
a WeEkiy jotrnal of practical information. art. ScIENce. mechanics. Chemistry and manufactures.

NEW YORK, OCTOBER 23, 1880.

RECENT DEVELOPMENTS IN ELECTRIC LIGHTING.

That the electric arc light has been gaining in public favor is evidenced by its permanent adoption in a large number of public halls, theaters, factories, warehouses and stores throughout the country; and its application to tunnels, mines, and engineering work by night, and to out-of-door illumination in streets, parks, and public places. It is also employed for lighting docks, and to a considerable extent by traveling shows. In its application to lighthouses and head-lights of steamers it certainly has no rival.

One of our prominent mechanical engineers, Mr. H. S. Maxim, of this city, has long been engaged in perfecting the electric light in its various forms, and has been one of the foremost in adapting it to special purposes. His dynamoelectric machines and electric light projectors for land and marine uses have been already illustrated in this journal, and not long since we published engravings of a new focusing lamp by the same inventor. We now give engravings of a new and remarkably efficient current regulator for electric light circuits, and illustrate a dynamo-electric machine, which is probably the largest ever built in this country. We also furnish views of Mr. Maxim's incandescent lamp which is now brought to public notice for the first time, although, as we are informed by the inventor, the lamp was made substantially in its present form some three or four years since. In fact, Mr. Maxim claims to be the pioneer in this direction.*
*The application for a patent on Mr. Maxim's incandescent lamp was
filed October 4. 1878 ; the patent was granted August 10,1880 . The process
of manufacturing carbon was patented filed October 4. 1878; the patent was granted August 10,1880 . The process
of manufacturing carbon was patented July 20,18800 The dynamo ma-
chine was patented June 8,1880 . The machine for regulating the curchine was patented June 8,1880 . The machine for regulating the cur-
rent was patented June 8, 1880. A process for charging the lamps with
vapors of gasoline was patented August 10,1880 .

The current regulator, which is shown in perspective in Fig. 1 and side view in Fig. 2, controls the current perFig. 1 and side view in Fig. 2, controls the current per-
fectly, and proportionates it so accurately to the work to be done that it makes no difference whether there are fifty lamps in the circuit or only one, the current in the single lamp when used alone being the same as it is when the lamp is associated with forty-nine others in the same circuit.
The manner in which this wonderful result is secured will be apparent on studying Figs. 1 and 2. In an electric lighting station, where a number of large machines like that shown in Fig. 3 are used, the field magnet of each machine will, be excited by a small dynamo machine like that shown in connection with the current regulator in Figs. 1 and 2, and the strength of the current generated by the large machine depends on the degree of excitation of its magnets. If a strong current is desired the field magnets are strongly magnetized by their inclosing helixes. If a very weak current is desired the magnets are but slightly excited, and the strength of the current may vary anywhere between these two extremes.
The commutator brushes of the exciting machine are arranged to swing on a bearing concentric with the commutator cylinder, so that by turning the brushes around to the neutral points the current is nil, and by turning it back nearly to. the central position between the neutral points the current is the strongest that can be obtained from the machine. The current regulator is influenced by the current proceeding from the large machine and controls the mechanism which moves the commutator brush of the small machine, in this manner regulating the excitation of the mag-
[Continued on page 262.]

कォtimutific Smurian.

EST \checkmark BLISHED 1845.
MUNN \& CO., Editors and Proprietors.

published weekly at

NO. 37 PARK ROW, NEW YORK.
o. D. MUNN.
A. E. BEACH

TERMS FOR THE SCIENTIFIC AMERICAN.
One cony. one year postage included.
One copy, six months, postage included
Clubs.-One extra copy of THE SCIENTIFIC AM ERICAN will be supplied gratis for every club of five subscribers at $\$ 3.20$ each : additional copies at same proportionate rate. Postage prepaid

Remit by postal order. Address MUNN \& CO., 37 Park Row, New York To Advertisers.-The regular circulation of the Scientific american is now Fifty Thousand Co
publishers anticipate a still larger circulation

The Scientific American Supplement Is a distinct paper from the ScIENTIFIC AMERICAN. THE SUPPLEMENT isissued weekly. Every number contains 16 octavo pages, uniform in size $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the country.
Combined Rates. The ScIEvTIFTC Combined Rates. -The Scievtific American and Suppirment
will be sent for one year, postage free, on receipt of seven dollars. will be sent for one year, postage free, on receipt of
papers to one address or different addresses, as desired. The safest way to remit is by draft, postal order, or registered letter Address MUNN \& CO., 37 Park Row, N.

Scientific American Export Edition.

NEW YORK, SATURDAY, OCTOBER 23, 1880.
Contents.

TABLE OF CONTENTS OF
the scientific american supplement

NO. 251,

For the week ending October 23, 1880. Price 10 cents. For sale by all newsdealers.
I. ENGINERING ANDMECHANDCS-The Manquatire of Rur

II. TECHNOLOGYAND CHEMISTRY, ETC. -Scheeiber's Caleimeter,

III. THE BRITHSH SCIENCE ASSOCIATION, ETC. PTansea and Full page illestrattion indinibou ihod

${ }^{\text {ing }}$ A Yearbers.
IV. HYGIENE AND MEDICLNE.-Modern Scientifc. Medicine. In-

the relations of cheap patents to industrial

 PROSPERITY.The factors of American prosperity are many
We have a magnificent country, to begin with; a territory of continental scope, made fruitful by a climate unsurpassed in kindly adaptation to needs of varied agriculture and the requirements of industrial activity. Our mineral resources are unrivaled in richness and variety. Our complex population embodies no small part of the best pluck and energy and intelligence of all civilized nations. Our free institu tions favor individual and associated activity in all legiti mate directions. With us men are respected as men and honored according to their deeds; the thoughtful laborer, whose practical sense or constructive ability adds new force or utility or convenience to the common possessions, far outranks in popular estimation the thoughtless inheritor of wealth or social position, however honored or useful his ancestry may have been. The laws are framed to guard the rights and liberties of all; and each man's sphere of action is limited only by the inevitable limitations of his personal force, intelligence, and integrity
Under such conditions progress and general prosperity would seem to be inevitable, so inevitable that minor conditions might be safely left out in taking account of the great factors of national well being. But other nations which do not share our present prosperity, are not destitute of like conditions favorable to industrial success. Some in addition enjoy age, the prestige of power, long accumulated wealth, an industrial history covering many generations, and priority in the markets of the world, which unite to give them advantages over the most favorably situated new country with its newly established industries. In the front rank of such countries stands Great Britain, which forl
many years las been the workshop of the world, and still retains a commercial supremacy which tells immeasurably in favor of her mechanical industries, in giving them a commanding position in the world's markets. Yet the trade of Great Britain languishes under a serious depression, which threatens to become permanent through the increasingly
successful rivalry of other industrial nations-Germany successful rivalry of other industrial nations-Germany Belgium, France, and pre-eminently the United States.
The causes of this relative if not absolute industrial decline on the part of Great Britain is not far to seek. At recent meeting of the Institution of Mechanical Engineers a prominent speaker charged the responsibility upon British inventors and engineers. They had failed to keep abreast of the times. They had allowed the inventors of other
countries to displace their products even in British markets. countries to displace their products even in British markets.
The question was taken up at the August meeting of the London Association, and while the inaction of British inventors was admitted and deplored, the blame was traced to the working of the British patent system. Said the èssayist of the occasion, Mr. John Standfield: " The chief cause of our commercial suffering and stagnation is a barbarous law, which to a very great extent prohibits science from developing the resources and strength of the empire." Just before Mr. Standfield had attributed the rise and progress of the British empire wholly to the inventive genius of its people, coupled with the manufacturing resources of the country pointing out the fact that the great and important inventions patented in England during this century have not only contributed more to the greatness of the empire than all that was done during the previous five centuries, but have brought nearly all of the wealth which England now possesses. Even where the sources of national wealth lay underground, in mines of coal and iron and copper, such wealth could never have been developed exeept for machinery invented for the purpose. But invention is now less active in England than in France, Belgium, and the United States, and England is losing ground in consequence. This loss of trade, says Mr. Standfield, " may be directly at tributed to our (i. e., England's) driving abroad or suppressing a very large portion of the seeds of our prosperity.
America is the only great country that treats practica America is the only great country that treats practica
science fairly, and she is consequently our principal competitor." Further on Mr. Standfield says:
"The cheap patent law of the United States has been an still is the secret of the great success of that country.
The invention we suppress takes root freely in the United States, which, consequently, supplies our marts with large quantities of labor-saving tools, whereas if our laws were fair and equal we should supply their marts, and use the proceeds for purchasing their grain without impoverishing our country by a great loss of capital as at present.'
In the subsequent discussion this point was dwelt upon at great length. How can it be expected, it was asked, that English engineers and inventors can compete with their brethren in the United States when the American can get twenty-five patents for the money which has to be paid for one in England? Very few inventors can pay the fees de manded by the English Patent Office. "The result is," said one speaker, "one-third of our inventors are driven to America, and another third are buried, the secret of their invention still with them." And this obviously covers but a part of the national loss, since the possible but never-to-be 99 developed inventors in English workshops probably outnumber many times the actual inventors who undertake to put their ideas into working shape. This was put very
clearly by one of the speakers. "He had heard it said in clearly by one of the speakers. "He had heard it said or no inventive genius, although they improved things very well, but upon examination he said it would be found that the names to most of the American patents were English
names; and he felt certain that, if the cost of a patent in England were the same as in America, instead of 5,000 patents, the English should take out 45,000 to the Americans 30,000 . If placed on the same footing as the United States, a great impetus to trade would follow. It was evident that there was something wrong when America could pay £9 where England paid $£ 6$ per ton of iron, and 9 s. instead of 6s. per day for labor, and yet beat the English in the open market. He thought it was the duty of the Board of Trade when the country was losing its trade, to inquire as to the cause of it. There was only one reason for it, and that was the abundance of labor-saving tools used by the Americans, because their mechanics could get all their appliances pro tected so cheaply."
In the course of his remarks the essayist pointed out that y suppressing native genius through heavy patent fees, England had driven away many national industries in which she had once held a foremost place. The pianoforte trade was one, London being rapidly stocked with instruments made in New York. The watch and silk trades had been driven out of Coventry and Clerkenwell, while machine made watches were being developed in America, where abor was 50 per cent dearer. Said the speaker: "The American cheap patents and labor-saving tools alone ac count for Coventry's and Clerkenwell's misery and decay, and for England's serious loss of revenue and national income. If our workmen were allowed to become inventors hey would prove quite as well able to design and manuacture machinery for the construction of cheap watches as the Americans. On the present system our best mechanics, if they have any ambition, are compelled to emigrate to America, where alone they can find an opportunity of utilzing their genius."
Further on the speaker said: "The American patent laws have given the inventors of such small but generally usefu articles as sewing machines such a good opportunity of universally introducing their inventions that it is now not worth the while of any manufacturer here or elsewhere to attempt to compete with the American houses. There are 4,000 skilled artisans employed in the United States in this mall manufacture alone. While American organs of numerous descriptions are not only excellent but cheap, here is not a single cheap English organ known to the public.

What has occurred to our piano and watch trade is now occurring-if it has not already occurred-in regard to the manufacture of locomotives and many other manufactures, to the partial ruin of our trade, wealth, and empire."
We might continue these forcible and instructive citaions, but the limit of our space forbids. The arguments brought forward to prove from American experience not only the sound policy but the absolute necessity of lower patent fees in England are not needed here. The moral of he discussion, however, should not be overlooked by the friends of American industry. While our greatest rival in the industrial world is learning from our experience the wisdom of extending to inventors the encouragement which comes from a just and inexpensive recognition of their rights the American people must not be deluded by specious sophis ries into an abandonment of the position taken by the ramers of our Constitution with regard to inventions and eiters patent therefor. The wisdom of granting patents or invention is no longer a subject for discussion. The ound policy of carefully guarding the inventor's rights, against infringements, and of keeping down the fees for issuing the necessary papers, is equally well established. Yet as soon as Congress meets again we may expect a puzzling variety of covert assaults upon the patent system under the guise of bills for the amendment of the patent laws-assaults which will demand the constant watchfulness of every friend of American industry. Inventors and their riends should see to it that they are not misrepresented at Washington by men uninstructed with regard to the uses and benefits of the patent system. They should take pains not to further the election of candidates known to be in sympathy with those who have sought and still seek to break down the legal safeguards of the property rights of inventors and patentees, as provided by the patent laws. They should take especial pains to lay before their repre entatives in both houses such information as will enable the framers of our laws to avoid the snares which clever agents of anti-patent associations are sure to weave in bills ostensibly drawn to " promote industry" and "encourage invention," or to protect the "innocent" users of what does not belong to them.

MALARIAL" FEVER IN NEW ENGLAND.

Undoubtedly "malaria" covers a multitude of sins of gnorance on the part of physicians, almost every malady, the nature of which is not readily understood, being attribut ed in professional parlance to malaria or malarial complication. Still there is evidently some malefic influence, whet her in the air, in the earth, or in the waters under the earth, that has been causing in New England the past summer almost as much suffering as the break bone fever has occasioned long our Southern coasts
The history of the " malarial wave," as it is called, and its progress eastward and northward, is instructive. For forty years preceding 1865 New England had been practically exempt from the troublesome "chills and fever," "fever and ague," or "malarial fever," which prevailed more or less generally further West and South. There had been an epidemic of it after the war of 1812, and an earlier wave had
passed over the country after the war of the Revolution. As in the earlier instance, so in the later civil war, the return of afflicted soldiers from malarial regions was followed by a slowly developing malarial epidemic. The first cases among the stay-at-homes appeared along the railway traversing the shore of Long Island Sound. Gradually it spread into the interior, most rapidly along lines of public works. The upturning of new soil was supposed to cause the extension of the plague, though the same sort of work during the preceding forty years had never been followed by such results. It will be remembered that just after the war was a period of public improvement; in every thriving town streets were laid out and graded; public waterworks were introduced, and gas pipes were laid down in many villages-all requiring the employment of large gangs of laborers, recruited largely from the ranks of lately returned soldiers. It seems to us altogether more likely that the germs of the succeeding epidemic of "malarial" fever were imported by men who had taken the disease while on duty in the malarial regions of the South and West, than that they were developed or brought to the surface by the displacement of raw earth.
Very probably the interference with lines of natural drainage, incident to the construction of railways, waterworks, and the like, and the ponds and ditches left where earth had been taken out for embankments and roadways, furnished many appropriate places for the multiplication of the imported malarial germs. At any rate the progress of the epidemic was largely governed, if it was not hastened, by the progress of such works. Once widely prevalent, as it became in the course of four or five years along the main line of railway towns near the Sound, the natural movement of population sufficed to carry the epidemic into the interior.
Its progress up the Connecticut and other rivers and along lines of railway communication was traceable year by year, until there came a season, like the past summer, when the climatic conditions seem to have been specially favorable to the spread of the malady, and it became exceedingly prevalent, both as a distinct disease and an element complicating the symptoms of other diseases.
In the early part of the season the State Board of Health of Massachusetts undertook to investigate the subject, and has collected a mass of evidence which can hardly fail to throw a clearer light upon the nature and conditions of the epidemic. From reports in local papers it is clear that the troubles attributed to malaria have prevailed to an alarming extent; particularly along the Connecticut valley. Cases have appeared in every town from Connecticut to Vermont; and in Springfield, Holyoke, and other large places the number of cases has been very great. Heretofore this region has been not only a healthy one, but exceptionally free from troubles of this nature. In the Housatonic valley, in southwestern Massachusetts, around Barrington; for example, hitherto one of the healthiest districts in all the land, the malarial epidemic has been the severest ever known in New England. The disease is described by the visiting plysician of the Board of Health as a genuine intermittent fever, many of the caseess being very severe. The disease has attacked all classes of persons, some living at considerable distances from supposed malarial centers, and it counts its victims among the old, the middle aged, and the young, among new res the old, the middle aged, and the youn
dents, old residents, and casual visitors.
The manner in which the epidemic sweeps through regions previously proverbial for their salubrity, seems to show that the disease is not of local origin and cannot be "in the air."
Before the results obtained by the inquiries of the Board of Health are compiled and digested, any opinion as to the actual propagation of the epidemic can be little better than a guess; nevertheless it may be safe to express the strong suspicion that wells and water courses, tainted by the fecal discharges of victims of the disease in one form or another, are more likely to prove the distributers of the poison than cold winds, night air,emanations from swamps, or any other purely aerial or malarial agency.

the revival of american commerce.

A commercial convention, called by the New York Board of Trade and Transportation, met in Boston, October 6, fifty-one important mercantile associations being represented. The chief subject proposed for consideration was the revision of the navigation laws under which the supremacy of our country in its own carrying trade has been lost. In 1855 American vessels carried $\$ 405,000,000$, and foreign vessels $\$ 131,000,000$ of our exports and imports. In 1879 foreign vessels took $\$ 911,000,000$, and American vessels only $\$ 272$,000,000 . The greaterpart of our merchant marine is now engaged in the coasting trade, while its aggregate tonnage is more than a million tons less than it was twenty-five years ago.
The great question is, How are we to recover our commercial standing among commercial nations? At this writing but one session of the convention bas been beld. The problems which the delegates have in hand are of nationa magnitude, and of the most far-reaching importance. It is devoutly to be hoped that whatever decision they may arrive at may be such as will hasten the restoration of our mercantile marine to the honorable position it held before the war. During the past twenty-five years our mechanical industries have been pushed to the front rank among those of indus. trial nations. The next twenty-five years should see as marked an advance toward American commercial supremacy.

benjamin peirce.

In the death of Professor Benjamin Peirce, October 6, in the forty-seventh year of his professorship at Harvard College, America loses one of its ablest mathematicians and scientific men. Prof. Peirce was born in Salem, Mass., in 1809. He was graduated at Harvard in 1829; became tutor in 1831, University Professor of Mathematics and Natural Philosophy in 1833, and Perkins Professor of Astronomy and Mathematics in 1842. Between 1836 and 1846 he published a series of mathematical text-books, which, though never widely adopted in schools, have had a marked influence upon the mathematical teaching of this country. The founding of the observatory at Harvard was brought about by his lectures on the comet of 1843. His investigations in connection with the discovery of Neptune in 1846 made his
name known and honored the world over. In 1849 he was name known and honored the world over. In 1849 he was appointed Consulting Astronomer to the "American volume of lunar tables in 1852. The results of his labors on Saturn's rings were published between 1851 and 1855 . His valuable services in connection with the United States Coast Survey led to his appointment as superintendent of that im portant work in 1867, an office which he held until 1874.
His "Treatise on Analytical Mechanics" appeared in 1857, and in 1870 was published an edition of 100 lithographed copies of "Linear Associative Algebra," a work re markable for the power and boldness of its reasoning. More ecently he delivered a course of Lowell lectures on "Ideal ity in Science," in the course of which he made the remark able statement of problems of cosmical physics printed in this paper about a year ago.

