
[Entered at the Post Offlice of New York, N. Y., as Second Class Matter.]
a Weekly jotrnal of practical information. art. science, mechanics. Chemistry and manufactures.


an ind The con tain railways have long occupied the attention of engineers Many methods of climbing steep inclines and of rounding curves of small radius have been proposed, and several of these methods have been reduced to actual practice. The systems of Fell and Riggenbach are very well known, and the ancient system of rope tramways is in use in many

AN IMPROVED MOUNTAIN RAILWAY SYSTEM. $\quad$ places. A distinguished engineer, M. L. Edoux, has con. render it interesting to our readers. The illustrations bave ceived a project which is based upon the application of a been specially arranged for the Scientific American from system of hydraulic elevators to the lifting of cars to any the author's plans, elevations, and sectional views. height. This system may be applied to great advantage, when an abundance of water under bigh pressure is available. These conditions will be frequently met in a mounealized it seems to possess sufficient merit and novelty to

The particular railway under consideration is intended to establish communication between Cauterets and the haths of La Raillère, France. Cauterets is situated in a narrow valley, at an elevation of more than 900 meters. It is a noted water [Continued on page 66.]


IMPROVED SYSTEM FOR MOUNTAIN RAILWAYS

# srientific Gmaritat. 

# MUNN \& CO., Editors and Proprietors. 

PUBLISEED WEEKLY AT
NO. B'Y PARK ROW, NEW YORK.
o. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year nostage included...

8390
160
Clubs.-One extra copy of Tre Scientifio American will be supplied gratis for every club of five subscribers at $\$ 3.20$ each : additional copies a ame proportionate rate. Postage prepaid.
Remit by postal order. Address
Remit by postal order. Address ${ }_{\text {MUN }} \&$ CO., 37 Park Row, New York.
The Scientific American Supplement Is a distinct paper from the Scievtific American. The Supplement
is issued weekly. Every number contains 16 octavo pages, uniform in size with Scientific Amenican. Terms of subscription for Supplemivin 85.00 a year, postage paid, to subscribers Single copies, 10 cents. Sold by all news dealers throughout the country.
Combined llates. -The ScIENTIFIC
Combined Rates. - The Scientific American and Supplimment papers to one address or different addresses as desired.
The siafest way to remit is bv draft tosstal order, or registered letter.
Address MUNN \& CO . 3 Park Row. N. Y. Address MUNN \& CO , 3 T Park Row. N.

Scientific American Export Edition.
The Scirvirfic A mirican export Edition is a large and splendid periodical, issued once a month. Eich number ecntains about one hundred
large quarto vages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the stimetific Amivican, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses erms for Export Edition, $\$ 3.00$ a ye ur, sent prepaid to any part of th
world. Single copies 50 cents. to secure foreign trade may have large. and handsomely display
nouncements publisied in this edition at a very moderate cost. The Scievtific ammencan Exmort Edition has a large guaranteed circu CO.. 37 l'ark Row, New York.

NEW YORK, SATURDAY, JANUARY 29, 1881.


## TABLE OF CONTENTS OF <br> the scientific american supplement

 NO. 265.For the Week ending January 29, 1881. Price 10 cents. For sale by ali newsdealers.


THE TENDENCY OF RECENT COURT DECISIONS WITH REGARD TO REISSUED PATENTS

The patent laws provide for the reissue and correction of patents when the original is inoperative or invalid by reason
of a defective or insufficient specification, or by reason of the patentee claiming as his invention or discovery more tha he had a right to claim as new, provided it is shown that the error arose from inadvertence, accident, or mistake, with out any fraudulent or deceptive intention on the part of the jatentee.
The matter to be introduced into the amended specification is limited strictly to such as was clearly indicated, described, or suggested in the original specification, drawings, or model, and zuch as might have been lawfully claimed, but was not, or the reasons mentioned.
The practice of the Patent Office has been less exacting on this point than the rules prescribe, so that in many cases the reissue specifications have contained substantially new mat ter; sometimes matter which the patentee might lawfully have inserted and claimed originally, but failed to, through ignorance or oversight, and sometimes matter which had been disallowed by the Office or voluntarily disclaimed by the inventor to secure the issue of bis patent. By means of such reissues the inventor's afterthoughts and discoveries have been covered, and too frequently the subsequent inventions of others, or processes and machinery which others may have brought into profitable use, knowing them to be not patented. In this way much injustice has been wrought, and occasion given for many if not most of the more serious complaints gainst the patent system.
At first the courts were inclined to hold that the decision of the Commissioner of Patents in granting the reissue wa final and conclusive, and could not be revised. More recently there has been a manifest disposition to go behind the Com missioner's action to inquire whether he may not have ex ceeded his jurisdiction or improperly performed his duty in granting a reissue for more than was covered by the origina patent. Thus in the case of Leggett et al. vs. Avery et al. U. S. Supreme Court, October, 1879), it was held that no error had arisen through inadvertence, accident, or mistake, but that the Commissioner had committed manifest error in allowing the reissue for more than was included in the ex tended patent, and for what was expressly disclaimed therein In this decision Mr. Justice Bradley remarked that the allowance of claims once formally abandoned by the appli cant in order to get his patent through is the occasion of im mense frauds upon the public, and is to be discountenanced In the same connection he said:
" It is doubtful whether a reissue patent can be sustained n any case where it contains claims that have once been formally disclaimed by the patentee, or rejected with his acquiescence in order to obtain his patent. In such case the rejection (omission) of the claim can in no just sense be re garded as matter of inadvertence or mistake, and even if it were such the applicant would seem to be estopped from setting it up on application for a reissue.
In the case of the Giant Powder Company vs. the California Vigorite Powder Company et al. (U. S. Circuit Court District of California, October, 1880, Field, J.), the right of the court to review a decision of the Patent Commissioner was clearly stated. In this case a reissued patent was de clared invalid because its specification contained an inven tion of broader scope than the original. The court said:
As the power to accept a surrender and issue new letters is vested exclusively in the Commissioner of Patents, his decision in the matter is not open to collateral attack, lik suit for the infringement of reissucd letters. Herform a particu lar duty of a judicial character for the government is pre sumed to be correct until impeached by regular proceeding to avail or modify it. He must judge, in the first instance of the sufficiency of the original specification whether the same is defective in any particular, whether such defect wa the result of an unintentional error, and if so, to what ex tent a new or additional specification should be allowed to describe correctly the invention claimed; and it is to be assumed in every case that he has done his duty. The decisions of the Supreme Court to this effect are numerous, and the doctrine is one of the settled rules of patent law. But it does not preclude the examination of the original and reis sued patents, to see whether or not they disclose on their face a case in which the Commissioner had authority to act or whether he has exceeded his authority in issuing letters for an invention different from that described in the original patent.'
The Commissioner's authority to reissue being limited strictly to those cases in which the original patent is inope rative or invalid from unintentional error, or where the in ventor's claim exceeds his invention, the fact that the paten does not cover all that the patentee could have claimed i his specification had come up
ufficient ground for a reissue
The st the court said, "wa "ntended to protect against accidents and mistakes, and it i only when thus restricted that it can be regarded as a bene ficial statute. If the patentee does not embrace by his specifications and claim all that he might have done, and there has been no clear mistake, inadvertence, or accident in their pre paration, the presumption of law is that he has abandoned to the use of the public everything outside of them, or at least has postponed any additional claim for further considera ion."
by the United States Supreme Court, in the case of the Swain Turbine and Manufacturing Company, appellant, vs Ladd. This was another instance of expanded claims in a reissued patent. The original specification was as perfect so far as it went, as the new one, the pretended correc tions having been introduced to widen the scope of the patent to give its owners a large and valuable monopoly of an important class of waterwheels. In the Circuit Court of the United States for the District of Massachusetts, the claims of the reissued letters patent had been restricted to the distinct limitation of the invention in the original patent and that decision was sustained by the Supreme Court. I the opinion of the court, delivered by Mr. Justice Bradley it was pointed out that "the mistake of the patentee or his assignees seems to have been in supposing that he was en titled to have inserted in a reissued patent all that he might have applied for and had inserted in his original patent The appellants produced on the argument exhibits tending to show that the patentee before obtaining his original patent had made and done all those things which are embraced in or covered by the reissued patent. If this were true it would be nothing to.4the purpose. A reissue can only be granted for the same invention which was originally patented. If it were otherwise a door would be opened to the admis sion of the greatest frauds. Claims and pretensions show to be unfounded at the time might, after the lapse of a few years, after a change of officers in the Patent Office, the death of witnesses, and the dispersion of documents, be set up new, and the reversal of the first decision obtained without an appeal and without any knowledge of the previous in vestigation on the subject. New light breaking in upon the patentee as the progress of improvement goes on, and a other inventors enter the field, and his monopoly become ess and less necessary to the public, might easily generat n bis mind an idea that his invention was really more broad and comprehensive than had been set forth in the specifica tion of his patent. It is easy to see how such new ligh would naturally be reflected in a reissue of the patent, and how unjust it might be to third parties who had kept pac with the march of improvement. Hence there is no safe or just rule but that which confines a reissued patent to the ame invention which was described or indicated in th original.
If an unswerving adherence to this rule can be secured in the practice of the Patent Office it is obvious that a grave perbaps the gravest source of objection to the patent system will be stopped. In the meantime the growing dispositio of the courts to review the action of the Commissioner in re issuing patents, in cases of alleged infringement under them, and to construe the reissued patents rigorously, is matter of much encouragement to manufacturers and the public at large.

## OFFICIAL REPORT ON THE STEAMER ANTHRACITE.

## We have received from the Bureau of Steam Engineerin

 of the Navy Department, a copy of the full official report of he Board of U.S. Naval Engineers, relating to the tests of the machinery of the little British steamer Anthracite, made a the Navy Yard, Brooklyn, N. Y., A ugust 13 and 14, 1880 The board was composed of three Chief Engineers of the U. S. Navy, namely, Chas. H. Loving, S. L. P. Ayres, and Geo. W. Magee, all gentlemen of ability and experienceThe Anthracite, it will be remembered, is an iron steamer, 86 feet 4 inches long, 16 feet 1 inch wide, 10 feet 2 inches deep, draught loaded, 9 feet. The total weight of engines boiler, shaft, propeller, and all fittings was 25 tons. Her propeller was worked with three steam cylinders,. the first single acting, $73 / 4$ inches diameter; the second, single acting $15_{1}^{1 \frac{8}{6}}$ inches diameter; the third, double acting, $22 \frac{18}{18}$ inche diameter. Stroke of pistons, 15 inches. The most novel feature-the Perkins system-was the high steam pressure intended to be carried, namely, from 300 to 501 pounds to the square inch. The pressure now usually carried on the best sea going vessels rarely exceeds 75 to 80 pounds.
In a previous running trial of the Anthracite in England by Mr. F. J. Bramwell, C.E., May 22, 1880, with a boiler pressure of 360 pounds, the total horse power per hour was obtained by an expenditure of $16,719 \cdot 1503$ units of heat $F$. $1 \cdot 35$ pounds combustible used)
In the Brooklyn trial, made with the vessel tied to the wharf and with a boiler pressure of 316112 pounds to the inch, the total horse power per hour was obtained by an expendiure of $20,498 \cdot 22$ units of heat $F$. ( $1 \cdot 92$ pounds combustible used).
Mr. Bramwell's results were 18.35 per cent more economi cal than the Navy Yard results. The reasons for this dif ference are clearly shown by our engineers to be due to the differences in the conditions of the two trials. Thus, the coal used by Mr. Bramwell was superior; he did not lose heat by throwing open the furnace doors to remove clink er; he carried a lower water level, and consequently super heated the steam more, and had less cylinder condensation; he carried a higher boiler pressure, and so obtained a highe initial pressure in the firstcylinder, etc. If the proper calcu ated deductions for these differences in the conditions wer allowed our engineers find that there would be a discrepancy etween their results and those of Mr. Bramwell of only per cent; they are further of opinion that the difference of the results was wholly due to the difference in the cylinder condensations; these being greater in the American trials gave poorer economic results. Our engineers speak very highly of the Perkins system, as shown by their trials of the Anthracite. They think that her successful passage of the

Atlantic and the efficient condition of her machinery on arrival here ought to removeall doubt as to the practicability of the system.

## THERMOMETERS.

The word thermometer means a heat-measure, hence any instrument employed to measure heat should be called a thermometer. When very high temperatures are to be measured, the instruments employed are called pyrometers, or measures of fire. Thermometers do not, of course, measure the quantity of heat in a body, but only tell us the relative temperature. There are several forms of thermometers, all based upon the principle that " heat expands, while cold contracts." Some substances expand unequally for equal increments of temperature, others expand so slightly that they fail to indicate small changes of temperature; both are unfitted for thermometers. It is believed that air expands equally for equal changes of temperature, and as this expansion is quite considerable (1-273d part for each degree centigrader, and as it does not become either liquid or solid under ordinary pressure, at any temperature which we can produce, it is the substance employed for the most accurate measurements of temperature. Any of the difficultly condensible gases, oxygen, hydrogen, marsh gas, might be employed instead of air, but with no advantage and with much inconvenience in their manufacture
Next to air, the best material we have is mercury, which expands very evenly, does not freeze readily, and boils at a comparatively high temperature. For temperatures below $-40^{\circ}$ alcohol is generally employed, although it is claimed hat glycerine could be used. For temperatures above $300^{\circ}$ C. air thermometers alone are admissible; and for very high temperatures, where glass begins to soften, they are made of platinum.
The mercury thermometer, being the one usually em ployed in the arts, in meteorology, in medicine, and in other sciences, a few words in regard to the manner of making one may be of interest. A glass tube with a very fine bore has a suitable bulb, of any desired form, blown upon one end. At the other end may be a bulb of larger size, blown merely for convenience in filling. Neither bulb can be blown with the mouth, but with a bellows, containing pure, dry air. A small capsule is filled with pare mercury, which is heated to boiling to expel both air and moisture. While still hot the second or temporary bulb is warmed to expel a portion of the air therein; the open end is placed in the mercury, which ascends into the bulb because the air contract on cooling. When a sufficient quantity of the hot mercury has been introduced into this bulb, the tube and the other bulb are heated to expel a part of the air, and some of the mercury, which must always be kept hot to prevent its chilling and thus breaking the hot glass, enters the real bulb. By repeating the operation the bulb and stem are completely filled with mercury, which is then boiled to expel every trace of air. The tube is now drawn out close beneath the auxiliary bulb to a fine thread and cut off; the thermometer s placed in a bath heated a few degrees higher than the highest temperature which the thermometer is to show; the excess of mercury flows out, and the point is closed with a fine blowpipe flame. As the mercury contracts on cooling it leaves a perfect vacuum above it.
The graduation is effected by putting it into ice or snow, then in the steam from boiling water, marking each of thes points, dividing the space between into 100 parts if it is to have a Celsius or centigrade scale, into 80 if a Reaumur, or 180 if a Fahrenheit. This graduation is carried on in eacb direction to the end of the stem. On the Fahrenheit scale the freezing point is marked 32 , on each of the other scales it is marked zero.
Absolute zero is a term applied to a temperature $273^{\circ}$ below zero on the ceutigrade scale, or $-460^{\circ} \mathrm{Fah}$. If we take 273 cubic inches of air, or any gas, measured at $0^{\circ} \mathrm{C}$. , it will become 274 at $+1^{\circ} \mathrm{C}$. $+100^{\circ} \mathrm{C}$., and at $-10^{\circ} \mathrm{C}$. it is only 263 , at $-40^{\circ}$ it is only $-272^{\circ}$, and this rate it should become only 1 cubic inch at $-272^{\circ}$, and at minus $273^{\circ}$ it should occupy no space at all, or at least not be a gas any longer. As this temperature is not yet attainable, we cannot positively assert that such would really be the case.
Maximum thermometers are made by placing a little float of steel upon the mercury, and the thermometer placed horizontally or nearly so. As the mercury expands it pushes along the float, which does not, however, follow the mercury when it contracts; hence we are able to ascertain the highest temperature reached during any given interval. To reset the thermometer it is raised to a vertical position and a slight tap given to it, which causes the float to drop down on the mercury again.
A simple and more accurate form of maximum thermometer, employed by Bunsen in measuring the temperature of the Geysers, consisted of an ungraduated thermometer open at the top, such as could easily be made by a person of but little experience. When placed in the spring, of course, a portion of the mercury would flow out and escape. At any subsequent time the thermometer could be placed in an oil bath beside a standard thermometer, and heated until the mercury had entirely filled the tube and was about to flow over; at this moment the standard thermometer is read, and shows the temperature to which the other thermometer
had been exposed. The ordinary minimum thermometer contans alcohol instead of mercury, and the float is either glass or of steel covered with enamel, so that it is drawn back by adhesion, but cannot be pushed forward.

The most reliable form of self.registering thermometer is an upright mercurial thermometer behind which is passed by clockwork a strip of sensitized paper. In front of it is placed a light of sufficient actinic power to blacken he paper above the mercury column. This gives not merely the maxima and minima but all variations of tempe ture
Metallic thermometers may be constructed by combining wo metals which expand unequally into a spiral, which winds up when heated and unwinds when cooled. One end of the spiral being attached to an index which passes long a graduated arc, the slight motions are magnified so as to be distinctly visible. It is graduated by compa ison with a good mercurial thermometer.
For measuring slight changes in temperature a thermo electric pile, connected with a galvanometer needle, is em ployed. This is only applicable within very narrow limits and requires great care to obtain satisfactory results.

## HYDRAULIC MORTARS AND CEMENTS

Certain limestones, which contain upward of 10 per cen silica, possess the property, when burned, of forming cement or mortar which hardens under water. Such lime stone is called hydraulic lime, and the mortar is called hydraulic mortar. This stone, before burning, consists of a mixture of carbonate of lime and silica, or a silicate, chiefly silicate of alumina. The latter is insoluble n hydrochloric acid, hence remains undissolved when the tone is treated with this acid, but in burning this silicate is luxed by the alkaline carbonates and becomes soluble in acid, the carbonic acid being expelled. When common lime is slaked it swells enormously and develops a great deal of heat; this is not the case in slaking hydraulic lime, which absorbs water without any considerable increase of tempera ture of volume.
If ordinary lime be mixed with a siatable quantity of silica or sand, an artificial hydraulic mortar is obtained, to which ve apply the name of cement. These cements may be either hatural or artificial. The former are found in volcanic re ions, having been produced by the terrestrial heat. Pozzuo ana, found at Pozzuoli, near Naples, is a natural cement the following composition: Silica, 44.5 ; alumina, $15 \cdot 0$; lime $8 \cdot 8$; magnesia, $4 \cdot 7$; oxide of iron, $12 \cdot 0$ (with oxide of tita nium); potash and soda, 5.5 ; water, 9.3 ; total, 100.8 .
The quantity of lime is, however, so small that it requires to be mixed with ordinary lime to form hydraulic mortar It was employed in combination with an equal quantity of lime in building the Eddystone Lighthouse.
Artificial cement, also called "Roman cement," because it is not made in Rome, has been manufactured in England on the Thames and in the Isles of Wight and Sheppey since 1796. It is made by burning the calcareous nodules which overli he chalk in that country. A sample analyzed by Michaëlis contained: lime, 58.38 ; magnesia, 5 ; silica, 28.83 ; alum ina, 6.40 ; oxide iron, 4.80 . When mixed with water it hardens in fiftcen or twenty minutes, and possesses great and strength
Portlaud cement was patented in England by Joseph Aspin in 1824. He took the limestone of Leeds, pulverized and burned it, then mixed it with water and an equal weight of clay to a plastic mass. When dry this was broken up and burned again until all the carbonic acid was all expelled. It was then pulverized and was ready for use. Pasley made it from chalk or limestone with Medway River clay, which contains salt. Pettenkofer suggests that cement is improved by soaking the clay in salt water.
Portlaud cement is now made, says Wagner, by making bricks of an intimate mixture of limestone and clay, drying them in the air and burning them in a tall shaft furnace from 45 to 100 feet, 12 feet in diameter, with a strong grate 4 feet from the bottom. It is charged with alternate layers coal and cement stone. The properties of the cement are argely dependent on the temperature employed in burning; a white heat is best, but if the temperature is too high it will no longer unite with water, and may even be melted to a glass. If the temperature does not exceed a red heat it unites readily with water and gets hot, like ordinary lime, but possesses very little strength. The color changes with the burning and forms a criterion for judging the quality In normal condition it forms a gray, sharp powder, with a hade of green, but not glassy.
The manufacture of Portland cement is now carried on in very part of the world where limestone and clay are to be fouvd. In order to obtain a good cement, not only must the proper heat be employed in burning, but the proper propor tion of clay, usually 25 per cent, must be used, and the clay must have certain properties, such as a large proportion of silica, must be very finely divided, and must be very intimately mixed with the limestone. Analyses of Portland cement from various sources show the percentage of lime to vary from 55 to 62 ; silica, 23 to 25 ; alumina, 5 to 9 ; oxide of iron, 2 to 6 ; soda and potash, usually less than 1 per cent.
ortland cement found near Kufstein forms a natural Portland cement on burning without any other admixture. The analysis shows that it contains $21 \cdot 77$ per cent of insoluoluble ince containing 16 per cent of silica. The portion ime; 1.02 consists of 70.64 carbonate of alumina, 286. These figures lead us to exp iron, 2.58 ; 20 to 25 per cent of insoluble matter with 70 of carbonate of lime, will probably furnish a good cement
when burned. The presence of much magnesia seems to have in all cases an injurious effect; all excellent hydraulic Erdmenger very little magnesia.
Erdmenger, who has studied the constitution of Portland cement very carefully, concludes that it is not a definite chemical compound. He considers it rather as water glass, in which the alkali is replaced by lime.
A consideration of the use of Portland cement in the manufacture of artificial stone would exceed the limits of ou present article.

