad
(29) W. W. asks: 1 . Is the conuvosite metal made up from the sulphurets of several metals, hard as wrou as recently invented, inoxidizable, black, casting, cost $\$ 50$ per ton-is it sold in this country? A You probably refer to Spence metal. It is described in it address dealers in metals who advertise in columns. 2. Somewhere in your columns you state that a French authority asserts a quart of nitroglycerine to be equal to 5,000 horse power working continuously. Is this not a misprint.or toohigh an estimate? But, assuming it to be correct, 1 read of en in the Scientific paper, and reports of the Aeronautical Society, etc., that question. Suppose one lb. Mowbray's glycerine were mixed with several lb. of raw unconverted glycerine, mised with several ib. of raw unconverted glycerine, Otto " silent "gas engine, in which the gas is diluted, ht. A . We know of no saccessful experiments in tonation of the explosive becomes very duggest, the decertain The extraordinary energy very diffcult and un plosion of nitroglycerine is largely due to the almost instantaneous nature of the reaction in which it consists; and while by the dilution of the liquid by a comparatively inert substance, it may in some degree be ossaseous matter produced in the reaction within con rol, it would seem to be impossible to retard the rapidity of the reaction. Considering the power developed ypanded gas, only the from the liquid to the heat
(30) S. F. asks: 1 . What is the best material for small embossed ornamental blocks? A. portions of the mixture of bullock's blood and sawdustsit subjected to pressure, and subsequently dried, get best resulis? A. Use enough of the blood to completely moisten the dust. It is submitted to hydra
(31) W. T. asks (1) how cores for bras castingsare made. A. The cores are made of sharp and to which a very small proportion of flour has bee added. The sand and flour are mixed dry; the mix ure is then moistened with a little stale beer or molasses and water. 2. What preparation they use for pasting
parts of cores together. A. Flour paste. 3. Why wii) he mould not fill up with metal; providing it has lots of air holes? A. Your sand may be rammed too tight, or
(32) I. S. R. writes: I have often wondered ow common playing marbles were made, but neve much effort to find suflicient importance to aged now asks me the question, I refer the matter to you . Playing marbles are made from a hard stone found ear Coburg in Saxony. The stone is first broken 50 of them are into cubical fragments, and about 100 to like a flour mill; the lower stone is stationary and filled with concentric grooves, which receive the stone frag ments. The upper stone is revolved by suitable power,
and small streams of water are thrown on the lowe
stone. The pressure of the running stone on the smal stone. The pressure of the running stone on the small
fragments causes them to roll in all directions until they are reduced to perfect spherical form. It is said that requires only a quarter of an bour to shape the millful (33) J. W. S. asks if there is any prepara tion made for cleaning brass while hot, such as the
throttle box, etc., on locomotives, whereby it can be throttle box, etc., on locomotives, whereby it can be
thoroughly cleaned and at the same time retain its lus ter. I am a locomotive fireman, and like to keep a clean find anything to answer the purpose. A. Where it is not liable to get into wearing surfaces washed emer moistened with kerosene oil is very good. Where the surfaces are subject to wear tripoli or rotten stone and
kerosene oil may be used. The oil should be thor ughly removed by means of a cloth and a little dr itin
Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined. with the results stated:
F. McC.-1. Limestone-the pearly mineral is diallage 2. Traprock and
ock. 5. Fluorspar

COMMUNICATIONS RECEIVED

Is Steam Explosive? By S.
Determination of the Moon's and Sun's, Horizonta
Prallax at Mean Distance. By F. G a Experiments with Naked and Metallized Carbons. By c. s .
[OFFICIAL.]
INDEX OF INVENTIONS or wiuch
Letters Patent of the United States wer Granted in the Week Ending February 22, 1881,
AND EACH BEARING THAT DATE
[Those marked (r) are reissued patents.]
A printed copy of the speciflcation and drawing of any
patent in the annexed list, also of any patent issued since 1866 , will be furnished from this office for one doliar. In ordering please state the number and date of the patent desired and remit to Munn \& Co., 37 Park Row, New York city. We also furnish copies of patents grations not being printed, must be copied by hand.

