
[Entered at the Post Office of New Yorb, N. Y., as Second Class Matter.]
a WeEkiy Jotirnal of practical inforvation. art. Sctence. mechanics. chemistry and manufactures.

Vol. XLIV.-NG. 11.]

GARBAGE DESTRUCTOR AND CARBONIZER.

The matter of disposing of garbage and various kind refuse, in our large cities, is becoming a serious one, and beginning to receive the attention its importance demands. ome experiments have been tried in this direction city of New York, in Chicago, city of New York, in Chicago,
and elsewhere in this counand elsewhere in this coun-
try, but with indifferent success.

In England, however, the case is different, a number of furnaces for this purpose being in successful operation, consuming all reoperation, consuming all re fuse without nuisance. The urnaces were designed by Mr . Fryer, of Nottingham,
and are thus described in an and are thus described in an
address delivered by Mr. Alfred W. Morant to the Association of Municipal and Sanitary Engineers, and published in the Engineering:
The destructor consists of six compartments or cells; formed of brickwork lined with firebricks, and tied with with firebricks, and thed with iron rods; it occupies a space
of 22 feet by 24 feet, and 12 feet in height, and is so ar ranged that there is an inclined road leading to a platform over the top of it, on to which the refuee is carted; and there is also another incline from the level of the firing floor to the adjoining firing floor to the adjoining ond other miters which rist the old tins carted away. \quad hearth, whence, when sufficiently dry, it is helped forward for old metal. During the year 8879 the following quantiEach of the six cells is caprable of destroying 7 tons of on to the firebars, where it burns somewhat fiercely, the fire[Continued on page 165.]

Fio. 3. - A, refuse feed opening; C, drying hearth; D, fire bars; E, reverberatory arch; F, clinkering doors; G, opening for gases; J, bridge to keep refuse out of the flue; M, ash pits; N, flue to chimney; P, mattress opening
Fig. 3. FURNACES FOR TREATING GARBAGE AND OTHER REFUSE MATTERS.

Srintifir gmeritan.

ESTABLISHED 1845
MUNN \& CO., Editors and Proprietors.
publiseed weekly at
NO. B' PARK ROW, NEW YORK.

O. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCILCNTIFIC AMERICA One copy one year nostage included...
One copy, six months, postage included
gratis for every cult of five subscribers at $\$ 3.20$ each : additional copies a same proportionate rate. Address IIUNN \& CO ., 37 Park Row, Nem York.
The Scientific American Supplement Is a distinct paper from the SCiENTIFIC AMrrican. The SUPPLEMENT is issuad weekly. Every number contains 16 octavo pages, uniform in size
with SCIENTIFIC AMERICAN. Terms of subscription for SUPPIEMVNT \$5
all
al a yewar, postage paid, to subscribers. Single copies, 10 cents. Sold by

Scientific American Export Edition.

The SCivNTIFIC AM:RicAN Export Edition is a karge and splendid peri-

NEW YORK, SATURDAY, IARCH 12, 181.
NEW YORK, SATURDAY, MARCH 12, 1881.

Contents.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 271.
For the Week ending March 12, 1881.
Price 10 cents. For sale by all newsdealers

THE SOUNDS OF VAPORS AND GASES.- THE PHOTOPHONE as an instrument of physical investigation.
Mr. Graham Bell's recent discovery, that musical sound are produced when an intermittent beam of light falls upon a solid, at once suggested to Prof. Tyndall the idea of test ing by the same means the relative capacity of gases and vapors to absorb radiant energy.
The theory is that the sounds observed by Mr. Bell are caused by rapid changes of temperature in the body impinged upon by the light, such variations of temperature producing changes of shape and volume, giving rise to sound waves.
From the superior mobility of gases and vapors, Prof Tyndall reasoned that the absorption of radiant energy by them would in like manner produce sounds, and louder sounds than are possible with solids. He reasoned further that the loudness of the sounds would furnish an unmistak able measure of the relative capacity of gases to absorb radiant heat or light; and, if so, the photophonic method o investigating such substances would be likely to afford a satisfactory solution to certain experimental problems hitherto involving such delicate and difficult tests that competent observers have not been able to agree upon the interpretation of the results indicated
The event justified the hypothesis; and in two recent com munications to the Royal Society, which appear in full in the Scientific American Supplement, Prof. Tyndall has described at length several series of investigations, opening up a novel and beautiful method of experimental research, and not only confirming in a remarkable way the correctness of results arrived at by him years ago by less simple methods of investigation, but also clearing up several points of dis pute with regard to the relation of vapors and gases to radiant energy.
The gas, vapor, or perfume to be photophonically ex amined is inclosed in a small bulbous flask, with a narrow neck, from the outside of which a rubber tube with a boxwood or ivory ear piece extends to the ear. Any sounds generated in the flask are thus made minutely audible.
Various sources of radiant energy have been employed. At first an electric light was used, then a lime light, a spirit lamp, a candle, a live coal, a red hot poker, finally bodies at a lower temperature than a red beat. No effects were produced with temperatures lower than the boiling point of water
The radiations were converged upon the flask on the side opposite to the ear tube, by silvered reflectors, glas lenses proving unsuitableow ng to their absorbing the effective radiations. The interruption of the radiant beam of light or heat was accomplished by interposing between the light and the flask a disk of sheet zinc carrying radial slits or teeth with interspaces. When revolved in the beam the disk interrupted the radiations at any rate that might be desired, converting any sound produced into a musical tone.
At first vapors known to be highly absorbent of radian energy were tested-sulphuric ether, formic ether, acetic ether, etc.-a loud musical tone being obtained. When the flask was filled with the vapor of chloroform, or bisulphide of carbon, and placed in the intermittent beam, the sound produced was barely audible, as was anticipated from the known feebleness of the absorptive power of these vapors. With other vapors, whose behavior toward radiant energy had been previously established, the musical tone produced corresponded in loudness to the ability of the vapor to absorb radiant heat.
The investigation was then carried to gases and vapor whose absorptive power is in dispute. Dry air emitted note that could be heard only with close attention. Dry oxygen and dry hydrogen bebaved like dry air. Carbonic acid gas gave a louder note than was obtained with any ele mentary gas. A still louder note was produced with nitrous oxide, while under favorable conditions olefiant gas gave a note as loud as that of an ordinary organ pipe. Water vapor, whose deportment toward radiant energy as determined by Prof. Tyndall's earlier experiments had been strenuously disputed, testified in his behalf with a voice distinctly audible.
The next step was to determine beyond question what portion of the intermittent beam-the luminous or the dar rays-produced the sounds. Among the many test experi ments was this: a liquid layer of formic ether, sulphuric ether or acetic ether, one-eighth of an inch thick, was placed in the path of the interrupted beam. The musical sound was stilled. As these liquids are transparent to light it was inferred that the sound-producing rays which they intercepted must have been those of obscure heat. The correctness of this inference was strongly sustained by the result of another test in which the light was cut off and the invisible rays al lowed practically free transmission. This was accomplished by interposing a thick layer of bisulphide of carbon rendered opaque by dissolved iodine, under which conditions there was hardly any diminution of the sounds of the more active vapors.
Equally curious and significant were the results obtained when the intermittent beam was converged upon bulbs con aining colored gases. The brown vapor of bromine, fo instance, gave a somewhat forcible sound, though its capa city to absorb radiant heat is low. Indeed the tones continued when the heat radiations had been entirely cut off, and were stilled when the luminous rays were shut off leav ing the obscure radiations an uninterrupted passage to the flask. The explanation of the seeming anomaly is found and convert its motion into that of to ar

With a very rude photophonic arrangement Prof. Tyndall as been able to hear the sounds of the more active vapor ta distance of one hundred feet from the source of the in errupted rays. He is confident that the vapors of all com pound liquids will be found sonorous in the intermitten beam and thinks it probable that even the vapors of element ary bodies, including the elementary gases, when mor strictly examined, will be $f($ und capable of producing sounds It may be that, in connection with the electric sonometer, the photophonic method of investigation will ultimately give us also a new, simple, and efficient method of chemical ana lysis, as far reaching in its results as spectrum analysis ha proved. At any rate it is a valuable addition to the outfit of the physical investigator.

MIDWINTER MALARIA

From some cause or combination of causes the present winter has been remarkable fora widely extended and marked increase in diphtheria and scarlet fever, which have invaded homes in which the highest attainable skill has been exer cised and the most approved appliances have been employed to render them as healthy as possible. In some cases the immediate causes of these disorders are undiscoverable, but in the light of sanitary science the class of agents which ither initiate or greatly increase the virulence of these com plaints is no longer problematical. Decaying organic mat ters, more particularly animal excretions, give rise to a subtle blood poison, which, though it yet evades chemical analysis is now conceded on all hands to be a positive deadly fact When this poison invades a dwelling, no matter whether from exterior or interior sources, in sufficient quantity, the lives of the inmates are jeopardized as positively as though they were compelled to breathe a mephitic gas. The effect may not be so prompt or fatal, but the danger is a fact no Ionger disputed by any intelligent physician.
It is, therefore, not sufficient to guard against interior sources of diseases; the peril may be in a neighbor's house or outbuildings, in the emanations of a compost heap or a filthy street or hidden cesspool, which if they find an avenue may enter sleeping apartments, find a nidus in clothing, carpets, and drapery, and bring in their train the swift destruction of all that is most cherished.
A case in point has occurred in a neighboring village. Five cases of diphtheria appeared in a household where the utmost care had been taken with the plumbing. The obvious inference was that the caluses of the complaint were exerior to the dwelling. It was found that the mouth of the air-box through which exterior air entered to supply the heating furnaces was on a level with the top of a cemented pit on the adjoining premises, in which accumulations of kitchen refuse, animal and vegetable, and barn manure were promiscuously stored and aliowed to rot for fertilizing purposes. The foul air from this pit was drawn into the house through this one avenue, and the poisoning of its uufortunate inhabitants, four of whom died in quick succession, was the result. It seems that disease may pervade a house with deadly result where the cause is least suspected; it therefore devolves upon every housekeeper, whether resident of the city, village, or on a farm, to be constantly watchful, not only of his own, but also of his neighbor's premises, that none of the obvious causes of disease be permitted.

rice culture in the southwest.

Before the war our rice crop came chiefly from the Carolinas. During the past ten years the rice industry has been extended to Louisiana, where over $50,0,0$ acres are now devoted to it, and the annual crop of the country has been doubled. In the meantime great improvements have been made in the methods of thrashing and cleaning the grain by the introduction of machinery. When the grain is cut it is stacked in the fields to sweat, to facilitate the thrashing, after which the rice is sent to special mills for hulling and polishing. There are seven mills of this sort which have been built in New Orleans during the past decade. Each mill employs from twenty to forty hands, and all are busy. The rough rice is received in large bins, from which it is taken by elevators to the upper floor, where it is winnowed and sifted to remove sticks and rubbish. To remove the beard the rice is passed through a revolving "hoodlum," from which it is carried to the "stones," which crack off the hulls. Then the dark-colored grains are polished for market. The polisher consists of sheepskin, tanned, stretched over sheep wool on revolving cylinders, the space between the sheepskins and wire gauze being just sufficient to allow the rice grains to find their way by degrees to the bottom. The grains are highly polished by the friction against the ski s, which rubs off the bran and leaves the grain clean and white. The bran amounts to eight barrels forevery hundred barrels of clean rice. It is sometimes used to adulterate spices. The waste in hulling averages about 5 or 6 per cent, but sometimes reaches 20 per cent. The hullers receive from half a cent to three-quarters of a cent per pound for hulling.

Dangers of Aniline Reds.

A number of the aniline colors, especially the red pigments, are, in the course of their manufacture, oxidized by the use of arsenical acid, and some of the arsenic is retained in the finished coloring matter. When such colors are used for dyeing, for wall papers, for artificial flowers, etc., they become carriers of a dangerous poison, whereby sickness and suffering are extensively occasioned. The only real safety is in the use of good cochineal for red colors.

compressed lignite as fuel.

An important, if not a vital, question in Texas, especially with respect to the industrial development of the State, is how to utilize the extensive beds of lighe State candly here. Indeed, in the lack of true coal, accomplish much in
We are informed that Mr E. T. Dumble, of Houston, has devised a process of coking the lignite, which works well on a small scale and is likely to prove valuable in larger operaions, particularly in smelting iron, there being an abundanc of iron ore in the neighborhood of the lignite deposits. For ther than smelting purposes hovece it desirable to re tain in the fuel the volatile fuel elements which are wasted in coking, and which amount to about two-fifths of the total weight of the lignite.
A sample of this fossil fuel, from a seam ten feet thick, in Robertson County, Texas, may be taken as a representative specimen. Analyzed by Prof. E. T. Cox, of the Indiana Geological Survey, it showed-fixed carbon, 45 per cent gas, $39 / 2$ per cent; water, 11 per cent; white ash, $41 / 2 \mathrm{per}$
cent. It furnished nearly 50 per cent of lusterless coke, closely resembling wood charcoal. As taken from the bed the lignite is dull brown in color, and is apt to shrink, crack, and fall to pieces on exposure to the air, a property unfitting it for transportation.
Judging from the success achieved in New England in compressing peat, and in Pennsylvania in compacting coal dust by pressure, Mr. N. A. Taylor, of Palestine, Texas, is confident that by similar mechanical treatment the soft and watery lignite might be converted into a fuel that would rival c:nnnel coal The solidity and high specific gravity of true coal being due to the pressure to which it has been sub jected by overlying rocks, mechanical pressure, he argues would do the same for lignite. Such pressure would expe the water, and by compacting the fuel would make it more durable in combustion and add greatly to its leating power.
Nature does it: why can't we?"
It is purely a question of economy of power. If the lignite can be squeezed into true coal, or something like it, for less than it will cost to bring coal from the coal fields of th north, the advantage to Texas will be obvious and great. As the lignite beds are easily accessible, and can probably be made to furnish the power required for converting the lig uite into a more useful fuel, there would seem to be no theo retical obstacle to the accomplishment of the end at which Mr. Taylor aims. At any rate it is a good opening for invention, and one that Texan inventors will probably follow to profitable solution as soon as they discover its importance And the value of a successful process of compacting lignite so as to ft it for transportation and the ordinary uses of soft coal would not be confined to Texas. There are in many parts of the West, and in other countries, extensive beds of lignite, the utility of which would be vastly increased by the invention called for by Mr. Taylor.

SMOKELESS FUEL FROM COAL

Mr. W. D. Scot-Moncrieff, in a paper read before the Society of Arts, has recently brought to the attention of that body an important project for not ouly hereafter prevent ing, but also for rendering commercially available the dense stratum of smoke that has so long hung like a pall over the city of London, obscuring the light and rendering the atmosphere dangerous to the whole community. He proposes to substitute for the bituminous coal now in universal use for domestic and industrial purposes, a modified form of this coal from which the gas has been partially extracted. Ex periments made by him as long as ten years ago showed that a semi-coke, resulting from a short distillation of coal, furnishes a fuel that is practically smokeless; and he has sinc discovered that, by treating this coke with water when hot renders it still more smokeless and makes, it the most per fect fuel imaginable, as it bas all the checrfulness and heat giving properties of the unprepared coal with none of the
disadvantages arising from its use. To produce this fuel disadvantages arising from its use. To produce this fuel
in quantities suitable for public use he proposes to take advantage of the existing plant of the gas companies, finding that they are amply sufficient for the purpose. Instead of taking 10,000 cubic feet of gas per ton from the coal, he would take 3,333 cubic feet, or any other convenient proportion, and pass three times the quantity through the retorts. In this manner the gas would be coming away from the retorts all day long, just as formerly, with a slight loss of time to be allowed for the additional frequency of the charging. The supply at the end of the twenty-four hours would be in excess of that which is obtained from the long
extraction, aud in this way less and not more plant would be necessary to give the same quantity in a given time while the gas itself would be of better quality. The author claims, from his investigations and experiments, that the results of the application of his scheme would prove startling The gas companies would have double the quantity of by products, in the shape of tar and ammoniacal products, that they have at present; the community would have 24 candle instead of 16 -candle gas; the fuel resulting from the process would be of a nature to ignite readily, make a cheerful fire that gives out 20 per cent more heat than common coal; and
London would become a smokeless city. The only extra London would become a smokeless city. The only extra workmen employed in charging the retorts and interest upon the additional capital required for transit appliances; but, as ofset, the companies would receive an increased quantity
in universal demand; and the profits from the sale of this a prices much below that of coal would be such that the con
panies would be actually.getting their coal for nothing.

THE SILK INDUSTRY OF THE UNITED STATES

The prelimiuary report of Mr. Wm. C. Wyckoff, Special Census Agent on Silk Manufacture, shows that this industry gives employment to something aver 34,400 hands, and that the finished goods turned out are worth about $\$ 34,400,000$ a thousand dollars net to each worker.
The product of the census year ending June 30, 1880, i divided as follows:

Sewing silk...	\$776.120
Machine twist	6,000:265
Floss silk	219,250
Dress goods	4,115,205
Satins	1,101,875
Tie silks and scarfs	606,675
Millinery silks	891,955
Other broad goods.	627,595
Handkerchiefs.	3,862,550
Ribbons.	5,955,005
Laces	437.000
Braids and bindings	999,68
Fringes and dress trimmings	4,950.27
Cords, tassels, passementeries, and milliner	1,866,575
Upholstery and military trimmings.	1,392,355
Coach laces and carriage trimmings.	37,510
Undertakers', hatters', and fur trimmings	59,805
	510,7

gove and silk values therein..
Reports were received from 383 factories, with 8,467 looms epresenting an investment of $\$ 18,899,500$. Connecticut ha Jersey, 108; and New York , 150, The Connecticut factorie give employment to 3,766 hands; those of Massachusetts to 2,068; Pennsylvania, 3,360; New Jersey, 13,932; New York 0,484 . The chief centers of the silk industry are Hartford County, Conil., with 549 looms; Hudson County, N. J., with 1,060 looms; Passaic County, N. J., with 3,238 looms; New York city, 1,820 looms; Philadelphia, Pa., 769. Nearly hal the silk operatives are women. The wages paid during the census year footed up $\$ 9,107,853$, of which Paterson, N. J. had $\$ 3,335,045$, and New York city, $\$ 2.190,660$. The gross valuc of materials and supplies was $\$ 22,371,300$, and the gross value of manufactured product was $\$ 40,975,285$, which includes the returns from those who do not make finished roods-throwsters, makers of fringe silks, spoolers, winders dyers, etc.

SUPPRESSION OF ONE CLASS OF INTERFERENCES.

An important modificition of the practice of the Paten Office in the matter of trade mark interferences has bee ordered by the Secretary of the Interior.
Since the decision of the Supreme Court affirming the unconstitutionality of the United States statutes relating to trade marks, the Office has continued to register the application of such persons only as, with knowledge of the deci-iou voluntarily paid the fee previously required. The Office has also continued the practice of deciding between conflicting or interfering applications for certificates of registration.
This practice is now discontinued, the Secretary of the Interior having decided, in the case of Braun \& Co. rs. Black well, that it is not within the province of the Commis sioner to decide questions of priority of right between appli cants or those who have already received certificates of reg istration. All interferences pending in trade mark cases have accordingly been dissolved. Hereafter, on reccipt of an application for the registration of a trade mark, notice will be given the applicant of the decision of the Supreme Court, as heretofore, and if the applic:ant still desires registration, and the matter is proper therefor, the application will be considered without reference to any pending application or to ny registered trade mark.
Thus the function of the Patent Office in relation to trade marks becomes purely one of registration and certification. The question as to the applicant's legal claim to the mark so registered is left for decision where it properly belongs, that is, with the courts, to which appeal must ultimately be made case of dispute.
It may be seriously questioned whether the function of the Office with respect to patent rights should not be similarly limited. With its present force and the vast multitude of applications to be considered it is physically and morally impossible for the Office to give more than a few minutes, on the average, to the determination of the questions of originality, novelty, and the rest. For this reason not only are improper applications granted-the existing practice of the Office only being considered-but worse, really proper and deserving applications are denied. And yet, after all, the
property right of the patentee must be passed upon by the property right of the patentee must be passed upon
courts before it has more than a presumptive value.
To the popular mind the possession of letters patent bear ing the broad seal of the United States, is a guarantee that he owner's right to the invention claimed has been officially examiued and decision rendered in his favor; and on this presumption not a little money has been paid for patents which could not stind legal investigation. The knowledge that the Patent Office simply registered and certified claims oo property rights, leaving them, as in the case of trade marks, to be adjudicated by the courts, would in no wise lessen the legal value of letters patent, while it wonld greatly simplify and expedite the work of the Office, and at the same time put an end to a vast amount of expensive and vexatiou itigation, which, even when successful, merely establishes claim.
For when an inventor has been subjected to a costly trial
patent applied for, he has gained nothing which the Patent Office could not justly have given him at the outset, namely, a certificate that he claims the invention described. The decision of the Commissioner that there is no interfereuce is worth nothing in the courts if the claim is contested there. The entire case must be retried on its merits.
The simple and efficient working of the law with respect o copyright should relieve any apprehension that may exist as to a possible injury to patent rights in case the suggested change in the practice of the Patent Office should be made.
The value of copyright property is very great; yet the litigation with respect to copyrights is relatively small, though the government entertains registers and certities claims to copyright, as it hereafler will trade-mark claims, without pretending to determine their legitimacy. That is the business of the courts. And the courts would probably have fewer patent cases to try if it were generally understood that the decision of the Patent Office in granting letters patent gives only a presumptive title to the invention claimed, atd that the proper function of the office is clerical rather than that the
judicial.

