
a Weekly jourval of practical information, art. Science. mechanics. chemistry and manufactures.

NEW YORK, FEBRUARY 19, 1881.
$\left[\begin{array}{c}\text { \$3.20 per Aunum. } \\ \text { [PossIAge PREPAD. }\end{array}\right.$

AMERICAN INDUSTRIES.-No. 66.
all of the timber that can possibly be saved, and will dress rel form with the application of less power and with less the staves as rapidly as the attendant can put them into the breakage than with staves of the usual form. This machine
Our commodities are handled and stored to a great extent machine. After being dressed in this machine the staves are is very rapid in its operation, finishing with ease 6,000 in packages which may be classed under the general head of passed through the inside stave dresser, shown in Fig. staves a day.
barrels; these packages are cheaper, stronger, and easier $\mid 2$, which hollows out or thins from the inner side of the The next machine in the order of sequence is the comhandled than other forms, and in many instances they are the only practicable package. Oil, liquor, pork, flour, sirup, sugar, and many other articles that could be named are almost without ex ception packed in barrels. The enormous demand for packages of this class have rendered their manufacture one of the leading industries of the day
Not many years ago barrels were made almost exclusively by band, but in this, as in all other manufactures of any mag itude, machinery has been de manded and is now furnished for the majority of operations in barrel making, and as a conse quence the article has been both mproved and cheapened.
In the manufacture of ma chincry for making staves, heading, hogsheads, barrels, and kegs, Messrs. E. \& B. Holmes, o Buffalo, N. Y., undoubtedly tak the lead, their machines being in use the world over
Our engravings represent sev eral of these machines of the most recent and approved styles We understand that this firm make some forty different ma chines for the manufacture o barrels.

Fig. 1 shows a machine for dressing staves on both sides for

Fig. 1.-MACHINE FOR DRESSING STAVES FOR BEER KEGS BARRELS AND CASKS
bined fan and stave jointer, shown in Fig. 3. It is capable of jointing staves of different lengths and thicknesses, and will work equally well on rived and sawed staves, taking out all winds and crooks by means of the powerful clamps attached. The caparity of this machine is 8,000 staves per diem.
The casing inclosing the joint er wheels is constructed so that it makes an exhaust fan of the machine, which carries the savings through suitable conductors to any desired distance This machine joints staves for all kinds of casks for oil, spirits, sirups, etc., also for beer kegs and barrels, and finishes the stave ready to set up.
The machine shown in Fig. 4 is for drawing the staves to gether at one end of the cask after the other ends of the staves have been set up in the head truss hoop. This machine is operated by screw power and will draw together the most stubborn casks, and is adapted to various and is adapted to. various sizes. An expert operator can windlass from 1,290 to 1,00 barrels per day on this machine. The wire rope being placed around the cask and the power applied, the staves are very quickly brought together, when the remaining truss hoop beer kegs, barrels, and heavy casks. It takes the stave out of wind, and does heavy work \mid central part of the stave, leaving it of the original thick- may be put on, when, by depressing a foot lever, the cask is that has heretofore been done by hand. This has been ness at the ends. This machine is more especially de- instantly relieved, and the machine is ready for another greatly needed, and is of great value to makers of casks. It signed for preparing staves for beer kegs, barrels, and other Messrs. E. \& B. Holmes make a truss hoop driving ma receives the stave in the rough rived state, and while large and heavy casks, the idea being to leave the ends of the chine (not shown) which drives the truss hoops with such dressing both sides of the stave simultaneously, brings cask full thickness to receive the heads, while the central power as to compress the wood of the staves and make perit to an even thickness, and takes all of the wind portion of the cask is made thinner to increase the capacity fectly tight joints. and crook out of it. It is contrived so as to save of the cask and to allow the staves to bedrawn into the bar-
[Continued on page 114.]

Fig. 2.-MACHINE FOR HOLLOWING STAVES FOR BEER KEGS, BARRELS, AND CASKE
 Fig. 3 -COMBINED FAN AND STAVE JOINTER.

Stinutific gmmicuan.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
NO. ${ }^{3}$ ' PARK ROW, NEW YORK
O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year postage included...One copy, six months, postage included
Clubs, six months, postage included 160 Clubs.-One extra copy of THE SCIENTIFIC AM ERICAN will be supplied
gratis for every club of five subscribers at $\$ 3.20$ each : additional copies at same proportionate rate. Postage prepaid.
Remit by postal order. Address
The Scientific American Supplement
Is a distinct paper from the Scievtific american. The supplement is issuad weekly. Every number contains 16 coctavo pages, uniform in size
with ScIENTFIC AMERICAN. Terms of subscription for SUPP最 With SCIENTIFIC AMERICAN. Terms of subscription for SUPpleminnt, all news dealers throughout the country.
Combined lRates. - The Scligntrific American and Suppiemfant
will be sent for one year postage tree, on receipt of seven will be sent for one year postage tree, on receipt of s
papers to one address or different addresses as desired. The satest way to remit is by draft postal
Address MUNN \& CO., 37 Park Row, N. Y.

Scientific American Export Edition.
The Sclivitific Ambican Export Edition is a large and splendid peri
odical, isured once a month. Each number antaing and odical, issued once a month. Each number ecntains about one hundred large quarto pages, profusely illustrated, embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the ScIENTIFIC AMERICAN, with its splendid engravings and valuable information; (2.) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, 85.00 a year, sent prepaid to any part of the
world. Single copies 50 cents. Manu facturers and others who desire to secure foreign tride may have large. and handsomely displayed announcements published in this edition at a very moderate cost. The SCifertific Ampicin Export Edition has a large guaranteed circulation in all commercial places throughout the world. Address MUNN \&
co., $3 \hbar$ l'ark Row, New York.

NEW YORK, SATURDAY, FEBRUARY 19, 1881.

Contents.	
(Illustrated articles are marked with an asterisk.)	
carbolic, diff	
Air, impure, test for ${ }^{*}$	
merican industries**... 111	Mel
	e be
stings, s	
116	
Cement for leather	Oine oil, easy
ools,	Patentees
Clevis, improved *............... 115	Patent offic
h, fasten on	
ndum locali	Petroleum basins of Wyo
Crane, steam. improved* 115	
Crank pin, friction on (14) …... 122	Pipes, lead, destroyed by
	Selenium, to apply 'to gi
Eiectro-metaliurgy 116	Serpents' venom, compo
nal, im	
	Silik to re
Exposive compound, new.......	Steamer, steel, American buit
Geecko or wall lizard* 119	Sundogs
	Teleuhonic
	hina
ts, strength of............. 118	cination and re-vacci
$\begin{aligned} & 118 \\ & 117 \end{aligned}$	
	es, underground, experim

TABLE OF CONTENTS OF
 the scientific american supplement
 NO. 268.

For the Week ending February 19, 1881.
Price 10 cents. For sale by all newsdealers.

II. T
TECHNOLOGY AND CHEMISTRY.-Desilverization of

 V. METEOROLOGY AND ASTRONOMY.-Meteorological use of
Thalium Papers
Tycloo Brahe's New Star.. 42

RIGHTS OF PATENTEES WHILE IN THE EMPLOY OF THE GOVERNMENT.
This subject has been brought before Congress, through the introduction of a bill (S. No. 730) for the relief of Mrs. S. A. Wright, widow of the late George Wright, who (as it appears from the report of the Committee on Patents), while he was employed as master machinist in one of the government shops, invented and patented an improved linch-pin for field artillery carriages. The invention was adopted by the Ordnance Department, in September, 1863, and has since been used by that department.
The invention consists in forming the top of the linch-pin with a hook which turns down over the end of the axletree and prevents the linch-pin from coming out, affording security against the accident of wheels coming off from field artillery in traveling rapidly or over rough ground. As no compensation was ever received by Mr. Wright or his heirs from the government for the use of this invention, the committee recommended the passage of the bill. A lively and somewhat protracted debate ensued, in which many senators took part. Senator Logan stated that, in cases of this kind, it had formerly been unanimously considered by the Senate "that a person in the army or in the employ of the government, receiving his pay, using the machinery of the government for the purpose of experimenting, had no right to compensation from the government for any invention made during that time. That has been the rule for years in the Senate and in Congress."
Senator Platt considered the rule well established "that where an employe of a private individual, using the time and the tools of that individual, a manufacturer for instance has made a valuable invention, while the patentee owns his invention, the manufacturer has a kind of equitable license to use it.'
Senator Hoar assumed that Wright " was under no obligation to improve the government's wagons or the government mechanism of any kind any more than any other citizen of this country; so that he did not invent this while in the employ of the government in any correct legal sense of that term. He invented it in his own right and in his own time, and the invention was his own property, and is just as foreign, as alien to that employment as if the Senator from Illinois, twenty years ago, when in a private capacity, had made the same invention
Mr. Hoar, in further discussing this question, deemed it a very important matter that the principle upon which the report of the Committee on Patents was made should be established as the rule of action for the government in the future.
' If this government is to excel other nations in war as it has in peace, it cannot afford to do nventive faculty of its people.
The case would, in his opinion, haye been different if the Chief of the Ordnance Department, whose duty it is "to recommend, to direct, to improve the construction of ordnance for the use of the government, had made the invention patented by Wright. In the exercise of his mind upon a question like that, that officer would be in the employ of the government, because it would be exactly in the line of duty which he is paid by the government to perform.
Senator Conkling's opinion was, that if any person in government employ made an invention not within the hours of his employment-i.e., out of hours-
ave the bentin of hion
Mr. Conkling opposed the bill, chiefly because he thought it questionable whether Wright was the original inventor of the linch-pin in question.
This discussion betrays, on the part of the senators named, with the exception of Mr. Hoar, a curious mis. apprehension of the spirit of our patent system and the ruling of the courts with regard to the rights of patentees; and even Mr. Hoar might properly have taken higher ground with respect to the duty of inventors. While it is true that an employe of the government is under no legal obligation to improve the means and materials of the service, he is still, like every other good citizen, morally bound to make any invention he can for the public good. The fact that he is in government employ, however, or is employed by an indivi dual or a corporation, is no bar to his right to control his in vention if he chooses to take out a patent for it
Mr. Conkling errs in assuming or implying that an inventor s right to take out a patent and control it is limited to inven tions made "by the application of time not within the hour of his employment " by another. The patent law prescribes no such limit. It asks no question beyond the fact of invention. How the inventor was otherwise employed, or by whom, or for what purpose, has nothing to do with the case. Th patent is issued to the inventor on his complying with certain conditions which make no reference to his employment by the government or anybody else. The position taken by Mr. Platt is, therefore; widely and mischievously incorrect. Unless the inventor has agreed to assign the patent of any in vention he may make to his employer, the latter has no legal claim upon it, no matter what were the circumstances under which the invention was made
If, as Mr. Logan states, it is a rule in Congress to deny to inventors in the employ of the government any compensation for patented inventions it may choose to make use of, th rule is a bad one and should be speedily amended. It is absurd as well as unjust for the government thus to violate con tracts entered into with it in good faith by its citizens. We are of the opinion that the Senator must be entirely wrong in lative body pursue the policy of overriding laws made by both
houses and sustained by the highest judiciary of the land? That Congress as a whole would have as little right to infringe the property rights of an inventor, whether in government service or not, or to authorize an officer of the government to use without compensation a patented invention, is equally clear.
The clause of the Constitution (section 8), which provides or the issuance of letters patent for new and useful inventions, expressly provides that the inventor shall have the exclusive control of his invention. The letters patent, bearing the seal of the United States, explicitly describe the exclusive ownership of the patentee. The grant reserves nothing for the government. The property right covered by the patent is exclusive and absolute throughout the United States, and can no more be invaded without compensation by the government than any other property. This has been the ruling of the courts, and the rule was recently reaffirmed by the U. S. Circuit Court, Southern District of New York, in the case of Campbell vs. James et al.
In this case a patent had been infringed by an officer of the government. The defendant claimed that there was no infringement; that he had acted as an officer of the government in the performance of his duties for the benefit of the government, and that the monopoly granted in the patent did not extenc to or cover any use by the government. The court ruled otherwise, and held that a patented invention, like all other private property recognized by law, is exempt from being taken for public use without just compensation by the supreme law of the land, and that such property cannot be taken by any officer in time of peace, leaving the owner to seek compensation. Accordingly the defendant was declared an infringer and ordered to pay damages and costs to the amount of $\$ 63,000$,
It is obvious that any policy like that said to be pursued by the Senate would simply encourage the officers of the government in the performance of unlawful acts; and (except in cases of military urgency) any arbitrary seizure or use of patented inventions, whether owned by a government employe or not, lays the infringing officer liable to prosecution and punishment-the exception made in cases of miliary necessity raising no bar, any more than with other species of property, to a lawful claim for compensation.

VACCINATION AND REVACCINATION

The immunity from epidemic small-pox enjoyed by civilzed communities, thanks to general vaccination, is to be preserved only by constanterigilance. With the flood of mmigration pouring in upon us, largely from countries in which vaccination is not general among the poorer classes, our American towns and cities need to be particularly vigiant.
It is but a little while since an attempt was made to conceal the prevalence of small-pox among a ship load of Italian emigrants on their arrival at this port; and our city barely escaped having the contagion thus dispersed in many quarters, and among a class indifferent to fanitary precautions. The frequent occurrence of the disease among the same people and others of a like social grade, at this season, is proof nough that the efforts of the sanitary police to quarantine infected incomers are not always so successful.
With our rapid railway communication it is easily possible for infected parties to travel long distances between the time of their exposure and the breaking out of the malady enough to betray its presence. In this way a neighboring city was lately infected by a party of Canadian operatives, who brought the seeds of the disease with them. In like manner the epidemic now raging in Southern Dakota appears to have been imported by newly arrived emigrants, and widely distributed among the French Canadian settlements by public funerals and other practices common to people ignorant of or indifferent to the proper treatment of contagious diseases.
A striking illustration of this wanton disregard of personal and public safety among people of this sort is given in the recent report of the New York State Board of Health. For some months small-pox has been very prevalent in and about Troy, particularly among the factory people of the adjacent towns. Eighty persons of this class attended an evening party masked. On unmasking for supper it was discovered that one of the dancers had varioloid eruption upon her face. The party was not to be broken up by any little thing ike that, however, and the dancing continued until morning. Within a fortnight twenty-two of the eighty were down with the disease, and eleven others had contracted small-pox from them, only one case occurring outside the twenty-two families first exposed. Compulsory vaccination and other sanitary precautions were promptly enforced, and the epidemic was stamped out.
Similar cases of criminal indifference to the spread of contagion, though involving perhaps a smaller number at a ime, have come to the knowledge of our City Board of Health, and the result is, as many as sixty cases of small pox are now under treatment at Riverside Hospital. Sixty out of twelve hundred thousand is by no means an alarming umber; still it is large enough to warrant especial care on the part of the community to guard against contagion.
Small-pox is relatively so rare among native born Amerians, and anything like epidemic small-pox is so infrequent that people not only neglect to have their children vaccinated early, but still more to have vaccination repeated when it has once been apparently well done. Not a few people have also been kept from having their children vaccinated by the absurd and often untruthful reports of anti-vaccimationists.

I vast amount of mischief has been done in this way by peo- long unmindful of the rich and cheap deposit of fuel which ple who think they have the good of the community at heart. lies so close at hand. Against their extravagant and often baseless assertions our Boards of Health set overwhelming evidence that the frequency ard virulence of small-pox have been greatly mitigated by vaccination wherever it has been systematically practiced. The records of Riverside Hospital, where the small-pox patients of this city are sent, show that the mortality among the unvaccinated is from two to three times as great as among those who claim to have been vaccinated; and it is well known that with a considerable portion of those who have been vaccinated the work has not been well done, or the protection has become diminished by time.
During the epidemic in Philadelphia ten years ago less than a quarter of the deaths among those who had been vaccinated were of those who showed a good typical scar
Where re-vaccination had been carefully practiced the immunity from the disease seemed almost perfect, and in the few cases in which small-pox was taken by such persons none died. The statistics on this head are instructive. The re port of the physician in charge of the hospital for small-pox patients (Dr. Gunn) says:

Among 2,377 cases of small-pox admitted during the epidemic, only 36 are said to have been re-vaccinated, of which four died. But by subjecting these cases to a careful analysis, we find as follows: Seventeen were re-vaccinated at a distant period, some as far back as thirty-one years; five had not been re-vaccinated until after exposure; seven were said to have been successfully re-vaccinated, but were unable to exhibit any cicatrices as the result; sixteen bore upon their arms very poor and uncharacteristic scars, some of which, indeed, were scarcely visible; five presented fair cicarices; and only three cases were able to show good cica rices. Of the four cases which died, two occurred among those without cicatrices, one among those re-vaccinated after exposure, and one among those showing poor and uncharacteristic scars. All the cases which bore upon their arms unmistakable evidence of successful re-vaccination suffered from the mildest form possible of the disease. Indeed, three of these cases exhibited an eruption of doubtful character, and have therefore been recorded as cases of varioloid (?). The eruption on three others did not advance beyond the papular stage; and on seven it was barely vesicular. From the foregoing facts, we are fully prepared to earnestly and cor dially recommend re-vaccination as a most necessary supplemental measure to the primary vaccination."
Evidence of this nature is abundant. And the surest way to prevent small-pox epidemics, or the popular alarm which attends threatened epidemics, is to vaccinate and re-vacci nate from time to time until no further "taking" is possible.

the petroleum basins of wyoming.

Prof. Samuel Aughey, who has recently examined the Shoshone and Beaver oil basins in the Territory of Wyoming has just made a report to the owners, and from this we glean the following particulars in regard to these importan deposits of petroleum. The Shoshone springs are 78 miles from the Union Pacific Railroad, and immediately north of Point of Rocks station. The extent of the basin is about forty acres. In past ages a lake of petroleum covered the entire basin, a fact which is now evidenced by a remaining covering of hardened oil. Within the basin there are now hundreds of points from which gas and oil are continually ssuing. The land, claimed and held by a stock company aggregates 400 acres, embracing all the old oil basin, and title has been secured under the United States mining laws. This company has sunk a number of shafts, which are now used only for the storing of oil. Prof. Aughey compute the amount at present collected and held ready for shipment to be about 1,500 barrels, but there are as yet no facilities for transportation to the railroad. He believes that the ultimate capacity and extension for production of his oil basin is very great, and that the quantity of oil stored away in these Wyoming reservoirs is greater than in more eastern localities. The oil is intensely black, the coloring matter being inseparable by any method or process as yet tried. Distillation of a small quantity gave 0.63 naphtha. There was 47 per cent of a kerosene, having 150 flash test. It then produced 32 per cent of a neutral and lighter colored lubricating oil, with 12 per cent of dry coke. The oil as it flows has a gravity of 20°. Its flash test is 294 and fire test 322°. Cold test 16° below zero. The Beave oil basin is situated 25 miles directly east from the Shoshone and in every respect seems separate and distinct from the atter. The oil which issues here is of a much lighter colo than at the Shoshone deposits, varying from a pale yellow to a light mahogany. It has a gravity of less than 20°, and as far as tried, has proved an extraordinary lubricant, with an excellent cold and fire test. Its odor is no more unpleas aut than that of lard oil. Included aud connected with these oil basins there exists a magazine of fuel, which for extent and value is extremely important. A very slight alteration in furnaces will admit of this hardened hydro carbon as a fuel for general use. Even now, and surrounded by such vast deposits of lignites, it does not seem to be any oo soon to call attention to a combustible of ten times the potency of coal for generating steam. It has, moreover, in ts favor a saving of labor and expense in mining, and an advantage of 90 per cent of weight. There are millions of ons of this hardened oil near the surface in these two basins. Russia is already utilizing her hardened oils of the Caspian Sea in operating her railroads, and it is safe to say that the railway which crosses Wyoming Territory will not remain

EXPERIMENTS WITH UNDERGROUND WIRES

After a three months' test of their system of insulating telegraph and telephone wires underground, the national Suberranean Electric Company have applied for permission to introduce their system in Philadelphia. The company claim hat when once introduced on their plan, telegraph, telephone, or other wires can be used in separate chambers, and hat no disturbance of the pavement will be required for re pairs or for additional wires. In the experiment referred o, in Camden, the telephone wires were, after three months use apparently in as perfect condition as when first laid down. The plan embraces a system of terra-cotta cylindri cal blocks, perforated lengthwise with several small holes, vitrified and lined with rubber. These blocks are laid end o end, cemented together, and form groups of pipes through which wires or cables are run. These pipes are laid in sec ions, at the end of each a sunken chamber affording work men access to the pipes and wires for purposes of repairs or laying additional wires, which can be strung through the sections from chamber to chamber. The chambers are covered when not in use, and afford no obstruction to travel. The cost of the system is not given.
What is claimed as a cheap and durable system is under rial in Prospect Park, Brooklyn. The wires are strung in a trough of pine wood, into which is poured a mixture of pulverized glass, resin, and other ingredients made semi fluid by heat. In this compound, which becomes hard on cooling, the wires are hermetically sealed. It is claimed that the mixture has a very high insulating power, is durable, and sufficiently elastic to maintain its integrity under varying pressure. A bundle of wires of any length can thus be laid in sections without a break, and operated with a relaively small battery power, owing to the perfection of the nsulation. The cost of the system is given at $\$ 1,500$ a mile. The number of wires and the space between them are ot given
more expensive and not altogether satisfactory system is used in London, where something like a hundred miles of underground Iines have been laid. In this system the iron or earthen piping is in sections of 200 yards, separated by test and joint boxes. The cables are composed of 60 No. 18 copper wires insulated with gutta percha. The cost is given at about $\$ 7,000$ a mile. The maintenance of perfect insulation is difficult, and when a fault occurs the whole cable has to be withdrawn and repaired.