## GENERAL GRANT AS PRESIDENT OF THE WORLD'S FAIR COMMISSION.

General Ulysses S. Grant was chosen permanent President f the World's Fair Commission, at a meeting of the Commissioners held in this city January 13. It was announced that he had consented to serve.
General Grant's ability as an executive officer is known the world over; and probably no other name would have carried so much influence at home and abroad. With a leader so well known, popular, and capable, the Commission should be able to raise promptly all the money needed to secure at Inwood, in 1883, an exhibition worthily representing the progress of the world since 1876 .

## SOLAR CLOUDS AND SUN SPOTS

Some recent studies of solar spectra in connection with un spots and other features of the sun's envelope have led Mr. Charles S. Hastings, of the Johns Hopkins University, to form a somewhat novel theory of the sun's constitution and the conditions producing the more notable phenomena familiar to solar students.
Mr. Hastings finds, contrary to the received opinion, that the spectra of the center and the outer edge of the sun's disk are not precisely alike, though the differences are so minute as to escape all but the most perfect instruments and all methods which do not place them in close juxtaposition. Certain of the Fraunhofer lines, the thickest and darkest in the spectrum, notably those of hydrogen, magnesium, and sodium, which appear with a haze on either side in the spectrum of the center of the solar disk, are sharp and distinct in the spectrum of the limb. Certain very fine lines are stronger at the limb, while other very fine lines are stroner at the center. The ordinarily accepted theory of the solar constitution and the origin of the Fraunhofer lines fails to explain these phenomena. The probable reasons for this failure Mr. Hastings discusses at considerable length in the January issue of the American Journal of Science, and then proceeds to frame a theory of the sun's constitution, which, he thinks, will satisfactorily explain all the observed phenomena. The limit of our space forbids more than the briefest summary of his conclusions.
His theory differs from that of Faye chiefly in localizing the phenomena of precipitation instead of regarding it as proper to all portions of the photosphere, and in supposing the precipitation confined to one or two elements. He attributes the granular appearance of the solar surface to as cending currents directed generally from the center of the sun. About these currents are necessarily currents in an opposite direction, which serve to maintain a general equilibrium in the distribution of mass. The ascending currents start from a level where the temperature is probably above the vaporizing temperature of every substance. As they move upward the vapors are cooled, mainly by expansion, until a certain element (probably of the carbon group) is precipitated. This precipitation, restricted from the nature of the action, forms the granules. The precipitated material rapidly cools, on account of its great radiating power, and forms a fog or smoke, which settles through the spaces between the granules till revolatilized below. It is this smoke which produces the general absorption at the sun's limb, and the "rice grain" structure of the photosphere. The reasons for supposing the precipitated element to be of the carbon group (carbon or silicon) is simply that no other subtances present the properties indicated by the cloud masses of the photosphere. It is pretty clear that the substance has boiling point above that of iron, for iron vapor at a lower temperature exists in its immediate neighborhood. The element is not a rare one, and its molecular weight cannot be great, for though precipitated below the upper natural limit of its vapor there are few elements found in abundance above it, and those in general of low vapor density. It is possible that the light coming from the sun is radiated from solid or liquid particles of carbon just at the point of vapor zation; but Mr. Hastings is rather inclined to suspect that the photospheric material is silicon. There is also good reason to suppose, he thinks, that carbon is precipitated at a higher level, possibly along with the less common element boron.
The clouds of carbon or other smoke would naturally be drifted into spaces of downward flowing currents, thus forming sun spots, the characteristics of which are readily accounted for by the necessary behavior of smoke clouds sink ing into regions of higher temperature. This explanation of sun spots and their allied phenomena is certainly plausibe, and we shall look with interest for what older stu dents of the sun shall have to say about it.

The Matanzas International Fair.-Mr. Benjamin Giberga, general agent for the United States of the ap proaching Cuban World's Fair, announces that the opening day has been definitely fixed for February 10, 1881.

## AN IMPROVED MOUNTAIN RAILWAY SYSTEM

[Continued from first page.]
ing place, and during the season is filled with numbers of invalids, who go there in search of health. The hot sulphur springs for which this region is noted, are iocated at La Raillere, 125 meters higher up the mountain, and more than 915 meters distant.
To travel over this fatiguing route, to go and return, often twice in the same day, in the capricious weather of the twice in the same day, in the capricious weather of the
mountains and in the crowded omnibuses, is uncomfortable and even dangerous for infirm persons. The waters cannot be conveyed from La Raillère to Cauterets without modifying their temperature and their chemical composiion to which their therapeu ic properties are due. It is, therefore, necessary to convey the sick to the springs that they may receive the full benefit of the water. This railway has been pro jected for the purpose of con veying the bathers from Cau erets to La Raillère rapidly and comfortably
All systems, with the exception of that of M. Edoux require the consumption of a large amount of fuel, which in this region is very expen sive. This inventor utilizes the powerful waterfall at La Raillère, which, in connec-
ion with gravity, constitutes the motive power of the railway.
The mode of operating the railway is as follows: The car is raised vertically by means of hydraulic elevators to a greater height than its destination, which. in the present case, is La Raillère, and is then allowed to descend as far as that place by its own gravity upon an inclined railway. To return, the car is transferred by its own gravity to a second railway inclined in the opposite direction. The cars are provided with efficient brakes, by means of which the speed may be effectually controlled.
In practice, the car is not raised the vertical distance of 125 meters at a single lift, but this distance is divided into five parts of 25 meters each. There are five towers at intervals of about 40 meters. In each one is placed a hydraulic elevator, similar to hose introduced by M. Edoux into the hotels and houses of Paris. The top of each tower is little more elevated than the foot of the next one, and is connected with it by an inclined bridge. The car is raised by the hydraulic elevator to the top of the first tower, runs by its wn gravity to the base of the following one, is raised to the next level, and so on. Together hey form a pigantic staircase with steps 25 meters high. The last landing place is 135 meters abov Cauterets.
The return way, which is on the side of the mountain, ter minates in the second tower. The cars descend vertically only in the first two towers, which contain two compartments, ne for hoisting the car and one for lowering it.
At La Raillere the inclination of the car is reversed, and the car is transferred to the return track by means of a plat form supported on wheels and provided with rails. The car on arriving from Cauterets rolls upon the platform. The latter moves by its own gravity on rails slightly inclined in opposite directions (see Fig. 8), so that when the rails of the platform join the return track their inclination will have been reversed, and the car will, of its own gravity, return to the second tower. The movement of he transferring car is controlled by a hydraulic piston. The gradient of the railway to La Raillere is 0.005125 per meter, and of the return road 0043961 per meter.
The department engineers prefer this plan to all others. The question of construction will be taken up at the ext session of the Chambers.

## NEW MECHANICAL MOVEMENT.

The engraving represents a novel mechanical movement for converting a continuous rotary motion into an intermittent rotary motion. The driving shaft carries a triple sprocket wheel, which is keyed on or otherwise fastened, and the driven shaft has three sprocket wheels, two of which are secured to it, while the third is movable on the shaft. The endless chain which connects the chain wheels of the two shafts is made of three separate sections -a median section alternating with two outer sections arranged parallel to each other and separated by a space equal to the width of the openings in the narrower section This chain thus formed, as will be noticed is double for a portion of its length, while the remainder is single.
When the driving shaft is revolved the chain is carrie forward at a regular rate of speed. When the single por-
tion of the chain comes into contact with the loose central The slotted cylinder has overlapping sliding piston plates sprocket wheel on the driven shaft, only the loose wheel is revolved, the shaft remaining stationary; but when the double portion of the chain engages the outer wheels, which are fixed on the driven shaft, the shaft is revolved until the double portion of the chain has passed over it, when it rests until engaged by another double portion. By meeans of this ingenious contrivance the driven shaft may be rotated either regularly or irregularly according to the relative proportion of double and single chain. This movement should find a ready application in textile machinery, and in fact in all

The slotted cylinder has overlapping sliding piston plates
provided at the ends with a pin and pivoted curved guide bar fitting in an annular groove on the inside of the end pieces of the outer cylinder which devices draw the piston plates inward and outward, forming a piston of variable size as the shaft rotates.
An improved machine for packing boned hams and shoulders has been patented by Mr. William Hoefjen, of New York city. The invention consists of a cylindrical recepta cle, the upper half of which is pivoted on its longitudinal edge and is provided with a lever lock, by means of which the lid can be gradually closed, compressing the meat in the cylinder; the meat is then further compressed by closing the front of the cylinder by means of a suitable disk and driving a piston forward, after which the disk at the front of the cylinder is removed, and an envelope of suitable material is drawn over the front of the cylinder; into this envelope the meat is forced by the piston.
A gate that may be opened by an approaching vehicle or by a person on horseback without dismounting, and closed in the same manner, has been patented by Mr. Nathan Scarritt, of Kansas City, Mo. The invention consists of a gate made in
ployed.
This invention was recently patented by Mr. William $\mathbf{P}$ Drew, of Preston, Minn

## IMPROVED WOOD SCREW.

The engraving shows a self-countersinking wood screw, recently patented by Mr. John Eckford, of San Antonio Texas. It will work in all kinds of wood, and clears itsel of the chips made in boring. The screw has on the under with bevel a series of bits or cutting edges alternating where interspaces, which completely fill the under sur face of the head. These notches increase in width and


## ECKFORD'S IMPROVED WOOD SCREW.

depth from the screw shank to the crown of the head. This form allows the chips to escape readily.
The cutters are formed on the screw head by forcing it while hot into suitable dies. In other respects the manufacture of this screw does not differ from that of the common form. In use, this form of screw saves a great deal of time and insures a good fit between the head and the wood n which it is bedded.

## RECENT INVENTIONS.

An adjustable tension, with sufficient power for springs for folding or cabinet bedsteads, is secured by a spring hanism


## DREW'S MECHANICAL MOVEMENT

This is a spiral spring sustained at one end and baving shaft connected with the opposite end and extending through the coil. On the free end of the shaft is a drum on which winds a belt extending to and connected with the hinged bed. Two of these arrangements for each bed are preferably used. The tension of the spring can be adjusted by shortening the belt.
A rotary engine, patented by Mr. Gabriel Jasmagy, of Brooklyn, E. D., N. Y., is a cylinder with interior slotted cylinder half the diameter of the exterior cylinder, mounted on shaft journals in the end pieces of the outer cylinder.
proaches the bottom of the page, and enables
im to see and study the original copy very distinctly, has been patented by Elmer P. Newman, of Dimondale, Mich A sand guard for car axle boxes, patented by Mr. Henry Roth, of New York city, consists in a band fastened upon the inner end of the journal box, and open at the lower ide. The opening in the inner end of the box is thus pro ected from sand.
A fire escape, patented by Messrs. Eduard Kamin and Heinrich Egberts, of Bremen, Germany, seems to be simple, compact, and reliable. It is of the life rope variety. The velocity of descent is regulated by a vibrating balance me-

Mr. Gorham N. Winslow, box 290, Newton, Mass., ha patented an improved velocipede or tricycle in which the driving wheel i propelled by hand power, connection being made between the crank shaft and drive-wheel shaft by a shaft and bevel gearing.
An improved glass button and a mould for attaching the eye thereto, has been patented by Mr. August Ha mann, of Hoboken, N. J. In this im proved button the strain upon the eye is distributed through the cap, which is firmly attached to the glass at al parts of the circumference of the cap Mr. Erwin B. Newcomb, of Cumber land Mills, Me., bas patented an im proved machine for winding pape and similar materials from a loose con dition into hard rolls, especially ma terials of a brittle nature-such as for instance, enameled paper, which is usually wound by hand on account of its liability to curl at the edges and become broken
A device for stretching and smoothing thread, more espe cially of silk in twists, sewings, embroidery, organzine, and tram, has been patented by Messrs. Lewis E. Leigh and Lewis Leigh, of New Haven, Conn., whereby through spe cial construction of the bobbin stand and cap and correlated appliances, an even tension of any desired degree upon all threads in the different processes of manufacture is secured.

## simple magic lantern

All that is required for this apparatus is an ordinary wooden packing box, A, a kerosene hand lamp, B, with an Argand burner, a small fish globe, and a burning glass or common double or plano-convex lens, C. In one end of the box, A, cut a round hole, D, large enough to admit a portion of the globe, E , suspended within the box, A , with portion of the globe, E, suspended within the box, A, with
the lamp, B, close to it. The globe is filled with water from the lamp, B, close to it. The globe is filled
which the air has been expelled by boiling.
Now moisten the surface of a piece of common window glass with a strong solution of sulphate of soda, or even common table salt, dissolved in water, and place it vertically in a little stand or clip, as shown at $F$, so that the light from the lamp, B, will be focused on it by the globe, which in this case answers as the condenser. The image of the glass will then be projected on the wall or screen of white cloth, W , providing the lens, C , is so placed in the W, providing the lens, C , is so placed in the
path of the rays of light as to focus on the wall path of the rays of light as to focus on the wall
or screen. In a few minutes the salt solution on or screen. In a few minutes the salt solution on
the surface of the glass, F , will begin to crystallize, and as each group of crystals takes beautiful forms, its image will be projected on the wall or screen, W , and as it is watched it will grow, as if by magic, into a beautiful forest. of fern-like trees, and will continue to grow as long as there is any solution on the glass to crystallize. Then, by adding a few drops of any of the aniline colors to the water in the globe, the the aniline colors to the water in the globe, the
image on the screen will be illumined by shades image on the scr
of colored light.

## Powerful Pumping Machinery.

The San Francisco Bulletin announces the eompletion at the Risdon Iron Works of the largest pumping en gine ever built. It is to be used in draining the Chollar Norcross, and Savage shafts of the famous Comstock mines at Virginia City, Nevada. The engine occupies a space 65 feet by 20 feet, and weighs between 2100 and 300 tons, which the underground machinery will increase to about 1,000 tons in all. The engine accumulates water at 1,000 pounds pres sure to the square inch, in a reservoir at the surface 60 feet high, from which it will be conducted by a pipe 2,400 feet to the bottom of the shaft, there to operate a pump which will raise the seepage water 800 feet to the Sutro Tunnel, into which it will be discharged. The water which does the work returns to the surface by another pipe. The system can be extended to 3,000 feet in depth, or take water from mines half a mile away, simply by extending the pipes. The new system is intended to dispense with the heavy and cum bersome pump rods heretofore used. The engine is com pound, with the Davey differential valve motion.

## IMPROVED CATTLE FEEDER.

The engraving shows an improved cattle feeder invented by Mr. Wm. Griffiths, of Shrewsbury, England. It cousist


## GRIFFITHS' CATTLE FEEDER.

of four triangular troughs with racks above, fitted to a square frame having T-section iron uprights supporting a curved corrugated roof, troughed at the eaves for carrying the rain water to the corners. The racks run up from the center of the troughs to each upper angle, forming a triangle. It is fed from either end of the roof, and will hold as much fodder as a man can carry. The whole structure is of iron and mounted on wheels, two of which can be locked at pleasure sbould it be desired to make it a fixture

To Deaden the Noise of Hammering in Shops, it has been suggested to place rubber cushions under the legs of the work-benches. We have found wool, felt, or any very thick loosely made woolen texture a much better material for this purpose than rubber. Pieces suitable for these pads can ordinarily be selected from tailors' clippings, and may be had for little or nothing.


SIMPLE MAGIC LANTERN.

## An Interesting Ralway Relic.

One of the most interesting relics we have seen in some ime is a page from a Boston paper of 1825, containing a pic"Hetton Railroad," as designed by William o be seven miles cive fugineer. The stupendous hine was from the Hetton collieries, in England, to the town of Sunfrom the Hetton collieries, in England, to the town of Sun-
derland, on the River Wier. From the picture and the accompanying description, we find this railroad climbing hill and descending dale, and making no attempt to follow any grade. Several stationary engines are used to transport the coal wagons over these irregularities of the surface, and finally a locomotive, made of thick sheet iron, weighing five tons and possessing twelve horse power, takes them in tow
and pulls them to Sunderland. These locomotives are abl to pull ninety-ton trains.
Below the general view of the road is a cut representing a train. The engine is neither a graceful nor a complicated affair, and consists chiefly of boiler, smokestack, and piston There is no cab for the engineer, who stands on a platform beside the boiler and takes the weather as it comes to him The tender is equally primitive in its construction, and appears to be about the size of an ordinary box wagon. The coal carts look very much like the bobtail dumps of the present day.
The letter-press on this page contains a description of the Hetton Road; a general article on the value and utility o railroads; an extract from a letter from Hon. De Witt Clinton, comparing railroads with canals to the former's injury and a series of answers to questions respecting railroads by Thomas Tredgold, an English civil engineer, who was ad vanced enough in his ideas to believe in railroads. The entire page shows that it appeared at a time when the ques tior of railroads vs. canals was being agitated. The grea expense of the former seemed to be the chief difficulty in the minds of the canal advocates, who could not realize the enormous profits which would go to pay those expenses and enrich railroad men to boot. Governor Clinton's arguments are rather amusing in the light of our present railroad facili ties.
The relic is weather-stained and exceedingly old-fashione in appearance. It is the property of Mr. F. H. Munsell, of the Central. And when we look at this picture and think of the great four-track line it seems as if the relic must be a thousand years old. One cannot believe so much had to lee learned in the space of fifty-five years.-Buffalo Courier.

## Apprentice System Reviving.

We are pleased to see that the Ames Manufacturing Com pany, of Chicopee, Mass., are doing something toward a re turn to the old apprentice system. The company have been very much troubled to get skilled help, and also by having men leave after they have learned enough to begin to be use ful. They have now adopted a plan something lize the former system, only the term of service is not more than three or four years instead of seven, and they are over whelmed with applications. The men sign a contract to stay to the end of the term, and the company will teach them he different branches of the business, so that when they go out they will be masters of the trade instead of knowing how to run but one machine or to do one particular kind of work. The company keep 10 cents a day from their pay until it mounts to $\$ 100$

The Yield of Wheat.
To test the bearing qualities of the leading varieties of wheat the Supcrintendent of the Ohio Agricultural College Farm sold seed wheat to farmers in various parts of Ohio nd other States, requesting report of yield from each. The results are shown in the following comparison: Fultz, 24 re ports average $253 / 4$ bushels; Clawson, 10 reports average $233 / 4$ bushels; Silver Chaff, 15 reports average $261 / 4$ bushels; Vel vet Chaff, 11 reports average 26 bushels; Gold Medal, 12 re $241 / 2$ bushels.

## Porcelain Manufacture in New Orleans

A happy coincidence of enterprise and discovery has jus occurred in the Souih. While Mr. Surgi, of New Orleans, was arranging for the setting up of a porcelain factory in hat city, expecting at first to import the kaolin to be used, Assayer of the Mint received from Texas, for analysis
ity. The deposit had been known for some time, but nothing had been done with regard to its development. The announcement of the proposed porcelain factory called the attention of the owners of the deposit to its possible value, and the two interests have recently been brought together. The kaolin occurs near Bremond Texas, where a bed of eighty acres or more lies close to the surface. The depth of the deposit is not given.

## Water Cresses in Winter

The Gardener's Magazine thinks that many of the writers in the horticultural papers do not know that frost kills water cresses. The delectable Nasturtium officinale is proa hardy plant, for it takes care of itself as weed, and who, therefore, shall accuse it of tenderness? Where cresses are fast rooted and flourishing in a brook or any other water, it will be found that after a coat of stout ice has beeu formed the crop is gone entirely. That is to say, all the succulent leafy stems that might have been cut before the frost came bave been destroyed by ordinary freezing, if only to the extent of about seven to ten degrees. It follows, therefore, that to preserve cresses for winter use anywhere out of doors shelter of some kind is necessary. There are many ways of doing this. It is not unusual for the market growers to let in a flood of fresh water when a sharp frost is expected. This covers the plants, and the ice is formed so far above them that they escape its effects. Another plan is to lay planks or tree loppings over the bed, and rough contrivances of this kind will carry a crop through a moderate frost, but a continued and severe frost will find its way through such penetrable stuff. Where it happens to be convenient, a frame is the best protection, and those who have to supply the table plentifully in winter would do well to arrange their plans with a view to the use of frames ultimately. That many who should know do not know that frost is destructive in its effects on cresses is not surprising, because hitherto the subject has but rarely obtained any special attention.

