
a WeEkly Journal of practical information. art. science, mechanics, chemistry and manufactures.

THE MANUFACTURE OF PRINTER'S TYPE.-FARMER, LITTLE \& CO.'S FOUNDRY NEW YORK CITY.-[See page 244.]

Brientifir smpritan.

ESTABLISHED 1845.
MUNN \& CO., Ediלors and Proprietors. published weekly at
NO. BY PARK ROW, NEW YORK.

O. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN

One copy, one year postage included...
One copy six months, postage included
$\mathbf{8 3 6 0}$
160
Clubs.-One extra copy of THE SCIENTIFIC AMERICAN will be supplied
gratis for every club of five subscribers at $\$ 3.20$ each : additional copies at gratis for every club of tive subscribers at
same proportionate rate. Postage prepaid.
Remit by postal order Address $\begin{gathered}\text { MUNN \& CC., } 37 \text { Park Row. New York. }\end{gathered}$
To Advertisers.-The regular circulation of the Scientific American is now Fifty Thousand Copies weekly For 1880 the

The Scientific American Supplement

Scientific American Export Edition.

NEW YORK, SATURDAY, APRIL 17, 1880.

Contents.	
(Illustrated articles are marked with an asterisk.)	
American industries*. -......... ${ }_{24}^{44}$	
${ }^{\text {Atropine, artificla }}$	Napter,
年ese, national plant of the... ${ }_{240}^{243}$	Notes and
Coffee eiffect o	Patent decisions................ ${ }^{248}$
Collegians. ill	Petroleum in Russia ${ }_{24}^{42}$
Corn planter ${ }^{\text {Dids }}$ for the............... ${ }^{243}$	${ }_{\text {Phyoto-engraving }}^{\text {Phyora }}$................ ${ }^{241}$
Diamond mak	Pipe tongs, im
Edison's horseshoe lamps....... 241	Presses, handand power*......... 242
Electric lamp, An	Ra
sh cultural Assn., A merican.	Sciatica, nerv
hes on the Pa	Sea worms,
Fertilizer, Graetzel's. ${ }_{\text {Gaseous }}$	Sight for firearms, novel *. ${ }^{245}$
Glucose, grape sugar, corn sirup. 249	Sodawater,
cose manufacture 241	
tites, the	St
Horse collar, steel, inproved *.. ${ }_{2}^{243}$	Sucar in so
	Trout, when it may be caught.... ${ }_{248}^{48}$
ventions, ag	Type, F
Inventions, engineering.... ${ }^{\text {Inventions }}$ 248	
entions, miscellicneous....... ${ }^{243}$	
Island, floating	cresses..................... 248
1 lata Mining, ete.. Co...... 249	Water system of New York..... 245
Moss industry in Louisiana ... 245	White perch, voice of the

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT

 NO. 224For the Week ending April 17, 1880. Price 10 cents. For sale by all newsdeales.

II. TECHNOLOGY AND CHEMISTRY.-Malleable Nickel and

III. ARCHITRCCTURE. ART. ETC.--The Porosity of Builining Mate-

IX BIOLOGY, ETC.-He eight and span of the Japanese. An inter-

the national plant of the chinese.

The uses of the bamboo, says Dr. S. W. Williams (author of "The Middle Kingdom"), are so numerous as to entitle this grass to be called the national plant. It grows naturally throughout the country nearly to the latitude of Pekin, di minishing in size and strength as one goes northward. The varieties induced during the long period of its culture are numerous, and a native writer on its propagation observes at the outset of his treatise that he could not undertake so much as to name them all, and would therefore confine him self to a consideration of sixty three of the principal. Some of them are like trees, forty or fifty feet high, with culms eight inches in diameter at the root; others resemble pipe stems through their length, graceful and slender as a ma gician's wand; while one kind presents a black, and another has a bright yellow skin. This plant may well be called useful, for it is applied by the Chinese to such a vast variety of purposes that they are puzzled to get along without it when they emigrate where it does not grow. The tender but tasteless shoots are cut for food, either boiled, pickled, or comfited, as the customer wishes. The seeds, too, fur nish a farina suitable for cakes, and the Chinese have a pro verb that the bamboo flowers chiefly in years of famine. The gnarled roots are carved into fantastic images of men, birds, monkeys, or monstrous perversions of animated nature; cut into lantern handles or canes, known in commerce as "whangees;" or turned by the lathe into oval sticks for worshipers to divine whether the gods will hear or refuse their petitions.
The tapering culms are used for all purposes to which poles can be applied in carrying, supporting, propelling, and measuring, by the porter, the boatman, and the carpenter in all cases where lightness, strength, and length are requi sites. The joists of houses and the ribs of sails, the shafts of spears and the wattles of hurdles, the tubes of aqueductsand the rafters of roofs, the handles of umbrellas and the ribs of
fans are all constructed of bamboo. The leaves are sewed upon cords in layers to make rain cloaks, swept into heaps for manure, matted into thatches, and used as wrappers in cooking rice dumplings. Cut into slivers of various sizes, the wood is worked into baskets and trays of every form and fancy, twisted into cables, plaited into a wnings over boats, houses, and streets, and woven into mats for the scenery of the theater, the roofs of houses, and the casings of goods. The shavings even are picked into oakum and mixed with those of the rattan, to be stuffed into mattresses. The bam boo furnishes material for the bed and the couch, chop-sticks to use in eating, pipes for smoking, flutes, curtains to hang in the doorway, brooms, screens, stools, coops, stands, sofas and other articles too numerous to mention, of household necessity and luxury. The mattress to lie on, the chair to sit upon, the table to dine from, the food to eat, and the fuel to cook it with are alike derived from it. The ferule to govern the pupil and the book he studies both originate here. The tapering tubes of the native organ and the dreaded in strument of the lictor, the skewer to pin the hair with, and the hat to screen the head, the paper to write on, the pencil to write with, and the cup to hold the pencils; the rule to measure lengths, the cup to gauge quantities, and the bucket to draw water; the bellows to blow the fire with and the tube to hold the match; the bird cage and the crab net, the life preserver and the children's buoy, the fishpole and sumpitan, the water-wheel and eaves-trough, sedan, wheelbarrow, and handcart, with scores of machines and utensils, are one and all furnished or completed by this magnificent grass, the graceful beauty of which when growing is comparable to its varied usefulness when cut down.
China could hardly be governed without the constant application of the bamboo, nor could the penple carry on their daily pursuits without it. It serves to embellish the garden of the patrician and shade the hamlet of the peasant; it com-
poses the hedge which separates their grounds, assists in poses the hedge which separates their grounds, assists in which labor on them. The boatman and weaver find its slender poles indispensable to their trades, while there is nothing the artists paint so well on wares and embroideries. The tabasheer found in the internodes has its uses in native pharmacy, and the silicious cuticle furnishes the engraver a good surface for carving and polishing.

the metropolitan museum of art

The new building of the Metropolitan Museum of Art, in Central Park, New York city, was officially declared open to the.public March 30. A large number of prominent citi zens were present, including President Hayes and the Secretary of State. In accepting the building from the Park Department, the president of the museum spoke of the en couraging beginning that had been made in art collections, and said that the department devoted to industrial art promised to be soon filled. The industrial art schools had made a good beginning and were proving successful. The main address of the occasion was delivered by Joseph H. Choate, on the history and future plans of the museum. Mr. Choate said that the aim of the trustees was not to establish a mere cabinet of curiosities which should serve to kill time for the idle, but gradually to gather together a more or less com plete collection of objects illustrative of the history of art in all its branches, from the earliest beginnings to the present time, which should serve not only for the instruction and entertainment of the people, but should also show to the students and artisans of every branch of industry in the high and acknowledged standards of form and of color, what the past had accomplished for them to imitate and excel.

It was also a prominent feature of the plan, in which ome progress has already been made, to establish a Maseum of Industrial Art, as distinct from the beautiful in art, for the direct and practical instruction of artisans, showing the whole progress of development from the raw material, through every artistic process to the most highly wrought product of which art is capable.
The building now open forms one-twelfth of the plan of the grand structure proposed for the museum.

aIdS FOR THE DEAF.

Dr. C. H. Thomas, of Philadelphia, has been making a areful study of audiphones, dentiphones, and other devices or helping the deaf to hear. As stajed in a lecture before he Philadelphia County Medical Society, since published in the Medical Times, the objects sought in his investigations ere
(1) To demonstrate the principles upon which their action is founded; (2) to determine the practical value and range of use of these instruments; (3) to devise other and more con venient and less conspicuous forms of mechanism which might be substituted for them; (4) to improve the quality and increase the volume of the sound conveyed; (5) to discover new physiological and pathological facts relating to the functions of vocalization and hearing; and (6) to throw open to professional, and so to public, use the results gained, thus supplying data for further investigation and invention. It appeared that both the audiphone and dentiphone depend for their action upon the principle of acoustics that solids-in this case in the form of thin plates-vibrate in unison with the sound waves produced in the air near them. In these instruments the vibrations are of sufficient force to be audible when conveyed to the internal ear through the medium of the teeth and cranial bones, independently of the ordinary channel of hearing-the transmission being direct in the audiphone and indirect through the conducting string in the dentiphone. In the audiphone not tension but the arched form is the condition essential toits proper action, for this form is that best adapted to impart the impact of sound waves against its convexity, which is then expended as thrust of the arch against the teeth, these forming one of its abutments.
To do away with conspicuousness and inconvenience of these instruments, Dr. Thomas made one in which the large receiving diaphragm was attached to a curved rod of wood or metal, like a pipe-stem. In this way the diaphragm was supported below the level of the face by the curved stem held firmly between the teeth, allowing the user to have his hands free and his face uncovered. In experimenting with different materials for diaphragms it was found that when substances lacking in resonance were used (such as celluloid and binder's board) flatness of tone resulted. Substances, which were over-resonant or over-persistent in their vibra tions (as vulcanite and ferrotype metal) yielded ringing or confused sounds. The quality needed is that possessed by good sounding boards, of instantly responding to contiguous sounds and maintaining them during their continuance, and also of instantly ceasing to vibrate upon the cessation of the causative sound. This right sort of elasticity of resonance, that capable of reproducing human voice tones in thei purity, is possessed to a high degree by fuller's board (o press-board), which, when treated with shellac varnish and thoroughly dried, has proved not only far better than other paper or cardboards, but is also a great improvement upon the sheet metals or hard rubber, lacking the "reverbera tions" and "roaring sounds" of the latter, as they are de scribed by different patients upon whom they have been tested. Besides, owing to its greater elasticity, it is less de structible than either these or the thin sheets of wood which otherwise answered the purpose, while its cost is but trivial.
The simplest instrument, one that excels either the audi phone or the dentiphone in the volume of sound transmitted, consists simply of a small rod of hard wood-a convenient ize being about two feet long and a quarter of an inch thick -one end of which is placed against the teeth of the speaker, the other resting against or between the teeth of the person hard of hearing. If the speaker now articulates in a natural tone of voice, the vocal vibrations will be transmitted in grea volume through the teeth and thence to the ears of the deaf person.
Later observations show that it will also convey the voice distinctly when placed against the forehead or other portions of the skull of the hearer. It will also convey perfectly audible speech from the skull of one to that of the other, or in its absence such sounds may be conveyed by simply bringing the heads themselves in contact. Again, instead of the speaker holding it against his teeth, he may place it against the upper part of his chest, when, upon using his voice, the sound will be conveyed as before, of course independently of the teeth of either person.
That these instruments are of great value in a considerable proportion of cases of deafness, Dr. Thomas thinks there is no reason to doubt, but there is, in his opinion, no just ground for the public belief that with their aid the deaf are enabled to hear as wèl as those with ordinary hearing. On the contrary, they supply but a very small fraction of normal hearing-much less than a hundredth part. The difference between normal hearing and that derived through these means is hardly less marked than that between sunlight and candle-light; nevertheless, this very small fraction is a priceess value in many cases, for to those who practically hear nothing without them, who sit in acoustic darkness, the gain
is all the difference between nothing and something-scarcely less than infinity.
In view of certain strongly expressed statements which have obtained currency, the results to be derived from the use of the audiphone in deaf-mutism are likely to prove very disappointing. Repeated tests show that those who are able to hear with the aid of the audiphone hear their own voices perfectly without it; while those who are unable to hear their own voices without it can hear no other voice with it.

SOME ELECTRICAL MEASUREMENTS OF ONE OF MR. EDISON'S HORSESHOE LAMPS.

by henry morton, ph.d, alfred m. mater, ph. d., and b. f.
Much has been written and said within the last few months on the subject of Mr. Edison's new horseshoe lamps, and with all the writing and saying there has been wonderfully little produced in the way of precise and reliable statement concerning the simple primary facts, a knowledge of which would give the means of estimating both the scientific and commercial status of this widely discussed invention.

It was, therefore, with great pleasure that the present writers found themselves, through the kindness of the Scientific American, placed in possession of one of these horseshoe lamps of recent construction.
To satisfy themselves as to the real facts of the case they soon made a series of careful measurements and determinations, and as the results of these are likely to interest others, they now put them in print for general benefit.

A further examination of other lamps would have been made at the same time had opportunity offered; but as a communication on this subject addressed to Mr. Edison did not evoke a reply, they are obliged to content themselves with the one lamp as a subject of experiment.
They would, however, here remark that the behavior of this lamp, under the tests, and the agreement of its results with information otherwise obtained, convince them that it is at least a fair specimen of the lamps of this form so far produced at Menlo Park.
The first object, on receiving the lamp, was to determine roughly what amount and character of electric current would be needed to operate it efficiently. With this view a number of cells of a small Grove's battery were set up, having each an active zinc surface of twenty square inches and a platinum surface of eighteen square inches.
The lamp being placed in the situation usually occupied by the standard burner in a Sugg's photometer, the battery was, cell by cell, thrown into circuit.
When ten cells had been introduced the horseshoe showed a dull red, with fifteen cells a bright red, with thirty-four cells the light of 1 candle was given, with forty cells the light of $41 / 2$ candles, and with forty five cells the light of 9_{5}^{1} candles, and with forty-eight cells 16 candles.
Having thus determined what amount of electric current would be required for experiments, arrangements were made to measure accurately the resistance of horseshoe while in actual use and emitting different amounts of light. The resistance of this carbon thread at the ordinary temperature had been already determined as 123 ohms in the usual way, but it was presumed, as had been shown by Matthiessen (Phil. Mag., xvi., 1858, pp. 220, 221), that this resistance would diminish with rise of temperature.
To measure the resistance under these circumstances the apparatus was arranged as follows: The current from the battery was divided into two branches, which traversed, in opposite directions, the two equal coils of a differential galvanometer. One branch then traversed the lamp, while the
other passed through a set of adjustable resistances comother passed through a set of adjustable resistances composed of German-silver wires stretched in the free air of the laboratory, to avoid heating. (Careful tests of these resistances showed that no sensible heating occurred under these circumstances.)
Matters being thus arranged, the resistances were adjusted until the galvanometer showed no deflection when the candle power of the lamp was taken repeatedly in the photometer, and the amount of resistance was noted.
These measurements were several times repeated, shifting the coils of the galvanometer and reversing the direction of the current.
The results so obtained were as follows:

Resistances.	Condition of Loop.
123 ohms.	Cold.
94	Orange light.
$83 \cdot 7$	$\frac{9}{10}$ candle.
$79 \cdot 8$. 5 "
75	18

The photometric measurement was in all these cases taken with the carbon loop at right angles to the axis of the photometer, which was, of course, much in favor of the electric lamp. On turning the lamp round so as to bring the carbon loop with its plane parallel with the axis of the photometer, i. e., the edge of the loop turned toward the photometer disk, the light was greatly diminished, so that it was reduced to almost one-third of what it was with the loop sideways to the photometer disk.
Having thus determined the resistance of the lamp when in actual use, it was next desirable to measure the quantity of the current flowing under the same conditions.
To do this the current from fifty cells of battery was passed through a tangent galvanometer as a mere check or
indicator of variations, and then through a copper voltaindicator of variations, and then through a copper volta-
meter, i. $e_{\text {, , a jar containing solution of cupric sulphates }}$
with copper electrodes immersed, and then through the lamp, placed in the photometer.
Under these conditions it was found that during an hour the light gradually varied from about 16 candles at the beginning to about 14 candles at the end, making an average of about 15 candles, measured with side loop of toward disk.

The galvanometer during this time only showed a fall of half a degree in the deflection of the needle.
Carefully drying and weighing the copper electrodes, it was found that one had lost $1 \cdot 0624$ grammes.
Now, it is well known that a current of one weber takes up 0.00326 gramme of copper per second, which would make $1 \cdot 1736$ grammes in an hour; therefore the current in the present case must have been on the average $\frac{1 \cdot 0624}{1.1736}=0.90$

ebers, or a little less than one weber

Having thus obtained the resistance of the lamp when emitting a light of 15 candles, namely, 76 ohms, and the amount of current passing under the same conditions, namely, 0.905 weber, we have all the experimental data required for the determination of the energy transformed or expended in the lamp, expressed in foot pounds. For this we multiply together the square of the current, the resistance, the constant $0 \cdot 737335$ (which expresses the fraction of a foot pound involved in a current of one weber traversing a resistance of one ohm for one second), and the number of seconds in a minute. Thus, in the present case, we have $0.905^{2}=0.8125$, and $0.8125 \times 76 \times 0.737335 \times 60=2753.76$ foot pounds.
Dividing these foot pounds per minute by the number of foot pounds per minute in a horse power, that is, 33,000 , we of a horse power as the energy expended in each lamp.
It would thus appear that with such lamps as this, on horse power of energy in the current would operate 12 lamps of the same resistance with an average candle power of 10 candles each,* or 120 candles in the aggregate.
Assuming that a Siemens or Brush machine were employed to generate the electric current, such a current would be obtained, as has been shown by numerous experiments, with a loss of about 40 per cent of the mechanical energy applied to the driving pulley of the machine. To operate these 12 lamps, therefore, we should have to apply more than one horse power to the pulley of the machine, so that when this loss in transformation had been encountered there should be one horse power of electric energy produced. This would call for $1 \frac{2}{3}$ horse power applied to the pulley of the dynamo-electric machine, by the steam engine.
To produce one horse power in a steam engine of the bes construction about three pounds of coal per hour must be burned, and therefore for $1 \frac{2}{3}$ horse power 5 lb . of coal must be burned.
On the other hand one pound of gas coal will produce 5 cubic feet of gas, and will leave, besides, a large part of its weight in coke, to say nothing of other "residuals," which will represent practically about the difference in value between "steam making" and " gas making coal," so that it will not be unfair to take 5 lb . of gas coai as the equivalent of 5 lb . of steum coal.
These 5 lb . of gas coal will then yield 25 cubic feet of gas, which, if burned in five gas burners of the best construction, will give from 20 to 22 candles each, or 100 to 110 candles in the aggregate.
We have, then, the twelve Edison lamps producing 120 candles and the five gas burners producing 10) to 110 can dles, with an equivalent expenditure of fuel.
If each apparatus and system could be worked with equal facility and economy, this would of course show something in favor of the electric light; but when in fact everything in this regard is against the electric light, which demands vastly more machinery, and that of a more delicate kind, requires more skillful management, shows more liability to disarrangement and waste, and presents an utter lack of the storage capacity which secures such a vast efficiency, convenience, and economy in gas, then we see that this re latively trifling economy disappears or ceases to have any contr
ject.

