

THE MANUFACTURE OF POWER PRINTING PRESSES.-WORKS OF MESSRS. COTTRELL \& BABCOCK, WESTERLY; R. I.-[See page 196.]

SHIP RAILWAYS FOR ISTHMUS CROSSINGS

The superior advantages of a ship railway for the Isthmus of Darien were considered at some length in the Scientific h American for August 2, 1879, in connection with a forcible paper on the same subject by Captain Eads. Attention was then called to the fact that this distinctively American plan of solving the isthmian difficulty had commended itself to American engineers long before the success of the Suez Canal gave a speculative impetus to canal projects for uniting the great oceans by way of Central America
And now that M. de Lesseps is urging so vehemently his scheme for a sea-level canal at Chagres, the ship railway project has again risen to prominence. This not solely because of the theoretical favor it commands from capable engineers, but also because of the practical commercial interest called out by the bill before Congress, looking to the actual construction of a ship railway across the Isthmus, and its ultimate control by the United States.
In the current issue of the Scientific American Sup plement will be found an extended reply by Captain Eads to the argument of M. de Lesseps, before the House Canal Committee, in favor of the Chagres canal, and a clear statement of the advantages of a ship railway instead. Captain Eads maintained that a substantial and durable ship railway could be built at half the cost of a canal with locks, and a quarter of the cost of a tide-level canal, with a saving of from two-thirds to three-fourths the time required for construct ing a canal. The railway would have the further advantage of capacity to move ships of maximum tonnage four or five times faster than would be possible in a canal, thus allowing many more ships to pass each way in a given time; while the cost of maintenance and operation would be less than with a canal. With this superior capacity for meeting the varying demands of commerce, both as to the size and the number of the vessels transferred from ocean to ocean, a ship railway can be built and operated where a canal would not be possible; and, being above ground, it is possible to estimate with great accuracy what it would cost and how long it would take to build it. A canal, on the contrary, is strictly a hydraulic construction, involving the control of water and the execution of works under water, with liability to irruptions of water, making an accurate estimate of the time and cost of construction an impossibility.
Captain Eads illustrated his plan to the House Committee by means of drawings. The proposed railway led into the water to the depth of 30 feet, along an incline having a grade of 1 in 100; a cradle being thereby submerged for the reception of the ship to be transported across the Isthmus. The railway consisted of 12 steel rails, weighing 70 lb . to the yard; the wheels under the ship's cradle being 3 feet apart and bearing a maximum pressure of 5 tons, with capacity to withstand a pressure of 20 tons. The number of rails and the great weight of the ship, he insisted, would make derailment impossible; and the great number of wheels under the cradle would so equalize the oscillation that there would be no perceptible motion in the ship's cabin. Touching ability of ships to withstand the strain of land transportation, Captain Eads said that any vessel thought capable of withstanding the gales and hurricanes of the Atlantic and Pacific oceans, was capable of being carried on this railway with absolute safety-indeed, with as much safety as a child in its moth er's arms. His plan had been received with favor by Mr . E. J. Reed, the Chief Constructor of the British Navy; Mr John Roach, Mr. Henry Steers, and a great number of the most eminent engineers of America.
As in the case of his successful improvement of the mouth of the Mississippi River, Captain Eads proposes to assume all the risk. Having demonstrated the practicability of a ship railway for the Isthmus, by transporting thereon a vessel of maximum tonnage from ocean to ocean, he asks, in the bill referred to, that the United States shall guarantee the payment of an annual interest of six per cent on the cost of construction, and acquire thereby the right to regulate the tariff of tolls.
The well earned reputation of Captain Eads as a practical and thoroughly scientific engineer, and the support he com mands from engineers of high rank, furnish the highest assurance that the plan he proposes is feasible; and its manifest economy should have great weight in determining what 6 kind of trans-isthmian route shall be adopted. If, at the cost of one canal, three or four railways of equal capacity can be built along as many different lines, it will be a queer commentary on American thrift and business capacity if M. de Lesseps persuades American capital to invest in his canal.

EVILS OF NEGLECTING COLD IN THE HEAD.

In a paper read by Dr. D. B. St. John Roosa of this city at the recent meeting of the Medical Society of the State of New York, he stated that the most frequent origin of 9 tiva, and of the middle ear, is in a neglected "cold in the head." It is generally conceded that no person in perfect health, except under extraordinary circumstance, takes cold, and yet the majority of mankind have, at some time, suffered from cold in the head. The popular idea that a cold in the head is an insignificant affair is founded on the fact that most of the people recover to such an extent that they are able to go about afterward and engage in their ordinary avocations without special notice, at the time, of the consequences of the disease, which may even then be settled upon them. He believed that very many of the maladies
which prevented men and women from reaching the allotted which prevented men and women from reaching the allotted
period of three score and ten have theirorigin in these colds
and that many serious affections which act as an impediment o the success of their victim are dated from a cold in the ead.
He described the suffering incident to an acute attack of cold in the head, and of the impossibility of having repeated attacks without producing serious local changes-not only local change, but a permanent impairment of nutrition. To correct all this, special attention must be paid to individua hygiene, and if the evil consequences of neglected cold in the head were to be abolished, the abolition must come through a public sentiment properly educated upon this as upon all other sanitary questions. The family physician must warn the people everywhere, as opportunity offers, of he danger in this direction, and of the means by which it is to be avoided. The first great precaution to be taken by each individual is to keep himself in a good general condi tion, and to do that he must studiously avoid all that tend to disorder the skin and the functions of all the organs of the body. Children must be clothed in flannel all the year round, and must be made to know that the staples of diet are milk, bread, meat, vegetables, and fruit, and that tea, coffee, and pastry of all kinds are to be used only as the greatest of luxu ries, and therefore in small quäntities and at long intervals. The community can only become healthy as individuals be come healthy, and all the reforms necessary to make Mem phis and Granada places in which yellow fever never comes may be adopted; but if the control cannot be obtained of the odies of, and the modes of living of the individuals in those and all other places, evils not so suddenly fatal, but none he less in the end dangerous, and all the time injurious to heir well being, will certainly exist.

PLAN TO MAKE NEW YORK A FRESH WATER PORT

 Mr. James Cochrane, "formerly of the U. S. Navy," ravely proposes to convert New York harbor into a mill pond, for the benefit of commerce and the improvement of public health.His plan is not very coherently presented in the pamphlet he sends us, but it is possible to make out several of the changes he wishes to effect.
In the first place, he would build at the Narrows, and at Throgg's Neck, on the Sound, artificial dams with locks, which would shut out the ocean tides and convert the bay and the waters communicating therewith into a many-armed fresh water lake, with a level five or six feet above the pre sent level of the water at high tide.
Among the benefits promised by the change are these
The vast area of flats along the Jersey shores would be permanently flooded, putting an end to their malarious ex halations.
The depth of water could be regulated, and would be uni form, thus saving that portion of the large expenses involved in handling freight at the wharves, due to rising and falling tides.
The danger and cost of ferry bridges would be obviated, with much of the difficulty and danger now attending the navigation of ferryboats.
The water of the port would be fresh, and fatal to barnacles and ship worms, making the port a desirable one for sl ipping awaiting freight.
The flow of the river would be steadily toward the sea, so that the tedious anchor watch might be dispensed with.
The surplus water could be used as the source of mechan ical power.
The aggregate saving promised for the plan proposed amounts to millions of dollars every year, and millions of ives in time not stated. But the greatest benefit is modestly withheld. In comparatively few years the vast areas of waste water from Newark Bay to Throgg's Neck would be filled up by river silt, and under proper cultivation would furnish all the garden truck required by the surrounding cities. The value of such reclaimed land would be enor mous; while the narrow channels that would carry off the inflowing fresh water would probably be ample for the needs of all the commerce that would seek New York as an inland port.

A ZOOLOGICAL NOVELTY

The first elephant born in this country made its appearance, March 10, in the elephant house of Cooper \& Bailey's circus in Philadelphia. It was a female, 4 feet 6 inches long, 35 inches high, and weighed $2131 / 2$ pounds. The event was not unexpected, though the period of gestation-twenty months and twenty days-was somewhat briefer than was anticipated.
The mother, Hebe, sometimes called "Baby," is one of the five performing elephants whose tricks have been witnessed by circus-goers in every large town in the country. She is 23 years old, weighs 8,000 pounds, and was imported from Ceylon in 1865. Her keeper suspected her condition over a year ago, called the attention of several Philadelphia scientists to the fact, and arranged for examination, which was made by Professor Joseph Leidy, of the University of Pennsylvania; Professor Penrose, of the University of Pennsyīvania; Dr. Brinton, of Jefferson College; Dr. F. F. Maury (now deceased), of Jefferson College; Professor Allen, of the University of Pennsylvania; Dr. Henry Chapman (coroner's physician), of Jefferson College, and a num ber of other eminent physicians. It was then decided that the period of gestation would be complete about the middle of the present month. Naturally the event has not lessened the interest which physicians and naturalists have taken in the case, and it is probable that a paper on the subject will
be presented to the Academy of Natural Sciences of Philadelphia.
The mother and infant are both doing well,the latter sucking like any other mammal, folding its trunk back over its head, as described by all reputable naturalists. The birth of elephants in captivity is not an uncommon occurrence in India. Unfortunately no one appears to have been present to witness the accouchement.

CHEMICAL REPULSION.

In a paper read on the 13th of January before the Royal Society, Dr. E. J. Mills claimed to have discovered a new order of chemical phenomena, which he has provisionally designated as "chemical repulsion." If a thin layer of a solution of chloride of barium be distributed evenly between two plates of glass placed horizontally (excess being removed by pressing the plates together), and then dilute sulphuric acid be brought into contact with it through a perforation made in the upper plate, precipitation takes place and continues progressively and uniformly from the perforation as a center; forming an increasing circle, for instance, if the perfor ration be circular. If the sulphuric acid be introduced through two perforations in the upper plate, two circles are formed, but as their circumferences approach each other development is retarded between the perforations, the figure of advance being no longer circular, but oval, and, however long the experiment may be continued, there always remains a line of demarkation of "no chemical action " between the two figures. When there are perforations at the four points of a square and one in the center, the center circle, having, as it develops, no way of escape from the surrounding four, eventually forms a square figure bounded by repulsion lines. Dr. Mills considers that the phenomena observed afford proof of two propositions: (1) That chemical action can take place at a distance; and (2) that two or more chemical actions, identical except in position, completely exclude one another.

Statistics Versus the ${ }^{6}$ Big Farm Scare

A great deal has been said about the multiplication of big farms in this country, and doleful predictions have been uttered by those professing to believe that the United States are destined to repeat the experience of England and Ireland in the monopoly of the land by a few. That there is no real danger of such an issuc is clearly shown by the following statistics, which the Tribune compiles from the several census reports.
In 1850 the average size of farms in the United States was 203 acres; in ten more years the average was four acres less, and at the last census a further reduction of 47 acres appeared, and farms averaged only 153 acres. The decline between 1860 and 1870 was so general that the only exceptions in all the States and Territories were-an increase in California from 466 to 482 acres, from 94 to 133 in Massachusetts, and from 25 to 30 in Utah. Prior to 1850 lard monopoly had some claim to existence in California; in ten years the average size of farms was diminished by a reduction of just 4,000 acres! In Texas the reduction was in the first decade from 942 to 591 acres, and in the second to 301 acres. The next census is expected to show a further decline. Minnesota had 157 farms in $1850,18,181$ in 1860, 46 ,500 in 1870 , and now claims more than 68,000 , and her farmers are not much frightened in view of the competition of half a dozen "monster" wheat farms! There were 5,364 of half a dozen "monster wheat farms. 1860; in 1870 there were only $3,7: 0$. In the same period the number from 500 to 1,000 acres declined from 20,319 to 15,873 , while all the classes of smaller farms increased, the ratio of increase getting larger as the scale of size descended.

The Mind in Eclipse.

At a recent meeting of the Medico-Legal Society, in this city, Dr. George M. Beard read a paper on " The Problems of Insanity," in which he said: "It is a paradox of astronomy that the sun may best be studied during an eclipse; and in psychology the mind may be studied best when it is eclipsed.
"Insanity is a disease of degrees; there is no plain dividing line between sanity and insanity. Insanity may be divided into two kinds-intellectual insanity, embracing forms in which there are delusions, and emotional insanity, in which there are no delusions. Insanity is a barometer of civilization, and as we advance higher in the arts and sciences so will insanity become more prevalent among us. Intense application, brain work, and indoor life are the agencies which most frequently bring it about. With savages or barbarians there is little or none of it. The intellectual activity of the women of to-day is another great cause of insanity. What the mother is, so will the child be in an intenser degree.

Insanity is increasing most perceptibly in Europe and America among the poorer classes. Civilization grinds hardest on the poor, shutting them up in close houses, with bad air and poor food, and compelling them to struggle for existence. The brain cannot always bear up under the strain, for they have few recreations and amusements which can be indulged in for the relaxation of their minds. A diagnosis in cases of insanity is most difficult. The physician must know the subject psychologically; know he thinks, what he thinks, and all about his general disposition, passions, etc. The probabilities of cure in the case of insane persons depend greatly upon the advancement of the disease when the treatment is begun. It is better if the patient can
be treated out of the asylum, and if he is not confined or for the advancement
isolated altogether from the world, narcotics and stupefying much as in any othe remedies should not be used when their use can be avoided Until a comparatively short time our inventions have tended to an increase rather than to a decrease of insanity. Of late, however, the inventions have been in the opposite direction, tending to give us more ease and rest, as, for example, the telephone, elevated railroad, and the electric light. If the latter is perfected, it may also enable us to breathe a purer air. An improved system of education, with less 'cramming,' would tend to reduce the increase of insanity. The eclipse of the mind cannot be predicted like the eclipse of the sun, but, with study, men may learn to detect it in its first stages, and, if treated early, it need rarely become serious.'

Artificial Diamonds at Last.

Professor Story Maskelyne, who examined Mr. Jame MacTear's presumed "diamonds," an account of which was published on page 88, present volume, has written the following letter to the London Times on those produced by Mr Hannay
"Sir: A few weeks since I had to proclaim the failure of one attempt to produce the diamond in a chemical
laboratory. To-day I ask a little space in one of your columns in order to announce the entire success of such an attempt by another Glasgow gentleman.
' That gentleman is Mr. J. Ballantine Hannay, of Wood bourne, Helensburg, and Sword Street, Glasgow, a Fellow of the Chemical Society of London, who has to-day sent me some small crystallized particles presenting exactly the appearance of fragments of a broken diamond.
' In luster, in a certain lamellar structure on the surfaces of cleavage, in refractive power, they accorded so closely with that mineral that it seemed hardly rash to proclaim them even at first sight to be diamond. And they satisfy the characteristic tests of that substance. Like the diamond, they are nearly inert in polarized light, and their hardness is such that they easily scored deep grooves in a polished surface of sapphire, which the diamond alone can do. I was able to measure the angle between the cleavage faces of
one of them, notwithstanding that the image from one of them, notwithstanding that the image from one face was too incomplete for a very accurate result. But the mean of the angles so measured on the gonimeter was 70° 29^{\prime}, the correct angle on a crystal of the diamond being 70° $31^{\prime} 7^{\prime}$. Finally, one of the particles, ignited on a foil of platinum, glowed and gradually disappeared exactly as mineral diamond would do.

- There is no doubt whatever that Mr. Hannay has succeeded in solving this problem, and removing from the science of chemistry an opprobrium so long adhering to it; for, whereas the larger part of the great volume recording the triumphs of that science is occupied by the chemistry of carbon, this element has never been crystallized by man till Mr. Hannay achieved the triumph which I have the pleasure of recording to-day. His process for effecting this transmu tation, hardly less momentous to the arts than to the pos sessors of a wealth of jewelry, is on the eve of being an nounced to the Royal Society.
" I am, Sir, your obedient servant,
" N. Story Maskeifyne.
"'Mineral Department, British Museum, Feb. 19."
Nashville's Centennial.
The hundredth anniversary of the settlement of the city of Nashville, Tenn., will be celebrated by the holding of an ex hibition of the arts and sciences, beginning April 23 next and continuing until May 29.
-The Citizens' Centennial Commission announce that active preparations are making for a first-rate exhibition, and that a wide-spread interest in the undertaking is already aroused, giving promise of a display which shall excel anything Nashville has seen before. The Exhibition buildings are in the heart of the city, easy of access, and amply pro vided with facilities for the display of manufactures, machinery in motion, inventions, works of arts, and natural products.
The reception of exhibits will begin April 5 and close April 22. Exhibitors of running machinery are requested to have their exhibits in place by April 17. Application for space should be made to Mr. B. J. McCarthy, chairman
of the committee on assignment, space, etc., and for geneal information to Dr. G. S. Blackie, corresponding secretary, Nashville, Tenn.
Manufacturers of articles finding or seeking a market in the South will find this a good opportunity for placing their wares before a large and thrifty portion of the Southern public. Nashville is not only an important railway center, but is in the heart of a region rapidly increasing in commercial and manufacturing importance. No premiums are offered, and there is no charge for space.

An International Leather Show.

An International Exhibition of leather and leather goods, furs and pelts, tanner's materials, shoe and leather machinery, and the like, is contemplated from May to Novem ber, 1881, at Frankfort-on-the-Main. The circular of the provisional committee states, that this exhibition is intended to bring together from all parts of the world all the different raw materials, and to show in successive stages the man-
ner and means of their being manufactured and adapted to the wants of man. It will show how art and science and labor and capital have beeneonstantly and quietly working

Frankfort-on-the-Main has been selected as the central city of Germany, and a committee composed of prominent men in the principal industries, with men of science and art, will do all they can to make it a most complete and suc cessful exhibition.

Steam Dredges Wanted for Erie Canal.

State Engineer, Horatio Seymour, Jr., reports the serious filling up of the State canals and the great need of steam dredges for the removal of the accumulating mud.
Many streams empty into the canals, carrying in time of freshets a large amount of mud and gravel. Every city and village along the line pours in more or less sewage. Offal is thrown out from boats, and through every city and vilis thrown out from boats, and through every city and vil
age ashes and every other rubbish are thrown into the canal. This material which accumulates during the year, as a rule, must be within a few days removed in the spring. Every year a portion of this deposit is taken out, but the time is so limited, and the difficulty of handling it is so great, that here is not as much removed as comes in.
The consequence is that the canal has gradually been filling up. In order to allow boats to draw 6 feet of water, the evels of the canals have been raised, making it necessary to lift up the bridges to allow boats to pass under. The Eri survey of 1876 showed that the bottom of the canal had been worn away in the center under the boats to more than γ feet in depth, but at the sides deposits existed varying from 6 inches to 2 feet high, and extending over one half of the bottom. The amount of this deposit was estimated to be about 900,000 cubic yards. This has increased since that time to about $1,000,000$ cubic yards. Last spring a great effort was made on all the divisions to clean out the prism but the time was so short (18 days) that not more than 100,000 yards were removed. Although but a small part of the whole deposit was removed, this work had a marked effect upon navigation, as the boatmen will testify. The whole of this material can be taken out by dredges, in the summer, without interfering with navigation, in four years, at a cost of about 12 cents a cubic yard, which will give to the canal a uniform depth of 8 feet. Experience shows that it can not be well removed by hand, except at very great cost Last spring, $\$ 30,000$ was spent on the Western Division for removing deposits. This sum would have purchased a dredge and paid the expenses of working it two years. The Champlain Canal is in an especially bad condition.