## Glass Making in Ohio

Five new glass works were started in Ohio last year, and several more will be added this year. The latest official staistics give 19 firms employed in glass manufacture, with 32 furnaces, having 292 pots and employing 2,032 men. In the production of window glass there are employed 7 furnaces, with 66 pots; flint glass, 19 furnaces with 199 pots; green glass, 4 furnaces with 27 pots. The glass works are in Bellaire, Columbus, Ravenna, Kent, Zanesville, Steubenville, Martin's Ferry, Bridgeport, La Grange, and Newark.

## NEW MILKING STOOL.

The combined milking stool and pail holder shown in the engraving is the invention of Mr. G. W. Williams, of Eau Claire, Wis. The seat or stool carries a support for the pail, and is provided with a circular guard rail for retaining the pail in its position. There are two apertures in the seat

forming a handle by means of which it may be easily car ried. The pail support is pivoted and is capable of moving up or down to accommodate itself to inequalities in the ground surface.

Hard Soap by a Cold Process.
Mr. R. F. Fairthorn, Ph.D., Las contributed the following ecipe to the Druggists Circular
A good hard soap can be easily produced if four pounds of olive or sweet almond oil mixed with two pounds of soda lye, of the strength $36^{\circ}$ Baume, are stirred until of the consistence of thick paste, when it should be poured into moulds, covered by several folds of muslin, and kept in a warm room for twenty hours. By this treatment the pro cess of saponification, or union of the acids in the orls with the alkali, is complete. When these materials are first mixed the temperature of the mass rises, and in order to effect the entire union of ingredients so as to form the compound called soap, it is necessary that the heat thus generated should be maintained for some time, bence the necessity for covering the moulds and keeping them in a warm room.
He has found that it is desirable to use oil that is slightly ancid, or, if free from rancidity, to add about ten per cent of oil that has become so. Oil that is perfectly sweet re quires two or three days to effect saponification.

## Crareaymatice.

## Dangers of Electric Light Wires

To the Editor of the Scientific American:
Absence at sea prevented me noticing sooner your observations on the death of the fireman on board the Livadia, who was killed by an electric light current. -If not toolong behind the time of the occurrence, I would like to add my experience on the subject, in connection with Siemens machines, which you presume would be equally dangerous under the same conditions.
I have myself received the current capable of giving four lights (each of 400 candle power) through the legs, trunk left arm, thumb, and one finger, between which I had caught a wire. I do not say I liked the sensation, but could have endured it if necessary; the finger and thumb were rendered incapable of motion, and the wire was so firmly held by them that it took a good tug to drag the wire through by main force. The only resistance the current had to overcome was my shoes and some damp boards.
In another case I know of an operator who inadvertently took a wire in each hand, thus completing across his chest a current of same strength as in my case, but without any harm resulting. The muscles of the hand were strongly contracted, and he was unable to call out for help, although he was perfectly conscious it was close at hand; but by walking back until he could exercise a strain on the wires he dragged them from between his fingers as I did. This, think, shows that currents such as are generated in Siemens machines are incapable of causing death to a person not affected with heart disease. If, however, passed through the brain or spine it might be more serious, possibly resulting in temporary unconsciousness.
As the Livadia's fireman seems undoubtedly to have been killed by the dynamo current, I can only suppose that the machines there used were constructed to give currents of high tension for sake of getting a considerable number of ights on one circuit.
Perfect insulation of the leads throughout the entire circuit should be deemed a necessity, especially in a ship or other structure of iron. This is best done by using covered wire, not omitting to cover any joints that may be made.
Your suggestion about protecting the lamps and terminals is a very good one, even where the insulation of the leads has been attended to, for the reason that a man in renewing the carbons may be up a ladder or in a position from which he might easily fall in case he got even a slight shock, which by startling him might cause him to lose his balance. I think it is better that the exact amount of danger attendant on any system may be known, so that it may be guarded against and so avoided, and also to prevent those who other wise could inform themselves from forming exaggerated notions of what that amount really is
S. S. City of Berlin, Pier 37, New York.
J. W. L. January 5, 1881.

## The New Comet Pennule

To the Editor of the Scientific American
Telegraphic announcement was received by me December 17, 1880, of the discovery of a new comet by Pennule at Copenhagen, Denmark, on the 16th ult. Dense clouds prevented any observations of the object until the evening of December 31, when in a very few minutes I picked up the comet and secured a good observation. It was at discovery in right ascension 18 hours 49 minutes; north declination 0 degrees 35 minutes. When observed by me on the 31 st it was, by estimation, in right ascension, 19 hours 47 min utes; north declination 19 degrees 30 minutes. This brough the comet about midway on a line drawn from Albireo in Cygnus to Epsilon Delphinus-the last star in the tail of the Dolphin. Good observations were also obtained on the two following evenings.
The motion of the comet is northeast something more than one degree daily; so that its position is improving, and being quite a bright telescopic comet, it may be readily seen in moderate telescopes for some time. The present direction of its motion is toward Zeta Cygni.
It is nearly 3 minutes of arc in apparent diameter, has considerable condensation not quite central, but no tail.

William R. Brooks

## Red House Observatory,

Phelps, N. Y., January 4, 1881.
Cutting Hard Steel with Soft Iron.
To the Editor of the Scientific American :
About forty years ago, having often heard that hard steel could be cut readily with a circular disk of sheet iron when driven at a bigh motion, I made a disk about teninches in diameter out of a piece of heavy stove-pipe iron, having a round eye at the center about one and a half inches in diameter. I then put a stick of hard wood in the turning lathe, turned it off true, making a wooden mandrel for holding this iron disk, just as a circular saw is held true on a metallic mandrel. The periphery of the disk, after it was secured to the wooden mandrel swinging in the lathe, was ground and filed until it would run as true as a millstone. The disk was secured to the collar or shoulder of the wooden mandrel by putting four screws through the disk into the wood. While the disk was revolving at a high motion the soft sheet iron would cut off a ten inch cold-steel file in a few seconds.
hard steel (no matter how hard), the disk was put on one of the journals of a circular saw which was driven at a very high motion; and that disk was employed for many years afterward to gum saws of all sizes.
During the past season, having occasion in a new shop to make a goodly number of cutters for the power moulding machine, we made another sheet iron disk, which was fitted to the mandrel of one of the little circular saws, which revolves about two thousand times per minute. After the periphery had been dressed off as true as practicable, that disk of soft iron would (and will) cut off a bar of cold steel four inches broad and one-fourth of an inch thick in one minute, making a kerf as true and smooth as a good saw will cut through a piece of timber. The disk will save an immense amount of filing when making cutters for moulding machines, as we can cut slots into the heel ends of the cutters, and cut and dress off the edge ends faster than twenty men can dress the steel away with chisels and files. One can "gum" an old cross cut saw, or a mill saw, or dras saw, or arge circular saw with such a disk in a few minutes, without any apprehension whatever of cracking or injuring the saw blade. After a large saw has been gummed by an iron disk, if one has a small emery wheel of the proper form he can dress up the teeth almost to a perfect cutting edge without a file, thus saving an enormous expense for files.
I have found in some instances, when gumming cross-cut wo-men saws, that the steel of certain kinds of saws would be case-hardened a little on both sides of the kerf made by the disk. That very thin film of case-hardened steel would wear away a new file rapidly. But by employing an cmery wheel instead of files until all the case-hardened stecl had been removed, the expense for files is always small. Indeed, we use files only to fit up the very points of the teeth.
I may add, for the advantage of beginners, that the true way to fit up the periphery of a disk is to cut it with heavy shears as nearly round as practicable, after which hold a piece of a grindstone or sandstone so that the edge of the disk will strike it when in motion. We always use a stone and file, and then attempt to cut steel a little, thus working off the periphery until it is as smooth and true as it can be made. Then the cold and soft iron when in high motion will literally melt the hard and cold steel and drive the melted metal from the bar in a stream of white-hot sissing and burning steel dust.
S. E. T.

Orange, N. J

## The Meteor.

To the Editor of the Scientific American
I send you a diagram of a most singular atmospheric phenomenon witnessed here on the 30th ult. The display in the heavens of so peculiar a combination of reflection and
 OF DECEMBER 30, 1880,
SUNK CENTER, MINN.
refraction of the rays of light was of such rare occurrence I doubt if the like was ever before seen. You may the berter understand me if $I$ explain from the diagram. It was first observed at five minutes before eleven o'clock, A.M. The mercury registered at the time $5^{\circ}$ below zero. The sky was clear, save that the air was full of float ing frost crystals that gave a leaden aspect to the heavens around. The sun,
as I have tried to represent, was surrounded by a double halo, both very perfect and distinct in outline. To the right and left of the sun and on the rim of the first halo were very bright parhelia or mock suns. Passing through the sun and these mock suns and around the whole dome of the heavens, seemingly, at about $20^{\circ}$ from the horizon, was a great circle of light. This had the appearance of the large ing of Saturn-very bright and about $1 / 4$ of a degree in width. Again, about $15^{\circ}$ from the rim of the outer or
second halo, and inthe path of this circle of light, were other parhelia on either side of the sun; and on the opposite side of it, from the sun, was another or third parhelion. This circle was very brilliant, describing a diameter of about $1 \mathrm{C} 0^{\circ}$. Intersecting this bright circle, at the points of the two parhelia, passed a somewhat less brilliant ring of light in form of an e.lipse, with its longest dianneter some $1: 50^{\circ}$ and the short one 80. At the northern end of the ellipse were three parhelia, as represented in diagram. These mock suns were all very distinct and beautiful. To complete this phenomenon there was as perfect a rainbow as we ever see in midsummer, describing anarc of about $35^{\circ}$, with its crown resting on the rim of the second or outer halo. directly over the sun. In fact this rainbow was of such brilliancy that it was too dazzling for the uncovered eye to look at, unlike the soft mellow tints in our summer rainbow phenomena. The duration of this most rare spectacle was an hour and fifteen minutes.
F. M. Morgan

Assistant Principal, Sauk Center High School.

## Sauk Center, Minn., December 31, 1880.

## New Solvents for Nitrocellulose.

To the Editor of the Scientific American
In the preparation of nitrocellulose compounds, which are known as celluloid, and are also used as varnishes, some new solvents have been patented in Germany by Parkes. Among others he suggests the use of a solution of tetra. chloride of carbon and camphor, either alone or with gums, resins, oils, dyestuffs, etc. He also proposes to use the bichloride of carbon and camphor, when the solution takes place under the aid of heat and pressure. Camphor, too, is a good solvent when heated to its melting point; at this temperature and under pressure it dissolves the nitrocellulose as fast as it can be mixed with the melted camphor until it forms a stiff mass. This mass, to which other substances may be added, can be rolled and pressed into moulds. To lower the melting point he adds oil, paraffine, turpentine, alcohol, benzol, ether, etc., whereby thinner solutions are obtained.
Another powerful solvent for nitrocellulose can be made by conducting sulphurous acid gas through granulated camphor, or by dissolving camphor in sulphurous acid.
A solution of camphor in benzole of such quality that no unpleasant odor is left when the compound is done, works very rapidly with the aid of heat and pressure. Oils, gums, resins, and dyes can be added according to taste. Turpentine and camphor also dissolve it with heat and pressure very quickly. Nitrocellulose softens rapidly if sprinkled with alcohol, ether, or other solvents of gun cotton and then pressed into hot moulds.
Sometimes it is better to dye the nitrocellulose before it is dissolved instead of dyeing the compound, as brilliant and delicate colors are obtained in this way of greater beauty than by the usual manner. If the compounds are to be used as lakes, the above-named solvents can be used, but of course larger quantities of the solvent are required than for making solid bodies. The solvents can be used alone or mixed with gums, resins, pigments, and metallic bronzes, to obtain the greatest variety of waterproof paints for surfaces, as well as cement for capping bottles. The solvents of nitrocellulose above given, as well as the bisulphide of carbon mixed with benzole and alcohol, are likewise good solvents for shellac.
D. I. Z .
[The tetrachloride of carbon is a colorless liquid boiling at $170^{\circ}$ Fah. ; specific gravity, 1.56 . It can be made by the
 action of chlorine gas upon bisulphide of carbon, or on
chloroform; also by the action of pentachloride of antimony upon bisulphide of carbon; sells at $\$ 3$ per pound.
The bichloride of carbon is a very mobile liquid; specific gravity, 1.62 ; boiling at $248^{\circ} \mathrm{Fah}$. It is generally made from the terchloride. It is quoted at $\$ 17$ per pound in Berlin; hence we find a strong objection to its use in the arts at present.-Ed. Sci. Am.]

## Easy Test for the Purity of Oilive Oil.

When it is desired only to ascertain whether the oil is pure or not without precise reference to the nature of the oils used in adulteration, take equal quantities of olive oil known to be pure and the oil to be tested, place the samples in separate test tubes, into which a good thermometer may also be inserted, and heat each separately to a temperature of $482^{\circ} \mathrm{Fah}$. The pure oil will become somewhat palerduring the heating, while the adulterated oil will turn darker The pure oil will emit a pleasant smell, while the adulterant oils will give off an offensive odor

## To Prevent Clouding of Mirrors by Moisture

A writer in the Manufacturer and Builder says that by coating over the surface of glass mirrors with glycerine their clouding by the accumulation of condensed water vapor will be prevented for a considerable time. The attraction of the glycerine is so great for the water as to absorb the latter as fast as deposited. This hint may prove of great use to dentists, who are frequently troubled by the clouding of mouth-mirrors, and it may also be of value to those who ar compelled to shave themselves in chilly apartments.
Salt Water for Street Uses.-The town of Tyne mouth, England, has lately completed arrangements for supplying salt water from the mains of all the principa thoroughfares of the place. Salt water is to be used for fushing the sewers, watering the streets, and supplying public baths.

## DYNAMO-TELEGRAPHY.

Until within a comparatively recent period all attempts at transmission of telegraphic messages with dynamo-electricity have proven futile.
There seemed to be no probability that the old voltaic hat tery system, involving multitudinous inconveniences, would ever be supplanted, and there are at the present time only two systems of dynamical telegraphs which are operative from a successful standpoint, both being of very-recent origin and as yet comparatively unknown to the public.
For the successful operation of any telegraph line two important elements enter into consideration, viz.:
1st. A steady or uniform current.
2d. Delicate adjustment of receiving instruments; and any variation of the former necessarily precludes the possibility of the latter, so that they may be operative under all conditions of the line.
It is scarcely necessary to add that electricians have never fully appreciated the difficulties to be overcome in this class of telegraphy, and their attempts heretofore but verify this ssertion.
These fluctuations of current are due to several causes, viz.
1st. Any change of velocity in the generator.
2d. Any variation of external or internal resistance (the latter being often the result of the former, owing to high normal internal resistance); and either necessarily varying the electromotive force, and hence the current to line.
3d. To a total discharge of the magnetism in the field of force magnets on opening the line, and thus completely breaking down the currents until the line shallagain be closed.
This might properly be included under the same head as the second, inasmach as a total discharge of the field of force magnets is, theoretically speaking, simply the result of an infinite resistance offered to the current.
A dynamo machine produces a current of electricity by a series of actions and reactions in its internal mechanism; that is to say, the armature of the machine acts upon the field of force magnets, and these in turn react upon the armature at each revolution, and thus a set of actions and reactions ensue until a max mum effect is attained. This results when the neutral fluids (so to speak) balance each other.
Now, any increase in the external or line resistance acts to discharge the field of force magnets, and a break in the line, which necessarily occurs on opening a key to transmit a signal, increases the resistance to an infinite amount, aud hence totally discharges the field of force magnets. Hence, inasmuch as it requires a definite time to charge the line by the above described series of actions and reactions, it is obvious
that there would ensue at each break such fluctuations of that there would ensue at each break such fluctuations of
current as would totally prevent any transmission of sig. curren
nals.
Furt

Furthermore, such an increase of external resistance reacts upon the machine and heats it internally, thus offering another objectionable element.
Thus we have a series of changes, which, acting under vary ing circumstances, produce fluctuations in the line current beyond the limits of accurate adjustment of delicate receiving instruments required on long lines of high resistance.
The problem, then, to be solved is:
1st. To prevent the total discharge of the field of force magnets on any variation of external resistance; or, at least, to provide some means for a constant relation between th resistances and the electromotive force of the machine.
2 d . To prevent undue variations of current caused by an increase or decrease of the velocity of the generator.
Two systems have been devised which involve all of the essential principles required by the problem: one the invention of Mr. Stephen D. Field, Jr., and the other of Dr. Orazio Lugo, of New York city.
To obviate the first difficulty, Mr. Field energizes his field of force magnets by an independent generator, actuated by an independent power, the circuit from the commutators being through the field of force magnets of said generator, thence through the coils of the field of force magnets which develop the line currents. This circuit is entirely independent from the line circuit, and constitutes, as it were, an infinite supply of electricity to energize the field of force magnets, or at any rate an inexhaustible supply dependent on the power and capacity of the generator.
Hence, any change of resistance in the line can have no appreciable effect upon the field of force maynets.
To obviate any change in the current due to a change of velocity of the generator, he connects up a series of line generators whose field of force magnets are energized as above, and connects the commutators and said line generators to common supply points, being necessarily at the opposite poles of the machine. Each generator of line curreuts is actuated by an independent pulley, so that any change of velocity of any one generator can only affect the sum total of currents by its proportional ratio of gain or loss.
Theoretically, then, an infinite number of generators would be required to produce the best results, bearing in mind, of course, that such a series implies a range of velocities or changes of relative velocities varying from zero to infinity.
It is found in practice that
It is found in practice that a series of five generators produces satisfactory results. This, of course, is apparent if we consider that a change of velocity in any one from a normal velocity is not liable under ordinary circumstance to be more than ten per cent.
It is apparent that any change of velocity in the genera tor which energizes the field of force magnets would in-
crease proportionately the electromotive force of the line generators. This is obviated by a governor which regulates the speed of the motive force and keeps it within practical limitations.
The same system of generators might be used to energize
the field of force magnets as is required to generate line curthe field of force magnets as is required to generate line curbut thus making the system automatic in its operation; Mr. Field. In this manner any change of speed in ing to of the energizing machines would only affect the line field of force magnets a proportional amount, as above suggested.
Thus it will be seen that if any one of the five generators increases or decreases twenty per cent from the normal rate it only has a proportionate effect of one twenty-fifth of
the whole line current, which in practice is found to be inthe whole lin
appreciable.
The broad idea of energizing the field of force magnets by an independent generator is not new per $s e$, as is seen in the Wilde machine; but Mr. Field claims to be the first to energize a series of field of force magnets in this way, and just how much invention is involved in thisidea it is not the province of this article to discuss.
Dr. Lugo has recently invented and patented a much simpler method of avoiding these difficulties, dependent upon well known electrical laws.
He uses a single current generator on the line with a shunt wire of low resistance, connecting the opposite poles thereof; o that the total resistance is that due to the lines, the shunt, and the machine.
The resistance of the shunt is less than that of the external
ines and greater than that of the machine itself.
There results from this combination, under well known laws, a proportionate division of current between the line and the slunt; a much larger portion, of course, going through the shunt because of its low resistance.
It is obvious, then, that the field of force magnets can never be disclarged, for there is always a path of low resist. ance for the current. Hence the electromotive force is dependent only upon two causes for its variations, viz., a change of velocity of the generator and a change of resistances between the slunt and the line. The former it is proposed to regulate by electrical governors, such as are well known, dependent upon the current sent to line, and the latter is in a meas ure automatically regulated by the shunt itself, inasmuch as changes of fluctuations which result from changes of resist ances in the external line necessarily increase the flow in the shunt itself, and hence vary the resistance of the shunt by heating it. Hence there can be no change of resistance in the internal machine, because normally it is much less than that of the shunt. Of course in practice these adjustments must be made dependent upon varying circumstances of the external lines, but certain ratios may be attained which will produce the best results, and theoretically this will be when hese line resistances equal that of the shunt.
When they pass below this limit the system is, of course, inoperative; but there exists a sufficient limit under ordinary circumstances to afford a perfect working system. This limit, it will be understood, is dependent upon the relative sectional area of the external line and that of the shunt, which affords sufficient resistance to prevent the machine from heating; thus in practice the generator never grows warm.
An attendant at the shunt may regulate variable resistance by testing the warmth thereof. Hence as long as a mean temperature exists a uniform current flows to line and no change need be made.
Both of the above described systems are in use, and the best results are attained; it being found that steady currents at all times flow on the line.
It is then entirely probable that within the next decade we shall find our large telegraphic corporations operating their elevators, supplying motive power, heat, and light throughout their buildings, and electricity for their lines from one Thus saurice of power.
Thus saving annually thousands of dollars, and being hap. pily rid of numerous annoyances consequent upon such a system of forces as now exists by a concentration thereof at one common center.
C. J. Kintner,
U. S. Patent Office,

## Improvements in Cotton Pressing.

The new Morse Compresses in New Orleans are producing astonishing results by way of largely increased cargoes f cotton from this port.
The ship Mary E. Riggs, of 1,277 tons American reg ister ( 1,226 British), received a cargo of 5,400 bales of cot ton, weighing $2,568,64 \mathrm{~J}$ pounds; making 2,011 pounds per ton American and 2,095 pounds per ton British measurement.
The first cargo of this ship from this port was 3,740 bales; the last, and jargest (previous to the present one), was 4,364 bales, weighing $1,943,498$ pounds. Her present cargo of 5,400 bales exceeds he largest. previous cargo 1,036 bales, or 625,142 pounds, exceeding her largest previous cargo 1,404 bales of same average weight. With freight at one cent per pound and five per cent primage, the value of this increase, for this medium-sized vessel, is about $\$ 6.600$. This cargo was compressed, without the advantage of a "tie puller," in the ordinary course of business by the Factors' Press, one of the seven large Morse Compresses The only cargoes of single bales taken by sail vessels ap proximating this one are the following:

The Minnie H. Gerow ( 1,304 tons American), from the Champion Press, $2,481,790=1,903$ pounds per ton measurement. The Western Empire ( 1,399 tons American register), from the Champion Press, 2,022 per ton. The Minnie $H$. Gerow, from the International Press (Taylor hydraulic, 64 inch cylinders), $2,644,906=2,0: 8$ pounds per ton. But in all of these cargoes of $1,903,2,0: 2$, and 2,028 per ton measurement, tie pullers were used for which is claimed an advantage of 20 per cent. If the present cargo of the Mary E. Riggs had had this advantage, her 2,011 pounds per ton American, and 2,095 British, would have been 2,413 and 2,514 per ton-or say 20 per cent larger than any cargo of single bales ever cleared in this country.
Since the above, the British ship Ben Lomond, of 887 tons register, cleared at New Orleans by her agents, Messrs. Forstall, Ross \& Clayton, with 4,363 bales cotton under deck, none in cabin or crew spaces, weighing 2,054,848 pounds, making 2,316 pounds to the ton measurement. This is the largest cargo per ton ever taken by a sail vessel from an American port. The larger part of this cargo was "doubled." The coiton was tied by hand (by colored men), and consequently without the 20 per cent advantage claimed for steam " band pullers." It was all compressed at the Southern Press by the 90 -inch cylinder Morse Compress. Not more than three years ago the average cargoes of ships from this port did not exceed 1,425 pounds per ton register; and for other modern-built presses the average is now about 1,725 . The above cargo of 2,316 , without tie pullers, therefore, exceeds recent average compressing by 35 per cent, or 524,773 pounds, in a single cargo of a small ship like the Ben Lomond, and at the rate of freight received makes a gain of $£ 820$-say, $\$ 3,936$. The proprietors claim that under more favorable circumstances the 90 -inch Morse Comder more favorable circumstances the
press can considerably excel the above.

