
a Weekly Journal 0f practical information. art. science. mechanics. Chemistry and manufactures.

$\text { Vol. } \left.\underset{[\text { NEW }}{\text { KLII.- }-N o .]} 17_{0}\right]$	NEW	YORK, APRIL 24, 1880.	

THE MANUFACTURE OF MEGE OLEOMARGARINE AND OLEOMARGARINE BUTTER.-[See page 258.]
Fig. 1.—One Day's Churning,—Butter Working and Salting. Fig. 2.—View of Commercial Manufacturing Company's Works. Fig. 3.-Churning Room. Fig. 4.-Melting Room.

Srientific Ameriran.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
NO. B' PARK ROW, NEW YORK.

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year postage included...
One copy, six months, postage included

$\$ 3$
160

Clubs.-One extra copy of THE SCIENTIFIC Am ERican will be supplied same proportionate rate. Postage prepaid.
Remit by postal order. Address MUNN \& CO., 37 Park Row, New York.
To Advertisers - The regular circulation of the Scientific American is now Fifty Thousand Copies weekly. For 1880 the publishers anticipate a still larger circulation.

NEW YORK, SATURDAY, APRIL 24, 1880.

TABLE OF CONTENTS OF the scientific american supplement NO. 225.

For the Week ending April 24, 1880.

Price 10 cents. For sale by all newsdealers.

v. Natural History Geography, ETC.-Proportions and

ELECTRO-HORTICULTURE.

It has often been remarked by Arctic explorers that plants which require several months to ripen their fruit in temperate climates complete the same round of budding, blooming, and maturing in a few weeks under the continuous sunshine of the Arctic summer. A corresponding rapidity of growth is shown by annuals in sub-Arctic latitudes, as in northern Norway, where the summer sun, though never reaching a high altitude, yet remains above the horizon from sixteen to twenty hours a day.

A species of corn which flourishes in Canada failed to ripen in Kentucky, though the warm season there is some weeks longer tban in Canada. The superior rapidity with which vegetation pushes forward during periods of full
moon and light nights has also been widely noticed; these moon and light nights has also been widely noticed; these men general observation, with others of a more experi our temperate climate thrive in proportion to the duration of the daily (direct or indirect) sunshine they enjoy, rather than according to the temperature of the air
A curious confirmation and extension of these observations in regard to the influence of light upon vegetation is furnished by the recent experiments of Dr. C. W. Siemens, testing the influence of the electric light upon certain plants. These experiments were described by Dr. Siemens at considerable length at a late meeting of the Royal Society in London. According to the report of the London Times the method pursued by Dr. Siemens was to plant quick-growing seeds and plants, such as mustard, carrots, ruta-bagas, beans, cucumbers, and melons in pots, dividing the pots into four groups, one of which was kept entirely in the dark, one was exposed to the influence of the electric light only, one to the influence of daylight only, and one to daylight and electric light in succession. The electric light was applied for six hours each evening-from 5 to 11-and the plants were then left in darkness during the remainder of the night. The general result was that the plants kept entirely in the dark soon died; those exposed to the electric light only or to daylight only throve about equally; and those exposed to both day and electric light throve far better than either, the speci-
mens of mustard and of carrots exhibited to the society mens of mustard and of carrots exhibited to the society showing this difference in a very remarkable way. Dr. Siemens considers himself as yet only on the threshold of the investigation, but thinks the experiments already made are sufficient to justify the following conclusions:

1. That electric light is efficacious in producing chlorop hyl in the leaves of plants, and in promoting growth. 2. That an electric center of light equal to 1,400 candles placed at a distance of two meters from growing plants appeared to be equal in effect to average daylight at this season of the year; but that more economical effects can be obtained by more powerful light centers. 3. That the carbonic acid and nitrogenous compounds generated in diminutive quantities in the electric arc produce no sensible deleterious effects upon plants inclosed in the same space. 4. That plants do not appear to require a period of rest during the twenty-four hours of the day, but make increased and vigorous progress if subjected during daytime to sunlight and during the night to electric light. 5. That the radiation of heat from powerful electric arcs can be made available to counteract the effect of night frost, and is likely to promote the setting and ripening of fruit in the open air. 6. That while under the infuence of
electric light plants can sustain increased stove heat without collapsing, a circumstance favorable to forcing by electric light. 7. That the expense of electro-horticulture depends mainly upon the cost of mechanical energy, and is very mode rate where natural sources of such energy, such as water falls, can be made available.
In the discussion which followed the reading of the paper it was pointed out that the evidence seemed to show the practical identity of solar and electric light with respect to their action on vegetation; and it was suggested that the method of subjecting plants to electric light might afford great facilities for the scientific investigation of the influence exerted by light, as compared with other agencies, in promoting the formation of the active principles or most valuable constituents of plants, such as the quinine of the cinchona bark, the gluten of wheat, etc. Before concluding his observations, Dr. Siemens placed a pot of budding tulips
in the full brightness of an electric lamp in the meeting in the full brightness of an electric lamp in the meeting
room, and in about forty minutes the buds had expanded into full bloom.

the migration of the great american desert.

The irrepressible conflict between herders and farmers 880 along the Kansas and Nebraska frontier is steadily growing 3584 in magnitude, and on its issue depends the future of the great tract of country between the 100th meridian and the Rocky Mountains. The stock raisers and government sur 6 veyors pronounce the region fit only for pasturage lands, and ask that it be leased in large tracks to herders; the farmers claim, on the other hand, that the region embraces some of the finest farm lands in the country, and insist thatit shall be held subject to homestead pre-emption and timber claim entry.
As spokesman for the latter party, Professor C. D. Wilber, of Wilber, Saline County, Nebraska, has been giving a cor respondent of the Inter-Ocean a history of the controversy, and no end of evidence that the desert makers are wholly as lying west of the 100 th meridian has, he maintains, no real existence. The entire region west of the Missouri River was formerly held under the same reproach. Now the country
bears magnificent crops of corn, wheat, rye, oats, barley, in many instances exceeding in productive capacity the famous valleys of the Mohawk, the Genessee, the Muskingum, and the Miami
Touching the agricultural value of this region and the recent change of opinion regarding it by those who have learned its value, Prof. Wilber said:
'Only eight years ago, being one of an excursion partychiefly the pioneers of the M., K. and T. R. R. from New York city, I made an extended tour over the piains toward the Colorado line. Mayor Opdyke said: 'The country is, indeed, beautiful; but what a pity it is so worthless. Is there not some way to overcome this desert condition? It must remain a waste thousands of years. The Indians are welcome to it, if only they will keep it.' Messrs. Skiddy, Schell, Parsons, Dickinson, and other men of great wealth, returned from the Sabara confirmed in their traditions, saying, 'It will never be worth a dime per acre.
"To-day, ten years later, the New York capitalists are pushing railway lines and branches with unparalleled rapidity, eager to be first in possession of the same country, no longer a desert, dry, sterile, worthless, but, as they now know it to be, the best portion of the continent.
"The Boston capitalists were quite as the New Yorkers. Twelve years ago the wise men of the 'Hub' projected their first Nebraska railroad, from Plattsmouth to Fort Kearney, nearly 200 miles, based upon the usual land grant of 12,800 acres per mile of track. But in this desert Ne braska, as they judged, the less land the better. In the bill conveying the grant it needed only five or ten lines, or a score of words, to have secured gratis the entire route through the great Republican valley, with the accompany ing grant of over 4,000,000 acres of the richest lands in America, but by them, at that time, not considered worth sking for. And now, after ten years, the aforesaid wise men of Boston, in the autumn of 1879, passed over the same oute with a corps of engineers to choose the route, purchase the right of way, and make ready to spend $\$ 10,000,000$. They knew the country west of Kearney would never be babitable except by Indians, gophers, and owls.'
The government experts who have described the country s fit only for pastoral uses, have done so, Prof. Wilber claims, without actual study of the plains they have con demned:

Whatever they have put on record in their reports mostly concerns the mountainous regions of Wyoming, Colo ado, Utah, and New Mexico.
' The plains ormiddle country of Dakota, Nebraska, Kan as, Eastern Colorado, and Wyoming, have either been wholly neglected or dismissed after hasty visits, with a brief eport made up of most superficial and erroneous observa tions.
"What apology can either Prof. Hayden or Major Powell offer for their notes on the region just referred to?
"Speaking of Nebraska, Hayden says:
"' For 150 to 200 miles west of Omaha the soil is very fertile and can hardly be surpassed, but beyond that there is an absence of both wood and water, which will render it impossible to cultivate the western half of the State of Nebraska successfully.'

Major Powell, of the United States Geological Corps, says: ‘There is not of available land belonging to the United States enough left to make an average county in Wisconsin.'
"There are to-day in Western Nebraska and Kansas; far beyond the 100th meridian, many thousand prosperous farmers, whose full granaries give the lie to the statements of the government explorers, Hayden and Powell."
Last year the acreage of new farms all along the western border of the settlements was enormous, bringing under cultivation a strip ten miles wide, extending north and south through Dakota, Nebraska, and Kansas. Previously the country was barren, but rain follows the plow, as it has here ofore, across a belt 350 miles wide.
"The first settlers, twenty-five years ago, placed the desrt limits just west of the Missouri River counties. These being occupied, the desert line was established on the Big Blue, 70 miles beyond. But the farmer invaded the Big Blue Valley, and the desert line was established near Kearney, 190 miles west of Omaha. But the irrepressible plow broke the barrier in so many places that the desert makers fled with their line to the 100th meridian, determined to have and enjoy a desert. But hordes of farmers have gone far beyond and secured farms whose products equal those of Iowa or Illinois."
The desert was a reality; but agriculture has practically abolished it.
"The owners of the great herds of cattle are constantly bliged to retreat before the immense army of emigration from the Canadas, the Eastern and Middle States, and especially from Wisconsin, Illinois, Iowa, and Minnesota.

Coming with their families and their farming outfit, generally without previous inspection, they become squatters upon any lands not taken at the Land Office. As the land laws are impartial, who comes first is first served, and the herd owner, though a millionaire, as someare, is, much o his disgust, forced further out on the plains.

The reactions that follow are obvious. The ranchmen or herders insist that the country will never raise grain, is only fit for cattle and sheep, is a desert, without water for rrigation, and insufficient rain. It is by nature's law the herdsman's country, and the national law must be made to coincide. To bring these laws into effect is the animus of
the present land movement, and to prepare the way for it is acres covered, average depth assumed to be 4 feet, is 94,288 the object of the Public Land Commission sent out by the 664. Total, 143,551,864. last Congress, with Messrs. Hayden, Powell, and Clarence King in charge. These gentlemen have made their preliminary report, full of desert as usual. The two former are professional desert makers, and Clarence King is a member of the firm of Davis \& King, who have a herd of over 20,000 cattle in this desert-' the herdsman's paradise.' The port to Congress was, of course, a foregone conclusion.

The prize in this contest is the control of nearly 500,000 , 000 acres of land, which the herdsmen want to have divided into large tracts and leased at low rates for grazing; while their opponents, who last year carved 100,000 new farms out of the desert, are equally anxious that the present quartersection system shall be preserved.

The top soil of the larger part of the disputed region is identical with the loess of the Rhine Valley and of the most fertile parts of China, and lies from two to five feet deep, slightly colored with burnt or decayed vegetation. The subsoil is the same in composition but uncolored, showing its original light brownish-yellow hues. During the present year the pioneer farmers promise to exceed the work of last year in winning over a broad belt of the "desert" by covering the ground with crops and making way for a still further advance of rainfall.

THE MINING DEBRIS PROBLEM IN CALIFORNIA,
A recent report to the U. S. Chief of Engineers, by Lieu-tenant-Colonel G. H. Mendell, reviews at considerable length the changes wrought in the Sacramento River and its tributaries by placer and hydraulic mining, and proposes a system of dams for arresting the destruction of those streams and the progressive covering of their valleys with mining debris. Already the alluvial lands thus buried are estimated at 14,600 acres; and the river beds have been raised so high that they are constantly making new channels, causing heavy losses to farmers and the apprehensions of graver disasters in the future. The chief source of the trouble at present is hydraulic mining, placer mining having for the most become a thing of the past, and quartz mining adding but little to the debris. On this point Lieutenant-Colonel Mendell says:
" Although the hydraulic miner is now unquestionably responsible for the continual accretions that raise the levels of the beds of the watercourses year by year, yet the history of these deposits show that he is not responsible for all that is past. Hydraulic mining, in the effective form it now presents, is of quite modern growth. The earlier mining done from 1848 to 1860 was done by manual labor. Water was used to work out the gold, but was not used to excavate to any great extent. The water was not used under pressure. During these years, and especially during the first five or six years, counting from 1848, many thousands of men were employed in placer mining all through the gold districts. During all these years there was no great flood. The winter of 1861-62 was the occasion of the severest flood California has known since 1848. This flood found all the little gulches and the beds of larger streams stored with the material resulting from ten years' mining. This freshet brought the sand and gravel down in immense quantities. Whatever filling of the channel may have taken place previous to this time, it appears to have escaped notice. The winter of 1865, which gave high water, increased the evil. The placer mining had been nearly if not entirely exhausted by this time. Each successive flood has made things worse and worse."
The quantity of earth washed into the rivers by hydraulic mining is shown in the following estimates:

An inch of water running for 24 hours is taken to be 2,230 cubic feet. On the San Juan ridge, between the South and Middle Yuba, the State Engineer reports that in the year beginning November, 1878, 2,819,317 inches of water were used, while the quantity ascertained to have been used during the same time in the drainage basin of the Yuba is $5,893,962$ inches.
An inch of water will excavate at all rates from 1 to 7 or 8 cubic yards of earth. The Spring Valley mines at Cherokee have been excavated to the extent of $23,000,000$ cubic yard in 7 years, with an average quantity of 2,250 inches. Allowing 310 days to the year, the daily excavation for an inch of water is about 4 yards. The material here is very light, mostly sand, fine gravel, and clay in cliffs 400 feet high. The grades of the sluice is perhaps an average, being 1 foot in 24.
It would, perhaps, be an excessive allowance to apply this rate of excavation to the Yubas. It is, however, within the probable limits of truth to place the amount of material excavated in the basin of the Yuba at $21 / 2$ yards to the inch. This allowance makes they early amount placed in the stream and its tributaries at $14,000,000$ or $15,000,000$ cubic yards. On the other mining streams, the Feather, Bear, and American, there is no reliable information as to the amount excavated and deposited in the streams.
The attempt has been made to estimate the quantity of material in the Yuba and Bear rivers that has not yet reached the navigation lines, but which lies in the path of the fionds, and is, therefore, liable to be washed farther and farther in greater or less degree, by every freshet. These deposits are the result of past mining. If no more were added, they are yet capable of doing a great injury to the water courses below.
The amount lying in the bed of the main Yuba and its branches, above the Yuba mill, is $49,263,200$ cubic yards.

On Total, $143,551,864$.
On the River the estimate is $148,248,000$, of which $62,088,000$ lies in the plains, and $86,160,000$ cubic yards are in the bed of the stream above the foothills. This estimate
makes the total amount in the two streams to be $291,799,864$ makes the total amount in the two streams to be 291,799,864 cubic yards. It is not pretended that this estimate is accurate. It could not be so without boring the deposits in thousands of places. It is made from the best information available. Its use, in its imperfect accuracy, is to convey to
those who have not the opportunity of seeing it some conception of the enormous dimensions of the phenomenon.
The character of this deposit has already been defined. It is sand, gravel, " slickens" (fine sand and clay), and stones. The part that has reached the plains to this time is sand, gravel, and slickens. The layer of gravel and cobbles remain, as yet, in the foothills. There is some coarse gravel in the Yuba, four or five miles below the Yuba mills.
The Yuba having been filled 125 feet at Smartsville, and perhaps 15 feet at Marysville, the slope of the river between these points, a distance of 18 miles, has been increased 110 feet, which is about 6 feet per mile. This about doubles the original slope.
This tendency to increase the slope of this part of the river brings the gravel lower and lower. This is counteracted, to some extent, by the great breadth' of the stream in the plains at high water. Small gravel is, however, found now in small quantities within three or four miles of Marysville. With the increase of slope under the influence of freshets we must expect this gravel to reach first the Feather, and in due time the Sacramento. Once in either of these streams in considerable quantities, it cannot be expected to move under the influence of the current, or if it did, the effect would be to transfer it to a more objectionable place. In the Feather the pools that formerly alternated with ripples have been filled. It is estimated by the State Engineer Department that there is a deposit in the Feather River of $40,000,000$ cubic vards, and in the Sacramento below the mouth of the Feather something like $100,030,000$ cubic yaids.
Great as are the quantities of sand and gravel already washed into the streams, the remaining gold-bearing gravel ranges contain vastly more, which future mining is sure to displace. It thus becomes a matter of vital importance to arrest the flow of detritus into and upon the river valleys, which can be done only by storing it in places where it can do little harm. To this end storage reservoirs are proposed in the foothills of the Sierra Nevadas, to be formed by throwing dams, or more correctly rip-rap obstructions, across the streams into which the material is discharged from the mines. The stones required are found abundantly in the foothills, and they have only to be loosely piled together, the slopes of the mass to depend upon the size of the material.
The construction of dams of this sort is inexpensive, involving no skilled labor. It is estimated that in the first three dams of the Yuba River 1 cubic yard of stone will impound 242 cubic yards of detritus. For the other dams, six or more in number, 1 cubic yard of stone will impound about 580 yards. The estimated average cost of the first three dams is put at $\$ 1.50$ per yard; for the remaining dams $\$ 2.50$ a yard. For the lower dams the total average cost will be about three-fifths of a cent for each cubic yard of detritrus stored. For the upper dams, the bed of the stream having been brought to a slope of 10 feet to the mile, the expense of storage will be reduced to less than half a cent a
yard. No calculation has been made for the American or the Bear River but the cost for these is thought to be less, for the reason that the amount of mining on them is less than on the Yuba.