Alkali balls, manufacture of, M. M. Smith.
Amalgamator, P. Plant
nimal shears, Benavides \& Arthur
Bed, folding, , ranger \& \&riffith.
Bed, spring, A. J. Curtis.
Beer cooler S.
Belt coupling, E. O. Sawyer
Belt fastener. P. 'Thacher.
Binder, temporary, T. H. Brown, Jr.........237,951,
Bit stock and shank, O. G. St
Blacking box, N. o. Wilcox.
Bobbins, machine for scoring, Brooks \& Wait
Boot and shoe sole edge trimming device, Dodge
$\&$ Bresnahan $\ldots \ldots . ~$
Boot and shoe heel, S. A. Nolen.
Bracket support, A. Ruelofs
Brick kiln, w. Barckley
Brick mould attachment,
Bridge, R. D. La wrence...
Broom, whisk, J. H. Flynn
Brush, scrubbing, J. O. A
Buckle, N. L. Anderson..
Buckle, A. Owen.
Buckle, S. Ward
Burglar alarm. Dimick \& Sawyer
Burglar alarm, J. H. Luckhurst.
Burial casket, W. C. Lautner.
Button and stud, J. E. Chace
Button, separable, P. H. Long Ar
Button, stud, etc., collar, P. Lavell
Can, W. H. King (r)...
Car brake, automatic, Stenstrom \& Nilso
Car coupling, D. Smith...
Car coupling, J. E. Smith.
Car door latch, MeCombie \& Morgan
Car heating apparatus. railway
Carbureter, McKenzie \& Mason... Graydon
Carding machines, roving guide for, A. A. Sargen
Cartridge primer. J. Gardner
Cartridge primer, J. Gardne
Chain, drive, J. M. Dodge
Cheese namental, II. A. Church (r)
Cheese, manufacture of, W. Cooley
(himney ventilator, E. Van Noorde
himneys, apparatus for utilizing the force

curre feld

Chimneys, draught device for, Hici...
Doubleday...
Churn. F. Aldred.
Clothes pin, J. Hoffacker
Clothing, J. Feiss.......
Coffin handle bar, E.S.
Conveyer, w. Winterhalter.
Cooking and heating apparatus, J. . . Graves
ooop, poultry, E. Rutz
ork cutting machine, F. L. Blair
Corn sheller, J. S. waterwan
Cornice, extension, J. W. Campbell
orset, S. Florsheim.
Corset, L. M. Holstein
Corset, A. L. Zorkowski.
Corset clasp. 0 C. Haskell.
Corset fastener, W. A. Nettleto
Cotton chopper, L. W. True
otton chopper. L. W. Tru
Cotton gin, J. R. Gray.

Cultivator, F.JW. Leslie.

utter head for wood-working, G. W.
Dairies, cooling, J. Willkinson (r). Doctor engine, G. J. Fritz...
Dredging boz

Dredging box, M. F. Wiilson
Drilling kevice, P. N. Dixon
Dry plate changing box and plate holder, com Drying printed, varrished.......................... machine for, L. A. Fernow
Egg tester, J. F. P. McMullen

Elastic gore, g Florsheim

-

 Elevator brake, F. P. Canfield (r)Exhaust mechanism and spark arrester, J. D.
Brown.
cheller..
chatry, device for restoring, F. C. Bat Farm elevator, G. w. Underwood.................................. Feling machine, G. Yule..................
Fence, portable farm and stock, N. Smith.
Fence post, D. Fence post, D. P. Wirt.. Firtiilizers, manufacture of, G. . . Le.......
Fiber from pine leaves, etc., vetal phens (r).......................... Fue cleaner. A. J. Shepard. Fruit bleaching apparatus, J. C. Deuel Furnace door, H. м. Plerc Furnace door, J. smith. Furnace door shield, W. Swindell....
Furniture leg, adjustable, C. C. Fro Furniture leg, adjustable, C. C. Frost........
Gas burner, self-extinguishing, N. Sleeman
Gas or vapor, Gas or vapor, apparatus for producing illumina ting, Anthony
Gate, I. G. Betts...