A TELEPHONIC CONTROVERSY SETTLED.

 An interesting controversy as to priority of invention has been going on before the Patent Office for the past two years between Alexander Graham Bell, the telephone inventor, and David Brooks, of Philadelphia, the well-known lectrician. The invention in dispute was the use of a re urn wire on a telephone circuit, to prevent the noises of induction. On some of the city telephone lines the noise produced by induction from electrical currents is so great as to form a serious obstacle to the use of telephone instru ments. If one attempts to listen there is such a loud bubbling noise heard, and such a mixture of clicks and othe voices, which come in from the neighboring wires, that the principal satisfaction of conversing with one's correspondent is taken away. If the telephone wire passes in the vicinity of Westerı Union wires, on which Gray's harmonic telegraph instruments happen to be at work, then there is added to the general confusion of tongues a series of tootngs or cat calls that are quite distressing to the ears of sen itive telephoners. Professor Bell and Professor Brooks discovered the remedy; it consists in using two wires on the telephone circuit instead of a single wire. If an extra wire, insulated, is stretched close alongside of the usual single wire, the extra being employed as a return circuit wire, instead of the earth, then all noise from induction disappears, and telephoning becomes a pleasure.The Commissioner of Patents decides that the priority of invention belongs to Prof. Brooks, he having made the invention in July, 1877, whereas Bell did not make it until the end of August, 1877. But, more than this, Bell's date of invention must, by law, be carried forward to the date of the final enrollment of his English patent, May 18, 1878; as it is not allowable, in this country, so far as proofs of inven tion are concerned, for any applicant, if he takes a foreigu patent before he applies for an American patent, to go back of the date of his foreign patent. Bell did not apply for his American patent until December 20, 1878. The Commis sioner of Patents, therefore, reversed the decision of the Board of Examiners in Chief, and awards the discovery to Professor Brooks, to whom it clearly belongs.

Gilding Steel

Polished steel may be beautifully gilded by means of the ethereal solution of gold. Dissolve pure gold in aqua regi evaporate gently to dryness, so as to drive off the super fluousacid, re-dissolve in water, and add three times its bulk of sulphuric ether. Allow to stand for twenty-four hours in a stoppered bottle, and the ethereal solution of gold will float at top. Polished steel dipped in this is at once beautifully gilded, and by tracing patterns on the surface of the metal with any kind of varnish, beautiful devices in plain metal and gilt will be produced. For other metals the electro process is best.

Effect of a Galvanic Current upon the Absolute Strength of Iron Wire.

Some experiments made by G. Hoffmann to determine this point have recently been made public, and will perhaps surprise many of our readers, some of whom will expect to find that electricity has no effect upon strength, while others will be disappointed to find this influence so slight. The wires employed were very small, ranging from one-fifth to two-fifths of a millimeter in diameter. (One line is about equal to two miliimeters.) A piece of each wire, one meter long, was clamped at both ends between steel plates, and thus suspended at one end while a scale pan hung from the other end, and in it were placed, at first, weights, then fine sand was poured in until the wire broke under the strain. The experiments were conducted between 68° and 77° Fah., and mostly after the passage of a current, a few, however, during its passage. Feeble currents were employed, and those as constant as possible, and withevery practicable precaution. The duration f the separate experiments was almost always the same
In every case there was an increase of strength, and when he passage of the current lasted three hours the weight requisite to break the wire was increased from twelve to ninety-two grains.
With increased time there was an increase of strength up o a certain maximum, which was attained in some wires sooner than in others. Thus wires which gained in three hours 12 to 28 grms., gained in twelve hours 23 to 44 grms., and in 25 hours 24 to 50
With feeble currents the increase of strength for equal imes was nearly proportional to the strength of the current. If the current was somewhat stronger this law did not hold any longer, owing to its heating the wire The strength seemed to be greater while the current was passing than after it was broken.
Hoffmann thinks that while this increase of cohesive power was partially due to the heat generated by the current, the galvanic current itself played its own essential part therein.

Constipation.

Hall's Journal of Health thinks it is doubtful if consump tion numbers as many victims as are stricken down by the various diseases that result from habitual constipation. True onsumption is an inherited disease. It may remain always dormant, but when aroused to action, decay commences at a point circumscribed, and gradually extends-unless arrested -until so much of the lungs becomes involved that vital action ceases. The evils of constipation result from inattenion to the calls of nature, and usually commence with children whose habits are not closely looked to by their parents. The processes of nature are always active while life lasts. When effete matter is retained a moment beyond the time its expulsion is demanded, the system commences its efforts to get rid of it. When the natural egress is checked, the absorbents carry the more fluid portions of the poisonous mass into the circulation, and it becomes diffused throughout the body. The more solid or clay-like portions is forced into the lower rectum, where it becomes firmly impacted, thus cutting off the circulation in the small blood vessels, causing painful engorgements known as piles and hemorrhoids. A continuance of these troubles often results in fissure, fistula, cancer. The trouble is seldom confined here. As a result of the blood poisoning we almost invariably find more or less dyspepsia, with decided derangement of the functions of the heart, liver, and kidneys, accompanied by headache and nervous debility, often verging on paralysis.

Coal Ashes for Fertilizing.

The use of coal ashes mixed into clayey soils has been found of great benefit, and its value is vouched for by many agriculturists. The Husbandman reports an experiment made with coal ashes, applied at the rate of 200 bushels to twenty square rods, or ten bushels to the square rod. The soil was compact and heavy. The ashes were drawn on late in the autumn and spread on the ground, which had been recently plowed. In the spring the plowing was repeated, thoroughly mixing the ashes with the soil. The ground was planted with garden vegetables. The beneficial result was in the correction of the heavy character of the soil, the ashes acting mechanically and not as a manure, and producing a satisfactory improvement.

Newspaper Telegraphs.

The desirability of having immediate and absolute control of telegraphic facilities in certain emergencies has led to the leasing of telegraph wires by newspapers. The London Times has some short ones; the New York Tribune has a wire between New York and Washington; the leading papers of Cincinnati are similarly connected with Washington; and recently the Chicago Inter-Ocean has taken what is probably the longest wire leased by any newspaper, connecting its editorial rooms with its news bureau in Washington. All messag es are sent direct, the paper having exclusive use of the wire and employing its own operators.

To Make Ice Cream.-Scald a gallon of good sweet milk, and add to it with constant stirring eight eggs well beaten with one pound white sugar, and four spoonfuls of cornstarch, first mixed into a thick cream with cold milk. Cool, flavor to suit, and freeze.
barrel machinery.
[Continued from first page.]
Following this machine is the machine, Fig. 5, for cham fering, howeling, and crozing, which prepares the cask to receive the heads. It cuts the chamfer, howel, and croze at one operation, making a perfect groove of uniform width and depth to receive the head This machine has a capacity of 1,500 casks per day, and will finish casks of any size from one-eighth beer kegs to large casks, and is made for this range of work when so ordered. All of these machines are well made and are of great practical value.

Dynamo-Electric Motor.
The London Mining Journal state that at the Mannheim Industrial Ex hibition over 8,000 persons have been conveyed at the rate of nearly three miles an hour by the electric lift of Dr. Werner Siemens, of Berlin.
The lift is quite safe, the cage be ing suspended by two wire ropes, which pass over drums, and carry counterweights to balance the ordinary average load. To raise or lower the lift, therefore, only a slight additional power is required. This is supplied in the form of an electric current from a dynamoelectric generator on the ground, and is conducted to a second dynamo machine attached to the carriage. The propulion is effected by means of a metal ladder or rack, which runs up the middle of the shaft or passage of the lift, and into this rack work two toothed wheels carried by the lower part of the frame work of the carriage. These wheels are driven by the revolving armatures of the dynamo machine on the car by means of an endless screw. The current is led from the stationary generator to the moving one by conductors running up the sides of the ladder and tracks. These levers are operated by a swinging block or two metal rollers which make contact with them, and are key hinged to the lower end of a hanger that depends from connected to the arma- ture of the machine. The return the car or locomotive platform, and which is actuated by a part of the circuit is formed of the metal wires by which lever and rod to switch the cars from one track to another the carriage is suspended.

The New South Wales Museum

It should have been mentioned in our notice of the Tech nological, Industrial, and Sanitary Museum of Sydney, las week, that Messrs. Trübner \& Co., 57 and 59 Ludgate Hill, London, England, will receive and forward to the museum any contributions that our merchants and manufacturers may choose to make

RECENT INVENTIONS

Mr. Joseph Sirnguey, of New Orleans, La., has patented a improved lock, so constructed that its keyhole may be ad justed to any desired position, thus adapting the lock to be attached to doors having key holes from former locks. The casing of the lock is provided with sliding plates in which re the keyholes, and which nay be fastened permanenty with screws when adjusted to the desired position. By employing two sets of plates, one of which has a barrel for a spindle-key and the other a spindle for a barrel-key, the lock may be fitted for use with any kind of key.
Mr. George F. Letellier, of Tye River Depot Va., has inented an improved millstone dressing machine of that class hich employs a pick and may be adjusted to act from me from ey to the skirt of the one. The invention consists improved means for trip ping the pick lever for regu ating the force of the blow, and for adjusting the pick ver the face of the stone to ny required position.
Mr. George W. Dudley, of Waynesborough, Va., has paented a rotary engine which dispenses with valves, sliding abutments, etc., operated from the driving shaft by means the names of the days of the week and of the months are of cams, eccentrics, etc. Segmental pistons are employed and a novel reversing valve is provided
A stump puller, patented by Mr. William O. Youngblood, of Cedar Springs, Mich., consists of a frame, two levers pivoted to the frame, and having eye-bolts to receive the pulling chains to apply the power to the hitch-cbain, two ropes and their guide pulleys for connecting the levers with the power, the shaft having the connecting ropes wound around it in
different directions, and two rope wheels, the two draw ropes being wound in different directions around the rope wheels, Mr. William R. Fearn, of Savannah, Ga., has patented a railroad switch which places the control of switches in the hands of the engineers or train-men. The switch levers are connected to a rod extending in both directions from the arranged on the outer surfaces of two cylindrical ink-wells fitted into corresponding chambers of the stand, each chamber being provided with a
Mr. Albert G. child's swing so constructed that the child cannotslide out of the swing while being swung and can be put into the swing quickly and easily

Mr. William H. Peyton, of Iuka, Miss., has patented a mbined shovel, tongs, and pot-hook. The extremities of the legs of the tongs are made with hooks for lifting pots, etc and when closed they form the handle for a detachable shovel which may readily be attached or detached.
Mr. John Casey, of Jersey City, N. J., has patented a check receiver for use in restaurants, bar-rooms, and other places to receive checks handed in by customers. It not only exposes to view all the checks inserted, but also exposes, in a series, a certain number of checks last received, before they finally enter the receiver, whereby if a wrong check be inserted he error or fraud may be detected.
Mr. Andrew Climie, of Ann Arbor, Mich., has patented an improved bolt for the locks of cases and drawers in museums, etc., where a number of doors or drawers are required to be locked at the same time. He employs a series of bolts with sockets upon the sides of their bases, a series of bearings, ne or more sliding rods carrying the bolts, one or more bent levers, and one or more connecting rods, by which mechanism one or more series of bolts can be simultaneously operated.
Mr. Horatio Ely, Jr., of Red Bank, N. J., has patented a railroad signaling apparatus, which consists of selies of self-adjusting rocking bars secured beow the rails parallel to the cross-ties, provided with arms projecting upward on the outside of the rails in position to be struck by advancing trains. Motion is communicated by wires or rods connected with the rocking bars to signals or guards in advance of the ain
Messrs. Anthony W. Byers and James C. Dorser, of Sherman, Texas, have patented an improved cotton planter so constructed that more or less seed can be planted as desired. A slotted hopper having a slotted feed-board controlled by springs, and a spiked feed-wheel supplied with prongs and curved plates, are the principal devices employed to accomplish the end sought, these devices being adjustable
Mr. Jasper N. Blair, of Slippery Rock, Pa., has- paMr. Jasper N. Blair, of sar coupling consisting of a drawbar containing two longitudinally hinged spring-actuated dogs set a little apart, with their sloping faces presented toward each other, thereby forming a central wedge shaped opening into which the coupling link can be entered, caught, and held by the shoulders at the rear of the dogs. A segmental lever is employed for throwing the dogs apart in uncoupling the cars.
Mr. Eli C. Horne, of Jasper, Florida, has patented a cot ton \cdot gin, which consists in a combination with a roller of a stationary superposed blade, yieldingly held to the face of the roll, and a subjacent reciprocating blade, having its upper edge arranged obliquely to the lower edge of the stationary blade. The cotton to be ginned is pressed by the reciprocating blade between the stationary blade and the roll, being fed thereto from a suitable feed-board.
Mr. Luther Homes, of New Orleans, La., has patented a grass-cutter so constructed as to cut the grass without any vibration or rotation of the knives as the machine is drawn forward, and which permits the knives to be readily detached and sharpened. The knives are constructed to yield to any urdue obstruc tion. Short knives are arranged in oblique angular relation with two long knives, and the grass to be cut being drawn into the angles formed by the edges of the blades, is cut by the forward movement of the machine.

Mr. Robert J. Bowman, of Alexandria, Va., has patented an improved gang plow, planter, and cultivator, so constructed that it can readily
equally effective and convenient in either capacity. A num ber of novel arrangements of detachable and adjustablc de vices accomplish the ends sought.
Mr. W. H. Hickok, of East Troy, Pa., bas invented a ditch ing machine for opening blind and̉ tile ditches. A long axle is mounted on two wheels and provided with a pole having a long double-tree. This enables the wheels and team to stiad dle the ditch. The mechanism is carried by the axle, and is
very ingenious, a shovel being caused to penetrate the earth which it raises and delivers upon either side of the ditch at will of the operator.

IMPROVED CLEVIS.

The clevis represented in the engraving is to be used on plows, harrows, and other agricultural implements. It may be readily adjusted to fit draw beams of various dimensions, and may therefore be applied to any of the implements on a farın requiring a clevis. It consists of two bars hinged to opposite ends of a link, and connected with each other by a bolt which is pivoted to one of them and passes through the beam and through the ther bar, and is provided with a nut which may be screwed down more or less to adapt the clevis to drawbeams of different sizes.
The curved link has several holes through it for receiving the hook to which the single ree or double-tree is attached
This clevis may be applied to the beam horizontally, perpendicularly, or at any desired angle, either in front or at top or under the beam, as may be found most convenient.
Further information in regard to this useful invention may be obtained by addressing Mr. S. K. Latta Dyersburg, Tenn.

THE HUSTON SELF-LEVELING BERTH.

It is no new idea to suspend ship berths so that they will retain an even position at whatever angle the ship may be forced by the waves, and several steamship companies have tried and abandoned such devices. In the Scientific American of May 29, 1880, notice was made of a highly pro-

mising exhibition of the Huston ship's berth on the City of Alexandria, plying between this city and Havana. It is gratifying to know that the opinion which we then formed, with regard to the ability of the invention to overcome the causes of sea-sickness, has been justified by the behavior of the berth under a great variety of conditions at sea.
It will be observed from our illustration that the berth (with its occupant) is counterbalanced by a crescent-shaped weight rigidly attached to the underside of the berth, while the whole is so swung on a universal joint as to maintain level surface no matter how the vessel may pitch and roll The motion of the berth is also regulated by rubber bands, so that sudden or jerky movements are made impossible As will be seen in the subjoined cut the berth takes up no more room than the ordinary ship's berth. Even those who never suffer from sea-sickness will appreciate the value of contrivance which enables them to lie at ease in the roughe weather; while to invalids, and to those who are certain to be martyrs to the distressing mal de mer, the advantage of being substantially independent of the ship's motion while on board ship is beyond one's power to estimate. Obviously he plan here described can, at the best, prevent sea-sick ness only while the patient is lying down. It is very de sirable that some one should devise a means of preventing sea-sickness absolutely. A fortune would surely be his reward.

Launching a Shị.

Not one-half the people who witness the launching of a vessel can tell how it is done. They hear a great sound of pounding and driving of wedges for half an hour or so, then a loud shout is raised, and the ship starts slowly at first, but, gradually increasing her speed, slides with a steady, stately motion from off the pile of timber and blocks where she has been standing for months; and where but a moment before he huge creature towered aloft, nothing remains but a débris of timber and planks, while out on the water floats one of he most graceful works of man.
When the ship is about ready to launch, her immense weight rest principally upon blocks some eight or ten inches square on the ends, and perhaps some fifteen or eighteen inches in length. These blocks are placed directly under the keel, and in order to launch the vessel it is necessary to transfer the weight of the vessel to the way-two long lines of heavy timber reaching about two-thirds the length of the vessel on either side, and about midway the bilge or bottom. These ways are simply two lengths of imber with a thick layer of grease between them, so that as oon as the ship acquires any momentum they will slip one along the other. To transfer the weight of the vessel on to these ways, so thai gravity-the stern or heaviest part of the vessel being much lower than the bow-will cause her to
move, is the whole secret of launching. To do this, between the top of the ways and the vessel are driven pine wedges, which, of course, raise her somewhat, and so relieve the blocks under the keel of part of the weight resting upon them. This done, workmen take their places under the vessel, and with iron wedges cut and knock away the blocks. When these are removed, the entire weight of the vessel settles at once upon the greased ways, and the result is exactly

JENNINGS' PLOW CLEVIS

the same as would be if a person should seat himself upon sled pointing downhill upon an icy slope-away she goes ! There seems to be a strange sort of fascination for most people in the launching of a large vessel, and in our shipbuilding ports it is not uncommon for a thousand persons to be present to enjoy the spectacle.-George Barucroft Grifith, in Potter's American Monthly.

IMPROVED STEAM CRANE

Handling heavy or bulky articles by sheer muscular force is becoming almost as rare where a great deal of lifting is required as it once was to handle unwieldy objects by steam, and in almost every place where any considerable amount of hoisting, loading, and unloading is required to be done, there steam is employed.
Our engraving shows a steam crane designed and built by Williamson Brothers, Richmond and York streets Philadelphia, Pa., for the Edgar Thomson Steel Works. It is suited to unloading cargo, and has a double engine, which communicates motion to the winding drum through friction gearing. This gearing, which is very simple, has been sucgearing. This gearing, which is very simple, bas been suc-
cessfully applied to a large number of cargo hoisting engines for ship use by this firm. One lever controls the hoisting, stopping, and lowering of the load.
The crane is revolved on its base by a double cone friction clutch, which admits of turning the crane in either direc tion without reversing the engine.
The carriage and the base on which the engine and boiler rest are both made of wrought iron. The jib, which is of wrought iron, is made longer than usual to meet the particular work for which the crane is designed.

