

THE HERRESHOFF TORPEDO-BOAT, STEAM LAUNCH, BOILER AND ENGINE.-[See page 99.]

§rientific smmicam.

ESTABLISHED 1815.

MUNN \& CO., Editors and Proprietors.

NO. B'Y PARK ROW, NEW YORK

o. D. MUNN.
A. e. beach.

TERMS FOR THE SCILNTIFIC AMERICAN. One cony one year nostage included.
One copy, six months, postage included
Clubs.-One extra copy of Tre Scientrinc...................... 1 American will be supplied
gratis for every culb of five subscribers at $\$ 3.20$ each : additional copies at gratis for every cuub of five subscribers at $\$ 3$
same proportionate rate. Postuge prepaid.
same proportionate rate.
Remit by postal order.
dress
MUNN \& CO., 37 Park Row, New York
The Scientific American Supplement
Is a distinct paper from the Scievtific American. 'whe supplement wish Scievtiric Avery number Terms of subscription for uniform in size
 all news dea'ers throughout the country.
Combineal isates -The ScIENTLETC
will be sent fur one year postage free. on receipt of seven dollars. Both papers to one address or different addresses as desired.
The sitfest way to remit is bv draft posital order, or registered letter.
Scientific American Export Edition.
The Sclevtific Anvican. Export Edition is a large and splendid peri-
odical, isued once a month. Eich number contains about one large quarto Dages, profusely illustrated. embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the scricstific AMrricav, with its splendid engravings and valuable in formation: (is) Commercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, 85.00 a year, sent prepaid to any nart of the world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large, and handsomely displayed announcements publigied in this edition at a very moderate cost.
The SCIE TIFIC AMEIICAN Exoort Edition his alarge lation in all commercial places throughout the world. Address IIUNN

NEW YORK, SATURDAY, FEBRUARY $12,1881$.

TABLE OF CONTENTS OF
the scientific american stuplement NO. 267.
For the Week ending February 12, 1881. Price 10 cents. For sale by all newsidealers.
I. ENGINEERING AND MECHANICS.-The Egyptian Obelisk in Alexandria to Central Park.
Hodson's Rotary Figine. 1 figure.
Improved Rotary Valve Gear. 4 it
Improved Rotary Valve Gear.
Improved Lubricator. 1 figure
Improved Lubricator. 1 figure.......................................
Proposed New Bridge over the Douro. 10 figures. Designs sub-
mitted to the bridge commission at Oporto...
Perspective Carriage Draughting. By ADOLPHUS MULLER. The Driving of Nails

devation, and section, machinery, etc 42
Josiah Timmis Smith, C.E., Manager of the Barrow tiematite
Steel Works.-The improvements in the working of steel intro-
. Luke Filde's house and studio, Holland Park, Kensington. Ful page illustration and 8 figures, plans, elevations, and sections. in Three Colors. 1 liarge illustration
A Military Tournament.-Sword versus Lance. - Full page illustra
II. GEOGRAPIIY, ASTRONOM
CIImatic Changes in Asia..

Cimatic Changes in Asia.... 4 4 The Earth and the Moon.-The Martian System.-Other Second ary Systems.
Pandermite
Lock ...
V. electricity. etc.-a New Electric motor. by williay An Essay on the Natural Enemies of the Teeephone. By T. D Lock wood.
Combined Induction Machine

- TECHNOLOG Y, ETC.-The Bethnal Green Museum, London. By F. T. Asshinavy
vi. NATURAL HISTORY.ETC.-The Native Silks of Assam. By C.
G. War \backslash. G. Warvard Lock.

PROGRESS OF PATENT LAW.

A promivent subject in the decisions recently reported is he degree of "invention" needful to support a patent Patents must be new and useful; the rule is elementary; ye it does not seem-if one may judge from the number of cases in the courts-to be generally understood. The case of the whip tip patent is a striking illustration, for the reason that the invention, so to call it, was really useful, and the judge in deciding against it, said that he was sorry to do so, as the inventor had introduced a real improvemen in the trade. This inventor had observed that driving whips, especially long ones without a lash, were expensive because they soon became frayed or broken at the tip end while the stock remained good, the whole was worthless fo defect of the tip. His device for relieving this difficulty was to make whip tips independent of stocks, so that the might be replaced when worn out. Each tip had a socket, which might be fitted to the small end of the stock very much as the successive lengths of a fishing rod are inserted one within another, except that he cut a screw thread on the inside of the socket of the tip, corresponding to one outside the end of the stock, by which the two might be held firmly together. A patent was obtained; but sonn a rival began selling whip tips so contrived as to be clinched to the fer rule of the stock instead of being screwed. There was law suit; and the court decided that the claim of exclusiv right to make independent tips could not be maintained because. it was not new. Fishing rods have been made for years upon the same principle. To be sure they have no becn screwed together, and the patentee of the whip tips was pronounced entitled to his screw. But the competing company was not using a screw; therefore it was allowe o continue the business.
A more recent case is that of the "perfection window leáner." The description of it is long and complex; bu the device was substantially a rubber mounted upon a long handle, adapted to be used in reaching up to clean window panes and other glass surfaces. It consisted only in the ad justment of the rubber strip, supported by a tubular cush ion, in a way to bring it advantagenusly against the surface to be cleaned. The decision of the court was that there was nothing new in the invention; the implement was nothin but a mop or scrubbing brush made of India-rubber.
A still more remarkable case was decided upon a patent or "improved kindling wood." In order to make kindlin wood take fire easily and save the kitchen maids the troubl of cutting splinters and shavings, or of hunting for waste
paper to set it alight, this inventor proposed to sell the wood paper to set it alight, this inventor proposed to sell the wood
in small bundles. in each of which should be tied a littl in small bundles. in each of which should be tied a little lump of resin, tar, or some combustible of that sort, which bundle. For this he obtained a patent, but the court said that there was no invention; his device was no more than selling tar or resin tied up in a bundle with kindling wood It was no more patentable than would be selling a ciga with a match tied to it, or a drinking glass with a straw, o can of food with a fork.
City readers are familiar with the fare boxes used in omni buses, and in the street cars running unaccompanied by con ductors. They are so arranged that a passenger may drop the coin for his fare into a sort of savings bank slit at the top of the apparatus, through which the coin will fall down upon a little movable shelf-what one might perbaps call a diaphragm-where it lies until the driver bas inspected it to see that it is a genuine coin, is for the proper amount, etc. He then pulls a lever, which lets the shelf drop, and the coin falls into the company's savings bank below. Ol,viously the device requires a window for the driver to look through. Fare boxes as thus described have been in use for some time. Patents were more recently taken out for two
improvements. One of these consisted in fitting a second window to the rear side of the apparatus; and the other consisted in arranging a reflector in the interior of the box so that the headlight of the car might shine down and enable the coins to be seen conveniently at night. The Circuit Court bas decided against the validity of both these claims Inserting the additional window is nothing ner ; the old form of the box included one window, so that the improve ment consisted merely in duplicating one of the features o a former device. This is not "inventinn;" nor is any inven
tion involved in arranging a reflector near a lamp in such tion involved in arranging a reflector near a lamp in such manner as to cast light into a fare box near by it.
Seats for chairs, settees, railroad cars, ferryboat cabins, etc., are nowadays extensively made of veneers, or thin sheets of wood perforated. Strengtb is gained for the thin wood by gluing one sheet upon another crosswise, and the perforations, being arranged upon some simple design, give both ventilation and ornament. A patent was taken out for this mode of construction; nut when it was contested, proof was produced of an earlier patent for gluing veneers to gether across their grains to make a thin, strong sheet; and also of another earlier patent for perforating sheet metal for making chair bottoms. The Circuit Court then said that the more recent patent for veneers glued together and per forated displayed no invention, and was void.
In two law suits which arose upon the patent for the giant powder, it became necessary to consider the question, How full and precise must be the description of a device in an earlier patent in order to forbid one who invents it anew at a later date from obtaining a valid patent? Judge Blatchford has stated the rule to be that the description in the prior patent must be sufficient to show with certainty how, by following its directions, the article can be made, and
this must be a result within the intention of the description, not a mere accident. Showing that by following the direc tions of an earlier patent, a person might accidentally, through small variations in the process, have hit upon the same result, does not avoid a patent which has been granted to a subsequent inventor.
A noteworthy decision in this branch of the law, in which the patentee was more successful than in the preceding cases, relates to an improvement in water works for cities. Former devices for this purpose have been subject to the defect that the pressure of water from reservoirs, or from force pumps where they were employed, upon hydrants or spigots, was inconveniently variable; sometimes it would be deficient, and then so excessive as to burst the apparatus. The inventor devised pumping machinery so contrived that as fast as the pumps increased the quantity of water in the mains, and so increased the pressure upon the hydrants or spigots, the increased pressure should diminish the action of the pumps automatically; or, afterward, when the flow of water from use diminished the pressure, the diminution should set the pumps at work again more vigorously. The invention has been quite widely adopted. Recently the patentee's priority has been contested, and several English and American contrivances, having the same general purpose, have been brought forward for comparison, but the Circuit Court, after examining them in detail, pronounced them all substantially different and iuferior, and sustained the patent.

THE SURPLUS PATEN'T FUNDS.

In 1868 Congress passed a law requiring the daty receipts of the Patent Office to be deposited in the Treasury, the support of the office to be provided for by annual appropriations from the patent fund. During recent years, under a pretext of econnmy, the appropriations for the conduct of the Patent Office have been unduly cut down, greatly to the disadvantage of the service, while the surplus fees have accumulated until they now amount to over sixteen hundred thousand dollars. In other words, the inventors of the country have paid in fees to the office, during the past ten or twelve years, this large sum in excess of the cost of the service rendered by the office.
There has naturally arisen the question, What shall be done with these surplus funds?
It is obvious that the most that can be asked of any branch of the public service is that it shall accomplish efficiently and fully the work intended by it. It the fees paid for service by those who are served amount to enough to pay the cost of such efficient service, that is so much more to its credit, and the utmost that can be justly demanded of it has been secured. The only department of the public service which stands in this unique position is the Patent Office. It has been and is self-supporting -and more.
If in doing this it has also done its legitimate work with the highest degree of efficiency justice to the clients of the office, the patentees, demands that the fees should be cut down so as to cover the cost of the service, and no more. If the office has been prevented, through insufficient appropriations, from doing its work as well as it might, and this is plainly the case, the only alternative is to use the surplus fees for the immediate improvement of the service
Any diversion of the surplus funds to other uses-as proposed in the bill lately passed by the Senate and now pending in the House, transferring the surplus funds of the Patent Office to an educational fund-is equivalent to laying a special tax upon inventors, which is certainly neither fair nor politic.
If the excess of fees cannot be used for the improvement of the Patent Service, there should be no excess of fees. Indeed, justice to our inventors, and a wise natinnal policy lonking to the advancement of the useful arts and sciences through the encouragement of invention, plainly indicate wo things to be done in this, connection:
1st. The passage of Mr. Vance's bill to reduce the fees on paients and caveats, or something like it; and
2 d . The employment of the surpius fund now accumulated to improve the working facilities of the Patent Office. The office needs more room to work in; its library should be extended and classified as to matter and thoroughly indexed; a critical digest of the patents that bave been issued should be made for the convenience of the public as well as that of the office; and all the patents issucd hefore 1866 should be printed and made accessible to students and inventors at reasonable cost. This done, it is quite possible that the fees named in Mr. Vance's biil would suffice to cover the running expenses of the office with an efficiency of service impossible now, and still less possible should the office have to submit to a diminished income without the mproved facilities which a proper use of the surplus funds would secure.

The Chicago, Burlington, and Quincy Railroad Company are burning clay for ballasting their road. A small tire of bituminous Iowa coal is started on the surface of the ground, and, when burning freely, the fire is covered with a layer of lumpy clay, then alternately coal and clay, the coal decreasing in quantity until at the top it is as one to fifteen. The mass is formed like a cone. Three united cones, eich 18 feet high and containing in all about 1,000 cubic yards of material, bave been started near Red Oak. They will burn for months. Six hundred miles of road are to be vallasted with this crude pottery broken up. It resembles coal cin der, but is harder.

THE NATURAL HISTORY OF THE JEWS.

 In recent issues of the Scientific American Supple ment there have appeared several articles with regard to the distribution, numbers, anatomical characteristics, etc., of the Jewish race, a race, we may add, which we hold in high respect for its vitality, energy, thrift, intellectual force, and, under favorable conditions, high moral worth. The last article, in the issue of January 1, contains an interesting comparison of the physical measurements of Russian Jews with corresponding measuhe dominion of the Czar.
The measurements were made by Dr. G. Schultz, Con servator of the Anatomical Museum of St. Petersburg, and indicate that the racial characteristics of Oriental Jews are as strongly shown in their physique as in their social and religious customs.
Unfortunately the writer, manifestly biased by the antiJewish craze which is showing itself so discreditably in certain parts of Europe, went on to assert that the bodily peculiarities of the Jews were accompanied by and served to account for certain alleged mental and moral traits the reverse of honorable. Tlie incorrectness and injustice of these assumptions are pointed out very forcibly in the current issue of the Supplement, in an article which is well worth reading.
From an American point of view the opposition to the Jews, which has lately been revived in Germany, seems to be due partly to a survival of the unchristian spirit of medieval Christianity, but more immediately to the hatred which thrift always inspires in the unthrifty. The military ardor which has converted Germany into a great camp has drafted the flower of German youth into army barracks, aud diverted the best energy of the people from productive pursurts. At the same time it has impoverished the masses by direct heavy taxes to support the military establishment, and still heavier indirect taxes in cutting off the supply of productive labor. Though many Jewish youth in Germany have proved the native courage of the race on recent battlefields, the more peaceful instincts of the race have led them to seek in commerce and in the professions the distinction which the Christian youths of Germany have looked for in military and official positions. And now the cry is that the Jews monopolize the sources of wealth, and that they crowd the professions and other pursuits of peace and profit. The charge is doubtless largely true, but that fact is as much to the honor of the Jews as it is to the dishonor of those whose lower civilization has allowed them to be distanced in the competitions of peaceful industry, intelligence, persistence, and thrift. If the physically and numerically weaker race can distance their stronger and more numerous competitors in the arts of peace, the fact must be taken as evidence that mind counts for more than stature, and thrift and labor for more than military ardor, in the free conflicts of modern civilization.

diagonal avendes in cities,

The rectangular method of laying out cities leads not only to architectural monotony, but also to a great loss of time and travel as sonn as the area covered becomes at all extensive. The tendency to go across lots, to save time and distance, is one condition of civilization; and when thousands of people are concerned the thwarting of the tendency is the reverse of profitalile. A rectangular system of streets, with diagonal or radiating avenues, like those of Washington, is vastly more convenient.
In a paper read bcfore the Pliladelphia Engineers' Club, Professor Haupt, of the University of Pennsylvania, shows that the combined system is also vastly more economical. In a city like Philadelphia, where half a million people live at least a mile from the business center, the checker-board plan leads to an enormous waste of time and effort. To those whose homes lis in a direction diagonal to the run of the streets, the zigzay course they bave to take increases their travel more than a third. A diagonal street through the heart of the city would save a mile and a third. The street car lines of the city carry something like $100,000,000$ passengers a year. Upon this and the average yearly expense to the perple of travel, Mr. Haupt calculated that every mile less in distance was a saving to them collectively of $\$ 1,500$,000 in money, $4,0 \cdot 0$ years in time, and something like $3,300,071,000,000$ foot pounds of energy.
Two diagonal avenues were recommended for Philade pha, with "cut-offs" or diagonal lanes for pedestrians.

SUBAQUEOUS GOLD MINING

A few days ago a schooner sailed from Bristol, R. I., laden with a small river steamer, a steam launch, and an outfit of mining machinery for working the auriferous bed of the Atrato River, South America. It is well known from the careful survey's made of the Atrato, in the interests of the proposed ship canal by that route, that the river sands in many places are rich in gold and platinum, and it is the purpose of the company which has sent out this expedition to work the river bed by a system of subaqueous hydraulic mining. In this way gold-bearing sand and gravel, at depths too great to be reached in the ordinary way, will be sucked up by steam machinery and the precious metal separated by washing. The machnery, devised by Mr. Samuel S. Webber, was built by the Herreshoffs at Bristol. The expedition appears to be well organized and capably officered. If it
succeeds the venture is likely to be followed by similar assuults on other gold-bearing river beds whose wealth has
been out of reach hitherto. The Atrato is the roost westerly iver which flows northward in South Ainerica. It drains a ong reach of auriferous country and empties into the Gulf of Darien.

THE TECHNOLOGICAL INDUSTRIAL, AND SANITARY

 MUSEUM OF NEW SOUTH WALES.The World's Fair at Sydney has led to the establishment in that rising city of a museum devoted to technological, industrial, and sanitary matters. It is intended to contain typical collections of all materials of economic value, representing every stage of progress from the raw material to the manufactured product, with processes, machinery, and so on. Its scope includes every variety of animal products of use in the arts, vegetable products, waste products, and foods; specimens of useful and injurious insects and other representatives of economic entomology; economic geologi cal specimens representing the products of mines, quarries, etc., in every stage of preparation and manufacture; educa tional apparatus and appliances; sanitary and hygienic appliances and systems; machinery and tools of every sort models, drawings, and descriptions of patents, especially such as are likely to be of use in the colony; specimens of ethnology; ancient and modern industrial art work, with copies, photngraphs, etc. ; exhibition catalogues, trade journals, price lists, and other vehicles of industrial informatals,
the
The project, if properly carried out, cannot fail to be of great educational and industrial value to the colony. It may furnish also an advantageous means of placing before the people of the colony specimens of tools, machinery, manufactured articles, or industrial processes likely $t o$ find a market there. The trustees of the Australian Muscum, under whose direction this special museum is being formed, solicit contributions of trade journals, price lists, catalogues, and specimens of raw materials and manufactured articles likely o add to the interest of such a museum.
Our merchants and manufacturers who may be charitably nclined, or who may be seeking an extension of their trade with Australia, will find in this museum a convenient and comparatively inexpensive way of benefiting their Australian cousins, or of keeping their goods in a favorable position before the people they wish to trade with. No expense will be attached to donations, the trustees undertaking to pay reight and other charges on the arrival of the goods in Sydney.

The Erie Basin Dry Docks.

It is announced that the Erie Basin Dry Docks, which were ecently purchased by the president of the Balance Dry Dock Company, are to be pushed to speedy completion. It is intended to make both docks at least 600 feet long, thu making them the largest establishments of their kind in America. The new dock at Baltimore is but 450 feet long, and Cramp's Dock at Philadelphia 462 feet. The Erie Basin Docks will be divided by a pontoon into two compartments of 303 fect each, either of them being large enough to admit the Pacific Mail steamers. The object of this is to really double the capacity of the docks. If a vessel of 600 feet is to be admitted, the pontoon will be raised, but if two vessels of 300 feet each wish to enter, the one that is to undergo the most extensive repairs will enter first, the pontoon will be closed, and then the other will be admitted. The inner compartments may be closed for an indefinite period during a long job, while the outer compartment may at the same time be opened and shut to a number of vessels. It is said that to complete the docks will require an expenditure of from $\$ 300,000$ to $\$ 400,000$. When finished the docks will accommodate, with one or two exceptions, the largest mer chant vessels afloat

The Lick Observatory Telescope.
The trustees of the Lick Observatory have finally closed he contract for the optical part of their great telescope. There has been considerable doubt whether a refractor or an normous reflector would be selected, but the decision is in favor of the former. The object glass is to be three feet in iameter, and the Clarks of Cambridge, Mass., are to make it for $\$ 50,000$. The mounting for the instrument is not yet provided for. Proposals will be obtained from the princi pal instrument makers of Europe and this country. Proba bly the mechanical part of the instrument will cost as much as the optical. It may be three years before the telescope is finished. If the instrument proves successful, it will be the most efficient ever pointed at the heavens. Its power will exceed that of the Pulkowa glass by forty-four per centum, and it will be almost twice as powerful as the great telescope at Washington, which at present is the best of its kind.