Glass bottles, machine for and process of forming
rings or rims on, w. C. Cook.
Globe, time, L. P. Juvet (r).
Grain drill, Otstot \& Ludlow
Grain drill, Otstot \& Ludlow .
Grain meter, James \& Lynn ..
Grain meter, James L. L.
Grain reducing mill, E. L. Baker
Grain, etc., separator, O. Davis.
Graining machine, wood, e. Struppe
Grinding grain, etc., roller mill for T. S. Poole... Harness box loop, Fiffmer \&t Kriebs.
Harrow, IV. J. Lane.
Harvester and husker, corn, Randall \& Snow.
Hat felting machine, G. \mathbf{Y} ule Hat felting machine, G. Yule.
Heating apparatus, hot water, E. Backus
Hinge, spring, J. Spruce.
Hog cholera compound
Hog cholera compound, L. L. Bockes
Horse rake, C. Bollinger Horseshoe nail plate, W. W. Miner
Hose reel, H. B. Piper...........
Hot air furnace, M. H. R.berts
Hub boring bit H. W.
Hub boring bit, H. W. Ransom.
Ingot mould, compound. Catley \& Graff.
Iron, manufacture
Iron, manufacture of sheet, I. E. Craig.
Jewelry, manufacture of, G. E. Adams.
Knob, door, S. Russell
Knob, door, S. Russ
Ladder, L. P. Teed
Lap ring, J. P. Morris,
Life saving mattress,
Life saving mattress,
Lock, E. Hand........
Locket, J. Rothschild.

Loom temple, R. P. Pearson................

Lubricating the cylinders of steam engines, appa
ratus for, M. S. Cabbell...................
Mail bag and lock, A. O. Kruger. \ldots.
Mail bag delivery apparatus, smith \& McQueen.
Mail bag receiver, Smith \& McQueen.
Meat and vegetable cutter, w. H. Pierce (r)....
Mechan movement, N . Meyers...

Mrik setling Mcloud

Monument, D. Schuyler
lat.....
Monument, metalic, \mathbf{D}
Musical instrument case, W. W. Hyd
Musical instrume
Musical instrument, mcchanical, A. Fowler.........
Musical instrument, mechanical, M. J. Matthe Musical instrument, mechan... Matthews \& Kelly.
Musical instrument, mechanical, E. P. Needham Musical instrument, mechan., Needham \& Fowler Musical instrument, mechanical, J. P. Richardson
Nut lock, H. S. Joines.
Oil can. Ricker \& Bar
Ointment, H. Yater
Ore crusher, S. P. S
Pantaloon protector, J. A. Malone
Paper cutting machine, J. M. Jones
Paper into bunches,

son. Paper

Paper pails, making, E. Hubbar
Pegging jack, C. H. Corneal.
Pen rack and letter holder, combined, S. Hill.....
Pen, stylographic fountain, Brown \& Sutherland
Permutation lock, E. Bernhardt.
Pipe and nut wrench,
Pipe cutter, J. Miller
Pipes and tubes, apparatus for testing, w..........
Manus
........ ...
Plow, sulky, Robertson \& IIamilto
 Pulverizing mineral and other substances, method
of and apparatus for, Luckenbach \& Wolfe of and apparatus
den.............

Pump, W. II. Cloud. Pump, J. B. Drake..

Pump, J. B. Drake
Pump, C. Powell.
Pump, rotary. E. Madden
Pump, siphon, W. B. Manwaring
Railway brake, electric, Milligan \& Wheeler
Reeds. mechanism for assorting, o. Corcoran
Refrigerating device, D. Boyle.....
Rolling hoop iron, mill for, J. Gearl
Roling hoop iron, mill
Safety pin, J. Jenkins.
Sand
Sandpapering, machine, Doane \& Bugbee.
Sash fastener, W. Sibrey..................
Saw fling machine, kin, H. N. Cramer.... Saw fling machine, , kin, H
Saw swage, P. J. Hogan..
Saw swage, G. F. Simnnds.....................
Saws. punch for gumming circular, E. Senn Saws. punch for gumming circular, E. Senn.
Scissors and pencil holder, comb'd, C. Bramb
Scoop, H. L. Anderson
Screw cutting machine, wilder \& Nutting Sewing machine, N. Myers........................
Sewing machine, broom, Mccombs Rogers.