FIREPROOF FERRYBOATS.

The repeated demands of the public for the use of fireproof material in building passenger steamers for inland navigation seem likely at last to be complied with. A company has been formed with a capital of $\$ 10,000,000$, to build excursion steamers for use in the waters around New York. They are to be not only indestructible by fire, but also impossible to sink. The use of fireproof material for the upper works and water-tight compartments in the hulls should be made compulsory in the construction of all new steamers carrying passengers on the inland waters of the country. In view of the fearful accidents that have happened ever since steam navigation became general, it is quired of our shipbuilders; but evidently this greatly-needed reform will be brought about by the operation of that much abused doctrine, the "survival of the fittest;" for if the public is offered a choice bet ween a floating fire-trap, liable to be sunk like an egg shell, and an equally elegant but fireproof and non-sinkable craft, the fire-trap will soon cease running for lack of patronage.
But the excursion steamers are not the only vessels for which these reforms are urgently demanded. The ferryboats plying in the North and East Rivers, sometimes carrying more than a thousand passengers at a trip, are equally importan subjects for radical treatment. It is true that there have been few serious accidents attended with large loss of life on these craft; but the possibility, yes, the extreme probability of such accidents, cannot fail to strike any one; built of light wood, thickly painted, oiled, or varnished, they would burn with great rapidity even with little draught; but when it is remembered that they are so built as to create the
strongest kind of a draught throughout their whole length, it will be seen that within 20 minutes of an outbreak of a fire, there would be nothing left to burn. The greater part of the passengers would be burned or drowned, and there would be only a small number saved under favorable conditions; but if, for example, the fire started while the boa was in a pack of heavy ice midway in the river, there would
be hardly a score escape alive. Such an accident happened on a Philadelphia and Camden ferryboat several years ago, but by great good luck the fire broke out on an early trip in the morning, when very few persons were on board, so that the loss of life was small.
Even a false alarm of fire would cause many deaths, since the panic that would result on board a ferryboat of the pre sent style would drive a large number overboard. Some would voluntarily spring into the water to escape death by burning, while others would be forced over the side in the struggle of those in the center to get out.
All these dangers would be avoided if every passenger knew that the boat could neither burn nor sink; under such circumstances the cry of "fire" would produce no panic and even in the most serious collision the passengers would know that there was no danger after the first shock. For
these reasons it is evident that the proposed reforms in excursion steamers should be hastened into effect upon the lines of ferryboats also. But it is here that they will be slowest to make their way. The ferry routes are monopolies; their proprietors fear no competition such as threatens the owners of excursion steamers; they have large amounts invested in their present craft, and they will not voluntarily abandon these boats and go to great expense for others
unless compelled to do so. If resort be had to Congress or the State Legislature to compel the needed change by statute, the companies have both money and influence enough to delay long, if not wholly to prevent, the passage of the requisite laws; consequently they can be reached only through their pockets or through the influence of an overwhelming public opinion. As before stated, they are independent of competition, and therefore it is difficult to
touch their pockets; hence public opinion alone is likely to bring about the desired change. Now, if they are called upon to abandon their' present boats and build others of far more expensive types, they will stand a great deal of pressure from that indefinable force known as public opinion before they will yield-the great loss and expense involved will have the greater weight; but if any one can devise a plan by which their present fleet of steamers can be rendered fireproof and non sinkable for a moderate outlay, there is little reason to doubt that they would be apt to regard such an improvement favorably. For example, the light woodwork of these boats has one advantage over iron; it will float if detached from the hull containing the boilers, engine, etc. Hence, if it can be rendered fireproof, the problem is solved at once. All that will be necessary will be to have all that portion containing the cabins, roadways, etc., detached from the hull, so that, no matter what might happen, the most important portion would readily float with all the passengers. Panics could be averted by numerous signs: "This boat can neither burn nor sink." The hull of the ferryboat should extend to the guards, which should project, as at present, beyond the upper works. These latter could be removed, made fireproof, and replaced at no great cost. The upper portion should then be built upon a heavy flooring, which should be wholly detached from the hull. To prevent displacement of one upon the other, vertical bolts should be used which would keep the two parts in position, but offer no resistance to as eparation on account of a downward strain. The shafts, wheels, and walkingbeam should be so arranged as not to have any connection whatever with the upper works, and in case anything should happen to cause the hull to sink, it would go to the bottom, and leave the great box containing the passengers floating on the surface.
The inventor who can render wood fireproof without seriously impairing its buoyancy, will have not only the ferryboats, but the whole fleet of wooden passenger steamers, to remodel. If the new company successfully carries out its present programme, the old craft must conform to the new condition of absolute safety or go out of business. There is oo more profitable field open for an inventor than a solution of the problem: How can a wooden steamer be rendered fireproof and non-sinkable at the least cost?

designs produced by crystallization.

A French inventor noticed the manner in which watery vapor in a warm room congeals against the glass during frosty weather and forms needle-like crystals, interlacing one another like the threads of a tissue. This observaion gave him the idea of producing designs for textile fabrics by crystallizing various salt solutions on a sheet of clay. He first tried the sulphates of copper, zinc, iron, alumina, and magnesia. He covered five clean glass plates, each with the solution of one of these salts, placed them in a horizontal position, and allowed them o crystallize slowly by evaporation. He found further that he crystal form became more suited for his purpose when he added albumen, gum, starch, or gelatine to the solution, while at the same time the crystals became more resistant He found also that different temperatures influenced the forms of the crystals, and that he could produce fantastic trees, flowers, stars, arabesques, roots, and even insects of interesting design. He went through many experiments, and ended by making the figures obtained permanent by electrotyping, for which purpose he caused the solutions to crystallize upon strong plates of copper or German silver. A clean sheet of lead, placed on the finished crystallization, gave, by hydraulic pressure, a metallic counterpart of the same. Or he used sheets of softened gutta percha, which received the impression and could be used in making a copper deposit in the electric bath.
The great problem, however, was to produce a continuous design which would fit around the rollers with which the patterns are printed on woven fabrics. The de ached productions of the crystallization on his plates did not satisfy this condition. He substituted, therefore, in place of his flat plates, metallic cylinders similar to those used for producing the rollers for calico printing. By slowly turning them around their axis, while the solution on their surface evaporated, he obtained a design which satisfied the wants of the printer and the weaverfor a continuous design without break in the whole length of the cloth.
There are, however, some objections left. The crystalliza tion is capricious and not sufficiently even and uniform often leaving blanks which are larger than are agreeable to the purchaser of the fabric; but this may be overcome by experience and precaution. Another objection, however, appears impossible to correct. The two sides of the patterns do not match when different widths are joined at the selvedge of the cloth. It is argued that this is of minor importance as generally dressmakers and tailors pay no attention to it.

Jacob Boll.

Prof. Jacob Boll, of Dallas, Texas, died September 29 while engaged in scienific exploration in Wilbarge County of that State. Prof. Boll was a Swiss naturalist and geolo gist, a favorite pupil of Agassiz, and a man of distinguished scientific reputation. His name is honored in the Harvard Academy of Science, in Philadelphia, Paris, Geneva, Berlin, Zurich, and other seats of learning in Europe. In Texas, in the absence of a State geologist, for six years past his labors have been of great value to science and to the State.

HINTS TO THE YOUNG STEAM FITTER

by william j. baldwin.

drying by steam.
Three-fourths of all the manufacturing businesses outside of the metal trades, and many of them, use heat for drying purposes; and as various as are the businesses so also are the modes of drying, often the result of years of experiment.
No manufacturer of wooden articles can get along without a drying kiln. The laundry man or woman, the dyer, the hatter, the tobacconist, the piano and organ maker, the dried fruit manufacturer, the japanner, the tanner, all must have a means of drying faster and more conveniently than can be had by exposure out-of doors.
Usually steam is used in drying rooms and drying kilns because of its cleanliness, its even distribution, its safety from fire, its easy and quick management, and the cheapness of its maintenance.
The higher the temperature of a drying room the cheaper can the articles be dried. This may not appear plain at first to those who have studied the laws of equivalents, but nevertheless it is so, being caused by local conditions, which always prevent the utilization of all the heat. Thus, the greater the difference in temperature and the slower the movement of header, A', Fig. 1, and to put each leaf; C, together continu
diant heat that is thrown off, and giving a thoroughly uni form heat throughout the room. A A' are headers (often called manifolds), usually made of extra heavy pipe, to admit of tapping and threading, instead of using T's, the cost of the heavy pipe and the drilling and tapping being very much less as well as better and straighter than a header composed of many short pieces of large pipe and the necessary T's. (These remarks apply to all large coils.)
B B are the spring pieces, threaded right and left handed C C, the leaves or sections of the coil ; and D D, the coil stands. The stands are always in pairs, to admit of giving the neces sary division and inclination to the pipes, and when viewed through the holes look like Fig. 2. The dotted lines are the centers of imaginary pipes to show the pitch. When coils are very wide in the direction of the length of the headers it is well to keep the coil stand 2 or 3 feet from the header at that end, to prevent the expansion from puliing the screws from the floor.

The distance between the holes in the standing coil header is usually about 12 inches, or as wide as the clothes-horses from center to center.

leaf should not exceed 40 feet under a back pressure of 2 pounds at the engine.
For exhaust steam the upper header should be large, 3 inches for 12 leaves of 40 feet each, or about 500 feet in the coil, giving good results, to be increased in proportion to the increase in leaves, a 4 inch pipe header being enough for a coil of from 900 to 1,000 feet, composed of leaves of 40 feet each.
Unless the exhaust steam is carried a long distance hori zontally, 50 feet or more, the pipe leading to the header may be one or two sizes smaller than the header, provided it is large enough for the engine.
With steam of high tension, small pipe headers with T fittings may be used; but where the pressure is variable, a arge header insures an equal distribution of steam to all the leaves.
Sometimes gridiron or floor coils are used on account of being cheaper, but the same amount of pipe in this form will not dry clothes as fast as the standing section coil.
Figs. 4 and 5 show gridiron coils of easy construction, $a a$ being the manifolds or headers, $b b$ right and left elbows, $c c$ coil pipes right handed, and $d d$ right and left handed spring pieces.

ARRANGEMENT OF PIPES FOR DRYING BY STEAM.
the air compatible with the amount of moisture to be carried off, the better the result in the laundry or dry kiln, or any place where rapid drying only is the object.
In no other place is the power of radiant heat (direct radiation) more manifest than in the drying room, and more failures can be traced to placing coils under skeleton floors, or flat on the floor, than any other chuse, except, perhaps, an ignorance of the principles of piping, which so many consider can be done by any one who wears a pair of greasy overalls.

I have proved in many cases that the same amount of pipe or plate surface, distributed around and between the materials to be dried, will do the work in half the time it takes the heated air from an indirect coil to do it. This is no mistake; and further, wooden blocks can be dried lighter (proving there is more water driven off) by direct radiation than by indirect radiation, the times and temperatures being the same.
According to the above it is plain that in the construction of drying houses for most purposes the heating surfaces should be so placed and distributed that the direct hert rays from the iron could fall uninterrupted on the greatest surface possible of the materials to be dried.
Fig. 1 shows a perspective of a good arrangement of a directradiation laundry drying room coil, utilizing all the ra-
usly, working upward until you reach the elbow, E; then, when all the leaves are so far constructed, with all the elbows looking up, with their left-handed thread uppermost, count in
and mark the right and left handed spring pieces, B, then apply the upper header, A, and screw the whole up as nearly alike as possible.
Do not be persuaded to do away with the spring pieces and the elbows through economy, so as to connect the upper headers straight, as in a box coil; if you do you will have trouble should you want to take down a single leaf for repairs.
Fig. 3 shows sectional perspective view through a laundry drying room, a being the coil, b the clothes horse, c the suspended rail from which the horses hang, d fresh air inlet duct, e its damper or regulator, f ventilator with regulator usually governed by a cord and bell crank, and drawn back by a spring; and g the space into which the horses are drawn, which of necessity must be as long as the horses.
This style of drying room gives the direct radiation of both sides of the leaf of the coil to the fabrics to be dried, and also exposes both sides of a fabric to the direct radiation of a section or leaf.
For high pressure steam 1 inch pipe is generally used in the coil; but if exhaust steam is to be used the pipes should be no smaller than $11 / 4$ inch, and the total length of any one

In Fig. 4 the pitch of the pipes and headers are in the diection of the arrows
These coils are often used in lumber dry kilns, but the same amount of pipe arranged around the walls in miter or wall coils will give much the better result, and will not be a receptacle for dirt, as a floor coil is, which must have a skeleton floor over it to walk over and pile the lumber on
In large dry kilns on the direct radiation principle, where pipe enough cannot be put on the walls, and for the better distribution of the heat, rows of stancheons should be put up to hang the coils on, in such a manner as not to interfere with the gangways.
The tobacconist prefers to dry without artificial heat, in temperature of about 60°, with a rapid change of air through the windows. This appears to give dryness without brittleness, but at night and in damp weather they must close the windows, and to get their stock out in time recourse must be had to steam coils.
In experimenting for a well known tobacco manufacture in fine cut, I found that radiators or box coils placed in the middle of the rooms gave the best result. Wall coils under the windows made the room warm, but did not dry quick, and the tobacco felt wet when brought into a cold room and allowed to remain for a short time. A strong ventila tion with a temperature of 80° made it too crisp; but the
box coils placed in the middle of the rooms, with a tempera ture of 65°, with a small ventilation, with the currents of air in the room up at the center and down at the windows (contrary to the general principle of warming for comfort) gave a result which was declared good.
In piano-case manufactories, and where specialties in glued and veneered furniture of the best quality are made, the workmen are generally supplied with a drying cabinet of a size suitabie to the pieces to be done, in which the work is heated before the glue is applied, and into which it is again placed to properly dry.
These cabinets are usually rectangular boxes, with holes in the bottom and top, to allow the air from the room to circulate through them so as to carry off the moisture. Their steam coils are usually of the gridiron pattern, flat on the bottom of the box, with the valves on the outside. Sometimes they are heated indirectly with the warmed air con veyed in tin pipes from a large coil placed in some favorable position.
Some manufacturers claim the quicker the work can be dried after gluing the better it will we

It is not profitable to dry by forcing air, as with a fan or blower, in connection with a steam coil.
High pressure steam should be used in connec tion with a blower.
A temperature of 130° is considered good, and can be easily attained in a drying room.
The additional quantity of pipe necessary to raise the temperature of a drying room from 120° to 130^{3}, if added again, will not raise it from 130° to 140°.

APPARATUS FOR COMBINING RECTANGULAR VIBRATIONS.
 by georae m. hopki

There are several well known methods of combining rectangular vibrations to form the beautiful and instructive figures produced by M . Lissajous by means of two tuning forks carrying small mirrors and vibrating in planes at right angles to each other. The engraving shows still another method of accomplisbing the same thing in a simple and inexpensive way; all the materials needed being a box about 24 inches square, two flat springs of wood, $11 / 4$ inches wide, $1 / 8$ inch thick, and 24 inches long; or two springs of metal $\frac{1}{16}$ inch thick, 1 inch wide, and the same length. These springs are secured to the sides of the box at diagonally opposite corners, by stout screws, a block 1 inch thick and 4 inches long being placed between the end of the spring and the box, to give space for the vibration of the spring.
Upon the free end of each spring, and in the plane of its vibration, is cemented a piece of thin cirdboard, having a longitudinal slit $1 / 8$ inch wide, parallel with the spring to which thecard is attached. The slits in the two cards intersect each other at right angles, forming at their intersection a clear aperture $1 / 8$ inch square. The two cards are placed as near each other as possible without touching. One of the springs carries an adjustable weight, the use of which is to change the period of the vibration of the spring by placing it in different positions. The weight is shown in the engraving on the horizontal spring, but it may be shifted to the vertical spring when a slow vibration is required.

If the two springs are set in motion by snapping them simultaneously with the thumb and finger, the square aper ture formed by the intersection of the slits in the two cards will move so rapidly as to appear like a band of light, i.e., supposing the operator to be looking through the aperture toward the light. If the two springs vibrate in unison the band will either be perfectly straight, bisecting the angle formed by the two springs, or it will be elliptical or circular. By changing the period of the vibration of one of the springs so that the periods of the two springs will be to each other as $1: 2$, the band of light will assume the form of the figure 8. Make the vibrations as $2: 3$, and the figure representing the fifth will be formed, and so on throughout the whole range of compound vibrations.

To project these figures on a screen all that is required is to place a lamp at one side of the slitted cards, and a magnifying glass of about six inches focus on the other side, as indicated in the engraving. An easy way to hold the mag. nifying glass in position is to place the handle in a hole in a board, the latter resting on the top of the box. This rude device admits of moving the lens forward or backward, and to the right or left, as may be required.
Arranged in this manner the figures may be made to occupy an area of 12 to 16 inches square on the screen. The same method applied to a lantern slide produces figures of any required size. Of course the construction of the apparatus is materially different in this case, and the workmanship necessarily finer.
If continuous action is desired electro magnets may be applied as in the electrical diapason described by me in this journal some months since.

A Cæsarean Operation.

Twelve Philadelphia physicians lately assisted at the delivery of Mrs. William Burnell, by cæsarean operation. The mother is a dwarf, thirty-two years old, and forty-two inches high. Owing to a peculiar deformity it was seen that it
would be impossible for her to give birth to the child in the usual manner. Porrow's method was adopted.
An incision was made on the median line of the abdomen, and the abdominal walls were cut through. The womb was labor
removed, an incision made in it to correspond with those in ! In the engraving, Fig. 1 is a perspective view of the grain the abdominal walls, and the infant released. After that meter; Fig. 2 is a detail view of the locking mechanism; the womb was restored to its bed and closed, and the other and Fig. 3 shows the valve at the bottom of the measurparts brought together. The clothing and all articles in the ing box.
room were subjected to a solution of carbolic acid spray, The box, A, is of quadrantal form, made convex at its according to Lyster's method, during the operation. The lower end, and fitted to a concave valve, B, which is concenpulse of the woman remained excellent throughout the tric with the pivot, C, upon which the box, A, oscillates. whole of this severe trial, and all her symptoms were favor- To the side of the box next its support are attached two able. At last reports both mother and child were doing jointed locking braces, D, which alternately lock the box in one or the other of its positions, and across the top of the box above the central partition which divides the boxinto two equal compartments, there is a wicket, E , whose pivot is extended be yond the side of the box and provided with two equal and opposite arms, $a a$, which are capable of touching the joints of the braces, D, and of unlocking them, so that the measuring box may swing and discharge one of the compartments, while the other is brought under the shute to be filled. The wicket, E , is operated by the pressure of grain when the compartment of the meas uring box becomes filled. It will be noticed that the valve, B , having an opening of the same size as the opening of one of the compartments, only one side of the measuring box can be discharged at a time. Two strokers are attached to the standard supporting the measuring box, and brush the surplus grain from one compartment of the box, A, to the other. The speed with which the apparatus operates is controlled entirely by the quantity of grain fiowing from the thrasher.
This useful invention was recently patented by Mr. George W. Barnard, of Economy, Wayne county, Ind.

