
a WEEKLY JOURNAL 0F PRACTICAL INFORMATION. art. SCIENCE. MECHANICS. CHEMISTRY AND MANUFACTURES.

WINE MAKING.-THE URBANA WINE COMPANY, HAMMONDSPORT, N. Y.-[See page 84.]

Stientific बmmerita.

ESTABLISHED 1845.
MUNN \& CO., Wditors and Proprietors. published weekly at
NO. 37 PARK ROW, NEW YORK.
O. D. MUNN.
A. E. BEACH

same proportionate rate. Postase prepaid.
Remit by postal order.
Address
NUN

The Scientific American Supplement

NEW YORK, SATURDAY, AUGUST 7, 1880.

Contents.	
Buildings, high, of the world	
ater, i, remarkabie discovery. 81	
Composite diamo	
Death rate	
Gas detection -	
Industries, Americican*.........:	
Inventions. meenanical. $1: 86$How a water moccasin fishes...:81	

TABLE OF CONTENTS OF
 THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 240,

For the Week ending August 7, 1880.
Price 10 cents. For sale by all newsdealers.

SERIOUS ACCIDENT IN THE HUDSON RIVER TUNNEL

An accident of a serious nature, consisting in the fall of tunnel now being built under the Hudson river betwee New York and Jersey City, took place early on the morn ing of July 21.
It appears that the workmen were engaged in excavating for the enlarged or permanent entrance to the tunnel, on the New Jersey side of the river, near the working shaft when, suddenly, it was found that the compressed air had broken through the loose filling of earth at the junction of the brick wall of the tunnel proper and the roof plates of
the temporary entrance to the tunnel, and that the leakage was so great that it could not be stopped.

Our diagram shows the place of the accident. The work men, twenty-eight in number, ran for the air lock chamber and all would have been saved could they have got in; eight of them had succeeded in entering the lock, when down came the iron roof plates, earth, mud, and water, closing the entrance door to the lock chamber and cutting off the es cape of the remaining twenty men, who were quickly suffocated, to help them being impossible
Among the lost was Peter Woodland, assistant engineer in charge of the tunnel, 35 years of age, a man of superior ability in carrying on the practical operations of such work as this. The coolness and presence of mind which he displayed up to the last moment are quite remarkable and distinguish him as a real hero. When he saw that there was no chance to stop the leak he instantly ordered the men to fly to the air lock, himself staying back to urge and help them, deliberately sacrificing his own life in his efforts to save others.
After the occurrence of such an accident as this nothing is more easy than to find fault, and nothing more common than senseless denunciations of the managers of the works Scores of prophets, who never handled a tool, parade their wisdom in the papers, summing up in such expressions as " reckless carelessness;" "stupid blundering;" " didn't do this;" "ought to have done that;" " might have known beter;" "I told you so," etc.
So far as we can gather from the published particulars and the testimony of. survivors, the accident was not due to any defect in the system of working or any neglect of the engineers or directors. On the contrary, every protection against accident and every provision for safety which intelligent prudence could point out had been adopted by them, and this is greatly to their credit. They had gained practi cal knowledge in successfully tunneling through the unusu
ally treacherous soil at the very spot where this break took ally treacherous soil at the very spot where this break took system, both in the entrance and in the main tunnel, for system, both in the entrance and in the main tunnel, for
months; had become thoroughly familiar with its operation; months; had become thoroughly faminar established the best and most effective rules and methods to insure safety; and in the task of enlarging for the perma 9 nent entrance, they were using, at the time of the catastrophe every precaution which skill and experience could suggest
But in all works of this character there are contingen dangers which none can foresee. In this case the air lock specially provided as a place of safety, stood with its open door. Who could have foreseen that the falling earth, instead of blocking and holding it open, as might be expected, would close the door? Had it remained open all would have esclose the door? Had it remained open all would have es
caped. The great Thames River Tunnel, engineered by the eminent Brunel and guarded by his wonderful shield, caved in more than once, and many lives were lost. The Hoosac Tunnel and the St. Gothard Tunnel, cut through solid rock by the ablest engineers, had their shocking disasters. Even the builders of the elevated railways in this city, working in open daylight on the surface of the ground, co
vent accidents, and many lives were sacrificed.
Except for the depiorable loss of life the accident in the Hudson River Tunnel would be comparatively unimportant The temporary entrance which has caved in (shown by the step rings in our diagram) is only thirty feet in length. Th tunnel proper, built of iron plates and solid brick work, two feet thick, is probably not injured. As soon as the débris of the fallen part can be removed, which is to be done, we learn by means of a coffer dam, the work of tunneling under the
river will proceed rapidly, as heretofore, in both headings. river will proceed rapidly, as heretofore, in both headings.
Our readers will find a full illustrated description of the tunnel and the system. of its construction given in the Scinentific
May 8, 1880.

HOW TREES ARE STRUCK BY LIGHTNING.
M. Colladon says: " The lightning always, or almost always, strikes the upper branches, especially those that are mos elevated and most exposed to the rain storm. From thence main branches, and from these to the trunk. These large
branches, and especially the trunk, being in general much poorer conductors than the young branches, the passage of the electricity produces therein heat and repellent effects which lacerate the sap wood or the bark, and sometimes scat ter the débris to some distance (150 feet and beyond). This is a law that I have ascertained by very numerous observations. The tree recently struck in Rue des Glacis de Rive resents an interesting case, in that it confirms this law.
' It is not a very common thing in France to see trees struck by lightning in May, when their as yet young leaves have little consistency. The tree under consideration was struck essentially on its chief branch-the highest one by some inches, and situated on the southwest side. The young leaves of this summit and those of the branches immediately beneath were neither dried nor withered, but they were gashed in part and broken into small fragenents and strewn over the surrounding earth. In fact, they had suffered from the effect of a violent concussion of the air, like the window panes which had been broken in two neighboring houses, and were reduced to fragments, just as they would have been had a dynamite cartridge been exploded near them. Even before seeing the tree I had made up my mind that there must have been a well or stream of water near there in contact with the roots of the poplar; for the vicinity of a spring or a subterranean stratum of water is very often the determining cause to attract the lightning to the summit of a tree standing near it. Here, again, this influence is rendered vident by two interesting facts. At about 18 feet from the ree, on the north side, there is a lead conduit which leads water to a laundry, and a drain which carries the waste water off under the street. At the base of the trunk the wounds swerved toward the north, and, midway between the tree and the lead conduit, a board placed as a border on the earth was pierced with a round hole about 4 inches in diameter, showing that the electric fluid, concentrated in a power ul jet (if that expression is allowable), shot directly from he foot of the tree toward the lead conduit by the shortest route."

ARRIVAL OF THE EGYPTIAN OBELISK AT NEW YORK

 The steamer Dessoug, bearing the Egyptian obelisk, ar ived at this port July 20, thirty-seven days from Alexandria. The Dessoug left Alexandria June 12, and arrived at Gibraltar June 22. Leaving Gibraltar on the 25th, every thing went well until July 6 , when the after-crank shaft broke, causing a delay of several days, during which a spare haft was fitted, the vessel proceeding slowly under sail The obelisk had been so well stowed that during the voyage it did not move in the slightest degree from its position in the hold. Lieutenant Commander Gorringe, who has no only had the entire charge and responsibility of the remova of the obelisk, but has borne the entire cost of the enterprise thus far, reports that the stone is in perfect condition. It is 70 feet long, 8 feet square at the base, and 5 feet 3 inches t the top. It weighs 200 tons, the pedestal 43 tons, the teps, or foundation, without the pedestal, 74 tons. The machinery for lowering it weighs 60 tons. The site selected for the obelisk in Central Park has been reconsidered and abandoned by the Park Commissioners. No other site has as yet been fixed upon.
The Resonator.

Under the above name Signor Alberto B. Bach has recently devised and introduced in London a very simple and appar ntly very effective appliance for increasing the volume and ower of the human voice when singing, and a lecture on the subject was lately delivered at the Royal Academy of Music, the use of the resonator being illustrated by Signor Bach himself during a concert which followed the lecture. In the cours f his lecture Signor Bach described the mechanism of the ocal organs, and explained the modes in which their power could best be developed, and among other points he directed ttention to the office performed by the hard portion of the palate, this acting as a kind of sounding board when the mouth is open for singing. It is for the purpose of increas ng the efficiency of the palate in this respect that the "re nator" has been designed.
The instrument consists of a gold plate fitted to the roof of the mouth, close above the upper teeth-much in the same way as the gold palate of a set of artificial teeth-the plate having attached to it another gold plate which is convex downwards in both directions. A hollow sounding boardif we may call it so-is thus formed, which has a remarkable effect on the volume of sound producible by the person wear ing the instrument. The resonator appears to have no pre judicial effect upon the distinctness of articulation, and Signor Bach states that it can be used without the slightest inconvenience after a moderate amount of practice. Of course, as Signor Bach remarks, the resonator will not give a good voice to any one who does not already possess one nor will it eradicate any faults in singing, but properly used it is reported to have a remarkable effect in increasing the power of the sound which a singer can produce, and thls without deteriorating its quality or increasing the effort required.
The Statesman, of Walla Walla, Washington Territory, says, in its issue of July 3, that there are indications of vol canic activity at the summit of Mount Hood. On Tuesday, June 29, a bright light burned all night steadily from the summit, at times so bright that the flames themselves could be seen as they shot out from their crater prison, and all the hung like a pall bright, lurid glare upon the clouds tha

the recent milling exhibition

For the twelve months to July 1 our exports of wheat from sixteen principal ports were $149,139,293$ bushels, and our ex ports of wheat flour for the same period were $5,787,967$ bar rels-an increase of $40,045,758$ bushels wheat and 437,358 barrels of flour as compared with our exports from the same ports for the year ending July 1, 1879. The value of these exports for the last year was $\$ 219,954,354$, against $\$ 155,540$, 633 for the year preceding, the increase in value of the exports of flour alone being $\$ 5,913,863$. The total exports of
wheat flour from the United States for the year ending July wheat flour from the United States for the year ending July
1,1879 , were $5,629,714$ barrels, and of wheat $122,353,936$ 1,1879 , were $5,629,714$ barrels, and of wheat $122,353,936$
bushels, Great Britain and Ireland alone taking $2,629,665$ barrels of flour and net in order coming respectively, Brazil, British West Indies, British Possessions in North America, Hayti and San Domingo, and Cuba, while France and Ger many took but 27,075 and 11,233 barrels respectively.
Probably the question which came with most force to the minds of all American millers who attended the International Exhibition lately held at Cincinuati was this: Can we, and if so by what means, considerably and permanently increase our exports of manufactured flour, instead of sending abroad so much wheat to be ground by foreign millers? While those present from abroad, who examined the wonderful display there made of American improved milling machinery, were undoubtedly at the same time revolving in their minds the possibilities of this question being answered in the affirmative. As for the trade with countries which have not been accustomed to making their own flour there can be little doubt that it is quite within the ability of our millers to compete successfully, but when we already make such considerable shipments, and more than half of our exports of manufactured flour, to Great Britain and her West Indian dependencies, there is evidently good ground for hope that we may yet materially extend this trade in all countries where there is a demand for American wheat. Looking at the matter in this light, the late Millers' Exhibition had a national significance, as, in showing the advancement our mechanics had made in this branch of industry, it indicated the possibility of a still larger field for labor here, to be profitably employed in competition with European cheap labor only because of the improved machinery our millers have introduced.
To mention in detail all of the different kinds of machinery and appliances for milling and in its collateral branches shown at Cincinnati would fill a large proportion of this paper. Commencing with a large variety of turbine wheels and many improved patterns of engines, with all the appurtenances of shafting, gearing, etc., which belong to all manufacturing establishments where power is employed, the display comprised nearly everything used in the milling business in this country, together with much that is thought best of the machinery used in England, Germany, Austria, Switzerland, and France. There were many kinds of gradual reduction mills; smooth and corrugated roller mills in great variety; bolts, bolting cloths, and reels of widely differing patterns; scouring, cleaning, brushing, and heating machines; hand and power millstone dressers of many kinds; electric and other purifiers, etc.; and nearly all of the machinery was shown at work, the flour made affording samples from which bread was baked in one of the departments of the Exhibition. For the best flour made on the grounds the award went to an Indiana firm, but the most important exhibits of flour and grain were from the States of Ohio, Illinois, Iowa, Kansas, and Missouri, although great interest was shown in an exhibit of Hungarian flour, which, though excellent in quality, was thought to be decidedly inferior to many of the samples shown by our own millers. A gold medal which had been offered for the greatest improvement in milling in the last ten years was awarded to a Michigan firm for the middlings purifier; a premium for the best mixing and sifting machine went to Prussia, and for the best bolting cloth to Switzerland, while a Budapest firm in Hungary received an award for the best roller mill.
In short, the Exhibition presented a comprehensive epitome of about all that is now being done in the milling business, either at home or abroad, and, as the trade is now in a sort of transition state-the minds of millers being divided on questions of high or low grinding, gradual reduction, and new process methods-it cannot fail to have had a most decided influence, which will make itself apparent in the future of the business in this country. German and Austrian mechanics have, during the past few years, rather taken the lead of England in improvements in milling machinery, but there is nowhere else so great a variety of excellent appliances for the business, some of which are of acknowledged superiority, as American inventors and mechanics have brought forward and perfected for the use of our millers. It is this fact alone which accounts for the past increase in our exports of flour, and gives promise of our being able in the of flour to a much larger extent than we have hitherto done.

ARTESIAN WELLS IN CALIFORNIA.

The necessity of irrigation in Southern California, and the large area of land dependent solely upon flowing wells for water-supply, have led to a remarkable development of artesian wells, especially in the San Bernardino and Los Angeles basins. The main artesian belt is that running through the coast valley of Los Angeles where the number of wells approaches six hundred. The majority of these

San Gabriel, and Santa Ana, and around Compton, Artesia, and Westminster. The wells range in depth between
550 feet, the general depth being from 150 to 200 feet.

Sume of the wells irrigate from 100 to 200 acres each though a well which will irrigate 40 acres is considered good one. According to the recent report of Assistant State Engineer, Jas. D. Schuyler, the first flowing well in Los Angeles County was bored by ex-Governor Downey, two and a half miles from Compton, in 1868 . Since that time the general desire to secure by such means a constant supply of pure water has led to a rapid multiplication of wells, un til now almost every farm-house in the belt rejoices in a spouting well. The pipes are usually carried two or three feet above the surface of the ground, and the clear water glittering in the sunlight.
In boring the first well it was found that the upper water bearing stratum, 40 to 125 feet below the surface, was so largely composed of quicksand, which rapidly filled the pipes, that it was necessary to go deeper for a permanent supply. The second water-stratum was open to the same
objection, though it yielded an abundance of water; and the third, though more gravelly, contained sand enough to be troublesome. To overcome these difficulties, and at the same time utilize the several water-bearing strata passed by the pipe, a contrivance was invented for slitting the casing. The slits, which are about six inches long, and so narrow as to exclude the sand, are made lengthwise and in groups of not more than three in any one section. If the water-bearing stratam is under forty feet in thickness, the pipe is perforated the whole distance, the bottom of the pipe always resting on an impervious stratum. In one well, eight miles south of the city of Los Angeles, the first water-bearing stratum was struck at 85 feet, and was 10 feet thick. The
second occurred at a depth of 316 feet, and extended 17 feet, as far as the pipe could be pushed down, ending in coarse gravel. The force of the outpouring water brought out a bushel of gravel, the largest stone just filling the pipe and weighing four pounds. The head was sufficient to raise the water in a pipe 20 feet above the surface. In another well, sunk from the summit of a mound, near the sea coast, and 52 feet above the general level of the plain, surface water was found at a depth of 26 feet, and at 196 feet artesian water was struck, rising to within six feet of the surface. A re-
markable natural artesian spring occurs on a high hill between Old and New San Gabriel Rivers. In a sag of the hill, perhaps eighty feet above the surrounding plain, is a springy marsh, from which water flows westward to the sea and eastward to the valley. The shallowest flowing well is $11 / 2$ miles west of Santa Ana, a few hundred yards from the river. It is but 44 feet deep, and yields a large discharge. Three hundred yards away a well was bored 300 feet without striking water. In the southern portion of the artesian belt, near Westminster, the water strata are at depths of 80 to 230 feet, the lower yielding the strongest flow.
It is found that as the number of wells is increased the flow of all is lessened, while some of those on the higher
land have gone dry. The level to which the water will rise land have gone dry. The level to which the water will rise in the pipes steadily fell in Los Angeles County until two years ago, since which time it has slowly risen. The fall amounted to 6 feet, about $1 / 2$ feet having been restored.
The diameter of the majority of Los Angeles County wells is 7 inches. The temperature of the water is about 62° Fah. with the exception of some deep wells at Pomona, which show 67° Fah., summer and winter.
The area of the Los Angeles belt is about 300 square miles. In San Bernardino County the area in which flowing wells are obtained is about 30 square miles. The topography and geology of the valley show very clearly that it was originally the bed of a lake, which has been filled up by the erosion of the surrounding hills. Most of the San Bernardino wells are for domestic use and garden irrigation, and are but two inches in diameter; some are as large as eight inches. The most northerly well is 262 feet in depth; the most southerly, which yields the finest flowing stream in the valley, is 99 feet deep. The average depth of fifty-six wells built by one firm is 160 feet, the range lying below 80 feet and 380 feet The deepest well in the valley is furthest east, and has a depth of 410 feet, with a diameter of 7 inches. Vegetable matter, consisting of decayed tule roots and pine wood, was brought up from the last sixty feet. Small suckers, two to four inches in length and resembling the same fish as found in the mountain streams, were occasionally ejected from this well. This well afforded a fine flowing stream, but was spoiled in an attempt to perforate the pipe at 350 feet to secure the water of the first stratum. The incisions were made too close together; a strip of pipe was accidentally torn outt, and the quick-sand rushed in faster than it could be pumped out. The pipe is now filled with sand and clay
up to the level of the incision. shutting off the flow. The next well to this has a depth of 285 feet.

Gas Detection.

An ingenious instrument, termed a "spark tube," for indicating the presence of inflammable gases in mines, was lately exhibited and explained at the meeting of the Man-
chester Geological Society, by Dr. Angus Smith. The design of the instrument is taken from the old compression syringe used for igniting tinder, and the instrument consists of a small brass tube with glass let in at the bottom, which is closed up, and a piston and rod fitting closely in the tube. The air to be tested is taken into the tube either
from the top or by means of a stop cock at the bottom, and the piston then rapidly pressed down with the hand, the compression of the air thus effected with the aid of spongy platinum causing the gases to explode inside the tube, the explosion being visible through the glass let in at the bot tom. Dr. Smith stated that the presence of gas down to $21 / 2$ per cent could be detected by this instrument, and as the explosion within the tube was perfectly harmless, he though the instrument might afford a useful means for exploring gaseous mines.