For the further protection of the Sacramento River the filling up of one of the low districts between the Featherand the American river by its conversion into a storage basin, is suggested. Some parts of this land are represented to lie as much as 20 feet below the banks. The average depth has been estimated at 12 feet. The area is said to be in the neighborhood of 60 square miles. Admitting these statements to be exact, the storage capacity of this basin, filled to the banks, will be about $700,000,000$ cubic yards.
It is believed to be practicable to turn the Feather and American rivers into this basin, and make them deposit therein the sands which they bring down. No objection is now seen to turning the American in this way. It is not navigable. The diversion could not fail to be beneficial to the Sacramento.
The Feather differs from the Sacramento in being a larger stream, and consequently likely to be more expensive to divert, and also in being navigable. It is now the outlet for a certain district of country and maintains a small com-
merce. merce.
It is recommended that a full investigation of this problem be made as soon as possible for future guidance.
The only alternative to these works for arresting the flow of mining debris is the entire cessation of hydraulic mining; and even with that heroic remedy it would still be necessary to restrain the many millions of cubic yards of detritus already lying in the path of freshets, which year by year bear down vast quantities of sand and gravel to the destruc tion of the lower valleys.

Sudden Death from Electric Shock.

A serious illustration of the risk attending electric shocks, even when apparently slight, occurred recently in New Haven, Conn. A gentleman was induced to try a shock
"just for fun," from the machine of an itinerant peddler of
electricity. He turned away, but had not gone far when he was seen to stagger and fall. He was picked up unconscious, and remained so until he died, two days after. The physi cians pronounced it a case of apoplexy, superinduced by the electric shock.

Those Dreadful Moles.

On a visit to the country, a few miles from the city, the other day, we crossed a lawn perforated with holes, and the entire surface so ridged by moles that in walking over it the foot sank deep into the sod at every step. We have never before known these pests to pursue their digging operations through the winter, in this region, and are led to inquire if it is owing to the open winter, or to an increase in the number of these rodents, which has caused the apparent destruc tion of a cherished lawn. It is discouraging enough to have to contend with these pestiferous diggers from May till November, but now to find them burrowing along the surface in midwinter is an annoyance only the best of natures can cheerfully endure.
Many agricultural writers contend that moles are beneficial to the farm and garden. They may be, but their usefulness is a subject we are not disposed to discuss at this time; but what we would like to know is, what better methods there are for producing mortality among them than the various kinds of traps and other appliances which have been described in these columns. Inventors will find mole annihilators a profitable field for their genius.

Artegian Well at the Firth Avenue Hotel, New York.

 For some time past a drill has been gradually working its way down toward the center of the earth from the basement of the Fifth Avenue Hotel, whose proprietors hope to reach a supply of fresh water for that establishment and avoid hav ing to pay the tax for croton. The well has already reached a depth of more than 1,000 feet, and is deepening at the rate of about 20 feet per day. A 1 ribune reporter called to see the drilling recently, and gives the following account:Passing through the wide entrance on Twenty-fourth street, where the marketing of the hotel is delivered, and picking his way through a labyrinth of wagons laden with dressed meats, fowls, vegetables, etc., the reporter found himself in front of a partially inclosed space in which the engine, steam pump, and drill were at work. The drill proper, as the engineer explained, consists of a steel pipe, $1 / 4$ inch in thickness, $21 / 2$ inches in diameter, and about 11 feet long, in the cutting end of which are set fifteen diamonds, ranging in size from one to three and one-half carats. These cut a circle down into the rock, of which the "core" goes nto the pipe-to be drawn up when the section is filled The drill has section after section screwed to it as the depth of the well increases; it is forced downward by hydraulic pressure, and is turned by the engine. Whenever the drill requires examination, or the removal of the core, each section must be unscrewed as it is brought up, and joined again, piece by piece, when the drill is to be lowered for further work. The diamonds become blunted after a certain amount of cutting, and must either be reset or replaced. The dura bility of the drill varies with the character of the rock which it penetrates. In this well the average wear has been 110 feet, though in one passage of 137 feet, through almost pure quartz, it had to be withdrawn and renewed for every 8 feet passed through. In sandstone the same drill would have endured through about 900 feet.
The core which has been taken from the drill shows the strata of the island; thus far it has been principally of granite and gneiss, with the stratum of quartz referred to At its present depth the rock is more broken and pebbly, and recently several narrow veins of sandstone have been encountered, so that the immediate prospect seems enuraging.
"There is water down there somewhere," said the engineer in charge, and we intend to keep on down until we reach it, no matter how far we must continue." He then referred to a well in Chicago in which the boring had been continued more than 2,000 feet, and the result had been gratifying.
A Large Block of Sandstone.
At the Dark Hollow stone quarry, near Bedford, O., one f the largest stones ever blasted in this country was " lifted" a week or two ago. The stone is 40 by 50 feet square and about 30 feet thick, and it required 185 slip wedges to make a successful blast. When cut up intopieces it will make nearly 300 car loads of building stone. Immense blocks of stone are frequently taken out of the quarries here which would make the stones in Solomon's Temple mere pebbles in comparison. Its weight was estimated to be about $6,000,000$ pounds.

Dr. Moubré, writing to the Gazette des Hopitaux, gives his experience of petroleum capsules in simple and chronic bronchitis. This balsamic had been brought before the Therapeutic Society by Dr. Blache a year ago, at the sugges tion of a Paris chemist, who named it Gabian oil, in order to prevent public prejuḍice. Each capsule contains 25 centigrammes of pure petroleum, the ordinary oil not being used, as it has to be distilled in contact with sulphuric acid to render it fit for lighting purposes. At the Hopital Beaujon, where these capsules have been freely ordered for chronic bronchitis, a rapid diminution of the secretion and fits of coughing were observed. In tuberculosis this medicine gave coughing were obser
encouraging results.

AMERICAN INDUSTRIES, No. 40.

to yield even a few pounds more of edible fat an enormous and valuable addition would be made to the

While investigating the origin of butter in the animal oleomargarine-bow it is made. and valuable addition would be made to the national food
supply. M. Mége began with a comparative study of beef oleomargarine-how it is made. , beef,however cooked for the leanest meat not only has more or less fat mechanically attached to it, but also inseparably mixed with the muscular fibers. To insure liberal fibers. To insure a libera ncorporation of fat with the lean, our beef is, in one sense, always overfattened. While the lean flesh is receiving the desired admixture of inter stitial fat, the animal is overcharged with it, stor ing up in various parts of its organism masses of clear fat largely in excess of the amount needed for cooking purposes. Until recently this extra fat has been lost to the food supply, being converted by ruđe processes into inedible though not necessari ly unwholesome tallow, to be used in soap making candle making, for lubri cants, and so on.
About a dozen years ago M. Mége, a French chemist, commissioned by his government to investi gate certain questions of domestic economy, was led to make a special study of beef fat to see whether fat thus exhibited was the
stored-up fat of the cow's
 stored-up fat of the cow's body. Hence, beef fat could be converted into butter-fat. But how? Physiology taught that the change was wrought in the living organism through the withdrawal of the larger part of the stearine by respiratory combustion; the secretion of the remaining oleomargarine by the milk glands, and its conversion into butyric oleomargarine in the udder under the influence of mammary pepsin.
In the process of making butter by the ordinary method, during the process of churning the cream, the finely divided butter-fat is united in masses containing, by mechanical admixture, from twelve to fourteen per cent of water or dilute buttermilk carrying a fractional percentage of cheese. The latter ingredient of butter contributes somewhat to its flavor, and at the same time furnishes a ferment which ultimately spoils the butter by making it rancid. It is purely an accidental ingredient, and one not at all desirable. And to some extent the same may be said of the soluble fats, which give to butter its variable though characteristic aroma. They are unstable compounds, decomposing readily, and furnishing the acrid producis which make so large a portion of the butter of the shops more or less unsavory and unwholesome
To solve the practical problem set him by the French authorities, namely, to convert the surplus fat of beeves into a savory food product, M. Mége sought to imitate the into a savory food product, M. Mege sought to imitate the
processes of natural butter making, that is: (1) To separate

| a larger portion of it might not be preserved for dietetic | fers from the oil of suet in containing a percentage of bu- |
| :--- | :--- | :--- |
| uses. The horned cattle of France exceeded twelve millions | tyric compounds which give to butter a part of its flavor, | n number, some millions of them being sent every year to and in lacking the large proportion of stearme which gives the shambles; and it was obvious that if each were made to suet its hardness and rough grain.

Fig. 8.-PACKING FOR THE RETAIL MARKET.

from the oily fat of suet the cellular tissue and excess of stearine; (2) to add to the oil a sufficient proportion of butyric compounds to give the necessary flavor; (3) to consolidate the butter-fat without grain, and to add, at the same time, the requisite proportion of water, salt, and coloring matter to make a compound substantially the same in composition, flavor, and appearance as butter churned from cream; all this without adding to the original fat anything dietetically objectionable, and without subjecting it to any process capable of impairing its wholesomeness.
The method developed by him in this commendable undertaking can best be appreciated by following it step by step through the extensive works of the Commercial Manufacturing Company of this city, at West 48th street, North River, where it is practiced on a large scale, with such improvements as experience has proved to be advantageous. Our artists' abundant illustrations will make any elaborate description of the several operations quite unnecessary.
At an early hour each morning the selected fat from the several abattoirs about the city begins to come in. The fat being received within a few hours from the time of killing, it is and must necessarily be fresh. After being weighed the fat is thrown piece by piece into large vats of tepid water; any pieces showing blood stains being thrown into a special vat for extra washing. After soaking for an hour in the tepid water, the fat is thoroughly washed with cold water and then covered with fresh cold water and left another hour to soak. It is then assorted. The pieces rich in oil are severed from the rest by a skillful cut, the assorter throwing the finer pieces into an adjoining tank for another washing, and the pieces less rich in oil into tubs to be transferred to the tallow factory. The fat for butter making is now carefully washed a third time, then elevated to the floor above for hashing and melting. The object of hashing is to disintegrate the fat, thoroughly breaking up the tissues so that the oil will separate therefrom at a low temperature. This is necessary to prevent the development of the rank tallowy flavor which results from the action of a heat, such as was heretofore used for the melting of tallow before the Mége discovery.
The hashing machine is simply a series of knife blades revolving in an iron cylinder; the fat being fed in at one end, and, after disintegration, forced out at the other end through a perforated iron plate. From the hashers the fat is conveyed to the melting tanks, a series of caldrons, jacketed and surrounded with water. The water is heated by steam, and in turn heats the fat, which is melted at a temperature of from 122° to $124^{\circ} \mathrm{Fah}$. When the fat is thor-
oughly melted the mechanical stirring is suspended, the paroughly melted the mechanical stirring is suspended, the par
ticles of membrane settle to the bottom, forming "scrap, and a thin film of white emulsion of water and oil forms on the top. The latter is removed and the clear yellow oil is drawn off into wooden tank cars, which are sent into the "seeding" or press room to rest while the oil is granulating by the crystallization of the stearine. The melting process occupies from two to three hours, and the granulation fully twelve times as long, the temperature of the room being kept at 85° Fah
The refined fat is next pressed, when the excess of crystallized stearine is removed by straining under pressure. The fat is now packed in cloths set in moulds (as shown in the foreground of Fig. 5) to form packages about the size of a common brick, the packages being placed on galvanized iron plates in the presses on the left. When a press is entirely filled the packages are subjected to a slowly increasing pressure, under which the fluid oil flows out until the stearine cakes are left dry and hard, when they are removed by an adroit flirt of the canvass wrapper, as shown in farther cor ner of the press room. The larger area of this room is occi pied by cans of crystallizing fat.
Two important steps in the butter making process hav thus been completed. The thoroughly washed suet has been deprived, first, of the inclosing cellular tissues, and next, of the excess of stearine. We have now a limpid amber-colored oil, perfectly sweet, and substantially the same as the oil of butter. When cooled this oil, or oleomargarine, is slightly yellow in tint, melts in the mouth like butter, and has an agreeable taste. At this stage it furnishes an excellent fat for culinary purposes, and may be kept for a long time without risk of becoming rancid. This makes it much preferable to ordinary butter for naval uses. In the works of the Commercial Manufacturing Company, the larger part of the butter oil formerly did not go beyond this stage, being drawn off from the press room into casks for exportation. At
ply the demand for butter.
To convert the butter oil into butter, it is necessary for To convert the butter oil into butter, it is necessary for it
to undergo the processes by which fat is converted first into cream and then into butter, in the udder of the cow and in the churn. For this purpose so much of the daily product of the Manufacturing Company as is needed for home consumption is forced through pipes to the churning room. In the cow's udder the fat which is to be converted into cream is divided into minute globules, in other words, emulsionized by the action of the mammary pepsin in the milk. To accomplish the same end in the factory the butter oil is churned with milk for about twenty minutes, when the oil is entirely and minutely broken up. At the same time a small quantity of the solution of annatto is added, as is commonly done in ordinary butter making, to heighten the color of the product. The churning ended, the mixture is withdrawn from the churn into a tub of pounded ice, as shown drawn from the churn into a tub of pounded ice, as shown
in Fig. 3. The sudden cooling causes the emulsionized oil to
solidify without crystallization. After remaining for two or three hours in contact with the ice, the butter-like oil
is worked over by hand and the pieces of ice removed The product has now the appearance of freshly churne butter, but it is deficient in the soluble butyric elements which give to creamery butter its delightful odorand flavor, and, it must be added, its tendency to become rancid with age. To supply these essential elements of savory tablebutter the product is churned a second time with nearly an equal weight of milk, during which process it takes up a sufficient quantity of milk to make it to all intents and purposes the same as dairy butter; not so delightfully fragrant, it is true, as the finer grades of creamery butter, but much more attractive to the senses of taste and smell than the average butter of the shops.
After the second churning the butter undergoes substantially the same operations of working over to press out the excess of milk, salting, packing, etc., as are practiced in our dairies; in these, as in the preceding operations, scrupulous cleanliness being a characteristic feature.
The works of the Commercial Manufacturing Company are three stories high, and cover an area of 22 city lotsabout $11 / 2$ acres. Our illustrations give some idea of the magnitude of the operations carried on in them. From an average of 100,000 pounds of fresh caul fat received daily, from 40,000 to 50,000 pounds of butter are produced-equivalent to the yield of nearly as many thousand milch cows. From 20 to 25 pounds of beef oil suitable for butter making is obtainable from each of the 12,000 beeves killed every week for the requirements of New York and the adjoining cities: an annual addition to the food supply of this port of not less than $12,000,000$ pounds of pure food, having a dietetic as well as a commercial value of from 15 to 20 cents a pound. The discovery runs high among the millions.
For those who are curious to know the comparative compositions of natural and artificial butter, the following analyses are appended. It is proper to add that owing to differ ences in cattle, in their food, and in the common processes of butter-making, natural butter is somewhat variable in composition. The figures given below, however, may be taken as a fair average.
analysis of natural and oleomargarine butter, by dr. h. a. motir.

		880,	88797
Insol. fats...		$\overline{100.000}$	100.000
	$\left\{\begin{array}{l}\text { Olein } \\ \text { Palmitin }\end{array}\right.$	23.824	24893
	Stearine.		
	${ }_{\substack{\text { aramin } \\ \text { Myristin } \\ \hline}}$	51	56.29
	Butyrin		
Sol. fats....		7432	1823
	Caprylin.....................		
Casein.		${ }_{5} 1192$	
		Trace.	Trace.
		88032	

The low percentage of the bracketed compounds in arti ficial butter may be regarded both as a defect and as a merit, inasmuch as they give to natural butter much of its savor and fragrance, and at the same time furnish the elements of its speedy spoiling. Lacking them, oleomargarine butter does not easily become rancid, and is, therefore, pleasanter and more wholesome when long kept.
Considerable misapprehension exists as yet in the public mind regarding the merits of this article as a food product, owing doubtless to its being comparatively new and to the misrepresentations which have been made regarding it. That there are two sides to this, as with most other questions, is evident; thus far only the interests of dairymen have been heard of. Producers of butter urge that oleomargarine injures their profits by preventing high prices for butter. If this be so, it argues good to consumers, whose interests must also be considered.
Another important benefit to consumers is that oleomargarine chiefly interferes with the sale of common grades of butter, to which it is far superior, and it is mainly dealers in this grade of butter who raise an outcry against the new product; although this outcry has been taken advantage of by parties outside of the dairy interest to curry favor with dairymen and serve their own selfish ends.
The complaints of farmers against oleomargarine are un founded in fact and are kept up only by appeals to unthinking prejudice. Oleomargarine is as much a farm product as beef or butter, and is as wholesome as either. It is as legitimate a commercial product as tallow or lard, which ight be as well proscribed as oleomargarine.
The only argument advanced by its opponents which has any validity is that it is sometimes sold as butter; this practice, however, has been greatly exaggerated; wholesale dealers sell it for what it is, and the number of retail dealers who do the same is daily increasing. It should of course be sold as oleomargarine, and the influence of the Commercial Manufacturing Company and of its sales agents, Messrs. Thurber Co., has been steadily exerted to that end. Apparently some of those who are loudest in their outcry against oleo-
margarine cannot comprehend that it is better to have it handled openly and above board by such firms, than by irresponsible and unscrupulous parties who might adopt the op posite course and encourage retail dealers to sell it as butter Oleomargarine is a fact in the commercial world and must be treated as such.

RECENT INVENTIONS.