Household Water hiotor.

In Zurich, Switzerland, the use of a portable water power so to speak, is being extensively used for household pur poses. Firewood, for example, is to be sawn into conven ient lengths for burning. A small sawing machine on wheels is drawn by two men to the front of a house. They connect by a flexible tube with the nearest hydrant; the water flows to the machine; the saw dances, and cuts up the wood with surprising rapidity. A portable turbine has also been invented, and employed in many places in the same city, in driving a Gramme machine for the production of electric light. Water is very abundant in Zurich; but there are other towns in which this domestic water power could be advantageously introduced. Where it is any object to keep a record of the water used an indicator showing the quantity might be affixed to the machine.

The Best Fire Apparatus.

Norwich, Conn., is supplied with water from an artificial pond three and a half miles from the city. It is brought to the city in pipes by gravity pressure. The city is provided with two way hydrants located not more than 600 feet apart A water pressure is obtained at the hydrants equal to 85 lb . to the square inch, which will throw an effective fire stream over any building in the place. Chief Carrier relies entirely upon the hydrant pressure. He uses four-wheel hose carriages, 600 feet of hose on each reel, and twenty men to each company. He has four steamers, but they only respond to second alarms, and have not been called out in a year and a half. The department controls all fires by means of the hydrant streams. This is the cheapest and best fire service to be obtained-fire streams direct from hydrants. Cities putting in waterworks should keep this point in view.

Onions.

From our own experience, and the observation of others, we can fully indorse the testimony of the St. Louis Miller, on the healthful properties of the above esculent. Lung and liver complaints are certainly benefited, often cured, by free consumption of onions; either cooked or raw. Colds yield to them like magic. Don't be afraid of them. Taken at night all offense will be wanting by morning, and the good effects will amply compensate for the trifling annoy ance. Taken regularly they greatly promote the health of the lungs and the digestive organs. An extract made by boiling down the juice of onions to a sirup, and taken as a medicine, answers the purpose very well, but fried, roasted, or boiled, onions are better. Onions are a very cheap medicine, within everybody's reach, and they are not by any means as "bad to take" as the costly nostrums a neglect of their use may necessitate.
M. Thollon has recently observed, by the aid of his spectroscope of high dispersive power, a solar protuberance whose height equaled one-sixteenth of the diameter of the sun, or about 55,000 miles.

NEW PLASTERING MACHINE

The annexed engraving represents a novel and simple tool which is intended to replace the hawk and trowel ordinarily used for plastering walls, and to facilitate the operation, so that a greater amount of work can be done in a given time than with the ordinary tools.
The mortar receptacle is made in the form of a segment of a cylinder, and has a movable leaf or presser plate, A, pivoted near the gauge bar, B. The tool is grasped by the pivoted near the gauge bar, B. Tandle, C, attached to the convex end, and by the handle, handle, C , attached to the convex end, and
D , projecting from the movable plate, A. The edges of the mortar receptacle are rounded at the ends to form runners which guide the tool smoothly over the wall. The gauge bar, B, is made adjustable to regulate the thickness of the coating applied to the wall.
When the presser plate, A, rests against the ledge at the rear edge of the curved end of the tool, the receptacle may be filled with mortar. The machine is then applied to the wall with the gauge bar downward, and, as it is moved upward, pressure is applied to the plate, A , through the handle, D, when the mortar will be forced out of the narrow opening at the forced o
bottom.
The inventor informs us that ä workman using one of these machines can perform the work of two men using the ordinary tools, and the work will be done with greater uniformity.
Fig. 1, in the engraving, shows the manner of using the tool, while Fig. 2-a transverse section-shows the arrangetransverse section-shows the arrange-
ment of the presser plate, A, and gauge bar, B.
This useful tool was recently patented by Messrs. G. Stevens and E. F. Guild. Any further information may be obtained by addressing Mr. Egbert F. Guild, East Saginaw, Michigan.

IMPROVED STONE POLISHING MACHINE.

Our engraving represents an improved machine for polishing all kinds of stone, but more especially adapted for polishing different varieties of granite and heavy blocks of marble. It is new in design, and combines many valuable improvements which render it very efficient. Beside a vertical movement of the entire machine, which adapts it to stone blocks of different heights, the polishing disk may be moved up or down within certain limits, to increase or dimimoved up or down within certain limits, to increase or dimi-
nish the pressure on the face of the stone or to stop the nish the pressure on the face of the stone or to stop the
action of the polishing disk altogether, if necessary. The action of the polishing disk altoget
polishing disk is connected with its spindle by a universal joint, so that it may adapt itself to slight inequalities in the surface of the stone or to a variation of the face of the stone from a true level.
The spindle of the polishing disk is provided with cone pulleys, corresponding to the cone pulleys on the countershaft in the joint of the arms, so that the speed of the spindle may be varied to suit polishers of different sizes, and to adapt it to both roughing and finishing.
The journals are provided with heater boxes which do away with a great amount of friction. The polisher works on a half circle of twelve feet and will polish work ten feet long. The work may be arranged so that, while polishing one stone, another can be placed in position. The machine is supported by tion. The machine is supported by
a single vertical post; and may be very easily set up. It is made wholly of iron and steel, and is well calculated for the work it is intended to perform.
Further information may be obtained by addressing the patentees and manufacturers, Messrs. M. and manufacturers, Messrs. M.
Wright \& Son, Montpelier, Vt.

The Buffalo Pipe Line.

The Buffalo Pipe Line Company have secured a right of way from the Bradford District to Buffalo, N. Y., and expect to have the line in operation by June. The main in operation by June. The main
line will be about 65 miles in length, line will be about 65 miles in length,
the pipe 4 inches in the clear, and the pipe 4 inches in the clear, and
requiring about 7,000 barrels of oil requiring about 7,000 barrels of oil
to fill it. The line will begin at a point near the State line, in the town of Allegany, Cattaraugus county, and its route will be through the towns of Allegany, Humphrey, Franklinville, Ellicottville, and Ash-
ford, in Cattaraugus county, and Springville, Concord, Bos ton, East Hamburg, and West Seneca, in Erie county, to Buffalo. There will be two pumping stations, one at the starting point, and the other midway between there and Buffalo. Tankage will be provided at the latter place for the storing of about $1,100,000$ barrels crude oil.

our Lakes.

The latest measurements of American fresh water seas are thus given. The greatest length of Lake Superior is 395

GUILD'S PLASTERING MACHINE.

The Magnet in Milling.

Magnets and magnetic separators are a comparatively new thing in milling; but perhaps there is no contrivance employed in our mills, whose utility is so unquestioned, or which has grown into such wide use in so short a time, as the magnet in the forms of gangs and separators. Since they have become a necessity in our mills, many a time when looking over the assortment of iron taken from his wheat, has the miller wondered why people never thought of using magnets before as a means of Millers will remember the commotion which the introduction of the wire binder caused. And there was good reason for the opposition which millers manifested to the use of the wire binder by farmers. Many, who at first sight saw nothing objectionable in wire-bound wheat, were soon loudest in their clamors against it. They had relied upon cleaning machinery of unquestioned excellence to remove what bits of wireshould chance to find their way into the wheat; but time soon showed that the crooked little pieces of wire would work their way through the best cleaning machinery, thence go to the burrs, where they were flattened out into saws, and then to the bolts, where they played havoc with the cloth. In some sections, where the wire binder was exclusively used, bits of wire could be traced even into the bread, and be found in an incomprehensible abundsnce in all mill products. It got into the bran and choked cattle fed on it. It blackened the burrs and destroyed the bolting cloth. In fact, wire in wheat became an unbearable nuisance in spite of every precaution against it-and then came the magnet.
Never did so simple a remedy cure such wide-spread disaffection. Millers' assomiles; its greatest breadth, 160 miles; mean depth, 688 feet; ciations had tabooed the wire binder and passed resolutions elevation, 627 feet; area, 82,000 square miles. The greatest favoring a discrimination in price against wire-bound wheat. length of Lake Michigan is 300 miles; its greatest breadth, 108 miles; mean depth, 690 feet; elevation, 506 feet; area, 20,000 square miles. The greatest length of Lake Huron is 200 miles; its greatest breadth, 169 miles; mean depth, 600 feet; elevation, 274 feet; area, 20,000 square miles. The greatest length of Lake Erie is 250 miles; its greatest breadth is 80 miles; its mean depth is 84 feet; elevation, 555 feet; area, 6,000 square miles. The greatest length of Lake Ontario is 180 miles; its greatest breadth, 65 miles; its mean depth is 500 feet; elevation, 261 feet; area, 6,000 square miles. The length of all five is 1,265 miles, covering an miles. The length of all five is 1,
area upward of 135,000 square miles.

WRIGHT \& SON's Ṡtone polishing machine.

This journal had doclaim in a it until it felt woarse but the magnet removed every objection to the wire binde by taking out the insidious bits of wire. Every miller who tried the remedy was satisfied, and the clamor ceased. The truth is, that the introduction of magnets as a grain-cleaning agency opened the eyes of millers to a few facts of which they had been ignorant before. They had been perfectly cognizant of the damage done by wire in wheat, but no one expected such a revelation as the use of magnetic separators gave us all. Most of us knew that the magnets would show that wire existed where its presence was never suspected; but who would have looked for such a collection of metallic odds and ends as these separators bring to light? In the course of a day a large merchant mill will take from its wheat, by means of mag nets, a miniature junk shop. You will find everything represented, from tenpenny nails down to bits of iron as small as a pin head. How all of it got into the wheat is a mystery; but one thing is certain, that much of this iron must former ly have gone to the burrs and bolts; and, if the wire binder had never been invented, magnetic separators would find a useful place in every mill. But the wire binder has come to stay. Revolutions do not go backward; and it is not at all likely that the farmer will ever again rely upon " tramp" labor in harvest after once having had his wheat gathered by one of these binders. Therefore we must expect wire in our wheat along with nail heads and other rural products. So far, the magnet is the only effective means discovered, by which the miller can remove wire from his wheat; and, therefore, the magnet and magnetic separators are probably as much of a permanency in milling as the wire binder is in agriculture.-American Miller.

Intelligent Work Pays: Eight years ago Wisconsin's butter and cheese product was worth $\$ 600$,000 ; in 1879 , it was worth $\$ 2,500$, 000 , and during this time the State has advanced from no standing to the first rank in the markets' of the world. This profitable progress is justly attributed, by the Jefferson County Union, very largely to the educational influence and fostering care of the State Dairymen's Association, and promoting exhibits at the Centennial in Philadelphia, and at the two International Dairy Fairs at New York.

miscellaneous inventions.

Mr. John Hill, of Columbus, Ga., has recently patented an improvement in the class of fire extinguishers employed in large buildings, in which a stand pipe is connected by branch pipes and valves with a set of sprinkling pipes in each story, whereby the water may be showered down in any room or compartment in which a fire may take place. The invention consists, mainly, in connecting the valves of each branch pipe where they join the stand pipe and lead to the several stories with a common station by means of shafts and toothed gears, and providing a handle or hand wheel on each floor with the valve, whereby the turning on of the water from the stand pipe to the branch pipe of any one story may be effected either upon that floor or from a common station below.
Mr. William Brown, of Greenpoint, N. Y., has patented an improvement in the class of barrel lifters consisting of a hoop and two clamps, the latter being pivoted to opposite sides of the hoop and provided with handles. This useful invention was fully illustrated and described in our columns not long since.
Mr. Upton Miller, of Mount Morris, Ill., has patented an improved washing machine. This invention relates to that class of washing machines in which the clothes are compressed between reciprocating pressing boards.
Mr. Christopher G. Dodge, Jr., of New York city, has patented an improved calcimine, or distemper paint consisting of Paris white, glue, white soap, chloride of calcium, carbolic acid, and water, mixed in certain definite proportions.
An improved gag-runner for harness, which is so constructed that they may be readily adjusted higher and lower, and may be conveniently attached and detached, as required, has been patented by Mr. Marshall R. Dowlin, of North Adams, Mass. The invention consists in the combination of a metal hook with the loop of a gag-runner.
An improved beehive, patented by Mr. Erasmus H. Key, of Mayfield, Ky., is provided with better arrangements or provisions for the health and comfort of the bees and for the convenience of the bee-culturist than those ordinarily in use.
Mr. John R. Roberts, of Youngstown, O., has patented a towel rack formed of a single piece of wire having its end parts bent to form the brackets and the bearing loopsfor the roller.
An improved recording apparatus for spirit meters, patented by Mr. John M. Cayce, of Thompson's Station, Tenn, is mainly an improvement upon letters patent of the United States No. 211,554, granted to the same inventor January 21, 1879
An improved clasp for albums has been patented by Mr. Sidney Posen, of Offenbach-on-the Main, Germany. The object of this invention is to furnish an improved clasp for albums or other books that may be opened and closed and so held automatically.
Mr. Charles Y. Beach, of Fairfield, Conn., has patented a composition for the manufacture of rubber or other gum cloth or fabrics, consisting of caoutchouc or other gum and cotton or other fiber, prepared by grinding together.

IMPROVED SPROUT PULLER.

Sprout or grub pullers, as commonly made, have sharp jaws, which are liable to cut or break the sprout, and they are otherwise inefficient and inconvenient. The annexed

SNAPP'S SPROUT PULLER.
engraving represents an improved puller patented by Mr. James W. Snapp, of Jasper, Tenn., and designed to avoid the imperfections of its predecessors. It has two rounded jaws, which are concaved laterally on their grasping surfaces to prevent cutting or breaking the sprout. One of the jaws is curved and attached to a fulcrum block having a rounded bearing surface, which is large enough to furnish a steady support. The manner of using the tool is clearly represented in the engraving.

IMPROVED CAR WINDOW.

The car window shown in the engraving is especially designed for sleeping anddrawing-room cars, but it is equally well adapted to ordinary passenger cars. It makes an effecive ventilator, and at the same time prevents the entrance of smoke, dust, cinders, and rain without in any way obtructing the view.

Fig. 2

MACKALL'S CAR WINDOW.

Fig. 1 is a perspective view of this improved car window Fig. 2 shows the upper portion of the window, and Fig is a modified form of the device shown in Fig. 1.
The car window frame, A, contains the sash, B, provided with a vertical center bar, b. To this bar are hinged two sashes, $\mathrm{C} \mathrm{C}^{\prime}$, opening in opposite directions. These sashes may be closed flush with the sash, B, so that the entire window may be raised in the usual way. To the sash, B, at the lower end of the openings of the sashes, $\mathrm{C}^{\prime}{ }^{\prime}$, are hinged the plates, D, which are thrown down as the hinged sashes are opened, and thus close the space between the main sash, B , and the sashes, C^{\prime}. Instead of the hinged plates, D , the inventor, in some cases, uses a fixed bent plate, as shown in Fig. 3.
The tops of the sashes, $\mathrm{C} \mathrm{C}^{\prime \prime}$, are covered by triangular water shed plates which are hinged to the sash, B, and open outwardly when the hinged sashes are opened. They are pressed against the sashes by springs secured to the sash, B.
These water shed plates may be constructed like Fig. 3, and are then stationary and fastened to the car window frame.

In going in a given direction only the hinged sashes furthest from the front end of the car are opened. By means of this arrangement the foul air is exhausted from the car as it proceeds, without the entrance of dust or cinders.
Further information may be obtained from Mr. Douglass Green, Columbus, Ga.

Fire-proofing cotton Fabrics.

In a paper on some conditions of inflammability; read before a sanitary convention in Michigan, Dr. Kedzie, of the State Board of Health, said that cotton clothing could be prevented from taking fire by the use of borax in starch-ing-a teaspoonful to each pint of starch after the water has been added. The borax can have no injurious effect upon the cloth or upon the wearer, and is so cheap that all can afford to use it.
Dr. Kedzie showed by experiments that muslins and tarletans, the most inflammable goods, when treated with borax starch, could not be made to burn with a blaze. If all cotton dresses and underclothing, and especially the clothing of children, were treated in this way, a great number of
lives and much suffering would be saved every year
Dr. Kedzie said he expected that one of these days some shrewd fellow would use this receipt, mix starch and borax, and sell it as "asbestos starch," or with some other catching name, at 500 or 600 per cent profit, and get rich out of it. The peopie could just as well do their own mixing and save the profit.

Cotton Factories in the South

Mr. Francis Fontaine, Commissioner of Land and Immiration for the State of Georgia, asserts that no cotton mills in the world have been so profitable as those of Georgia during the past decade. The Chattahoochee River, at Columbus, furnishes one of the best water powers in the world; and at this point are 60,000 spindles in operation. One company at Columbus has a mill employing 1,800 operatives, all natives except the foremen, and manufacture over one hundred varieties of goods. They use 13,000 bales of cotton per annum and 800 lb . of washed wool daily, and pay out $\$ 600,000$ per annum.
The total number of spindles in the Southern States-687,200-are distributed as follows:

The Climax of Invention.

The Bridgeport News very cleverly describes an invention, credited to a Bridgeport Yankee, to prevent marketmen from palming off old eggs for fresh ones. The inventor proposes to arrange a rubber stamp in the nest of every hen, with a movable date. This stamp is arranged with a pad that is saturated in indelible ink. When the hen lays an egg, as is well known, she kicks slightly with her hind leg. An electric disk is arranged so that her foot touches it, and the stamp turns over on the ink pad, and then revolves, stamping the date on the egg. The hen then goes off about her business, the farmer's hired girl removes the egg, and replaces the stamp, which is then ready for another. On each evening, after the hens have retired to their downy roost, with the roosters, the date of the stamp is altered for the next day, and the work goes on. In this way there can be no cheating. You may go to the grocery and ask for fresh eggs, and the grocery man tells you he has some eggs of the vintage of January 29, 1880, for instance. You look at them, and there are the figures, which cannot lie.

Flooring for Brooklyn Bridge.

The contract for the under flooring of Brooklyn Bridge has been awarded to the proprietor of the Hayford process for the preservation of wood. There will be required about $1,100,000$ feet of yellow pine, which will first be thoroughly dried and then charged with creosote under pressure.

NEW HOLDBACK FOR HARNESS,

The accompanying engraving represents an improved holdback lately patented by Messrs. J. Knight and H. Hilliard, of Musquash Parish, New Brunswick, Canada. It consists of a curved metal plate or shell, A, having inwardly projecting flanges forming a seat for the thill strap and having an eye for receiving the holdback strap. The shell has a mortise for the thill strap to pass through, and the rear edge of the shell has a notch for receiving the hook, B, attached to the thill.
This device takes the wear and pressure of the thill and thill hook, and relieves the strain on the girths. It insures

KNIGHT \& HILLIARD'S HOLDBACK FOR HARNESS.

the fastening of the breeching, and in case of the breakage of the breeching it prevents the vehicle from running forward against the horse. It gives the horse greater control of the load than the ordinary holdback, and greatly faciliates harnessing and unharnessing the horse. These and many other advantages will be apparent to those familiar with the requirements.
Further information will be furnished by the patentees, whose address is given above.