Ship's log. T. F. Wal
Shirt, G. F. Mott.
Shoulder pad, I. N. Stern.
Sled, hand, F. M. Priest1
Sleigh body, F. Selle....
Soldering machine, can, J. Solter............................ 238
Sower, seed, M. Gibbs...
Spark arrester, J. D. Brown....
s.phygmograph, W. H. H. Bart
shygmograph, W. H. H. Bart
Spring motor, C. F. Shehan........................... 238,0
Stage scenery, adjustable groove for, G. B. Winne 238,1
Steam boilers, etc., protective cushion for, H. M
Pierce
Steam generator, M. A. Sutherla
g, G. H. Herrington. Elliott...
Stone dressing machine..............
tool, milking, W. G. Hyder
Stool, milking, W. G. Hyder......
Stovepipe thimble, W. T. Leader
Stove, reservoir cooking, I. A. Sheppard
Stove support, A. J. Curtiss...........
Stove,
Stose support, A. J. Curtiss
Straw stacker, W. H Latt
Straw stacker, W. H. Latta........
Sugar evaporator, C. Auteriieth.
Sugar evaporator, C. Autenrieth.
Telegraph duplex, G. D'In freville
Telephone. acoustic, W. Hubbard
Telephone, acoustic, w. Hubbard
Gilliland
Telephone switch, G.L. Anders. 237, 2391
T'elephone wire, D. Brooks
2..... 238,19
Textile and other materials, machine for cutting
A. Narth (r)..................
Thill coupling. R. M. Johnson.
Thill coupling F i . Nourse

Thill coupling. F. P. Nourse.
Thill coupling jack, R. Grav..
Thrashing machine, R. H. Hosikins.....
Tobacco plants, raising. J. M. Dunkum
Toy or puzzle, W. Stranders.
Toy or puzzle, 1, Stranders
Traction engine, E. Hoxsie.
Traction wheel, R. H. Yale.
Traction wheel, R. H. Yale............
Transom ventilator, Hart $\&$ Bissell.
Traveling bag lock, R. Flocke.
Truck, car, F. Beaumont, Jr

Ualve, steam-actuated, P. Murray, J r
Vapor burner, R. F. Danforth........
Wagon brake, block, B. F. Haldeman
Wagon seakt, W. H. Harris.......................... 238,111
Washing fabrics, machinery for, Ashton \& Mather 238,
Washing machine, W. V. burgess............
Washing machine, w. V. Burgess...
Washing machine, strain \& siller.
Washing machines, churning attachment to, R
Watch cases machine for making, A. E. spangler.
Watch charm and seal, F. E. Meyer.
Watch protector, J. A. Consterdine.
Watches, push pin for, J. Macher.
Water meter, J. B. West....
Water motor, J. E. Vartley.
Wells, sand point for, C. L. II Ialstead..
Wheelwright machine, A. B, y Fabrer
Whiflietree for plows, R. W. Whitehurs
Windmetree for LCarrier.
Yoke, neck, C. A. Tow

DESIGNS.

Cars, interior finish of railway, J. Lochner.......... 12,177
Telephonic apparatus, williams, Jr., \& Lane...................12,189
TRADE MARKS.
Bitters, S. A. Groft...................................... 8,170
Forks, agricultural, A uburn Manufacturing Co.... 81174
Medicine for the cure of rheumatism, J. M. II 8,16
cutt......................... 8,17
Restoratives. s. B. Sigesmond.............. 8,12 Rum, brandy, whisky. gin, and foreign and domes

English Patents Issued to Americans

From February 18 to February 22, 1881, inclusive. Carbon, process of preparing. H. S. Maxim, B'klyn, N. Joint fastener, T. H. Alexander et al., Washington, D. © Locomotive engine, C. B. Clark, Detroit, Mich. Loom, C. Coupland et al., Seymour, Conn
:'ackage for merchandise, R. S. Jennings, ackage for merchandise, R.S. Jennings, Baltimore, Md Pipes, apparatus for manufacture of, C. A. Berthelet, Milwaukee, Wis.
Sheep shears, C. Benavides et al., Laredo, Texas
Spindle lubricator, J. Iv. Wattles, Mass, Spindle lubricator, J. W. Wattles, Mass.
Steam engine, J. W. Chisholm, Brooklyn Telephonic apparatus, 11. R. Miller, South Farmington, Mass.
Vessels, armored, N. B. Clark, Philadelphia, Pa

PATENTS.