WILLIAMSON BROTHERS' STEAM CRANE

The engines of this crane are 6 bore, 8 stroke, and develop 12 horse power. The machine complete weighs about 7 tons Messrs. Williamson Bros. make similar locomotive crane uitable for light or heavy work, with spur gear for hoisting, revolving, traveling, and altering the radius of the jib, and their large experience in this class of machines enables them may be required.

A SEAT FOR SHOP GIRLS
Scarcely a season passes without a general protest against he common rule in our retail shops requiring saleswomen to stand at all times, even when not serving customers. Physicians have denounced the custom as bealth-destroying and cruel; ladies have combined to secure its abolition by withholding their patronage from shops in which the pirls are not allowed to sit; and our daily newspapers have repeatedly inveighed against the practice and called for its abolition. Still it prevails; notbecause of any hard-heartedness on the part of shopkeepers, but for purely practical considerations. In the limited space between counters and shelves there is no room for fixed seats of the usual construction, and movable stools would be still more in the way. To widen the space so as to make room for stools would only increase the labor of those who have to handle the goods.
As in most cases of inconvenience and suffering, so in this, it is not the philanthropist or the sentimentalist who must be looked to for a remedy, but the inventor.
What is required is a seat which shall be simple, inexpensive, always at band when wanted, and able to take itself out of the way when it is not wanted. A step in this direction has been made by an English inventor, who has patented the seat shown in the illustration herewith. The curved iron support carries a plain round seat of wood, and is hinged in the foot plate so as to be easily brought forward to be used or shut back against the counter when the attendant has to stand. It takes up but little room, and is evidently handy and serviceable.
It would be easy to make a stool for the same purpose that would take up still less room and be entirely automatic.
 The standard should be set in a narrow slot or recess in the counter, and the seat pivoted off the center so as to drop edgewise and enable it to fit into the slot for the standard. The foot-plate would thus be entirely out of the passage, and the seat top nearly so, when not in use. A bit of rubber under the forward part of he hinge of the base to be compressed when the seat is in use would suffice to swing the seat into its recess the moment the attendant rises. By this arrangement the seat top would not be in the way of drawers or shelves, as in the English plan; and the much desired relief would be afforded to the saleswomen with the least cost of counter space and no obstruction of the passage way.
We look to our enterprising makers of counters and other shop fittings to introduce some improvement of this sort.

Fatal Discipline.

Archibald Gibson, Second Lieutenant Seventh U. S. Cav alry, died in St. Paul, Minn., January 26. The cause of bis death was inflammation of the brain, said to have had the following curious origin. One day, while he was on parade at West Point, a spider got into one of his ears. By the rules, he was not allowed to raise his hand, and stood in the ranks more than an hour, while the spider worked his way into the ear. When dismissed his ear was full of blood, and the insect could not be removed for two days. The injury caused him much trouble, but did not prevent his assignment to his regiment in Northern Dakota. After some service, Lieutenant Gibson returned to his home in St. Paul, intending to resign, but, really, to die. His death is charged to inflammation of the brain, caused by necrosis of the inner wall of the skull adjoining the ear, the result of the spider's invasion.

A Great Drainage Project.

It is reported from Florida that an agreement has been entered into between the State authorities and certain Northern and Western capitalists to drain Lake Okeechobee and the great swamp region southward-known as the Everglades. The lake is about thirty miles by forty, and the entire area to be reclaimed is nearly twice as large as the State of New Jersey. The projectors claim that the drained land will make the best sugar country in the world. How they propose to accomplish the work is not stated. So long as the South has so much waste land suitable for sugar growing, without drainage, an undertaking of the sort described would seem to be rather speculative than practical.

How to Use Oil Stones.

Instead of oil, which thickens and makes the stones dirty, a misture of glycerine and alcohol is used by many. The proportions of the mixture vary according to the instrument operated upon. An article with a large surface, a razor, for instance, sharpens best with a limpid liquid, as three parts of glycerine to one of alcohol. For a graving tool, the cutting surface of which is very small, as is also the pressure exercised on the stone in sharpering, it is necessary to cmploy glycerine almost pure, with but two or three drops of alcohol.

ELECTRO-METALLURGY.

old deposits.

In the practice of electroplating with gold the bath em. ployed is usually heated, as the deposits obtained in such a bath are more homogeneous, tenacious, and đurable, and of a better color, besides which recommendation a greater quantity of the metal may be deposited satisfactorily from it in a given time than from a cold bath.
Owing to the cost of the metal to be deposited very large surfaces are rarely required to be electroplated, and as these baths become worn out and must be replaced by fresh solutions after a short time, they are usually, as a matter of econ omy and convenience, used in as small a vessel as the cir cumstances will admit of. These vessels may be of glass, por celain, or porcelain-enameled iron. The latter serve the purpose admirably (if the enamel is good). They should be heated over the water bath or by means of steam.
The same bath does not answer very well for all metalseither the bath must be modified to suit the metal or the lat er must be previously coated with another metal to suit the conditions. Gold deposits are obtained with the greates facility upou silver or copper, their rich alloys, or other metals coated with them. With these a hot bath (at about $170^{\circ} \mathrm{F}$.) and a moderately strong current give good results. With alloys, such as German silver, the best results are ob tained with a weak bath, barely warm. Steel and iron, when not coated with copper, require an intense current and a very hot bath. Lead, zinc, tin, antimony, and bismuth alloys of, or containing much of these, are preferably coated with cop per before electro gilding.

нот battes.
For silver, copper, or alloys ridn in these: Distilled water
Phosphate of soda,
Cyanide of potas
Gold chloride
$160^{\frac{2}{6}}$ grains.
Dissolve in a portion of the water, heated, the phosphate of soda. Dissolve in another portion of the water the bisul phite of soda and cyanide of potassium.
Dissolve the gold chloride in the remaining water, stir he solution slowly into the cold phosphate of soda solution, and finally add the solution of cyanide and bisulphite. The bath, now ready for use, should be colorless.
The cost of this bath is about $\$ 5$ a gallon, and the metal can be deposited from it profitably at $\$ 2$ per dwt. Used at a temperature of from 120° to $175^{\circ} \mathrm{Fah}$.

BATH FOR IRON AND STEEL-UNCOATED.

Distilled water
 Phosphate of soda, Bisulphite of soda
 Cyinanide of potassium, pu Gold
 Gold chloride.

 Dissolve as before. Heat to 175° or 180° Fah. Pass the

 second metal through the hot potash, then through dilute muriatic acid (acid 1, water 15), brush, and connect at once Requires a very intense current at first.The following baths work well with bronze and brass, but are not suited for direct gilding on iron or steel:

Dissolve all together, except the gold chloride, in the hot water; filter, cool, and gradually stir in the gold chloride dissolved in a little water. Heat from 120° to 140° Fah. for use. It requires an intense current.

Dissolve as in the last, boil for hadf an hour, replace the evaporated water, and the bath is ready for use.
Distilled water............................ 1 gallon.
Cyanide of potassium 2 t ounces. Cyanide of pota
Dissolve the gold chloride in the water, then add the vanide, and stir until solution is complete.
Baths of this kind are commonly used, and with little regard to temperature. They are simple in preparation, but are, unfortunately, not very uniform in their working, ungilding one part while another is gilding, and producing a variety of colors, especially when freshly prepared. They improve by use, however.

COLD ELECTRO GILDING BATII.

Water, distilled

Potassium cyani
Gold chloride.
Dissolve the cyanide in a part of the water, then gradually add the gold chloride dissolved in the remainder. Boil for half an hour before using. (Use cold̃.)
The cold bath is kept in a gutta percha lined, wooden, or (if small) porcelain tank arranged as for brass plating. The anodes are thin plates of laminated gold, wholly suspended in the liquid (while in use) by meansof platinum wires, from clean brass rods joined to the copper or carbon pole of the battery, the rods supporting the work being in connection with the zinc. When in proper working order the color of the deposit is yellow. If the deposit becomes black or darkred, add more cyanide (dissolved in water) to the bath, or use a weaker current.

If the cyanide is in excess the plating will proceed very braced the first six months of 1880 . Reducing flour and meal slowly or not at all ; or, as sometimes happens, articles to wheat and corn, at the approximate rate of five bushels to already gilded will lose their gold. In such cases add a little the barrel, the quantities exported for the last two years may more gold chloride or increase the intensity of the current. Cold electro-gilding must be done slowly, and requires a good deal of attention to secure good work. The articles must be frequently examined to detect irregular deposits or dark spots (which must be scratch-brushed and refurned). It is also frequently necessary to add to or remove an element from the battery, especially when adding or taking work from the bath. With too much intensity of current the de posit is black or red; if too weak those portions opposite the anode only get covered. In coating German silver it is necessary to use a weak bath and a small exposure of anode. The best results with this alloy are obtained when the bath is slightly warmed.

management of the hot bath

The articles should be kept in agitation while in the bath They should be placed in connection with the battery before or immediately upon entering the bath. A foil or wire of platinum is in many cases preferable to a soluble gold anode when electro-gilding by aid of heat. It suffers no alteration in the liquid, and by its manipulation the color of the deposit may be materially altered. When it is removed so as to expose only a small surface in the bath a pale yellowish deposit may be obtained; when the immersion is greater, a clear yellow with a still greater exposure, a red gold color. The strength of the hot baths may be maintained by successive additions of gold chloride with a proper proportion of the other salts and water; but it is preferable to wear out the bath entirely and prepare a new one, as it soon becomes contaminated with copper or silver if much of these metals have been gilt in it. In a nearly exhausted bath containing dissolved copper the electro deposit will be what is called "red gold;" if i contains an excess of silver a "green gold" deposit will re sult. The gold and copper or gold and silver are deposited together as an alloy, the color of which depends upon the elative proportion of the metals, battery strength, etc.
Dead luster gilding is produced by the slow deposition of considerable quantity of gold, by giving the metallic surface a dead luster before gilding (by means of acids), by first preparing a coating of frosted silver or by depositing the gold upon a heavy copper deposit produced with a weak current in a bath of copper sulphate.
In order to secure a good deposit of gold it is absolutel necessary that the work should be perfectly freed from any trace of oxide, grease, oil, or other impurity. Articles of copper and brass may be cleansed by first immersing them in a strong boiling solution of caustic potash or soda, and after rinsing, dipping momentarily in nitric acid and im mediately rinsing, or scouring with pumice stone moistened with a strong solution of cyanide of potassium in water.
Other metals require a somewhat different treatment, which we will have occasion to refer to in a subsequent article.
The bichromate battery is commonly used in connection with hot electro-gilding baths. See article on nickel-plating p. 153, No. 10, vol. xliii.

As gold chloride procured in the market cannot always be depended on for purity and strength, it is preferable to purchase the gold and make the chloride. A pure gold chloride may be prepared as follows:
Put coin gold, in small pieces, into a glass flask with about five times its weight of aqua regia (nitric acid 1, hydrochloric acid 3), and hea t gently, with small additions of ac ua regia if necessary, until the gold is dissoIved and the silver remains behind as white chloride. Let it settle, decant the clear solution, wash the residue several times with water, adding the washings to the gold solution. Evaporate off excess of the acids in a porcelain dish over a water bath (nearly to dryness). Dilute with ten parts of water, and gradually add a strong aqueous solution (filtered) of sulphate of iron. Let stand until the dark powder (gold) settles; gently decant the liquid, wash the gold with hot water, and redissolve it in a small quantity of warm aqua regia and vaporate the solution, with constant stirring, to dryness in a porcelain dish over the water bath. One ounce of pure gold equals about $1_{\frac{\mathrm{I} 0}{\mathrm{G}}}$ ounce of this chloride.

The Work of the Patent Office in 1880

The annual report of the Commissioner of Patents for the year ending December 31, 1880, gives the business of the year as follows: Applications for patents for inventions, 21,761; applications for patents for designs, 634; applications for reissues of patents, 617; total, 23,012. Patents issued, 13,441 ; patents reissued, 506 ; patents expired, 3,781; trademarks and labels registered, 533
Of the 13,441 patents issued during the year, 12,655 were to citizens of the United States, and 786 to foreigners.
There was received during the year for patents, copies of records or drawings, and from other sources, an aggregate of $\$ 749,685.32$. The total amount expended was $\$ 538,865.17$, leaving a balance of $\$ 210,820.15$. On January 1, 1880, there remained $\$ 1,420,806.56$ to the credit of the Patent Fund, which, added to the surplus of 1880 , makes the amount to the credit of the Patent Fund on January 1, 1881, \$1,631,626.71 .

Our Export of Breadstuffs.

The official report of the exports of breadstuffs in 1880 tity tity and as to value, except during the fiscal year which em-

be stated thus:

	Quantity.		Average Price.	
	1880.	1879.	1880.	1879.
Flour, barrels	6,545,920	5,885,831	\$5.82	\$5.53
Meal, barrels....	${ }^{384.177}$	${ }^{340.969}$	2.93	
Corn, bushels	${ }_{105,717.215}^{134}$	137,975,715	1.20	1.16 49
Rye, bushels............	2,346,995	4,445,030	92	69
Barley, bushels.........	1,246,640	1,103,514	65	61
Oats, bushels	544,294	1,048,934	45	34
Wheatand flour. bush'ls Corn and meal, bushels	$167,430,746$ $107,638,100$	$1677,404,870$ $84,849,690$		
All grain, bushels	279,206,775	258,852,038		

The Sun Dogs of Colorado.

To the Editor of the Scientific American:
In the Scientific American, dated January 22, appears a letter from Jerseyville, Ill., written by F. S. Davenport, in which, after describing the remarkable sun dog phenomena of December 30, 1880, he inquires if any one had ever seen the like before. Colorado was almost wild over such a phenomena, December 23, 1876 . In this case it began at sunrise. The thermometer indicated all the way from ten to twenty-two degrees below zero. The atmosphere was suffused with a myriad of crystalline particles. The horizontal rays of which Mr. Davenport speaks encircled the entire horizon, and had in it four additional sun dogs the greater part of the day, and at times eight. Instead of being one circle around the sun, we had two, the inner one bright, the outer one fainter. The upper arc of the outer one touched the arc of the brilliant prismatic crescent in the zenith. This crescent was brighter at that time than the sun, and could be looked at only a short time on account of its extreme brilliancy. The sky within the circle which the crescent would have formed, if complete, was a deep blue and very beautiful. Full descriptions were given in all of the Colorado papers, while the Denver Tribune gave a cut representing it partially.
The spectacle lasted until three o'clock, though it was brightest at about eleven. An additional halo, somewhat like a rainbow, was visible in the western heavens at about unset.
A similar phenomenon, though not near so bright, was witessed some time last December.
Boulder, Col.
Otto H. Wangelin.

Corundum Localities of Georgia.

The corundum outcrops of Georgia are widely separate In the northwest part of the State, in Towns County, and southwest of the corundum locality in Clay County, North Carolina, is an outcropping of corundum, a portion of which is of reddish color. Here a good amount of work has been done, with what success I am unable to say. The matrix of this corundum is smaragdite, called by some distinguished mineralogists kokscharoffite. The composition of the two are similar, except that smaragdite contains the oxide of chromium, which is probably the coloring matter of the corundum. The matrix of corundum is usually some one of the varieties of chlorite; that of the precious gems, the ruby, sapphire, etc., is ripidolite. I doubt whether the colored varieties can be found only in connection with chrome. Southwest of this are several outcrops of corundum extending nearly to the line of Alabama; also one or two in the eastern part of the State, none of which are at present mined.
The only outcrops of corundum in Alabama are found lying between the waters of the Coosa and Tallapoosa rivers in Tallapoosa County. These mines are worked by the Hampden Emery Company, of Chester, Mass. The annual ield is small.
Throughout the United States, as yet, no localities have been discovered with the corundum disseminated through the spinel, making emery like that of Naxos and Turkey.
Geologically considered the corundum seems to occur in belts associated with the magnesian minerals, and is usually found in the outcrops of serpentine and crysolite. From Dudleyville, in Alabama, it extends northeast through the northwest part of Georgia into the mountains of North Carolina, where the largest development occurs. Passing through the Blue Ridge it continues in a northeastern course through the State, similar to the gold and other metalliferous and minerai oelts. There is another belt passing through the eastern part of Georgia into South Carolina.
Judging from the present development of corundum, no sufficient quantity can be had to take the place of emery.
(Mrs.) H. A. Burdick.

The Victorian Review, the leading monthly of Australia, published at Melbourne, and one that compares favorably with our best home magazines, after mentioning a number of illustrated industrial subjects which had attracted the editor's special attention, concludes as follows:
"In fact, nothing rare, or curious, or useful, in the worlds of nature or of industry, seems to escape the conductors of the Scientific American."

The Nachinery of the Future and the Well-being of Society.

Mr. C. C. Coffin has completed his course of six lectures before the Lowell Institute, and to the Boston Advertiser we
are indebted for the following extract from the closing lecare indebted for the following
The topic under consideration was: "The Machinery of the Future and the Well-being of Suciety." In his opening remarks the lecturer alluded to the value of the patent law, and showed how it had stimulated invention to a high degree, and claimed that invention is an educator, and the American mechanic is a thinker. His superior intelligence is acknowledged abroad. Gladstone fells his trees with an ax of American manufacture, not because its edge is any keener than those of English make, but because of the adaptability of the implement in lightness and effectiveness. In the opinion of Mr. Coffin China will not cease to be a market for our manufactures, although the Chinese may establish manufactories. Contiuuing, he said: Great as has been the advance of the last fifty years, it is within the bounds of probability and reason to expect greater progress during the years immediately before us. As yet we know very little of the energy of nature-what it is-its convertibility, gravitation into chemical affinity, magnetism, electricity into light and heat, and all into motion. It is thirty-eight years only since Joule made the discovery that they are one and the same. How great the progress! Yet we may confidently expect that discovery and invention will be quite as marvel ous in coming years.
Five years ago the telephone-now the photophone, send ing oral messages along a ray of light, with clear and dis tinct enunciation! The next application of the energy of nature for the promotion of our comfort, happiness, and general well-being promises to be the utilization of the elec tric light. The lecturer traced the history of its develop ment, and said the cheapness of the machinery will allow of its adoption in a great number of country villages-requir ing only a small steam engine, a generator, and the exten sion of the wires. Especially will this be the case in our New Englaud manufacturing villages, where the power is derived from the streams, the erection of a water wheel and a generator being all the machinery required. It is one of the marvels of science that Lowell, Lawrence, and Manchester may be lighted by the water of the Merrimac-by gravitation-with no consumption of any material, no loss of energy! Think of a wire extending from this hall to Niagara, and ourselves sitting here in the radiance generated by the energy of that torrent! It is not fancy, but altogether precticable. In the future sewing machines will be worked by turning a button or pressing a spring, taking the power from the same mill which is to furnish light, and we shall use magnetic elevators. It is quite probable that the introduction of the electric light will be followed by the use of gas for heating and cooking.
Referring to science, in its application to war, the lec.urer said: I am not sanguine in any expectation that there is to be any immediate disbanding of great standing armies in Europe; but rifled cannon, repeating small arms of long range, effective a mile away, the multiple gun, have revolutionized warfare. What is beyond we do not foresee, but on land as well as the ocean we may confidently expect that science and invention will in time bring about a new order of things, and men, instead of shouldering the musket during the best years of their life, as in France and Germany they are now compelled to do, will give their strength and energy to the arts of peaceful life. The lecturer next alluded to the growth of population and wealth during the last fifty years, and proved that the poor man of to-day has vastly more than it was possible for the poorman of 1830 to obtain. He may not be in possession of any riches when he reaches the end of life, but his burden through life is not so weighty as it was a half century ago. We cannot foresee what discovery may yet develop of nature's energy in other directions, but at the present, and probably for many years, the human race will use the forces imprisoned in coal as the most available. The coal area of the world is thus divided: Europe aggregates about 3,500 square miles, Great Britain 5,400, while North America has an area exceeding 300,000 square miles! That of England is less than the area of Massachusetts. It is estimated that at the present rate of consumption there is coal enough in England to last 1,000 years. If with 5,000 square miles of coal lands Great Britain has such an extended lease of life, what shall we say of this continent, with between three and four hundred thousand square miles of coal? We gauge the future by what we know of the past and present. Five thousand square miles of potential energy in the coal fields of Great Britain; one thousand years her lease of life! Three hundred thousand square miles of potential energy on this continent, and our expectation of life-who can tell us what it is? We are fifty millions to-day; ten years hence we shall number seventy, and at the close of the century ninety millions. What shall we be one hundred years hence? what one thousand years?