Mr. Charles H. Dederer, of Jersey City, N. J., has paented an improvement in the manufacture of horn button. The object of this invention is to utilize a portion of the horn not heretofore used for buttons, to render the buttons more ornamental, to manufacture large horn buttons, and to produce them cheaply.
An improvement in plows, patented by Mr. George Watt, of Richmond, Va., relates to the manner of attaching to the standard of a plow the point and share, the mould board (which may be in two detachable parts), and the sole or wear ng piece of the land side. The attachment is effected by means of two bolts and by projections or knobs and hooks, or equivalent devices, which are cast solid with or riveted to the several parts.
An improvement in endless chain horse powers, patented by Mr. Harrison Y. Krauss, of Kraussdale, Pa. It con sists in the combination, with the shaft that carries the procket wheels and the shaft that carries the belt wheel, of set of gearing constructed to run the belt wheel in either direction.
Mr. John Baughman, of Indianapolis, Ind, has devised n improved belt tightener for drawing the ends of belts together for lacing or riveting. The invention consists in connecting a tightener with the belt by wedge-shaped cross bars, so that the tightener may be separated from belt by the blow of a hammer, and all screws, stirrups, etc., dispensed with.
Mr? Josephus Craft, of Worthington, Minn., has patented compound for preserving fresh fruit, composed of bisulphite of calcium and biborate of sodium dissolved in glyerine and sirup.
Mr. Aaron B. Hartman, of Onawa, Iowa, has patented an improved ironfence post which may be made of such ma terials as may be obtained in nearly every section of the country, and requires no transportation of waste material.
An improved end gate for wagons has been patented by Mr. Jesse S. Howey, of Lexington, Mich. The object of this invention is to facilitate the removal of the end board or gates and coupling rods of wagons.
An improved belt fastener, which is simple in construction and convenient and reliable, has been patented by Hoffman G. Redsecker and John T. Redsecker, of Athens, IIl. The invention consists in a belt fastener, having a curved plate, provided at its opposite ends with internally beveled loops and grooves, in combination with toothed fastening bars.
Machine and hand taps to be used in cutting internal or Nachine and hand taps to be used in cutting internal or
female screw threads, has been patented by Mr. William Kenworthy, of Brooklyn, N.Y. It consists in a tap having wo or more threaded sections, separated by clearance spaces, or spaces without threads, the object being to facili tate the escape of chips from the tap and from the threads being cut.
An improvement in traction engines or road steamers, in tended to draw loads on ordinary roads, and to be used for thrashing, corn shelling, wood sawing, and kindred pur purposes, has been patented by Mr. Oliver H. Burdett, o New Athens, O . The object of the invention is to squeeze he dirt between diagonal bars, and leave the face or outside of the wheels clean; also, to give elasticity to the axle rame; also, to hold the boiler securely in place on the engine, and to secure the steam cylinder to the under side of he boiler.
Mr. Henry C. Bowen, of New York, City, has patented method of determining the temperature of gas retorts and progress of distillation within the same, so as to enable the operator to control the decomposition and secure greater uniformity in the quality of the gas It consists in recording upon a piece of paper or other equivalent material the rich ness of the gas in carbon by condensing upon the paper, rom time to time, spots or surfaces caused by the impact of jet of the crude gas, which evidence by their depth of color or proportion of carbon, the activity of decomposition, and correlatively the heat of the retort, so that the latter may be controlled in temperature to secure uniformity in the product.

Macadamized roads were never intended for the metropois and for large towns, and in such places we must hope that their days are numbered. For constant and heavy raffic combined with high speed, as it occurs in all imporant towns, a macadamized road becomes a nuisance; it re quires everlasting repairs, and consequent stoppage of the raffic; it damages and wears out the better class of vehicles passing over it to an alarming extent; and is dirty, unwholesome, and unpleasant in all weathers.-(lnaugural Address of Joseph Bernays, delivered before the Society of Engineers.)

Transplanting the Tulip Tree.-The Rural Nero Yorker states, from trials, that young tulip trees may be easily and safely removed by cutting back the entire stem within two or three inches of the neck, leaving only neck and roots to be set out. Hundreds of trees thus treated mostly grew vigorously, sending up from near the roots new and straight stems.

A few years ago Mr. Gideon Bantz, of Frederick, Md. nvented what he terms a "fold-skin leather," which he has manufactured successfully during the past five years. The chiefadvantages of Mr. Bantz's leather consists in its waterproof and enduring qualities, which render it specially useul for hunters, fishermen, coachmen, and others, whose occupation exposes them to the weather.

The annexed NEW CAR COUPLING.
annexed engraving represents an improved car coup ler recently patented by Mr. Alexander Peck, of Farming dale, Ill. It is capable of automatically coupling cars of unequal heights, and is operative in such cases as commonly require a bent link, at the same time it is a safe and convenient coupler for cars of any kind. The couplers, A, are provided with arrow-shaped heads, whose interlocking faces are beveled, so that when coupled and drawing they cannot slip apart and become uncoupled so long as the cars keep the track. A chain, B, connects the coupler with the draw bar, and is surrounded by a spiral spring which holds the coupler in a hori zontal position except when en gaged by another coupler; it then yields sufficiently to admit of coup ling two cars of the same height or of different heights within wide limits. Each coupler is provided with a lever arrangement, by which it may be raised to uncouple it or to bring it into the proper position to be engaged by the opposing coupling, when the cars being coupied happen to be of exactly the same height.
The inventor states that this coup ling is safe and effective, and may be readily applied to ord̃inary cars without any material alteration and without the removal of their buf fers. Its construction is such that should any of the cars leave the track they immediately become uncoupled and leave the rest of the train. The advantages of this coupling will be readily understood by persons familiar with the requirements of railroad engineers.

AUTOMATIC HUB MORTISING MACHINE

The annexed engraving represents an automatic double chisel hub mortising machine, manufactured by the Defiance Machine Works, Defiance, Ohio. This machine is automatic in all its movements, it will make stagger mortises as well as straight, and will mortise hubs from three and one half inches up to thirteen inches in diameter. It is adapted to wide range of work, and is very strong and well built, and although the engraving makes it appear rather complicated it is in reality more simple than the ordinary single chisel machine.
The chisel bars in this machine are inclined at the proper angle, and are both driven by a single crank shaft. Their lower ends are run in slides so that all springing is avoided and the work is done with accuracy.
The hub is carried up to the chisels by a cam seen underneath the bed, and the auger which bores the hub previous to mortising is brought into action at right angles to the chisels.
The auger spindle will be seen in the engraving projecting through the standard just above the bed
This machine is no experiment, it having been in practical operation for more than ten years, giving the best of satisfaction. It is capable of beating $7,000 \frac{13}{16} \times 2 \frac{1}{4}$ mortises in ten hours without fatiguing the operain tor.
The manufacturers inform us that the double crank, chisel bars, auger-spindle, the pins, and the shafts are all made of steel. Everything about the machine is calculated for heav and continuous work.
Further information may be obtained from the manufacturers, whose address is given above.

Fire by Friction.

A company of South African savages, Zulus, are now amusing the people of Lon don, at the Westminster Aquarium. Among other performances they show how they ge fire without matches. Some straw being laid on the ground as a bed, two sticks were placed on it a few inches apart to form a support for the third stick, which was laid across them, having a deep notch cut in it to receive the blunt point of the drilling stick; this was wirled like a chocolate muller between the palms of the hands, and when the twirler's hands reached the bottom they were either dexterously shifted to the top again, or an other of the Africans squatting round took on and relieved the first. A spark was got in he charred dust in about five minutes, and was received with shouts and leaps of delight by the fire makers, one of whom, carefully hielding it in a handful of the straw, soon fanned it into a flame.

PECK'S CAR COUPLING.

A novel game apparatus, patented by Mr. William B. Cowan, of Guelph, Ontario, Canada, relates to games for parlor amusement: and it consists in combining with out side walls and wings, other walls with end wings, and an armed extension inclosing a space opposite a V-shaped projection. This invention cannot be clearly described without engravings.
An improved stock car has recently been patented by Mr. John L. Copp, of Rochester, N. H. The object of this invention is to furnish stock cars so constructed that the stock can be conveniently fed and watered without being removed from the car.
Mr. William Freelañd, of Brooklyn, N. Y., has patented a simple, durable, and safe device for securing carriage traces to the whiffletree, especially adapted to light harness having slotted leather traces, and it consists in a slotted pin fitted with a spring blocking piece, which is normally projected by the spring to retain the trace, and when depressed closes within the pin and fush with its surface.
Messrs. Joseph W. Cole and Coumbus M. Cole, of Warren county, Ky., have patented an improvement in the class of machines for extracting honey from the comb by the effect of centrifugal action. The inventors of this machine have aimed at the greatest simplicity, and have provided for the convenient insertion and removal of the comb, for supporting comb of any
creen. This is a simple and economical middlings purifier by which a large percentage of a high grade family flour may be obtained. The machine occupies small space, and may be run with less power than an ordinary grain separator.
Mr. William E. Woodruff, Jr., of Little Rock, Ark., has patented a machine for printing addresses on newspapers, pamphlets, wrappers, envelopes, etc., from movable, consec tive, and counected forms or printing surfaces.
Mr. Thomas Soden, of New York city, has lately patented

DOUBLE-CHISEL AUTOMATIC HUB MORTISING MACHINE.
y size without the aid of a supplemental device, and for eception of the extracted honey into cups or buckets, which are made detachable for the purpose of enabling them o be removed when filled and replaced by empty ones.
Mr. Enoch B. Norton, of Hartford, N. Y., has invented an apparatus for sprinkling Paris green liquid on plants attacked by insects, the object whereof is to enable the liquid to be carried conveviently in a suitable vessel, and to permit the quantity of liquid delivered and the direction in which it is sprinkled to be promptly regulated by the operator.
An improved rocking chair, which is so constructed that it may be adjusted for use as a reclining chair, and may be compactly folded for storage and transportation, has been patented by Mr. Chauncey D. Hyde, of Pitcher, N. Y.

Mr. Cyrus Norwood, of Winters, Cal., has patented an improved electric or galvanic belt to be worn upon the person for the purpose of allaying pain and preventing and curing various forms of disease
Mr. Jordan H. Mitchell, of Eufaula, Ala., has patented an improved buckle for connect ing the ends of bale ties or bands; and the object of the invention is to furnish a buckle which shall hold the tie securely and can be used without the necessity of perforating or cutting the tie or band
An improved end gate for wagons has been patented by Mr. George Jontz, of Wyanet, Ill. The object of this invention is to furnish end boards and top boxes for wagon bodies so constructed that the end board may be adjusted for use as a shoveling board and a dumping board.

Mr. Richard Young, of Brooklyn, N. Y., has invented a tool for ornamenting and finishing the surface of leather, which consists in a creaser or marker, such as is used for lining, and a roller for embossing and printing, the creaser being stationary, while the roller is fitted to revolve, so that in use a line or crease and a printed impression are produced at the same time. The tool is used in connection with a drum, hand jigger, or other machine of usual character for finishing leather.

An improved saddletree fork has recently been patented by Mr. Gustav A. Mittendorf, of New Braunfels, Texas. The object of the invention is to strengthen the iron fork by means of a bent wooden part.
Mr. Joseph Kintz, of West Meriden, Conn. has patented an improved drop handle for drawers, etc. The object of the invention is to prevent the knob from swinging in any but a vertical plane to and from the drawer, and the lapped portion from straightening out.

A lamp base, made of glass or porcelain, provided with two rings adapted to fit on the body of the base, and having two handles, each of which is attached to both of the rings, has been patented by Mr. Joseph Kintz, of West Meriden, Conn.

Mr. George W. Bolton, of Fredericksburg, Iowa, has patented a milk can provided with simple and efficient devices for cooling and gauging the milk and for removing the cream.

A NEW WRITING INSTRUMENT

No one using an ordinary pen constantly, or even for any considerable portion of the time, can fail to feel the want of something better adapted to ordinary writiag than steel or gold pens. The constant dipping, which not only takes time, but is fatiguing; the liability to blotting, and in the case of steel pens, their failure soon after they get into good condition for use, are aH serious objections which existed from the first days of pens and ink until the invention of the complete little instrument shown in the annexed engravings. Fig. 1 shows the MacKinnon fountain pen in actual use; Fig. 2 is a sectional view showing the internal construction; and Fig. 3 shows the pen about to be closed to be carried in the be closed to be carried in the pocket or laid upon the desk. In general outline it re-|ment, to prepare a steak of medium quality so that it may sembles many of the penboldere or pencils now in use. be served up as tender and juicy as the best cuts. This can Tise handle is a tube whicil holds ordinary writing or not be done by pounding it with rough or serrated hamcopying ink. The writitg point is conical and termi- mers, but it may be accomplished by making innumerable nates in a graceful tube of gold, tipped with iridium, polished smooth as glass. Through a fine aperture drilled through the iridium on the point, the ink flows at the slightest touch on any surface, and it is so constructed that as soon as the pressure of writing is removed, the ink instantly ceases to flow. With one filling this pen is capable of writing from seventy to eighty pages. of foolscap. It can never blot, and when not in use it is closed perfectly tight, so that the ink cannot thicken ordry. Any good ink may be used, and the ink reservoir is readily filled by means of a small glass filler accompanying each pen. The MacKinnon pen is not only of the great est service to those who write continuously, but it is a very necessary article for can vassers and others who desire to make a permanent record, and to whom it is a serious incon. venience to carry the ordinary writing materials.
This pen has several advan tages over its competitors, the most important of whis is operated by a weight instead of improved valve, which more reliable and rendering it less likely to get out of order The writing point is a circle of iridium, one of the hardest of substances known, and is perforated with a fine tapering hole, through which the ink flows in writing. The patent for perforating iridium is controlled by the MacKinnon Pen Company, 20 Broadway, New York, and is applied exclusively to their make of pens.
These pens have been in use in the Scientific American office for over a year, and have given good satisfaction.

NEW STEAK-TENDERING MALLET.

The engraving represents an implement that will be ap preciated by our readers, all of whom, without doubt, are
 cooking is often justly blamed for a poor dish. This is York city.

THE MACKINNON PEN OR FLUID PENCIL.

incisions with a sharp instrument, which will sever the fibers without affecting the general appearance of the steak. Such an instrument is shown in the engraving, Fig. 1 being a perspective view, and Fig. 2 a central section showing the deails of construction.
Thirty-six chisel-edged steel teeth or knives are inserted in the head, and a perforated plate sliding on the knives and forced outward by a spiral spring serves as a cleaner, preventing the meat from adhering to the knives as the blow is given.
A steak treated with this instrument is rendered very ten der and may be quickly cooked. A round or a shoulder may be made as tender as a porterhouse steak. It is stated that its effect on a veal cutlet is remarkable. We under stand that this useful invention is meeting with a large and increasing sale.
Further information may be obtained by addressing the patentee, Mr. C. T. Stephens, Ithaca, N. Y.

MECHANICAL INVENTIONS.

An improved spoke tenoning machine, patented by Mr. Tarrence Connor, of Leavenworth, Ind., is adapted for at tachment to the spokes, and fitted with cutting devices for reducing the ends of the spokes to the required size for en tering the mortises of the fellies. It is simple, light, and convenient.
Mr. Joshua W. Jones, of Harrisburg, Pa, has patented improved attachments for hydraulic presses, so constructed as to close the outlet valve automatically when the follower has been run back to a fixed point, and to sound an lower has been run back to a fixed point, and to
alarm when the desired pressure has been attained.
An improved harness pipe loop attachment for wax thread sewing machines, has been patented by Mr. David M. Lewis, of Memphis, Tenn. .The sewing of pipe loops by hand is slow and tedious work, and greatly increases the cost of the harness; but with this attachment it is said that such work will cost less and be stronger. It can be used on lower grades of harness, and will improve their looks and increase their market value.
An improved feed and gig mechanism for the carriage of circular saw mills has been patented by Mr. James H. Watson, of Tawas City, Mich. The invention consists in a combination of mechanism which cannot be clearly described without engravings.
An apparatus for illustrating the rules of perspective drawing, so that a teacher by its use can prove to his pupils
lovers of wholesome and nutritious food. The palatable- the correctness of the diagrams made in accordance with ness of food lies not altogether in the cooking although the rules, has been patented by Mr. Frank O'Ryan, of New especially true of steaks. Good cookery can never make a $\begin{gathered}\text { Mr. Isaac D. Beach, Jr., of Millersville, Mo., has lately } \\ \text { tough steak tender, but it is possible, by the proper treat- }\end{gathered}$ bolts so that they cannot be jarred or shaken off.
Messrs. John Henderson, Jeremiah H. Henderson, and Justin Notson, of Leon, Iowa, have patented a churn by means of which large and small quantities of butter can be produced, as may be desired, and which is easily operated and is simple in its parts. It consists of the arrangement of two dashers, which are operated by means of two disks provided with pins that two disks provided with pins that
take in the slotted shafts of the take in the slotted shafts of the dashers, these disks being fastened to the end of a horizon-
tal shaft, which is rotated by means of a crank and bevel gearing.
Mr. Angus McKellar, of Fort Douglas, Utah Ter., has patented a simple device for drawing up the metallic skeins on an axle and holding them tightly in place as they become loose from the shrinkage of the wooden axle.

NEW OATMEAL MACHINE.
The mill shown in the an nexed engraving is designed for granulating or cutting grain, such as oats, wheat, or barley. It is the invention of Mr. William Eberhard, of Akron, O., and is the outcome of practical experience in oatmeal milling. It is simple and efficient, and is giving good satisfaction where it has been introduced. The oats, which are fed in through the hopper, are carried outward by centrifugal force in the grooves in the rotating plate shown in detail at A, and are brought against a series of stationary knives arranged around the edge of the rotating disk. The outward motion of the grain is insured mainly by the radial grooves in the plate, A, but any tendency
to clog is prevented by a
series of spiral grooves in the cap, shown in detail at B.
The knives can be remored from the machine while it is in motion. The plates which carry the grain are made of chilled iron nicely polished. The machine is capable of being adjusted to different kinds of grain by changing these plates, three sizes of which are furnished with each these plates, thrce sizes of which are furnished with each
machine. The inventor informs us that an eight inch plate machine. The inventor informs us that an eight inch plate
machine will cut from twenty to thirty barrels of meal per day.
This machine is built on correct principles and seems very simple and practical.
Further information will be furnished by the inventor, who may be addressed as above.