THE AMERICAN FISH CULTURAL ASSOCIATION

The ninth annual meeting of the American Fish Cultural Association began in this city Marc? 30. A large number of gentlemen interested in fish and fishing were present. The President, Mr. R. B. Roosevelt, read an interesting paper on hybrids. Mr. Seth Green contributed an account of his experience with California mountain trout, brook trout, and black bass at the State hatchery, with remarks on cray-fish and frogs.
Mr. Hugh D. McGovern submitted a short paper on the discovery made by him of a curious habit of eels. At the Brooklyn waterworks, among the wet moss growing on the crown of an arch over a waterway, 12 inches above the sur face of the water, he found thousands of small eels, who seemed to live there, clinging to the moss as flies cling to the ceiling. The fact was important, as showing how this fish could move from water to water. To reach the moss these eels must have climbed up the 12 inches of wet wall above the surface of the water.
Mr. Livingston Stone, U. S. Assistant Commissioner of Fisheries, followed with an important paper on the transportation of live fish. Mr. James Annin gave an illustration of
*The candle power being 15 candles in the best position, and 5 candles
at right angles to this, the average or general illuminating power of the
trout stripping in artificial propagation, using a number of male and female trout from his ponds on Long Island. Mr. Charles Hallock gave a description of Labrador fishing, and Mr G. Lamphear read a short but valuable paper comparing the statistics of Fulton Fish Market for 18 g8 and 1879 His figures showed that $34,276,666$ pounds of fish were sold in Fulton Market during the year 1879-'80, an increase of 646,700 pounds over the previous year. In addition, 1,509, 561 mackerel had been sold and 291,845 shad.
The next day Prof. Brooks, of Johns Hopkins University, described the propagation of the oyster; and Prof. Atwater, of Wesleyan College, read a paper on the nutritive qualities of various kinds of fish. Prof. Brooks believes that the oysters of the Chesapeake do not breed in the same way as European oysters do; that the sexes are separate; and that o propagate oysters artificially the males and females should be chopped up together and thrown into the water, so as to horoughly mix the eggs and milt.
In this way, he thinks, the oyster might be propagated with profit, using for the purpose small ponds. All this learned tritling will be very amusing to the practical oystermen of Connecticut, who, for a score of years, have suc cessfully propagated oysters by the square mile. Their trouble is not to get an abundance of young oysters. At certain easily recognized times the Sound waters swarm with them, ready to attach themselves to any clean "stools" pre sented to them. The real trouble is to defend the oyster farmer's acres of partially grown oysters from the swarms of star-fish and other marine vermin which prey upon them for which defensive work steam dredging seems to be the only economical and certain resource.

PHOTO-ENGRAVING.

In general terms the process of producing engravings or types for printing by photography, consists, first, in making a sharp negative of the picture to be engraved; second, in the photographic printing of a sheet of sensitized gelatine by means of the negative; third, the development of the printed lines upon the surface of the gelatine by water; and fourth, the casting of a copy of the developed gelatine sheet in metal, the metal so produced being used for printing on the press in the ordinary manner. All this is very simple, and in the hands of experienced and skilled persons very beauti ful examples of printing plates, having all the fineness and artistic effect of superior hand engraved work, may be pro duced.
Among the earliest and most extensive efforts to intro duce this process commercially were those of Mr. John C. Moss, of this city, to whose persevering labors the public is chiefly indebted for the successful establishment of the ew industry in this country.
Mr. Moss has finally concluded to give the public the benefits of all his latest improvements in this line, by the organi zation of a new corporation known as "The Moss Engrav ing Company," whose first announcement will be found in our advertising columns. Every description of engraving and printing plates is done in a superior manner by the company promptly on very moderate terms. The Moss pro eess has been used on the Scientific American, especially on our Supplement, for several years past, and we therefore speak from experimental knowledge when we say that it is good and reliable. The motto of Mr. Moss's company is "The best work at low prices, always on time." In all our past experience with Mr. Moss, although we have given him many perplexing jobs, we have never known him to fail in carrying out the above motto. The Moss Engraving Company has a large and splendid establishment at 435 Pearl St. New York, which is fitted up in every department with the latest and best appliances for the execution of good work. It deserves and will doubtless command an extensive patron age.

THE NEW YORK EXHIBITION OF 1883.

A bill to provide for celebrating the one hundredth anniversary of the treaty of peace and the recognition of American independence by holding an International Exhibition of arts, manufactures, etc., in New York, in 1883, passed the Senate March 31. It incorporates the United States Inter national Exhibition, composed of well known New York gentlemen, whose official functions are to continue until the close of the Exhibition. It will be their duty to fix the date of the Exhibition, make the needed preparations for it on a site within the corporate limits of the city of New York, and to superintend the Exhibition during its progress. The bill provides further that the corporation shall cease to exist on or before January 1, 1885. Congress may at any time alter or repeal the act, and the United States are not to be liable for any of the acts or representations of the promoter of the enterprise. Not less .than $\$ 1,000,000$ must be subscribed, and not less than 10 per centum thereof must be paid in before the corporation may do any corporate act other than organize, and no part of the capital stock or assets is to be withdrawn, refunded, or divided among the stockholders until all the debts are fully discharged.

Glucose Manufacture.

There appears to be quite a furor in the West in connee ion with the manufacture of glucose from corn. A large number of factories are being set up; one at Chicago, it is said, will have a capacity of 20,000 bushels a day. A bushel of corn produces 30 pounds of glucose (grape sugar) or 3 gallons of sirup. The sugar costs 2 cents a pound, the corn gallons of sirup. The sugar
selling at 40 cents a bushel.

Artificial Atropine.

Up to the present time the artificial preparation of an alkaloid has not been successfully carried out. Vanilline and other organic products formed in plants have been made, and a substance isomeric with coniine was also made some years since. Ladenburg has recently taken an important step in the matter of making artificial atropine. He has, in fact, prepared the alkaloid, but the materials employed in its preparation, namely, tropine and tropic acid, have not yet been obtained from any other source than from atropine. When atropine is acted upon by baryta or hydrochloric acid, it breaks up into tropic acid and tropine. To be able to unite these two bodies again, so as to form the true atropine, may seem a small affair, and yet it is often very difficult. Every one knows how grape sugar splits up into alcohol and carbonic acid, if yeast is present, yet no one has ever been able to convert alcohol into sugar by acting upon it with carbonic acid. The conversion of cane sugar into glucose is easy enough, and yet the opposite is impossible. The destruction of complex organic compounds is always easier than their production, and whenever we succeed in rebuilding a body from simpler ones we have made an important step in the direction of its synthesis. To decompose the tropic acid into simpler bodies, perhaps into substances that have already been prepared, and then to reverse the opera tion, will be the next duty of Dr. Ladenburg.
Atropine is the active constituent of belladonna, and possesses, with other properties, the remarkable power of dilating the pupil of the eye, whether introduced into the eye, taken into the stomach, or injected beneath the skin.
The artificial atropine prepared by Ladenburg has the same effect upon the eye. Both the natural and the arti ficial alkaloids possess the power of neutralizing the action of muscarine upon the heart. Physically they have the same melting points, and both crystallize in brilliant needles. The precipitates formed by tannin, mercurio-potassic iodide, picric acid, chloride of gold, etc., have the same properties whether the natural or artificial atropine is employed. When heated with sulphuric acid and bichromate of potassium they each evolve an odor of benzoin. These remark able physical and chemical coincidences leave no reasonable doubt of their identity.

The Effect of Coffee Again.

Dr. Richardson, the eminent English scientist, in respect to the popular notion that coffee is an unhealthy beverage, that it keeps up a constant irritation of the stomach, and brings on depression of spirits, etc. There was a great deal of truth in that statement, says the doctor, as coffee cannot be taken in excess without producing dyspepsia and irritation, but moderately used it is an invigorating, healthful, and wholesome drink, bringing a man's best energies into play. The quantity taken, however, must not be large, and should be good.

Dr. Bock, of Leipsic, another celebrated scientist, says: "The nervousness and peevishness of our times are chiefly attributable to tea and coffee: the digestive organs of confirmed coffee drinkers are in a state of chronic derangement, which reacts on the brain, producing fretful and lachrymose moods. Fine ladies addicted to strong coffee have a characteristic temper, which I might describe as a mania for acting the persecuted saint. Cocoa and chocolate is neutral in its psychic effects, and is really the most harmless of our fashionable drinks."

Nerve Stretching in Obstinate Sciatica.

At a recent meeting of the Harveian Society, London, Mr. Pye read a paper on nerve stretching. A patient had suffered for many years with severe sciatica, for the treatment of which huge doses of morphia had been used. The patient was in severe pain when not under the influence of morphia. The nerve having been laid bare, it was pulled backward and forward, forcibly, with from eight to ten pounds pressure. The wound healed well, the pain was lost, and some paresis followed. The paresis wore off, and some pain was felt in the lower leg, but there was no return of the sciatica. The patient was able to resume work. The sciatica was probably rheumatic. The list of cases of nerve stretching yet performed is not large enough to settle the question of the justifiableness of the operation. Mr. Pye then reviewed very carefully the history of the operation. It has been less successful in the treatment of tetanus than neuralgia. When the nerve was compressed by an inflammatory area the operation promised well. In cases where the skin had become altered a change toward the normal condition followed, as well as the relief of pain.

Petroleum in Rissia.

From an official report addressed by Colonel Romanowsky to the Russian Minister of Finance, it appears that the principal petroleum depots in the Russian Empire are to be found in the southeastern and northeastern districts of the Caucasus, that is to say, in the province of Bakou, on the shores of the Caspian Sea, and in the province of Kouban, in the vicinity of the Black Sea. According to the statements of some Russian engineers, there are no less than 250 localities within these provinces where enormous quantities of petroleum can be found. It is said that 100 of these
depots, if properly worked, could be made to yield 660,000 , 000 gallons per annum. The Bakou oil is thick and heavy, suitable for heating and for rough purposes in general; the Kouban oil is of better quality for refining and for burning in lamps.

IMPROVED HAND AND POWER PRESSES.

We give on this page engravings of several varieties of prasses made by the Boomer \& Boschert Press Company of Syracuse, N. Y. These presses are adapted to a great range of work, such as baling cloth, pressing paper, expressing lard or tallow, making cider, wine, etc., and re built in different sizes to be operated by hand or power. An almost endless number of devices have been used for obtaining pressure, the most prominent being the'screw, the lever, and the hydraulic press, but these without exception give the same power at the beginning and end of the work.
In expressing lard and tallow or the different oils, as well as most other

Fig. 1.-CLOTH BALING' PRESS.
substances, but little power is required in the early part of the operation, and the constantly increasing resistance re quires a corresponding increase of power. The construc
tion of the Boomer \& Bos-

Fig. 2.-PAPER PRESd. insure a regular increase of power with every turn of the screw which tends to straighten the toggles, while the movement of the follower is proportionately less. The development of pressure and increase of resistance are so nearly equal that the same power that is applied at the beginning of the pressing operation is competent to finish. For example: one man with a hand power press can easily perform the task from beginning to end. This " progressive power," as the manufacturers term it, is perfectly adapted to the work, and Fig. 1 shows a cloth baling press embodying this prin ple. The platen is guided by the rods which bind the upper cross beams to the bed and take the strain of the press. The frame and platen of this press are wood, and may be varied in size within certain limits without materially affecting the cost.
The paper press shown in Fig. 2 is made of iron in different sizes. The length of the rods controls the distance between the base and follower and the capacity of the regular sizes of this press may be varied by using longer or shorter rods.

Fig. 3. POWER CIDER PRESS
The power cider press represented in Fig. 3 has a double platform, which is mounted on a truck, movable on a track on the floor. The shifting gear is worked by a crank, and is arranged to move the platform across the bed of the press easily and quickly. By means of this arrangement one In this may bressed while another is being made ready.
\& Boschert's apple we give an engraving of Messrs. Boomer adapted to the work it is required to perform.

The frame of the grater is made of iron, giving a security, trength, and stability which no wood frame, however well made, possesses. The cylinder is of iron, turned and carefully balanced. It has planed grooves to receive the knives -eight in number-which are adjustable by set screws, above and below at each end, and held firmly in their places by a heavy wrought iron band shrunk on each end of the cylinder

Fig. 4.-APPLE GRATER.
The concaves consist of five iron levers with movable weights, allowing stones or any other hard substances to pass through without injury to the knives.
Fig. 5 shows a press made on the same principle as the others and especially designed for kettle rendered scrap. It is provided with an improved hoop consisting of a cast iron section or post, which forms about one sixth of the hoop, is firmly bolted to the bed of the press. and arranged with hinges upen which swing two doors that complete the circlewhen fastened together. These doors areconstructed of wrought iron hoops and staves, with steel fastenings.
When the pressing is completed, the doors are unfastened and swung open, the cake is removed, the doors are swung together and again fastened,
Fig. 5.-LARD PRESS. g attending the use thus avoiding much of the heavy lifting atting of hoops. These presses have been extensively introduced in the principal cities of this country-as well as Europe, South America, Mexico, and to some extent in Asia, and are de serving of the success they have attained.

Floating Island.

Among the many natural curiosities of Tuolumne county it is not generally known that there is a "floating island." Up in the "Siskiyous," lying like a pearl in the great mountain chain, is Squaw lake, a beautiful sheet of water now utilized by a mining company as a reservoir. For many years the lake has been a favorite and delightful resort for fishing parties, and contained nearly in its center an island, comprising about an acre of ground, covered with luxuriant grass and a growth of willow and alder. It was never dreamed that the pretty little island was not terra firma, but when the bulkhead across the outlet of the lake dammed up its waters, the island rose slowly until it had been elevated fully 16 feet above its original level. It would be a question for the naturalist rather than the geologist to determine the age of this floating island, as it is evidently made up entirely of decayed vegetation. Perhaps at some remote period the roots of a tree, uptorn by the mountain storm, drifting out in the lake, formed the nucleus from which the island has grown, but it seems singular that it should have remained anchored and unchangeable in its position. The locality is much frequented by pleasure seekers who will hereafter notice the increased elevation.-Jacksonville Sentinel.

Home Made Soda Water.
The artificial seltzer water, made with a carbonic acid generator, is already an imitation, far from perfect, of the natural water. A receipt to make it on the small scale for family use, as it were, can only give a product differing still more from that of the spring. Yet the following would fairly imitate the taste and properties of the natural water:

Fused chloride of calcium	graius.
Chloride of magnesium.	12
Chloride of sodium	15
Citrate of iron	$\frac{1}{2}$ "
Tartaric acid	2 drachms.
Bicarbonate of soda	

Citrate of iron....
Tartaric acid.
Bicarbonate of sod
Water sufficient.
Dissolve all the salts, excepting the tartaric acid and the bicarbonate, in about one pint of water, and introduce the solution into a champagne bottle. Then, having completed the requisite quantity of liquid so as to leave an empty space of about two fluid ounces, add the tartaric acid, and, mmediatelyafter, the bicarbonate of soda. Cork the bottle tightly, secure the cork with stout cord, and set the bottle aside for about six hours before it is opened. It is then ready for use.

NEW METHOD OF BUOYING VESSELS

The annexed engraving represents a novel method of preventing the careening or rolling of vessels while discharging in port. Ordinarily vessels without ballast are supported by spars or logs; this improved method consists in attaching a line to airtight casks floating on the water at the sides of the vessel, and passing a line from each cask under the keel and up the opposite side of the vessel, where it is made fast. The casks employed for this purpose may be the ordinary water casks carried by all vessels. If one cask on each side is insufficient to produce the desired result two or more may be used. By this arrangement the least inclination of a vessel to roll is checked, and the cargo may be discharged without fear of careening.

WHEEDEN'S METHOD OF BUOYING VESSELS.
This device is adapted to pontoon bridges, floating docks, and may be applied to great advantage to disabled and leaky vessels at sea.
Further information may be obtained from the patentee, Mr.James C. Wheeden, 97 South Broadway, Baltimore, Md.

NEW CHECK-ROW, CORN PLANTER, AND FERTILIZER.

The machine shown in the annexed engraving is designed for planting corn in perfect check-row, so that the rows will be straight each way, and for delivering a limited amount of fertilizer to each hill.
The running wheels and the markers, G, are mounted on a sleeve placed on a shaft which runs through the lower portion of the body of the planter. The markers,G, consist of three segments connected with a central hub, and having arc-shaped bars concentric with the running wheels and provided with feet or markers which, by indenting the ground, make an impression that serves as a guide for dropping the next row. As the relative position of these markers may at times require changing, they are connected with the arc shaped bars by clamp plates and bolts so they may be rea dily fastened at any desired point.