The First American Railway in Asia.
The first section of railway built by Americans in Asia was opened for traffic the first week in January, just twelv months from the date of the order for its construction. The completed division is twenty-three miles in length. The line from Otarunai Harbor, on the west coast, via Lapparo, the capital of the Northern Island, Yezo, to the Paroni coal fields. It cost $\$ 20,000$ per mile, which includes rolling stock, motive power, machinery for terminal repair shops etc. The English line built between Tokio and Yokohama cost nearly $\$ 200,000$ per mile, and it took five years to con plete eirghteen miles. The Japanese officials are said to be greatly encouraged by the prospect of an American system of rapid transportation.

Stones Clinging to Under Side of Ice
When the severe cold weather came upon us so suddenly in November last my attention was called to a curious phe nomenon in the Susquebanna River bere. Upon Thanks giving Day, not far below the dam which crosses the river here, I noticed a large number of stones clinging to the under side of the ice. The river there was two or three feet deep, the ice at that time about three inches thick. The stones were the rounded river stones, and evidently came from the bottom of the river. They were of all sizes, up to those weighing probably two pounds.
The phenomenon is not a new one, but it was displayed here upon so large a scale, and the conditions accorded so perfectly with those that the scientific explanation demands, that it seems to be worth while to call attention to it
More than two hundred years ago Dr. Plot, of Oxford, England, described similar occurrences in the Thames, and gave at least a partial account of their true cause. It is well known that water, like most other substances, contracts under the influence of cold until it is reduced to a temperature of 39°. But if its temperature is lowered still further it expands until reaching 32°, when it freczes, by which its bulk is increased much more than by its cooling from 39° to 32°. Hence it is that water hegins to freeze at the surface, since, when near the freezing point, the coldest water, being the lightest, is found upon the top, and it is that which freezes first.
But when the weather is very cold, and the different parts of the stream are thoroughly mixed by rapids or some such mechanical action, the water may be about the same temperature at all depths, and be lowered altogether nearly to the freezing point. In this case the water will begin to freeze at the bottom, because it is stiller there, and perhaps because the stones and bottom have lost some heat by free radiation and by contact cool the water. Although so much lighter han the water this ice would not rise as soon as formed, for it would be frozen fast to the enttom and the stones lying upon the bottom. But as snon as its size gave the cake of ice buoyant power enough it would tear itself loose from the bottom and the larger stones and rise to the surface, carrying with it the smaller stones and gravel. Then it would be frozen in with the surface ice, keeping its curnous oad frozen fast to its under surface.
In November the weather suddenly became very cold, the thermometer sank to 3°, and the river here was frozen over in one nigbt, a very unusual occurrence. Moreover, the place where the phenomenon occurred was just below the dam, where the current was swift and the river rather shallow. All of these would tend to mix up thoroughly the whole mass of the water. These circumstances seem to show the above to be the true explanation.
In the Thames stones weighing as much as eight pounds bave been known to be raised up from the bottom of the river in this way. Under favorable conditions, and acting through a long time, the ice by carrying these miterials down streams must cause geologicai effects which are not inconsiderable.
G. M. Philips.

Lewisburg, Pa

The Expansion of Steam

To the Editor of the Scientitic American
Page 321, last volume Scientific Λ inerican, contains an article on " The Expansion of Stearn," by Prof. Tburston, and page 360 one from William D. Marks, Dyn. Eng., etc., on the same subject. Quoting little from cither, allow me o say that steam or any gas in expanding does trace is striclly mathematical curve of pressure. But it is not an "equilateral," or any other sort of hyperbola. The Bogle and Mariotte law, that the "pressure by the volume gives a constant product" is identical with one of the equations of the hyperbola ($x y=M$). But this law will only loold good upon the impossible condition that the temperature remains constant. In the equation of the hyperbola there are only two variables or factors-in the true curve there are three, corresponding respectively to the volume, the pressure, and he temperature of the expanding gas; and the cquation of this curve exactly expresses the relation of the volume, pressure, and temperature of saturated steam or any gas, although each gas traces its own curve from the fact that the variable expressing temperature must be assigned a value corresponding to the specific heat of the gas considered. To find the pressure at any.given point in the stroke of the engine after cutting off, let the practical engincer compare the volume (including clearance) at the given point with the volume at cut-off point, and from the tables in any book on modern steam engine he can find the corresponding pressure always counting the atmospheric in addtion to gange pressure). An engine should expand the steam only so far as that the direct pressure on piston will excced the back pressure to not only overcome the friction of the engine, but also the resistance of the driven machinery, and perform ai appreciable amount of useful work besides. Prof. Thurston's formula is only claimed to be approximately true, while Mr. Marks is neither approximately, theoretically, nor practically correct.
B. F. McKinley.

Lexington, Ky

Professor Watson's Successor

Prof. Edward L. Holden, of the Naval Observatory, Wash ington. has been appointed to the place in the directory of the Washburne Observatory at Madison, Wis., made vacan loy the death of Prof. Watson.

ANOTHER "MYSTERIOUS" BOILER EXPLOSION by Joshea rose, m.E.

James McCreery \& Co., whose well known dry-goods store is situated at the N.W. corner of Broadway and 11th street, in this city, bave beneath the sidewalk in West 11th street a pair of cylindrical multitubular borilers, exactly alike, and by the same builder. They are used to heat the store and drive the elevators. On Saturday night, January 15, the engineer in charge banked the fires as usual and left them, returning on Sundar at 12:30 P. M. to see that all was right. He cleaned the fires, banked them again, and says he examined the dampers and saw that they were closed; examined the pressure gauges and found them to indicate 3 lb of stears; saw that there was plenty of water in the boiler, and left, leaving all so safe that, as he states, he would willingly have slept on top of the boiler. In all this he is corro borated by the fireman, who was present at the time. The watchman reports that he is positive the dampers were closed because he noticed the presence of coal gas in the building, the smell being so offen sive that he notified the burglar alarm office, at 4:30 P.MI , that he was about to openthe windows to let it out, which he then did. Shortly afterward, however, a terrific boiler explosion occurred, tearing away the massive girders overhead, blow ing up the sidewalk above them, but for unately, being Sunday, when that part of the city is deserted, nobody was hurt. The boiler was ten years old, and was tested in August last by hydrostatic test at 105 lb ., and licensed for $70 \mathrm{lb} \quad \mathrm{lt}$ was usually worked at about 50 lb .
The daily papers have called this a "mysterious explo sion," and so it is to the superficial observer, but close ex amination dispels the mystery
On visiting the scene of the explosion I found that the crown sheet of the dome of one of the two boilers (which

RIVET, JOINT, AND BRACE-END

were connected by a steam pipe) had blown off completely leaving a ragged fibrous edge right in the flanging bend, as shown at A, Fig. 2, which is taken from the dome on the uninjured boiler, and is a sectional side elevation. An in spection of one half of the exploded dome head, one half of which is at police headquarters and the other half (shown in Fig. 6) in the engine house, showed that the dome crown, in addition to tearing around the edge, at A, inad torn across at B, being in two completely severed pieces. The iron at the fractures was in all cases of excellent and fibrous appearance. Two things, however, attracted attention: First, that the plate showed lamination in places varying from an inch to two inches in length, and running around the bend of the flange, at A. Second, the crack around Λ was too rusty to warrant the conclusion that it had been of recent formation. The greater part of this fracture was clean enough to dmit of inspection, but some parts were not, and the dirt was so embedded in the fibers of the iron as to preclude its inspection. The edges of the two halves, however, appeared to have been fractured recently, probably at the time of the explosion.
The six stays, three of which are shown in place at C, Fig. 2 (drawn to a scale of one eleventh full size), were all in position in the dome, and it was observable that their surfaces having contact with the dome were covered where they fitted with a black polish, evidencing movement and some slight abrasion. These marks, however, did not, except in one case, extend all around the hole. During a visit to the boiler works the ring, A, of the crown sheet was bent and doubled, showing strength and ductility. I then chipped a piece along the edge, and the
iron showed toughness and strength as far as such a test would determine, leaving no doubt in my mind, from all the appearances, that the iron was good.
During the inspection of the half crown sheet at police headquarters, I expressed to Inspector Horton the opinion that the crack around the edge, A, was decidedly not of recent origin, in which opinion he entirely concurred.
In considering what could have caused this fracture, the following points suggest themselves:
The stays, C, joined the cylinder of the dome 11 inches from the top (as marked in Fig. 2), and the crown sheet $71 /$ inches from the dome cylinder edge. Now, as the temperature of these stays increased they would expand and lengthen, exerting a pressure on the crown sheet in the direction of
shell it tends to force the two plates apart instead of binding them together. The extent to which the body of a rivet swells under even hand riveting is shown in Fig. 4, which is drawn from one of the only two rivets (that held the crown sheet to the shell) of the stays that have been found. The holes for these rivets were, as they should be, punched from the inside, and are therefore widest on the outside, the swell of the rivet at X showing how it expanded under the riveting blows and filled the hole. In this case the taper of the hole helps the rivet to bind the plates together. Here it is well to call attention to another fact, which is that in hand riveting pointed rivets are usually made, and these rivets do not present so strong a form of head as rivets riveted by machine, which have a button-head, as denoted by the dotted line in Fig. 5.
Now, while this explains why the crack at A, Fig. 1, was induced, and therefore one of the elements causing the explosion, it does not explain how it should happen that a boiler tested in August last at 105 pounds, and used daily during the week before the accident at pressures varying at from 40 to 50 pounds, should explode under a lesser pressure, or even under a pressure of 60 pounds, especially as it had a safety valve set to blow off at 60 pounds.

On questioning this part of the subject the engincer was questioned a second time, giving me the following information: H. The steam pressure acting on the under surface of the On his last visit previous to the explosion he "cleaned crown sheet would also be in a direction to lift it ; hence, as the dirt out of the fire and put fresh coal on, leaving the fire the pressure and temperature increased and decreased the crown sheet would lift and fall, bending it on A as a center of motion. The stays being at so great an angle would not be in a good position to resist this movement of the sheet; thus taking I as a center, the movement of the other end of C would be in the direction of F, while at D the direction of motion would be toward J , hence the direction of motion of the two would to a great extent coincide. That this view is accepted is proven by the fact that ten stays are now to be used instead of six, and that they are to be longer and more nearly in the line of strain, being as shown at G .
The old stays had a single rivet; the new ones have two rivets, the foot, G, one, being a crow foot, as in Fig. 3. The exploded dome shows an indentation at I, due to the motion of the foot of the stay, but this the two rivets will prevent If G^{\prime} be taken as a fulcrum the motion of the other end of that stay would be as denoted by E , offering a greater resist ance to motion in the direction of K , and this increase of resistance would augment in proportion as the body of the stay stood more nearly vertical or more nearly in the line of the strain.
Now let it be noted that if a stay stands at an angle it will, under any increase of temperature above that at which it was riveted up, tend to push the two plates it connects apart (instead of holding them together) until the weakest plate has moved a certain amount. Thus, if the old stay, C, measures 15 inches, it will expand a certain amount per inch through a length of 15 inches; but the shell of the dome will expand thrcugh a distance of its vertical height from the hole at I, or in this case 11 inches only; hence to the amount that C would expand in 4 inches in length it would push against the crown sheet and help the steam to lift the crown sheet, and not until the crown sheet endeavored to move still further would C begin to act as a stay. The same effect will be produced in proportion as the line of the stay varies from a right angle to the surface it is to stay, hence the stays, C or G, should be as near vertical as possible.
Another error in the design of this boiler is that the diame ter of the dome shell is 34 inches, and a circle of iron about 28 inches in diameter is punched out of the shell at D . This opening is required only to admit an inspector or workman o the inter

EXPLODED BOILER SHOWING THE UPHEAVED SIDEWALK AND BROKEN IRON GIRDERS.

 ban it should be, which unnecessarily weakens the boiler. iron to the point of breaking, leaving the first accumula Yet another defect is that the shell of the dome has the tion of high pressure to cause an explosion. But if the en vide side of the punched holes on the inside, as shown in gineer's statement is true, the safety valve ought to bave Fig. 4, in which S represents a section of the shell and C of prevented an explosion, even if the fires were not banked the crown sheet, the wide side of the hole being at P. As a and the steam ran up by the unexpected starting of the result, the rivet has less hold upon the shell, and to what- fires.ever extent the rivet fills and binds against the walls of the There has been for years a discussion carried on as to
whether the hydrostatic test was sufficient alone, or whether the hammer test was not a neçessary adjunct to the hydrostatic one, some indeed claiming that the hammer test alone is more reliable than the bydrostatic test. In this city the hydrostatic test alone is employed, and since so high an authority as Inspector Horton says that it may not discover an existing defect, but may induce a dangerous one, it is about time that it was supplemented with the hammer test. There is no doubt that the hammer test would have disclosed the defect in this boiler, and that Mr. Horton's views are entirely correct.
The writer endeavored to ascertain what amount of coal and refuse was found on the fire bars after the explosion, and how much was left on at 4:30 P.M. on Sunday, so as to see how much fuel consumption had taken place, but the bars had been cleaned.
Finally, as the safety valve was set to blow off at 60 lb ., and the boiler was daily used at from 40 to 50 only, there is nothing to indicate that the boiler was, at the time of the explosion, capable of carrying, say, 55 lb ., hence the explosion might occur when this pressure was reached without being relieved by the safety valve. This would leave the pressure to run up, under unusually favorable conditions, probably to but 30 lb . more than it sometimes was found at in the morn ing, which would easily be accomplished with no consumption or circulation of steam through the building taking place. The tho roughness of the crown sheet fracture is shown in the one-half of it presented in Fig. 6. The iron is what is termed three pile, that is to say, the mass from which it was originally made was composed of three thicknesses welded together, and it was defects in this welding, from the presence of dirt or other foreign material, which, when rolled out, formed these laminations. Now, in an unbent sheet the laminations would not form such serious defects, but in flanging or bending the edge, the laminations would tend to separate, and undoubtedly to some extent did so, weakening the plate at A , where the bend and the fracture took place.

AMERICAN INDUSTRIES.-No. 65.

the herreshoff LaUNCH
The remarkable little steam vessels turned out by the Herreshoff Manufacturing Company, of Bristol, R. I., have attracted world-wide attention, and in a very few years have earned a reputation which is truly enviable. These boats have not only been indorsed by the Bureau of Steam Engineering of the United States Navy, but their merits have been acknowledged by European engineers, and the English government has given its opinion in an emphatic way, by ordering a number of the boats to be used in the English navy.
The works of the Herreshoff Manufacturing Company were established in 1864, and consist of several machine and constructing shops, in which are employed about one hun. dred men. The works are on the shore of the Narragansett Bay, whose waters present a ready field for experiments in naval engineering, and afford facilities for developing, by actual trial, the best models for steam and sailing craft.
The Herreshoff Brothers possess, by inheritance, great talent for mechanical construction, es pecially as applied to marine engincer ing, and this talent has been developed by practical by practical exper ment supervised by these indefatigable inventors. From first to last success has followed their efforts, and, judg ing from the present showing, a prosper ous future is befor them.
During the first During the first
years of the operayears of the opera-
tions of this company the business was chiefly confined to the construction of sailing craft of various descriptions, principally yachts and smaller pleasure boats, which were known all over the Atlantic coast for the fineness of their models, and their yachts became famous for their fast sailing, the beauty of their lines, and excellence of workmanship and material. Among the best known of the yachts built by the Herreshoff Company are the Clytie, Kelpie, Quivive, Sadie, Orion, Shadow, Triton, Faustine. These, together witha number of smaller yachts, are all noted for their speed, and have taken many prizes in our club and open regattas. About five years since the demand for steam launches and steam yachts sprang up, and this company, ever on the alert to meet the wants of the people, turned its attention to perfecting and constructing this class of vessel. In this their success has been remarkable, and to-day they turn out the fastest, safest, and handsomest vessels that ply either in our
own waters or those of any other country. The distinguish ing feature of the Herreshoff system of marine steam machinery, is the safety coil boiler, which has been brought to great perfection and patented by the Herreshoff Brothers, and which is shown in two forms in our first page illustration. The boiler consists of a spiral coil made of iron tube arranged with proper spaces between the coils for the escape of the products of combustion. The coil is made of conical form and surrounds the combustion chamber, presenting an effective heating surface to the fire. The heated gases proceeding from this chamber are made to pass through the spaces of a flat coil at the top, which heats the feed water before its entrance to the boiler proper. The feed water is
our fleet of pleasure vessels. The plan view in the front page engraving shows the arrangement of the interior of one of these yachts so accurately that no further description is required.
The maximum speed of the 100 -foot yacht is 18 miles per hour, and in that time it burns only 200 pounds of coal. Three men manage the vessel easily. The 60 -foot yachts are planned with a view to river, bay, or lake navigation, and are arranged to accommodate a number of persons for short excursions. Yachts of this size will steam 15 miles an hour, and in that time will consume about 90 pounds of coal.
The Herreshoff torpedo boats have features peculiar to themselves, which distinguish them from everything else of the same class, and have earned for them a well deserved reputation. They are at least three tons lighter than those of foreign make; they will go astern as fast as ahead, and can stop in half their length from full speed. They are capable of turning in a circle whose diameter is three times the length of the boat. All these desirable qualities are due to the lightness of the entire structure, including the boiler and machinery, and to the position of the screw, it being located under the hull at about one-third of the distance from the stern to the bow. The quickness with which steam can be raised is of inestimable strategic importance in naval warfare, as it admits of repelling sudden attacks of an enemy, the boat being always ready and capable of being put under full steam by the time its keel touches tie water. These boats are fitted for the use of either spar or Whitehead torpedoes, and are supplied with four spars, two at each end, when the spar torpedoes are employed. By this means the efticiency of the boat is immensely increased, their remarkable quality of backing as readily as going ahead rendering the use of stern spars perfectly practicable.
The length of the torpedo boat is 60 feet; width, 7 feet; depth, 5 feet 6 inches. Their forced in at the cooler end of the flat coil, through which it weight when ready for service is 6 tons, and they are capapasses to the top of the main coil, and descending, is finally ble of steaming 23 miles an hour, developing 150 horse power. discharged into a vertical cylinder, which is called the In the whole range of the lmanufactures of this comseparator, and in which the steam and water discharged from the coil are divided, the water falling to the bottom, the steam being taken from the top and passed through a superheating coil located above the main coil, which completely dries and superbeats the steam. Generally a single coil is used as the steam generator; but when the greatest economy is the main consideration, a double coil, in which one is placed within the other, is employed. Both forms of boiler are shown in the engraving.
The advantages possessed by the coil over the sbell boiler in any of its forms are marked and are apparent almost at first sight. The coil is absolutely safe from destructive explosion, and weighs less than one-half as much as other boilers of the same capacity, and in point of economy its superiority is undoubted. It is capable of raising steam from cold water in from five to seven minutes. This is an important feature, especially in steam launches and torpedo boats, where time is an all-important matter.
The engines used in the Herreshoff system for marine purposes are of the compound condensing type, having feed and air pumps attached. The machinery of this system is pany, perhaps the most successful craft is the navy or government launch, shown in the engraving. It is 33 feet in length, 8 feet 6 inches in width, and is furnished with a folding tent or awning over the standing room, either or both sides of which may be raised to protect passengers from rain, spray, or wind. When not in use the tent folds down snugly on either side of the boat outside the rising. Either or both sides of the tent may be elevated, thus making an awning proper.
The general advantages of the Herreshoff launch are summed up in the preliminary report of Chief-Engineers Isherwood, Zeller, and Carpenter, from which we make the following extracts
"The followng general opinions, arrived at by close observation during "1. As and exhaustive experiments, can be depended on.
"1. As regards the hulls of the launches. The models of the Herreshoff launches and the distribution of their weights have been so perfected by long and intelligent experience and experimenting, as to scarcely leave for many yeare made a specialty of designing, constructing, and testing steam launches, steam yachts, steam torpedo boats, and similar vessels. The material is of the best quality, well seasoned, and carefully sclected. It is so distributed in the construction of the hulls that the requircd
 strength is obtained, wihh the least weight; the thoroughness and
perfection of the fastenperfection of the fastenings being depended on, material poorly secured. The workmanship cannot be excelled in neatness, finish, and skill. These hulls combine the maximum of strength
with the minimum of with the minimum of
weight, which is the end to be attained in this class of vessels where lightness is of the first consequence for stowage on board ship, carrying capability, small draught of water, and speed. In all these parstruction, combination-
especially noteworthy for its extreme lightness and for the judicious distribution of material, all of the parts having ample strength, and no portion being loaded with useless metal, which would rather detract than add to the efficiency of the machine. These engines use the steam with the highest economy, actual and prolonged tests having proved the efficiency to be at least 40 per cent greater than that of the non-expanding type. As to mechanical details of construction, finish, proportion, and general design these engines eave nothing to be desired.
Of the several steamers sbown in our engraving, the one bundred foot size-of which a number have been built-is considered by yacht men as the most advantageous size for coastwise cruising. It can be handled by a few men, con sumes a minimum of fuel, and, what is more important than anything else, the interest on first cost is small in comparison with that of the large iron steamers recently added to
ness, quality of materials and workmanship, the Herreshoff steam launches are incomparably superior to the navy launches, a superiority resulting from the fact that the latter are only occasionally designed and built at
the navy yards, and then by persons whose skill and experience lies in the the navy yards, and then by persons whose skill and experience lies in the designing and constructing of large vessels, and who devote little or no
attention to what is considered as comparatively a small matter, but which, if the highest excellence is to be attained, requires much special training and experience.
"2. As regards the machinery. The system of machinery employed In the Herreshoff launches is quite original in most of its details. It is diametrically opposite to that which is used in the navy launches and is in every particular greatly superior to the latter. In the navy launches a single cylinder is employed, and the starting and stopping are consequently uncertain and slow, with the risk of damage and accident from runsing "In the navy launches steam of high pressurs
nch above the atmosphere) is used almost without expansion and it is generated in a type of boiler whose strength is only moderately in excess of the pressure. This steam is not condensed, but is exhansted direct into the chimney of the boiler to cause sufficient draught for generating the
disproportionately large quantity of steam required with this disproportionately large quantity of steam required with this system.
"In the Herreshoff launches the engines are by preference of the com-
ound type and of the simplest design; the two cylinders are connected at right angles, and the control of the vessel is thus made complete, there being no time lost and no uncertainty in the starting, stopping, and back-
ing. There are no independent cut-off valves, the difference in the areas ing. There are no independent cut-off valves, the difference in the areas of the pistons of the two cylinders giving, without that complication, an expansion of from four to five times, so that all the economy possible
Prom this source is attained. The boiler is practically inexplodible, being rom this source is attained. The boiler is practically inexplodible, being
composed of a coil of iron pipe from two to three inches in outside diameter according to size of boiler. The steam pressure carried, however, is comparatively low, ranging for ordinary use from 40 to 60 lb . per square inch above the atmosphere; the engines being made strong enough to run under a pressure of 15 llb ., or as much as the boiler can be made to furnish. This boiier has a forced circulation, is absolutely safe both on account of its strength and of the very small quantities of steam and water which it contains; it is operated by natural draught, which, how-
ever, can be increased by a small steam jet thrown into the chimney whenever there may be a demand for the maximum quantity of steam The economic vaporization is as good as that of any other marine boiler This boiler, owing to its forced circulation, with the feed water entering at the top of the coil while the steam is drawn off at the bottom, can be successfully employed with the highest rate of combustim given by a powerful fan blast delivering the air into a closed ashpit; that is to eay, with a combustion of ; $\mathbf{2}$ lib. of coal and over per square foot of grate sur-
face per hour; being in this, re .pect the ouly boiler composed exclusively of tubes that can be worked at vxceptionally high rates of combustion. In all other boilers of this kind the rate of combistion is limited by the pact that as soon as the quantity of heat thrown in a given time on the ubes reaclies a very moderate amomet, the water is driven from the iron, which, deprived of tiat protection, speecdily burns out
"The coil boiler is the lightest cecr constructed for its power, and the weight of water contained in i is the least. This boiler is
feature of the Herresloff system and the only part patented. eature of the Herreshoff system and the only part patented.
"The cngine is condensing, the steam from the cylinder be
to a surface condenstr of the simplest design and lighterg exhausted formed by a copper pipe secured to the outside of the hull just above the keel. By this means the boiler is supplied with fresl water, and the slight quantily lost by leakage is restored from a small tank situated beneath the boiler.
"The continuous service of the launch is thus limited by only the weight of coal it can carry, aud not uy the weight of water it can carry. The bunkers can casily and quicliy be refiled from other vessels at any localwater can be obtained.
"The use of condensing engines with surface condensers renders the Herreshoff steam launch of real military value, from the length of time it can continuously steam, and from its freedom from noisc. When the engines are stopped temporarily, the steam is then blown from the boiler
:lirectly into the condenser and there condensed, the condenser, under the lirectly into the condenser and there condensed, the condenser, under the circumstances, cannot be ovcrheated, as the outboard pipe is in continual at rest.
"The navy launch carries 960 pounds of coal in the bunkers, and 2.500 pounds of water in the tanks, and in smooth water can maintain a speed
of 7 statute miles for four consecutive hours, after which the tanks must be reflled.
"The Herreshoff launch carries 1,120 pounds of coal in the bunkers, and can maintain a specd of 7 statute milks for twenty-cight consecutive b fter which the bunkers must be refilled. But if there be addea oue uucl
weight the 2,500 pounds in water in the navy launch, then the consecutive
steaming of the Herreshoff launch can be extended to nin ?ty-eight hours "The maximum speed of the navy launch was 8 . 5 statute miles per hour, nd of the Herreshoff launch 11 statute miles per hour
"When the two launches were tried together in very rough water, against a strong head wind and sea, the superiority of the Herreshoff launch was much more marked than in smooth water. While the navy launch took in so much water over the bows as to endanger her safety, and to require much better trimmed, lizhter, more buoyant, and every way superior in nautical gualities to the navy launch, at the same time making double th speed.
As rezards economy of fucl, the Herreshoff launch devclops the indiIn every particular the superiority of the Herrechoff land in the navy launch aunch was so Their weight was one-half aud their economy of fuel was double; their nautical qualities were much finer, their carrying capacity was greater their filish and general arra::gement were better, they were noiseless, and heir capability of continuous service was enormously greater. The supe-
ior adaptability of the Herreshoff system to that of any other known to us, or steam launches, steam yachts, steam pinnaces, torpedo hoats, small gon boas.s. etc., is so urquestionable, that after the most extensive experiments and therough examination of the subject, we are conistrained to recommend it, though comparatively new. to the serions attention of the department for such classes of vesscls. The manazement of the boiler
differs from the management of boilers of other types, but is soon acquired by the humblest inteligeace, and we believe the engineering of the Navy should be familiarized with it as specdily as possible, as its use is certain