EBERHARD'S OATMEAL MACHINE.

BOILER PLATE TESTING MACHINE.

The engraving represents a testing machine recently built by Messrs. E. \& T. Fairbanks \& Co. for the United States T. Fairbanks \& Co., whose office is at 311 Broadway, New Government, and placed in the office of the U. S. Steamboat York.
Inspectors in the Post Office building in New York city.
It is designed for testing the tensile strength of boiler iron, and has a capacity of $75,000 \mathrm{lb}$.

Assyrian Vases.

The weighing apparatus is a regular platform scale, and may be tested with standard weights to prove its accuracy the same as the ordinary platform scale. The strain is ap plied to the specimen of boiler plate by means of two screws and worm gears worked by a large gear wheel and a small pinion. By this arrangement of gears a man can easily apply $75,000 \mathrm{lb}$. strain with one hand.
The main beam, A, of the scale carries a poise or weight B, which moves on rollers and may be run out to $75,000 \mathrm{lb}$. The light beam, C , has a finer graduation on it running up to $6,000 \mathrm{lb}$. The poise, D , on this beam, is moved automatical ly by an arrangement of clockwork E , attached to the end of the beam.
The platform of the scale, K , rests on four knife edges in the main levers, in the main levers,
F , one at each corF , one at each cor-
ner of the scale. ner of the scale.
These levers connect with the double lever, G, through which the strain is transmitted to the lever, H, and then through the lever, J, to the steelyard rod of the scale and by that to the beam, A.

Thetwo columins, L L , with the crosshead and upper head and upper
clamp, M , rest on clamp, M, rest on
the platform of the the platform of the
scale. The lower scale. The lower
clamp, N , is secured to the crosshead, P, which is worked up or down by the two screws, $\mathrm{R} R$, turned by $R \mathrm{R}$, turned by
worm gears S S, on worm gears S S, on
their lower ends, which receive their motion from worms on the shaft carrying the gear wheel, T.

To make a test, the specimen, V, of iron to be tested is secured in the clamps, $\mathbf{M} \mathrm{N}$, by steel wedges, W W. When this is done the specimen is the only connection between the screws and gearing and the platform of the scale.
To begin the test the pinion, U , is shipped out of gear, and the gearing and screws are turned by the handle, Y, until a slight strain is applied to the specimen, when the pinion, σ, is shipped into gear. As the strain on the specimen increases specimen increases
the beam of the scale rises, causing the automatic poise, D, to move along on the beam until it reaches the point equal to the strain applied to the specimen, when the beam drops and the poise instantly.stops. This operation is continued until the specimen is broken, when the point at which the poise stands will indicate the exact number of pounds which were required to break the specimen.
We are informed that the Government has ordered two more of these machines, which are now on their way to Cincinnati and San Francisco.
This machine is believed to possess many advantages over other testing machines; its accuracy can be determined by scale, and by the use of screws and worm gears, a steady strain can be applied and maintained for any length of time.
Machines on the same general principle as the one here
actual test, the same as would be applied to any platform

ously noticed on remains of Etruscan painted pottery of such early date, for the two vases may be confidently attributed to the eighth or the seventh century B.C.

The Bulwer Standard Mill.

This magnificent quartz mill consists of thirty stamps, and is built after the most approved plan. The ore will be run from the tunnel direct to the ore house, into two large bins, where it will be broken and screened, falling into the main body of the ore house that is connected with the batteries by automatic feeders, self-adjustable. These feeders are a model of mechanical ingenuity and well worth a visit. There are two distinct batteries of fifteen stamps, parallei with each other, working from pulleys on the same shaft placed on a center shaft between the batteries. The capacity of the batteries is about one hundred tons a day, de-
pending on the character of the rock. The slum tanks are ranged on each side of the amalgamating room and are supplied with centrifugal pumps, and hose to charge the pans. The pulp is carried from the batteries to the slum tanks in sluice boxes, with openings over each tank to fill them, requiring but one man on each side to fill the tanks and charge the pans. The pans are set parallel with each line of slum tanks, and are furnished with a patent steam quicksilver pump. This pump saves handling of the quicksilver when cleaning up or charging the pans. Between the lines of pans is one open chassageway, giving plenty of room for working purposes. The engine that drives this mass of machinery is a 225 horse power poppet valve, set in a parlor adjoining the amalgamating room. It works as smoothly and easily as a noiseless sewing machine, and is a splendid piece of mech:nnism, fitted up with the latest improvements, and handles the mill machinery with ease. The boiler room adjoining the adjoining the en gine room is large
and spacious, with two sets of boilers, the steam drums as large as boilers for ordinary use. One of the boiler fur. naces is built after naces is built after the old style, the
other set is fitted up other set is fitted up
with Box's patent fuel-saving furnace. It is claimed to save one eighth of the wood to do the same work as the old style of furnace. They are in use at the Justice mine, Gold Hill, and have been for the past eighteen months, and no doubt its competitor by its side will soon be replaced by the Box patent. The arrangement of this furnace, or its novelty in patent parlance, is the partition fire wall that extends close to the boilers, an arched opening being left on a level with the grate barsfor draught, and extending back to an overhanging wall. The grate bars are set at an angle, and the coals from the furnace form a bed between the partition and the rear hanging wall; the draught carries the flames, gases, etc., over this bed of coals, a great heat being generated, igniting the gases and utilizing the heat for steam purposes; that with the old tyle of furnace style of furnace passed away and up the smoke stack without igniting.
It strikes us as being a valuable invention, and one that must make a great saving in great saving in vood, and to mills or mines using large quantities this should be a material
object. Bodie can now boast of one hundred and fourteen stamps in active operation, and in a few days ten more at the Spaulding mill will be started, when one hundred and twenty-four stamps will be crushing away day and night. This will more than double the former yield of bullion from Bodie.-Bodie Neros.

Dr. Auerbach, writing to the Chemiker-Zeitung, mentions as a curious fact that during an entire summer he observed water beetles-probably Gyrinus natator-living in tanks of a saturated solution of Glauber salt. When alarmed the beetles took shelter under the crystals, just as they do in ordinary circumstances under water plants. A little of the liquid so harmless to insects, having found its way by leakage into an adjoining river, proved fatal to multitudes of fish.

THE ELEPHANT CALF AND ITS MOTHER
We present herewith a portrait of the elephant calf, whose birth in Philadelphia was noticed a few weeks ago. The event, from its rarity, has naturally awakened considerable scientific interest. It has afforded for the examination of our naturalists a full term placenta, and has also furnished evidence confirming the reports of trustworthy observers touching the period of gestation in the elephant (about twenty and a half months), the mode of suckling by the calf, etc. Contrary to newspaper reports the breeding of elephants in captivity is no novelty in itself; though from the limited number of elephants known in this country until within a few years, and the unfavorable conditions under which these few have been kept, it is not at all surprising that this birth should be the first on record here.
Heretofore the elephant has been classed as belonging to the pachydermata, but Professor Henry C. Chapman, Professor of Physiology in Jefferson Medical College, in a paper on the placenta of the mother, Hebe, is disposed to contro-
his return with several assistants they found Hebe rolling the little one over and over on the ground, and yelling violently.
Fearing that, in her excitement, she might kill her young one, the men endeavored to take it from her, but at that she seized it with her trunk, and tossed it across the ring, where it fell under a heavy railing surrounding a large stove. In an instant she had followed it. Finding the railing in her way she struck it down and tore it into splinters.
It is now believed that she had become alarmed by the roaring of the lions and tigers, and was trying to get it over to where the other elephants were chained and so secure their protection.
After a little time the keepers managed to calm the mother, and she allowed herself to be led back and rechained, but not for an instant would she permit the little one to go beyond the reach of her trunk. The calf was not at all injured by her rough usage.
all elephants do for the first three or four years of their lives. In its intercourse with human beings it is disposed to be friendly and inquisitive, poking its little trunk into the pockets and up the sleeves of those whom the mother allows to approach it. The mother is, however, extremely jealous of strangers, and will not allow some old comrades and pets in the shape of a pair of coach dogs to come too near. The other elephants in the menagerie, being of her own kind, she regards as reliable friends, and seems only flattered by the caresses they bestow upon her little one.

Hybrid Fish.

At the meeting of the American Fish Cultural Association in this city, March 30, Mr. R. B. Roosevelt read a paper on bybrids, in which he said that, since the creation of the fish hatchery commission several attempts have been made to cross varieties of fish, and with success in the following varieties: Salmon trout with white fish; salmon trout with brook trout; brook trout with fresh water herring, with California salmon,

THE ELEPHANT CALF AND ITS MOTHER.
vert this theory and classify it with the rodents. He grotesquely characterizesit as a "great big mouse." What are his grounds for this new classification remains to be seen on the publication of his paper, of which we have as yet only a meager report in the Philadelphia Press. The heart of the elephant is well known to resemble that of the rodent, and the bones to correspond with those of the human being, which the elephant resembles in other particulars.

The calf, of which we give an engraving, is, as previously noted, the offspring of two Ceylon elephants said to have been imported by Barnum in 1865. Mandrie, the father, is 26 years old and weighs about $8,000 \mathrm{lb}$. Hebe, the mother, is 23 years old and weighs $7,020 \mathrm{lb}$. From the time of their landing in this country they have shown a special attachment for each other. The female is noted for her uniform docility and gentleness, and the father for his beauty of form.

Mandrie and all the other elephants belonging to the circus seemed fully aware of the condition of the mother for months before her delivery; and afterwards both calf and father seemed to recognize the relationship existing between them, manifesting the same by various unmistakable signs.
The birth of the calf was the occasion of much excitement among the other members of the herd, whose trumpeting disturbed the lions and tigers in the adjoining house, causing them to roar in chorus.
Hebe became greatly alarmed, and, with a huge effort, parted both the great chains to which her hind feet were fastened to the stakes. The watchman fled for his life. On

For some time the mother continued so nervous and rest- and with the California mountain trout; shad with striped less as to prevent the young one from suckling, in which dilemma the keeper hit on the device of constructing a kind of huge nursing bottle out of a yard of rubber tube and a funnel. One end of the tube was inserted into the mouth of the calf, while to the other end was attached the funnel, into which the mother was milked. The calf now suckles in the natural way, and not with the trunk as was supposed by Buffon and Aristotle. The udder, which is situated be tween the two fore legs, consists of two lobes with one teat each, like the breast of a woman. The teats project outwards, making them more accessible to the calf, which, as it sucks, presses the udder with its little trunk, while the mother slightly advances, and raises the leg on the side in use. Sometimes the mother will wind her trunk between the two fore legs towards her edder, either for the purpose of pressing it as women do with their breast, or in order to caress her calf. The little one suckles frequently, and seems to take great pleasure in walking under the mother's body or in sprawling on its side among its parent's huge feet
In appearance the calf is very like the mother, in shape and color, and movement, but the eyes seem larger in proportion, and are rendered conspicuous by a line of pinkish hue round the lids. It has also a thin mat of black hair on the top of its head much resembling that on some human babies. It has, too, a decidedly infantile expression, remotely suggestive of a sucking pig.

When born it weighed $2131 / 2 \mathrm{lb}$. and stıod 35 inches high. It has not been weighed recently, but is growing rapidly, as
bass and with herring. Of these crosses there are the young now in the hatching-house, of the salmon trout brook trout, brook trout California salmon, and brook trout California brook trout. It is observable of all hybrids that they are usually more shy and wild than either of their parents, and that in appearance they generally favor their larger parent. The cross between the brook trout and California salmon and the salmon trout and brook trout bid fair to be fine fish. Those now in the batchery are eight inches long.
The cross of the shad and herring, though not made under the most favorable circumstances, has done well. The young have thriven, and have been caught in the rocky shal lows of the Hudson. They probably are not migratory, and can be taken with rod and line. The cross between the shad and striped bass has not been heard from. As some of these were hatched in the autumn of 1876, and quite a large nuns ber in the succeeding year, it was hoped that some of them would have been taken, full grown, before this. The final outgrowth of this experiment is left entirely in the dark. There can be no doubt, however, of the cross being made.
It was hardly to be expected that so wonderful a dis covery as the creation of a new species could be made with out trouble, and we should rather be surprised at the success already achieved in hatching the young of the cross at all. The number of combinations possible is very large, and the pains and care expended in improving plants, vegetables, anc land animals may yet succeed with fish.

The Eye Parasite-Dracunculus loa.
Doctor H. M. Bachelor, of the American Presbyterian Mission at Gaboon, on the West Coast of Africa, communicates to the Medical Record the following interesting account of the eye parasite known as Dracunculus loa and Filaria loa.
A native young man presented himself, complaining of a "sick eye." I examined the organ, says the doctor, and discovered a white worm coiled up. Its situation was on the iris, beneath the sclera; but it was not at all confined, being capable of moving about, and even obstructing vision when in front of the pupil. It was constantly in motion. The eye itself was bloodshot and inflamed, while the lachrymal
discharge was profuse. I succeeded in extricating it in the disclarge was profuse. I succeeded in extricating it in the following manner: Holding the eyelids firmly open, the point of the small blade of an eye knife was inserted between the sclera and iris, care being taken that one end of the worm was between the blade and sclera. The handle of the knife was then depressed so that the point would, in being carefully withdrawn, cause the end of the parasite to protrude through the opening in the sclera. This accom-
plished, it was easily seized and removed with a pair of plished, it was easily seiz
The Filaria loa is, I think, quite rare, or at least is seldom taken out entire. If I am rightly informed, only one specimen has reached the United States; but the French are conversant with it. It generally selects the lower eyelid for its first appearance, though it is often found in the pinguis. If undisturbed it causes intense itching and stinging pain in the part occupied by it, which symptoms disappear in two or three days, caused, no doubt, by its death. It is not considered dangerous or even serious. The specimen sent to America by one of the missionaries here was not entire, having been torn in the operation of extraction. The one in my possession is, I think, complete.
The writer addsthat he has the specimen in a fifteen per cent solution of alcohol, and will be glad to forward it for examination to any oculist who is sufficiently interested to study it thoroughly.

The Ajax.

The turret ship Ajax was successfully launched from Pembroke Dockyard in March last, in the presence of a vast number of spectators. She was commenced four years ago, and is one of the heaviest war ships in the world, carrying four 38 -ton guns in her turrets, and two 6 -inch guns on her superstructure decks. The total weight of the armor plates, including the armor to the turrets and thick protective deck plating, is about 2,418 tons. The armor plates in the turrets are 16 inches thick in wake of ports, and 14 inches elsewhere. This armor will be compound steel-faced armor, which has recently been found by experimental tests, by being fired atto possess a very much more effectual resistance to shot and shell than the armor plates which have been used up to the present time. The Ajax will also have an armor shield, composed of armor plates 12 inches thick, situated in the chart house or conning tower, which is built in an elevated position at the fore end of the citadel, in a line with the bridge, communicating between fore and aft superstructure decks. This shield is to afford protection to the captain of the ship, who will conduct the whole working of the ship from this look-out, by means of telegraphs and voice tubes. He will also be able to steer the ship himself, by means of steam, although the steam-steering engine itself is right away aft, below the armor deck. He will also give his commands to the captains of the turrets, and fire the guns by electric wires. In fact, nothing will be done in any part of the ship, when in action, except under the direct command of the captain in this tower. The Ajax was designed by the Council of Construction at the Admiralty.

Prison Labor.

About a year ago the New York State Assembly called upon the Superintendent of the State Prisons, Mr. Louis D. Pilsbury, to-examine and report upon the contract system of prison labor. Mr. Pilsbury's report is in the main favorable to the system, his experience and study leading to the following conclusions, namely, that every prisoner who is able to do so should be required to labor, and that this labor, for moral as well as for economic reasons, should be productive; all systems of non-productive labor, merely for punishment, having been abandoned by civilized governments, because it is degrading and mischievous in its effects upon prisoners and unjust to the State. Such labor lies at the foundation of every successful system of reformation. Society has a right to demand it as a partial restitution for the depredations of criminals, and for the cost of their arrest, trial, and maintenance in prison.
That no system of prison labor which human ingenuity has yet been able to devise is free from objections; but that, so long as the people of this State demand that the prisons shall be self-sustaining, the present contract system is, in Mr. Pilsbury's opinion, to be preferred, because-

1. It produces the best financial results.
2. It does not interfere with outside mechanical industries any more than any other system of productive labor that has yet been devised.
3. It gives to the prisoners some knowledge of a handicraft and enforces babits of industry, without which they are almost sure to return to a criminal career, and with which they are enabled to, and in many instances do, lead honest and useful lives upon their discharge.
4. It is not injurious to health, as is shown by the small
number of hospital patients in our State prisons, and by mortality lists that compare favorably with those of com munities in general outside of the prisons. Our convicts generally leave prison in better mental and physical health than when received.
The cost of maintaining the prisons of this State for the last fiscal year was $\$ 20,374.15$; in 1876 the cost was $\$ 605$, 040.53. It is not claimed that these results are due entirely to the contract system; but under any other system they would have been impossible. The charge that contract convict labor materially interferes with free labor has not been proved. Compared with the total productions of the country the products of the prisons are insignificant.
There are 23,524 convicts in all the prisons of the United States employed at productive skilled labor, who compete, according to the census of 1870 , with $\mathbf{6 6 6 , 6 2 5}$ workmen (less than four per cent) employed at the same industries in the same States, and with 269,240 workmen (less than two per cent in the whole United States engaged in the same indusries as are carried on at the prisons. The percentage would be still less if the increase in the number of mechanics and laborers since 1870 were known.
The complaint that prison labor contractors injure other manufacturers and laborers by underselling the market, Mr . Pilsbury thinks unfounded in fact. And the impression that the contract system interferes with the discipline of the prisons is also pronounced erroneous.

Some Facts about New Zealand.