Failure or Another Railway viaduct.
Following the destruction of the Tay bridge now comes intelligence of the destruction, on Feb. $\mathbf{6}$, by ice, of a section of the Solway Viaduct, the most important part of the Solway Junction Railway, and until this week, a connecting link between England and Scotland. In former years the thaw has been accompanied by high winds, breaking up the ice and saving the Viaduct; but this season no wind has arisen, and the packs have been carried down in unbroken masses, hurling themselves against the piers, carrying everything before them. The accident has been unattended by any loss of life, owing to the vigilance of the railway author ities, who had watchmen stationed, who gave timely waruing. The structure is very similar to the 'Tay bridge in construcion and size. The viaduct is about a mile and a quarter in length, and about 40 ft . in height; the spans are in groups of seventeen of 30 ft ., each group being connected by a span of 5 ft .
Some idea of the force of the floating ice may be formed from the narrative of the fishermen. that for some days the channel was covered with fields of ice acres in extent from 6 ft . to 12 ft . in thickness. The crashing of the ice as it swept along, borue by the current at the rate of twelve kuots an hour, was heard two or three miles off, they said, and even half a mile away from the viaduct the noise was audible, although the wind was blowing in the opposite direction.

A New Electrical Society.

A new organization styled the New York Electrical Socity has lately been orgauized in this city, having for its obtricity.
The following officers were elected for the ensuing year President, F. W. Jones; vice-presidents, George B. Scont, Professor Vander Weyde, Gerritt Smith, W. J. Dealey, George A. Hamilton, and G. G. Ward; secretary, John W. Moreland; treasurer, M. Brick. The membership is already quite large and comprises many of the foremost electricians residing in this vicinity.

A Meteoric Stone.

A meteoric stone fell at Wiener Neustadt, a few days ago near the telegraph office, and penetrated deeply into the gravel covered road. The phenomenon was witnessed by several persons, who all declare that the meteor showed a rilliant light. Upon inspection a triangular hole was discovered of five centimeters width; the ground was frozen at he time. The meteoric stone was excavated in the presence of Dr. Schober, director of the Wiener Neustadt High School. It weighs 375 grammes, is triangular in shape, its exterior is crystalline, with curious blackish, grayish, and yellow reddish patches. Here and there metallic parts give a brilliant luster. Its specific weight is very high, its bardness about 9. An analysis is now being made.

Fifteen Hundred Miles a Minute

The cable message to Australia respecting the Hanlan Trickett match was an extraordinary achievement in tele graphy-in fact, it has never been excelled. The total ex tent of lines-namely, 12,000 miles-was traveled in one hour and twenty minutes. The greater portion of this time was occupied in transmitting the message through India From Singapore to Sydney, 5,070 miles, the message occu pied only thirty five seconds in transmission. This mes sage was repeated fourteen times, from station to station between London and Sydney.-Sydney Mail.

titute of Mining Engineers.

The annual meeting of the American Institute of Mining Engineers was held in Philadelphia the third week in Feb uary. The attendance was unusually large, and many im portant papers were read and discussed. The following officers were elected
President: William Metcalf, Pittsburg, Pa. Vice-Presidents: .T. P. Kimball, Bethlehem, Pa.; W. H. Pettee, Ann Arbor. Mich.; C. O. Thompson, Worcester, Mass. Mana gers: J. S. Alexander, Philadelphia; H. S. Munroe, New York; J. C. F. Randolph, New York. Treasurer: Theodore D. Rand, Philadelphia. Secretary: Thomas M. Drown, Easton, Pa.
It is probable that the next meeting of the Institute will be beld at Staunton, Va., in June next.

NEW INVENTIONS

Mr. George T. Manley, of Canton, N. Y., has patented a vessel for containing viscous substances, simply constructed and so arranged that any desired quantity can be drawn off conveniently without opening the lid of the can, and which also prevents the formation of a skin or crust on the top of the substance, and excludes dirt therefrom. The can has a delivery aperture at its lower part which is closed by a slide or gate. A.follower or piston is placed in the upper part of the can, and a rod passing therefrom through the lid is provided with a knob. The slide being opened, pressure on the knob causes the viscous substance to flow out. The cau is well adapted to holding printer's ink and analogous substances or mixtures.
Mr. Charles de Vauréal, of Paris, France, has patented a process for extracting gold and silver from their ores, more especially ores containing sul phur, arsenic, and antimony, by which the extrac tion can be performed at low cost, and the difficul ties heretofore pertaining to the reduction of this class of ores are claimed to be so far overcome that the quantities of gold and silver extracted are equal o, or even greater than, those obtained by fire assay The arsenic is first eliminated by treating the ore at a dull red heat with hydrogen. The ore is next roasted to oxidize the copper, which is removed by sulphuric acid. Lastly, the antimony is removedin the form of a chloride by the action of hydrochlori acid.
Mr. William W. Mallory, of Holland Patent, N. Y. has patented a hand force pump for sprinkling plants, washing windows and carriages, and othe uses, and so constructed that it carries the over fow back to the reservoir. It is a very simple, in genious, and convenient device.
Mr. Dwight Burdge, of Battle Creck, Mich., has patented a folding writing desk which is simple in construction and can be folded very compactly. The invention consists in the novel construction and combination of parts whereby a hinged case or paper and envelope receptacle is held in an upright position on a folding table top when the latter is adjusted horizontally on the two pairs of crossed and pivoted legs, to one pair of which the table-top is itself hinged so that it may fold between the legs when the desk is closed.
Messrs. Rafael Martinez and John Petry, of New York city, bave patented an extension bath tub, which is simply constructed, ocrupies little space and can be easily extended. It is contained in a box provided with an extensible part which can be drawn out to lengthen the tub when required, and pushed back when the tub is not in use. It is also provided with a pump which can be used for transferring the water to a bucket in emptying the tub.

IMPROVEMENT IN CURRYCOMBS.

The improvement shown in the engraving relates mainly to the bandle, which is made wholly or in part of malleabl iron, and is formed so as to afford two places for the hand one immediately over the back of the brush, and the other pri) jecting over the side of the brush.
The handle, although of a single casting, has the appear

IMPROVED CURRYCOMB

ance of being made of wires curved so as to form a light yet very strong handle. The handle shown in Fig. 1 is made of a single piece, that shown in Fig. 2 is made partly of wood and Fig. 3 shows the iron handle made intwo parts, fastence together with rivets
This device is the invention of Mr. W. P. Kellogg, of Troy, N. Y.

NEW TELESCOPE OF SHORT FOCUS.

We represent herewith a new telescope devised by M. Leon Jobert, the able director of the P.opular Observatory at the Trocadero, Paris.
This instrument is like the Cassegrainian telescope in form and is of short focus, its parabolic reflector being only half the focal length of those of Foucault. It is of variable latitude, or, in other words, may serve for all points of the globe. In order that the observer may, without changing his position. be able to sweep the whole heavens above the horizon. the ocular is located at the intersection of the polar

M. JOBERT'S NEW TELESCOPE OF SHORT FOCUS

axis with the axis of declination. The sides of the tube are furnished with two supports, which are jointed around the horary axis, and pass through two other large supports that form a part of the last-named axis, and that are connected with each other by a turned circle moving over two large ollers. This circle is made very solid by a wide open-wor backing, and both the latter and the circle are open in such a way as to allow the body of the telescope to pass when the instrument is directed toward stars which are at the celes tial equator or near the southern horizon. The body of the clescope is balanced by two weights whose supports are fastened to the axis of declination. The polar axis passes tllrough a journal box, whose two extremities are held in the upper ends of the two Iarge cast iron sides forming the main frame. The cast iron cross-stays which connect the two sides of the frame are provided with a couple of projection which carry an arc, against which the large arc may slide ith sloght friction. The latter is firmly united at one its extremities with an arm which descends from the jour ins extrend supports the bed plate, on which rest the jour end of the polar axis; and its other extremity is connected with another arm which likewise starts from the journal box and forms, by branching laterally, the bearings which carry the two rollers on which the turned circle revolves through the action of the clock which causes the diurnal motion. The clock is regulated by a regulator which is plainly visible in the annexed figure.
By means of a hand wheel the instrument may be fixed a the latitude of the locality where it happens to be placed, in such a way that the prolonged polar axis is parallel with the axis of the earth and points to the celestial pole. Th instrument is furnished with a polar circle and a circle of declination with verniers that are moved by endless screws. In the figure the observer is represented with his hand on he hand wheel, which actuates at the operator's will, either rapidly or very slowly, the axis of declination. The clock work movement is transmitted by bevel whecls and an axe, to a wheel which revolves loosely on the axis of latitude formed by the bearings of the large arc; and from this point motion is transmitted to the axis of the endless screw and from thence to the endless screw which actuates the polar axis. With this instrument the observer can sweep every point in the heavens without changing his position. the only change he makes in the latter being that of moving with the instrument, which makes one complete revolution every twenty-four hours.-La Nature.

By adding phosphorescent material to printer's ink, it is said that hooks and papers can be made legible in the dirrk A luminous newspaper is proposed at Turin.

A Project for the Year 2000

Lake Mackenzie is one of those " possibilities of North America" recently suggested. The lake would result from a proposed closing of the northerly outlet of the valley of the Mackenzie River, at the line 65° north, and storing up the water of $1,260,000$ square miles. And to this could be added the water of other large areas. It would be a lake of about 2,000 miles in length by about 200 of average width. Its surface would have an altitude of about 650 feet above sea level. It would cover with one continuous surface the labyrinth of It would be a never failing feeder for the Missis. sippi. It would connect with Hudson Bay and with the "great lakes," and also with the interior of Alaska by connecting with the Yukon and its affluents. By concurrent results and other "possibilities" it would become, during some months of each year, a navigable water, adding not less than 12,000 miles of communication to the Mississippi. It would complete the interior lines of river courses by connecting them. Cutting the "divide" which now exists between the Mississippi and Mackenzie would do this. This work is small when measured by its results, and it becomes casy of accomplishment under the methods proposed. The connecting of the Upper Mississippi with the proposed Lake Mackenzie would be easily made if that lake had a surface at the proposed altitude of 650 feet above the sea. The outflow from such a lake, having a length of more than 2,000 miles from south to north, and draining a very wide range of altitudes and latitudes, would be a timely and enduring one. This lake would make possible and easy the straightening of the Lower Mississippi. It would also contribute to the proposed ship channel from Cairo, Ill., to the Guli of St. Lawrence, by the almost straight line which cuts the Wabash Valley, the Lakes Eric and Ontario, and the Lower St. Lawrence. This commercial channel, receiving all the waters converging at Cairo, would complete the demand for a constantly open ship channel from the St. Lawrence to the sea by way of the Strait of Belle Isle. That demand can be complied with, and the shortest and best line of communication can be thus opened between the interior and the scaboard.-St. Louis Repullican.

Opium in San Francisco.

There are said to be 400 places in San Francisco where opium is sold, and many of them are said to average $\$ 75$ a day. If such is the fact the sale of this fatal druer in the United States must be enor mous, and with the influx of Chinese to this country, it would seem that before long some national legislation will be necessary to control the sale of this delusive drug

COMBINED ANVIL AND VISE

A handy tool for the use of blacksmiths and other mechan ics, as well as for farmers and others who occasionally require conveniences for working in iron, is shown in the an nexed engraving. It consists of a combined anvil and vise, heformer forming a very solid foundation for the latter. Fig. 1 shows the combined tool complete, and Figs. 2 and represent the anvil and the clamp which retains the vise. The anvil is recessed to receive the nut of the vise and the clamp which retains it. The nut is allowed to remain in the anvil when the vise is removed.

COMBINED ANVIL AND VISE

The vise is of improved construction, which permits of quickly adjusting the movable jaw so that the two jaws are parallel. This is accomplished by means of notches opening outwardly and upwardly in the forked lower end of the fixed jaw, the movable jaw having a pivot adapted to the notches.
This invention was recently patented by Mr. A. L. Adams, of Cedar Rapids, Iowa.

SOLDERING BY ELECTRICITY.

The engraving shows a soldering iron heated by the electric current, and capable of melting all kinds of solders, such as gold and silver solder, which have heretofore required a blowpipe to melt them. It may also be used for the more fusible solders employed in making tin ware. Now that the electric current is distributed so generally and is used

ELECTRIC SOLDERING IRON.

for all manner of purposes it seems quite practicable to em ploy it for soldering.
Figs. 1, 2, and 3 show one form of electric soldering iron, Fig. 1 being a perspective view, Fig 2 a section showing the switch for controlling the current, and Fig. 3 a detail view of the switch button. Figs. 4 and 5 are views of a modified form of the device. In Figs. 1 and 2 the electric conductors extend through and project beyond the handle, and embrace a piece of platinum or other material offering sufficient resistance to the passage of the electric current to become heated more or less according to the trength of the current. One of the conductors is separated near the upper end of the handle, and bridged by a button made partly of electrical conducting material and partly of insulating material, so that by turning the button the circuit may be completed or broken as circumstances may require. The device shown in Figs. 4 and 5 is on the same general principle, the only difference being that the handle is split lengthwise and the two portions are pressed apart by a spring. When apart to their fullest extent a hook attached to one of the conductors touches the other conductor and short circuits the current in the handle. When the two halves of the handle are pressed together the current passes through the refractory point.
When the point is heated to incandescence the tool may be used for melting either silver or gold solder. For melting soft solder the heat may be less intense.
This invention was recently patented by Mr. C. E. Ball, of Philadelphia, Pa.

Marketable Weight of Fish-Amendment of

 the Game Laws Suggested.At a recent meeting of the Long Island Sports. men's Association, held in this city, certain aniendments of the New York State game laws, pertaining to the capture and sale of fishes, were sug. gested.
In the close season, if a box of trout should be sent to a dealer and he should open it on his stand in the presence of a citizen he might be heavily fined, although he had not sent for the trout, and did not know what the box contained
Mr. Eugene Blackford said that he had a lot of trout once sent to him ou which he might have been fined $\$ 40,000$. He thought the laws should be amended in such manner that only the guilty should be punished.
The marketable weight of fishes was also thought a proper subject for legislation. The following weights and sizes for different fishes were agreed upon; Bluefish. not under three-quarters of a pound;
weakfish, not less than half a pound; sea bass, half a pound porgies, balf a pound; black bass, half a pound; yellow perch, one-third pound; white perch, one-quarter pound mullet, one quarter pound; butter fish, one-quarter pound flounders, half a pound; sunfish, one-quarter pound; Spanish mackerel, one pound; brook trout, not less than four ounces. It was decided that dressed eels should not be less than twelve inches long, while eels not dressed might be sold fifteen inches long.
A motion was carried that between the sundown of Fri day and sundown of Saturday, shad fishing in the Hudson river should be suspended and nets hauled up on the shad poles. This was to let the shad run up the river and spawn.

The Lick Telescope

At a late meeting of the San Francisco Academy of Sci ences. Professor Davidson read a letter from Dr. Hugo Schroeder, of Ober Ursel, near Frankfort-on-the-Main, intimating that he would like to undertake to make for the Lick Observatory a fifty inch refractor upon a new principle, with single in place of double lens objectives. Dr. Schroeder has been very successful in the manufacture of lenses; but his proposal failed to interest the Lick trustees, for sufficient reason that a contract had already been signed with the Clarks, of Cambridge, to make for the Lick telescope an achromatic object glass having thirty-six inches clear aperture. The cost is to be $\$ 50,000$. The glass is 10 be finished within two years after the rough disks are obtained, and it is expected that these disks will be had before November 1, 1883.

APPARATUS FOR PREPARING STARCH FOR FINISHING

 LINEN AND COTTON GOODSStarch used for finishing linen and cotton goods has usually been prepared in open boilers with a double bottom by the action of direct or indirect heat, and alum was added to give the starch the desired quality
Mr. F. A. Hempel, of Plauen, in Saxony, has greatly im proved on this method by boiling the starch in a closed ves sel under a pressure of five atmospheres, while continually agitating it. The apparatus, which is shown in the annexed cut, consists of a copper kettle, A, the lid of which is covered with copper on the underside. A vertical shaft is journaled in the lid, and is rotated by a horizontal shaft through beveled gear wheels. Wings, B, are attached to the vertical shaft and agitate the contents of the kettle. The lower end of the vertical shaft is bored axially, and diagonal channels lead from the central longitudinal channel. Through these channels steam, at a pressure of five or more atmospheres, can be admitted into the kettle, the pressure being regulated by the valve. The starch is passed into the kettle through the opening in the lid, and can be drawn from the kettle through the pipe, D. Steam is admitted through the pipe, C, and the kettle is provided with a pressure gauge safety valve. The operation requires three-quarters of an hour, and the
starch is as clear as water. The starch thus obtained is excellent quality and does not require alum.

APPARATUS FOR PREPARING STARCH FOR FINISHING LINEN AND COTTON GOODS

A SIMPLE EXPERIMENT WITH POLARIZED LIGHT.
Scientific toys sometimes awaken a love for further inves tigation, and experiments in optics often prove more fasci nating than was expected. Few of our young readers, we presume, are aware that by the exercise of a little ingenuity and patience they may construct for themselves, without the expenditure of a cent, and from materials to be found in every old garret or store room, a very pretty scientific toy that will afford profit and pleasure for many an idle hour. Many who have seen or read of the Noremberg apparatus have no idea of how easy it is to make one of tolerable excellence. Two pieces of good window glass, a small piece of looking-glass, some strips of wood, and a jack-knife are the principal articles required in its construction.
The principle employed in this form of apparatus is simply the fact that when a ray of light is reflected from a piece of unsilvered glass, making an angle of $35 \frac{1}{2}{ }^{\circ}$ with the glass (or $541 /{ }^{\circ}$ with a perpendicular to the glass), it becomes polarized. Such a ray of polarized light will not bear reflection from a second plate of glass turned at right angles to the first, if it strikes it too at an angle of $541 / \sim$. But if a thin plate of mica or other biaxial mineral is placed in the path of this ray it will not only be rendered visible, but be beau-

POLARIZING APPARATUS
tifully colored, the color depending upon the thicknass of the mica and its position
It is evident, then, that we need, first of all, some means of measuring and constructing an angle of $351 / 2^{\circ}$ and $541 / 2^{\circ}$. If a circular protractor or scale of chords be not at hand, the ollowing will give sufficiently accurate results:
Take a large sheet of paper or cardboard having a right angle at one corner, and measure off 10 inches in one direction and 14 inches in the other. Join the point thus formed by a straight line, and you will have a right angled triangle, one angle of which is $541 /{ }^{\circ}$ (that opposite the longer side) and the other angle is $35 \frac{1}{2}$. An ordinary business card is cut so as to have the same sized angles and used in constructing the apparatus. Procure a piece of thin wood 3 inches square for a base, two strips of wood $1 / 2$ by 34 inch, and 9 and 10 inches long, respectively, for uprights. From a broken mirror cut a piece $21 / 4$ inches square. A piece of quartz or very sharp steel will answer instead of a diamond to scratch the glass if care is used in breaking it. Also two pieces of clear window glass, each $21 / 4$ by 4 inches. One of these is covered on one side with dull black paper, over which is laid a piece of cardboard, and the whole bound together with a strip of black paper. A circle is also cut from cardboard, and a hole cut in it as large as a nickel five cent piece. A groove is cut in each of the uprights about two inches from the lower end in a slanting direction, so as to have an angle of 3511° with the upright, and 5412° with the base. At a height of about 8 inches are two similar grooves, at the same angle, but in the opposite direction to the lower ones instead of parallel to them. This groove is made wide enough to receive the glass backed with cardboard. Two uprights are now attached to the base, by tacks or otherwise, at such a distance apart as to allow the strips of clear glass to slide tightly in the grooves, while the mirror, placed flat upon the base, is received in notches at the foot of the uprights. The blackened glass is slipped into the upper pair of grooves face downward, the transparent one is slid into the lower grooves, and at a point midway between them the circle of black cardboard is held in position by short pins passed through the uprights on either side. Place the apparatus thus arranged before a window so that the upper edge of the upper glass is about on the level of the eye, or a little below it. On looking into this upper glass a bright circle will be seen reflected in it. Take some pieces of clear mica, and place them one, two, or three at a time, in various positions on the pasteboard disk, which can also be turned at various angles. In certain positions the circle, as viewed in the upper plate of glass,
will acquire beautiful colors which change with every movement of the mica. Other biaxial minerals in thin sections do the same.
By a slight modification of the apparatus it can be made o prove the other peculiar property of polarized light. (See figure.2). Remove the upper plate of glass, and attach to its reverse the oblique surface of a large cork cut at an angle of $351 / 2^{\circ}$. The cork may be tacked or glued to a thin piece of wood by its large end, and this strip of wood fastened to the top of the longer upright, after the manner of a gibbet. This will suspend the strip of glass at the same angle as before, but at right angles to the lower one, and the observer, in order to see the disk, must stand with his side to the window and look just over the top of the shorter upright. Instead of seeing a bright spot as before, the center will be comparatively dark. But on replacing the mica on the revolving stage, rich colors again appear. Beautiful effects can be obtained by combining and overlapping strips of mica of different thicknesses.
A thin section of a crystal of quartz cut perpendicular to the axis also produces a very pretty series of colors, depending upon the thickness and the angle of the plain glass plates. Instead of wooden uprights the plates of glass may be mounted on wire apparatus, as described by Hopkins in the Scientific American of December 4, 1880, page 354, mak ing use of the principles illustrated in Figs. 16 and 20, with necessary moditications.
The accompanying illustration shows the second position. A is the horizontal piece of silvered glass, B is the clear piece of window glass, C is the blackened glass, D is the disk of black pasteboard or revolving stage on which the mica is placed.
Atlanta, Feb. 5, 1881.

RECENT INVENTIONS.

Messrs. Robert F. Dobson, of Darlington, Wis., and Isaac Dobson, of Lincoln, Neb., halve invented a process for tanning hides which is claimed to involve comparatively little labor, time, and expense, and which injures the fiber of the leather less than processes heretofore employed, and by which the leather produced is made stronger and more dur able than that heretofore produced. They place the hides for ten days, or thereabout, in a bath of strong brine and tanning extract, and then subject the hides to the fumes of sulphur in an air-tight compartment for from twelve to twenty-four hours or more.
A steam-supplying apparatus, patented by Milton W. Hazelton, of New York city, combines with a heating tank appliances for supplying steam either for power or heating purposes. A central heater is employed to heat a mass of water to a prescribed temperature higher than the boiling point. This hot water is carried through pipes to local team generators, in which the pressure upon the heated water being reduced steam is generated. The water in these generators, cooled by the generation of steam therefrom, is led back to the central heating tank for reheating.
Mr. David S. Thomas, of North Platte, Neb., has patented a windmill which supplies au improved device for control ling or adjusting the sails or vanes. A clutch wheel or spider and a spirally grooved loose sleeve, to which is attached a small vane, are fixed on the axle of the wheel. The sleeve engages with a stud, and, when turned in one direction, draws the wind wheel into clutch with the spider, whereby the vanes are set to the wind. The vane on the loose sleeve also acts to adjust or throw the vanes flat in a high wind.
Mr. John T. Stoll, of Sacramento, Cal., has patented a horse collar pad for collars of the kind which open at the top, and which surplies an upper pad of such form and macerial as will securely keep the collar in its proper shape, prevent the strap which holds the hames together from press ing through the top of the collar, and which is supplied with a hook or holding iron, that prevents the hame strap from slipping forward, and keeps the hames in their place on the collar.
Mr. John W. McKee, of Moselle, Mo., has patented a drag-sawing machine which may not only be used for saw ng down trees, but which may also be advantageously used for cutting the trees into logs when felled. It may con veniently be moved from place to place.
Mr. Tom Owen Memery, of Key West, Fla., has patented a sewing machine shuttle provided with a hinged spindle for receiving the spool and a friction nut and screw, which also sustains the moving end of the spindle when in position for use, thus permitting the ready application and removal of the spool.
Mr. Elihu Quimby, of Hanover, N. H , has patented an automatic time register and alarm, which acts to cause an alarm at any desired place in case of failure of the watch man to perform his duty, obtains a permanent record indi cating the time of any dereliction, permits the watchman to operate the distant signal at any time independently of the ordinary working of the apparatus, permits a person at such distant point to distinguish regular from unusual signals, and which cannot be tampered with. A novel combination of electrical devices and clockwork effect the results stated.
Mr. Frank W. Mix, of Terryville, Conn., has patented an indicator lock which prevents the opening of the lock and he subsequent restoration of the indicator dials to their former positions by turning the key back. A peculiar construction and arrangement of an obscuring disk closes the openings in the face plate to prevent the entrance of dirt, rain, etc.

Mr. Edwin L. Barber, of Henrietta, Texas, has patented essel holding the water is sur rounded with felt attached to the inner side of a casing for the vessel. The casing has apertures formed therein for the escape of vapor arising from the felt which is wetted in use, and troughs are provided to convey away the drip. An extension straw stacker has been patented by Mr. Wil iam Holmes, of Ashland, Ohio, which is so constructed hat it may be extended or contracted without affecting the tension of the endless belt carrier or of the adjusting chains.

Elementary Physics.

Yi. J. osbun.

A teacup with a little water; a small sponge; a sheet of blotting paper six inches square, folded twice, so that all the corners shall come together; pin three of the corners toether, press the others away, thus forming a little pocket or filter; a mixture of pulverized chalk, or ashes and water; bowl of water; two blocks of wood; two pieces of sole eather; if possible, a magnifying glass; a narrow bottle or test tube; some alcohol or naphtha or kerosene; some cotton; glass tube one fourth inch inside diameter, one foot long, closed at one end; a test tube; a shingle or strip of pasteboard; a knitting needle; a brick; a short candle; a bottle or test tube filled with colored liquid; a piece of pipe stem or glass tube; a lamp; a dry bottle fitted with cork, and glass tube or tobacco pipe.
 puta
paint
a litt
leath
a day
wood

\qquad Hidicis

Fgamio the ooton, fhaide are no spaces

Cool the bottle.

When ond, hquas, and gases are heated the molecules are separated.
Nate- A change of tem,
postion in itsmoceuse.

-Journal of Education.

* Heat a piece of glass tubing. and when the glass is soft,remove it from thus be formed, the large end of which may be fitted to a cors that has been pierced and neatly filed with a slender, round file. The bottle should se sull of water that when the cork is pushed in, the liquid, which is colored with violet ink. shall rise half way up the glasstube, or entirely to + The
conveniently held under the water in a tumbler. A tobaceo pipe may be atted to a bottle or test tube by means of a common tapered corli, the the neck of which shall tightly fit the pipe bowl. While the small end fts
the

Making Iron Columns Secure。
So many accidents have occurred at fires to life and property by the sudden giving away of iron columns used for supports to the various floors of buildings, that such columns are looked upon with distrust by firemen, and their use dis. couraged. When they become heated by fire they warp and twist, and if water is thrown upon them they are apt to break entirely, thus letting the upper floors fall. It was in consequence of the giving away of the iron columns at the Broadway fire, some time ago, that the floors from cellar to roof fell in, and two firemen who were on the root were hurled to a terrible death in the seething furnace within the building. All large cities are full of buildings whose several floors are supported on iron columns, and, in case of fire, they are quite as likely to collapse as did the one we refer to. Our building laws, which are yet crude and imperfect, permit their use, and, as they are cheaper than most anything hat could be used instead, they are still favorites with builders. The very best thing to take the place of iron columns would be columns of brick, but objection is made to them hat theyatake up too much room and are not ornamental. Many experiments have been tried with a view to making ron columns fireproof, or at least sufficiently so to be able to stand a small fire in their neighborhood without bending, and thus bringing the entire building to the ground in ruins, long before it would be destroyed by the fire alone. Casing the columns with wood, asbestos, brickwork, etc., has leeen tried, and some of the methods have been described in the Journal. Recently two more suggestions have been made. One is to inclose the columns in rings of terra cotta, put on over the top when the column is set up. These would act as a shield to keep off the heat till the fire could be subducd. The plan is simple and inexpensive, and has the added advantage of giving opportunity to make the columns highly ornamental, as terra cotta readily lends itself to decorative reatment.
The second plan is to fill the columns with water. To do this the plates or castings, usually placed between the columns where they stand one over the other, have holes or openings of some kind, so that there is a free communication from column to column, from the bottom to the top of the building. Where columns are already erected, short pipes are used to connect them at each floor. The uppermost column is also provided with a small escape-pipe, passing through the roof to the open air. At the base of each tier of columns a pipe is connected with the street mains, so that all the columns may be filled with water, either permantly or on emergency. When thus filled with water and provided with an escape for the expansion of the water or steam, the columns would stand unharmed until every floor was burned out. Were the girders also hollow and filled with water in the same manner, both girders and columns would undoubtedly stand intact, even after all the floors and the roof bad fallen in, and they could be used again in rethe roof bad fallen in, and they could be used again in re-
building. The system has the nerit of cheapness and ease building. The system has the nerit of cheapness and ease
of application, and is patented in this country. We have of application, and is patented in this country. We have little confidence, however, in iron columns under the condi-
tions incident to a great fire, and the sooner their use is prohibited by law the better it will be for the public.-Fireman's Journal.

Salicylic Acid in Foot-and-Mouth Disease of Cattle

The Duke of Brunswick has of late successfully combated the ravages of this much dreaded enemy on his estate at Stampen, near Oels, in Prussian Silesia, by treatment with salicylic acid, the well-known antiseptic. Instead of several weeks being required to effect a cure with the remedies hitherto employed, truly surprising results have been brought about within a few days by this new treatment. A solution of the acid is prepared by pouring some hot water on about three tablespoonfuls of salicylic acid in an carthen vessel, and adding lukewarm water to make up a gallon. The mouth and feet of the diseased animal should be carefully washed three times a day with this liquid, and the tops of the hoofs well powdered with the dry acid after each ablution. The effect will, moreover, be greatly increased by salicylating the drinking water of the beasts by the addition of two tablespoonfuls of the acid dissolved in hot water. During the above treatment great attention must be paid to the perfect cleanliness of the stables or sheds. The dung must be saturated with salicylic acid solution to prevent further infection, for it is chiefly in the dung that the germs of the disease are to be found.

Changes in the Relative Elevation of Land and Sea. The impression that the northeastern coast of the Ameri can continent is slowly rising, and Professor Shaler's estimate of the rate of emergence in progress as being over foot, and perhaps as much as three feet in a century, has been recently denied (American Journal of Science and Arts) by Mr. Henry Mitchel, who states, in the Coast Survey Re port for 1877, that the salt marshes are still, as they were in the time of the early explorers, at ordinary high water level, and that the rocks upon our coast, long notorious as danger us to navigation, have not risen since they were first dis covered. In his statements ancient maps and documents re cited, and the conditions of the various rocks are considered in detail He claims that no tilt in either direction has taken place in the Gulf of Maine. But eastward of ongitude $64^{\circ} 13^{\prime}$, and especially in Newfoundland, grea changes present themselves in the comparison of charts, the depths appearing to be at some points less and at other points greater now than formerly.

FRYER'S DESTRUCTOR AND CARBONIZER

[Continued from first page.]

ies of materials were consumed in the destructor: 14,000 tons of rubbish, 59 beds, 131 mattresses, 264 carcasses of pigs which had suffered from swine fever, 1 cow, 8 sheep, 2 lambs, 28 quarters of bad meat, 13 cwt. of bad meat.
The total quantity of rubbish consumed in $21 / 2$ years in the Burmantofts destructor was 30,041 tons.
For each depot the following men are required: One foreman, who also acts as eugine-driver; four furnacemen, one laborer, who also attends to two mortar mills; and the same for night duty.
The carbonizer is used to convert the refuse obtained from the sweepings of the paved streets and the markets, and other vegetable refuse, into a carbon very useful as a manure and deodorizer, and which finds a sale at the rate of 30 s pe ton.
The carbonizer consists of a group of brickwork cells and furnaces, each cell having its own distinct furnace alongside of it. It is 26 feet long, 12 feet wide, and 15 feet 6 inches high, tied together with iron rods and angle-irons.
The refuse to be carbonized is fed into the apparatus at the top, the loose cover of the cell being removed for that purpose and immediately replaced; within the brickwork cells are hung, by means of cast iron plates fixed in its walls, a series of cast iron plates or eaves, touching the walls along their top edges, but standing free from the walls some inches along their lower edges. These plates are arranged to overlap one another, and form a continuous sloping ledge or eave, winding round and round the cell in a kind of spiral. Near the bottom of the cell the spiral eave finishes with a fire-block eave, the lower edge of which rests on a wall dividing the contents of the cell on one side from the hot gases of the fire which are admitted to it on the other side.
The refuse is fed into the cell until it forms a solid mass within the well of the spiral eave, being withdrawn at the bottom as it gets sufficiently charred, but it is not mobile enough in its nature to rise up again either underneath or behind the eaves, so that a space is there left forming a continuous flue in connection with the chamber behind the fireblock at the bottom of the cell, and up this flue pass the hot gases from the fire, heating the contents of the cell. At the top of the cell these gases pass through the damper frame into the vertical flue, and so into the main flue and thence to the chimney. The process undergone by the refuse is as follows: After being thrown in at the top of the cellit sinks gradually as it becomes closer packed, and as the finished charcoal is withdrawn at the bottom it sinks, and continually comes in contact with hotter and still hotter plates, until at the bottom of the cell it enters a chamber of nearly redhot firebrick.
No air is admitted during the process, except a slight amount which reaches it from the flue behind the eaves, so that instead of being consumed it is charred. The cell terminates about 2 feet from the ground in a strong cast iron plate, in which is an opening closed on the underside by a sliding door; this is opened at certain intervals (about three hours) by letting out a charge of charcoal into a small truck which is run in below the plate ready to receive it. The furnace with firegrate and door is of ordinary construction, and within t a thick, dull fire is kept up. Sight or peep boxes are provided to enable the flues nearest the fire to be cleansed, and similar peep boxes higher up allow a view on to the backs of certain of the cast iron plates for the purpose of seeing that they do not bccome overheated.
Though the cast iron plates are bolted to the walls, or through the walls to one another, they are removable if need be without pulling down any of the brickwork
The charcoal, which comes out of the carbonizer redhot, is cooled in a char cooler, by passing through a revolving cylinder, over which cold water is continuously streaming, and is sifted as it issues from the outer end. This cooler is also driven by the steam engine which works the mortar pans.
Each cell deals with about 50 cwt. of refuse in every twenty four hours, and the fuel required for the furnaces is sifted from the contents of the dry ashpits, it not being necessary to purchase any.
The cost of an establishment with one six-celled destructor, a carbonizer with eight cells, boiler, steam engine, two mortar pans, cooler, chimney shaft, and buildings, is about £4500.
No nuisance of any kind is experienced in the vicinity of the depots, and this system of dealing with the refuse of towns appears to be gaining ground; the apparatus has been adopted in Kralingen, near Rotterdam, Leeds. Heckmond wike, Blackburn, Bradford, Warrington, and Derby, and is, I hear, about to be adopted in Bolton, Dewsbury, and Roth erham.

Prize from the Belgian King.

In December, 1874, the King of the Belgians offered a yearly prize of 25,000 francs " for the encouragement of intellectual effort." The prize for the year 1881, which is open to the competition of citizens of all nations, will be awarded to "the best work on the means of improving ports established on low and sandy coasts, like those of Belgium." The conditions of the competition and award are as follows: 1. For eigners desiring to compete will be required to send their works, either printed or in manuscript, to the Minister of the Interior at Brussels before March 31, 1881. 2. A manuscript work obtaining the prize must be published in the course of the year following that in which the prize shall have been awarded. 3. The award will be made by a jury appointed
by His Majesty the King of the Belgians. The jury will be composed of seven members, three of whom are to be Belgians, and four foreigners of different nationalities. General Eaton, Commissioner of Education, in a circular calling the attention of American scientists, engineers, and educaors to the subject, says: "Competitors in the United States are advised that they should forward their articles through the Department of State."

RECORDING TELEPHONIC RECEIVER.

Doctor Boudet has published a very interesting volume upon the application of the telephone and microphone to physiological and clinical uses. The book is made up entirely of details of the researches and experiments which he has made in his laboratory
We extract some passages relative to the electrical record ing of speech.
The automatic recording of telephonic messages is the tirst step towards the solution of a problem which has been declared insoluble. In order to arrive at a result which so many scientists have considered paradoxical, Dr. Boudet modified the telephone receiver in the following manner: Removing the diaphragm of the Bell telephone, he screwed

the wood one end of a steel spring, the other end being pposite the pole of the magnet. To the free end he soldered a small piece of soft iron weighing a tenth of a gramme. Attached to this piece and in the prolongation of the axis of the spring he fixed a light bamboo arm ten centimeters long and terminated by a needle of whalebone. In fact the diaphragm is replaced by a movable armature resembling the interrupter of an induction coil. By means of this instrument, the tracings shown in the annexed engrav-
ings were obtained These tracings were made upon smoked
 pape cope

As will be seen in the examples given, there are som emarkable points of difference between the several trac ings as well as some points of resemblance, which make i probable that tracings of this character may be deciphered. These tracings, though far from being perfect, seem to con tain the germs of success.

Dr. Boudet has made practical use of some of these ex periments. He expects to enable deaf mutes to hear sing ing by means of a microphone, in cases where the auditory nerve is not entirely lacking, but where some defect in organization renders speech impossible.

The musical sounds are inscribed upon a smoked cylinder, which permits of the comparison of the visual record with the audible sounds which have been heard. It remains o be seen whether the reversal of this process will reproduc the voice as in the phonograph.

Cultivation of and Trade in Peanuts.

The trade in peanuts, already large, is annually increasing Because the unreflecting public sees it mostly as con ducted by petty retailers on stands at street corners, it is gene rally inferred that the peanuts are at best an unimportant article of commerce, but this, as is usually the case with conclusions derived from superficial observations, is erroneous The trade extends in a similar way ta not only all our large cities, but also to in ferior towns and villages.
The Confectioner'3 Journal has compiled some statistics of the trade which are worthy of attention. By those who have entertained false impressions regarding the value of this crop it will scarcely be credited that it amounted last year to $2,220,000$ bushels, which, at prices realized to first hands, reaches an aggregate of $\$ 2,150,000$. The crop is principally raised in Virginia, which last year produced 60 per cent of the entire consumption. The crop is generally harvested in October, beginning a little earlier in Virginia. Tennessee produces about 35 per cent of the crop annually sold, and North Carolina about 5 per cent. Peanuts are elsewhere raised for home consumption, the amount so produced being difficult to estimate. "The nuts marketed in New

York and hereabouts come chiefly from Virginia, while those from other Southern States find a market in the West. When peanuts are scarce and high, the African nut is imported, but with the present supply and low prices, foreign nuts have no place in the market. Peanuts are sold by dry measure by jobbers, but retailers sell by wine measure, making forty quarts to the bushel.

RECENT DECISIONS RELATING TO PATENTS.

 preme Court of the United State FLETCHER, APPELLANT, ws. BLAKE.Mr. Justice Harlan delivered the opinion of the court. This is an appeatn om a decree in the Circuit Court of the United States for the Southern District of New York, dismissing a bill in equity based upon an alleged infringement of letters patent issued to the plaintiff in error on the 81h of June, 1869, for an improvement in stamps used for revenue and other puposes.
Held:-An invention consisting of a postage or revenue stamp baving a portion of its surface composed of thin fragile paper or other suitable material loosely attached, and on which a portion of the design or other matter is printed, is not infringed by a stamp composed of one continuous piece of paper, of uniform thickness, upon the face of which is certain printed or engraved matter, with blank spaces, in which are inserted, at the appropriate time, certain figures and names required by law to appear upon revenue stamps, which blank spaces are prevented from adhering to the barrel by the interposition of a red slip of blank paper attached to the back and outside edges of the stamp.

Decree of Circuit Court sustained

Cnited States Cirçuit Court.-Southern District of New York.
buchan et al. vs. mCeesson etal. same vs. henry et al.patent carbolic acid soap.

Blatchford, J.

. The first claim of reissued patent No. 5,007, to Isabella Eames and Cbarles A. Seely, July 30, 1872, being a claim for "a soap made by incorporating carbolic acid, or its equivalent, with ordinary soap, substantially as specified," Held to be anticipated by the English patent of Alexander McDougall, No. 2,510, of October 15, 1860, for " 'improvement in materials or composition for destroying vermin on sheep and other animals, and for protecting them therefrom."
2. If McDougall, by using with a fat and an alkalia crude carbolic acid or creosote which did not contain carbolic acid or cresylic acid as pure or as concentrated as it was afterward made, produced a true soap developing the properties of the acids referred to, there was no mvention in subse quently using the purer article. The advance was only one of degree.
3. Although soaps made with the finer carbolic acid existing at the date of plaintiffs' patent may be applicable to purposes to which soaps made with the less pure carbolic acid could not be applied, that shows only a difference in degree and not invention.
4. The effect of an earlier invention upon the claim of a patent not avoided by a specific disclaimer in the specitication when it appears that such disclaimer is based upon an unsound view of the invention to which it relates.

Malleable Castings.

Considerable pretense of mystery is assumed by manufacturers of malleable castings both in this and the old country, and doubtless there are some trade secrets of value to those in the trade relative to mixtures of different irons, etc., but the process is in itself simple, and a little experience should enable any foundryman to attain a creditable success in it. Nearly every founder has his own mixtures and methods, but they are all based upon the processes of Samuel Lucas, of Dronfield, which date back to 1811. The general features of the process, as carried out by the Birming. ham (England) iron founders, is given in the Ironmonger, as follows:

For the purpose of the casting pig of a fine quality is needed, and great care is used in the preparation of the moulds, so that there may be no flaw or imperfection in the casting. The latter, after cooling, is, of course, hard and brittle, and it is to remove this brittleness and give it the character of malleable iron that the special process is required. The casting is now placed in hermetically sealed puts or boxes surrounded by powdered ore, and subjected for several days to intense heat, which, by cementation, gradually softens it and renders it malleable to the core, when it may be bent or wound into any shape. The anneal. ing process takes ordinarily about ten days. Thus a pot made up on Tuesday is got up to a white heat about Friday, and this heat is maintained for some twenty-four hours or more, according to the size or thickness of the article annealed. The fire is then allowed to die down, and when the mass is cool the castings are found to be thoroughly annealed and malleable. Scarcely a trade in Birmingham fails to use malleable castings for some purpose or another.
"The introduction of Bessemer steel has somewhat operated against the trade, but there is still a great field for malleable iron founders in catering for the requirements of the Birmingham gun, harness, and engineering trades.'
The journal quoted thinks it much to be regretted there is not a more free interchange of ideas and experience among English iron founders, as in this only is there bope that the English trade can keep pace with German and French pro. gress in the art.

Courage, Ingenuity, and Perils of Firemen.
The perils to which firemen are frequently subjected and he courage with which they are faced are scarcely inferior to the dangers met with and courage evinced by brave soldiers on the field of battle. If statistics were carefully compiled, we think the loss of life and personal injuries sustained by the trained corps that by day and night guards this city from conflagration would more nearly approach the proportion usually killed and wounded in active military campaigns than we could easily believe. They are a noble, though a small army, which yearly gains respect from our citizens; and they often perform heroic deeds that merit a higher reward than the praise bestowed by the chronicler who records the story.
A rare instance of the exercise of great ingenuity under circumstances of great personal danger occurred in a recent fire in this city, an account of which we transcribe from a leading daily:
A portiy man was imprisoned by fire and smoke in the fifth story, and there were no ordinary means of reaching bim. The adjoining house was smaller, its roof reaching about half way between the fourth and fifth story windows of the burning structure. A fireman reached this roof with a small ladder. He then slid down the ladder until he could get into the fourth-story window, but he found it impossible to ascend to the fifth floor. Then he put the short ladder on the window sill and held it flat against the building, so hat it would reach to the story above, and on this support the man whose life was endangered descended. The men were now together, but not out of danger. The ladder was next put with one leg on the sill, but aslant, so that it would reach over to the roof of the adjoining house. Held in this position by the fireman at one end and volunteer assistants at the other, it formed a very dangerous but, as it proved, successful means of escape for the citizen whose life was endangered. The fireman was now left alone, but escaped by the same path, trusting entirely to the grip of the men at the top of the ladder. All this was done at the height of thirty or forty feet from the stone sidewalk, in the midst of excitement attending a great fire. The man who does such work with the necessary quickness of invention and cool bravery deserves something better than the mere wages necessary for his existence, with the chances that, if injured or disabled in the service, he will be discharged ac useless.

slate pencil machine.

It is easier for the schoolboy, with his innate inquisitive ness, to ask how slate pencils are made than it is for the boy of larger growth to answer; however, the machinery employed in making slate pencils is very simple, and the process will be readily understood by studying the annexed engraving.
The bed of the machine has a series of diagonal slots, in which multiple knives, shown in Fig. 3, are clamped by set screws. These knives differ in form and in the size of their curved cutting edges, and the smaller knives succeed the larger ones in acting on the late blanks.
Opposite the cutting edges of the knives there is a groove adapted to slides capable of carrying blanks, from which the pencils are made. At the receiving end of the machine a frame arranged to slide lengthwise of the main frame is pushed forward by a am and drawn backward by a weight.
The slate blanks from which the pen cils are made are brought to a uniform thickness and length, and are placed on he slides, and put in the machine, one at a time, as the sliding frame falls back.
When the cam pushes the frame for ward the slate blank is pushed through the first set of knives. When the next blank is pushed forward in the machine he first one is pressed beyond the secnd set of knives, and so on. When the blanks emerge from the machine after the first cutting the pencils are half formed.
The blanks are reversed and again put through the machine, when they are separated, and the finished pencils are delivered in a receiver at the end of the machine. This machi

Remarkable Locomotive Explosion
On the night of the 23d of January, 1881, a freight engine on the Philadelphia and Reading road was sent out from Palo Alto, Pa., to bring in a train of loaded coal cars from a siding. An hour later the engine was found a mile beyond the siding with all the crew-engineer, conductor, and two brakemen-dead and terribly mutilated. The boiler had exploded, tearing the engine to pieces and killing all the men. As the explosion occurred in a very lonely place and all the men were killed, no details are known.-Railoay Gazstte.

ENGINE WITH GAS-FIRED BOILER.
The annexed engraving, which we take from Iron, illusrates a useful vertical engine combined with a gas-fired boiler, which was lately exhibited at the Agricultural Hall, Islington, for the first time, by its designer and manufacturer, Mr. E. S. Hindley, of Burton, Dorset, England. The engine is self-contained, occupies a very small space, and works without vibration, all the parts being strong aud well proportioned. It can be supplied separately from the boiler and either thus or in the combination which we illustrate is

ENGINE WITH GAS-FIRED BOILER.

reported to do excellent work. The boiler contains a large number of brass tubes running the entire depth from top to bottom. The gas is burned in a chamber below mixed with air, the burner being so eonstructed that any one or more can be lighted so as to vary the consumption to the power required. No attention is required besides occasionally regulating the feed-water cock; steam is raised in about thirty jive minutes, the boiler is neatly lagged with mahogany and there is a feed-water heater supplying not only the boiler with water at over 200°, but supplying a large quantity of

MACHINE FOR MAKING SLATE PENCILS. viously designated in certain proportions cleaning the trap.
cases where, without it, filling or recrowning would be impracticable. The patent covers broadly the use of hollow ivots with central removable stoppers for dental purposes. Mr. Charles J. Schumaker, of Alleghany City, Pa., has patented a novel puzzle-game board, which consists in a sheet or board having twenty-one numbers arranged in the form of an octagon, which numbers are connected with each other by a series of rectangular and radial lines. Each number is provided with a pin, and to solve the puzzle all the pins must be taken out by one pin, by means of jumping over the others upon vacant numbers, and when the last pin is taken the player's pin must jump into a number that has been pre-

Mr. John F. Hoffman, of Cincinnati, Ohio, has patented a new paint for application to tinned roofs and other structures exposed to the weather. The ingredients are light dead-oil of coal tar obtained by distillation and treated with quicklime, rosin, and asphaltum, melted and mixed by heat

Mr. Henry Textor, of Brooklyn, N. Y., has patented an improved sewer trap which will prevent the flow of backwater, and which cannot become clogged by sediments or floating matter. A hemispherical or cup-shaped vessel is connected with the sewer and provided with a cup-shaped strainer containing a hollow metal float which is raised by back-water and pressed against the lid of the vessel. The latter is provided with a central aperture and is covered by a strainer held down on the vessel by a removable screw clamp. An opening provided with a screw plug serves for

Mr. Henry B. Sherwood, of Westport, Conn., has patented a tool handle for hand-weeders, currycombs, and various other tools, which is firm, strong, and durable. The wood handle is formed with a transverse borehole and two grooves leading therefrom to the end, upon which is placed a ferrule. The wire shank is passed through the hole and bent down into the grooves, in which the ferrule holds it securely when applied. The ends of the wire are then spread apart and may be secured to the tool by riveting.
Mr. Henry D. Starr, of Texana, Texas, has patented an improved bale-tie buckle, so constructed that the bale canbe easily and quickly tied, and it will hold securely. The buckle is made of a plate having four transverse slots formed therein, thus forming five crossbars, and having the second bar rounded or thickened to adapt the buckle to be hinged to one end of the tie, and also having its fourth bar stamped into a loop form to receive the other end of the band.
Mr. Edward P. Haff, of Brooklyn, N. Y., has patented a razor strop so constructed as to present on one side a fixed oval strop, and on the other a flexible strop the tension of which may be regulated.
Mr. John A. Moore, of Woodville, Tenn., has patented a combined cotton scraper, chopper, and cultivator, so constructed that the cotton will be scraped, chopped to a stand, and dirted at one passage aloner the row, and which can be adjusted to work closer to or further from the plants and at any desired depth in the ground.
Mr. Frederick W. Jackson, of Watkins, N. Y., has patented a wall paper exhibitor by means of which any number of samples can be exhibited rapidly and advantageously. An endless carrier is formed of a close series of slats movable in guide grooves. The slats to which the samples are attached are provided with studs which are engaged by a median spur wheel for turning the series. The samples are displayed upon an inclined apron.
Mr. Edward Barnard, of Rome, N. Y., has patented a quarter boot for horses, which, being an improvement on an invention for which he obtained letters patent No. 237,157, dated Feb. 1, 1881, causes the quarter boot to fit the heel of the hoof more closely and to keep in place better, and at the same time gives the article a neater appearance.
Mr. John B. Shaffer, of Kearney, Neb., has patented a well bucket so constructed that when lowered into the water it will readily fill, which holds the water securely while being raised
hot water besides for other purposes, and which costs nothing o heat. This renders it valuable for many trades requiring hot water, and also in stables. It is so safe from risk of fire that some of them are at work in the midst of hay and straw -cutting chaff, etc.

MISCELLANEOUS INVENTIONS.

Mr. Philip A. Palmer, of Chicago, Ill., has patented an mproved means for treating teeth, and for preserving work done upon a tooth while permitting access to the pulp cavity for treatment. It consists of a hollow screw, into the outer extremity of which a smaller screw is inserted, which can be removed to permit access to the pulp cavity and replaced. Teeth may be filled or recrowned by the use of this device in
and when standing in the spout, which
an be readily emptied in part or wholly, and which is simple in construction and easily repaired.
Messrs. Charles Tyrell and Edward Kearns, of Norwalk, Conn., have invented an improvement in hat-pressing machines, which provides for more accurate and convenient adjustment and regulation of the pressure in machines for pressing hat-bodies, and which much increases the range of adjustment. The construction is simple aid well calcuated to secure the ends sought.
Mr. James Hill, of Providence, R. I., has patented a japaning oven, in which a novel construction and a blowing apparatus connected therewith secures a uniform temperature f the air throughout the oven while baking the articles to be japanned,

THE WINKLE, OR LADLE-SHELL
 \section*{py w. woperts}

It is impossible to walk on the seashore without being struck by the many strange objects that are cast up and left by the waves only to be swept away again by the next high tide, which, in its turn, brings new and varied forms. A week may pass by without new objects appearing, but, during the next, strange and grotesque forms will be scattered profusely at one's feet. I once commissioned a fisherman friend to procure for me all curious objects that might be cast on his immediate shore. In course of time a parcel arrived, having a promising marine odor; which, on being opened, was found to contain some very interesting objects. Among them was one that, at first glance, might have been taken for a dead sponge, it being eight inches in ength, of a ligh olive green color nd hollow at one end as manysponges arc. But on closer examination it proved to be a ske letonized cabbage stalk, on which wa growing a dense and rowing a dense and elvety growth Ectocarpus. This still preserve as
specimen of my specimen of my
eariiest ocean ac eariiest ocean
One of the most puzzling and at the same time the most common objects to be met with on our shores are strings of egg cases or cap sules of the winkle Fig. 1). These trings vary from 12 to 20 inches in length, and contain from forty to seven-y-five capsules; the first few capsules on the string are alvays small and barren, the others contain from fifty to one hundred eggs. The young winkles
emain in the capsule till all of a jelly-like substance with which each capsule is charged is exhausted, and upon which the young winkles feed. They are now strong enough to eat their way out at the apex of the capsule, where is situated an exit covered with a tough membrane. The young winkles, so soon as out, bury themselves in the sand, all but the extreme end of their siphons, through which hey breathe.
When newly laid the egg cases are of a light creamy color The tough leathery substance of which they are composed is so translucent that by holding it up to the light the eggs are plainly visibic. These egg cases are deposited by the winkle when buried under the sand. Several deposits of eggs are made from March till late into the fall.*
It is astonishing that one winkle is capable of producing such an enormous quantity of capsules and eggs, the bodily

[^0]mass of which seems to far exceed that of the body of the snail itself. Extending along the under surface of the body of the winkle is a long corrugated disk, which is very tough and rubber like. On this the winkle moves, and it is known as his foot. When withdrawing into his shell the foot is the last part of his body that is taken in. Λ ttached to the back part of the foot (see illustration) is an oblong and strongly grained operculum, a horny valve or door that closely fits the aperture of the shell and completely closes it up when the animal is within. The winkle is provided with a large and powerful "tongue" or lingual ribbon, which bristles with thousands of silicious teeth; all these sharp denticles point backward, so that the tongue acts not only as a rasp, point backward, so that the tongue
but takes a firm hold upon the food.

THE WINKLE, OR LADLE-SHELL

By many fishermen the winkle is said to be an enem to the oyster and other bivalves; thisis not so, as the winkle frequents only sandy and muddy bottoms, where traveling is easy, and small crustaceans and marine worms, on whic feeds, are plentiful
In making the illustration of the winkle I purposely placed one in a rocky-bottomed tank, which I knew would cause him to elevate his shell as high as possible to avoid breakage. On no account does the winkle like a rough, rocky bottom, or one composed of sharp shells like an oys er bed.
hell," Eastern coast the winkle is known as the " ladle , from the fact that the fishermen, when calking their boats, use an empty winkle shell to run the tar into the cams in lieu of a ladle.
The flesh of the winkle is the toughest of all marine food that I have ever eaten, still there is a colony of colored people back of Keyport N. J., known as "Winkle Town." from the fact that its inhabitants live largely on winkles, whose shells
line the road side in large heaps. In Europe the winkle is known as the pear-shell, from a supposed resemblance of outline to that of a pear.
The winkle (Sycotypus canaliculatus, of Gill. and Pyrula , of De Kay) is one of the largest shells on the eastern coast of North America, sometimes measuring seven inches in length. It extends as far north as Cape Cod, and south as far as Mexico. It is found fossil in the post-Pliocene of Virginia, North and South Carolina, Pliocene of South Carolina, and Miocene of Maryland.

Unappreciated Insects.
The Engitsh Mechanic reports a leci ure on "Unappreciated Insects," delivered before the Chester Society of Natural Science, by the Rev. J. G. Wood.

With regard to the title of "Unappreciated Irisects," it was a very wide one, said the lecturer, because he did not believe any insect was really appreciated. Appreciation depended almost entirely upon knowledge Take, for example the c.ise of the silk worm. A savag who wears savage clothes does not appreciate the silkworm at all, but looks upon it rather as a noxious insect because it destrors the mulberry tree, the fruit of which he wants for him self. The child saw a bee and grasped it, and the bee stung the child. The latter did not then appreciate the bee in any degree. But any degree. But when the child came to know something chout it, he learnt that the bee furnished the honey he liked so much, and ccordingly began to appreciate it. So it was with the whole of the insect world; and he might state what he believed to be an absolute fact, that there was no insect, however insignificant it might appear, or however noxious we might seem to think it, which was not directly or indirectly a benefacor to mankind. He should chose one or two of the for to mankind. He should ehase one or two of these insects, which not only we do not appreciate, but which we
fear or dislike, or even with the existence of which we are probably utterly ignorant. He would just mention an example of the mode in which insects benefit mankind. Insects were put into this world clearly for the purpose of pre serving it and making it fit for creatures higher than themselves, and this they did by eating. It was clearly not likely that clothes moths were created for the purpose of destroying young ladies' jackets. What was it then they were created for? It must be remembered that the clothes-moth existed in countries where the ladies did not wear any clothes at all, and existed on the earth long before there were any young ladies at all. It must be created for something, and

keepang in view the object of insect life, he found a clew to 'shows that all the placers must have sprung from the degra one reason for the existence of the clothes-moth. The cater-
pillar of the clothes-moth, fed on wool, which is hair; and pillar of the clothes-moth, fed on wool, which is hair; and
bair, by the ordinary agencies of nature, is imperishable. In he Eryptian Room of the British Museum might be seen wig-a lady's wig--which is as brilliant and as fresh as when came from the hands of its maker 3,000 years ago. Wool s hair, and hair is wool. The clothes-moth never touches is hair, and hair is wool. The clothes-moth never touches
cloth garments while they are in use, and never while the loth garments while they are in use, and never while the
wool was on the back of the sheep that furnished the cloth, wool was on the back of the sheep that furnished the cloth,
Every sheep sheds its wool once a year, scratching it against trees. If the wool were not removed from the trees it would kill the trees, for they would not be able to breathe. The lothes-moth and its insect allies set to work when the wool was done with, and enabled the trees to shoot and grow. It lothes-moth and its allies there would not be a tree on the arth, and no human creature could exist on it. So the in sect was intended to render the world better for being higher than itself. His most excellent and respected friend the cockroach, was not appreciated. People did not like it He did not know why, for it could not sting or bite. Some people objected to it on the ground that it had a disagreeable smell. The insect was not aware of that fact. Then, probably, human beings had a disagreeable smell to animals. A deer could smell a person a mile off, and as the deer got away as quickly as it could, it evidently thought the person had a disagreeable smell. It was all a matter of taste. As to the cockroach it was often called a black beetle. It was not a beetle, and it was not black. Its color was a ruddy chestnut brown, which was now becoming quite a fashion able color. They would notice there were two very distinct shapes of the cockroach. There were the male and the female, and there was no possibility of doubting which was which, for they followed the universal law that the male was twice as handsome as the female. It was a fiction of poetry to state the reverse. Cockroaches were always found where there was wasted food. They were never found where food was not wasted, and belonged more to civilized than to savage life. They were never found in the wigwam of roach was capable of being tamed. Its use was that of a cavenger. There was one particular use in which it wa directly beneficial. Cockroaches were considered noxious insects, but there were others quite as noxious. They were
quite as flat, but happily not so large. A person historically quite as flat, but happily not so large. A person historically a musician might designate them as " B flats." The cockroach consumed these insects. The lecturer went on to treat of the earwig, the lace-wing fly, and the gnat, all of which be described and illustrated by sketches. Speaking of the nat, he said it consumed in its life, in an aquatic state, cel ain animal and vegetable matter which, if not so consumed, would, with the warmth of the sun, produce gases produc tive of ague and asthma. The grand object of insect life was to eat, and render the earth fit for higher creatures to inhabit.

A Kentucky Robin Roost

According to the Times, of Glasgow, Kentucky, there has been near that place the past month a robins' roost that equals the pigeon roost of olden times.
"A cedar thicket of about sixty acres furnishes the birds a lodging place About sundown every evening constant streams from every direction pour into the grove, and almost obscure the heavens in their flight. Night finds almost every bush in the thicket bending with its red-breasted load. For the past few weeks lovers of sport for miles around have visited the place, and every night the thicket is illuminated with the torches of men with clubs and sacks gathering the feathery harvest. Mr. Smith has killed over 2,000, and hundreds are carried away every night, but they don't seemu to decrease; there are millions of them. Large quantities of hem have been sold in town. They are very fat, and make, when well cooked, a dish good enough for anybody.
Seeing that the robin is one of our most efficient destroy ers of insect pest. - a young robin requiring daily a bulk of such food equal to its own weight - it is probable that every bird killed at the "rcost" will cost the country a dollar, per haps ten times as much. In any case one of these birds "in the bush" is worth'a score or more "in the hand" or in the frying pan.

The Gold Gravels of Cal tornia.

Mr. W. S. Keyes, mining engineer, reviews at great length, in the San Francisco Bulletin, the advance sheets of an im portant work on the "Auriferous Gravels of the Sierra Nevada." by Professor Whitney, formerly State Geologist of California:
The gravels of California are of economic importance, because of the gold which they contain, and because they are so situated that they can be washed with profit. They present phenomena almost identical with those of Australia, and bave the advantage of the latter in being hetter supplied with water and dumping ground. Professor Whiney reviews cursorily the few localities of gold-bearing gravel of
the coast ranges in the northwestern part of the State, and the coast ranges in the northwestern part of the State, and
then proceeds to consider the gravel region proper. This extends from Mariposa to Plumas, and is very nearly coterminus with the limits of the gold-bearing slates. The hydraulic interest increases in importance as we go north from Tuolumne to Amador county, and reaches its culmination in El Dorado, Placer, Nevada, and Sierra counties. He
dation of pre-existing quartz veins, which were probably richer than those we now see. He devotes considerable space to a description of the various mechanical appliances used for saving the gold, and credits Ed. E. Matteson, of Stirling, Connecticut, with the invention of the hydraulic method. The physical conditions necessary for an economical washing of the gravels are particularly favorable along the western flank of the Sierra. Water with a sufficient head is plentiful, and there is a gradual and easy slope from the mountains for a distance of about 70 miles, with a grade of about 100 feet to the mile. This sloping plateau is cut by deep gorges or cañons through which flow the present rivers and into them the vast accumulation of tailings is dumped The great depth of erosion may be inferred from a single ex ample, viz. : at Spanish Peak, where the Pliocene gravel beds occur 3,800 above American Valley. The gravels vary in thickness up to two or three hundred feet. Usually, but not always, the lowest portions are the richest. They are found in channels of varying width up to 4,000 feet. Upon the gravels in many localities we find a capping of basalt or volcanic ash. The thickness of this cap, other conditions being equal, determines the method of working, whether by piping off" or by "drifting.
The fossils of the gravels are divided into three classes. Microscopic organisms, plants, and animal remains. Pro fessor Whitney devotes considerable space to the specimen of human handiwork, mortars, pestles, etc., found in several ocalities, and relates in detail all the facts attainable touch ing the fossil human skull found in a deep shaft in the Calaveras gravel measures. He gives two lithographic views of the skull. The finding of this fossil-for fossil it undoubtedly is, because the phosphate of lime has been changed to arbonate-has aroused much controversy, but in view of the proofs adduced we are constrained to accept its genuine ness. And in so doing we acknowledge the existence o mankind contemporarily with the depositions of the gravels. Professor Whitney is of the opinion that there was no rive or system of rivers running parallel with the present crest of the range. He believes that the whole mass of the chain was originally much higher than it now is. He attributes the formation of the gravel beds to running streams which, dur ing the tertiary age, carried far more water than the presen rivers. He denies the possibility of their marine origin, or hat they were due to glacial action.
Contemporaneously with and subsequently to their deposition great outpourings of lava and volcanic ashes took place, whereby large areas of the gold regions were covered p. Through these formations the present rivers have cut their way and have formed the deep gorges which we now

Discussing the complicated questions touching the eco nomical working of the gravels Prof. Whitney gives an ex ample where a yield of 2.6 cents per cubic yard barely cov ered expenses. He concludes, however, that under favor able circumstances, a yield of 4.75 cents per cubic yard may be considered the mean minimum necessary for profit. He shows that about 20 cubic feet of water is, on the average, required to move one cubic foot of gravel. He closes with the opinion that hydraulic mining will continue for very many years, unless the injury from the débris shall be too great to be endured. "And," he says, impressively, "there is no part of the world where scientific oversight and judicious legislative interference is more desirable for the future welfare of the community than in the Sierra Nevada of California."

The Mineral Belts of the Great West.

The Tribure, of Denver, Colorado, is anxious that a National Mining Exposition shall be organized at that place In an article setting forth the advantages of such an exhibi tion, it says: "There have already been ascertained to be four well defined longitudinal belts of silver mines between the eastern base of the Rocky Mountains and the shores of the Pacific. First, the Colorado and New Mexico belt; econd, the Utah and New Mexico belt; third, the Nevada and Arizona belt; and fourth, the California and Old Mexico belt. According to Professor Rossiter W. Raymond, this latter belt extends along the east base of the Sierra. There are many transverse sections all through the mountain regions, but these great belts of mineral are sufficiently well defined. The attention of the floating capital of the country is attracted to the districts traversed by these mineral deposits.
"Railroad lines are penetrating into and through the mountains. Colorado is already handsomely provided for, and the great Southwest will be gridironed at no distant day by lines already projected. With these transportation facilities Denver will become, if she is not already, the center he great mining industry, and an exhibition of the of the royal metals alone, and appliances for mining them, would be warranted. But aside from these, there are coal fields in Gunnison county, New Mexico, and the Southwest, whose importance will not be long in attracting attention, and such minerals as antimony, gypsum, quicksilver, zinc, graphite, and even cinnabar, exist in our mountains. The mining of all these mineral substances is important, and their display would have a growing interest in this community. Even such coarse material as slate, limestone, and building stone of all kinds would command no small attention among practical men, while the various crystals and fossils and rare petrifactions would prove an attractive artistic feature to a general mineralogical exhibit."

Corretponaturs.

Hearing Noises in the Sun.

To the Elitor of the Scientific American:
For a couple of months past there have appeared in all the papers accounts of certain efforts on the part of Professor Bell to reproduce, by means of the photophone, the noises which accompany the solar disturbances. But I have looked in vain for any statement of the error in the assumptions on which these experiments are founded.
If we have a beam of light of varying intensity falling on the selenium cell of the photophone, the instrument will give out sound; but it by no means follows that this sound is a reproduction of any previously existing sound.
Suppose the light of a lamp to be thrown on the cell, and screen be made to pass rapidly back and forth across the path of the rays. The alternate light and darkness thus produced would certainly give a sound in the instrument, yet the lamp may burn and the screen may move absolutely without noise.
It is only when the variations in the light are originally produced by the action of the pulses in the sound medium that the sound given out will be a reproduction of a previous one.
Furthermore, the intensity and character of the sounds in the photuphone depend upon the degree and rapidity of the variations in the light.
Now, in the case of the sun we have no assurance that the requisite conditions existto enable us either to reproduce the solar noises, on a small scale, or to originally produce anything similar to them. We certiinuly cannot say that the variations in its light come from the rays having been modified by sound waves in the solar atmosplere; nor is there any reason to believe that they are at all naturally proportional to any accompanying sound; aud until one or the other of these conditions is shown to be a fact, it seems to me that the results of Prof. Bell's experiments will continue to be, as hitherto, " not wholly satisfactory."
W. V. Brown.

Cambridye, Mass., Felruary 19, 1881.

Sun Storms

It is pitiful to witness the condition of the sun. The great fire-ball is in intense commotion. His surface is seamed and scarred in every direction, with black spots that indicate the disturbing elements at work in his chaotic mass. Occasion ally, for a day or two, the blemishes disappear, and the glo rious king of day shows a face like a shield of glowing gold. But the aspect quickly changes; spots come rushing in all directions and assuming all forms. They appear singly and in pairs, and again in groups and rows. Immense groups break up into small ones, and small ones unite to form great chasms, into which half a dozen worlds might be dropped and there would still be room for more. Sometimes the spots are visible to the naked eye, and at that time a good opera glass or a spy glass will make them easily perceptible. Hundreds of observers all over the world watch the sun's face every clear day, and keep a record of the number of spots, their size, and the direction in which they move, for as the sun turns on his axis they turn with him, some of them remaining for months without much change, some taking on new forms and some disappearing entirely. Very little is known of this mysterious sun or the spots that are visible more than ninety millions of miles away.
Once in about eleven years the sun takes on his present sun-spot phase, and we are approaching the maximum of disturbance. No one knows the cause. Some believe that it is planetary attraction, some that it is the fall of great masses of meteoric matter, and some that it is the result of internal commotion and the rush upward of gaseous explosions in comparison with which our fiercest volcanic eruptions are but the flicker of a flame. Besides the sun-spot agitation, the gaseous outbursts are marked and vivid. The tongues of flame or rosy protuberances are darting forth in all directions and bearing their testimony to the solar commotion. Mr. Trouvelot, of Cambridge, who makes daily observation of the sun's chromosphere, gives a graphic description of a remarkable solar protuberance that he witnessed on the 16th of November. When first seen it was large and complicated, extending upward from the sun about a hundred thousand miles. Three or four hours after it had developed into huge proportions, extending far out iuto space, and vanishing gradually to regiens where it could not be perceived. As nearly as it could be measured, it reached a height of over a quarter of the sun's diameter, or about two hundred and thirty-five thousand miles. Such a protuberance hurled upward from the earth would almost reach the moon! Two hours after, the whole structure had collapsed, and was only about eightcen thousand miles high. Observations like this give an idea of the mighty forces at work in the solar orb, and make observers long for the time when a satisfactory solution may be found for this mysterious periodical solar disturbance, so intimately connected with the meteorological condition of the earth.-Providence Journal.

The Wheeler wood filler patents, after a long controversy, have been fully sustained at final bearing, and injunction is ordered to issue. This filler is manufactured by the Bridgeport Wood Finishing Company, of Bridgeport, Conn., and is acknowledged to be the best article in the market for the purpose. Mr. D. E. Breining, 40 Bleecker street, New Yorl: city, is agent.

Tea Curing and Packing in Foochow

The following quaintly-worded, yet very graphic description of the work done in a large Chinese tea packing house, is given by the Foochow Herald, at the close of a season's operations:
A large tea packing house presents a very different scene from that two months ago. Then, at the door one found lines of fifteen catty boxes and waiting to be soldered up. Now, none. Next, one found fat bags stacked up eight or ten feet, bursting with Pehling tea that escaped here and there through holes temporarily stopped with bamboo leaves; the bottom of the bags mostly stained from contact with wet flights of mountain stairs upon which the exhausted cooly had set them down on the passage.
Now, one finds but empty chests, hundreds in number, square, deep, and oblong, used for handling the tea in the factory. Ordinary tea chests would not stand the rough usage.
Farther on, one came to the dozen long double row of sifters facing each other, forty in a row, the mesh of some aking a pencil-that of others refusing a pencil point-sifting tea leaf rough and bold, that after a persuasive grasp or two in the hand broke, and consented, after a few shakes in the sieve, to be stripped of some of the sappy leaf edges and to appear below, the even and uniform leaf which tea the drinker insists he must have (plus the dust due to the persuading). The transformation in a rough leaf on passing the meshes of a coarse sieve, with a gentle crush from the sifter's hands, enhances a rough, bold tea much in value.
In place of the rows of men then seen, tilting and jerking their sieves in a monotony only broken by the Cantonese taskmaker's roll-call twice a day before the general meal of fish and rice, there is now to be seen only the bare floor of
hardened earth, piles of empty benches stacked in a corner, and the sieves of the twelve different sizes used, each in its division in the three-story stands.
The dozen or score of fanning mills are still now. The trained hands are gone that turned the cranks with a uniform motion, sending the heavy tea, light tea, and flaky dust each down its respective spout separated, never again to meet, unless haphazard, mixed in a Whitechapel grocer's window
The tea leaf separated in these fanning mills has been parted with at the smart loss of Tis, 8,000 on 3,500 piculs to the foreign buyer, and has been let go by the latter to the London dealer or auction room habitue. The mills now stand still. The tea growers in the hills who waited through June and July for their money have now been paic!. The losses to the packers here, however, have been so smart that there is little third crop tea now being packed in Foochow, and the mills will rest until another May shall bring the physical courage bred of hot blood back to the pale and dispirited native teamen. There are stacked up in this huge go-down a few hundred packages of a native maker's brick tea wrapped in plaited bamboo strips, bound in half bamboo and triply rattanned. Aside here, the Chinese upper mill stone is being turned upon the nether by a Chinese who is grinding the seeds left by the fanning mill.
In these sycee boxes sharp spades are falling upon the tea stems, chopping them fine enough to go into the stemmy dust mixture to which the seed dust gives the strength while the chonped stems vouch for it being tea.
In the firing house, four Chinese rice kettles, two feet across the mouth, set obliquely across the edge, turn the te back in a shower over the hand of the stirrer, a wood fire being kept up in the brickwork underneath. Fire holes, scores in number, follow in rows the walls of the firing house; in each an iron pan is placed, now filled and rounded with charcoal ready to be lit. Placed over each of these fires is a huge hour-glass-shaped-basket-hood or muffler that huts in ail hent of each fire to but one outlet - that throug the tea sieve that chokes the throat of each basket.
In these baskets is dried off the tea that comes in from the bills wet or flat from constant down-pours and from the first fermentation of the leaf. These fires are out and all is still.
Here too, on the floor above, the benches are empty where girls and women came-some too often-to throw out the stems from the leaf, getting half a cent for removing those from the two catties of tea given them in wound bamboo woveu trays.
The floor is now bare where we saw the Ningteh tea brought to a uniform shade, by shaking in bags with a few spoonfuls of lampblack; then balked upon the floor, only to be strewn white as a grave in spring with the pure muhil blossoms; then blossoms, in turn, buried under another avalanche of funeral tea, and this again with blossoms, life upon death; then both were rudely mingled together and put away in boxes for a night till the fragrance should have been robbed by the dead tea, and the faded flowers be thrown aside, spent and worthless.
Our round finishes at the shed where Chinese lads, out of long sheets of lead, are glibly making lead cases by moulding them, batter-like, upon a box, and then running the soldering iron along the edges. Here Chinamen in their natal costume, beside this huge four-hogshead vat of hot water, are washing off the dust and sweat of the day. Here are piles of wood for the hot tea coppers, crates of up-rive bardwond charcoal for the firing pans and firing baskets. We must leave without the sight we then had of the mad dervish dance of two Chinese, who, given a dozen pounds of tea stems under their sandals in a tray, performed about of ine interior periphery a double shuffle, twist and grind of
the enemy under the heel, that is cooler for the spectator, the thermometer in the nineties, than for the performers, from w.
The box factory is elsewhere. We enter on our home ward way. It is another old disused tea hong occupied by foreigners in the days when money was made tumbledown now and abandoned to Chinese. Inside, a few Chinese youth eating a dollar's worth of rice per month, are rapidly gluing and dovetailing together, by rough wholesale strokes, boxes by the score. Few nails are used, for these are handmade and cannot be afforded. What a bungling " mending" the merchant will pay for when these frail cases reach the land of rough usage and coarse nails!
Here you see a bit of thin tea-wood, there a bit of paper gaudily daubed with cardinal colors, a stroke or two, side marries end, the gaudy paper cover hides all joints, and the catty boxes, gay with bird, butterfly, dragon, and phœnix, re en route to be stared at in a provincial grocer's window. The only foreign devices we have noted in those busy stablishments, where in the season 500 men and women are busy from daylight to dark, are a Fairbanks scales and a Canton-made fire engine. Two red tapers stuck in the earth at the door burn for good luck, and good luck we must wish the patient set who work here.
Nearly 2,000 piculs this season have passed the sieves, one might almost say, a leaf at a time. And so this year, of hundreds of packing houses, some in hamlets in the hills, some, as in Foochow, in cities ten to fifteen miles from the hills. Women have carried, each her picul, up and down he mountain pathways, twenty-five miles a day, not complaining of the bent backs, nor once rudely jostled or instarving their way toward the work offering, their only food a double handful of salt in their girdle to bite at before they drink along the road. Boatmen at river marts have fought pitched battles for the tea, upon the transport of which depended their livelihood.
Probably all the tea leaving Foochow has been lifted up and down as most as if it had been carried up one side of the great Pyramid and down the other a score of times. Plenty of men have been ready to fight for the privilege of carrying it; plenty of women, too, under their loads behind their new husbands

IMPROVED COFFEE POT.

The annexed engraving shows an improved coffee pot which is claimed to be a very superior article, and capable of making coffee of a uniformly good quality, where a good properly roasted and ground berry is used. The coffee, \mathbf{C}, is placed in the wire cloth sack, S , suspended from the flange, R, at the top of the pot. A trap, T, covers the inner end of the spout and prevents the escape of apor.
The construction and ma-

nagement of the pot are very simple, and it has the indorse ment of a large number of persons who have used it.
Further information may be obtained by addressing the Ideal Coffee Pot Company, 622 Filbert street, Philadelphia Pa .

The New Mill of the Willimantic Company

The new thread mill of the Willimantic Linen Company is said to be the largest and finest structure in the world de roted to the manufacture of spool cotton, and al
apacious cotton mill anywhere on a single floor.
Taciou cothong is 820 feet by 174
The he ends 30×40 feet each, and two wings 80×60 feet, thre stories high. The first girders are supported by 707 columns, 12 inches in diameter, while 352 columns on the main floo support the roof. The wallsare chiefly glass resting on brick piers. The roof is also largely of glass, the dark part being covered with felt overlaid with asphalt and gravel.
Internally the mill is divided into five sections, each complete in itself and driven by a separate Porter-Allen engine ff 250 horse power, making 350 revolutions. The power is distributed by steel shafting running the entire length of the building, that of each section being coupled directly with its engine. No beiting over $21 / 2$ inches wide is employed.
The boiler house is 80 feet square, and covers two batteries of eight boilers, each boiler of 80 horse power. The chimney is 16 feet at the base and 152 feet high.
The mill is lighted throughout by Brush electric lamps. The generators are in the center of the building on the basement floor. One supplies 18 lamps of 2,000 candle power the other is a 40 -light machine.
Ring-frame spinning is employed throughout, the yarn ranging from No. 50 up to No. 120. The entire process of hread-making is completed on the main floor, which is 820 feet by 175 feet.
The architectural design and finish of the mill are elabo ate. In all the windows are ample boxes for window ardening. In the three towers are large water tanks of 30,000 gallons capacity each, to supply the closets and for other uses. The four entrance porches are neatly fitted up and supplied with wardrobes, each operative being given a numbered compartment. The spacious main entrance leads
to the inspecting room, 60×80 feet, tastefully finished open ing upon the main room. Here, says a reporter of the Econo mist, to whom we owe these particulars, " a view, grander than was ever seen in any mill, either in the Old World or in the New, is afforded. The wide sweep of perspective, broad and ample, the long rows of windows bordered with stained glass above, and fringed with the bloom of plants and flowers below, the solid floor shining as clean as if waxed for the occasion, the whirl of spinning frames, the long white rows of bobbins and spools, the numerous lines of contented but busy operatives in their clean attire, white and neat, as the color of the skein so deftly shaped into thread for spools, all tend to form a busy, changing, stirring scene not to be for gotten."
In one of the wings is the dining-room provided for the operatives. The room is light and cheerful, and fitted up with the appliances needed for serving hot lunches.
The mill is located on the north bank of the Willimantic River, and from its high elevation commands an extended view of the surrounding country. Someidea may be formed of the skill and energy displayed in its completion, when it is stated that the site it occupies was a pine forest up to the first of March, 1880. During the firstweek of that month the excavations for foundations were commenced, and during the second week the timber was cleared away. In the short space of ten months the most beautiful and complete thread works of the country, or of the world, were erected, and thousands of spindles set running in the manufacture of six-cord spool cotton

Glass Eyes.

A reporter of the Chicago Inter Ocean has been investigatng the trade in glass eyes. From the leading dealer in the West, a firm which has sold glass eyes for many years, he learned that there were as many as a thousand wearers of them in that city, and that from 600 to 800 eyes are sold there every year. The best eyes are made at Uri, in Germany, the manufacture centering at that place on account of the occurrence there of fine silicates and other minerals needed in the business. The German eyes withstand the corrosive ction of tears and other secretions better than those made in France.
At Uri are made also vast quantities of eyes used by taxidermists in mounting birds, animals, and other natural history specimens, besides a superior quality of glass marbles, known to boys as agates.
The artificial eye is a delicate shell or case, very light and thin, and concave so as to fit over what is left of the eyeball. The shell is cut from a hollow ball or bubble of glass, the iris is blown in, and then the whole is delicately recoated. The trade in Cbicago has undergone a curious change. Twenty years ago there were sold very many more dark eyes Than light, but from that period on the sale of dark eyes has than light, but from that period on the sale of dark eyes has
been perceptibly dying out. Now nearly all are light eyes, say twenty light to one dark. In Boston the percentage is even larger, about thirty-five blue or light eyes to one brown; while on the other hand, in New Orleans fifty brown or dark eyes are sold to one light. Regarding the change of color in Chicago of course fashion bas nothing to do with it. No one has yet decreed that party-colored optics shall be the rage. The change simply shows that the influx of population has been from the East principally and from northern Europe.
Surgical operations are performed much more skillfully than formerly. Time was when it was deemed necessary to take out the eye entirely. Then the artificial eye became a fixed, glassy, staring object. Now amputation of portions of the cye can be performed in very many instances, and the glass eye fitted on the stump, which moves quite naturally Sometimes those who have lost an eye will keep two or three artificial substitutes. They will use one for the daylight with a small pupil, and another for night time with a large pupil to offset the dilatation.

Flexible shafting for Tower Clocks

Philadelphia has recently adopted a time ball similar to that used in this city. The automatic apparatus for dropping the ball at noon was devised by the builder of the clock, Mr. G. W. Russel, the city time keeper. To a delicate hair trigger the armature of a magnet is attached, so that when the electric current is passed through the magnet he moven
The current is sent to the magnet in a very simple manner. In the clock are three wheels, one of which revolves but once in twenty-four hours. the other once in one hour, and the other once in a minute. In each of the three wheels is a notch, and, of course, these three notches cam be in the same straight line but once in twenty-four hours. This occurs on the completion of the last second before noon, and then a lever attached to the escapement drops into the notches, ompletes the electric circuit, and sets off the hair trigger.
The time ball is placed above the clock tower of the Union Insurance Company's new building at Third and Walnut streets, and is visible from a long distance.
Owing to lack of space it was found inexpedient to put the machinery of the clock in the tower, so it was placed in a separate loft and connected with the dial by flexible shafting. This avoids obscuring the skeleton dial by the boxing that would have been necessary with the usual righ angle connection. Mr. Russel claims that this is the first application of flexible shafting to tower clocks, and that the result bas been satisfactory. The time is taken daily from Washington.

2atmess and tergomal

The Charyeffor Insertion under this head is one Dollar line for each insertion ; about eight words to a lin Advee tisements must be received at publication offic useurly as Thursday morning to appear in next issue. The Handy Lace Cutter; cuts $1 / 8$ to $3 / 4$ inch. Post free Mi h.
The None-such Turbine. See adv., p. 140 . For Light Machinists'Tocls, etc., see Reed's adv., p. 156 Five pints black ink; matcrials, 25 cts. E. D. Vance
 Van Beil's "Rye and Rock" has become
word. It cures coughs and colds quickly.
Gear Wheels. Grant, Alden St., Boston. New list.
Vick's Seeds best in world. Floral Guide tells how
Wauted-A Brass Moulder.
Wanted-A Brass Moulder. Steady work guaranteed Rowland's Vertical Engine. Greatest strain and wear ing parts of steel. Broad Bearings. F. C. \& A. E. Rowland, New Haven, Conn.
For Sale.-Two New 66-inch Stevenson Turbine Wheels: composition buckets; 2e0 H. I.; price, $\$ 1,500$
Continental Works, Greenpoint. Brooklyn, X. Y. Wanted-A Tug of 12 or 14 inch ('ylinder, or stern Wheel Tow Boat of like capacity.
ticulars, R. F. Learned, Natchez, Miss H. W. Johns M'f'g Co., New Yowh, N. J., January 29, 1881. Dear sirs: After two years' test of your Asbestos
Liquid Paint on my hotel, the Palisades Mountain House, I am pleased to say I consider it superior in
every respect to any other I have ever used-not excepting the best white lead. A'though only one coat of
your paint was used, it looks as fresh and perfect toyour paint was used, it looks as fresh and perfect to
day as if it had been applied within a month. As you are aware, I am a large user of paints, and in future shal
use no other. Yours truly, WiLuin
B. D.NA. Spring freshets and rain will fill your boiler with sedi-
ment and scale. causing foaming and burning. These ment and scale. causing foaming and burning. These
can be prevented by lotehkiss' Mechanical Boiler leaner. Send for circular. 81 John St., New Yor For the manufacture of metallic shells. cups, ferrules,
blanks, and any and all kinds of small press and stamped wrerk in copper. brass, zinc, iron. or tin, address s. J. God-
frey Son Union City, Conn. The manufacture of small frey \& Son, Union City, Conn. The manufacture of small
wares, notions. and novelties in the above line, a spe wares, notions. and novelties in the ab
cialty. See advertisement on page 156 .
For Thrashing Machines, Engines, and Horse Pow Buy the Buffalo Port. Forge. Have no other.
The Inventors' Institute, Cooper Union, New York. Sales of patent rights negotiated and inventions exhip
bited and advertised for subscribers. Send for circular Presses, Dies, and Tools for working Sheet Metals, ette. Fruit and other (an T'ools.
to Bliss \& Williams, Brooklyn, N.
The Practical Papermaker; a complete guide to the manufacture of Paper, by James Dunbar. 81.00 . Mai
free. E. \& F. N. Spon, 446 Broome street, New York. Abbe Bolt Forging Machines and Palmer Power HamL. Martin \& Co., manufacturers of Lampblack and List 25 . - Descriptive of over 2,000 new and second hand machines, now ready for distribution. Send st
for same. S. C. Forsaith \&f Co., Manchester, N. I. Send to John D. Leveridge, 3 Cortlandt St., New York, for illustrated catalogue, mailed free, of all kinds of
Scroll siaws and Supplies, Electric Lighters, Tyson's Steam Engines, Telephones, Novelties, etc.
Pure Oak Lea Belting. C. W. Arny \& Son, Manufac-
turers. Philadelphia. Correspondence solicited. Within the last ten years greater improvements have tural implement. It is universally acknowledged that the Eureka Mower Co., of Tomanda, Ma., are naking
the best mower now in use, and every farmer should for cataiogue, with prices. Jenkins' Patent Valves and Pac": "ing "The Standard."
Jenkins Bros., Proprietors, 11 Dey st., New York, Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. Wood-Working Machinery of Improved Design and The " 1880 " Lace Cutter by mail for 50 cts.; discount Experts in Patent ('aluses and Mechanical Comsel Park Benjamin \& Bro. 50 A stor House, New York
Corrugated Wrought Iron for Tires on Traction EnMalle..bede and Gray Iron Castings, all description*, by Erie Malleable Iron Company, limited. Erie, Pa Power, Foot, and Hand Presses for Metal Workers.
Lowest prices. Peerless Punch \& Shear Co. 5 . Dey St.,N.Y, Lowest prices. Peerless Punch \& Shear Co. 53 Dey St.,N.Y,
Recipes and Information on all Industrial Processes. Park Benjamin's Expert Office, 50 Astor House, National Steel Tube (leance for boiler tubes. Aljust Best Oak Tanned Leather Belting. Wm F. ForeStave, Barrel. Keg. and Hogshead Machiniery a spe ialty, by E. \& B. Holmes. Buffalo, N.
of. The best engine made. For prices, address villiam
Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423. Pottsville, Pa. see p.125. The Brown Automatic Cut-off Engine; unexcelled fo workmanship, economy, and durability. Write for in-
formation. C. H. Brown \& Co., Fitchburg. Mass. National Institute of Steam and Mechanical Engineer-
ing, Bridgeport, Conn. Blast Furnace Construction and ing, Bridgeport, Conn. Blast Furnace Construction and
Management. The metallurgy of iron and steel. PracManagement. The metallurgy of iron and stecl. Prac-
tical Instruction in Steam Engineering. and a good situation when compet ent. Send for pamphlet
Nickel Plating.- - ole manufacturers cast nickel an.
odes. pure nickel salts. importers Vienna lime, crocus. etc. Condit. Hanson \& Van Wins'sle, Newark, N. J., and
92 and 94 Liberty st., New York.

The I. B. Davis Patent Feed Pump. See adv., p 141
For Pat. Safety Elevators, Hoisting Engince. Friction For Pat. Safety Elevators, Hoisting Engines. Frictio
Clutch Pulleys, Cut-off Coupling, see Frisbie's add. p. 126 . Saw Mill Machinery. Stearns Mfg. Co. Sce p. 141. C. B. Rogers \& Co., Norwich, Conn.. Wood Workin achinery of every kind. See adv., page 142 Moulding Machines for Foundry Use. 33 per cen
aved in labor. See adv. of Reynolds \& Co, The Sweetland Chuck. See illus. adv., p. 141.
Machine Knives for Wood-working Machinery, Book Binders, and Paper Mills. Also manufacturers of solo Silent Injector, Blower. and Exhuster. See adv. p. 15 The American Electric Co., Proprietors and Manufacturers of the Thomas Houston System of Electri
Lighting of the Arc style. See illus. adv., page 157. See Bentel, Margedant \& (co's adv., page 156. Diamond Drills, J. Dickinson. 64 Niassau St., N. Y Split Pulleys at low prices, and of same strength an
pearance as Whole Pulleys. Yocom \& Son's Shaftin Works, Drinker St., Philadelphia. Pa.
steam Hammers. Improved Hydraulic Jacks. and Tub Steam Hammers, Improved Hydraulic Jacks and Tub Burgess' Portable Mechan. Blowpipe. Sce adv., p. 140 50,000 Sawyers wanted. Your full address for Emer n's fand Book of saws (free). Over 100 illustration and pages of valuable information. How to straighte
aws, etc. Emerson, Smith \& Co., Beaver Falls, la Eclipse Portable Engine. Sce illustrated adv., p. 158 Peerless Colors-For coloring mortar. French, Rich ds \& Co., 110 Callowhill St., Philadelphia, Pat Repairs to Corliss Engines a specialty. L. B. Flan Repairs to Corliss Engines a specia
ders Machine Works, Philadelphia, Pa.

Wiley \& Russell M'f'g Co. Sce adv, p. 12\%

Tight and Slack Barrel machinery a speciaity. John
reenwood \& Co., Rochester, N. Y. See illus adv. p. 156. Elevators, Freight and Passenger, Shatting, louleys nd IIangers. I. S. Graves \& Son, Rochester, N. Y. For Heavy Punches, etc., see ill
ment of Hilles \& Jones, on page 157 .
Steam Engines; Eclipse Safety Sectional Boiler. LamBest Band Saw Blades. See last week's adv., p. 157. Recd's Sectional Covering for steam surfaces; any one can apply it; can be removed and replaced without
injury. J. A. Locke, \& Son, 40 Cortliandt st., N. Y. For best low price Planer and Matcher. and latest improved Sash, Door, and Blin. 1 Machinery, Send for
catalogue to Rowley \& Iermance, Williumsprt, Rollstone Mac. Co. s Wood Working Mach'y ad. p. 15: The only economical and practical Gats Engine in the market is the new "Otto" Silent. built by sellecthe
Schumm \& Coo., Philadelphia. Pa. Send for circular.
Pentield (Pulley) Blocks, Lockport, N. Y. See ad. p. 157. Tyson Vase Engine, small motor. 1-33 II. P.; efficient and non-explosive; price $\$ 50$. See illus. adv., page 156 .
Use Vacuum Oil Co.'s Lubricating Oil. Rochester,N.Y.

NEW BOOKS AND PUBLICATIONS.

Boletin de la Sociedad de Geografica Y Estadistica de la
cana. Mexico, 1880.
The latest installment, consisting of parts 4,5 , and 6 , vol. v., of this excellent periodical, published by the
Mexican Geographical and Statistical Society has just Mexican Geographical and Statistical Society, has just acter possessed by the preceding numbers. Among the principal papers worthy of note in this issue are: Report on the Results of an Esploration of the Metalliferous Regions of the Sierra Mohajada, by Santiago
Ramircz; A Hydrographic Study, by Pio Bustannute Ramirez; A Hydrographic Study, by Pio Bustannente
y Rocha; The Ores of the Sierra Queretaro, by J. M. Reycs; and a General Resume of the Mortality in the City of Mexico during the year 1879, by M. Flores Heras. In addition to these and several other original papers, there are numerous translations from foreign
scientific works of subjects coming within the scope of the society's investigations, and forming altogether a
India Rubber, and " Vllcanized Rubber Fabieics Adapted to Mechanical Purposes."
This is the tille of a handsome book just issued by the New York Belting and Packing Company. It gives
thorough details of the manufacture, as carried on at the works of the Company at Newtown, conn., and is
beautifully illustrated. It is ouly intended for distribution among their customers, but those who use rubber belting, hose. packing, springs, etc., will uudoubtedly
find here much that is peculiarly interesting, and that will enable them "to care more understandingly for the preservation and prolonged wear of rubber goods," as
well as to "discriminate more clocely in their purchaves and avoid such products as are of imperfect or unskillful manufacture. or made with injuriously adulterating compounds." The book also contains a full description improvements they have made in this direction. whereby theiremery wheels are in demand for the best class THE " Gat
The "Gas Engineer's" Diary and Text
Book for 1881. Birmingham, England: John Wright \& Co
Tiee second annual edition of this work. prepared for
the subscribers of the $G 7 s$ Engincer. the subscribers of the G78 Engincer. Un addition to
matter of special vaiue to the gas manufacturers of England, the volume contains a series of original articles on gas manufacture and apparatus,
tables of use to gas engineers everywhere
Die Materiellen Vfrhaltnisse und Vortheile fur Einwanderer im
Staate Kentucky. Frankfort: Kentucky Geological Survey and Bureau of Immigration.
A pamphlet for free distributiou among Germans, de-
scribing the resources of Kind scribing the resources of Kentucky and the .opportuni-
ties the State offers for colonization; tozether with ties the State offers for colonization; tozether with a
number of photographs of scenery in sections available for immigrants seeking cheap lands.
S. Commission of Fish and Fisheries.
Part VI. REEORT of Tie Commis
SIoner For 1878. Washington: GovernPart II. Report of the Commis
sioner For 1878. Washington: Govern
ment Printing Officc. 1880 .
rcport of the year's operations of the Fish Commissio and a statement of the impor:ance of the work it has undertaken, nearly a thousand pages of matter relat-
ing to fish, fish culture, and kindred subjects. These reports are becoming a library in themselves, and on whose significance and value are very imperfectly ap rehended by the pablic generall
Navies of the World. By Lieut. W. Very, U. S.
W. New
Wiley \& Sons.
8 vo, pp. $4 \pi 1$. Lieutenant Very has undertaken to describe concisely
the plans, armament, and armor of the naval vessels of we plans, armament, and armor of the naval vessels of evelopments in ordnance, torpedoes, and naval archi tecture. His point of view is that of the naval office rather than that of the engineer or ship buider, though
he doss not neglect the architectural developments o he past decade or two. An interesting chapter is
oted to the principal naval engagements since 1860 .
The Silk Goods of America. By Wm. C Wyckoff. New York: Published unde
the auspices of the Silk Association of America. $\$ 3$.
The sccond edition of Mr. Wyckoff's account of re-
Tht improvements and advances of silk manufactur cent improvements and advances of silk manufacture
in the United States. The new part comprises the Eighti Aumual Report of the Silk Association, summar izing the progress of the year 1879 , which, as our directory of manufucturers and dealers in silk cover 38 octavo pages, indicating a rapid extension of the
silk industry.
Five Littrle Southerners. By Mary W.
Porter. Boston: D. Lothrop \& Co.
Porter. Boston: D. Lothrop a Co.
A children's story of child life on a sugar plantation,
with a tragic conclusion in a hurricane on the Gulf.

No attention will be paid to communications unles companied with the full name and address of the riter.
Names
ven to inquirers.
Werenew our reciuest that correspondents, in referring of former answers or articles, will be kind enongh :o
name the date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then pub-
lished, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely
of a personal characier, and not of general iuteres. of a personal characicr, and not of gencral interest,
should remit from $\$ 1$ to $\$$, according to the sulbject, as we cannol be expected to spend time and labor Any urmbers of the Scientific Ambrican Supple yENT referred to in thesc columns may be had at this
office. Price 10 cents each.
A. II. asks (1) for the process of coat ing or plating small potished steel articles with tin (or the melted metal and have a dipping the articles int face when taken out. A. a. Bosiling water, $121 / 2 \mathrm{lb}$;
ammonia alum, $1 \tau^{1 / 4}$ oz.; auld protochloride of tin, 1 oz. Dip the articles in hot potash solution, then rinse in clean water, dip in dilute sulphuric acid, and suspend in the tin solution for a few minutes until bright. b. Bi-
tartrate of potassa, 1011 oz. ; water, 17 oz ; protochloride tartrate of potassa, 10112 oz ; water, 17 oz ; protochloride
of tin threc-fourths oz. Immerse in this the cleaned articles in contact with a piece of zinc until tinned. Pyrophosphate of soda, 11 oz: water. $1 \tau 12$ oz; proto articles with a wire from the zinc pole of a battery and immerse in the solution, the vessel containing which
should be lined with pure sheet tin connected by means should be lined with pure sheet tinc connected by means
of a wire with the copper or carbon plate of the battery. In Wegler"s process the bath consists of stannic chloride 1; water, 10. The articles are pickled in dilute sul
phuric acid, scoured with fine sand or scratch-brushed rinsed with clean water, loosely armed with zinc wire
or ribbon, and immersed for ten or fifteen minutes at or ribbon, and immersed for ten or fiftecen minutes at
ordinary temperature. Rinsing and scratch-brushing follows, atter which whiting is used for finishing. Will the same process do as well to coat or plate pol.
i thed brass articles, and give a bright, smooth surfacce? If not what different process will be decessary? A
\qquad (2) E. J. C. asks: 1. Will a steam gauge fixed upon a boiler during the hydrostatic test show the pressure within the boiler the A. Yes. I. I have a model oscillating engine, 1 incin by 2 inch cylinder. The valve
faces are $11 / 4$ inch by $21 / 4$ inches. How can I lubricate these faces while the engine is rumning? A. With a proper lubricator cuip attached to the steam supply pipe
or steam chest. :3. What should be the weight of a fly whecl for the above cugine. rumning with 15 lb. of steam A. 12 or 14 lb .
(3) C. P. asks: 1. At what temperature will a bar of soft steel, say half-inch in diameter, sus-
tain the greatest weight? A. We know of no experitain the greatest weight? A. We know of no experi-
ment to determine this point, but if steel behaves in the same manner as wrought iron, its greatest tensile the same manner as wrought iron. its greatest tensile
strength is between 325° and 400°. 2. Are car wheels more liable to break in very cold weather, because the
whecls are affected by the cold, or because the road bed is frozen, and consequently is not elastic? A. Yes from both causes. 3. Will a steel spring break quicker A. Yes, especially if there be any sudden movement or
zero than at 40° above zero. A. No. 5. At what de gree of temperature will a chain stand the greatest
strain? A. From 325° to 400° Fih. 6. Is the power of
别 cohesion in wrought iron the strongest at a very low emperature? A. No. 7. Is the power of cohesion in
ray iron the strongest at a very low temperatures gray i
No.
(4)
(4) J. E. F. asks if the lumber for a boat Sottom below the water line should be green or dry. A.
All lumber used in the construction of a boat should be ry or seasoned.
(5) D. J. L. asks: 1. Is it safe to blow of steam with 60 lb . pressure and two gauges of wate
while the engine is running ? If it is safe to do this, while the engine is running? If it is safe to do this,
how low should I allow the water to go? I have blown off steam at 60 lb . on Saturday, and on Sunday at noon will have water to the bottom of the glass. How can off the water should be above the usual height to allow or evaporation over Sunday, and have ample supply for raising steam on Monday morning. 2. The polished parts of my engine become rusty quite frequently from aater dropping on it. What can I get to keep it bright without using emery? A. Use pumice stone and oil ron rust burnt into it, what can I get to clean it a Try vinegar or dilute sulphuric acid.
(6) C. H. F. asks: 1. Do the compressed ir motion, or do they have to the cown pressure while certain place and stop to get charged again when the irst is exhansted? A. They are charged at the stations. 2. Is there in existence, to your knowledge, any device
whereby a greater head can be put on at a water power whereby a greater head can be put on at a water power
without increasing the natural head? That is, reater head with the same dam, amount of water, and ime mill machinery. A. No. 3. What does the term "perpetual motion" mean, or apply to? Does it perpetually, or one that will run perpetually if replace when worn out by friction? A. A machine that will on without extraneous aid until its parts are worn out. 4. What is the reward, and by whom offered, for per petual motion? A. The laws of force are now so well of the subject would never think of
(7) G. G. writes: Suppose I order two inch governors from the manufacturer, one to run 10 What will be the difference in the construction of th two governers? A. With many governors there would (8) G. H. W asks: Will opening the win dows of a stamp mill diminish the noise in the mill? A We think not.
(9) F. T. D. L. writes: I want to get a light boiler for an engine the cylinder of which is $11 / 2$ minute, with a pressure of 50 lb ., but of enough strengt to stand 100 lb . It is for the purpose of running a
small boat. Could it be heated by naphtha lamps ? I would like to know what size the smallest and lightest boiler I could use would be. A. You should have a vertical unbular boiler are not on sale; they are only surface. Suc
made to order
(10) A. M. P. writes: In making a strength test of brick, will a column have greater pressure in an whole weight is thrown on the brick? A. There wil be no difference, if the weight of the column itself be
(11) W. G. A. asks: Does water in a boiler get hotter than 122°, that is, if the boiler has 126 or 150 ib. of steam, does the water attain a greater heat than
boiling point to generate steam to that pressure? A Yes, the temperature rises with the pressure of the steam. It may be heated to very high temperatures, providing pressure.
(12) C. F. H. asks: 1. How can I make a gallon of silver plating solution ${ }^{9}$ A. Dissolve $51 / \mathrm{oz}$.
pure nitrate of silver, and 8 oz. pure cyanide of popure nitrate of silver, and 8 oz. pure cyanide of po-
tassium in 1 gallon of soft water. 2 . How can I make a gallon of nickel plating solution? A. Dissolve three-
quarter lb . of the double sulphate of nickel and amquarter lb . of the double sulphate of nickel and am-
monia in a gallon of soft water. 3. How many quart gravity cells will it require to plate meidals of about an inch and a half to two inches in diameter? How large should the positive pole be in relation to the negative nickel plating, page 153. vol. xliii., and page 81, vol. mickel plating, page 153.
xliv.. Scientific American.
(13) E. W .K. asks: What process if any ill take fly speck: from bronze? A. Lavender oil, drachm; alcohol, 1 or, water. 11% oz. Use a soft sponge,
and proceed as quickly as possible, with little rubbing. (14) J. B. S. asks for a formula for making will not will not rub off. This latter trouble is what I am
ansious to obviate. Several formulas that I have do not relieve this trouble. A. You will find practical formule and directions for black dye in Nos. 53, 54, 55,
$74, ~ \tau 5, ~ 76$ and 169 , Scientific American Supplement 74, 75,76 and 169, Scientific
See Hints to Correspondent:.
(15) G. W. C. asks: Which gives the most heat, the dry or green wood of same quality and quan(16) O. B. S. inquires as to the best method of mending broken ivory. A. Moisten thoroughly a
small quantity of very finely powdered quichlime (good) with white of egg to form a paste. Use at once, clamp the parts, and do not disturb for 24 hours. Do not use
(17) O E. W. asks: 1. How can I make a galvanic battery with copper and zinc plates, each 2×2 What kind of acid shall I ase? A. It would require several hundred such elements, joined copper of one to
zinc of next, and so on, and an interrupted current to
produce the statical effects required. See "Galvanic produce the statical effects required. See "Galvanic
Batteries," in Suprements, Nos. 157, 158 and 159. Also
". "How to Make Induction Coils," Supplement, No. 160 .
2. How can a cracked lamp be mended so the oil will not leak through? A. Clean the glass thoroughly with strong hot solution of sal soda, warm, and apply over the parts inside and out the following: Resin, 3 parts;
caustic soda, 1 ; water, 5 ; boil together until completely caustic soda, 1 ; water, 5 ; boil together until completely
saponified, then mix with half its weight of plaster of saponified, then mix with half its weight of plaster of
Paris. 3. What kind of wax is it that engravers use to at the metals that are to be engraved upon by nitric pitch, of each, $1 / 6 \mathrm{oz}$; melt together: add by degrees powdered asphaltum, 2 oz., and boil until a drop taken out on a plate will, when cold, break by being bent double two or three times between the fingers. It must then be poured into warm water and made into small
balls for use. 4. Is copper better for a boiler, 6 inche balls for use. 4. Is copper better for a boiler, 6 inches
diameter and 12 inches long, than iron? A. Yes. 5 Is the pressure in the cylinder the same as in the boile the length and size of the steam pipes and the manner in which they are protected.
(18) I. K. E. asks: Can waterglass in small quantities be prepared for experiments without expenate of soda, $31 / 3$; reduce to fine powders, mix, and heat to a very bright red in a crucible capable of holding
four times as much. As soon as the mixture is in a state of calm fusion pour out on an iron plate to cool. use dissolve in hot water
(19) H. G. E. asks: Cannot eggs, butter, etc., be kept for a considerable period by having them
in a vacuum ? Could a brick vault be cemented so as to be air tight, and capable of sustaining exterior at way of exhausting the air? A. It is not practical; they but that is unattainable by any ordinary means. Such a vault could be constructed; the pressure from without
would be equal to about 15 lb . on each square inch.
(20) C. G. W. writes: I am led to believe that the cultivation of and gathering of such sumac as grows naturally in this sandy country would be a
profitable industry. The stag horn sumac (Rhus typhina) grows here in abundance, other varieties to some exten. A. The best sumac of commerce is the leaves resembles the R typhina or stag's horn sumac which has proved, when properly handled, to be nearly if no quite as valuable. See article on sumac, on page 199, vol. xxxvi., Scientific American
(21) C. D. A. writes: 1. I have heard good engineers say that the friction of a valve depended en
tirely upon the size of the ports, and if there were no ports in the seat, a valve might be held against it, and when the steam was admitted, if the support was re moved the valve would drop down; is this true? A It would drop down. 2. I always supposed that the
size of the valve determined the amount of friction. A. The friction depends upon the size of the valve, deducting so much of the ports as may have steam within, and the pressure upon the unbalanced surface of the valve.
(22) S. B. G. asks: Does a large wheel have any advantage in power over a small one in overcom ing the friction on the axle, the axle and load being the
same, and running on a smooth level surface? A. Yes. (23) H. C. M. writes: I notice in vol. xliv., No. 24, page 378, of Scientific American, article 8, a form ula for making oxygen gas for inhalation. Can
you tell me whether it is the same as is used by physiyou tell me whether it is the same as is used by physi-
ciarts in Philadelphia? A. Probably. 2. Can water be surcharged with it, and if so, how? A. By passing the gas through cold water under pressure the quantity of On exposure to the atmosphere or heat the oxygen thus taken up will soon escape again. 3. If not, how can it be used otber than in the manner given in the paper re ferred to ? A. We know of no other way of using it.
There is no liquid solvent for oxygen that will take up enough of the gas to be of practical service in the way you propose.
(24) W. H. asks: 1. Of what kind of silk are balloons made? A. Good common undyed silk will answer. 2. What kind of oil are they prepared with?
A. Usually a mixture of boiled oii and wax, thinned with turpentine. 3 . How are the cams made , hinned A. The seams are "felled," waxed, and varnished in side and out. 4. Will gas keep its lifting power for one week, or longer? A. Yes, if kept in a perfectly air-tight
vessel. In an oiled silk balloon envelope as usually
(25) J. B. B. writes: 1. A claims that hollow shaft equal in diameter to a solid one has more
strength in driving machinery than the solid shaft. B claims that the solid shaft, equal in diameter to the the same diameter, the solid shaft is the strongest; if of the same weight, the hollow shaft is the strongest. 2 What steam pressure is considered in getting the nominal horse power of a steam engine? A. The average pressure in the cylinder. 3 . Is it not advisable to give
a slide valve as small a stroke as possible, provided you a slide valve as small a stroke as possible
get sufficient port opening? A. Yes.
(26) D. B. M. writes: I have a copper boiler, 36 inches long. 12 inches in diameter, $1 / 1 /$ in thickness,
no flues. What would be the highest pressure to run no flues. What would be the highest pressure to run
with safety? A. Without knowing more of its conwith safety? A. Without knowing more of its con-
struction we could not say. 2. Would a two horse power engine, with the above boiler, afford sufficient of his lamps? A. Your boiler will not supply a two horse power engine, it is not equal to one horse power cxeept it be driven very hard. 3. What would such a generator lamp, etc., probably cost ? A. They are not
in the market. You should write the inventor in regard to them.
Mineralis, etc.-Specimens have been received from the following correspondents, and examined, with the results stated
M. F. M.-No. 1. Tremolite-calcium-magnesium sili-
cate. No. 2. Blue glass. No. 3. Calcium aluminum silicate. No. 4. The habitation of some insect-the ma $\mathrm{FeS}_{3}-$ with a coating of iron oxide. No. 6. Magnetite and hematite. No. 7. Argentiferous (silver bearing
galena. No. Chiefly lead oxide. No 9. Iron, alumina, and silica, with possibly a trace of silver.E. S. B.-The gravel contains no precious metals-only

COMMUNICATIONS RECEIVED

On a Mysterious Boiler Explosion. By W. A. D

 On Ripening Melons Underground By I. T. B. How to Mount very. By J. P. S.[OFFICIAL.]
INDEX OF INVENTIONS for which

Letters Patent of the United States Granted in the Week Ending

 February 8, 1881
AND EACH BEARING THAT DATE

 [Those marked (r) are reissued patents.]A printed copy of the speciflcation and drawing of any patent in the annexed list, also of any patent issued since 1800, , 1 . be furnished from this owice for one do patent desired and remit to Munn \& Co., 37 I'ark Row New York city. We also furnish copies of patents granted prior to 1866; but at increased cost, as the sper
fications not being prirted, must be copied by hand. Air compressor, J. F. Allen 237,359, 237,36 Air medicating apparatus, A. Bell.........
Amber, making articles from waste, A. R. Davis. Ammunition packing box, E. G. Parkhurst.
Animal trap wheel, E. B. Ripley......... Animal trap wheel, E. B. Ripley
Axles, machine for machining Axles, machine for machining. F. D. Bliss.
Barb holding device, T. W. Eaton Basin attachment, wash, G. F. Schaff Bath tub, folding, G. Damen
Bed bottom, I. L. Landis

lock or fastener, A. Loehner

Billiard cues, fastening tips upon, G. Zittel Boot and shoe, O. E. Lewis..
Boot and shoe, S. Newcomb.
Boot and shoe, S. Newcomb.
Boot and shoe heel, Stevens
Boot and shoe heel, M. wise Chisholm. Boot and shoe so
G. W. Hewitt.
 Bolt, C. Zube...
Bolts and nuts,
Brick machine, W. E. Tallcot.
Bridge, arch, S. Bissell... .
Brush bride, H.
Brush bridle, H. D. Musselman.
Brush, stencil T. T. Lotheringt
Buckle, w. D. Ewart.........
Buffing wheel, A. Leavett..
Building, freproof, J. Gillbert Buoy, signal. F. Barr.
Buoy, signal. F. Barr...................
Button, separabee, G. Van der Burgh.
Catendering machtne, cloth, R. J. Wa Can stopper, W. H. Rodden
Canal boat, A. Abertson..
Car coupling, J. C. Mathews
Car coupling, w. V. Perry.
Car coupling, E. Weidling.
Car door, grain, T. Butterworth
Car heater and ventilator
Car wheel, J. J. Davis....
Car wheel, P. H. Lindsey
anning mill, H. Keller
arm gate, A. Miller..
Feeding and watering stock in cars, device for A. D. Tingley.............
Feeding rack, W T. Finch.

Fence, D. S. Buck
Fence post, H. Laird

Filter press, w. H. Harris....................
Fire escape ladder, o. Sherwood, Jr..................
Fire extinguishing sprinkler, automatic, A. M.
Fish hook, E. Marion.
Floors and ceilings, construction of, G. Howard.
Forks, machine for cleaning and polishigg,
Hutchison......................
Fruit drying apparatus, C. H. Hill.
ter plate for, T. F. Dares Furniture spring, M. H. Learna
Game board, C.E.Garrett......
Gas generator, hydrocarbon,J. Flannery...........
Gas, process of and apparatus for manufacturing Gas scrubber, E. Jones.
Gas scrubber, E. Jones................................
Glass articles, manufacture of, Dean \& Peltier..
Glass tile, mosaic, etc., L. C. Tiffany Glass tile, mosaic, etc., L. C. Tiffany.................
Gleaner and binder, combined, H. N. Jonhston.. E. E. Fitz (r).......
Governor, E. Wright.

Governor, E. Wright...........
Grain drill gearing, J. King...
Grain separator, W.
Grain separator, W. Ackerman..
Grain separator, I. Sherck........
Grinding mill, G. \& A. Raymond
Grinding wheels, machinery for automatically de Gun, rocket, N. E. Rice
Ilame fastener, L. E. Jones
Handles for cutlery from vulcanized fiber, manu facture of, J. B. H. Leonard....
Harness, breeching lifter for, S F. Harness fastening, J. S. Macldox. Harrow, T. Rogers (r).........
IIarvester, H. N. Johnston
Harvester guard finger, w. Sc
Hatter's iron, F. C. Taylor.....
Heel breasting machine, A. K. Washburn
Hides for tanning, preparing
Hinge, gate, N. B. Sebring.
Hinge, gate, N. B. Sebring.
Hinge, spring, F. W. Brocksieper.
Hoisting and conveying machine, L. Messier.
Hoop nailing machine, E. C
Horse bonnet, E. Boersch.
Horse holding attachment for vehicles, R. E.
Hose nozzle, Johnson \& Hoyer..
Hot water apparatus, IT. Fairbank
Hot water apparatus, 'It. Fairbanks.
IIubs, point band for, W. Neracher.
Hydrant. J. Jonson.........................
Hydrocarbons, device for burning liquid, L. E. ce cutter, J. 'I. Mar'in
Ice making machinerr, De La Vergne...............
Indices, machine for cutting, W. E. Waters....
Insect killer, E. S. Griffith.........
Kettle, preserving, J. I. Burr (r)
King bolts, manufacturing clip, Knowles \& Hitch
Knitting machine, C. E. Kelley
Lamp, fountain, C. Stockmann.
Lamp, fountain, C. Stockmann....
Lamp, street, E. Boesch (r).......
Lamp switch, electric, W. Sawyer
Lamp switch, electric,
Lathe, P. B. Conklin.
Lathe tool support, E. Wright.......................
Lead and crayon holder, C. W. Boman..........
Lead and crayon holder, J. Hoffman...... 237,384,
Lead and crayon holder, J. Hoffma
Leg and foot protector, W. Beattie
Leg and foot protect
Life raft, H. Miller...
Loom, L. J. Knowles
Loom, G. L. Pallatt...
Lubricant, H. Hurty.

friction, N. Butler.............................
Meters, connection to, A. Mackey............
Middlings puriflers, sieve for, J. A. Raney.
Middlings purifiers, sieve
Milk cooler, A. Mer allum.
Milk cooler, G. C. Sher.
Mitering machine, J. M. Rhode
Mitten, Haight \& strossman
Moulding metals, flask for, C . Sneide Moulding metals, flask for, C. Sneider.......... menting, C. C. Stuart.........
Nailing machine, J. H. Foster
Net for horses, fly, J. F. Smith
Nut lock, E. J. Brooks........
Oatmeal machine, G. H. Cormack Oil cup. S. G. Cabell.
Oil cup for saws, F. Rousseau
Organ bellows, Fogelberg \& Grav
Packing case, H. E. Clinton.

Pall, dinner, , , udlum \& Peck..
Pantaloons protector, B. C. Wi.
Paper box. Adams \& Miller.
Paper cartridge machine. G. P. Salisbur
Paper floor covering, D. H. Morrison
Paper weight and calendar, combined, G. A. Og. . .
Pegring jack and bench T, B. Pen. fountain, W. W. Ste wart
Photographic head rest, w. S. Laighton...........
Photographic negatives, producing impressions line or stipple from, F. E. Ives Pianofortes, stringing. A. K
Piano lock, G. B. Cowles.....
Planter, cornn, J. C. Van Dyke
Planters, fertilizer attachment for seed, H. Wright
 Preserving fruit jui
Press, C. L. Ingalls.
Pressure regulating valve, R. H. Soule.................
Printing aachine, plate, H. Lee

Pulp, dry ground, H. B. Meech......
Pump bucket and valve, S. A. Saun
$\begin{array}{ll}\text { 237,438 } & \text { Pump piston, W. Burlingham } \\ \text { 237,572 } & \text { Punch, metal s, H. Jenking }\end{array}$
Puzzle, geometrical, E. Anthon
Radiator, indirect, T. H. Brooks.
Railway, elevated, M. E. Walton.
Railway switches, operating, R. P
Railway switches, operating, R. P. Garsed...
Railway track drilling machine, A. Loehner
Railway tracks, apparatus for laying, N. Kimball.
Railway train marker, C. W. White.............
Railway train ma
Razor, J. Deasey...................
Reclining folding chair, F. Hunger
Rein holder, G. W. Miller..
Safes and vaults, electrical envelope for,
 Salt, manufacture of, N. B. Rice.
Saw, circular. G. F Simonds et al.
Saw, circular. G. F Simonds et al..
Saw jointer, circular, A. S Pierson
Saw mill log carriages, brake for, F. Tuxworth
Sawing and routing machine, S. M. Bragg
Scarf ring, F. A. Sundberg..................
Scarf ring, F. A. Sundbe
Scoop, S. H. Kerfoot.
Sewer and stench trap. c. Halleste
Sewing machine, G. F. Newell..
Sewing machine, G. F. Newelling mechanism, G F. Newel
Shed, cattle. M. Thorp
Scherb.......
Shirt bosom, S. K. Devereu
Shutter worker, J. C. La
Sifter, H. A. Trench
Soldering machine, can, W. A. Wi.
Stair rod fastener, M. L. Githens..
Stamp, hand, H. P. Smith....
Starching machine, R. Brenner..........................
station indicator, automatic railway, J.
legge.........................
Steam generator, D. Renshaw.
team pipes, boilers, etc., covering for w................237.40
Steering apparatus, steam, J. W. Watson
Stench traps, mercury seal for, J. Benn
Still, oil, M. Livingston
Stock clearance indicator, J. C. Uhler.
............ 237,63
ing, or grinding, H. Blackburn
Stove back, W. Schenck
Stove shelf. Hasselhoff $₫$ Mayne.
Stoves, attachment for burning crude oil in, L.
Straw cutter, W. Barrett...
Straw cutter, S. Luther..
Swing, R. S. B. Thornton...
Syringe, vaginal, F. Wilhöft
yringe, vaginal, F. Wilhoft.......
Tablet, writing, G. L. Garrigues..
Telegraph, chemical, C. ィ. Randal
Telegraph, chemical, C. A.
Telephone, G. W. Foster...
relephone lines, switch board for, E. T. Frost.
Telephone switch, II. R. Miller..
Telephone, transmitting. E. A. S
Telephonic transmitter, C. A. Randall.
Terret, head, H. A. Perkins.
Thill coupling, A. French...
Thill coupling, A. French..
Ticket, admission, F. H. Cyrenius
Ticket reel and receptacle, C. S. Loc
Tobacco, apparatus for sweating and coloring,
F. \& B. A. Meyer..............................
F.\& B. A. Meyer.....
Toy, optical, G. E. King
Toy wheel, J. M. Jones

Truck, stove, H. G. O. Burro
Turn table, A. J. Delavigne
Type distributing machine, D. Reynolds \mathbf{r})
mbrella and pan shade. H. B. Gray

Vaseline, reflning, R. A. Chese
Vehicle spring, E. Spauldin
Vehicle spring, J. Tilton...
Wagon bolsters, adjustable standard for, J. Grier
carrying off machine for, J. Waldron...
Washing machine, B. R. Trull....
Washing machine, J. E. Watkins.
Washing machine, B. Wright
Watch key, stem winding. E. C. Fitch..
Water cooler, 'I. iW. McKeever
Water elevator, windmill, J. M. Hasting
Weather strip, J. E. Gowen.......................
Wells, method of and apparatus for sinking oi
and other, L Smith
Windlass, E. \& G. N. Waterbury (r).
Windmill, H. H... C. H., \& C. Beckman...
Windmill, Chamberlain, Signor \& Straw
Wire springs, machine for forming, G. W. Lewth
Wood, producing designs upon. S. K. Devereux (
Wood working clamp, A. M. Colt.
Wrench, C. It \& H. F. praeger..
Wringer and bench, i. R. Laux
Wringer and bench, 1. R. Laux....
Wringing machine, J. Kinleyside.
DESIGNS
Carpet, J. Neil 12,16
Hair ornament, A. Progel12,16
Oil cloth, C. T. \& v. V. Meyer..........12,150 to 12,16

TRADE MARKS.

Mecicinal preparation, Orthozoic Chemical Asso
ciation.................................
oily compounds for coating surfaces as a paint or
lubricant, J. Dixon Crucible Company
paper or all kinds, writing, Z. Crane, Jr., \& Brother. 8,16
Paper of all kinds, writing, Z. Crane, Jr., \& Brother. 8,15
Washing compounds. A. Zink................. 8,166
English Patents Issued to Americans.
From February 4 to February 8, 1881 , inclusive.
Barrel hoops, machine for nailing, E. Cole, B'klyn, N. Y
Barrel hoops, machine for nailing, E. Cole, B'klyn, N. Y
Buoy, signal, F. Barr. New York city.
Engine, hot air, A. S. Lyman. New York city.
Furnace for burning gas, A. L. Holley, Brooklyn, N. Y
Hatter's irons, F. C. Taylor, New York city.
Ice. manufacture of. T. L. Rankin et al.. New York city. Ice. manufacture of. T. L. Rankin et al..
Loom, F. O. Tucker, Hartford, Conn. Moulding hollow articles, W. B. Carpenter, Newark, N. J. Moulding holiow articles, w. B. Carpenter, Ne
Nailing machine, J. H. Foster, Chicago. Ill.
Necktie, Fisk, Clark \& Flagg. New York city. Necktie, Fisk, Clark \& Flagg. New York cit
Pipe joint. W. Painter, Baltimore, Md. Razor machinery, J. D. Frary, Bridgeport, Conn.
Separating solid from liquid matter. P. Cassamajor Brooklyn, N. Y.
steel. manufacture of, J. Conant, M.D., Prairie du Steel. manufacture of, J. Conant, M.D.
Chien, Wis.
Steam boiler, D. Renshaw, Cohasset. Mass. Steam boiler, D. Renshaw, Cohasset. Mass.
Transporting money, etc., J. C. White et al., N. Y. city.

A drextismonts.
Inside Page, ench insertion $-:-75$ centran inim.
Back Page, each insertion --81.00 a line. (About eight words to a line Engravings may head aaveritisements at the same rate
 as Thursday morning to appear in next issue.

CLARIS RUBBER WHEELS,

This wheel is the best now
the market, and is atIn the market, and is at.
tracting the attention of large manufacturers on ac-
count of the freat saving times greater than the extra Adapted to all purposes, form trucks, scales, boxes, basket
casters. For full particulars, address GEO. P. CLARK, Windsor Locks, Conn. BELT FRICTION CLUTCH For Gears, Shaft, Couplings, and Pulleys, W. OESTERLEIN,

FOR SALE-THE PATENT RIGHT OF a Hatching Machine, with two machines in runn ng
order, and the practical nowledgeof innubation.
T. M. DAvis, 12 Fetter Lane, Philadelphia. l'a.

This Machine is adapted for Mining Purposes. SurSafety and Durability.
NOBLE \& HALL, ERIE, PA. TTHEETER'S PATENT WOOD FILTET

HEAD DRAUGHTSMAN. cal. Only those having extensive experience Andoccupy-
Ing such position at preaent need anply. Also experi-
inced draughtmen, good at mechanical designing and

Sesices keeping a full line of Warranted Machinery and
Suplye, we are in a pooition to adyise you of the latest novelties in our line. If you need any machine, corre-
spon, with us; we will srve you prompty und cheer
fully. Adress H. 13. SMITH MAClINEO.

TIET EMOOPES
Artificial Stone, Cement, \& Paint Companly OF BALTIMORE, MD.,

${ }_{4}^{0}$
DO YOUR OWN PRINTING
H. H00VER, Phila., Pa

Wh inind Stanp Puiler Thase hayingstump pullers

ADAMS \& BISHOP'S LATEST!

 fret samyers

Will find it to their advantage to examine and carefully read the following system of Fret Work Ormented a NEW "Double Application." This beautiful Fire Screen is designed according to that system. The illustration could not be made with a black background so as to show the idea to "enthused" by it, and they all say that a more beautiful article of parior furniture was
never made! Often three or four different never made! Often three or four different
pieces can be sawed with one cutting. The value of a pattern does not lie in a multiplicity of scrolls, but in the simplest designs producing
the finest effect. This is what we have striven to produce, and have succeeded beyond our most sanguine expectation. A boy can easily saw out and put this pattern together. Ex-
plicit directions are given as to the wood and cutting. Send 40 cents for this putterr. Send

ADAMS \& BISHOP,

46 Beekman St., New York.
Important Invention!

THE BAKER BLOWER.

 Warranted superior to any
 SEND FOR OUR CATALOGUE: MANUFACIURES OF MACHINERY
 WAN'CED, A thorouphly competent man as superintendent of the
Novelty ron orrks Cle veland, o. 100 men. Manufac-
ture

THE SALAMANDER Maxayeymes

 Sent free to those intere James Leffel ei cot cold 10 Liberty ICE-HOUSE AND REFRIGERATOR

 Shafts, Polleys, Hangers, Etc.

 WOMOREUSEFOROLI ONMAOHINERY

scientific AMerican supple

cet the best and cheapest. Silver Finish. PERIN BAND SAW blades
 Gold, Silver, and Nickel Plating.
 Sand

FLOWERS

500

 MACHINISTS AND NTEAM FITTFRS.

FOR SALE. (PARIS FURNACE CO.

 B. F. AVERY \& Sonc,

53 Gilt Edge, Chromo, Snowfake, Glass, Lace, etc... Cards.

VOLNEY W. MASON \& CO. FRICTION PULLEYS, CLUTCHES, and ELEVATORS,

Oiounowriting

是 TEUFFEL \& ESSER, 127 Fulion St, New York
ICE-HOUSE AND COLD ROOMA.-BY R.

The best and cheapest.
CHIEF ENGINEER FOR A NEW BOILER INSURANCE COMPANY WANTED. Must have eeventive ability and practical experience.
Address BoiLER, Box 7 73, New York.

HEADACHES AND THEIR TREAT.

RIRST STEPS IN CHEMISTF:

THE PERFECTED STYLOCRAFIC.

READERS' AND WRITERS' ECONOMY CO.

BAIRD'S Boous FOR PRACTICAL MEN.

Valuable and Indispensable Practicaland Scientific Books.
 Sravin. Sixth Edition'Just Ready. ${ }^{\circ}$.

 subject ever pubbished in the United states.
Hideadeld Lesons on Hand Railing for Learners. Illus-
trated by 32 plates.

 constructions. ito. Cloth,
Ropp. Commercial Calculator. showing the value of of
wheat, corn, etc.; simple and compound interest

 Starch A. APractical Treatise on the

 Tables Showing the Welght of Roind, Square, and

 Thomson. Fireight Charges Calculator. 1.mo. Cloth
 Valle. Galvanized Iron Cornice Worker's Manual. Co
taining linstructions for laying outhe diflerentite
and making patterns for ail kinds of plain and circel

 and Engineers. 85 engravings. 12 mo. Cloth,
Williams. OnH Heat and Steam. Embracin
of vapo
Cloth orization, condensation, and explosions. Cloth, ${ }^{\text {Weathly }}$. The Art of Boiling Sugar: Cry
Lozenge Making, etc. 12 mo . Cloth, Worssam. Mechanical Saws. 18 Plates. 8vo
Wonhler. Hand Book of Mineral Analysis. Hllustra
12mo. Cloth.

 Containing coach complete insertructiliuss in in all thand differen
branchesof Carriage building. Thoroughly illustrated
8vo. Cloth

 Theoretical and Practical. Including directions f or
constructing Physical Apparatus for Making Expe ri-
ments
cuts. 848 nastrated by 3 colored plates and 404 wood First Principles of Political Economy. 12mo,
Wightwiek. Hints to Young Architects.
Hilustrated

A A M, RUBBER BA
 WOODWORKING MACHINERY, SHAFTINE, PULLEYS \& HANGERS. P. Pryibil, 461 to 46% W. 40th St., New York.

 JOHN H. CHEEVER, Treas. NEIV YORK BLLITHNG \& PACKING CO., 37 \& 38 Park Row, New york

COLD ROLLED Shafting

 Stocks of this shatting in store and for sale by
FULLER, DANA ill Boston Mass.
Geo. Place Machiner y Agency. 121 Chambers St.s. N. Y.

 SURFACE FILE HOLDERS

The BELMONTYLE OIL

 MACHINISTS' TOOLS. Iron Planing Machines VIOLIN OUTFITS. ROOFING.

MACHINISTS' TOOLS.

 ANERS, DRILLS,

TEELEPHONE Works 1 Rule

FOUNDTHE STEAM PUMPS MADE BY VALLEYMACHINE CO., Are the best in the world for Boiler Feeding
and other purposes.

"RELIABLE"

Tine George Place Machinery Agency

 Pond's Tools, DAVID W. POND, Worcester, Mass.

Steel Castings

 shepards celebieated
60 Screw Cultin! Foot lathe.

4

 ROCK BREAKERS AND ORE CRUSHERS

Roots' New lion Blower.

POSITIVE BLAST. IRON REVOLVERS, PERFECTLY BALANCED FEWER PARTS THAN ANY OTHER BLOWER. P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND. S. S. TOWNSEND, Gen. Agt., $\left\{\begin{array}{l}6 \text { Cortlandt St., } \\ 8 \\ \text { Dey Street, }\end{array}\right\}$ NEW WM. .COOKE, Selling Agt., 6 cortlandt Street, $\} \begin{gathered}\text { NEW } \\ \text { YORK. }\end{gathered}$ JAS. BEGGS \& CO., Selling Agts., 8 Dey Street,
 arsend For Priced catalogue.

"The 1876 Injector."

THE COTTON GIN, ILLUSTRATED, HAS

though naving the
 5

The attention of Architects. Engineers, and Builders
 difference in cost which now exists between tron and
Wood the former in many case, would be adoped,
therebs saving insura mee and avolding all risk of inten.

ghavertitrmerti.

Inside Page, each insertion - - 95 cents a line. Back Page, eacit insertion-- - $\begin{aligned} & \text { About eight words to a line.) } \\ & \text { Engravings may head advertisements at the same rate }\end{aligned}$ per line, oy measurement, as the letter press. A aver
tisements must bereceived at publication oflice as early New York Ice Machine Company, 21 Courtland St., New York, Rooms 54, 55 LOW PRESSURE BINARY ABSORPTION SYsTEM

ICE AND COLD AIR.

SUN-SUN CHOP TEA,

 Great American Tea Co. importers, $31 \& 33$ Vesey St, N. Y. P. o. Box 4235

0 PERA OLASSES $\begin{gathered}\text { Microscopes, } \text { Spectacless, }\end{gathered}$
 ASBESTOS FELTING WORK, s, 80 Cortland St.

BEECHERE \& PEXE

Mill Stones and Corn Mills.
 J. T. NOYE \& SONS, Buffalo, N. Y. TELEPHONE And Eledrial supphies

Bris

Jarvis Furnace Co.

HOWARD MANUFACTURING CO. d Introduce
Patented Novelties Yankee notions.
the Latest novelty.

Mirror, Pin Cushion and Tape Measure. PRICE 25 CENTS. Sample by mail on receitet of price. A liberal disHOWARD MANUFACTURING CO.,

THE SAMERON STEAM PUMP,

 DERE COATR,
MIINES

ALSO FOR GENERAL MANUFACTERING AND

Pumps furnished Address THE A.S.CAMERON STEAM PUMP WORKS, foot east 23 d Street, new york city.

H.BICKFORD CincinnaliO.

The Asbestos Packing Co. $\mathbf{B O S T O M} \boldsymbol{N}$ PATENTED OFFER FOR SALE: LGOSE journal
WILK boaird SHEATHING PAPER, flooting felt.

HARTFORD

STEAM BOILER
 Inspection \& Insurance COMPANY

W. B. FrankilN.V. Pres't. J. If. J. B. PIERCE, Sec'y

Before ordering engraving of any kind, send to
us for estimates and samples. We have the largest engraving establishment in the world, and the best facilities for doing work of the best quatity, quickly and cheaply.

PHOTO-ENGRAVING CO
67 \& 60 Park Place. New-York.

SHAFTS PULLEYSTANGERS

BOLER GOVERMNGS.
Patent "AIR SPACE"' Method ASBESTOS MATERIALS,

 -…

GUECTORS

Elevating Water and Convejing Liquids from Mines, Ruarries Ponds. Rivers, Wels, Whel Pits;
for use in R. R. Water Stations.
 NATHAN \& DREYFUS,

COLUMBIABICYCLE

The Biccele has proved itself to be a

ERICSSON'S NEW MOTOR. ERICSSON'S
Ner Canicic Pinuinis bigine
dwellings and country seats.
 DELAMATER IRON WORKS C. H. DELAMATER \& CO., Proprietors,
No. 10 Corthandt Street, New York, N.

ARNOUX-HOCHHAUSEN ELECTRIC CO, [ELECTRIC LICHT.]

$\underset{ }{\circ} \mathrm{OH}$

Rogers. Peet $\& \mathrm{C}_{0}$

OFFICE AND SALESROOMS, 227

Electrotypers and Electroplaters Contemplating the purchase of new Dynamo Machines
should examine the working of our machines at Messrs should examine the working of our machines at Messrs.
Harper \& Bros., Appletons, Methodist Book Concern,
Am. 'Tract Society, Craske's, John Mathews Raisbecks Am. 'Tract Society, Craske's, John Mathews, Raisbecks,
Smith \& Wesson, Greene, Tweed \& Co., Ransom, LittleSmith \& Wesson, Greene, Tweed \& Co., Ransom, Little
field \& Rathburn Stove Works, Scoville Mfg. Co., Jno field \& Rathburn Stove Works, Scoville Mfg. Co., Jno
Russell Cutlery Works, and Five Hundred others whose
EAST 20th STREET, NEW YORK.

CATALOGUED.

the following manufacturers are proMINENT IN THIEIR RESPECTIV
SHORT, ARE MEADQUARTEIS:

 PLUMBING \& SANITARY GOODS HOISTING ENGINES. COPELAND E BACON, THE DEANE STEAM PUMP.
 MECHANICAL BOOKS.
 VERTICAL STEAM ENGINES: new york safety steam power co. THENUNEVERSAL TMPROVED PATENT
 Work or pining Sen for icicuarriou dhangon or
BRADLEY'S CUSHIONED HAMMER A proachesthe nearest to the action of the Smith's sarm
of any Hasmer in the World SHAFTS, PULLEYS, HANGERS, \&O. 461 West 4 Oth Street, New York CELEBRATED "RED STRIP" BELTING, RUbBER bELTIVG, PICKIVG and hose THE GUTTA PERCHA, AND RUBBER M'F'G CO., MACHINISTS' TOOLS AND SUPPLIES. H. PRENTISS \& COMPANY,
14 Dey St. (P. 0. Box 3362), New York.

 BOLT CUTTERS and SCREW CUTWING MACHINES HOW ARD IRON W.ORKS,
FAIRBANKS' STANDARD ACALES,
 AIR ENGINES AND ELEVATORS. SHERRILL ROPER AIR ENGINE CO., THE NEW REMINGTO SEWING MACHINE
 ROCK DRILLS \& AIR COMPRESSORS.

Lehigh Valley

 emar winarion wnome FILES; DRILLS, CHUCKS, VISES, TAPS, REAMERS, STUB TOOLS, \&c., \&c.Coodnow \& wIUHTMAN Boston, mass Goodnow \& wiemtman, Boston, mass Metaline and Star Roller Bush Tackle Blocks, \&C. bagnall \& loud, , New York Establ'd EACLE ANVILS. 1843 Solid CAST STEEL Face and Horn. Are Fully WarDOUBLE SCREW, PARALLEL, LEG VISES. Made and WARRANTED stronger than any other Vise
by FISHER \mathbb{E} NORRIS only, Trenton, \mathbf{N}. J. Buxarber'sibit ifRACE
Brass Cocks, Valves, and Fittings.

MINER'S PAT. SQUIBS for BLASTING Mrd. by Milners' supply Co.. st. Clair, Sehllico., Pa Steam Engines \& Mining Machinery 17 Courtand Street, McDowel New York. The Greatest Rook Breaker on Earth

STEARNS SAW MILLS.

PRINTING INKE

[^0]: * During the summer season large quantities of winkle eggs com ashore on Coney Island, between Norton's Point and Brighton Beach.