AMERICAN INDUSTRIES.-No. 36. THE MANUFACTURE OF POWER PRINTING PRESSES. Rinting press manufactory-COTTRELL \& babcock. Probably no single feature of our Centennial Exposi tion, in 1876, occasioned greater surprise to foreign visitors, as well as many of our own people, than the department in which were exhibited copies of over 8,000 different American newspapers. It was a collection which showed, in a way that mere figures could never bring home to the mind, how emphatically we are a reading people. In the first pare illustrations of this issue we have sketched the first page illustrations of this issue we have sketched the
making of the machinery with which many of these newspapers are printed, in a factory, where, also, are constructed machines for the finest letter-press work; in fact, the printing done on these presses includes every variety of what printers know as good work, either in colors or plain black, and from them have been issued some of the most beautiful specimens of the typographic art. The business is one in which American mechanics and artisans have long occupied a leading posi tion, and the establishment we here represent has attained a deservedly high place therein.
It is not our purpose to show by what successive steps, and from what rude original contrivances, the printing press has been brought to its present state of efficiency. Volumes might be written upon this subject. Nor will the mammoth "lightning " presses required by our leading daily newspaper es tablishments be here considered. Each ad vance that has been made in the construction of such printing machinery, where fine work manship was not so much an object as a high rate of speed, has been heralded in the columns of every newspaper in the land. But these large presses, marvels of skill and ingenuity as they are, form only a very small proportion of the number of printing machines which are operated in every city and every large town in the land. For all books, for every description of work in which engravings are used, for printing in colors, and for miscellaneous service, as well as for a great majority of the newspapers of the country, presses are required which, while doing many times as much as could be accomplished by the old hand process, will do a far better class of work than can be obtained where speed is the principal object sought. The Scientific American, for instance, could not be printed on what are known as the "lightning" presses without utterly destroying its clear and beautiful impression and ruining the work of the artists and engravers who make its illustrations, for the proper presentation of a fine wood engraving not only requires a great deal of time in " making ready," so that each detail of the picture may receive just the right shading and emphasis, but the printing must be done on machines of the greatest exactness, in which each part can be kept to its work with the utmost precision.
In nearly all of this class of printing the types or electro type plates are secured on a flat bed, which is made to move forward and back under a revolving cylinder, which carries the paper and gives the impression, and with which are connected the rollers for inking. The Adams press, which for many years held the leading position as a machine for book work, differs radically from this plan, and gives the impeession with a flat platen, as in a hand press, i.istead of by a cylinder, the press being very heavy, and working at a comparatively slow rate of speed. Excellent printing can be done on the Adams machine, but it is now fast being superseded by the cylinder presses, and very few new Adams presses are at present being made. It will be readily seen that in running a heavy iron bed plate, of sufficient size to hold the type or the plates of a large newspaper or book form, backward and forward over a track eight to twelve feet long, to make it run even and true to a hair, without any jar, in perfect connection with the large revolving cylinder above it, and so that the heavy impression shall be given each time with entire accuracy and evenness over the whole surface, and to do this work as rapidly as required, with perfect facilities for the even distribution and supply of ink, and the delivery of the printed sheets free from smut or blemish, not only calls for the best of mechanical workmanship, but involves a multitude of details which afford a wide field for the display of practical ingenuity. These are the main points in the working of nearly all power printing presses, but it is only within a few years that they have been so improved as to do their work as well as at present, with so great speed and so little trouble in arranging for each successive form.
For the attainment of these ends, the invention by Mr . Cottrell of his device for controlling the momentum of the cylinder was of great practical utility. Previous to its introduction, the impression cylinder, always turning one way, would at times drive the bed with which it is geared, and again be driven by it, its reversed motion at each end of the track making its speed uneven, and thus destroying that exact working which is a prime necessity for the impression cylinder. To remedy this evil Mr. Cottrell introduced an automatic device for checking the momentum of the cylin-
er as the bed is retarded, thus keeping the gears up to the work side of the teeth, and harmonizing the motion of the cylinder with the irregular speed of the bed. With this patented friction motion improvement a higher rate of speed is attainable, and a more perfect " register," as printersstyle the printing of the matter each time exactly where it is meant to go on the paper, and generally making the reading on one page exactly in a true line with that printed on its back.
Of yet greater importance, however, to the smooth working of the press, without jar or an excessive amount of wear and tear, was Mr. Cottrell's patent air spring for stopping nd reversing the bed. This has been heretofore described, with illustrations, in the Scientific American, at the time the patent therefor was issued, and its practical success on presses to which it has since been fitted has fully justified all the estimates as to its value which its inventor then put

Fig. 1.-COTTRELL'S PATENT SHEET DELIVERY AS APPLIED TO THE COTTRELL \& BABCOCK POWER PRESSES.
no matter what the rate
Another valuable invention of Mr . Cottrell was his pat nted device for an improved sheet delivery, as shown in Fig. 1. Previously the delivery of sheets, after the impression had been taken, was effected by a complicated arrangement of wheels and tapes, which had to be readjusted for each new form, and any carelessness in which was likely to cause the ruin of the edges of the types or engravings of the form. By this device the tapes are dispensed with, much time is saved in "making ready," and the sheets are delivered free from smut
The "Hinged Roller Frame," which is also a patented device of Mr. Cottrell, is shown in Fig. 2, A representing the frame for the distributing rollers, as turned back for convenience in handling or adjusting the form rollers, B. When the press is working these distributing rollers are turned down upon and revolve and vibrate in connection with the form rollers, but they may be swung clear by a single movement, and removed without unscrewing the boxes, or will be again locked in place by the downward movement of the frame. The invention covers one of those important details in which pressmen often lose a good deal of time, which by this device may be saved.
In the engravings on our first page the picture at the top represents the department in Cottrell \& Babcock's factory where the large or "drum" cylinder presses are put together, and where much of the detail in finishing the several parts as they come from the foundry is attended to. These presses with large cylinders do not work as fast as those with smaller cylinders, but, with the improveupon it. All the other movements in a press, except that of \mid ments which have been introduced, they are capable of the bed, are rotary, but for high rates of speed powerful springs are necessary at each end of the track on which the \quad while being run at a speed which was not formerly attainbed travels, to check and reverse its motion. Mr. Cottrell able.
has made perfect air springs for this purpose, so that a In the view given in the middle of our large engravplunger, with an ingeniously fitted and adjustable packing, ing at the left hand side is shown the room for the conshall work into an air cylinder; the latter is • provided with an automatically working vent at its head, which destroys the vacuum at such point on the return motion as will prevent any suction on the withdrawal of the plunger, and, the exact amount of momentum it will require to compress a given amount of air to a certain density being easily demon strable, it is thus a simple matter to adjust the air spring as may be required for a light or heavy form on the bed, or for a greater or less rate of speed. The weight of the bed, however, is so much greater proportionately than that of any type form, that a scale showing pressures to which the gauges for the air spring should be set for different rates of speed has been made, and is now fixed on a plate on each machine.
For instance, the plate on a four roller, two revolution
press, with a bed 35 by 52 inches, reads:

Fig. 2.-COTtrell's patent hinged roller frame, as applied to the COTTRELI \& BABCOCK POWER PRESSES.

Set plungers so gauges shall indicate-							
For 800 impressions an hour, 15 lb . square inch.							
" 1,000	"	"	"	20	"	"	"
1,400	،	"	"	40	"	"	"
" 1,600	"	"	"	45	"	"	"
" 1,800	"	"	"	50	"	،	"

From 2,500 to $3,000 \mathrm{lb}$. resistance is necessary to overcome the momentum of the bed of such a press, working at a speed of 1,600 impressions per hour, and in no other way it is believed has it been found possible to so adjust the resisting force to the needs of the work so advantageously as is effected in this device. In connection with this air spring, also, Mr. Cottrell has obtained another patent for a " governor attachment," whereby, when the press is started, the spring is automatically put on as the speed progresses. or taken off when it is diminished, or when stopped the bed will come gently to rest. To any printer who has been accustomed to the working of presses with the old style springs, the ease and readiness with which the motion of the bed is controlled, with the aid of these two inventions,
struction of what are known as "country" presses. These machines are designed as far as possible to meet the want of printing offices in places where the business is not yet fully developed, and where a $f \in \mathrm{w}$ hundred dollars in the price of a machine is one of the leading considerations. There is a great demand for such presses, for in every smal town throughout the country which has its newspaper, the proprietor, if he have only a hand press, which is what great many of them use, is looking forward to the time when his own circumstances and the growth of his town shall warrant him in "coming out" with a power press.
At the bottom of our illustration is shown the department where the presses of latest design and most improved construction are made. The "two revolution" press, as its name indicates, has two revolutions of the impression cylinder for each printed sheet. It is solidly built, and can be run at a speed of from 1,500 to 2,000 impres sions per hour, at the same time doing first class work, either on illustrations or in color printing. It runs smoothly on compensating bearings, which allow for wear so as to maintain uniform accuracy, and, with the various patented improvements which Mr Cottrell has introduced affords a "working" machine of acknowledged desirability in any first-class printing office. The "stop" cylin der press, however, represents the very highest attainment in this class of machines for the production of the higher grades of work. The cylinder makes but one revolution for each impression, stopping for each sheet, while the motion of the bed continues; the latter has four separate bearings directly under the point of impression, giving absolut solidity, and the sheet is so fed on the cylin der, while it is at rest, as to insure a uniform ly perfect register. The ink distribution is very thorough, as it must necessarily be in all fine work, and the impression can be adjusted to a hair. The firm call this machine the ne plus ultra of printing machines; but although so much has already been done in the way of improving printing presses, we are not disposed to concede that the end has yet been reached, thoroughly excellent as this press is.
The "perfecting" presses made by the firm, for printing both sides of the paper while the sheet is going through the press, is built with a cylinder for curved stereotype plates for reading matter, over the drum cylinder, around which the paper afterward passes and receives an impression from the form on the flat bed, where the illustrations and more difficult matter are supposed to be made up. This machine is especially designed for the large illustrated weeklies, in many of which our readers will notice how common it is to have two or more pages with pictures and two or more without, all through-this arrangement coming from the fact that all the engravings are, so far as possible, printed on one side of the sheet of paper, after the other side has been printed, sometimes on a less expensive press. The engravings in this paper, it will be observed, appear with the type matter on nearly all of the pages.
In the general view at the right hand in the middle of the
page is a good representation of the various buildings in rod to an amount a little more than the difference between which these presses are made at Westerly, R. I. The the size of the hole in which the spring is to work and the most prominent building at the right in the picture is rod on which it was formed. If the wire is of a gauge that the main structure, to the left of which is the pattern when wound on a half-inch rod it will fill loosely a hole threeshop, while in the rear are the foundry, blacksmith shop, engine room, etc. The buildings cover about two acres of ground, and the location is a most admirable one, on the Pancatuc river, about five miles above Stonington, where coal and iron can be brought direct to the firm's docks, and from whence their heavy machines may be shipped, at but a small cost for freight.
Messrs. Cottrell \& Babcock have obtained nine different patents and two reissues, all but one of which were for inventions of Mr. Cottrell, who has devoted all his energy and ingenuity toward perfecting power presses.
The business offices of Cottrell \& Babcock are at No. 8 Spruce street, New York, and 112 Monroe street, Chicago, Ill.

The Wire Age.

Whenever, in walking or riding through the streets of our great cities and towns, the eye is directed upward, a perfect network of wires is seen stretching from building to building and from chimney to gable. The appearance is as if some huge spider had been at work silently and covered in the compact city, holding it a prisoner in the meshes of its met. The view is bewildering, and it seems impossible that any practical or important use can be made of these iron wires, so numerous as almost to shut out the sunlight. It is but little more than thirty years since only a single one could be seen connecting some important building with a nother in a distant city, by which telegraphic communication was maintained; and forty years ago not even one was visible anywhere. We live in the wire age of the world's history, and a most interesting and wonderful epoch it is. We know that these iron filaments subserve the purpose of nerves of thought and sensation, and over them, or through them, the world's commerce is carried on. In the human organization we know that if any accident or event happens to the extremities, the fleshly nerves transmit instantly the news to the seat of sensation, the brain; and so it is with the iron nerves in the external world, which science has arranged; not an event of importance can transpire in any part of the globe which is not instantly " wired" to the great cities, and the news spreads everywhere with the rapidity of thought.
Until within the past four years, the wires were capable only of transmitting signals of a complex nature, but easily understood and interpreted by experts; now, human beings talk with each other over the iron, and it seems to make, as
it were, a unit of the great family of man. Words, actual it were, a unit of the great family of man. Words, actual
words, produced by the organs of speech, are ever winging their way, with the speed of lightning, over cities, across rivers and mountains and woods, and voices are recognized ¡cores of miles away. The wires needed in cities for transmitting fire and burglar alarms, for police calls, time signals, and other municipal purposes, are many in number; and when to these are added the wires for telegraphic and telephonic purposes, the question of space or room for them becomes an important one. These wires must all be independent of each other; there must be no contact anywhere; else serious errors and complications occur. In this city the fire alarm system has been so often interfered with that the chief engineer has called the attention of the city government to the matter.
The time is not far distant when additional wires will become necessary for the purposes of electric lighting, and, perhaps, warming. In the years to come the whole country will be covered with them unless some plan is devised by which electrical currents can be conveyed in the earth by wires protected in tubes of clay or metal. It is certain that some method of this nature must be adopted, and that quite speedily.-Boston Journal of Chemistry.

Working Wire.

There are many jobs which require wire, in some one of its many sizes and in some form, as rings or springs, to complete them. Improperly treated, wire is a very obstinate material, if at all "springy" or possessing temper, either from condensation by drawing, or by hardening, it will not occupy the space or shape in which it is formed, and calculation or experiment is necessary to guide the workman to a satisfactory result. All wire of any stiffness, when coiled, will open or expand, making the coil larger in diameter and longer in stretch. In ignorance or neglect of this quality, a workman once tried to form a spiral spring of wire to play upon a flat rod one inch wide by three-eighths of an inch thick. He wound the wire on the flat rod, and when released the spiral was a sight to make his shop companions laugh. The coil was elegant, but scarcely useful; its short diameter and its long diameter alternated in a beautiful geometric spiral, instead of preserving a straight line. spring, of a certain diameter, to fit a hole, or to fit a rod actspring, of a certain diameter, to fit a hole, or to fit a rod act-
ing as its core or support. It is impossible to give rules to determine the amount of expansion of the coil in diameter, as the nature of the material is so varying. This variation comes from the stiffness of the wire, the size of the wire, and the material-whether brass, iron, or steel.
In the case of desiring to produce a coiled spring of a certain diameter it is best to try a simple experiment with the specimen of wire to be employed. Wind one or two turns on a rod of the proper size for the core, and then, releasing it, measure the interior of the ring or spiral, and compare with measure the interior of the ring or spiral, and compare with
the diameter of the core or rod. Reduce the size of the core or
quarters of an inch in diameter, but when allowed to expand the coil requires a hole seven-eighths of an inch, wind the wire on a rod three-sixteenths of an inch smaller than the half-inch rod. This example may not be defnite enough to be made into a rule, but it is given as an illustration. A trial should be made, as before mentioned, by coiling the wire around a core of the estimated diameter, and thus determine the amount of opening or spring of the coil. It may be feasible, in some cases, to anneal the wire before forming it into springs. In this case the wire can be wound to the finish size at once. But with brass or iron wire, the springiness of which depends upon the condensatian of the particles by the drawing dies, this plan is not practicable, as hardening and tempering by heat and water will not restore the stiffness of the wire. But with steel wire it is better to use the wire in an annealed form, making the spring just as it is to be in its finished state, and then tempering it, a process which is described further on.
It, is a comparatively easy matter to make a close or expanding coiled wire spring in the lathe. The size of the core rod having been determined, all that is necessary is to keep the winding wire close to the previous coil, and this can be done by hand feeding and guiding. The rod on which the spring is wound is placed on the lathe centers, and one end of the wire secured in the dog end, when the lathe may be started on a slow speed, the wire being led to it by hand. This is a handy way also to form rings, the coil being cut apart either with a file or cold chisel.
But in forming open or compressing springs, there must be greater care employed. The stiffest open spring from a certain size of wire is that which has the interstices of the same space as the wire's diameter; so, such a spring-or rather two of them-may be formed by winding two wires at the same time, making a close spring, doubled. When completed, one is unscrewed from the other. A more open spring may be guided by means of a thin piece of iron with a hole large enough to receive the core on which the spring is wound, the hole being in one end of the piece and the other having a handle attached. A smail hole should be made through the piece close to the large hole to receive the wire. In operation the guide is slipped on the core spindle and secured by the dog. Then start the lathe, holding the guide close against the rotating core, pulling toward the operator, and the wire, passing through the small hole in the guide from one side, winds against the guide on the other. It is evident that the thickness of the guide will determine the width between the coils. A still better way of forming an open spring is to use an engine lathe with screw cutting feed. With this the grade of the spring may be determined with great accuracy.
Sometimes it is necessary to close the ends of close coiled springs so as to make a central pull by means of hooks or loops. There is machinery to do this with rapidity, but for ordinary jobs hand work is sufficient. The closing is effected by a gradual reduction of the diameter of the coils at the ends of the spring. Unless the wire is very rigid and obstinate, repeated blows with a mallet, a lead hammer, or a copper hammer will do the work satisfactorily. The open end of the spring should be held at an angle on the bench block, and the hammer wielded, striking backward toward the held end of the spring, the spring being turned in the hand in the direction of the coiling. Before the end is closed, a looped piece of wire should be introduced to form a holder for the end of the spring, the projecting end of the looped wire to be formed into a hook or ring.
Large springs of large wire, which from its size and rigidity cannot be managed during winding by the hand; should be made on a contrivance similar in principle, build, and operation to the tire tenders in the blacksmith shop, or the pipe formers in a tin shop. These consists of two rolls to give a forward motion to the material and another to give the curvature. In spring forming the modifications consist in substituting narrow wheels with a V or segmental groove on their peripheries for the two rolls, which receive the wire, and a guide instead of the back roll to produce curvature. The two grooved wheels should be geared together, so as to turn in opposite directions, and the guide should be a curved piece, standing at an angle to the axial rotation of the rolls or wheels. And this guide should be capable of being set up to the rolls or moved back from them, to determine the diameter of the coil, and should also be capable of being inclined from a vertical position, more or less, to make a close or open spring. The guide should have a lip on its working prings of stel re ter, may be readily formed.
Sometimes a weak spring is required where a flat forged spring would be costly. In this case a piece of stiff wire of hard brass or unannealed iron may do the work when coiled two or three times around a core, the coiled portion forming the spring, leaving ends to be formed into loops or secured by screw, or left to act on the movable attachment it is to actuate, as a pawl. The principle of such a spring is seen in an extreme form in the U, or main spring, of a gun lock. In this spring the two long arms have little to do with its action, the spring or life being wholly in the curve between the two arms. The wire spring has its curve in one or more
complete circles.

Coiled springs of steel wire are tempered by heating them in a box, or piece of gas pipe, in which they are packed with bone dust or animal charcoal, precisely as though they were o be heated for case hardening. If a piece of gas pipe is used, which is very handy in such work, one end should be closed by a screw plug or cap, and the open end luted with clay. When sufficiently heated-the box or pipe deep redemove the spring, or plunge spring and its receptacle together into a bath of animal oil. Do not attempt water hardening or the use of crude petroleum. If common whale oil is not handy, melt lard and use it while it is liquid. The wire will be sufficiently hard to require drawing. This should be done by putting the spring in a shallow pan, with tallow or animal oil, over the forge fire, and agitate the pan and its contents until the oil takes fire. Take the springs out, and when the oil is burned off cool them in water.-Boston Journal of Commerce.