Remarkable Discovery of a Murder

The following account of a murder which was committed in Bermuda in the autumn of 1878 is by the Attorney Gene ral of the islands, Mr. S. Brownlow Gray :

In the autumn of 1878 a man committed a terrible crime in Somerset, which was for some time involved in deep mys tery. His wife, a handsome and decent mulatto woman, disappeared suddenly and entirely from sight, after going home from church on Sunday, October 20. Suspicion im mediately fell upon the husband, a clever young fellow of about thirty, but no trace of the missing woman was left behind, and there seemed a strong probability that the crim would remain undetected. On Sunday, however, Octobe 27, a week after the woman had disappeared, some Somer ville boatmen looking out toward the sea, as is their custom, were struck by observing in the Long Bay Channel, the sur face of which was ruffled by a slight breeze, a long streak of calm, such as, to use their own illustration, a cask of oi usually diffuses around it when in the water. The feverish anxiety about the missing woman suggested some strange connection between this singular calm and the mode of he disappearance. Two or three days after-why not sooner cannot tell you-her brother and three other men went ou to the spot where it was observed, and from which it had not disappeared since Sunday, and with a series of fish hook ranged along a long line dragged the bottom of the channel but at first without success. Shifting the position of the boat, they dragged a little further to windward, and presently the line was caught. With water glasses the men discovered that they had caught it in a skeleton which was held down by some heavy weight. They pulled on the line; something suddenly gave way, and up came the skeleton of the trunk pelvis, and legs of a human body, from which almost every vestige of flesh had disappeared, but which, from the minute fragments remaining, and the terrible stench, had evidently not lain long in the water. The husband was a fisherman, and Long Bay Channel was a favorite fishing ground, and he calculated, truly enough, that the fish would very soon destroy all means of identification; but it never entered into his head that as they did so their ravages, combined with the process of decomposition, would set free the matter which was to write the traces of his crime on the surface of the water. The case seems to be an exceedingly interesting one: the calm is not mentioned in any book on medical juris prudence that I have, and the doctors seem not to have had experience of such an occurrence. A diver went down and found a stone with a rope attached, by which the body had been held down, and also portions of the scalp and of the skin of the sole of the foot, and of clothing, by means of which the body was identified. The husband was found guilty and executed.

The Germination of Unripe Seeds.
Many instances have been put on record by different obserers of unripe seed germinating, and several botanists have conducted extensive series of experiments in raising plants from seeds in different stages of development. At first sight it seems rather surprising that an imperfectly-formed embryo should grow into as vigorous a plant as a mature one; but, when we understand the general plan of growth in plants the phenomenon is intelligible. Thus, ferns ac tually develop from a single detached cell. This property of premature germination may be taken advantage of in prac tice in propagating plants that do not fully ripen their seeds in our climate. A rather longer: period elapses before unripe seeds actually germinate, but frequently the progeny is equal to the best from mature seed. Formerly it was supposed that only ex-albuminous seeds would germinate when unripe, but M. Sagot, a Frenchman, succeeded in germinating green grain of wheat in which the albumen was soft, semi-liquid, and milky, and several other experimenters have raised different cereals from grain collected a fortnight to three weeks before the crops from which it was taken were ripe. Although the practice of sowing unripe seeds is not likely to become general, and would not be profitable under ordinary circumstances, it might be useful to know, in the case of a rare plant suddenly dying before its seeds were mature, that there was a possibility of their germinating, and thus preventing the loss of, may be, a valuable plant.

How a Water Moccasin Fishes.

A correspondent, writing from Plano, Texas, describes as follows the manner in which a mocassin used his body as a sort of sieve in catching small fish. His snakeship was in a shallow pool abounding in minnows, and was briskly twisting and turning in all directions, giving his body as many convolutions as possible to inclose the fish or force them into narrow spaces between him and the bank. In either case the fish would endeavor to escape by leaping over the snake's body into the water beyond. Meantime the moccasin with elevated head caught the fish in his mouth as they passed through the air.

DENTAL ATTACHMENT FOR TELEPHONES.

The engraving shows a device to be attached to an ordinary receiving telephone for transmitting the vibrations o the diaphragm to the teeth, to enable deaf persons to hear conversation, music, etc.
The device may be readily detached so that the telephone may be used in the usual way. A link of rigid sound conducting substance, such -as wood or hard rubber, is connected with the center of the diaphragm, or with a disk attached to the center of the diaphragm, and is supported by an elastic fulcrum attached to the mouthpiece of the telephone. The under surface of the link is provided with an elastic coating which prevents the vibrations from affecting the teeth of the lower jaw.
This device is applicable to either the electric, or the string, or acoustic telephone, and transmits the vibrations to the teeth and bones of the head, affecting the auditory

DENTAL ATTACHMENT FOR TELEPHONES.
nerves, aud enabling persons having defective ears to hear. This device was lately patented by Mr. H. G. Fiske, of Springfield, Mass.

Canned Salmon by the Cargo.

The first cargo of canned salmon of this year's catch, from the Columbia River, was lately cleared from Portland Oregon, for Liverpool, England. It comprised 56,756 cases, each containing four dozen one pound cans, or their equiva lent. The gross weight was over 1,400 tons. Two other ships were soon to follow, both taking nearly full cargoes. Large consignments have also been received at San Francisco, for reshipment to England, Australia, and New York. The steamer Oregon, from Portland, June 25, brought 22,546 cases, the largest invoice of the season, if not the largest single shipment ever made to San Francisco from the Columbia River.

IMPROVEMENT IN SEWERS

The engraving shows a device for preventing back flow of sewage in sewers, and for preventing noxious gases from being driven from sewers out into the air. The improvement consists in applying to the sewer a valve or gate provided with one or more floats, and a branch pipe running around the valve.
Fig. 1 in the engraving shows the arrangement of the sewer, and Fig. 2 is an enlarged view of the sewer and its branch. A short distance from the discharge end of the sewer there is a valve which swings on a horizontal axis running transversely through the sewer The upper portion of the The upper portion of the
valve is provided with a valve is provided with a
float. Above the valve a float. Above the valve a
branch pipe rises gradually to a height a little above high water mark, and then descends and discharges into the sewer beyond the valve. The branch may discharge into the river or into the main sewer instead of returning, as shown in the engraving.
With this arrangement when the outflow of sew age is obstructed by high water or otherwise, the back water having risen above the pivot of the valve, the float will rise carrying the valve with it, closing it. The sewage will then rise and flow out through the branch a paddle wheel which may be applied to the sh, in Fig. 3, crease the rep which may be applied to sewer to in crease the rapidity of the flow through the
inventor has found that this is rarely needed.

Thêin ventor states that bath tubs and water closets, where this improvement is applied, may be placed in the cellar without the slightest danger from floods, and we are informed that the device has been applied under trying conditions, and is working well, controlling the back flow and
preventing flooding when, with the usual sewer provisions, a flood would be unavoidable.
This invention was recently patented by Mr. Charles Schirrmeister, of Brooklyn, E. D., and is being introduced by Mr. Alonzo Gaubert, 107 Broadway, Brooklyn, E. D. who should be addressed for further particulars.

Death Rate of the Rich and the Poor

An important paper on the comparative mortality of the rich and the poor was read at the recent meeting of the American Medical Association. The author, Dr. Cbarles Robert Drysdale, of London, began by pointing out the achievements of sanitary science during recent years. Yet, with all these advantages, it was found that the death rate in London had rather increased than diminished, having been $22 \cdot 2$ per 1,000 in 1856, $22 \cdot 3$ in 1876, and 23 in 1877. In all England the rate bad remained identically the same for three decades, namely, $22 \cdot 35$ per 1,000 . The point Dr . Drysdale endeavored to elucidate was, that the great cause of this non-improvement resided in the mass of indigence which, now as always, was instrumental in producing a large crop of premature deaths in all densely populated States. M. Villermé, the distinguished Parisian physician and several of his able collaborators on the Journal d'Hygiene Publique had contributed some valuable facts to the argu ment. Thus, it had been observed in France that persons between the ages of 40 and 45 die, if in easy circumstances, in the proportion of 83 per 1,000 , while, if poor, they died at the rate of 18.7 per $1: 000$. That is, the mortality between these ages was twice and a half as large among the poor a it was among the wealthy. It was found, too, that in Paris between the years 1817 and 1836, 1 inhabitant in every 15 died in the Twelfth Arrondissement, which is peopled in great part by the poor; while in the Second Arrondissement, inhabited by the wealthier classes, the deaths for the same period were only 1 in every 65 . M. Garnier, of Paris, in 1857, speaking of the mean life in a large English manufac turing city, had found that it was only 17 years in the quarters inhabited by the poor against 42 among the higher ters inhabited by the poor against 42 among the higher
classes. Villerme calculated that the probable life of the classes.
infant of a weaver at Mulhouse was as low as 1 year and 6 months, while that of the baby of the proprietor of the fac tory was 26 years. Dr. Drysdale cited from a pampblet written in 1877 upon the dwellings of the wages-receiving classes in Paris some further suggestive figures, from which it appeared that a death rate which was the mean of the whole population is always misleading. Thus, in part of a subdistrict in London, comprising houses in good condition, the death rate did not exceed $11 \cdot 3$ in every 1,000 , while there were adjacent dwellings in the same sub-district in which the death rate had risen to 38 per 1,000; and it was now reported that there were particular districts in London where the death rate was 50 per 1,000 . On the other hand, the average death rate of the whole population was only 24 per 1,000 in 1843, and had scarcely deviated from that figure since. If such statistics were insufficient, he would refer to the researches of Ansell, who collected the statistics of 48,044 children of the opulent classes in England, including professional men, the nobility, and gentry. It appeared from Ansell's tables that, among these classes, the death ratio was only 80.45 per 1,000 for children under a year old, while for all classes taken together it was 150 . Dr. Little found the ratio in Berlin, a city of extreme poverty among the working classes, to be occasionally as high as 500 per 1,000. In conclusion, Dr. Drysdale referred to the statistics of New Zealand as a remarkable confirmation of Ansell's tables. In New Zealand, of late years, the wages of labor-

New Zealand laborer did not drink less beer than he did
before he left England, and yet he lived nearly twice as long in New Zealand as he could expect to live at home

NOVEL CAN OPENER.

The can opener shown in the engraving consists of a curved blade, having its cutting edge tapered or inclined backward obliquely on each side of the penetrating point This blade is secured in an annular groove in the handle by pin passing through the handle and through slots in the blade
The bandle has two or more annular grooves into which the blade may be sprung and fastened to adapt it to can of different sizes.
The method of using this instrument is obvious. The penetrating point is forced through the top of the can near

one side; the blade is then pushed down, making a shearing cut and cutting out a circular portion of the can cover. This invention was recently patented by Mr. W. E. Brock of New York city

NEW INVENTIONS

Mr. Jules Lambert, of New York city, has patented an mproved flitter for milliners' trimmings that is ornamental and serves also to attach other ornaments, such as beads, bugles, etc., to feathers and other articles of dress.
An improved heater or steam generator for open grate freplaces has been patented by Mr. Issac B. Potts, of Colum bus, Ohio. It is designed that this heater or steam generaor shall be placed in an open fireplace, with its pipes forming or lining the back and sides of the fireplace, and with upward inclined pipes forming or lining the lower slope of the chimney flue.
An improved car coupling has been patented by Mr. John F. Stanley, of Cbaplin, Ky. The object of this invention is to furnish car couplings so constructed that they will couple automatically when the cars are run together, can be easily uncoupled, and will not be liable to become uncoupled accidentally.
Mr. James R. Thomas, of Calpella, Cal., has patented an mprovement in eyes for securing hoe blades and othertools to handles, so constructed that the blades or tools will be held firmly in place and may be detached and ex changed when desired.
A telescopic or extension pedestal, to be used as an accessory in forming pho tographic backgrounds, and so constructed that it may be extended and low ered as the beight of the person to be photographed or the character of the pose may require, has been patented by Mr. William F. Ashe, of New York city.
Mr. John Collins, of Brooklyn, N. Y., has recently patented an im proved apparatus for generating gas for soda water Theobject of this invention is to render the operation of gas generating continuous or intermittent, as may be or intermittent, as may be desired, without removing the charge of carbonate or

ers had been very high, and the profits of capital large, with	acid until it is entirely exhausted. The device which controls
the supply of acity to the carbonate is entirely automatic	

plenty of food without undue anxiety. The result was a after being once set in operation, the gas pressure controlplenty of food without undue anxiety: The result was a after being once set in operation, the gas pressure control-
death rate of only 12.5 per $1,000-$ a fact mainly due to the
ling the flow of acid. The mechanical devices by which this death rate of only 12.5 per 1,000 -a fact mainly due to the
absence of an the flow of acid. The mechanical devices bad and badly paid class. In England
invention is carried out cannot be readily described without and Wales, with the same death rate, some 230,000 lives engravings. would be saved every year. In passing, Dr. Drysdale took occasion to dissent from the view that alcohol is the grea cause of evils in modern states. It was probable that a

A new tree protector, for protecting trees from grubs and insects, has been patented by Mr. Joseph W. Richards, of Lynn, Mass. It is simple and effective.

An improvement in commodes has been patented by Mr. \quad tural Works, London, Ontario, Canada. The name given Andrew Climie, of Ann Arbor, Mich. The object of the invention is to prevent the unpleasant odor arising from a water closet, especially such as are used in railway cars, and to inclose the deposits and convey them away.
An improved nail for the soles of shoes, so formed that after being driven and having its head removed the nail will have a four pronged appearance, has been patented by Mr. Zephaniah Talbot, of Holliston, Mass.
An improved refrigerating and ice making apparatus has recently been patented by Mr. Charles P. G. Linde, of Munich, Germany. The improvements relate to that class of refrigerating or ice making apparatuses in which the refrigerating effect is obtained by the evaporation of a volatile liquid, the vapors of which are compressed by a pump into a condenser, and then liquefied ready to be again subjected to the process of evaporation. The object of this invention is, first, to prevent overheating of the pump; second, to effect a more perfect packing of the stuffing box of the pump, and the employment of the stuffing medium for the lubrication of the points of contact of the working parts; third, to provide means for replenishing the apparatus with pure liquid ammonia while in operation; fourth, to provide means for the production of transparent ice and the means for discharging the same from the carriers.
Mr. Samuel A. Bollinger, of Patterson, O., has invented a harrow so constructed that either side or the whole harrow can be raised from the ground to clear it from rubbish and to pass roots, grass, and other obstructions.

AN IMPROVED HARVESTER.

Although the general principle of the reaper shown in the engraving is common to many machines of this class, the particular machine illustrated embodies several novel improvements of considerable merit which render it superior. The machine is constructed throughout with a view to convenience in handling, to strength and durability, and at the same time the new features render it very efficient.
The frame containing the running gear is composed of two iron end pieces and two wrought iron side pieces, secured together by bolts or rivets. The outer side piece supports an adjustable slide, to which is attached the seat spring, thus making the seat adjustable, so that the driver may move it either backward or forward to balance the machine and relieve the necks of the horses from undue weight.

The inner side piece of the main frame carries an adjustable foot piece which forms a guide for a vertical bar, the lower end of which is jointed to the side bar of the platform or table. On the upper end of the vertical barthere is a hand lever, which is connected by a rod with the side bar of the platform, a short distance back of the vertical bar, so that by moving the lever the platform may easily be tipped one way or the other as may be required. The lever is provided with a bolt or latch, which retains it in any desired position by falling into one of several notches in a sector secured to the top of the vertical bar.
Upon the foot piece which guides the vertical bar there is a ratchet and chain wheel for winding a chain connected with the inner end of the platform. A lever carrying a pawl is adapted to work the ratchet wheel so as to raise or lower the inner end of the platform by winding or unwinding the chain. A holding pawl is provided for retaining the ratchet wheel in any desired position.
The crank shaft and gearing inter mediate between it and the axle are supported by jour nal boxes attached to the main frame Side draught is avoided by attach ing the tongue to the inner side of the frame. The au tomatic rake is of a well known type which will be recog nized by those of our readers familiar with agricultura machines.

The appearance of this machine is trim and workman like, and it seem well adapted to the work for which it is designed.
The adjustments, which are calcu lated to meet every requirement, are al easily made. The working parts ar of wrought and cast iron and steel. This machine is made by Messrs. Crawford \& Co, their Globe Agricul
tural Works, London, Ontario, Canada.
the machine is "The Imperial Harvester."

A NEW PUNCHING PRESS.

The Peerless Punch and Shear Company, 52 Dey street New York, have just completed a new power press for punch ing sheet and bar metals, similar in design to their No. foot press, of which we published illustrations in Septem ber last, excepting that the treadle and pendulum are re placed by a balance wheel for belt power
One of these presses, although weighing but 500 lb ., will punch a $1 / 2$ inch hole in $1 / 4$ inch iron, or 1 inch hole in $1 / 8$ inch ron, and will cut a blank $61 / 2$ inches square from No. 14 iron or brass. If used as a shear, it will cut bar iron 2 inches by $1 / 4$ inch in thickness, or $5 / 8$ inch round.

PEERLESS POWER PRESS No. 1.
The wheel is 22 inches diameter and weighs 130 lb . The design embodies great strength, while the press occupies floor space only 2 feet 3 inches by 2 feet 11 inches. Many of this style of presses are sold with a pendulum attach ment to be worked by foot power when steam is not available. This is a great convenience, as the operator is not altogether dependent upon steam power, and can use his press at any time by merely taking off the balance wheel and putting on the pendulum in its place.

THE "IMPERIAL HARVESTER,"-MADE BY CRAWFORD \& CO, LONDON, ONTARIO CANADA,

In several instances thriving towns on the treacherous banks of the Mississippi and the Missouri rivers have been wiped out by the erosion of the river banks. Covington Iowa, according to the Sioux City Journal, is another doomed city. It stands on a bend of the Missouri River, where the banks are being gradually eaten away. Miny feet of fast flowing water now sweep over the spot where the court house stood a year ago. Recently the current set in shore and took off a strip of land thirty feet wide in a few hours. No invasions were made for another week, when nother slice was cut off. Then about half a dozen build ings were moved back about some thirty feet, and the next day the land on which they had stood was all gone. The citizens have tried to moor trees and logs to the bank in the hope of forming a barrier for the flood, but the current is so swift and the water so deep that these attempts have failed. To give an idea of what the town of Covington ha suffered in the past five years, the case of the ferry house and the principal hotel may be instanced. Two years ago there were six hundred and sixty feet of land between the building and the river bank; now you can toss a stone out of the hotel window into the river, and buildings are now being put on rollers for removal.

Hatching Spanish Mackerel.

Professor Earle, of the United States Fish Commission, has discovered that Spanish mackerel can be hatched arti ficially, and that its capacity of reproduction is many times that of the cod or the shad. Professor Earle received his first hint in regard to Spanish mackerel from Chesapeak fishermen, who reported that large numbers of them annu ally frequented the inland waters near Chrisfield, Md., and Mob Jack Bay. On being directed by Professor Baird to make experiments there with hatching apparatus, Professor Earle was surprised to find that the fish were hatched within eighteen hours from the time the milk and spawn wer brought together. It requires five days to hatch shad, and from eight to twelve days to hatch cod. The number of eggs operated upon at a single hatching was between 200,000 and 300,000 , while of shad only about 20,000 to 30,000 can be turned out at once.
Another fact of importance is that the season for opera tions with the spawn of the Spanish mackerel is toward the last of June and first of July, after the shad season is over, and before that of cod begins. It is esiimated that the num ber of young fish "turned out" this season will be mor than a hundred million.

How Mr. Hannay Made his Diamonds.