In addition to marine work the Herreshoff company are at present giving particalar attention to engines for electric light. The quickness with which stean may be raised, the freedom from danger of explosion, the lightness of both boiler and engine, and the perfection of the mechanical details, render this system valuable for this purpose, and admits of placing powerful machines in the midst of crowded cities without danger to life or property.
This system bas also been successfully emplnyed in working bridge draws, dummy engines, portable and stationary pumping engines. For savv mills it has peculiar advantages. Its safety, portability, and its quick and powerful steaming qualities, give it the precedence over other steam motors.
The entire range of the manufactures of the Herreshoff company exhibit carcful and intelligent supervision, and workmauship that is in every way superior.

Manufacturing in New York City

Of late years Philadelphia has justly boasted of being not only the largest manufacturing center in the United States, but the largest in the world. If the chicf special agent for the collection of manufacturing statistics for New York, Mr. Charles E. Hill, is correctly reported, our city now takes the first place in productive industry as well as in commerce and population. Mr. Hill estımates that the final footings will show the value of our manufactured products to be futly $\$ 400,000,000$, or nearly $\$ 77,000$, c. 00 more than Phila delphia's product. This excludes the numerous factories situated in what are practically suburbs of the city, and operated by New York capital and brains.

decisions relating to patents.

 Illinois.bire fences. -Washburn a moen manuracict ing company et al. vs. haish. washburn \& moen manu FACTURING COMPANY vs. SAME.
Drummond and Blodgett, Judges

1. An assignment purporting to convey all the right, itle, and interest in letters patent "excepting thirty two or hirty three counties, heretofore sold and assigned," without designating the counties thus previously sold, is not so far ambiguous as that nothing passes thereby, the reserva tion being such as is capable of being made certain by com petent evidence, showing what counties have been actually conveyed
2. The action of the Patent Office in reissuing a patent to assignees raises a presumption of title in the assignee named, and if the defendant wished to raise the question as to whether a reservation contained in an assignment included the territory in controversy, he sbould hatve raised it in his answer, or at least have put in proof tending to how such fact.
3. Evidence a'most wholly made up of the recollections of witnesses revived after the lapse of many years, and contradicted in most instances by explicit testimony of other equally credible witnesses, leaves so much doubt as to the actual existence of the device as to make it unsafe to defeat a patent on the ground of public use thus sought to be established.
4. Evidence of the state of the art showing the prior ex istence of analogous devices for substantially the same purpose, but not fully exbibiting the device patented, operates to narrow the field for the excrcise of inventive faculty and limit the range of the patents.
5. A device, in order to be patentable, must be the result of invention, but the mere mechanical adaptation of old things to new uses is not usually invention. unless in com-
6. Invention appearing, the law does not attempt to measure its extent or degrec.
7. Utility is suggestive of originality, and the fact of the acceptance of a device or combination by the public and putting it into extensive use, is accepted as evidence that it as the product of invention.
8. An inventor may, in his reissue specification, make his description more full and accurate; but he must not substantially change it so as to describe another device or cover anything not in the original.
9. Thr original patent was for "the method of providing the wirrs of a wire fence with a series of spur wheels," and a reiss $1 e$ was obtained for a "fence wire provided with spurs for the purpose specified;" IIeld, not to be a departure from the original invention, the only changes in the specification scrving merely to give point or direction to the invention claimed
10. Matter so described in the original specification that it might have been claimed in the original patent, may pro perly be claimed in the reissue.

NEW INVENTIONS.

Mr. Rush E. Avery, of New York city, has patented a folding cot which can be folded or erected without attaching or detaching or coupling any of its parts. It is very convenient for transportation, occupying only a very small space when folded.
A safety attachment for watches has been patented by Mr. James Roberts, of Brooklyn, N. Y. A plate or ring, having scalloped edges, is slipped over the stem of the watch, projecting horizontally, and so nearly filling the pocket that when a thicf attempts to extract the watch the projecting plate will catch in the lining of the pocket atd alarm the owner. Or, if the thief attempts to take hold of the plate itself, the pressure of his fingers in the narrow space b ween the plate and the pocket will alarm the owner.
Mr. William Hoffmeister, of Mossy Creek, Tenn., has patented a double try-square. Two ordinary try-squares are joined together side by side, a suitable and adjustable dis tance apart, by a metal plate and screws or equivalent means, by which meaus the square may be made to straddle boards
of different thicknesses. The scope of the tonl is by this of different thicknesses. The scope of the tool is by this it which are not possible with the ordinary try-square.
Mr. Wilhelm Espig, of Berlin, Germany, has patented billiard table, which provides means for adjusting the bed to different heights from the floor, and also for extending its frame for the reception of talle boards whereby it may be onverted into an ordinary diniug ltable.
Mr. Francis Hopkins, of New York city, has patented an improvement in eyeglasses, the object of which is to obtain a firmer gripe upon the nose without tightening the spring, to prevent the glasses from slipping forward on the nose, and to hold them on the nose nearer to and on the same plane with the eyes. This is accomplished ly
Mr Willum H Older, f Pa n improved construction of buildings designed patented an improved construction of buildings designed especially
for barns upon prairies and other parts of the country where timber is scarce. A peculiarly constructed frame of timber and wire, the timbers being secured by bolts, is the principal feature of the invention. The outside may be covered
with straw thatch, tarred paper, etc. A serviceable building can thus be constructed with little timber and at a sma cost.

In a thill coupling patented by Mr. Levi B. Stuart, of Seymour, Conn., a grooved cushion and centrally grooved plate are claimed to provide a more durable and more easily adjustable spring to prevent rattling of shafts on their bolts than has hitherto been supplied.
A log tripper patented by Mr. Levi Gunter, of Gunther's Mills, S. C., consists of a novel arrangement of levers and an improved hook, whereby a saving in power and labor for turning logs in saw mills is effected
Mr. Samuel White, of Eau Claire, Wis., has patented an mproved head block for sawmills which comprises improvements in the jacks or standards of the head blocks, the dogs for holding the logs upon the carriage, and the means for receding the jacks upon the bead blocks.
Mr. Charles P. Batt, of Phœnixville, Pa., has patented a pendulum scale which consists in a novel combination and arrangement with each other of a pair of weighted levers, a pair of connecting bars, and a vertically operating scalebeam and indicator.
Mr. Edwin B. Hutchinson, of Detroit, Micl., has patented an improved account-book, which saves time and work in making up trial-balances from a ledger. The book is bound with haif leaves that are ruled for an index, and fitted with removable pad provided with leaves ruled in columns for account totals, arranged for two or more balances, which parl when in place forms, with the bound half leaves, a complete trial-balance book, into which the headings or names can be copied on the bound portion and the accounts carried out upon the pad leaves for two or more balances, and the pad renewed by another when exhausted, all with but one ntry of the names or headings.
Mr. Ura II. Palmer, of Elizaville, Ky., has patented a wheat heater for flour mills, in which the grain is licated by the direct contact of hot air, the air being heated by a lamp and circulated in currents through perforated tubes, among which the grain passes by virtue of its own gravity. Mr. Prosper Humbert, of Austin, Texas, has patented a three-wheeled vehicle which has one or more seats so ar-
ranged tbat the forward seat turns with the horses so that the ranged that the forward seat turns with the horses so that the driver is always directly in the rear of the horses, and holds the reins at the same le
may turn to cither side.
Mr. George B. Taylor, of New Brunswick, N. J., has patented a feed-water beater for steam engine boilers and locomotives. The heating chamber is formed of two plates attached to a frame, and its interior is divided into zigzag form by strips extending alternately from the top to the bottom, and from the bottom to the top. The heating is accomplished by the products of combustion as they pass hrough the smoke box.
Mr. Charles Niederaucr, of La Grange, Texas, has patented a cultivator in which the standards may be adjusted to egulate the depth of the cultivators or plows to avoid obtructions. Each cultivator or plow standard bas attached to it an adjustable segment, and the standards are all operated together by a lever and link connections. The plows are thus raised, while the main frame upon which the operator rides is not raised.
Mr. Gottliel, Kinsey, of Lock Seventeen, Ohio, has patented an attachment for reapers and mowers which is a substitute for ordinary reel, and which, while less expensive, is claimed to be equally as effective. It consists substantially in a rake which is automatically raised, swung forward, lowered, and drawn back as the machine advances to draw the grain or grass against the cutter bar.
Mr. Jacob Gilstrap, of La Plata, Mo., has patented a wind wheel of that class in which the access of wind is controlled by hinged valves regulated by the action of a governor. Instead of two cords and rings for connecting each valve to the governor Mr. Gilstrap uses only one cord to operate the valve in one direction, its movement in the other direction being controlled by a spring. By this means the number of parts is greally lessened and a consequent reduction in friction results.
Mr. John Coyle, of East New York, N. Y., has patented combined lampwick-trimmer and burner and chimney cleaner constructed of a brush, a square staple, and a serrated disk, whereby the charred portion of the wick can be removed, the wick and burner brushed off, and the inner surface of a lamp chimney cleaned.
Mr. William Jones, of Nasbville, Tenn., has patented a machine for making rim tops of vessels. It operates upon a straight strip of metal, flanged at one edge, to convert it into a hoop of the desired dimensions and of such shape in crosssection as renders it peculiarly suited to form the flange for the cover of sheet metal vesscls.
Mr. Bolivar J. Quattlebaum, of Williston, S. C., has patnted a portable dental engine which may readily be set up in small compass and radily taken down and packed in
small compass for transportation. The frame of the machine can be adjusted to form a case for the working parts when packed.

separation of Cobalt and Nickel.

Reichel gives the following new method for the qualita tive separation of these two troublesome metals, especially when there is but little cobalt in the presence of a larger quantity of nickel. Both metals are precipitated with potassic hydrate solution and filtered. The unwasbed precipitate is thrown into a test tube and heated with very strong pot ash until it boils. Under these circumstances the cobalt dissolves with a blue color, thus proving its presence in a very simple manuer.
Z. A. C.

sarlet for Felts.

The following two processes give shades which bear soap. ing. The dyeing is done in a well-tinned pan or a wooden cistern the goods are entered, at 115° Fab., in water, to which $11 / 2 \mathrm{lb}$. white argol is added, and boiled strongly for a long time, turning occasionally. Lift, and add the dissolved coloring matter; re-enter, turn, and add graduaily, lifting the goods before each addition of 11 lb . tin composition. The beck is then brought to a boil again, which is kept up for half \mathfrak{n} bour. Lift, cool, and wash well
If the argol does not loosen the tissue sufficiently, it commended to add a small quantity acetate of soda.
The tin composition is prepared as follows: Muriatic acid, $3 \mathrm{lb} .$, nitric acid, 1 lb .; water, 1 lb .
To every 6 lb . of this mixture 1 lb . of granulated tin is added, with the aid a gentle heat.
Sulphuric acid may be used instead of the tin spirits, but the shades are less pure.
The first method consists in dyeing the goods thus mordanted with the "Ponceau 2 R" of the Aniline Color Company of Berlin. In the second the goods mordanted in the same way are dyed with "Ponceun S extra," made by the same company -Muster Zeitung für Fuerberei.

CONTINUOUS-SLIDE LANTERN.

The engraving shows a lantern which possesses certain advantages, and is specially adapted for lectures where the subjects follow each other in an unliroken series. Mistakes arising from the insertion of a wrong slide, or an inverted subject, are apt to mar an evening's contertain ment. But, as will be seen, errors of this nature are altogether avoided, and by a simple mecha nical arrangement, the slides present themselves in perfect order and at their allotted times.
The instrument is fixed to the top of the pack ing case, B, by the screws, A A; the lid of the case, G , serves to elevate or depress the lantern Which may be fixed in position at any angle. Reared above the cbimney are two metal up rights, secured to the sides of the lantern. These carry at their apex a wooden cube covered with fine leather; each side of this cube corre sponds with the size of the slides. But, by the sponds with the size of the slides. But, by the
aid of strong ribbon binding, the slides are so aid of strong ribbon binding, the slides are so
united as to form a flexible band which traverses united as to form a flexible band which traverses
the culse and deseends into the case, B, through the cube and deseends into the case, B, through
slots, D D. The cube turns on its axis, E, to slots, D D. The cube turns on its axis, E, to
which is attached a milled head. Tue band is made so that the slides can be detached and replaced by a new series at will.
The advantages of this simple arrangement are so obvious as hardly to require further comment. The operator has only to turn the milled bead of the cube in order to bring his subjects, one after the other, into position. This system might be applied also to the dissolving view apioaratus The heat from the chimney is never so intense as to interfere in any way with the slides while it clears them of surface moisture, by which they might be ob,scured during cold weather.

An Aluminum Battery

A curious and novel voltaic cell has been de vised by Herr Wühler, and described in Liebig's Annalen. The chirf peculiarity is that both plates are of the same metal-aluminum-and a tolerably strong current is supplied. The cel consists of a glass vessel six inches bigh, filled with very dilute hydrochloric acid, or caustic soda, and containing an imer porous pot filled with concentrated nitric aciū. In each compart ment is placed a cylinder of aluminum provided with a projecting lug which passes through the cover of the vessel, and acts as a contact piece for the electrodes or conducting wires. As soon as the aluminum cylinders are plunged into the acids, a current is given off sufficiently powerful to heat a platinum wire red hot.