## The Keely Motor Deception.

It is stated that immediately after the annual meeting of the Keely motor stockholders, held two weeks ago, a couple of gentlemen who are heavy on the motor stock called upon Mr. Keely and demanded that he should at once name a day and date for a public exhibition of his wonderful apparatus. They had a very plain talk with him, and announced that they voiced the sentiments of most of the parties interested. Unless the engine was put to work within a sloort time and sawed wood, sent a locomotive to Jerichn on a pint of water, and did a hundred other things claimed for it, they would resist further payments to the discoverer.
Keely was not the least disturbed by their threats, and when they found this they began to persuade and coax him, as a boom in the stock was needed. The man of mysteries declined to accede to their requests, but said: "I see my way as clear as sunlight." Then he eased their minds by stating that he would make no further demands upon the company for funds for his own use, because he had enough to live on. This was very assuring, and made the stockholders happy. If they did not give him the money to complete his invention, he told them that he would keep his secrets to himself. This caused some bitter words, and Mr. Keely was the recipient of some unvarnished opinions. Already they had speut over $\$ 500,000$ on the machine, and could see no appreciable results. Keely plainly informed his visitors that he would not give an exhibition for two months at least, because the engine needed some alterations.
Keely has had a new engine built at a cost of $\$ 10,000$, and the lower one has been placed on the lower floor of the building on Twentieth street. Keely promised that when the exhibition is given both engines should be placed in operation, so as to show the improvement in the new one over the old. The callers were compelled to depart without being able to convince Keely that a time for a boom was near at hand.
The stock of the Keely Motor Company is now held at about $\$ 7$ per share. This time last year it was worth $\$ 18$. The highest it ever reached was $\$ 300$, when 3,000 shares were disposed of in New York at the figures named. The average price has been about $\$ 150$ per share, and the transactions at those rates have been large. Of the present stockholders but few were on the original list, they having all been able to get out at the top price. Keely has been at work some seven years.-Philadelihin Record.

## Paraffine as a Wood Preserver.

A German chemist, Dr. Schal, has established the useful fact that wood impregnated with paraffine is preserved from rot, especially when employed in alizarine manufactures, where it is exposed to the decaying action of damp, acid, and alkaline lyes. Wooden vessels which become totally rotten in two months last for two years when impregnated with paraffine. The preparation of the wood is effected by drying it in warm air for three weeks, then steeped in melted paraffine to which has been added some petroleum ether or sulphuret of carbon. In preparing this bath great care must, owever, be exercised, owing to the inflammability of its ingredients. To prevent the paraffine from escaping from the pores, the wood shoild be coated with oil varnish or soluble glass, washed after drying with diluted hydrochloric acid. The silicic acid thus formed clogs up the pores from the outside, and protects the paraffine from the action of water. Paraffine, melted with equal parts of linseed or rapeseed oil, is also, according to Dr. Schal, useful for coating iron ves. sels, which in chemical manufactories are otherwise very liable to rust.

## IMPROVED HAND PRESS

The engraving shows a domestic hand press for fruit, racklings, hominy, and other articles which require sepa ration from the liquid which they may contain. The inven tion consists of a perforated bowl or receptacle having a rigid bãndle extending at right angles to the plane of the bowl, and a perforated presser head conforming to the bowl and connected by a slide with the handle of the bowl. The sliding presser head is connected by a link with a lever bandle pivoted to the main handle. By bringing the presser head down on the material contained in the bowl by means of the lever, the iquid is expelled through the perforations. This invention was lately patented by Mr. J. T. Haile, of Whitesborough, Texas.

Gold in New York State. - Two hundred and eighty-three notices of discovery of gold and silver were officially entered at Albany, last year. The alleged deposits are chiefly in Hamilton County. The law prescribes that mines of gold or silver found in New York shall be property of the State, but gives to the discoverers or their assigns he right to work them for twenty-one years free of any royalty on condition that they file with the Secretary of State notices describing their discovries. After tbe twentyone years the Legislature may dispose of the mines at its discretion; but the discoverers or their representatives shall be preerred in contracts for working them.


HAILE'S HAND PRESS.

## IMPROVED OIL-STOVE WICK TRIMMER.

In ordinary oil-burning stoves it is necessary to remove the top of the stove, and any utensils which may be in use in order to trim off the crust which forms on the wicks and prevents the free operation of the stove. It is necessary to put out the fire before the wick can be Beside the great inconvenience and delay in trim ming the wick with shears in the common way, th wicks are wasted, and with the sharpest shearsthey will be poorly trimmed on account of their grea width, and an uneven burning surface will be left which causes the stove to smoke and throw off a bad odor. Kerosene stoves are often condemned or this reason alone.
By means of the simple iuvention shown in the engraving these inconveniences are avoided, and the wick is quickly and evenly trimmed. Thi device is in every way superior to the old me thod.
A wick should never be cut; it is only necessary to remove the crust, and the stove or lamp burn freely with a flame of the proper form.
This invention is simple in its application and is thoroughly practicable. It consists of a wire rod carrying one or more lateral arms extending over the wick tubes. This wire passes through the fron of the stove, and is provided with a ring or handle by which it may be grasped and moved back and forth over the ends of the wicks while they are turned down. By this means the crust is removec and a clean and free burning wick is left, without extinguishing the flame or removing any part of the stove or furniture.
Each wick tube is provided with a guide which is bent up at the ends forming a stop for the trimming attachment. Oil stove manufacturers may with advantage, adopt this simple but useful and effective invention.
This invention has been patented by Messrs. Walker and Williams, and is owned by Walker Williams \& Co., Sing Sing, N. Y.

## A Use for Cotton Seed Hulls.

The Chicago Railioay Revieno reports that the use of cotton seed bulls as a substitute for cotton waste in packing the journal boxes of cars and locomo tives has been adopted on several roads, and others are pre paring to adopt it. It is claimed that the hulls are actually superior to ordinary cotton waste for packing, and would be preferable at the same cost. But the cheapest cotton waste is worth $71 / 2$ cents a pound, and the superior grades range as high as 14 cents. Cotton seed hulls can be deliv ered in any part of the United States at one cent a pound.

## Cements for the Shop.

Iron Cement for Closing the Joints of Iron Pipes.-Take of coarsely powdered iron borings, 5 pounds; powdered salammoniac, 2 ounces; sulphur, 1 ounce; and water sufficient ammoniac, 2 ounces; sulphur, 1 ounce; and water sufficient
to moisten it. This composition hardens rapidly; but if time can be allowed, it sets more firmly without the sulphur. It must be used as soon as mixed, and rammed ightly into the joint.
2. Take sal-ammoniac, 2 ounces; sublimated sulphur, 1 ance; cast iron filings or turnings, 1 pound; mix in a mor tar and keep the powder dry. When it is to be used, mix it with 20 times its weight of clean iron turnings or filings and grind the whole in a mortar; then wet it with water until it becomes of convenient consistency, when it is to be applied to the joint. After a time it becomes as hard and strong as any part of the metal.
Cement for Uniting Leather and Metal.-Wash the metal with hot gelatine; steep the leather in an infusion of nut. galls (hot) and bring the two together.
Cemont for Leather Belting.-One who has tried every thing, says that after an experience of fifteen years he has found nothing to equal the following: Common glue and isinglass, equal parts, soaked for ten hours in just enough water to cover them. Bring gradually to a boiling heat, and add pure tannin until the whole becomes ropy, or appears like the white of an egg. Buff off the surfaces to be jointed, apply this cement warm, and clamp firmly.
Steam. Boiler Cement.-Mix two parts of finely powdered litharge with one part of very fine sand, and one part of quicklime which has been allowed to slake spontaneously by exposure to the air. This mixture may be kept for any length of time without injuring. In using it, a portion is mixed into paste with linseed oil; or, still better, in boiled linseed oil. In this state it must be quickly applied, as it soon becomes hard
Turner Cement.-Melt one pound of rosin in a pan over the fire, and when melted, add one-quarter of a pound of pitch. While these are boiling, add brickdust until by dropping a little on a cold stone, you think it hard enough. In winter it may be necessary to add a little tallow. By means of this cement a piece of wood may be fastened to the chuck, which will hold when cool; and when the work finished, it may be removed by a smart stroke with the tool. Any traces of the cement may be removed from the work by means of benzine.
Wollciston's White Cement for Large Objects.-Beaswax, 1 ounce; rosin, 4 ounces; powdered plaster of Paris, 5 ounces. Melt together. To use, warm the edges of the specimen, and apply the cement warm.
Gutta Percha Cement.-This highly recommended cement is made ky melting together, in an iron pan, two parts of common pitch and one of gutta-percha, stirring them well ogether until thoroughly incorporated, and then pouring the liquid into cold water. When cold it is black solid and elastic; but it softens with heat, and at $100^{\circ} \mathrm{Fah}$. is a thin fluid. It may be used as a soft paste, or in a liqui


## IMPROVED OIL-STOVE WICK TRIMMER

state, and answers an excellent purpose in cementing metal, lass, porcelain, ivor
in glazing wỉndows.

THE miner's inch is the amount of water flowing in one econd from an orifice 1 inch $\times 1$ inch, under a head of 6 inches, measured from the upper side of the orifice.

## SPRING-MAKING TOOL

A hand tool to be used principally by jewelers for makng wire spirals for shirt studs and buttons is shown in the annexed engraving. The mandrel upon which the spirals are formed is secured to an ordinary tool handle, and a carrier is fitted to the lower portion of the mandrel, which is threaded, the pitch corresponding with that of the spiral to be made. The end of the wire is placed in a slot in the end of the mandrel, and while the bandle is turned with one hand, the carrieris held in the other hand, and the wire is pressed down upon the mandrel by a small lever pivoted to the carrier and grasped between the thumb and finger.
The crook at the end of the coil is formed by bending the wire back upon the end of the lever.
This invention was recently patented by Mr. A. R. Wilbur, of Baltimore, Md.

## NEW INVENTIONS.

An improvement in that class of devices that are designedfor releasing a horse instantly from the vehicle to which be may be atached has been patented Mr Whitefoord S. Mar in Mayinton, S in, of Maybinton, S. O An iron rod is attached to ach end of the whiffletree and extends forward a short distance alongside the shafts or thills. The short leather traces are attached to the frontends of heserodsby means of keys or eyebolts, which may be withdrawn-for the pur pose of releasing the horse from the vehicle-by means of cords or straps that pass through a ring on the crupper or back-strap of the harness, and extend back over the dasher of the vehicle, so as to be easily accessible to the driver.
Mr. John W. Donnel, of Bedford, Iowa, has patented a self-adjusting driver for millstones, by which the stone is balanced on the top of the cock head, and thereby adjusted with a minimum of friction. The invention consists in the combination of a yoke pivoted to the upper end of a mill spindle so as to swing in a vertical plane, and four levers arranged in pairs, one pair being pivoted to each side of the yoke and suspending another yoke, which serves to make all the levers move together. The levers pivoted to the pivotal yoke extend above the point of the mill spindle and are provided with set screws, which bear against the bail at points lying in the same plane and in line with the point of the spindle.

A snow scraper, patented by Geo. F. Bond, of Troy, N. Y., is an improvement in apparatus for clearing ice fields for ice harvesting. Side boards or runners are pivoted or hinged at the front end and provided with apparatus whereby they may be made to assume the V-form, or closed into a parallel position for discharging their load at the will of the operator.
A sugar washing process and apparatus, patented by John V. V. Booraem, of Brooklyn, N. Y., acts to thoroughly wet and wash the crystals of sugar with water or sirup, and deliver the mass in a perfectly homogeneous state to the centrifugal machines. For this end a perforated pipe delivers water in a finely divided state upon the sugar just prior to the passage of the latter through crushing rollers, the pipe and rollers being arranged in relation with each other to secure the object sought. After crushing the sugar is further worked by revolving screws.
An improvement in tile and brick kilns, patented by Mr. Eber Davenport, of Waynesville, Ill., saves time, labor, and fuel. The kiln is circular, has furnaces and fire walls arranged around its peripheral wall, and a central opening in the top. The circulation of the heated air and gases is first upward near the outside wall, then downward, then upward again and out at the central opening, the deflection of the heated currents being effected by the fire walls.
crown wall, and vertical passages with bottom flues formed in laying the bricks or tiles when filling the kiln.
A patent on a folding car step, granted to Mr. Josiah W. Radbraugh, of Columbus, Ohio, covers a combination of the folding steps of a car with mechanism whereby the steps on both sides of a car may be simultaneously adjusted by a single movement of a lever.

## THE COMMON HORNBILL

The common hornbill (Tmetoceros abyssinicus) is a strong, short-winged bird with a short tail and comparatively long legs. The beak is very large, curved slightly, flattened on the sides, and is provided with a short but quite high protuberance at the root. This protuberance begins on the center line of the beak, projects forward to about one-third of the length of the beak, and may be open or closed in part, and has the general appearance of a helmet. The legs are much more pow erful than those of other hornbills and have very strong claws. The sixth feather of the wing is the longest, and the point of the wing projects only a short distance beyond the upper arm feathers. The color of the hird is absolutely black, excepting ten yellowish white feathers of the wings. The eye is dark-brown, the iris lead blue and red, and the beak is black excepting a spot on the upper beak, which is yel low in front and red in the rear. The length of the bird is about four feet. t is found in Central and Southern Africa.

## The White Ants Parasites

At a late meeting of the Philadelphia Academy of Natural Sciences, Dr. R. S. Kenderdine exhibited specimens of the wonderful parasites found recently by Dr. Leidy in the intestines of the white ant, where they occur in such myriads as to constitute a mass greater n bulk than the food of the insect. When the intestine is ruptured millions of these living occupants escape, reminding one of the pouring out of a multitude of persons from a crowded meeting-housc. So numerousare these parasites, and so varied their form, movement, and activity, that their disinctive characters cannot be seen until they become more or less widely diffused and separated.
The termites or white ants are so common, easily obtained and preserved alive, and their parasites are so exceed. ingly numerous and constant in their occurrence, that once the fact becomes ufficiently known the insects will be favorite subjects to illustrate at once the infinity of life and he wonders that are revealed by the microscope. The forms observed, together with a species of microscopic plan found in the same situation, are fully described and bcauti fully illustrated by Dr. Leidy in the forthcoming number of the Journal of the Academy.

## HUMAN TREES OF INDIA

by daniel c. beard.
All those who feel a sufficient interest in the subject to All those who feel a suffeient interest in the subject to study or notice the facts must
ment at the wonderful resemment at the wonderful resem-
blance of certain insects and ther animals to vegetable and inanimate oljjects. So exact is this resemblance in ome instances as to deceive he most experienced. Wal ace, the great naturalist, was very anxious to secure a specimen of a certain brilliant butterfly, but was unable for ome time to capture one on ccount of the creature's sudden unaccountable and mysteriousdisappearance. He finaly discovered that the outside of this insect's wings was an xact representation of a leaf. When the butterfly alighted upon a shrub and closed its wings it completely deceived ven this experienced scientist. Some species of lobsters found at Bermuda so closely resemble submarine stones, even to the coating of sea weeds, that I have passed ay an aquarium containing them supposing the tank to be uninhabited. The com mon katydid, whose con-tantly-repeated notes, late in summer, warn us of the ap-
proaching frosts, has a representative in South America, whose wings not only resemble a green leaf, but, to add to the deception, the tips of the wings are ragged and dis colored, having the exact appearance of a leaf that has been disfigured from the attacks of caterpillars. I once had one n my studio, and it was with great difficulty that I could onvince visitors that it was not an artificial insect with wings made of real leaves. In the snow-covered regions of
the North the foxes, hares, bears, and birds, with very few exceptions, assume the prevailing white color of the surrounding objects. Man has not been blind to these hints. There are various tribes of savages who successfully imi tate stumps and stones by remaining immovable in crouching positions so as to baffe their pursuers.
This mimicry is carried to a wonderful degree of perfec ion in India. That strange country, as Dr. Latham


THE COMMON HORNBILL.
taining hand Butthe most ingenious device to escape cap ure is that shown by the Bheel robbers in the accompanying illustration. It often happens that a band of these robbers are pursued by mounted Englishmen, and unable to reach the jungle, find themselves about to be overtaken upon one of those open plains which have been cleared by fire, the only shelter in sight being the blackened trunks or leafless branches of small trees that perished in the flames For men so skilled in posturing this is shelter enough. Quickly divesting themselves of their scanty clothing, they scatter it with their plunder in small piles over the plain, covering them with their round shields so that they have the appearance of lumps of earth and attract no attention. This accomplished, they snatch up a few sticks, throw their body into a contorted position, and stand or crouch immovable until their unsuspicious enemies have galloped by.

When all is safe they quickly pick up their spoil and proceed upon their way.

The Rev. J. D. Woods gives an in teresting account of these marvelous mimics. I quote the following:
"Before the English had become used to these maneuvers, a very ludi crous incident occurred. An officer, with a party of horse, was chasing a small body of Bheel robbers, and was fast overtaking them. Suddenily the robbers ran behind a rock or some such obstacle, which hid them for a moment, and when the soldiers came up the men had mysteriously disappeared. After an unavailing search, the officer ordered his men to dismount beside a clump of scorched and withered trees; and the day being very hot, he took off his helmet and hung it on a branch by which he was standing. The branch in question turned out to be the leg of a Bheel, who burst into a scream of laughter, and flung the astonished officer to the ground. The clump of scorched trees suddenly became metamorphosed into men, and the whole party dispersed in different directions before the Englishmen could recover " of a teeming, ingenious, and industrious but rarely inde- from their surprise, carrying with them the officer's helmet pendent population. It is a country of an ancient litera- by way of trophy."
ture and ancient architecture," and, he might have added, of a modern degradation. A country where sucin a society as the murderous thugs is possible; a country where robbers are educated from childhood for the profession in which they take great pride, openly boasting of their skill. One of our most skillful and adroit bank robbers would be considered by these India experts but a bungling amateur.