The Color Blind Scare.

Connecticut is, we believe, the first State to pass a law prescribing certain regulations to be observed by railroad companies in regard to this
well. Both would have died except for the heroic treat ment adopted.

NEW GRAIN METER.

The grain meter shown in the engraving is designed to be used cbiefly on thrashing machines, and can be readily attached to any separator, requiring no extra devices, excep an elevator to carry the grain to it from the grain shute

The weight of the grain does the work of measuring by sim ply oscillating the measuring box on its pivot. It will be seen that none of the power applied to the thrashing maeen that none of the power applied to the thrashing ma
subject. If all the other States should follow suit, and each of them enact a law as crude, vexatious, unjust, and annoying as this pioneer specimen, the skilled ophthalmic experts all over the land may safely count upon having a good time, however it may be with locomotive engineers and others who have rendered long and acceptable service upon our best managed roads. There is sure to be blundering, short sighted work, when legislators who have no practical and scarcely any theoretical knowledge of railroad operation, undertake to remedy supposed defects in the system which in some unaccountable way have escaped the notice of the shrewdest and most capable managers; and the liability to blunder is none the less when the mercenary greed of a selected corps of professional experts is to be satiated at the rate of two dollars a head for the great army of railway employes whose duties require them to have anything to do with the form and code of signals. And so the companies must be taken in hand, and reliable and long-tried engineers, who have never had an accident on the road, driven from service because they can't read letters three-eighths of an inch long at a distance of 25 feet, or sort colored worsteds in a scientific manner, or see red and green precisely as some other people do, although they are able to discriminate just as sharply between the two, and be as little liable to confound or mistake one for the other. The logic of facts shows conclusively that the danger from color blindness, about which such a hue and cry has been raised, is greatly exaggerated, and that in no single one of the many careful and searching investigations that have been made in the past history of railroads, has the cause of an accident been traced to color blindness, nor has this particular cause even been suggested or suspected, so far as we have been able to ascertain from the record.-National Car Builder.

The Voice.

Dr. Ward, of New York, says on this subject, of the many agents which have more or less influence on the voice, the four principal are climate, dress, diet, and exercise. Change of climate may cause some slight deieterious effect on the larynx, but this influence is greatly overestimated. The present fashionable style of dress is decidedly unhealthy. The chest and abdomen are unnaturally confined, the lungs and other organs acting abnormally. All clothing should be loosely attached to the body, and the dress worn high. Avoid as much as possible appearing in full dress. The throat should not be wrapped in comforters, boas, etc. Chest protectors should not be worn, and the feet should be guarded against wet. The diet of the singer should be bland as well as nutritious. Of the different kinds of meat, venison, poultry, roast beef, and lamb are the easiest to digest, and due proportion of fat should be taken as a heatsupplying principle to the body. Cooked vegetables, unless too highly seasoned. are easily digested. Salads, cut cabbage, cucumbers, etc., should be avoided. Pastry should be invariably discarded. Dinner at noon, followed by a light tea at nightfall, is a rule which, if rigidly adhered to, will be a safeguard against all ordinary attacks of indiges. tion. In order that the act of singing be properly per formed, it is absolutely necessary that the stomach be nearly
empty. Alcoholic beverages should not on any consider ation be indulged in by vocal artists.
For the full development and preservation of the vocal cords several rules must be observed. The exercises must be regularly and systematically practiced; they must always be within the register; they should never be pushed to the point of fatigue; they should never be made use of when the vocal organs are attacked with cold, no matter how slight. Always practice standing upright, so as to allow of full play of the lungs and accessory vocal organs. Bodily exercise is especially beneficial to the singer. In short, learning to sing is learning to be healthy.-The Monthly Magazine.

Ice at High Temperatures.

Prof. Thomas Carnelley writes as follows to the Chemical Newos:
Numerous experiments which I have made during the last few weeks on the boiling points of substances under low pressures, the details of which will shortly be published, have led to the following conclusions in reference to the conditions necessary for the existence of any substance in the liquid state. These are two in number, viz.:

1. In order to convey a gas into a liquid the temperature must be below a certain point (termed by Andrews the critical temperature of the substance), otherwise no amount of pressure is capable of liquefying the gas.
2. In order to convert a solid into a liquid the pressure must be above a certain point, which I propose to call the critical pressure of the substance, otherwise no amount of heat will melt the substance.
If the second of the above conditions be true, it follows that if the necessary temperature be attained, the liquefaction of the substance depends solely on the superincumbent pressure; so that if by any means we can keep the pressure on the substance below its critical pressure, no amount of heat will liquefy it, for in this case the solid substance passes, directly into the state of gas, or, in other words, it sublimes without previous melting.
Having come to this conclusion, it was easily foreseen that if these ideas were correct it would be possible to have solid ice at temperatures far above the ordinary melting point. After several unsuccessful attempts I was so fortunate as to attain the most perfect success, and have obtained solid ice at temperatures so high that it was impossible to touch it without burning one's self. This result has been obtained many times and with the greatest ease, and not only so, but on once occasion a small quantity of water was frozen in a glass vessel which was so hot that it could not be touched by the hand without burning it. I have had ice for a considerable length of time at temperatures far above the ordinary boiling point, and even then it only sublimed away without any previous melting. These results were obtained by maintaining the superincumbent pressure below 4.6 mm . of mercury, $i . e$., the tension of aqueous vapor at the freezing point of water. Other substances also exhibit these same phenomena, the most notable of which is mercuric chloride, for which latter
the pressure need only be reduced to about 420 mm . On letting in the pressure the substance at once liquefies.

On the Absolute Invisibility of Atoms and Molecules.*

Maxwell gives the diameter of an atom of hydrogen to be such that two millions of them in a row would measure a millimeter, but under ordinary physical conditions most atoms are combined with other atoms to form molecules, and such combinations are of all degrees of complexity; thus, a molecule of water contains three atoms, a molecule of alum about one hundred, while a molecule of albumen, according to Mulder, contains nine hundred atoms, and there is no reason to suppose albumen to be the most complex of all molecule compounds. When atoms are thus combined it is fair to assume that they are arranged in the three dimensions of space, and that the diameter of the molecule will be approximately as the cube root of the number of atoms it contains, so that a molecule of alum will be equal to

$$
\left({ }^{8} \vee 100=4 \cdot 64\right) \frac{4 \cdot 64}{2000000}=\frac{1}{431000} \mathrm{~mm}
$$

and a molecule containing a thousand atoms will have a diameter of. $\frac{10}{200000}=\frac{1}{200000} \mathrm{~mm}$. Now, a good microscope will enable a skilled observer to identify an object so small as the $\frac{1}{4000} \mathrm{~mm}$. Beale, in his works on the microscope, pictures some fungi as minute as that, and Nobert's test bands and the markings upon the Amphiplura pellucida, which
are of about the same degree of fineness, are easily resolved by good lenses. If thus the efficiency of the microscope could be increased fifty times $\left(\frac{200000}{400}=50\right)$ it would be sufficient to enable one to see a molecule of albumen, or if its power could be increased one hundred and seven times it would enable one to see a molecule of alum.
Now, Helmholtz has pointed out the probability that interference will limit the visibility of small objects; but suppose that there should be no difficulty from that source, there are two other conditions which will absolutely prevent us from ever seeing the molecule.
1st. Their motions. A free gaseous molecule of hydrogen at the temperature of $0^{\circ} \mathrm{C}$., and a pressure of 760 mm . mercury, has a free path about $\frac{1}{10000} \mathrm{~mm}$. in length, its velocity in this free path being $1,860 \mathrm{~m}$. per second, or more than a mile, while its direction of movement is changed millions
of times per second. Inasmuch as only a glimpse of an object moving no faster than one millimeter per second can be had, for the movements are magnified as well as the object itself, it will be at once seen that a free gaseous molecule can never be seen, not even glimpsed. But suppose such a molecule could be caught and held in the field so it should have no free path. It still has a vibratory motion which con stitutes its temperature. The vibratory movement is measured by the number of undulations it sets up in the ether per second, and will average five thousand millions of millions, a motion which would make the space occupied by the molecule visibly transparent, that is, it could not be seen. This is true for liquids and solids. Mr. D. N. Hodges finds the path of a molecule of water at its surface to be 0.0000024 mm ., and though it is still much less in a solid it must still much too great for observation.
2 d . They are transparent. The rays of the sun stream through the atmosphere, and the latter is not perceptibly heated by them as it would be if absorption took placein it. The air is heated by conduction and contact with the earth, which has absorbed and transformed the energy of the rays. When selective absorption takes place the number of rays absorbed is small when compared with the whole number presented, so that practically the separate molecules would motions were not absolute hinderances

Lightning strokes.

The fatalities from lightning are very much greater in number and exteut than is generally supposed. In European Russia alone the deaths for five years-1870-74-were 1,452 men and 818 women. No fewer than 4,092 fires are period. In Prussia, were the registration of the causes of death is exceptionally careful, 1,004 persons were reported as killed by lightning in the nine years from 1869 to 1877. If we may trust the report of our Registrar-General this period only 194 such deaths are registered for England and Wales; but our returns are admittedly incomplete.
In Austria-from 1870 to 1877 (eight years)-lightning occasioned upward of 40,000 fires, and destroyed more than 1,700 lives. In Switzerland the returns seem curiously vari able. For example, in 1866 only three such deaths are reported; while in 1877 we find as many as thirty. Of the deaths by lightning in France, M. Boudin some years ago collected statistics, which showed that during the thirty
years, beginning in 1834 and ending in 1863, as many as years, beginning in 1834 and ending in 1863, as many a 2,038 people were struck dead by lightning in that country During the last ten years of this period the deaths amounted to 880 , and of these only 243 were women. Nothing, indeed is more striking in these statistics than the uniform pre ponderance in the numbers of the male over those of the fe male sex. With the exception of Sweden-where, for some reason not explained, and not easily to be imagined, this preponderance is not so observable-there seem to be generally about two men killed to one woman. The traveler who ac counted for the immunity of the Swedish women by their comparative "lack of personal attractions" was as ungallant, and we believe, moreover, as incorrect in his fact as be was certainly wanting in the decorum that forbids jesting on serious subjects. The country seems invariably to suffer mor than the town; the village more than the great city.
Public buildings fare, it seems, little better than private houses, though a century and a quarter has elapsed since Franklin's famous experiment with the kite demonstrated the possibility of controlling the electric fluid, and nearly a century has passed since the learned, taking interest inlightning conductors, were divided into hostile factions on the famous question of "knobs or points." Mr. Anderson estimates that at least one-half, and perhaps two-thirds of the public buildings, including the churches and chapels, of Great Britain and Ireland, are without any protection against lightning; while it is believed that not five out of a thousand private houses are fitted with conductors. St. Paul's was min Franklin's "lightning rods" having been first set up over Sir Christopher Wren's dome in 1768.-London News.

On Sound as a Nuisance.

For a long time it has been well known to the medical profession that in various critical states of the human system absolute silence, or the nearest possible approach to it, is not the least important condition to be secured. Accordingly muffled knockers, streets covered with straw or spent tan, and attendants moving about with noiseless step, are universally recognized as the signs and the requirements of severe disease. But the truth that noise is a contributor to the wear and tear of modern city life has scarcely yet been realized by the faculty, not to speak of the outside public. Consequently, while a zealous war is being urged against other anti-sanitary agencies, no general attempts for the abolition of superfluous noise have yet been made. We cannot, perhaps, "give anything approaching to a scientific explanation why sound in excess should have an injuriou effect upan our nervous system. Prof. Berthelot has recently shown, by a careful series of experiments, that sound waves do not, like thermic and luminous vibrations, set up chemical changes in bodies submitted to their influence; but our inability to give an account of the fact does not affect its existence. We feel that noise is distressing, exhaustive. The strongest man after days spent amidst
from what. It may even be suggested that the comparative silence of the sea-side, the country, or the mountains, is the main charm of our summer and autumn holidays, and con tributes much more than does ozone to restore a healthy tone to the brains of our wearied men of business. Indeed, if we consider, we shall find that this is the most unnatural feature of modern life. In our cities and commercial towns the ear is never at rest, and is continually conveying to the brain impressions rarely pleasant, still more rarely useful or instructive, but always perturbing, always savoring of unrest. In addition to the indistinct but never-ceasing sea of sound made up of the rolling of vehicles, the hum of voices, and the clatter of feet, there are the more positively annoying and distracting elements, such as German bands, organ grinders, church bells, railway whistles, and the like. In simpler and more primitive times, and to some extent even yet in the country, the normal condition of things is silence, and the auditory nerves are only occasionally excited. It is scarcely to be expected that such a change can be undergone without unpleasant consequences.
The question has been raised, why should some noises inerfere with brain work by day aud disturb our rest at night so much more than others? A strange explanation has been proposed. We are told that sounds made incidentally and unintentionally-such as the rolling of wheels, the clatter of machinery (except very close at hand), the sound of footsteps, and, in short, all noises not made for the sake of noise -distress us little. We may become as completely habituated to them as to the sound of the wind, the rustling of trees, or the murmur of a river. - On the other band, all ounds into which human or animal will enters as a necessary element are in the highest degree distressing. Thus it is, to any ordinary man, impossible to become habituated to the screaming of a child, the barking and yelping of dogs, the strains of a piano, a harmonium, or a fiddle on the other side of a thin party-wall, or the clangor of bells. These noises, the more frequently we hear them, seem to grow more irritating and thought-dispelling.
But while admitting a very wide distinction between these wo classes of sounds, we must pause before ascribing these differences to the intervention or non-intervention of will. We shall find certain very obvious distinctions between the wo kinds of sound. The promiscuous din of movement voice, and traffic, even in the busiest city, has in it nothing harp or accentuated; it forms a continuous whole, in which each individual variation is averaged and toned down. The distressing sounds, on the other hand, are of ten shrill, abrupt, distinctly accentuated and discrete rather than continuous. Take, for instance, the ringing of bells: it is monotonous in the extreme, but it recurs at regular intervals. Hence its action upon the brain is intensified, just as in the march of roops over a suspension bridge each step increases the vibration. The pain to the listener is the greater because he knows that the shock will come, and awaits it. Very similar is the case with another gratuitous noise, the barking of dogs. Each bark, be it acute or grave, is in the highest degree abrupt, sharply marked, or staccato, as we believe a mu sician would term it. Though the intervals are less regularly marked than in the case of church bells, we still have a prolonged series of distinct shocks communicated to the brain. Well might Goethe say
Vor allem

Ist das Hundegebell mir verhasst;
All the othermore distressing kinds of noise possess the characof shrillness, loudness, and of recurrent beats or blasts. As an instance of an undesigned, unintentional noise being distressing to those within ear-shot, we may mention the dripping of water. A single drop, whether penetrating hrough a defective roof, falling from the arch of a cavern, or issuing from a leaky pipe, and repeated at regular intervals, is as annoying as the tolling of a bell, the barking of a dog, or the short, sharp screams of a fretful infant. The only difference is that the noise is not heard as far. We may hence dismiss the " will" theory, and refer the effects of noises of this class to regularity, accentuation, and sharpness. It is particularly unfortunate that the multiplication of sound should accompany, almost hand in hand, that increase of nervous irritability and that tendency to cerebral disease which rank among the saddest features of modern life. A people worn out with overwork, worry, and competitive examinations might at least be spared all unnecessary noise. Many persons cannot or will not understand how necessary silence is to the thinker. A friend of the writer's, engaged in investigating certain very abstruse questions in physics, is often compelled to throw aside his work when an organ grinder enters the street, and suffers with acute pain in the head if he attempts to go on with his researches.
We should therefore propose, as measures of sanitary re form, the absolute prohibition of street music, which is more rampant in London than in any other capital in Europe. The present law, which throws upon the sufferer the burden of moving in the matter, is a mere mockery. Another necessary point is the abolition of church bells. In hese days of innumerable clocks and watches every one can ell when it.is the time for divine service without an entire neighborhood being disturbed for some twenty minutes at a ime. Nonconformist places of worship collect their congregations without this nuisance. Further, all dogs convicted of persistent barking should be disestablished. And lastly, harmoniums, American organs, and wind instruments in general should be prohibited, except in detached
houses.-Journal of Science.

THE WOOL SORTER'S DISEASE.

The danger which lurks in the dust and dirt of old rags, and especially hair and wool, is, during their manipulation preparatory to being transformed into paper, felt, or cloth, a very serious matter for the workmen employed. The exceedingly unclean condition in which the bales of rags and hair are received in the.factories necessitates their being first cleaned and sorted by hand, and this operation is often fraught with the gravest consequences, scattering sometimes the seeds of loathsome and fatal diseases. The sorting room is provided with tables, at each of which is a worker, usually a woman; at her side is an open bale, from which she chooses a handful at a time and deposits on the table; this liberates a great deal of dust. In many cases the dust contains the germs of the horrible disease called "anthrax," "malignant pustule," "charbon," and "Siberian plague." These germs possess singular vitality and virulence, developing in the human subject the loathsome and fatal malady called " wool sorter's disease." It is not, however, confined to wool, as the germs of the fungoid organism, "Bacilus anthracis," are found in every description of hair and wool, and most frequently in the Siberian horse manes, which are largeiy imported in England for the manufacture of hair cloth. Neither is the disease confined to the sorters; the infected dust is mingled with the air and gets outside the works, or it is distributed among manure dealers who buy the refuse dirt. This has recently been conclusively proved by cases in Glasgow, Bradford, and elsewhere.
Manufacturers in England are therefore contemplating the disinfection of all dangerous hair and wools. It is proposed to empty the bales in a fanning arrangement, burn the coverings, or, soaking them in refuse sulphuric acid, changing them into manure by the addition of gypsum as a drier. The fine dust blown out by the fan is to be discharged under the fire bars of a steam boiler, where it will be promptly and effectively destroyed. The heavier dust falling on the bottom, and now sold for manure making, is to fall at once into a lead tank with sulphuric acid and treated like the coverings; this dust from hair and wool is rich in phosphates and ammonia, and is, therefore, a valuable fertilizer, while the acid increases its fertilizing properties and utterly destroys any germs present. Carbolic acid is to be used for disinfecting the hair, as chloride of lime or bleaching powder injures the fiber.
In order to show the urgency of these precautions we recite some of the details of one of the cases lately reported in an English medical journal: William Otley, aged 63, employed by Mitchel Brothers, Bradford, to prepare mohair after it had passed through a washing and scouring process neeessary to manufacture it into yarn. He had first a small pimple upon his chin; this increasing and making him feel unwell, he staid home. A physician was sent for, and found swelling of the under jaw setting in. As the pustule increased rapidly, and constitutional symptoms showed themselves, the malignity of the case was soon recognized and all hope of staying the disease was lost. Three days later the patient died. On the morning of that day the doctor took a little blood and serum from the affected part, and, submitting it to a microscopic examination, discovered the organism known as "Vacellus anthracis," now universally recognized among pathologists as the cause of splenetic fever in cattle, and that form in which it is identical with wool sorter's disease.
No doubt the pimple on the chin had been innoculated by the virus, the development of which caused the man's death. After his decease the upper part of his body underdeath. After his decease the uppe
went a most rapid decomposition.

a new fire apparatus.