On the outer sides of the hubs of the markers there are ratchet wheels which are engaged by pawls carried by the running wheels, and the inner sides of the marker hubs carry spur wheels for driving the seeding and fertilizing devices. The pawls which carry the markers are provided with handles for easily operating them from the outside of the running wheels, and they are held
either in gear or out of gear by a double-acting spring
A shaft carrying two grooved zigzag cams, A B, is jour naled in supports projecting from the rear of the body of the planter, and is provided with spur wheels at each end which take motion from the wheels on the marker hubs. The cams, A B, are arranged to oscillate the rock shafts,

C D, which, in turn, operate the feed slides, E F, which are so arranged as to drop seed and fertilizer into their respective hoppers, E being the seed slide, and F the fertilizer slide. In the seed slide there is the customary space for the reception of a few grains of corn which are to be dropped. This little chamber is pulled through the side of the seed box and allowed to drop into the hopper communicating with the spout by a flexible tube. To prevent the corn from becoming packed in the slide, the seed box is made with an expanding opening, which expands and allows the grain to pass without mashing it. The slide, F, is made adjustable so as to vary the quantity of fertilizer dropped with the seed. The grain spout and the fertilizer spout are connected together with the grain spout in advance, and they terminate in a plow or opener, behind which there are coverers.
The engraving shows the planter in its simplest form, adapted to a single row of corn, but it is obvious that a machine may be constructed on the principle to plant a number of rows simultaneously.
Purther particulars in regard to this invention may be obtained from the patentee, Mr. H. F. Graetzel, of St. Joseph, Md.

John D. Napier.

Mr. John D. Napier, of the well known firm of Napier Brothers, manufacturing engineers, Glasgow, Scotland, died Friday, March 12. Mr. Napier was trained as an engineer by his father, the late David Napier, the pioneer of deep sea steam navigation in Great Britain. In early life he took a prominent position among the practical engineers of London. Subsequently he spent a number of years in Australia but for a considerable period he had resided in Glasgow, ranking high among the leading mechanical engineers of his day.

Illiterate Collegians.
Mr. Charles Dudley Warner says, in the Christian Union, that he was told not long ago, by a professor in one of our leading colleges, that a freshman came to him, after he had been recommending certain books in the literature class, and said he had never read a book in his life. This was lite rally true. Except his text-books, he had never read a book he had passed a fair examination, but of reading he knew no more than a Kaffir. Another professor in another coi lege, also one of the highest in the country (both of these are Eastern colleges, in the center of the best culture in America) told Mr. Warner more recently that a sophomore, who stood well in his class, came to ask him where he ob tained certain facts which be referred to in the class room. It came out that the young man never had read a book didn't know what the sensation was, or how to set about it and had not the faintest conception of literature. He had no notion of the pleasure or profit to be got from reading; the world of books was absolutely beyond his imagination, and he could not conceive what people found in it. The professor at length induced him to read one of Scott's novels, but the boy found it a very tedious and uninterest ing occupation.
These two instances Mr. Warner thinks extreme only in degree, and insists that it is a common thing for under graduates to be ignorant of everything but their text-books. There is a popular prejudice that young men who have been

GRAETZEL'S CHECK-ROW CORN PLANTER AND FERTILIZER

 Mr. R. Carter, of Brooklyn, N. Y. ght, strong, and low priced. light, compact, and durable. street, Brooklyn, N. Y.
IMPROVED STEEL HORSE COLLAR

We give herewith an engraving of an improved steel horse collar recently patented in the United States, Canada, Great Britain, France, Belgium, and Germany by Messrs. Fishe \& Watson, and is being manufactured and introduced by

This collar is swaged out of thin plates of steel, and is
A great difficulty has been encountered in attempting to provide metallic collars with suitable couplings or fastenings; which will not only connect the two halves or flanged sections of the same with the requisite security and rigidity, bu lso permit convenient adjustment, for the purpose of en arging or diminishing the capacity of the collars, so as to adapt them for use on horses of different sizes, or on the same animals under different conditions. After many ex periments Messrs. Fisher \& Watson have succeeded in producing a flanged metallic collar whose fastenings are of such a character as to permit easy and quick adjustment for varyng width or length without weakening the connection and essening the rigidity of the collar, and are at the same time

With this collar no hames are required, as the traces are connected directly with the collar. It is perfectly smooth

STEEL HAMELESS HORSE COLLAR.
and hard, absorbing no perspiration, and cooling the shoul ders by the hollow conformation, always exposed to the air fitting closely to the neck and shoulders, all lateral motion is prevented, as well as any folding or creasing of the skin so often caused by the stretched or loose lining of the padded collar; it will never gall, and upon sore shoulders will exer cise the same healing properties as the well-known zinc pad. Further information may be obtained in relation to this invention by addressing Mr. R. Carter, 305 Quincy

MISCELLANEOUS INVENTIONS.
Mr. Ebnezar H. Sturges, of Wing`s Station, N. Y., ha patented a compact and con venient safe or receptacle for receiving and keeping house keeping utensils conveniently and handy for use. It consists n a safe having compartments for knives, bottles, sugar, spices, and other arti cles.
Mr. Max Rubin, of New York city, has patented a bottle stopper provided with a discharge spout, and so constructed that the spout may be covered and uncov ered by closing and opening the stoppers.
An improved store counter has recently been patented by Mr. Henry H. Henderson, of New Glasgow, Nova Scotia. The invention relates to means for supporting the hinged covers of the sections and it consists in two jointed bars or rods, one pivoted on the inside and the other pro vided with an eye that slides on a keeper attached to the ander side of the cover in mbination with a nor, in am on the inside of one end of the section, so that the pivoted rod catches behind the shoulder when the cover
graduated at college are "liberally educated," and that no is opened and holds it firmly in position. one else can aspire to that honorable title. Yet it is a common thing for untaught mechanics, used to reading good books and a paper like the Scientific American, to have vastly more real learning, and that of a more useful kind, than the average collegian carries away from college.

Mr. John D. Richardson, Jr., of Newport, R. I., has patented an improved electric call bell. The object of the nvention is to permit the operation from the central station of any one bell in the circuit, whereby one station may be called without giving an alarm at any of the others.

AMERICAN INDUSTRIES, No. 39.

the manufacture of printer's type

 As there are nearly 8,000 newspapers in the United States, and probably twice as many printing offices for the production of every class of work from a merchant's card or letter head to a cyclopædia, it follows that the business of type-founding must be one of considerable magnitude At first it was only a branch of the printer's trade, but it early developed into an essentially distinct business. Now a printer would no more think of making his own types than a tailor of weaving the cloth he cuts.The forms of printing types and the manner of their use are so commonly understood that no account of them is needed here. The types with which all letter-press work is done must be uniformly "type high," which is a trifle over seven eughths of an inch. Of these types, a page such as this will contain about 25,000 separate pieces, counting the points, the spaces, etc., although, as "set up" by the compositor, the "spaces" between the words, the "leads" between the lines, the "quadrats" for filling out the blanks at the ends of paragraphs, etc., not being "type high," do not show in the print. Counting the capitals and small capitals, the italics, figures, punctuation and reference marks, etc., there are about 250 different pieces in every font of type, and all of these pieces must be kept in complete assortment for each different size of type, as well as for every different "face." There are, for instance, five different regular sizes of type smaller than that in which this artıcle is printed, and in each of these sizes there are many different faces, even in the plain Roman styles, to say nothing of hundreds of kinds for ornamental work. These types have little nicks low down on the body of the metal, by which the compositor may readıly see how to place them right side up, and a small groove is taken out of the bottom, so that each type, when composed in the page or column, will stand on its "feet," as they are called. It will be seen how exact must be the measurement and "fit" of each of these little pieces when it is remembered that, in the slight iron frame which holds them together in the pages of the largest newspapers, the pressure from the sides put upon the types, so that they will hold together in a body when lifted, is only just sufficient to overcome the weight of the metal. The types, thus set up in columns and pages, are ready for the press, except the work is of sufficient importance to have stereotype or electrotype plates made, in which case the types are used only to make the mould, and the printing is done from the plates. The Scientific American is printed from electrotype plates, which give a sharper and clearer impression, and will also allow of the printing of a much larger number of copies before showing wear on the fine lines of the en gravings, than can be obtained from any stereotypes. The most of the large daily papers are now printed from stereotype plates. This improvement has been introduced within the past twenty years; the plates are necessarily made very quickly, and with many imperfections which would not be tolerable in fine work, but the making of plates greatly facilitates the printing of all large editions, for, the type being once composed, any desired number of plates can readily be produced. It is worthy of remark, however, that the general adoption of the practice of stereotyping their forms by the leading newspapers, and the copper-facing of the type, whereby the wear of the letter is greatly extended, seemed to have hardly any effect on the business of type founders; the demands for larger quantities and a greater variety of type have grown so steadily that even these great improvements did not appear to diminish the call upon the founders.
We have in the preceding three numbers sketched the manufacture of power printing presses, book paper, and printers' ink, and, for our illustrations in this paper of the manufacture of printer's type, so naturally associated with the above, and completing this class of industry, we show the leading operations in the large type foundry of Messrs. Farmer, Little \& Co., of New York, a firm employing from 175 to 200 hands in the business, and making all descriptions of printer's plain and ornamental types, borders, rules, dashes, etc., besides making their own type-casting machines, steel punches, matrices, etc.
The large view at the bottom shows the main type-casting room, which occupies the entire top floor of the large six story building, 63 and 65 Beekman street, seen in the central picture. The machines for casting are most of them ranged around near the windows, to give the best of light, which is very important. The machines only take up about as much room each as a sewing machine. Each one of them has a little coal-burning furnace for melting the type metal, and about a quart of the molten metal is held in an open reservoir at the top. Though these machines are sometimes operated by power, the advantage of so doing is by no means clear, for there must be so many stoppages in doing careful work that but little can thus be ganed. The operator turns a crank, which brings the mould up to a little spout projecting from the pot, from which the metal is forced into the mould, when the latter flies back and automatically drops its type, this operation being repeated with every turn of the crank. Care must be taken that neither the metal nor the mould get too hot, and the mouth of the spout must be frequently cleaned of refuse metal not taken in by the mould.
The type casting machine was first successfully operated in this country about 1840 . By its use type are cast fully fifty per cent cheaper than they were by hand. The speed at
the plain newspaper types coming from the machine as fast as 100 or more a minute, while the ornamental types and all larger job types have to be cast a good deal slower In the latter case a perceptible interval has to be allowed for the hardening of the metal in the mould, which, with the smaller types, is instantaneous; and in all scripts, where a portion of the letter extends over the body, the work has to be done slowly to prevent these parts from being broken off.
In the view at the upper left hand corner may be seen the work of dressing and finishing the types after they come from the casting machine. Each one, as it drops from the mould, has a little jet or ingot of surplus metal attached to the foot; these are broken off singly by boys, when men rub the broad sides of the types on stones to remove any roughness on the edges; where the metal has to be dressed out around a face projecting over the body, workmen of a different branch are employed, called kerners. After this the types are arranged on long rules or dressing sticks, in lines three feet long, and, each line being firmly fixed in a kind of metal planer, a cutter is passed over the edges, to make them perfectly true. A light scraping is then taken off the body of the type next the face, and a groove is run through the bottom, where the little jet or ingot of surplus metal had been broken off, and making the "feet." This work is all done by the piece, the casters, dressers, and fifishers being all paid so much a pound, according to the size and kind of type.

CASTING TYPE.

Therightview at the top shows where the steel dies or unches are made, and where the types, as they come from the finishers, are divided up into the proper allotment of letters and sorts for each different font. Type founders take orders for fonts of all sizes, but in the making of plain body letter it is usual for them to arrange all that is necessary for a complete font in a " scheme" for about 300 or 600 pounds, and then, when any smaller amount is ordered, divide up the type proportionately. Before this work is done, how ever, the types are all carefully examined with magnifying glasses to see whether any imperfect or defective letters have been passed by.

The letter engraving, which is also shown in this view, consists entirely in cutting the dies on steel for the face of the letters. Soft bar steel is used, which is hardened afte the cutting, and all the work is done by hand. These dies are used for making matrices, in copper, to place in the moulds for the different faces required. These matrices ar struck out of a piece of copper weighing at least three times as much as they do when finished, and then worked down, so as to insure the greatest exactness.
In the illustration at the rightin the middle, is shown the department where the type-casting machines are made, and where the matrices and moulds are severally adjusted There are a good many pieces required in the mould for casting a type no larger than a pin, and these, while being constantly subjected to a pretty high temperature and wear ing usage, must be kept as true and exact as the works of a fine watch.
In the same room also may be seen the work of making brass rules, which are always used between the columns of type in newspapers, and for the dashes between articles, etc. The sheet brass used for this purpose is furnished by the brass manufacturers cut in strips of proper width to allow of facing, and of the required thickness. The facing and finishing of these to make ordinary newspaper rules is done with planers, by hand, but for making wave rules and Here also the " leads" and "slugs" are made. The forme are thin strips of type metal, cut to the width of the col umn, and placed between the lines of type when it is de sired to give the printed matter a clean and open appearance. This page is leaded; with perhaps two leads between the head lines, and a thin slug between the rule at the top of the page and the first line of type.
In the illustration at the left, in the middle, is shown
the process of electroplating, with copper, the illustrations, will paper headings, etc., made by the firm. The copper will give the finest lınes, and is much more lasting than type metal. The thickness of this coating varies according to the work, or as may be desired, from $\frac{5}{1000}$ to $\frac{12}{1000}$ of an inch.
There are five kinds of metal used by type founders generally, according to the particular work in hand. These all consist of different proportions of lead, copper, tin, and antimony. Though many other combinations have heen recommended, and used to some extent, these are the only metals generally and successfully employed. The quadrats, which correspond with the white spaces in the printed page, and on which the least wear comes, are made of the cheapest metal; the smallest types, on the other hand, re quire the hardest, toughest, and dearest metals, while the medium-faced types, such as would be used in ordinary books, have a grade of their own, as have also the ornamental job types and the script. Messrs. Farmer, Little \& Co. have always paid particular attention to this department of their business, and can point with satisfaction to the long continued use their fonts have withstood.

The want of accuracy in the justification of type would be a fault for which all other good qualities combined could not atone. To secure this, however, only the best of ma chine work must be employed in the fitting of the moulds and the finishing of the matrices, as well as in the dressing and finıshing of the type; and in this branch of the business the complete appliances and experienced workmen, the firm have, afford the best of evidence that, by properly ap preciating its importance, they have won the right to claim special excellence in this direction.
The number of "new faces" which any type foundry will get out in a given time depends largely on the state of general business. The firm of Farmer, Little \& Co. have always been fully up with the times in this kind of enter prise, and some of their styles of type, both plain and orna mental, as well as their very elaborate combination borders, are to be found in almost every considerable printing office in the land. It is as difficult for a really good printer to see a nice new face of type without buying a font of it as it is for a fashionable lady to do without the latest style of bon net. But in the variety this house can present of types they have originated in their long business career, they have an advantage which only an old foundry can offer.
The house was established in 1810, and since that time they have been constantly accumulating dies and matrices, which always constitute the most valuable portion of the stock of a type foundry. Of the present members of the house, it can be said that they are all active workers and practical men in their trade, the senior of the firm having been about fifty years continuously connected with the business.

Signaling Instruction.

The spring signaling iustruction has commenced at Fort Preble; an hour's drill each day For this army system of signaling is claimed superior simplicity over all others, its advocates clam preference for it over the Morse alphabet and certainly its messages are more easily transmitted by ordinary appliances. No sallor ignorant of a code should be allowed to go to sea in any capacity of command. Magnetic telegraphs and Edison telephones are well enough in their place, but a ship on a lee shore needs its officers and the coast guard to be well instructed in Myer's Code. It should be taught in all our schools. We give the alphabet below for the benefit of the curious. The second columns are the equivalents for which the corresponding letters may serve as contractions. With four of any two kinds of things, fixed signaling can be done. Callıng one's right side one, and his left side two, he can transmit any message by waving a handkerchief according to the following table.

鄂					

If we have four apples and four oranges, and we designate the apples ones, and the oranges twos, with them then we can
spell out anything Thus to spell the word system we would from our right to left (so that they may come in regular order for the reader) first place an orange, then an apple, then an orange $(=212=S)$; after withdrawing the S place an apple, an apple, and an apple ($=111=Y$); next repeat the S an orange, an apple, an orange), next place an orange (=2 $=T)$, next an apple and orange $(=12=E)$, and last an apple, an orange, an orange, an apple $(=1221=\mathbf{M})$.
With a small flag a sweep to the left, two to the right, and one to the left would spell $b e$. A great many contractions can be made and are introduced in the code.

THE ANDRE-BROUGHAM ELECTRIC LAMP

In the annexed engraving is a representation of an electric light invented by Professor André, who, with the assistance of the Hon. R. T. D. Brougham, has devised a lamp which is said to be very efficient. We take the following descrip tion from the Engineer:

THE ANDRE-BROUGHAM ELECTRIC LAMP.
The value of the improvement will at once be seen when we state that it reduces the carbon consumption to about $0 \cdot 125$ in. per hour, while a similar carbon burnt in a lamp open to the atmosphere burns about 6 in. per hour, the cost in carbons being thus reduced to 1-48th of what it would be in an ordinary lamp. This is, probably, a maximum reduction, inasmuch as the carbons in ordinary lamps are of a larger diameter, those used in the André-Brougham lamp being only 2 mm . diameter.
The improvement consists in surrounding the lamp, or a portion of it, with a separate vessel of glass containing water or some other suitable liquid. In the accompanying diagram, B B B is the glass globe of the lamp proper, A A the surrounding vessel containing the liquid. The shape of these vessels is immaterial. It may, perhaps, conduce to simplicity if the lamp is first described. Two concentric tubes (G G, III) are separated by a nonconductor, such as plaster of Paris. These tubes are connected to the two terminals of the battery by the binding screws, K M. The outer tube, G G , is in electrical contact with the py-
ramid shaped piece of metal, W. The ramid shaped piece of metal, W . The
inner tube, I, contains the carbon rod, which rests upon the metallic wedge and falls down by its own weight, and that of a small weight placed on the top of the carbon, but within the tube. No doubt the light is due partially to incandescence of the carbon, and partially to the formation of an arc. The cap, \mathbf{N}, on the top of the tube, G G, through which the inner tube passes, is of vulcanite or other non conducting material. Round the top of the lamp globe, B B B, is a metal cylinder to be screwed into the corresponding cylindrical $\mathrm{E}^{1} \mathrm{E}^{1}$. The ring, $E E$, has a sharp edge at the top, while $\mathrm{E}^{1} \mathrm{E}^{1}$ has a corresponding recess. Between the two is an India-rubber washer, F F, so that on screwing E E the India-rubber is jammed into the recess in $\mathrm{E}^{1} \mathrm{E}^{1}$, and a good water-tight joint made. The lamp is fitted with a cap, D D, to which, joint made. The lamp is fitted with a cap, D D, to which,
by means of binding screws, C C, and clamps, the vessel, A,
is fixed. This vessel is partially filled with water or other iquid, so that when in its proper position the liquid rises above the cap, E^{1}, thus rendering the permeation of air into the lamp an impossibility. So long as the liquid in A is above the cap, E^{l}, no atmospheric air can enter the lamp globe, B, a tight joint is obtained, and at the same time the heat from the lamp is carried off or dispersed, and the light more or less diffused.