MESSRS. MUNN \& CO., in connection with the publication of the Scientific American, continue to ex-
amine Improvements, and to act as Solicitors of Patents for Inventors.
In this line of business they have had thirty-five years' experience, and now have unequaled facilities for
the preparation of Patent Drawings. specifications, and the preparation of Patent Drawings. Specifications, and
the prosecution of Applications for Patents in the
238.044
238.026

238,026
238,097

THEM IEOOPMS
Artificial Stone, Cement, \& Paint Company, OF BALTIMORE, MD.,

 docay, from the weather. This co compositione is ads admir-
abol 1 dapted for finishing Hospital Walls, being entirely
no nom-absorbent. is prepared to negotiate for the sale of
Cith, Companty, or state Rights, on application.
Omice, 84 N. Eutaw Sireet, Baltimore, Md.

"RELIABLE"

 and
 A MACHINERY DEALER

H
Steall Hoisting Machines
 es in proportion.
NOBLE \& HALL,
W. S. HOLLLAND \& CO. Burlington, Vt,

TOOLS for Machinista, Carpenters, Amateurs, Jew.
 WILEY \& RUSSELL M'F'G COMPANY,

 ${ }^{2}$

\square \square
 BEATTY'S OFFER
 SPRING SEASON!

17STOPS 5 SET GOLDEN Tongue Reeds,
Suh Bass \& Oct. Coupler.
 Elee mandatire a Double:Acting stam jet Pump

Steel Castings

To Electro-Platers.

[^1]
 wises 985.

Gold, Silver, and Nickel Plating.

102
YOUR NAME IN Nom Tyoo on roit
 and
 BEECHERE PECK,

For 1881 is an Fles Ent Book of 120 Pareses One

VOLNEY W. MASON \& CO
PRICTION PULLEES, CLUTCHES, and ELEVATORS,

GOLD

PENCILS, HOLDERS CASES, The CALLI-GRAPHIC Pen. An GoLD PEN and RUBBER HOLDER, containing pockec. Atways ready for use A luxury for pe
who care to preserve ther individuality in writing. 180 MABIE, TODD \& BARD ${ }_{\text {NEW }}$ YORK.

$\$ 55.66$ A

THE DUPLEX INJECTOR.

THE PERFECTED STYLOGRAFIC.
 READERS' AND WRITERS' ECONOMY CO.

BAIRD'S Boous

FOR PRACTICAL MEN. ROSE'S MACHINIST.

The Complete Practical Machinist:
 tubas

 The Slide Valve Practically Explained. Fmbrac
ing simple and complet Practial Demonstrations oo
the operation of each element in a

 The above or any of our books sent by mail, free postage, at the publication prices. Our various cata
oogees of tractical and
one who will furnish his address. Books sent free to any HENRY CAREX BAIRD \& CO
Industrial Pubtishers, Booksellers, and

HUB MACHINFRY.-HUB TURNING, HUB MORTIS
ing, and Hub Boring Machines. Send for price list and
circulars. DAYID MASTER mechanics and foremen. Our Master-Keved Padlocks require each its own key. The MASTYR-key Fril
open all. Agreat conventence. List of Palocks free
to
Shafts, Pillegs, Hangefs, Eitc. WM. SELLLERS ${ }_{j} 9$ Liberty Street, New York

The only establishment making a SPECIAL

 Rose Growers, DINGEE West Grove, Chester Co., Pe

ClROCK BREAKERS AND ORE CRUSHERS

SURFACE FILE HOLDERS.
 \quad No. 4 holds flles 12 to 14 in. long. Priee 75 . 14 each.
 50 New styles. Perfumed Moto. Moss Rose, Fiolet Jut

WOOD PRESFRVED under the Thilmany Improved Zinc Patent, warranted to
last almost indefinitely at very smail cost. Jt will not
shrink or swell, avoids

Special Machines for Car Work, and the
Wood Working Machinery of ail kinds.