To Make Chloride of Gold and Nitrate of Silver.* Procure 8 grimmes $=5$ dwts. of fine gold, and after rolling out to thin plate, cut into small strips. Get an olive oil flask, and clean it well with a warm and saturated solution of soda and water Fill the flask half full of water, and set on a sand bath over a heat that will slowly briag the water to boiling, which will both temper and test the flask; if it stands this test it is fit to be used. Put the pieces of gold into the flask, then mix in a small bottle half an ounce of pure nitric and two ounces of muriatic acid, and pour some of this into the flask to cover the pieces of gold, place it in a sand bath over a gentle heat, and put over the mouth of the flask a small liece of glass to prevent the solution from spirting oat while in action. As soon as the acid ceases to act on the gold, and if any remains undissolved, add nore of the mixed acid, and continue to add little at the time as often as it stop; acting on the gold until all is dissolved; remove then the flask from the sand bath and let it cool, then add to it about its like quantity of water, and boil over a heated sand bath until about half of it is evaporated; renove and pour the solution into a glass or porcelain dish,
*From the Deutsche Chemiker Zeitung, by H. Bush, Hull.
and rinse the flask several times with small quantities o warm water, which add to the solution.
Now prepare a filter in a small glass funnel, place it in the flask, and filter the solution back, and before the filteriug is nearly completed pour a few drops of water at a time into the filter in order to wash the gold out of it, and until the solution is increased to about a third in bulk, then return it to the sand bath and evaporate again to about half; after this pour the solution into an evaporating dish and rinse the flask with warm water and add the riusing to the con tents in the evaporating dish, then add about 1 gr .50 centigr. of fine table salt for each gramme or $11 / 2$ dwt. for each dwt. of gold dissolved; place it on the sand bath, stir it well with a glass rod until perfcetly dry, then allow it to cool when it will be ready for use, or to be poured into small bottles for sale. The 8 gramme or 5 dwt. of gold used will realize 24 bottles containing 1 gramme or 15 grains of chloride of gold to each bottle and will pay well for the trouble of preparation. The chloride of gold prepared in this manner will answer for making solutions for electro-gilding or for photographic purposes.
To make nitrate of silver, take granulated fine silver and put into a glass flask similar as used for dissolving gold, pour pure nitric acill mixed with about half the quantity of warm water into the flask to cover well the silver, place the flask in a sand bath over a gentle heal or into a vessel of hot water, which must be kept bot by placing over a spirit lamp until the acid ceases acting on the silver; if silver remains undissolved in the flask, remove it from the sand and let it

CONTINUOUS-SLIDE LANTERN.

In order to obtain crystals of large size, the moment of forming the scum on the solution has to be watched during evaporation and advantage taken of by removing it from the sand bath at this point. Anotber advantage of greatly accelerating the formation of crystals is to put a picce of nitrate of silver into the solution before placing it on the ice This method will produce nitrate of silver of a better and purer quality than generally bought of dealers.

MISCELLANEOUS INVENTIONS.

An improved end gate for wagon bodies, patented by Mr. Thomas Dwyer, of Kendall, Ill., supplies drop end gates which may be turned down aud supported in horizontal positions to serve as platforms for convenience in shoveling oats out of wagons. It. may also be turned down in a vertical position out of the way. Quadrantal wings with stop devices enable these adjustments to be casily made, and hold the gate securely when alljusted.
Mr. George T. Hedrick, of Wcaverton, Ky., has patented a nozzle and stopper for gaiain bags. It is metallic, and the bag is gathered and attached to it by a draw string. The stopper is a metaliic disk with a spring catch which engages interrupted flanges on the interior of the nozzle.
A lock and latch combined, patented by Mr. Charles F. Batt, of Phœnixville, Pa., is so constructed that the lock cannot be readily picked, and both tine bolt and the lateh can be operated by the same key. It also allows the latch to be hrown out of or into gear with the spindle.
Mr. Earnest J. Krause, of Carlisle, Pa., has patented a fire escape ladder, whic:h provides means for adapting the books of a fire cscape ladder to window sills of all widths, and for holding the ladder as firmly on narrow sillis as on broad ones.
Mr. Orlando H. Jadwin, of Brooklyn. N. Y., has patented an improved cable traction for street cars. A peculiar clutch attached to the car serves, at the will of the conductur, to attach the car to the traveling cable, which runs in a channel or trough formed in the ground. Devices are aiso supplied to hold the calle in position at strect corners, etc. The clamping of the cable by the clutch is gradual and uniform.
Mr. James Pardee, of Plillipsburg, Montana Territory, bas patented an improvement in rotary ore-roasting furnaces, intended to increase the capacity, effectiveness, and working econo. mies of this class of furnaces, and more espe cially applicalle to what is known as the How ell rorary furnace. The improvement consists in a diaphragm or partition placed in the rear of the furnace feed pipe, by which means the crushed ore is given time to become heated and aggregated before dropping through the moving current of air and flame, and in this condition is not carried by the draught into the dust cham bers in such quantities as heretofore.
Mr. James M. Totten, of Sharron, Wis., has patented an improved adjustable wrencl. The shank has a socketed mortised block at the lower end, and a cross bolt passing through the shank, which holds side sliding plates. By slicing out the side sliding plates from the block and fastening them by the bolt, the wrench may be made to fit various sizes of nuts.
Mr. August W. Klamer, of C'ahoka, Mo., has patented a draught equalizer for side reaping machines. A rertangular framework is adjustably securcd to the tongue or pole of the vehicle, projecting on one side thercof and carrving the whiffetrees, thereby affording the horses a power ful leverage against the side pull of the machine.
Mr. Charles Steinfels, of Elizabeth, N. J., has patented a screw polishing macbine, which auto matically seizes and properly presents the heads of the screws to polishing wheels, the screws be cool; then pour off the liquid into a porcelain dish, add a ing fed to the machine in mass.
little more acid to the remaini:ng silver in the flask, and place it again over heat until dissolution of silver ceases, and keep on repeating the decanting and adding until all the silver is dissolved. By this methorl an excess oî acid is avoided. After the solution has cooled add to it about half its quantity of water and filter it through asbestos broken up and placed in the filter in the neck of the funnel; after filtering pour into an evaporating dish and place it on a heated sand bath and evaporate until you perceive a light scum on the surface of the liquid, when it is removed and allowed 10 cool, and when nearly cold is placed on ice covered over and left undisturbed for twenty four hours, when crystals of nitrate of silver will form; the crystals are removed with a pair of platinum pincers into a glass funnel placed into the neck of a bottle, and as soon as the crystals have given over dripping pour quickly about an ounce of water over be crystals, and after done dripping repeat it twice more, take the crystals out of the funnel and spread them out on a china plate and place on a warm stove to dry. Pour then the washings of the crystals back to the remaining silver solution not yet crystallized, evaporate and filter the same as before and set by to crvstallize, and repeat the process until nearly all the silver is disposed of. The small remainder of silver solution may be decomposed into chloride of silver by adding gradually small quantities of salt water.

Mr. Heinricb Trenk, of Beriin, Germany, has patented a composition for use in tanning, consisting of a concentrated solution of crude tartar or argol, to which a small quantity of chloride of zinc or analogous chloride has been added. This composition is used after the hides or slins have been treated by the tanning liquor, and its action is to make the tinished leather more dense and compact.
A hitching strap, patented by Mr. John D. Stotlemeyer, of Hancock, Md., prevents horses, when hitehed, from falling, and assists them in recovering therr feet when down. A portion of the strap is made of a strong strip of clastic rubber, provided with a snap hook, and suitably attached to the leather portion of the strep.
In an apparatus for watering stock, patented by Mr. James Ray, of Huntsville, Mo., a trough or receiver is provided with a device whereby water flowing into it from a pipe is automatically prevented from flowing as soon as the water reaches a prescribed level in the trough. The troughs may be arranged in a series, delivering water one to anotber, in such manner that nune shall be wasted by overflow. A novel arransement of float lever valves and float valves is used to accomplish the end sought.
A cheese cutter, patented by Mr. Lionel J. Smith, of Peshtigo, Wis., is so constructed that checses can be easily, accurately, and quickly cut into pieces of any desired size.

IMPROVED AIR BRAKE

The construction of the brake shown in the annexed engraving is exceedingly simple, all unnecessary complication having been carefully avoided. As a consequence the first cost has been greatly lessened, the weight diminished, and the friction reduced, so that the apparatus may be made smaller than the ordinary form without detracting from its efficiency. The amount of the reduction of the weight amounts to about 140 lb ., and the moving parts are reduced to a simple lever and a piston.
The arrangement of the mechanism is clearly shown in the engraving. The air cylinder receives air under pressure from a pipe extending from the engine through the entire length of the train. The forked end of the piston rod is connected with the lever by a pin passing through the fork and through a slot in the lever. The lever is retracted by a spring after being moved by the piston. Opposite ends of the lever are connected with the brakes at opposite ends of the car by the usual brake rods.
This simple mechanism may as readily be operaied by a vacuum as by air pressure. The piston is moved more or less, and with greater or less force according as the air pressure is increased or diminished, and the

GLENN'S AIR BRAKE.

Mr. James Smith, of Thornliebank, county of Renfrew, North Britain, has patented a dye and bleach vat more especially designed for the series of processes known in calico printing as dunging or treatment with duug substitute, but which is also applicable to bleaching and dyeing processes, etc. The apparatus is claimed to be far more convenient and compact than that heretofore used.
Mr. Heinrich Trenk, of Berlin, Germany, has patented a composition for tanning hides and skins. Two solutions are employed, mixed in the proportion of two of the first to one of the second. The first solution is composed of 25 parts pyroligneous acid, 25 parts chromate of alumina, in 1,000 parts of water. The second is a concentrated solution of crude tartar and a small quantity of chloride of zinc or aualogous salt.
Mr. John McLeod, of Auckland, New Zealand, has invented a self-adjusting mast which is intended to increase the safety and improve the sailing qualities of boats and vessels. The mast is hung on trunnious on a thwart of a boat or beams of a larger vessel, and its foot rests on a curved tube with strong.springs coiled around it. A counterbalance is secured about the foot of the mast to increase the inertia and to operate as self-adjusting ballast, and strong springs are also attached
brakes of the entire train are under the control of the engineer.
Further information may be obtained by addressing Messrs. Glenn, Cole \& Jaques, Ottumwa, Iowa.

LOCOMOTIVE STEAM CRANE.

We give engravings of a locomotive steam crane designed and constructed by Mr. Thomas Smith, Steam Crane Works. Rodley, near Leeds, which is now working at the Barrow Shipbuilding Co.'s Works, and where it is employed in he erecting and fitting shops, also in the yard for shunting purposes. This att purposes. The Messrs. Pawson Brothers, of Morley, near Leeds, who $\begin{aligned} & \text { It permits the use of brass, or other metal that can be } \\ & \text { plated the ferrule plate or ring, while }\end{aligned}$ have had one at work for a period of five months, loading material into ordinary railway trucks, and also for drawing two fully loaded trucks up an incline of 1 in 20 , at the rate of four miles per hour, a distance of a quarer of a mile, the distance raveled altogether (and on which there are curves) from their some sharp to the main lineir works on a mile. The crane is fitted with two speeds for propelling (this motion being specially designed to meet the requirements of the case quick and slow; the quick peed travels at the rate of even miles per hour with less weight or on the level oad To obvian the level o to obviate the shock o sur gearing, India rubber springs are placed over the axle boxes, and the wheel base is such as to allow the crane to travel easily over ordinary curves. The gauge is the usual rail way gauge.
The crane has single purchase hoisting motion, fitted with a powerful friction brake and catch, so that when re quired the crane can be propelled with the load suspended. The revolving motion is worked with a double friction cone, so that the crane can be made to revolve in either direction without stopping or reversing the engine, and to keep the crane from slewing round when on the incline, a small brake is attached on the first motion shaft. All the gearing is of the best crucible cast steel, and the cenralpillar is of best forged scrap iron.
The engines consist of a pair of cylinders 8 inches in diameter by 10 inches stroke, and are each fitted with link reversing motion, and crank shatt of steel. All the bearings are bushed with phosphor-bronze, and are adjustable. The boiler is of the ordinary vertical type, with three cross ubes through the fire box; the internal parts being of best Yorkshire iron. All the vertical seams are double riveted, and all the rivet holes are drilled in position. The boiler is fitted with the usual mountings, and also with a feed pump and a Giffard's injector. The tank is capable of holding a large supply of water, a great desideratum in a crane of this description, as it avoids the necessity of having to go for a
for Messrs. Pawson Brothers, of Morley, near Leeds, who plated, for the ferrule plate or ring, while using iron for

LOCOMOTIVE STEAM CRANE AT THE BARROW SHIPBUILDING COMPANY'S WORKS. a lathe. The invention consists of a ring with a recess and out. a loop with a hook at one end, the hook end of the loop being placed in the recess of the ring, both ring and loop being then driven over the end of the veck and secured by a screw or rivet passed through the free end of the loop. Mr. Seymour Van Nostrand, of Stormville, N. Y., has patented a vehicle spring, claimed to be of superior elasticity and strength, and having the important feature that by ingenious devices the elasticity of the spring can be increased or diminished at will to suit different loads. Mr. Th trees, patented by Mr. Thomas Davies, of Fall River, Mass., may be used for the cutting of roots in felling trees without dulling the cutters, for cutting limbs from fallen trees, for splitting wood, and other purposes.

A water indicator for boil ers, patented by Mr. John Bridges, of Leon, Iowa, consists of an arrangement of float pipes, levers, and an indicator, which operate in combination with a water supply tank, feed pump, and boiler for automatically regulating the beight of water in the boiler and indicating the water level.
Mr. Louis D. Clairoux, of Detroit, Mich., has patented a fruit gathering apparatus, which consists in a novel construction, arrangement, and combination of a framework, apron, trough, and other devices, which provide for readily applying the apparatus to a tree and adjusting it to different positions. The fruit is received upon the yielding surface of the flexible apron, and, rolling to the center, passes into a trough, which conveys it, without bruising, to the ground.

An apparatus for conveniently retailing nails, nuts, and other articles sold by the pound and which facilitates the handling of such goods in getting them out and weighing them, has been patented by Messrs. Henry C. Draper and Thomas Bowyer, of Oswego, Kansas. The receptacles which hold the articles are hung on trunnions in a novel sort of frame, so that they can be turned down into a horizontal position for the more effective employthe loop; and also permits finishing the ferrule or plate in ment of the scoop or other implement used to take them

A device for extracting cartridge shells, patented by James F. Marvin, of Fort McDowell, Arizona Territory, provides a means whereby, when the heads are pulled off of cartridges, the shells may be easily extracted. A slotted expanding tube, with flanges and shoulders, and an expanding pin, is inserted into the shell. The closing of the breech expands the device into engagement with the metal of the shell, and when the breech is again opened the whole is extracted together.

HELMET CRESTS

The belmet crests are very curious birds, and are at once known by the singular pointed plume which crowns the top of the head, and the long beard-like appendage to the chin. They all live at a very considerable elevation, inhabiting localities of such extreme inclemency that few persons would think of looking for a humming bird in such frozen regions. There are several species of helmet crest, and their habits are well described by Mr. Linden, the discoverer of Linden's helmet crest, in a letter written to Mr. Gould, and published in his monograph of the humming birds.
"I met with this species for the first time in August, 1842, while ascending the Sierra Nevada de Merida, the crests of which are the most elevated of the eastern part of the Cordilleras of Colombia. It inhabits the regions immediately beneath the line of perpetual congelation, at an clevation of from 12,000 to 13,000 feet above the level of the sea. Messrs. Funck and Schlim found it equally abundant in the Paramos, near the Sierra Nevada, at the comparatively low elevation of 9,000 feet. It appears to be confined to the regions between the eighth and ninth degrees of north latitude.
" It occasionally feeds upon the thinly-scattered shrubs of this icy region, such as the hypericum, myrtus, daphne, arborescent espeletias, and towards the lower limit on bejarias, but most frequently upon the projecting ledges of rocks near to the snow. Its fiight is swift, but very short; when it leaves the spot upon which it has been perched, it launches itself obliquely down ward, uttering at the same time a plaintive whistling sound, which is also occasionally uttered while perched, as well as I can recollect. I have never heard it produce the humming sound made by several other members of the same group, nor does it partake of their joyous spirit or perpetual activity. Neither myself nor Messrs. Funck and Schlim were able to discover its nest, although we all made a most diligent search.

Its food appears principally to consist of minute insects, all the specimens we procured having their stomachs filled with small flies."
The head and neck of the adult male are black, a line of white running aloug the center. The long plumes of the throat are white. Round the neck and the back of the head runs a broad white band. The upper surface of the body and the two central tail feathers are bromze-green, and the other feathers are a warm reddish bronze, having the basal half of their shafts white. The under surface is a dim brownish bronze. The length of the male bird is about five and a quarter inches. The female is coppery brown upon the head and upper surface of the body, and there is no helmet like plume on the head nor beard-like tuft on the chin. The throat is coppery brown, covered with white mottlings, and the flanks are coppery brown washed with green. The length of the female is about one inch less than that of her mate. - Wood's Natural History.

Novel Employment of Elephants.

Recently, at Bridgeport, Conn., a switch locomotive having run off the track, two of Barnum's largest elephants were brought out and made to push the locomotive with their beads. They succeeded in righting the machine after one or two attempts, but their exposure to the winter air gave the animals bad colds, and to cure them it was necessiry to give them seve ral gallons of whisky.

White Negroes.

At a recent clinical lecture at the College of Physicians and Surgeons, Professor George Fox intoduced the "Afri can leopard boy" now on exhibition in this city. According to Dr. Fox the boy is eleven years old and of pure negro parentage, and at birth was entirely black. White patches began to appear on his body when he was three years old, until now a large part of his arms, chest, abdomen, and legs, in irregular blotches is white, and the skin around the blotches is a cafe au lait color. There is also a white spot on his forehead, extending several inches back on his head, and the hair on the white spot is also white, although as kinky as a colored boy's hair should be. Except as to color, the skin is entirely normal. The face, neck, hands, feet, and back are entirely black. The white area is increasing an-

LINDEN'S HELMET CREST OR BLACK WARRIOR.-(Oxypogon Lindenï.)
in his district. Three other Boston companies have entered the field, one having contracted for ten wells, the other two for three wells each, so that in the course of the year it is expected that twenty-eight wells will go down. The Cape Breton oil is a heavy lubricating oil.

Improved Caustic.
It sometimes becomes necessary to remove certain morbid growths in the throat and elsewhere, and for this purpose a stick of fused nitrate of silver secured in a quill is generally employed. Unfortunately it not unfrequently happens that the caustic breaks off and slips down the throat. To prevent this a Russian surgeon melts together 5 parts nitrate of silver and 1 part nitrate of lead. This composition does not break easily, and can be sharpened like a lead pencil. It should be fastened in a quill made of metallic aluminum, which is not corroded by the caustic as metallic silver is.

Joseph Smith's Tree Root Museum

Mr. George Jacob Holyoke describes, in the Manchester Co-operative Nevos, a remarkable museum of oddities carved out of laurel roots by Joseph Smith, Wissil hickon, Pa ., the most original thing he saw in America. Mr. Holyoke expected, from his early acquaint ance with the man, to find the museum commonplace and pretentious. Instead he found a number of rooms bearing the appearance of a forest of ingenuity, which a day's study would not exhaust. There was nothing tricky about it. Its objects were as unexpected as the scenes in the Garden of Eden must have been to Adam. Noali's ark never contained such creatures. Doré never produced a wandering Jew so weird as the laurel Hebrew who strode through these mimic woods. Scenes from the Old Testament, groups of American orators, statesmen, and railway directors started up in the strange underwood, or held forth in the branches of trees. Dr. Darwin would require a new theory of evolution to account for the wonderful creatures -beasts, birds, and insects-which confront you everywhere. An American Dante, if there be such a one, might find ample material for a new poem in this wooden inferno. The mind of man never conceived such grotesque creatures before; yet this was the work of an old agitator, executed between his seventieth and eightieth year, with no material but roots of trees, with no instrument but his pocketknife and a pot of paint, and no resources but his marvelous imagination. There were snakes that would fill you with terror; stump orators that would convulse you with laughter. His Satanic Majesty strode on horseback; Mrs. Beelzebub is the quaintest old lady conceivable. The foreign devils all had a special individuality. There was the Mohammedan devil, the Indian devil practicing the Grecian bend, the Russian devil eating a broiled Turk, the Irish devil bound for Donny. brook Fair, the French devil practicing polka, the Dutch devil calling for some beer, the Chinese devil delivering a Fourth of July oration. Mr. Holyoke saw no American devil, and hoped we were without oue. Mr. Smith's description of his creations endowed every creature

Royal Society of London, between 1650 and 1700, describing the portions of the skeleton of one of these animals dis covered near Albany, N. Y. Since that period skeletons nearly entire, detached bones, teeth, etc., of the mastodon, have been found in nearly every State in the Union, including those of the Pacific slope. The evidence thus far obtained goes to show that the mastodon first appeared in America in Miocene times, was abundant in the Pliocene, and lingered until the close of the Glacial period, and disappeared in the early Loess. We also find that he roamed at will from Canada to South America, being found as far north as 66 N. latitude on our Western Coast.