Cement for Leather.

One who has tried everything, says that after an experience of fifteen years he has found nothing to equal the following as a cement for leather belting: Common glue and isinglass, equal parts, soaked for ten hours in just enough water to cover them. Bring gradually to a boiling heat and add pure tannin until the whole becomes ropy or appears
like the white of eggs. Buff off the surfaces to be joind apply this cement, and clamp firmly.

The Improvement of Erie Canal

After speaking at length of the successful operation of the Erie Canal during the past year, and the importance of the canal to the prosperity of our State, the State Engineer recommends the following means for improving that wat
way and saving the trade we now owe to it. He says.
The British are so confident that they will wrest the trade of the West from us that they have nearly completed works hat will cost more than $\$ 30,000,000$. This is in addition to about $\$ 20,000,000$ spent in early improvements, making
about $\$ 50,000,000$ paid out to gain the great prize they seek about $\$ 50,000,000$ paid out to gain the great prize they seek
-the control of the carrying trade from the heart of our -the control of the carrying trade from the heart of our
country to the markets of the world. They do not fear our railroads. While we are neglecting our water routes they spare no cost to perfect theirs. This is the greatest danger that threatens our commerce. It concerns all classes of citizens and all methods of transportation.
In view of this great danger it is our duty to consider how we can save the commerce New York has so long held. We should see first how we can cheapen transportation by the American water route, consisting of the great lakes, the Erie and Oswego Canals, and Hudson River. The larger the ves sel the less the cost of carrying. If our waters admit of ves sels drawing even a single foot more than can pass the Wel land Canal we shall have a great advantage over the British route. By removing the obstructions in the natural channels between the great lakes, and by deepening Buffalo Harbor, twenty feet of water can be gained, while the locks on the Welland Canal will only admit of vessels drawing thirteen and one-half feet. The United States Government is en gaged in deepening these channels, and our representative in Congress should see to it that this work is accomplished in time to offset the advantages which the British will gain from the enlarged Welland and St. Lawrence Canals. The State of New York does not ask of the United States Govern ment any assistance in maintaining or enlarging its canals. It only asks that the tide waters of the Hudson River and the natural channels between the great lakes shall have the consideration which is due to them as the great channels of commerce of our country. That large vessels can carry their cargoes cheaper than small ones is seen by the fact that vessels carry grain from Chicago to Buffalo for one-half the cost of carrying it from Buffalo to New York, although the former distance is twice the latter. It is four times as expen sive to transport grain upon the Erie Canal as it is upon great bodies of water.
In order to cheapen transportation upon the Erie Canal the boats must be able to carry larger cargoes, and to bring this about we should make the canal deeper. If one foot of water is added to the depth of the canal by raising its banks, the present boats can carry fifty tons additional load, and the relation between the size of the boat and the size of the canal will not be disturbed. This increase in depth would enable he boats to carry one fifth more cargo. At the present rat of carrying. it would cheapen transportation one cent a bushel which would be equivalent to removing tolls. This plan of deepening the canal recommends itself to the boatmen, because it requires no outlay on their part, the boats now in use having a capacity for fifty tons more than the present depth allows them to carry. If no additionalload was carried his increase of depth, with the application of power to the locks for operating the gates and drawing the boats in and out, such as is in use in New Jersey on the Delaware and Raritan Canal, would enable boats to make thirty-seven hours better time in a round trip from Buffalo to New York This gain in many instances would allow boatmen to mak another trip a season. There is no sentiment in trade. Busi ness goes where it can be done the cheapest, and the route that can carry for a few mills less per bushel than any other will command it. The average freight (not including tolls) bushel of wheat from Buffalo to New York during the past season has been five and a half cents. If this charge could be reduced to four and a half centsthe Erie Canal could offe uch economical transportation that there would be very lit tle danger from its northern rival. I have had careful sur veys made for the raising of the banks of the canal one foo and for furnishing the necessary water; these show that the work can be done for about $\$ 1,000,000$. The gain that this mprovement would have made in transportation during the past season would be equal to the cost of the work.

walls and Beams

One precaution that is very seldom taken with high build ings is so supporting the timbers of the floor that, in case they break or fall, they shall not pry the wall over inward, and that in case they expand they will not push it over out ward. As ordinarily constructed, holes are left in the walls, into which the ends of the joists are set, the holes being about the size of the ends of the joists, so that in case the floor falls the timbers are apt to tumble the walls in ward on the contents of the building. The Paper Trade Journal suggests two ways of getting around this. One is to set the end of the joist upon a corbel or projection from the face of the wall, so that the joist clears the face of the wall entirely and in case it falls it exerts no influence upon the wall The other method has the same object in view, and accomplishes it in a simpler way. The holes made to receive the joists are made about twice as high as the joists, so that in falling the joist has no prying effect upon the wall. These remarks apply to iron as well as wooden beams; but for iron leave wall, so that the inevitable expansion of the bean from fire
shall cause no thrust outward, tending to overthrow the walls. It would perhaps be as well if all external walls were held together by anchor bolts with external plates, which, although not very sightly, yet of ten tend to hold the wall up when otherwise it would topple and fall outwards. Of course, if the beams are properly cased below with some fireproof material or by some heatproof method, their expansion will be very much less than if they are left naked to the action of the beat

The " Jumpers" of Maine.

Dr. George M. Beard, in a paper read before the American Neurological Association, records some curious facts in regard to a singular class of persons whom he met in the region of the Moosehead Lake, Maine, and who are known in the language of that region as " Jumpers," or "Jumping Frenchmen." These individuals are afflicted with a peculiar nervous affection which manifests itself by sudden and explosive movements of the body under the influence of external excitation, by a passive submission to orders authoritatively given them, and by an irresistible desire to imitate the action of others. The person thus afflicted jumps at the slightest sudden touch, and when an order is given him in a loud, quick tone he repeats the order and at once obeys. If, for instance, on the shore of a river he be ordered to jump into the water, he exclaims " Jump in," and at once executes the order. If he is told to strike one of his companions he exclaims, "S trike him," and the act follows the words.
Dr. Beard made the following experiments with one of these persons, who was twenty-seven years of age: While sitting in a chair with a knife in his hand, about to cut some tobacco, this man was struck sharply on the shoulder and told to " throw it." Almost as quick as the explosion of a pistol the knife was thrown and stuck in a beam opposite; and at the same time he repeated the order, "Throw it," with a certain cry as of terror or alarm. A moment after, while filling his pipe, he was again slapped on the shoulder and told o "throw it." Immediately he threw the pipe and tobacco on the grass, at least a rod away, and with the same suddenness and explosiveness of movement as before. Whenever this man was struck quietly and easily, and in such a way that he could see that he was to be struck, he made only a slight jump or movement; but when the strike was unexpected he could not restrain the jumping or jerking motion, pected he could not restrain the jumping or jerking motion, although the cry did not always appear. Like experiments
were made on other individuals of different ages with the were made on other individuals of different ages with
exhibition of the same peculiar phenomena. Dr. Beard classes this "jumping" as a psychical or mental form of nervous disease, of a functional character, its best "servant-pirl hysteria" as known to us in modern days, and as very widely known during the epidemics of the Middle Ages. Like mental or psychical hysteria, the jumping occurs not in the weak, or nervous, or anæmic, but in those in firm and unusual health; there are no stronger men in the woods, or anywhere, than some of these very "jumpers." Dr. Beard regards the disease as probably an evolution of tickling. Some, if not all, of the "jumpers" are ticklishexceedingly so-and are easily irritated when touched in sensitive parts of the body. It would seem that in the evenings. in the woods, after the day's toil, in lieu of most other sources of amusement, the lumbermen have teased each other by tickling and playing and startling timid ones, until there has developed this jumping, which, by mental contagion, and by this practice, and by inheritance, has ripened into he full stage of the malady as it appears at the present hour. The malady is fully as hereditary as insanity, or epilepsy, or hay fever. Dr. Beard in four families found fourteen cases, and by the study of these it was possible to trace the disease back at least half a century. The malady seems to be endemic, confined mainly to the north woods of Maine and to persons of French descent, and it is psycho contagious, that is, can be caught by personal contact, like chorea and hysteria.

A Large Order for Lo
Recently the Baldwin Locomotive Works received from the Denver and Rio Grande Railroad Company an order for 144 locomotives, an increase of equipment made necessary by the southern extension of the road. This is said to be the largest order for locomotives in one block ever placed. The cost of the locomotives will be over $\$ 1,000,000$. The work will be done during next summer and fall.

New Explesive Compound.
This compound, by J. M. Lewin, Paris, said to possess more explosive force than all other explosive materials, and which will not explode when a flame is applied to it, or in consequence of an ordinary blow, bat only by means of a cartridge or capsule, consists of the ingredients given below in or about the proportions specified; i.e., nitro-glycerine, 60 parts: nitrate of potassium, sodium or ammonia, 16 parts; palmitic acidulated oxide of cetyl (cetoceum), 1 part; carbonate of lime, 1 part; lignine, 1 part; and wood or animal charcoal or peat moss (sphagnum), 16 parts.

The Growth of New York City.
As shown in the statistics of the Department of Buildings the growth of New York was more rapid last year than in any twelvemonth since 1872, when the speculative building mania reached its height. That year the expenditure on buildings was not less than $\$ 27,000,000$. In 1877 it was less than half as much. It mereased to sixteen and a half mil hons in 1878 . The figures for 1880 show an expenditure of $\$ 24,000,000$ for new buildings.

ImPROVED AIR REFRIGERATING MACHINE.

We illustrate a machine constructed by Messrs. Hall, of Dartford, for use in the Australian meat trade. The en graving is very nearly self-explanatory.
The machine consists of a pair of horizontal trunk engines, mounted on the top of a condenser. To one side is bolted a compressing cylinder, 27 inches diameter and 18 inches stroke. To the other side is bolted the expansion cylinder 22 inches in diameter and 18 inches stroke; both these cylin ders are open-topped. The valves are placed in the bottom f the cylinders, and are worked by cams on the crank chat and levers. Air is drawn into the compressing cylinder on the up stroke, and delivered on the down stroke, into the surface condenser at a pressure of about 50 lb . to 55 lb . on the square inch. The air here parts with its heat in the con denser, and it is then delivered into the expansion cylinder the valve of which cuts off at about one-fourth stroke. The expanded air is then delivered through a pipe into the room to be cooled. About fifty per cent of the work expended in
costs 2 s . 6d. per pound-cut out of the solid piece it would
be 20s. Among other specimens exhibited to our correspon
street, Sheffield-have patented their plan, and applied it in the first instance to table cutlery. Their object is obtained by using odd ends of ivory, or ivory that is not sufficiently long for the ordinary length of handles, by cementing the pieces together, and by "tapping" the "tang." In this way each piece of ivory is screwed close to its fellow. The handle is then carved or fluted, by which means all joints are concealed. The tang passes through from end to end, and beng riveted, the handle is prevented from leaving the blade, either by being placed in hot water, or by any other means which misdirected domestic ingenuity can contrive. Every housekeeper will appreciate this boon, as in the ordi nary method of hafting table cutlery the handles come off with irritating frequency. By their patent, which is also applied to knives with bone, horn, and other handles, the firm can produce a really good article at about one-half the cost of ordinary knives. The ivory waste used in this way costs 2s. 6d. per pound-cut out of the solid piece it would

A severe snow storm, accompanied by electrical disturb ance and high wind, prevailed, January 6 , over a space eight hundred miles wide, along the line of the Union Pacific Railroad between Omala and Ogden. For twenty-four hours the telegraph wires were useless, the intensity of the electric storm being shown by the fact that when the telegraph key was opened by the operator a steady electric light burned at the connecting points. L. H. Korty, Chief Operator of the Union Pacific Telegraph lines, bas kept a record for years, and with but one exception in twelve years, this storm occurred on the 5th, 6tt, or 7th of January. It is believed that the entire Rocky Mountain region is visited by them.

To Fasten Cloth on Wooden Surfaces
The following is said to be an excellent method of fastening cloth to the top of tables, desks, etc.: Make a mixture of 21^{1} pounds of wheat flour, 2 tablespoonfuls of powdered rosin, and 2 tablespoonfuls of powdered alum; rub the mixture in a suitable vessel, with water, to a uniform, smooth

IMPROVED AIR REFRIGERATING MACHINE.

cylinder, the difference being made up by the engine. The machine is but one of several Messrs. Hall have in hand of different patterns. The outline diagrams show the form which they recommend for ordinary use, the height being kept down to render it specially suitable for use between decks, but the machine can be made to take any form almost, and can be made of any dimensions to suit particular requirements. The condenser, or refrigerator, consists of nests of brass tubes, through which the water circulates. The tubes are of brass, half an inch in diameter outside. The ends of the tubes are accessible through the man lids shown.-The Engineer.

The Utilization of Waste Ivory.

A curious and valuable contrivance has been explained to our Sheffield correspondent for the utilization of waste ivory -a subject of very great importance to other classes besides cutlery manufacturers, in consequence of the rapidly-increasing value of the article. The firm who have made the discovery-Messrs. Kilner Brothers, Albion Works, Holley
ivory was of one piece, would be worth 3s. 6d. The firm an supply the complete knife and fork for 4 s . 3 d ., with the handle treated according to their patent.-The Engineer

The Fireman's Journal is informed that a suit has been begun by the Holly Manufacturing Company, of Lockport, N. Y., against the Omaha City Waterworks Company fo infringement of Holly's patent of direct pressure. Thi suit, says the Journal, grows out of the fact that the Holly Company, after a long and bitter fight, was underbid by an Omaha company for the construction of the city waterworks. The Omaha company is building the works on the combined system of reservoir and direct pressure. It bas distributed its pipe partly built its reservoirs, and received part of the pipe, partly built its reservoirs, and received part of the
pumping machinery, and is under contract to complete the works by September next. This litigation may seriously complicate matters, and may postpone the completion of the works for some time, and possibly the plan of construction may have to be changed.
paste; transfer this to a small kettle over a fire, and stir until the paste is perfectly homogeneous without lumps. As soon as the mass bas become so stiff that the stirrer remains upright in it transfer it to another vessel and cover it up so that no skin may form on its surface. This paste is applied in a very thin layer to the surface of the table; the cloth, or leather, is then laid and pressed upon it, and smoothed with a roller. The ends are cut off after drying. If leather is to be fastened on, this must first be moistened with water. The paste is then applied, and the leather rubbed smooth with a cloth.

Strength of Insects. -At a meeting of the Maryland Academy of Sciences recently Dr. Theobald showed a species of a beetle and gave the following figures: Weight of beetle, two grains; weight moved by it, $51 /$ ounces- 2,640 grains, or 1,320 times the weight of the beetle. A man weighing 150 pounds, endowed with the strength of this insect, should therefore be able to move 198,000 pounds, or nearly 100 tons.

american built steel steamer for the river MAGDALENA.
 by h. L. bridwell

We recently published an illustrated description of a light draught steel steamer built in England for the Government of the United States of Colombia, to ply on the River Magdalena. American mechanics have also been engaged in constructing light draught vessels for the Magdalena, and we herewitl present a view of the last one built in this country, the Victoria, belonging to the Magdalena River Navigation Company. The Victoria was built at Pittsburg, Pa., by James Rees, Esq., of the Duquesne Engine Works, who also built the Francis Montoya for the same stream, and, like the English steam er, was shipped in pieces after being temporarily set ${ }^{\text {up }}$
The Victoria differs mate rially from the boat of the Yarrows, which has practi cally no upper structure, and is shorn of cabins and other accessories, in order to attain extreme lightness of draught. The Rees steamer was in tended for a regular freight and passenger traffic, to accommodate which she is provided witha full length cabin on the upper deck and an offi cers' cabin above on the hur ricane deck. The upper works are complete with all the ap pointments and fixtures of a regular North American river vessel. The hull is 155 fee in length, 321% feet beam, and 41,2 feet depth hold, constructed of steel, in eight water tight compartments. The boiler, also of steel, is of the boiler, also of steel, is of the

STEEL PASSENGER STEAMER VICTORIA FOR RIVER MAGDALENA, S. A.
convex. The toes are all provided with claws, and are not united by a membrane. From the nape of the neck to the beginning of the tail the tubercles, like small nails, are arranged in longitudinal rows nearly approaching one another. The general color of the head is gray, sometimes reddish with brown marbling.

The Miocene Beds of Oregon and their Fossils.
A writer in the Kansas City Reriex, who has for some time been making collections of fossil remains for Professor Cope, says that although the miocene beds of the John Day River, Oregon, have been explured for nine or ten years, each year an equally rich harvest has been gathered. In none of his explorations in the fossil beds of the Northwest had he ever found such perfect specimens as those that he gathered in ${ }^{*}$ this region. One of his finds proved to be the type of a new genus, and was named by Professor Cope Boocherus humerosus, the specific name being given in allusion to a huge projection on the humerus. The skeleton was that of a mammal as large as a rhinoceros, and with great pillar-like limbs.
The most abundant fossil remains found have been those of the Oreodon, or extinct hog. Three or four species have been detected, some about the size of the Texan peccary, and others as large as the wild boar of Europe. These animals belong to tropical countries. The rhinoceros is quite common rhinoceros is quite common in these beds, three or more
species being represented, one 45 inches in diameter, and has forty-one $31 / 2$ inch tubes, fur- nea, Australia, and Chili, have been found in Europe and of them having a horn on cach side of the end of the nose. nishing steam at a working pressure of 150 lb . per square are known as the European phyllodactylus. They were be- The Hipparion and other ancestors of the horse are also inch. The cylinders are 16 inches diameter, with 6 feet lieved to be peculiar to Sardinia, but have lately been found found here. One peculiar genus discovered was an ancestor stroke, of the direct-acting high pressure type. The steamer by M. Lataste in the Island of Pendus in the Gulf of Marhas a capacity of 400 tons cargo, and yet draws but 22 inches seilles.
with steam up, a splendid result for a vessel so complete in The common platydactylus, which is found in Southern all particulars. France, Italy, and Spain. was known to the ancients, who
 probably called it a lizard, and thought that its venom neu- and which were sharply serrate-edged like the teeth of a tralized the poison of the scorpion. The bite of this animal, shark. Another peculiar species had a shoulder on the lower which was dangerous or even deadly in Greece, was, accord- canine, against which the point of the upper struck. This ing to Pliny, almost inoffensive in Sicily. The same author large number of carnivorous animals shows that herbivora says that the skin macerated in vinegar or reduced to ashes were also abundant; and that such was the case has been was a sovereign remedy in some diseases. In this species proved; too, by the abundance of the remains of the latter the body is often of a gray color, while the lower parts are that has been found. Of the rodents, a great number of whitish, but sometimes it is of a bronzed brown, with gray species have been discovered, ranging from the size of a bands across the back and tail; the head, although flat, is mouse to that of a beaver. Hard-shelled turtles were the thickened at the back, the neek being distinct from the only reptiles obtained; and these varied in size from six inches to two feet in diame ter. One of the great difficulties in the way of working these beds lies in the dazzling color of the surface, which soon causes the eye to tire, and gives the explorer a sensation like that of snowblindness. Hence, five hours' constant search has to be counted a good day's work. The miocene beds of Oregon extend over the greater part of the eastern part of the State. Thus far only the State. Thus far only the John Day and Crooked River have been explored. Rich
harvests are in store for the harvests are in store for the
future explorer. All the new genera and species found here are to be described and figured by Prof. Cope in one of the government publications.