 $\$ 5$ to $\$ 20 \begin{gathered}\text { per day at bome samples } \\ \text { Address sinth } 8 \text { stisson }\end{gathered}$ The BELMONTYLEOIL

WOODWORKING MACHINERY,

 cabinet and piano man'firs. SHAFTING, PULLEYS \& HANGERS, $\frac{\text { P. Pryibil, } 461 \text { to } 467 \text { W. } 40 t h \text { St., New York. }}{4}$ MACHINISTS' TOOLS Lathes, Planers, Drills,Gear Cutters, Shaping Machines and special machinery. COULD \& EBERHARDT,
Pond's .Tools, DAVID W. POND, Worcester, Mass. $\$ 66$ a week in your own town. Terms and sh ontat

ERICSSON'S NEW MOTOR. ERICSSON'S Ner Cavicic Puninic quine DWELLINGS AND COUNTRY SEATS. Simplest cheapest, and most eeonomical pumpang engin
for domestic purposes. An servant yri can operate
Absolutely safe. Send for circulars and price lists. DELAMATER IRON WORKS

The steam pumps made by FOUND VALLEYMACHTNE CO EASTHAMPTON, MASS., Are the best in the world or bor Boiler Feeding
 SASH DOVETAILING MACHINE.

\longrightarrow RUBBER BACK SQUARE PACKING,
 3..... For Packing the Pist BEST IN THE WORLD. This Packing is made in leng ths of about 20 feet. and of all sizes from $1 /$ to 2 inches square.

Roots' New Iron Blower.

POSITIVE BLAST.
IRON REVOLVERS, PERFECTLY BALANCED IS SIMPLER, AND HA FEWER PARTS THAN ANY OTHER BLOWER P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.
S. S. TOWNSEND, Gen. Agt., $\left\{\begin{array}{l}6 \text { Cortlandt St., } \\ 8 \\ \text { Dey Street, }\end{array}\right\}$ NEW $\left.\begin{array}{l}\text { WM. COOKE, Selling Agt., } 6 \text { Cortlandt Street, } \\ \text { JAS. BEGGS \& Co., Selling Agts., } 8 \text { Dey Street, }\end{array}\right\}$ YORK JAS. BEGGS \& CO., Selling Agts., 8 Dey Street,
arsend FOR PRICED CATALOGUE.

THE COTTON GIN, ILLUSTRATED, HAS been in use a number of years in the Cotton states, and
has earned an enviable reputation which can be verfied. Thar American Needie Gin and Condenser is essentially
difrerent in the ginning cylinder from the saw
in this thin
in curved, sharp-pointed steel needies, tempered, and armly held in sections. They are bet ter for the purpose
intended than the teeth made on a disk of thin sheet
 edges or acute an
gles on the on on
fure the delicate
fiber while separat-

the seed. yeisond,
though having the
same number of
teeth to the inch
thereby increasing there is more space bet ween them, thereby increasin
its capacity. This has been proved in numeroustrials.

 business of manufacturing, these machines, are now
ofrered for sale. For frither informatin adres. the
inventor at Albany, N. Y. H. v. SCATTERGOOD.

WITHERBY, RUGGG \& RICHARDSSON. Manufacturers
of Patent Wood Working Machinery of every descripof patent inood working Machinery or every descrip-
tion. Facilies unsurpsed Shop formerly ocupied
by R. Ball \& Co., Worcester, Mass. Send for Catalogue.
 ORGANS Sand
 We are also the cole manufacturers of the CLECHBATED

 I. MM. INAGGIRF,
ERIE PA.,
Manufacturer of
Portable, Stationary
AND STIFAMI FINGINNTS.
"The 1876 Injector."

New York Ice Machine Company,
21 Coortland St., New York, Rooms 54, 55. LOW PRESSURE BINARY ABSORPTION SYSTEM

ICE AND COLD AIR.