Cutweymantr.

Lighting Mines by Reflectors.

To the Editor of the Scientific American:
The proverb, "Necessity is the mother of invention," is so trite that its quotation calls for an apology, but its truth has been demonstrated recently in so valuable a way in the prosecution of an important and dangerous work here, that, for the benefit of other workers in like professions-mining engineers-who may meet with similar difficulties and dangers, I give you the result of an experiment in the use of sunlight as a means of illuminating underground workings. An important part of my work during the past two years has been the construction of a deep adit level, to serve also as a base of development of the vein and a main channel of out-carry for ores extracted on higher levels of the mine, and it has been attended with serious difficulty and danger in consequence of the existence of inflammable gases in the rock through which it passes. Three serious explosions have occurred during the past six months, due to its ignition by workmen using open lights, and eleven persons were very badly burned. Workmen at last reached such a condition of fear of consequences that they could not be induced to take such chances of death, to earn a living, as work in the tunnel offered. Safety lamps would not furnish sufficient light. The question, then, was what safe means of illumination could be used. This question was decided, in a measure, in a peculiar way, and was the direct result of necessity, which compelled me to go into the header of the tunnel to look after a party of men that had just been burned by an explosion. I had recourse to a common look ing-glass for a reflector of the sunlight. The result was marvelous. The whole tunnel was a flood of bright day-light-sides, roof, and floor, throughout its entire length of 2,500 feet, and all furnished by such a glass as can be bought in your city shops for a dime. Confidence was at once restored in my workmen, and now, while we can command the sun, we can command more labor than the work will employ.
The conditions of the tunnel and the philosophy of the light are these:
The tunnel is perfectly straight, $61 / 2 \times 51 / 2$ feet inside of timbers; its course south $36^{\circ} 15^{\prime}$ west from the mouth; and is ventilated by a current of air forced in by a Burleigh compressor operated on the outside.
The philosophy of the light-its intensity and perfect dif fusion-is thus accounted for: The air driven into the tunnel is saturated with moisture in the process of compression, and upon being released in the header, resolves itself into its natural volume, when the excess of water is liberated in the condition of a mist or fog, very light, of course, and millions of these atoms of water become direct reflectors at as many million angles. To convey an approximate idea of the intensity and brilliancy of the light it will, perhaps, be sufficient for me to say that the smallest type used in your publication is as clear at a point 3,000 feet from the looking glass as in the open sunlight, and every item in your paper can be read at any point in the tunnel as rapidly and with as much ease as if out of doors.
It may be that some unfortunate may derive a benefit rom having the use of this light suggested to him. If it will save one individual from being burned, as I have been, or as I have seen a number of my workmen, I shall be fully compensated for the time spent in preparing this communication, and you will be entitled to the thanks of the mining profession everywhere for publication.
The light may be used for many purposes underground, and many times diverted from the firstmirror line Jno. W. C. Maxwell.
New Idria, California, February 20, 1880.

A Fatal Italian Disease

An Italian correspondent of the Lancet calls attention to an insidious and frightfully fatal disease called " pellaga," of which no less than 97,000 Italians are said to be dying, at the present time, the number of victims representing 3.62 per 1,000 of the whole population, and in the infected departments, especially in Lombardy and Venice, a higher proportion than ever occurred during the worst cholera epidemic in France. The disease usually runs a slow course, like consumption. Its cause is believed to be the exclusive consumption of maize in a deteriorated condition and the ! unhealthy state of the hovels in which the rustics live.

THE NEW LECLANCHE BATTERY.

The Leclanché battery is now more generally used for open circuit lines than any other, and its peculiar adaptability to the telephone service has given it an immense field of application. In the battery shown in the annexed engraving the porous cup used in the ordinary Leclanché element is dispensed with, and a pair of compressed prisms, containing all the materials formerly used in the porous cup, are substituted for it. These prisms are placed upon opposite sides of the carbon plate, and are kept in place by rubber bands.

The negative pole consists of a pencil of amalgamated zinc, and the two poles are suspended from the cover in a solution of sal ammoniac and water.
The zinc being indefinitely preserved in the sal ammoniac solution, and the peroxide of manganese being insoluble in the solution, no action can take place when the battery is not in use.

After thorough tests by the various telephone companies, this battery has been universally acknowledged to be better than any other for telephone purposes, as all of its parts are visible, and any derangement may be at once discovered. The battery is readily taken apart, cleaned, and set up again. To do this requires no special knowledge of electrical apparatus. When the elements become exhausted from long service, they may be renewed by taking off the prisms, soaking the carbon below the head in hot water, attaching new prisms, and setting it up with a new zinc and a fresh sal ammoniac solution.

Further information will be furnished ly the Leclanché Battery Company, 40 West Eighteenth street, New York.

STEEL IN AGRICULTURAL TOOLS.

Steel is rapidly taking the place of cast and wrought iron in the manufacture of agricultural implements, and being much stronger than iron, it admits of making the tools not only a great deal lighter, but stronger, and better calculated to resist wear. Our sketch, which we take from one of the departments of the Anderson Steel Works of Pittsburg, Pa., represents one of the processes in the manufacture of rotary colters for plows. The workman has mounted upon the end of a rotating shaft, a disk of tempered steel, which, as it revolves, is pressed forward against the periphery of a huge grindstone revolving in the wooden casing and constantly supplied with water.

The face of the stone is divided into three steps or sections of different diameters, one section being used for roughing the disk, another for shaping it, while the third is reserved for finishing. As the disk is pressed against the stone, the shaft that supports it is oscillated by means of the vertical lever held by its workman. This movement gives the disk its lenticular form.

Messrs. Anderson \& Co. make a composite sheet for agricultural tools and other purposes, consisting of an iron central portion faced on both sides with steel. The method of making this article is extremely simple. The mould into which the steel is poured contains a thick plate of iron, which divides it equally and forms the central iron portion of the composite ingot which is afterward rolled into sheets. As the hot steel is poured into the mould it is perfectly welded to the sides of the iron plate.

The opinion of travelers that there is no danger in bathing in the Dead Sea, because one cannot sink in its heavy waters, has met with a rude shock. A lady's maid ventured out beyond her depth, and floated face down. She was turned over and breught ashore with great difficulty,after havingswallowed enough of the acrid water to make her dangerously sick.

THE LECLANCHE PRISM BATTERY.

Then and Now.

The schooner Martha C, Captain Charles Martin, arrived at ${ }^{〔}$ Boston recently with a fare of $72,000 \mathrm{lb}$, haddock, the largest amount ever landed on a single trip, which sold at $\$ 25$ per $1,000 \mathrm{lb}$., giving her a stock of $\$ 1,803$. She was absent seven days, and engaged in fishing two days. The expenses of the trip were $\$ 137$, and the crew of fourteen men shared $\$ 76$ each. The largest fare before reported was

Owing partly to the improvement in tools and shop appli nces, and partly to the system of subdivision of labor, there is no parallel by which the workman of to-day can be gauged or compared with the workmen of thirty or forty years ago. Then the apprentice was taught-crudely, perhaps, but still taught-all the mysteries of his calling, from the preparation of the crude material to the finish of the completed result. The carpenter hewed his timber from the tre trunk or limb by means of chalk line and broadax. He bored, and mortised, and cut tenons, erected the frame of the building, boarded and shingled, and clapboarded and lathed. The blacksmith shod horses and oxen, tired wheels. made bolts and nuts, chipped and filed and drilled, forged and tempered axes and chisels, and performed numberless jobs of a variety of forms and for a variety of purposes. The machinist sometimes made his own patterns and often his own tools, worked at the vise and the planer, the lathe and the forge, and was ready to undertake any job, from repairing a broken stove to building an engine.
Our venerable contemporary, the Boston Journal of Commerce, remembers when the above practice was universal. We congratulate it on surviving to see all this changed. Now timber is sawed and not hewed; mor tises and tenons are machine cut; houses are built by the shinglers, the lathers, and the joiners, as well as by the carpenters: and the doors, windows, window and door frames and sashes are factory built. The horseshoer does nothing else. The forger of steel seldom works iron. The tool maker is nothing but a tool maker. The machinist is a bench man, ${ }^{70,381} \mathrm{lb}$., taken on Georges, in 1878 , by schooner E. L. ${ }^{\text {a }}$ lathe man, a planer, a fitter, or he has a specialty in cotton Rowe, Captain Sewell W. Smith, on a five days' trip. The machinery or woolen, or never works but on steam largest fare ever taken in one day's fishing was $54,200 \mathrm{lb}$. by machinery.
schooner Paul Revere, Captain John Bentley, in 1877.Cape Ann Advertiser.

It cannot be expected that the man who has worked only in a certain department will be entirely at home in others; but, on the other hand, he who has worked at all branches will not be likely to be an expert in any one branch. In versatility and in contriving makeshifts, he who learned his trade when the arts were young, and performed a portion of all the work, is better than the specialist; he may be an invaluable man in a crisis. But the lather can prepare a room
Acid Proof Cement.-Make a concentrated solution silicate of soda, and form a paste with powdered glass. This opera mixture will sometimes be found invaluable in sist the action of acid fumes.

GRINDING ROTARY COLTERS. for the plasterer with much greater rapidity and in better shape than the carpenter who turns from making a door to lathing a room. The tool forger can temper steel better than the blacksmith who turns from the forging of a mill crank to the tempering of a turning tool. The machinist who has worked for years on steam engines can ooner put a disabled engine to work than one who learned his trade at building cotton machinery. In the one case, the man is an expert; in the other, simply a workman.

Meteoric lron in Snow.
 Observations of snow col

 lected on mountain tops, and within the Arctic circle, far beyond the influence of factories and smoke, confirm the supposition that minute particles of iron float in the atmosphere, and in time fall to the earth. By some men of science, these floating par ticles of iron are believed to bear some relation to the phenomena of the aurora. Gronemann, of Göttingen for instance, holds that streams of the particles revolve around the sun, and that, when passing the earth, they are attracted to the poles, thence stretching forth as long filaments into space; but, as they travel with pl:!netary velocity, they become ignited in the earth's atmo sphere, and in this way pro duce the well known lumi nous appearance characteriz ing auroral phenomena.Professor Nordenskjöld, who examined snow in the far north, beyond Spitzberg en, says that he found in it exceedingly minute particles of metallic iron, phosphorus, and cobalt.

THE KINGIO AND the tong.tsing-yo

The kingio, one of the most beautiful varieties of the golden carp probably ever bred, was imported from Japan by Mr. Gill, of Baltimore, a few years ago. After much persuasion and an offer of $\$ 500$, one of the most beautiful of the few that reached this country alive was secured for the aquarium.
Too much can hardly be said of the wonderful beauty and grace of this fish. Its sides were resplendent with delicate pearly and golden tints, which, as it moved through the water with great dignity, are constantly changed in degrees of color under the various angles of light. It is said that this single specimen yielded to the establishment not less than $\$ 3,000$ profit. Had it been fed on vegetable food instead of animal (raw liver) it might still be alive. The caudal and anal fins of this fish were united, and were of a pearly white color and of a delicate texture, which, as the kingio passed through the water, floated gracefully behind the fish as if composed of some delicate fabric. Several attempts have been made to establish this variety in this country, but all the specimens I have seen thus far seem to have gone back to the original starting point, which undoubtedly is the golden carp or our common gold fish.

The tong-tsing-yo, or telescopic-eyed fish (also known as the dragon-eyed fish), is a native of China. A few specimens of it were imported to this country a few years ago. This, like the kingio, is undoubtedly another monstrosity of the golden carp, and a very remarkable one, which has been established by continuous selection by the Chinese with the wonderful art they display in breeding these do mesticated pets, until the progeny is so disguised that the original form is almost lost. Viewed from the front this fish has a large, broad forehead and great projecting eyes. . With this fish the caudal and anal are united, but spread out from the fish, as shown in the illustration.

The Durability of Gutta Percha.

In his lectures before the Society of Arts on the recent advances in telegraphy, Mr. W. H. Preece, the electrician to the British Post Office Department, pointed out some of the curious accidents to which gutta percha covered wires were liable: "Gutta-percha covered wires," he said, "would be very well if they would last. But, unfortunately, gutta percha is a gum that only appears to last when in water. In water it apparently is indestructible. Cables that were laid in 1851, and have been brought up within a recent date, are now as good as the day when first put down.. But when gutta percha becomes exposed to the air, to the alternations of climate, especially when exposed to the action of the sun, it decays very rapidly; action of the sun, it decays very rapidly;
it oxidizes, and becomes a kind of resin it oxidizes, and becomes a kind of resin
that can easily be crumbled into a snufflike substance. Many attempts have been made to protect it and to arrest this rapid decay. It has been surrounded by tape soaked with tar. Tar itself has been found to be injurious, and has been supplanted by other materials, but at the present moment we have not yet succeeded in finding anything that renders guttapercha indestructible. In fact, when ex posed to air, as when suspended in tunnels, it seems to have a life of about ten years; when laid down in our iron pipes, under the influence of the variations of temperature and moisture that exist there, it seems to last about twenty years; but in the sea, where it is exposed to equable temperature and equal condition, it apparently seems capable of lasting forever. There are many curious accidents and causes of interruption to working that we meet with in our gutta-percha covered wires, and one of the strangest is one of the last that we have discovered. We have found in many places that this gutta percha is apparently gradually eaten away. It seems to go not unlike the way
in which open air wires rust away; in which open air wires rust away; and this curious action only occurs in certain places. In certain parts of the country, North Wales, Dublin, Kent, and in one part and another, we have found this curious action going on; and careful examination and inspection under the microscope have led us unmistakably to conclude that it is due to something or other eating away the gutta percha. Curiously enough, wherever we have detected this action taking place, there, ulso, we have found swarms of a very minute insect, a very little thing, belonging to what is called the spring-tail tribe. It is a little white fellow that you can scarcely see, and when you do see him he seems conscious of the fact, for he immediately disappears with a spring. It is the Templetonia crystallina. It abounds in swarms in certain soils, and seems to have a great liking for gutta percha. It does not remain
near the wire when it has eaten its way through, but, apparently, immediately retires when it touches the wire, as though it had received a shock, and makes a sudden retreat. It is a curious fact, and until recently it was unknown, that any living creature had a taste for gutta percha.'

An Alligator Survives Freezing.

The ability of many of the lower forms of animal life to survive freezing is well known. Even those so high in the scale as fish-cat-fish, for example-may be frozen stiff and kept for days in that state, yet "come to life" when slowly thawed. The first instance of the revival, after freezing, of an animal as high in the scale as an alligator is reported in

THE KINGIO.

Terrapin.
In a letter to the Repubic, of Washington, "G.H. B." tells what he knows about terrapin. The following facts are of general interest:
It is in Lent that terrapin commands its highest prices. They are worth from $\$ 25$ to $\$ 36$ a dozen during the season. A dozen terrapins consist of twelve diamond-backs, no one of which must be less than a "count terrapin," that is, measure seven inches in length on the under shell. The largest known do not exceed ten inches in length and eight pounds in weight, and such prizes are extremely rare. The seven inch terrapin averages four pounds in weight. "Sliders," the common river turtles of almost all the rivers of the South, grow to a much larger size. They bring from $\$ 6$ to $\$ 9$ a dozen.
The two or three men who control the trade in Baltimore say that they sell almost exclusively for private tables. Ter rapin are caught all the way from Savannah and Charleston to the Patapsco and Gunpowder rivers-scarce here-but the genuine diamond-back belongs almost exclusively to the upper Chesdipeake and its tributaries. The majority of the sliders come to Baltimore from the James river and streams adjoining. An active terrapin catcher sometimes makes $\$ 50$ a week, but the find varies, and often runs down as low as $\$ 5$. The reptile is discovered by probing the mud in the shallows with a stick. He is dormant and easily captured.
The females are more highly prized, and are known as "cow" terrapin. They generally contain about thirty eggs, some of which you have a right to expect te garnish the dish at $\$ 1.25$ a plate. I am not betraying confidence in stating that may restaurateurs, reckless of their fair fame, have resort to the eggs of the pigeon made into a paste and rolled into a substitute for the genuine article. Thirty years ago the largest dealer in Baltimore found this city. During a recent cold snap the window of a room, 'it difficult to dispose of the terrapin he received at $\$ 6$ a in which was kept a Florida alligator, was left open, and the dozen. The product, he says, is about the same year in and water in which the reptile lay was frozen. The owner of year out. He sells as many now as he did then. The nethe animal, a young physician, found his pet "as stiff as a groes who bring them to market say that they are growing poker," and to all appearances dead. It was placed in warm yearly scarcer, and nothing but the high price stimulates water, rubbed with alcohol, then wrapped in a cloth and left them to keep up the supply by a more extended and persistby a stove to warm up. After an hour or two it was rubbed ent search. The Commissioners of Fisheries of this State, again and dosed with liquor, its mouth having been pried in their report of 1876, deplore "the much diminished and open. This vigorous treatment was kept up for a couple of rapidly diminishing supply of this most excellent luxury of hours, when signs of life appeared, and in a few hours the Chesapeake Bay," and suggest its increase by cultivamore the alligator had entirely recovered.

Foreign Bodies in the Ear.
At a recent meeting of the New York Clinical Society,

TONG-TSING-YO.
eral days had had pain in the ear, with impaired hearing. A wad of soft paper was found firmly impacted in the ear, and was removed. The man had taken a surf bath a few days before, and had first felt the pain and deafness immediately after having been struck on the side of the head by a wave. The only way that he could account for the presence of the paper in his ear was that it had been carried in by the wave.

Dr. A. A. Smith alluded to the case of a lady who had engaged him to attend her in labor, and who complained of headache, dizziness, and nausea, without any evidence of kidney trouble. She soon found that she was somewhat deaf, and Dr. Smith discovered and removed from her ear a wad of cotton half an inch long, which had been inserted five months before. Her symptoms at once disappeared.
tion. They add: "There are hundreds of localities admirably situated in our terrapin-producing regions which could be made more productive, acre for acre, than the best surrounding land, by the establishment of terrapin ponds."

Importance of Fish Culture.

As the American Ship pertinently remarks, Hon. Levi P. Morton has done a good service in calling attention anew to the importance of farming our streams, lakes, and ponds, as well as the sea, that the water as well as the land be made to contribute to the food supply of our constantly increasing population. Norway leads the world in her fisheries, with an annual production valued at $\$ 13,600,000$, and yet we have opportunities for expanding to a limit even surpassing these enor mous figures. The artificial propagation of fish has been attended with encouraging results, first in Germany, then in France, and latterly in the United States, having become one of our most important industries. The United States Fish Commissioners say: "Norway is the only European nation that has a scientific commission occupied officially in the supervision of the fisheries and in devising methods by which they may be carried on and extended with the least possible waste. To the labors and observation of such men as Dr. Boeck, Professor Sars, and others, is due much of the present efficiency of the Norwegian fisheries." In 1867 we imported about as much fish as we exported. If we devoted sufficient energy to the business we could export one hundred times as much, and need import none at all. Fish culture is in its infancy. Its resources are immeasurable. It may approximate and even rival agriculture in importance. Its development will give employment t_{0}, large numbers of men and bring food within the means of the poor as well as of the rich. The propriety and utility of international exhibitions, like that now in con templation at Berlin, where the representatives of our nation can learn the nature of the products of the others, as well as show its own in a universal market, can no longer be questioned.