Late Development of Sugar in Sorghum.

Dr. Collier, chemist of the Agricultural Department, explains the frequent failure of sorghum to yield a profitable quantity of crystallizable sugar by the resultsobtained by his experiment last year. His Chinese sorghum, for example, attained its growth, and to all appearance was ready for the harvest on the 6th of August; but an experiment on that date resulted in getting only one and eighty-five hundredths per cent of crystallizable sugar, with about five and fifty-five hundredths of glucose or uncrystallizable sugar, while three weeks later the percentage of crystallizable sugar had reached twelve and fifteen hundredths per cent, and the uncrystallizable matter was only three and forty hundredths per cent. This species of sorghum reached its maximum for profitable production on the 14th of October, on which date the percentage of crystallizable sugar was fifteen and five hundredths per cent of the weight of juice expressed.

Experiments with the early amber, the variety best suited to this latitude, began on the 18th of July, giving a result of four and forty-three hundredths per cent of crystallizable sugar, with three and seventy-seven hundredths of glucose. The percentage of crystallizable sugar rapidly increased until the middle of August, when it exceeded fourteen per cent. There was very gradual increase until the 29 th of October, when it reached seventeen per cent of the juice expressed, the uncrystallizable sugar on that date being only one and ten hundredths per cent.
About a week previous to this date there was a severe frost, and cold weather continued for several days. During the timestalks were cut and experiments were continued, showing that the frost had no bad effect upon the crop. When a thaw came, however, the effect was immediately apparent in the rapid decrease of valuable matter and increase of worthless matter in the juice; and this effect was noticed in all varieties of sorghum. The inference, as drawn and stated by Dr. Collier, is as follows: "Let your crop stand as long as you can; but if a frost catches you before it is gathered, hurry up and get it squeezed before a thaw comes."

The Moss Industry in Louisiana.

The New Orleans Times says that the moss industry of that region has quite recovered its former flourishing condition. The moss is mostly gathered by negroes. Cypress moss is preferred, as it is the longest and most tenacious of all the varieties. After the moss is gathered it is placed on a sunny spot, and left a month to the action of wind and weather. At the end of that time the grayish bark peals off, leaving the hair almost clean. Some of the moss requires no manipulation, while other assortments are, in weight, more than half dirt. After being thus dried the material is sold to the plantation storekeeper or to the crossroads grocerymau, and the gatherer receives from one to two cents a pound for it, according to its quality." The
stuff is baled and sent to New Orleans for manufacture stuff is baled and sent to New Orleans for manufacture.
After the moss reaches the factory it is subjected to the action of the washer, which is a large cylindrical arrangement
$-$

NOVEL SIGHT FOR FIREARMS.
The annexed engraving shows a new combination sight for firearms recently patented by Mr. O. D. Warfield, of Chicopee Falls, Mass. The invention consists in arranging its tube or cover of the sight so that it may be turned around on its base in such a manner that while in one position the sight or bead is seen by looking through the tubes the same as in an ordinary covered sight, and when turned in the other position the point of the sight is exposed uncovered. Fig. 1 shows the sight attached to the barrel of a gun and urned so as to show the point of the sight, A. The shape of the sight as seen in this position is shown in the small detail view above the end of the barrel. The appearance of the sight when turned into the other position is shown in Fig. 2.

IMPROVED SIGHT FOR FIREARMS.

The tube which incloses the sight is held in either of its positions by concaves formed in the base piece at right angles to each other. The spring under the base draws the tube down into the concave and holds it accurately in position.

NOVEL SPEED REGULATOR.
The engraving shows a new combination of mechanism for regulating the speed of sewing machines and other light machinery. It consists of two conical drums, A B, jour naled in a rectangular frame, with their larger ends oppositely arranged and their contiguous faces parallel.
A friction wheel, C, is placed between the two conical drums and journaled in a support attached to the end of a rod passing through the spring barrel, D. The shafts of the conical drums, A B, each carry a pulley, one to be connected by a belt with the motor, the other to be connected with the machine to be driven.
A cord is attached to the support of the wheel, C, for drawing it along between the drums, A B, so as to commuaicate motion from different portions of driving drum to different places on the driven, and thus vary the speed, making the speed of the driven drum either faster or slower than the driver.
The bearing surface wheel, C , is made of rubber or similar material, and as it becomes compressed or worn, the difference in diameter is compensated for by moving the drum, A, longitudinally on its shaft.
The base of the cone, A, is cut away as shown, thus permitting the traveling friction, C, to stop the machine by disengagement.

This device is capable of controlling any speed within reasonable limits from 1 to 1,000 or 1,200 revolutions per minutc. It can be used to stop and start, which it does instantly.

With this regulator when the speed is reduced the power is correspondingly increased, so that when a slow motion is transmitted it is with a great deal of force. This feature will prove particularly useful in that class of motors that obtain their power from the multiplication of small impulses, as in the case of small electrical or water motors.

Further information concerning this

BARNHURST'S SPEED REGULATOR.

be obtained by addressing Mr. H. R
with a wheel inside, which pulls the moss hither and thither useful invention may be obtained by addressing Mr. H. R. and dashes it through a vat of boiling water and soap, until Barnhurst, Erie, Pa.
the stuff is cleaned. Then it is hung out upon the racks to dry. This done, it is put into the duster, a fan mill, which entirely removes all the dust that may have survived the washing process. The moss comes into the factory yellow in color and goes out inky black. The article is then made up into bales, according to quality, and lettered with single, double, treble, and quadruple X's. The highest grade, XXXX, can hardly be distinguished from the finest and choicest horsebair. The other grades are consumed mostly in Louisiana. Seven years are required for the growth of a crop of moss after a tree has been stripped.

Water System of New York.

During the past four years the Department of Public Works has added to the Croton Water Service 70 miles of distributing pipes, making the present extent of pipes 480 miles. The Croton aqueduct supplies $95,000,000$ gallons a day: The elevated railroads consume over half a million gallons daily
New Petroleum Fields.-It is reported that petroleum has been discovered in large quantities in the vicinity of Lake Ainsley, Cape Breton; also in Alabama.

AGRICULTURAL INVENTIONS.

Mr. William B. Garoutte, of Republic, Mo., has invented a novel cotton and seed planting machine. This improvement relates to machines for forming a mould or ridge, dropping the seed along the ridge, and covering the seed
Mr. William L. Dietz, of Schoharie, N. Y., has patented an improvement in scrapers and cultivators for broom corn, cotton, and other plants planted in rows and drills, so constructed that they may be readily guided to operate upon crooked rows and may be conveniently turned at the ends of the rows.

IMPROVED PIPE TONGS

The annexed engraving represents an improved pipe tongs manufactured by Messrs. Noble, Hall \& Co., of Erie, Pa. The handles are pivoted on the usual rivet, which extends also through cheek-pieces attached to one of the handles. This construction gives a firm bearing to the pivot, and avoids the twisting motion which is usually so destructive to the tongs. The cheek-piece has a rectangular recess formed in it for receiving a cube of hardened and tempered cast steel. This cube is always held with one of its corners toward the center of the tube, whether the pipe being turned or held islargeor small. It will be noticed that the steel cube has twelve available corners, so that as one becomes dulled by use another may be put into position for work. The cube or bit is held in its socket by a tapering pin extending across the mouth of the socket
After the cube becomes worn on all of the corners it may be sharpened by grinding and replaced with enough backing to compensate for the metal ground away; and after it is worn so that it is incapable of further use it may be replaced by a new one at a slight cost.

One of the jaws is made adjustable by a thumbscrew to adapt the tongs to different sizes of pipe. This firm make also tongs of the same general character without the adjustable jaw. The manufacturers claim that for strength, durability, simplicity, and cheapness these tongs have no equal in the market.

ICE-MAKING APPARATUS.

The accompanying engraving represents an ice-making apparatus designed and constructed by the Boyle Ice Machine Company, of Chicago, Ill., who are the patentees and manufacturers of ice machines and refrigerating apparatus.

The engraving shows a one-ton ice machine. On the left is seen a steam boiler and a combined engine and ammonia pump: in the center a pump for water supply for gas condenser, and on the right a freezing tank. The ammonia pump is used for compressing the ammonia gas which is liquefied in the condenser, and is expanded in a freezing tank seen at the right in which the cold is produced.

The freezing tank where the ice is produced is provided with coils of ironpipe, in these the gas evaporates, and they are placed at regular spaces apart, the spaces being regulated by the thickness of the ice required. Between the coils are placed moulds or cans containing the water to ing the water to be frozen, and the space about both moulds and coilsisfilled with strong brine.
The operation of the machine is as follows is as follows The pump being put in motion, valve leading from the condenser to the evaporator coils

BOYLE ICE MACHINE.
is opened and the liquid gas flows into the evaporator coils. There, meeting with the heat in the salt water to be cooled down, it expands very rapidly, taking up the heat which is in the brine, which, in turn, extracts the heat from the water in the moulds. The expanded gas is aspirated by the pump and forced over into the condenser, where the heat is taken from it by a stream of water continually fowing over it, and under the pressure of the pump is reliquefied, and returns again to be expanded in the evaporator coils.

This process is continued until such time as the water may frozen, when the mould is lifted from its place in freezing tank and immersed in warmer water, which loosens the ice from the mould, when it is readily removed; and the mould, being refilled with water, is again returned to the freezing tank.
The ammonia pump (patented by the Boyle Ice Machine Company) is single acting, and works with regularity and smoothness; no water is required in order to keep its piston rod cool, and the pressure on the stuffing box never exceeds fifteen pounds to the square inch, avoiding all trouble in keeping the stuffing box tight and leakage of ammonia.
In making a calculation of the entire expense of operating a machine of any size, there should be an allowance made for the oil used in lubricating the engine, and for the expense of ammonia. An allowance of fifty cents per day for the smaller sized machines, and of one dollar per day upon the larger sized machines, would be ample for this item.
It is claimed that repairs would not ordinarily amount

THE ACME CUBE PIPE TONGS.

to one per cent per annum upon the cost of the apparatus. Calculations by this company for the production of ice and for all expenses connected with the operating of a complete ice factory are upon the conditions incident to the hottest weather in the South; and in a more temperate climate, with cool condensing water, the expense for fuel would be decreased considerably, as well as the supply of water necessary for condensing the ammonia.
Machines with which ammonia is used as the necessary refrigerant have proved to be among the best and the most efficient machines for the purpose; they are not liable to explosion or causing fire.
The machines referred to are of a simple character, have few parts, and are easily managed by any mechanic of ordinary intelligence. Their efficiency and reliability, their durability and inexpensiveness of operation, the manufacturers state, are beyond all question, as certified to by several extensive manufacturers and professional experts.
Further information and circulars containing full details construction and mode of operation, and testimonial
rom parties using these machines, may be obtained on application to the Boyle Ice Machine Company, No. 10 North Jefferson street, Chicago, IIl.

Straightening Hardened Steel.

In hardening and tempering tools they sometimes spring o the great annoyance of the workmen, and not seldom the tool is reheated and rehardened. In most cases this may be avoided. To straighten a piece of steel already heated and
tempered, heat it lightly, not enough to draw the temper and it may be straightened by blows from a hammer, if the character of the tool will admit of such treatment, or, as in case of a tap, it may be straightened by a heavy mallet on a hard wood block. Although the steel when cold would break like glass with this treatment, when slightly warmed it will yield to moderately heavy blows uninjured.

ENGINEERING INVENTIONS.

Mr. Harry M. Sciple, of Selin's Grove, Pa., has patented a portable steam engine combining the features of lightness, durability, and cheapness. The invention consists in a vertical steam engine having the base, column, pedestal, cylinder, and steam chest cast in one piece and fitted with the cylinder head and crosshead guides, that are cast in one piece, whereby the required strength is obtained, and there is but a single joint to be fitted.
An improved signaling apparatus for railroads has been patented by Messrs. Richard B. Ireland, of Trenton, and William H. McDonald, of Newark, N. J. The object of this invention is to provide for operating a signal located at one point on a railroad from different places -say from two separate switches-in such manner that the signal shall be exhibited when either switch is open and until both are closed, or so long as the main line is not clear.
Mr. Hiram N. Wickes, of Grand Gorge, N. Y., has invented an improved car coupling that couples automatically without requiring any one to step in between the cars, the link being held in horizontal position, so as to secure its entrance into the opposite drawhead. The invention consists of a drawhead, with internal cavity having upwardly inclined rear portion and central guide rib, along which a centrally grooved roller is carried by the link.
Mr. Jean L. Nevers, of Pass Christian, Miss., has paented a water and wind mill, which the inventor calls a " wing motor." It is simple, automatic in the adjustment of its sails, and capable of utilizing alarge percentage of the power of the wind and current of water.
Mr. Richard B. Ireland, of Trenton, N. J., has patented improvements which relate to signaling apparatus used in the "block" system of signals for the movement of trains, in which system the road is divided into sections or blocks, with a signal station between each block, and no train allowed to passa station without a signal from the operator. Heretofore there has been great liability of the engineer mistaking the signals; and the object of this invertion is to prevent such mistakes, which is accomplished by giving to the signals a definite form and position, either of which will ndicate, in addition to the color, the exact character of the ignals The inver stat worked in con nection with two or more switch es with one wire and one slide.
Mr.Stephen B.
Segur, of Gold Hill., Nev., has patented an improved hoisting device, the ob ject of which is to prevent hoist ing cages in mines or eleva tors of any de tors of any de scription from being raised so
high as to enhigh as to en-
danger the lives of miners or others working in connection with hoisting apparatus or being carried up by elevators. The invention consists in a safety hook of nove constructionand in means for detaching the same from the elevator car.

Mr. Henry Case, of Brook lyn, N. Y., has patented a composite pile for submarine foundations and other purpose that shall withstand decay or the attack of worms and in sects better than a wooden or iron pile.
Mr. Albert Bonzon, of Santiago, Cuba, has patented a new ttachment for the second-hand shaft of clock or watch vorks which will catase the second-hand to beat seconds, and which is so arranged that these beatings of the second-hand can be interrupted or started at any desired moment.

CAPTURE OF A LARGE FINBACK WHALE.

We publish herewith a picture of the large whale now on exbibition in this city. It was captured on March 18, two miles off Provincetown Harbor, Cape Cod, by a whaleboat's crew of five fishermen, armed with a bomb-lance and gun. He was purchased from his captors by Swift \& Co., of Provincetown, for $\$ 600$, and towed to this place by the tug Charles Lawrence, requiring four days and nights for the passage. Arrived, the monster was floated on a drydock, and has since been viewed by thousands of people.
The back of the whale is hard and shines like ebony; the belly is white like ivory, and where the two meet at the sides it takes a slaty gray tint.

A series of wrinkles, as if scored by fire, run backward and upward from beneath the jaws like bilge keels on a vessel. upward from beneath the jaw
The skin beneath the eye is also wrinkled in massive folds. The flesh, where exposed by scars or wounds, is red and firm like beef.
The head forms one quarter of its length. The body is of its length. The body is
65 feet long, 15 feet in great65 feet long, 15 feet in great-
est diameter, and weighs est diameter, and weighs
about 70 tons. The eyes are very small, set a few inches back of the jaw socket. The spout hole crowns the summit of the head, 17 feet back from the nose, surrounded by a three-cornered ridge of bone and India rubber-like flesh. The tail is flexible, forked like a broad-arrow head, set sideways to the body, enabling the whale to dive quickly. From behind the eyes project two broad soft fins, and a little one springs fins, and a little one springs
from the sharp ridge nearthe tail, giving it the name finback.
The upper jaw is long, nar row, and concave, the edges smooth and rounded. In place of teeth there extends downward a whalebone for mation like the teeth of a huge comb set obliquely, growing in size from a few inches at the nose to three feet or more at the jaw, the whole terminating in a stiff broom-like fringe of bristly hairs.

The lower jaw is entirely smooth, much wider than the upper, the latter fitting down into it like a cover, the bone fringe filling up the groove and serving as a strainer through which the water is expelled after a school of small fry is ingulfed in the maw. The tongue covers the entire inner surface of the lower jaw.
The orifice of the ear is hardly perceptible, yet the hearing is so acute that a ship crossing its track a half mile distant will cause it to dive instantly.

This species of whale is the most dangerous to attack, and the least profitable. It destroys vast numbers of small fish, and is worth only $\$ 500$ for oil and bone. It fights desperately, and if badly wounded describes a large circle having a "swath," inside of which he makes his last stand, and woe to anything that ventures in. If left alone there he will die quietly, announcing his death by elevating his fins and turning his head toward the setting sun.

The Phylloxera Pest.