Marine Fauna of the New England Coast
To the current number of the American Journal of Science and Arts, Prof. A. E. Verrill contributes an article on the remarkable marine fauna discovered during the present sea son off the southern coast of New England by the natural ists connected with the U. S. Fish Commission. The sta The scientific mare for tions at which dredgings were made are all located in the The scientific manner in which these robbers prepare for tions at which dredgings were made are all located in the
heir raids shows a thorough knowledge of the dangers of regions designated on the charts as "Block Island Sound


HUMAN TREES OF INDIA.-BHEEL ROBBERS IN HIDING. ings," and nearly all proved to be excecdingly rich in ani mal life, the vast abundance of individuals of many of the species taken being al most as surprising as the great number and variety of the species themselves. Crus tacea, mollusks, annelids and echinoderms were most numerous. The very large number of specimens ob tained on the three trips has as yet, been only partially ex amined, but enough has al ready been done to prove this region to be altogether th richest and most remarkabl dredging ground ever discovered on our coast. Of mollusks, about 175 species were taken, 120 of which were not before known to occur on the southern coast of New England; about 6 are additions to the America fauna, and of these about 30 are apparently undescribed species. The star-fishes and ophiurians were exceedingly ophiurant and exceedingl all the statious, and many species not previously known their calling, and the best guards against the same, choosing |to our coast were taken, several of these appearing to be darkness for their forays. When their dusky bodies are least undescribed, while others were known only from Northern observable they remove their clothes, anoint themselves Europe or from the deep waters off Florida. Many of the with oil, and with a single weapon, a keen-edged knife sus- species have only recently been obtained from the northern pended from their neck, creep and steal like shadows noise- fishing banks off Nova Scotia. One new species of Archas lessly through the darkness. If detected, their greasy and ter was particularly abundant, several thousands of specislippery bodies assist them in eluding capture, while their mens having been taken. But the two largest and most razor-bladed knife dexterously severs the wrist of any de- beautiful species of this genus were Archaster Agassizii (new),
and A. Florce. Of Odontaster hispidus over 100 were taken One of the most conspicuous star fishes was the remarkable Pteraster multipes, Sars, one specimen of which was over six inches in diameter, and very thick and heavy. Its color when living is rich purple above, with the lower side orange streaked with brown, and with large dark purple suckers. A large and handsome orange-colored species of Luidia (apparently $L$. elegans), often ten to fifteen inches broad, was very common, but nearly all the specimens dismem bered themselves before they reached the surface. Larg specimens of two Floridian sea urchins were also taken.

## What Machinery has done for Agriculture.

The various agricultural shows held last autumn in different parts of the country cannot ifail to impress all who visited them with the extraordinary developments made in recent years in mechanical appliances for agriculture. It is well therefore, to notice the benetits which this industry has de rived from the genius and the labors of the mechanician We may go back in thought to the time when the spade, the hoe, the sickle, and the flail comprised the farmer's store of machinery, and when the plow was the rudest contrivance hardly worthy to be called a tool. Then every man tilled the soil or engaged in pastoral pursuits because it was all one man could do to provide himself and his dependents with food. Then each man was forced to clothe himsel and be his own mechanic for this simple reason. He labored long and with infinite pains, and the ancient sentence tha man should earn his bread by the sweat of his brow cam home to him with unmitigated force. In course of time im proved and effective tools so lightened the labors of the agriculturist, and so increased his products, that the opportunity to make a division of labor arrived, because there was food to spare for the mechanic. This condition of things became more and more firmly established, until it changed the whole social and political aspect of human affairs. And now what do we see? The true " landlord " is not the owne f an English estate, proclaims a writer in Capital and Labor but the farmer who commands an army of farmers, with brigades of plows, reapers, and other machinery upon the plains of Western America. He makes laws for countries thousands of miles away, and his products rule the world's markets. The genius of agriculture to-day is the mechanic the soul of agriculture is the inventor. One farmer can now with the help of machinery, feed a hundred men with greate ase than at one time he could feed himself alone. Th farmer supports the railroads, for stocks rise and fall with he good and indifferent reports of what the harvest shall be He supports lines of steamers with his wonderful freights of readstuffs, provisions, meats, cattle, and sheep. He main tains the millions of artisans who clothe and shelter him, and who provide for every one of his wants outside of the field.
The mechanical power of the age is like a series of con entric and eccentric circles, of which the farmer stands out in the principal center. These all revolve with and about agriculture, and the same force sets all in motion. It is the armer's duty now to make the most of his opportunities He should be the foremost man of the age. His influenc should be felt everywhere. It is felt everywhere, for the wealthiest merchants and capitalists and the most active poli ticians all ask themselves how far the farmers can be de pended upon before they make a movement in their specia pursuits. But the farmer should feel this himself. It is one thing to have power, and another thing to be cognizant of the possession. Let the farmers consider now their posi ion, and, as ther take a view of it, let them consider what they owe to the power and influence of machinery. One most conspicuous example of the results pointed out may b noted. A few years ago Minnesota spring wheat was graded very low in the grain markets and brought a low price Unfortunately for the Western farmers this grade of spring wheat was the only one they could produce. A new proces in milling was introduced. Elaborate machinery was invented to perfect the process. The best wheat by this pro cess was the grade known as "Minnesota spring," thereto fore despised and rejected-literally "rejected," in fact, in the markets. Afterward this grade became sought by millers and the value advanced to a point equal to, and sometime more than that of the previously much-sought winter wheats If Minnesota farmers produce forty million bushels of whea annually, this advanced value, due to the new process, put several millions of dollars yearly into their pockets; and what a vast amount of comfort and happiness may be se cured by the right use of so much money! This is but one nstance of the vast concatenation of circumstances whic points the moral here alluded to.

## Supposed Preventive tor Carpet Beetles.

A writer in the Germantown Telegraph suggests that, as the larvæ of the bacon beetle (Dermestes lardarius), an insect clusely allied to the carpet beetle, will shun their food when tallow is placed near them, their repugnance to that sub stance being so great that the insects will devour each othe rather than approach it, the same peculiarity may be quit possibly met with in the larvæ of the carpet beetle; and if so the coating of floors and filling the cracks with tallow (the cracks being their place of concealment) would possibly prove an effective destroyer of these troublesome pests. The experiment could be easily tried. If good mutton tallow be employed there could be no hurtfulabsorption of the grease especially when the carpets have linen backs.

The Egyptians, it is said, were the first who fixed the length of the year. The Roman year was introduced by Romulus, 738 B.C., and it was corrected by Numa, 713 B.C., and again by Julius Cæsar, 45 B.C., who fixed the solar year as being 365 days and 6 hours. This was denominated the Julian Style, and prevailed generally throughout the Christian world till the time of Pope Gregory XIII. The calendar of Julius Cæsar was defective in this particular that the solar year consisted of 365 days 5 hours and 49 min utes, and not of 365 days 6 hours. This difference at the time of Gregory XIII. had amounted to 10 entire days. To obviate this error Gregory ordained in 1582 that that year should consist of 365 days only; and in 1751 it wa ordered to be so used in England; and the next year 11 days were left out, the 3d of September, 1752, being reckoned as the 14th, so as to make it agree with the Gregory Calen dar. The Russians still adhere to the Juliar Calenda (called now Old Style), which is 12 days behind the reckon ing of the Gregorian.
The year 1881 will be a mathematical curiosity. From ight to left and left to right it reads the same. Eighteen divided by 2 gives 9 as a quotient; 81 divided by 9 gives 9 if divided by 9 the quotient contains a. 9 ; if multiplied by 9 he product contains two $9 \mathrm{~s} ; 1$ and 8 are $9 ; 8$ and 1 are 9 . If the 18 be placed under the 81 and added the sum is 99 If the figures be added thus, $1,8,8,1$, it willgive 18 . Read ng from left to right it is 18 , and 18 is two-ninths of 81 . By adding, dividing, and multiplying 199 s are produced, bein one 9 for each year required to complete the century.

## CURIOUS GRAVE

The practice of burning the dead was common amon the ancients, and was in vogue during the first two centurie of the Christian era. In Italy, the ashes of the dead wer generally buried in the ground or deposited in vaults, whil mong the Celtic people iuhabiting Gaul and Britanny the urn was frequently inclosed in terra cotta globes and then

interred. One of these spherical graves is shown in th graving; it was discovered near Lincoln, England, by the Rev. John Carters. The globe is roughly made of terr cotta. It has a diameter of several fcet, and contains an urn, the shape of which indicates its Roman origin. $\Lambda s$ hat period Roman legions occupied England, the ashes ar probably those of a soldier from the Gallic provinces. The urn is made from white clay.

## Treatment of Whooping Cough in Gas works.

According to the Lancet, a series of recommendations on the treatment of whooping cough in gas works has bee made to the French Académie de Médecine. Some time ago committee of three was appointed to investigate the sub ject, and of these M. Roger, the President of the Académie is the sole survivor. He has lately presented a report which is of considerable interest. Before considering the commu nication, he described the arrangement of the chambers fo purifying the gas, and the chemical products which patients would breathe therein. The purifying chamber is a large room with doors and windows freely open. Each contain twenty-four vessels, holding five cubic meters of depurating substance-lime and sulphate of iron, mixed with sawdusthrough which the gas has to pass. When the workmen ar emptying and refilling these vessels the children with whoop ing cough are placed around $i t$, and inhale the vapors which escape. They are in an atmosphere containing ammonium sulphide, carbolic acid, and tarry products. As to the efficacy of the treatment, M. Commenge records 120 cases in which the treatment was persevered with. In 20 the treat ment failed completely, in 48 improvement followed, and 101 were cured. M. Bertholle merely states that of 34 cases 122 were improved and 219 were cured. Failures or deaths are not mentioned. Besides the 490 cases improved there were, it appears, 671 cases not included, because the treatment was not persevered in, and these perhaps include a large number of failures. The remote situation of most gas works, and the exposure involved in the treatment in winter. must necessarily limit the application of the method M. Roger thinks that it acts only upon one element of whooping cough-the catarrh-and that it is contra-indi cated in febrile attacks of the disease, and would be danger ous in complicated cases. The method, however, is easy of use in some localities in summer, and seems worthy of further trialin suitable cases.

## MISCELLANEOUS INVENTIONS

Mr. Abraham Witmer, of Safe Harbor, Pa., has patented an improved car starter. Coiled springs are engaged by clutches operated by the wheels when the car is stopped, and the springs thus being wound up, the momentum of he car is stored up as a force to assist the subsequent starting. Means for placing this arrangement under the control of the driver or conductor of the car are provided
Mr. Wallace H. Phelps, of Alliance, Ohio, has invented a improved drill for coal. It is a large auger provided with a peculiar screw feed and means for holding it in acljustment, and the bits or cutters are formed of S-shaped cutting knives formed with cutting edges at both ends. The shape of these knives renders them effective and dur able.
A curious combination of water races with gates at differ ent heights, water wheels, tanks, and pumps, has been pa tented under the title of "water power," by Mr. Robert Thamm, of Oslkosh, Wis., by which means the water can be made to act upon a single motor, or a series of motors, the water acting successively upon the motors in the order f their elevation.
A patent for a spark arrester has been granted to Messrs Geo. Gunther, of Bath, N. Y., and William Kowalski, of Brooklyn, N. Y. The lower part of the smokestack has a jacket, and the upper part of the stack is attached to the lower part by brackets. In the upper part of the stack is placed a deflecting cone with its apex downward over the opening in the lower part. The blast is turned outwardly and downward, and a portion of it emerges through the opening between the two parts of the stack, while the sparks are retained in a space between the upper and lower parts, the lower part projecting upward into the upper part
Mr. Jonathan Cornell, of Sandy Hill, N. Y., has patented an improvement in paper pulp washers, which washes the pulp faster than strainers constructed in the ordinary man ner, and enables the operator to see into the washers to watch the progress of the work, and to clean the strainers when necessary by water discharged through a hole against the inner surface of the strainers.
Mr. Oley C. Hanson, of Eureka, Cal., has patented an im proved shingle machine, in which, by a peculiarly con structed carriage for conveying the block to the saw, a novel sliding crank feed mechanism and a device for changing the lead of the saw, he secures simplicity of construc ion, speed, and regularity in the operation of the machine A rectilineal motion of sulky plows is secured in an in vention patented by Mr. Samuel H. Taylor, of Kansas City, Mo. Bars with lateral slots form the connection of the plow to the sulky shaft, which permits the draught pole of the sulky to oscillate laterally without affecting the direction of the plow, which can be raised or lowered at will by the of the plo
operator.
Messrs. George Biehn and Rudolph Weidauer, of Racine Wis., have patented an improved band cutter for thrashing machines so coustructed as to cut the bands rapidly and surely and deliver the grain in good condition to the feeder The feeder is protected from being accidentally cut by the knife of the band cutter.
An improved heel for boots and shoes, patented by Jean Leycuras, of Paris, France, provides improved means for mounting the heels upon the shoe, secures increased solidity and greater rapidity in manufacture, and completely masks nails, screws, and threads. The heel is provided with a cir cumferential groove, and the upper leather is secured at its edge in the groove by nails driven from the outside. An overlapping edge, or strip of leather, is arranged to turn up over and mask the nail heads.

## Fires in Coal Mines.

A vein near Coal Castle, Schuylkill County, has been burn ing for forty-five years. A huge fire was kept in a grate a he mouth of this mine to prevent the water in the gutters from freezing. One night, in 1835, the timbers of the drift caught fire, and when discovered the flames were beyon control, and the mine was abandoned. Many efforts have been made since to work the mine, as the coal was of re markably good quality; but although it has been flooded many times, the fire contipues to rage, and the intense bea makes it impossible for miners to labor even in slopes which vere opened some distance from theburning vein. No vege tation grows on the surface above this pit of fire, and it is dangerous to walk across $i t$, as many places have caved in, and there seems to be but a thin shell of earth over it. Near Mauch Chunk there is Summit Hill Mine, which has been burning for about twenty-five years, and vast sums of money have been expended in fruitless efforts to extinguish the flames.

## Quillaia Toothwash.

## Quinaia Toothwash.

An excellent toothwash containing glycerin is made as follows: R. Soap bark, ground, 4 ounces; glycerin, 3 ounces; diluted alcohol, sufficient for 2 pints; oil of gaultheria, oil of peppermint, $\overline{\text { àa }} 20$ drops
Macerate the soap bark in the mixture of glycerin and diluted alcohol for three or four days, and filter through a little magnesia previously triturated with the volatile oils.

Thus made, a much better preparation is obtained than by macerating the bark in the dilute alcohol, and adding the glycerin afterward.-American Journal of Pharmacy.

## [New York Tribune.]

interesting Tests Made by the Government Chemist.
Dr. Edward G. Love, the present Analytical Chemist for the Government of the United States has recently made some interesting experiments as to the comparative value of baking powders. Dr. Love's tests were made to determine what brands are the most economical to use. And as their capacity lies in their leavening power, tests were directed solely to ascertain the available gas of each powder. Dr. Love's report gives the following:
"The prices at which baking powders are sold to consum ers I find to be usually 50 cents perpound. I have therefore calculated their relative commercial values according to the volume of gas yielded on a basis of 50 cents cost per pound."

|  | avariable gas. | compara- |
| :---: | :---: | :---: |
| name of the baking powders. | CUBIC inches per |  |
| "Royal" (cream tartar powder).. | ........ 127.4 | 50 cts . |
| "Patapsco" (alum powder) | .... $125^{2}$ | 49 |
| " Rumford's" (phosphate) fresh. | 1225 |  |
| ، " old. | ...... 32.7 |  |
| "Hanford's None Such ". | ... 121.6 | 473\% ${ }^{\text {a }}$ |
| "Redhead's" | . 1170 | 46 |
| "Charm" (alum powder).. | .... 116.9 | 46 |
| "Amazon" (alum powder) | . $111 \cdot 9$ | 44 |
| "Cleveland's " (short weight $\frac{9}{40 z}$. | )......... 1108 |  |
| "Czar".. | ... 106.8 | 42 " |
| "Price's Cream" | .. 102.6 | 40 " |
| "Lewis's" condensed | ... 98.2 | $38 \frac{1}{2}$ " |
| "Andrews' Pearl ". | 93.2 | $36 \frac{3}{2}$ " |
| "Hecker's Perfect" | . 925 | 36 " |
| Bulk Powder | 805 | 30 |
| Bulk Aerated Powder | 75.0 |  |

Note.-"I regard all alum powders as very unwholesome. Phosphate and tartaric acid powders liberate their gas too freely in process of baking, or under varying climatic changes suffer deterioration."

## [New York Tribane.]

Alum Baking Powders in Court.-Interesting Testimony of Scientific Men.
Within the past two years a bitter controversy has been waged between manufacturers, on account of the use of alum as a cheap substitute for cream of tartar, by many manufacturers of baking powders. The handsome profits yielded by using the substitute haye induced dealers as well as manufacturers to push them into the hands of consumers, sometimes under definite brands, frequently by weighing out in bulk without any distinguishing name.
Are such powders wholesome? The Royal Baking Powder Co., who make a cream of tartar baking powder, declared that they are injurious to the public health, while others who make alum powders claim that they are not. The whole matter as to the effects of these alum powders has finally been brought into the courts, and the case was tried in the Superior Court of New York city before Chief Justice Sedgwick, reported substantially as follows in the New York Sun:
conclusion of a little trouble between a chemist and an editor.
The suit of Dr. Henry A. Mott against Jabez Burns, has brought to light the fact that this country produces at least forty-two different kinds of baking powders. Neither Burns nor Mott has been found guilty of making the baking powders, but Burns, who is the editor of a periodical called the Spice Mill, has been severely mulcted for libel in his efforts to make his paper spicy. Dr. Mott, it appears, is a chemist, and at one time was employed by the United States Government to analyze different specimens of baking powder which had been recommended for adoption to the Indian Bureau. Dr. Mott reported in favor of the cream of tartar baking powders for the Indians, and against the alum baking powders. The chemist analyzed forty-two kinds of baking powders.
The jury were out about half an hour. Then they came in with a verdict awarding Dr. Mott $\$ 8,000$, to which the Court made an additional allowance of $\$ 150$.
As the public have a large interest in the wholesomeness of whatever it is called upon to use as food, the following extracts are introduced from the testimony of some of the prominent men as to the injurious effects of alum powders:
Dr. Мотt:
Q. Were you employed by the U. S. Government?
A. I was, sir; was employed as chemist, to analyze all the articles of food; to express an opinion as to the analysis of their healthfulness and purity.
Q. Plase tell the jury the baking powders that you examined while in the employ of the government.
A. It would be difficult to remember them all; I could refer to my-books; I examined twenty-eight powders; was given sixteen at first.
By the Court:
Give your best recollection.
Q. And one of the powders included was "Dooley's Baking Powder?"
A. Yes, sir.
Q. And the "Charm?"
A. Yes, sir; the "Charm" and "Patapsco.
Q. Please state in which powders you found alum.
A. I found alum in Dooley's "Patapsc. $D$," "Charm," "Queen," " Vienna," " Orient," "Amazon," "، Lake Side," " Twin Sisters," "Superlative," "King," " White Lily," "Monarch," "One Spoon," " Regal," "Imperial," "Honest," " Economical," "Excelsior," "Chartres," " Grant's," "Giant."
Q. Recurring to the question that has been asked you upon this suit-the result of these examinations which you have made-is it your opinion that alum in these various compounds, in baking powders such as you have examined, is injurious?
A. It is my opinion, based upon actual experiments on living animals.
Charles F. Chandler, called on behalf of the plaintiff, being duly sworn, testified as follows:
Q. Dr. Chandler, you reside in the City of New York?
A. I do.
Q. Your business is that of a chemist?
A. It is.
Q. You are and have been Professor of Chemistry in seveal colleges?
A. I have
Q. Please state how long that employment of yourself has been, and with what colleges you are now connected.
A. I am at present Professor of Chemistry in the Aca A. I Demartment of Columbia College; the School of Mines, Columbia College; the New York College of Physicians and Surgeons, and the New York College of Pharmacy.
Q. You are President, also, of the Board of Health, are you not?
A. I am.
Q. In your various employments, have you had frequent occasion to examine the question of the wholesomeness of food, and the beneficial or injurious effects of its ingredients?
have
Q. I will ask you in regard to the use of alum with soda, in a baking powder, whether or not it is neutralized-is there any injurious constituent of alum left?
A. There is an injurious constitutent left after the mixture of alum and bicarbonate of soda.
Q. Without using any nicety of chemical terms, what is your opinion about the use of alum in a baking powder, in combination with bicarbonate soda and other ingredients, for raising bread-whether injurious or not?
A. I think it is dangerous to the digestive organs, and liable to produce serious disturbance of the liver of the individual making use of such powders.
Henry Morton, President of "Stevens Institute," called
in behalf of the plaintiff being duly sworn, testified as folin beh
lows:
Q.
Q. You are President of Stevens Institute?
A. I am.
Q. And have for many years been a chemist?
A. I have.
Q. Have you bad occasion to examine the substances which are used in the composition of baking powders?
A. I have.
Q. Did you, some time ago, examine a sample of Dooley's Baking Powder?
A. I did.
Q. Is that it, sir? [handing can].
A. Yes, sir; that is it.
Q. Well, what kind of alum did it contain?
A. It contained potash alum.
Q. Did you make any extract of that alum, to show the kind?