The portable standpipe fire extinguishing apparatus, invented by Abner Greenleaf, of Baltimore, appears to be the most meritorious original addition to the armory of firemen that has been made for many years. It has been on trial in this city during the past year, and on several occasions has proved of the highest practical utility. It is made in three sections, the lower being mounted permanently on trunnions, while the other two are carried on a side rack. On reaching the fire the two upper sections are coupled with the first, making a pipe fifty feet long. The pipe is raised in a minute by means of a hand wheel at the rear of the truck, and quickly connected at the base with the water supply. A shorter substitute for the upper section of the pipe is carried for use when the fire is so low that the nozzle height of thirty-five feet is sufficient. Different sized nozzles can be used with both lengths of pipe. The apparatus is supported by the truck wheels, and weighs 6,500 pounds. The great advantage of the tower lies in its getting a solid stream of water forty or fifty feet nearer the fire by raising the point of delivery. By means of a flexible pipe at the top of the tower, operated from the ground, the stream can be projected in any direction, sweeping an entire block if necessary. This contrivance presents a marked advantage over self-supporting ladders for several reasons. It is not necessary to provide for the weight and safety of men aloft. The man on the truck, in comparative safety, has full freedom of action, and can be cool enough to direct the stream to the points most needing attention. Less power is required at the engine to raise the water to the de sired height, the friction of the pipe being less and the course more free from bends. The pipe can be put in working condition in three minutes after its arrival in front of a building on fire; and in several instances in this city it has been the means of saving valuable property in which th
fire would otherwise have been beyond control. It is intended eventually to have one portable pipe to each lattalion of the fire service, so located that two or three can be brought to bear at any fire.

FALL OF A METEORIC STONE.

It has been doubted by some if ever a meteoric stone has been found which had also been seen to fall. It is well known that the meteorites in our mineralogical cabinets have been picked up in various parts of the world, and it is by their chemical composition that they are judged to be of cosmical origin. At the other side the observation of falling meteors is quite common, but seldom, if ever, has the falling body been found, hence the doubt in regard to them which exists still in many minds. Any record, therefore, of the observed falling of such a stone and its finding, while still hot, on the spot where it fell, is of interest. Such a record was recently furnished by Mr. W. Emerson Mead, of New York, the tenant of whose cottage near Schroon Lake makes the following report, dated September 23:
"Last night, while it was dark outside, the clouds being black and heavy, it became at once light as noonday. I jumped to the window, and saw the barn plain as during the day time, at the same time the house was shaken from cellar to garret. I went out of the house to investigate, and found, twenty feet from the house, a red-hot stone weighing about 125 pounds, and having indented'the soil about six inches, and in a direction as if it had come from the northeast. I threw kerosene on it, and this burned up at once, so did sulphur. The next day it was seen by a number of people, and $\$ 25$ offered for it. It was not sold, however."
By order of the owner a little house is being built over the spot, and the stone left in position for the benefit of scientists to study its position and peculiarities.

Petroleum Abroad.

The American Mail predicts a vast increase in the consumption of petroleum during the next five years. It has been forcing its way among the "exclusive races," such as the Chinese, the Persians, the Moors, etc. The natural persistence of those eminently conservative peoples, who worship old things and old usages, was considerably strength ened by their fear of kerosene. Botb the British and American consuls in China and Persia now report that the people are surmounting their fears and their prejudices and taking to the use of petroleum. A late report from our consul at Tripoli, of Barbary, states that petroleum is daily becoming more popular in that country, and the fears at first entertained in regard to its explosiveness are gradually disap. pearing. It is now used by all the city A rabs, and gradually reaching out to the country people. The same is true of India. Wherever our petroleum goes, our exporters should see that our lamps go with it. They should also remember that, in addition to its utility and superiority as an illuminator, its cheapness is its principal recommendation to those Eastern millions. .Cheap petroleum and simple, safe, and inexpensive lamps should be our motto.

The New comet.

On every evening since its announcement, interesting observations have been made at my observatory of the splendid telescopic comet now visible in the western evening sky.
The comet was discovered in this country at the Ann Arbor Observatory on the 13th of September, 1880, in R. A. 14 hours 38 minutes, north declination 29 degrees 20 minutes, and so announced in the papers last Saturday morning. On Saturday afternoon, however, a telegram was received by me from Europe via Washington, announcing its discovery by Hartwig at Strasburg, on the 29th ult., one day previous to its discovery in this country, in R. A. 14 hours 8 minutes, north declination 29 degrees 45 minutes. It is a superb telescopic object, and when seen by me on the evening of its announcement it was situated about $31 / 2$ degrees below Alphecca, or Alpha Corona Borealis. The hext evening (October 3) it was in the same field of the tele scope with that star, and presented a very fine appearance. Last evening-Octover 4-it was very close to the star Delta Corona Borealis. It is just visible to the naked eye, but it is not growing any brighter as was at first hoped, although it will doubtless be visible for some time. It has a large bright head with a sparkling nucleus, and a faint tail about two degrees in length. The head is nearly as bright, in the telescope, as the great cluster in Hercules. The tail points upwards or away from the sun. It is moving about 3 degrees daily in an easterly direction, or nearly in a line drawn from Alphecca to Altair in the Eagle. It is a beautiful object, and its scientific value will be very great. By following the direction of its motion just given no one will have any trouble in finding the comet with quite a small elescope, and it will be well worth the search.

Wililam R. Brooks.
Red House Observatory, Phelps, N. Y., October 5, 1880.

The Wrong Journal credited.

An article designating the qualifications incident to "a model workman," which appeared in this paper a few weeks ago, should have been credited to the American Machinist, instead of the publication to which the credit was accorded. If publishers would be more punctilious in crediting the source from which their articles are derived, much annoyance would be saved to the editor and publisher entitled to the credit.

decisions relating to patents.

United States Circuit Court.-Northern District of New york.
ROGERS vs. BEECHER et al.-BIRCH bEER PATENT.
Wallace, J.:

1. A patentee is entitled to the presumption of priority hich his patent affords, and this presumption is only overome by clear and satisfactory proof to the contrary.
2. The plaintiff is obliged, in order to recover damages, to prove affirmatively that the defendants have employed the nvention patented, and having in this case failed to do so atisfactorily, the bill was dismissed.

United States Circuit Court-Eastern District of Pennsylvania.

Butler, J.:

1. A mere aggregation of old parts without any new reult issuing from the united action is not patentable.
2. Old parts to be patentable must combine in operation and by their joint effect produce a new result. They need not act simultaneously, but if so arranged that the successive action of each contributes to produce the result, which, when obtained, is the product of all the parts, viewed as a whole, a valid claim for this combination may be sustained. 3. No rule of universal application has been laid down de ining a patentable combination, but two things are always necessary; first, a novel assemblage of parts exhibiting in vention; second, the co-operation of parts in producing a new result.
3. By the term "co-operation" the courts do not mean merely acting together or simultaneously, but united to a common end-a unitary result.

By the Commissioner of Patents.
HUNTLEY et al. vs. Smith.-PATENT middlings PURIFIER. -INTERFERENCE.
Marble, Commissioner:

1. When the party last in Office does not in his prelimi nary statement allege a conception of the invention in controversy earlier than the record date of the party first to file his application, it does not overcome the prima facie case made by the date of application, and judgment on the record should be rendered against him.
2. The mere fact that an earlier application was made by the party disclosing the invention in dispute cannot avail to give a prima facie date of invention in this proceeding, unless there is some reference in the later application which serves to connect it with the former.
3. While the filing of an application does not prove reducton to practice, it establishes the fact of invention.
4. Applications diligently prosecuted evince a faith on the part of the inventor in the practicability of the invention equal to that which would follow from a reduction of the same to practical form, and the latter is not a condition called for in the statute
5. In cases of long delay to prosecute the invention beyond mere description, either by applying for a patent or by a re duction to practical form adapted to use, the question of abandoned experiment or conception will arise and should be considered a factor in the case.

The Electric Telegraph as an Aid to Fishermen.
From time immemorial the fishermen of the Mediterranean shores, of Cornwall, and of the Scandinavian coasts, have been directed in their work by lookouts stationed upon cliffs to discover the approach of the finny schools. Of late the enterprising fishermen of Norway have called to their aid the electric telegraph, laying down more than twelve hundred miles of wire, to bring the fishers into instant communication with the watchers, and to notify the fish merchants where to go for supplies. The Norwegian coast gives employment to 40,000 fishermen during a large part of the year.

Elevated Railway Traffic.

The number of passengers carried on all the lines of elevated railway in New York, the year ending September 18, 1880, was $60,386,073$, divided as follows:

Third avenue Ninth avenue.	. . 31,168,686 .. 5,237,541
Total New York Elevated. .	36,406,227
Sixth avenue. Second avenue.	$\begin{array}{r} 21,143,658 \\ \hdashline 2,836,188 \end{array}$
Total Metropolitan Elevated	.23,979,846

Steamboats in Venice.

A company has been organized to introduce steamboats in he place of the gondolas which have so long held dominion in the street canals of Venice. This, a London journal remarks, may fairly be considered the climax of modern utilitarianism, a fitting supplement to the railway up Vesuvius, and the steam launches of the Nile. Travelers will of course lament the change and denounce the vandalism of the age; but they will take the steamboats and leave the few leaky gondolas that may ply to the undisturbed patronage æsthetes.
The Niagara River Bridge.-The credit for the admirable engineering skill displayed in the reconstruction of the railway bridge across the Niagara River, is due to Mr . L. L. Buck.

R ECENT DEVELOPMENTS IN ELECTRIC LIGHTING.

[Continued from first page.]

nets of the large machine, and consequently controlling the current in the external circuit.
On the top of the magnets of the exciting machine there is a platform supporting a train of gearing, consisting of two ratchet wheels mounted on shafts carrying spur wheels which mesh into an intermediate wheel connected with the pivotal support of the commutator brushes by bevel gearing and a vertical shaft. The ratchet wheels are a short distance apart, and between them there is a double faced pawl, which is capable of engaging one or both of the ratchet wheels, or of moving between them without touching either. This pawl is reciprocated by an oscillating shaft at the rear of the magnet, which takes its motion from a small crank on a shaft above the armature and between the helixes of the magnets. The crank shaft receives a comparatively slow rotary motion from the shaft of the armature.
Above the ratchet gearing there is a table supported by pillars from the platform, and upon this table near one side there is an electro-magnet of high resistance, which is connected with the circuit wires, and is influenced by the current in the same manner as the incandescent lamps, which are connected in multiple arc. An armature is suspended above the electro-magnet by a nicely pivoted scale beam, and the downward movement of the armature is opposed by an adjustable spiral spring at the opposite end of the scale beam. The excursions of the scale beam are limited by stop screws in a vertical post near the electro-magnet. The end of the scale beam is prolonged beyond the armature to receive a rod, by which it is connected with the elongated end of the oscillating pawl playing between the ratchet wheels. The rod which connects the scale beam and the pawl is rendered elastic by the insertion of a short piece of spiral spring, to admit of the free action of the pawl in catching the teeth of the ratchet wheels. When the strength of the current is augmented by the removal of several lamps from the circuit, the armature of the regulator magnet is drawn down, permitting the pawl to engage with the lower ratchet wheel, which is turned one notch at a time until the commutator brushes are moved, so as to reduce the exciting current, and consequently diminish the current in the lamp circuit. Should the current diminish beyond the normal strength the armature is released, the spring moves the scale beam, bringing the pawl into engagement with the upper ratchet wheel, when the result will be opposite to that just described.
The incandescent lamps, in connection with which this regulator is more especially intended to be used, are connected in multiple arc; that is, they are connected across two parallel wires, so that the current is divided up between all of the lamps in the same circuit. Now, it is obvious that, when a number of the lamps are removed the current would, under ordinary circumstances, be much stronger in the lamps that are allowed to remain in the circuit, but when the regulator is applied there is no perceptible difference in the light given out by the lamps, whatever may be the number in circuit.
As many as sixtyfour lamps have been brought up to over thirty candle power each in a single circuit by the machine shown in Fig. 3, and the lamps have been removed from the cir cuit until only one remained and then all replaced, the regulator meanwhile adapting the current perfectly to the widely varying conditions.
The incandescent lamp shown in Fig. 4 consists essential ly of a glass globe containing an attenuated atmosphere of hydrocarbon vapor, in which is placed the carbon placed the carbon rendered incandescent by the electric current. The conducting wires, instead of being fused into the glass of the globe, are surrounded with a semi. elastic cement, which is capable of withstanding both heat and pressure. Thiscement insures a perfect and durable joint between the platinum elec-

Fig. 3.-MAXIM'S DYNAMO-ELECTRIC MACHINE.

Mr. Maxim's interests are identical with those of the United States Electric Light Company, of this city, whose offices are located at 120 Broadway. This company is doing a great deal toward the introduction of the electric light in all forms, and have recently established a central station in the vicinity of Madison square, from which several radiating wires extend to public buildings in that locality. We hope at an early day to be able to chronicle the introduction of the small electric lamp into offices, stores, hotels, and private dwellings.

MISCELLANEOUS INVENTIONS.

Mr. George E. Eastman, of Muskegon, Mich., has patented a vehicle seat, whose ends and back are joined together with angle irons that enter corresponding vertical corner slots; the seat frame is mitered and secured in place by metallic plates, that are blind slotted into the corners.
Mr. Charles R. Kinehan, of Springfield, Ill., has patented a simple device for more readily and accurately circling and leveling the hair springs of watches. It consists of a sliding and rotating rod holding the spring, and fixed adjustably in a vertically adjustable stud or pillar that is connected with the top plate of the watch.
Mr. Enos G. Boughton, of Pittsford, N. Y., has patented an improved drying apparatus for drying substances such as fruits, vegetables, hops, meats, etc. The moisture is evaporated from such materials with dry air at ordinary temperature without the application or use of artificial heat, so that the natural flavor of the fruit is preserved.
An improved attachment for the key boards of musical instruments has been patented by Mr. Christopher C. Reynolds, of Kelseyville, Cal. The invention consists in a series of levers pivoted adjacent to each other in such a manner that they can be acted upon by a moving sheet which has the notes cut out or raised, and passes between two feed rollers, which draw it under the lower ends of the abovementioned levers, having a cord or wire attached to the upper ends, the said cords or wires passing over or through suitablebridges, and being attached to the upper ends of a series of fingers resting on the keys of the instrument. By means of a crank the feed rollers are rotated, thus moving the music sheet as is necessary, and at the same time a roller arranged adjacent to and parallel with the row of fingers is rotated in such a manner as to assist in depressing the fingers, thereby relieving the music sheet from undue strain.
Mr. Philip B. Bicknell, of Lincoln, England, has patented an improved dark lantern for the use of policemen, watch men, and others. It is an improvement on that general form of lantern which is constructed with a rounded front side and a flat or slightly concave rear side adapted to lie against the wearer, and in which the front portion is hinged to a back plate attached to the waist belt, so that the front por tion may fold outwardly with the lamp to give access to the tion may.

A closet or safe, which may be concealed in a wall and provided with secret devices for giving entrance thereto has been patented by Mr. Nicholas Huetter, of Kenosha, Wis. The in vention consists in a box fitted with a hinged cover that inged cover that s held closed by sliding catches, and thrown open by a pring when re leased, and having combined with it a rockshaft and crank lever for operating the catches.
Mr. Humphrey J Williams, of New York Mills, N. Y. has patented a car penter's bench hook that can be easily set in position, ad justed, and removed. The inven ion consists, essen tially, of a tubular shell carrying a toothed plate on its top, set at righ angles thereto, the hell being longitu shell being longitudinally divided into wo sections tha nclose an eccentri cally or cam thread ed rod or screw, by means of which the scctions are spread apart.
An improved ve bicle spring brace has been patented by Mr. Charles A. E. Simpson, of Portsmouth, Ohio. The invention re lates to means for preventing lateral
vibrations of the springs when they are depressed by the load or body of the vehicle in passing over rough surfaces or in ascending or descending a hill.
Mr. Aaron D. Cheney, of Three Oaks, Mich., has patented an improved apparatus for hatcheling or straightening and removing the gummy matter and roots from hair combings or other snarled and tangled hair. The invention consists in a bed or table fitted with hatcheling and combing teeth arranged in a peculiar manner. These teeth are carried by blocks fitted to slide in the bed to allow change or removal of the teeth and the substitution of fine and coarse teeth one for the other, as required.

long-billed parrot and banksian cockatoo.

A very singular form of cockatoo is that which is known as the Philip's Island, or the long-billed parrot. This bird is only found in the little island from which it derives its name. It may probably become extinct at no distant period, as its singularly shaped beak renders it an object of attraction to those who get their living by supplying the dealers with skins and various objects of natural history; and its disposition is so gentle and docile, that it readily accommodates itself to captivity. Philip's Island is only five miles in extent; and it is a very remarkable fact that this long-billed parrot is never found even in Norfolk Islaud, though hardly four miles distant.
Its favorite resorts are among rocky ground interspersed with tall trees, and its food consists mostly of long and succulent vegetable substances. The blossoms of the substances. The blossoms of the
white hibiscus afford it a plentiful white hibiscus afford it a plentiful
supply of food, and in order to enable it to obtain the sweet juices of the flowers the tongue is furnished with a long, narrow, horny scoop at the under side of the extremity, not very unlike the human nail. As earth has often been found upon the long upper mandible, the bird the long upper mandible, the bird
is believed to seek some portion of is believed to seek some portion of
its food in the ground, and to dig up with its pickaxe of a bill the ground nuts and other subterraneous vegetation. This opinion is strengthened by the fact that another species of parrot belonging to the same country is known to seek its food by digging.
One species of this genus has been known to imitate the human voice with much accuracy. This is the southern Nestor, or the kaka of the natives (Nestor hypopolius.)
The birds which belong to the genus Nestor may at once be known by their extraordinarily long upper mandibles, which curve far over the lower, and remind the observer of the overgrown tooth so common in the rat, rabbit, and other rodent animals. Some persons suppose the long-billed parrots to form a link between the parrots and the cockatoos.