To compensate for their discomfort during the past almost unprecedented cold winter, the people of Southern France had hoped that it would result in the killing of the above insect pest, which has for the last few years been so destructive to their grape crop. But from the observations with regard to this made by M. Lichtenstein, he arrives at the lamentable conclusion that the phylloxera has not experienced the least harm from the temperature of ten to eleven degrees below zero. This applies not only to the insects deeply interred, but even to those near the surface. M. Lichtenstein found a number of other pucerons similarly resistent to cold. These little creatures, attached to the aerial parts of the plants which they attack, were completely benumbed and torpid, but after being transferred to the laboratory they proceeded with their hatching operations as if nothing had happened.

The Edible Sea Worm.

There is a very curious food product obtained in the Pacific, which is esteemed as highly as are whitebait in England; it is a small species of sea worm, a genus of annelids, known scientifically as Palolo viridis. The following account of it is given by a traveler. These worms are pear found in some parts of Samoa (Navigator Islands) in the South Pacific Ocean. They come regularly in the months of October and November, during portions of two days in each month, namely, the day before and the day on which the moon is in her last quarter. They appear in much Fiji greater numbers on the second than on the first day of their rising, and are only observed for two or three hours in the early part of each morning of their appearance. At the first ar. Fiji.
eaten undressed, but either dressed or undressed they are es teemed a great delicacy. Such is the desire to eat "palolo" by all classes that immediately the fishing parties reach the shore, messengers are dispatched in all directions with arge quantities to parts of the island in which none ap-
" and , It also makes Samoan ance in the New Hebrides, in Tongo, and in the

One of the most interesting parts of Chief Justice Daly's annual review of recent progress in geographical explora tion, before the Geographical Society, March ≈ 3, was that touching the important dis covery of the seat of empire of the ancient Hittites. Judge Daly said:
The readers of the Bible will remember the frequent men tion that is made of the Hit tites, a people occupying Ca naan, who are described in the biblical narrative as being commercial and military, and in whose country Abraham bought a piece of land for his burial place. The scattered accounts in the Bible simply indicate an ordinary tribe o people, with whom the Isra elites had intercourse, but in formation derived from the researches made in Egypt and Assyria show that the Hittites, whom the Egyptians called the Kheta and the As syrians the Khatti, were a powerful confederacy occu pying the country which was the highway between Baby lonia or Assyria and Egypt -a people actively engaged in commerce, their principal city being a place to which merchants from all parts con gregated, and who were at he same time a warlike peo ple, who for a long period kept the Assyrians.in check, and who proved the most formidable antagonists the Egyptians ever encountered They were not only commer cial and warlike, but had evidently at a remote period made great advances in civil ization and in the fine art and early Greek art, as found in the discoveries of Dr Schliemann at Mycenæ; and he early art found in Cyprus by our associate, Mr. Di Ces nola, is supposed to have been largely derived from them.
They occupied the whole country of Southern Syria, rom the Mediterranean to the desert, dwelling chiefly in the fertile valleys of the Orentes, a river rising to the ast of Baalbec and flowing into the Mediterranean, and

CAPTURE OF A LARGE FINBACK WHALE,

surface of the water; and as the day advances their numbers increase, so that by the time the sun bas risen, thousands may be observed in a very small space, sporting merrily during their short visit to the surface of the ocean. On the
second day they appear at the same time and in a similar manner, but in such countless myriads that the surface of the ocean is covered with them for a considerable extent.
On each day, after sporting for an hour or two, they disappear until the next season, and not one is ever observed during the intervening time. They are found only in certain parts of the islands, generally near the openings of the reefs on portions of the coast on which much fresh water is found; lut this is not always the case. In size they may be compared to a very fine straw, and are of various colors and lengths, green, brown, white, and speckled, and in appear ance and mode of swimming resemble very small snakes They are very brittle, and if broken into many pieces, each swims off as if it were an entire worm. The natives are exceedingly fond of them, and calculate with great exact ness the time of their appearance, and look forward to it with great interest. The worms are caught in small baskets, beautifully made, and when taken on shore are tied up in leaves in small bundles, and baked. Great quantities are
had two principal cities-
 Kadesh, or the Holy City, and a great commercial em porium, which was their capital and the center of their power, called Carchemish. They were finally overthrown by the Assyrians, B. C. 718; and had so completely disappeared that they are scarcely ever referred to by Greek writers. Great interest was felt to discover the site of their commercial capital, Carchemish, and many conjectures have been made, none of which, how ever, could be veritied. A few years ago Mr. Skene, the British Consul at Aleppo, discovered a huge mound of earth covering a large area on-the western shore of the lower Euphrates, near a ford of that river on the route still tra versed by caravans. This great mound was surrounded by ruined walls and broken towers, while the mound itself was but a mass of earth, fragments of masonry, and débris. It had frequently been seen by previous travelers, but they dentified it with other lost places. Mr. Skene called the attention of the late George Smith, the eminent archæologist who brought so much to light from the ruins of Nineveh, to this mound, and Mr. Smith found here the long-lost capital of the Hittites. The present British Consul, Mr. Henderson, has been during the last two years engaged in the exploration of the mound, and has already sent important remains with inscriptions to the British Museum.

A few years ago a stone which had formed part of the wall of a house at Hamath had an inscription upon it which excited great curiosity, because it was neither Assyrian nor Egyptian, but something between both languages. It may Egyptian, but something between both languages. It may
be remembered that I called attention in one of my be remembered that I called attention in one of my
former addresses to the discovery of this stone and one or former addresses to the discovery of this stone and one or
two others containing like characters, which were then two others containing like characters, which were then
called the Hamath inscriptions, with the suggestion that this might probably be the language of the Hit tites, which is now proved to be the fact. The inscriptions found by Mr. Henderson in the exploration of Carchemish are not only of the same character, but the same language which Mr. Layard found impressed upon seals discovered by him in the ruins of the record chamber of Sennacherib's palace, and which greatly excited his curiosity, as the writ ing was unlike any ever noticed before. Another inscription was afterward discovered at Aleppo, by Mr. Davis, a missionary; and it also turns out that the famous figures sculptured above the roads from Ephesus to Phocea, and from Smyrna to Sardis, which are mentioned by Herodotus, and were supposed by him to represent the Egyptian King and were supposed by him to represent the Egyptian King
Rameses II., the Sesostris of the Greeks, had inscriptions in the same character as that recently found in Carchemish, showing that these figures also are Hittite monuments. It is supposed that this language was the source of what is known as the Cypriote syllabary, found in Cyprus, and which was probably the language in use among commercial people throughout Asia Minor until it was superseded by the simpler and more practical Phœnician alphabet. This discovery is exceedingly interesting, as the Hittites belong to the same race of people who perfected, by the invention of the alphabet, that greatest of human inventions, a writ ten language. We have now, in this discovery of $\mathbf{M r}$ Smith, the memorials of a lost people, in neighboring prox imity to the Phœnicians, of whom also we know so littlea people who had an important part in the early progress of ancient civilization, with respect to which an eminent Egyptian scholar expresses his conviction that future discoveries tian scholar expresses his conviction that future discoveries
in the course of this exploration will afford convincing proofs that this civilization, which was of the highest anti quity, was of an importance which we can only guess at.
A writer in the London Times has said, in respect to these discoveries, that they have opened up to us an extinct civil ization that existed before Rome or Athens was founded, of which nearly every trace and memorial had been lost until these discoveries were made a few years ago; that they have opened a new and earlier page in the history of mankindin that of religion, science, and of the arts-by the discovery of the remains of this library, which Abraham may have consulted in what was the land of his nativity.

Fishes on the Pacific Coast.

At a recent meeting of the California Academy of Sciences, Professor Jordan, of the United Şates Fish Commission, said that the labors of himself and associates have, as yet, been principally confined to the waters of San Diego, San Pedro, and Santa Barbara. Among the specimens of fish examined were the European shark, of which little has been heard on this coast, but it is taken by thousands in Los Angeles waters for the oil. Mr. Jordan here exhibited a specimen of the true sole, the only one yet found on the Pacific coast. The fish sold in our markets as soles are different kinds of flounders. The one shown was picked up in the Chinatown of Los Angeles. Of the flounders, two new species have been found. One was caught just outside the Golden Gate, and is evidently the young of a species that grows to a large size. The only other specimens of the spe
ches known were found in Greenland. Another flounder was of the halibut form. Other new forms were found of the sting ray. It was found off San Diego, and is of the European genus. Another ray, caught off Santa Barbara, European genus. Another ray, caught off Santa Barbara,
belongs to the Chinese genus. This is only another evidence that fishes of the same genera are common to both sides of the Pacific, and, as the speaker facetiously remarked, "form ing another link between California and Cbina." It is almost as easy, said Mr. Jordan, to find new genera as new species on this coast. Several sharks, about three feet long, were found off Santa Barbara, which have the peculiar faculty of inflating themselves with air when caught, until they are two-thirds as broad as they are long. This has only they are two-thirds as broad as they are long. This has only
been known before by specimens brought from Van Diebeen known before by specimens brought from Van Die-
men's Land. To the eleven species of rock cod, seven more have been added. Most of the new species are of a bright red color. Another new species of surf fish or perch was found in the San Francisco market.

A Wasp's Strategy.

Mr. Seth Green says that one morning, when he was watching a spider's nest, a mud wasp alighted within an inch or two of the nest, on the side opposite the opening Creeping noiselessly around toward the entrance to the nest, the wasp stopped a little short of it, and for a moment remained perfectly quiet. Then reaching out one of his antennæ, he wriggled it before the opening and withdrew it. This overture had the desired effect, for the boss of the nest, as large a spider as one ordinarily sees, came out to see what was wrong and to set it to rights. No sooner had the spider emerged to that point at which he was at the worst disadvantage, than the wasp, with a quick movement, thrust his sting into the body of his foe, killing him easily and almost instantly. The experiment was repeated on the part of the wasp, and when there was no response from the inside he became satisfied, probably, that he held the fort.

At all events, he proceeded to enter the nest and slaughter the young spiders, which were afterward lugged off one at a time.

Decision on an Injector Patent.

March 10, 1880, Judge Wheeler, of the United States Cir cuit Court for the Southern District of New York, rendered a decision in a case in which Nathan \& Dreyfus, proprietors of James Gresham's patent (No. 57,057) for "a supplement ary jet-lifting apparatus for injectors," sued the New York Elevated Railroad and Wm. L. Chase for an infringement of that patent. The injector which they claimed to be an nfringement was that known as the "Little Giant Injector," made and sold by the Rue Manufacturing Company, of Philadelphia. This suit was brought in 1876. The court ustained the validity of the Gresham patent, found that the "Little Giant" injectors complained of were an infringement of that patent, and granted an injunction and referred the subject for an accounting of the damages. Nathan \& Dreyfus now give notice that lifting injectors of this pat ern are infringements of their patent, and announce that they will settle for such infringements on reasonable terms with all users who respond promptly, and without litigation.

RECENT DECISIONS RELATING TO PATENTS, ETC.

U.s.

Gottrified et al. vs. the phillip best brewing compan
et al.-ImPROVEmENT in pitching barrels,
Patented may 3, 1864.
[It is not often that so many interesting questions are involved and decided in a single case as in the following.]

JOINT INVENTION.

1. To overthrow the presumption of joint invention raised by the filing of a joint application upon a joint oath the evidence must be clear and unequivocal
2. Joint invention is the result of mutual contributions of the parties; and if one suggests an idea in a general way and the other falls in with it, and by his aid develops and gives definite practical embodiment to it, the two may be considered joint inventors.
a licensee for a particular machine cannot substi-
tute therefor a new machine.
3. The defendants claimed to be licensees under the patent by reason of a purchase from one of the inventors of a machine used by him; but it appearing that said machine was subsequently torn down and afterward rebuilt of substantially a new construction, it was held that the identity of the original machine was thereby destroyed, and the evidence did not disclose such facts as to show that the patentees had expressly or impliedly given to the defendants license or permission to use such machine.
SIMPLICITY AND ECONOMY OF CONSTRUCTION ARE SUFFICIENT to support a patent.
4. The patent law protects simplicity and economy of construction as against prior complex and expensive combinations; and although the general and abstract effect may be analogous, if the two mechanisms produce their respective results by essentially different processes, the one being more simple and capable of being operated with greater economy than the other, it is not anticipated thereby.

REQUISITES OF SUCCESSFUL PRIORITY.
5. A prior patent or publication, to anticipate a patent, must appear in the description to embody substantially the same organized mechanism, operating substantially in the same manner as that described in the patent claimed to have been anticipated.
the new arrangement of old devices may be PATENTED.
6. Old instruments placed in new and different organizaions, producing in such situation different results, or the some results by a new and different mode of operation, do no prevent such newly-organized mechanism from being patentable.
to overthrow a patent the alleged prior device must be perfected and practical.
7 To justify the court in overthrowing a patent granted for what appears to be a new and useful invention or improvement, on the ground that the device has been anticipated by another and earlier invention, the court should be well satisfied by clear and credible testimony that the alleged earlier invention actually existed; that it was a perfected device capable of practical use; that it was embodied in distinct form and carried into operation as a complete thing, and was not of such character as to entitle it only to be regarded as an unperfected or abandoned experiment.
8. A rude machine constructed for the purpose of experiment, and subsequently broken up, deserted, and abandoned, cannot be regarded as such a perfected invention as will defeat a patent
new combinations of old parts are patentable.
9. Although the various elements or parts of the patented mechanism, when separately considered, may be regarded as old, they are to be viewed in the light in which they have been combined in connection with the new and useful re sults which the combination accomplishes.

TIONs.
10 A claim to "the application of heated air under blast to the interior of casks by means substantially as described and for the purposes set forth," embraces the particular
11. Claims containing words referring back to the specification must be construed in the light of the explanations contained in the specification.
12. It is sufficient for the purpose of distinguishing old parts from new in the spectication and claims of a patent to describe each and all of the parts, and claim the mechanism as a whole, so constructed and operated as to produce the result set forth.

MECHANICAL INVENTIONS.

An improvement in axle boxes which will prevent the oil or grease from flowing out of the box, and will prevent sand from entering it, has been patented by Mr. Irving F. Burdick, of North Stonington, Conn.
An improved hay press has recently been patented by Mr. Beverly Tompkins, of St. Albans, West Virginia. This invention is an improvement on the hay press, for which application for patent was allowed to the same inventor June 13, 1879. It consists of a novel arrangement of levers for operating the traverser and follower of the press.
A harrow that can be readily adjusted for light or heavy work, be made to accommodate itself to uneven ground, and be moved anywhere without being taken to pieces, has been patented by Mr. William W. Cook, of Kansas Centre, Kan.

Diamond Making.

The London Photographic News sums up briefly the result of diamond making as follows: A hydrocarbon gassuch as marsh gas, for instance, which is composed of hydrogen and carbon-is put into a stout iron tube of considerable thickness. A nitrogen compound-presumably cyan-ogen-is also introduced, with a view to the nitrogen combining with the hydrogen, and leaving the carbon free, for a diamond, as our readers are aware, consists of pure crystallized carbon. The gas in the iron tube is subjected to enormous pressure to liquefy it, the tube being heated to aid in this work. The liquefaction of oxygen by Pictet, of Geneva, was effected by pressure in this way. The pure Geneva, was effected by pressure in this way. The pure
carbon passes under pressure from a gaseous into a liquid form, and finally crystallizes, in which condition it is found upon the iron tube being opened. The diamonds are, however, of the most minute character, and Mr. Hannay, of Glasgow, who has thus succeeded in making them, frankly owns that the game is not worth the candle.

When Trout May be Caught.

The Sea World, a sprightly little paper devoted to the fish interests, published at New Haven, Conn., gives the following information regarding the laws of different States in respect to trout fishing.
California, April 1 to November 1.
Connecticut, April 1 to July 1.
Iowa, February 1 to November 1.
Maine, May 1 to October 1.
Massachusetts, April 1 to October 1.
Michigan, May 1 to September 1.
Minnesota, April 1 to October 1.
New Hampshire, May 1 to October 1.
New Jersey, March 1 to October 1.
New Jersey, March 1 to October 1.
New York, April 1 to September 1.
New York, April 1 to September 1.
North Carolina, January 1 to October 15.
Pennsylvania, April 1 to August 1.
Province of Ontario, Canada, May 1 to September 15.
Province of Quebec, Canada, February 1 to October 1.
Rhode Island, March 1 to August 15.
Vermont, May 1 to September 1.
Virginia, April 1 to September 15
Wisconsin, April 15 to September 15.

Total Solar Eclipses.

According to Professor Davidson, of San Francisco, the most important total solar eclipses during the present century will be as follows:

The next total solar eclipse visible near the United States will be that of May 28, 1900, at 3 o'clock in the afternoon; wherein the central line of totality passes through Mexico, the Azores, and Egypt.

Water Cresses.

At a recent meeting of the Royal Horticultural Society of England, Mr. Shirley Hibberd exhibited a lot of home-grown water cresses, which created considerable interest among the members. The display consisted of a series of pans, fifteen inches in diameter, each filled with a luxurious growth of tender cresses. Tke exhibitor claims that the pan culture of water cresses may be profitably pursued with the aid of a frame or cool plant bouse during the severest winter weather The cresses shown were produced in the course of six weeks, and had been daily gathered for the table, thus showing how rapidly and prolific they grow. According to the testimony of Mr. Hibberd any one may supply his table with his wholesome and delicious salad any time of year without much trouble or expense.

(furregupundente.