Mr. G. B. Hannay, in a recent number of the "Proceedings before the Royal Society," gives an interesting accoun of the method employed by him in starting and prosecuting his experiments in making diamonds. And if only as record of indomitable perseverance against ever-increasing difficulties, of scientific acumen, and of the true applica tion of the Baconian method of research, as the London News justly says, it is worthy of study. Some idea of the nature of the investigation may be obtained from the fact that out of complex and expensive experiments only three succeeded. Violent explosions were frequent; furnace were blown to pieces; steel tubes burst, scattering their fragments around. On other occasions, tubes which ha been carefully pre pared, filled, weld ed, and nestled in a reverberatory fur nace for many hours, were found to have leaked and spoiled the experispoiled the experi tinued strain on inued strain th nerves," writes Mr Hannay, "watch ing the temperatur of the furnace, and in a state of tension in case of an ex plosion, induce nervous state which is extremely weak ening, and when th explosion occurs it sometimes shake one so severely tha ickness super venes." • The dia mond-making ex periments were started in Septem ber, 1879, when Mr. Hannay mademany attempts to find olvent for the al kali metal, sodium potassium, and li thium. But in no instance could such a solvent be found which did not, in the gaseous state and under pressure
unite with the alkali. Even in the case of hydrocarbons, such as paraffine spirit, containing only hydrogen and carbon, the alkali combined with the hydrogen, setting free the carbon. Now, as we know, diamond is pure carbon hence, when this element was set free from a pure substance, it was thought that conditions of pressure and temperature might eliminate it in the hard, crystalline, adaman tine form, namely, as diamond. Glass tubes were first employed, but, although of great thickness in comparison with their bore, they were found to be insufficiently strong, and they were replaced by wrought iron tubes twenty inches long by one inch diameter, and having the diameter of the bore half an inch. In these lithium was heated for many hours to a high temperature in paraffine spirits, and on subsequently opening the tube carbon in a hard form was found within it. Great difficulty was experienced in getting the tubes perfectly airtight, and eventually the open end was welded at a white heat, and by that means alone did it resist leakage. Sometimes tubes would burst with an explosion like a gun. A tube twenty inches long by two and three quarters diameter and one half inch bore was filled with a hydrocarbon made from bone oil, to which some charcoal powder was added in order to keep an excess of carbon in the tube. Its open end was welded, and it was lreated for fourteen hours with lithium. On opening it a quantity of gas appeared and some minute pieces of hard carbon which had evidently separated out from solution. Another similar tube burst at the end of eight hours' heating. A tube of cast iron, no less than three and three quarter inches diameter, and with a bore of only three quarters of an inch, exploded at the end of an hour with a fearful report, wrecking the furnace. Several tubes of steel also burst under the enormous pressure, at last shattering the top of the furnace. The author remarks that in nature the temperature must at one time have been much higher than anything we can now produce artificially; while the pressure obtained at a depth of two hundred miles below the earth's surface is greater than that which any of the materials from which we can form vessels can resist.
We come now to the great experiment which resulted in the artificial production of veritable diamonds. A tube twenty inches long by four inches diameter, of coiled Lowmoor iron, was bored so as to have an internal diameter of half an inch. Thus the central bore was surrounded by walls of iron one and three quarter inches thick, and, of
course, capable of resisting an enormous pressure. In the tube was placed a mixture of ninety per cent of bone oil and ten per cent of paraffine spirit,together with four grammes (about sixty-two grains) of the metal lithium. The open end of the tube was welded airtight and the whole was then heated to redness for fourteen hours, and allowed to cool slowly. On opening it a great volume of gas rushed from the to the sides of the tube and a hard, smooth mass adher ing to the sides of the tube. "It was quite black, and was
removed with a chisel, and as it appeared to be composed principally of iron and lithium, it was laid aside for analy sis. I was pulverizing it in a mortar, when I felt that some parts of the material were extremely hard-not resisting a blow, but lard otherwise. On looking closer I saw that matrix, and on triturating them I obtained some free from the black matter. They turned out to be crystalline carbon, exactly like diamond."
Such is Mr. Hannay's account of his discovery. Subse quent chemical and optical analysis has proved that these hard shining crystals are, in every respect, true ditmonds. The cost is obviously great; so, also, is the danger to life
and property; and the great difficulties to be overcome render disappointments common. What we now want is to get vessels of a material sufficiently strong and non-porous to resist the high pressures and temperatures upon which the success of the experiment depends. What we have MM. Cailletet and Pictet, which led to the liquefaction of the so-called permanent gases, and from Mr. Hannay's experiments, described above, is, that we must push the forces of nature to their utmost strain by using our most powerfu mechanical devices for producing pressure, our strongest materials for resisting it, and our intensest means of producing both heat and cold.

The High Buildings of the world

The crown of the hat of the statue of William Penn, which is to surmount the tower of the new public buildings of Philadelpha, will be just 535 feet above the pavement. This is 10 feet 1 inch higher than the highest towers of the Cologne Cathedral as they now stand. The Penn Square tower, however, will ulcimately be overtopped by the Cologne towers 41 feet 9 inches, their intended height being 576 feet 9 inches. The heights of the other chief lofty buildings of the world are given as follows:
Tower of St. Nicholas' Church, at Hamburg, 473 feet 1 inch; cupola of St. Peter's, Rome, 469 feet 2 inches; cathedral spire at Strassburg, 465 feet 11 inches; pyramid of Cheops, 449 feet 5 inches; tower of St. Stephen's, Vienna, 443 feet 10 inches; tower of St. Martin's, Landshut, 434 feet 8 inches; eathedral spire at Freiburg, 410 feet 1 inch; cathe dral of Antwerp, 404 feet 10 inches; cathedral of Florence 390 feet 5 inches; St. Paul's, London, 365 feet 1 inch; ridge tiles of Cologne Cathedral, 360 feet 3 inches; cathedral tower at Magdeburg, 339 feet 11 inches; tower of the new Votive church, at Vienna, 314 feet 11 inches; tower of the
Rath-haus, at Berlin, 288 feet 8 inches; Trinity Church, New

York city, 284 feet; and the towers of Notre Dame, at Paris, 232 feet, 11 inches.

AMERICAN INDUSTRIES.-No. 52.

wine making.

To have styled this branch of business an American indus try a few years since would have provoked a smile. Now however, it is becoming generally understood that the productions of American vineyards are affording the mean by which the home demand may be supplied, and that in some cases American wines have won an enviable distinction
in comparison with those of the most noted wine-producing countries of the world. The long established prejudices in favor of wines which have a foreign trade mark and an un readahle label are not, it is true, entirely removed; it will probably be many years before it will cease to be "fashion able" to give undue credit to wines that are imported, simply because they are imported; but the good work in this direction which has been already accomplished by the Urbana Wine Company, of Hammondsport, N. Y., gives promise of a future development of wine making in this country tha cannot fail to make the business one of considerable import ance among our industries. In foreign wines adultera tions, often injurious to health, are so common that it is difficult to obtain a pure article, and many, among portunity to taste a pure wine. For this reason, more than any other, the establishment of the wine making industry here, in such way that all may assure themselves of the absolute purity of the wine they buy, becomes a matter of particular moment, and the engravings we give on the first page of this paper, illustrative of the location and works of the Urbana Wine Company, will undoubtedly attract the attention which a subject of such direct interest to almost every one deserves.
The first requisite in the making of a superior wine is to have the best quality and fine varieties of rich, ripe grapes. These are not grown to any great extent anywhere in the world except between the 35th and 55th degrees of north latitude. In climates more northerly the grape seldom arrives at full maturity, and the wines are weak, liable to sour, and destitute of the generous flavor which characterizes those produced from grapes grown further south; if we go further south than the 35 th degree, however, there is too de-
cided a predominance of the saccharine matter, and a perfect cided a predominance of the saccharine matter, and a perfect
vinous fermentation cannot be effected. The location of the vineyards of the Urbana Wine Company, on the shores of Lake Keuka, or Crooked Lake, Steuben County, N. Y., combines all the advantages of the finest grape-growing regions of the world. The soil is a gravel on calcareous rock; the ground is undulating and even precipitous, with a general southeast exposure toward the lake, which tempers the summer breezes and gives that atmospheric equability bes calculated to insure the perfect ripening of the grape. The location has been styled the Rheims of America, and has
been famousfor its grape production for many years, though it was not until about 1860 that this was made a regular busi ness. Now, however, the vineyards here cover some ten thousand acres, in the heart of which, and immediately on the banks of the lake, affording ready means of cheap transportation, are the works of the Urbana Wine Company.
The principal varieties of grapes cultivated are the Cataw ba, Isabella, Delaware, Iona, Walter, and Concord, and it is the proper selection and combining of the fermented juices of these grapes, under conditions which are carefully regulated, that makes the various still and sparkling wines for which the company have obtained so wide a reputation. They use absolutely nothing else but these grapes, excep the necessary quantity of pure sugar, so that they make no
bogus or carbonized wines, the gas in the champagne being a natural product of fermentation in the bottle, and not an artificial gas injected in the wine by a machine, as is the case with some of the wines now made.
Referring to our engraving, the main building o the company's works is a very substantial stone struct ure, 150 feet long by 60 feet wide, with wings extend ing on either side, the ground floor of the whol being entirely taken up by capacious vaults, the walls of
which are so thick and solid that the temperature there in which are so thick and solid that the temperature there in
summer weather never rises above 60 . The grapes, as they are brought in, principally by steamers, sloops, and flatboats from the vineyards on the lake, are first taken to the third story or top floor of the establishment, where they are carefully assorted, and all imperfect or decayed fruit removed They are then run through mills especially designed for breaking the skins without crushing the seed, and it is the juice derived from this first operation from which the highest quality of champagne is made. From here the grapes go to the press room, an illustration of which may be seen in
one of our views. There are several large presses here, where two or three workmen, with powerful leverage, subject the grapes to sufficient pressure to thoroughly extract all the juice, which is conveyed through rubber hose to large casks below, where the first fermentation takes place. For fully fully regulated. Below fifty degrees it proceeds very slowly, and above seventy degrees it would be too rapid, with dan ger of passing into the acetous stage. As the fermentation
proceeds the temperature of the liquor rises, it has a turbid appearance, and gives off carbonic acid gas. At length this commotion gradually diminishes, and the liquor recovers its transparency, when it is found to have exchanged its sweet
taste for oue of considerable pungency, and to have acquired
the property of acting as a powerful stimulant on the anima system. After this first fermentation the wine is racked of into other and clean casks to remove from it all sediment o impurities, and it is now in the proper condition to combine in various ways the product of different kinds of grapes for making still wines,
In the selecting of the different grape products which will so blend as to give the best effects as regards spirit, flavor acidity, etc., both in clampagne and still wines, great care and experience are necessary. The proper combination being decided upon, the wine is bottled accordingly, as shown in the "bottling" room. This is done by the aid of a automatic bottle filler, the corks being held by a metallic fastening styled an agraff, always used in first corking, and the filled bottles are then piled up to await the second fer mentation. The department in which this takes place should be kept at an even temperature, and for this purpose it is fitted up with steam pipes. The air being of the required warmth causes a second fermentation in the bottle, and this produces the carbonic acid gas which makes the sparkle absolutely nothing else but this natural product of the grape being used to make the life and effervescence of the wine of the Urbana Company. As the process approaches com pletion it is marked by the frequent breakage of bottles, which are burst by the gas produced in them by the fer mentation, about 5 per cent of all the wine made being lost in this way. In France and other wine-producing countries the natural heat of the atmosphere is depended upon to effect the fermentation, so that when the weather is excep tionally cool during the wine-making months the operation proceeds in a very tardy and uncertain way, while here it goes on as regularly as clockwork, and the results can b definitely calculated upon, although there is no difference in principle between the methods followed by this company and those in use by the best French wine manufacturers.
When the second fermentation has been completed the bot tles are lowered into cool vaults, where they are allowed to quietly rest and mature for two years. When wanted for use the bottles are placed on sediment racks, necks down ward, workmen passing through and shaking them gently twice a day for three or four weeks. In this way any sedi ment which has been produced by the fermentation is gradually worked down on the cork in the neck of the bottle From here the bottles go to the finishing room, which is hown in the large view at the bottom of the page. Here the cork is removed by an expert, and as it filies out carrie with it a small quantity of champagne and the sedimen which had settled there. It is then passed to a "doser," who with a small machine, injects a sirup made of white suga candy dissolved in champagne. The quantity so injected is very small, but care is taken that the contents of each bottle shall be exactly the same. The bottle next goes to the corker, who, with the aid of a machine, closes it with large cork, after which come the tying and wiring, all of the operations, however, being conducted in much less time than it takes to describe them. The bottle is now wel shaken, to mix the sirup thoroughly with the wine, and then comes the labeling, putting on the foil, wrapping, packing, etc In the manufacture of sweet and dry Catawba, port, etc. particular care is taken in all the processes and in putting up the wine to make an article which will keep in every climate The Catawba is a heavy, fine-flavored wine, and to a large extent takes the piace of imported hocks. The port wine made by the company is from several varieties of grapes fermented on the skins, which gives it a heavy dark color One of our sketches gives a view of one of the large vaults, where, in immense casks of about 3,000 gallons capacity each, the still wines are kept until they have been properly matured and mellowed.
The vaults and building of the Urbana Wine Company, originally the largest in this country, were last summe greatly increased, giving to the establishment quite double its former capacity. The entire new vaults, under the new stone south wing, are 80x40, with artificial ice houses behind the lower walls, capable of reducing the temperature i desired. These are wholly devoted to champagne manu ture. The fermentation room above them is 80×40, fitted with steam boiler and works, controlling the temperature a any desired point, and is claimed to be the most complete fermenting room in any wine-making establishment in America. The storage capacity for wine was also nearly doubled by the addition of casks. Above this are the new finishing rooms, and on the floor above the store and room where grapes are received. These buildings are made of solid stone, with walls of great thickness. The crop las fall was exceptionally prolific and very superior in quality, and the company decided to put in a very large stock More than twice the amount of grapes ever before purchased were crushed last autumn by this company
At the late Paris Exhibition the "Gold Seal" and "Gold Seal Extra Dry" champagnes of the Urbana Wine Company were exhibited in direct comparison with the best cham pagnes of France. This was the first time there had been a real comparison between the champagnes of the differen countries, and as a result these wines were awarded a medal At our Centennial in 1876 the "Gold Seal" and "Gold Seal Extra Dry" were a warded the highest honors, obtaining two medals and two diplomas
The officers of the company are: D. M. Hildreth, President; Cliark Bell, Vice-President; H. H. Cook, Treasurer;
$\begin{array}{ll}\text { and A. Smedberg, Secretary. } & \text { A. J. Switzer, Hammonds- }\end{array}$ and A. Smedberg, Secretary. A. J. Switzer
port, N. Y., is the General Superintendent.

Hints for Preserving Fruits.

A useful hint to cooks was given at a recent sanitary convention in Grand Rapids, Michigan. It was pointed out that by adding sugar to sour fruits, during the cooking process, the greater part of the cane sugar was converted by the aid of the acid into grape sugar, which does not possess half the sweetening power. By cooking the fruit first, and then adding the sugar to an agre
deal of sugar might be saved.
Raspberry, strawberry, and cherry sirups of the German Pharmacopœia have to be made by bruising the fruit and letting the marc and juice ferment, after which the juice is strained off and filtered. A better and safer way is to add at once to the freshly bruised fruits five to six per cent of alcohol, to let the whole stand for some days, decant and filter. Lastly, boil up once to remove the greater part of the alcohol. Sirups made with juice prepared as above retain in a remarkable derree the odor and taste of the fresh fruits.

NOVEL FRUIT GATHERER.

The annexed engraving shows a convenient implement for gathering apples, pears, peaches, and other fruit without bruising it. The cup that receives the fruit is movable on the upper end of the rod, and is provided with a forked hook which grasps the stem of the fruit. A cover is hinged to the cup and connected with the rod, so that when the cup is pulled downward in the act of fruit picking, the cover closes and guides the fruit, so that it falls into a rubber tube connected with the lower part of the cup. After the fruit stem has been removed, the spring on the rod returns the parts to their former position.
This fruit gatherer was recently patented by Mr. J. N. Jarman, of Peacher's Mills, Tenn.

Sapphires in Siam

Five years ago a native hunter in Siam found sapphires in a remote and secluded district. Some men who were let into the secret fol lowed him to the mines and brought back to Rangoon and Calcutta a number of very valuable stones. A rush ensued from British Burmah thousands of adventurers flocking to the mines, some to find sudden fortune, but more to lose their lives from privation and jungle fever.

The mines occur in the provinces of Battambong and Chantaboon. In his commercial report for 1879 the British consul at Bangkok says that the miners are very careful to conceal their gems while in Siam. Being anxious to show some of the gems to Admiral Coote, the consul called for specimens from some miners who bad just returned from the diggings. One miner, a
 poorly clad and miserable looking fellow, produced a few sinall stones, and after a great deal of coaxing was induced, with many precautions, to give a private view of his great prize, which was a very large sapphire in the rough, valued at $\$ 10,000$. He would probably not have shown this stone at all had he not been on the point of leaving in a steamer. Owing to the secrecy thus observed by the possessors of valuable gems, it is impossible to give any estimate of the total value of stones found, but that individuals have made very large profits is certain. One man dug out a stone which he offered for sale in Chantaboon at $\$ 500$, but did not find a purchaser. He went with it to Rangoon, where he was offered $\$ 7,500$; but, having awoke to the value of the stone, he declined to sell and took it to Calcutta, where he eventually obtained $\$ 15,000$ for it. Now, however, there are many experienced gem merchants established in the neighborhood of the mines, and something like the real value of the stones can be obtained by the miners on the spot. The largest sapphire hitherto found so far as the consul knows, weighed 370 carats in the rough and when cut turned out 111 carats of the finest water. The ruby, onyx, and jade are also found in the district, but the quality of none of these is such as to make them very valu able.

Pyrethrum for Grain Weevils

Adjacent to my office is a warehouse filled with wheat. This spring the grain weevils therein commenced to migrate, and infested my premises. We therefore sprinkled some buhach, or insect powder, over the grain, and swept the weevils up literally by the quart. Those which emigrated to my office were also treated with a sprinkling, and it cu short their earthly career
I am convinced that a judicious use of this powder on board each grain ship would save an immense amount of
loss. I have seen it used in one of the largest mills in the

State, and it brought cockroaches out in quantities which astonished even the miller, who little thought he had so many on his premises. A clergyman, a friend of mine, who
cannot sleep if a mosquito is within a mile of him, tells me cannot sleep if a mosquito is within a mile of him, tells me
he has only to put a little powder on some burning paper in his room, and there is "perfect peace."-A.T. Elliott, in American Entomologist.