I did; I extracted a large quantity of it as potash alum, and it is in that bottle which I have now here [showing bottle]; that is potash alum which came out of the alum baking powder that was in that can.
Plaintiff's Counsel offers said can of Dooley's Baking Powder in evidence.
Q. Now, sir, have you made any experiment in the bread made from baking powder, to see whether there was any soluble alumina in the bread itself?
A. I have; I took a portion of this powder and mixed it with flour in the directed proportions, and baked a small loaf with it; then I soaked this loaf-the interior part of it -in cold water, and made an extract, in which I readily detected, by the usual tests, alum-that is, alumina in a solu-
ble condition. ble condition.
Q. Does any baking powder in which any alumina salts enter, contain alumina, in your opinion, which can be absorbed in the process of digestion-are not such objectionable?
A. Very decidedly objectionable, in my opinion
Q. Why do you say-from what system of reasoning do you make it out-that because alum is injurious, alumina is injurious?
A. Because the injurious effects of alumina, when it gets into the stomach and racts on the organs, are the same; this hydrate of alumina meets in the stomach the gastric juices, and reacts with them the same as alum would; it forms, in fact, a kind of alum in the stomach with those acids, and whatever alum would do, it would do.
Dr. Samuel W. Johnson, Professor of Chemistry in the Scientific School, Yale College, being duly sworn, testified as follows:
Q. You have had much to do in the examination of sub stances that enter into food, and the adulteration of food?
A. More or less; yes, sir
Q. After the use of alum with soda, in a baking powder, in your opinion, is there any injurious substance left?
A. In my opinion, there is an injurious substance left. Q. What, sir, two years ago, was the prevailing opinion among scientific men, as to the effect of the use of alum in baking powders?
A. As far as my acquaintance with scientific men is concerned, my personal opinion is derived from my investigation and from reading; I should think the opinion was that alum, or any compound of alumina, would be decidedly in. jurious.
Q. Do I understand you to say that any baking powder in which there are aluminous salts, or any resultant from alum which could be absorbed in digestion, is objectionable and injurious?
A. Extremely so

Prof. Joseph H.• Raymond called, sworn and testified as follows:
Q. Would you be good enough to state your profession?
A. I am a physician, sir, and a professor of physiology.
Q. You also were, and have been for some time, Sanitary Superintendent in Brooklyn-is not that so?
A. I have, sir.
Q. Now, sir, I will ask you your opinion, from this experience, whether the use of alum with soda, in a baking powder, is injurious or not, in its physiological effects?
A. I consider it to be dangerous.
Q. You examined this question for the Board of Health in Brooklyn, some years ago, did you nòt?
A. Two years ago, sir, in December.

By the Court:
Q. What was the result of your investigation as to the use of alum in baking powder?
A. The result of my investigation at that time was this: that the changes which took place between the time that alum baking powder was put in the bread, and the time the bread was eaten, the chemical changes were so little understood by chemists, that as a physician and physiologist, I considered it a dangerous experiment.
Dr. Mott, the G(overnment chemist, in his review on the subject in the Scientific American, makes special mention of having analyzed the Royal Baking Powder, and found it composed of pure and wholesome materials. He also advises the public to avoid purchasing baking powders as sold loose or in bulk, as he found by analyses of many samples that the worst adulterations are practiced in this form. The label and trade mark of a well known and responsible manufacturer, he adds, is the best protection the public can have.

## DECISIONS RELATING TO PATENTS New York.

united states stamping company vs. Jewett et al. Blatchford, J.:

1. Patent to E. A. Heath, No. 119,705, granted October 10, 1871, not anticipated by invention of Weber, the proofs failing to show beyond a reasonable doubt that Weber was prior to Heath.
2. Where the decree in a former suit against one license of a patentee was for a simple dismissal of the bill a claim that the plaintiff is estopped from suing another licensee will not be entertained.
3. Where a patent has been allowed and ordered to issue, and an assignment has then been made authorizing the Commissioner to issue patent to assignee, and patent issue to inventor, the assignment not having been recorded until after the issue of the patent, Held that the legal right to the patent became vested in the assignee on the recording of the assignment.

## Our Trade with China.

Recent official reports show an encouraging increase in American trade with China, whose vast and undeveloped markets offer enormous opportunities for our manufacturers and farmers.
A few years ago wheaten bread was all but unknown in China. The multitudes of returning Chinamen carry home with them not only a knowledge of wheat but a preference for it. One steamship from San Francisco carried to China, last year, 1,400 tons of flour; and the entire shipment for 1879 was 235,789 barrels. The vast wheat fields of the Pacific coast arelikely soon to find an ample market for their products among the millions of the Celestial Empire.
During the same year California found in China a market or half her quicksilver product, or 36,696 flasks. Of other products the total shipment from the country was not large, but the variety indicates great possibilities of future development. The exports to China for the year, the last for which official reports have been published, included clocks, to the value of $\$ 50,397$; cottons, colored, $\$ 270,600$; cottons, uncolored, $\$ 1,302,000$; drugs and chemicals, $\$ 13,700$; glassware, $\$ 14,000$; silver bullion, $\$ 1,831,000$; machinery, $\$ 9,000$; other iron manufactures, $\$ 9,000$; firearms, $\$ 17,000$; lamps, $\$ 22,000$; kerosene, $\$ 690,000$; ordnance stores, $\$ 9,000$; provisions, such as bacon and other meats, butter and cheese, etc., $\$ 42,000$; refined sugar, $\$ 7,000$; tobacco, $\$ 52,000$; clothing, $\$ 10,000$

To Render Ivory Flexible.-Ivory is readily rendered quite flexible by immersion in a solution of pure phosphoric acid (specific gravity $1 \cdot 13$ ) until it loses, or partially loses, its opacity, when it is washed in clean cold water and dried. In this state it is as flexible as leather, but gradually hardens by exposure to dry air. Immersion in hot water, however, restores its softness and pliancy. The following method may also be employed: Put the ivory to soak in three ounces nitric acid mixed with fifteen ounces water, In three or four days the ivory will be soft.

## Business and ecrsoull

The Chargefor Insertion under this head is one Dollar a linefor each insertion; about eight words to a line Advertisements must be received at publication office
as earty as Thursday morning to appear in next issue

Ladies who board or live in hotels, will do well to se-
cure one of Frothingham \& Emerr's Patent Portable Safety Jewel Cases. Attachable to bureau drawers, etce. keeping secure jewelry and ornaments from dishonest city. See advertisement on last page.
For Sale.-A 10 H. P. Wood and Mann Portable Engine and Boiler, in good condition. The E. Ingraham \& Co., Bristol, Conn.
Books for Engineers and Mechanics. Catalogues free
E. \& F. N. Spon. 46 Broome st E. \& F. N. Spon, 446 Broome St, New York.

Repairs to Corliss Engines a Specialty. L. B. Flan-
ders Machine Works, Philadelphia, Pa. ders Machine Works, Philadelphia, Pa.
Driving Clocks for Equatorial Driving Clocks for Equatorial Telescopes. Addr
Thi. Fischlein, 158 Pavonia Ave., Jersey City, N. J. Inventors, Atertion Apo., Jerseyty,
coai barges by steam shovel instead of hand shoveling coai barges by steam shovel instead of hand shovel
R. C. .ebenener, 24 Exchange Place, Boston, Mass. The greatest attraction at the last Am. Inst. Fair was the Cider Press of Messrs. Boomer \& Baschett, where it it
was in daily operation. New York Office, 15 Park Row. was in daily operation. New York Office, 15 Park Row.
For Sale.-A Valuable Patent Invoice File and Holder, For Sale.,-A Valuable Patent Invoice File and Holder,
including dies and formers necessary for the manufacture of same. Sample flie, 50 cts. Terms and circulars
free. Moore, Patterson $\&$ Co., Saltsburg, Ia. Wanted-State and County Agents to intro and Valuable Patent. Address, with referencese Box B and Valuable Pat.
Lake Forest, Ill.
Send to John D. Leveridge, 3 Cortlandt St., New York,
for illustrated catalogue, mailed free of all kinds of for illustrated catalogue, mailed free, of all kinds of
Scroll saws and supplies, Electric Lighters, Tyson's Scroll Saws and Supplies, Electric Liph
Wteam Eng ines, Teelephones, Novelities, etce. 16 to 24 in. wide. Must be in best order. Give mal.
name, weight, and price. Moseley $\&$ Co., Elkin, Ill.
Wanted-An experiencet Mechanical Engineer as Superintendent. One well known to the trade and compe-
tent to estitate. Give reference and address ctlantic perintendent. One well known to the
tent to estimate. Give reference. and
steam Engine works, Brooklyn, N. $\mathbf{y}$.
Wanted-Second-hand Root Blower. S. Moulson, Hochester, N. Y.
American Inventions Wanted to Sell Abroad. Ad-
dress J. R. Fox, 50 St. Aubyn St. Davenport, dress J. R. Fox, 50 St. Aubyn St., Davenport, England.
Why risk boiler explosion from Why risk boiler explosion from mud? It can be avoid-
ed, at nominal cost, by Hotchkiss' Mechanical Boiler
 Cieaner,
selingor otherties than employers. Send for circular.
Saunders' Pipe Cutting and Threading Machines. See Saunders
adv., p. 45.
Abbe Bolt Forging Machines and Palmer Power HamList 25. -Descriptive of over 2,000 new and secondhand machiness. now ready for distribution. Send stamp
for same. Forsaith \& Co, Manchester, N. H. Pure Oak Lea Belting. C. W. Arny \& Son, $\mathbf{N}$
Two Patents for sale. R. Munroe, Fitchburg, Mass. Within the lest ten years greater improvements have Deen made in mowing machines than any other agricultural implement. It is universally ackncwledged that
the Eureka Mower Co., of Towanda, Pa., are making the best mower now in use, and every farmer should
write to the manufacturers for catalogue, with prices. Eureka Vegetable Boiler Scale Eradicator, strictly
 to remove scale of any thickess, and to prevent scaing,
from either fresh or satit water use. Circuars and par-
ticulars of Gr. E. Brinckerhoff, 107 Liberty St., N. $\mathbf{y}$. For Machinists' Tools, see Whitcomb's adv., page 28
 Preâses \& Dies. Ferracute Mach. Co., Bridgeton, N Superior Maileable Castings at moderate rates of
Richard P. Pim. Wilmington, Del. Wood Working Machinery of Improved Design and The " 1880 " Lace Cutter by mail for 50 cts.; discount thetrace. stern The Tools, Fixtures, and Paterns of the Taunton
Foundry and Nlachine Company for sale, by the George Foundry and Nachine Company for sale, by the George
Place Machinery Agency, 121 Chambers St., New York. Experts in Patent Causes and Mechanical Counsel. Park Benjamin \& Bro., 50 Astor IIouse, New York.
 Malleable and Erie Malleable Iron Company, limited, Erie, I.
Power, Foot, and Hand Presses for Metal Workers.
Lowest prices. Peerless Punch \& Shear Co. 52 Dey St.,N.Y. Recipes and Information on all Industrial Processes. Park Benjamin's Expert Office, 50 Astor House, N. $\mathbf{Y}$. For the best Stave, Barrel, Keg, and Hosshead
chir ery, address H. A. Crossley, Cleveland, Ohio. National Steel Tube Cleaner for boiler tubes. Adjust.
able, durable. Chalmers-spence Co.,40 John St., S . Y. The Brown Automatic Cut-off Engine; unercelled for workmanship, economy, and durability. Write for in-
formation. C. $H$. Brown $\&$ Co., Fitchburg, Mass. Best Oak Thanned Lieather Belting. Wm .F. ForeStave, Barrel. Keg. and Hogshead Machinery a spe.
cialty, by E. © B. Holmes. Buffalo, N. Y. Downer's Cleaning and Polishing Oil for bright metals, is the oldest and best in the market. Highly recom-
mended by the New Yort, Boston, and other Fire Departments throughout the country. For quickness of
cleaning and luster produced it has no equal. Sample cleaning and luster produced it has no equal. Sample
five gallon can sent C. O. D. for 8 8. A. H. Downer, 17 five galion can sent
Peck slip, New York.
Wrights Patent Steam Engine, with automatic cut
The best engine made. For prices, address william ow. The ebst engine made. For prices. address william
Wright, Nenufacturer, Newburgh. N. $\mathbf{Y}$.
Split Pulleys at low prices, and of same strength and
appearanee as Whole Punless Yocom $\&$ Son's Shafting appearanee as Whole Pulleys. Yocom \& Son's Shafting
Works, Drinker St, Philadelphia. Pa. Presses, Dies, and Tools for working Sheet Metal, etc.
Fruit \& other can tools. Bliss \& Williams, B kly , N . Z .

Lightning Screw Plates and Labor-saving Tools, p. 60 . 4 to 40 H. P. Steam Engines. See adv. p. 45 National Institute of Steam and Mechanical Engineer g, Bridgeport, conn. Blast Furnace Construction and tical Instruction in Steam Engineering, and a good situation when competent. Send for pamphlet.
Eclipse Portable Engine. See illustrated adv., p. 30. Nickel Pating.-Sole manufacturers cast nickel an des, pure nickel salts, importers Vienna lime, crocus etc. Condit. Hanson \& Van Wi
92 and 94 Liberty St., New York.
Clark Rubber Wheels adv. See page 29.
Reed's Sectional Covering for steam surfaces; any ne can apply it; can be removed and replaced withou Silent Injector, Blower, and Exhauster. See adv. p. 60. The American Electric Co., Proprietors and Manu facturers of the Thomas Houston System of Elect
Lighting of the Arc Style. See illus. adv., page 61 . Rollstone Mac. Co.'s Wood Working Mack'y ad. p. 29. Fire Brick, Tile, and Clay Retorts, all shapes. Borgner \& O'Brien, M'f'rs, 23a St., above Race, Phila... Pa See Bentel, Margedant \& Co.s adv., page 60 .
Tyson Vase Engine, small motor, 1-33 H. P.; efficien Use Vacuum Oil Co.'s Lubricating Oil, Rochester,N.Y. steam Hammers, Improved Hydraulic Jacks. and Tube panders. R. Dudgeon, 24 Columbia St., New York. Diamond Planers. J. Dickinson, 64 Nassau St., N. Y 0 ;000 Sawyers wanted. Your full address for Emer son's Hand Book of saws (free). Over
and pages of valuable information. How to straighten
saws, etc. Emerson, Smith \& Co., Beaver Falls, ra. Frank's Wood Working Mach'y. See illus. adv., p. 60 Peerless Colors-For coloring mortar. French, RichPeck's Patent Drop Press. See adv., page 45 For Pat. Safety Elevators, Hoisting Engines. Friction Clutch Pulleys, Cut-off Coupling, see Frisbie's ad. p. 60. Tight and Slack Bel Greenwood \& Co., Rochester, N. Y. See illus. adv. p.61. Elevators, Freight and Passenger, Shafting, Pulleys
and Ulangers. I. S. Graves \& Son, Rochester, N. Y. For Patent Shapers and Planers, see ills. adv. p. 60 For Heavy Punches, etc., see illustrated advertise mer mines Jones, on page
Comb'd Punch \& Shears; Universal Lathe Chucks. LamBlake " Lion and Eagle " Imp'd Crusher. See p. 45. Minerai Lands Prospected, Artesian Wells Bored, by Wren's Patent Grate Bar. See adv. page 45 .
For best low price Planer and Matcher. and latest improved Sash, Door, and Blind M Machinery, Send for
catalogue to Rowley \& Hermance. Williamsport, Pa. The only economical and practical Gas Engine in the market is the new "Otto" Silent. bend for circular. Penfield (Pulley) Blocks, Lockport, N. Y. See ad. p. 61.

## 

HINTS TO CORRESPONDENTS
No attention will be paid to communications unless writer.
Names and addresses of correspondents will not be given to inquirers.
We renew our request that correspondents, in referring
to former answers or articles, will be kind to former answers or articles, will be kind enough to
name tue date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then pub-
lished, they may conclude that, for good reasons, the lished, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely or a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, should remit from $\$ 1$ to $\$ 5$, according to the subject,
as we cannol be expected to spend time and labor to obtain such information without remuneration. Any numbers of the Scientific American Suppleoffice. Price 10 cents each.
(1) W. C. L. asks: Will a combination of coal gas and air confined in a chamber explode of exof such an explosion having taken place without contact with a flame.
(2) W. W. G. asks: What is the scientific reason for the fact that the moons of Jupiter may be
seen by refiecting his image in a common looking glass or mirror held horizontally, that 1 s , the mcons may be seen reflected in the glass $y$ A. What are imagined to be the moons visible under such circumstances are not
soin reality, but only a reduplicating of the body of the planet itself. The following are the optical principles involved in the formation of these false satellites: When the light from a luminous body falls upon a mirror held as described, two primary reflections reach the eye of the spectator, one from the first surface of the glass, the
other from the back or silvered surface, which is mach brighter than that from the outer surface. But this is notall. When the rays from the silvered side were countering the upper surface of the glass, were stopped, reflected back to the mirrored surface, to be again sent forward to the eye from a point different from those at which the two previous, or primary, reflections were
made. The thicker the plate of glass the greater will be the separation of those images. This phenomenon may very easily be seen and studied by holding a plain the reflected image of the flame from the gas or a lamp when, if the glass 18 properly held, from four to eight or ten of these supplementary reflected images will readily
(3) C. H. B. inquires: What acid or othe iquid will destroy or decompose any kind of wood with the greatest rapidity ${ }^{?}$ A. Wood is chemically com
posed of two parts. lignin and cellulose posed of two parts. lignin and cellulose. The walls o
the vegetable cells are formed of the former; the filling matter of such cells by the latter. Lignin may be se marated from wood in a pure state by boiling sawdust successively in alcohol, water, weak potash solution,
dilute muriatic acid, and, finally, water. Lignin is not dilute muriatic acid, and, finally, water. Lignin is not
soluble in water, alcohol, ether, or oils; it is, however, soluble in water, alcohol, ether. or oris; ith is, however,
soluble in strong nitric acid, which, on the other hand has no action on the other consitiuent of wood, the cel which it is converted nto $a$ substance siniliar to der trine. From this the inference will at once be draw that a solvent of wood must be composed of both acidd Whether these had better be employed in snccession or mixed together in the form of nitrosulphuric acid, one $n$
two experiments will determine such experiments to be two experiments will determine, such experiments to be
made on sawdust of any special kind of wood that our made on sawdust of any special sind of wood that our
correspondent may have in his mind when putting the query.
(4) R. G. and others ask how to construct a simple and iuexpensive sand blast apparatus for en-
graving glass and hard metals. A. Well dried sand, contained in the cylindrical vessel, $A$, is allowed to flow
chen in a continuous manner through the tube, C , whose length and inclination can be altered at will, so as to regulate the fall of the sand. The tube conveying the in a nozzle containing a series of fine holes. The sand urged on by the jet, is thrown violently against the