Cape Breton Oil Wells.

The oil belt at Lake Ainslie, Cape Breton, is being prospected with considerable promise. The Cape Breton Oil and Mining Company are now sinking a well half a mile from the western shore of the lake, and have reached a depth of 1,000 feet. 'The prospects are said to be good, the oil being of a quality exceptionally valuable. The local man ager of the company intends, he says, to sink twelve wells
with living attributes. He illustrated his favorite doctrine of man being the creature of circumstances, by saying it was coming to live in Schuylkill Countr which first developed in him the latent slumbering organ of rootology.

Dust and Fog.-Beneficial Effects of smoke.
Mr. John Aitken recently read a paper before the Royal Society of Edinburgh on the origin of fogs, mists, and clouds. From a great number of experiments with moist air at different temperatures, to determine the conditions which produce condensation of water vapor, he concludes that whenever water vapor condenses in the atmosphere, it always does so on some solid nucleus; that dust particles in the air form the nuclei on which the vapor condenses; that if there were no dust there would be no fogs, no clouds, no mists, and probably no rain; and that the supersaturated air would convert every object on the surface of the earth into a condenser on which it would deposit as dew; lastly, that our breath, when it becomes visible on a frosty morning, and every puff of steam, as it escapes into the arr from an engine, show the impure and dusty state of the atmosphere.

These results have been verifled at temperatures as low as 14° Fah., at which, however, there was little cloudiness pro duced, owing to the small amount of vapor in air so cold The sources of this dust are many and various; for instance, finely ground stone from the surface of the earth, the ash of exploded meteorites, and living germs. Mr. Aitken slowed experimentally that, by simply heating any substance, such as a piece of glass, iron, or wood, a fume of solid particles was given off, which, when carried along with pure air into a receiver, gave rise to a dense fog mixed with steam. So delicate is this test, that the hundredth of a grain of iron wire will, when heated, produce a distinct haziness in the receiver. By far the most active source of these fog producing particles is, however, the smoke and sulphur given off by our coal fires; and as even gas grates will not prevent the emission of these particles, Mr. Aitken thinks it is hopeless to expect that London, and other large cities wherein such fucl is used, can ever be free from fogs. However, inasmuch as more perfect combustion will prevent the discharge of soot flakes, these fogs may be rendered whiter, purer, and therefore more wholesome, by the use of gas grates, such as that recommended by Dr. Siemens. Mr. Aitken also drew atteution to the deodorizing and antisepic powers of smoke and sulphur, which, he thinks, proba bly operate bencficially in killing the deadly germs and disinfecting the foul smells which cling about, the stagnant air of fogs, and suggests caution lest, by suppressing smoke we subsitute a greater evil for a lesser onc.

THE NAVIES OF EUROPE.-TEN YEARS' PROGRESS IN

 SHIPS OF WAR.In recent issues of this paper considerable space has been given to the consideration of our coastwise and maritime defenselessness, and to the pressing need of attention to ou naval weakness
The pist decade has been a period of remarkable activity nd creative progress in all the navy yards of the world save ours. During this time the great powers of Europe have substaiatially reconstracted their navies on a scale previously undreamed of; and even the third and fourth rate powers of the world have so increased their war fleets as to place usin a decidedly precarious position navally should a controversy with either or any of them suddenly arise. There is happily no present indication of foreign war, but a war is always possible; and it ill-becomes the richest nation in the world to be doing nothing for the protection of the exposed wealth of its scaports, or for putting itself in position to command respect-the surest guarantee of peace.
According to the recent report of the Navy Department the strength (more correctly, weakness) of the United State Navy is summed up as follows:
In Commission-Stcamers, 29, sailing ships, 4; monitors, 8; torpedo boate, 2; total, 43. In Ordinary-Steamers, 18 ; sailing vessels, 8 ; monitors, 7; steamers, 3; saiiing ships, 3 ; monitors, 1 ; steamer, 1 ; sailing ships, 3. On Stocks Steamers, 5, sailing ship, 1 ; monitors, 4; ironclad. 3. Re-pairing-Steamers, 9. At Naval Academy-Sailing ships, 3 ; monitors, 1. Public Marine School-Sailing ship, 1. Tugs of all kinds at yards and stations, 25. Total number of vessels, 139
Of these vessels, constituting the general service flcet, six are double-turreted armor belted monitors, only one of which is finished or near completion-the rest are rotting on the stocks; fifteen are single turreted monitors built from fifteen to eighteen yeurs ago, and now practically worthless; five are unarmored serew steamers (frigates), the youngest, the flag ship Tennessee, being fifteen years old; twelve second rate and twenty thiri rate corvettes, all but one second-rate (the Trenton) and half a dozen third-rates being aucient and of small value; four paddle steamers, all ancient; two tor pedo vessels, and a dozen small gunboats, only two of which are yet armed. Some of these vessels carry small rifled guns (altered from smoothbores), and all are slow, very few ex cee ding ten knots.
The navy of Great Britain presents a remarkable contrast. It now comprises, according to the carcful summary of Mr King (" War Ships and Navies of the World." by Chicf En gineer J. W. King, U. S. N. Boston: A. Williams \& Co. 1880), nearly four hundred vessels of all kinds, excluding those laid up or employed in permanent harbor service. These vessels are divided into three classes: ships for great naval battles, ships for coast defense, and unarmored cruising vessels. Of the first class of beavily armored sea going fighting ships, armed with powerful guns, there are now twenty-eight, carrying 254 guns, weighing in all 4,493 tons Eleven of the ironcladsare sea-going turret ships-nine mast less and two rigged-and seventecn are broadside ships, of which three are armor-belted cruisers. The coast defenders type number ten. In addition, two iron-plated wooden ships remain scrviccable. These are all large ships; nearly all are of recent construction, the average expenditure on new armored ships, according to Mr. King, being about fifteen million dollars a year, while nearly four millions are spent on other new vessels. The first-class turret ships range be tween 270 and 330 feet in length; 6,2): to 11,406 tons dis placement; carry guns of from 2.5 to 80 tons; and can steam from $121 / 2$ to 15 knots an hour. The first-class broadside ships are from 230 to 325 feet in length, and, with one exception. exceed 6,000 tons displacement, rising as bigh a 9.500 tons. They carry guns of from 12 to 25 tons, and all make better time than the fastest American corvettes, or be-
tween 12 and 15 knots. The armor belted ships are but
slightly smaller and less powerful. The coast defenders ar improvements on our monitors in size, speed, and armament. Most of the old-type iron broadside ships are larger than our Tennessee; are armored, carry
The lately built unarmored ships of the British Navy include three iron frigates, six iron corvet tes, two steel dispatch vessels, nine stecl and iron corvettes, six composite corvettes, fourteen first-class composite sloops, and six second-class, with a hundred composite gun vessels and gun boats. The frigates steam from 15 to 16 knots; the first class corvettes from 13 to 15 knots; the second-class 11 knots; the dispatch boats, both as large or larger than the Trenton, have exceeded 18 knots.
The old-type steam cruisers of wond and iron in the general service fleet are by no means of small importance, though they do not properly fall within the scope of this article This fleet comprises fifteen ships of the line, twelve frigates wenty corvettes, ten sloops, thirteen troop ships, supply hips, dispatch steamers, yachts, surveying vessels, etc.
The new fighting fleet of France practically dates from 1872, when a programme was drawn up for the construction 217 vessels of various types, costing in all upward of $\$ 121.000,000$. The finished armored vessels comprise eight sea going ships of the first class, iron or iron and steel rams, from 311 to 322 feet in length, from 8,183 to 10,332 tons dis placement, and of speeds ranging from 13 to $14 \frac{1}{2}$ knots; even or eight sea-going ships of the second class, about 250 feet in length, from 4,003 to 6,000 tons displacement, and speeds of from 13 to 14 knots; fifteen coast defenders,
from 216 to 241 feet in length; sixteen first-class wood and from 216 to 241 feet in length; sixteen first-class wood and
iron ships of old types, and cight of second-class, the former from $2 i 2$ to 284 feet in length, the latter 230 feet. All of these ships are armed with breech-loading rifled guns. When Mr. King's tible was made two first-class sea-going ships were building, each to carry three 100 -ton guns. All the French sea-going armored ships are rigged; the mastless ves els for coast defense include six turreted vessels; all the rest are on the broadside principle, or have the broadside and turret principles combined. The heaviestguns aremounted n barbette. Both the armored and unarmored modern ships ave the ram bow.
Of the latter type of vessels the programme of 1872 conemplated eight first-class, eight second-class, and eighteen third class cruisers, cighteen dispatch vessels, thirty-two gun brats, and thirty-five transports. A large portion of these are already afloat. By 1885 it is expected that the en ire fleet will consist of new vessels of the most approved modern types armed with the best modern guns, all in per ect condition for service
The list of the old-type steam cruisers, mostly of wood, given by Licutenant Very ("Navies of the World," by Lieut. Edward W. Very, U. S. N. New York: John Wiley \& Sons. 1889), includes nine ships of the line, six frigates, ten corvettes, twenty one sloops, eleven dispatch vessels, and orty-two transports.
The fleets. of Germany and Italy are almost entirely the work of the past decade or so. It is only since 1860 that Germany has had any navy at all, to speak of, and since 1873 that any attempt has been made to acquire a navy commen surate with the importance of the empire on land. The rmored ships afloat or building comprise six casemate ships, 213 to 280 feet in length, 7,135 to 7,560 tons displacement speed of 14 knots, and armed with Kruppguns of from 18 to 36 tons; two armor-belted turret ships, with casemate around turret, 298 and 308 feet in length, about 6,500 tons displace ment, 14 knots speed, and armed with Krupp guns, the largest being of 18 tons; three large broadside ships; one corvette, and cight or ten coast defenders, of 1,030 tons dis placement and slow speed. The latter carry each a 36 -ton Krupp gun, in a movable turret protected by an armor parapet. None of these will be able to match the larger ironclads of England, or the Italian Duilio or Dandolo; but will have a strength sufficient, perbaps, to meet the French under any conditions proffered.
The modern unarmored slips of Germany include seven ast iron corvettes, 2,463 to $3,8: 3$ tons displacement, carrying from 12 to 16 guns each, having covered gun decks; and :ix open deck corvettes of 2,169 tons displacement; three fas dispatch vossels (16 knots), and five gun boats.
The modern war fleet of Italy dates from 1877, and comiprises the most powerful and heavily armed vessels ever built. The Italian ships are specially remarkable for the heavy guns they carry and their great speed. The broadside ships Italia and Lepanto, now building, are $4031 / 2 \mathrm{fce}$ long, 13,48) tons displacement, are expected to steam 16 knots, and will each carry four 100 -ton Armstrong guns, mounted in pairs en barbetie, and 18 smaller guns. The mast less turret ship Duilio lacks an inch of 341 feet; its displace ment is 10,40 t tons; it carries four 100 ton guns, and makes 15 knots. The unfinished Dandolo is in every respect its counterpart. The four line of battle cruisers already afloa are from 250 to 265 fect long, and though lightly armored are heavily armed, two of then carrying one 93 -ton and six 18-ton guns, the other two carrying six 18 ton guns and two 12-ton guns. There are besides one monitor ram, four float ing batteries, and six broadside frigates, for coast defense and station service. The unarmored fleet numbers ten fast cruisers, of which three are second-class corvettes, four gun boats, and three torpedo vessels. By the decree of $18 \mathrm{I}_{6}$ it was determined to have completed by 1888 sixteen ships of ar of the first class; tein of second class for local de fense, for cruisings, and for foreign stations; and twenty
vessels of third class; twelve transports, and twelve small ships for local service, a programme which is rapidly being carried out, as already shown.
Two years ago the Russian Navy included thirty-one armored ships and a couple of hundred other vessels. The armored ships were: frigates, 6; battery ships, 3; turret ships, 5; Yopoffkas, 2; double turret monitors, 3; single turret monitors, 12. The more powerful of the Russian war ships have been launched since 1874 . The double turret ship, Peter the Great, is 330 feet long, is of 9,510 tons displacement, carries four 40 -ton guns, and has made 13 knots. The Knatz Minin is another powerful ship, 389 feet long, 5,800 tons displacement, and carries four 28 ton guns, mounted in pairs en barbette. The two Popoffkas are floating citadels of circular form, designed for service in shallow water. The latest novelty is the turbot-shaped Livadia, os. tensibly a yacht for the Czar, but doubtless intended, in case of need, to be heavily armored and armed for naval uses. During the past five or six years Russia has also been ex. pending large sums on unarmored fast cruising ships, this arm of the navy having already become formidable.
The armored fleet of Austria contains but three or four vessels older than 1870. It comprises three redoubt frigates, 276 to 302 feet in length, 5,940 to 7,393 tons displacement armed with 10 and 11 inch Krupp guns (18 to 28 tons), and able to make from 13 to 14 knots; five casemate frisates, 22? to 275 feet in length; three broadside frigates, of 197 and 253 fect length; two monitors, and cne citadel ship. The smaller frigates are armed with 7 and 8 inch guns, and make from 11 to 13 knots. The last mentioned vessel carries two 17 inch Armstrong guns. The unarmored flect contains considerable number of recent cruisers of fair speed and efficiency
The navy of Holland is chicfly strong, for defensive purposes, and comprises but two sea-going armored ships. The armored ships of Spain are few and of small importance compared with those of other European powers. The list includes 138 vessels of all kinds, but therc are no modern sea roing armor-clads and no cruisers of the rapid type. Den mark has launched two iron-clads since 1873, the friyate Odin, carrying four 18 .ton guns; and the broadside, case mated, central battery ship Helgolanti, launched in 187 The halt dozen other armored vessels are old. The Swedish navy is designed chiefly for coast defense. This arm com prises four armored monitors, ten armored gunboats, and about a hundred other vessels of all sorts. The navy proper comprises 38 unarmored vessels. Portugal has one armored ship, ten screw corvettes, nine gunboats, and half a dozen sailing vessels, transports, etc. Norway has four munitors, ne frigate, four corvettes, and about a hundred cunboat and other small vessels. Greece has fiftecn vessels, includ ng two irouclads. Turkey has vessels enough to rank among the naval powers, but lacks moncy and officers to make them effective. Fifteen of her ships are large and fairly armed.
The chief lesson taught by the costly naval experiments of European powers during the past decade-a lesson which he United States can profit by-seems to be the inexpedi ency of buidding bure floating fortresses at enormous cost The power of guns can be increased more rapidly than the ability of ships to withstand them; and the greater the tar get the greater the chance of being hit, and the greater the loss of life and property when a crushing how has been struck.
For defense against the largest class of ironclads we need properly placed stationary coast defenders, the armor of which can be increased as the power of the guns to be re sisted is increased. The superior accuracy of fire possible in a land battery will make one heavy gun, so placed and guarded, more formidable than many guns of equal weight on shipboard. For naval purposes a large number of small essels of great speed, each carrying one beavy gun, will he more efficient than a few large armor clads of equal argre gate cost.

The Scientife American.

While the newspajer press of the day is, for the most part nculcating more of error than of truth in the public mind in regard to medical topics, cultivating the vulgar super stitions by circulating every sensational story about mad stones and blood stones and the like, and gloating over every repert of the desecration of graves for anatomical purposes, it is refreshing to turn to the pages of the periodical above named, and to ohserve that whenever medical topics are in roduced, it is with the design of imparting the truth and in culcating correct ideae. Many years of growth have raised the Scientific American to the front rank, so that there is notin any country a publication superior to it in its sphere.

-Pacific Medicul and Surgical Journal.

Photographic Emulsions.
 by h. w. vogel, berlin.

The essence of the iavention consists in combining gela tine and bromide of silver with pyroxiline by the use of a new solvent, which insures the homogeneous mixture of the two. The solveat may be one of the inferior members of the fatty acids, such as formic, acetic, propionic acid, etc., or mixtures of the same alone or with alcohol, ctc. Four various methods of producing the combination are de scribed, of which the first is as follows: Ordinary gelatine is dried and dissolved warm in one of the abore-mentionerd acids, and one per cent of pyroxiline dissolved in a simila acid is added.

Machinery and Civilization

Mr. Charles C. Coffin has been giving a series of lectures in the Lowell (Mass.) Institute on our manufacturing indus tries and the relation of invention to civilization. From the Boston Advertiser we make the following extracts from one of these lectures:
The first need of men in this world is for something to eat the second is for something to wear. The earliest historical allusion to the manufacture of textile fabrics is the simile in the oldest poem extant-the Book of Job-the comparison of the swiftness of time to the weaver's shuttle. The weaver's shuttle of the East and the loom of the Orient through all the centurics have not changed. Throughout Asia, and even in some sections of Italy and Spain, the spindle of to-day is like that which Penelope deftly twirled when preparing gar ments for her absent lord. The use of machinery in the manufacture of clothing bas been a powerfulagency in modern civilization. Out of the multitudinous machines of the present century I select those for spinning and weaving to represent the progress of mechanic art. It is noteworthy that the first movement in free intellectual thought in antagonisun to the dogmatism of the Middle Ages and the firs mechanism to relicve woman from unceasing toil were coin cident. During those years in which Martin Luther Melanchthon, and their compeers were awaking the world to a new intellectual and religious life, a German carpenter constructed the spinning wheel, which made its appearance about 1530. The knitting machine was the second invention-the device of a young curate of Nottingham, the Rev. William Lee; and during those months when the May flower was crossing the Atlintic, the first stocisings knit by he machine were placed on the market.
The lecturer commented upon the fact that the century ollowing Lee's invention rolled away without any invention Men were giving their attention to other things. The spirit of the age was against invention. The learned were lost i abstractions, were regardless of buman needs, utterly ignno rant of the resources of nature to alleviate human woe or to lift men to a higher plane of life. Another reason why nventions did not cone earlier was that all christendom through the Middle Ages and down to the beginning of the present century, was engaged in war. The conditions wer all adverse to scientific research. In 1781, just one hundred years ago, came Watt's first working engine, with a condenser and the steam applied to propel the piston in both directions.
Aside from the very few wind and water mills, the uman race at the beginning of the present century wa living by its own muscular energy, digging and delvin! spinning and weaving, with rude instruments and mechan isms.
The world is more enlightened now, but there are still many people who cannot see how the introduction of a ma chine which will do the work of many men can be promotiv of the well being of the community. Imagine yourselve as standing on the bank of the Merrimac in 1821, with Nathan Appleton, William Appleton, Patrick T. Jackson Kirk Boott, John W. Boott, Paul Moody, and Nathaniel Bowditch. No sound breaks the stillness, save the rushing of the water over the rock. It is the energy of nature running to waste, and these gentlemen determined to set it to work for their individual welfare. They purchased the surround ing farms and the old canal which other men had constructed for the passage of rafts, set themselves to enlarging it, and in building a dam, not working with their own hands, but summoning the farmers, who came with their oxen to hau rocks. Stonemasons are wanted, and the blacksmith to sharpen their tools. Young men come down from Vermont and New Hampshire to dig the crual. The gentlemen who are pushing the enterprise need bricks. Another class of aborers is called for. Lumber is nceded, and sawmills are set to humming. Masons, hodcarriers, mixers of mortar, lime burners, are set to work, with still more oxen, more teamsters and cartmen, besides coopers to make the casks for the lime. An architect plaus the manufactory; the car penters frame it, and a corps of joiners finish it. A mill wright calculates the power, sets another corps of men a work constructing the great wheel. The manufacturers o the spinning and carding and weaving machines have regiments hammering and filing brass, steel, and iron. They in turn have set the founders, puddlers, and smelters to work Furnaces send up their larid flames; vessels are sailing on the ocean to fetch and carry the materials. The miners far down in the earth, the sailor climbing the shrouds in mid ocean, the millwright lost in thought, as he calculates the power of nature's energy, the brickmaker moulding the plastic clay, the joiner plying his plane, the teamster urging his cattle; all have been called from former vocations to aid
in building the mills. Why have they come? Because these gentlemen offer them more remunerative wages than they have been receiving.
Let us follow on. The mills are erected, the machines arc in place, but human hands are still needed. The gentlemen summon the farmers' sons and daughters by the inducement of better wages. Have the gentlemen thrown any one out of employment? They have changed labor; they have made the spinning wheel and loom of the household useless lum ber, not throwing the old-time spinners and weavers out of employment, but transferring them to one in which they can do more for themsel ves and their fellowmen. You ask, perhaps, what the masons joiners, and carpenters who built the mill are to do when the mill is completed? Are they not out of employment? The mill is only the beginning.