Mr. G. W. Griffin, U. S. Consul to New Zealand, reports notable increase in the manufacturing interests of the col ny, and a growing trade with this country. He thinks the furniture made in New Zealand the most beautiful he has ever seen. It is made of the mottled kauri wood, and is artistically designed. New Zealand produces the finest wood in the world, and manufactures some of it. The chief imports from this country are hardware, edge tools, and agricultural implemenis; tobacco, canned fruits, and wooden ware, including wagons and carriages. The inhabitants have a partiality for American watches, but do not take to American whisky. The only article sent from New Zealand to this country is kauri gum, which is largely used in the manufacture of varnish. One firm, which ships direct to the United States, sends four or five times a year cargoes worth $\$ 100,000$ each. The gum is very transparent; one can see through a block of it a foot in thickness. It has the appearance of amber, and is found about the roots of the kauri trees. The natives make very artistic figures of their gods with this gum, carving heads and busts of it larger than life.

Is there a Central Sun?

It is singular, remarks Mr. R. A..Proctor in the Newcastle Weekly Chronicle, how strongly some errors retain their hold on men's minds. When Mädler announced his belief that Alcyone, the chief star of the Pleiades, is the central star of the universe, men's minds were attracted by the thought that the steller system, like the solar system, revolves around a center. Yet astronomers knew perfectly well that the evidence on which Mädler based his theory was exceedingly feeble. Sir John Herschel also pointed out how unlikely it is that the center of the Milky Way, if such a center there really is, can lie so far away from the mean plane of the Milky Way as the Pleiades. I have shown since that the only piece of positive evidence advanced by Mädler, the drift of the stars of the constellation Taurus in one direction, is in reality no evidence at all, for the simple reason that a similar drift can be recognized in other regions of the steller heavens. I believe that no astronomer of repute would now venture to maintain the theory that Alcyone is the central sun of the stellar system, while scarce any (if any) would maintain that there probably is a central sun at all. Yet I find that not only is the belief still widely spread among the general public that Alcyone is the central sun, but that this theory excites far more interest than most of the real discoveries, interesting though they are, which have Indianapolis I found myself called century. When 1 reached Indianapolis I found myself called on to decide, not whether
the theory is true or not, but whether it is due to Bessel or Mädler. My statement that the origin of the theory was scarcely worth considering, since the theory itself was long since exploded, was received in solemn silence, as if my words were scarcely credited. And when 1 had endeavored, and I think succeeded, in showing good reasons for rejecting the theory, I could still feel that most of my audience would a good deal rather have seen the theory established than overthrown. Such is the dominion which error some times achieves oven men's minds.

The Great Seuthern Comet.

A private letter from Mr. Gill, H. M. Astronomer at the Cape, furnishes some particulars of his observations of the great comet up to the evening of February 9. Table Mountain interfering at first with the view from the Royal Obser vatory, Mr. Gill proceeded to Seapoint, on the west side of the mountain, where, from the garden of Mr. H. Solomon, in which Sir Thomas Maclear observed Donati's comet in 1858, he sketched the position of the tail among the stars on everal evenings before the nucleus had withdrawn sufficiently from the sun's place to be visible. The nucleus wa through cloud; Mr. Gill thought it might have been visible
ed it very difficult to say where the tail ended. He describes it as "a very poor affair, a faint nebulous thing not at all worthy of so fine a tail." Attempts were made to fix its position at the Royal Observatory on February 9, but only a glimpse with an opera-glass through cloud was obtained. The nucleus was " a little N. and E. of Theta Sculptoris;" in a tracing accompanying the letter in question, however, the nucleus is shown a little south and east of the star, and midway between two stars, which from Gould's "Uranometria Argentina,'" appear to be Lacaille 6 and 34, so that the place referred to the epoch of the "Uranometria," 1875.0 would be in about right ascension $2^{\circ} 20^{\prime}$ with $37^{\circ} 50^{\prime}$ south declination, which is far from the position given by the elements telegraphed from Rio de Janeıro (to which reference was made last week) whether the heliocentric motion be assumed direct or retrograde; probably the orbit has been vitiated in transmission. On February 6 the tail appears to have been traceable nearly to Canopus.-Nature.

A Pleasant Surprise.

"L. T. Edleblute, of Cincinnati, upon returning from Leadville, has found a bonanza awaiting him in the shape of an offer of $\$ 50,000$ for the right to manufacture his patent metal vehicle hub. The hub is so constructed that the butts of the spokes rest on rubber, giving a large degree of elasticity, and at the same time preventing all rattling, rumbling, and tremblings. It can be readily taken apart for repairs." In sending the above clipping from the Cincinnati Commercial Advertiser of March 14, Mr. Edleblute adds: "The above patent was secured through your agency, and thanks to your skillful management, for the claims are unusually strong. The final papers will issue inside of three weeks. I believe that my hub will surely prove quite a financial success. I am now entertaining an offer from a Pittsburg house that will exceed above amount. By your excellent services in my behalf you brought to me the exceedingly large offer, for had not my case been well conducted I would, no doubt, have had to wait some time for a customer."

The Artificial Diamond Process.

The announcement that Mr. Hannay's paper on the artificial formation of the diamond was to be read at the Royal Society, February 26, brought together a large number of Fellows and their friends. After the meeting a scrap of paper with the following lines penciled on it was picked up not far from where the treasurer of the Royal Society had been sitting:

Manufactured carbon, as diamond known,

Manufactured can be, Mr. Hannay has sh
From some hydrocarbon set hydrogen free
Near a nitrogen compound, that stable must be,
In the presence of metal-magnesium or sodium-
And the brilliant result is the jewelers' odium."

The Best Vehicle.

An anecdote is told of a physician who was called to a foreign family to prescribe for a case of incipient consumption. He gave them a prescription for pills, and wrote the direction: "One pill to be taken three times a day, in any convenient vehicle." The family looked in the dictionary to get at the meaning of the prescription. They got on well until they got to the word vehicle. They found "cart wagon, carriage, buggy, wheelbarrow." After grave con sideration they came to the conclusion that the doctor meant the patient should ride out, and while in the vehicle he should take the pill. He followed the advice to the leter, and in a few weeks the fresh air and exercise secured he advantage which otherwise might not have come

Remedy for Hydrophobia.

M. Torres Coïcedo, Minister from Salvador, has just made gift, says La Nature, to the Zoological Garden of the Bois de Bologne, of two curious plants-the "guaco" and the cedron"-which for a long time have been extolled in America as antidotes to snake bites and hydrophobia. The discovery of these plants was quite singular. Some Indians had observed that a bird of prey, which captures and feeds on snakes, sought out the vine of the guaco, ate its leaves, and plastered them over its plumage. They were thereupon ed to utilize the therapeutic virtues of the plant, and by it use effected marvelous cures in cases of hydrophobia, snake bites, and marsh fevers. The discovery of the properties of oth the guaco and cedron, however, had already been made by Dr. Saffray in a voyage made by him through New Granada in 1869.

An English manufacturer traveling in America for the purpose of inspecting various industrial establishments ha recently written as follows: ' I I spent some hours yesterday at the Cleveland rolling mills. They have a wire mill at tached for drawing nothing but Bessemer steel wire, of which they turn out 75 tons per day, and have one room with 1,000 small blocks, each man tending 32 blocks, whereas in England we consider a man that runs 8 blocks of steel is a wonder. So much for your country. I saw it with my own eyes, and was never more astonished."

Eighty Miles an Hour.

The National Car Builder says that a locomotive on the Pennsylvania railroad made the fastest run on record a few evenings ago. It was ordered from the round-house to the scene of an accident, and ran 60 miles in 45 minutes and 8 seconds. This is at the rate of a trifle under 80 miles an hour, and is a very remarkable performance.

IMPROVEMENT IN POTATO DIGGERS

The annexed engraving shows an improvement in potato diggers patented by Mr. James B. Taylor, of Leadville, Col., P. O. Box 2566 (formerly of West Hurley, N. Y.) The engraving shows only the portion of the machine that gives motion to the separating tines, C , and the shifting and adjusting mechanism. For a full perspective view the reader is referred to page 166 of the current volume of the Scientific American.
The plow, A, is suspended from a long bolt that extends across the rear of the machine frame, and is provided with a curved arm, which is jointed to a lever, B, pivoted to the main frame, and capable of engaging with a ratchet, b, so as to hold the plow at any desired elevation. A screen, C, con sisting of a series of fingers projecting from a cross bar, is pivoted at one side of the machine, on the same bolt that sustains the plow, and is provided with an arm, D, carrying a roller that is engaged by a zigzag cam on the axle. This cam is movable on the axle, and is provided with lugs that cam is movable on the axle, and is provided with lugs that
may be thrown into or out of engagement with clutch teeth may be thrown into or out of engagement with clutc
on the hub of the driving wheel by a shifting bar, F , which is always pressed by a spring tending to throw the cam out of engagement with the drive wheel. The shifting bar is provided with an inclined arm which is engaged by the lever, B, whenever it is thrown forward to depress the plow, thus throwing the cam into gear. It will thus be seen that by moving the lever, B, so as to throw the plow into position to operate, the shifting bar, F, throws the cam forward into engagement with the drive wheel. As the machine is drawn forward the plow, A, passes under the hills of potatoes, and both potatoes and earth are forced backward over the screen, C, which being vibrated by cam, E, separates the earth from the pota
on the top of the ground.

The Roller Suit.-The Patent Declared Invalid.
In the Circuit Court of the United States for the Eastern District of Missouri, September term, A.D. 1879: Robert L. Downton, plaintiff, os. Yaeger Milling Company, defend-ant.-Patent.-W. G. Rainey and George Harding, Esqs., attorneys for plaintiff; G. M. Stewart and F. W. Cotzhauattorneys for plaintiff; G. M. Stewa
sen, Esqs., attorneys for defendant.
Oral remarks of Treat, J., deciding cause:
I am prepared to announce my conclusion in the case of Downton vs. The Yaeger Milling Company. This case was presented at great length last spring, and it was announced to counsel at that time that if the court was compelled, as matters then stood, to decide the case, it would have to decide it in a certain way, but it would be more satisfactory if on certain points it could be more fully presented. That has been done, and very ably.
One of the points as to which the court was troubled, was whether, under the existing state of the art-this being a process patent-there was any novelty in it. Second, was the patent itself sufficiently specific in its terms to make it practicable, or, in other words, patentable, in the form pursued?
It is nọt proposed this morning to go through the milling literature with regard to these matters, as the various stages of all the matter involved were fully' considered at the time of the hearing of the milling cases before Judges Dillon, Nelson, and myself. We were then very fully instructed as to this new process, and also as to the state of the art when the new process arose, and the conclusions announced in that case are very familiar to the counsel in this case, and to the milling public generally by this time.
Now, the mills using this new process interject rolls at various stages in connection with grinding, and after purifying, regrinding the purified middlings. Counsel were asked whether they construed this particular patent as covering any use of rolls on purified middlings at any stage of the successive grindings, or whether, under their construction of the patent, it was a use of rolls, one or more, at a stage intermediate the first and second grindings. Counsel were understood to say that the interjection of such rolls at any one of these successive stages was within the terms of the patent. The importance of that, if the testimony is understood, relates to the question of infringement.
There was a controversy at an early stage of this case
and growing out of the transactions between Downton, Allis \&
Co., of Milwaukee, and this defendant, Yaeger. Judge Dillon and myself disagreed in opinion with regard to the effect of the paper transactions involved; but his ruling with regard to the matter was necessarily the ruling in the case. He held that if there was an infringement of this patent then the defendant must answer except as to the two
chilled iron rolls interposed between the first and second grindings, according to the terms of the patent; because Allis-\& Co., who were to some extent assignees in this matter, made those rolls according to Downton's description, Downton himself superintending the whole matter, and putting them in the mill. The contention being, on the part of Downton, that he informed these parties who had bought these rolls, which came under a subsequent patent, that while he put them in, they must give him a royalty under his process patent, and hence any use of the rolls by those parties did not exonerate them from a royalty therefor. Judge Dillon and I concurred as to those two; said they were supposed to have been put there for some purpose; they were put there by the plaintiff and under his very patent, and if it is said that they were put there merely to clog
the machinery, and for nothing involving a purpose, such a proposition cannot be maintained.
Now, the court is brought, for the purposes of this case, to the construction of this patent. It has been read and reread very carefully. If there is anything in it that is patentable and involves novelty, it is not the use of rolls at every stage of this process, for all the Minnesota mills had been using it before, and in Europe and Missouri the same thing had been practiced for a long series of years. But it was the interjection of rolls between the first and second grindings, whereby certain effects would be produced-that is, ings, whereby certain effects would be produced-that is,
such use flattens the germ or embryonic part of the berry, and also the pellicle, by a crushing instead of a grinding process. It is very obvious to any one who has looked into this subject, that if this grinding process is continued, whereby all the matter of the herry, including the germwhich seems to be the most obnoxious part of the whole--is mixed, then, instead of getting a first quality of flour, you have flour that is somewhat inferior in its character; for have flour that is somewhat inferior in its character; for
this waxy germ in itself has no especial nutritive property,

taylor's improved potato digger.

or by any mode of operating the same, have effected the designed end. Consequently to uphold this patent for a process which would have been ineffective without some inventions thereafter had, would be to block the path to all future progress in the art of milling.
The necessary result is that I dismiss the bill-the patent being void for want of novelty, and uncertainty.

Experience with a Home-made
o the Eaitm of the Scientific American
Reviewing my back numbers of the Scientific American and Supplement a short time ago, I became interested in an article headed "How to Make a Dynamo-Electric Machine,"* and having a desire to study the construction of such machines and the principles therein involved, became intensely interested in the article. I digested as thoroughly as possible the practical descriptions and directions there given with a view of constructing one myself. After mastering the details, I set to work and constructed first one and then a second one, both of the same size, and the first one implicitly according to the directions there given, the second one with slight modifications. I think I have been successful in making two fairly good machines.
Probably others of your readers, interested in a like manner as myself, have been engaged in the same thing, and possibly you may know the result of their efforts.
Of course it must be some gratification to you to know that your labors, and the valuable directions and information on practical subjects which you diffuse among your readers, are fruitful of good results. Presuming on this, and claiming but damages the flour through various causes. Hence, if \mid your indulgence on that account, and also to afford a comyou can take that out in the first instance, so that it shall not be ground into the body of the flour, it is certainly a most beneficial effect. To do it, you must crush, not grind, for this little embryonic particle is so very minute that unless you flatten it, it may, under trituration or grinding, pass into the middlings, and if you grind the middlings, it will go into the body of the flour. So that the true construction, and the only construction that will uphold this patent, is the interjection of those rolls between the first and second grinding of the purified middlings. By that means the fluffy matter would be thrown off, leaving the tailings to be ojerated upon thereafter. Then comes the next question, If that be the true reading of the patent, did this defendant use anything but the two chilled iron rolls at that stage of the process? The evidence is very uncertain on that point.
Some say that under the Wegmann patent, porcelain rolls were used at various stages. But no matter as to that. This question is one to which the court asked particular attention, namely, here is a statement that by the use of rolls in a particular stage of this process, certain beneficial results can be had; that is, a flattening of the germ so that it will not pass through the bolts.
Now is that to be construed in this way: that any device that might at any time thereafter be had, whereby such a result may occur, is covered by this patent? It seems that anterior to this patent, Mowbray and others had been using rolls, and in that very stage of the process, but the conten tion was that the particular rolls that they were using did not effect the end to the desired extent; and hence subse-
quent to this process patent, it became necessary to have quent to this process patent, it became necessary to have Now in invented which would effect the end.
Now it is an elemental proposition as to patents that they shall be so clear that by ordinary means they can be worked out by a person skilled in the art. It is clear that this patent could not be operated by any method until some person invented rolls, which, while they should not be corrugated, because that would be as bad as the millstones in triturating, but should be smooth and yet have sufficient grip and be of sufficient hardness; and that was not all, they must ave the same diameters and work with equal speed, instead differential speed. Neither of which was suggested in he patent.
To summarize: The claim of the patent is specific. "The herein described process of manufacturing middlings flour by passing the middlings after their discharge from a purifier, through or between rolls, and subsequently bolting and grinding the same, for the purposes set forth." Those purposes, as the specification states, are mainly for flattening the germ. That object was effected by the interposition of rolls at that particular stage of the process. Rolls at other stages of the milling process had been previously used; and even rolls by Mowbray at that particular stage; hence if the patent is to be construed by its terms as covering the use of rolls at any stage of the milling process, it had been long anticipated prior thereto. If it is to be restricted to the use of rolls at the particular stage mentioned, then, so far as this case is concerned, the plaintiff is estopped, because he him self, as heretofore decided, placed the only rolls used at that tage in the defendant's mill
On the other hand, irrespective of the question of estoppel, if the patent is for a process to be effected without any known means of accomplishing the result; but requiring intheir moculty whereby rolls to accomplish the purposes an ventions or discoveries, then the patent does not furnish to any one, as then skilled in the art, means whereby the beueficial end could be accomplished. No one in the then
existing state of the art could by the use of any rolls known
arison with results others have obtained, I will give you a short description of my machines and what they will do. The two machines, which I call No. 1 and No. 2, stand ide by side on a baseboard $101 / 2$ by 15 inches, and 1 inch thick. Their general construction is the same as given by you in Supplement No. 161, except that a little longer length of wire is wound around each arm of the magnets than there given, and also around the armature, each arm of the magnets containing about 250 feet of No. 16, and each armature about 45 feet of No. 18, covered wire. One drive wheel can run one or both machines at the same time, and to enable me to increase its size, I placed a block of wood 3 inches high on the top of each magnet, with a transverse piece laid across, also 3 inches thick, the whole bolted firmly to the top of both magnets; on the top of this transverse piece stand the bearings for the drive wheel, which is $171 / 2$ inches in diameter; it would be better if it was still larger.
Either one machine will heat 31 ¢ to 4 inches of 36 platinum wire to a white heat, and a shorter length to incandescence and finally melting it. It will rapidly decompose water producing $11 / 2$ cubic inches of gas in two minutes. It pro duces large bright sparks and strong shocks on breaking contact, and will produce a bright electric light with appar atus described in Supplement, No. 149. With both ma chines combined the effects are very much increased.
By using No. 1 machine to cbarge the magnet of No. 2 and taking the current from the armature posts of No. 2, I can heat 10 to 12 inches of 36 platinum wire to a white heat and forming the wire into such a shape as to reduce the ra diation, I can heat 14 inches to incandescence, can decompose 1 cubic inch of gas in one minute, heat a thin carbon pencil $11 / 2$ inches in length to a white heat the whole length; and as the carbon consumes the brightness increases, unti it reaches brilliant incandescence, when it finally disintegrates. Connected in this manner it will also work an in duction coil.
With platinum wire I can produce a light equal to six can dles, and could do better but for fear of melting the wire With the electric light apparatus I can produce a light equal o a four foot gas burner.
I am pleased with the machines; they answer nearly all the purposes of a battery, and are always ready, a few turns of the wheel producing a current instantaneously, and continuing steadily so long as you turn the wheel.
I would like to know whether my machines will compare avorably with others.
J. Pickard.