Bogus Sugar.
The manufacture and great profits which the makers of testimony lately given by one of the origin the following
 dence that the public rather prefers to be cheated, and will pay more for sugar that is not sweet than for the genuine article

Mr. Horace Williams testified as follows

"The manufacture of grape sugar from corn was commenced originally by witness and his partner. He invented some of the machinery by which the process was brought to perfection. He obtained patents in order to keep his process a secret. Their firm name was then A. W. Fox \& Co. They commenced with two or three hundred bushels a day, and increased this amount gradually to two thousand. This was the amount in 1874. The Buffalo Grape Sugar Company was then organized. There were 200 shares, of which Fox owned 102; witness owned 60 shares, and the balance was held by William Hamlin. Improvements have since been made in the machinery, by which a better article of sugar is made and with greater facility. They first produced crude sugar-used in the manufacture of ale and lager beer, principally ale. The sugar was used in place of malt. At a later date they refined the sugar. Grape sugar also was used, in 1874, by tobacconists. As its quality was improved it was used in other branches of business. A large quantity is now used in making sirups for table use. Witness knew there was very little pure cane sirup sold now. The grape-sugar sirup is more wholesome and delicious. Glucose and grape sugar are one and the same thing-glucose being the sugar in a liquid form. When it is called grape sugar it is in a solid form. This is being used considerably in New York in making sugar, making what is called improved sugar. Witness understood that the Buf falo Grape Sugar Company was interested in this mixing of sugars in New York. At the present time the demand for grape sugar exceeds the supply, and the price of it has increased. In 1874 thirty pounds of sugar were made from one bushel or fifty-six pounds of corn. The price was then from $31 / 2$ to 4 , and sometimes $41 / 2$ cents a pound. The refuse is sold for feed, and the price of it was from seven to eight cents a bushel. In mixing sugar the grape sugar is pulver ized, and about twenty-five per cent. added to cane sugar It improves the color of the sugar, and enables dealers to sell it for a better price.
During 1874 and 1875 the earnings were about $\$ 15,000$ month, and in 1876 they a veraged from $\$ 19,000$ to $\$ 20,000$ In 1877 the earnings for one month were $\$ 35,000$. Witness did not see many of the statements during 1878. A starch factory was run in connection with the sugar works, about 500 bushels of corn being used in a day. Witness did not know much about the earnings of the starch factory. He was aware that the business was profitable. He understood all of the processes of the establishment, and had charge of the manufacturing of the sugar, glucose, etc. He made estimates from time to time of the cost of turning a bushel of corn into sugar, and in doing so took into consideration the outlays, cost of machinery, building, etc. He estimated it to be about 25 cents a bushel, and the net profit of a bushel of corn, at 45 cents a bushel, when turned into sugar, to be 70 cents. A number of small manufactories have sprung up in this country, but there are only four or five of any account. The amount of corn consumed in 1879 was from 4,000 to 6,000 bushels a day. In some respects it costs less per bushel to run a large amount of corn than it would to consume a small quantity. The net profit per bushel from 1874 to 1879 was from 40 to 50 cents.

Composite Diamonds.

A diamond expert of Chicago asserts that many of the so called solitaires, sold as single stones, are made up of small sones cleverly put tngether. Under the blowpipe they sepa rate. .He adds the surprising statement that not one diamond in ten sold in this country is other than the refuse of the London market. Nearly all are off-colored, specked, o feathered, and are sold at a fictitious value.

Mr. Whymper among the Andes.

Mr. Whymper, the English mountain climber and artist writes to a friend in London that, during a forty-one days excursion north of Quito, the most of the time was spent in tents at altitudes varying from 10,000 to 14,500 feet. Seven days were passed without any shelter whatever. The ob jects of the trip were the exploration and ascents of Cay ambe, Saraurcu, and Cotocachi, and the collection of Inca antiquities. He was accompanied by the two Carrels, the well known Swiss guides. They were entirely successful, though at a somewhat severe cost, being drenched every day and much reduced by exposure and diarrhea. On Saraurcu it rained on one occasion for seventy hours without
ceasing for a minute, and for more than six days and a half out of seven consecutive ones. He found Cayambe to have height of 19,200 feet, Saraurcu 15,6: 0, and Cotocachi 16,200 feet. The ascent of the bighest mountain gave least trouble
and the lowest one gave most. He waited for fourteen days before he could see it, as it is almost perpetually enveloped in mist.

The Best Vehicle.

An anecdote is told of a physician who was called to a foreign family to prescribe for a case of incipient consumption. He gave them a prescription for pills, and wrote the direction: "One pill to be taken three times a day, in any convenient vehicle." The family looked in the dictionary to get at the meaning of the prescription. They got on well until they got to the word vehicle. They found "cart wagon, carriage, buggy, wheelbarrow." After grave consideration they came to the conclusion that the doctor meant the patient should ride out, and while in the vehicle be should take the pill. He followed the advice to the letter, and in a few weeks the fresh air and exercise secured the advantage which otherwise might not have come.

PNEUMATIC DRILL-HOLE CLEANER.

A simple device for removing drillings from drill holes is shown in the accompanying engraving. A tube having a ball valve at its lowe end is connected at its upper end by a flexible tube with a hollow rubber ball, having a metallic neck containing a check valve, and baving a small air hole in one side to be closed by the finger. The tube is inserted in the hole to be cleared of drillings; the rubber ball is compressed, and the air hole is closed by the finger. The ball being released, a partial vacuum is formed, and the external air pressure forces the drillings into the tube. The operation may be repeated several times be fore removing the tube, if necessary. The tube is emptied of drillings by pushing up the ball valve. This invention bas been patented by Mr. J. L. Prentiss, of Cañon City Pren
Col.

Rock

In the government ope ations for the removal of Flood Rock, Hell Gate, East River, about one hundred and thirty men, in three sets, who relieve each other every eight hours, night and day, six days a week, and the work of making the East River practicable to ships of the largest class, is progressing rapidly. The area of rock to be undermined and blown away is between five and six acres, in addition to about three acres that have already been mined and made ready for the great explosion that is to give New York from twenty-six to thirty-two feet of water at low tide from Blackwell's Island into the Sound. The width of the channel at Flood Rock now is 600 feet; after the rock has been blown away it will be 1,200 . It is believed that the velo city of the tide at Hell Gate will be decreased by the destruction of Flood Rock.

A Clever Trick.

The Japan Mail describes a clever trick which was being exhibited by a native juggler at Joshida bashi. The per formance takes place in a small room about twenty-six feet long by twelve feet wide, half being allotted to the spectators, who are admitted on payment of the moderate fee of two cents. The "properties" consist of a deal table and a sword, etc. After the usual soul-stirring flourish on a drum and samisen, a man and woman appear from behind a screen, the man binds the woman's head in a cloth, and she then kneels down close to the table, and sideways to the spectators. The man then draws the sword, makes a violen blow at the woman's head, she falls forward, arms extended and limbs twitching. He then, having first wiped the sword on a gory-looking piece of rag, takes up (apparently) the woman's bead, wrapped in the cloth, and places it on the table. To all appearance it is a human head, the eyelids and features have a convulsive motion ; presently the eyes open in a dreamy sort of way, and, to the accompaniment of the everlasting samisen, the head sings a mournful song. A curtain is interposed between the audience and the performers, and when again drawn back the woman is disclosed quietly seated alongside the man. When it is recollected tbat this all takes place within about three feet from the spectator, and that the "properties" are of the simplest description, some idea may be formed of the wonderful excellence of a performance which has excited attention.

IMPROVEMENT IN STEAMSHIPS.

That there is ample room for improvements in the con struction of steam vessels and in methods of operating them no one will doubt after reading the records of marine disasters for the last few months, and no one who has en countered a rough sea on ordinary vessels would fail to patronize a line of steamers free from pitching and rolling and practicably unsinkable
Our engraving shows a steamer intended to be of sufficient length to ride several waves at once, and thus avoid pitch ing, and having breadth of beam sufficient to prevent roll ing. The vessel is without masts or rigging, and is to be propelled entirely by steam.

The vessel consists of two longitudinal tubular pontons, sustained parallel to each other at a suitable distance apart by transverse connecting braces, in combination with struts extending vertically from each ponton, longitudinal airtight cylinders connected to the upper ends of the vertical posts or strutsimmediately above and parallel to the pontons, and transversebraces connecting the two cylinders, the structure so formed being adapted to sustain the deck, cabins, and machinery of a sea-going vessel, and the arrangement being such that if the posts or struts and upper horizontal cylinders, which mainly support the deck and cabins, should accidentally become detached from the pontons by rough usage, the upper cylinders will still subserve the purpose of floating the remaining structure.

The tubes or pontons by which the vessel is supported are pointed at each end, to facilitate the passage of the vessel through the water, and are divided by transverse partitions into a series of water-tight compartments or bulkheads, so that if one of the compartments should be penetrated the remainder of the tube or ponton would be kept free from remainder of the This arrangement of compartments adds greatly to the safety and strength of the vessel and renders it almost impossible to sink her.

The vessel is furnished with four paddle wheels, two of which are fixed at or near the center of the vessel, and are employed in driving the vessel ahead. Two other paddle wheels are arranged one at each end of the vessel. These paddle wheels have horizontal shafts, are supported in turntables which turn on vertical axes, so as to enable the paddle wheels to revolve in a plane parallel with the length of the vessel, or at right angles thereto, as shown in Fig. 2, or, if desirable, at any angle between the two positions. The object of thus swiveling the paddle wheels is to permit the vessel to be propelled in a direction transverse to the run of the waves without turning so as to present the broadside to the action of the waves, and they are also used in steering and maneuvering the vessel. There is at each end of the vessel a rudder of the usual form.
To make the ship lay to, in case of a storm, and to prevent as far as possible the drifting of the vessel in the direction of the run of the waves, the inventor has applied what he calls " water anchors," which consist of heavy iron plates
hinged at the under side of the vessel and arranged transversely. When the vessel lays to and it is desired to keep from drifting, the anchor in the end of the vessel heading the run of the waves is let down; but when the vessel is being propelled forward, these anchors are swung up and being propelled forward, these anchors are swung up and
secured in a horizontal position at the under side of the secured
vessel.
The inventor states that, as the displacement of water is much lessthan that of common vessels, and as the propelling power is much greater, a very high rate of speed can be at tained; and, although the vessel is very long, it may be maneuvered as readily as shorter vessels, as the end paddle

OLSEN'S PONTON STEAMER.-MANEUVERING.

wheels may be used in conjunction with the rudders in steering. It is easy, with this arrangement of machinery, to turn her in her own length.
The "Ponton Steamship" is peculiarly adapted for ocean navigation, but it is believed that even on rivers and lakes it will prove superior to other vessels. It can be made long enough to span several waves at once, thereby avoiding all pitching, and by never allowing the side to be presented to the rim of the waves rolling will be avoided.
In regard to her course in relation to the wind: Suppose the ship to be sailing east, then west and east winds are fair

Winds from any point within an eighth of the compass of hese winds would not alter the course of the ship, but if heavy northerly or southerly winds prevailed it would be necessary to beat against them by tacking. The annexed diagram shows the maneuvering of the ship when sailing east with a north wind blowing. The arrows show the course of the vessel. It is claimed that the expense of build ng and running a vessel of this description will be much smaller than that of common ships.
Further information in regard to this invention may be obtained by addressing Mr. A. Olsen, 181 Richard street, Brooklyn, N. Y., until October 1. Permanent address; P. O. box 580, Salt Lake City, Utah.

American vs, European Locomotives.

In his annual address as vice-president of the American Society of Civil Engineers, Mr. Octave Chanute compares the working of American and European locomotives, and makes out a strong case in favor of the superior efficiency of the former. Early locomotives were not expected to have a dragging power greater than one-fourteenth of the weight upon their driving wheels. Now, in other countries, one-seventh of the weight is considered a standard and satisfactory performance, while American locomotives regularly work up to one-fifth in winter and do rather better in summer. That is to say, a European locomotive weighing 88,000 pounds might be expected to pull a train equal in resistance to lifting 12,571 pounds, while an American locomotive would pull 19,555 pounds, or 55 per cent more. The average locomotive of Europe travels 15,720 miles per year, while the American performance is 21,900 miles. The reason assigned is simply that the American machines are better ones, and two chief improvements on the Euro pean prototype are mentioned: First, the leading wheels of locomotives and all car wheels are not rigidly atttached to the frames, but are fixed to trucks pivoted at the center; and, secondly, equalizing levers are used to distribute the weight equally over the driving wheels, thus keeping its apportionment nearly constant, while the wheels are free to adapt themselves to all the irregularities of the track. These and other improvements have reduced the resist ance of cars so much that recent experiments have developed a rolling friction of only four or five pounds per ton, or actually only half that given in engineering note books.

MECHANICAL INVENTIONS

An improved lock, provided with a controlling latch consisting of a flat bar provided with a pin extending into a slot in the tumbler and with a vertical projection at the end, has been patented by Mr. Christian F. Otto, of Zerbst, Ger many.
Mr. Duryea S. Van Wyck, of Fishkill Plains, N. Y., has patented a device whereby power can be more conveniently applied to a sewing machine, and whereby the motion of the needle bar may be checked at will without arresting the

motion of the treadles or the momentum of the balance wheel. The invention consists of a seat and treadles arranged so that the operator can easily apply the weight of the body upon the latter, of novel attachmen's for slacken ing and tightening the driving belt, and for arresting and restoring motion to the needle bar.
Mr. John Connelly, of Hallowell, Me., has patented im provements in sewing-machines, which relate to a permanent attachment for sewing-machines of a certain class, the function of which is to aid in removing the shuttle from the raceway. It consists of a spring-plunger or lifting-rod, attached to the oil pan of a sewing machine beneath the raceway, so that it is made available in raising the shuttle when it is to be removed.

THE ANTHRACITE.

the little steamer which is run by one pound of coal per horse power per hour.
The recent arrival of this little vessel in New York Harbor has excited an unusual degree of interest among engineers Those interested in running marine boilers and engines are
head in the stern. The screw is of the ordinary fish tal attern, with two blades. Her gross tonnage is 70.26 tons, sumption of coal since she left England, on the voyage thence to Newfoundland, and from there here, has been one ton of coal a day, Welsh bituminous coal having been burned on the voyage. The weather was very rough coming out, consequently the sails could be used but little, and she is not remarkably well fitted for sailing, but her lines are such that she is well adapted to outride the roughest ea. The counter which registers the revolutions of her screw was set at 0 before she left England, and now marks $3,980,000$. She has hitherto burned only bituminous coal, but it is intended to test the economy of using anthracite. In the voyage over the furnace was operated without any artificial blast, the natural draught only being used, but there is a fan blower connected with it which can be brought into use if increased consumption of fuel and a proportionately higher pressure of steam are desired.
The peculiarity of the machinery which effects the grea economy of fuel lies solely in the means employed for using
han is usual with ordinary marine engines. The section of tubes of the boiler are connected so that any one of the ections may be taken out and replaced without interfer ing with the others, and in case of any accident causing a rupture of one of the tubes, the comparatively small amount of steam liberated would escape up the smoke stack, while he remaining sections of tubes could be used with increased pressue to make good the loss. Very little water is lost in operating these boilers and engines. All the joints and valves are practically very nearly perfect. The steam gen rated is constantly and completely condensed in a surface condenser, and the water is reused; the loss of water is ex remely small, and the additions required are easily pro vided for. Under these circumstances there is no deposi or scale inside the boiler, and the wear of the boiler is very slow. One built and operated on this principle, which was taken to pieces after twelve years' use, showed no ap preciable effects of use. The steam required for the whistle, and also that for cooking, is generated in a smal supplementary boiler heated by a coil from the main boiler, the coil being placed inside the boiler and in contact

THE ANTHRACITE THE SMALLEST STEAMER THAT EVER CROSSED THE OCEAN.

curious to know all the particulars regarding the machinery of the craft, which gives a practical illustration of the attainment of the greatest economy in fuel ever yet reached. We therefore present the accompanying engraving illustrating the general appearance of the steamer, and give out lines of her machinery, showing the proportionate space it takes up in the vessel. In former numbers of the Scientific American, as well as of the Supplement, we have given some of the leading particulars regarding her construction, and have illustrated and described the Perkins system of utilizing steam at high pressures, and we now present some details not before given.
Of the 84 feet length of the Anthracite, her engines, furnaces, and boilers take up a space of 23 feet 6 inches, leaving a hatchway, kitchen, and forecastle cabin in the forepart of the boat, besides a water-tight bulkhead, which takes up 5 or 6 feet; abaft the engines are three cabins, with extra sleeping bunks beside the hatchway, and a water-tight bulk-
steam at very high pressures safely, and without undue wear or strain. The average boiler pressure on the voyage over was from 350 to 400 pounds to the square inch, but the boilers had previously been tested up to 2,500 pounds per square inch by hydraulic pressure, this pressure having been maintained for some time without showing any defects whatever. The body of the boiler consists of a series of horizontal tubes, welded up at each end, and connected together by a vertical tube, and the several sections are connected by a vertical tube to the top ring of the fire box, and by another to the steam collecting tube. The fire box is formed of tubes bent into a rectangular shape. The boiler is surrounded by a double casing of thin sheet iron, filled up with non-conducting material to prevent loss of heat. The cylinders and valve boxes are steam jacketed, and fur ther protected by jackets of non-conducting material, so that, although all the parts are kept at a high temperature,
the heat given out in the engine and fire room is much less
with the sea water, from which the steam is made. The steam coming from the main boiler is returned to the condenser to be reused in the boiler.
The difficulty arising from friction and imperfect joint in practically working machinery at high pressures was on of the most serious obstacles encountered in developing this system. The inventor, after a long series of experiments adopted an anti-friction alloy, of which the packing rings and internal rubbing surfaces are made. No lubrication is required beyond that furnished by the steam. The invento states that cylinders fitted with piston rings made of thi metal have been several years at work, the cylinders show ing no signs of wear, the only wear occurring on the rings which may be easily and cheaply replaced. Not only is the cost of oil and grease thus saved, but the destructive action on the machinery and boiler of the acids' generated from lubricants is avoided
For the use of steam at these bigh pressures three differ
ent sized cylinders are employed, all jacketed with spiral
tubes cast in the metal, which are supplied with steam ditubes cast in the metal, which are supplied with steam di cylinders. The first and second cylinders are arranged one above the other, and their pistons are connected to a com mon piston rod. The operation is thus described by Mr . Loftus Perkins, the inventor, in a paper read before the In Loftus Perkins, the inventor, in a paper read
stitution of Mechanical Engineers, London:
"The high pressure steam is introduced into the upper end of the first cylinder, where there is no gland, and where the piston is formed so as to require no lubricating material. The steam is cut off at about half stroke in this cylinder, and when it is admitted for the return stroke into the bot tom of the second cylinder, of four times the area, the temperature is so much reduced as to cause no difficulty when brought into contact with the piston rod gland. From the bottom of the second cylinder the steam expands into the top of the same cylinder, which is of larger capacity than the bottom, and scrves as a chamber, and is in direct com munication with the valve box of the third cylinder; this
last is double-acting, and is arranged to cut off at about last is double-acting, and is arranged to cut off at about a
quarter stroke, and at the termination of the stroke exhausts into the condenser, with a total expansion of about thirty two times."
Although it has been some years since Mr. Perkins began to advocate the merits of this system, and he has taken out many patents covering his inventions connected therewith, the difficulties attending its practical working, and the disposition to oppose it of those who had enormous sums invested in old style machinery, have thus far prevented its general adoption, although in several cases in England it has been successfully introduced. The boilers and engines of the Anthracite contain all the latest improvements of the inventor, and it is believed they afford a practical demonstration of the entire success of the Perkins system, and show how all stationary and marine engines can be run at an expense of less than one-half the present cost for fuel. Two and a half pounds of coal per horse power per hour is now considered very economical running, and some of our best managed ocean steamers use one hundred tons of coal a day in their voyages. To demonstrate the practicability of reducing this more than one-half, thereby not only saving the cost of fuel, but giving so much more space for freight is the purpose of the visit of the Anthracite to our waters.

Staten Island and oysters.

[Continued from page 65.]