glass plate, E, or other body placed within its range and thus exerts an abrading action. By varying the
quantity of the sand, the volume and the velocity of quantity of the sand, the volume and the velocity of
the current, as well as the diameter of the jet, more o the current, as well as the diameter of the jet, more o
less rapid effects are produced. Holes may be drilled means of this apparatus, In engraving on class very little pressure is needed, the current from the bellows of an er.ameler's lamp being quite sufficient. In this
way the divisions on graduated tubes way the divisicns on graduated tubes, the labels on bot-
tles, etc., can easily be engraved in laboratories with tles, ett., can easily be engraved in laboratories with
but little trouble. The portions of the glass which are but little trouble. The portions of the glass which are
to remain clear are covered with paper, or with an elastic to remain clear are covered with paper, or with an elastic
varnish, these substances being sufficient protection against the abrading action of the sand.
(5) J. F. asks how to remove the hard burnt oil off the cylinder head of a steam engine. A Try a small qua
(6) W. H. W. asks if the oil that is caught by the cups under the hangers or journals can be used
again. A. It should not be used again without purification. According to Simm's process the waste oil is bon filtered, and the bisulphide distilled off in a retort jacketed with hot water or steam, condensed and collected so that it may be used again for a similar pur-
(7) H. C. G. asks how to color violins a dark cherry similar to the Cremonas, and how to pre-
pare the stain and shellac. A. Stan-Dragon's blood pare the stain and shellac. A. Stan-Dragon's blood
2 ounces, spirits of wine 1 quart. Digest with occasional agitation until dissolved. Varnish-Coarsely powdered gum copal and glass, each 4 oz.; alcohol, 1 pint; cam-
phor, 1 oz oz.; heat the mixture with frequent stirring in phor, $1 / 2$ oz.; heat the mixture with frequent stirring in
a water bath so that the bubbles may be counted asthey rise, until solution is complete, and when cold decant the clear portion.
(8) T. P. writes; In glazing sash, when the is the proper side A. The concave side, for the simple reason that the
convex side gives the window a better appearance when convex side give
(9) P. M. H. writes: I have a cast iron ket tle that is cracked: how can I repair the damage? A Sulphur, 2 parts; blacklead (plumbago), 1 part; melt
the sulphur in an old iron pot over the fire blacklead, stir well together, and pour out on an iron plate or smooth stone. Apply with a hot iron after the
(10) F. D. M. asks. Will water expand or ontract in freezing? Will a water pipe burst when it freezes orwhen it begins to thaw out $\%$ A. Water con-
tracts on cooling, but in congealing it expands. The tracts on cooling, but in congealing it expands. The
rupture of water pipes is caused by the change of the rupture of water pipes 18 caused by the change of the
water from the liquid to the solid state-not by the thawing, though it is only then that the damage to the Mode of Motion."
(11) A. F. T. asks how to make jet black writing ink. A. Blue galls, $4 \mathcal{X Z}$ oz ; bruised cloves,
drachm; cold water, 40 oz ; pure sulphate of iron, 1 zz; pure sulphuric acid, 35 minims; sulphate of indig in the form of a thin paste, and which should be nell the galls gently in $11 / 2$ pint of water for an hour, adding water for what is lost by evaporation. Strain and squeeze the galis (in a press). Cool, filter, and add th iron salt dissolved in water and filtered; add the acid agitate briskly, then add the indigo, shake, and filte
(12) C. H. S. asks: What are the ingredi ents of the lightning stove polish sold by men on the ing, and gives a tright luster. A. Pure graphite ng, and gives a cright luster. A. Pure graphite, o ing and bolting
(13) G. H. C. asks: What preparation weighing much less than paint) will effectually water its weight of boiled oil. Melt by heat or dissolve benzole.
(14) A. J. S. asks: Is there any air in pure ater? If so, in what proportion; or how much to the gallon! A. All natural waters hold air in so
The quantity is usually small and very variable.
(15) J. D. S. asks: 1. Can you inform me if there is to be had a mineral (or other) powder which bright full yellow; insolubility in hot or cold water o ngar solution; an impalpably fine state of division as is seen in the best German ultramarine; not poisonous unless taken in quantities over ten grains? A. Reduce the deepest yellow glass, pure crown, free from lead, the milling. Then pass it through a silk sieve. 2. Is ther any way of preparing a cement of rubber or other gum which I could use to firmly attach two pieces of leathe without impairing its pliability? It must be entirely waterproof and strong. A. See p. 2510, No. 158, Sc Whio Anch
(16) J. L. S. asks (1) for a receipt for varnish or paste, or solution, by which to cover or sat
urate woolen felting to make it waterproof (agains urate woolen felting to make it waterproof (against
warm water) and at the same time remain pliable. A. $a$. Dissolve 1 part of pure gam rubber (caoutchouc) cut in shreds in about 20 parts of bisulphide of carbon fre oughly dried, through this, then expose to the air unt the smell of the solvent has disappeared. Do not us the solvent too strong-dilute with bisulphide. $b$. Paraf
fine, 10 parts; boiled oil, 2 parts; benzole (pure), 40 fine, 10 parts; boiled oil, 2 parts; benzole (pure), 40
parts. Apply as above. 2. Also a receipt for a cement parts. Apply as above. 2. Also a receipt for a ceme
for cementing felting together. A. See marine glue(17) W. T. asks (1) how to prepare the silver solution in electro-silver-plating. A. Pure nitrate $21 / 2$ ounces; cyanide of potassium (pure), $41 / 4$ ounces;
water, 1 gallon. Dissolve the cyanide in a portion of the water and the silver nitrate in another, mix wel together until clear. 2. Is one cell of gravity batter sufficient for silver-plating small articles, such as spoons,
forks, etc.? A. Hardly. The exposed surface of zinc forks, etc.? A. Hardly. The exposed surface of zinc (18) J. H. V. \& Co. ask: Can you inform us of any solder with which we can mend small cas iron (2oz.) castings with a heat that will melt hard solder? We find, by using common solder, the muriatic
acid in a short time rusts under and lets the solder acid in a short time rusts under and lets the solde
loose. A. Silver solder will answer your purpose, proloose. A. Silver solder will answer your purpose, pro-
viding the fracture is clean and fresh. Paint the ad. cream firmly, and apply the silab. Slder in small pieces around the casting on the joint, sticking them with the borax the solder flows. if soft solder has been previously ap plied to the casting it cannot be soldered with silve solder. See soldering in Supplement, No. 20
(19) F. P. C. asks: 1. What is the best preparation to use on a stove pipe, to keep it from rust-
ing? something not very expensive, although durable, yet will not cause the pipe to burn out. A. Apply pure graphite (plumbago) ground to a very fine powder and mixed with a little water, then rub over with some of lathe same, dry. 2. Which is the best foot and power of work, light running moderate cost, durability, ac curacy in the work without dead centers, something suitable for ordinary workshop or amateur varied work; screw cutting included? A. See our advertising
columns, also "Hints to Correspondents." 3 Will pure virgin India-rubber. dissolved in about 8 or 10 times 1tsown weight in benzole, do to mend boots? If ser viceable, how should it be used? Should it be applied as varnish over the worn or damaged parts, or put under pressure with a suitable size to cover the defect or damaged part? And if pasted or cemented on under pressure, will it be serviceable ? A. Yes; patch and put
under moderate pressure until dry. 4. How are uppers on leather boots and shoes mended without using thread, etc.? Can a piece of leather, of suitable size, be pasted or cemented over the defective parts on the body of the boot or shoe, making a neat mend and also serviceable? A. See marine glue (second receipt), p.
2510, Scientific Ambrican Supplement, No. 158; also rubber cement, same page
(20) E. E. S. asks how to plate small arti cles of steel and brass with gold, silver, and nickel,
without a battery. A. Gilding by dipping: Distilled without a battery. A. Gilding by dipping: Distilled
water, 17 pints : pyrophosphate of potassa or soda, 28 water, 17 pints : pyrophosphate of potassa or soda, 28
ounces; solution of hydrocyanic acid (1/8 pure acid), $1 / 3$ ounces; solution of hydrocyanic acid $(1 / 2$ pure acid), $1 / 18$
ounce; terchloride of gold, ${ }_{3}^{3}$ ounce. Put 16 pints of the water in a porcelann or porcelain-lined iron vessel, and gradually stir in the pyrophosphate, heat, filter, and let it cool down. Add the gold chloride dissolved nearly to the boiling the hydrocyanic acid. Heat the bath must be remembered, is very poisonous, and it must be handled accordingly.) When heated the liquid becomes drops more hydrocyanic acid. Clean the articles thor
oughly; dip them in a strong aqueous solution of mer
curous nitrate, then. for a few seconds, in the hot gold curous nitrate, then. for a few seconds, in the hot gold
bath, rinse in clear water, dry in warm sawdust, and burnish if desired. Silvering by dipping: To a satur ated aqueous solution of bisulphite of soda in pure
water add solution of nitrate of silver, with constant water add solution of nitrate of silver, with constant
stirring, until the precipitate at first forned ceases to redissoive. Use the bath cold in a porcelain enameled iron vessel. Clean and dip as in the gold bath. W
know of no satisfactory method of coating with know of no satisfa
without a battery.
(21) R. M. asks for a receipt for making a gold and silver wash suitable for small brass articles.
(22) I. A. B. wants to know the cheapest and best deodorizer or deodorizing process for kerosene
or petroleum. A. Hydrocarbon derivatives of petroleum cannot be totally remossess of the substance. The unpleasant odor imparted to it by impurities which it commonly contains may be re moved by the following treatment: Agitate it briskly
with three per cent of oil of vitriol, wash out the acid with three per cent of oil of vitriol, wash out the acid
with water; digest, with frequent agitation, for several with water; digest, with frequent agitation, for several
hours with 5 per cent of clean, fresh chloride of lime. gettle and wash out with water. Remove moisture by agitating
(23) L. D. M. asks whether there is any law against turning out or filing off one side of United
States gold and silver coins to make bangles of them oragainst melting coins for the sake of the gold or silver. A. Section 5459 Revised Statutes, reads: "Every person who fraudulently, by any art, way, or means, defaces,
mutilates, impairs, diminishes, falsifies, scales, or lightens the gold or silver coins which have been or which may hereafter be coined at the mints of the
United States, or any foreign gold or silver coius which are by law made current or are in actual use and cir culation as money within the United States, shall be imprisoned not more than two years and fined not
more than two thousand dollars." We think this law prohibits the defacement of coins as in making bangles. We do not know of any provision that prohibits the melting of coins for the sake of the gold or silver.
Minerals, etc.-Specimens have been reexamined, with the results stated:
Dr. G. H. P.-It is quartz rock. fín. T. C. and O. L.A fair quality of fire clay. See column of Business and quality of peat.-O.A. P. T.-The ore consists chiefly quality of peat.-O.A. P. T.-The ore consists chiefiy quantity of silver.-F. G. D.-A semi-decomposed
feldspathic rock, with a little quartz and talc.-D. Mc. feldspathic rock, with a little quartz and talc.-D. Mc.
G.-Coal shale-of no commercial value.-P. M. C.-G.-Coal shale-of no commercial value.-P. M. C.-
Limestone-of no value tolithographers.-J.G.-Hema-tite-an iron ore.-W. St. J.-The rock is a common tite-an iron ore.-W. St. J.-The rock is a common miners. It would hardly pay to dig deeper.-C. H. G.-
The crystals are smoky quartz-of very little economi The crystals are smoky quartz-of very little economic
value.-H. S.-Chiefly carbonate of lime-not valuable -G. J. G.-Quartz pebbles.-J. F. S.-Ferromanga-nese-iron and manganese oxides.-II. T. C.-It is a
fair quality of carbon black. If properly packed might fair quality of carbon bla
command a market here

## NEW BOOKS. AND PUBLICATIONS

Chicago
street,
Chicago, Ill. $\quad \begin{aligned} & \text { Ind } \\ & \text { Dr. } \\ & \text { N. Rowe editor. }\end{aligned}$ An illustrated weekly devoted to field sports. Price $\$ 4$ per year
This journal, under the editorship of Dr. Rowe, has taken a foremost position among papere devoted to sport and sporting. It is well edited, and each week contains articles of much valuable information for lovers of
dogs and horses. It is the only illustrated paper published in this country devoted to sports of the field, and is well worth its subscription price to those who are fond of out-door sports.
War Ships and Navies of the World.
By Chief Engincer J. W. King. Boston: By Chief Engincer J. W. King. Boston:
A. Williams \& Co. 1880. 8vo, cloth, pp. 623. Sixty-six pages of engravings. Mr. King has had exceptional facilities for making a recent years, and has brought to the task a degree of practical experience and insight quite as exceptional. He entered the United States Navy when the steam marine was in its infancy, and served in the first pad-
dle wheel frigate, the first screw war ship, indeed in all dle wheel frigate, the first screw war ship, indeed in all
the pioneer naval steamers with the single exception of the pioneer naval steamers with the single exception of
the Fulton. He has been Government Inspector of the Fulton. He has been Government Inspector of
ocean mail steamers, and Chief Engineer of the New York Navy Yard. He was Chief Engineer of the North Atlantic fleet in the early part of the civil war,
and subsequently was superintendent of the construction of all the armor clads built west of the Alleghanies. More recently he has been chief of the Bureau of Engi-
neering. Most of the information embodied in the neering. Most of the information embodied in the present work was gathered during several tours of obthe United States, made for the purpose of studying recent progress in naval architecture and the mechani cal appliances for use in naval warfare. The result is a comprehensive treatiss containing a vast range of fresh information touching the construction, motive
power, and armament of modern warships, naval artilpower, and armament of modern warships, naval artil-
lery, marine engines, torpedoes, and torpedo boats etc. lery, marine engines, torpedoes, and torpedo boats etc.
The navies of all the naval powers are separately deThe navies of all the naval powers are separately de-
scribed, $\mathbf{d w e l l i n g ~ e s p e c i a l l y ~ u p o n ~ t h e ~ c h a n g e s ~ i n ~ t y p e s ~}$ or war ships, and in armor and armament made during regard to navaldock yards, methods of contracting for slips and machinery, naval administration, the per-
sonnel of navies, naval expenditures, and related matters. Extremely valuable also are the chapters on re cent progress and improvements in artillery construc-
tion, the different systems of great guns, gun trials; armor plates and war ship materials and tests of them; the different systems of marine engines and boilers;
steam and hydraulic stearing gear; torpedo explosives,
torpedo warfare, and the like. The author's wide ex this part of his task. Though treating of difficult sub jects he has successfully endeavored to set down the technical reader will beeasily able to follow him. The volume is particularly timely at this juncture, when the great problems of restoring our commercial and coasts, are attracting the attention of our legislators coasts, are
and citizens.
Christmas Books. By Charles Dickens
New York: I. K. Funk \&
8yo, paper. Each 25 cents.
Christmas Corol The 25 cents.
Hearth, The Battle of Life, and the Haunted Man, with sixteen full page illustrations, printed on clear type, are here given for fifty cents. The books comprise Nos,
48 and 49 of the standard series, the excellent quality and extreme cheapness of which we have several times

Josh Billings' Cook Book. New York: G. W. Carleton \& Co

A cent's worth of proverbial philosophy badly spelled, destitute of wit as they are of resemblance to English speech.

## [OFFICIAL.]

INDEX OF INVENTIONS Letters Patent of the United States wer Granted in the Week Ending December 28, 1880,
AND EACH BEARING THAT DATE. [Those marked (r) are reissued patents.] A printed copy of the specification and drawing of any
patent in the annexed list, also of any patent issued patent in the annexed list, also of any patent issued since 1866, will be furnished from this office for one dol
lar. In ordering please state the number and date of the patent desired and remit to Munn \& Co., 37 rark Row New York city. We also furnish copies of patent granted prior to 1866 ; but at increased cost, as the sp.
fications not being printed, must be copied by hand.

Addressing machine, F. A. Darlin
Amalgamator, W. D. Smith.
Angle shears, W. \& C. Seller
Angle shears, W. W. C. Sellers
Assay furnace, W. E. Judson
Axle boxes, oil guard for car, J. G. Tiller.
Axle, car, J. M. Sigourney.................. .
Axles, machine for machining, F. D. Bliss.
Bale tie, T. A. Weber
Bale tie, J. White. ...
Barrel, metal lined wooden, J. L. Barlow
Bat, game, C. Kreutzer
Beehive, J. W. Read.
Belt lifter, F. Stapelmann.....
Billiard table chuck, V. Esteph
Billiard time register, automatic, $H$. Von Leesen. Boiler. etc., covering, I. N. Peirce. .. ........... Elmeilhorst.
Book, copy, E. P.
Boot and shoe heel, F. Richardson..................... $236,086,2$ Boot and shoe stiffeners, machinery for moulding, S. Prior................
Bottle filler, E. Kleiber... Bottle stopper, J. Morschhauser (r)..................
Bougies, stomach pumps, and other surgical instruments from celluloid, etc., manufacture of, G. Otto...
Box trimming m
Box trimming machine, T. Vanier Bracket stand, A. B. Denison (r)... .............
Brick, pottery, etc., kiln for burning, Schlimp \& Honzik.........
Buckle, G. Pratt...
Buckle, J. F. Molloy
Buildings, construction of, W. H. Older.
Burnishing machine, w.o. Way..
Butter cooler and water holder, comb'd, P. Dor Button or stud, Cooke \& Spen Tr Cans, sealing fruit, G. T. Hunsaker Cant dog, T. F. Cassidy
Car brake, S. S. Leach
Car brake, automatic, .................
Car coupling Car brake, automatic, S. P. Tallı
Car coupling, McDougall \& Sha
Car, dumping, M. Van Wormer Car, dumping, M. Van
Car heater, M. C. Root
 Carpet exhibitor, A. Peterson ( $\mathbf{r}$ )
Carriage dash frame. H. Davies. Carriage seat, W. S. Durie
Carriage shifting seat. C. K........... Carriage spring gear,
Carrage top, J. Deline
Carriage top, F. A. Norcross.........
Carriage top, child's, J. N. Hazelip Carriage top, child's. J. N.
Cartrige belt, A. Mill....

## Catamenial sack, J. Korft

Catarrh remedy, J. D. Olcott................
Celluloid tubes, necking. w. B. Carpenter
Check row cords, coupling hook or button for, $G$
D. Haworth.
Cheese cutter, L. J. Smith
Chuck, nipple, A. Saunde
Cigarette machine, L. J. Bejott
Clay to obtain porous and slagged bodies, prepar

## ing. G. Praetoriu

Clock, J. H. Gerry
Cock winding attachment, J. H. Ge
Cofllin pedestal, F. R. Taylor
turning I. P. Turner of and apparatus for
Collars, sweat pad for horse, E. R. Jones (r)....... ooling, disinfecting. p
for, G. Praetorius
opying press.J. s. Sammons.
ornice, window, J. Hermann
Corset, T. C. Bates...
Corset, L. s. Bortree
Corset. . Newman.
Cot, folding, R. E. Avery....................................

Cultivator, s. R. Bell................
Curtain fixture, W. L. Washburn.
Decoy duck, J. Appleton.
Dental engine, portable, B. J. Quattlebaum.
Dolls, colororing the eyebrows, etc., of cellulo
W. B. Carpenter ................ Door hanger, S. A. Drake... Drain pipe, burning, J. Murtagh Dress protector, M. M. Graham
Electric lighting device, G. D. Bancroft.
Electric vapor bath, Hoffman \& Palmer
Electrical apparatus, adjustable armature for,
Cochran
Electricity, lighting cities by, H. C. Spalding.
Electricity, lighting towns by H.C. Spalding Electricity, lighting towns by. H. C. Spaldin
Engine stopping device. G. H. Dougherty.. xplosive compound, W. Heick. Eyeglass, H. Borsc
Fare box, S. R. Ruckel...
Fence hoister, etc., , , B. B. Jones
Filter and cooler, water
Filter and cooler, water, Chapman \& Miles
Filter, water, E. over Fire escape ladder, E. J. Krause Fire extinguisher for railway cars, J. Berg. Fire kindling stick, C. Rieger. Fleam, Reinhold \& Schreiber
Fore end stocks, fastening fo Fruit drier, J. M. Rusk............
Fruit drier, domestic, H. M. Dake urnace, F. Schaffer.
Game apparatus, A. Christie...
Game apparatus, N. C. Larsen.
Game board, P Lerren
Gangway and lite raft, combined, J. E. Barsto.........
Gas burners by automatic means, apparatus fo Gas burners by automatic means, apparatus for Gas, process of and apparatus for manufacturing M. W. Kidder
are

Gate, S. Small.
lass button and mould for manufacturing the same, A. Hamann................ Grain separator, A. A. Russell Grinding mill, J. Stevens
Harness, O. E. Hollister
...............
Harness loops, machine for forming, Perkins
Allen ......................
Harvester, corn, G. A. Harvey.
Binge, awning blind F. B. 1 Wro
Hinge, strap, B. D. Washburn..e.
Hinge, wire, Dudley
Hinge, wire, Dudley \& Mansfeld
Hitching strap,
Hitching strap, J. D. Stotlemeyer..
Horseshoe calks, securing, o. Lamp
Hose connections, clamp for, J. Broughton.
Hydrocarbon furnace, B. Slope
Ice machine, o. Kropff
Ivory, horn, etc., factitious material to imitate
Hyatt, Lockwood, \& Stevens.
ournal bearings, composition from mineral wool
Knitt, G. F. Senter ...........
Knitting machine, Iib. Moore....................
Kibbing attachment, F. Kittell. Lamp, D. Arndt...
Lamp, F. A. Taber
Lamp cone, J. S. Goldsmith
Laitern holder, J. Churchill .... ........
I.ife preserving mattress, A. A. Young
Life raft, T. B. Griffith..
Lock, A. B. Prouty
Lock and latch, co
Loom, S. O'Neill..
Loom, s. T. Thoma
Loom, II. Wyman .......... .......................
Loom for weaving cartridge belt fabric, A. Mills.
mechanism for. X. Stiegler......................
Lubricating crank pins, device for.................... Merick
ing, T. Shaw............................
Meat cutter. E. Bourne............
Mechanical movement, G. T. Beck
Metal vessels, machine for making rims for to
Metallic line or cord and fastening for suspending pictures, etc.. G. Hookha
Millstone dressing machine, G. F. Letellier....
Motor, B. P. Kimball....
Nut lock, J. S. Rosensteel.
Nut warmer and preserver, F................. Oiler, car axle box, J.
Ore feeder, J. Hendy.
Ore flume and rlfile box, comb'd, w. B. Farwell. Ore separator, E. B. Hastings .....
Ore separator, dry, W. O. Bourne. Ore separator, dry, W.
Overalls, G. P. Evans. Packing, metallic, T. Tripp. Packing, piston, F: B. Stevens...........
Packing, sectional steam, G. Chillips
Padlock, permutation, F, Garnham Padlock, permutation, F. G. Farnhan Paper, machine for winding dry enameled, E. B. Paper pulp engine. J. R. Ab.................
Pencil case, C. H. Downes
Pencil sharpening machine, H . Van Houser
Pessaries from celluloid, etc., manufacture of, $G$.
Otto......
Petroleum, burner and apparatus for burning, E.

Planters, reel for check lines for corn, G. D. HaPlow, gang, C. Myers.
 Pocket register, F. Horn
Postmarking and canceling machine, T. Ieavitt.
Pressure brake, fluid, G. Westinghouse, Jr................................
Pulley, suspension clothes line, D. H. \& J. H. Payne....
er, L. Zeyen

Pump, steam, M. Schultz.... ......
Punching machine. W. \& C. Seller
Punching machine. W. \& C. Selle
Railway crossing, C. H. White..