Morrisania, N. Y., March 25, 1880.
[Our correspondent could not have done better with a machine of the size and character described. Few have done as well, although many have made the trial. Some of our correspondents write after this fashion: "I have constructed a dynamo electric machine, carefully following the direc tions given in your Supplement, No. 161, with a single exception "-naming the exception-" and it fails to work !!" Mr. Pickard has made two machines, following our instructions, and they work exceedingly well; others have done the same thing. The fact is the " single exception" must be charged with the failure experienced by our unfortunate correspondents.]

The Human Retina.-In a recent note to the Vienna Academy Herr Salzer offers an estimate (based on numeraion) of the probable number of optic nerve fibers and of retinal cones in a human eye. The number of the former he supposes to be about 438,000 , that of the latter $3,360,000$. This gives seven or eight cones for each nerve fiber, suppos ing all fibers of the optic nerve to be connected with-cones, and equally distributed among them.

Faber's Talking Machine.

The celebrated Faber talking machine has had its powers of articulation almost doubled by the nephew of the original inventor, also named Joseph Faber. Describing a recent exhibition of the machine, the London Times points out that its chief points of interest to the physicist, the physiologist, and, it may be added, the philologist, lie in the results obtained from the ingenious contrivances by which the functions of the flexible and mobile organs of voice are performed. The principal features of the machine are, to begin with, the bellows, from which the air is driven with considerable but varying force, by means of a pedal lever. The air passes in a horizontal stream through a small chamber, which represents the human larynx, and in the same right line out through the mouth. The lips and tongue are of India-rubber, and the lower jaw is movable. Below the laryngeal apparatus, and opening from the chamber in which it is contained, is another smaller chamber, about the size and shape of a lemon, from which a pipe curved up ward allows the air when driven through to escape. This supplies the place of the nose to the instrument, and when a valve is opened, enables the sound of the letter m and n to be produced by the striking of the same keys with which the sounds of b or p are obtained. The larynx is, of course, the most complex part of the machine, and to Herr Faber is due the elaboration of this portion of the mechanism. Within a small oblong box, a narrow and exceedingly thin strip of hippopotamus bone, strengthened by India-rubber on one side, produces, by its vibrations, the speaking tone, which may be called the fundamental sound to be subsequently modified. At the will of the operator the pitch can be raised or lowered, but not during the utterance of a word or sentence, so that in saying " Mariana," or " Comment vous portez vous!" (the machine talks French, German, Italian, or English) the keynote remains unaltered to the end. In front of the vocal cord and within the laryngeal chamber are stops or diaphragms, placed vertically, and rising and falling like the wards of a Chubb's lock, but different in that each stop is a complex machine in itself, having within, moved by a spring, another stop, by means of which an orifice at the base is enlarged or diminished. Herr Faber has taken another liberty with nature, for, besides placing the nose below the mouth, for the sake of convenience, he has placed the teeth in the larynx, or, more strictly speak ing, with one of these stops he gets a somewhat lisping " or the sound " $s h$ " from the machine. A small windmill like arrangement gives the rattle of the letter " r," and a thin iron band, notched in the lower rim in front, fitting outside the upper lip, descends to give the " f " or " v " sound. There are fourteen keys by which sounds are controlled. Striking the first the sound of " a " in "father" is produced, the mouth remaining wide open; another key be ing struck, the lower jaw rises and the sound of " o " in
"bowl" is given; a third key moves a lever, which nearly " bowl" is given; a third key moves a lever, which nearly
closes the mouth, and the sound of " o " in "movement" is closes the mouth, and the sound of " o " in "movement" is
emitted. The other vowel sounds and the consonants are produced by the use of the diaphragms in the larynx with the mouth in the second or third position.

The French Vintage of 1879.

The gross production of wine in France last year was only $25,700,000$ hectoliters ($565,400,000$ gallons), or $25,000,000$ hectoliters ($550,000,000$ gallons) less than in the previous year. This enormous falling off-nearly one-half-is not
entirely attributable to the ravages of the phylloxera and entirely attributable to the ravages of the phylloxera and oïdium. These pests have certainly spread widely and rap idly, but, in addition to them, the wine growers had to contend with very unfavorable climatic conditions. The cold and wet which prevailed throughout the year prevented the grapes from fully ripening, and some districts were visited besides with very sharp frosts as early as September. The districts which suffered most severely were the Burgundy and Champagne districts, where the crop is almost entirely destroyed. The south of France suffered less than the east and center. The Departments of L'Aude. Hérault, and Pyrénés Orientales, gave an increase in the production amounting to about $2,000,000$ hectoliters, or $44,000,000$ gallons. The area of land under vine cultivation was reduced during the year by 51,512 hectares, or 129,000 acres, making the total reduction in the acreage of French vineyards since 1874 no less than 150,000 hectares (370,000 acres). Compared with previous years, it is some satisfaction to find that the rapid diminution in the production of wine in France is not without a parallel. From 1853 to 1856 the produce fell gradually from 22,21 , and 15 , to 10 millions of hectoliters in the four years. By 1863 the quantity of wine produced had increased to $50,000,000$ hectoliters, and finally, in 1875 , t reached the unparalleled figure of $83,000,000$ hectoliters. The production of cider last year also fell off, being 4,197, 000 hectoliters ($92,334,000$ gallons) less than in 1878 , and more than $3,000,000$ hectoliters less than the average of previous years.

Remarkable Shooting.

Another extraordinary marksman, who is said to excel Dr. Carver, is Dr. John Ruth, of California, an account of whose exploits is thus given in a recent issue of a San Francisco paper: "Dr. Ruth then proceeded to give an exhibi tion of fancy shooting at a glass ball held in the hand of his attendant, he taking aim through his legs, with his back to the object. He also held the rifle with the butt resting upon the top of his head, the hammer pointing downward He also shot with his back reclining upon a table. In all
these experiments he was successful on the first attempt. Turning his back to the attendant, he sighted the rifle by he aid of a small hand mirror, and broke the ball at the first trial. Perhaps the most wonderful feat that he accom plished, and one requiring considerable nerve on the part of both himself and attendant, was shooting a cigar out of the mouth of the latter. Another interesting experiment was
shooting without a sight, that essential adjunct being covshooting without a sight, that essential adjunct being cov ered by a piece of card board placed around the barrel at its extremity. The absence of the sight apparently made no difference, as the destruction of the vitreous spheres con inued unabated. The following experiments were also suc essfully accomplished: Shooting a ball from the head of an attendant, the latter being blindfolded; the same feat with the bandages removed from the attendant's eyes and the latter looking into the muzzle of the rifle; one hand hooting with a small rifle, manipulated in a variety of difficult ways, holding the rifle with the hands placed back of the neck. In none of these shots did the doctor fail to hatter the balls from the hand of the attendant. One of the most marvelous feats performed was the following: Placing glass ball upon the ground, the doctor shot in front of it and plowing under it, sent it flying several feet in the air by the force of the concussion, and before it reached the round shivering it with a second bullet. Dr. Ruth's wife is nearly as expert as himself in the use of the rifle.'

Photographs as Legal Evidence.

The London Photographic News thinks that photography is destined to play a very important part in legal proceedings, specially in cases of accident, when the causes are disputed and when it is essential an exactrepresentation of the condi ion of affairs immediately after the accident should be laid before a jury. Such photographs, however, require to be executed with some degree of intelligence on the part of the photographer; and an appreciation of the facts of the case, or they may become absolutely misleading. Precise as the amera is, it would not be very difficult, we fancy, by the use of an unsuitable lens, and by the choice of an improper point of sight, to give an idea of the appearance of any place quite foreign from the truth, so far as relative proportion is

The News recites a case where a photographer made a blunder of this kind, which proved very disastrous to his client. The latter was very anxious to obtain a spirit license for a large public house he had built. The chief opposition to his application came from a neighboring Boniface who had had undisputed possession of the custom of the locality for ome years, and who, of course, did not want an intruder. The applicant's house was situated on the top of a gentle slope at the corner of two roads, and was really an imposing looking edifice; the opponent's house was a somewhat stunted building, also at the corner of two roads, but with considerable frontage on one side. It occurred to the appliant that if he could only lay the photographs of the two houses before the visiting justices they would be so overcome with the contrast presented that they would immediately grant him a license. Accordingly he had the two photo graphed. Unfortunately the photographer used a short-focus, wide-angle lens, and, selecting his point of sight in respect to the new house opposite the angle (which happened, unfortunately, to be naturally rather an acute one) formed by the two ides of the building, produced a picture in which the two ines of the roof formed almost an isosceles triangle, while he house was squeezed together in the most absurd fashion. The perspective, in fact, was strained and unnatural, and he camera had absolutely made a picture which no human eye (unless it possessed a short-focus, wide-angle lens) could by any possibility see. To make the matter worse, instead f meting out the same justice to the old house, the photorapher selected a point midway opposite the longest line of frontage, and planted the camera much nearer the object than he did in the first instance. The result was, that the old house in the photograph appeared much the more imposing of the two, and any one who had not seen the originals would have preferred it to the ungainly and disproportioned edifice which the owner was so proud.

Waste of Fuel.

The wanton destruction of any kind of property is regarded as a crime, and the neglectful waste of the gifts of nature, bestowed for the common good of mankind, no matter how great their present abundance, ought equally to be held as an offense against the rights of humanity, and justly censurable.

Americans are proverbially wasteful, not alone in small matters but in great ones. This is exemplified in a striking manner in the anthracite coal regions of Pennsylvania, where, it is estimated, not less than one hundred mil lion doliars' worth of fuel has been wasted in getting out and preparing the coal for market, the present average annual loss being set down at fifteen million dollars. This enormous waste is ascribed by men of experience to the use of imperfectly designed machinery for breaking the coal. This matter demands serious attention; for vast as are our natural resources, such extravagance will not only tend to exhaust them sooner than they should be, but also to increase present cost to consumers. Land owners and miners are, in this matter, equally remiss in duty to their ccessors and the people of the country, who have a right demand that an article of such prime necessity shall be conomically
the various industries and comforts dependent upon this kind of fuel.

The great cause of this waste in anthracite coal is said by competent engineers to be what are known as coal crushers -toothed cylinders geared to run toward each other, which of necessity literally crush a great part of the coal into fragments and dust too fine for use, unless it can by artificial means be again made into blocks of suitable size. The percentage of waste is estimated at one-fourth the entire product, the greater part of which could be saved to the operators by the use of proper machinery. But the operators, it would appear, are a very conservative set of gentlemen, and opposed to innovations calculated to do away with timehonored methods. It is within the personal knowledge of the writer that a mechanical engineer of wide experience and thoroughly posted in the mining and marketing of anthracite coal invented and set up at one of the great coal centers machinery for the more economical preparation of the fuel. He invited the operators and engineers to come and witness his experiments, but few of them availed themselves of the opportunity; and although, as he claims, he can demonstrate beyond peradventure that he can save from fifty to eighty per cent of the coal now lost, he has as yet been unable to secure the adoption of his improved methods and machinery. This gentleman is a conspicuous example of a prophet being without honor in his own country.-Coal Trade Journal.

New Measuring Implement.

A remarkable machine was described at a recent meeting f the Société d'Encouragement pour l'Industrie Nationale, at Paris, called profilograph, because when in use it traces mechanically on paper the outlines of the ground over which it travels. It is described in one of our foreign contemporaries as a small carriage mounted on two wheels, drawn by one man, and attended by another, who marks the levels at the proper places; and underneath hangs an iron rod with a large ball at its lower end, serving as a pendulum. This pendulum maintains a constant vertical position, while the machine inclines in one direction or the other according as it ascends or descends a slope. To the upper end of the rod is fitted a pencil, which marks on a sheet of paper the ups and downs of the country traversed, whether on an ordinary road or across trackless fields. The exact profile is thus recorded to a given scale. At the same time one of the wheels, acting the part of chain bearer, measures and indicates the distances traveled throughout the survey. For surveyors and others engaged in leveling operations, this machine would appear to be eminently serviceable, and there is talk of its being made use of in a new general survey of France contemplated by the government.

Milk and Lime water.

Milk and lime water are now frequently prescribed by physicians in cases of dyspepsia and weakness of the stomach, and in some cases are said to prove very beneficial. Many persons who think good bread and milk a great luxury, frequently hesitate to eat it for the reason that the milk will not digest readily: sourness of stomach will of ten follow. But experience proves, says the Journal of Materia Medica, that lime water and milk are not only food and medicine at an early period of life, but also at a later, when, as in the case of infants, the functions of digestion and assimilation are feeble and easily perverted. A stomach taxed by gluttony, irritated by improper food, inflamed by alcohol, enfeebled by disease, or otherwise unfitted for its duties-as is shown by the various symptoms attendant upon indigestion, dyspepsia, diarrhea, dysentery, and fever-will resume its work, and do it energetically, on an exclusive diet of bread and milk and lime water. A goblet of cow's milk may have four tablespoonfuls of lime water added to it with good effect. The way to make lime water is simply to procure a few lumps of unslaked lime, put the lime in a stone jar, and add water until the lime is slaked and of about the consistence of thin cream; the lime settles, leaving the pure and clean lime water on the top.

To Cure Foot Rot in sheep.

The preparation of the foot is just as essential as the remedy, for if every part of the disease is not laid bare the remedy will not effect a cure. A solution of blue vitriol as strong as can be made and as hot as you can bear your hand in, even for a moment, having the liquid three or four inches deep, or deep enough to cover all the affected parts; then hold the diseased foot in this liquid ten minutes, or long enough to penetrate to all the diseased parts; put the sheep on a dry barn floor for twenty hours to give it a chance to take effect. In every case where I have tried it, it has effected a cure, and I have never given a sheep medicine internally for foot rot. This remedy I call a dead shot when the foot is thoroughly prepared, but a more expeditious way, and where you don't hardly hope to exterminate tbe disease, but keep it in subjection, is this: After preparing the feet as for the vitriol cure, take butter of antimony, pour oil of vitriol into it slowly until the heating and boiling process ceases, and apply with a swab. This remedy works quicker, is stronger than the vitriol, and is just as safe, but its mode of application renders it less sure.-Ohio Farmer.
In a small part of our issue of April 10, the firm name of the well known manufacturers of printing ink was misprinted. It should have been George Mather's Sons, 60 John street, New York city.

Buginess and ecronal.

The Chargefor Insertion under this head is one Dollar a line for each insertion, about eight words to oo line.
Advertisements must be received at publication ofice as early as Thursday morning to appear in next issue. The publishers of this paper guarantee to advertisers a circulation of not less than 50,000 copies every
weekly issul. weekly issue.

11 Ton Compound Slotter for sale cheap. Slots 18 in.; radius 24 in. Address Fulton Iron and Engine Works,

Pate

Patents for sale.-Excellent Garden Hand Pump, Well Pumps, Combined Sprinkler and Nozzle. See them
work at No. 99 Gold St., Brooklyn, N. Y. N. Malmquist. H. L. Perrine, Mech. Draughtsman, 617 7th St., WashH. L. Perrine, Mech. Draughtsman,
ington, D.C. Drawings for inventors from sketches or
models.