Dwelling houses are needed, stores, shops for the grocer, butcher, baker, joiner, mason, blacksmith-the whole fr ternity of trades and occupations. The first mill erected at
Lowell was the beginning of a city to day numbering beLowell was the beginning of a city to-day numbering between 50,000 and 60,000 inhabitants. It will be instructive in this connection to see what labor and capital together will accomplish through the use of the energy of nature, in giving value to raw materials.
The Southern farmer plows his lands, casts in the cotton sed. He sells his crop at 12 cents per pound, obtaining a livelihood by agricultural labor. The operative in Lowell, by manufacturing it into muslin, may make it worth 80 cents, by more delicate manipulation into lace -worth $\$ 1$. But before the process could be undertaken by the machinist the iron manufacturers were called upon to construct the machinery. The ore which the miner dug from the ground and which he sold for 75 cents, the iron smelter sold for $\$ 5$ The machinist makes it worth $\$ 100$. If instead of putting it into spindles and wheels, it had been sold to the manufac urer of fine needles, he would have made it worth $\$ 1 ; 800$ The manufacturer of watch springs would have made it worth \$200,0c0; or if he were to use it for pallet arbors it would be worth $\$ 2,577,595$. Past earnings and present labo together give this increased value to the 75 cents' worth of
Invention renders old things obsolete aud so is destruc tive; but there is a force more destructive tban invention, orce that not only drives men from occupation, but upo he instant consigns their costly machines to destructionforce wielded almost wholly by the female sex-the force of fashion, a power stronger than the combined strength of aventors, manufacturers, and operatives. Not long ago very woman in this audience quite likely regarded a hnop skirt as necessary to make her wardrobe complete. Probably not less than $25,000,030$ were manufactured per annum equiring an outlay of many millions of dollars for compli cated machinery, furnaces, and rolling mills for the founda tion of steel, manufactures for the weaving of tape, employ ing many thousand operatives; but suddenly the idea gained possession of the temale mind that dress would be more graceful and pleasing to the eye without them, and hey were upon the instant discarded, bringing about quick destruction to the manufactures and loss of occupation to he operatives.
Invention is an educator. It begins with thought. The more thought put into his machine by the inventor the higha he intelligence to opcrate it. Mechanics has become a dis inct profession, requiring high mathematics, physics, an the power of abstract thoughit. Trade and commerce recog nize the new profession by offering it their highest pecuniary ewards. It is the master mechanic, receiving his salary of $\$ 15$, C00 per annum, who is the cheapest employe of some orporations in this country. Fifty years ago, in 1830, the pindles of the world were as follows: United States, 1,000 000; Europe, 2, 000,000 ; Great Britain, 8, 000,000 . To-day he United States bas 11,000,000; Europe, 20,000,000; Gre: Britain, $40,007,000$. In cottoil manufacture it is estimated that one man to day is able to do the work of 1,000 band habrers, and that the cotton, silk, and woolen iudustries o to day would require the labor of every human being if pre pared by hand labor
One hundred years ago, when thread numbered 150 by the standard set up by spinners was considered the utmost de gree of fineness possible by English spinners, a pound of cot ton spun $t \mathrm{f}$ such fineness would give a thread 74 miles in engta, sufficient to reach from Boston to Concord, N. H The machinery of to day spins for useful purposes thread numbered 600 -from one pound a thread 196 miles in length and machinery has been constructed so delicate that a pound of cotton has given a thread reaching 1,061 miles-farther than from Boston to Chicago! The weaver of my boyhood could throw the shuttle perhaps twenty-five times a minute but not at that rate through the day. Human muscle would break down under such rapid action. In 1850 Compton's om threw the shuttle fifty times a minute, whereas so great has been the advance of invention, that the loom of
oo day is considered a slow moving mechanism if the shuttl does not fly 240 times a minute! "No man can afford to take as a gift to-day a cotton manufactory equipped with the machinery of 1860," was the remark of the late superinten dent of the Amoskear Mills. "We are breaking up the machinery of those days for old iron."
In some departments of cotton manufacture a man with the present machines will do eight times the amount of work which he could accomplish in 1860. In the manufacture of oarse cloth an operative with ten machines does twice the work which he could accomplish with thirteen machines before the war. There never was a period so fruitful in discovery, so fertile in invention as the present, and the reason is manifest. The first discoverers and inventors groped in the dark. They were ignorant of nature's laws. They did not know what force was. They had a limited comprehen was of what the simple mechanical pow
In contrast, the mechanic of to-day has all the discoveries be experiments, the ascertained facts, mathematics of ma chinery, the laws of force at his command. He inherits he scientific wealth of all the past and makes it his capital. Instead of cazing, as it were, upon old mines worked out, he beholds mountain ranges filled with golden ore, and ngages in his work with the stimulus of the needs of the human race, and the ever increasing wants of an advancing civilization.

Repairing steamers out or Dry Dock.

Some weeks ago the steamship Queen, of the National Line, had her bow stove in by collision on the bay. Tosave the heavy cost of occupying the dry dock while the plates were being made for repairing the breach, the Queen was owed to the Erie Basin, where the manager of the line, Mr. Hurst, had the work done by means of a cofferdam, which was built on the dock. The dam was ahout 25 feet squire, and was simply a huge box without a cover. In one side of this box an aperture was cut into which the bow of the vessel exactly fitted. Then the box was sunk beneath the steamship and raised under her bow so that it fitted snugly o her bull and the edges were calked. After the water had been pumped out the workmen descended into the box or cofferdam and rebuilt her bow. This method of repairing, which is an old but much neglected one, saved the company, Mr. Hurst is reported to say, just $\$ 26,000$.
More recently the method has been applied to the iron steamship Holland, of the same line. Mr. Hurst says: "In he November gales she was all torn to pieces about the stern. She is $45 i$ feet long and is registered at 4,000 tons burlen. No dry dock in America could lift ber. She is at our dock a Houston street, North River. I had a coffer dam built in Jer sey City and towed to the Holland. The dam is 36 feet long 20 feet wide, and 22 feet deep. I sent a carpenter into the hold of the Holland, and be took measurements every 2 feet from keel to deck. He then went on the dock and luilt a flat pattern the exact shape of the vessel about 10 feet from her stern. The slape of the pattern was cut from ore side of the coffer dam. Then the coffer dam was towed to the vessel, heavy chains were thrown into her until she sank, he chains were then withdrawn. and the dam rose to the hull of the steamship. The stern fitted perfectly into the perture, and all was made snug." The repairs will tak till February 15. By that time the charge for dockage rould have amounted to over $\$ 30,000$, which is saved by the ase of the coffer dam.

A Large Iron Steamboat

The Fall River Steamboat Company announce that a con ract has been signed with John Roach \& Son for the construction for them of an iron steamboat, to be the largest ever built for the Long Island Sound trade, between New York and Fall River. Her length over all, on deck, will be 395 eet; length of hull, 380 feet; extreme breadth of beam acros he guards, 87 feet; breadth of beam of hull. 50 feet, and 17 feet depth of hold. She will be built upon the cellula ystem, that is, with two hulls-the most recent type of shipbuilding insuring safety-the cellular spaces at the ides being two feet deep, and along the bottom three feet deep, between the hulls. The spaces between the two hulls will be divided into ninety-slx watertight compartments, and, in addition, there will be six water-tight bulkhead from the inner bull to the main deck. The new boat will be provided with a steam steering apparatus, and an inde pendent or safety-steering quadrant aft, in case of accident to the steam gear. The means for extinguishing fire, for losing one compartment from another, and other provision or safety, will be on the latest improved methods. The ngine will be on the "walking beam" principle, with 10 inches diameter of cylinder and fourteen feet stroke There will be four main boilers, their construction being uch as to warrant carrying a pressure of steam fifty pound to the square inch, although the working pressure will be about twenty-five pounds to the square inch. The paddle shaft will be twenty-six inches in diameter, and with the piston rod, connecting rods, and rock shafts, will be made of the best wrought iron. The machinery will be inclosed in a compartment of longitudinal and athwartship bulkheads, carried up to the burricane deck. The passenge ccommodations are intended to be superior to those of any teamboat now afloat. The boat is to be completed by May 1882.

Agricultural inventions.
Messrs. Anthony W. Byers and James C. Dorser, of Sher man, Texas, have patented a cotton planter so constructed that it can be adjusted to plant less or more seed, as re quired. There is an ingenious arrangement of spikes or prongs attached to the rim of the feed wheel, which take hold of the cotton seeds and draw them out between curved stee springs fixed in the slot in the bottom of the feed board or bottom of hopper, and at the sides and forward end of this lot are attached springs which are curved downward and outward in such a manner that their bends may meet, or early meet, within the slot, so as to prevent the seeds from passing out except when pushed out by the prongs of the eed wheel and thus prevent the seeds from being droppe in bunches. The outward curve of the ends of the spring allows the seeds to drop from them freely, and allows the prongs of the feed wheel to pass up between the springs should the said feed wheel be turned backward.
Mr. Julius Holekamp, of Comfort, Texas, has patented a seed planter whereby corn, sorghum, beans, rice, cotton, etc. may be planted in hills or drills, and so constructed that the eed may be planted in any desired quantity, and at any desired distance apart, and with the rows at any distance part
Mr. Christian E. Gardner, of Orangeburg, S C., has pa ented a seed planter and fertilizer-distributer, which bas two hoppers and dropping devices whereby different mate rials may be carried and distributed by the same machine and at the same time. Adjustments are provided whereby the machine may be used either as a single or double planter.

Business and extsual.

The Clarrgefor Insertion under this head is One Dollar a linefor each insertion ; about eight words to a line. Advertisements must be received at publication office

The H. W. Johns Mfg. Co.'s new colors of Liquid Paints are particularly appropriate for large
structures, such as manufactories, churches, bridges, structures, such as manufactories, churches, bridges,
etc. We advise all owners of such buildings which reire painting to send for samples.
Hartshorn's Self-Acting Shade Rollers, 486 Broadway,
New York. No cords or balances. Do not get out of New York. No cords or balances. Do not get out of
order. A great convenine.e. Sold everywhere by the order. A great convenience. Sold everywhere by the
trade. See that you get artshorn's rollers. Makers and
dealers in infringing rollers held strictly responsible.
The only Mechanie:al Device in existence for purify-
water in steam boilers, is the Hotehkiss Boiler ng water in steam boilers, is the Hotchkiss Boiler
Cleaner Beware of innitators, they are infringers. Cir-
Abbe Bolt Forging Machines and Palmer Power Hammer a specialty. S. C. Forsaith \& Co., Manch ester, N. H A competent and rapid Mechanical Draughtsman
wants engagement. A. W. R., 76 E. $108 t h$ St., New York. Wanted. - Most economical way of lifting water seve et for drainage. J. S. Porcher, Euta wville, S. C
Barber's Positive Rotary Force Pump. No sliding
valves or abutments. The best and most durable pump made. For illustrated circular, address G. Lord, Manu

Blake's Belt Studs. The strongest fastening fo eather and rubber belts. Greene, Tweed \& Co., N. Y. Baldwin the Clothier sends us the following notice,
nd desires to add thereto that Baldwin the Clothier is a patented trademark, and it is the exclusive property

LIBRARY OF CONGRESS,
To wit: Be it remembered, that on the 12th day of
January, anno domini 1881, O. S. Baldwin. of New York January, anno domini 1881, O. S. Baldwin, of New York
has deposited in this office the title of a Chart, the title
ordescription of which is in the following words-towit, or description of which is in the following words-to wit,
"THREE THINGS." the right whereof he claims as proprietor, in conformity with the laws of the United state
respecting copyrights.

List 25.-Descriptive of over 2,000 new and second hand machinesc. now ready for distribution. Send stamp
for same. S. . Forsaith \& Co., Manchester, N. H. Linen Hose and Rubber Hose suited for all purposes reene, Tweed a Co., 113 Chambers St., New York. For the manufacture of metallic shells. cups, ferrules,
blanks, and any and all kinds of press and stamped work blanks, and any and all kinds of press and stamped work
in copper. brasss. zince iron. or tin, address C. J. Godfrey in copper. brass, zinc, iron. or tin, address C. J. Goafrey
$\&$ Son, Union City, Conn. The manufacture of smal
wares, notions. and metallic norelties a specialty. See advertisement on page 9 .
L. Martin \& Co., manufacturers of Lampblack and
Pulp Mortar-black, 226 Walnut St., Philadelphia, Pa. Foot Power Machinery for use in Workshops; sent on
trial if desired. W. F. \& Jno. Barnes, Rockford, 111. Large Slotter, $72^{\prime \prime \prime} \times 18^{\prime \prime}$ stroke. Photo on applica n. Machinery Exchange, 261 N. 3d St., Phila. Burgess' Portable Mechan. Blowpipe. See adv., p. 76.
Books for Engineers and Mechanics. Catalogues free Books for Engineers and Mechanics. Cata
E. \& F. N. Spon, 446 Broome St., New York.
Send to John D. Leveridge, 3 Cortlandt St., New York for illustrated catalogue, mailed free, of all kinds o
Scroll Saws and Supplies, Electric Lighters, Tyson's Scroll Saws and Supplies, Electric Light
Steam Engines, Telephones, Novelties, etc.
Pure Oak Lea Belting C. W. Arny \& Son, Man
turers. Philadelphia. Correspondence solicited.
Within the last ten years greater improvements hav been made in mowing machines than any other angricul-
tural imp.ement. It is universally acknowledged that the Eureka Mower Co., of Towanda, Pa., are making write to the manufacturers for catalogue, with prices.
Jenkins' Patent Valves and Packing "The Standard." enkins Bros., Proprietors, 11 Dey St., New York.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Wood Working Machinery of Improved Design and The " 1880 " Lace Cutter by mail \& $\mathrm{r} r 50$ ets.; discount The Tools, Fixtures, and Patterns of the Taunton oundry and Nachine Company for sale by the Georg
lace Machinery Agency, 121 Chambers St , New York
Experts in Patent Causes and Mechanical Counsel
Park Benjamin \& Bro., 50 A stor Ilouse. New York. Corrugated Wrought Iron for Tires on Traction EnMalleable and Gray Iron Castings, all descriptions, by rie Malleab
Power, Foot, and Hand Presses for Metal Workers,
Lowest prices. Peerless Punch \& Shear Co. 52 Dey St.,N.Y.
Recipes and Information on all Industrial Processes.
ark Benjamin's Expert Office, 50 Astor House, N. Y. For the best Stave, Barrel, Keg, and Hogshead Ma-
chinery, address H. A. Crossley, Cleveland, Ohio. National Steel Tube Cleaner for boiler tubes. Adjust Best Oak Tanned Leather Belting. Wm. F. Fore-
paugh. Jr., \& Bros., 531 Jefferson St., Philadelphia, Pa. Stave, Barrel. Keg and Hogshead Machinery a spe
cialty, by E. \& B. Holmes, Buffilo, N. Y.
Wrights Patent Steam Engine
. The best
Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shaftin
Works, Drinker St., Philadelphia. Pa. Presses. Dies and Tools for working sheet Metal. etc.
Fruit \& other can tools. Bliss \& Williams. B'klyn. N. Y. The Brown Automatic Cut-off Engine; unexcelled for
workmanship, economy, and durability. Write for in. workmanship, economy, and durability. Write for
formation. C. H. Brown \& Co., Fitchburg, Mass.

National Institute of Steam and Mechanical EngineerIng, Bridgeport, Conn. Blast Furnace Construction and
Management. The metallurgy of iron and steel. Practical Instruction in Steam Engineering, and
tion when competent. Send for pamphlet
Nickel P.ating.--sole manufacturers cast nickel an odes, pure nickel salts, importers Vienna lime, crocus, tc. Condit. Hanson \& Van Win
22 and 94 Liberty St., New York.
For Pat. Safety Elevators, Hoisting Engines. Friction For Separators, Farm \& Vertical Engines, see adv.p. 61. Mineral Lands Prospected, Artesian Wells Bored, b
Pa. Diamond Drill Co. Box 423 . Potttsville. Pa. See p. 60 . For Patent Shapers and Planers, see ills. adv. p. 60. The I. B. Davis Patent Feed Pump. See adv., p. 76. Moulding Machines for Foundry Use. 33 per cen
saved in labor. See adv. of Reynolds \& Co., page 76. C. B. Rogers \& Co.., Norwich, Conn., Wood Workin c. B. Rogers \& Co.. Norwich, Conn.,
achinery of every kind. See adv., page

Saw Mill Machinery. Stearns Mfg. Co. See p. 7
The Sweetland Chuck. See illus. adv., p. 76. Machine Knives for Wood-working Machinery, Boo inders, and Paper Mills. Also silent Injector, Blower, and Exhauster. See adv. p. 92 . The American Electric Co., Proprietors and Manu facturers of the Thomas Houston System of Elect
Lighting of the Arc Style. See illus. adv., page 92 . Rollstone Mac. Co.'s Wood Working Mach'y ad. p. 92. Fire Brick, Tile, and Clay Retorts, all shapes. Borgne
$\& O^{\prime}$ 'Brien, M'f'rs, 23d St., above Race, Phila... Pa. See Bentel, Margedant \& Co.'s adv., page 92
Diamond Tools. J. Dickinson. 64 Nassau St., N. Y. Steam Hammers, Improved Hydraulic Jacks. and Tub xpanders. R. Dudgeon, 24 Columbia St., New York. 50,000 Sawyers wanted. Your full address for Emer
son's Hand Book of saws (free). Over 100 illustrations son's Hand Book of saws (free). Over 1ov ilustration Men Se illas. Frank's Wood Working Mach'y. See illus. adv., p. 92 Eclipse Portable Engine. See illustrated adv., p. 93 . Peerless Colors-For coloring mortar. French, Rich
Special Tools for Railway Repair Shops. L. B. Flan
ers Machine Works, Philadelphia, Pa.
Tight and Slack Barrel machinery a specialty. John
reenwood \& Co., Rochester, N. Y. See illus. adv. 9 . 9 . Elevators, Freight and Passenger, Shafting, PuHeys For Heay Punches, etc., see itustrated advertise For Heavy Punches, etc., see
ment of Hilles \& Jones, on page 93
Comb'd Punch \& Shears; Universal Lathe Chucks. LamBest Band Sow Bambertvile, N.J. See ad. p.60. Reed's Sectional Covering for steam surfaces; any one can apply it; can be removed and replaced withou
injury. J. A. Locke, \& Son, 40Cortlandt St., N. Y. For best low price Planer and Matcher and lates improved sash, Door, and Blind Machinery, Send for
catalogue to Rowley \& Ifermance. Williamsport, Pa. The only economical and practical Gas Engine in the The only economical and practical Gas Engine in the
market is the new "Otto" Silent, built by Schleicher.
Schumm \& Co., Philadelphia. Pa. Send for circular. Penfield (Pulley) Blocks, Lockport, N Y. See ad. p. 92. 4 to 40 H P. Steam Engines. See adv. p. 93 Tyson Vare Engine, small motor, $1-33 \mathrm{H}. \mathrm{P.;} \mathrm{efficient}$
nd non-explos:- e ; price $\$ 50$. See illus. adv., page 92 . Use Vacuum Oil Co.'s Lubricating Oil. Rochester,N.Y Wiley \& Russell w'f'o Co. See adv., p. 60.