Low Pressure when running. No pressure at rest. Ma-
chines guaranteed by C. H. Delamater \& Co.

NEW YORK BELTING AND PACKING B\% \& 38 PARK ROW, NEW YORK.

 For all Kinds of SPECIAL RUBBER GOODS,address AKRON RUBBER WORKS, Akron, o.

ghachinists' TOOLS.
Larhes, Planers, Drills, \&c.

Jarvis Furnace Co.

TELEPHONE And Hiocticai sunp

RIRST STEPS IN CHEMISTF.:

M.W.JOHNS
 LIQUID PAINTS, ROOFING,

 H. W. JoHNS MFF

HOWARD MANUFACTURING CO. Manufacture and Introduce
Patented Novelties YANKEE NOTIONS.
THE LATEST NOVELTY.

Mirror, Pin Cushion and Tape Measure. PRICE 25 CENTS.
Sample by mail on reecent of price. a liberal dis-
count to the trade.

$$
\begin{aligned}
& \text { howard Mandfacturing co., } \\
& \text { Box } 22995, \text { New York. }
\end{aligned}
$$

For Prospecting Mines Tunneling, etc

CATALOGUED.
the following manufacturers are pro MINENT IN THEIR RESPECTIVE LINES; IN

 c. M. тHOMPSHA, Agt. PLUMBING \& SANITARY GOODS HOISTING ENGINES. COPELAND \& B BACON THE DEANE STEAM PUMP
 MECHANICAL. BOOKS. Send 10 cents for 96-page Catalogue of Books for
Machimists and Engineors.

VERTICAL STEAM ENGINES.

BRADLEY'S GUSHIONED HAMMER

Approaches the nearest to the action of the Smith's arn
of any mammer in the Worlit SHAFTS, PULLEYS, HANGERS, \&c. P. Preyibil

461 West 40th Street, New York. celebilated "red strip" beliting RLBBER beltimg, Picking and hose THE GUTTA PERCA AND RUBBER M, F'G CO.,
MACHINISTS' TOOLS AND SUPPLIES. H. PRENTISS SECOMPANY,
14 Dey St. (P. 0. Box 3362), New York.

p
 BOLT CUTTERS and SCREW CUTTING MACHINES. HOWARD TRON WORESS,
FAIRBANKS' STANDAED MCATES,

AIR ENGINES AND ELEVATORS

 THE PERFECTED TYPE WRITER. E. REMINGTON \& sons, 281 \& 283 Broad way, New York. ROCK DRILLS \& AIR COMPRESSORS.
 Lehigh Valley

emery wheel co., - Weissport, Pa

FILES, DRILLS, CHUCKS, VISES,
taps, reamebs, steb tools, \&e., de.
GOodNOW \& WIGHTMAN, Boston, Mass. Metaline and Star Roller Bush Tackle Blocks, \&c. BAGNALL \& LOUD,

An street, New York
Establ'd EACLE ANVILS. 1843 Solid CAST STEEL Face and Hor
ranted. Retail Price, 10 cts. per lb.
DOUBLE SCREW, PARALLEL. LEG VISES. Made and WARRANTED stronger than any other Vise
by FISHER \& NORRIS only, Trenton, N. J.
PBUPARBER's ipitisRACE
Brass Cocks, Valves, and Fittings.
 EXETER MACHINE WNORKS,
Steam Manufacturers of Engines, Blowers, and
Steam Heating Apparatus.
50 Federal St., Boston, Mass.
MINER'S PAT. SQUIBS for BLASTING. Mfd. by Miners' Supply Co., St. Clair, Sch'll Co., Pa. Steam Engines \& Mining Machinery.
 The Greatest Rock Breaker on Earth.

STEARNS SAW MILLS. Sow Mill Machines, Boilers, and Engineg. stearns mantfacturing company, Erie, Pa
PRINTING INKES.

[^0]: Water
 Malt.
 Hops.
 Malt....... 3 bushels.
 Hops $11 / 2$ to 3 lb.
 Yeast...

[^1]: N~Nhhepards celebrated f60 Serew Cuting Foot Lathe.