The La Plata Mining and Smelting Company. To the Editor of the Scientific American:
One of the most complete ore sampling and smelting companies in the carbonate region is the La Plata Mining and Smelting Company. Like most of the enterprises of this new and wonderful region, it developed into its present large proportions, from a small and unimportant beginning. About the middle of June, 1879, the present corporation was established with a capital stock of $\$ 2,000,000$, in 200,000 shares, per value $\$ 10$ each, although prior to the above date the firm of Berdell, Witherel \& Co. had carried on the business of smelting ores with marked success. In order, however, to meet the increasing demands of a company where new discoveries of large mineral deposits followed so rapidly after one another, the La Plata company was organized, and with a cash capital of $\$ 100,000$ business commenced on a scale before unthought of. The working capacity of the mills was largely increased by a judicious expenditure of nearly $\$ 50,000$, and under the able management of C. B. Rustin, Nathaniel Witherel, and Theodore Ber dell, seven dividends, amounting to $\$ 115,000$, have been paid to stockholders.
The process of sampling and smelting ores in vogue at this establishment is thoroughly approved and entirely satisfactory in its workings and results. The different ores coming from the various mines are first deposited in bins holding about 30 tons respectively. Each mine has its es pecial bin, and the ores are kept entirely distinct and separate. For sampling purposes about one-tenth of a particu lar ore is taken, and is cut down to a sackful containing from 60 to 100 lb . This is run through a Blake crusher, which breaks up the larger pieces, and renders the whole sufficiently fine for the furnaces. One tenth of the residuum is then subjected to the Cornish rollers, which crushes it very much finer. The Aldin crusher then pulverizes it, and it is afterwards manipulated on the bucking board until it is of the consistency of a fine powder, capable of going through an " 80 sieve." One-fourth of this powder is sent to the assay room, where the "assay ton" is taken, reckoned in milligrammes, and a valuation made of the entire amount of ore; one-fourth of the powder is given to the miner; the other two-fourths are bottled, labeled, and sealed for reference. Should the assay of the miner and the smelter disagree, the valuation is either determined by the other sample, or, to use a Yankee expression, they "split the difference." For purposes of smelting, the ores are taken from their bins and deposited in large "mixture piles" containing 300 tons each. These mixtures of ores are taken to the scales and weighed. It is determined in the laboratory what quantity of lime and iron shall be added for a flux to the various grades of ore. Having determined the requisite amount of fluxes necessary for a single blast, the compound amount of fluxes necessary for a single blast, the compound
mass is taken to the furnace room, where four large blast furnaces, with an aggregate daily capacity of 110 tons, are kept in constant blast. At the end of 24 hours the ore is ruv off in the shape of bullion pigs weighing 95 lb . The slag is run out from a different aperture, and is thrown on the "dump" as useless material. These pigs of bullion are carefully assayed to determine their exact value, and are then shipped to the Newark, N. J., refining works, where the silver is separated from the lead and the lead then refined. The product of the La Plata Mining and Smelting Company, from its organization, June 14, 1879, up to March
1, 1880, has been $1,155,661$ oz. silver, and $7,083,769 \mathrm{lb}$. of 1, 1880, has been $1,155,661 \mathrm{oz}$. silver, and $7,083,769 \mathrm{lb}$. of
lead, for which $36,917,396 \mathrm{lb}$. of ore were required. The lead, for which $36,917,396 \mathrm{lb}$. of ore were required. The aggregate yearly production of silver alone will considerably exceed a million and a half of dollars. The most imposing object that strikes upon the insto theadville for the first the works of the La Plata Company. They cover 25 acres of ground, with a frontage of 550 feet. About the buildings of the works themselves, which are large and substantial, there clusters a small village of dwelling houses for the accommodation of the 100 employes of the company. The company owns and operates mines located in California Gulch, which yield an immense quantity of low grade mineral, so necessary for successful smelting. This together with its extensive patronage by such mines as the Chrysolite, Iron, Little Chief. and Climax mines, keeps the furnaces in constant opera tion.
To indicate the high position this company occupies in the business community it will be sufficient to name the officers of the corporation, as follows: C. B. Rustin, presi dent; N. Witherel and Harry Allen, vice presidents; Theodore Berdell, treasurer and agent in Colorado; and Fredrick Sheppard, secretary. Mr. C. B. Rustin, aided by his enerSheppard, secretary. Mr. C. B. Rustin, aided by his ener-
getic and experienced superintendent, Mr. M. E. Smith, getic and experienced superintendent, Mr. M. E. Smith,
directs and oversees with vigilance and ability every depart ment of the complicated business.
Leadville, March 25, 1880.

The Voice of the White Perch.

A correspondent writing from Parkersburg, West Virginia, says, with reference to the note on voice in fishes, in the Scientific American, February 14, 1880, that the white perch of the Ohio river will often follow a boat for a considerable distance, all the time making a peculiar hum ming noise like that of a telegraph wire in the wind. He has heard the fish make the same sound when imprisoned in a fish box to keep it alive.

Glucose-Grape Sugar-Corn Sirup. the manufacture of glucose and grape sugar from given to awakened an interest in the early history of the industry and its introduction into this country. Mr. Lyman Bradley, one of the original inventors of the process oì producing those articles from corn, writes to a Buffalo paper in reference to it as follows.

- Grape sugar was long before made from potatoes in Europe, and came here at a cost of from 8 to 12 cents a pound, in gold, when gold was at a premium of 40 per cent. But sugar from corn was not then known. In the year 1863, F. W. Gessling and Lyman Bradley, in the city of Buffalo, improvised a small factory for experimenting, to see if grape sugar, glucose, and sirup could be made 'from corn. Although sneered at and ridiculed by their friends as insane, they, by their persistence, succeeded, and in 1864 they obtained a patent, which may be seen on the records at Washington. In July, 1864, a committee of sugar manu facturers and chemists from New York visited Buffalo as experts, to report as to the value of the invention. The remained several days, testing the process. They returned, and others from New York took their places for the same purpose. The patentees employed a well known citizen of Buffalo to negotiate a sale of the patent, and on the 10th of November, 1864 , a sale was made for $\$ 600,000$, a stock com pany formed with a capital of $\$ 1,000,000$, and stock issued, some of which may be seen in Buffalo bearing that date."
From the supposed folly of Gessling \& Bradley has grown up a business in which nearly $\$ 30,000,000$ are invested.
Grape sugar has been made from potatoes and imported Grape sugar has been made from potatoes and imported here to be used in making wine, costing near 12 cents per pound, it being better than cane sugar for that purpose, it having no taste but sweet if properly made. No grape sugar, no glucose, no sirup, was ever made on this cont nent or elsewhere from corn until after the invention s.
made by Gessling \& Bradley, and if any credit is due to any one for inventing a process which is proving to be so valu able, the meed of praise belongs to them. For now, instead of importing an inferior article of grape sugar, made from potatoes, at a cost of 8 to 12 cents a pound, large quantities or grape sugar made from corn are exported at 3 cents pound.-The Western Manufacturer.

The Compression of Gaseous Mixtures.

In a recent paper on this subject to the Paris Academy of Science, M. Cailletet begins with the remark, that when a mixture of air and carbonic acid was inclosed in the appara tus which had served him for liquefaction of gases, he found as Andrews and several other savants had already observed, that the liquefaction of carbonic acid was retarded, often very greatly. It is even possible to compress at zero, beyond 400 atmospheres, a mixture of 1 volume of air and 1 volume of carbonic acid, without getting a change of aspect in the tube.
On compressing in the apparatus, he proceeds, 5 volumes carbonic acid and 1 volume air, the carbonic acid is easily liquefied. If the pressure be then carried to 150 or 200 atmospheres, the meniscus of liquefied acid, which, up to that point, was concave and perfectly distinct, becomes plane, loses its distinctness, then is progressively effaced; at length the liquid entirely disappears. The tube then seems filled with a homogeneous matter, which thenceforward resists all pressure as a liquid would.
If, now, the pressure be slowly diminished, one perceives that at a pressure constant for determinate temperatures the liquid suddenly reappears; a thick mist is produced, developing and vanishing in an instant, and marking the level of the liquid which reappears. The following numbers indicate the progress of the phenomenon.
Operating with a mixture formed approximately of 5 volumes carbonic acid and 1 volume air, the liquid carbonic acid reappears at:

This phenomenon of disappearance of the liquid cannot be explained by the heat disengaged by compression; for, in this experiment the tube is immersed in water, which keeps the temperature constant, and the compression is effected
slowly enough for the cooling to be always complete.
The whole phenomenon, indeed, is as if, at a certain gree of compression, the carbonic acid is diffused in the gas above, producing a homogeneous matter, without sensible change of volume; and nothing seems to hinder us from supposing that the gas and the liquid are dissolved in one another. I have tried to verify this hypothesis by coloring the liquefied carbonic acid. Of all the substances tried, iodine alone was capable of dissolving in the acid; but, un fortunately, in this experiment the mercury is rapidly at tacked, and the phenomenon is immediately masked by the iodide of mercury, which is deposited on the wall of the tube.

One might, however, suppose that the disappearance of the liquid is only apparent; that the index of refraction of compressed air, increasing more quickly than that of the
liquid carbonic acid, there comes a moment when the two indices becoming equal, the surface of separation of the liquid and the gas ceased to be visible. But if, then, we augment several hundred atmospheres the pressure of the
system, the surface of separation of the gas and the liquid should become visible again, the index of refraction of the gas continuing to increase, by hypothesis, more rapidly than the index of the liquid. But experiment, pushed to 450 atmospheres, gave only negative results.
We may, then, suppose that at high pressures a gas and a liquid may be dissolved in one another, so as to form a homogeneous whole.

An Englishman's Views on American Manufactures.

 In a lecture recently delivered in Sheffield, England, Mr W. K. Marples, of that town, related his experience and ob ervation in his travels through the United States."I found," says the lecturer, "in visiting various Ameri can factories, machinery much more generally used than it is with us-in fact, I sometimes saw machinery employed for a process which might have been done more cheaply by hand labor; but we must remember that until recently skilled workmen were not numerous in the States, and so manufac turers were driven to the use of machinery. The Americans are much more advanced in manufactures of all kinds than many of us are aware. Cabinet furniture, glass and china, cutlery tools, guns and pistols, agricultural implements, car pets, linen, in fact, soft and hard goods of every description are made, and in most instances made well, in the United States. Their resources are wonderful; nature has given them coal, iron, waterpower, etc., with the finest navigable rivers in the world, and then their chiefly English origin has given them pluck, endurance, and perseverance under diffi culties, and these qualities, coupled with the immigration of many of our best artisans, have in the comparatively short many of our best artisans, have in the comparativels for them. The New
space of
100 years worked marvels space of 100 years worked marvels for them. The New
England States are one vast hive of manufacturing industry, and it is here that the brains of inventors are stimulated to their utmost powers in developing labor-saving articles, and the machinery to make them.
"I think the introduction of the many American ideas and inventions into England that has been attempted during the past few years will tend to develop new ideas among our workpeople, and assist us in holding our position as the great manufacturing nation of the world. I have little fear that English hardware manufacturers will succeed in holding their own in all markets where the duties are not prohibitory, as in the United States. There is little doubt that much of the boasted superiority of American manufactures in the matter of price was a mere myth, and I am fully convinced that until a few months ago, when the hardware trade in America was so depressed, the manufacturers there exported goods to England at a positive loss. In some cases this has been admitted, and the enormous advances, amounting in some goods (notably in locks) to over 100 per cent, bear me out in this opinion. Many goods, that up to a short time ago were imported from America, are now manufactured in England, and the Americans would seem to be doing their best to destroy the trade which until recently they were apparently so anxious to build up. English manufacturers have been fully alive to the situation, and will not readily allow American manufacturers to recover the ground they are now losing."

The Railways of London.
A London paper states that the rails used by the companies within a radius of 6 miles of Charing Cross would form a single line from London to John O'Groat's house, a distance of 750 miles. This estimate does not include the rails in bays and sidings, but it includes all double, treble, or quadruple tracks. Leaving all duplicate lines aside, the incredible number of 260 miles of railway is in daily operation in the metropolitan district. From Hendon and the Alexandra Palace on the north to Penge and Streatham on the south, from Forest Gate and Woolwich on the east to Acton and Willesden in the west, thirteen different companies hold sway, not including the East London, whose line is worked by another company. There are also six short lines, varying from $43 / 4$ miles to 1 mile in length, owned and worked by the companies jointly. The Brighton Company owns the greatest mileage in the metropolis- 37 miles. It is closely run by the Great Eastern with 32 . Thers comes the London and Southwestern with 27; the London, Chatham and Dover and Northwestern follow with 24 each So far as using the lines are concerned, the London and Northwestern run over more than one-fourth of the whole
metropolitan system. The trains of this great company use metropolitan system. The trains of this great company use
the lines of five other companies, practically adding 44 miles to their own system. The Great Northern has running powers over the lines of six companies, embracing 36 miles. The mixed nature of the metropolitan system is apparent in the fact that over the London, Chatham and Dover Railway five companies run their trains. The Metropolitan Company's lines are open to four companies. The Southeastern alone uses no other lines, though it has running powers over the East London. If there be added to this astonishing system of locomotion the 70 miles of tramways now open, the omnibuses which ceaselessly traverse the metropolis from one end to the other, the thousands of cabs, the passenger steamers which ply on the river-the magnitude of the means daily employed by the people of London in getting from one part of the "New Babylon" to another will strike the observant mind. With all this vast traffic the injuries
to life and limb, save in the cases of street accidents, comparatively few. With trains flying above ground and underground, over complicated points and through crowded unctions, collisions seldom occur and seldom result in loss of life.

THE LITERARY REVOLUTION.-HISTORY. On another page will be found advertised Macaulay's
England, in three volumes, Knight's England, in four
double volumes, Gibbon's Rome, in five volumes, and England, in three volumes, Knight's England, in four
double volumes, Gibbon's Rome, in flve volumes, and
other standard histories, at prices which place them other standard histories, at prices which place them
within eass reach of thousands who could never before
reconcile their literary longings with their longings. The prices are now the marvel. At Afrst read-
lots doubt if they are real; then if the books are wel made; for no previous experience shows that books can be at once good and cheap. When actual inspection
demonstrates that they are well printed from good demonstrates that they are well printed from good
type, on fair white paper, and are bound neatly and
durably, then the marvel is that the thing can be done type, on fair white paper, and are bound neaty and
durably, then the marvel is that the thing can be done
For the publishers deny that they are giving their wares away. They have simply adopted a system by which the eager crowd that wants their books get with them
whatever advantage may accrue from large editions whatever advantage may accrue trom large ed of ins
cash sales, and the abrogation of the long series of in-
termediate profits that usually lie between the maker and the buyer.
Type setting by steam lends its aid. The compositor
its before his lettered key-board like is desk; the types, responsive to the coll of his deft his desk; the types, responsive to the call of his deft
fingers, step out into the ever-growing flle,Whence a second workman takes the ranks that march in solid col-
umn down the printed page. Brains guide this maumn down the printed page. Brains guide this ma-
chine, but the distributer is entirely automatic, assort-
ing the letters swiftly with the utmost precision.
Although history is prominent in this advertisement,
the issues of the AMERICAN BOOK EXCHANGE include many other works of standard merit. Descriptive catalogues of books now ready, and of important additions
o be made at no distant day, will be cheerfully sent to to be made at no di
any address. - Adv.

dusiutss and extanal.

The Chargefor Insertion under this head is One Dollar a line for each insertion; about eight words to a line.
Advertisements must be received at mublication office Advertisements must be reccived at mublication office
as early as Thursday morning to appear in next issue. The publishers of this paper guarantee to advertisers a circul
weekly issue.

Send stamp for Illustrated Descriptive Price List of the Step Ladder, Ironing Table, and Clothes Drier. An
ingenious combination. Useful in hotels, laundries, and every household, in every climate. See description in No 12, Vol. 48, Scien
Hartford, New York.
Best and cheapest Piston Water Meter; also machines for setting tires cold by hand or po
ar. J. B. West, Rochester, N. Y.
Wanted- $\mathbf{3 0}$ H. P. Portable Engine; new or 2d hand. daress Colman Bros., South Coventry, Conn.
Makers of Thermo-static Apparatus for Controlling
The Brown Automatic Cut-of Engine; unexcelled for workmanship, economy, and durability. Write for in-
fomation. C. H. Brown \& Co., sole manufacturers fomation. C. H.
Fitchburg, Mass.
Wanted-Straw Braiding Machines for Hats, Mats, o Bonnets, and Hand Knitting Machines. Address 374 The handsomest Pens ma
The handsomest Pens made are the Gold Plated Pens brice $\$ 2$ per gross.
by terbrent
Catalogue of Useful Books on Applied Science
free. E. \& F. N. Spon, 446 Broome St., New York.
Telephones.-Inventors of Imp rovements in Telephones and Telephonic Apparatus are requested to com-
municate with the Scotish Telephonic Exchange, Limimunicate with the Scottish Telephonic Exchange, Limi-
ted, 34 St. Andrew Square, Edinburgh, Scotland. J. G. ted, 34 St. Andrew Square
Lorrain. General Manager
Makers of Machines for making Wagon Spo
Rims, etc., address C. D. Rathbone, Belpre, Ohio.
Blake Lion and Eagle Imp'd Crusher. See adv. p. 236.
Wanted.-Foreman of Machine Shop; one accustomed aker, familiar with the gating of small patterns. Ap ply to St. Louis Malleable Iron Co., St. Louis, Mo.
The genuine Asbestos Roofing (with white or gray
Fireproof Coating), now in use in all parts of the world, is the only reliable substitute for tin. It is adapted for steep or flat roofs in all climates. It costs only half as
much as tin, and can be easily applied by any one.
H. W. Johns Manufacturing Co 87 Maiden much as tin, a
H. W. Johns Ma
Experimental Machinery, prices fair, at Anderson
For manufacturing sites, coke and gas coal lands, their qualities
Pittsburg, Pa .
Foundry and Machine Shops for sale. Established in 1846. Write for
Steuben Co., N.

4 to 40 H. P. Steam Engines. See adv. p. 220. Wanted-Glass and Tin Fruit Cans; large quantities Brass Castings; bottom prices. H.B.Morris,Ithaca,N.Y. For Alcott's Improved Turbine, see adv. p. 204. Boiler Feed Pump, with tight and loose pulleys;
to work. Price \& $_{3}$. York \& Smith, Cleveland, \mathbf{O}. Boat Engines, for sidewheel boats drawing 6 to Boat Engines, for sidewheel boats drawing 6 to 12 in;
direct acting; fink motion; cheap. Box 559 , Owego, N.Y. For Sale.-Four Boilers, 100 horse power each, return drop flue; A 1 condition; $\$ 1,500$ each. 1 Berryman
Heater, $42 \times 96 ;$ A 1 condition; $\$ 100$. D. L. Einstein,

Heater, 42 x 96: A 1 co

Corrugated Traction Tire for Portable Engines, etc. Spokes and Rims, H. Lloyd, Son \& Co.. Pittsburg, Pa to any pattern, and Hammer Handles of best hickory. John Fitz, Martinsburg, West Va.
For the best Stave, Barrel, Keg, and Hogshead Machinery, address H. A. Crossley, Cleveland, Ohio.
Collection of Ornaments.-A book containing over
1,000 different designs, such as crests, coats of arms vignettes, scrolls, corners, borders, etc., sent on receipt Best Oak Tanned Leather Belting. Wm. F. Fore-

National Steel Tube Cleaner for boile tub Ad,
National Steel Tube Cleaner for boiler tubes. Adjust-
able, durable. Chalmers-Spence Co., 40 John St., N. Y.