hints to correspondentis.
No attention will be paid to communications unles
ccompanied with the full name and address of the writer.
Names and addresses of correspondents will not b Wen to inquirers.
We renew our request that correspondents, in referrin to former answers or articles, will be kind enough to name the date of the paper and the page. or the number
of the question.
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then pub lished, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interest
should remit from $\$ 1$ to $\$ 5$, according to the subject as we cannol be expected to spend time and labo Any number of the Sievtric Ancrion AENT referred to in these columns may be had at thio office. Price 10 cents each.
(1) W. R. E. inquires: Is there any pro cess whereby we can recover the hydrochloric acid from
a solution of chloride of zinc which we have as a by product in the manufacture of one of our colors? I can recover the acid from chloride of barium, by the nse of
sulphuric acid, but sulphate of zinc, being a soluble salt
 barium. A. We fear that there is no method short o an expensive and complex series of reactions and de
compositions by which the hydrochloric acid could be recovered, and which would necessarily be too expensive to be profitable. From the fact that a solution of
chloride of zinc possesses the property of rapidly decomposing sulphide of ammonium and the organi matter of miasmata which convey disease, it forms
valuable disinfectant and deodorizer, and we sugges the desirableness of the waste product alluded to being turned to account in this direction. Its va
infectant has been thoroughly established.
(2) T. R. writes: In making a curve on a
(2ilruad, which rail is the highest, the inside oneor the
outside $?$ Is it not the outside one that is raised, and
the inside rail left level $? ~ A$. Generally the outer the inside rail left level ? A. Generally the outer rail raised, but engineers differ somewhat in their prac
ice. 2. Is it necessary to raise either where the speed is not over three miles an hour? A. No.
(3) G. E. P. asks: 1. What is the best (sparks and light flame inside of building) against fire sparks and light flame inside of building)? A. Satur
te the wood with a strong aqueous solution of tung state of soda. 2. Which is the best, something applied
like paint directly to the wood, or sheathing the same like paint directly to the wood, or sheath
with sheet tin? A. The tin or sheet iron.
(4) C. D. A. asks: Is there any way to ex tract a portion of a glass stopper which has been
broken off down in the neck of the bottle? A. Repair broken off down in the neck of the bottle? A. Repair
the broken glass by means of a little Armenian cement the broken glass by means of a little Armenian cement
or stratena. (See Scientific American Supplement No. 158.) Then heat theneck of the bottle quickly but will expand the neck to the bottle so as to loosen th topper, which may then be removed.
(5) J. H. P. writes: My neighbor has medium sized hot air furnace with indirect draught, slide in door at bottom of furnace, which when open admits air through the fire, and he also opens a space in feed door equal to four square inches,admitting air over the fire, which he claims is necessary to supply oxygen
for the combustion of the coal gas. I claim that so for the combustion of the coal gas. I claim that so nuch cold air passing over the fire is not only unneces fire and the radiating surface of the furnace, lessens the degree of heat in the hot air chamber, and then passes through the flues into the chimney. I also claim that as furnaces are commonly fitted, a closer approximate
to the necessary amount of oxygen required for the to the necessary amount of oxygen required for the combustion of the coal gas can be obtained throagh ans
opening to the fire from below, together with that pass opening to the fire from below, together with that pass
ing to the fire through the joints to doors, than would esult from opeuing a space to admit air directly to an on a small amount of air over the fire may effect saving in fuel, without decreasing the heat. With hick fires burned slowly, much carbonic oxide (CO)-
combustible gas is formed by the partial decomposi combustible gas is formed by the partial decomposi in its passage through the body of fuel. If air is no admitted above the fire much of this gaseous fuel may escape unburned up
(6) C. C. writes: The Scientific Ameri can Supplement No. 253, contains a rule for estima ing the horse power of a high pressure engine, by a
practical engineer. But he does not give the modu operandi of obtaining the average pressure from expansion (except by the indicator). A. If you have no indi cator, you can get the average pressure approximately by assuming that the entering steam has a pressure of pressure in the cylinder until cut off; the terminal pres pressure in the cylinder until cut off; the terminal pres
sure will depend on the point of cut-off-thatis, if cutoff one half the terminal pressure will be one-half the en or example, suppose the boiler pressure 63 lb b., then th initial cylinder pressure would be 60 lb .; and if cut of at one-half the terminal pressure, would be 30 lb .; and i
cut off at one-third, 20 lb . Next add together the initia cut off at one-third, 20 lb . Next add together the initia
and the terminal pressures and divide by 2 the quotient the approximate average pressure, $60+30=\frac{90}{2^{-}}=45 \mathrm{lb}$
verage and $60+: 0=\frac{80}{2}=40 \mathrm{lb}$. average.
(7) C. D. N. writes: I made a copying pad glycerine and 3 ounces of gelatine, and maintaining the heat for about four hours, and in making the ink I used half on ounce aniline, half an ounce alcohol, and $31 / 2$
punces of water, and I cannot take over 3 or 4 copies ounces of water, and I cannot take over 3 or 4 copies.
What is the matter? A. Try an ink with less alcohol What in the matter? A. Try are aniline violet. See that the latter is pure, no (8) H. S. asks: 1. Why do engineers say 28 or 30 inches vacuum instead of pounds? A. 28 or 30
inches of mercury is only equal to 14 or 15 lb . Vacuum ganges are usually marked in inches. 2. Where is the most pressure in a boiler? A. The pressure at the
bottom of legs is as much greater than that in the steam chamber as is due to the head of water. 3. Why ar all gauges tapped into the drum ? A. Gauges are usually (9) J. S. M. asks how to proceed to wea the inside of a steam cylinder smooth after it has be-
come cut by running dry or from other cause. A. You can restore the surface by grinding out the cylinde with a true segment of lead and sand or emery, but
great care must be taisen that it is so done as to leave he cylinder true.
(10) E. F. R. writes: 1. I am building the No. 161. Please tell me about how much No. 16 cotto covered wire it will take to wind the electromagnets.
A. It will take about 1 lb . to each arm of the magnet. What is meant by a resistance of two or three ohms? A. An ohm is the unit of electrical resistance, and is about
equal to that of a pure copper wire one-twentieth of an inch in diameter and 250 feet long. 3. How are wire connected to the binding posts, etc., under the base ward through the base into the binding post, and clamp the wire between the washer and the underside of the base. 4. In making the induction coil in SUPPLEMENT,
No. 160 , shall I need 40 square feet of tin foil or 20 ditto No. 160, shall I need 40 square feet of tin foil or 20 ditto or, in other words, in counting the surface do you count
both sides of a sheet ? A. One side only is counted. Jse 40 square feet.
(11) J. M. H. writes: 1. I wish to con struct a telephone line of about one mile in length. Wil the telephone as illustrated in Figs. 2 and 3, SUPple-
MENT, No. 142, work successfully on a line of that length. A. Yes. 2. What kind of wire will be the best to use
for the line w will No 14 galvanized telephone wire do A. No. 14 will answer, but No. 12 would be better. 3 .

How is the silk covered wire fastened to the bindin screws ? A. The end is stripped and soldered to th tavy wire which is clamped between the shoulder of 4. Will the plate such as is used by artists for tin types do for the diaphragm. A. Yes. 5. Should the wire as
used for the line be attached direct to the telephone used for the line be attached direct to the telephone
A. Yes. 6. Is the coil in the connecting wire, as show A. Yes. 6. Is the coil in the connecting wire, as show
in the engraving, necessary ? A. No. 7. Must the pool be of the same size and dimensions as in the en graving? A. The size is correct, but may be varie
omewhat without seriously affecting the worl he instrument. 8. Will it answer to attach the ground wire to an iron pipe that runs into a well, and how
hould it be attached ? A. It would probably answe older the wire to the pipe would probably answe iches long and weighing is 9 . Would a bar magnet nswer any better in place of the horseshoe magnet nd the iron core? A. No ; the telephone with th own.
(12) H. W. L. asks how to burn crude pe roleum. Is it burnt in the same manner as kerosene,
if now ? A. Petroleum is a mixture of a larg number of hydrocarbons, some very light, some heavy, all combustible. It is neither safe nor economical to burn the crude oil in a lamp or with a wick. For hea ing purposes the best results are obtained by the use of
some form of injector which delivers the oil in a spra me form of injector which delivers the oil in a spray mixed with a large volume of atmospheric oxygen
Under such circumstances the combustion is nearly pe ect, and the heat is intense.
(13) A. F. S. asks: What coloring matte best for making transfer paper that will show plainly on black walnut? A. Try chrome yellow, or a yellow
lake, made up with a sufficient quantity of melted lar nd a little wax.
(14) A. T. G. asks how to make printer's (1)ers. A. 1 . Glue, 8 lb. ; molasses, 7 lb .; soften the
lue by soaking it in cold rain water for 24 hours; the melt over the water bath and stir in the molasse previously heated, moderately. Heat gently for half an hour, with occasional stirring, let stand to cool somewhat and pour into oiled moulds. Requires from 8 to 10
hours in winter, and longer in summer, to harden. 2. ours in winter, and longer in summer, to harden. 2 Best white glue and glycerine, equal weights; softe
the glue in cold water over night, then melt it over the water bath and gradually stir in the hot glycerine; continue the heat for seven hours, with occasional stirring to drive off all the water absorbed by the glue. Let cool somewhat, skim and pour into well oiled bras moulds in the center of which the spindle is properly
adjusted. Let it stand ten hours to harden before atadjusted. Let it stand ten hours to harden before a
tempting to remove it. Large rollers require longer to tempting to remove it.
(15) S. M. asks (1) for the name of a work reating on air pumps. A. There is a good article o he subject in Knight's "Mechanical Dictionary." 2 get acid from my boiler fire, and think I might draw y connecting a tight cylinder by a pipe with thefireand allow the carbonic acid to enter at top of cylinder and o to bottom of, say, four feet of water, and by pumpin he air out of top of cylinder creating a vacuum, an hus causing the carbonic acid to flow in and wash it in passing thronga the water. A. The carbonic acid from he combustion of coal under a minary boiler con beside this difficulty, the solution of soda must be kep cool to admit of the absorption of the gas to form the hydro (bi) carbonate.
(16) G. H. A. asks: 1. Would an ordinary oil stove furnish enough heat for a boiler large enough to supply with steam an engine large enough to run a steam carriage that would carry two persons on good
roads? A. No. 5. How large an engine would be ne roads? A. No. 5. How large an engine would be ne-
cessary? A. Probably 3 inch cylinder and 6 inch to 12 essary? A. Probably 3 inch cylinder and 6 inch to
inch stroke, depending upon whether geared or not 3. Would not a boiler built in the sectional plan be better (make more steam with less heat, and be safer) than an ordinary tubular boiler ? A. Yes.
(17) W. H. C. asks for a recipe for an in visible ink so that it will only show when heated. A
Dilute a strong aqueous solution of pure chloride liute a strong aqueous solution of pure chloride ers are invisible after drying at ordinary temperatures.
Heat develops a dark blue or purple color. Use a Heat develops a dark blue or purple color. Use ean pen and sheet of blotting paper
(18) C. G. asks: 1. Is it possible for feed water to enter a boiler too hot? A. No. 2. Since using oubled with of heating feed wa the boilers, and gauge cock which is located in the side of mud drum shows at all times half water and half steam. We use
river water, and clean out regularly, and until inauguver water, and clean out regularly, and until inaugu-
ration of heating water by this new system never had any trouble. The water is quite at 200° on entering the force pump. We enter atmud drum. What would be the effect of putting feed water in at water line or above? Give us your views, and tell us the cause of our nto the body of the boiler nearer the surface of th wold be relieved of your
(19) C. D. R. asks: Will a boiler made from galvanized iron be strong enough to run an engine one inch bore by 3 inch stroke, for experiment ? A
Yes, if the iron is of proper thickness; but galvanized ron is very poor stuff for the purpose, and should be hicker than if vila:
(20) J. L. asks: What is the simplest way of find out the distance the tail piece on a lathe should taper? Supposing I have a piece of steel one foot long aper required one-tenth of one inch to every incin, how osition.? A Set over the the center from the aper in the whole length; if it is one-sixteenth of a inch difference of diameter in a piece twelve inches
in length, set over the tail center half of twelve-six teenths or three-eighths of an inch.
(21) C. J. H. writes: In making quantita
tive blowpipe assay of gold and silver ores, charcoal is
recommended for a support in the first fusion of the
assay. It is often quite dificult to procure good coals assay. It is often quite difficult to procure good coals
for the purpose, especially when on a prospecting trip. for the purpose, especially when on a prospecting trip.
Is there not some kind of material from which small is there not some kind of for the purpose, which can be capsules can be made for the purpose, which can would be equally as good as charcoal? A. We know of no support that will serve as a good substitute for the co
(22) R. G. asks: 1. What is the weight of a foot of water in pipes from one-sixteenth of an inch to one inch in diameter? A. The weight of one cubic toot of fresh water is $62 \% \mathrm{lb}$. and from this you can estimate
the weight of water of any diameter and length of pipe. the weight of water of any diameter and length of pipe.
2. What is smallest water meter under a 20 foot head that it would be possible to drive a sewing machine to mater of turbine wheels. The size depends upon the construction of the wheel and the manner in which the water is applied.
(23) A. W. C. writes: I have a coil of half inch steam pipe (iron) to be used for a boiler which tell me how to repair it? A. Either braze up the opening in the pipe, or close it up as close as possible with a hammer and bolt a sleeve around it, with cement for
(24) L. K. S. asks: When were ships first copper bottomed $?$ A. Fincham's history states that it wasin
(25) C. D. W. asks in what cities on this ways, also what power is used in cities you may name whether steam, electrical, or compressed air? A. Com pressed air engines have been tried in this city, but we New Orleans, steam produced from highly heated wat carried in tanks or fireless boilers is used. In San Fraccisco cars are drawn by endless ropes drawn by
btationary engines, and we understand that Cincinnati btationary engines, and we understand that Cincinnat
is about to apply toe same principle. In Philadelphia is about to apply tae same principle. In Philadelphia
and in Brooklyn on many of the streets of the outskirts cars are drawn by steam locomotives of peculiar contruction.
(26) E. H. A. asks: What is the weight of a blow given on a pile from a hamme
lb. and falling 24 feet ? A. 298 tons.
(27) "Cameo" asks whether a cameo is any"kind of stone, cut in relief, or whether it is necessarily a precious stone. "A. "A precious stone carved
in relief."-Webster. "A precious stone or shell having an imitative design engraved upon it in bass re lief, or figures raised above the surface."-Worcester
(28) C. G. A. writes: I am about to con struct some wooden trays with perforated bottoms, to
hold fish eggs. They are to be placed in a tall pile, one over the other in the air, and be supplied with water in small quantity, which shall dip down through the whole series. I want a varnish or other preparation which shall be proof against the action of the water, and
shall protect the wood from it and also prevent the wood exuding any hurtful juices. Is there any better mode than to varnish well with asphaltum? A. Giv with oil of tupentine somewhat and let them dry thor oughly kefore wetting
(29) W. H. P. asks: 1. Can the electric Gramme machine be produced by the current of one or more induction coils ? A. No. 2. If not, why not ?
A. Because the secondary current is of necessity interA. Because the secondary current is of necessity inter-
mittent and of very high tension. The machine referred to produces a quantity current which is requisite for e electric light.
(30) B. R. D. asks (1) how to proceed in the manufacture of aluminum. A. Alum is dissolved in hot water, a certain proportion of carbonate of soda is added, and the whole evaporated to dryness. In the
manufacture of aluminum alloys this preparation is simply added to the metals-copper, tin, zinc, nickel etc., tused in a covered crucible, and vigorously stirred in while the heat is continued, with care to exclude the air as much as possible. For gold colored aluminum bronze: 2 lb . copper is melted, and to it is added 1 lb . of the soda alum misture and 6 oz. oxide of zinc. Cover, stir, and heatfor about 15minutes. 2. A foreign journal says: " 1 oz . of charcoal, 3 oz . of salt, and 1 lb .
of the oxide of aluminum put in a covered crucible and kept in the fire from 15 to 25 minutes at about 700° Fah." I wanted some to-day for an experiment, and failed. I inclose a sample of what I got. A. Too large a quantity of charcoal powder or too small a quantity of aluminum oxide (calcined) was used in your experi-
ment. Reduce the materials to a powder that will all pass through a 90 -mesh sieve, first having dried all thor oughly. Mix thoroughly, cover well in the crucible, and experiment? A. Yes. 4. What is the lifting power of the magnets in the best electric machines per hors the magnets in the best electric machines per horse
power? A. Probably 200 Jb . There is no fixed limit
Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined, with the results stated
S. H. H.-Chrome iron ore, worth ass aging.-A. F. B. - Nickeliferous pyrites-of some value.-T. P. C.- 1 Lead sulphide (galena), argentiferous, in quartz and
$\begin{array}{ll}\text { limestone. } & \text { 2. Galena in limestone. }\end{array}$ lime potash soda silicate with a little galena. 4. 4. Mag
netic iron oxide netic iron oxide-magnetite or loadstone. 5. Traprock 6. Clay. 7. Quartzite--F. B. M.--Sandstone-no value
-T. S. B.-Ferrugious sandstone-contains nothin -T. S. B.-Ferruginous sandstone-contains nothing
of value.-G. M. W. and G. M. D.-An impure ocher If ground and calcined would make a cheap pigment gentiferous. sulphurets. $\mathbf{2}$. Gold small quantity of ar gentiferous. sulphurets. 2. Gold quartz. 3. Quartz
gypsum, and irgn sulphuret. 4. Micaceous and garnet iferous quartz. It carries a small quaritity of copper and iron sulphurets, and some of il may be argentifer ous. 5. Quartz, fluorite, and zinc oxide.

new books and publications.

's Almanac for 1881. In English,

 Grench, Spanish Portuguese Bohemin Published by Dr. J. C Ayer \& Co. Lowell, Mass.We are in receipt of a neatly bound set of the various ditions of Ayer's Al languges above, containing no some pages of Turkish, Armenian, Greek, Bulgarian, and Chinese. The collection before us is a literary curiosity, and a remarkable example of enterprise and liberality. The annual edition is from ten to eleven millo

London: Crosby, Lockwood \& Co. Gives a brief history of the principal sewing machine inventions, with details of construction and directions for adjusting the leading machines of the several types The Stately Homes of England. By
Llewellynn Jewitt and S. C. Hall. Two series in one volume. 8vo, pp. 399 and 360. New York. R. Worthington. Thirty-one of the more notable of the historic castles, pleasantly described and pictured by means of three pundred and eighty engravings on wood. The text is uncommonly good for a work of this class. The homes portrayed are rich in historic interest, many
being ancient and all the seats of history-making being ancient and all the seats of history-making
families. The sketches were originally prepared for the pages of the Art Journal, but have since been conTomuins
omlinson's Handy Book for the Office
and Home. Chicago: John H. Tomlinand Home. Chic
son. 8vo, paper.
The author has compiled from various sources a considerable amount of information and practical advic Modern Architectural Designs and Details. New York: Bicknell \& Com
stock. Price
Embraces plates 17-24. Low priced Queen Anne
cottages, summer houses, and sea shore houses, with elevations, framing plans, exterior and interior details, and window sash.

[OFFICIAL

INDEX OF INVENTIONS States wer

Letters Patent of the United States wer

January 11, 1881

and EACH BeARING THATT DATE.

[Those marked (r) are reissued patents.]
A printed copy of the specification and drawing of any patent in the annexed list, also of any patent issued
since 1866, will be furnished from this office for one dollar. In ordering please state the number and date of the patent desired and remit to Munn \& Co., 37 Park Row, New York city. We also furnish copies of patents
granted prior to 1866; but at increased cost, as the specigranted prior bo 1866 ; but at ncreased cost, as the sp.
fications not being printed, must be copied by hand.

Aerial navigation, machine for, E. A. Pearse.
Air compressor, J. H. Quinn... (....................... 236455 ing, A. \& E. Listers............. Animal trap, G. w. Reagan. Anvil and vise. combined, A. L. . Adams.
Apple corer and cutter, E. D. Baldwin . reas. vaults, etc., covering, lighting, and venti lating. T. IH yatt (r)
unger lip, detachable,
Bag lock, A. Bratt
Bale ejector for presses, L. Miller
Bale ejector for presses, L. Miller...........
Bed bottom frame, spring, w. T. Hayhu
Bed bottom, sprins, E W. TH Bed bottom, spr
Bell, D. Torrey.
Bells, individual attachment for electric, A.
Hibbard
Bellows, S. G. Reed.
Berth, self-leveling
Blind, rolling and flexible. J. G. Wilso
Blowpipe revolving furnace, G. Duryee
Bluing, granulated laundry, H . Sawser
Boneblack furnace, discharging apparatus for, E
K. Richards..........................

Boot and shoe bottoms, mechanism for finishing,
J. A.\& A. C. Ambler.....

Boot and shoe heel, T. Smith.