The Compesition of Ser-

 pents, Venom. What a wonderful thing the venom of a serpent is! Chemical analysis fails to detect anything in it to account for its action. Water, a little albumen, some mineral salts, and traces of mucus, epithelial cells, etc., lumped
THE GECKO OR WALL LIZARD.

body; the skin which envelops it is transversely folded The upper part of the skull is covered with small convex plates, the oval tubercles are strongly defined and are sur rounded by other smaller tubercles, and with fine granula ted scales, protecting the back. The upper part of the tail is provided with spines.
The geographical distribution of the hemidactylus is the ame as that of the species just described. The head is sbort, the nose very blunt, the surface of the skull slightly stitut give rise to disorganization of the structural con
rigors, delirium, syncope, convulsions, paralysis, and coma Whether the poisons of any two or more species are identical I do not know-it seems probable; but in the five species with which I have experimented on myself, so far I have found five distinct and separate venoms. I imagine, for instance, that the rattlesnake and copperhead will prove to possess the same, and perhaps several of the viperine snakes. I hope so. Some of these fluids are very unstable, and decompose if kept only a short time or if their specific gravity is disturbed, while others retain their deadly properties even when dried. That of the common French viper (Vipera aspis) may be diluted down till it forms a mere local irritant. No true antidote has ever been discovered for the bite of any snake, and the search for something which shall be an antidote against the bite of all, appears to me to be irrational in the extreme, seeing that there are so many different poisons, producing in many cases opposite effects. One might as well expect to find a general antidote for opium, belladonna, strychnine, arsenic, and mercury poisoning. The action of ammonia, upou which so much stress hasbeen laid, is probably nothing more than that of a strong stimulant; certainly its action in maintaining the fluidity of the blood is quite hypothetical, seeing that premature coagulation of the fibrine has never been actually demonstrated. Indeed, it is said that at the autopsy of the keeper Girling, bitten many years ago by a cobra de capello at the Gardens, the blood formed no clot at all, but was found permanently fluid in all the great vessels.-Land and Water.

Sanitary Inventions in House Building.

The modern residence illustrates, in innumerable ways, the activity of inventors in recent years, and although so much has already been done the future seems to present a still wider field, with even more and more complex problems, whose successful solution will yield deserved award to in ventive genius. To faults in our present system of build ing, principally in regard to the plumbing arrangements, the prevalence and generally dangerous character of diph theria is now largely attributed. Whether or not it is true that the community is at present suffering from a greater prevalence of this disease than ever before, or whether the general conviction that this is so comes from the fact that the medical fraternity are now making a closer definition of ts causes and nature, it is certain that defective methods of disposing of sewage cannot fail to contribute largely to its propagation. Leaving out of view entirely the question of sewage ventilation or disinfection, the advantages or disadvantages of different kinds of traps, the arrangement of house pipes, or the flooding of sewers, it is evident that, in closely populated sections, it needs only one break in the precautionary efforts to start a disease which may prove na epidemic. Of course the more perfect the system the na epidemic. Of course the more perfect the system the successfully combat the disease, but the common sewer orms a connecting link between the costly brown stone and the humble tenement. The latter, however, has the close supervision of the health authorities, which is too often omitted in the former case. It is not surprising to find, therefore, as recently stated by the President of the New York Board of Health, that some of the lately built tenement houses of the metropolis are actually safer residences, from a sanitary point of view, than many pretentious man sions. The latter had, perhaps, fairly good plumbing work at the start, but age and use have in many cases caused a gradual deterioration, possibly not noticed by continuous occupants, and improvements have siuce been introduced which make the contrast yet stronger, so that it is not uncommon now to find that the hidden and diffusive power of some infectious disease has its original source in abodes where such danger had been least looked for.
In a large proportion of the residences now erected in our principal cities, the question of cost is a minor consideration, so that the owner can obtain the maximum of comfort, convenience, and elegance, with the assurance that every possible condition necessary to making a healthful esidence has been complied with. So we have the various methods of heating by steam, hot water, and hot air, either from appliances within the house, or, as now proposed, with the heat furnished from some central source of supply; it is, also, quite within the scope of the possibilities of the near future that we shall have a system of cooling houses and places of public entertainment in the summer season by artificially generated currents of cold air, quite as effectually as we can warm them at present. In the making of a light more economical and ibetter than gas, inventors every-
where are now showing a marvelous degree of activity, and where are now showing a marvelous degree of activity, and
the employment of electricity for this purpose, and in the telephoue and other ways, has, within a very recent period, opened up many new chamels of improvement. In the mason, carpenter, joiner, and decorative work, money is ex pended unsparingly, and in many ways which were unknown a few years ago, to add either to the attractiveness or the durability of the residence. But, with all these efforts to attain an ideal perfection, there have been many conspicuous instances of failure to make a healthful dwelling place where it had been supposed that all the required conditions had been most rigidly complied with
In city buildings, where the houses so adjoin each ot her that party walls are in common on both sides, it is not to be supposed that much attention need be paid to having a damp course to cut off soil emanations, a matter which is of great importance in all country houses; but with whole blocks of residences or tenement houses erected on made ground, 'feine
where the filling-in material has been mixed with garbage, or where the natural drainage has been improperly provided for, an even worse condition will be likely to result than can come from building on a wet soil in the country without a suitable damp course. The exhalations from made ground of this character are certain to make themselves manifest sooner or later, and to permeate or be taken up, to greater or less degree, by the buildings erected thereon, and in such way that the sun and wind can have but little power to carry them off.
The one question, however, which stands out beyond all others in the matter of sanitary house building, is that of plumbing. The gas and water .pipes are generally hid away, so that it is not easy to examine them, and the con dition and adequacy of the sewer connections are almost always taken on trust. The effectual covering of water pipes so that they will not be liable to freeze in cold weather is one of the reasons for disposing of them in this way, but his only makes the work of repairing the greater when an accident does happen, and putting the pipes where they cannot be seen and readily examined, is often the frequent cause of a small leak making a great deal of damage. More than this, however, a defect in the sewer connecting pipes, whether from accident or the inadequacy of the service, means much more than the simple cost of remedying this evil, for upon the perfect working of the drainage pipes and their connections depends, more than on any other one cause, the healthfulness of a house or a nelghborhood. With the pipes all in plain sight, or where they could easily be examined, there are few householders who would not make it their business to look into such matters, and be sure that there was no room in this way for the escape of foul sewer gases into their kitchens, and sleeping and living rooms. Many ingenious theories have been put forward of late in regard to proper systems of sewage for large cities,
and "sanitary plumbing " has come to be an accepted term in the building trades, but the disastrous results which have in many cases followed the adoption of the most approved plans, point only too plainly to the fact that the specialists, as well as the public in general, have yet much to learn in his direction.

oll of coffee

From a paper upon the oil of roasted coffee, contributed a chemical journal by Dr. C. O. Cech, of St. Petersburg, e extract the following
Although the coffee bean belongs to our daily food, we are still uncertain of the chemical nature and composition of the products of roasting coffee, and of oil of coffee, one of the important characteristic constituents of the bean.
The existence of a coffee oil makes itself known in a striking manner by its roasting, for this oil, driven out of the beans by the heat, is partially volatilized, and, together with other products of the roasting, produces the characteristic roma of roasted coffee, an odor possessed by no other sub tance. In very strong black coffee, too, we can see thi il like little drops of grease floating on it. The amount of oil in coffee varies from 8 to 13 per cent, and at least hal of this is lost in roasting, so that it would be a paying expe iment to attempt to collect this oil, especially in large estab lishments where much coffee is burned and several pound of oil are dissipated daily. In 1878 not less than five hundred thousand tons of coffee were consumed, so that the amount of oil that might have been collected was very considerable. Dr. Cech tried the experiment. in one of the large roasting estab ishments of Berlin, of connecting the roasting drum with cooling apparatus and a receiver so as to condense and col lect the volatile and oily products of the roasting. At first there is scarcely any gas generated in the drums, but after the beans are browned and the whole mass has been heated to the temperature where the oil evaporates, such a quantity of the volatile aromatic oil is generated that it trickles down he walls of the chamber in which the beans are shoveled and cooled after coming from the drums. Unfortunately the manipulations of roasting are at present such, that this very ooling and reshoveling of hot beans must be done in the pen air, and is the reason that it is not possible to catch and ondense the vapors so abundantly liberated. Practice has proven that at the very momeni when the beans turn brown and the first vapors begin to be given off it is absolutely necessary to pull the drum out of the roasting furnace and apidly cool the coffee by shoveling and reshoveling in the air, or there is danger of its taking fire in the furnace and burning to a coal. Nevertheless it might be feasible to connect the drums with an exhauster so as to condense the gases in a receiver, and at the same time cool the bean enough to prevent its taking fire. Cech has no doubt that the oil obained in this manner would find use, at a profit, in making liqueurs
To study the properties of oil of coffee, Dr. Cech pounde p 50 lb . of different kinds of coffee in a mortar, and then ex racted it with alcohol and ether, obtaining about 1,200 rammes ($21 / 2 \mathrm{lb}$.) of oll of coffee. The beans extracted by im were not of equal value as regards the yield of oil, for while some conta
The oil of coffee is a green, thick, transparent oil, and after ome time a few long needles were deposited from it. These proved to be caffeine. Since caffeine is not extracted from the exhausted beans by ether. and very little of it is taken up by the alcohol employed, the coffee from which the oll has been feine.

The coffee oil became turbid in half a year, although it was kept in hermetically closed bottles. Small groups of crystals were formed in the middle of the liquid, and slowly settled to the bottom, and at the end of three years the bottle was two-thirds full of a dirty mass of crystals consisting of the solid fatty acids, but the upper layer of the liquid remained for years transparent, clear, and of a beautiful green color, proving that a portion of coffee oil consists of liquid oleic acid.
Although Dr. Cech has had the oil in his possession for three years he has not determined its percentage composi-ion.-J. pr. Ch

An Easy Test for Olive oil.

One of the rarest articles of daily use is pure olive oil, and many think themselves fortunate to obtain oil which is in part made from the olives. Add to this fact the difficulty of distinguishing one vegetable oil from another by chemical test, especially of recognizing them when mixed, and no wonder the importers of olive oil soon accumulate a competency.
A German soap journal tells its readers how to detect adulterations in oils, without, however, enlightening them as to the sort of oil used for adulteration.
The test is exceedingly simple, and can be performed by ny one possessing a good chemical thermometer. About a easpoonful of od is put in a test tube, and a thermometer suspended in the oil, which is now to be heated to $250^{\circ} \mathrm{C}$. (472° Fahr.). For a comparison a second test tube of pure il may be treated in like manner. Pure olive oil, when heated, grows rather lighter in color, but most other oils, like cotton seed, peanut oil, etc., grow darker. The latter, also, evolve a penetrating and disagreeable odor, but olive oil has a pleasant smell not unlike strawberries. This test, devised by Merz, is at least worthy of a trial.

Salicylic Acid for Bee Stings.

Although salicylic acid, from having been too highly extolled, has fallen somewhat into disfavor, there can be no doubt that it is useful in the case of beestings. An Austrian paper recommends the following treatment: First, to remove the sting as quickly as possible with a forceps or byscratch ing with a finger, but never between the thumb and fore finger, because this squeezes more of the poison into the wound. Next squeeze the wound until a drop of blood comes out, and rub the place as large as a dollar with an aqueous or dilute alcoholic solution of salicylic acid. The effect is still better byinjecting the salicylic acid into the wound with the hypodermic syringe. After this the spot is painted with collodion to keep out the air. A sting treated thus causes little or no pain, slight inflammation and swelling, and is not followed by nettle-fever or lameness in the most ensitiv and nervous individuals.
P. N.

Testing Drain Pipes.

A writer in the Ironmonger, from long practical experi ence in testing drain pipes, confidently recommends for that purpose what he terms a "smoke test." and which gives evidence as to leaks both to the sight and smell. The mate rials that he employs are soiled cotton waste and sulphur, the smoke from which, after ignition, is blown into the drain or pipes. If leakages exist in the latter inside of the house, the smoke and smell both issue forth and show that something is wrong, and generally tell also just where the fault or faults are. Sulphur, as well known, is one of the best of disinfectants, and a dose of the fumes from this to he drains, after disease has been in a house, would effect much good.

Ripening Melons Underground

As well known, there are many plants which thrust their seed vessels into the ground, where the seeds are subse quently matured. The peanut is a good example of a plant which constantly exhibits this phenomenon. Others again develop flowers and seeds entirely underground, while many aquatic plants ripen their seeds under water. According to the Gardener's Chronicle the Persians, who are extensive cul tivators of melons, have the curious practice of covering this fruit with earth at a certain stage. Such a method is n vogue among Persians who live in the neighborhood of Tiflis, in the Caucasus. Only the choicest and best keeping variety, the true Dutma, is grown. It is a long, smooth kind which attains a weight of fifteen to twenty pounds, and will keep till Christmas. The deeply tilled ground is thrown up into beds a foot wide in spring, and the seeds sown in a drill along the center. Finally, the plants are left at a great distance apari, and irrigation is effected through the channels between the beds, so that no water touches the plants. The fruit sets in June, and ouly one or two are left n each shoot. When the fruit has attained the size of a man's fist the earth is hollowed out, and the shoot (with the xception of the tip), together with its fruit, is buried therein to a depth of one to one and a half inches, where it remains until the fruit is almost ripe. Considerable practical experience is necessary in order to be able to determine the exact moment when the melons should be unearthed. When the cultivator thinks that the time has arrived, he withdraws the shoot and its fruit from the ground. This is done toward vening, and the frut is left on the surface of the ground ttached to the shoot, and exposed to the dew of one night but care is taken to cut the fruit the next morning before the sun can reach it. It is then hung in a cool, dark, dry place, untîl ready for eating.

Detection of the Trichina

Another death from trichiniasis, under exceptionally se vere circumstances, having recently occurred, public attention is again being directed to the ravages of that terrible parasite, the Trichina spiralis.
A young German butcher, Franz A. Axler, apparently suffering from a severe attack of rheumatism, was lately ad mitted into Bellevue Hospital. For several days the physieians who visited the ward to which Axler was assigned were unable to make a diagnosis of his case; but eventually, and as a result of close watching, the conviction grew that he was suffering not from rheumatism, but from trichiniasis. This disease not yet having been relegated to that class about which it may be said " we know all about it," it is not to be wondered at that the greatest interest in this case was im mediately manifested by many distinguished medical men. Upon due inquiry having been made, the fact was elicited that Axler had a short time previous to the first indications of disease been freely partaking of raw pork, a practice to which he, in common with some others of his countrymen, appears to have been somewhat addicted. To make "assurance doubly sure," Professor Janeway one day with hislance removed from the patient a small piece of muscular tissue, which, having been placed under the microscope, revealed the presence of numerous living active trichinæ. Axler eventually died; although, as we shall show, the disease, while formidable, is not necessarily futal in all cases. A post mortem examination with the microscope, of course, showed that the active parasite had increased and multiplied to such an extent that every muscle in his body (which was teeming with parasitic life) had been attacked and destroyed by thi apparently insignificant creature of nature.
In the case now recorded, and for obvious reasons, death ends all; but indications are not wanting that much trouble may yet arise and much legal skill and acumen be imported into the settlement of other cases of trichiniasis, and that the pork butcher or even middleman may be liable to be proceeded against at law by the relatives of those who have succumbed to disease contracted through eating diseased meat. When Mrs. Eliza Greifelt sued Figge Bros., in Brooklyn, for $\$ 5,000$ as solutium for the death of her hus band, who died from trichiniasis claimed to have been produced through eating of a ham supplied by this firm, a significant fact in the rendering of the verdict (which was against the plaintiff) lay in the allegation that it had not been proved that the disease had been contracted trom eating that ham in particular, but, on the contrary, that death had en sued before the time when disease from such a source could have run its course; while, more directly, the evidence was such as would lead-to.the belief that the disease from which Mr. Greifelt died had been contracted by indulging, at a pre vious date, in certain pork sausages imported from Cincinnati. The verdict leaves for the butchers or dealers the slight unpleasantness that it might have been otherwise ren dered had it been clearly shown that the trichiniasis from which the man died had been caused by the Brooklyn ham instead of by the Cincinnati sausage. The inference from this is too palpable to escape due notice or to require specia attention being directed to it. But another portion of the charge of the judge in this case is still more significant, and to the public at large more important. In trade, he observed, persons were only bound to use "ordinary care and skill," and not the most scientific processes: This opens up the question as to what constitutes the "ordinary care and skill" standard on the part of dealers, and whether it be not possi ble to raise this standard a good deal higher than it appears now to be without entailing upon the butchers or sellers the necessity of incuring undue pecuniary expenditure or the acquiring of any special degree of scientific skill.
Previous to indicating simple means to both the butchers and the housewife by which diseased pork can be discovered, and showing the latter by what means the parasitic life forming the disease can be stamped out with certainty, a glance the life history of that parasite is necessary.
In nearly every case of trichiniasis the disease has been contracted, as already observed, by the eating of raw or un derdone pork. But it must also be observed that the pig is not the only animal eaten by man the flesh of which forms an abiding place for trichinæ. It hasbeen said that the flesh of fowls is sometimes not exempt from them; that they are to be met with in rabbits we know, having seen several well developed examples in the flesh of that animal. Having par taken of a meal of raw, or even "rare," or underdone meat conaining trichinæ, the recipient has in his stomach probably many thousands of the auimal, if not in the full grown, a any rate in the condition of larvæ, which are not affected by contact with the gastric juice. In forty eight bours they will have passed from the larval into the adult condition, arrived at which they immediately commence their destruc tive march through every tissue of the body. The life-cycle of these creatures appears to be completed in about three weeks, although there is much yet to be learnt of their history. Two days suffice for their passing from the capsuled to the adult condition; the eggs from the adult take about six days to be developed into embryos. Death does not necessarily ensue when one's flesh is trichinized, for in many instances the disease comes to a termination by the animals perishing by the process of calcareous degeneration.
Both the butcher and dealer, as well as the lay portion of the public are interested in the best and easiest methods by which the presence of trichinæ in pork may become known Every scientific man. of course, knows that the microscop is the revealer of this parasite; but it is not so generally
known that a simple hand magnifier shows ther presence with a degree of certainty and perfection that puts beyond the realm of doubt the fact of any sample of flesh being trichinized or not.
To examine pork, cut off in the longitudinal direction of the fiber and by means of a sharp razor a thin slice of the lesh about half the size of the nail of the little finger, and aving placed it in situ on an ordinary microsconic slide or any other suitable piece of glass put on it a drop of liquor potassæ, cover it with another thin slip of glass, and keep the two firmly pressed together by means of spring clips-the ordinary spring clothes pegs being very convenient for this purpose. Upon examination by the microscope the thin and almost transparent layer of muscle will show the worms coiled
up in their cysts, or moving about freely, according to the stage at which their development has arrived. This, of course, is on the assumption that the specimen undergoing xamination is infected.
The microscopic power best suited for such examination is a low nne, ranging from onc to three inches; an objective of two inches being the most convenient, provided its defin ing quality is such as to enable it to be used with a tolerably high-power eye piece, which in the early stage of examina-tion-the search-is not advisable, the lowest eyepiece being
We have said that the presence of trichinz may be readily een by a hand magnifier. By this must be understood on possessing a short focus and so constructed as to define very sharply. Those we have found most satisfactory are formed on the principle first enunciated by Dr. Wollaston, and named after him "the Wollaston doublet." It consists of two planoconvex lenses, their respective foci being as one to three heir convex surfaces being next to the eye, and the stronge of the two placed next to the object that is to be examined By placing a diaphragm between the two the definition is improved. But even by a simple bi-convex lens, such as are used in the lowest type of microscopes as object glasses, may the trichinæ be seen, provided the focus be short and the peripheral rays cut off by means of a small diaphragm. Let not be forgotten that by a " magnifier" of this simple form were made all those brilliant discoveries by Leeuwen hoek which astonished the scientific world at that time A.D. 1678), and introduced a new system of philosophy nd reasoning. If the lens used in the examination of richinæ be one of plano-couvex form it is important that its flat side be toward the object, for if this condition be re versed there will arise such a degree of spherical aberration as will render futile the hope of seeing distinctly. The amount of the aberration under the latter condition may be assumed as 4.5 times the thickness; whereas if reversed the aberration is only $1 \cdot 17$ of its thickuess. The best form of the degree of magnifying most suitainle for the purpose in question is one which need not exceed the ability to show he markings on the scales of the well known Lepisma sac arina
From the facility with which the presence of the parasite in pork may be discovered, and the trivial nature of the expen diture to be incurred in securing the proper optical means for doing so, it is not unreasonable for the public to demand that the standard of the " ordinary care and skill" referred to by the Brooklyn judge be raised, and that such standard shall embrace the possession of a microscope, either simple or comound, and the ability to make use of it to such an extent t any rate as will enable the butcher or dealer to examine ny suspected sample of meat
One consolation remains. Man has been defined as "an nimal that cooks his food;" and so long as he acts in ac cordance with this distinctive characteristic, so long will he be free from all harm arising out of the presence of parasitic ife in his pork. Experiments prove that partial cooking does not destroy trichinæ, and it is probabiy owing to this fact that there are so many thousands in Germany who are richinized, for in that country undercooked pork is freely partaken of. At a heat of 160° Falı., sufficiently prolonged U) enable it to penetrate the capsules in which they may be inclosed, the germs of life are totally destroyed. But when the heat is raised to the boiling point, 212° Fahl., then may it be assumed a matter involving no doubt whatever tha he power of the trichinæ for good or evil has been suspended by death.