Cement for Repairing Glass.-Dissolve fine glue in strong acetic acid to form a thin paste.

To one gramme of the zinc powder add 10J cubic centimeters of a solution of pure melted bichromate of potash (say 40 grammes per liter), and stirring diligently, add twice, each time, 10 cubic centimeters of dilute sulphuric acid, and allow it to act for a quarter of an hour. When the zinc powder is completely dissolved, save a small residue which always remains, an excess of sulphuric acid is added, and 50 cubic centimeters of a strong acid solution of sulphate of iron (say 200 grammes per liter), whose value with respect to the solution of the chrome has been already determined. A slight excess of the latter is then cautiously added, and titrated back with the acid solution of chrome till a drop of the liquid is no longer colored blue by red prussiate. The quantity of the bichromate of potash consumed, multiplied by 0.66113 , gives the quantity of real metallic zinc present in the sample.-V. Drewsen, Zeitschrift für Analytische Chemie.

Preparation of Benzoic Acid.

Prof. Rudolf von Wagner has devised an improvement over the old method of distilling the gum benzoin and driving out the acid by heat. "He dissolves the benzoin resin in 3 or 4 pints strong acetic acid, decants the brown solution, and adds 4 parts boiling water. The resin separates upon dilution as a gray-brown mass, and is removed by filtering. When the filtrate cools, a large portion of the benzoic acid crystallizes out, while a second portion may be obtained by evaporating and partially neutralizing with lime. On a large scale, of course, the acetic acid could be recovered from the acetate of lime solution.
The resin that is precipitated from the acetic acid solution, when dried and fused, has a pleasant odor of storax, and may be employed to impart a pleasant odor to sealing wax, or for making fumigating pastilles and powder.
The solubility of benzoin resin in acetic acid should give it other uses in perfumery, as in disinfecting smoking essences. Tolu and Peru balsams and storax are also soluble in acetic acid.

Glucose from Rags.

The Revue Industrielle states that a German manufactory is turning out over a ton a day of glucose made from old linen rags. These rags, which are composed of hard vegetable fibers, are treated with sulphuric acid, which converts them into dextrine. The latter product thus obtained undergoes a washing with milk of lime, and is then treated with a fresh supply of acid stronger than the former, when the mass is at once transformed and crystallizes into glucose, of which "rich" confections and jellies may be made. The process is said to be a very cheap one, and the glucose chemically identical with grape sugar.
A strong outcry, however, has arisen against the manufacture of grape sugar from rags, and the enterprise is understood to be in danger of being interfered with by the German Government.

Action of Salts on the Kidneys.

MM. Richet and Moutard-Martin have continued their researches on the effects of injecting various substances into
the veins, and have communicated their results to the Académie des Sciences. They find that distilled water in jected into the veins, far from being, as might have been anticipated, diuretic, arrests the ordinary secretion, even when the quantity thrown in amounts to ten grammes for each kilogramme of the total weight of the animal $(1,544$ grains to each 2.2 lb . av.). In smaller quantities, as five grammes to each kilogramme, it checks without arresting it.
In larger quantities it permanently arrests the secretion, and the function of the kidney cannot be re-established. All substances which are either normally or accidentally discharged by the urine are diuretics, if they occur in the urine in larger quantities than natural; in fact their elimina tion induces the discharge of a certain quantity of water The beginning of the diuresis coincides exactly with the commencement of the elimination. The condition of concentration of the fluid injected appears to matter little in the effects produced on the renal secretion, for the polyuria seems to be due exclusively to the elimination of the salt
injected. In a therapeutical point of view it is obvious tha diuretic remedies should be looked for among the sub stances that are normally found in the urine, as urea, the chlorides, and phosphates, or among those that readily escape by the kidneys, as sugar.-Lancet.

lodide of Starch in Poisoning.

As a general antidotein poisoning, Dr. Bellini, in a paper read before the Medical Society of Florence, Italy, recommends iodide of starch. It is free from any disagreeable taste, and does not possess the irritating properties of iodine, so that it can be administered in large doses. He has made numerous experiments, and states as a result of these, that at the temperature of the stomach and in the presence of the gastric juice the iodide combines with many of the poisons, forming in some cases insoluble compounds, in others soluble compounds, which are harmless, so long as they do not exist in too large quantities. He recommends it as safe in all cases where the nature of the poison is unknown, and as especially efficient in cases of poisoning by the alkaloids and alkaline sulphides, by ammonia, and especially by those alkaloids with which iodine forms insoluble compounds. In cases of poisoning by salts of lead and mercury, it aids the elimination of these compounds. In cases of acute poisoning, an emetic should be employed soon after the administration.

At a late public meeting in London, under the auspices of the National Health Society, Mr. Ernest Hart delivered an important address on the relations of vaccination to public health. Dr. Andrew Clarke presided, and, according to the London Times' report, in introducing the speaker he remarked that ever since the introduction of vaccination there had been two opinions on the subject. One party had held that it was an almost unmixed good to mankind-that it had checked the ravages of a loathsome disease, and that the dangers of this disease had been so lessened that its fatality was almost banished in those who were vaccinated. On the other hand, the opponents of vaccination held that it was an almost unmixed evil-that it had neither lessened the disease nor the mortality from smallpox; that it had introduced other and great diseases into the human frame; and that for those who practiced it hanging was too good. Now, into this conflict of opinion, somehow or other, there had been imported a passion which belonged to a strong conflict, and this passion had arisen, perhaps, from an inadequate view of the whole subject. With this passion raging on both sides, honest and simple folks outside were hardly able to judge of the side to which truth belonged. The question had now passed from the press and the platform to Parliament, and as legislation was likely to follow-legislation which would be of infinite good or infinite evil to the public-the National Health Society had had to find one of a calm and judicial mind who would lay the facts on both sides before the public.
Mr. Hart commenced his lecture by stating that, having been asked for information with regard to the statements of the anti-vaccinators, he had been able to refer his inquirer to the standard works on the subject and to statistics of the Registrar-General; but what seemed to be wanted was some plain, practical, and direct answer to the specific allegations of the anti-vaccinators. He set himself to prepare such a statement, and in reading the statements of anti-vaccinators he was astonished to find their literature made up of surprising misstatements, misquotations, and absurd descriptions of physiological subjects, and those who imbibed knowledge from these statements-and, generally speaking, they were the classes least able to judge-were examples of the aphorism, "a little knowledge is a dangerous thing," and uffered much evil from these misleading facts.
Mr. Hart then went into a lengthy history of the ravages which smallpox had caused not only upon the British, but other peoples of the world, and he remarked that if the like mortality occurred in England now to that which was constant in the olden time, before the introduction of vaccination, the annual death rate from smallpox would be 70,000 . Before the days of vaccination a third of all the deaths of children arose from smallpox, and all classes suffered from it. This was instanced from the fact that King William III. had his constitution broken from it; and lost, besides other members of his family, his wife, mother, and father from the loathsome disease. The speaker quoted Macaulay's words lamenting that, while the plague had visited the country twice, the smallpox was constantly in our midst in olden time, cutting off vast numbers of our people, and even when it spared the life of a child it made it a changeling, at the sight of which the mother shuddered.
He then went minutely into each of the allegations of the anti-vaccinators and showed their fallacy, strengthening his case by quotations from the Registrar-General's statistics, from Mr. Simon's letter to the President of the General Board of Health, and from the evidence taken before the select committee of the House of Commons in 1871. In particular, he devoted much time to the allegations that vaccinations had not diminished the mortality from smallpox, that it did not ward off an attack of smallpox in the individ ual, and that it caused increased mortality from other diseases. He brought forward copious statistics to show the inaccuracy of these allegations, and showed, on the con trary, from the accumulated facts of the last eighty years, how large an influence vaccination has in checking small pox and in modifying its course in those vaccinated individuals who caught it. He gave figures to show that a thoroughly vaccinated person has only one-seventieth of the chances of catching smallpox that an unvaccinated person has; and that if he be attacked by the disease he has fifty times as many chances of recovery as a person unvaccinated. He explained the inaccuracy of the idea that vaccination inculated other diseases, and pointed out that, as regards syphilis, the danger was infinitesimal, while, on the other hand, there was the enormous assured advantage in vaccination of prevention of mortality from smallpox. Mr. Hart nsisted strongly on the necessity of vaccination being horoughly performed, and of revaccination at puberty, and he made certain suggestions designed with a view to make vaccination more general and thorough. He summed up the evidence in favor of vaccination, which he described as overwhelming.

Oranges and Lemons.-It is stated that the Mediterranean supply will be very limited this year, orange and lemon rees bringing forth, quite as olive trees, a full crop but every two years. Besides, the small crop has itself been seriously damaged by frost, so that complaints are general in Sicily, Naples, and on the Adriatic coast.

To Remove Ink Stains.-Take of muriate of tin, 2 parts; ater, 4 parts. To be applied with a soft brush, after which the paper must be passed through cold water.

The Canal.

The House Committee on the Interoceanic Canal lately had before it Mr. Menocal, Civil Engineer, United States Navy, who has made several surveys on the isthmus, and heard his statement as to the relative advantages and disadvantages of the Nicaragua and Panama routes. Mr. Menocal strongly favored the Nicaragua route as being 660 miles shorter than the Panama route between San Francisco and New York, and because of the greater salubrity of its climate, the better supply of building material, and its.relative cheapness of construction. He expressed his conviction that the cost of the Nicaragua canal would not exceed $\$ 70,000,000$, while that of a sea-level canal via the Panama route would probably be $\$ 400,000,000$. The latter he considered as commercially impracticable. He admitted that the Nicaragua route would consume more time on account of its greater length and locks, and that the annual expense of maintaining it and locks, and that the annual expense of maintaining it
would be probably twice as great, but that these features would be probably twice as great,
were compensated by its lesser cost.
The Committee also had before it Commodore E. P. Lull and Lieut. Frederick Collins, United States Navy, who entertained the Committee, so says Engineering Nevos, with very interesting arguments in favor of the Nicaragua canal route.
Lieut. Collins has been associated with nearly every isthmus survey that has been made in the past ten years. He was not, however, connected with the survey of the Panama route made in 1875 under Commander Lull.
Lieut. Collins has made a study of the wind and water currents of the Pacific coast in the vicinity of Panama, and exhibited a clart to illustrate his paper. The belt of calms, some 1,200 miles wide, reach from the coast of Panama westward. A strong current of northwest winds blow down the Pacific coast from San Francisco the greater part of the year, their width from the coast diminishing as they approach Panama. A similar wind comes up along the South American coast, reaching some 500 or 600 miles from the coast. These currents seem to rise on meeting and ride over the belt of calms. They, however, produce a disturbance of the calms belt near the coast of Panama that is well known as an area of vexatious squalls, calms, and delays. Sailing vessels leaving Panama for San Francisco take a course south, trending along the South American coast to 10° south latitude, and then south west and west from 600 to 800 miles west of Panama before finding a wind to help them
northward, and make the trip to San Francisco in 36 to 40 northward, and make the trip to San Francisco in 36 to 40
days. Vessels leaving the coast of Nicaragua, say at Brito, following the course projected by himself, would be north of the calms belt, and standing westward would get outside of the down coast currents of both wind and water, and be able to reach San Francisco in 23 to 26 days, on a course of 3,240 miles, while the sailing course from Panama to San Francisco is some 5,350 miles, although Panama is only some 500 miles south of Nicaragua, or Brito; so that the wind and air currents of the Pacific Ocean near the coast of Panama and its isthmus give the Nicaraguan canal route an advantage of some thirteen to fourteen days over a route via Panama. the nicaragua route.
Commander Lull exhibited a map of Nicaragua, explanatory of Mr. Menocal's report of surveys. The old Nicaragua transit company, which ascended from the Atlantic via the San Juan, traversed Lakes Nicaragua and Managua, and thence to the Bay of Fonseca. Lake Managua being higher than Lake Nicaragua, additional locks would be required, and the stretch of country between Managua Lake and the Bay of Fonseca being almost entirely volcanic débris (ashes and sand), does not hold the water that falls, and wells from 100 to 300 feet deep are made to get water. This section of canal would need to be concreted to render it tight. This route would be about 300 miles long.
The surveys made by Messrs. Childs \& Fay, in 1850-1, for the American Atlantic and Pacific Ship Canal Company, were via the San Juan river to the Lake Nicaragua, and directly across the lake and via Rios Lajas and Grande to Brito. Fourteen locks were to be used on each side of the lake.
The survey made by Mr. Menocal followed the same route up to and across the lake, but left the lake some miles north of the Rio Lajas route, with better results. This route leads into the bed or valley of the Rio Grande a torrent in the rainy season, whicb could scarcely be controlled. It is believed that thorough examination will show the practicability of turning the head of the Rio Lajas with Lake Nicaragua by a deep cut, and render the bed of the stream available for the site of the canal, which will very materially lessen its cost for this section.
The southwestern shore of the lake is of rock, and would require rock excavation under water to provide a proper depth of channel to reach the Pacific portion of the canal. The ridge to be cut through on the Pacific side is 130 feet high, and the cutting averages 54 feet for six miles.
After passing this cut, the excavation and etnbankments are equalized, as in railroad work. An artificial harbor will need to be provided at Brito, by excavating a basin in the swamp flats at the mouth of the river, and protecting it from the sea by a dike. The bed of the lake at the outlet into the San Juan at Fort San Carlos, is very shallow, but is composed of the volcanic sand and ashes that is brought into the lake during the rainy flood season, which gravitate toward the outlet. [The map shows several islands near the outlet of the lake.] A channel will need to be dredged for this approach to the head of the river for a distance of nine miles. It is believed that this channel will n
to maintain, as the material is very tenacious.

The Rio San Juan has several rapids above the mouth of he San Carlos, which are to be passed by means of short stretches of independent canal, and the remainder of the river is to be improved by the slack water system. [The San Carlos enters at about half way from the lake to the sea. 1 That portion of the river below the mouth of the San Carlos is entirely destroyed for purposes of navigation by being partially filled up by the detritus brought down by the San Carlos and Serapaqui, which drain large areas to the southeast in Costa Rica. The San Carlos has been so flooded as to carry back water 40 (?) miles up the San Juan [quite up to the rapid near the outlet of the lake]. The first dam above the mouth of the San Carlos will arrest this backwater. On account of the silted condition of the bed of the San Juan below the mouth of San Carlos, an independent canal is necessary from the San Carlos to the sea. In some places the spurs to be pierced are very high-in one place about 180 feet high-but Mr. Menocal, who is consulting engineer to the government improvement of the San Juan, has been allowed to visit the locality since the surveys were made, and is confident that a much more favorable and cheaper line can be now laid, saving, probably, some seven miles. It is the intention to divert the Rio San Juan into its old bed (the Colorado), and thus relieve the harbor at its present mouth from the shoaling that is going on from the detritus brought down during the rainy season. This will insure a good harbor at San Juan.
Lake Nicaragua rises and falls because of the rainy season about six feet, the time of oscillation occupying some six months. The area of the lake is about 2,700 square miles, and the area drained into it is some 8,000 square miles.
In studying the region of the isthmus, time is an essential element to get at its meteorological and climatic conditions, and Messrs. De Lesseps and Dirks have not been long enough on the isthmus to form any just idea of the difficulties which will arise in the construction of a sea-level canal. The mouth of the Colorado river shoals very fast. Cattle were grazing where I once landed from twenty feet of water, and a canoe would now ground where, as navigation officer, I once sailed a vessel. There are three locks above the San Carlos and seven below. The passage of a ship or other vessel through a lock will occupy about thirty minutes.

agricultural inventions.

Henry R. Burdge, of Cape Girardeau, Mo., has patented Henry R. Burdge, of Cape Girardeau, Mo., has patented
an improved sulky cultivator, so constructed as to loosen and mellow the soil and cut off the roots of grass and weeds without turning the soil over. It may be readily adjusted to work deeper or shallower in the ground, and will work at a uniform depth in uneven ground.
Mr. Gustaf Holcomb, of Stillwater, Minn., has patented an improved thrashing machine. This invention relates specifically to improvements in the grain and straw carrying mechanism of thrashing machines. It cannot be clearly described without engravings.
Mr. Thomas B. Ashford, of Clinton, N. C., has patented an improved grazing post for stock, which will prevent twisting of the halter, and which can be easily secured and adjusted. It consists in a balanced lever, to which the halter is attached, pivoted to the top of a post, provided with a screw at the lower end for screwing it into the earth, and braced by a number of hook bars, which are driven and braced by a number of hook bars,
into the earth to give it greater rigidity.

Mr. Adam C. Hendricks, of Duffield Station, W. Va., has patented an improvement in fertilizer attachments for seed drills. It is adapted to operate independently, but will in general be made an attachment of a seed drill. The improvement pertains to a rotating flanged wheel for discharging the fertilizer, and an adjustable gate co-operating therewith, for regulating the quantity of fertilizer discharged.
An improved device for planting corn in perfect check row, so that the rows shall be straight each way, and at the same time distributing a limited amount of fertilizer to cach hill as it is planted, has been patented by Mr. Henry F. Graetzel, of St. Joseph, Md.
Mr. Thomas Delaney, of Waterloo, N. Y., has patented an improved plant protector. The object of the invention is to provide an efficient device for preventing heavy rains from washing the soil from about the roots of plants, while it gives the water free access to the plants, and also permits the air to circulate about them.

Faber's Talking Machine.

A great many years ago a talking machine, the invention of one Herr Faber, was exhibited in New York, and an engraving of it was published in the columns of this paper, as, no doubt, some of our oldest readers remember. We are reminded of that famous machine by an account in our
English contemporaries of an improved talking machine exhibited by the successors of the original Faber before the Physical Society, and privately, for closer examination of its novel mechanism, to several well known scientific gentlemen.
This machine is said to be the product of the continuous labor and study of two members of the same family. It was begun in 1815 by Joseph Faber, and so far elaborated in 1841 that it was exhibited in that year to the King of
Bavaria. Bavaria.
On the death of the original inventor, he bequeathed the machine to his nephew, the present owner, also named Joseph Faber, who had been associated with him in its construction, and who, report says, has greatly increased its power of articulation.

The Coming Comet.

In a letter to the Boston Advertiser, Professor Benjamin Peirce, of Cambridge, says that he is fully persuaded that the comet recently discovered by our eminent American asronomer (Dr. Gould in South America) is a return of the wonderful comet of 1843 , which has been considered as in many respects "the most interesting of any on record" (Cooper's Cometic Orbits). The first record of this comet is in 1770 before Christ, with an average period of about seven years. The subsequent visible and recorded returns re, 370 before Christ, 252 and 183 before Christ, and after Christ 336, 422, 533, 582, 708, 729, 882. 1077, 1106, 1208, $1313,1362,1382,1402,1454,1491,1511,1528,1668,1689$ 702, 1843, and 1880.'
The appearance of this comet in 1843 is thus described by Professor Peirce:
'About noon on the 28th of February, 1843, groups of people in many of the towns of New England, especially in Portland, Maine, collected at the corners of the streets, gaz ng up toward the sun. Protecting their eyes in the shadows of the houses, they saw a brilliant object close to the sun. Such a marvelous spectacle had never before been seen. A thoughtful sea captain, Mr. Clarke, brought out his sextant, and repeatedly measured the distance of the strange object from the limb of the sun. These unique observations are on record, and, submitted to rigid criticism, attest the accuracy of the observer. In about a week from tris time a wonderfully brilliant tail of a comet was seen kirting the horizon soon after sunset, and reaching more han one-third of the way round the sky. It was now a tail without a head, as it was at first head without tail; but hey were members of the same comet. The best deter mination of its path was accomplished by the distinguished astronomer, Sears O. Walker. At its perihelion it passed nearer the sun than any known comet, with the single exeption of that of 1680, computed by Sir Isaac Newton, and in the discussion of which in the Principia he broached the irst approximation to the true theory of the cometary tail. These two comets approached so close to the sun that it would seem quite possible that they touched its surface, or, at least, swept in nearer than the sc lar corona. It would not have been an absurd hypothesis, that they were ejected from the sun at the time of penetration, had it not been for the fact that the comet of 1680 was seen on its way down to the sun, and for the remarkable phenomenon which we are about to describe concerning the comet of 1843. It may be claimed, as a not impossible hypothesis, that each of these comets was at some former time the product of a solar eruption, in accordance with Buffon's theory of the origin of comets. It would only involve a force which would double the greatest velocity given to the solar field of hydrogen. But a juster interpretation of the phenomenon, and one which avoids the necessity of an extravagant volcanic action, is to be found in the relation between the comets and the meteors. It is simply the splash of the falling meteors. In about an hour and a balf the comet of 1843 , like that of 1680 , went round the sun from one side to the other. What would have become of the tail, which was reaching out about $100,000,000$ of miles from the sun to the earth's orbit? There have been those who have actually adopted the incredible, I may say the impossible hypothesis that the tail rotated through this immense cir cuit, developing a centrifugal force which all the united powers of the universe could not have sustained. No! The comet practically left its tail behind it, and began to grow a new tail as it receded from the sun. There were thus two tails nearly side by side. The new tail was distinguished because it commenced at the head of the comet, whereas the old deserted tail began without any head at some distance from the nucleus, and extended further from the sun than the new tail. That such should be the phenomena of this comet was suggested by a geometer, without knowing that it had been actually observed. It was as veritable and honest a prediction as if it had been made previous to the observation. A double tail was observed on the first four nights after the comet's appearance at noonday. The visible separation of the two tails only lasted for a few days, because the earth passed almost at once into the plane of the comet's orbit, so that one tail eclipsed the other."

Conversion of Cane Sugar into Grape Sugar in
 \section*{Sugar int}

At a sanitary convention in Grand Rapids, Michigan, recently, the President of the State Board of Health called attention to a bad practice among cooks, by which cane sugar is converted into grape sugar in cooking, thereby losing more than half of its sweetening power. Some women, he said, will put the sugar in with a mass of acid fruit to be cooked, and keep cooking and keep adding sugar while it keeps on growing sourer, until at last they will use two and a half times as much sugar as they ought to secure the desired result. The cane sugar has been changed to rape sugar. Now, if the sugar had been added after the fruit was cooked, much less would have been required, and the result would have been far more satisfactory.

Exportation of Live and Fresh Meat
During the first week of March the steamers sailing from New York to English ports carried 1,221 head of cattle, 650 sheep, and 300 hogs, alive; also 2,408 quarters of beef, 850 carcasses of sheep, and 605 tons of fresh meat, several steamers reporting the dead meat carried only by weight. This is the largest shipment in one week for several months.

安usitess and extomal

Guild's Plastering Machine-The Simplest and Best
Tool for applying mortar to walls. Onework man using Tool for applying mortar to walls. Onework man using this machine can easily do the work of twomen using the
ordinary tools. See engraving on page 194. Address
Egbert F, Guild, East Saginaw, Mich. Boat Engines, for sidewheel boats drawing 6 to 12 in;
direct acting; link motion; cheap. Box 559,0 wego, N.Y For Sale.-Two Windmill Patents, and set of pattenrs
for same. None better. F. C. Maxwell, Columbus, o. Wanted - The address of Brass Lamp Manufacturers,
to fill a large contract. J. J. Hentz, 104 S. Charles St. to flll a large contract. J. J. Hentz, 104 S. Charles St.
Baltimore, Md. Window Safety Guard (for cleaning and repairing windows), simple and effective, by straps, platform.
Patent rights and licenses reasonably. R. d'Heureuse Patent rights and licenses
P. O. Box 395, New York.
Best Turkey Emery in kegs, half kegs, and cans
liberal rates by the ton. Greene, Tweed \& Co., N. Y.
The newest Plating used for Steel Pens can be see on Esterbrook's Nickel Plated. Send for samples to
Machines for Tapping Water Mains under Pressure.
Apply at Easton Brass Works, Easton, Pa. ,
For Patent Shapers and Planers, see ills. adv. p. 188. The genuine Asbestos Roofing is the only reliable sub-
stitute for tin, it costs only about one-half as much, is fully as durable, is frreproof, and can be easily applied by any one. H. W. Johns Manufacturing
Lane, N. Y., are the sole manufacturers.
For Separators, Farm \& Vertical Engines, see adv.p. 188 For Sale.-Machine Shop and Foundry, with agl. imp.
trade. New buildings; old business; $\$ 25,000$ invested trade. New buildings; old business; $\$ 25,000$ invested.
Practical partner preferred. P. Camel, care Manufac. turers' Exchange, Quincy, ill.
Blake's Belt Studs. The best and cheapest fastening For Middlings, Mill and Mill Furnishing, see adv. p. 188 .
Wanted-A Situation as Mechanical Draughtsman, by a young Englishman, 20 years of age. Reference, and
specimens. Address T. Wild, P. O. Box 4090 , N. Y. city
Wanted-A good Manganese Property. Samples and full particulars required. Fuller \& Stillman, 40 Broad-
For Sale.-Four Boilers, 100 horse power each, return drop flue; A 1 condition. $\$ 1,500$ each. 1 Berryman
Heater, $42 \times 96 ;$ A 1 condition; $\$ 100$. $\begin{aligned} & \text { D. } \text { L. Einstein, }\end{aligned}$ Heater, 42 X 96; A 16 White St., New York.
Rare Chance to Invest.-Three valuable Patents for sale. Lantern; Self-opening Oyster or Fruit Can; Coal
Sifter. E. P. Follett, 41 East Main St., Rochester, N. Y. Traction Tire for Portable Engines, etc. Sole manu-Wanted-A Second-hand improved Country Campbell Press, 31 x 46 , for
Frankllin Co., Pa.
A Mechanical Engiueer, thorough mechanic and
draughtsman, desires engagement. Pumping and hy. draughtsman, desires engagement. Pumping and hy.
draulic machinery a specialty. Address Hydraulics, Box न73, New York city.
Peck's Patent Drop Press. See adv., page 173. All kinds Machine Drawings. Inventors' work a spe-
cialty. Office hours 9 to 6 . 733 Broadway, 3 d floor front. Vertical \& Yacht Engines. T.P.Pemberton, 276 Water
Having bought the Forsythe Scale Works here, we offer our present manufactory, with 25 H . P. engine and
boiler, for sale. This property is well situated for manufacturing, only three blocks from depot. Will be sold
low. Waukegan, Ill., is 35 miles north of Chicago. Full description sent on application. Powell
N'f'rs Pumps and Windmills, Waukegan, III
Spokes and Rims, whiteoak and hickory, best quality, o any pattern, and Hammer Handles of best hickory. For the best Stave, Barrel, Keg. and Hogshead
chinery, address H. A. Crossley, Cleveland, Ohio. Cory, address H. A. Crossley, Cleveland, Ohio. Collection of Ornaments.-A book containing over
1,000 different designs, such as crests, coats of arms,
vignettes, scrolls, corners, borders, etc., sent on receipt vignettes, scrolls, corners, borders, etc., sent on receipt
of $\$ 2$. Palm \& Fechteler, 403 Broad way, New York city. Best Oak Tanned Leather Belting. Wm. F. Fore-
paugh, Jr.. \& Bros., 531 Jefferson St., Philadelphia, Pa. National Steel Tube Cleaner for boiler tubes. Adjust-
able, durable. Chalmers-Spence Co., 40 John St., N. Y. able, durable. Chalmers-Spence Co., 40 John St., N. Y.
Split Pulleys at low prices, and of same strength and ppearance as Whole Pulleys. Yocom \& Son's Shafting Stave B 1
Stave, Barrel, Keg, and Hogshead Machinery a spe-
cialty, by E. \& B. Holmes. Buffalo, N. Y. Solid Emery Vulcanite Wheels The
Solid Emery Vulcanite Wheels-The Solid Original
Emery Wheel - other kinds imitations and inferior Emery Wheel - other kinds imitations and inferior.
caution.-Our name is stamped in full on all our best Standard Belting, Packing, and Hose. Buy that only. The best is the cheapest. New York Belting and Pack-
Sheet Metal Presses. Ferracute Co., Bridgeton, N. J
Nickel Plating. - Sole manufacturers cast nickel anodes, pure nickel salts, importers Vienna lime, crocus,
etc. Condit, Hanson \& Van Winkle, Newark, N. J., and etc. Condit, Hanson \& Van Win
92 and 94 Liberty St., New York.
Wright's Patent Steam Engine, with automatic cut off. The best engine made. For prices, address william Presses, Dies, and Tools for working Sheet Metal. etc.
Fruit \& other can tools. Bliss \& Williams. I'klyn. N. Y. Bradley's cushioned helve hammers. See illus. ad. p. 174 Ice Machines selected. Information on all kinds. Benjamin's Sci. Expert Office, 37 ParkRow, New York.
Forsaith \& Co , Manchester, N. H.. \& 213 Centre St.,
N. Y. Bolt Forging Machines, Power Hammers, Comb,d Nand Fire Eng. \& Hose Carriages, New \& \& 2 hand Machin-
ery. Send stamp for illus. cat. State just what you want.
ery. Send stamp for illus. cat. State just what you want.
Electrical Indicators for giving signal notice of extremes of pressure or temperature. Costs only $\$ 20$. At-
tachedto any instrument. T.Shaw, 915 Ridge A ve.Phila

Instruction in Steam and Mechanical Engineering. A
thorough practical education, and a desirable situation as soon as competent, can be obtained at the National Institute of Steam Engineering,
particulars, send for pamphlet.
Hydraulic Jacks, Presses and Pumps. Polishing and
uffing Machinery. Patent Punches, Shears Lyon \& Co., 470 Grand St., New York.
Portable Forges, $\$ 12$. Roberts, 107 Liberty St., N. Y Telephones repaired, parts of same for sale. Send
tamp for circulars. P. O. Box 205 , Jersey City Eclipse Portable Engine. See illustrated adv., p. 157. New Inventions examined and tested. Designs and formation on all industrial processes. Benjamin's Sci. Expert Office, 37 Park Row, New York.
For best low price Planer and Matcher. and latest atalogue to Rowley \& Hermanc, Williamsport, Pa. Special Wood-Working Machinery of every variety.
evi Houston, Montgomery, Pa Improved Solid Emery Wheels and Machinery omatic Knife Grinders, Portable Chuck Jaws. Important, that users should have prices of these first class For best Portable Forges and Blacksmiths' Hand
Blowers, address Buffalo Forge Company, Buffalo. N. Y. Chase's Pipe Cutting \& Threading Machine Sial circular. Chase Machine Co., 120 Front St., New York. Diamond Tools. J. Dickinson, 64 Nassau St., N. Y. Steam Hammers, Improved Hydraulic Jacks. and Tu Wanted-The address of 40,000 Sawyers and Lumberwen for a copy of Emerson's Hand lsook of Saws. New
edition 1880. Over 100 illustrations and pages of valuable information. Emerson, Smith \& Co., Beaver Ealls, Pa.
Eagle Anvils, 9 cents per pound. Fully warranted. Repairs to Corliss Engines a specialty. L. B. Flan For Pat. Safety Elevators, Hoisting Engines. Friction Thutch Pulleys, Cut-off Coupling, see Frisbie's ad. p. 188. ines. The "Haskins" Engines and Boilers. Send fo For Wood-Working Machinery, see illus. adv. p. 189. Tight and Slack Barrel machinery a speciaity. John
Greenwood \& Co., Rochester, N. Y. See illus'd adv. p. 62 . Elevators, Freisht and Passenger, Shafting, Pulleys, The Horton Lathe Chucks; prices reduced 25 per cent. $\$ 400$ Vertical Engine, 30 H. P. See page 188.
Judson's Improved Assay Furnaces and Tongs. En-
irely new design. W. E. Judson, Clevelan
Emery Wheels of all kinds, and Machines at reduced
prices. Lehigh Valley Emery Wheel Co., Weissport, Pa. Comb'd Punch \& Shears; Universal Lathe Chucks. Lambertville Iron Works, Lambertville, N. J. See ad. p. 108 .
For Mill Mach'y \& Mill Furnishing, see illus. adv. p. 188. Patent Steam Cranes. See illus, adv., page 189. Improved Steel Castings; stiff and durable; as soft and easily worked as wrought iron; tensile strength not
less than 650000 lbs. to sq. in. Circulars free. Pittsburg
Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423 , Pottsville, Pa. See p. 189. Da. Diamond Drin Co. Box423, Pottsville, Pa. See p. 18 Drop Hammers, Die Sinking Machines, Punching and Rue's New "Little Giant" Injector is much praised Rue Manufacturing Co., Philadelphia, Pa .
The only economical and practical Gas Engine in the market is the new "Otto" Silent, built by Schleiche Schumm \& Co., Philadelphia, Pa. Send for circular.
Elevators.-Stokes \& Parrish, Phila., Pa. See p. 189, Binders, and Paper Mills. Large knife work a specialt Also manufacturers of Soloman's Parallel Vise. Taylor Stiles \& Co., Riegelsville N. J.
The Twiss Automatic Cut-off; also Vertical and Yacht

HINTS TO CORRESPONDENTS.
accompanied with the full name and address of the writer. Names and addr
We renew our request that correspondents, in referring to former answers or articles, will be kind enough name the date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then pub-
lished, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and labor obtain such information without remuneration. Any numbers of the Scientific American SuppleMENT referred to in these co
office. Price 10 cents each.
(1) E. C. writes: We are using iron turbine water wheels; when there is slush or anchor ice
running in the night it sticks to the iron and fills the wheels so as to stop them, while in the daytime, with the same conditions as to degree of cold, wind, and quantity of ice running, it does not bother at all. Can
it be explained? A. It is probable that more anchor ice it be explained? A. It is probable that more anchor ice
makes during the night than in the dav time, the water makes during the night than in the dav time, the water
being in a comparatively quiescent state at night. A board containing 64 square inches surface measure can be cut and put together, so as to measure 65 square
inches. Wheredoes the extra inch come from? A. See
careful in your measurements you will find that the
board really has the same area in one case as in the other, and that some of the squares along the line of division are enough smaller than the others to account for the existence of the extra square.
(2) C. D. R. writes: I have quite a quan tity of grape vines which grow some six feet high. We
have in this section early frosts in spring and fall. I wish a light and cheap covering to tack to a wooden riame six by eight feet long. A. We know of nothing better than
some of the cheaper grades of cotton cloth
(3) J. B. asks (1) if one gravity battery cell can be put to any use. A. It will work a sounder
or electric bell adapted to light battery power. 2. Can I or electric bell adapted to light battery power. 2. Can I
get an electric shock from it? If so, how? A. Yes, by using an induction coil like that described on page 203 a voltaicdry pile to be used in an enclosure? A. Se SUPPLEMENT, No. 15%.
(4) E. M. G. writes: 1. I am running a portable mulay saw mill with a 10 horse power thrashing engine, which is plenty strong, nut am troubled some
for steam when using green slabs. Now, how would it work to set another portable engine beside the one no in use, and connect the two boilers with a steam pipe,
and make steam in both, using one engine? Could they be arranged to burn the sawdust? How large a pipe would be needed to connect the boilers. Would a valve be needed in the pipe to shut off steam from either
boiler? A. Yes; set another boiler alongside, and conboiler? A. Yes; set another boiler alongside, and con-
nect with a steam pipe at leastas large as that leading boilers, but supply them with water independently Yo should have a stop valve in the connecting steam pipe, and be careful to have a separate safety valve on each boiler. With proper arrangements you can burn sawdust with your slabs. 2 . Would it be practicable to
have an iron tank for hauling water for a thrashing enhave an iron tank for hauling water for a thrashing en
gine, to fill it with steam from the boiler, then start for the water,and when the steam had condensed and formed vacuum in the tank, to let it suck itself full through the pressure? A. Yes; you musi have tank strong enough to bear safely the greatest internal pressur that the steam will give, and stiff enough t.
under the full pressure of the atmosphere.
(5) J. W. S. asks: Can gutta percha be bleached white; if so, what is the process? A. White
gutta percha is obtained by precipitating a solution of gutta percha is obtained by precipitating a solution of
ordinary gutta percha in chloroform by alcohol, wash ing the precipitate with alcohol, and finally boiling it in
water, and moulding into desired form while still hot.
(6) J. R. asks: What will take old paint off wood without injuring the wood? I am told that I
will have to burn it, but I think there is another process. A. Strong aqueous solution of caustic potash softens oil paint, which in this state may be removed by scrap-
ing. The potash is, however, liable to injuriously affect ing. The potash is, however, liable to injuriously affect
the wood. Burning is more commonly resorted to.
(7) W. H. B. writes: Having tried to galvanize some small wrought iron hooks, I could not make the zinc take to the iron. I used a pint of sulphuric
acid, pint of muriatic acid, pint of sal ammoniac, and acid, pint of muriatic acid, pint of sal ammoniac, and
zinc enough to cover the hooks. I first dissolved the zinc with muriatic acid, then I reduced the sulphuric acid with water. I then dissolved the sal ammoniac,
then 1 dipped the hooks into the sulphuric acid, then after washing it off I then dipped it into the muriatic acid; after taking it out and letting it stand for some time, I then dipped it into sal ammoniac, after taking it out and letting it stand some time I then dipped into the zinc, but on taking it out the zinc would no stick to it. Can you tell me where the trouble is?
A. Clean the metal by pickling in the dilute acid, and scouring (or tumbling) with moist sand, if necessary. Rinse quickly in pure water, pass through the
chloride of zinc solution, and then transfer to the zine pot. Keep the melted metal covered with dry sal ammoniac. Moist iron rusts very quickly when exposed to the air, and unless the surface is perfectly freed
(8) F. M. O. asks: What is the mode of manufacture, and what are the uses of the so-called
mineral wool? What substance can \mathbf{I} use to cover the surface of molten metals, say at a dull red heat, to prevent the formation of the film of oxide? Can a glass be
made sufficiently fusible to answer the purpose? A. made sufficiently fusible to answer the purpose? A.
See pp. 20 and 278 , Vol. 38, Scientific American. See pp. 20 and 28 , Vol. 3 , Scientific American.
Have you tried borax (borax glass) or the double borate sodium and potassium ?
(9) E. Y. D. asks: 1. Do you know of anything that will cement two pieces of vulcanite, it being
a straight joint? I have tried rubber, and it did not harden in 24 hours. I have also tried good cements which are patented. A. Melt together equal parts of pitch
and gutta percha, and add about 1-5th part of shellac Stir until a perfectly homogeneous mixture is obtained. use hot (avoiding excessi),and submit the joint to strong pressure until the cement has properly hardened 2. Can you tell me what the precipitate of the following is: I took olive oil and made it very hot,almost boiling, into it1 dropped a piece of phosphorus ; there is now a
posit in the vessel. A. It is probably phosphorus.
(10) F M. asks whether it is preferable to make the upper or the lower belt the driving belt in
case of a long horizontal belt. A. All authorities agree, and all experience goes to prove, that a belt should drive
(11) J. S. asks how to compute the horse power of a boiler. A. Total number of square feet of
(12) "Mechanic" asks whether, in order to make a boat buoyant when she is filled with water,
it is better to seal up the tanks, simply allowing the atmospheric air to get in; or whether it is better to pump compressed air int the tank. A. Simply seal your
anks. If you fill them with compressed air it will add ightly to the weight the boat must carry
(13) G. I. B. asks: 1. What is the rule for alculating the horse power a belt will transmit? A.
very safe rule is that at a speed of 800 feet per minute
each inch in width of belt equals one horse power, that of 800 foot inches $=1$ H. P. 2. Does the same rule apply gines heat so that they need to be oiled every few minutes, to koep from cutting the crosshead brasses: everything appears to be level and in line; runs about 120 strokes per minute. What is the probable cause?
(14) W. E. F. writes: I am a paper manuacturer, and boil my rags and raw stock in "rotary ooilers " under, say, 50 lb . pressure, and dry my paper with live steam. We are troubled with too much cinders in the boiler, weakening the chemical solutions,
and filling the pipes and drying cylinders in drying maand filling the pipes and drying cylinders in drying ma-
hine. I wish to ask: 1 . Can we economize heat and uel by using superheated steam? A. Yes. 2. We have aflue $6 \times 3,14$ feet long, between the brickwork of the
oiler and smoke stack. Can we put in this a system boiler and smoke stack. Can we put in this a system
f coils, or lengths, of pipe, drying the steam from the of coils, or lengths, of pipe, drying the steam from the
teat that would otherwise be wasted? A. Yes. if pro heat that would otherwise be wasted? A. Yes, if pro. . If well arranged and managed, no. 4. Will steam dried do more boiling and drying when superheated
(15) E. H. R. asks: Why would not crude petroleum oil answer as well as creosote oil for the pre-
ervation of wood? It is as penetrating, if not more so servation of wood? It is as penetrating, if not more so nything else. A. Petroleum unfortunately renders ood very inflammable. The effects of creosute are ore positive and lasting,
(16) L. P. L. asks: 1. How can hair be made to grow on the face most rapidly? Is there any-
hing besides shaving that can be done? A. The thing besides shaving that can be done? A. The
growth of hair on the face of adult males is influenced growth of hair on the face of adult males is influenced tend to produce vigorous health in the general system and in the skin usually stimulate the hair. Chief mong these is very frequent bathing. As a rule local applications are useless. 2. How can aniline inks be kept from fading? A. If exposed to light the fading unavoidable. 3. Can aniline inks be made, by any
preparation of the cloth, or addition to the ink, indelile for marking linen? A. With exception of aniline black, no.
(17) C. L. F. asks: 1. Is there any preparation that will cause the beard to grow to extraordinary angwer or add to its growth in any manner? A. See
ans., this page. 2. Is there a preparation which will make a meerschaum pipe of uniform color? I have one that has been in use several years, and is only colored about the lower part of the bowl where the stem oes in. A. Boiling in oil contring annatto is some-
(18) C. L. B. asks: In changing an engine from 2 feet stroke to 18 inch, would I need to have a
shorter cylinder? A. You must either shorten the cylshorter cylinder? A. You must either shorten the cyl-
inder or fill up the waste space of the ends by deep heads.
(19) J. C. L. writes: I bave heard it said that the majority of persons in looking at objects
use one eye only, to a partial exclusion of the other. Is his true, A. It not generally true. Whermal both eyes are in their normal condition, both are equally used.
The full intention of vision is not realized unless both eyes are used. With one eye everything appears flat. With two eyes objects look stereoscopic.
(20) J. W. E. asks whether United States sabers are made of spring or cast stee
(21) W. E. B. writes: 1. I have a small steam engine whose cylinder is three inches in length
with a two inch bore. How much space should there be between the piston and cylinder head the end be between the piston and cylinder head at the end of
the stroke? A. Not more than 3-16 inch. 2. Where the stroke? A. Not more than $3-16$ inch.
can I obtain printed instructions by which I can make a model engine? A. We know of none. Follow the
proportions of larcer engines as given in back numbers proportions of larger engines as given in back numbers
(22) N. T. L. writes: There are two locomotive drive wheels at rest on the track; one is small, the other is large. Does more of the surface of one
wheel come in contact with the rail than the other; if wheel come in contact with the rail than the other; if
so, which one? A. With deflection of the rail, yes. The large one has the most surface in contact. Theoretically if there be no deflection, there would be no difference,
(23) C. M. B. asks: Is there any book published on saw hammering. If so, by whom and where can they be obtained? A. You will find a comprehensive
article on the subject on p. 259, Vol. 27, Scientific article on then
American.
(24) R. S. asks for the process used in marblizing slate mantels, and how the differeut shades and colors are acquired. A. We slate is coated with asphalt, mround to a smooth surface, and baked. The paints are being brought into contact with the under surface of the paint by bringing it up through the water. The paint thus adheres in irregular patches, producing the marblization. After drying it is again baked.
(25) F. M. asks (1) if fruit and meat cans used in the solder? A. Mercury has been found in the solder of some cans in which edible substances have been inclosed, but its use in solder cannot be too strongly
deprecated, as it not only endangers the lives and deprecated, as it not only endangers the lives and health of the persons who consume the canned goods,
(26) W. D. G. asks: If I build a mill dam, say 17 feet high, and it backs the water up the stream, say 5 miles, howlfar from the upper side of the dam does the pressure of water operate or press against the dam? A. The pressure against your dam will be the same, whether the water sets back 500 feet or 5 miles; it is the
depth of water at the dam which determines the pres-
(27) L. C. asks: 1. Is the fine edge of a razor produced on a strap by abrading the sides until a
sharp angle is produced,or on the particles of steel mag-
netically arranged by the friction on the strap, or do duced by abrasion to the result? A. The edge yro color the wings, of a queen bee red or some other bright color (so that she can be readily seen among the bees without injury to her? It should be something that will not load the wings but leave them light and supple -a dye, not a paint. A. Try an alcoholic solution of the
(28) F. J. will find the wagon wheel ques tion fully discussed on p. 394, Vol. 39 of Scientific American

[OFFICIAL.]
INDEX OF INVENTIONS
for which
Letters Patent of the United States wer ranted in the Week Ending

February 24, 1880,

AND EACH BEARING THAT DATE
[Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list, including both the specifications and drawings, or any for one dollar. In ordering please state the number and date of the patent desired, and remit to Munn \& Park Row, New York city.

ee apparatus, w. B. Cowan 224,882	e for locomutive and
aratus for the manufacture of wood and	H. Watkeys (r) 9,100
oil, G. Ramsd	Vapor motor, E. L.
estinuuisher, automatic, T. W. Hamilton..... 224,776	Vehicle dash frame, G. M. Peters............. 224,792
Gas retorts, apparatus for indicating the action	Vehicle spring, w. Henry........................ 224,906
water, H. C. Bowen. 224,865	Vehicle spring, M. Woodhull................. . .. 224.859
retorts, determining the temperature and	Vehicle wheel sand band, m. Potter............... 224,795
progress of distillation in. H. C. Bowen... 224,866	Velocipede, B. P. Crandall (r)........ 9,096
ass house furnace, J. J. Gill...................... 224,89	Violin, E. Marx 224,834
Grain separator, J. B. Suitt	Wagon body, N .
Grape picker, T. C. Whi	Wagon, farm, R. J. Barcus 224,860
Hams, apparatus for pic	Wash bench, A. Severson 224,799
Harrow, M. S. Blair............................ 224,	Wash board, B. R. Jenkins
Harvesters, etc., pivoted a	Washing machine, Chamness \& Vaughn 224,876
Hedges \& Morgan	Watch chain swivel, J. L. Reminge
Hay and cotton press, portable	Watches and clocks, hair spring stud for, R. L.
Hay press, N W. Herring	Peabody
Hay rake and loader, Johnson \& Dewey 224,23	Water elevator, G. E. Bigelow
Hay rake, horse, J. B. Fogt. 224,8,	Wind wheel, H., Sr., \& H. Croft, Jr................. 224,817
Hoisting machine, L. H. Hall (r)	W indow, colored glass, J. La Farge. 244,831
Holdback, harness, Knight \& Hillia	Window fastener, L. Stebbins 24,804
Horse toe weight, D. \& D. Roberge, Jr	Window frame, S. H. Decou..... 22,818
Hydraulic elevator, W. E. Hale	Wire coiling reel, D. C. stover 224,805
Hydro-carbon burning apparatus,	Wire drawing, V. D. P. Kenerson 224,829
Injector for feeding boilers, J. S. Bancroft........ 224.7	Wire rods, reel for coiling. C. H. Morgan 224,941
Injector for feeding boilers. Sellers \& Bancroft ... 224,798	Wire rods, reel for coiling، Morgan \& Daniels..... 224,942
Jacket or envelope for supporting various parts of the human frame, stifiened,W.H.Johnstone 224,784	Wire stretcher, J. Fowle 244,892
Kettle, skeleton, B. F.	DESIGN
Key fastener, L. Johnson	DESIGN
Label, C. Rowland	Flowers, matches, etc., holder for, J. W. Tufts.... 11,660
Lamp, car, C. P. Howa	Medal battery, J. R. Flanigan... 11,656
Lantern, Ewing \& Bill	Ornamenting metal surfaces. J. Hewitson.......... 11,658
Lifting jack, J. Du Shane	Spoon and fork bandles, W. Rogers................ 11,657
Lime and cement kiln, B. F. Holland 22 ,	Types, font of printing, W. W. Jackson............. 11,659
Locked switch, J. W. Reinhart.............. 224,	
Loom heddle, E. Schopp...................... 224,797	
Loom shuttle spindle, J. Hamilton (r)..... 9,093	ADE M
Lounge, extension, C. Streit	ins, bracelets, collar and sleeve butt
Marker, land, Kramer \& Miller 224	
Match lighting attachment to hats, etc., F.L.Clark 2	Liver pad, Thompson, Schott \& Co............... . . 7,837
Mechanical movement, S. Isch 224	Milk, condensed, New York Con
Medical compound, T. J. Robbins................. 224	pany 7,835, 7,836
Metal rods or bars, machinery for coiling, P. H. Standish..	
Middlings purifi	Driggs 7,833
Milk can skimmer, G. W. Bolton 244,864	Soap, C. S. Higgins 7,834
Milk purifying and cream raising apparatus, J. W. Powers 224,844	
Millstone balancing device, L. Read (r).... 9,091	
,	rom February 20 to February 24, 1880, inclusive.
Millstones and tramming spindles, machine for leveling, D. E. Baughey 224812	Artificial marble, W. H. Hoopes, Baltimore, Md. Axleboxes, T. Haynes. Kansas City, Mo
Millstones, hand tool for dressing, W. L. 'Teter... 224,9	Bearings for axles, etc., H. Loud, Everett, Mass.
Miner's combination tool, w. s. Rosecran	Bed, J. H. Archer, San Francisc
Mouldings, machine for dres	Cast iron, converting into wrought iron, L. D. Chapin,
Music leaf turner, T. Berry......................... 224	Chicago, 11.
Music leaf turner, G. H. Na	Cereals, products from, Cereal Manuf. Co., N. Y. cit
Musical instruments, foot	Cream collector, P. G. Peltret, San Francis
T. Peek 224,981	Middlings purifier, T. B. Osborne et al., New Haven, Ct.
Ore feeder, O'Hara \& Feit.......................... 224,9	Nut lock, I. D. Beach et al., Millersville, Mo
Packing. piston, R. Childs 224,8	Speed regulator for steam engines, J. B. Sheppard,
int and varn	Philadelphia, Pa.
H. Nordaby	Telegraph wire, manuf. of, A. K. Eaton, Brooklyn, N.Y.
Paper bag, J. McCullough......................... 224,	Telegraph, preventing escape of currents, C. E. Chin-
Peanuts. etc., apparatus for cleaning and scour- ing, B. F. Walters	nock, Brooklyn, N. Y. Telephone conductors, C. E. Chinnock, Brooklyn, N. Y
lanter check rowe	Valves for barrels, C. G. S
Planter, corn, F. P. Castanien 224,8	White lead, manuf. of, G. T. Lewis, Philadelphia, Pa.
Planters, self-dropping attachment for corn, H . C. W. Heers................. 224826	
Plow draught attachment, H. \& L. Iwan........... 224,917	
w, sulky, J., T. P., \& J. A. Elam. 224,820	
cket,	
Pottery	

PUBLISHED MONTHLY.

The Scientific American Export Edition is a large d Splendid PEriodical, issued once a month orming a complete and interesting Monthly Record of all Progress in Scince and the Useful Arts through HUNDRED LARGE QUARTO PAGES, profusely illustrated, embracing:
(1.) Most of the plates and pages of the four pre ceding weekly issues of the Scievtific Ampeican with its SPLENDID ENGRAVINGS AND VALU able information
(2.) Prices Current, Commercial, Trade, and Man ufacturing Announcements of Leading Houses. In connection with these Announcements many of the Principal Articles of American Manufacture are exhibited to the eye of the reader by means of SPLENDID This is by far
ren far the most satisfactory and superior Terms for Export Edition
ent prepaid to any part of the world. Single YEAR 50 cents. For sale at this office. To be had at all

NOW READY
THE SCIENTIFIC AMERICAN EXPORT EDITION for MARCH, 1880, ILLUS TRATED WITH ONE HUNDRED ENGRAVINGS

224,802,
park arrester, J. B. Suitt Sprinkler. E. B. Norton... tamp, branding, F. Christy Steam boiler, W. S. Fiske. Steam boiler. W. R. Michen
Steam engine, T. T. Prosser
tool, piano Stoon, piano. M. H. Wilson. Surgical splints, making, W. H. Johnstone Tap, w. Kenworthy.
elegraph and telephone systems, circuit a signaling apparatus for district, T. N. Vail... elegraphs, alarm recorder for fire, I. P. Haulen-
ile, paving, W. J. Mitchell
Torch, lamp, W. Killoran....
raction engine, O. H. Burdett.

GENERAL TABLE OF CONTENTS

.-INVENTIONS, DISCOVERIES, AND PATENTS.
The Proposed New Patent Law.
Important Decision by the U. . Circuit Court. The
Page Electrical Patent Sustained.
Hydraulic Riveting-Tweddell System. 4 engravings.
Improved Carpenter Gauge. 2 engravings.
New Fluid Propeller or Motor. 1 engraving
New Lawn Erge Mower. 2 2 engravings.
Improved Steam Packing. ${ }^{2}$ engravings.
Proa Ladrona -A New Double Pleasure Boat. 1 eng.
Recent Inventions.
Agricultural Invention
Agricultural Inventions
Mechanical Inventions.
Engineering Invention
Engineering Inventions
Improved Sho Ivel Plow Point. 3 engravings.
Improve Heaters.
Loiseau Compressed Fuel.
A New Fruit Drier. 1 engraving.
Improved Roller Gate. 1 engraving.

New Gas Sewer. 1 engraving.
Mill er Oil Can Patent.
Improved Controling Valve for Engines. 2 engs.
mproved Controniling Valve for Engines. 2 eng
New Potato Digger. 3 engraving.
Mr. Vance the Value of our Patent System.
Improved Cam for Stamp Mills. 1 engraving.
The Patent Bill now before the Senate.
Imitation of Stained Glass.-A New Idea.
Imitation of Stained Glass.-A New Idea.
Improved Surveying Instruments.
Improvement in Boilers. 1 engraving.
New Soldering Toool. 1 engraving.
New Soldering Tool. 1 engraving.
New Car Door Fastener. 2 engravings.
Speaking Picture Book. 1 engraving.
Ironing Table, Clothes Drier, and Step Ladder. 2 en
New Mole and Gopher Trap.
Apparatus for Continuou
Apparatus for Continuous Displacement. 1 eng.
Drying Oven with Constant Draught of Dry Air.
ngraving.
Improved Riding Attachment for Cultivators. 1 eng.
New Electric Lamp.
Non-Conducting Covering for Heated Surfaces. 1 eng.
New Electric Lamp.
Non-Conducting Covering for Heated Surfaces. 1 eng.
Tew Transit Instrument.
New Transit Instrument. 2 engravings.
New Plastering Machine.
Improved Stone Polishing Machine. 1
Improved Stone Polishing Mactine. 1 engraving.
Improved Sprout Puller. 2 engravings.
Improved car Window. 3 engraving
New Holdbark for Harress. 2 engravings.
The Climax of Invention.
The Climax of Invention.
The New Leclanche Battery, 2 engravings.
Steel in Agricultural 'Tools, Grinding Rotary Coulters.
1 engraving. ${ }^{\text {Faber's Thing Machine. }}$
I.-MECHANICS AND ENGINEERING.

Power Required for Yacht.
The St. Gothard Railway Tunel.
Steam Pressure and Temperature.
III. MINING AND METALLURGY.

Coal.
Malleable Bronze.
Electrotyping with Iron.
Lighting Mines by Reflectors.
v.-CHEMISTRY AND PHYSICS.

The Certification of Timepieces.
Another Comet.
Artificial Diamonds.
A New Metcorite. 2 engravings.
Solar Spots. 5 engravings.
Solar Spots. 5 engrav
Astronomical Notes.
Etching on Glass.
Recent Progress in Microscopy
Scientific Toys. 3 engravings.
Sur Spots.
New Method of Extracting Plant Perfumes.
New Method of Extracting Plant Perfumes.
A New Way of Studying sounds.
". Prospecting ", Metal Veins by the Induction Eal-
nce.
Hydrocellulose in Photography.
Leclanche Battery
Leclanche Battery.
Induction in Telephone Lines.
Cheap Spectrocsope. 1 engraving.
Theap Spectroscope.
The Leyden Jar.
Chasse's Multiplex Telegraph.
Chasse's Multiplex Telegraph
Electric Lamp Tests.
The Great Iowa Meteorite.
Tectric Lamp Rests.
The Great Iowa Meteorite.
Ve Rifle Balls
Velocity of Riffe Balls.
Transmission of Motive Power by Electricity.
Surveying by Photography.
Surveying by Photography.
Capsuling Bottles.
Recent Progress in Chemistry.
Recent Progress in Ch.
Electric Annunciator.
Electric Bells.
Electric Bells.
Induction Coil.
Mauction Coin in Snow.
Mhe Duricability of Gutta Percha.
The Coming Comet.
Conversion of Cane Sugar into Grape Sugar.
Colors and Dyes used in Antiquity.
Colors and Dy ces used in Antiquity.
Zinc Pow.der.
Preparation of Benzoic Acid.
Glucuse from Rags.
V.-NATURAL HISTORY, NATURE, MAN, ETC.

An Owl at Sea.
The Hairy Crab. 1 engraving.
The Torracon.
The Phylloxera in California.
Ferdinand De Lesseps and the Chagres Canal.
Land slide in Frazer River.
Italian Prizes for American Vines.
Italian Prizes fror American Vines.
Benjamin Fish.
Benjamin Fish.
The Leat Mormolyce. 1 engraving.
Natural History Notes.
Narcotism from Nutmegs.
Protection of Young Trees.
Meduse 1 engraving.
Bundles of Snakes.
An Odd Fish in the Far West.
Natural Lime.
Natural Lime.
Our Lakes.
Our Lakes.
The Kingio and the Tong-Tsing-Yo. 2 engravings.
An Alligator Survives Freezing.
Lemons and Oranges.
I.-MEDICINE AND HYGIENE.

The Weather and H-alth in Europe.
Vaccination and Science.
Snow Eating Unhealhy.
Effects of Kidney Diseases upon the Eyes
The Transmission of carlet Fever by Milk.
American Rum Drinkers.
American Rum Drisio Drink
Why Teeth Decay.
Novel Mode of Preserving Man's Reason.'
How to Obtain Sleep.
Tobacco Chewers Not Wanted.
Coffee in Typhoid Fever.
The Circulation of the Blood made visible.
Curious M Mental Relationsof Self-Consciousness.
The Atmosphere and Yellow Fever.
A Fatal Italian Disease.
Foreign Bodies in the Ear.
Action of Salts on the Kid
Action of Nalts on the Kidneys.
Iodide of Starch in Poisoning.
Vaccination and Smallo
VII.-SCIENTIFIC MEETINGS, EXHIBITIONS, ETC.

The American Society of Mechanical Engineers
The Melbourne Exhibition of 1880 .
The Buenos Ayres Exhibition.
VIII.-INDUSTRY AND COMMERCE.

American Industries No. 33. Manufacture of Rolled
Iron. The Union Iron Mills, Carnegie Bros. \& Co.,
Pittsburg. Pa. 5 engs.
Approximate Economy of Gas and Electric Lighting.
The Inspection of Small Steamers.
Trichinosis.
Engines for
Scientific
Engines for Farmers.
Scientific Farming Practical.
The Ali Baba Vase.
The United States as a Wheat Country.
The Industrial Population of France.
Theory of Life.
Winter Coton in Georgia.
Sugar Beet Industry in Delaware.
Sugar Beet Industry in Delawa
Artesian Wells for Colorado.

Rego shatl Hold the Surplus?
Regulation of Shifting River Channels.
The Drive Well in New York City.
Leading American Industrie
The Drive Well in New York City.
Leading American Industries.
Submarine Communication with Australia.

A Coal Miner's Day's Work.
A Log Rairoad.
Decline in then
in the British Flax and Linen Trades Packing Apples for shipment.
Preparation of Rhea Fiber. Zincography for Amateurs The Wheat Harvest of 1879 ,
American Industries, No. 35 . The Manufacture of
Sewing Machines and Bicycles. The Weed Sewing Ma chine Factory. 6 engs.
Fresh Meat
Ammerican Watches.

Light in the Home

arthenware. Strikes in Massachusetts.
American Industries, No. 36 The Manufacture of
Power Printing Presses. Works of Messrs. Cottrell The Buffalo Pipeline.
The Magnet in Milling.
The Magnet in Milling.
Cotton factories in the South.
Flooring for the Brooklyn Bridge
The Wire Age.
Working Wire.
The Largest Haddock Fare ever Landed.
Importance of Fish Culture.
The Week's
The Proposed Ship Railway across the Isthmus
IX.--PRACTICAL RECIPES AND MISCELLANEOUS,

The Scientific American Catalogue.
Back Numbers and Volumes.
Grease in Boilier,
To Clean Copper.
Emery Belts.
Sirius.
Tracing Paper.
Tracing Varnish
Concrete.
Small Enine.
Ground Etching.
To Dye Ivory.
To obtanin Meridian Line. 1 eng
1'reparing Work for Plating.
1'reparing Work for Plating.
Composition of Potato Flour
Shoe Dressing
Shoe Dressing.
Precipitaion of Metallic Silver.
To Crystallize Tin Plate.
Acid Proof Cement.
Then and Now.
Answers to Correspondents, embodying a large quan-
ity of valuable information, practical recipes, and instructions in various arts.
Single numbers of the Scientific American Export Edition, 50 cents. To be had at this office and at all news stores. Subscriptions, Five Dollars a Year; sen postpaid to all parts of the world.

CO., Publishers,
37 Park Row, Ne
To Advertisers: Manufacturers and others who desire to secure foreign trade may have large and handsomely displayed announcements published in this ediThe Scientific American Export Edition has a large suaranteed circulation in all commercial places throughare also carried on ALL STEAMSHIPS, foreign and oastwise, leaving the port of New York. Address MUNN \& CO., 37 Park Row, New York.

gavertisements.

 per line, by measurement, as the letter press. Adver per ine, oy measurement, as the letter press. Adver-
tisements must te recived at publication office as early
as Thursay morning to appar in tisersa publishers of this paper guarantee to adver-
weekly issue.tion of not less than 50, ,ut copies every

$\underset{\text { A RARE OPPORTUNITY }}{\text { RAP }}$ aucting same and having capital to take an interest in have an extenished concern, whose leading specialties country. The desire of ation and sale throughout the SHORTHANDD Without han Reacher. smiths Wheel, Steam Yachts. These yachts are 34 feet long, 8 feet 2 , inches beam; draught, an hour. Designed under sions, and particulars of vessel, engine, boiler, and wheel, furnished by the character of these boats, their simplicity of of construce-

Driven or Tube Wells

To Business Men.
 The value of the Scientific American as an adver- ising medium cannot be overestimated. Its circulation is ten times greater than that of any similar journal now published. It goes into all the States and Territoooms of the world. A business man wants something paper. He wants circulation. If it is worth 25 cents per per tion, it is worth $\$ 4$ per line to advertise in in one circulaThe circulatio the Scievtific a merican is guar anteed to exceed Fifty Thousand every week. For advertising
 MUNN \& CO., Publishers,

BIChET PLunger stean pumps, HOR EVERY DUTY
VALLEY MACHINE CO., easthampton, mass.
$\$ 10,000$ CF ${ }^{\text {ON LIO,000 will be paid to any person }}$

TO STEAM USERS.
STEAM PUMPS. THE NORWALK IRON WORKSCO.,

Save Fuel and Money. PEERLESS DAMPER REGULATOR, the greatest fuel.saving appliance ever invented. Ad the greatest fuel-saving appliance ever invented. Ad-
justable to any pressure. In ordering mention
pressure. Illus. catalogue sent on application. We AMERICAN STEAM APPLIANCE CO.

THE DINGEE \& CONARD CO'S ROSES THE BESTIN THEWORLD.

 HARDWOOD LUMBER VFNFERS.

GEO. W. READ \& CO.
186 to 200 Lewis St., New York AN EASILY MADE SMAALL, STRONG,

 IMPLEMENTS, MACHINERY, ETC

Forster's Rock \& Ore Breaker and Combinind Clusher and Pulverizel

 NEW ILLUSTRATED CATALOGUE, 1880

31st DAY OF MARCH, 1880, for the estat
comprising:

The buildings and plant are in first-rate repair, and
dita
 The works are in close proximity to the passenger
depot or the Great W Wester Kainvey and siding ac-
comoditan Orfers will be reeeived for the estate en bloc
real estate and ixed machinery separately.
Stock sheet can be seen, and
yy applying on the premises.
N.B.Any machines finished or in course of construc-
tion w.In be disposed of by private sale at moderate
prices. THOMAS WAVELL,

PIANOS

 good recommendations. Position permanent, with, good
pay. Address "MANAER,' Box 773 , New York. JUST PUBLISHED.

THE FIELD ENGINEER.
 and selected, applicable to bothe the standerd, orign the
narrow auge and prepared
ne the speand
the wants of the YOUNG ENGINEER. By WILLIAM FINDLAY SHUUNK, C.E.
Chief Engineer of the Manhatan

\$1 TOWNSHIP RIGHES. \$I

NEWSPAPER FILE

 MUNN \& CO.

The largest and most Complete Stock

ELLWANGER \& BARRY,Rochester,N.Y.
Shafts, Pillefss, Hangers, Eit.
M, SELLERS \& COO,
WATCHES: = FRE

SPY GLASSES FIELD GLASSES, MICROSCOPES,
 James w. queen \& co.,

 Part $2:$ Opticainstruments.
Part 4:-Mayicitanterns.
Part

TMATENTS

Messrs. Munn \& Co., in conneetion with the publica
ion of the Scientific American, continue to examin Improvements, and to act as Solicitors of Patents for Inventors.
In this line of business they have had over thirty years' experience, and now have unequaled facilities for the Preparation of Patent Drawings, Specifications,
and the Prosecution of Applications for Patents in the United States, Canada, and Fureign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, Registration of Labels, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements
of Patents. All business intrusted to them is done with special All business intrusted to them is done terms.
We send free of charge, on -application, a pamphlet containing further information about Patents and how to procure them; directions concerning La bels, Cop,
rights, Designs, Patents, Appeals, Reissues, Infringe ments, Assignments, Rejected Cases, Hints on the Sale of Patents, etc.
Syoreign Patents.-We also send, free of charge, Synopsis of Foreign Patent Laws, showing the cost and tries of the world. American inventors should bear in mind that, as a general rule, any invention that is valu able to the patentee in this country is worth equally as
much in England and some other foreign countries Five patel ts-embracing Canadian, English, German, French, an Belgian-will secure to an inventor the exclusive mooopoly to his discovery among about one bundred and fifty milions of the most intelligent people in the word. The facilities of business and steam communication are such that patents can be ob tained abroad by, our citizens almost as easily as at home. The expense to apply for an English patent is dian, $\$ 50$. issued from 1836 to November 26, 1867, can be supplied with official copies at reasonable cost, the price depending upon t
specifications.
Any patent issued since September 11, 1866, at which time the latent Office commenced printing the drawings and specifications, may be had by remitting to
this office $\$ 1$. will be furnished for $\$ 1$.
When ordering copies, please to remit for the same tion, and date of patent.
A pamphlet, containing full directions for obtaining United States patents sent free. A handsomely bound Reference Book, gilt edges, contains 140 pages and
many engravings and tables important to every patmany engravings and tables important to every pat ence for everybody. Price 25 cents, mailed free.
ddress MUNN \& CO.,
Publishers SCIENTIFIC AMERICAN, B7 lark Row, New York.
Washington, D. C.

 Wataw AMong THE CoNTENTS ARE. Introduction-Qualifi-
cations for Engineers. Chapter I. Stea, Stear En-
gine. II. Boilers. II. Attachments to Boilers. IV.

 sels.: The National Line Steamer Spain; Thye Pe Rrusde-
whee Steamer Wolf; Yertical Inverted Direct-actin

 Tables and other information for Engineers; ; Brittain' postage, at the thiblication price HENRY CAREY BAIRD \& CO.,
dustrial Publishers. Booksellers and IMporter
No. 810 Walnut Street, Philadelphia, Pa.

COLD ROLLLED SHAFHING.

 Stocks of this ishatting in store and for sale by
Feo. Place Machinery Agancy, 112 Chambers St., N. N. M

STEAM PUMPS.

HENRY R. WORTHINGTON, 239 Broadway, N. Y. 83 Water St., Boston. THE WORTHNGTON PUMPING ENGIES FOR WATER
WORKS-COmpound, Condensing or Non-Condensing.
Used in over 100 Water-Works Stations. porthington Steam Pumps of all sizes and for all Prices below those of any other steam pump in the market.

TOHNR.WHITTLEY \& CO. European Representatives of American Houses, with
First-classAgentsin the principalininustrialand and
tural centers and cities in Europe. London, 7 Poultrry tural eenters and cities in Europe. London, 7 Poultry,
E. Praris 8 Place Vendome. Ters on application.
J. R. W. \& Co parchas Paris goods on commission at
shippers' discounts.

THE PARAGON SCHOOL DESK SPARPETSONS EXTENSION
MAN BY BUFFALO HARDWARE?
SWAN ST. BUFFALO N.Y!

Steel Castings

 Circester Stek castings co., 407 Library St., Phila, Pa.

B BRADLEY'S Has More Good Points.
 Takes Less Power, Than any Hammer in the Werid. BRADLEI \& COYPANY, SYRACUSE, N.Y.

A BREECH-LOADING REPEATING RIFLE FOR \$6.50. THE IMPROVED "CHICHESTER.' Weight from 5 to 8 Pourds. Length o* Barre: 22 Inches.

BLAIKI'S CHALLENCI ROCK BRIATER.

 BLAKE CRUSHER C0., Sole Makers, New Haven, Conn. THIRTY-FIFTH ANNUAL REPORT

NEW YORK LIFE INSURANCE CO

OFFICE, Nos. 346 and 348 BROADWAY. JANUARY I, 1880 .
Amount of Net Cash Assets, January 1, 18'9.\$36,213,45\%.61 Less deduction to cover decrease in value of U.S. Bonds and other assets.............. $\quad \underset{\$ 135,966.93}{\mathbf{\$ 3 6 , 0 7 7 , 4 9 0 . 6 8}}$

REVENUE ACCOUNT.	
Premiums..\$6,382,875.25	
	36.
Interest and rents	-\$2,033,650.00-\$8,036,686.16
DISBURSEMENT ACCOUNT. $\mathbf{\$ 4 4 , 1 1 4 , 1 7 6 . 8 4}$	
Losses 1 y y death, including Reversionary additions to same.......................... $\$ 1,569,854.22$ Endowments matured and discounted, including Reversionary additions to same... $1,015,256.22$	
	\$38,185,431.68
ASSETS.	
Cash in bank, on hand, and in transit (since received)............................. \$r,96r,7or.48 Invested in United States, New York City, and other stocks (market value $\$$	
Bonds and mortgages, first lien on real estate (buildings thereon insured for \$14,$287,000.00$ and the policies assigned to the company as additional collateral	
Temporary loans, (secured by stocks, market value $\$ 1,300,000$)	
* Loans on existing policies, (the reserve held by the company on these policies amounts to $\$ 3,160,000$).	
* Quarterly and semi-annual premiums on existing policies, due subsequent to	
* Premiums on existing policies in course of tra smission and collection (estimated reserve on these policies, $\$ 330,000$. included in liabilities)	

*A detailed schedule of these items will accom pany the usual annual report
filed with the Insurance Department of the State of New York.
 of met value of securities over $\mathbf{\$ 3 8 , 9 9 6 , 9 5 2 . 6 6}$ CASH ASSETS, Jan. 1, 1880.

Adjusted losses, due subsequent to Jan $\mathrm{I}, \mathrm{x} 880$
Reported losses, awaiting proof, $\& \mathrm{cc}$.
..........
Reported losses, awaiting proof, \&c.
Matured endowments, due and unpaid
Reserved for re-instrance on existing
ies ; participating insurance at 4 per
Reserved for re-insurance on existing policies; participating insurance at 4 per
cent. Carrisle net premium ; non-participating at per cent. Carlisle net premium
Reserved for contingent liabilities to Tontine Dividend Fund, over and above
4 per cent. reserve on existing policies of that class........................, $1,371,482.18$

$\underset{16,543.25-\$ 35,876,587.18}{ }$ $\overline{\$ 38,996,952.66}$ Surplus, estimated by the New York State Standard at 4 1-2 per ct., over $\$ 7,000,000.00$ From the undivided surplus of 3, , 20,37, . 48 the Board of Trustees has declared a Reversionary dividend topar-
ticipating policies in proportion to their contribution to surplus, available on settlement of next annual premium.

 MORRIS FRANKLIN,
WM. H. APPLETONN,
WILLIAM BARTON,
WILLIAM A BOOTH,
H. B. CLAFLIN,
JOHN M. FURMAN,

THEODORE M. BANTA, Cashier
D. O'DELL, Superintendent of Agencies. chazles whaet, M. D.
genar tucr. M. D

CHAS. WRIGHT, M. D. EDHN MAIRS,
HENRY. TUCK, M. D.
HENRY TUCK, M. D.
ALEXANDER STUDELL,
MORRIS FRANKLIN, President.
WILLIAM H. BEERS,
Vice-Pres't \& Actuary.
DUC'S IMPROVED ELEVATOR BUCKET

Lathes, Planers, Drills, \&c. new haven manefagtiging coi:
SHEPARD'S CELEBRATED
io Screw Cutting Foot Lathe Foot and Power Lathes, Drill Presses.

Wood-Working Machinery,

Pond's Tools, DAVID W. PoND, Worcester, Mass.

Roots' New Iron Blower.

POSITIVE BLAST.
IRON REVOLVESS, PRERECTLY BaLANCED FEWER PARTS THAN ANY OTHER BLOWER.
P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.
S. S. TOWNSEND, Gen. Agt., $\left\{\begin{array}{ll}6 & \text { Cortlandt St., } \\ 8 & \text { Dey street, }\end{array}\right\}$ NEW WM. COOKE, Selling Agt., 6 Cortlandt Street,
JAS. BEGGS \& CO., Selling Agts., 8 Dey Street,
vevic
a send for Priced catalogue.

THE DRIVEN WELL.

 WM. D. ANDREWS \& BRO., ${ }_{235}{ }^{3}$ broadway, new yoik
The George Place Machinary Agency

MACHINISTS' TOOLS. Iron Planing Machines c. WHITCOMB A SPCO..W.

式dertigmment.
Lngravings may head advertisements at the same rate per line, by measurement, as the letter press. Aaveras Thursday morning to appear in next issue.
- The publishers of this paper guarantee to adve

COLUMBIA BICYCLE

 The Asbestos Packing Co.
 Patented OFFER For

THE EARIE ST
 Paris, . , 1878 THE TA NITEE CO australia, 1877 EMERY WHEELS AND GRINDERS hila., : . 187 Vienna, . 1873

J. A.FAY \& CO'S

 WOOD WORKING MACHINERY
 Economizes lumber and It
prouruets of the hintest

\qquad nati, ohio, U. S. A

会 GRISCOM \& CO'S Hz
HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.
W. b. Franklin,V. Pres't. J. M. ALLEN, Pres't J. B. PIERCE, Sec'y.

DOUBLE PITMAN PRESSES.
STILES X PAREER PRESS CO., Middeto
KNOW THYSELF.

Holly's Improved Water Works.

Masmy crvit an paris nenat.

Delamater Iron Works,

 Boiler Makers, Engine Builders, FOOT OF W. 13th ST., North River, NEW YORK

 BOYLE ICE MACHINE CO. The best Ice and Refrigsoratit, Chicano, II
 ARTIFICIAL ICE COMPANY, Limited,

The New York Ice Machine Company, Low Pressure Binary Absorption - yst
 "The 1876 Injector."

 Lathes, Planers, Shapers
 PORTLAND CEMENT,

The Rodier Patent single Iroun Plane.
 1780 Centennial Industrial Expmsition. 1880

[^0]

BOILER
 FEEDER

\qquad
40,000 IN ACTUAL USE. NATHAN \& DREYFUS,
Sole Manufacturers, NEW YORK

The J. L. Mott Iron Works, demarest's patent WATER CLOSETS.
in operation, thoroughlyexclud-
ingall sewer gas, and cleanly in
every way.

[^0]:

 country.
 We therefore call the attention of Manufacturers,
 of thes scientitsts Educators, and the progressive men
 of the country to this feature of the celebration which
 fomplication
 Arthis dat
 An 1880
 The buildings are new, commodius, and built expressly
 for this occesion The main line of shafting is 33 -16 inches diameter, and

 aence solicited from all parts of the Union.
 Address DR. GEO. S. BLACKIE Cille, Tenn.
 Nashvile,