The Philip's Island parrot is dark brown on the upper surface of the body, but takes a grayish hue on the head and back of the neck. Each feather of the upper surface is edged with a deeper tinge, so that the otherwise uniform gray and brown is agreeably mottled. The cheeks, throat, and breast are yellow, warming into orange on the face. The inner surface of the shoulders is olive-yellow, and the abdomen and both tail coverts are deep orange-red. The tail is moderately long, and squared at the extremity.

The banksian cockatoo is a good
representative of a very curious genus of cockatoos resident in Australia. The plumage of these birds, instead of being white or roseate, as in some other cockatoos, is always of a dark color, and frequently dyed with the richest hues. About six species belong to this genus, and they all seem to be wild and fierce birds, capable of using their tremendously powerful beaks with great effect. Their crests are not formed like those of the common cockatoo, and the tails are larger and more rounded
The Banksian cockatoo is only found in New South Wales, inhabiting the vast brush district of that land. Its food is mostly of a vegetable nature, consisting chiefly of the seeds of the banksia; but the bird will also eat the large and fat grubs of different insects, mostly of a coleopterous nature, which it digs out of the trunks of trees with its strong bill.
The flight of this handsome bird is rather heavy, the wings flapping laboriously, and the progress being rather
low. It seldom mountsto any great height, and as a general fact only flies from the top of one tree to another. The eggs are generally two and sometimes three in number, and are laid in the bollow "spout" of a green tree, without any particular nest.
The chin of the adult male is deep rich black with a green gloss. A broad vermilion band crosses the whole of the tail, with the exception of the two central feathers, and the external webs of the outside feathers. The female is also greenish black, but her plumage is variegated with nume rous spots and bars of pale yellow.

Eastport Sardines.

Eastport, Maine, depends for its prosperity almost entirely pon its fishing interests, large quantities of cod and other fish being caught within a few miles of the town. The putting up of small herrings sardine fashion has latterly become a prominent industry, giving employment to many fishermen and canners. The fish are very abundant at certain seasons, sometimes a hundred hogsheads being taken at one time. Large weirs are constructed along the shores and

LONG-BILLED PARROT AND BANKSIAN COCKATOO.
around the islands of Passamaquoddy Bay, and the fish, swimming in with the tide, are caught behind them. When the tide falls and the fish are crowded into narrow spaces, they are dipped out in great quantities. When taken to the extensive factories along the shores the fish are cured by boiling in oil, like sardines, and put up in small boxes in imitation of genuine sardines. The business is said to be controlled by New York firms. The fish are also potted and put up in various other ways. The large herrings taken during the winter are frozen and shipped to market in barrels.

England's 100-ton Gun.

A successful trial of England's new 100 -ton gun was made September 22. Loaded with 441 pounds of pebble powder (in cubes of $11 / 4 \mathrm{inch}$) it drove a 2,000 pound projectile 45 feet into a sand butt. The velocity of the projectile was
1,556 feet a second.

The Daddy Long-legs in England.

For some four years past Miss E. A. Ormerod-a lady living at Dunster-lodge, Isleworth, who takes a great interest in meteorological and agricultural matters-has been collecting observations on injurious insects and plant life from all parts of the United Kingdom, and the success of her work may be imagined from the fact that this year some 400 ob -servers-some as far north as Caithness-have sent in reports. These reports will not be published in the usual annual form until the observations of the entire year are completed. Enough is, however, now known of the great damage done this year, and of the experience gained in the destruction of these pests, to enable farmers and gardeners to protect themselves to a very great extent from their ravages in the future.
The reports from all parts of the country show that great damage has been done by the grubs of the Tipula oleraceaknown better by the popular name of "daddy long-legs." Previous observations have shown wet weather to be favorable to the development of this fly, and the experience of the present year is quite in harmony with them. The eggs deposited in the clover stubbles last autumn produced myriads of grubs -as many as 150 to 200 sometimes in a square yard-which have been destructive to crops generally, but especially to corn. The grub works by gnawing the plant through, or partly through, beneath the surface of the ground, thus wasting far more than it needs for food, and as it can bear being thoroughly immersed for more than three days and nights, and can (at least, exceptionally) support a temperature of -10°-that is, 10° below zero, or 42° of frost-winter influences are not to be looked to for any very efficient help against it. The experiences of the present year also show that when the grub is fairly established in a field, special applications or dressings on the grub itself do but little towards killing it, and that the best remedies in a " grub run" field are dressings of guano, or of any quick acting manure that will stimulate and encourage a healthy and vigorous plant growth. The great lesson of the year is, that greater attention should be given in the autumn to the thorough cleaning of the ground.
The clover stubbles are the headquarters of the Tipula oleracea for egg-laying, and the legless grubs lie just below the surface, and, except when torpid, require to eat. What is needed is either to kill them at once, which can be done, to a great once, which can be done, to a great
extent, by paring and burning, or to starve them out before the new crop is put in by thorough cultivation. The grub is very active and feeds on many plants, so that mere common cultivation does but little towards getting rid of it; but if the ground is thoroughly worked, and the rubbish collected and burnt at once, the attack in the coming season has been found to be very much lessened. The soil is thus put in a good state to run the next crop on, many grubs are destroyed by being either thrown up to the birds, burnt, or buried too deep to come up again, or buried too deep to come up again,
and if a sufficient time has been and if a sufficient time has been
allowed to elapse before putting the new crop in, a very large number will have been starved out. All the reports of careful observers show that farmers have good cause to be thankful forthe work done by birds in the destruction of insect pests. Starlings, rooks, and lapwings-all of which are scarcer now than a few years ago, the cold and wet destroying large numbers-are powerful helpers in keeping down these injurious ravagers of our crops. Another pest, which has appeared in unusual numbers during the past two months, is the mangel-wurzel fly (Anthomyia betce), which does harm by its small, legless maggot gnawing away the inside pulp of the leaves between the upper and lower sides. This has, however, but rarely caused any lower sides. past week all show that the rains are fast recovering the injured crop, the loss from its ravages will not probably be large this year. Among the other more prominent pests this year is the celery fly and the wheat midge (Cecidomyia triti$c a$), the latter being very prevalent in some of the southern and midland counties. Miss E. A. Ormerod will be always pleased to receive from any persons specimens of insects or maggots doing injury to plant life, together with an account of their ravages, whether in the garden or in the field. Suc-
cessful treatment in any case will be welcomed, and proper case the eggs are of a softish, horn-like consistence, so that forms will be sent to any one for filling in the information and also a copy of the annual report containing the observations of the year. In Ireland, especially, a few additional observers would be welcomed.-London Times.

BATOIDEI, OR RAYS.

by a. w. roberts.
The rays or skates resemble sharks in their organization but not in their external form. The body has a round and

FIG. 3.-BARN-DOOR SKATE.
rhomboid form, the sides of which are represented by the large pectoral fins, which are attached to the hind part of the head. The snout is pointed and elongated; the mouth, nostrils, and gill openings are situated on the under side of the body. (See Fig. 3, showing the egg of a blunt-nosed skate, partially cut away, displaying the young skate with umbitical sac) The narrow and long tail of the rays generally has two dorsal and one anal fin, the latter unequal in its lobes. Their eyes show a very remarkable peculiarity, consisting of a fringed curtain that hangs down from the upper border of the iris, and covers part of the pupil. The eggs of the rays are wider than those of the shark's, have a less transparent case, and resemble flat cushious with long coiled strings at the four corners. occidentalis), the
"prickly ray" (Raia America $n a$), the " barn door"skate(Rai levis), the " spot ted ray," "sting ray," " butterfly ray," "cow nosed ray," and " monk fish," monk fish,' belong to thi family, and are moreor less com mononour coast

The sharks and the rays come together so closely as reclosely as re gards their eggs that it is hard to determine where the departure or blending of the two families takes place. For instance, take Fig. 2, showing the eggs of the shark or dog fish, common on the British coast, and the eggs of rays common on our coast, Figs. 1 and 3. In each

EGG OF SHARP-NOSED SKATE.-(Raia Amoricana.)

Pacific salmon.

While the habits of many of our valuable food fishes are well known, there is yet much to learn in regard to the salmon, and especially those of the Pacific coast. An English traveler by the name of Pennant was the first to call attention to them, and gave the Indian names to the various species. After him came a German who Jatinized the popular names. When the territory came into the possession of the United States other descriptions were given, but as the observations were made at different periods of the year, and as the sal mon differ according to season, some thirty species were made where there existed but five. The flesh of the salmon in the spring is of a clea white color, with the advanc f the season it changes to pink, then to a deep red, and finally becomes mottled, and n some cases almost black In the early part of the sea son the scales are silvery and oose, but later they become embedded and dull, while those on the back disappear. The teeth, from being small and fine, grow large, and sometimes reach half an inch in length. The cartilaginous snout and the lower jaw grow out, while the upper jaw hooks down.
Of many of the habits of these salmon we are still ig norant, but we know they spawn in fresh water and then go down into the salt Professor Jourdan says that in April, when the Columbi is high, they appear to be attracted from the ocean, pro bably by the cooler water of the river. They turn into the river, and as soon as they feel the influence of the current they go right up. Near the mouth of the river, and where the water is the least discolored, they can only be taken by the seine. They
 take the hook in salt water or in perfectly clear fresh water. Up the Columbia the salmon journey, and are found away up in Montana, and following the Snake and its tributaries they penetrate into British Columbia. The salmon will continue up stream as long as water can be found deep enough in which to swim. At the head waters of the river they often present a pitiable sight. They are frequently found with their heads smashed from contact with the rocks, their eyes knocked out, their fins scraggy, and otherwise bruised and injured. Here, after spawning, as they can go no further, unable to obtain food, they die in large numbers, and very few of them which penetrate thus far ever reach the ocean again. The last month or so that they are running up the Columbia they are unfit to eat, being poor in flesh, often covered with blotches and sores, and generally in a poor condition. There ar Columbia River, amounting to about $30,000,000$ lb. in weight. It has been feared by some of the large can ners on the Co lumbia that the supply might be diminished from the large num the large num ber annually taken, but pro-
bably enough esbably enough es cape the nets and spawn to keep up the supply. The principal salmon used for can used for can ning on the Co lumbia is the Chinook or spring salmon.

Pond Lilies.

An exchange gives the following inform:tion in regard to pond-lily culture. A tub of some kind, some garden soil, and water are all the sequirements; a
tub may be made from a portion of a cask, and if desired But still the contingency might arise when such nets could it may be sunk in the ground. Place in the tub good soil be found serviceable. The pole flounder, which is by far enough for the roots, perbaps a quarter full will be sufficient; put in the plant; it is not necessary to plant it, merely pressing the stem into the soil will answer. The big affair which passes for the root is really the stem, which lies along the bottom of the pond. One side of this produces roots which take a strong hold of the soil, as every one who has tried to get up one knows, while buds producing the leaves and flowers are on the upper side. When the tub is filled with water no further care is required during the summer, except to supply water as it may be needed, as it is not likely that the rains will make up the loss by evaporation. Unless the tub can be so protected that it will not freeze solid it should be moved to the cellar at the approach of cold weather. Only enough water need be left in the tub when it is moved as will be needed to keep the soil moist.

Deep Sea Trawling.

In the trawling and dredging operations of the Fish Commissioners' steamer Fish Hawk three different trawls or dredges are used-the beam trawl, the otter trawl, and the harrow dredge. Before the dredges are thrown out the depth of the water is ascertained by a sounding apparatus, a modification of Sir William Thomson's. No depths are ever taken without ascertaining temperatures. The thermometer used is the Negretti and Zambra, which has the mometer used is the Negretti and Zambra, which has the Miller and Cassela. Lieut. Tanner, U. S. N., commanding the Fish Hawk, has devised an ingenious method of reversing the thermometer when it reaches bottom, so that no intermediate temperatures are recorded. The depth being ascertained, the operation taking but a few moments, and the temperature being recorded, dredging commences. The steamer has a reeling engine forward, around the drum of which a steel wire rope, three-eighths of an inch in diameter, is coiled. Two kinds of trawls are used for dredging, the beam trawl and the otter trawl. The beam trawl, which is copied after those used by the English and Dutch fishermen in catching turbot and sole in the German Ocean, is some 16 feet across, with a purse-formed net some 35 feet long, the meshes being about $11 / 2$ inch at the beam, and diminishing rapidly in size toward the tail of the net. A boom is rigged out from the foremast, which is at right angles with the ship. The trawl connected with the steel wire is hauled up by steam power and lowered into the water. The steel wire runs through three pulleys, and is attached by a rope to an accumulator, made of a series of rubber disks, which regulate the strain. In order to preclude chance of accident, it being better to lose the trawl than the steel rope, the trawl is fastened to the rope by means of a detacher, which has two jaws to it. If the trawl should catch on a rock and a tug take place, the steel rope being more valuable than the trawl, the attacher unloosens itself. At a strain of 4,000 pounds the trawl would be detached. The steel wire will stand a dead pull of 8,700 pounds. Care is taken to prevent all kinks in the steel rope when winding or unwinding, for a kink diminishes its strength just 50 per cent. The beam trawl is lowered gradually. When the beam touches the surface of the water, it being weighted down on both ends by strap-shaped irons called runners, it sinks parallel with the bottom. Then the vessel is allowed to drift backward, if such be the condition of the tide, or she is moved away from the trawl by reversing the screw. The trawl is then like a big bag, with its mouth wide open, which is drawn dredge-like across the bottom. In a sailing craft, as the luggers, the trawl is worked from the stern, the vessel being kept under easy sail. After the trawl has remained down some 20 minutes it is hauled up. As the mained down some hoisting engine is on the upper deck, it would be inconvenient to dump what is taken in the trawl. As the net comes up, the top being suspended from the wire rope from the beam, the tail of the bag is opened on the lower deck, the end of the purse being unloosened, and the varied contents pour into a trough, which has a series of wire bottoms of various degrees of fineness. About 40 minutes are sufficient to make a dredging.

The otter trawl works somewhat in the same way as the beam trawl, only instead of a transverse beam of wond or iron, the sides are held by two pieces of heavy wood, in shape something like center boards. These are weighted at the bottom with iron keels. The net is about the same shape as the beam trawl. The two weighted pieces of wood sink the net, the net itself having floats of cork above and leads below. As the net is drawn under water by the movement of the vessel, the two pieces separate, flaring out. As the net is hoisted the pieces of wood close up, and the mouth of the bag is shut. The advantage of the otter trawl is that it is less costly and more easy of storage, being the
form usually employed by English yachts. It is more conform usually employed by English yachts. It is more con-
venient for dredging in shallow water, but is not, perhaps, venient for dredging in shallow water, but is not
quite as certain in its effects as the beam trawl.
A third kind of dredge is used for clay bottoms and only for scientific purposes; this is the harrow dredge. In using this the object is to tear up the bottom some feet in advance of the bag, so that the forms embedded in the bottom may be secured. There is an iron harrow, which is in front of a net which is covered with canvas to protect it from tearing, the mouth of the net being extended by an iron frame. The possible use of the first two trawls by our fishermen is a fact which ought not to be overlooked. It is true that at present we do not have on our coast any varieties of flat fish of as good quality as those caught in the German Ocean.
be found serviceable. The pole flounder, which is by far
the finest variety of flat fish we have in our waters, can only be caught to advantage by means of trawls, and when once the merits of this fish have been determined, there is no doubt that our fishermen will profit by such experiences a the United States Fish Commission has given them.

Swarming Extraordinary

D. N. Kern relates in the Ohio Farmer the following experience with a swarm of Italian bees: The first swarm came out May 5, and was put in a hive filled with comb. On the 19th of May the second swarm came out, and was hived with a weak swarm. On the 20th the third came out, and was hived with the second and the weak swarm. On the 21st the fourth swarm came out. Mr. Kern caught the queen and killed it, and put the swarm back to the old colony. On the 23d the fifth swarm came out. He caught two queens and killed them, and put the swarm back again. On the 24th, at nine o'clock A.M., the sixth swarm came out. He caught two queens again and killed them, and put the swarm back again. The same day, at three o'clock P. M., the seventh swarm came out again. This time he hived them in an old straw hive, and set them on top of the old hive. In the evening of the 25 th he shook them down in front of the old hive again, and that settled for the time the swarming fever of the old hive. But on the 26th of June, the first young swarm threw out a very large swarm, and on July 3d threw out a second swarm, and about five minutes later a swarm came out of the old hive again. He hived both swarms together and sold them for $\$ 200$ cash. All these swarms made 235 pounds of comb honey.

New Substitute for Rubber.

This artificial composition, which answers the purpose of genuine caoutchouc or gutta percha, can be employed, according to Dankworth and Sanders, of St. Petersburg, either alone or in connection with other resinous substances. According to Ackermann's Geicerbezeitung, this new product affords an inexpensive means for a perfect isolation of wires for electrical purposes. The composition is elastic, tough, not so sensitive to external influences as caoutchouc or gutta percha, and is not injured by high pressure or high temperature. It is prepared in the following manner:
A quantity of coal tar oil, or equal parts of coal and wood tar oil, which is to constitute a third part of the whole mixture, is poured into a large kettle, together with an equal quantity of hemp oil, and is beated for several hours, either over steam or an open fire, to a temperature which lies between 252° and 288° Fah. (it should not exceed the latter), until the mass becomes so ductile that it can be drawn in long threads, and the remaining third, consisting of a quantity of linseed oil, which has been thickened by boiling, is then added.
With this composition from five to ten per cent of ozokerite and some spermaceti should be mixed. The mass is then heated again for some hours at the same temperature as above, and finally from seven to twelve per cent of sulphur are added. The mixture thus obtained is cast into
forms and treated the same as caoutchouc. The and treated the sal
The proportions of the three oils may be slightly varied according to the practical purposes for which the composi tion is to be used.

Wood Products of Norway.