Split Pulleys at low prices, and of same strength and Works, Drinker St., Philadelphia. Pa.
Stave, Barrel, Keg, and Hogshead Machinery a speSolid E. \& B. Holmes, Buffalo, N. Y.
Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel - other kinds imitations and inferior. Caution.-Our name is stamped in full on all our best
Standard Belting. Packing, and Hose. Buy that only. The best is the cheapest. New York Belting and Pact ing Company, 37 and 38 Park Row. N. Y.
Sheet Metal Presses, Ferracute Co., Bridgeton, N. J.
Nickel Plating.-Sole manufacturers cast nickel andes, pure nickel salts, importers Vienna lime, crocus,
tc. Condit, Hanson \& Van Winkle, Newark, N. J., and tr. Condit, Hanson \& Van Win
94 Liberty St., New York.
Wright's Patent Steam Engine, with automatic cut off. The best engine made. For prices, address william Presses, Dies, and Tools for working Sheet Metal, etc. Bradley's cushioned helve hammers. See illus. ad. p. 238. Forsaith \& Co., Manchester, N. H., \& 213 Centre St., Hand Fire Eng. \& Hose Carriages, New \& \& 2 hand Machinery. Send stamp for illus. cat. State just what you want. Electrical Indicators for giving signal notice of extremes of pressure or temperature. Costs only $\$ 20$. At-
tached to any instrument. T.Shaw, 915 Ridge Ave.Phila Instruction in Steam and Mechanical Engineering. thorough practical education, and a desirable situation
as soon as competent, can be obtained at the National as soon as competent, can be obtained at the Natiora,
Institute of Steam Engineering, Bridgeport, Conn. For particulars, send for pamphlet.

Hydraulic Jacks, Presses

Hydraulic Jacks, Presses and Pumps. Polishing and yon \& Co., 470 Grand St., New York
Portable Forges, $\$ 12$. Roberts, 107 Liberty St., N. Y. Telephones repaired, parts of same for sale. Send
tamp for circulars. P.O. Box 205 , Jersey City, N. J. Eclipse Portable Engine. See illustrated adv., p. 222. For best low price Planer and Matcher. and latest improved Sash, Door, and Blind Machinery, Send
catalogue to Rowley \& Hermance, Williamsport, Pa. Silent Injector, Blower, and Exhauster. See adv. p. 238. Steam Engines, Boilers, Portable Railroads, Sugar Planing and Matching Machines, Band Saws, Universal Wood-workers, Universal Hand Joint ers, Shaping, Sand-papering Machines. etc., manuf'd by
Bentel, Margedant \& Co.., Hamilton, Ohio. "Illustrated
Ben History of
sent free.
Fire Brick, Tile, and Clay Retorts, all shapes. Borgner \& O'Brien M'f'rs, 23d St., above Race, Phila,, Pa.

Peck's Patent Drop Press. See adv., page 236.

Chase's Pipe Cutting \& Threading Machine. Send for
ircular. Chase Machine Co., 120 Front St., New York.
The Chester Steel Castings Co., office 407 Library St Philadelphia, Pa.. can prove by 15,000 Crank Shafts, and
10,000 Gear Wheels, now in use, the superiority of their Castings over all others. Circular and price list free.
Brass \& Copper in sheets, wire \& blanks. See ad. p. 205
Diamond Engineer, J. Dickinson, 64 Nassau St., N.Y The Improved Hydraulic Jacks, Punches, and Tube
Expanders. R. Dudgeon, 24 Columbia St., New York. For Superior Steam Heat. Appar., see adv., page 237. We will pu rchase or manufacture on royalty, patented Valve Refitting Machine. See adv., page 238.
Cut Gears for Models, etc. Models, working machinery, experimental work, manufacturing, etc, to orde D. Gilbert \& Son, 212 Chester St., Phila., Pa.

Holly System of Water Supply and Fire Protection or Cities and Villages. See advertisement in Scien IFIC AMERICAN of last week
The E. Horton \& Son Co., Windsor Locks, Conn. Special Wood-Working Machinery of every variety. Lev Hen, Nomen. 238. The best Truss ever used. Send for descriptive circu-
lar to N. Y. Elastic Truss Co., 683 Broadway, New York. Inventors' Institute, Cooper Union. A permanent exnibition of inve
Broadway, N. Y
For Reliable Emery Wheels and Machines, addre Comb'd Punch \& Shears; Universal Lathe Chucks. Lam bertville Iron Works, Lambertville, N. J. See ad. p. 108 Improved Steel Castings; stiff and durable; as soft less than 65,000 lbs. to sq. in. Circulars free. Pittsburg Steel Casting Company, Pittsburg, Pa
New Economizer Portable Engine. See illus. adv. p. 206 Cutters shaped entirely by machinery for cutting teeth
of gear wheels. Pratt \& Whitney Co., Hartford, Conn. of gear wheels. Pratt \& Whitney Co., Hartford, Conn.
Hand Fire Engines, Lift and Force Pumps, for fire and all other purposes. Address Rumsey \& Co., Sen
Falls, N.Y., and 93 Liberty St., N. Y. city, U.S.A. For Shafts, Pulleys, or Hangers, call and see Wm. Sellers \& Co., Phila., have introduced Ore Breaker Crusher
Ore Breaker, Crusher, and Pulverizer. Smaller sizes
run by horse power. See p. 236 . Totten

NEW BOOKS AND PUBLICATIONS.

DeUtsch-Amerikanische Apotheker-Zeitto the A semi-monthly gazette devoted cians, Chemists and Druggists. New York: Pharmaceutica Pubbishing Com-
pany, 5 Gold street. Price $\$ 2.50$ a year
The first issue of this new periodical is well printed on Roman type, and contains a number of articles of interest and value to German reading apothecaries and
druggists, a price list of drugs and chemicals, and a report of the drug market. It has sixteen pages about three-four he the size of the SCIENTIFIC American, and
bears evidence of ability and vitality enough to give it an honorable rank among trade journals.

Responsibility Restricted by Insane De Lusion. By T. L. Wright, M.D. Paper,
pp. 16. cal News.
Dr. Wright's conclusions are that the partially insane should be held responsible for crime; that the degree of responsibility attaching to the acts of the monomaniac is less than that which belongs to sound minds; and that capital punishment should never
The American House Builder.
Hatfield. Edited by O. G. P.
Hatfield. $\begin{aligned} & \text { Edited by O. Pork: John Wiley \& Pons. 8vo }\end{aligned}$
cl., pp. 685. Price $\$ 5$.

This is the eighth edition of the well known treatise on the art of building by the late Mr. Hatfield. During he last year of his life the author thoroughly revise his work and rewrote a large part of it, making many
additions. The new volume is published in the same additions. The new volume is published in the same

Key to Ghostism. Science and Art Un

Lock its Mrsteries. By Rev. Thomas
Mitchell. New York:
S. R. Wells \& Co A curious book which, while it exposes in a way the
absurdities of "ghostism," still seems to leave the absurdities of "ghostism," still seems to leave the
author in a mental condition scarcely more creditable author in a mental condition scarcely more credtabats. The science of the work is of that amazing kind whic it, let alone any material basis.
Uber die Verwerthung der Linien gleicher Hohe for Bergbau. Forst-,
Land., und Volkswirthschaft und deren Wichtigkeit für die Fruchtfarkeit und den Wasserreichthun sowie den Verkehr
lines Landes. Von K. Ludolff. Prague H. Dominicus. Pp. 32. 1878.

Treats of the use of lines of equal height in mining, term, lines following the contour of the earth's surface but always preserving the same level. For example, to maintain the level of a mill race or aqueduct without
viaducts or tunnels, the channel must be carried around viaducts or tunnels, the channel must be carried around
all the curvatures of hill and valley, its course forming line of equal height. The author points out the applications and usefulness of such lines in the several va

Archimedes' Levers: The Fulcrum Found
by Will Powers. Philadelphia: G. W.
Townsend.
A packet of slips of note paper, along the margins of which are printed these words: 1. The Cause or Source? 2. Its Essentials? 3. Associated with? 4. Its Inci-
dents? 5. It Illustrates ? 6. Its Effects? 7. Concluions? These seven "levers" the student is expected to use in the analysis of subjects suggested or tanght in
newspaper articles, books, etc. Habits of critical note taking are well worth cultivating; and these slips might be handy for such work. The suspicion, however, that the author has experimented with the "levers" and thereby acquired the style of writing and thinking
shown by him on the cover of the packet, will be likely shown by him on the cover of the
to prevent any large use of them.

The Field Engineer. By William Findlay Shunk,
A handy (pocket) book of practice in the survey, location, and track work of railroads, prepared with specia not had the adavantage of a technical education.
A Practical Treatise on Nervous Extoms, Nature, Sequences, And Treat
ment. By George M. Beard, M.D. New ment. By George M. Beard,
York: William Wood \& Co.
Dr. Beard writes as a specialist for the practical in truction of general practitioners of medicine, his aim ness, if not exhaustively, the symptoms of neurastheni -those hitherto assigned to other affections, or regarded as special and distinct diseases, to show their relations
and interdependence; to distinguish them from the and interdependence; to distinguish them from the oftentimes closely resembling symptoms of organic and hypochondria on the other; to unify and harmonize the complex developments and manifestations of this malady; to indicate its pathology and rationale; and to trace out in detail its prognosis, sequences, treatment, three gospels-rest, work, and change of work."

HINTS TO CORRESPONDENTS.
No attention will be paid to communications unless accompanied with the full name and address of the writer.
Names and addresses of correspondents will not be given to inquirers.
We renew our req
We renew our request that correspondents, in referring
to former answers or articles, will be kind enourh to to former answers or articles, will be kind enough to
name the date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear after
a reasonable time should repeat them. If not then pubished, they may conclude that, for good reasons, the Editor declines them.
Persons desiring
Persons desiring special information which is purely of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject should remit from $\$ 1$ to $\$ 5$, according to the subject,
as we cannot be expected to spend time and labor to as we cannol be expected to spend time and la
obtain such information without remuneration. Any numbers of the Scientific American SuppleMENT referred to in these col
office. Price 10 cents each.
(1) G. W. D. asks: What is the rule for
being known? A. Generally from one-ninth to one eigh-
eenth the area of the piston, depending upon the presare of steam and velocity of the piston.
(2) W most (2) W. T. B. asks: Which has the most brains, the best chemist in the world orthe best carpenranked so high as the "best chemists," on the score of brain, capacity, power, and learning. Certainly chemistry calls for a higher and wider range of exact know-
ledge and greater mental power and acuteness than carpentry does; and for quite as much manual skill.
(3) L. H. McF. asks: 1. Ought pure alcohol be used for preserving natural history specimens? A. Spirit of wine will answer as well as strong alcohol.
2. Will methylic or wood alcohol answer the purpose?

Yes; in some cases alcohol is preferable.
(4) O. R. R. asks: 1. Is there any way known of keeping milk without retaining it somewhat in bulk? A. Milk has been preserved for some time by
the addition to it of salicylic acid in the proportion of the addition to it of salicylic acid in the proportion of iodate of calcium. Neither of these, however, are desirable in milk. 2. If a metbod could be discovered by A. Very probably.
(5) R. S. M. asks: 1. If a pipe be laid ve mileslong over hills and down valleys, the fall being en feet to the mile, or 50 feet total, and the pipe be
zept full of water at the upper end, would the pipe be fll at the lower end? I say not: am I right? A. If we understand your question, you are correct. 2. Would not the water all pass through a pipe one half the size,
the last, say, 100 feet? If not, what proportion? A. the last, say, 100 feet? If not, what proportion? A.
The size of pipe at the lower end, to discharge all the The size of pipe at the lower end, to discharge a all the
water supplied from the upper end, will depend upon the total length of the pipe, and the number and character of the bends. 3. Would not the water flow more freely on a gradual grade than moving up and down with the hills? A. Yes.
(6) E. H. W. writes: In your issue of the Sientific American of March 20, under the head " Notes and Queries," No. 2abll metal. You diected him to use a piece of brass tubing instead, which corresponds with my idea of a small cylinder. I just
successfully completed an engine a few weeks successfully completed an engine a few weeks ago, cyl-
inder 13-16 inches diameter by $21 / 2$ inches stroke, with inder 13-16 inches diameter by $21 / 2$ inches stroke, with rass tube for bore of cylinder, and with Babb.tt metal engine. Have not applied it to any machinery yet, but eel confident it will run several sewing machines at
(7) S. B. H. asks: Can the chemicals and mpurities of a negative bath be identified by the help ion? A. The microscope would be of little service in his connection.
(8) W. E. A. writes: I have been trying to nake an imitation amber, for manufacturing purposes,
but can't get it just right. Can you give me a formula or some hints in regard to it? A. A fictitions amber is repared by melting pure bleached shellac, and keeping it over the fire until it runs clear, with care to prevent burning. It may be poured into moulds of the size of pieces required., The operation requires considerable management. The darkest and hardest pieces of gum
copal are ulso substituted for amber. The copal may copal are also substituted for amber. The copal may
(9) I. P. asks: 1. How many pounds of cast iron can I melt in a crucible in a brass furnace? A. 10
or 12 lb . can be handled very well. 2 . Howmany melts can I make in a crucible before danger of cracking? use for a flux for cast irons a a little borsx must 1 use for a flux for cast iron? A. A little borax, or charWhat can I add to scrap to make a soft casting? A. Powdered iron ore-iron rust.
(10) G. P. P. asks (1) where to find direcions for making a small electric motor. A. In article How can Imake an Edison loud speaking telephone? A. See p. 198, vol. 41, Scientific American. 3. What is the chemical reaction when the solution for chemical telegraph is decomposed by electricity, the positive electrode being of iron? (The solution is the same as de-
scribed on page 124 (24), Vol. 41. Scientific American.) cribed on page 124 (24), Vol. 41. Scientific American.) A. Ferric oxide is formed, which combines with the po-
tassium ferrocyanide forming Prussian blue ($\mathrm{Fe}_{7} \mathrm{Cy}_{18}$).
(11) H. A. R. asks how to make the best tove polish. A. Use pure graphite (plumbago) reduced to a fine powder and made into cakes by strong pres-
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
S. P.-The mineral is a micaceous hematite; it is a es.alena. The property is probably valuable. No. 2 is carbonate of lime.-M. F. B.-The sample is fool's gold
and contains none of the precious metals.-J. L H.-The and contains none of the precious metals.-J. L H.-The
substance is mica and if in larger plates would find a substance is mica and if in larger plates would find a
ready market.-T. X. O.-No. 1 is a lead carbonate carying silver. An assey would be advisable. No. 2 is
ecomposed granite.-L. S.-The ore is evidently selected specimen. It is worth about $\$ 200$ per ton. -R . G.-They are not diamonds but quartz pebbles. No. is worn by water. No. 3 is not a mineral but a fragparl and is much used as a fertilizer.-J. B. S. -It is not malachite but hardened green paint. - R. \& Co.Sample in green box. No. 1 is iron pyrites in shale. No. 2 is chrome iron ore.-M. E. C.-Copper and iron Quartz, iron sulphide, fluorspar. An assay would b. -Quartz, iron sulphide, fluorspar. An assay would be precions metals.

COMMONICATIONS RECEIVED.
On Cotton Pickers. By I. J. M
On Spontaneous Combustion. By J. T. R.
On Perpetual Motion. By H. S. B.

INDEX OF INVENTIONS

Letters Patent of the United States were March 16, 1880 .
AND EACH BEARING THAT DATE.
[Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list, infor one dollar. In ordering please state the number and late of the patent desired, and remit to Munn \& Co 37 Park Row, New York city.

Animal trap, A. McClain
Animal trap, J. H., W., \& T. D. Morris...
Anvil and vise, combined, W. E. Canedy A pple grinders, pressure plate for, Boomer
Boschert
Auger, earth, A. J. Collins...
Bale tie, cotton, S. H. Gilman
edstead, invalid, P. F. Adams.......................
ing fluid into, \mathbf{W}. Linehan...
Boot, R. Church Bottle stopper, C. G. Hutchinson...
Bottling machine, C. G. Hutchinson
, etc., kiln for burning, N. B. \& E.M
Heafer …......
Bung, beer, A. Fuldner...
Burglar alarm, S. D. Houpt............
Buttons, etc... from plastic materials, manuf
ture of, W. L. Palmer
Buttons, etc., manufacture of, Bliss \& Badger.
Car coupling, O. H. Drinkwater
Car coupling, J. S. Fisher
Car coupling, J. N. Winn
Car, stock, G. F. Patterson
Car wheel chill, J. N. Barr
Carriage bolts, die for making. I. Newton
Carriage dash frame, B. J. Warden
Cartridge, M. Coloney.....................................