Wanted-A Machine for Straightening Wire. Ad-
dress, with price, E. M. Chafee, Onondaga Valley, N. Y. dress, with price, E. M. Chafee, Onondaga Valley, N. Y.
We understand that Baldwin the Clothier, of New We understand that Baldwin the Clothier, of New
York and Brooilyn, employs more salesmen in his Boys' Department than any other retail clothing store reAt the American Intitute
"MacKinnon Pen " was awarded New York, 1879, the Mackinnon Pen "was awarded the grand medal of
superiority. The judges' report reads: An important
feature of this pen is that its point is a circle of iridium. feature of this pen is that its point is a circle of iridium.
The drilling of iridium to obtain a conical writing point The drilling of iridium to obtain a conical writing point
has not, heretofore, been accomplished by any other has not, heretofore, been accomplished by
maker, and is in itself a valuable discovery.
For Power Paper, Lard, Cider Presses, see adv. p. 252. The Asbestos Roofing is the only reliable substitute
for tin ; it costs only about one-half as much is for tin; it costs only about one-half as much, is
fully as durable, is fireproof, and can be easily applied fully as durable, is frreproof, and can be easily applied
by any one. H. W. Johns Manufacturing Co., 87 Maiden
Lane, N. Y., are the sole manufacturers. The Brown Automatic Cut-off Engine; workmanship, economy, and durability. Write for in-
fomation. C. H. Brown \& Co., sole fomation. C. H. Brown \& Co., sole manufacturers,
Fitchburg, Mass. Catalogue of Useful Books on Applied Science
free, E. \& F. N. Spon, 446 Broome St., New York.
Blake Lion and Eagle Imp'd Crusher. See adv. p. 236 For manufacturing sites, coke and gas coal lands,
their qualities and prices, address Mellon Brothers, their qualities
Pittsburg, Pa.
Foundry and Machine Shops for sale. Established in Foundry and Machine Shops for sale. Established in
1846. Write for description to E. J. Hoen, Addison,
4 to 40 H. P. Steam Engines. See adv. p. 220. Boiler Feed Pump, with tight and loose pulleys; sur
to work. Price \$32. York \& Smith, Cleveland, 0 . to work. Price \&32. York \& Smith, Cleveland, 0 . Corrugated Traction Tire for Portable Engines, etc.
Sole manufacturers, H. Lloyd, Son \& Co., Pittsburg, Pa. Penfield (Pulley) Block Works. See illus. adv. p. 252 . Spokes and Rims, white oak and hickory, best quality,
to any pattern, and Hammer Handles of best hickory. John Fitz, Martinsburg, West Va.
For the best Stave, Barrel, Keg, and Hogshead Machinery, address H. A. Crossley, Cleveland, Ohio
Collection of Ornaments.-A book containing over
1,000 different designs, such as crests, coats of arms, 1,000 different designs, such as crests, coats of arms,
vignettes, scrolls, corners, borders, etc., sent on receipt of $\$ 2$. Palm \& Fechteler, 403 Broadway, New York city Best Oak Tanned Leather Belting. Wm. F. Fore
paugh, Jr., \& Bros., 531 Jefferson St., Philadelphia, Pa. National Steel Tube Cleaner for boiler tubes. AdjustSplit Pulleys at low prices, and Split Pulleys at low prices, and of same strength and
appearance as .Whole Pulleys. Yocom \& Son's Shafting
Works, Drinker St. Philadelphia Works, Drinker St., Philadelphia, Pa.
Stave, Barrel, Keg, and Hogshead Machinery a spe
cialty, by E. \& B. Holmes, Buffalo, N. Y. cialty, by E. \& B. Holmes, Buffalo, N. Y.
Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel - other kinds imitations and inferior Caution.-Our name is stamped in full on all our best
Standard Belting. Packing, and Hose. Buy that only Standard Belting, Packing, and Hose. Buy that only
The best is the cheapest. New York Belting and Pack ing Company, 37 and 38 Park Row. N. Y.
Twenty-five per cent saved by the use of H. W. Johns'
Asbestos Liquid Paints. Asbestos Liquid Paints.
Sheet Metal Presses. Ferracute Co., Bridgeton, N. J Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts, Importers Vienna lime, crocus,
etc. Condit, Hanson \& Van Winkle, Newark, N. J., and etc. Condit, Hanson \& Van Win
92 and 94 Liberty st., New York.
Wright's Patent Steam Engine, with automatic cutoff. The best engine made. For prices, ad
Wright, Manufacturer, Newburgh. N. Y.
Presses. Dies, and Tools for working Sheet Metal, etc. Presses, Dies, and Tools for working Sheet Metal, etc.
Fruit \& other can tools. Bliss \& williams, B'klyn, N. Y. Bradley's cushioned helve hammers. See illus. ad. p. 238 . Forsaith \& Co., Manchester, N. H.. \& 213 Centre St.,
v. Y. Bolt Forging Machines, Power Hammers, Comb’d Hand Fire Eng. \& Hose Carriages, New \& 2 d hand Machin ery. Send stamp for illus. cat. State just what you want. Electrical Indicators for giving signal notice of ex-
tremes of pressure or temperature. Costs only 220 . Attremes of pressure or temperature. Costs only $\$ 20$. At-
tached to any instrument. T.Shaw, 915 Ridge Ave.Phila. Instruction in Steam and Mechanical Engineering. A thorough practical education, and a desirable situation
as soon as competent, can be obtained at the National Institute of Steam Engineering, Bridgeport, Conn. For particulars, send for pamphlet.
Hydraulic Jacks, Presses and Pumps. Polishing and Butting Machinery. Patent Punches, Shears, etc. E. Lyon \& Co., 470 Grand St., New York.
Portable Forges, $\$ 12$. Roberts, 107 Liberty St., N. Y. Telephones repaired, parts of same for sale. Se
tamp for circulars. P. O. Box 205 , Jersey Clty, N.J. Eclipse Portable Engine. See illustrated adv., p. 222 For best low price Planer and Matcher. and latest
mproved Sash, Door, and Blint Machinery, Send for atalogue to Rowley \& Hermance, Williamsport, Pa. Peck's Patent Drop Press. See adv., page 236. Special Wood-Working Machinery of every variety.
Levi Houston, Montgomery, Pa. See ad. page 238. For best Portable Forges and Blacksmiths' Hand
Blowers, address Buffalo Forge Company, Buffalo. N. Y Blowers, address Buffalo Forge Company, Buffalo, N.
For Standard Turbine, see last or next number. Diamond Drills, J. Dickinson, 64 Nassau St., N. Y.

Steam Hammers, Improved Hydraulic Jacks, andTub
Expanders. R. Dudgeon, 24 Columbia St., New York. Wanted-The address of 40,000 Sawyers and Lumber men for a copy of Emerson's Hand book of Saws. New edition 1880 . Over 100 illustrations and pages of valuable
information. Emerson, Smith \& Co., Beaver Falls, Pa. Eagle Anvils, 9 cents per pound. Fully warranted. For Pat. Safety Elevators, Hoisting Engines, Friction lutch P. 1 For Wood-Working Machinery, see illus. adv. p. 252. Tight and Slack Barrel machinery a specialty. John
Greenwood \& Co., Rochester, N. Y. See illus. adv. p. 252. Elevators, Freight and Passenger, Shafting, Pulleys, nd Hangers. L. S. Gras For Separators, Farm \& Vertical Engines, see adv.p. 251 .
The Horton Lathe Chucks; prices reduced 25 per cent. \$100 V $\$ 400$ Vertical Engine, 30 H. P. See page 254 For Patent Shapers and Planers, see ills. adv. p. 251. Emery Wheels of all kinds, and Machines at reduced
prices. Lehigh Valley Emery Wheel Co., Weissport, Pa. prices. Lehigh Valley Emery Wheel Co., Weissport, Pa.
Steam Engines; Eclipse Safety Sectional Boiler. Lamertville Iron Works, Lambertville, N. J. See ad. p. 17 The 1880 Pennsylvania Lawn Mower.-Light draught nd easily adjusted. Machines warranted. See illus. adv. For Sale.-Two Windmill Patents, and set of patterns or Mill Mach \& ter. F. . Patent Steam Cranes. See illus. adv., page 252. Hydraulic Cylinders, Wheels, and Pinions, Machinery Castings; all kinds; strong and durable; and easily
worked. Tensile strength not less than 65,000 lbs. to square in. Pittsburgh Steel Casting Co., Pittsburgh, Pa Mineral Lands Prospected, Artesian Wells Bored, by Pa. Diamond Drill Co. Box 423, Pottsville, Pa. See p. 253. Self-feeding Upright Hand Drilling Machines of su-
perior construction. Pratt \& Whitney Co., Hartford, Ct Rue's New "Little Giant " Injector is much praised
or its capacity, reliability, and long use without repairs. for its capacity, reliability, and long use without repairs. Rue Manufacturing Co., Philadelphia, Pa .
The only economical and practical Gas Engine in the market is the new "Otto" Silent, built by Schleiche Elevators.-Stokes \& Parrish, Phila., Pa. See p. 254 Mackenzie Cupola and Blower. The very best apparatus for melting iron; and with water bosh for smelting
lead, silver, or copper ores. Send for pamphlet. Smith \& Sayre Manuf. Co., 21 Courtlandt St., New York.
Machine Knives for Wood-working Machinery, Boo Binders, and Paper Mills. Large knife work a specialty.
Also manufacturers of Soloman's Parallel Vise. Taylor. tiles \& Co.,
For Middlings, Mill and Mill Furnishing, see adv. p.222.

HINTS TO CORRESPONDENTS.
No attention will be paid to communications unless ccompanied with the full name and address of the writer.
Names

Names and addre iven to inquirers.

given to inquirers.
We renew our request that correspondents, in referring We rener our request that correspondents, in referring ame the date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely a personal character, and not of general interest, as we cannot be expected to spend time and labor to obtain such information without remuneration.
Any numbers of the Scientific American SuppleAENT referredtoin these columns may be had at this office. Price 10 cents each.
(1) S. H. H. asks how two minerals in owdered form, one specific gravity of 2.5 and the other of $3 \cdot 5$, can be separated. A. Both substances being insoluble in water, a part at least of the former might be obtained by aqueous suspension and defection, as in the
purification of kaolin, especially if the lighter is also the purification of kaolin, especially if the lighter is also the
softer and finer. The difference is almost too slight softer and finer. The difference is almost too slight ence in solubility, fusibility, or polarity (magnetic) exists and may be availed of.
(2) C. C. H. asks for a cheap method of determining the presence of zinc in old pewter and
britannia ware. A. Digest a fragment of the metal in a test tube with hot dilute muriatic acid, decant the liquid, and add to it sulphureted hydrogen water in excess; filter off the precipitate. and to the filtered liquid add ammonia water. A white precipitate indicates zinc.
(3) G. A. W. asks: 1. Is the presence of air in steam boilers injurious? A. No. 2. How is air expelled from boilers? A. Generally, when getting up
team, by leaving the safety valve open until the steam blows freely from it. 3. What will restore nickel silver that has been heated to a bluish color? A. Dip momentarily in strong nitric acid, rinse immediately in unning water. Polish with crocus or rouge.
(4) W. and B. write: As to the per cent of power produced by overshot water wheels, we know of
no tests having been made in this country. and preno tests having been made in this country. and pre-
sume there are but few persons competent to make sume there are but few persons competent to make
such a test, we have overshot wheels $201 / 2$ feet high, which are about worn out, and have been urged to use turbines instead, but would like to learn what per cent over-
shot wheels of our height will give before changing. The turbine claim over 80 per cent. A. As a general result, a good overshot wheel driving machinery not requiring high speeds gives a better percentage than the turbine for machinery requiring high speeds, a good turbine is
to be preferred. A well proportioned overshot wheel
should give 65 to 80 p
give 60 to 70 per cen
(5) J. A. M. asks as to the proper size of linders for double engine (diamer size of mple size for boiler for same, size of propeller and pitch of same, for fast steam yacht, 55 feet over all, 11 feet beam, 4 feet 8 inches draught at stern, to steam 15 knots at best speed in smooth water. A. For yacht 55 eet long and 11 feet beam, 2 engines, 9 inches cylinder yy 8 or 9 inches stroke: propeller 3 feet 10 , to 4 feet 2 turn tubular boiler about 5 feet 4 inches diameter 3 incher re8 feet 6 inches long, with 2 iuch tubes.
(6) E. W. T. asks (1) how to stop leaks in boilers, especially at ends of (expanded) tubes. A. If the tubes are not too much wasted away, they can be
made tight with a calking or expanding tool. 2. How made tight with a calking or expanding tool. 2. How
to prevent foaming in boilers. A. Foaming proceeds from various causes, and until we know the cause, we cannot prescribe a remedy. The design may be faulty, or
the circulation bad; too little steam room, or bad water.
(7) J. F. asks: Is there anything that will move scales from steam boilers without injury to the oiler? A. There are many compounds used for the re moval of boiler scale; they are nearly all effective with some kinds of water and useless with others. See our advertising columns for address of makers of boiler compounds. Tannate of soda, sal soda, petroleum, crude or refined, pieces of oak or hemlock bark or oak
timber, soda ash, and gum gambier are often used. If timber, soda ash, and gum gambier are often used. If
the water is muddy, or contain much organic matter, it should be filtered before use.
(8) J. J. H. asks: 1 . What is the best is used and boiler inacceessible? A. See reply to Jater is used and woiler inaccessible? A. See reply to J. F. duced on an engine of 8 inches diameter, 12 inches stroke, with 80 lb . steam pressure? A. At 100 revolutions per minute, 16 horse pow
proportion to the speed.
(9) J. J. W. writes: I am compelled to use in my boilers the water from a stream that is muddied by the washing of iron ore. It causes them to foam. Can you suggest any remedy, or manner by which I could use it without said result? A. See reply J.F. on this page.
(10) H. L. C. asks: About what is the re lative temperature of the water and the steam in a
steam boiler when under pressure of 40 to 100 lb . per square inch? A. After a boiler has been in operation long enough for a thorough circulation, the tempera ture of the water is same as the steam, and the latter de
termined by its pressure, if there be o o superheating.
(11) J. H. J. asks (1) for the proper mode of adjusting the slides of an engine in working posi-
tion. A. A line is drawn through the center of the cylinder, and the slides set parallel to it in both directions A. Have the draught of the key at one end of the rodi one direction, and of theother end in the opposite direction. 3. To obtain the half stroke of piston. A
The half stroke of the piston is the length of the crank (12) J. D. asks: 1. Can water be heated to a higher temperature than 212° Fah. 9 A. Yes. 2.
How much greater percentage can I get from a copper How much greater percentage can I get from a coppe
heating surface than iron surface in a boiler, built loco hotive style? A. Practically there is little or no differ-
moter ence between copper and iron.
(13) E. R. M. asks: Would a young me chanic make a locomotive runner with practice on the perience with different kinds of steam engines, and have studied both Forney's and Roper's Catechisms of
he Locomotive? A. Yes, with self-reliance, close ob the Locomotive? A. Yes,
servation, and industry.
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
N. G. Co.-It is a variety of serpentine resembling Mineralogy. -A. G. S.-It is fool's gold, iron pyrites ulphide of iron.
[OFFICIAL.]

INDEX OF INVENTIONS

for which Letters Patent of the United States were
Granted in the Week Ending

March 23, 1880,
AND EACH BEARING THAT DATE.
[Those marked (r) are reissued patents.]
A printed copy of the speciflcation and drawing of any patent in the annexed list, also of any patent issued since 1866 , will be furnished from this office for one dol
lar. In ordering please state the number and date of the patent desired, and remit to Munn \& Co., 37 Park Row New York city. We also furnish copies of patents ranted prior to 1866; but at increased cost, as the speci fcations not being printed, must be copied by hand.

Binder, temporary, White \& V an Zuilen...
Bisulphide of carbon engine, w. s. Colwell Bit brace, N. Spofford Boiler and heater, combined, D. Hawkins.........
Bonds, notes, and other evidences of value, \mathbf{S}. Dummer.................................
Boot and shoe calk plate, J. B. Weir. Boot and shoe lasting device, A. Davidson... ting, Simon \& Lex.........................

Bride bit, T. T. Furlong....
Bugs from potato vines, machine for remorin. G. E. Risley.

Button, separable, G. K. Webster
Cabinet, exhibiting, J. F. Mart
Car brake, automatic, H. S
Car coupling, R. F. Krohn..
Cars, sand distributer for s.
Carpet lining, G. S. Page...
\qquad
號
Johnson
Cart, coal, V.D. . J. Slattery
Chains, manufacture of jewelry, R. F. Fi...........
Change
stores, etc.. making, H. R. Robbins.
Charm and similar articles of jewe Charm and similar articles
Gilbert.................
Ghuck, drill, R. R. E. Wilcox.
Churn power, J. S. Smith
Churn power, J. S. S. Winchell.
Cigar box for preventing revenue frauds,
McAleer
McAleer.............................
Cocke, calendar, W. H. Stewart
Cofee roaster stirrer. R. J. Morton
Collar, standing, Goldsmith \& Merrill...
Coloring matter, artifcial, F. z. Roussin
Colter, rolling, L. Chapman.
Cooker, steam, w. B. Wood
Cornice, window, J. R. Shackle
Corset clasp, W. McCabe
Cotton chopper and cultivator, J. B. Nichols.

Crayon sharpener, J. Sut
Cultivator, T. C. Darby
Curtain bracket, H. T. Warner
Curtain fixture, F. B. Scott.
Curtain roller, W. B. Noyes
Curtain roller, W. B. Noyes.
Cuspadore, J. M. Wheeler
Cut-off, steam engine, W. Redmond.
Dental disk, felt, W. W. Smith
DisinfectIng device for
Disinfecting device for urinals, etc.............. $\mathbf{~ E}$.
Dog iron mould, J. McDermott
Door, screen, J. Barkbeimer.
Draught equalizer, F. Marsh................................
Draught regulator for harrows, P. H. Nelson... Dress stiffener, N. Jenkins........................ Eave trough hanger, A. H. Br Egg beater, J. Emmert
 Elevator and scales, comb
nngraving machine, J. Hope
Evvelope, B. \& L. Planche..........................
Excavator, S. W. Rohn..............
Expanding drill, L. F. Pond..
Farm gate, I. Bush.....
Firearm, magazine, w. H. Elliot
Fluting machine. H. Albrecht (r)
Fluting machine. H. Albrecht (r
Forging wrench heads, die for, L. Chapman. Fruit jar, Griswold \& Moran
Fuel. combustion of, E. J. Brook
Gas engine. Wittig \& Hees
Gas, manufacture of nitrogen, T. B. Stillman..
Gas producer, A. Faber du Faur
Gate. B. F. Luce ...
Glass stones to metallic frames, securing moulded,
J. Fischer
Glass, wood, rubber, etc., ornamenting smooth
and

Grain and seed separator, D. Geise
Grain, etc., apparatus for purifying, O. Oexle.
Grain crushing roll, J. Stevens
Grain meter, C. H. Horton...
Harness, J. Hebel.............
Harrow, A. C. Evans....
Harvester reel, J. M. Moore............ ${ }_{20}^{225,694}$
Hat brims, machinery for stretching, A.Alexander 2
$\begin{array}{lll}\text { Hat pouncing machine, W. Keenan (r).............. } & 9,125 \\ \text { Hoisting apparatus, C. R. \& N. P. Otis (r)......... } & 9.128\end{array}$
Hoisting jack, D. W. Smith .
Horse rake, B. Owen.
Horse rake, B. Owen.....
Horse rake, G. H. Smith.
Horses, apparatus for holding, D. E. Middleton
Hose, fre, J. E. Gillesple ...
Hose nozzle, adjustable, A.
Hose nozzle, adjustable, A. . . Prouty.
Hub attaching device, S. A. Fuller
Hub attaching device, S. A. Fuller,
Hub attaching device, z. Huggins.
Hab altaching device,
Ice plow, I. Boone......
Injector, J. R. Eberman
Ink, manufacture of printing, J. Kircher (r)
Insecticide compound, J. E. Gibson..
Insulating telegraph wires, A. K. Eato
Iron skelping machine, J. Hoove
Jacquard machine, J. Miesch
Jewelry, F. E. Gilbert .
Jewel case, W. C. Bea
Ladder, step, J. Hill.
sh, device for supporting
M. A. Dees...........................
Lamps, decorating glass, J. W. Hains.
Lantern, E. J. Brooks

Lantern, E. J. Brooks
Lantern burner, G. A. Beiler...
Lantern.,signal. Smith \&
Latch, C. H. Smith ..
Leather, finishing, Tice \& O'Connell.
Lock. A. E. Deitz..................
Mattig, straw, w. H. Townsend
Matting, straw, W. H. Townsend
Measure and funnel, combined, G. A. Keene...
Mechanical movement, C. Hammelmann...... Mechanical movement, c. Hammelmann..........
Metal surfaces. machine for ornamenting, Hewit
son \& Tolman............................ son \& Tolman.