The Building Nevos (London) states that a great revival has ${ }^{3}$ lately taken place throughout Norway in all departments of the timber and planed-wood trades, which have suffered severely from a protracted depression. The wood pulp manufacture, however, has fared better, the demand from Great Britain and France being persistently on the increase. At the commencement of the year there were 21 factories at work, the production for the last three years being as follows: 1877, 295,700 cwt., value £'78;300; 1878, 386,482 cwt., value $£ 96,000 ; 1879,400,000 \mathrm{cwt}$. , value $£ 90,000$. Although the production in 1879 exceeded that of the previous years, prices were lower, from the great local competition; but as esparto grass has risen in value, it will very soon favorably
influence the price of wood pulp, the more as the English paper makers contracted pretty largely for paper pulp during the winter, to the amount of 2,000 tons in excess of the ordinary demand. The wood pulp used in England contains about 50 per cent of moisture, but the French paper makers prefer having it air-dried, containing only 8 per cent. There are also four mills employed in making millboard from paper pulp. These are used for band-boxes, and are all sent to England.

Fine Linen

According to the Building Nevos a piece of linen has been found at Memphis containing 540 picks to the inch, and it is recorded that one of the Pharaohs sent to the Lydian king, Crœsus, a corselet made of linen and wrought with gold, each fine thread of which was composed of 360 smaller threads twisted together! The ancient Egyptians wove a fabric called the "linen of justice," or "justification." So beautiful and valuable was it that it was esteemed the most acceptable offering to the " Kestorer of Life." A few hand looms can still be seen at work in the Eastern bazaars of Cairo, the cloth woven in which rivals in
finest glass screens of Munich.

Crave

Fire Apparatus in Cities.

To the Editor of the Scientific American:
In our large cities, when a building is discovered to be on fire, any one having the required key opens the door of the nearest of the little iron fire alarm boxes secured to the telegraph poles, giving an electric signal indicating the location of the burning building. This signal is transmitted to the fire department stations, where but a moment before mild looking horses were quietly munching their feed, and a general air of peace prevailed among both horses and men. But at the sound of the signala scene of the wildest methodical activity prevails. Of their own accord the horses hasten to their places in front of the steam fire engine; one man lights the previously arranged fuel under the boiler of the engine; another harnesses the horses; the driver springs to his seat, grasps the reins, the station doors are opened, and away they start. All this within about seven seconds after the sound of the signal. Arriving at the fire the engine's pump is connected by hose to the nearest hydrant; a hose carriage is driven alongside and lays a hose from the engine to the burning building; by about the time a nozzle is coupled to this hose the engine has sufficient steam to commence pumping; the hose fills out roundly, and a stream of water is conducted to the burning building. And so with each steam fire engine that has been signaled; men with ladders climb with their hose to the roofs of the burning and adjacent buildings to secure advantageous positions for con ducting the water; and if the burning building is of only ordinary size and combustibility, the fire is very soon conquered. But in case the fire occurs in a large warehouse stocked with combustible merchandise, and gains consider able headway before it is discovered, which is frequently the case with our present iron shutters, it may then becom startlingly apparent that the inch and a half or two inch streams of water are unable to speedily conquer the element. Recently the writer happened to be in a good position to view a fire of this kind. It appeared as if the streams of water were almost entirely evaporated in passing through the flames, that very little water reached the source of the fire, and that the utmost exertions of the firemen were re quired to save the neighboring warehouses, and possibly the whole river front of buildings, from destruction. It oc curred to me, as I watched the flames streaming high in the air, that in such a case a fire apparatus capable of throwing a stream of water four or eight inches in diameter to a distance of five hundred feet, when directed at an inclination of 45°, was needed. Such an apparatus would have to be in connection with several of the fire hydrants now in use in order to receive sufficient water. Or perhaps the delivery hose of several of the steam fire engines connected to one large swivel nozzle mounted on wheels, and planned similar to those used in the gold regions for washing down aurifer ous banks of earth, would answer. Such a stream, by reason of its weight and solidity, would pass through the flames to the source of the fire, and thus prove more effective than several small streams. It appears that each small stream of water acts on the principle of an ejector carrying with it by friction fresh air, thus in a measure aiding combustion. The safety and prosperity of our cities are so dependent upon our fire departments, that any means for rendering them
more efficient is of vast importance, and successful invenmore efficient is of vast importance, and successful invenions in this line would be pretty sure to afford inventors a rịch harvest.
L. L. J.

New York, October 6, 1880

RECENT INVENTIONS.

An improvement in grain separators has been patented by Messrs. William S. Bright and Samuel Thomas, of Letart W. Va. The object of this invention is to furnish grain separators so constructed that the light grain, the cheat, and chaff will be separated from the grain by an air blast, and the cockle and other small seeds will be separated by creens.
An improved filter has been patented by Mr. Louis R. Sassinot, of New Orleans, La. This invention relates to a means for filtering the water collected in cisterns of ordinary construction in order to render it fit for drinking, cook ing; and other purposes.
An improved stove truck has been patented by Mr. Hiram Shuman, of Buck, Pa. The invention consists in combining with a platform parallel locking shafts supported on fixed and swiveled casters, and an intermediate shaft parallel to the shafts, levers being attached to the latter and connected with the intermediate shaft.
An improved elevator for barrels, etc., has been patented by Mr. Latham. W. Greenleaf, of Terre Haute, Ind. This is an improvement on the elevator for which Letters Patent No. 220,137 were granted to the same inventor September 30,1879 , the object being to better adapt them for use in elevating and lowering barrels and other articles from one floor to another in storehouses, warehouses, and other places, and which shall be so constructed as to load and unload themselves while in motion.
An improvement in stone crushers bas been patented by Mr. Charles G. Buchanan, of Brooklyn, N. Y. The object of this invention is to produce a parallel and sliding motion upon the lower portion of the crushing plates for the pur pose of increasing the pressure, and, if desired, reducing the product to a greater degree of fineness.

TIN PLATE INDUSTRY.-THE PROCESS OF MANUFACTURE.
In the last issue of the London Iron Exchange received at this office is an interesting history of the manufacture of tin plates from about the year 1600 up to the present time. Omitting the historical portion of the writer's account, we extract from the article a description of the methods now employed in the manufacture of this useful article.
The British Association have recently visited the Dyferyn Iron and Tin Plate Works at Swansea, situated on the river Tawe, with a view of informing themselves regarding the practical workings of this important industry. The same association met at Swansea 32 years ago, since which time great advances have been made in the processes of manufacture. From the 40 mills now running within a radius of 3 miles in the Swansea valley about 20,000 boxes of finished tin plate are turned out weekly, or $1,000,000$ boxes annually, which is estimated to be equal to about one-third of the entire export.

But how tin plates are made is information likely to most interest the reader:
In the first place, says the writer, we have what is termed bar iron, several feet long, about 7 inches wide, and from $1 / 2$ iv $5 / 8$ of an inch in thickness, rolled accordingoto the plates required at so many pounds per foot. It is cut in what may be termed a jack-in-the-box or steam shear, say about 19 pounds, to a piece which will eventually be rolled into 16 sheets of 20 inches long by 14 inches wide, 112 of such sheets forming a box, and weighing when tinned nearly 1 cwt.
This piece of iron is first placed in a reverberatory furnace, heated to redness, put through the chilled rolls, and rolled in what is termed thick, five times; reheated and rolled in
singles twice; doubled, reheated, and rolled, three times; doubled, reheated, and rolled, twice; doubled, reheated, and rolled in eights, twice, until they are stretched out to the required length and thickness. The length of the bar exceeds by about one inch the width of the sheet to be made, so as to allow for the shearing process, and the bar is therefore rolled with its axis parallel to that of the rolls. Great attention is necessary in the construction and management of the mill furnaces, so that the heating of the bar and sheet for rolling may be effected with the utmost regularity, and without the formation of scale on the surface of the bars or sheets; for when scaling takes place from the draught in the furnace when scaling takes place from the draught in the furnace
being too keen or the heat raised too high, the quality of the being too keen or the heat raised too high, the quality of the
iron is injured; the scale, if subsequently rolled into the iron, leaves a rough surface on the plates in the after process of separating and pickling. The plates are then sheared, and the rough edges taken off. The iron of 19 pounds or thereabouts makes 16 sheets, which, being cutin half, leaves 8 sheets in a piece closely wedged. Girls with small iron hatchets open or separate them. They are then termed blackplate. From one ton of bar iron about $163 / 4$ cwt. of blackplate is made; the loss is termed shearings, and is worked up again in the forge fineries. The plates are next sent to be pickled, i.e., immersed in heated dilute sulphuric acid, known as oil of vitriol.
This process is done by aid of a patent, known as Hutcあings' patent pickling machine. The plates are placed in a brass cradle or receptacle, lifted by a hydraulic, then dropped down into a round wooden or lead tank containing the $o . v . \cdot ;$ the cradle is then made to revolve by means of steam power, to enable the liquid to rush between the sheets, which revolution is retained. They are lifted again by the bydraulic, dropped into a tub, a little apart from the last, containing water only, the cradle revolving as in last tub, so that the water may rush between the sheets to cleanse or wash away all trace of the acid, when taken up again the plates are clean and bright as silver. They are next subjected to a bright red heat, which lasts from 12 to 24 hours, in closed iron annealing pots in a reverberatory furnace; they are well covered on the top to prevent the plates from being burnt; the heat is kept as high as it can be without softening them to such a degree as to cause them to stick so fast together as to prevent their separation when cold.
They next pass singly through cold rolls, three, four, or more times, as may be deemed requisite. These rolls are highly polished, and must be set in accurate order to give the plates a perfectly flat set and well polished surface. Again they are annealed or softened at a lower temperature than the first, as their surfaces would be damaged by being in any degree stuck together. Pickled again as before, excepting that the liquid is considerably weaker than previously, placed in cast iron troughs containing clean water renewed by a stream constantly flowing through, they are then taken in hand singly, and scoured if necessary with sand taken in hand singly, and scoured if necessary with
and hempen pads before being delivered to the tinman.

Now comes the last process. The sheets are iron only so far. They next reach the tin house, and are placed in a trough containing clean water, ready for the tinman, as he is termed, who then picks them up and puts them singly in a grease pan containing palm oil, to soak, and after being there for a short time the tinman places the sheets in a large iron pot containing molten tin, with a covering of palm oil. Here it unites with the tin, to which it has a strong affinity. When he has performed his part the plates are handed over to the next man, called a washman, whose pot contains pure molten tin; after they have soaked in his pot a little, he raises them with a tongs on to the hob as he requires them, brushes the surface of both sides of each sheet, and after dipping them into another pot containing molten tin again, they are sent through rolls which work in a large pot containing palm oil, and the speed at which the rolls move regulates the quantity of tin to be put on each sheet. They are
afterward raised from the rolls (under which they have been passing) by a youth, called a riser, handed to two young women, who rub them in bins or boxes containing bran, one after the other, which takes off the grease; another girl, called a duster, gives them a further polish with a skin duster, and takes them to the assorting room, where every plate passes inspection, and, if not up to the mark, is sent back for rectification. After passing through that ordeal they are counted and weighed by young women, made up into boxes according to the different sorts, handed to boxers or packers, who pack them in elm boxes, marked by brand-
ing irons as per order, and finally placed in the railway truck ing irons as per order, and finally placed in the railway truck
to be forwarded to their various destinations. It may be a surprise to some to know that a tin plate passes through about thirty hands from the bar to the railway truck, but is handled no less that 105 times. Such is a simple account of tin plate making.

MECHANICAL LNVENTIONS.

Mr. Elijah Cravens, of Osage Mission, Kan., has patented an improvement in the class of automatic car couplings in which each drawhead is constructed with a horn and provided with a pivoted draw bar or clevis, which, when two cars meet, drops over the horn on the opposite draw head and thus locks the cars together. The improvements relate to details of construction and a peculiar combination of the various parts, which render it practical and efficient.
Mr. Charles A. Tucker, of Brooklyn, N. Y., has patented an improved nut lock, designed especially for securing nuts on bridge bolts, carriage bolts, and the like.
Mr. Frank P. Simonds, of Natick, Mass., has patented a simple device for treeing boots, which is rapid and efficient The device operates by two eccentrics, which are oppositely arranged in respect to each other, and are connected with a strap which is drawn over the boot on the tree with a reciprocating motion.
An improved barrel making machine has been patented by Messrs. David Murray and Thomas W. McGregor, of Rushford, Minn. The object of this invention is to provide in a single machine the several mechanisms and devices for trussing and working the ends of barrels, kegs, etc., pre paratory to receiving the heads.
Mr. Albert T. Bleyley, of Conception, Mo., has patented a car coupling, so constructed that cars of the same height
or different heights will couple themselves when run toor different heights will couple themselves when run together, and which can be uncoupled from the tops of the
Mr. William Brown, of Fort Cameron, Utah Ter., has patented a hollow iron railroad tie, of rectangular cross section, having a concave bottom, and having end ledges formed on its top to prevent the spreading of the rails.

Researches on Batteries.

The author has found two methods for obviating the inconvenience that chemical action in batteries is never entirely arrested when the circuit is open. One of these methods is based upon the absorbent power of animal charcoal, and is applicable to all the cases where the depolarizing liquid is metallic salt. He has constructed a sulphate of copper battery, in which thecopper solution cannot be diffused through the zinc. He takes an ordinary Calland element, at the bottom of which is placed a stratum of powdered copper sulphate, covered with bone-black, washed, and powdered The zinc is placed in the upper part of the jar, and is separated from the copper sulphate by the bone-black. The ele ment thus arranged resembles a Minotti battery, in which bone-black is substituted for sand. The zinc remains entirely unaffected. The second method, more general than the first, consists in taking as a depolarizing body a liquid which gives precipitate on mixture with the liquid which attacks the zinc. The diaphragm separating the two liquids is thus ren dered completely impermeable. The precipitate formed in its pores must be a conductor of electricity and must be cap able of electrolysis.-A. D^{\prime} Arsonval.

Improvement of the Bunsen Battery.

This improvement, made by Mr. Azapis, consists chiefly in replacing the acidulated water in which the zinc is immersed by a solution of about 15 per cent of cyanuret either of potassium, of caustic potash, of sea salt, or of ammonia
salts. The liquid in the porous vessel which contains the carbon plate remains the same as usual. This improvement has the advantage that, while the intensity of the current is the same as in the Bunsen element, the zinc plates do not need to be amalgamated, and the consumption of zinc is considerably less, while the constancy and the durability of the currentare remarkable. A battery improved in such a man-
ner, which consisted of 25 elements, and in which ordinary ner, which consisted of 25 elements, and in which ordinary
ammonia salts were employed, was used without interruption for four days in succession, and during the evening for the purpose of producing an electric light. Another advan tage of the battery is that it gives out very little odor.

The Exportation of Apples.

Over 40,000 barrels were shipped to Europe from this and other American ports during the last week of September, and large quantities are expected to follow. It is a year of extra bearing in most parts of this country, while in Eng land and other parts of Europe the apple crop is a failure. It is estimated that half a million barrels will be exported this season. Two years ago-a good apple year-333,000
barrels were shipped to barrels were shipped to Europe.

AMERICAN RAZORS.

Among the industries which have been transplanted to this country during recent years none bas had greater prejudice in favor of foreign products to overcome, or has started from a higher level of practical excellence, than the manufacture of fine razors.
For twenty years or more the establishment of Mr. J. R. Torrey, 34 Southbridge street, Worcester, Mass., has had a national reputation for the variety and quality of the razorstrops it has turned out. More recently Mr. Torrey has formed with his son and Mr. Joseph Turner, a practical razor maker, the J. R. Torrey Razor Company, and organized under the most favorable conditions an establishment for the production of razors of the finest quality.
Here the steel in the bar, the horn and ivory in the raw state, are taken in hand, blades are forged and ground, handles are made, and every step of the work of producing finely-finished razors is going on under the same personal finely-finished razors is going on under the same personal
supervision. The making of the paper cases, their lettering in gold, and the etching of the razor blades, are all included in the work of the establishment. Henceour American cut lers are no longer obliged to send to Europe for razor blanks and handles, as they are now made of equal excellence on our own soil.
The methods and processes employed at Sheffield have been greatly improved upon, and the J. R. Torrey razors have taken high rank in competition with the best that Europe produces.

CREMATION OF THE DEAD.

Exactly how to dispose of the ashes of the dead in the most satisfactory manner, after cremation is accomplished, is still a question. The ancient practice was to deposit the ashes in a funereal urn, to be preserved in a tomb or other sacred place. This is also the modern custom. But if tombs are to be required then there is not much need for cremation, as the corpse may as well be buried in the tomb without cremation.
A recent American patent consists in providing a parlor bust of the deceased, cut in marble, and in making a hole in the back of the bust, wherein the ashes are to be deposited after cremation of the body.
A further improvement, suggested by one of our lady correspondents, is to prepare a wet mixture of cements for artificial stone or marble, and sprinkle the ashes of the deceased into the mixture, which is then to be cast or pressed into the form of busts, statuettes, or other objects. In this way various members of a family might possess enduring portions of the ashes of the departed one.

Pneumatic Tubes supersede Cash Boys.

The incessant calls for cash boys, which formerly made shopping in our larger establishments so wearisome, if not exasperating, were silenced and the terrors of shoppers greatly mitigated by the introduction of electric calls. An enterprising Philadelphian has gone a step further, and displaced the dusty skurrying of cash boys and cash girls by a system of pneumatic tubes. Under the new system an inspector and wrapper is stationed at each counter, who will spector and wrapper is stationed at each counter, who will
receive with the money and goods the seller's check. While the goods are being wrapped up the cash with the proper vouchers will be transmitted to a centrally located cashier, who will return the change through the proper tube. There are two such tubes leading from each counter to the cashier's inclosure. One of the tubes is to carry the money to the cashier, and the other is to return the change and accompanying check to the counter again. The "carriers" which work inside of the tubes are little cylindrical boxes of sheet steel, lined with green baize, and protected at each end by diminutive felt cushions. Each carrier is of the exact diameter of a silver dollar, and is capable of holding thirty of th latter pieces or a much larger sum. By means of a steam engine and exhaust pump in the cellar, with proper attachments leading therefrom, the air is being constantly exhausted at the cashier's end of the tube and at the counter end of the tube of each pair; and when a "carrier" is placed in the mouth of either tube, it is immediately drawn to the other end, and is there delivered automatically by an apparatus devised for the purpose. This system not only saves time and noise, but the wages of an army of boys or girls, besides discharging a large amount of fresh air into the building, greatly improving the ventilation.

The Factory Laws in Switzerland.

A short time ago the Swiss Government enacted laws restricting the time during which the workmen might be employed in factories, and forbidding the employment of children under 15 years of age. It appears now that this law works so injuriously that the State counsel is embarrassed about it and advocates its abolition, às many Swiss manufacturers have founded new establishments abroad, while others are removing their old plant entirely in order to escape the restrictions imposed, especially the limitations of the hours of labor, contending that the capital invested does not yield sufficient returns when the factories have to be idle for 14 to 15 hours out of every 24 . This objection could be easily met by employing two sets of workmen,
each working 8 hours a day; while with three sets of hands the factory could be kept going night and day.
The restricting laws would ere this have been abolished were it not that the working classes are agitating against its repeal. The result of the struggle in little republican Switzerland is looked upon with interest.