Cartridge primer, J. H. Gil
Casting rolls, E. L. Lamb..
Catapult. O. H. Curtis...
entrifugal machine, S. s. Hepworth.
Chandelier, extension, A. H. Jones
Child's chair, W. F. Barbe
Churn, L. w. LeaKe...
Churn dasher, W. D. Snell
Cloth rolling machine, A: Brown
ock handles, covering for steam, J. Morrison.
Commode, P. Shinkle
Cooker and drier, steam feed, T. E. Daniels
Corset clasp, O. C. Haskell.
Corset parts, machine for folding, A. B. Curtis. rate, G. E. Bender
Cultivator, corn, G. R. Johnson
Dam or sluice wetr, clough, A. Pasqueau
Dental Jaw brace, G. H. Hurd...
Disintegrating mill, L. J. Bennett ...
Ditcher and scraper, combined, G. Palme
Ditching machine, C. D. Edwards.
Ditching machine, W. Stacy
Drawer pull, G. L. Donovan
Egg holder, J McGlinchy
Eggs, composition for preserving, A. Good.
Elevator, J. A. Groshoa
Elevator and fountain, A. A. Sanford...
Engraving printing surfaces, M. Bradley
Envelope, J. D. Terry
Fare box, W. H. Hornum
Feed mill, I. J. Caldweml...................................
Feed water heater and steam generator,
Fence builder, wire, w. A. Newton (r)
Filie, bill and letter, G. V. Nauerth ..
Firearm, magazine, Tiesing \& Kennedy
\& Morse.,.................
Fruit gatherer, J. N. Jarman
Furnace prate, w. Gillespie .
Gate, M. C. Doolittle . ..
Grain cargoes, device for preventing the shifting
of, W. E. Ferguson
Grain drill teeth, detachable point and fastening for, W. H. Wilson....................

Grain rick frame, c. Geiger
Grate bar, E. Haycox...
Grinding wheels, compositio
un, machine, M. Coloney E. Stevens tarness maker's stitching horse. C. A. Holland
Ho and Hod crusher, F. Nishwitz
Holdback, vehicle, G. W. Hinkle
Horse rake, H. C. Herchelrode.
Hub, vehicle wheel, G. Tozer.
Hydraulic engine, J. H. Kane.
Ice cream freezer, Patterson \& Hayes
Ice cream freezar. Winn \& Winship.
ce pick, C. S. Watson.
Ironing table, C. F. W. Seidel
Jetty, portable sectional, J. Grant
Key ring, B. H. Melendy.........
.. 2225,62 2255,628
225,563

225,456

Lamp, O. Sweeney ..
Lamp burner, K. H. E. Hoyby
Lamp, electric, J. H. Guest .
Lamp, electric, J. H. Gu
Latch. gate, S. B. Blzey.
Locked switch, J. W. Reinhart
Loom shuttle, J. J. Wins.............
Loom shutte motion, I. G. Chandlee
Looms, pile wire mechanism for, G. Dixon
Marble, ornamentation of furniture
Marble, ornamentation of furniture, J. Berkey
Measuring device, tailor's. H. H. Woolson
Meat packing device, E Detwiler
Middlings purifer, Case \& Stein
Mining machine, coal, D W Siprell
Mining machine, coal,
Mower, H. A. Howe.
Mowing and reaping machine, C. Taylor
Music leaf turner, F. L Becke
Nailing machine, A. Knowlton
Nailing machine, A. Knowlton
Ordnand, S. E Mower.
Oranance, breech-loading, M. Coloney
Ore crusher, T.
Paddle for boat wheels,
Paddlewheel. J. Sherry
Paper bag machine,
Paper, blank music, H LL. Hasting
Paper folding machine, Chambers \& Mendha
Paper machine jacket stretcher, J. Jamison.
Peanut roaster, W. H Burk

Photographic images, producing, D D. N. Carvalh
Photoraphic pictures, producing w. Kurtz
Photographic pictures, producing, w. K
Primping machine, F. R. Packham
Piston, steam engine. E. M. Burdsall
Pitman connection, W. F. Rundell
Planter, corn, P. S. L. Latz....
Planter, corn, B. T. Stowell
Plastic compound, A. T. Woo
Pliers, parallel, E. A. Parker
Plow, sulky, F J. Smith...
Post and pile driver, W. A. Newton (r).....
Printing machine, chromatic, G. M. Wrigh
Printing press sheet delivering apparatus,
Projectile, H. H. Sibley
Pump, J. A. Pease
Pump valve, steam, M. F. De Souza.
Refrigerator, Hale \& Ramsey.
Refrigerator, Moseley \& Koch
Registerlng apparatus, Bennor \& Pond (r)....
River banks, device for protecting, Hedges
Needham Ruffed fabrics, machine for pressing or creasing
Safe for provisions, etc., D. N. Smith.
Sash fastener, J. W. Todd..
Sash lock and lift, E. J. Brooks.
Sash, window, D. W. Clark.....
Scales, pendulum,
Scoop shovel for unloading cars, J. S. Metcalf
Seaming machine, F. A. Walsh.........
Semiphore, electric railway, J. Nesbitt
Service box, junction, S. E. Ba
Sewing machine, J. E. Bertin.
Sewing machine, button hole,
Sewing machine motor, J. V. Morton
Sewing machines, presser foot and cord guide
button hole, T. S . L. Howard Shaft and sheath, flexible, W. H. Gates
Sheet metal can, F. A.
Shells, torpedoes, etc., time fring mechanism fo
Mhirt, J. H. Kirkpatrick......
Shoe fastening, W. Kraemer.....................
Shoe holder and box draw, comb'd, c. A. Simond
Shutter fastener, C. Garlick
Sign, transparent, H. Child.
Sink trap, E. W. Anthony.
Soldering apparatus, can, F. We............
Spark arrester, G. B. F. Cooper
Spoons, device for plating, P. Conc.......
Steannon boiler and furnace, E. II. McNiel.
Steam boiler and furnace, E. I.
Steam engine, S. N. Silver....
Steam engine, s. N. siver......
Steam generator, King \& Drake
Steam heater, S. F. Gold
Stove attachment, magazine, R. Hatchman
Stove, coal oll, W. B. Billings (r).
Stove grate, W. McClave
Stove grate, W. McClave ..
Stove, heating, O. W. Noble
Straw cutter gearing mechanism, J. Weichhart
Sugar moulding machine, C. H. Hersey
Suspender end, T. O. Potte
Tap valve, M. G. Gillette..
Target ball, Lig Jwsky \& W oeber
Testing machine, G. Matheso
Thill coupling, H. Albers.....
Thill coupling, H. Albers
Thrashing machine sieve protector, T. J. Hubbe
Torpedo, marine, M. Coloney
'traction engine, Brown \& Hoag
Trucks, safety hook for car, L. B. Trunk, cross slatted, C. A. Tailor
Tube making machine, P. Reilly
ubes, machine for corrugating metallic, S. Fox
Turbine gate, J. H. Staples. .
Valve, cylind anical. Fs. Winters, J
Velocipede, railway, W. H. Fox. .
Washing machine, M. C. Greenland
Washing machine, J. F Schlossstein
Watch stem winding and setting attachmen
P. A. Vuille...
Water motor, D. D

Water motor, D.................
Wheat drill, S. Williams
Whip socket, H. B. Pitner
Wind engine, R. E. Strait.
Windmill, M. Berdan

DESIGNS.
Carpet, W. J. Gadsb
Carpet. D. McNair...
Carpet, T.
Envelopes, H. C. Bainbridge
Fork and spoon handles, W.
Glasses, etc., bases or es, W. C. Beattie.
Stage scene, W. W. A. Mestayer.
Stocking fabric. J. E. Hanifer
Suspender ends, W. F. Osborne
Umbrella handles, Heiter \& Lesem.......................87, 11,

 Damporimotulator.

 THE BUFFALO PATENT EXCHANGE

AGENTS Catalaue free

XX COT (not painted,) White Duck. $\$ 2$

$2=4 w^{2 x}=2$
AHEAD OF ALL COMPETITION

 Patentees and Manufacturers:
Market St., Pliladelphia, Pa

4 may

"SelectList"

Geo. P. Rowell \& Co.'s Select List of Local Newspapers.

 The rates ehar gea for aderertisinp are barefj one-Afth

GEO. P. ROWELL \& CO.

Newspaper Advertising Agency,

SEND ADDRESS on A Postal Card for

MAGNETIC REACTIONS.-BY THEO.

STEAM PUMPS．
henry r．worthington． 239 broadiny N．N． S ，
 Wourfivecon strani Ponps of all sizes and for al
Pricas other steam pump in the market．

CID POWER	
垅納	
Hive	Boomer \＆Boschert Press Co． stracuse，N．x．
EF ${ }^{\text {In }}$	ation

Photograp Visititin Carde．Cricelarar and

THE DINGEE \＆CONARD COSS

THE FRICTION CLUTCH CAPTAIN

Prietion Hoststing Engines and Holsting Drums．

Eureka Band Saw

EMERY WHEELS FOR SAW GUMMING．

WE MAKE a Good Strong STEAM ENGINE，
Cylinder 12×15 inches； 35 Horse Power；with Fly Wheel or Pulley
and Governor．All complete． New．Price，\＄600．Address W．P．DUNCAN \＆CO．，Bellefonte，Pa，

STEAM PUMPS， for every duty． VALLEY MACHINE CO．， EASTHAMPTON，MASS．

HARDWOOD LUMBER VFNHORE，
Mahogany，Rosewood，Satinw ood，French and American
 CEO．W．READ \＆CO．， 186 to 200 Lewis St．，New York．

Bobkyaler Figile，

 Name
 Plans and Epecifications for \mathbf{a} $\mathrm{W}^{\text {ITHa mice Clite Coaning Millity }}$

RUBBER BACK SQUARE PACKING．

 BEST IN THE WORLD．Rods and Valve Stems of Steam

 per annum，and adds more than that to the amount of
work accomplished．
Yours with respect，JOHN HAUXHURST． Some users prefer a bard wheel，which will keep its
shape，others prefer a soft wheel，which cuts much
faster and heots faster and heas less．Many．Emery Wheel makers
make only one class．The TTanite Cor makes both hard and soft wheets，and can suit aif tastes．The Tanite
Wheel has long had the reputain of being ihe very
best in the market，but dealers often furnish a poorer

 Emery Wheel We make a large variety of Machines on
Which to run these mheels．Liberal discount to dealers．
Circulars on application．

路
 W9FLOWERS 2

 BARNES＇PATENT FOOT
POWER MACHINERY． CIRCULAR SAWS，SCROLL
SAWN．${ }^{\text {SATHES，FORSERS，MOR－}}$ ， workshop business．
and Ambete iouris for Mechanics
MACHINES ${ }^{\text {ON }}$ ORIAL IF DE－ SIRED．
Say where you read this，and send
for joscrivtive Cataloge and Price
List．W．F．\＆JoHN BARNES $50 \begin{aligned} & \text { Chromo，Tortoise Shell，Cupid．Motto．Floral Cards，} \\ & 10 \mathrm{c} . \text { Outfit，} 10 \mathrm{c} . \\ & \text { HALL } \text { Bros．，Northford，Ct．}\end{aligned}$

PHOSPHOR－BRONZE，

ACKNOWLEDGED to be the BEST METAL for
BEARINGS，
hydraduc
Crundrers，
 Cog Whels， SLDDES， valves，
 The Phosphor－Brouze Smelting Co，［Limited； 2038 Washington Ave．，Phila，Pa． SPY GLASSES，
FIELCLLASES
MICROSCOPES，
JAmEs w．טUEE \＆ $0 ., 5$
924 CHESTNUT ST．，PHILADELPHIA，P
Part 1．－Mathematical Instruments．
Part 2：Optical Instruments．
Part 3：Mapic Lanterns．
Part 4：－Philosophical Apparatus．

Ammoniacal Liquor and Coal Tar．
 niacal Liquor produced at the works of said Company，
exxendingover period of five（b）yearsfrom July 1 1．880．
the Liquor will be delivered in car－tanks on side track． in tank－barges on the river，or at any point on the line
of the Gas Companys premises．The strength to be of
the same averag as at present． Bhe same arerage as at present．
Bids will be received at so much per ton，of 2 oot
pound，of coal carbonized．Payments to be made Security in the sum of $\$ 10,000$ will be required．
The Company reserves the right to reject any and all If desired by the successful bidder．arrangements can
be made for the purchase of the Coal Tar produced
during the same teriod．Address

The Literary Revolution-History.

Acme Library of History.

 In this series it is pioposed to present the works of the great authors whose writings have themselvesbecome a part thistory and ane associated in the minds of gll readers with the nations who e history they
narrate pey
ously low. Ond

 A Great Offer
 Macaulay's History of England.

Aldue: Acme Edition, 24
 ouses at 57.50 for the cloth. but lately reduced considerably by competition with us
nict
anguage hast popular historical work that ever issued from the English press.
eic. Mr. Macaulay can afford to smile at all reviewers who affect to possess more than his own gigantic

Milman's Gibbon's Rome.

Knight's History of England.

 "The best history of England for the general reader. For a single history which may serye for constan
use and reference in the library, or for frequent readin, it is to be preferre to every oher."
 has been, pubished equal, to the account of the state of commerce, government and society at aifreren
periods.

Rollin's Ancient History.

 loth, $\mathbf{8 2} 2.25$; in halt Russia, sprinkled eages, $\mathbf{8} 2.75$; postare 42 cents

Comic History of the United States.

 res. Mr. Carlyle said he coupd do it nights. But the public was not to bo trifed with so ho hesolved to put
is shoulder to the literary as well as the artistic wheel, as it were, and he flaters himselt he has demon

Verdict of Press and People.

 "Your lives will be intolerable without this work. Send and getit: we can't lend ours."-State Journal,
efferson City, Mol Mhe

"Theng the marvels in cheap reprints . -Herald New Yerko., dhourcha, B oston.

 "It is woiderful how such a useful and valuable work can be sold for so low a price."-Presbyterian, "The Library of Universal Knowledge is as comprehensive as Appleton's splendid work, at just one
 Marvelously cheap.," Courant, Hartrord, Conn.
It is a rare book for the price.,
It is a rare book for the price." Christian Secretary, Hartford
Remarkaly cheap
A marvel in the book-makingeendingly conventent and tasteful "-Christian Inteli.igencer, N. Y.

Other Standard Books.

 he Koran of Mohammed translated by Sale, 35 cts. uny an's Pilgrim's Progress, illus,, 50 cents. Sobinson Crusoe, , illuo.s. 50, cents., 50 cents.
Munchausen and Gulliver's Travels, illus., 50 cents.

 AMERICAN BOOK EXCHANGE,

Pictorial Handy Lexicon, 5 cents.
Sayings, by author of Sparrowrass Papers, 50 cents.
Mrs. Hemans's Poetical Works, 75 cents
 Works of Flavius Sosephus, $\$ 2$. . Taylor, 50 cen ts.
Heâlh by Exercsee Dr
Health for Women, Dr. Geo. H. Taylor
 Leaves rom the Diary ot an old lawyer, \$1.
Each of the above bound in cloth It age extra. Mostor the book itoth. If by mail, post
fine editions and fine bindings, at al higher pribliches.
SHEPARD'S CELEBRATED $80^{0} 0$ Screw Cutting Foot Lathe. Foot and Power Lathes, Drill Presses,
Scrolls, Cirular and Band
Attaws, seaw
Athents. Chucks, Mandrels, Twist Drachments, Chucks, Mandrels, Twist
Dritla, Dogs. Calipers. etc. Send for
artisans. of outfits for amateurs of

THE DRIVEN WELL.
 WM. D. ANDREWS \& BRO.,
Pond's Tools, DAVID W. POND, Worcester, Mass.

Driven or Tube Wells
 $W \mathbf{A N T E E D}$

The George Place Machinery Agency

TOHN R: WHITELEY\&CO. European Representatives of American Houses, wit
First-class Agents in the princiinalindustrial and angricul-
ural centers and cities in Europe. London, 7 Poultry

cartary $=$
Elegant A utogranh Allum, gilt covers, 48 and 47 Select Quotations, 15c. Agents' Outfit for Cards
(over 60 samples), 10c. DAVIDS \& Co., Northford. Ct.

METALS.

Important Books on Metals, Metal Mining, Bauerman.-A Treatise on the Metallurgy oit Iron. Con-
taining Outlines of the History of Iron, Manufacture,

MACHINISTS' TOOLS.
Lathes, Planers, Drills, \&c.

STILES \& PARRER ${ }^{\text {PRAAMMERS }}$.
Working Models And Rxperimental Maching
Roots New Iron Blower,
 POSITIVE BLAST. IRON REVOLVERS, PERFECTLY BALANCED IS SIMPLER, AND HAS FEWER PARTS THAN ANY OTHER BLOWER. P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.
 WM. COOKE, Selling Agt., 6 Cortlandt Street,
JAS. BEGGS \& CO., Selling Agts., 8 Dey Street, NEW
YORK. \square SEND FOR PRICED CATALOGUE.

WIRE ROPE

Address JOHN A. ROEBLINGS SONS, Manufactur-
ers. Trenton, N. J., or 117 Liberty Street, New York. ers, Trenton, N.J.
Shheels and Rop.
send for circular.

Lathes Planers, Shapers
 PORTLAND CEMENT,

SEE SPECIAL TANITE ADVERTISEMENT
ON INSIDE PAGE.

 HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.
W. b. Pranilin,v. Pres't. J. M. ALlev, Pres't. J. B. PIERCE, Sec'y.

'RELIABLE'

ROOFINC.

For steep or flat roofs. Applied by ordinary workmen
at one-third the cost of tin.
Circulars and samples free. Agents Wanted. T. NEW, 32 John Street, New York

 Gear Moding willini Patelens Seott's Gear Moulding Machines, AIR COMPRESSORS \& ROCK DRILLS. Delamater Iron Works, Boiler Makers, Engine Builders, FOOT OF W. 13th ST., North River, NEW YORK.

EJECTORS
Elevating Water and ConTVejing Liquids

BOYLE ICE MACHINE CO.,

 ARTIFICIAL THE PICTET
ARTIFICLAL ICE COMPANY, Limited,
 The Famous 15 Puzzle by mall 150. Agts. Wanted.
Stampstaken. Dunbar \&Mitchell, Bristoi, Conn. ELEVATORS.

 Furnace Hoist. WM. A. HARRIS,
PROVIDENCE, R, IT (PARK STREET), HARKIS-CORLNSS ENGINE With Harris' $\begin{gathered}\text { Patented } \\ \text { from } \\ 10 \\ \text { to } 1,000 \\ \mathbf{H}\end{gathered}$