Boot and shoe nailing machine, H. P. Fairfield...
India-rubber boots and shoes, mechanism for
treeing, J. A. Ambler
outte fitting, nursing, H. H. Hayes......
Bracelet, A. E. Codding.
Broom, E. Dillingham
Broom, E. Dillingham
Broom, C. Wilson
Broom, C. Wilson.
Buckle loop, J. C. Hyde........
Bufting cone, w. C. Woodland
Bug catcher, potato, T. Robins
Button, etc., collar, G. E. Adams
Button or stud, sleeve, S. Adlam, Jr
Car coupling, M. F. McKirahan,
Car coupling, D. P. P. Toded...
Car, sleeping, B. . E. Lucas.
Car wheel, J. Absterdam
Carbureter, J. W. Hoard
Carbureting apparatus,..............
Carding machine, G. Bernhart
m. . Moulton
Carpet stretcher. F. M. Draper
Carriage seat, extra, C. Hall...
ping, and capping. R. Morris
Cartridge shells, tool for extracting, A. P.............
Centrifugal ventilator or pump, E. D. Farco.t.
Chain conveyer, P. Keene.....................
Check row lines, anchor for, G. D. Haworth
Check row lines, anchor for, G. D.

Cbimney, etc., P. Miban.
Churn, rotary, Kinyon \& Cburn, rotary, Kinyon \& Brow
Cider press, E. G. Hoyt.........
Cider pres, H. Cider press, H. S. Tompkins. Cigarettes, tobacco form for, M. P.
Cock, stop. J. \& J. Broughton, Jr
Collars, machine for pressing unstarched, I.

Corset, J. H. Foy...
Corset steel fastening, P. Laflin
Cotton gin. E. C. Horne
Cotton gin, M. E. Prat
Cradie, oscillating, , F. H. Brown
Culinary boiler, L. L. Mill
Culinary boiler, T. L. Hiller..............
Cultivator ind horse hoe.J. Forbes (r)
Cultivator and horse hoe. J. For
Curtain fixture, G. W. Beenum.

Cutter head, G. J. \& S. J. Shime
Cylinder, steam, J. H. Allen

Cylinder, steam, J. H. Allen........................ Dampers, etc., apparatus for regulating, G. We

inghouse. Jr..............................
Doors, hanging and fastening, E. N. Earl
Drawers, G.F. Ord way............
Eggs, preserving, C. H. Kirkham.
rrents, automatic regulator for, W. E Electriccurrentsby means of secondary batteries
equalizing dynamo, S. D. . equalizing dynamo, S. D. Field...
Electrical carbonizing apparatus. Electrical carbonizing
Elevator, C. H. Smith
Extension table, library double top, A. K. Hoff meier.........
Fence, T. Roger
Fence, flood, W. Matthews.
Filter for vessels, H. C. Rice
Fire escape, E. T. McKean.
Fireproof structures, such as safes, chests, bank
vaults, and doors, compound flling for,
vaults, and doors, compound filling for, w. B.
Marvin..................................
Fish plate joint, W. Shortlo....
Flood gate, D. M. IIemingway
Furnace for burning cane trash, Spreckels \&
Game of pin pool, T. H. Bradley.
Gas regulating burner, J. N. Chamberlain
Gas tubing,compound for manufacture of, S. Barr
Gases, apparatus for the manufacture of heating
Gases, apparatus for the manufactu
and illuminating, w. Harkness.
ems, metho
Schaffer.
Glasses, mechanism for grinding bands upon
surfaces of wine, J. B. Higbee.
Grain binding machine, J. H. Gor
Grain binding machine, J. H. Gordon...
Grain separator, O.
Grass cutter. LL. Holmes.
Grinding mill, J. Stevens
Hair crimper. E. Wilson
Harness fastening or coupling, R. Hudie
Harvester, J. L. Abell..
Harvester, S. D. Lockc.
Harvester rake. S. D. D.....es.
Ilarvester, self-binding
Harvesting machine, R. Eickemeyer
Harvesting machine, R. Eickemey
Hay rake. horse. H. H. Hagerman.
Heel trimming and polishing mact
Heel trimming and polishing machine, H. A. Hen-
Horse detacher, J. F. Richardson................
Hubs, machine for setting boxes in, Haupt \&
Dawson..................
Huller knife, F. A. Wells.
Hydrant, J. Broughton.
Hydraulic jack
Hydrocarbon engine generator, I. R.
Ice making machine, F. Windhausen.
Ice, mould for the formation
Iec, mould for the formation of, Z. T. Sweeney...
Iron bars, machine for bending, H. Kenney
Journal bearing, B. J. Downs.................
Journal box, anti-friction, w. w. Vaughn..
Journal box, anti-friction, W. W.
Kitchen dresser, A. K. Hoffmei
Lamp, center, W. H. Smith....
Lamp chimney, T. B. Knowles
Lamp safety valve, A. P. Odell.
Lasting tool, C. M. Hayden....
Lathe for turning irregular forms, R. Eickemeye
Lime kiln, T. M. Ul
Lock, J. W. Post...
Lock, and dam, ,.............
Lock nut, O. Stoddard......
Lubricator, Il. C. Hodge.....
Lubricator, C. H. Parshall.
Lubricator, Yule \& Boyden.
Map case, H. E. Moon
Mechanical device, C. A. Bentzen
Mechanical motor, L. H. Conner...
Metallurgic furnace, G. Duryee.
Metallurgic furnace. G. Dury
Middings purifer, H. T. Ca
Milk cooler, A. S. Benner...
Milk cooler, A. S. Benner...............................
Moulders' flasks, clamping device for, G. E. Smith Motor, M. M. Conge
Musical instrument
thews (r).

Ore furnace, rotating, J. M. Thompson.
Ore separator, w. O. Dcurne
Ore separator, T. Brown

Ore separator, T. Brown......
Ore, treating, H. W. Faucett.

Packing box, G. C. Briggs.
Packing pox, C. Moulton.
Paper bag, M. C. Ruthenburg.
Paper bag machine, M. C. Ruthenburg,
Paper feeding machine, Grifith
Paper feeding machine, Grin.
Peel, H. Leix..............
Permutation lock, B. F. Kelly
Permutation lock, B. F. Kelly....................
Planter and gaano distributer, seed, J. P. Allen.
Planter, cotton and seed, S. R. McAlexander... Planter, cotton and
Plow, G. E. Smith.
Plow, planter, and cultivator. gang, R. J. Borm
Plow, sulky, B. F. Litzenbe
Pocket light, T. Remus....
Post hole digger, G. B. Van Vleet
Pottery shape for fireproof floors, M. F. Lyons....
Precious stones, coating real and imitation, F. E.
Meyer.........................
Printing machine inking apparatus, R. Engels
Pump, fountain, A. Toellner.......................... Pump, fountain, A. Toeliner.
Pumping mechanism for gas
Pincus...................
Punch, J. W. Doubleday.
Quilting fabrics. machine for, J. Thomas
Railway rail, P. Bargion
Railway ship, J. B. Eads
Railway ship, J. B. Eads................
Railway signal. electrical, Hayes \& Gray
Receptacle, A. Vivart tas
Receptacle, A. Vivarttas
Refrigerator, Axt \& Gentzsch.

236,500
236,500
Roor grating and surfaces constructed therefrom
illuminating, T. H yatt
illuminating, T. Hyatt (r)..
Roofing bracket. H. M. Hoer.
Rooing bracket. H. M. Hoer
Rope clamp, J. C. Covert.....
Rope fastener, A. Zimmerer
Rope fastener, A. Zimmerer
Sadale, harness, W. R. Coe..
Saddle, harness, N. G. Hayd
Sash fastening, A. Barton...
Sash fastening, A. Barton.....................
Scaffold clamp, adjustable, E. S. Palmer. Scarf, neck, J. H. Fleisch
Screw patterns from the mould, device for draw-
ing, w. A. Ingalls........................
Seal and tag, E. J. Brooks 236.539
23.
Seams of sheet metal cans, rotary machine for
closing the, E. Jordan.............................4699
closing the, E. Jordan....
Seed drill, side draught, D. C. \& A. N. Norris....
Sewing machine flywheels and shafts, device for
Sewing machine filwheels and shafts, device for
connecting and disconnecting, J...Anthony... 2364007
Sewing machine spring motor, J. Schreiber....... 236,635
Sewing machine spring motor, J. Schreiber........ 236
Sewing machine shuttle, J. Larson_...........
Sewing machines clutch for loose pulless on,
A. Warren...266,656
Shafting coupling, T. R. Almond...........

Sheet metal notching machine, C. R. Ne.............. 23684.641
Shingle sawing machine, W. J. Perkins........... 2366.620
Shingle sawing machine, w. J. Perkins....
Shirt and drawers, combined, G. Jaeger ..
Shirt and drawers, combined, G. Jaeger
Shutter ventilator, freproof, G. Bassett
Shuttle, F. A. Lockwood.
Sirups, etc... concentrating, J. Wei................... 236636.44
skate, pencil holding, w. G. Reimer Sleigh, A. A. Link
Snow from streets,

Spark arrester, J. J. Kean............................
Specutums from celluloid and other compound
of pyroxyline,manufacture of surgical, G.Otto 236.615
Spike, J. P. Perkins....................... 236,511
Spike, J.P. Perkins..................................
Spinning and tisting machines, spinde bolster
for, J. R. Berry...... 236,482
Spring washer, D. K. Pratt........................
Square and bevel surface gauge, D. Walters .
Stamp, hand, Adlington \& Webster Stamp, hand, Adington Webster
Stanchion, cattle, M. H. Barnard..............
Station indicator, electro-magnetic , c. Station indicator, electro-magne
Steam generator, J. E. Culver.
Stere breaker C. G. Buchanan. Stone breaker, C. G. Buchanan
Stove, cooking, G. F. Filley.... Stove, cooking, G. F. Filley.........
Stove leg fastening, G. C. Knifin Strap attachment, T. J. Christy
Straw cutter, J. L. Paynter.....
Street washer connections, service cocks, and hy-
drants, casing for, J. Broughton................
Table, desk, and toilet stand, combined, A. K.

Theaters, ventilator for foot lights of, M. H. Mal.

Thill coupling, w.464.41
Tire lifter. A. A. Linthicu:n.................... 236,44
obacco, apparatus for weighing and packing, o.
S. Harmon.................................. 236,579
Toy cap exploder, Kyser \& Rex
Trace, wire harness. II. Timp
Trace, wire barness. II. Temple
Traction engine, J. H. Elward.
Traction engine, J. H. Elward.
Traction wheel, J. M. Stuart..
Trash gatherer, F. Girtanner
Trunk, J. A. Eno......
Tuyere, J. W. McCork
Tuyere, J. W. McCorkle...
Valves on steam boilers, device for operating

Velocipede, J. Pullen................................ 236
Ventilator, W. H. Smith................. 236
Violin bow, I. C. Monroe. ...
Vise, saw, S. O. Parker...............
Wall paper exhibitor, F. Van Duzer
Wal
Washing machine, W. T. Fuson...
Watch case, J. C. Cashman
Water coooler, E. L. L. Barber.
Water motor, H. M. Colton.
Waterproofing materials, apparatus for treating,
fabrics, etc.. with. S. Garrett...............
fabriss, etc.. with. S. Garrett............. ...
Well boring and drilling machine, C. Harmon....
Wells, agitator and paraffine extractor for oil, H.
C. Gaskill
Wheelbarrow, L. H. Goodwin.

Wind engine, F. Boots...............................
Wire, apparatus for fnishing zinc-coated, E.
Hill (r)..................................... 9,53
Wire barking machine, M. A. Penney........... 236,45
Wood feathers, machine for cutting J. W. Pet
Wood feathers, machine for cutting, J. W. P. Pet-
tengill..
DESIGNS.
Carpet. T. J. Stearns..12,12
Clock case, E. L. Morris................... 110

Sewng machine table, leg of a. J. E. Donovan..... 12,11 poons and forks, L. S. White....
Stove, Bascom, Hodges, \& Heister
Stove, Bascom, \& Heister.
Stove, heating, C . H. Buck,

TRADE MARKS.
Boots, Buccinghan
Cigars, J. W. Love
: $8.1,14$

English Patents Issued to Americans.

From January 7 to January 11, 1881, inclusive.
Car wheel, J. Rigby, Rutland, Vt.
Casting metals, S. L. Clemens et al.. Harfford, Conn. Cloth lentering machines. G. P. Wood, Johnsto
Electric lighting, H. C. Spalding, Boston, Mass.
Furne Furnaces for steam boilers, C. W. Doten. Boston, Mass,
Lasting machine for boots and shoes, S. B. Ellithorp Rochester. N. Y.
Metalic packing, T. Tripp, East Stoughton, Mass. Metalic packing, T. Tripp, East Stoughton, Mass.
Railiway dumping wagon, W. H. Page, Springfied, Mass
Shie Shoe nails, manufacture of, J. Hitcheock et al., Boston,
Mass.
Spools or bobbins, supports for, w. s. Anchincloss, Philadelphia. Pa.
Steam for buildings E. F. Osborne, St. Paul, Minn.
Street curbs and guters, J.D. Townsend, New York city

YOU HAVE BEEN IMPOSED UPON IF YOU HAVE BOUGHT A ' BATTERY,' 'PAD,' OR ' MEDAL,' THINKING IT WAS THE

THE LONDON GALVANIC GENERATOR, A ROYAL 䪤 REMEDY

Inside Page, each insertion ---75 cents a line Bnck Page, each insertion -- - $\$ 1.00 \mathrm{a}$ line.
(About eight words to a line.) Engravings may head advertisements at the same rate
per line. oy measurement. as the letter press. Adver.

CET THE BEST AND CHEAPEST.
 Exclusive Agents.and Imentitrof tor the twited States, of the
PERIN BAND SAW BLADES,

Gold, Silver, and Nictel Plating.

WOODWORKING MACHINERY, SHAFTING, PULLEYS \& HANGERS. P. Pryibil, 461 to 467 W. 40th St, New Sork. ICE-HOUSE AND REFRIGERATOR.Directions and Dimensions for construction. with one
lilustrat $\rightarrow \mathrm{n}$ of cold house for preserving fruit from

PUMPS! PUMPG!! FOR SALE CHEAP No. O DEAN PUMP. No. 1 1-E BLAKE PUMP.
Address WILIAM BAXTER, 115 Liberty St., New York, where the pumps

SHORTHAND WRITING tenorgapaighy taught

IMPORTANT BOOKS
Mineralogy，Assaying，Mining，etc．

 ROCK BREAKERS \＆ORE CRUSHERS．

FOUNTD

THE STEAM PUMPS MADE BY
VALLETMACHINE CO． EASTHAMPTON，MASS．， Are the best in the world for Boiler Feeding
and other purposes． Ren RUBBER BACK SQUARE PACKING，

THE BLAKE，＂dION AND EAGLE＂CRUSHER，

the expense for E．S．BLAK

 SCIENTIFIU MMERICAN SUPPLE

Shafts，Pulleys，Hangers，Etc．

 Send for circulars． EUREKA STEMM HEATING CO．， ＂The 1876 Injector．

wood werking

SURFACE FILE HOLDERS．

For sale by the trade enenerally．Manauactured only
Dy the NICHOLSON FLLE Co．，Providence，B．
NOMORELSEFOROLLLONMAGHINERY

Pond＇s Tools， davil W．Pono，Worcester，Mass． HOW TO MAKE A TELESCOPE－－BY

Steel Castings

 cirlilian and drice
G．Hatteld．

＂RELIABLE＂

 CuRRIS RUBEER WHEELS

GEO．P．CLARK，Windsor Locks，Conn．

The BELMONTYLE OIL

MACHINISTS＇TOOLS．
相程

PO BR

PHOSPHOK－BRONZE

Wire，Rods，Sheets，Bolts，etc．

OWNERS OF THE U S．PHOSPHOR－ BRONZE PATENTS．
OTIS＇Machiniery

$\$ 72$ a Werke siza daya hame easily made．Cosily
The George Place Machinary Agency

 vouner w．Hexas son dmproved pat ters．；
Steam Fittors＇\＆Plumbers＇Supplies．

New York Ice Machine Company,
21 Courtland St. New York, Rooms 54, 5.5. LOW PRESSURE BINARY ABSORPTION SYSTEM

ICE AND COLD AIR.

H.W.JOHIS'

LIQUID PAINTS, ROOFING
 H. W. Jowns mFr

> LOOK FOR OUR STAMP BELITING, HOSE, or PACKING.
F.SIVILLA PRATS,

Evectors

Elevating Water and Conveying Liquids

 NATHAN d DREEYEUS, Mill Stones and Corn Mills.

 Working Models
$\underset{\text { JON }}{\text { NOR SONDAM }}$

A NEW TREATMENT For Consump tion, Astluma And Ant EEEETED REMARKABLEECURES, which aro

 HARTFORD

STEAM BOILER

UPRIGHT DRILLSS
 H.BICKFORD Cincinnalio.

Inspection \& Insurance COMPANY
W. b. franilin.V. Pres't. J. h. allen, Pres't. J. b. PIERCE, Sec'y.

 The Asbestos Packing Co.
 paterted offen Patented asbestos rope packing,
 wick MILI, BOARD,
SHEATHING PAPER FLOORING FELTS. CLOTH.

Abstract

ARNOUX-HOCHHAUSEN ELECTRIC CO.,

\section*{Electrotypers and Electroplaters OFFICE AND SALESROOMS, 227 EAST 2Oth STREET, NEW YORK. [ELECTRIC LIGHT.] Offer their machines for single and series ing their successful operation. Refer to Iron Pier, Coney Island. Iron Pier, Coney Island, Iaul Bauer
 Messrs. E. Ridley \& Sons,}

Sfuis

 BOILER COVERINGSPatent "AIR SPACE", Method ASBESTOS MATERIALS.
 Pyrometers.

 H

HOWARD MANUFACTURING CO. Manufacture and Introduce
Patented Novelties YANKEE NOTIONS.
the Latest novelty.

Mirror, Pin Cushion and Tape Measure PRICE 25 CENTS

COLUMBIA BICYCLE.

THE FOLLOWING MANUFACTURERS ARE PRO

* 屋

 PLUMBING \& SANITARY GOODS HOISTING ENGINES. COPELAND NEW YORK. BACON, THE DEANE STEAM PUMP. New York. Holyoke, Mass. Boston. MECHANICAL BOOKS. ,

VERTICAL STEAM ENGINES.

new yin safety steam power co.

KORITNG'S UNIVERSAL INJECTOR

BRADLEY'S CUSHIONED HAMMER

 SHAFTS, PULLEYS, HANGERS, \&O. 461 West 4 Poth Street, New York. celebrated "red strip" belting, rcbber belting. packing. and hose.
 MACHINISTS' TOOLS AND SUPPLIES. 14 H. PRENTISS \& COMPNY,

 BOLT CUTTERS and SCREW CUTTING MACHINES̄. HOWARD TRON WORES,
FAIRBANKS' TANDRD RCALES,

AIR ENGINES AND ELEVATORS.

SHERRILL ROPER AIR ENGINE CO., THE NEW REMINGTON SEWING MACHINE
 Rock Drills and Air Compressors.

pats pace,

Lehigh Valley
FILES, DRILLS, CHUCKS, VISES,
TIPS, REAMERS, STUB TOOLS, \&e., \&c. goodnow \& wiehtman, Boston, Mass Metaline and Star Roller Bush Tackle Blocks, \&as. boston bagnall \& Loud, , Mas., ama Establ' EACLE ANVILS. 1843. solid CAST STEEL Faceand Horn Are Full War-
DOUBLE SCREW, PARALLEL, LEG VISES. Muide and WARRANTED stronger than any other Yiso
by FISHER \& NORRIS only, Trenton, X.J. PBUYBarbers if eitiface

Brass Cocks, Valves, and Fittings.

 Steam Manulatictoresion ors, and ${ }_{50}$ Stram Heatity, Apparatus, SADDOW \boldsymbol{E} Benders
MINER'S PAT. SQUIBS for BLASTING. Mfd. by Miners' Supply Coo, St. Clair, Sch川ll Co., Pa. Steam Engines \& Mining Machinery.
 The Greatest Rock Breaker on Farth.

STEARNS SAW MILLS. Saw will Machines, Boilers, and Engines.
STEIRNS MANIFACTCRING CompANY, Exie, Pa.
PRINTING INKKEx