The standard gallon of the United States contains 23
cubic inches. H. W. Johns' Asbestos Liquid Paints ar sold by this measure, and, although they command a higher price than any others, they are more economica owing to their wonderful covering qualities and supe rior durability. They are strictly pure linseed oil paints of a higher grade than have ever before been offered to the public, and are in use upon the finest and most ex
tensive structures in this country, among others the United states Capitol at Washington, the Metropolita Elevated Railroad of New York, etc. Samples of twenty-eight newest shades for dwellings sent free. H . W. Johns M' f 'g Co., sole manufacturers, No. 87 Maiden
Lane, New York.-Adv.

gusinto and exsoun.

The Chargefor Insertion under this head is one Dollar a line for each insertion ; about eight words to a line. Advertisements must be received at mublication office as early as Thursday morning to appear in next issue. The publishers of this paper guarantee to advertisers a circ
weekly issu

Chard's Extra Heavy Machinery Oil.
Chard's Patent Lubricene and Gear R. J. Chard, Sole Proprietor, 6 Burling Slip, New Yor

The Tools, Fixtures, and Patterns of the Taunton Foundry and Machine Company for sale, by the George
Place Machinery Agency, 121 Chambers St., New York. Steam Yacht Wanted.-Send description, speed, and J. Em Co, to Lock Drawer C, Meredith, S. H. For Sale, on account of increase of power, one 24×4 Corliss Engine, with three boilers and equipment com-
plete. Now in use, but deliverable in November next. plete. Now in use, but deliverable in November next,
For particulars address Natchez Cotton Mills Company Natchez, Miss.
2 Steam Yachts for sale. Geo. F. Shedd, Waltham, Mass. Factory for sale or lease. Building 40×100 feet forge shop 30×160 feet; 12 lots; steam power. Burr
Co.. 212 West St.. Brooklyn.
Shafting Straighteners. J. H. Wells, Vineland, N. J The genuine Asbestos Cement Felting consists of fine forms a light, porous, fireproof covering, partaking of the nature of a felt and a cement. It is prepared read for use, can be easily applied by unskilled workmen, and forms the most effective, durable, and economical, non-
conducting covering in use for steam pipes, boilers, and other heated surfaces. H. W. Johns Manuf. Co., Maiden Lane, New York, sole manufacturers.
Wanted-A Second-hand Engine Lathe, back gear, screw cutting, in good order. Address, giving des
tion and price, Glass Works, Poughkeepsie, N. Y.
Improved Rock Drills and Air Compressors. Illus trated catalogues and information gladly furnished.

Collection of Ornaments-A book containing over
1,000 different designs, such as crests, coats of arms vignettes, scrolls, corners, borders, etc., sent on receipt
of $\$ 2$. Palm \& Fechteler, 403 Broadway, New York city.
The Eureka Mowing Machine now is acknowledged is the best.in the market. It has taken the first premium in nearly every State Fair this year. Prices to suit the
times. Send for illustrated circular to Eureka Mower Company, Towanda, Pa.
The Boomer \& Boschert Press Co. have in daily operation, at the Am. Inst. Fair, a complete cider mill and Packing once tried always used. Phœnix Packing from 1-16 up in spools or on
Company, 108 Liberty St., N. Y .
Gas Machines.-Be sure that you never buy one until
you have circulars from Terril's Underground Mete you have circulars from Terril's
Gas Machine, 39 Dey St., New York.
Experts in Patent Causes and Mechanical Counsel Park Benjamin \& Bro., 50 A stor llouse, New York. Corrugated Wrought Iron for Tires on Traction En-
gines, etc. Sole mfrs., H. Lloyd, Son \& Co., Pittsb'g. Pa. gines, etc. Sole mfrs., H. Lloyd, Son \& Co., Pittsb'g. Pa.
Malleable and Gray Iron Castings, all descriptions, by Malleable and Gray Iron Castings, all descripti
Erie Malleable Iron Company, limited, Erie, Pa.
Skinner \& Wood, Erie, Pa., Portable and Stationary Engines, are full of orders, and withdraw their illu
ted advertisement. Send for their new circulars. Sweetland \& Co., 126 Union St., New Haven, $\dot{\text { Co }}$ manufacture the Sweetland Combination Chuck.
Power, Foot, and Hand Presses for Metal Workers
Lowest prices. Peerless Punch \& ShearCo. 52 Dey St.,N. \mathbf{Y} The Brown Automatic Cut-off Engine; unexcelled for The Brown Automatic Cut-off Engine; unexcelled fo
workmanship, economy, and durability. Write for in workmanship, economy, and durability. Write for
formation. C. H. Brown \& Co., Fitchburg, Mass.
Recipes and Information on all Industrial Processes Park Benjamin's Expert Office, 50 Astor House, N. Y. For the best Stave, Barrel, Keg, and Hogshea
chinery, address H. A. Crossley, Cleveland, Ohio. Best Oak Tanned Leather Belting. Wm. F. For
paugh,Jr., \& Bros., 531 Jefferson St., Philadelphia, Pa. paugh, Jr.. \& Bros., 531 Jefferson St., Philadelphia, Pa. National Steel Tube Cleaner for boiler tubes. Adjust
able, durable. Chalmers-Spence Co., 40 John St., N. y. Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shaftin orks, Drinker St., Philadelphia, P
Stave, Barrel, Keg, and Hogshead Machinery a spe-
cialty, by E. \& B. Holmes, Buffalo, N. Y. ialty, by E. \& B. Holmes, Buffalo, N. Y
Nickel Plating.-Sole manufacturers
Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts, importers Vienna lime, crocus,
etc. Condit, Hanson \& Van Winkle, Newark, N. J., and 92 and 94 Liberty St., New York.
For Patent Shapers and Planers, see ills. adv. p. 220. Presses, Dies, and Tools for working Sheet Metal. etc.
Fruit \& other can tools. Bliss \& williams, B'klyn, N. Y. Hydre Hydraulic Jacks, Presses and Pumps. Polishing and Lyon \& Co., 470 Grand St., New York.
Sheet Metal Presses, Ferracute Co., Bridgeton, N. J. Wright's Patent Steam Engine, with automatic cut off. The best engine made. For prices, address William
Wright, Manufacturer, Newburgh, N. Y.

Improved Solid Emery Wheels and Machinery, Au
omatic Knife Grinders, Yortable Chuck Jaws. Important, that users should have prices of these first class
goods. American Twist Drill Co., Meredithville, N. H. Silent Injector, Blower, and Exhauster. See adv. p. 252 Fire Brick, Tile, and Clay Retorts, all shapes. Borgner Don't buy until you see the $\$ 4$ Drill Chuck; holds 0 to Diamond Planers. J. Dickinson, 64 Nassau St., N. Y. steam Hammers, Improved Hydraulic Jacks, and Tube Expanders. R. Duageon, Zєcolumbia st., New York.
50,000 Sawyers wanted to send their full address fo Emerson's Hand Book of Saws (free). Over 100 illus trations and pages of valuable information. How to
traighten saws, etc. Emerson, Smith \& Co., Beaver Falls, Pa.
For Wood-Working Machinery, see illus. adv. p. 252. Eclipse Portable Engine. See illustrated adv., p. 252. Tight and Slack Barrel machinery a speciaity. John For Separators, Farm \& Vertical Engines, see adv.p.220. Elevators, Freight and Passenger, Shafting, Pulleys nd Hangers. L. S. Graves \& Son, Rocheste
Clark Rubber Wheels adv. See page 237.
Steam Engines; Eclipse Safety Sectional Botler. Lamertville Iron Works, Lambertville, N. J. See ad. p. 141 4 to 40 H. P. Steam Engines. See adv. p. 252.
Nellis' Cast Tool Steel, Castings from which our specialty is Plow Shares. Also all kinds agriculturalsteels and
ornamental fencings. Nellis, Shriver \& Co., Pittsburg. Pa Rollstone Mac. Co.'s Wood Working Mach'y ad. p. 237 C. J. Pitt \& Co., Show Case Manufacturers, 226 Canal illustrated catalogue with prices.
For best low price Plat For best low price Planer and Matcher, and latest mproved Sash, Door, and Blin 1 Machinery, Send
catalogue to Rowley \& Hermance. Williamsport, Pa.
Elevators.-Stokes \& Parrish, Phila., Pa. See p. 252. National Institute of Steam and Mechanical Engineer ing, Bridgeport, Conn. Blast Furnace Construction and
Management. The metallurgy of iron and steel. Practical Instruction In Steam Engineering, and a good situa-
that Reed's Sectional
Reed's Sectional Covering for steam surfaces; any one can apply it; can be removed and replaced wit
injury. J. A. Locke, Agt., 32 Cortlandt St.; N. Y.
C. B. Rogers \& Co., Norwich, Conn., Wood Working Machinery of every kind. See adv., page 205.
For Yale Mills and Engines, see page 252.
For Pat. Safety Elevators, Hoisting Engines, Friction or Mill Mes, Hill Furnishing see illus adv. 220. Mineral Lands Prospected, Artesian Wells Bored, by a. Diamond Drill Co. Box 423, Pottsville. Pa. See p. 221 Machine Knives for Wood-working Machinery, Book Binders, and Paper Mills. Large knife Work a specialty.
Also manufacturers of Soloman's Parallel Vise. Taylor Stiles \& Co., Riegelsville, N. J.
Penfield (Pulley) Blocks, Lockport,N.Y. See ad. p. 252.

NEW BOOKS AND PUBLICATIONS.

The Victoria. Review. Published at Melbourne, Australia, by the Victoria Review
Publishing Company, and edited by H. Mortimer Franklyn, Esq.
This is one of the best magazines that comes to this office from any country. The Victoria Review is published monthly, and its contributors are among the most
able and profound writers of the day. The July number, just received, contains papersfrom several eminen the publication we append a list of the writers and the subjects of their several contributions in the July issue: Lewes' History of Philosophy, by C. Hamilton Bromby
(Tasmania); Nineteenth Century England, by the Revे (Tasmania); Nineteenth Century England, by the Rev.
W. H. Fitchett; A Few Words about Béranger, by John W. H. Fitchett; A Few Words about Béranger, by John
F.Perrin (New Zealand); Proportional Representation, by F.Perrin (New Zealand); Proportional Representation, by
Guido Padelletti (Florence); Modern Biology, by Edward B. Sanger (Adelaide); The Place of Religion in Fic titious Literature, by Miss C. H. Spence (Adelaide); A
Venetian Dramatist, by James Smith; Sermons on Venetian Dramatist, by James Smith; Sermons on
Genesis by Dr. Bromby, by the Very Rev. the Dean of Melbourne; Goethe's "Faust" "and Byron's "Manfred,"
by R. Colonna-Close; The Affairs of Europe, by Emilio Castelar (Madrid); A Menacing Comet, by Richard A. Proctor; The Decay of Matrimony in Victoria, by the editor; The. Contemporary Thought of Great Britain, Europe, and the United States. We would like to see his Review more widely circulated than it has hereto scription list, if it is published in a remote English colony on the other side of the globe. We would, therefore recommend it to the patronage of students and al thoughtful persons, who, we are sure, will be both inter ested and benefited by receiving the publication regu-
larly. D. Appleton, 3 Bond street, New York, receive larly. D. Appleton, 3 Bond street, New York, receives
subscriptions and furnishes the numbers to their subscribers assoon as they are received.
Mandal of the Railroads of the United States for 1880. By Henry V. Poor
New York: H. V. \& H. W. Poor. 8vo,
cl., pp. 1077. $\$ 5$.

Poor's Manual grows fatter and more widely usefu every year. This the thirteenth annual number gives he mileage, stocks, bonds, cost, traffic, earnings, ex penses, and organizations of something like 1,400 rail roads, with an appendix containing a full analysis of
the debt of the United States and of the several States Boletin de la Sociedad de Geografia

Estadistica de la Republicat.
cána. Vol. V. Mexico, 1880 .
The present issue of this valuable scientific publication, which we have just received from the society, em-
braces the first three numbers of the fifth volume (third series). The articles, as usual, pertain to a wide range of scientific subjects, are very interesting. and give evi dence of conscientious study and much painstaking
labor on the partof the authors. The contents, in addition to the society's proceedings, embrace contribu
tions from Sr. Fernandez on the "Determination of the
Length of the Seconds Pendulum in Mexico at 2,28 Meters above the Sea Level ;" Sr. Leal on a "Study of
Mortality in the City of Leon de Aldamas;" Sr. Ramirez Mortality in the City of Leon de Aldamas;" Sr. Ramire on the "Mines and Mineral Productions of Guadalcaza in San Luis Potosi ;" Sr. Reyes, "Meteorological Opis servations ;" and Sr. Arechiga, "Note on the Saltpit
of Sayula." In addition to these signatures, there are various notes und translations by the editors, making various notes und translations well sustains the high
altogether a collection which win standard reached by the preceding volumes. We congratulate the Mexican society of Geography and Statis tics on having so many earnest workers, in its rank and wish it every succes
Elementary Treatise on Electric BatTERIES.
Niaudet.
Translated by L. M. Fish
Nack. New York: John Wiley \& Sons.
$\$ 2.50$. $\$ 2.50$.
Telegraphers, and all others who have to do with or de sire to study the nature and management of the variou types of electric batteries, will find M. Niaudet's book
very serviceable. The translator's fitness for his task is generally vouched for by the capable electrician the Westeru
d'Infreville.

HINTS TO CORRESPONDENTS
No attention will be paid to communications unles accompanied with the full name and address of the
writer. Names and addre
We renew our request that correspondents, in referring to former answers or articles, will be kind enough to name the date of the paper and the page, or the number
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then pub lished, they may conclude that, for good reasons, th Persons desiring
Persons desiring special information which is purely of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, should remit from $\$ 1$ to $\$ 5$, according to the subject,
as we cannol be expected to spend time and labor to obtain such information without remuneration. Any numbers of the Scientific American Supple MENT referred to in these columns may be had at this
ffice. Price 10 cents each.
(1) L. H. C. asks: 1. How many two quar Bunsen cells will be necessary to run a Duboseq electric light regulator? A. About 50. 2. Is the fol lowing a proper formula for the battery fluids: for 134 parts sulphuric acid; in outside jar-1 part sulphuri id to 12 of water (by measurement) ? A Yes.
(2) D. H. F. asks: Will a dynamo-electric machine produce a continuation of sparks between two
or more electrodes in the circuit, or must an induction or more electrodes in the circuit, or must an induction
coil be placed in the circuit? A. An induction coil will be required. 2. Platinum. 3. Why are the but tons on telegraphic instruments. platinum tipped? A Because itis refractory and unoxidizable. 4. Does not every electro-magnet placed in an electric circuit act as so much of a break or resis
A. As so much resistance
(3) H. S. writes: I wish to build a cistern o hold twelve thousand gallons. It can't extend over the quicksand. What shape and dimensions are re quired to secure the greatest strength in walls? How manybrick will ittake to build it? A. A cistern twenty feet diameter and five feet deep will hold the quantity named. The number of bricks cannot be given, with-
out knowing the thickness of the walls, and this will depend somewhat uponthe nature of the soil backing the walls.
(4) C. W. H. asks: 1. On what part of the axle of a buggy wheel is the greatest friction while the surface over which the wheel is traveling, the size of the wheeI, and the load. Generally a little forward of the vertical line. You may determine this point in any given case by examining an axle long in use, and see
where has been the greatest wear. 2. If a wheel could be suddenly freed from its axle while the vehicle was motion, would the wheel run on with accelerated m o inued the coll
(5) G. S. H. writes: 1. I wish to :build mall steam yacht; I wish it entirely for speed. The oat must be sufficiently large to carry 500 lb ., beside ooiler and engine. I have an engine, 2 inch bore by nch stroke. What size boiler and boat will I require,an the speed I can make with sane? A. Length 18 to 20
feet by $41 /$ feet beam, by 28 inches deep; engine, 2 inch cylinder by 4 inch stroke; boiler, upright tubular, 22 nches diameter by 40 inches high; tubes, 1 inch or $11 / 4$ inch diameter by 24 inches long.
(6) C. W. asks: 1. Would it not be as well making the dynamo machine described in Suppletead of lengthways? A. No. 2. Would the machin se strong enough to magnetize small bars of steel? A When made according to directions given in the SupLement, yes.
(7) J. N. J. asks: Will it require a stronger dam or dike to hold a large body of water than it does to hold a very small body? A. Leaving out cossideration the effect of waves, the depth being he same in both cases, there
he strength of dam required.

COMMUNICATIONS RECEIVED.

On Boiler Explosions. By L. H. K
On Hydraulic Cements. By J. D.

INDEX OF INVENTIONS for which
Letters Patent of the United States were Granted in the Week Ending

September 21, 1880,
AND EACH BEARING THAT DATE. ['Those marked (r) are reissued patents.]
A printed copy of the speciffcation and drawing of any patent in the annexed list, also of any patent issued since 1866, will be furnished from this office for one dolar. In ordering please state the number and date of the New York city. We also furnish copies of patents ranted prior to 1866; but at increased cost, as the specifleations not being printed, must be copied by hand.

Air engine, F. E. B. Beaumont.

Alarm lock, H. Hoffmann
Animal power, J. Wilson

Bag holder, B. A. Taber...
Baling press, A. A. Gehrt.
Ball trap, W. R. H.
Ball trap, W. R. Hamilton
Barrel swing, E. M. Mallett.................
Bed bottom spring, I. A. Clippinger
Bell, individual call, F. Blake... 232,476
232,407

Belting, machine for stretching leather, w. H.