Railway spike, H. Greer.
Railway
234,020
236,136 Reaping machine, A. C. Scarr.
Refrigerating rooms, apparatus for, E. ....... Refrigerating rooms, construction of, J. Tiffany effigerator, G. E. Sciple.
Refrigerator, e. .t. Ti
Kelay, I. L. Voet ker.
River channels of sediment and forming le..........................16,1
relieving $\mathbf{N}$.
Rock drill, electrical, Holcombe \& Cheever............................ Rolling machine, metal, S. F. Reynolds ...........
Rutary engine, G. W. Dudley................... Saddle, harness, IR. V.Jon
sawing irregular curves,
sale, pendulum, C. F. Batt
Scissors, O. C. Hayward........ .........
Screw polishing machine, c. Steinfels..
Seeder and cultivator, Nauman \& Stoddard...
Sewage, method of and apparatus for removin
I. Shone
Sewer trap, E. B. Ward....
Sheet metal can, W. W. Flint
Shirt, A. N. Horne
Shoe button fastener, A. G. Wi.......
Shot, drop, H. J. \& W. T. Wintherlich
sinking tubes and running tunnels and drifts b
inking tubes and running tunnels and
pneumatic pressure, H. R. Leonard
Skate, roller, J. Mackay.
Skate, roller, S. M. Tinkham.......................
Slate, manufacture of artificial, H. Reinhold.
Soldering iron, V. Storch ........ ...................
Sower and cultivator, combined seed, E. Emmer
 Spoons and forks from celluloid and analo
material, manufacture of, M. C.Lefferts. Stamp, branding, A. M. Darrell (r)
tamp canceling device, E. Osgood..
Steam boiler, J. H. Elward.........
 poses, J. E. Smith
Steam pipe covering, E. H. Ashc
Stove, cooking, C. H. Dunton ...
Stove grate and bearings, J. Jewe
Stove grate, bottom, A. S. Newby
surgical bandage, J. Jacques
Syringes from celluloid and other pl.............
terial, manufacture of, M. C. Lefferts.........
Tanning, composition for use in, H. Trenk
Tanning extract, H. L. Wilcox
Telegraph line, underground, E. A. Kitzmiller. Telegraph, telephonic, C.
Telephone, C . T. Dickson
Telephone, F. A. Gower.
Telephone lines, electric signal for, L. S. White. Tenoning machine, H. Molby
Tether, J. Rodger
Textile fabrics. dr
Thill coupling. Gry. W. Fried..........
$\qquad$
N. Maskelyne.................
Tin can lining, F. w. Bartlett.

Lindsley
Tobacco smoking tube, co
Tongs, pipe, J. O. Morse...
Tool handle.F. A. Stohlmann.
Traction engine, P. T. Kissane..
Tug, shaft, o. W. Morley
Turning flat-sided objects, machine for, C. Preus
Umbrella and sun shade. F. M. C. Farrdesche
Valve for oscillating engines, M. I. Garriso
Valve gear, steam engine. E. A. Marsh
ehicle sery, J. W. Melling
Vehicle spring, L. Rodenha
Velocipede, G. N. V inslow..
Vinegar generator, S. J. Clar:
Wagon bodies, crate cover for, E. J. Malone
Wagon bow socket, R. P. Willi
Wagon brake, J. Real
Washing machine holder, L. J. M. Mortenson Watch regulator, L. Eaton....
Watch, stem winding and setting, II. J. Eisen
vater elevator, W. D. Mayfleld.,
Water elevator, W.D. Mayfield
Weaner, calf, Dupee \& Housum
Welt trimmer, Deacon \& Miller....................
Wick trimmer and burner and chimney cleaner
combined lamp, J. Coyle, Jr..
Wood, preserved, H.
Wool washing machine, F. G. Sargen
Wrench, J. M. Totten. ............................... 2356,11
Writing on manifold paper, stylus for, L.H. Rogers 233,898
Yoke tip, neck, C. shuman...........................951
Zinc, manufacture of chloride of, E. J. Mallett, Jr. 236,051
DESIGNS.
Button, C. F. Waldron... ..........
Carriage step pad, H. M. Beecher
Carriage step pad, H. M.
Glassware, King \& S wift.
Key bow, G. S. Barkentin
Stove, Bascom \& Heister
TRADE MARKS
Cigars, L. Andrae.................................... 8.133
Cigars, Boston Cooperative Association........... 8,13 Medicine, H . C. Collins., ............................... 8.13
Oil, woon, w. H. Place............................... 8.13
8,13
Tobacco, plug chewing, $\mathrm{C} . \mathrm{w}$. Allen............

## English Patents Issued to American

From December 24 to December 28, 1880, inclusiv
Barrel machinery, E. \& B. Holmes, Buffalo, N. Y.
Cartridge belt fabric A. Mills, Washington D. C
Cartridge belt fabric, A. Mills, Washington. D. C. Castrating horses, G. L. Matthews, New York city
Coal'elevator, G. W. Wood, Faribault, Minn. Condenser surface, I. R. Blumenberg, Washington, D.C Dynamo-elec. tel., o. Lugo, New York city.
Gold, extraction of. O. Bailey, White Cloud, Kan. Gold, extraction of. O. Bailey, White Clou
Linch pins, W. Gardner, Hartford. Conn. Mining apparatus. O. S. Preshrey, Port Henry, N. Y.
Saccharine matter, axtraction of, B. Odio et al., N. Y. Citg Safety valve, G. W. Copeland, Boston, Mass Submarine vessels and guns, J. Ericsson, New York city.
Tobacco, manufacture of. J. Lindsley, Pawtucket, R I. Tobacco, manufacture of. J. Lindsley, Pawtucket, R.
Wood turning machinery (2), F. Hanson, Hollis, Me.


GAxrtitumpnts
Inside Page, each insertion - - 75 cents a line
Back Page, each insertion - - $\$ 1.00$ a line. Engravings may head advertisements at the same rat tisements must be receired at publication office as e
as Thursday morning to appear in next issue.


MOULDING MACHINES

Foundry Use. 33 per cent. saved in labor
Manufactured by REYNOLDS \& CO. P. O. BOX 1169, NEW HAVEN, CONN ADIES' PGLEXIBLE



,MACHINISTS' TOOLS.
 Lathes, Planers, Drills, Gear Cutters, Shaping Machines, and special machinery. GOULD \& EBERHARDT,






SOME THOUGHTS ON THE TREAT





 D. M. FERRY \& CO., D D troit, Mich
 CENTENNiL AND Paris medals.
Mason's Friction Clites.



EKOWE POCKET HELIOGRAPH



## FOR SALM. (PARIS furnace co.




 SHEPARD'S CELEBRATED $\$ 60$ Screw Cutting Foot Lathe

 Hront siree
 EXPERIMENTS FOR BEGINNERS-A



## Cold hoticd The fact that this shafting has 75 per cent. g eater strength, anner finish and is truer to gauge, than any




## B 8 ? OYour OWI Printing \$? Rass pratis Shafts, Pollleys, Hangers Ritc.




 "The 1876 Injector."



THE BLAKE TRANSMITTER-AN EX planation of the more obscure parts of the microphone,
and of the methoo of show ing iss faults, when such
and

 50 New Styles. Perfumed Motto, Moss. Rose. VIblet.Jat



Steel Castings
 50 Lithooraphed Chromo Cards, no. alree, 10 c .


Perfectly Smooth Thoroughly Seasoned CUT THIN LUMBER!! Manufactured by our Patent Roard Cutting Machine
and seasoning Presses. MA HOCANY,


186 to 200 Lewis


ICE-BOATS-THEIR CONSTRUCTION





WOOD WORKING


 NOMOREUSEFTROL ONMAOHINERY
 tor all kind ofe send

CRUSHIIG AND GRMNOMG

$\qquad$ DO YOUR OWN PRINTING
 H. H00VER, Phila., Pa. VELOCITY OF ICE BOATS. A COLLEC




## THE AMERICAN SONGSTER.



PERIN BAND SAW BLADES,
 UNIVERSAL GRINDER




## THE PERFECTED STYLOCRAFIC.

The most convenient and economical outht for writiop Pen, Pencil, and Inkstand in one. Can he ordered by
mand and exchanged or reurned if not suited. For weil description of various styes, send two cent stamp for
25-33 Frankitin Street, ${ }^{\text {Rest }}$ AND WRITERS' ECONOMY CO.
25-33 Franklin Street, Boston; 4 Bond street, New Yorkt 38 Madison Street, Chicago.

ROSE'S MACHINIST.


## Permanent Cure of Catarrh!

Fhimteen Tears AsO
CATARRH was considered an incurable disease. I had then suffered for eighteen years. I was firt attacked by a slight cold, tollowed with deafness and ringing in the
ears, soreness of the throat, disgusting nasal discharges, weak, inflamed eyes, hawking, rising of vile matter, black and sometimes bloody mucus, coughing, with great soreness of the lungs. The liver and stomach were polluted with the diseased matter running
from the head. Compelled to resign my pastorate. I compounded my CATARRH frecirc, and cured inself. Now at the aseor of sixty-seven, I can speak for hours with no difficulty, and never have had in the whole thirteen years the slightest return of
the disease.


## To Catarrh Sufferers:



Catarrhal cases have applied to me for relief. Many thou-
ands havereceived my Specific and are cured. We deem it only fair that every one who wishes should have the
opportunity to ascertain whether we are able to accom
plish all that we claim, and for this purpose we add a few ish all that we claim, and for this purpose we add a few
the many hundreds of addresses of those who have ated, almost any of whom will doubtless respond to any
accompanied by a stamp to pay postage. We have
certificates from all classes-physicians, clergymen, inquiry by letter, if accompanied by a stamp
thousands of these certificates from all clas
judges, merchants, bankers, and business men.

Dear Mr. Chlids: I have used your Catarrh treatment now threemonths, and almost all thistime in hope







The Slide Valve Practically Explained. Fmbracthe operation of each element in a Slide Valve Hove
nent, and illustrating the etects of Variationsin their
Prooprtions by examples caref


 HENRY CAREY BAIRD \& CO.
Industrial Publishers, Booksellers, and Imp
810 WALNUT STREET, PHILADELPHIA.
 DWELLINGS AND COUNTRY SEATS. Simplest cheapest, andmost economical pumping engine
for domestic puroses. Any ser ant gricen operate.
Absolutely safe.
DEIAMATER IRON WORES No. 10 Cortlandt Street, New York, N. Y. RUBBER STAMP Outfits and instructions for makdng




$\$ 72$ A Wefke
MACHINISTS' TOOLS.
Lathes, Planers, Drills, \&e.



0 Tl $S^{5} \begin{gathered}\text { safety histing } \\ \text { Machinery. }\end{gathered}$

 scientific american supple


## WVhat the Faitors Bay: <br>     <br> CHILDS' CATARRH SPECIFIC will effectually ancu permanently cure any case of Catarrh, no matter how desperate. It can only be obtained at Troy, Ohio. The treatment is local as well as constitutional, and can not be obtained at the drug-stores. A full statement of method of home treatment and cost, with scores of testimonials Name this paper. REV. T. P CHILDS, Troy, Obio.

## (1) TRA ROCK BREAKERS \& ORE CRUSHERS.  FARREL FOUNDILY AND MAOMINE CO., Ma



RUBBER BACK SQUARE PACKING,
B represents that part of the packing the Pich, when in use, is in contact with the Piston Rod.
A the elastic back. which keeps the part $B$ against the rod with sufticient tressure to be steam-tight, creates Packing is made in lengths of about 20 feet, and of all sizes from $1 / 4$ to 2 inches square.
TOHN H. CHEEVER, Treas. NEW YORK BELTING \& PACKING CO., $37 \& 38$ Park Row, New York.

THE STEARNS MANUFACTURING CO., SAW ${ }^{\text {EREE, }}$ MILL MACHINANAL Designed in its construction for producing lumber economically and
rapidly. Plans and entimatesfor Mils of ann eapacity
furnished on request. Also build
ENGINES, BOILERS, AND MACHINERY IN GENERAL.
 SURFACE FILE HOLDERS.



 ninlers mitus, Landiden and New angidon Mitre BOX,

## TELEPHONE ${ }^{\text {Works } 1 \text { nule }}$

Pond's Tools, Davil W. PoNio, Worcester, Mass.

"RELIABLE"
Engines a complete success.
Prices stil to per cent. below
those of other mikers.
equaled
equaled for efficiencr. simplici-


 On returning to England. I have arranged with Mr



Roots' New Iron Blower.


POSITIVE BLAST. IRON REVOLVERS, PERFECTLYBALANCED IS GIMPLER AND HAS fewer parts than any other blower. P. H. \& F. M. ROOTS, Manuf ${ }^{\text {r }}$ s CONNERSVILLE, IND. s. S. TOWNSEND, Gen. Agt., $\left\{\begin{array}{l}6 \\ 8 \\ 8 \\ \text { Dey Stlandt Street, }\end{array}\right\}$ NEW $\left.\begin{array}{l}\text { WM. COOKE, Selling Agt., } 6 \text { Cortlandt Street, } \\ \text { JAS. BEGGS \& Co., Selling Agts., } 8 \text { Dey Street, }\end{array}\right\}$ YEV JAS. BEGGS \& co., Selling Agts., 8 Dey Street,
SEND FOR PRICED CATALOGUE


WITHERBY, RUGG \& RICHARDSON Manufacturers
 Just isame TRAUTWINES CIVIL ENGINEER',
 MACHINISTS AND STEAM FITTERS

 ROOFING.


## mbospycuc <br> §cientific Amexican

The Most Popnlar Scientific Paper iu the World VOLUME XLIV. NE S SERIES.
$\qquad$
This widely circulated and splendidly illustrated teen pages or useful information, and a large number o original engravings of new inventions and discoveries New Inventions, Novelties in Meenanics, Manufactures Chemistry, Electricity, Telegraphy, Photography, Archi All Classes of Pearers ind in Tus Scientipic Americas a popular resume of the best scientifl in formation of the day; and it is the aim of the publishers
to present it in an attractive form, avoiding as much possible abstruse terms. To every intelligent mind this journal affords a constant supply of instructiv reading. It is promotive of knowledge and progress in Terms of Subscription.-One copy of The ScIEN TIFIO Americai. will be sent for one year-52 numbers-
postage prepaid, to any subscriber in the United State or Canada, on receipt of three dollars and twenty cents by the publishers; six months, $\$ 1.60$; thre
months, $\$ 1.00$. months, $\$ 1.00$
Clubs.-One extra copy of The Scientific Ameri an will be supplied gratis for every club of five subscriber

One copy of The Scievtific American and one copy of The Scievtifio American Supplement will be sent for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dollars b the publishers
The safest way to remit is by Postal Order, Draft, or Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters
and make all orders, drafts, ete, payable to

## MUNN \& CO.

37 Park Row, New York. To Foreign Subscribers.-Under the facilities of
the Postal Union, the Scientific A menicav is now sent by postcirect from New York, with regularity,to subscrib-
ere in Great Britain, India, Australia, and all other British colonies; to France, Austria, Belgium, Germany, Russia, and all other European. States; Japan, Brazil
Mexico, and all States of Central and South America
竍 Terms, when sent to foreign countries, Canada excepted both Scientific Amprican and Suppiement for
year. Thisincludes postage, which we pay. Remit by
postal order or dr ft to order of Munn $\&$ Co.,37 Part postal order or dr
Row, New.


## PURE EMERY.

Emery, as a rule, is bought of Dealers who have no practical knowledge of the goods they sell. The various Companies who sell Emery of their own make in the American market all profess to have special
arrangements for a a supply of Emery Rock or Ore, nearly every one claiming to control that supply, and praising their own goods by declaring them equal to those of one well known Company which has made its name
the synonym for excellence. THE TANITE COMPANY OF NTROUDSBURG, MONROE COUNTY, PA., do not profess to control any mine, nor to manufacture any Emery; but they do profess to UNDERSTAND Practically, ALL points connected with Emery, being well informed as to the quality of the crude ore,
the virious peculiarities of different makers, and as to all the applications of Grain and Flour Emery. Being the various peculiarities of different makers, and as to all the applications of Grain and Flour Emery. Being
among the largest users of Emery in this country, and having to exercise constant vigilance in order to keep
而 up the standard of their own well known brand of Solid Emery Wheels, they are always obliged to KNOW what GOOD EMERY is, an
to keep it on hand. They offer to the public the benefit of this knowledge, and are able to supply Emery which they KNOW to be first class (regardless of all questions as to established reputation), AT PRICES LOWER THAN ANY OTHER FIRST-CLASS EMERY
HAS BEEN OFFERED FOR. Sold under THE TANI''E CO.S labels, in kegs of about 275 lb. each.

New York Ice Machine Company, 21 Courtland St., New York, Rooms 54, 55. LOW PRESSURE BINARY ABSORPTION SYSTEM
ICE AND COLD AIR.
Low Pressure when running. No pressure at
chines guaranteed by C.H.Delamater \& Co. Our new stylographic Pen (just patented), having,
duplex interchanseable point section, is the very lat duplex interchangeabe pint section, is the ve
improvement. THESTYLOGRAPHMO PEN C.
13, 169 Broadwa, New York. Send for circular.




BRICK-TILE-METALS.


 The BELMONTYLE OIL

 WATCHMANS IM
proved Time Detecto
with


Mill Stones and Corn Mills.




## JJPRIGHT DRILLS : अfrixit

 H.BICKF ORD Cincinnalio. NEW YORK BELTING AND PACKIN BELTING, HOSE, or PACKING. 37 \& 38 PARK ROW, NEW YORK. PPECTACLES Thermometers, Opera Glasses是 Established 1844. JOSEPH C. TOOD, Successor to TODD \& RAFFERTI Encineer and Machinist.


Baxter Patent Portable Steam Engine,


 for descriptive clroular. Address

[^0]THE "Scientific American", Is printed wth CHAS


Telegraphy.

TELEPHONE $\begin{gathered}\text { and } \text { Hectrial Supplie } \\ \text { send for } \\ \text { Satal }\end{gathered}$

## HWT.JOHIIS' <br> LIQUIDPAINTS, ROOFINC

 H. W. Johns mifa co. 87 MAlien Lane, r. Y

The Asbestos Packing Co. Miners and IIanofacturers of Asbestos, \#OSTOM, MNASS. PATENTED ASBESTOS ROPE

## LOOSE

MICK BOARD
HEATHING PAPER
FLOORING FELT. CLOTH
NON-CONDUCTOR COVERINGS G42 West 52 RA St., 108 Liberty St., New York

## SHAFTS PULLEYHANGERS


 [ELECTRIC LIGHT.] Electrotypers and Electroplaters Offer thetr machines for single and series
ing their suceessful operation. Refer to

```
Faul Rauer,
Messrs.
```

Messrs.
Rogers, Peet $\&$ Ridley $\&$ Sons,
N. Y. Herald, Stern Bros, M. H. Moses. Huyler's, Booth's
Tin coter. Macy \& Cor, where their machines can be seen
in use. OFFICE AND SALESROOMS, 227


COLUNBIA BICYCLE The Bicycle has proved itselft be be
permanenent, practical roa d $\begin{aligned} & \text { vhiclo, and } \\ & \text { the number in dally use is rapidy in }\end{aligned}$



## boller coverings.

 Patent "AIR SPACE' Method ASBESTOS MATERIALS,

## GJECTORS

Flevating Water and ConTeying Liquids
 eries, Distilleries, sugar Refineries, Paper Mills, Tanner
ees, Chemical Works, etc. Send for illus. catalogue to NATHAN \& DREYFUS, The George Place Machinery Agenc) 121 Chambers and of ios Reade Streets. New Xork.


CATALOGUED.
THE FOLLOWING MANUFACTURERS ARE PRO-
MINENT IN THEIR RESPECTIVE LINES; IN HORT, ARE HEADQUARTERS.

## WIRE ROPE PLUMBING \& SANITARY GOODS

 HoISTING ENGINES. COPELAND KONK BACON the deane steam pump.
 MECHANICAL BOOKS.


## VERTICAL STEAM ENGINES.

Korting's Improved Steam Blowers,


## BRADLEY'S CUSHIONED HAMMER

Approaches the nearest to the action of the Smith's arm
of any Hammer in the World.
BRADLEY \& COMPANY, Syracuse, $\mathbf{N} . \mathbf{Y}$. SHAFTS, PULIEYS, HANGERS, \&C. 461 West 4 Oth Street, New York. CELEBRATED "RED STRIP" BELTING, RUBBER BELTING, PACKING. AND HOSE. THE GUTTA PERCHA AND RUBBER M'F'G CO.
MACHINISTS' TOOLS AND SUPPIIES.
H. PRENTISS \& COMPANY,


Mason \& Hamlin's Cabinet Organs. $\frac{\text { soston }}{\text { THE BEST }}$ FAIRBANKS' STANDARD ACALES,

AIR ENGINES AND ELEVATORS.
 THE PERFECTED TYPE WRITER.
 Rock Drills and Air Compressors. 1.2.2 Park phace, Emery Wheels and Grinding Machinery.

FILES, DRILLS, CHUCKS, VISES,


 DOUBLE SCRRW, PARALLELL, LEE VISES.

 HOWARD TRON WORKS,


Brass Cocks, Valves, and Fittings.


2

DADDOW © BEALEPS

MINER'S PAT. SQUIBS for BLASTING. Mrab by Hiner's supply Co, st. Clar, schill Coo, Pa. Steam Engines \& Mining Machinery.
 The Graatest Roock Breaker on Earth.


SAW MILL MACHINERY. Stand
PRINTING INKS:



[^0]:    Or No. 10 Barclay 8t., New Yórk.