As soon as attention was turned to the necessity of cultivation, the Legislature was applied to. Laws have been enacted that allow each individual to take up three acres in his own name. The occupant must stake out and clearly mark the ground, and plant the same with not less than fifty bushels of seed oysters within six months, or he forfeits his right to hold it. Those owning land along the shore have the first right to the ground in front of them. No oysterman is allowed to take fish in any county but his own, nor
anywhere on public beds, between the 15 th of June and the anywhere on public beds, between the 15th of June and the
15th of September. No dredging is allowed on natural beds The cultivators have found so much of their labor experimental that they have earnestly resisted all efforts to tax them for their grounds. They look upon a tax as a burden that would overweigh and seriously check their industry. The owners of grounds buy their seed from men who obtain it from natural beds. These men, by the hundreds, are. en gaged in procuring such seed. It is their business only, as
they hire out to help in other things during the season that they hire out to help in other things during the se
the law forbids their working upon natural beds.
Most of the cultivated ground lies in Prince's Bay, New York Bay, and Raritan Bay. The natural beds are found in Staten Island Sound, the Kills, and in parts of the bays pre viously named. Much seed is also brought from out of the State. Many of the cultivators live at Mariner's Harbor though their oyster farms are in Prince's Bay. Near New Dorp, on this bay, Mr. Petler has built a fine summer hotel. He has endeavored to surround it with special attractions He has fitted up one room as the "Pompeian room." He has made it to resemble a room in an old Pompeian palace, having obtained many things to do it with direct from the remains of ancient Pompeii. In this vicinity was the Vanderbilt home. It was a "pirogua" that Cornelius Vanderbilt first aspired to own when he began his career as a boat man. To this island of his birth he always remained loyal.
Most of the oysters grow for three or four years on ground that is a little muddy. They are moved the spring before using to a hard and sandy bottom. They are taken up by tongues or dredges, culled and put into floats, and taken where they may have an infusion of fresher water, and then to the markets. Most of the Staten Island oysters have to to taken up near Rahway for the freshening. They are usually left in the floats there over one tide.
Sail boats or yachts are almost universally used. One cultivator has lately procured a small steamer. The harbor of New York abounds in tugboats. Their captains have an understanding with the oystermen; so, if the wind is un favorable or the tide, they hitch on and pull the oyster boats up to the city. For pay the oystermen keep the tugmen supplied with oysters. These boats carry all the way from one to four hundred bushels at each trip. The Staten Island men are considerably annoyed by persons from New Jersey oystering in their waters. So far they have failed to secure a very effectual check to this.
Thirty years ago the oysters were prepared for market by men and boys handling them all over to sort them. Work
men stood in the water even in the coldest weather beside a
pile of oysters and sorted them into a boat. Then it took fifteen persons all day to get a boat ready. It involved great exposure and hardship. Some years ago an old man straightened himself up after such a job, saying he could stand it no longer. He contrived a fork, at first a little straight-tined affair, with a guard at the top to prevent the oysters falling off. It at once took with the men. All quickly provided themselves The day of hand culling was over. The fork was gradually improved in size and shape,
until it has reached a very perfect and complete form. Now until it has reached a very perfect and complete form. Now
with this aid two men can accomplish more in two hours han fifteen men formerly did in a whole day.
The beds here are in shoaler water than on the Connecticut shore. But the full and swift tides render them a protection from ice in winter, and some other troubles of shoal water in more quiet seas.
Stars and drills have at times been a trouble, but their greatest enemy has been the "drum fish." When the oysterman hears him " booming" over his grounds he trem-
bles for his property; for this fish will crunch up oysters bles for his property; for this fish will crunch up oysters as
cattle will apples or clover. The "moss-bunker" fishercattle will apples or clover. The "moss-bunker" fisher-
men are now catching many of them, and thus rendering good service to the oyster cultivators.
Every planter has from five to ten men in his constan employ. He also hires others for short periods from time to time. It will be seen that considerable numbers of the people living around the shores of Staten \{Island are workng at some part of the oyster business. Quite a good many colored families live at New Dorp and Prince's Bay. Most of these find steady work in this line. Seed oysters are ound in considerable quantities from Rossville, on the northwest shore, up to Elizabethport, New Jersey. The same is true around Schuten's Island, and from Kill von Kull down to Port Richmond.
Important facts are to be noted in the conclusions to which their long experience has led the Staten Island oyster cultivators.

1. They think their planting grounds need rest every few years. An element in the mud or sand, needful for producing good oysters, becomes exhausted by successive rops. To then leave the ground bare for a year or two enables it to regain that element anew.
2. The continual working of the ground produces many
poppy" mud holes. These are holes where the mud has become so soft and slimy it kills all that is put upon it. A year or two of rest allows the action of the water to fill up and "heal" over such holes.
Some say the "poppy" mud holes render the ground poisonous to the oyster. They note this condition by finding an increasing number of black-meated oysters, and soon after many dead ones. Ceasing all work there for one or wo years they can then plant anew with an assurance of
3. The ground is affected by the change from winter to summer. Though no frost is in the bottom of the sea, yet there seems to be a certain hardness of the mud or sand which holds the oysters and renders them more difficult to secure. As the spring opens the men see a marked difference. There is an evident loosening of the bottom much takes place in the upland as the frost comes out of it.
4. A wet summer is much more favorable to the growth and quality of oysters than a dry season. This partly accounts for the varying quality of oysters produced in the same waters. Thus, a year ago, New York Bay oysters were much better than usual.
5. One peculiarity is found in Staten Island oysters, mak ing them superior to most others for several purposes. Their shells are unusually hard and firm, and preserve shipped farther in good condition than almost any other. They are in considerable demand for the foreign and other distant markets. They are sent in large quantities north, south, and west. One firm sent three thousand barrels to California a year ago. They have been sent as far east a Constantinople
Some patrons are so attached to these oysters they continue to send for single gallons of them even when they go to reside in distant country places.
The demand for them increases in every direction from year to year. They are sold in three grades. The "box" the finest grade, commanding the highest price. They nust be good size, good color, good shape, hard shells, and ven size. The next are "barrel" oysters, running a little smaller and a little less even. The third are "culls." The
second grade are also called "counts." The "culls" sell from thirty to forty-five cents a hundred, when the "box" grade cost from sixty to ninety cents per hundred.
Those that are sold out of the shell are opened on the boats at New York. A single firm on the North River sometimes opens one hundred and fifty thousand counts in a single day. Men who open oysters there are able to earn about three dollars a day.
With a fair season and no special adverse circumstances, the business is lucrative. But in the present stage of practical knowledge the risks are so many and so great that no man is able to estimate with much certainty at the begin
ning of a season what its results may be. Every year shows ning of a season what its results may be. Every year shows
improvement, however, both in the quality of the oysters and the modes and security of cultivating and handling them.
Hundreds of vessels, thousands of people, and millions of
value only begins to be realized. It most certainly has a grand future. Staten Island has been noted for several imor it than all its other interests, ancient or modern.
The island was General Horn's headquarters, and he had hirty thousand troops there during a most important crisis of the Revolutionary war. To the great disgust of its inhabitants a quarantine station was maintained on its north shore for many years: Some of its names recall noted places and persons of the Old World. Its climate is of great salubrity. Many seek its shores and elevations for quiet and healthy homes. Several humane retreats, like " The Sailors' Snug Harbor," "Retreat for Sick Seamen," Home for Destitute Children of Seamen," "The S. R. Smith Infirmary for the Sick," are located upon it. Some of its old taverns bore the significant names of " The Black Horse," "The Bull's Head," "The Morning Star," "The Blazing Stars." But all these names and interests, though interesting and important, are eclipsed by the healthful and useful oyster cultivation.

ENGINEERING INVENTIONS.

The nuts of bolts for securing fish plates to railroad rails have been locked by means of bars or slotted plates, which were so constructed and applied as to abut against one or more sides of the nuts, and were held fixed in position by the nuts themselves, or by attachment to the bolts, or by wedging between the head or base of the rail and the nuts. Mr. James W. Payne, of Tipton, Mo., has patented a simple means for securing a nut locking plate, whereby it may be easily and quickly applied and removed.
Mr. Jacob Rhule, Jr., of Pittsburg, Pa., has patented a feed water heater for the inside of a boiler, which serves at the same time as a depository of mud and sediment from the water, and thereby prevents scale in the boiler.
Mr. John J. Reed, of Lyons, Ia., has patented an improvement in windmills. The invention consists in a wheel hung to swing in a horizontal plane, and having a vane hung on the wheel to swing in the same plane, the normal position of the vane being slightly inclined to the axis of he wheel, so that the wheel is held by the vane with its edge more or less presented to the wind, according to the pressure. This movement is regulated by an adjustable weight connected with the wheel. Brake mechanism of novel construction is applied to this mill.
Mr. William Tucker, of East Toledo, Ohio, has patented an improvement in the class of automatic coupiings for railroad cars in which a spring jaw upon the draw head of one car engages with a jaw secured to the draw head of he next adjoining car when the cars are to be coupled, and in which chains secured to the spring jaw are employed to draw and hold the spring jaw in such position that it will not engage with the jaw of the next adjoining car, so that the coupling may be rendered inoperative when desired, or may be readily uncoupled without going between the cars.
An improved lubricator has been patented by Messrs. The invention consists of a combined steam condenser, oil receptacle or tank, and gauge or indicator, so arranged that the steam from the boiler entering the condenser and condensing therein will flow into the oil receptacle or tank and densing therein will flow into the oil receptacle or tank and
force the oil thence through the gauge or indicator into the force the oil thence through the gauge or indicator in
steam cylinder, to which the device may be attached.

The Tay Bridge Disaster.

The London Times makes the following editorial comments on the report of the Tay Bridge Investigating Committee: "The Tay Bridge, it appears, was simply blown down by a violent gale of wind while a train was passing over it. This is the net result of the inquiry when disengaged from its technical details. The bridge was not strong enough to bear the strain imposed upon it, and it gave way in consequence of the inherent weakness and defects of its structure. The remoter causes which brought about this result were numerous and far-reaching. First, the spans of the bridge were enlarged beyond the original design in consequence of difficulties encountered in connection with the foundations. Then, for the same reason, piers consisting of cast iron columns were substituted for the piers of brickwork originally proposed. Moreover, the casting of these columns was very slovenly and imperfect; they were found in many instances to be of unequal thickness, and the boltholes connecting the various sections together, as well as those in the 'lugs' to which the cross-braces were attached, those in the 'lugs to which the cross-braces were attached,
wereall merely cast and left conical instead of being properly wereall merely cast and left conical instead of being properly
drilled and reduced to a cylindrical form. Thus, the crossdrilled and reduced to a cylindrical form. Thus, the cross-
braces, on which the whole strength of the structure depend braces, on which the whole strength of the structure depend-
ed as regards resistance to lateral pressure, were very imed as regards resistance to lateral pressure, were very imbear the strain imposed upon them. Such being the initial defects of the bridge, its practical supervision was intrusted to a person very imperfectly qualified, in the judgment of the court, to undertake such a responsibility. What defects he observed he did his best to remedy promptly; but he does not seem to have beén sufficiently alive to the serious indications of weakness and danger shown in the loosening of the ties of the cross-braces, to the effect of which, as seems most probable, the disaster must be immediately attributed. In fact, it is impossible to resist the conclusion that the bridge was an unsafe structure from the very beginning. A weak no attempt is made to calculate the possible effects of wind
pressure or to provide against them; the structure is gradu ally weakened by excessive speeds, by stress of weather, and by the original fault of the materials used, and the defects are very inadequately remedied by a superintendent imper fectly qualified for such a task; a gale of wind comes, a train on the bridge is exposed to it, and the whole structure gives
way at it weakest point. It is very difficult to admit that way at it weakest point. It is very difficult to admit that
such an assemblage of causes and effects is rightly to be such an assemblage
called an accident."

MISCELLANEOUS INVENTIONS.

An improved horse collar has been patented by Mr. Fletcher C. Scott, of Fincastle, Va. This invention is an improvement in the class of horse collars in which thehames and collar proper are permanently attached to each other. The collar proper is formed of a soft stuffed inner portion and an outer leather plate, which is comparatively stiff, and forms the ornamental face of the collar, and also covers and
protects the inner part. The collar is divided at top and protects the inner part. The collar is divided at top and
bottom, and to each of the two parts thus formed is attached bottom, and to each of the two parts thus formed is attached
an iron hame, which is inserted and secured between the an iron hame, which is inserted and secured between the
outer covering plate and the inner or stuffed portion. Both the hames and the parts of the divided collar proper arecon nectel at top and bottom by means of straps, so that they may be adjusted together to adapt the collar as a whole to necks of animals of different sizes.
Mr. John McLeod, of 127 W. 26th st.,N. Y.city, has invent ed an improved self-adjusting mast for boats and vessels. It is hung upon trunnions so that it may swing from side to side, and it carries at its lower end an arc which is preferably made tubuiar, and is armed with very strong springs which resist the lateral movement of the lower end of the mast. The mast is also provided at its foot or lower end with a heavy counterbalance weight which increases the inertia of the mast and answers as an automatically shifting ballast.
An improved weather strip has been patented by Mr. John M. Ceis, of Abilenc, Kan. The object of this invention is to furnish weather strips for doors to prevent wind, snow, rain, and dust from entering the house beneath the lower edge the door, and which is simple, effective, and durable
Mr. Asa G. Golding, of New York city, has patented double walled pitcher, so constructed that the inner wall or lining can be readily removed and replaced, and which will not allow the contents of the pitcher to pass through the joint between the inner wall and its support into the space between the walls.
An improved sewer gas trap has been patented by Mr. Albert F. Pflughaupt, Jr., of Brooklyn, N. Y. The object of this invention is to furnish devices for connecting the waste pipes of houses with sewers, which is so constructed as to prevent sewer gas from passing from sewers into houses through the waste pipes.
Mr. William Hadden, of New York city, has patented an improved duplex telegraph system for sending and receiving two sets of signals in the same direction on one wire at the same time. This invention cannot be clearly described without diagrams.
Messrs. Edward C. Smith and Leroy S. Winters, of Lincoln, Neb., have patented an improved carpet stretcher, of simple construction, which will stretch carpets and hold any desired portion of the edge thereof while being nailed to the noor

Mr. Charles H. Brazeal, of Tye River Depot, Va., has in vented a device adapted for use in connection with harness, for the purpose of enabling a horse to be detached from a
vehicle. The device consists mainly of a buckle having a vehicle. The device consists mainly of a buckle having a sliding tongue to which is attached a strap that is held by or is accessible to the driver, and which being pulled will retract said tongue and allow disconnection of portions of the harness, so that the horse may go free.
Mr. Sanford Bray, of Charlestown, Mass., has patented an improved target which may be thrown into the air without the aid of a trap, and whose broad tail pieces or wings shall be so attached to the body of the target as to be broken off or detached from the body of the target when struck by a ball or by shot.
Mr. George O. Sanborn, of Boston, Mass., has patented an improved cover or top for wooden vessels designed to contain pickles, preserves, etc., and to be used for shipping such goods. The invention consists, first, in providing the wooden cover proper of the vessel with a central opening, which is secured by cement applied and lield in an undercut groove. The wooden cover proper forms a strong, stiff, and groove. The wooden cover proper forms a strong, stiff, and
durable integral portion of vessel, while the glass plate endurable integral portion of vessel, while the glass plate en-
ables the contents to be easily inspected without allowing ingress of air, and it is adapted to be easily detached whenever it becomes requisite to have access to or to remove the contents.
Messrs. Theodore Phillips and Harley Phillips, of Winchester, Iowa, have patented an improvement in washing machines, which consists of a tank having a set of parallel strips in the bottom with rigid vertical bars at the end, and an oscillating beater consisting of a series of fingers passing an oscillating beater consisting of a series of fingers passing to the lower end of a horizontally pivoted lever handle, and a set of fingers fixed to a rock shaft and adapted to pass between the vertical bars rising from the ends of the washboard.
An improvement in heating stoves has been patented by
Mr. John H. Shimmons, of Lawrence, Kan. This is an im-
provement in heating stoves of that class in which a set of after it is dry, take it into a dark room, and with a tuft of pipes lead the air through the fire chamber into an air cham. cotton pass over it a solution of nitrate of silver (50 grains ber above, from which air chamber pipes conduct the heated to an ounce of water); dry it in the dark, and the coat of air through a drum placed above the air chamber, which chloride of silver formed on its surface will receive the imdrum receives the products of combustion, which further heat the air as it passes through the pipes.
An improved harness maker's sewing-horse has been patented by Mr. Joseph B. Underwood, of Fayetteville, N. C. This invention relates to a machine for harness mak ers' use, known as the "sewing-horse." It is an improvement upon that form of sewing-horse for which letters patent No. 221,373 were granted to the sameinventor, November 4, 1879.

Mr. Stephen M. Hoye, of Mount Carmel, Conn., has pahe ordinary fine the metal in its proper place. It escapes at both sides and ends of the dies. The clip, therefore, has a rough edge and requires to be trimmed, which is done in a trimming press. From such press the clip is piaced under a triphammer, for the purpose of rounding and pointing the shank The improved die produces a perfect clip at one operation.
An improved screw-tap has been patented by Mr. Timothy A. Fleming, of Hoosick Falls, N. Y. The object of this invention is to cut a right and left hand thread in the same machine without reversing the motion, as is customary, by additional shafting and pulleys. The inventor accomplishes this by a change in the form of the machine-tap. Two taps are used-the ordinary right hand tap, together with the new left hand tap. It is equally applicable to vertical and horizontal tapping-machines, either single or in gangs.
Mr. Thomas J. F. Regan, of Brooklyn, N. Y., has pa tented an improved process for making illuminating gas which consists, essentially, in placing in a closed receiver a quantity of caustic lime and pouring upon it as much naphtha or other light hydrocarbon as it will absorb, and then drawing from the receiver by suitable means the gas arising rom the saturated lime and forcing it into a gasometer. The lime absorbs a small quantity of water from the hydrocarbon, and also a small quantity of condensed petroleum or petroleum oil. The gas drawn off by the exhauster is permanent, and will remain uncondensed in the gasometer This gas answers every requirement for illuminating and heating purposes, and may be produced at much less ex pense than ordinary coal gas.
An improved magazine stove has been patented by Mr. Carlton Seaver, of Traer, Iowa. The object of thisinvention is to construct a stove so that the smoke and other products of combustion shall pass downward through the bottom therenf into a pipe that leads under the floor of the room in which the stove is placed and into the chimney, while the heat and light of the fire shall warm and light the room in which the stove is.
Mr. George H. Brown, of Mount Vernon, N. Y., has pa rented a support for pictures so constructed that it may be put up and taken down without marring the wall, will allow the positions of the pictures to be readily changed, and will prevent the pictures from being accidentally detached.

A Gold Bearing Newspaper

A correspondent of the San Francisco Call writes to that paper as follows: "I had observed, previous to last February, that the Call often contained golden nuggets, but from the 6th of that month to the end it was rare to have a number without its golden show. From the paper of the
6th I took fifty-six pieces of gold, the thickness of the Call, and varying in size from that of a small pin head to nearly the size of a three cent piece. I think I have more than a hundred pieces of gold taken from the paper that month. All left a hole when removed, as the thin film of paper on the inside was rendered brittle by the hard pressure which the calender rolls gave as they flattened out the golden de posits. In addition to the gold, I got platinum, silver, iron tin, and some lead."

The explanation of the discovery is that in the manufac ture of the paper pulp water is used that has been passed
through a flume in which miners have through a flume in which miners have washed dirt contain-
ing all kinds of precious metals. The gold is what is known ing all kinds of precious metals. The gold is what is known
as "float gold," and escapes the miners who still follow the as "float gold," and escapes the miners who still follow the
primitive methods of washing. Some of the water used is taken from artesian wells. The manufacturers say that they have often noticed a substance that glistened in the water, but that they supposed it to be mica, as the wells were bored through mica deposits.

How to Make Fern Pictures.