DESIGNS.
Aerated liquids, apparatus for dispensing, C. E

Carpeting, J. Forrester
 Carpeting,

Lace pins. E. A. Bliss.........................
Ornamenting plates and dishes, F. A. Marra.
Pencil case, C. H. Court..........
Spoons, forks, etc, L. S. White.

TRADE MARKS
Cor Cement, Buffalo Cement Company 7,8.85
Teas, green, Japan, and black, Frazer \& Co. (China)
Toillet powder, Lorenz Bros.......

English Patents Issued to American
From March 19 to March 23, 1880, inclusive Electric railway signal, T. A. B. Putnam, New York city Furraces, heating, H. L. Brooke, Baltimore, Md. Boston, Mass
Horseshoe
Mass. Horseshoe nail machinery, J. Capewell, Cheshire, Conn.
Insulation of underground telegraph Pittsburg, Pa.
Knife cleaning machine, J. F. Walters, Boston, Mass. Photography (2). E. J. Molera et al., san Francisco, Cal. Steam boiler, E. H. McNiel, Groton, N. Y.
Valve for steam pipes, etc. W, Wilson, Oakland,

STEAM PUMPS. HENRY R. WORTHINGTON, 239 Broadway, N. Y. ©3 Water Sit, B THE WORTHINGTON PUMPING ENGINES
Works-Compound, Condensing or Non
Used in over 100 Water-w orks Stations. Prices below those of any other steam pump in the market.

For ronn Do Your Own Printing.

paper. Catalogue in any place Jobbing or running stamps. Kelsey © Co., Man, Type, ars, Meriden, Conn

Steel Castings

From $1 /$ to 15,000 lb. weight, true to pattern, of unequaled
strengt, tooghness, and durability. 50,000 Crank Shafts
and 10,000 Gear Wheels of this steei now running prove circular and pricer ist. other steel Castings. Send for
CHETER STELL CASTINGS Co.,40rLibrary St., Phila, Pa Bowlus' Pat. Ordamental Brass Spring Trace Pastener

Jobbing in Wood Work
 MAGIC INK, FOR SECRET CORRESPONDENCE O
postal cards. Powder, by mail, 10 and and stamp.

NEW YORK BELTING AND PACKING COMP'Y.
 $\mathbf{E M E R Y W} \mathbf{H E E L S}$ All other kinds Imitations and Inferior. Our name is stamped in full upon all ou
standard BELTING, PACK ING. and HOSE.
JOHN H. CHEESEER, Treas. mmery wheel. JOHN H. CHEEVER, Treas.

VILLAGE

 NEWSPAPERS.A list of nearly twelve hundred County and Village Newspapers, having an aggregate weekly edition of
 Actral
copies
issmed issued.

Advertisements, large or small, can be inserted in the entire list for $\$ 6$ a line per week, and reading notices for $\$ 12$ a line. A card occupying one ach of space is inserted one week for $\${ }^{75}$, or one year for $\$ 2,000$. For catalogue and further information, address
GEO. P. ROWELL \& CO.
Newspaper Advertising Bureau, 10 Spruce St.

NEW YORK.

OF INTEREST TO MANUFACTURERS隹

COLD ROLLED Sharming.

 = $=\mathbf{W}=$

ENGRAVING ON WGOD
 noeimon of trork, see this number,

The Gerore Piace Machinay Asency

TO INVENTORE.

Lathes, Planers, Shapers
 Bilth ET PLUNGER STEAM PUMPS, FOR EVERY DUTY. VALLEY MACHINE CO.,

J. A. FAY \& CO'S WOOD WORKING MACHINERY

 J. A. FAY \& CO., Cincinnati, Ohio, U. S. A.

Ammoniacal Liquor and Coal Tar. Sealed Proposals will be received at the office of the
Cincinati Gas Jight and Coke Company, cinacinati,
 The Liquor will be delivered in car-tanks on side track,
f tank-bar ees on the river, ar at any point on the line
f the Gas Company's spremises. The strength to be of he same a arerage as at present.
Bias will be reeeived st much per ton of 2.000
pounds, of coal cirbonized. Payments to be made mon thyly in the sum of $\$ 10,000$ will be required.
Security
The Company reserves the right to reject any and all If desired by the successful bidder, arrangements can
be mand for the purchase of the Coal Tar produced
during the same period. Adress

	${ }^{\text {Nemen }}$

SPY GLASSES FIELD GLASSES, MICROSCOPES, JAMES W, QUEEN \& CO.,
 STEAM PUMPS. THE NORWALK IRON WORKS CO.,
SOUTH NORWALK, conN.

WATCHES ${ }^{2}=$ FREE

"The 1876 Injector."

THE RUFFALO PATENT EXCHANGE

TO STEAM USERS.

 Save Fuel and Money. PEERLESS DAMPER REGULATOR, american steam appliance co.

Rose on the Slide Valve

 tric without moving the engine, adouble eccentric with
outimoving theeggin, eccentrics when the rod is not
in line with the cylinder bore.

 Hactories, steap Navigation, Rallways, and Agricu
ture, Practically Described, with an account of al th
Principal

 Burgh.-Practical Rules for the Proportions of Mod.enn
Engines and Boilers for Land and Marine Purposes Campin, -Ap Practical Treatise on Mechanical Engine.er
ing; comprising Metallurgy Moulding, Casting, Forg
ing, Tools, Workshop Mach inery, Meehani cal Manipu

 Practical Work for Practical Men. By Emory, Ed
ward, Mechanical Engineer. Hlistrated bo engra
ings, includ ing examplesof themost Modern Engine 12mo
Laidner.-The Steam Engine for Beginners. In instrated Mamo, and Brown. -The Marine Ste $\dot{\text { num }}$ ne Engine.
nain anous illustrations. In 1 vol. $8 v 0$, Main and Brown-The Indicator and Dynamometer
With their Practical Applications to the Steam En

 Construction, and Economical Working. By Pober
Winson Fist
12mo

 of postage, at the publication price.

 HENRY CAREY BAIRD, \& CO.,
Industrial Publishers, Booksellers and Importers,
810 W ALNUT STREET, PHILADELPHIA.

Shafts, Pillefs, Hangeris, Etc.

MACHINISTS' TOOLS. Iron Planing Machines

 C. WHITCOMB \& CO.,Worcester, Mass. A MANUFACTUURER WANTED TOO WANTED,

Wood-Working Machinery,

Universal Hand Planer,

 TOHIN R.WHITRLFY\&CO First-class Agents in the principal industrial and agricul
ural centers and cities in Europ. London,
U. Coulry
C. Paris 8 Piacit Vendome. Terms on application

```
ROOFINC.
For steen or flat roofs, Applled by ordinary workme
```

THE DRIVEN WELL Wown and county privileges for making Driven
Amerliciand silling Wiiecnses under tha estabilished
to responsible parties, by Patent, leased by the year WM..D. ANDREWS
W BRO..
WR
 SHEPARD's CELEBRATEED
$\$ 50$ Screw Cutting Foot Lathe Foot and Power Lathes, Drill Presses
Scrolls, Circular and Band
Saps sa, Attachnents, Chucks, Mandrels, Twis
Drills. Dogs. Calipers. etc. Send fo
cataloge of outfts for amateurs o
artisans.

Pond's Tools, DaVID W. POND, Worcester, Mass.

∞Forster's Rock \& Ore Breaker and Combined Crushipl and Pulverizer
 of any other Crusher, with one-third the Power, and one-half the expense for keeping in
epair. The smaller sizes can be run with Horse Power.

No Sawidust! No Panimg!
Thin lumber, $1-16$ to 1 ininch thick, cut and seasoned by
our recently patented machines, equal if not superior to
the sawed and planed wood. being mooth fatand
all cases perfect

GEO. W. READ \& CO.,
186 to 200 Lewis Street, New York.
Better han a hammock, as it fits the body as pleasantly,

DUC'S IMPROVED ELEVATOR BUCKET

KNOW THYSELF.

曼,

Machinists' Tools.

Lahes, Planers, Drills, \&ec. vew haven manveectitive coi:

Mason's Friction Clutehes and Lievator "' New and Improved Patterns.."
OLNEY W. MASON \& CO., Providence, R. I., U.S.A

- PALENTS
 REGISTRYRIGH'TS, LIABEL

Messrs. Munn \& Co., in connection with the publicaion of the Scientific American, continue to examine Inventors.
In this line of business they have had over thirty EARS' Experience, and now have unequaled facilities for the Preparation of Patent Drawings, Specifications, United States, Canada, and Fications for Patents in the Munn \& Co. also attend to the preparation of Cavers, Registration of Labels, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to them is done with special care and promptness, on very moderate
We send free of charge, on application, a pamphlet containing further information about Patents and how to procure them; directions concerning Labels, Copy-
rights, Designs, Patents, Appeals, Reissues, Infringerights, Designs, Patents, Appeals, Reissues, Infringe-
ments, Assignments, Rejected Cases, Hints on the Sale of Patents, etc.
Foreign Patents.-We also send, free of charge, nopsis of Foreign l'atent Laws, showing the cost and method of securing patents in all the principal coun-
tasi of the world. A merican inventors should bear in m nil that, as a general rule, any invention that is valu. able to the patentee in this country is worth equally as
much in England and some other foreign countries much in England and some other foreign countries. French, an 1 Belgian-will secure to an invent or the exclusive mouopoly to his discovery among about one HUNDRED AND FIFTY MILLIONs of the most intelligent people in the worid. The facilities of business and steam communicat:on are such that patents can be ob-
tained abroad by our citizens almost as easily as at tained abroad by our citizens almost as easily as at
home. The expense to apply for an English patent is $\$ 75$; German, $\$ 100$; French, $\$ 100$; Belgian, $\$ 100$; Canadian, $\$ 50$.
Conies
issued from 1836 to ats.- Persons desiring any patent with official copies at reasonable cost, the price depending upon the extent of drawings and length of specifications.
Any patent issued since November 20, 1866, at which
 this office \$1. this office $\$ 1$.
A copy of the claims of any patent issued since 1836 will be furnished for $\$ 1$
as above and state name please to remit forthe same
A pamphlet, containing full directions for obtaining United States patents sent free. A handsomely bound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every patentee and mechanic, and is a useful hand book of r MONN \& CO.
Publishers SCIENTIFIC AMERICAN, 37 Park Row, New York.
BRANCH OFFICE-Comer of F and 7th Streets

Millers' Exhibition,

EXPOSITION BoILdings, in cincinnait,
May 31 st to June 26 th inclusive.
Six Automatic Cut-off Engines to be Tested.
Ten Complete Flour Mills in Operation.

A Complete Vienna Bakery.
Mill Machinery from all Quarters of the Globe.
Reduced Railroad Rates.
Ample Hotel Accommodations.

FOR SALE, TRACTION ENGINE,

HW.JOHIS' Shesphis moorna

BOILER COVERINGS, Steam Packing, Sheathings, Contings, Gements H. W. JOHNS M'r'G CO., 87 MAIDEN LANE, N, Y

F. SIVILLA PRATS,

 Mill Stones and Corn Mills.

 The J. L. Wott Iron Works,
 WATER CLOSETS.

PORTLAND CEMENT,

THE MACKINNON PEN OR FLUID PENCIL.

R2 2

Short, Pocket size, Hind finisititit,
 Mackinnow PEx Co., Patentees and Manafacturers, 200 Broadway, New York.

 HARTFORD
STEAM BOILER Inspection \& Insurance COMPANY.
W.b. FRANKLIN,V. Pres't. J. M. ALLEN, Pres't. J. B. PIERCE, Sec'y.

Scott's Gear Moulding Machives,
AIR COMPRESSORS \& ROCK DRILLS. Delamater Iron Works, Boiler Makers, Engine Builders,

FOOT OF W. 13th ST., North River, NEW YORK. ESTABLISHED 1841.
Roots' New Iron Blower.

POSITIVE BLAST. IRON REVOLVERS, PERFECTLY BALANCED IS SIMPLER, AND HAS FEWER PARTS THAN ANY OTHER BLOWER. P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.
S. S. TOWNSÉND, Gen. Agt., $\left\{\begin{array}{l}6 \text { Cortlandt St., } \\ 8 \\ \text { Dey Stret, }\end{array}\right\}$ NEW WM. COOKE, Selling Agt., 6 Cortlandt Street,
JAS. BEGGS \& CO., Selling Agts., 8 Dey Street, CSEND FOR PRICED CATALOGUE.

BOYLE ICE MACHINE CO., 10 N. Jefferson St., Chicago, Ill.
The best ITe and Refrigerating Machines of all sizes and
for all purposes guaranteed. Send for circular.
TELEPHONE ETM,
THE PICTET
ARTIFICIAL ICE COMPANY, Limited, Ice Machines to make from 20 pounds per hourto 50 tons
per day, at 36 Cortlanait St., New York. F. O. Box 3083 .

$$
\begin{aligned}
& \text { WM. A. HARRIS, } \\
& \text { PROVIDENCE, } \mathbf{R} \text {. IARRK STR } \\
& \text { Sixminuteswaik West from station }
\end{aligned}
$$

Six minutes raik wast from station HARRIS-CORLINS ENGINE

0UR CATALOCVES, illisastatad and pricediod

 Holly's Improved Water Works.

THE TANITE CO., STROUDSBURG, PA. EMERY WHEELS AND GRINDERS.

ROCK DRILLING MACHINES

 AIR COMPRRESSORS

FRIEDMANN'S PATENT INJECTOR,

BOILER

FEEDER

Simple, Reliable, and Effective.
40,000 IN ACTUAL USE. NATHAN \& DREYFUS, Sole Manufacturers, NEW YORK.

§cientific Antexicam

The Asbestos Packing Co.
 ROPE PA JOURNAL MILL GHEATHING PAPER, FLOORING FELT.
CLOTH.

Leffel Water Wheels,

With recent improvements.
Prices Greatly Reduced.
8000 in successful operation. 8000 in successful operation.
FINE NEW PAMPELET FOR 1879, Sent free to those interested James Leffel \& Co., 110 Liberty St., N. Y. C

GENUNE BABBITT METAL, Fine Brass and Composition Castings,
E. STEBBINS M'F'G CO., SPRINGFIFLD, MASS The Rodier Patent Single Iron Plane.

Pyrometers, For shoming hatat of

The attention of Architects, Engineers, and Builde

Patent "AIR SPACE" Method. ASBESTOS MATERIALS,

"BUCKEYE"
LAWN MOWER.

$$
\text { FOR } 1880
$$

FOR 1880.
The Most Popular Scientific Paper in the World.
VOLUME XLII. NEW SERIES.
Only \$3.20 a Year, including postage. Weekly.
This widely circulated and splendidly illustrated paper is published weekly. Every number contains sixteen pages of useful information, and a large number of
original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery.
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers fifd in The ScIentipic AMERICAN a popular resume of the best scientific information if ine an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind, this journal affords a constant supply of instructive
reading. It is promotive of knowledge and progress in reading. It is promotive of knowledge
every community where it circulates.
Terms of Subscription.-One copy of THE SCIENpostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty
cents by the publishers; six months, $\$ 1.60$; three months, $\$ 1.00$.
Clubs.-One extra copy of Teiescientific Amerian will be supplied gratis for every club of five subscribers rate. Postage prepaid.
One copy of The Scientific American and one copy
of THE SCIENTIFIC AMERICAN SUPPLEMENT will be sent of THE SCIENTIFII AMERICANSUPPLEMENT will be sent the publishers.
The safest way to remit is by Postal Order, Draft, or Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes securely sealed, and correctly addressed, seldom goes
astray, but is at the sender's risk. Address all letters

MUNN \& CO.,
37 Park Row, New York.
To Foreign Subscribers.-Under the facilities of the Postal Union, the ScIENTIFIC AMERICAN is nowsent by post direct from New York, with regularity, to subscribere in Great Britain, India, Australia, and all other
British colonies; to France, Austria, Belgium, Germans, British colonies; to France, Austria, Belgium, Germany,
Russia,and all other European States; Japan, Brazil, Mexico, and all States of Central and South America. Terms, when sent to foreign countries. Canada excepted, \$4, gold, for ScIENTIFIC AMERICAN, 1 year; $\mathbf{; 9 9 \text { , gold, for }}$
both SCIENTIFIC AMERICAN and SUPPIEMENT for 1 both Scientific American and Suppiement for 1
year. This includes postage, which we pay. Remit bs postal order or draft to order of Munn \& Co., 37 Part
por Row, New York.
THE "Scientific American" is prinied with CHAS.
bard SNEUJOHNSON SC., Philadelphia, and 50 Gold St. Tenth and Lim.