The Diffusibility of Carbolic Acid.
One day last December the people of Newark, New Jersey, were greatly annoyed by a taste of carbolic acid in the city water, supplied from the Passaic River. The matter was investigated, and the contamination was traced to a redibly small amount of carbolic acid had been allowed to ret into the water. If the report of Mr. Geo. Shepard Page is correct, the occurrence will furnish a new illustration of the wonderful divisibility of matter, and the extreme delicacy of the sense of taste. Mr. Page says, in a lotter to the Tribune:

The paper mill of the Messrs. Kingsland is located on the Third River, a stream of considerable magnitude, two miles from where it empties into the Passaic. From the latter point to the pumping station of the Newark Water Works is also two miles. The volume of water in the Third River not less than 2,000,000 gallons per day, and in the Passaic $150,000,000$ gallons per day. The Messrs. Kingstand, among ther specialties, carbolize paper by immersion in a bath of the best liquid carbolic acid of a quality such as is used in
medicinal preparations. In the process of manufacture here is a small percentage of waste paper. No paper has been carbolized since last June, when not over a hundred pounds of waste or torn paper were placed in the loft of the mill, where it remained until the last of December. It is well known to chemists and many intelligent persons tha carbolic acid (really an alcobol and not an acid) evaporates rapidly when exposed to the air. To the sense of smell there was no evidence of carbolic acid in this waste paper when the Messrs. Kingsland decided, in December, to work it up again. Dust having accumulated on it, washing in the mill pond was necessary.

A few days after this a perceptible taste of carbolic acid was noticed by the people of Newark, not only in the drink ing water, but also in tea and coffee made with boiling water. As an absolute fact, not over ten pounds (a gallon) of carbolic acid had been used in this paper when treated Certainly 30 per cent had evaporated, leaving not over seven pounds to permeate $200,000,000$ gallons of water, a portion of which was acrated by passing over rapids and dams, hrough four miles of river, seven miles of pipe, and count less taps. It would seem incredible had we not the evi dence of chemists and medical men in Newark perfectly familiar with the peculiar taste of carbolic acid. Pardon me the space occupied by this narrative, but so remarkabl scientific fact deserves to be recorded. Of course no in urious effects would be experienced, as a single carbolic troche would contain more acid than a thousand gallons of Passaic water. Indeed, a beneticial effect should be felt (of course, to a limited extent), in neutralizing Paterson and Passaic sewage, below which cities Newark and Jersey Cit obtain most of their water supply "

Lead Pipes Destroyed by Mortar and Cement.
In German cities, where the streets are nut decorated by festoons of telegraph wires strung upon towering masts like a dismantled forest, but securely buried in leaden pipes, the telegraphic cables are out of sight and protected from ic and fire, some interesting experience has been gained. On taking up these cables it has been found that in some place the lead pipe had become brittle and porous, and a chemi cal examination showed that the lead had been converted into a basic carbonate (white lead). It was found that thi change had taken place only where the pipe bad come in ontact with mortar or cement.
Dr. Rossel, who has experimented with lead, finds that in contact with lime mortar it always loses perceptibly in weight, and in contact with cement the loss is nearly as great. Lead buried in moist earth that contains chlorides, saltpeter, and sal ammoniac, lost weight, but to a much less degree than in mortar. The sulphates, like plaster of Paris nd Glauber salts, had no action upon lead; neither did th carbonates, like chalk, soda, and potash, nor the silicates sand, and clay. He calculates that a pipe one millimete thick, or one twenty-fifth of an inch, might be eaten through in fifteen or sixteen months.
[We have ourselves seen lead pipe destroyed by holes and indentations on the outside as if bored by an insect, but were unabl
From his o
g statement:

1. Lead pipes should never be brought in contact with any sort of mortar or cement
2. Clay does not attack lead pipe if free from sal ammo niac and saltpeter, the latter resulting from the decay of organic matter.
3. Plaster of Paris offers the best protection for lead pipes Wherever lead pipes pass through a wall they should be laid in g.
P. N.
P.

Separating Apparatus for Cesspools, etc

by J. lesueur, paris.
To separate the liquid from the solid matters they are caused to pass from the pan to a perforated cylinder close at bottom by a pivoted perforated plate. The liquid mat ers escape through the holes in the cylinder and bottom to a suitable pipe. The solid matters are retained on the bot tom plate until they are sufficiently heavy to overcome a counterweight attached thereto, when the bottom plate urns on its axis and deposits the matters into a pipe leading to the cesspool.

Phosphor Tin

An alloy of tin with phosphorus has been in use in Ger many for some time for making phosphorus bronze. A prac ical man gives it as the result of his experience that such a compound must contain at least 9 per cent of phosphorus else part of the tin will remain uncombined. If more that 9 per cent of phosphorus is introduced the excess will be oxidized and volatilized, because the tin is unable to take up and hold more than a certain quantity of phospborus A compound containing $91 / 2$ per cent of phosphorus corre sponds to the formula $\mathrm{P}_{2} \mathrm{Sin}_{5}$, corresponding to the highe oxide $\mathrm{P}_{2} \mathrm{O}_{5}$

To Fix Pencil Marks

To fix pencil marks so they will not rub out, take wel kimmed milk and dilute with an equal bulk of water Wash the pencil marks (whether writing or drawing) with his liquid, using a soft flat camel hair brush, and avoidiv, all rubbing Place upon a flat board to dry.

The Charge for Insertion under this head is One Dollar

a line for eeach insertion; about eight worrds to a line.
Avvertisements must be received at pubbication office as early as Thursday morning to appear in next issue,

The H. W. Johns Mff. Co.'s new colors of Asbestos Liquid Paints are particularrly appropriate for large
structures, such as manufactories churches, brides structures, such as manufactories churches, bridgee
etc. We advise all owners of such buildings which re fure painting to send for samples.
Van Beils "Rye and Rock" is acknowled
the best remedy for lung and throat diseases.
Hartshorr's Self-Acting Shade Rollers, 886 Broadway, New York. No cords or balanices. Do not get out of
order. A great convenience. Sold everywhere by the

Hotchkiss' Mechanical Boiler Cleaner
V. Y., illustrated Scri. Am. Nov. G, 1880.\% New, enlarged. and simplififed form. quite inexpensivie. Engnineerargace,
ten per cent selling other parties than employers.
Street Sweeper, Smith's patent, for sale. Machinery Exe inange, 261 N. 3 strreet, Philadelphia.
Second-hand large size Wood Planer, R. Ball \& Co derer bue areap, Pum. Don't buy a Steam Pump until you
eey Machine Co.. Easthampton, Mass.
Standard-Reliable-Popular-Tte Steel Pens manu. factured by the Esterbrook Steel Pe
New York. Works, Camden, N. J.
Wm. Sellers \& Co., Steam Hammers. See ad., p. 108. The Practical Papermaker, a complete guide to the manufacture of Paper. by James Dunbar. \&1.00. Mail
free. E. $\& \mathrm{~F} . \mathrm{N}$. Spon, 466 Brome street, New York.
Best Turkey Emery and Star Glue, specially for pol Millstone Dressing Diamonds. Simple, effective, an Mechanical Draughtsman desires engagement Thorouyh mechanician. Brín
und tools. A. C. .., Box 777.
Wanted-An experienced and thoronghly capable machinist, oompetent to odesign, , buili, and det ap in work-
ing order light, special machines in a manufacturing ousiness; also to superintend repairs in shop connected with the factory; must furnish best reference as to
haracter, habits, and ability. Address P.O. Box 539 Baltimore, Md.
Rubber Packing, Soapstone Packing, Hemp Packing,
Empire Gum Core Packing. Greene, Tweed $\&$ Coo, N. \mathbf{Y}
Will sell reasonably, Patent Mill Feeder. Suitable for nill wriehts to handle. Jas. P. Lowell, patentee. PurcellBuilders of tramways and machines for crosscutting timber in forests, send circu
De Kaib street, St. Louis, Mo.
Abbe Bolt Forging Machines and Palmer Power Hammer a specialty. S. C. Forsaith \&Co., Manchester, N. H L. Martin \& Co., manufacturers of Lampblack an Foot Power Machinery for use in Workshopss, sent on
talif desired. W. F. \& Jno. Barnes, Rockford, III. Large Slotter, $72^{\prime \prime} \times 18^{\prime \prime}$ stroke. Photo on applica Large Slotter, $72^{\prime \prime} \times 18^{\prime \prime}$ stroke. Photo on
tion. Machinery Exchange, 261 N . 3 A St.. Phila. List 25. -Descriptive of over 2,000 new and second hand machines, now ready for distribution. Send st
for same. s. C. Forsaith \& Co., Manchester, N. H. Burgess' Portable Mechan. Blowpipe. See adv.,p. 76 . B. Boks for Engineers and Mechanics. Catalogues free E. \& F. N. Spon, 446 Broome St., New York.

Send to John D. Leveridge, 3 Cortlandt St., New York,
 Steam Engines, Telephones, Novelties, etc.
Pure Oak Lea Belting. C. W. Arny \& Son, Manufac rers Philadelphia. Correspondence solicited.
Within the last ten years greater improvements have
been made in mowing machines than any other agriculbeen made in mowing machines than any other agricul-
tural implement. It is universally acknowledged that the Eureka Mower Co., of Towanda, Pa.,. are making the Eureka Mower Co., of Towanda, Pa.. are making
the best mower now in ase, and every farmer should
write to the manutcanturers for catalogue, with prices. write to the manufacturers sor catalogue, with prices. Jenkins' ' Patent Valves and Packing "The Standar
Jenkins Bros, Proprietors, 11 Dey St., New York.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Wood Working Machinery of Improved Design and The "1880" LOA Csman, Egan \mathbb{C} Co., C neinnat, 0 . The "1880" Lace Cutter by mail for 50 cts.; discoun The Tools, Fixtures, and Patterns of the Taunton Youndry and Machine Company for sale, by the George
Place Machinery Agency, 121 Chambers St., New York. Experts in Patent Causes and Mechanical Counsel O., 50 A stor House. New York.

Corrugated Wrought Iron for Tires on Traction En-
hes, etc. Sole mfrs., H. Lloyd, Son $\&$ Co.. Pittsb Malleable and Gray Iron Castings, all descriptions, by Erie Malleable Iron Company, limited. Erie
Power, Foot, and Hand Presses for Metal Workers. Recipes and Information on lll Park Benjamin's Expert Office, 50 Astor House, N. Y. For the best Stave, Darrel, Keg, and Hogshead Ma-
chinery, address H. A. Crossiev, Cleveland, Ohio. National Steel Tube Cleaner for boiler tubes. Adjust
 Best Oak Tanned Leather Belring. Wm. F. Fore
paugh, Jr.\& \& Rrss, ssit Jefferson St., Phi adelphia, Pa. Stave, Barrel. Keg, and Hogshead Mactiriery a spe Wribt Paten Stem E
Wright's Patent Steam Engine, with automatic cut
or. The best engine made. For prices, address william ${ }^{\text {off. The }}$ The best engine made. For prices, ad
Split Pulleys atiow prices, and of same strength and apperaranceas Wholo P Pulleys. Yocom \& Son's Shafting
Worrs, Drinker St, Philadelphia. Pa.
Clark Rubber Wheels adv. See page 109 .
Presses. Dies and Tools for working Sheet Metal. etc. Blake " Lion and Eagle "Imp'd Crusher, See p. 109.

The Brown Automatic Cut-off Engine; unexcelled f
workmanshi, economy, and durability. Write for in
 National Institute of Steam and Mechanical EngineerIanagement. The metallurgy of iron and steel. Prac ical Instruction in Steam Engineering, an
ion when competent. Sendfor pamphlet.
Nickel Plating.--Sole manufacturers cast nickel an. odes, pure nickel salts. Importers vienana lime, crocus.
eto. Condit. Hanson \mathbb{L}. Van Winsle, Newark, N. J., and The I B 9 Lberty St., New York.
The I. B. Davis Patent Feed Pump. See adv, p 76 . Moulding Machines for Foundry Use. 33 per cent
saved in labor. See adv. of Reynolds $\&$ Co., page r6. C. B. Rogers \& Co., Norwich, Conn., Wood Workin Cachinery of every kind. See adr., pake 7 7. Saw Mill Machinery. Stearns M! g. Co. See p. 77.
The Sweetland Chuck. See illus. The Sweetland Chuck. See illus. adv., p. 76 . Machine Knives for Wood-working Machinery, Book Binders, and Paper Mills. Also manufacturers or Solo-
man's Sarallel Vise, Taylor. Stiles \& Co.,Riegelsville,N.J. Rollstone Mac. Co.'s Wood Working Mach'y ad. p. 92. Fire Brick, Tile, and Clay Retorts, all shapes. Borgn Eclipse Portable Evine See in
Eclipse 4 to 40 H P. Steam Engines. See adv. p. 93. For Machinists' Tools, see Whitcomb's adv., page 73. Apply to J. H. Blaisdell for all kinds of Wood and
ton Working Machinery. 107 Liberty St., New York Iron Working Machinery. 100
Peck's Patent Drop Press. See adv., page 109 The Chester Steel Castings Co., office 407 Library $s t$ 10.000 Gear Wheels, now in use, the superiority of their Castings over all others. Clreular and price list free.
Wren's Patent Grate Bar. See adv. page 109.
The Improved Hydraulic Jacks, Punches, and Tub
Expanders. R. Dudgeon, 24 Columbia St., New York. For best Indirect Radiators, see adv., page 109. Eagle Anvils, 10 cents per pound. Fully warranted Engines repaired without loss of time. L. B. Flan Machinists' Tools and Special
'ry. See adv. p. 102 Honston's Four-Sided Moulder. See adv., page 109. H. A. Lee's Moulding Machines, Worcester, Mass. For Shafts, Pulleys, or Hangers, call and see stoc For Mill Mach'y \& Mill Furnishing, see illus. alv. p. 10 The Studen's Illustrated Guide to Practical Draugh Bg. By T. P. Pemberton. Sent on receipt of price. 81.
Address T. P. Pemberton, 5 Dey st., Room 13,New York. New Economizer Portable Engine. See illus. adv. p. 108 Wm. Sellers \& Co., Phila, have introduced
Skinner \& Wood, Erie, Pa... Portable and Stationar Engines, are full of orders. and with draw their illy
ted advertisement. Send for their new circulars.
Saunders' Pipe Cutting Threading Mach. See p. 109 Toope's Pat. Felt and Asbestos Non-conducting Re
 Use Vacuum Oil Co.'s Cylinder Oil, Rochester, N. Y

Haluct Munis

HINTS 'TO CORRESPONDEN No attention will be paid to communications unles accomp
writer.
Name
iven to inquirers.
We renew our request that correspondents, in referring we the date of the paper and the page, or the number of the question.
Corressondent
Correspondents whose inquiries do not appear after a reasonable time slould repeat them. If not then pub-
lished, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely
a personal character, and not of general interes of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 0$, according to the subject, should remit from $\$ 1$ to $\$$, according to the subject,
as we caniol be expected to spend time and labor to as we caniol be expected to spend time and
obtain such information without remuneration.
Any numbers of the Scrivilific American
SUPPLLE MENT referred to in these co
office. Price 10 cents each
(1) B. R. asks: What is the best method of spreading a thin layer of selenium on glass surfaces and other smooth surfaces of that description? A
This is a subject of which there is but little known at This is a subject of which there is but little known at
present, for, as Nature says, "the investigation is one that requires to be carried on with the aid of a fully equipped laboratiory, and is beyord the power of an or
dinary experimentalist." It is, in the meantime, uncer tain as to whether a transparent sheet of selenium can
be more easily obtained by a method of precipitation be more easily obtained by a method of precipitation
than by mere mechanical treatment. It dissolves fuel in chloride of selenium and precipitates slowly in a botryoidal mass of hack selenium. It also separates
in the crystalline form from solutions of selenide o potassium or sodium. In its sitreous condition selenium melts at a temperature of about 220° Fah.. and cal
drawn out between mica plates to a thin red film.
(2) C. V. S. asks: 1. How many mercury flasks. as described in Supplement, No. 182, would need for a boiler for a boat 30 feet long, 6 or 6% feet fet
beam, and 3 feet deep? A At least 60 for water and 30 for steam. 2. In laying the keel, should it be of one piece of oak, ,33 or 34 feet long,steamed and bent tof form
the bow; or should it be a piece of oalk, 33 or 34 feet long the bow; or should it be a piece of oak, 33 or 34 feet long.
with the bow and stern post rabbeted to the keely with the bow and stern post rabbeted to the keely A .
It may be steamed and bent, or the stem and stern posta memay he steamed and bent, or the stem and stern posts What size should the engine be for a boat 30 feet long,
of the style described in Supprement, No. 81 , of the