There are two ways-the mechanical and the photograph ical. For the first, take a sheet of strong white paper, and with an atomizer pass over it a spray of very diluted mucilage, so as to obtain a very thin and slightly sticking film, which will make the ferns adhere of which it is desired to make the picture. The ferns and leaves must have been first pressed in a book, and after arranging them to suit your taste, cause them to lie as closely to the paper as possible; fill an atomizer with very diluted India ink, and blow a spray over the ferns, more or less in proportion as you want a darker or lighter shade. It is well to do this with
intermissions, letting it dry a little, so as to avoid excess of intermissions, letting it dry a little, so as to avoid excess of
moisture and possibility of running the liquid into drops. When nearly dry, but still a little moist, remove the ferns, which may be used over again several times. For the photographic method, cover a sheet of paper with a weak solution of salt in water and some white of an egg, well beaten;
pression. Then arrange your ferns between two plates of glass, and cut the paper to the same size as the glass plates; place it under them and expose to the sun, in the sass plates as a photographer prints a portrait. Watch it until dark enough, and before removing the paper from the glass take enough, and before removing the paper from the glass take
it into a dark room. Here place the picture in a solution of it into a dark room. Here place the picture in a solution of
hyposulphite of soda, which will dissolve the chloride of hyposulphite of soda, which will dissolve the chloride of
silver, but leave the decomposed material (finely divided black silver) which forms the black background, while the shadow of the leaves will be white.-Chemist and Druggist.

A Remarkable Surgical operation.

For about a year a little girl, ten years of age, has been a patient in the County Hospital, Chicago, suffering from a burn so extensive that the ordinary treatment by skin grafting bopelessly failed to effect a cure. It was therefore decided to try the experiment of transplanting a large section of skin partially detached from a healthy subject, the girl's welve year old brother consenting to be flayed for his sis ter's sake. Drs. Lee and Feuger conducted the operation, which is described as follows by a reporter of the Chicago Tribune: A curious box had been constructed under the supervision of Dr. Murphy. It resembled nothing more than a pair of scissors opened out, except that one part was about four inches higher than the other. On one face of the cross the little girl was laid face downwards. On the other the boy lay on his side so that his leg crossed his sister, the part of the thigh from which the skin was to be taken being just ver the burn on the girl. The children were kept uncon scious during the entire operation by the use of ether, and wo assistants constantly directed the vapor of carbolic acid on the wounds of both the boy and the girl. The surgeons then cut from the boy's thigh a leat of skin four inches wide five inches long, leaving it attached by the under side. The wound of the girl was then cleared of its decaying matter The flap of the boy's skin was then laid on the wound and stitched to the outer edge of the skin about the wound, without cutting the edge, which rendered it still a part of he boy's fleshy covering. This was done to secure the vitality of the boy for the skin which is expected to grow to be a part of his exhausted sister. The boy's wound wa ugly in appearance, but the skin had been separated, or dis sected, so neatly that it will be easy to heal over by the usual process of grafting. The children, as they lay in this position, were so bandaged that they cannot possibly tear the flap of skin or move from their position. Thus their dual existence was begun, which will last for about three weeks. By that time the success of the operation may be known. During that length of time the boy's vital force will be in a measure transferred to the assistance of his sis ter, and, at the end of that time, it is hoped that the trans planting will be complete and the skin firmly grown on th burned portion. The flap is not quite large enough, and before the skin is finally severed from the boy, a still furthe portion will be dissected and applied to the remainder of the wound. The little girl's pulse dropped considerably toward the close of the operation, but she was revived by the application to the nostrils of a cloth dipped in brandy. The operation was a success as far as it went, and, if nature takes hold in the manner expected, the brave boy can congratulate himself on having saved his sister's life.

The Driven Well for Fire Purposes

The Firemen's Journal, in an appreciative article on this subject, recommends the general adoption of the driven well for fire purposes, and for all small country places, where there is no large and constant water supply, we should think the suggestion an eminently practical one. In the Scientific American, of March 13, we gave some account of this system of obtaining water, and what was being done of this system of obtaining water, and what was being done
under it in New York city, where it is now largely used to under it in New York city, where it is now largely used to
save the expense attendant upon a large use of water from the city reservoirs. To obtain a supply sufficient for the usual form of fire engines in use in country places it might be necessary to put down two or three of these driven wells near each other, and connect them, so that the suction pipe of an engine being attached, water might be drawn from all the wells at the same time. Of course, these wells, working on the principle that the water is drawn from the ground around them by making a vacuum in the tube, will supply much more water than an ordinary open well, and they are not ordinarily so expensive to put down. An abundant supply of water can usually be obtained at distances varying from twenty to fifty feet from the surface, but, in each case where a well is put down, it should be at once thoroughly tested, to determine the probable permanent yield of the water-giving strata when it is driven.

The Texas Cattle Drive.

The Omaha Republican gives a detailed statement of this year's cattle drive, the total reaching 301,000 . Of this num ber about 50,000 head will be driven to the Union Pacific. The cattle are in good condition, fully up to the standard of previous years, and are mostly one, two, and three years old, very few being beef cattle. The drive to Nebraska would have been larger had it not been for the drought making a scarcity of grass along the road. About 25,000 horses are being driven up from Texas this season, of which number about 5,000 go to Nebraska.

An Early Plan to Improve the Mouth of the Mississippi by Jetilies.
The New Orleans Times finds on page 357 of the first volume of Gayarre's "History of Louisiana" the following notice of an early proposition to deepen the mouth of the Mississippi River by means of jetties. The author says:
"The necessity of deepening the mouth of the Mississippi had attracted the attention of the French Government at the earliest period of the establishment of the colony, and the engineer Pauger made, in this year, 1723, a very interesting report on the practicability of arriving at this desired result. He represented that it was easy and not expensive to fix (fixer) or to control the current of the Mississippi so as to make it subservient to the plan of operating upon the sand banks which obstructed the several mouths of the river, and so as to give admittance to the largest ships, whatever might be the depth of water they drew; that, if necessary, a fine artificial harbor with quays might be created at the Balize, with the numerous resources which the nature of the locality offered, and that it might be effectually protected by such fortifications as he indicated. He recommended to shut up all the mouths of the river except one, in order to force a greater volume of water into the remaining channel, which would consequently acquire more depth."
It detracts nothing from the merit of Captain Eads' work that the idea of the system he adopted was not original with him. He never claimed that. It is to his credit, nevertheless, that he was able not only to appreciate the system, but was willing to risk fame and fortune in carrying it out in the face of strong professional opposition.

Our Trade in Foreign Fruits

The seventh annual report of the foreign fruit trade of New York, just completed by U. S. Inspector of Customs J. H. Bostwick, contains much interesting information. The principal statistics for the year 1879 are as follows:
The importation of Mediterranean fruit at the port of New York during the year 1879 consisted of 108 cargoes by steamers and 54 by sailing vessels, and comprised 880,729 boxes and cases of oranges and 900,505 of lemons, showing an increase of 26 cargoes by steamers and 24 by sailing vessels, and of 525,732 boxes and cases over the importations of 1878. The number of oranges was $239,751,255$, of which it is as The number of oranges was $239,751,255$, of which it is as-
serted $119,875,627$ perished on the voyage, a loss of 50 per serted $119,875,627$ perished on the voyage, a loss of 50 per
cent. The number of lemons was $315,176,750$, of which it cent. The number of lemons was $315,176,750$, of which it
is asserted $113,463,620$ perished on the voyage, a loss of 36 per cent. Total number of oranges and lemons, $554,927,975$; boxes and cases of oranges and lemons, $1,781,234$. There were 44,365 barrels and $56,72 t$ half barrels of grapes imported last year, at a loss of 25 per cent, a slight decrease compared with the imports of the preceding year.
The trade in Mediterranean fruit during the past year has been disastrous to the parties engaged in it, especially to the producers. The price of box fruit was as a rule very low, particularly in the case of oranges imported from Catania and Palermo. These were seriously affected by a parasite which greatly impaired their value. A large proportion of the fruit arrived in bad order.
The importations of oranges from the West Indies consisted of 16 cargoes and several parts of cargoes by sailing vessels; also 33,736 barrels of oranges per steamers. Of the above, 21,286 barrels were from Kingston, Jamaica, and $7,450,100$ oranges, of which $3,352,545$ perished on the voyage. There were 15 cargoes and 665 barrels imported from Mayaguez, comprising $4,388,045$ oranges; of which $1,912,195$ perished on the voyage; from Havana, 7,212 barrels, com prising 2,307,735 oranges, of which $1,038,480$ perished; from Nassau, 2,734 barrels, comprising 919,659 oranges, of which 299,249 perished; from Montego Bay, 1,389 barrels, comprising 781,665 oranges, of which 347,249 perished; from Trini dad, 445 barrels, comprising 285,917 oranges, of which 214,438 perished; from Abaco, 1 cargo, comprising 190,000 oranges, of which 17,000 perished; from Baracoa, parts of cargoes, comprising 84,900 oranges, of which 35,950 perished; from Guyanilla, 4 barrels, comprising 1,400 oranges, of which 600 perished. The above shows a grand total of $16,399,421$ 600 perished. The above shows a grand total of $16,399,421$
oranges, of which $7,217,706$ perished, an average loss of 44 per cent. An increase is shown of two cargoes and 7,610 barrels of oranges over the imports of the preceding year.

The importation of bananas from the West Indies the past year consisted of 105 cargoes by sailing vessels. Of these there were 90 cargoes from Baracoa, comprising 191,888 bunches, and 15 cargoes from Port Antonio, comprising 28,823 bunches; from Kingston, per steamers, 47,965 bunches from Montego Bay, per steamers, 36,134 bunches; from Trinidad, 284 bunches. Total number bunches of banana imported from the West Indies, 305,094, of which 79,518 perished on the voyage, an average loss of 26 per cent. There were also imported from Aspinwall, per 55 steamers, 240,000 bunches of bananas, of which 38,000 bunches perished on the voyage, an average loss of $171 / 2$ per cent. There was an excess of 40,000 bunches of bananas over the imports of the previous year, and a decrease in loss of $221 / 2$ per cent.
The importations of pineapples consisted of 53 cargoes, of which 8 cargoes were from Eleuthera, 11 from Cat Island, 8 from Governor's Harbor, 9 from Nassan, 5 from Abaco, 3 from Rock Sound, 3 from Harbor Island, 1 from Tampum Bay, 1 from Rum Key, 2 from Mayaguez, part cargo from Antigua, and comprised $2,558,833$ pineapples. There were also imported, per steamers from Havana, 143,555 pine apples; from Kingston, 21,148; and from Montego Bay 16,466 . The total number of pineapples imported from the places above named was $2,740,002$, of which 712,391 perished
on the voyage, showing average loss of 26 per cent. A comparison of the above with the imports of the preceding year shows an increase of about 40,000 pineapples.
Cocoanuts were imported from the following named places during the past year, viz. : Baracoa, 3,112,006; San Andreas, 1,540,863; Aspinwall (per steamers), 560,602; Carthagena, 374,492; Falmouth, 245,000; Ruatan, 217,500; Montego Bay per steamers), 158,863; Honduras, 139,800; Port Antonio, 132,704; Port Maria, 100,000; Kingston (per steamers), 55,000; Gilarie, 38,800; St. Jago, 21,600; Mayaguez (part cargoes), 10,430; San Ann's Bay, 8,200; San Domingo (per teamer), 7,000; Maracaybo, 3,000; making a grand total of ,205,578 cocoanuts, which comprised the cargoes and parts of cargoes of 114 vessels, exclusive of steamers. Of the above, 662,249 cocoanuts perished on the voyage, a loss of 8 per cent. A comparison of the above with the impor
1878, the result shows a decrease of 981,307 cocoanuts. 1878, the result shows a decrease of 981,307 cocoanuts.
The importation of limes comprised 988 barrels, on which there was a loss of 33 per cent; 126,000 grape fruit, loss 10 loss 25 per cent; 28,000 mangoes, loss 80 per cent. There were also imported in small quantities of each, mandarins, cantaloupes, sapodillas, alligator pears, manma apples, and watermelons, on which there was a loss of 25 per cent. The watermelons, on which there was a loss of 25 per cent. The
countries and places whence the foregoing varieties of fruit were imported are the United States of Colombia, Mexico Central and South America, Venezuela,?'British West Indies French West Indies, Cuba, Porto Rico, England, Scotland, France, Spain, Portugal, and Italy. The value of green fruit entered for consumption at the port of New York from January 1, 1879, to December 31, 1879, is exhibited in th following table:

Varieties of Fruit.	Valu	Duty
Oranges and lemons, 20 per cent.	2,919,00	\$583,800.60
Grapes, 20 per cent	227,014	45,402.80
Pineapples, 20 per	105,297	21,059.40
Bananas, 10 per cent	382,473	38,247.30
Limes, grape-fruit, shaddocks, plantains, mangoes, mandarins, cantaloupes, mel ons, sapodillas, alligator pears, manma		
apples, and watermelons, 10 per cent... Cocoanuts, free $\ldots \ldots \ldots \ldots \ldots .$.	$\underset{9}{9,3152}$	931.50
Total.	3,856,540	\$689,441.60

A comparison of the value of green fruit imported in 1879 with that of 1878 shows an increase in value of $\$ 121,490$, and of duty, $\$ 23,425$.

RECENT DECISIONS RELATING TO PATENTS
United States Circuit Court-Western District of
Pennsylvania.-Acheson, \mathbf{J}.
trobridge vs. Lindsay, sterritt \& co.-Coffee mill patent.

1. The first claim of reissued letters 年atent No. 7,583, granted to Turner Strobridge, March 27, 1877, for an im provement in coffee mills, is valid.
2. The mere fact that the devicelof the defendants has function additional to that accomplished by the patented in vention will not justity the defendants in the use of the later without liability.
3. Letters patent themselves prima facie establish the fact that patentable invention is embraced thereby, and strongly confirmatory of this will be evidence tending to show the favorable acceptance by the public of the improvement and its reco
torious.
Messrs. Bakewell \& Kerr for the complainant.
Mr. B. F. Thurston for the respondents.
United States Circuit Court.-Western District of
Pennsylvania.-strong, \boldsymbol{J}.
ROBERTS et al. vs. SCHREIBER.-OIL WELL TORPEDO patent.
4. Reissued letters patent No. 6,258, granted to E. A. L. Roberts, January 6, 1875, the claim in which is for "the method or process of increasing or restoring the productive ness of oil wells by causing an explosion of gunpowder or its equivalent at or near the oil-bearing point, in connection with superincumbent fluid tamping, substantially as described," declared to be for the same invention as his origi nal patent dated May 20, 1866, and sustained
5. The decision in the case of Roberts vs. Dickey, 4 Fisher 532 , construing the true meaning and scope of such origina patent, approved.
6. The application of a blast in a bore hole sunk in an or dinary well is not an anticipation of a process by which a torpedo may be exploded many hundred feet below the surface of the ground and below the top of the rock through which an artesian well has been sunk, and at the exact point in the well where the effect of such explosion is desired, with a water tamping sufficient to confine the effect to the vicinity of its location.
7. Unsuccessful and abandoned experiments cannot avail to invalidate a patent to an inventor who has disclosed to the public an invention the utility of which has been demon strated by its general adoption.
5: The cause that works successful results cannot be the same as that exhibited in abandoned experiments, and holding the latter up as anticipations of the former is but an illustration of what is very common-an attempt to defeat a meritorious invention by proof that something similar had been previously known, though it had never been perfected, and had never been any useful contribution to human knowledge or convenience.
8. The process invented by Roberts, as disclosed by his specification, does not require that the superincumbent fluid ficient column of fuid to confine the effect of the blast.
9. Letters patent No. 47,458, granted to E. A. L. Roberts, April 25, 1865, for improvements in apparatus for exploding gunpowder or other explosive material in artesian or other similar wells, construed and sustained.

By the Commissioner of

 Commissioner.ex parte mcdougall.-patent oll cakes.

1. The rule that several distinct inventions cannot be included in a single application is alike applicable whether such inventions be improvements in processes or machinery and the mere circumstance that several processes pertain to he same subject matter will no more warrant their joinder in a single application than will the bare fact that two ma chines are in the same class of invention warrant the issue of one patent for the two.
2. Although each of the several "acts" of the "series of acts" constituting a process may be capable of performing separately its own peculiar function, and may be used independently of the others, yet if they all contribute in producing the final result they may be joined in a single application, and a claim may be made to the entire process, and separate claims can also be made to the sub-processes which go to make up the same.
3. Where one has discovered that a desired result can be attained by a process consisting of a series of steps, and that certain of the steps in such process can be replaced by others which will operate in an equivalent manner, a broad or geneic claim can be made including all the modifications, and a more limited and specific claim can be made to any one of the modifications.
4. Where in several processes the order in which the several steps follow each is different, as are also the final results attained, the processes cannot be said to be modifications each of the other.
5. Alternative claims and claims for modifications condemned. The mere fact that courts, in order to save a patent, have sustained such claims is no warrant for the Office to shirk its duty in requiring that the claims shall be framed in the clearest and best form, and shall not embrace distinct in the clear

New Varieties of Tea.

An English consul reports the discovery of two curious varieties of tea on the western frontier of China. In the monasteries on Mount Omi (or Ngomi) he was given an infusion of tea which is naturally sweet, tasting like coarse congou with a plentiful addition of brown sugar. It is only grown by the monks on the slopes of the mountain, and two days' further west its existence was unknown. The other variety, odd as it may appear, has the natural flavor of milk, or, perhaps, more exactly of butter. What is most interesting is the fact that it is wild tea, growing in its native elevated habitat, without cultivation.
This wild tea is found in the uninhabited wilderness west of Kiating and south of Yachow, at heights of 6,000 feet and upward, and is a leafy shrub 15 feet high, with a stem 4 inches thick. Every part of the plant, except the root, is used for making the infusion; the wood is chopped up and put into a kettle of water with the dried leaves and twigsand being boiled yields a strongly colored but weak tea, possessing a buttery flavor, which gives it some resemblance to the Thibetan preparation.

Cold Air Fruit Curing.

The California Mountain Messenger reports an interesting experiment in fruit curing lately made at a Placerville founexperiment in fruit curing lately made at a Placerville foun-
dry. About a peck of sliced apples were placed in a sieve dry. About a peck of sliced apples were placed in a sieve
and subjected to a cold air blast for three and a half hours in the cupola furnace of the foundry, and the fruit is reported to have been completely and beautifully cured by the treatment, remaining soft and without the slightest discoloration. The cured fruit showed none of the harsh, stiff dryness which results from hot curing, the cold blast completely freeing the fruit from excess of moisture, with no possibility of burning or shriveling it. The Messenger says: "Compared with our sun drying, it effects a great saving of expense, attention, and risk. Anybody who can command or devise a strong blast of cold air, can dry fruit in a superior-we might say perfect-manner, without beingde. pendent on the weather and waiting on the slow process of sun drying, and without the most expensive resort to fuel and the risk of overheating."

old-fashion Flowers.

The editor of the Rural New Yorker recently visited what he terms an old-fashioned garden, in which were growing and blossoming luxuriantly white herbaceous pæonies, Pconia tenuifolia (single), tree pæonies, larkspurs, Canterbury bells, fox-gloves, June and hybrid roses, and many other good old things, now seldom seen except at some old country home. Are we not, pertinently asks the editor, making a mistake in neglecting these fine old plants? At some future time we may wish for them in vain.

Benjamin D. Frost.

Benjamin D. Frost, civil engineer, under whose super vision the Hoosac Tunnel was constructed, died at St . Louis, Mo., July 19. Mr. Frost was a resident of Massachusetts, but had been in the West several months prosecuting surveys for the improvement of the Mississippi River in which work he was actively engaged to the end. He was within a few years of completing his fiftieth year.

ceusiness and ectsonal.

The Chargefor Insertion under this head is One Dollar
a linefor each insertion: about eight words to a line.
Advertisements must be received at publication office
The publishers of this paper quarantee to adver tisers a circulation of not less than 50,000 copies every lweekly issue.
Alden Ore Crushers and Pulverizers, six sizes, $\$ 45$ Wanted-A Chucking Lathe for general work. A. Gray's Sons, Middletown Springs. Vt.
Saw Mill Machinery. Stearns Mfg. Co. See p. 77.
Gear Wheels for Models (list free); experimental and model work, dies and punches, metal cutting, manufac-
Fresh air is indispensable; but when you need a fres Fresh air is indispensable; but wh
State Rights for sale. Knife and Fork Scouring Box. Engraving in No. 16, vol. 41, Scientific America
Sylvester M. Button, 324 W . Dauphin St., Phila., Pa. All Dealers sell the New $\$ 4$ Drill Chuck;
to $9-16$. A F Cushman, Hartford, Conn.
See Stockwell Screw and Machine Co.'s adv., p. 76. For Best Quality Brass and Composition Castings, For Sale A N. Y. Stem Engine (bo 21 inch
For Sale.-A N. Y. Steam Engine Co. 21 inch heav Slotter, in good
Co., Phila., Pa.
Blake's Belt Studs. The best and cheapest fastening for all rubber and leather belts. Greene, Tweed \& Co.,
118 Chambers St., New York.
'Telephones repaired, parts of same for sale. Sen amp for circul. The novel Shading Pen. Sample writing and circ three sizes by mail, \$1. Address J.W. Stoakes, Milan, O
Asbestos Board, Packing, Gaskets, Fibers, Asbest Materials for Steam \& Building Purposes. Boiler \& Pipe
Covering, Asbestos Pat. Fiber Co.,limited, 94 B'way,N.Y. Corrugated Wrought Iron for Tires on Traction En-
gines, etc. Sole m'f'rs., H. Lloya, Son \& Co., Pittsb'g. Pa
Diamond Drills, J. Dickinson, 64 Nassau St., N. Y.
Malleable and Gray Iron Castings, all descriptions, by Erie Malleable Iron Company, limited, Erie, Pa.
Apply to J. H. Blaisdell for all kinds of Wood and
Iron Working Machinery. 107 Liberty St., New York Iron Working Machinery. 10
Send for illustrated catalogue.
Eagle Anvils, 10 cents per pound. Fully warranted Our new Stylographic Pen (just patented), having the duplex interchangeable point section, is the very latest
improvement. The Stylographic Pen Co., Room 13, 169
Broadway, N. Y. Advertising of all kinds in all American Newspapers,
Special lists free. Address E. N. Freshman \& Bros., Cin innati,
Valve Refitting Machine. See adv., page 77.
Skinner \& Wood, Erie, Pa., Portable and Stationary Engines, are full of orders, and withdraw their illustr
ted advertisement. Send for their new circulars. Sweetland \& Co., 126 Union St., New Haven, C

Power, Foot, and Hand Presses for Metal Workers,
Power, Foot, and Hand Presses for Metal Workers.
Lowest prices. Peerless Punch \&Shear Co..52Dey St.,N. \mathbf{Y},
The Brown Automatic Cut-off Engine; unexcelled fo workmanship, economy, and durability. Write for in
formation. C. H. Brown \& Co., Fitchburg, Mass. For the best Stave, Barrel, Keg, and Hogshead Ma hinery, address H. A. Crossley, Cleveland, Ohio.
Walrus and Sea Lion Leather for Silver and all Metal Polishing. Greene, Tweed \& Co., 118 Chambers St., N.Y Best Oak Tanned Leather Belting. Wm. F. Fore National Steel Tube Cleaner for boiler tubes. Adjust National Steel Tube Cleaner for boiler tubes. Adjust Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shaftin
Works, Drinker St., Philadelphia, Pa.
Stave, Barrel, Keg, and Hogehead Machinery a spe
cialty, by E. \& B. Holmes, Buffalo, N. Y. Nickel Plating.-Sole manufacturers
Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts, importers Vienna lime, crocus,
ete. Condit, Hanson \& Van Winkle, Newark, N. J., and 92 and 94 Liberty St., New York.
Presses, Dies, and Tools for working Sheet Metal. etc.
Fruit \& other can tools. Bliss \& Williams, B'klyn, N. Y. Instruction in Steam and Mechanical Engineering. thorough practical education, and a desirable situation
as soon as competent can be obtained at the National as soon as competent, can be obtained at the National
Institute of Steam Engineering, Bridgeport, Conn. For particulars, send for pamphlet.
Hydraulic Jacks, Presses and Pumps. Polishing and Buffing Machinery. Patent Punches, Shears, etc. E
Lyon \& Co., 470 Grand St., New York.
For Alcott's Improved Turbine, see adv. p. 45.
Forsaith \& Co., Manchester, N. H.. \& 207 Centre St.,
N. Y. Bolt Forging Machines, Power Hammers, Comb'd N. Y. Bolt Forging Machines, Power Hammers, Comb'
Hand Fire Eng. \& Hose Carriages, New \& 2d hand Machin Hand Fire Eng. \& Hose Carriages, New \& 2 h hand Machin
ery. Send stamp for illus. cat. State just what you want

4 to 40 H. P. Steam Engines. See adv, p. 63

Air Compressors, Blowing Engines, Steam Pumping Works, Philadelphia, Pa
Wright's Patent Steam Engine, with automatic cu off. The best engine made. For prices, address William right, Manufacturer, Newburgh, N. Y
Sheet Metal Presses. Ferracute Co., Bridgeton, N. J. Burgess' Non-conductor for Heated Surfaces; easily applied, efficient, and inexpensive. Applicable to plain
or curved surfaces, pipes, elbows, and valves. See p. 284.
Eclipse Portable Engine. See illustrated adv.,p. 62. For best low price Planer and Matcher, and latest improved Sash, Door, and Blin 1 Machinery, Send fo
catalogue to Rowley \& Hermance, Williamsport, Pa. For Sale Cheap.-A Springfield Gas Machine, with Ore Breaker, Crusher, and Pulverizer Smaller size run by horse power. See p. 77 . Totten \& Co., Pittsburg.

Silent Injector, Blower, and Exhauster. See adv. p. 77. Portable Railroads. Sugar Mills. Horizontal \& Beam Peck's Patent Drop Press. See adv., page 76.
The Chester Steel Castings Co., office 407 Library St Philadelphia, Pa.. can prove by 15,000 Crank Shafts, an Castings over all others. Circular and price list free. Brass \& Copper in sheets, wire \& blanks. See ad p. Air Compressors. Clayton Stm. PumpW'ks,Bk'lyn, N.Y. The Improved Hydraulic Jacks, Punches, and Tub R. Dudgeon, 24 Columbia St., New York For Superior Steam Heat. Appar., see adv., page 77 . Special Wood-Working Machinery of every variet Houston, Montgomery, Pa. See ad. page
The best Truss ever used. Send for descriptive circu-
ar to N. Y. Elastic Truss Co., 633 Broadwas New Comb'd Punch \& Shears; Universal Lathe Chucks. Lam bertville Iron Works, Lambertville, N. J. See ad. p. Telephones.-Inventors of Improvements in Telephones and Telephonic Apparatus are requested to com-
municate with the Scottish Telephonic Exchange, Lim ted, 34 St. Andrew Scotish Telephone, Edinburgh, Seotland. J. G. orrain, General Manager
Nellis' Cast Tool Steel, Castings from which our sp alty is Plow Shares. Also all kinds agricultural steels an Blake "Lion and Eagle " Imp'd Crusher. See p. 77. Improved Steel Castings; stiff and durable ; as sof and easily worked as wrought iron ; tensile strength no ess than 65,000 lbs. to sq. in. Circulars free. Pittsbur eeel Casting Cons
New Economizer Portable Engine. See illus. adv. p. 77 For Shafts, Pulleys, or Hangers, call and see stoc
kept at 79 Liberty St.. N. Y. Wm. Sellers \& Co Wt at 79 Liberty St., N. Y. Wm. Sellers \& Co. Wm. Sellers \& Co., Phila., have introduced a ne

NEW BOOKS AND PUBLICATIONS.

El Universo y la Paralaxe. Por Fran-
cisco Gonzalez, Ingeniero Civil. Chil-
panciugo. 1879. panciugo. 1879.
The desire of men of science to resolve the grea with that exactness required by the present state science, the true dimensions of our planetary system the diversity of the values that the history of astronomy asfurnished us from thetimes of Encke and Laland and the ardor of the whole scientific world, as evince Venus in 1874 , all decided that $1 t$ made on the transit enus in 1874, all decided the author of this brochu problem. This he believes that he has successfully effected-not by the aid of direct observations, how-
ever, for he believes that the value of gravity on the surace of the earth, plus the time of the latter's revolu on, gives sufficient data for the resolution of th problem. The pamphlet, which is mostly taken up with mathematical calculations, is prefaced with a suc The author states that he does not consider universal gravitation as a property inherent to matter, but as a effect of undulation of the elastic and subtle fluid tha fills the universe, and which causes every body, ever

HINTS 'TO CORRESPONDENTS.
No attention will be paid to communications unless companied with the full name and address of the writer.
Name
Names and add
iven to inquirer
We renew our request that correspondents, in referrin
former answers or articles, will be kind enough ame the date of
of the question.
Correspondents whose inquiries do not appear after reasonable time should repeat them. If not then pub lished, they may conclude that, for good reasons, th
Editor declines them. Persons desiring
Persons desiring special information which is purely of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and lab btain such information without remuneration.
Any numbers of the Scientific American Supple-
ient referred to in these columns may be had at this ment referred to in these co
office. Price 10 cents each.
(1) W. R. C. asks how to make a bath to nickel plate about four gallons, and what kind of batter is the best, and about how large for four gallons. Ca he bath be made too strong? Can plating be well done n fifteen minutes? A. You will find an article on
nickel plating on p. 209, Vol. 38, Scientific American Copper can be plated in fifteen minutes under favorable ircumstances, but a longer exposure affords much
tter work
(2) A. L. L. asks for a receipt for mak ng sticky fly paper such as is sold in the drug
See p. 171 (12), Vol. 39, Scientific American.
(3) R. C. S. writes: Do you know of any way to keep ants from building mounds in a lawn, or of
destroying the ants without killing the grass? A. Try a little oil of turpentine, in very fine spray
(4) F. G. W. asks how to manufacture arbolic acid. A. Phenol or carbolic acid is commonly obtained from light oil, one of the products of the dis-
illation of coal tar, by rectifcation in a current of steam which removes cresol, etc. The tailings are
agitated with caustic soda,and the alkaline mixture subsequently treated with an acid. This yields abont 15 per cent of crude carbolic acid as a separate layer. Thi is rectified by distillation and dried by heating it to ear its boiling point $\left(368^{\circ}\right.$ to 370°) in a current of dry al copper. It is still further purified by rectification over litharge. It boils between 368° and 370°.
(5) D. W. R. asks: What is the composition of phosphor bronze, such as is used in mining pumps to resist the action of suphurous water, and
how is this bronze mixed? A. An ordinary copper tin bronze to which has been added in the melting pot $1 / 2$ to 1 per cent of phosphorus. See p. 409 (30), Vol. 39. (6) A. B. asks: What is used by the ladies to bleach their hair? A. A strong aqueous so with carbonate of soda, constitutes one of the bleaches. (7) C. O. M. asks: What cheap article can be used for thinning coal tar? A. Benzine or benzole, naphtha, oil of turpentine. 2. What thinning zole, naphtha, oil of turpentine.
naphtha or light oil is made of? A. It is one of the
products of the distillation of petroleum. 3. Where can products of the distillation of petroleum. 3. Where can
it be obtained in great quantity? A. Of any dealer in
(8) D. G. B. asks for a simple way of making carbonic acid water or soda water. A. Carbonic acid water is simply water charged with carboric acid under pressure. The carbonic acid is generated by the action of dilute oil of vitriol (sulphuric acid 1, water 4 of sustaining great pressure. This generator is pro vided'with a pressure gauge. The gas at a pressure 200 lb . or so per square inch is conveyed through quantity of water in a second vessel to free it from im purities, and then to the bottom of a stout airtight, por celain-lined, iron cylinder, partly filled with pure wate This is kept in agitation to facilitate the absorption
(9) F. H. M. writes: I have a marble mantel in my bedroom which has become discolored from moke. I have tried several recipes to clean $i t$, but
they have all failed; Can you tell me what to ley have all failed; Can you tell me what to use to solution of washing soda in hot water; brush this over the stone and let it dry. Brush off, wash with plenty of water, and polish with a little tripoli
(10) E. M. asks how to color or dye small pieces of ivory, black. At the same time the pieces must not be dipped into a solution. I desire to put the color on. How can I prepare such a paste? I suppose it
mustbe such. A. Wash well with an aqueous solution must be such. A. Wash well with an aqueous solution of neutral nitrate of silver. Expose to sunlight (under class) until black. Repeat if necessary until the proper
(11) F. B. asks what the process is for naking very thin paper or any other substance insolu the mode of making the solutiou. A. Pass ammonia gas into a saturated aqueous solution of cupric sulphate until the precipitate at first formed is completely redissolved. Concentrate over the water bath and pass the paper slowly through this. You will probably succeed 2. Also the mode of making a very thin sheet of gela for casing sausages by the Germans during the French war I think would answer my purpose, as I want some hing quite thin, impervious to water or nearly so,trans parent if possible, and with a good degree of strength and cupability of withstanding heat and cold. A. Pass through a strong solution of bichromate of potassa, then expose to sunlight. In preparing the covering for the pea sausages referred to, glue was mixed with a smal into shape, exposed to the sunlight, and then thoroughly
(12) F. S. P. asks how much calcium sul pate and carbonate a water can contain and be fit fo boiler purposes. Also, what is the largest amount or a boiler? A. Water containing 100 grains per gallon has been used. It should not be used if a purer wate
(13) D. F. M. asks: 1. How can I dissol ve or melt sheet isinglass to mould it without losing its transparency? A. If you refer to mica, it can
ot be so moulded or pressed. Glue isinglass (fish gela ne) may be softened by heating it in a vessel over water bath. A trace of oil will prevent its adhesion
he moulds. 2. Does heat travel through a vacuum?
(14) S. W. W. asks: 1. Can gold be taken rom the pounded ore (or rock) by the use of quicksil othey get the gold from the quicksilver? I have abon half ton of some very fine rock, but not baving muc time I would like to know the cheapest and best way to get the gold. I can get plenty more of the rock if it will
pay me to work it. A. The finely stamped auriferous res are mixed with hot water and a few pound o ercury in large iron pans provided with a stirring ap team jacket, and the stirring is kept up until the me cury has absorbed or amalgamated all the gold. The malgam is then drawn off and thrown upon a chamois kin filter; through this the excess of clean mercury runs, eaving the amalgam on the skin. This is placed in an and is collected in water), while the gold remains in the etort. Consuit Philip's "Mining and Metallurgy of Gold and Silver," or Percy's "Metallurgy of Gold, Sil ver and Mercury."
(15) W. P. K. asks for a recipe for coloring bright wire, black or blue, and perfectly smooth,
he same as hair pine. A. Asphaltum, 3 oz.; boiled oil quarts; burnt umber, 8 oz.; mix by heat, and thin with urpentine (oil) before the mixture becomes cool. Dip he wire in this (not too thick) and harden in a japan
(16) K. \& S. write: We have cast a lot of mall plates of lead and antimony to be plated. Afte peating there remained on the plates a red or rusty ap not show after plating? A. Thespots may be due to im perfect alloying in the pot, or, what is more probable to imperfect cleansing preparatory to plating,or careless handling of the clean plates. If proper precaution is
taken in these respects the spots will probably give no
further trouble.
(17) F. L. B. asks: 1. Can I work a mi crophone with one telephone receiver? A. Yes. 2.
Can I make a microphone out of the graphite in a carpenter's pencil? A. Graphite does not answer the pur penter's pencil? A. Graphite does not answer the pur-
pose. 3. Would two Daniell's cells, with plates $3 x 7$ inches, work it? A. One cell is sufficient for a microphone. 4. Could I insulate wire for an electro-magnet by varnishing it if I was careful in winding it? A. Yes.
5. Could 1 make a magnet for a telephone with a sounder 5. Could 1 make a magnet for a telephone with a sounder
magnet? A. No; use permanent magnets. 6. And magnet? A. No; use permanent magnets. 6. And what is the best way to magnetize it? A. For methods
of magnetizing see p. 331 (13), Vol. 42 , ScIENTIFIC American.
(18) F. S. writes: I have a recipe for making Bengal lights composed of the following ingredi-
ents: 8 parts saltpeter, 4 parts sublimed sulphur, and 1 ents: 8 parts salpeter, 4 parts sublimed sulphur, and 1 made a common yellow flame will you please tell me what to put in it to make a red and blue light? A. Red may be produced by the addition of a small quantity of nitrate of strontium and sugar or charcoal; blue by zinc dust. The following compositions produce fine lights: Red.-1. Chlorate of potash, 32 ; nitrate of strontia, 48 ; calomel, 20 ; shenac, 12 ; Chertier's copper,
4 ; fine charcoal, 1.
2. Chlorate of potash 84 ; strontia 80; calomel, 51; dextrine 20 ; shellace 18 Chertier's copper, 4. Purple.-1. Chlorate of potash, 28; Chertier's copper, 28; calomel, 13 ; shellac, 8 ; stear-
ine, 1. 2 . Chlorate of potash, 40 ; calomel, 28; Chertier's ine, 1. 2. Chlorate of potash, 40; calomel, 28; Chertier's
copper, 28; dextrine, 10; stearine, 3. These colored copper, 28; dextrine, 10; stearine, 3. These colored
lights should never be burned indoors, as the vapors hey give of are poisonous.
(19) A. L. F. asks: 1. How much working pressure will a cylindrical boiler, 12×20 inches, made of No. 26 galvanized iron, safely stand? A. From 20 to
23 lb . per square inch. 2 . Dimensions of safety valve 23 lb . per square inch. 2. Dimensions of safety valve
and adjustment to blow off at required pressure? A. 3 inch diameter. You can put $83 \% / 1 \mathrm{~b}$. direct on valve. 3. How large a pump is required for same, and at what peed should it be run? A. About $1 / 2$ inch diameter by 3 to 4 inch stroke. The speed will depend upon the
rapidity of evaporation. You can control the supply rapidity of evaporation.
to the pump by a valve.
(20) A. W. R. writes: What are the condiions necessary to success in the "blue photo process," of copying tracings? A. Use pure linen paper, free
from chlorides (bleach). Keep it for some time, before sensitizing and after, until required for use, in darkness; oughly after preparing as possible, and wash thoroughly after
(14), Vol. 40.

[OFFICIAL. 1

INDEX OF INVENTIONS

Letters Patent of the United States were

 Granted in the Week EndingJuly 6, 1880 ,
AND EACH BEARING THAT DATE. ['Those marked (r) are reissued patents.]
A printed copy of the specifleation and drawing of any ince 1866 , will annexed list, also of any patent issued ar. In ordering please state the number and date of the patent desired and remit to Munn \& Co., 37 Park Row, New York city. We also furnish copies of patents granted prior to 1866; but at increased cost, as the spe
ceations not being printed, must be copied by hand.