Binder, temporary. Smith \& Shannon.................. 232,374
Blower, rotary, C. A. Smith....................... 232.559
Boiler furnace, steam, H. McElroy........... 232,534
chine soe sole channeling and trimming ma-
Boot and shoe soles, mechanism for abrading and
polishing, J. A. Ambler.
pot and shoe stretcher, F. A. Fay.....................................22,478
232,468

Bottle and stopper, J. C. De La Vergne............. 232,488
Bottle stopper, H. J. Johnson................ 232,404

Bottles, lamp chimness, tumblers, etc., machine
for washing, M. Cody....
Brake lever, J.J. Padden..
Brush, blacking, E. L. Wood
Brush machine, C. A. Watkins.......................... 232
Buckle, harness, A. \& C. L. Marschall............
Buffing
Bunting roller, J. G. Buzzell
Button and butto. Long...
Button and button fastener, E. Wright.............................232,355
Button, collar, G. E. Adams.
Button, collar,G. E. Adams......................... 232,385
Buttons from plastic material, manufacture of,
P. L. Sylvester.....................32,564 to 232,56

C. R. Wickes ...
Calculator, H. Fitch

Can flling machine, L. Cutting.
Can seaming machine, H. Miller
Car coupling, E. Cravens.
Car coupling, H. Heller
Car coupling, J. J. Padden......
Car door, freight, L. H. Webste
Car door lock, W. Bradley....
Car, dumping, J. F. Mathews
Carpet lining, E. K. Cooley
Check row wires, stop and wir
Chimney cap. W. D. Bartlett
Churn power, H. Brown.
Cigar holder, C. Carrington.
Cofree, ett.., machine for cleaning, scouring, and

Colter and jointer, combined, A. C. Schram
Comb, high back, E. Brown..
Copying apparatus, H. Van Hoevenberg
Corset, Mamlok \& Drewes
Corset cover, D. L. Engel.
Corset cover, D. L. Engel
Cot, folding, C. J. Skau...
Cot, folding, C. J. Skau... 232,4741
Dentist's chair, N. N. Horton...2323232 23,403
Doll support, L. Herrick...............39
Door hanger, s. Shreffler, J.
Drier, J. H. Prichard.
Drier, J. H. Prichara. .
Drier, H. Tiden.......
Dust pan, G. E. Neville
Egg beater, T. W. Brown...
Egg beater, H. B. McCool..
Elbow pipes, machine for making. M. Pischner.. 232,368
Electric machine, dy namo, C. J. Van Depoele...... 232,574
Electrical visual indicator, C. H. Pond......... 32,415
Elever
Elevator, F. Stoddard........ comb'd.C.............. 232,37
Elevators, safety attachment for, D. H. Chamber-
lain..............................
Eyeglass case, E. J. Hauck
Faucet, L. W. Truesdell.

Feed water heater, S. M. Fulton
Feed water heater, I. E. Myrick
Feed water heater, 1. .. Myrick
Fence, I. W. Berger.
Fences, barbed wire for, H. B. Scutt...............
Fire alarm signal box, electric, J. M. Gardiner..
Fire engines with hydrants, etc., coupling for co
necting, D. D. Hayes
Fish cans, lining for, L. Leng
Flooring clamp, W. Douley.
Flour dressing machine, G.
Flour dressing machine, G.
Flue cleaner, P. W. Lamb...
Friezing machine, G. w.ass
Game apparatus, S. J. Delan.
Garment supporter, G. H. Phelps.
Ge.................. 2323.391
Gearing
Gearing, J. S. Worth.... 2
Glass and other fragile vessels, casing for, J.
Hughes.. 23
Grain drills, force feed device for, J. C. 232,519

Harvester, cornstalk, W. I. Eiy...
Hay elevator and carrier, G. Rundle. Hay loader. Fleek \& Williams.
Hoisting apparatus, C. E. Albro Hoisting apparatus for elevators, etc............. Horse detacher, C. H. Thompson
 Horseshoe nails, machine
chinson
Incubator, H. W. Axford Ink fountain. I. Collat...... Lacing garments, means for, E. H. Smith acing hook stock, S. N. Smit
Lamp bracket, E. A. Parker for crimping, A. Harcum Lanterns and flags, holder for signal, F. w. Coo Lasting jack, G. W. Hutchins Latch, T IV. Kimbell.
Lathe, metal turning, W. F \& J. Barnes
Lathe, rosette. C. V Woerd............. Laundry use, composition for, F. Pons y Pon.. Lifting jack, W, B. Allen.. Lifting jack, J. Paar........ oom stop motion, R B B Magnet, electro. L. K. Fuller Mattress frame, R. E. Campbell........... Measure. automatic liquid, H. E. Marchand Mechanical motor for churns. etc., M.F. Sears Mechanical movement, J. F. Gordon.
Mechanical movement, H. L. Moulton
G. W. Knapp Metal rings, makin
Milk can, Brown \& Rosa .
Mill for grinding and reducing grain, etc., L
Mines, method and appara
damp in, R. Blacklidge.
Mowing machine, Shatiters \& Ray
Nut lock, C. Rukenbrod............
re grinding mill, A. B . Paul
Packing, stuffing box, G. J. Payton.
Paper cap, A. Botsford.... Parer, apple, R. P. Scott. Photographic imaees, producing, D.N.Carvalho Picture frame, B. Dreyfuss R. N. Boston

Plow, W. F. Brown
Plow, C. F. Goddan
Plow, E. May...
Poctet, C. H. Shaw......................... Printer's quoin, G. Scott..........
Pulp machine, wood, A. Fickett
ulping and grinding fibrous and other materia Pump, A. H. Lighthall
Pump, cattle, E. Hoover......
ump, windmill, D. C. Walling
Punching metal, hand device for, S. G
Radiator for stovepipes, C. F. Adams atus for, Gassett \& Fisher........... Refrigerating butter carrier, W. E. Rutherford Rolling machine, metal, H. Kello Ruches, machine for making, G. G. Bates Scaffold, A. W. Silvius................. cale beark, D. W. Dake. carf, neck, We W. \& Hepins scraper, M. W. Farber
ewer trap, A. Stapies
Sewing machine, book, E. S. Boynton................466
Sewing machine driving mechanism, F. L. Hart
Shaft bending machine, J. H. Smith
Sheet metal vessel, . W Kner, F. B. Torrey. Ships, harbor ballast for, J. H. Barnes..

Sieve, flour: Huntley \& Heine
Her, hour and meal, P.J. Spragu
Skylight. J. W. Geddes
Slate, school, C. F. Rapp.
Snath bending machine, K. J. Ruff
now shovel, H. Clark.
Soldering maparatus can, E. Norton
Spinning machine spindle, w. C. Macombe
pittoon, J. Cohn ...
Staimp, hand,'B. B. Hill
stave crozin, B. B. Hill
Staves, machine for sawing tank, D. Halladay Steam boiler, W. M. Fisher
Steam generator, A. J. Collinge Steam generator, D. Davison... teering apparatus for vessels, A. Grition Stove, platform, W. Westlake Target, electrical anunciating, M. Ullman


```
Machinery. Celebrated "Schenck" Planers and Match
```

```
Machinery. Celebrated "Schenck" Planers and Match
```

I WANT A MANUFACTURER OF FINE

 EUREKA STEAM HEATING CO.,

MAHOGANY,

 CUT THIN LUMBER

GEO. W. READ \& CO.

186 to 200 Lewis St., foot 5th \& 6th Sts., New York
$\$ 72 \begin{aligned} & \text { A WEEK. } \\ & \text { outfit free. } \\ & \text { \$12a ddress True } \\ & \text { \& Co., Augusta, Me }\end{aligned}$

THE BEAN.-BY LOUISA REED STOW-

6HOLS

 SCIENTIFIC american SUPPLE-

雨
 BEST BANOO SAW B BLADE
 ORGANSEMEM:

THE PHOTOPHONE.-DESCRIPTION

50 Elegant, All Nem, Chromo S Scroll Caras, no 2alike, HUB MACHINERV.-HUB TURNING, HUB MORTIIS-
Ing, and Hub Boring Machines. Send for price list and CENTENNAL AND Paris meDals.
Mason's Friction Clutehes and Elevators.

Valuable and Indispensable Praticied anil Scientific Bolsis.

THE STEARNS MANUFACTURING 0_{0}, SAW ${ }^{\text {ERIE, }}$ MENSNYLLANA, mate a specialty of improved Designed in its
rapidts.
construction for producing lumber economically and
Pland and estimates for Mills of any
funnished on request. Also buiny
WORTHINGTON STEAM PUMPS henri r. worthington.

GREAT IMPROVEMENTS
CRUSHING AND GRINDING

Steel Castings

Wood-Working Machinery,

sNow's BEST
Water Wheel
Governor MANUGACTURED BY
COHOES IRON FOUNDY
AND MACHINE CO. COHOES,

AMERICAN MERCHANTS,

\$66 $\begin{aligned} & \text { a week in your own town. Terms and } \$ 5 \text { outfit } \\ & \text { free. Address H. HALLETT \& Co., Portland, Me. }\end{aligned}$

To Electro-Platers.

$\mathrm{B}^{\text {ATTERIES, CHEMICALS, AND MATE- }}$

TEELEPHONE Works 1 nite

WESTON DYNAMO-ELECTRIC MACHITE CO

CONDIT, HANSON \& VAN WINKLE

New York Office, $9 \mathcal{Z}$ and 04 Liberty St.
English Agency, 18 Caroline St., Birmingham, England

SURFACE FILE HOLDERS.

 For sale by the thade generally. Mranufacturace. only
by the NICHOLSON FILE CO., WILEY \& RUSSELL M'F'G COMPANY,

W ANTED,

q. THE BEST THING YET. THE

RUBBER BACK SQUARE PACKING.

THE WAR-SHIPS
NAVIES OF THE WORLD

TOOKS \& SUPPLIES

 (JBALTIMOREP) A,SOBBIVGIN WOOD WQRF.

MONITOR PLANER \& MATCHER.

Driven or Tube Wells

AGENTS WANTED EVERYHERER to neil

The George Place Machinery Agency

Forster's Rook \& Ore Breaker and Combined Crasher and Pulverizer

Roots New Iron Blower.

POSITIVE BLASTI IRON REVOLVERS, PERFECTLY BALANCED IS SIMPLER, AND HAS FEWER PARTS THAN ANY OTHER BLOWER.
P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.
S. S. TOWNSEND, Gen. Agt., $\left\{\begin{array}{l}6 \text { Cortlandt St., } \\ 8 \\ \text { Dey Street, }\end{array}\right\}$ NEW WM. COOKE, Selling Agt., 6 Cortlandt Street,
JAS. BEGGS \& CO., Selling Agts., 8 Dey Street,
 a-SEND FOR PRICED CATALOGUE.
 SHEPARD'S CElLEBRATED
\$jo Screw C'utting Foot lathe.

STEAM PUMPS.

THE NORWALK IRON WORKS CO.g,
SOUTH NORWARK, CONN.
WHEAT 4 U*:
Cold motled SHAFTING.
The fact that this shafting has 45 per cent. greater
strength, a thner finish and is truer to gauge, than añ
otherin use rendersit undoubtedly the most economical.

HMATENTS

CAVEATSGICOPVRIGHYES, LABEL
ior of the Scientific American, continne to examine mprovements, and to act as Solicitors of Patents for Inventors.
In this line of business they have had over thirtit years' experience, and now have unequaled facilities for the Preparation of Patent Drawings, Specifications, and the Prosecution of Applications for Patents in the
United States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats,
Registration of Labels, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to them is done
terms.
We send, free of charge, on application, a pamphlet containing further information about Patents, and how to procure them; directions concerning Labels, Copy-
rights, Designs, Patents, Appeals, Reissues, Infringements, Assignments, Rejected Cases, Hints on the Sale. Patents, etc
Foreign Patents.-We also send, free of charge, a method of securigig patents ins all the principal countries of the world. American inventors should bear in mind that, as a general rule, any invention that is valu-
able tc the patentee, in this country is worth equally as able tc the patentee, in this country is worth equally as
much in England and some other foreign countries. much in England and some other foreign countries.
Five patents-embracing Canadian, English, German, French, and Belgian-will secure to an inventor the exclusive monopoly to his discovery among about one
HUNDRED AND FIFTY MILLIoNs of the most intelligent people in the world. The facilities of business and steam communication are such that patents can be obtained abroad by our citizens almost as easily as at home. The expense to apply for an English patent is
$\$ 75$; German, $\$ 100$; French, $\$ 100$; Belgian, $\$ 100$; Cana$\$ 75$; German, $\$ 00$, French, $\$ 100$, Belgan, $\$ 100$, Cana-
dian, $\$ 50$.
Copies of Patents.-Persons desiring any patent issued from 1836 to November 20,1866 , can be supplied with official copies at reasonable cost, the price de-
pending upon the extent of drawings and length of specifications.
Any patent issued since November 20, 1866, at which
time the Patent Office commenced printing the drawings and specifications, may be had by remitting to this office $\$ 1$.
A copy of the claims of any patent issued since 1836 wili be furnished for $\$ 1$.
When ordering copies, please to remit for the same as above. and state name of patentee, title of invenA pamphlet, containing full directions for obtaining United States patents, sent free. A handsomely bound
Reference Book, gilt edges, contains 140 pages and Reference Book, gilt edges, contains 140 pages and
many engravings and tables important to every patentee and mechanic, and is a useful handbook of referAddress

MUNN \& CO.,
Publishers SCIENTIFIC AMERICAN, BRANCH OFFICE-Corner of F^{\prime} and 7th Streets, Washington, D.

Shlwerthementr.

CAR \& WAGON SPRINGS	

SWITZERLAND.

 NEW CHAMPION
 Mill Stones and Corn Mills.
 Pryometers, For showin heat of

KNABE

PIANOFORTES tone.

то才CH.
WORKMANSHIP, \&

$\underset{\text { PROVINENCE }}{\text { Win }}$. HARRIS-CORLLINS ENGINE

 Shafts, Pulleys, Hancers, Etc.
 SASH DOVETAILING MACHINE. ($\begin{gathered}\text { Planers, Moulding, Machines, } \\ \text { Mortisers and Borers, Tenonng }\end{gathered}$ chines; also, a large variety of other wood work
manufactured by
"The 1876 Injector."

HM, Johis

LIQUID PAINTS, ROOFING, BOLIER COVERINGS,

Emery Wheels and Crinding Machines.

Stroudsburg, Monroe County, Pa. Orders mayb be dire
vhich we carry a stoch
London, Eng., 9 St. Andrews St., Hol- St. Louis, 209 North Third St.
born Viaduct, E. C.

Sydney, N. S. W., 11 Pitt St.
Philadelphia, 11 North Sixth Street. Delaware Sts.
Louisville, 427 West Main St. New Orleans, 26 Union st HOWARD BROTHERS \& READ,

THE HOWARD ${ }^{\text {owNERS OF }}$ MANU FACTURING CO., PATENTED NOVELTIES.

THE ONLY Real Pocket Scale
in the market. MADEOF NIETAL, Heavily Nick
COMPACT, STRONG, DURABLE. Can be carried in the vest
Each one warranteted absolutely one warranted abso
Weighs untet. to 8 bs. PRICE 25 CENTS. Sample by mail on receipt of A liberal discount to the trade.

HOWARD MANUFACTURING CO., TELEGRAPH $\begin{gathered}\text { and Flectrical Supplies. } \\ \text { C.E. }\end{gathered}$

ERICSSON'S NEW MOTOR. ERICSSON'S

Near Calicic Pinuing Engive,
DWELLINGS AND COUNTRY SEATS.

DELAMATER IRON WORKS C. H. DELAMATER \& CO., Proprietors,
No. 10 Cortlandi Street, New York, N. Y.

COLUMBIA BICYCLE.

Pictet Artificial Ice Co., Limited,
 B Thandus' PaTENT UNIVERSAL ECCEN

FITCTRIC MIGFT

DYNAMO-EL

DYNAMO-E
CANDLE POWER, 2,000 .
PRICE \$200, WITH COUNTEREDER, 1 1-2 THE FULIER ELECTRICAI CO., 33 Nassau St., New York.

A NEW TREATMENT for Consumption, Asthmas

THE MACKINNON PEN OR FLUID PENCIL. Particulars mailed Free.
MACKINNON PEN CO.,
200Broadway, near Fulton st.,N.

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.

W. b. FRANKLIN,V. Pres't. J. M. ALLEN, Pres't.

 J. B. PIERCE, Sec'y.

Metallic Shingles
Make the most DURABLE and ORNAMENTAL ROOF
in the world. Send for descriptive circular and new
iron Clad manufacturing co.,
NON-CONDUCTOR COVERINGS,
642 West 52 d St., 108 Liberty St.,New York.

ROOFING.

 By metims tring trapm sens of the cabinet, the bes
agenies in the world. Address J.B.

New York lce Machine Company, 21 Courtland St., New York, Rooms 54, 55. LOW PRESSURE BINARY ABSORPTION SYSTEM.

ICE AND COLD AR.
Low Pressure when running. No pressure at rest. Ma-
chines guaranteed by C. H. Delamater $\&$ Co
$\frac{\text { THE BAKER BLOWERx }}{\text { gines guaranteed by } \mathrm{C} \text {. H. Delamater } \& \text { Co. }}$ Centennial Judges Report.
 vantages that they can be connected
ror motion directly with engin withthe use of garing or belting.
SEND FOR CATLLO GLE. WILBRAHAM BROS NHIS

MACHINISTS' TOOLS.
Lathes, Planers, Drills, \&o. NEW HAVEN MANUFAGGUGING CO.,
BOILER COVERINGS.
Patent "AIR SPACE"' Method. ASBESTOS MATERIALS.

piospulum

ฐsientific simuricaut

FOR 1880.

The Most Popnlar Scientific Paper in the World. VOLUME XLIII. NEW SERIES.
Only \$3.20 a Year, including postage. Weekly.
This widely circulated and splendidly illustrated aper is published weekly. Every number contains sixeen pages ot useful information, and a large number of original engravings of new inventions and discoveries, Jew Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in The Scientific
American a popular resume of the best scientific information of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as
possible abstruse terms. To every intelligent mind, phis journal affords a a constant supply of instructive
reading. It is promotive of knowledge and progress in reading. It is promotive of knowledgs
every community where itecirculates
Terms of Subscription.-One copy of The ScienITFIC American will be sent for one year-52 numberspostage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollars and twenty cents by the publishers; six months, $\$ 1.60$; three months, $\$ 1.00$.
Clubs.-One extra copy of THE SCIENTIFIC AMERT-
CAN will be supplied gratis forevery club of fivesubscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.
One copy of The Scievtific American and one copy of THE SCIENTIFIC AMERICAN SUPPLEMENT WIIIbe sent for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dollars by the publishers.
The safest way to remit is by Postal Order, Draft, or Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes stray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

MUNN \& CO.
37 Park Row, New York.
To Foreign Subscribers.-Under the facilities of the Postal Union, the ScIENTIFIC AMERICAN is now sent
by post direct from New Oork, with regularity, to subscribers in Great Britain, India, Australia, and all other British colonies; to France, Austria, Belgium, Germany,
Russia, and all other European States; Japan, Brazil Mexico, and all States of Central and South America. 4, gold, for Scit toforeign countries, Canada excepted, both SCIENTIFIC AMERICAN and SUPPIEMENT for 1 year. This includes postage, which we pay. Remit by
postal order or draft to order of Munn \& Co., 37 Park Row, New York.
HE "Scientific American", is printed with CHAS.
bard ENEU. JOHNSON \& CO. Shiladelphia, and 50 Gold St. Tenth and Lom-