Flirt, built by H. S. Maxim? A. 5 inch to 6 inch cylin ize go from New York city to United States o Colombia, say to Aspinwall, and if so,what would I nee besides compass, charts, and lamps? Would I have to get any papers permitting me to go on said voyage, as
the owners of vessels have to have? A. It must be inpected and licensed if over 5 tons measurement.
(3) D. A. asks: 1. Which is the bette device to keep steam on a self-propelling fire engine.
to keep a banked fire in the furnace, or to use a heate to keep a banked fire in the furnace, or to use a heater
similar to those employed with the ordinary fire engine? In fact, is the first method a safe one A. We e ongine the heater the safest. 2. In connection with a heater or keeping water hot in an engine, which pipe should be the largest: the one leading to or from the engine A. It is quite as well to have both pipes of the same
size; but if a difference is made, the retum pipe should
(4) F. W. F. asks: 1. How can I polish small plano convex lens which is slightly scratched on
the surface? A. See article on lens making. vol. x xiii age 51, Scientiric American. 2. What preparation shall I apply to paper or other substance to take pictures
with a camera, and cost of same? A. This informa. ion to be of any practical value would require too much of our space. Consult some good work on photography 3. Why is a meniscus lens better for the object glass of refracting telescope than a double convex lens, so
tated in Scientrici AMERICAN Surpuem in , No. 25 Does it give less prismatic colors ? A. With the men scus there is less spherical and chromatic aberration I I have a private acoustic telephone line; line wir ary smal size copper wire. At each end I have a wire runningdown into moist earth and twisted around the line wire. Will these wires convey to the ground any
charge which the line may receive during a hower, preventing all danger to the inmates of the houses? A. Yes, providing the ground ends are termiated in a coil buried in a bushel or so of coke which salways enveloped in moist earth. It would be better
o solderyour ground wire to a gas or water pipe if pos-
(5) E. W. C. asks: 1. Can a rotary engine such as the "La France Fire Engine," be run backward by bringing the steam in through the exhaust pipe ? A Yes. 2. Could such engine be run by gas, by having
the explosion at regular intervals? A. It might be run in that way. 3. Which would be the most economical the above or a cylinder engine using gas, the po
being 2,00 foot pounds? A. The cylinder engine.
(6) J. B. H. asks: What will restore on silks and silk laces luster lost in dyeing? A. Grate agitate briskly for a few minutes, and let of sond water to settle. Carefully draw off the clear liguid, and with this sponge the fabric thoroughly. Press verv strongly vith hot irons-in one direction-between fine cloths ept moist.
(7) E. B. asks: What are the dimensions and tonnage of the yacht America, whether she is keel
or center board, and the lengths of her spars ? or center board, and the lengths of her spars 9 A
Yacht America's original dimensions were: Length on Yacht America's original dimensions were: Length on
load, water line, 90 feet 8 inches; breadth, extreme, 22 feet 6 inches; carpenter's tonnage. 210 tons. Her ${ }_{76}$ feet 6 inches; mainboom, 70 feet long; foreboom, 26 feet long.
(8) F. L. P. writes: In your issue of January 92, in reply to L. D. G., you say the pressure tue feed pipe is a trifie more than on the boiler. W. youre so kind as to explain how youget the estra pres-
sure \& The difference in pressure is due, first, to the greater area, the upper, than the underside of the
delivery valves; second, to the friction of the valves; delivery valves; secona, to the friction of the valves,
and third, the friction of the water in the pipes and pas-
(0)
(9) U. D. M. asks: 1. What is the rule for unning a belt from one pulley on to another on a bevel
so as to run the shafts on an angle? A. You will find the rule with a diagram on page 27 (5), Vol.40, Scienstifi MERICAN. 2. How much power can we nse on the ent A. It depends upon the speed of the shaft. 3. How large a steel wire rope do we need to 5 horse power, 250
feet from first pulley? A. It depends upon the speed feet from first pulley? A. It depends upon the speed
of the rope. You can get tables of sizes and speeds of the rope. You can get tables of sizes and speeds
from manutacturers of wire rope. 4. Which is the cheapest and best to use for 5 horse power, 250 feet fro driving pulley, steel wire rope or iron shaft ? A. Wire
(10) J. S. H. writes : I have an office hand lithograph press for printing letters on stone. I get a
splendid impression of transfer on the stone, but after dampening the stone with a sponge it seems to take the ink almost as readily as the transfer, thus smutting up the print. I use a buckskin roller and
printer's news ink. Can you tell me how to proceed so printer's news ink. Can you tell me how to proceed so
that the stone will not take the printer's ink except where the transfer ink strikes, and how to get a clear and clean print? A. Let. the stone dry and wash it in water and then in weak gum water preparatory to inking. Add a little stale beer or vinegar to the
used for dampening. Use good lithographic ink.
(11) B. I. B. asks: What kind of varnish or oil will be best for preserving eggs, and how can it be
applied so as to have a thin, even coating? I want something in which eggs can be dipend. A. You may try ordinary linseed oil (used for this purpose in Germany), or thin alcohoic sheliac varnish. See suppue 39, p. 375.
(12) J. S. H. writes: I see many inquiries fyour columns asking how to clean the aniline ink
from printing pads after through. printing. I can answer. Saturate a sponge in water as hot as possible of the pad hand in, pass the wet sponge across the face the face with the sponge dipped in cold water. Experience has also tanght me that when the print begins to get dim, if you will dampen the face of the pad with
a sponge dipped in cold water, the ink becomes as
bright as at first, and in this way a much larger mumber right as at first, and in this way a much harger number
of letters may be pulled than if this process is not em(18)
(13) C. C. C. asks: Is there no way in which rubber could be sotened in process of making
rubber stamps except by heat? A. Sulphide of carbon benzole, turpentine, and the essential oils in genera cause rubber to swell and soften. While thus softened it may be moulded; but as the oils or other liquids used
escape by evaporation it shrinks again. Softening by escape by evaporation it sirinks
heat gives more saisfactory results.
(14) T. B. asks: Which has the most fric tion, a locomotive crank pin seven inches in diameter
or one four inches in diameter, the width of bearing eing the same in both cases? A. The conditions beir but the loss of power would be greater with the larger pin, as the friction acts upon a longer radius.
(15) J. W. asks: 1. What sized belt will ive 180 horse power under following conditions: Driv-
ng pulley 7 feet in diameter, driven 4 feet belt in tact with one half the circumfrence of 4 feet pulley, speed of belt 3,300 feet per minute? Please give rule. A
Calculate by the following formula, $\frac{\mathrm{WS}}{600}=$ horse power $\mathrm{W}=$ width of belt in inches; $S=$ speed of belt in feet per
minute. In your case belt should be 33 inches wide in ninute. In your case belt shoula be 33 inches wivi
round numbers. In this case 600 is used for a divisor because
use 800.
(16) E. H. asks (1) how much power a cerain size pulley (say 12 inches diameter. 6 inches face) W inch belt. A safe rule for the power of a belt $\frac{\mathrm{W} \mathrm{S}}{800}=$ horse power, where $\mathrm{W}=$ width of belt in iches, and $S=$ speed of belt in feet per minute. From this you can get the power of your pulley. 2. Can you "Cooper on the Usc of Belting."
(17) L. J. C. asks for the best methods o sticking paper together to make paper boats, pails, or
hings similar. A. One of the following cements will probably answer: 1. Wateruroof: gum rubber 1 lb shellac, 2 ll .; benzole, 12 lb . Cut the gum rubber int ine shreds, and macerate it with frequent agitation in the benzole until dissolved. Then place the vessel (out of doors) in a bath of hot sand, and gradually add, witi notant stirring, the powdered shellac. Heat and sti intil a perfectly homogeneous mass is obtainedcelain enameled iron dish. For a stirring rod use a pestle. 2. Gum rubber, 1 lb. asphaltum (not tar), 1b.; benzole,, . . . Cut Cut the rubber fine, macerate until
is dissolved in the benzole, then graduly i is dissolved in the benzole, then gradually add the
sphaltum, triturate together in a mortar until all i asphaltum, triturate together in a mortar until all is
softened and dissolved. It should have about the con sttened and dissolved. It should have about the conplaster of Paris, 2 ; turpentine oil, $1 / 4$. Meilt the resin in the heated oil, remove out of doors, and stir in th and turpentine while hot.
(18) W. R. R. writes: We are building a pumped from a well; the water will be used to supply pumped from a well; the water will be used to suppl
and wash out our locomotives. Should the inside of tank be painted? If so, what is best? A. Paint with brown
oxide paint (oxide of iron), ground in and mixed with oxide paint (oxide of iron), ground in and mixed with are linsced oi
(19) J. S. M. asks: Are the rims of rail way car wheels chilled? If so, will the rim and center the whecl, when remelted, be equally soft in temper
. They are chilled, and when remelted, the effect of chill is to a great degree, destroye.
(20) J. T. M. asks for a receipt for staining whisky barrels a weather-beaten color. A. Use a
strong aqueous solution of green copperas (sulphate of iron) or nitric acid.
(21) C. W. V. writes: 1. I want to tin hoop rou. What can I use to take off the scale? I have tried muriatic acid, but it does not seem to clean it. A
Pickle in a bath of muriatic acid 1 part, water 20 parts, until the red oxide disappears, rinse and heat to redness to remove the scale, hammer on an anvil, and immers in a bath of fermented bran water at 100° Fah. fo about 12 hours. On removing brighten by pickling in oil of vitriol 1 part, water 20 parts, at 100° Fah. Finish y scouring with hemp and fine sand. This is the usua method. 2. Can Imix lead with the tin? If so, what
proportion can be used A. Lead can be mixed with tin up to 50 per cent, out in such a bath the lower por results are not good.
(22) J. S. B. M. asks: 1. How can mica A. Mica canno 2. What is the best article I can use to bring zin (metal) to a high polish for engraved signs? A. Use fine pumice
fine tripoli.
(23) E. H. B. asks: What is the method products anice house dry-the air dry-so that eggs without spoiling? A. The dryness of an ice house de pends more on its construction than anything else. The ice receptacle should be located so that the moisture of
(24) G. T. asks for a receipt for a first class fice mucilage. Something that will not blister the aper an mos re. A. Thy following: Good gelatin, 5 oz .; rock candy, 20 oz ; gum arabic, 3 oz .; tin in the cold water overnight, then heat to boiling for several hours (replacing the lost water), and gradually (25)
(25) M. L. B. asks for a good receipt for a leak when red lead is insufficient, such as around stud leak when red lead is insufficient, such as around stud
bolts, or cracks in castings, etc.' I once was handed for trial a preparation resembling yellow clay to be ap.

February 19, i88i.j
plied just before turning on steam, that became very hard; but lost name of article. A. Iron cements or rus joints are generally used for such purposes. The fol-
lowing receipts are good: 1 . Iron borings, pounded fine in a mortar, 1 lb .; sal ammoniac, in powder, 2 oz ;
flowers of sulphur, 1 oz . Mix the whole thoronghly dry. For use mix 1 part of the above with 20 of fine ironborings, and mix with water to the consistence of
mortar. Use at once. 2 . Iron borings, 2 lb . (clean); mortar. Use at once. 2. Iron borings, 2 lb. (clean);
flowers of sulphur, 1 oz.; sal-ammoniac, 1 oz. 3.98 parts ine, clean iron borings, all 1 pars. Mix thers and moisten with hot water, when required for use 4 Fine clean iron borings, 1 lb .; sal-ammoniac and spirit of salt, each half an ounce; water to moisten thoroughly when required for use. The joint should be allowed to rest for at least 10 hours before putting under pressure.
For cracks calk in a little rope yarn fiber first, then calk For cracks cal
(26) C. M. asks for en easy chemical test for injurious gas in rooms warmed by a coal furnace A. We know of no simple way of testing air for such
impurities. Carbonic oxide, the impurities. Carbonic oxide, the most to be dreaded of
such products of combustion is very difficult to detect, in such a connection by chemical means, but as it usually accompanies or is accompanied by carbonic acid gas, in such cases the detection of any considerable quantity of tiee latter serves as an indication of the pres-
ence of the former. Carbonic acid is detected in air ence of the former. Carbonic acid is detected in air
by drawing the air through a solution of lime in distilled by drawing the air through a solution of lime in distilled
water (clear filtered). Carbonic acid precipitates carwater (clear filtered). Carbonic acid precipitates car-
bonate of lime from such a solution, making the liquid more or less milky. It should be remembered that all air contains a trace of carbonic acid, hence the liquid will always be more or less affected. Experiment first with pure ont-of-door air, then with the air of a badly ventilated room, passing about the same volume of air,
and you will soon be able to judge whether very much

carbonic acid is present or not. A simple apparatus for such tests is made from two glass bottles with good
stoppers and a few pieces of glass tubing, as indicated above. D contains the lime water. C, a safety bottle to prevent the entrance of air from the lungs entering
through E . The mouth is applied at \mathbf{A}. The air enters throug
at B.
(27) R. A. \& J. S. ask: Have you ever known machinery of $1 \pi 0$ horse power driven by a rub ber belt? What should be the width of a belt to convey that amount of power: A. Yes, if the speed of
your belt is 3,000 feet per minute it should be about your belt is 3,000 feet per minute it should be about
30 inches wide. We refer you to two cases mentioned in "Cooper on Belting" page 15\%
(28) A. M. B. and others inquire how to make an oxyhydrogen iet for a magic lantern. A. The
cut shows a very convenient form of oxyhydrogen jet. cut shows a very convenient form of oxyhydrogen jet.
It is provided with two interchangeable jets, AB; the spindle, which holds the lime cylinder. is adjustable
lengthwise of the gas tubes, and is rotated by a fexible shaft coñected with a revolving spindle extending to
 formed and connected is pressed
by two springs insulated from ch metallic handles to be grasped
by the person treated by the current. The commutator cylinder is turned upon its shaft until
the maximum current is realized, when it is fastened. The machine
may be driven by a small round may be driven by a small round
may be augmented by using a com.
the back of the lantern. The burner is supported by a rod (not shown) projecting from a movable base. The
jet, A, is of the annular form, the small central jet being for oxygen and the annular jet surrounding it for the hydrogen. There is no internal communication behydrogen. There is no internal communication be-
tween the two pipes. The jet, B, combines both gases
in the chamber beneath, and is not safe unless both tween the two pipes. The jet, B, com safe unless both
in the chamber beneath, and is not
gases are under equal pressure. Common illuminating gases are under equal pressure. Common illuminating A, and it may be taken directly from the burner of an ployed the dissolving effect is secured by turning of the oxygen.
(29) S. M. W. asks for the process of gild ing on common stone china, such cheap ware and gilding as we see so frequently at present in the shops. Also of fire ? A . The gilding is done either by an adhesive varnish or by heat. The varnish is prepared by dissolv-
ing in hot boiled linsed oil an equal weight of either ing in hot boiled linsced oil an equal weight of either amber or copal. This is diluted with a proper quantity of oil of turpentine so as to be applied as thin as possi ble to the parts to be gilt. Let stand after varnishing
abouc 24 hours, then heat in an oven until so warm as almost to burn the fingers when handled. The heat softens the varnisb, which is then ready to receive the gold leaf, which may be applied with a brush or pledget of cotton, and the superfluous portions brushed off Burnish when cold, interposing a piece of thin paper between the gold and burnisher. Where burning in is practiced the gold reduced to powder is mixed with powdered borax glass (anhydrous burax), moistened
with a little gnm water, and applied to the clean surface with a camel hair pencil. When quitedry the article is put into a stove heated to about the temperature of an annealing oven. Thegum burns off, and the borax, by vitrifying, cements the gold with great firmness to the surface.
(30) M. M. H.-To temper gun springs, heat them evenly to a low red heat in a charcoal fire,
and quench them in water with the cold chill off, keeping them immersed until reduced to the temperature pound permanent magn

Minerals, etc.-Specimens have been reei ved from the following correspondents, and examined, with the results stated:
M. M.-The boiler incrustation consists of iron, lime and alumina sulphate, carbonate and silicate, derived from impure feed water. It may injure the metal if
allowed to accumulate.-C. S. T.-No. 1. Garnets-the stones are hardly clear or perfect enough to be of much value to jewelers. No. 2. Diallage-a lime magnesia silicate. No. 3. Limonite-an iron ore. No. 4. Mar-
casite-white iron pyrite. No 5 . Serpentine and calcite. No. 6. Calcite-crystallized lime carbonate.-F F.-No. 1. Quartz rock. No. 2. Granite.-G. D. H.It contains lead acetate, beside much organic matter.
Would require a chemical analysis.

COMMUNICATIONS RECEIVED
On a Method of Applying Tin Foil to Leyden Jars. By
T. S. T. S.
On Multicolor Printing. By E. G. B.

English Patents Issued to Americans. From January 14 to January 18, 1881, inclusive. Boats and vessels, masting and rigging for, J. McLeod, New York city
Cake machinery, J. H. Mitchell, Philadelphla, Pa. Mass.

Dumping boats Fog signal, F. N. Barney, Bergen Point, N. J Grain drier, G B, Boomer Nork city. Metallurgical furnace, J. G. McAuley, Denver, Col Piston rod packing, C. C. Jerome, Chicago, Ill.
Screws, countersinking wood, J. Eckford, San Antonio, Texas.
Tool holde
Valves for J. M. Bibbins, Williamsport, Pa. Waterproof fabric (2 cases), D. M. Lamb. New York city
of the water. Place an iron pan containing lard oil and
tallow, in about equal quantities, tallow, in about equal quantities, over a fire, and place
the springs therein. and heat the pan until its contents take fire; then hold the springs in the flames, turning them over and over and dipping them occasionsilly in the oil to keep them blazing; when the oil adhering to them blazes freely when they are removed front the (31) B.
(31) B. A. and others ask how to produce n illuminating composition. A. Cleunse oyster shells by well washing, expose them to a red heat for half an cible in alternate cleanest parts, and put into a cru vessel to a red heat for an hour at least. When cold If eak the mass, and separate the whitest parts for use If inclosed in a bottle it is said the figures of a watch osity of the mass place the bottle each day in the sum, or in strong daylight; or burn a strip of magnesium wire close to the bottle. The sulphide of lime will thu bsorb light, which will again be available at night.
(32) A. R. asks how to utilize old bones for fertilizing purposes. A. Unless the quantity is ver large, the bones should be crushed fine as possible wit a heavy iron hammer, mall, or with a large stone mor
tar. Place the fragments in a heating compost of yard manure and ashes, taking care to moisten it frequently With liquid manure if to be had, or with water in de fault of the urine. By spreading a thin coat of fresh earth or plaster over the pile, the escape of the valu-
able ammonia will be prevented. Six months' time will able ammonia will be prevented. Six months' time will
suffice to disintegrate the bones and produce as complete and effective a manure as can be made on the farm. The proportion of ashes to bones should be at east an equal amount of ashes as of bones; more wil do no barm. The larger the amount of manure, within reasonable tounds, the better; at least two or th
times as much as of both the others is advisable.
(53) H. P. R. asks how to make a small battery for operating electric jewelry. A. The essential parts of such a battery are, two plates of carbon, one plate of well amalgamated zinc, and a solution made
by dissolving 2 parts of hichromate of potash in 20 parts by dissolving 2 parts of hichromate of potash in 20 parts acid. The zinc plate is placed between the two carbon plates, leaving a space on each side. The carbon plates are connected together and with one of the conducting wires, the zinc plate is connected with the other con-
ducting wire. The zinc and carbon plates may be ducting wire. The zinc and carbon plates may be at
tached to a rubber stopper fitted to a small jar or bottle containing the bichromate solution at the bottom below into contact with the plates by turning the bettle down on its side. This battery works powerfully for a short time, but the solution soon becomes exhausted and must be replaced
(34) M. B. B. asks: What is the best and easiest way of making a magneto or crank batteryeasy way, but perhaps the easiest way is to mount an electro-magnet wound with No. 36 wire on a shaft so that it may revolve in proximity to the poles of a per-
manent U magnet. The sides of the magnet should be manent U magnet. The sides of the magnet should be
parallel to the plane of rotation of the electro-magnet parallet to the plane of rotation of the electro-magnet
and as near to the latter as possible without actual conand as near to the latter as possible without actual con-
tact. The terminals of the magnet wire should be soldered to a commutator consisting of a split ferrule attached to an insulating cylinder on the magnet shaft. The ferrule should be divided at diametrically opposite points, and one end of the wire should be attached to
[OFFICIAL. 1
INDEX OF INVENTIONS