Aging liquors, process and apparatus for, J. L.
Martin ${ }^{299542}$
Martin .. 229.542
Air cooling process and apparatus, Portner \& Eils
Baking powder, acid phosphate for, C. A. Catlin. 229,50 Baking powder, acia phosphate for, C. A. Catinn. 229,518
Baking powder, preparation of potassium phosphate for, Wilson \& Catlin 299,573
Baking power, preparation of sodium phosphate for. Wilson \& Catlin... ...299,699
22974 Bath hoop, E. Hale Bed, invalid. W. W. Snell.
Bell, gong and signal, E. W. Vanduzen ... Bell, striker, E. W. Vanduzen
Bell wires, angle for, E. W. Vanduzen ells, attaching clapper strings to E. W. Vanduze 22995665 Bells, hanging. E. W. Vanduzen229.568 Bellows, J. Van Eps..

Billiard table, S. R. Math Bird cage, F. T. Pinter

 Book binding, F. S. Hasbrouck (r)
Book mark, H. R. R. McC
Boot and shoe edge setting machine, C. K.29,70
Roots and shoes, making inne
Bottle stopper, J. Erdmann.
Thompson.
Bougie, E. Pfarre
Brick, J. S. Smith
Brick linings, laying, Mann \& Singer
Bride, R. Arnold
Brush holder, blacking,
Brush holder, blackng,
Bucket, slop, G. W Knapp.............
Button attachment, F. J.
Calendar, A. R. Baker
Calendering paper, method and apparatus for,
Newton....
Can, I. Porter
Can top, R. Gullespie.
Candj, manufacture
and, manufacture of, C. G. Brommer
Car brake, G. D. Paul

Car coupling, Deamude \& Cannon ...
Car coupling, C. .. Shippeee........
Car coupling rail way, A. Middleton
Car coupling, rail way, A. Middlet
Car door, grainn Latta \& Neall
Car doors, operating, W. W. Riley
Car, rallway freight, E. B. Ward..

[^0]229.63
229,7
2299,5
2296
2923

Woodruff (r)....................
Straw carier, F. . \& T. Bumner
Stump puller, P. C. Thompson......
 Summer furnace, G. F. Robinson
Tag, butcher's, Allsop \& McKenna.....
Telegraphic switch board, C. E. Chinn Telegraphic switch board, C. E. Chinnock.....
Temple teeth, tool for setting, E. S. Stimpson Tether, W. L. Gerard....... Thill coupling, c. Renner, Jr.... Thread cleaning and polishing mechanism, C.E............ Tire upsetter, A. H. Struppler
Toy pistol, H. S. Lockwood. Toy shooting gallery, C. A. Bailey Truck, hand, J. S. Stewart
Type case, printers. L. D. Evans. Type writing machine reel, W. K. Jenne
Umbrella, A. II. Ege...................... Umbrella, A. II.
Umbrella. R. Ray. Valve, balanced, W. P. Tatham.
Valve gear, engine, . Josserand. Vehicle dash, A. Z. Bocla
Vehicle spring, A. D. Hickok..
Vehiche spring Velocipede, W. Albrewht......
Velocipede, C. M. Trautmann Venting sealed cans, J. Wolff. Wagon brake, H. H. . H .
Waker, A. Fish
Wagon lock, Sprague \& Perry Washing machine, I. Hoover. Washing machine, M. L. Julian ...
Washing machine, F. L. Mitchell Watch case bow, J. C. Dueber Watch, stop, H. A. Lugrin.
Water cooler, G. Booth.... Water gauge, E. W. Vanduzen...
Water wheel, turbine, T. S. Pyla Whiffetree hook, W.J. W. Wods...
Whisky, making. Allen \& Bradley Whisky, making, Allen \&
Windwheel, F. H. Bolte.

Wrench, L. Coes
Wringer, R. C. Browning

DESIGNS.
Bulletin board, rai
Carpet, H. Horan
Carpet, D. McNa
Carpet, G. W. Piggott
Chair, . L. Buckingham.................
Coffin handle socket, w. E. Stevens.
Fireplace IV C Peet.
ireplace, W. C. Peet...
Hay rack stable, M. Wiard...................................... Pianoforte case, C. F. T. Steinway...
Stalls, post for stable, M. Wiard ...

TRADE MARKS.
Corundum, Alden Emery Compan
Gloves, kid, C. Fortin $\&$ Co
Liniment, condition powders, a
Bennett......................
Bennett.
acco, elgars, and cigarettes,
ng_{2} S. Hernsheim \& Brother

229,513
299,741 229,661
29964 229,694
9,281 9,281
299,543 229,785

229,544

.
$.229,544$
229,713
2
229,613 Telephone registering apparatus, C. J. Bell, et all, Germantown, Pa.
Type writing machine, finger guide for, A. M. Da Costa, Brooklyn, N.
Time signaling :

\section*{Minn.

Minn.
 Vinegar compounds, G. Holland, San Francisco, Cal.

 gaxrris mants.
 per inine by measurement, as the letter press. Adver-
tisements must beceived at publitiation office as early
as Thurstay morning to appear in next issue. THe publishers of this paper guarantee to adver-
tisers a circulation of not less than 50,000 copies every
weekly iscue

Phosphor-Bronze

Wire, Sheets, Rods, Bolts.

OThoshthoi. Oroonge.
The Phosyhor-Brouzze Smelting Co, İimited, 2038 Washington Ave., Phila., Pa. OWNERS OF THE U. S. PHOSPHORBRONZE PATENTS.

MAHOGANY,

CUT THIN LUMBER
GEO. W. READ \& CO.,
186 to 200 Lewis St., foot 5th \& 6th Sts., New York.

INSECTS, AND HOW TO FIGHT THEM.

B. W. PAYNE \& SONS, CORNING, N. Y.

7,961
7,963

${ }_{20}$ Driven or Tube Wells

The Magical Organette only \$8.

theO. J. Harbach, 809 Filibert St., Phila., Pa.

 FOR SALE.-PATENT OF ELECTRIC ICE-HOUSE AND COLD ROOM--BY R.

DRAUGHTING TEMPLET. - FIGURE

THE NEW OTTO SILENT GAS ENGINE.
 H. S. Manning © Co., 111 Liberty St., N. Y., Agents. NEW, HEAVY 50 H. P. ENGINE, BEST MAKE, FOR
sale cheap. Address H. B. A. KEISER,
1in No. Broad St., Phila., Pa.

THE PULSE.-BY T. A. MCBRIDE, M.D.

CORRUGATED AND CRIMPED IRON

CATALOGUE OF THE FOREST TREES

 Patent Steam Friction Crane

 WANTED-BY A WELL EDUCATED

NEWSPAPER FILE

 Verd one mo wishe to preserve the
MUNN

TAKE SOLID COMFORT READER'G COT CHAIR.

STEAM PUMPS. henry r. Worthington 239 brodumy.N. N. Yt. S3. Water Ni,
 Prices below those of any other steam pump in the market.

PROPOSILS FOR MALL LOCKS AND KETS.

$$
\begin{gathered}
\text { POST OFFICE DEPARTMENT, } \\
\text { WASHINGTON, D. C., June 22, } 1880 . \\
\text { In compliance with a provision in the law entitled " } \mathrm{A} \text {. }
\end{gathered}
$$

 Keys for the sole and exclusive use of the United dtates
mains. including, besides those to be used for mail bans,
sulchas are to be used on the street letter-boxes of the
United States. As the public exposure and searching examination
neeessary tointeliligent biddaing on any prescribed model
of a lock and key would tend to impin
 scribes no models or samples for bidders, but relies for
a selection on the mechanical skill and ingenuity which
a fair tompent
develop in samon among inventors, hereby invited, may submitted by them. Proposals, with samples, will also be rec
same time, for Safety Chains for Mail Keys.

 The Contracts which may be made will be inconformity
to the specifications and the accepted proposals.

"RELIABLE"

 sisconde coile,
AIR COMPRESSORS,
THE NORWALK IRON WORKS CO.,
THE FRICTION CLUTCH CAPTAIN

W ANTED, AGENTS

TIDY SPOOL CASE.

LaRGEST ESTABLISHMENT OF THE KIND IN THE WORLD.

 Moss's New Process.
 535 PEARL ST., near Broadway, NEW YORK.
Important io Manufacturers and Publishers:
Engraved Plates for Newspaper, Book, and Catalogue Illustration executed in Type Metal in a superior manner
by a new and improved Photo-Chemical method, from all kinds of Prints Pen Drawings, Photographs, Tintypes, by a new and improved Photo-Chemical method, from all kinds of Prints, Pen Drawings, Photographs, Tintypes,
Original Designs, Pencil Sketches, and when available from the object itself. Much cheaver than wood cuts. These
. plates are mounted type high ready for use on any ordinary press, and are guaranteed to be fully equal to the best wood cuts. Electrotypes can be made from them in the usual manner. We also have a fully equipped steam elec-
trotyping department. Engravings of Portraits, Landscapes, Buildings, Machinery, and miscellaneous engraving of all kinds executed in the highest style of the art at reasonable prices.
Mr. J. C. MOSS in withdrawing from the Photo-Engraving Co., 67 Park Place, has retained for himself all improvements made and used by him in Photo-Engraving since May, 18\%.
Our motto is: "The best work at low prices, always on time." Send stamp for illustrated circular. Send copy for estimate. Please mention this paper.
Special.-Just issued a circular of portraits of Presidential Candidates, five sizes. Send

NEW YORK BELTING AND PACKING COMP'Y.
 All other lsinds Imitations and Inferior. Our name is stamped in full upon all ound
standard BELTNNG, PACKING, and HOSE. Adress NELW YORKK BELTING AND PACKING CO.

MACHINISTS' TOOLS. Lathes, Planiers, Drills, \&o. \$777A추anand venew haven, coni:

Trow City Directory for 1880--81,

WALLACE DIAMOND CARBONS a° ELECTRIC IICHTS

 MANFD.FOR THE ELECTRCAL SUPPLYCO., 100 LIEERTY STREET, NEW YORK.Pond's Tools, Eneine Lathes, Planers, pruss, de.
DAVID W. POND, Worcester, Mass.

50

TENSSYVANIA: EDiAMONDOATLLLCO "BLAKE'S CHALLENGE" ROCK BREAKER.

STEAMPUMPS, FOR EVERY DUTY.
VALLEY MACHINE CO., EASTHAMPTON, MASS.
ROCK BREAKERS \& ORE CRUSHERS.

HOR SALE.

 siso all the mazohinery used in manufacturing the Cele-
ated Trade wagon for sale at half cost.
S. N. BROWN © CO., Dayton, 0 .

1880. 1880. Piltbinirgh Exposition Scoieify. EXPOSITION AND FAIR Will open to the public Thursday, September 2. and re-
main open day and evening (Sundays excepted) until
Saturday October 9th 1880 . Saturday, October ghthisson of application for space, Prospectus, and
Bremium list may be had by addressing the secretary.

 for the introduction of new ma chinery to the public.
Office, GERMANIA BANK BUILDING, 89 Wood St.

Steam Fittcrs' \& Plumbers' Supplies. STURTEVANTS, FAN BLOWERRS.
ALBERT BRIDGES, 46 Cortlandt Street, New Yor

F GATENTS

CAVEATS, COPYRIGHTS, LABEL
Messrs. Munn \& Co., in connection with the publication of the Scientific American, continne to examine
Improvements, and to act as Solicitors of Patents for Inventors.
In this line of business they have had over thirtr for the Preparation of Patent Drawings, Specifications, and the Prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, Registration of Labels, Copyrights for Books, Labels; Reissues, Assignments, and Reports on Infringements
of Patents. All business intrusted to them is done terms.
We
Containing free of charge, on application, a pamphlet to procure them; directions concerning Labels, Copyrights. Designs, Patents, Appeals, Reissues, Infringe-
ments, Assignments, Rejected Cases, Hints on the Sale of Patents, etc.
Foreign Putents.-We also send, free of charge, a Synopsis of Foreign Patent Laws, showing the cost and
method of securing patents in all the principal countries of the world. American inventors should bear in mind that, as a general rule, any invention that is valuable to the patentee, in this country is worth equally as much in England and some other foreign countries.
Five patents-embracing Canadian. English, Germa Five patents-embracing Canadian, English, German, French, and Belgian-will secure to an inventor the ex-
clusive monopoly to his discovery among about one clasive monopoly
Hundred and firt milions of the most intelligent
people in the world. The facilities of business and steam communication are such that patents can be ob-
tained abroad by our tained abroad by our citizens almost as easily as at
home. The expense to apply for an English patent is \$75; Ger $\$ 100$; French $\$ 100$; Belgian $\$ 100$; Canadian, $\$ 50$.
Copies of Patents.-Persons desiring any patent
issued from 1836 to November 20,1866 , can be supplied issued from 1836 to November 20,1866 , can be supplied
with official copies at reasonable cost, the price depending upon
specifications.
Any patent issued since November 20,1866 , at which time the Patent Office commenced printing the draw-
ings and specifications, may be had by remitting to this office $\$ 1$.
A copy of the claims of any patent issued since 1836 will be furnished for $\$$
When ordering copies, please to remit for the same
as above, and state name of patentee, title of invention, and date of patent. United States patents, sent free. A handsomely bound Reference Book, gilt edges, contains 140 pages and
many erigravings and tables important to every pat many eargravings and tables important to every pat-
entee and mechanic, and is a useful handbook of refer nce for everybody. Price 25 cents, mailed free.
Adress

MUNN \& CO
3% Park Row New york BRANCH OFFICE-Corner of F and 7th Streets, Washington, D. C.

包durtisement

The George Place Machinery Agency

 PREEENT SLIPPING. The moulded rubberer.
 MillStones and Corn Mills.

Pictet Artificial Ice Co., Limited,

Pyrometers, For showirk haat

Established 1844

JOSEPH C. TODD, SICcessor to TODD \& RAPPERTY paterson, N. J., Engineer and Machinist.

 THEN NHW
Baxter Patent Portable Steall Engine.

 J. O. 'paterson,'n. Or No. 10 Barclay St., Now York.

MIREMOPE

Address JoHN A. ROERINGS SoNs, Manupactu

EXTRA BARGAINS.

\cdot

ELGIN WATCHES,

 -TOIIN R.WYIITTLEXY \& CO European Representatives of American Houses. With
First-class Agentsin the principal industrial and agricul
Haril centers

HWY.JOHIS'

LIQUID PAINTS, ROOFING, BOLLER COVERIVGS,

THE MACKINNON PEN OR FLUID PENCIL. MACKINNON PEN CO

ERICSSON'S NEW MOTOR ERICSSON'S

dWellings and country seats.
 DELAMATER IRON WORTS C. H. DELAMATER \& CO., Proprietors,
No. 10 Cortlandt Street, New York, N. \mathbf{Y}.

(atyhepard's celebrated So Screw Cutting Foot Lathe Foot and Power Lathes, Drill Presses
Sorolls, Circular and Band
Saws
sam

IVM, A. HARRRIS, PROV Six minutes waik west trom station EET), HARMRIN-CORLNSS ENGUNE A PLANING MILL OUTFIT FOR SALE
 ADJUSTABLEE INCLINE PRESEES
STLES
St PARER PRESS

ELEVATORS.

ROOFINC.

 WhOOD SOLE SHOES.

 Sis BUY NO BOOTS OR SHOES

Patent "AIR SPACE"' Metho ASBESTOS MATERIALS,

The New York Ice Machine Company
Low Pressure Binary Absorption :ystem

THOSE SALESMEN?

V TREATMENT (or Consumpton, At,tmqn,

ADMINISTERED BY INHALATION

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY
W. b. franklin,V. Pres't. J.II. allen, Pres't J. B. PIERCE, Sec'y.
 AOLLDMBIA BICYCLEE.

The Asbestos Packing Co.

 JOURNAL WICK " MILLL BOARD,
HEATHING PAPER HEATHING PAPER,
FLOORING FELT. CLOTH.

 Bookwalter Engine,

 Siticotse PowEr.

Wood-Working Machinery,

Roots New Ibon Blower

POSITIVE BLAST.
IRON REVOLVERS, PERFECTLY BALANCED FEWER PARTS THAN ANY OTHER BLOWER P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.
 JAS. BEGGS \& CO., Selling Agts., 8 Dey Street,

Working Models And Rxperimental Machinery, Metal or Wood made t
Order Dy
J. F. WERNER, 62 Centre St., N. Y .

No! They won't come round any more, who wanted to know if Julia went to Sunday School; and there was the big man with the red face who wanted you to go round the corner and take a nip! We got tired of them
long ago, and suppose you did the same. If you want Tanite Goods, and don't want to pay freight from the factory, you can direct
your orders to

THE TANITE COMPANY,

OF STROUDSBURG? MONROE CO, PA

\qquad
condon, Eng., 9 St. Andrews St., Holborn Viaduct, Liverpol, Eng., 42The Temple, Dale St.
Syduey ND Si. We. 11 Pitt St.
Philaderiphin, il North Sixth Street.
St. Louis, 209 North Third St.
St
Cincininatio 81 to 89 North Seond St.

an Francisco, 2 and 4 California St
ABSENCE OF MIND AS A SIGN OF Incipient Mental Disease--An important paper, in which
the fact is pointed out that "absence of mind iorm of waking action thich scarriee ond indowed to get
isone of the mental tendencies, which, if allowed
the upper hand. lead insensibly to brain disease. and
which consequently should be promptly counteracted at

Bew pr:SIIITPILLEYS

Srientific Amrevicam

FOR 1880.

The Most Popnlar Scientific Paper in the World. VOLUME XLIII. NEW SERIES Only $\$ 3.20$ a Year, including postage. Weekly
This widely circulated and splendidly illustrated teen pages or useful information, and a large number o original engravings of new inventions and discoveries representing Engineering Works, Steam Machiner Chemistry, Electricity, Telegraphy, Photography, Archil tecture, Agriculture, Hortlculture, Natural History, et All Classes of Readers find in The Scientific
American a popular resume of the best scientiflc information of the day; and it is the aim of the publisher to present it in an attractive form, avoiding as much
possible abstruse terms. To every intelligent mind, this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in
every community where it circulates. Terms of Subscription
Terms of Subscription.-One copy of The Scien
tific American will be sent for one year- 52 numberspostage prepaia, to any subscriber in the United State ents by the publishers; six months and twenty months, $\$ 1.00$.
Clubs. -One extra copy of The Scientificamer at $\$ 3.20$ each; additional copies at same proportionat rate. Postage prepaid.
One copy of The Scientific American and one copy
of The Scientific American Supplement will be sent for one year, postage prepaid, to any subscriber in th Or one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dollars by the publishers.
Express. Money carefully placed insid Order, Draft, or securely sealed, and correctly add ressed, seldom goes astray, but is at the sender's risk. Address all letter
and make all orders, drafts, etc., payable to MUNN \& CO., 37 Park Row, New York. To Foreign Subscribers.-Under the facilities of
the Postal Union,the Scientific American is nowsent the Postal Union, the SCIENTIFIC AMERICAN is nowsent
by post direct from New $\begin{aligned} & \text { Ork, with regularity, }\end{aligned}$ so subscribBritish colonies; to France, Austria, Belgium, Germany Russia, and all other European States; Japan, Brazil,
Mexico, and all States of Central and South Americe Mexico, and all States of Central and South America.
Terms, when sent to foreign countries, Canada excepted, $\$ 4$, gold, for SCIENTIFtC AMERICAN, 1 year; $\$ 9$. , gold, for both Scientific American and SUPpiement for year. This includes postage, which we pay. Remit. by
postal order ordraft to order of Munn \& Co.,37 Pars Row. New York.
THE "Scientific American", is printed with CHAS.
bard SNEU JOHNSON \& CO., Shiladelphia, and 50 Gold St. Nenth and Lom
Sork.

[^0]: Paper machines, guide roller for, T. Pusey Paper, manufacture of, G. B. Fox