etters Patent of

Granted in the Week Ending
January 18, 1881,
AND EACH BEARING THAT DATE ['Those marked (r) are reissued patents. 1
A printed copy of the speciffcation and drawing of any patent in the annexed list, also of any patent issue ince 1866, will be furnished from this office for one dol lar. In ordering please state the number and date of the
patent desired and remit to Munn \& Co., 37 Park Row patent desired and remit to Munn \& Co., 37 Park Row New York city. We also furnish copies of patents granted prior to 1866; but at increased cost, as the speci fications not being printed, must be copied by hand.
Air compressor, C. A. Mayrhofer.........
Air purlfying apparatus, I. W. Parmente Apparel, wearing. A. Maltby.
Baling press, G. W. McKenzie
Baling press, G. W. McKenzi
Beehive, D. Cripe.........
Belting joint E. P. Farnum
 Blind, J. J. Angus.
Boit cutter, H.
Boit cutter. H. K. Porter
Book rest, A. P. Massey
Boot and shoe counter stiffener, H. W Shepard
Boot and shoe counter support Boot and shoe sole edge trimmer, \mathbf{z}. Beaudry. Box fastener, C. A. Taylor....
Bracelet, Hammond \& Hoder
Bracelet, H. Unger...
Bricis kiln, T.S. Smith
Bracekiet, kiln, T. S. Smith
Buckle, W. B. Hayden
Buckle, W. B. Hayden.........
Bulletin board, A. D. Marble.
Burglar guard for doors and windows, J. P. Neeles Button, sleeve, L. A. Willemin...........
Cabinet, dry goods, A. M. \& C. W. Jones Cane and camp stool combined, A. Burnham
Car coupling, L. Bibb.......... Car coupling, L. Bibb.
Car, metallic, W. A. Cushman.............
Car, preserving and freight, O. G. Davis.
Car, stock, T. D. Gallagher.
Car, stock, w. B. Palmer.
Card and sample holder, F. L. Cutter..
Card and sample holder, F. L. Cutter..
Carding machine trumpet, G. A. Chase Carpet cleaner, W. MpA
Carriage top, T Smith.
Cartridge loading implemen
Ceiling, freproof, F. Baum., J. H. Han
Chain, ornamental, A. S. Southwic
Cigar tip cutter, G. Kauf mann....
Collar pad, J. Whitney.........
Collar pad, horse, J. T. Stoll...
Collar fastening, Reynolds \&
Coop, folding. W. H. Cad well......
Corset steel fastening, T. C. Bate
Corset steel fastening, I. UIman
Cot and settee, combined folding, S . W. Shaw. Cotton cleaning machine, J. F. Cunningham, S
Cotton gin, Carver \& Keith...... Cotton.gin, Carver \& Keith
Currycomb, W. P. Kellogg
Crlindrical bars, tubes, etc., burishing and ducti zing, J. Reese..
Diving apparatus........................
Door spring, J. H. Mohr Door spring, J. H. Mohr.
Door spring, M. C. Mohr Doubling and winding ma
Edge iron, w. R. Barton.
Ega carrier, G. M. Huston
Engator roof for hay or grain
Engine, J. II. Allen Explosive compounds, manuf Eyeglass frame, G. Andross
Eyeglasses, J. P. Michaels
Fan, exhaust or blower, Green \& Sta Fanning mill, Ehterding \& Senne.
Fence, L. M. \& A. E. Austin Fence, , . M. \& A. A.
Fence, J. Heacock
Fence, J. Heacock.............
Fence, portable, C. R. Rosen.
Fifth wheel
Firearm, breech-loading, J. G. Dunlap
Firearm, magazine, G. V. Firearm, magazine, G. IV. Norwoo
Fire escape ladder, J. T. Cowles Fire escape ladder, J. T. Cowles
Fishing line, sinker for heavy, W. II. Andrew Fog signal, F. Brown....
Folding table, H. M. We
Folding table, H. M. Weaver.......
Friction coupling device, R. H. Hil Fruit basket, W. H. Higgins
Fruit crate, W. Pickett
Fruit crate, W. Picke
Fruit evaporator, A. J.
Gate, B. C. Cressey
Gate, E. A. Peasle
Gem setting, J. S. Palmer
Governor stop motion, W
Grain drier, M. D. Halsey
Graining zincographic and like plates, device for
C. N. Morris..
Grating or perforated plate of metal and other
tions made therefrom,
illuminating, T. Hyatt
Harness, J. J. Johnson. .
Härow, J..H. Barley..
Harrow, T. H. Davies.
Harrow, A. C. Evans...
farvester, J. H. Elward
Harvester, R. M. Hunter

Hides, compound for liming, C. J. Tinnerholm.
Hinge for school desks, stop, Costello \& Hall... Horse detacher, W. P. Green
Hotel register, E. M. Tree...
Hotel register, E. M. Tree................................
Ice and cold, artifcial production of, Rossi \& Beck-
Ice box, J. Simmons
Infusions or extracts, apparatus for making, R. U.
Entzensberger...............................
Knitting machine, circular, J.
Lamp, electric, J. V. Nichols..
Lamp, electric, J. .F. Nichocs..
Lamp, hanging, C. F. Spencer.
Lantern holder, w. B. Coulter
Lantern holder, Lif raft, Roberts \& Knight.

Lock case, E. Parker.
Locomotive draught device, G. Neiliso
Lounge, folding or bed, G. Snyder...................
Lubricator for steam valves of locomotives, G.W.

\%			
a			

位
Mirrow.toilet J. Hollely \quad Russell................. 236,8
H. B. \& W. H. Wysong

Motion, machine for converting reciprocating int
rotary, F. B. Nichols
Musical instruments, key board attachment for F.E. Moore

Ore separator, J. A.Coombes..........................
Ore separator. . . . Stephens..............
Ores, process of and apparatus for treatment of
T. G. Walker..................
linger
Padidewheel, feathering, D. J. Blasier.......
Paint guard for window panes, L. T. Jones...
Paper pulp machine for preparing wood for,
Stewart.......
Iicture hook. J. H. Walker.
Picture
Picture stand, G. Scheurich
Plane, edge, W. R. Barton..
Plow. Melancon \& Ayrand
Plow. Melancon \& Ayrand,..........
Plow, cultivating. R. w. Whitehu

Preserving and storing soilding, fruit. J. Baker.. 23
Pressure regulator, steam, N. C. Locke (r).........
Printing presses, device for securing forms on the
beds of w. G ast

Pump, J. s. M. Willico
Pump attachment, S. J. Adams
Pump, rotary, J. W. Sutton.
Raili ng and fence. iron, J. C.
Railing and fence. iron, J. C. Bank
Ram, double-ended, P. Burgess.......
Refrigerator car, J. Lorenz
Refrigerator J.
Refrigerator. J. C. Bnwen.:
Refrigarator, G. F. Gerrish
Rice drill, J. Traplor.
Road engine, T. H. M
Road engine, T. H. McCray..
Rotary steam engine, W. H. Dunkerl
R
Rubber cloth, etc., composition for treating. P.
Kropp,
Saddle, gig, C. W. Rogers.
Saw tooth, E. C. Mulford .
Screens, machine for shaking, II. Behr
Screw driver, s. B. Peakman.
Screw driver, s. B. Peakman...........
Sewer bottoms, invert block for, C. A. Perry..
Sewering and draining cities, G. E. Waring, Jr
Sewering and draining cities,
Sewing machine. L. H. . Davis
Sewing machine treadle attachment, L. T
Shade roller, J. C. Late.............................
Sheet metal, straightening, G. E. Somers.
Sheet metal, straig
Shirt, c. A. Brown.
Shirt, C. A. Gilbert
Shirt, C. A. Gilbert
Sboe nail, D. C. Knowlton
Shoulder brace. E. J. Rawlings.
Shoulder brace, E. J. Rawlings..................................... 236.718
236.668
Skate attachment, C. Brewster

G. H. Sellers....................................... 236.723
Stamp, hand, w. D. Wesson................ ... 236,742
Steam supplying apparatus, M. W. Hazelton. ... 236,810

Stove, E. Blackman...
Stove, oil, J. M. Whitmore.....................
Stove, petroleum cooking, F. Hildebrandt.
Stove, petroleum cooking, F. Hidebrand.........
Straw stacker, extension, w. Holmes
Striking drill for mining purposes, Butler \& Bul
lock.
Stump puller, N. P. Merchant
Tea kettle top. C. E. Shu
Telephone line apparatus, E.............
Thill coupling. D. A. Green.
Thill lug, N. T. Folsom.......
Tool, compound,
Toy, E. R. Parsil.
Traction engine. S. S. Barr
ransfers, freight and other, A. E. McDonald
Lieb........................
Type case, J. Breakey.
Valve, stop, z. E. Coffin
Vehicle whee, A. B. y Fabrega
Vent plug. F. A. Renton
Vent plug. . A. A. Renton
Vignetting apparatus, automatic, H. S. Sutter.
Vinegar making apparatus, Boomer
Vinegar making apparatus, Boomer \& Randall.
Wagon coupling, J. H. Gressom
Wagon standard, J. S. Van Eps.
Waste pipe valve, Daggett \& Whitcomb
Watch stem winding. H. Abbott.
Water elevator, J. N. Gee
waterproof wearing apparel, T. Hawley
Wick raiser, lamp, C. F. McCart
Wick ratchet stop for lamp burners, e. H. Judki........236,688 236,708
Winding yarn or thread, machinery for, J. \& T. A.
Windmill, D. S. Thomas
Window and door button. Brown \& Winter
Window screen, D. B. Bauder...................... 236,754
Wood bending machine, J. A. Topliff...........236.37

$$
\underline{\longrightarrow}
$$

DESIGNS.
Bottle, C. Roberts.
Carpet, \mathbf{T}. J. Stearn
$12,139,12,140$
$.12,129,12,132$
Chain, link, ornamental
Chair seat. I. N. Dann
Coffin handle, W. R McComas
Gimp, W. V. Ooths.
Key, J. H. Barnes.
Lacing hook. S. N. Smith
Lamp, C. F. A. Hinrichs
Lamp, C. F. A. Hinrichs.
Spoon and fork handl.
Spoon and fork handle, H...................
Spoon and foris handle, G. Wilkischen.
spoon and fori handle, G. Wilkinson
Type, font of printing, J. M. Conner.
Type, font of printing, H. Ihlenberg..
Type, font of printing, \mathbf{W}. W. Jackson
Type, font of printing, A. Little...
Type, font of printing, J. K. Rogers

TRADE MARKS

Dress go cashmeres and or, Iselin, Neeser
Paper collars, cloth-faced, H. A. Mann, Jr..................148
Remedy against zellow fever, L. Domenique.......151

THE BEAUTFYL SWISS STEMWMNO WATCH

NOTICE TO ARCHITECTS.

 Chafrman o. Comin on buiding.

C. .T GODFREY \& SON,

ค (1)

KEUFFEL \& ESSER'S. NEW YORK,
 NEW 3 STORY BUILDING, 55×77, WITH
power. on Ow wego River. suitable for kniting fictory

A. P. hart, Phoenix, $\mathrm{N}_{1} \mathbf{y}$

MACHINISTS AND STEAM FITTERS.

Adrextinempti.

 Inside Page, each insertion $:-75$ cents a lineBack Page, each insertion $-: 81.00$ a line. Engraing About eith twords to a line.),
 as Thursday morning to appear in next issue.

WOOD WOBNING MICHINRTRT:
 DLANING ${ }^{N G}$. $D^{\mathrm{NG}} \mathrm{N}_{1}$ SING.

 IV. BAND MACHNES SCROL SAWS Q UNIYERSAL VARIETY WOOD WORKERS

Gold, Silver, and Nickel Plating.

FLOWERS ${ }^{\text {E. }}$

VASE ENGINE, Absolutely non-explo-
$\begin{aligned} & \text { sive under all circum } \\ & \text { stances } \\ & \text { and } \\ & \text { tions. } \\ & \text { tiondi- }\end{aligned}$
inlinder $13 /$

 TYSON ENGINE CO., Philadelphia.

Attention, Thrashing Machine Companies Sack Holder and Grain Register

THE BIGGEST THING

 DO YOUR OWN PRINTINB
 WANTED. Fiou Barrel stave and Heading Machin-

 THE PERFECTED STYLOGRAFIC.
The most convenient and economical outtat for writing. Pen, Pencil, and Inkstand it one. an be ordered by
mail
mand READERS' AND WRITERS' ECONOMY CO.,
25-33 Franklin Street, Boston; 4 Bond Street, New York; 38 Mndison Street, Chicago

BAIRD'S Boous
 FOR PRACTICAL MEN.

Valuable and Indispensable Practical and Scientifie Books

LISt No. 1.

trated with patterns and wood-cuts. 8VO, Cloth
Bemrose
Fret

 nish his address $\underset{\text { HENRY CAREY BAIRD } \& \text { CO }}{\substack{\text { Con }}}$

The George Place Machinery Agency

The WESTINGHOUSE THRASHING MACHINES,
 A

 G. WEsTINGHOLSE \& CO., Schenectady, N. y.

 PAYNE'S FARM ENGINES.

Pond's Tools, DAVID W. POND, Worcester, Mass.

MACHINISTS' TOOLS.

Send for new illustrated cotalaguee
Lathes, Planers, Drills, \&c. NEW HAVEN MANUFAGYURING CO.

SWEEPSTAKEE, WITH THE ELLIS
Ceo. W. Read \& Cor, MAHOGANY,
Cabinet VVOOCls. CUT AND PRESS DRIED
THIN LUMBER, CIGAR BOXES, Panel Stock. Fic., Fito.
Mills and Warerooms:
186 to 200 Lewis St., New York, SIEI STMESE

The BELMONTYLE OIL

UNIVERSAL GRINDER.

NEW YORK BELTING AND PACKING COMP'Y

 BEST BAND SAW BLADE LONDON, berty \& Orton, phila., Pa. $\$ 5$ to $\$ 20 \begin{gathered}\text { per day at bome. Samples worth } 8 \text { Sifree } \\ \text { Address STMNson }\end{gathered}$

THE HOLLY SYSTEM FOR HEATING

' BLAKE'S CHALLENGE " ROCK BREAKER.

 BLAKE CRUSHER C0., Sole Makers, New Haven, Conn.

Roots' New Iron Blower.

POSITIVE BLAST.
IRON REVOLVERS, PERFECTLY BALANCED fewer parts than any other blower. P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.

 a- SEND For PRICED Catalogue.

 WOODWORKING MACHINERY, SHAFTING, PULLEYS \& HANGERS. P. Pryibil, 461 to 46% W. 40 th St., New York. CORRUGATED AND CRIMPED IRON
 WOOD PREGERVED

 WILEY \& RUSSELL M'F'G COMPANY,

 A Q ? A (T)

(PARIS FURNACE CO.

 B. F. AVERY \& Sons, Lille, Ky.

 HILLES \& JONES, Wilmi inton, Del.

FREE Smamactuan

 $\$ 777$ A MEARandexpenses tourents. Outat Free.

 THE NEW OTTO SILENT GAS ENGINE.

New York Ice Machine Company, 21 Courtland St., New York, Rooms 54, 55. LOW PRESSURE BINARY ABSORPTION SFSTEM.

ICE AND COLD AIR.

Racine Boat a revolution in

 (2) WOOD WORKING MACHINIS.

FOR SALE CHEAP.-A VALUABLE PATENT BIG PA Y to sellour Rubber Printing stamps. Sam-

Notice to Water Works Builders. Bids will be received for building Water Works in the
cition of Carth hee, Jasper county. Mo. All information
will be furnis hedon application to AMOS H. CAFFEE, Mayor, Carthage, M ICE AT WIOO PER TONS.

and Shaped Diamond Car bon Points, indispensable for

 TEAY, BAKING POWDEERS. ETC. OO Which
Meriarge quantity will be used, made out of PAPIEK
MACHE.
 502 Sutter GEO, Firet, San Francisco,
F.SIVILLA PRATS, ${ }^{4}$
THE BAKER BLOWER.

Mill Stones and Corn Mills. We make Burr Millstones, Portable Mills, Smut Ma-
chines, Packers, Mill Picks, Water Wheels, Pulleys, and
Gearing specially adapted to Flour Mils. Send for

ROOFINC.

 ROCK DRILLS, COMPRESSORS FUSE,
BATTERIES,
POWDER.

LIQUID PAINTS, ROOFING,
Stea piop \& BAINTS, ROOOFINC,
H. W. JOHNS MFFC. CO. 87 MALDEN LANE, N. Y.

TELEPRHONE Rad Emotrial sppplies

The Cameron Steam Pump,
 MIIIN 통,
ALSO FOR GENERAL MANUFACTURING AND FIFIEPEMPS.
Pumps turnished with Movable Linings in Iron, Composition, or Phosphor-Bronz
Address THE A.S.CAMERON STEAM PUMP WORKS, foot east 23d Street, new york city

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY
W. b. Franklin.V. Pres't. J. M. alle en, Pres't. J. b. PIERCE, Sec'y

A. At Low Pricev, Larae Asoured siock: BOILER COUERRGS. Patent "AIR SPACE"' Method. ASBESTOS MATERIALS,
 TOHNR.WHITRLEY \&CO

Dead Stroke Power Hammery
are superior to anl others for forging and die
work. 0 ver 500 now in use. Manufacturea by PHILIP S. JUSTICE,
U1 14 North 5th Street, Philadelphia, Pa
Pyrometers. $\begin{gathered}\text { For showin heat of } \\ \text { Ovens, } \\ \text { Hot Blast } P \text { of } \\ \text { Bes }\end{gathered}$

 HARRMIS-CORLINS ENGINE

ERICSSON'S NEW MOTOR. ERICSSON'S New Galonic Pumping Fidoind dwellings and country seats.
 DELAMATER IRON WORIS C. H. DELAMATER \& co., Proprietors, No. 10 Cortlandit Street, New York, N. Y.

Wire fope

Adrress JoHN A. ROEBLINGS SONS, Manuractur-

The Asbestos Packing Co.
Miners and Manufacturers of Asbestos,
 ROPE JOURNAL WICK \quad MILI. SHEATHING PAPER
FLAORING FELT. FLOORING FELT.
CLOTH.
STLles \& PARKER PRESS CO., Middletown, Ct.
 PREEVENT SLIPPING. The
handsomest, as well as the safest
CarriageStepmade. Forged frombest CarriageStepmade. Forged frombest
iron, and formed with a sunken panel in whand and formed with a sunken pane,
in which secured a piating of tichly
moulded rubber. Durability war
ranted. Send for illustrated circular ranted. Send for illustrated circular.
Rubber Step $\mathbb{E}^{\prime} f$ Co., Boston, Mass.

Boiler Feeder

Simple, Reliable, and Effective.
40,000 IN ACTUAL USF NATHAN \& DREYFUS,
Sole Manufacturers, NEW YORK.

H.BICKFORD Cincinnada
howard manufacturing co. Manthaturura and Introdicee Patented Novelties yanke notions.
the latest novelty.

Mirror, Pin Cushion and Tape Measure. PRICE 25 CENTS. ample by mail on receipt of price. A liberal dis
count to the trade.
HOWAR MANUFACTURING CO.,

COVERING

CATALOGUED.
The following manufacturers are pro MINENT IN THEIR RESPECTII
SHORT. ARE HEADQUARTER

Mire rope c.M. Thompson, AAt. PLUMBING \& Liberiv Sot: N. x . SANITARY GOODS HOISTING ENGINES.

 THE DEANE STEAM PUMP. mechanical books.
 WATER TUBE STEAM Bollers. ${ }^{30}$ contram sew WHEEL

BRADLEY'S CUSHIONED HAMMER

Esterbrook's Steel Pens Works, Camden, N. J. 26 John St, New York.

VALVES AND FIRE HYDRaNTS. THELUDLO W VALVE M, F'GCO.,

 BOLT CUTTERS and SCREW CUTTING MACHINES. HOW ARD IRON WORESE, FAIRBA NKS' STANDARD CALES,
 AIR ENGINES AND ELEVATORS.
 GUNS, PISTOLS, AMMUNITION,
 ROCK DRILIS \& AIR COMPRESSORS.

Iehigh Valley

 EnILES, DRILLS, OHUCKS, VISES, TAPS, REAMERS, STUB TOOLS, \&C., \&c. Metaline anl Star Roller Bush Fackle Blocks, \&c. BAGNALL \& LOUD,ass., and 33 South Street,
BAGNALL $\&$ LOUD,
Boston, Mass., and 33 south Sitreet, New York
Establd EACLE ANVILS. 1843. Sollac.AST STEEL Face and Horn. Are Fully War-
ranted. Retall Price, 10 ocs. per DOUBLE SCREW, PARALLEL, LEG VIEES.
 Buyfarbers ifitifrace Brass Cocks, Valves, and Fittings.

2EXETER MACHINE WORKS, Steam Engines, Blowers, and
Steam Heating Apparatus. DADDOW \& BEADLES
MINER'S PAT. SQUIBS for BLASTING. Mfd. by Miners' Snpply Co., St. Clair, Sch'll Co., Pa. MILES BRO. \& CO., Manufacturer BRUSNES of every descrintion, 102 FULTON ST., NEW YORE The Greatest Rock Breaker on Earth.

STEARNS SAW MILLS. STEARNS MANUFACTURING COMPANY, Erie, Pa.
PRINTMNG INTKG:

