

a WeEkly Journal of practical inforiation, art, science, mechanics, chemistry and manufactures.

A FEW NOVELTIES.

The device represented in Fig. 1 in the engraving is an improved automatic liquid weigher, invented by Mr. Lewis N. Watts, of Indianapolis, Ind. The scales in connection with the weighted elbow lever, A, are placed in the proper elative position to the faucet of the barrel, so that the eceptacle into which the liquid is to be drawn may set on ;he platform of the scales. The receptacle is counterbaanced with weights, and enough more weight is added so hat the scale will tip when the desired quantity of liquid las been drawn. The weighted end, B, of the lever, A, is aised to a vertical position, and the faucet opened. When :nough of the liquid has run into the receptacle to tip the cale, the scale pan touches the horizontal arm of the lever, 1, when the weighted end, B , falls on the handle of the 'aucet and stops the flow of the liquid.
An improved steam fog alarm, recently patented by Mr. Nilliam Leighton, of West Pembroke, Me., is shown partly n section in Fig. 2. It is intended to re-enforce and strengthen he sound of a steam whistle and to project the sound in me direction. It consists of a fog horn containing a steam rhistle, behind which there is an adjustable resonance :hamber.
The whistle is of peculiar construction, having straight arallel sides and straight orifices to give great volume of sund in a particular direction, instead of expending the rce in all directions, as in the case with a whistle having 1 annular orifice.
Fig. 3 shows two forms of seed package, invented by Mr. 'arl O. Wolferts, of Hicksville, N. Y. The novelty of this rention consists in placing the seed in a wrapping of paper t suitable distances apart for planting. For seeds that are ρ be planted in rows, the packages are made in continuous arrow strips, with the seed fixed between the folds, so that

jey may be rolled up in compact form for keeping. Such | arrow strips, with the seed fixed between the folds, so that | prevent the escape of the liquid. When the device is once |
| :--- | :--- |
| jey may be rolled up in compact form for keeping. Such | in place the contents of the can may at any time be drawn | ?eds as are usually planted in hills are fixed between disks of 1 out through the stopcock.

paper in the proper number and distance for forming a hill, and the separate packages are connected by a band or ribbon to secure uniformity in the spacing of the hills. By these means the seeds can be planted uniformly as to depth and distance apart.
The magnets, A , in the electro-magnetic motor shown in Fig. 4 are elongated and notched at B, to increase their attractive surface, and the armature, C , is provided with projecting teeth corresponding with the notches in the magnets. The motor is provided with a resistance coil which assists in demagnetizing the last acting magnet and prevents sparks at the commutator. A device is provided by which the motor may at any time be reversed. This motor is the invention of Mr. John C. Ludwig, of San Francisco, California
Fig. 5 represents an adjustable wash bowl patented by Messrs. J. L. Knight and S. Smith, of Topeka, Kan. The bowl is provided with hot and cold water supply pipes and with a waste pipe hinged together and provided with the necessary stop cocks.
An improved tap for tin cans, patented by Messrs. John T. Cooper and Julius Wagner, of Silver Reef, Utah Ter. is shown in Figs. 6 and 7. The invention consists of a bellshaped body, A, provided with a stopcock and having a central spindle extending through it, carrying at one end an arrow-shaped head, B, for puncturing the can and holding the tap, and at the other end a wing-nut for drawing the bellshaped body against the head of the can. The head, B, is projected some distance beyond the body, A, and forced through the top of the can; it is then turned through a quarter of a revolution and drawn up against the can top by the wing-nut.
The body, A, is provided with a packing at each end to

RECENTLY PATENTED NOVELTIES.
Fig. 1.-Antomatic Liquid Weigher. Fig. 2.-Steam Fog Alarm. Fra. 3 -Improved Seed Package. Fig. 4.-Electro-Magnetic Motor. Fig. 5.-Adjustable Wash. Bowl. Figs. 6 and 7.-Tap for Tin Cans.

Srientific Ammeriam.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors.
pUBLISHED WEEELY AT
NO. 3'7 PARK ROW, NEW YORK.

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMERICAN. One copy, one year, postage included...
One copy, six months, postage included
Clubs.-One extra copy of The Scientific American will be supplied gratis for every club of flve subscribers at $\$ 3.20$ each; additional copies at me proportionate rate. Postage prepaia.
Remit by postal order. Address $\begin{gathered}\text { MUNN \& CO., } 37 \text { Park Row, New York. }\end{gathered}$ To Advertisers. - The regular circulation of the Scientifio American is now Fifty Thousand Cop
publishers anticipate a still larger circulation.

The Scientific American Supplement is a distinct paper from the ScIENTIFIC AMERICAN. THE SUPPLLEMENT
is issued weekly. Every number contains 16 octavo pages, with handsome cover. uniform in size with Scientific American. Terms of subscription for SUPPLEM ENT, $\$ 5.00$ a year, postage paid, to subscribers. Single copie 10 cents. Sold by all news dealers throughout the country.
Combined Rates. -The Scievtific American and Supplement will be sent for one year, postage free, on receipt of seven dollars. Both
papers to ene address or different addresses, as desired. papers to one address or different addresses, as desired. The safest way to remit is by draft, postal. order, or registered letter.
Address MUNN \& CO., 37 Park Row, N. Y.

NEW YORK, SATURDA \bar{Y}, JANUARY 3, 1880.
Contents.
(Illustrated articles are marked with an asterisi.)

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 209.
For the Week ending January 3, 1880.

 EL Caux, September 17,1879

the Jardim des Plants. Paris. 1 iillustration.
The Himayanan Munfor. 1 illustration.

A NEW POLICY IN LAW.

The impolicy of buying any species of property, without first making sure that the would-be seller has a legal right to sell, has been pretty thoroughly learned by most men. There are swindlers in every business, who are never better pleased than when they can "sell" an over-confiding buyer by persuading him to pay for property to which they can give po title. And when the dishonest seller has taken himself out of the way, and the honest but incautious buyer finds that he has paid for something he cannot hold, the real title being vested in another, the case seems very hard. But the
fact that the buyer purchased in good faith is not accepted in any court as a valid reason for his holding the property against the actual owner. To overturn this just rule of the law would open the way to no end of injustice. It would make it impossible for the owner of any piece of property to retain possession of it, unless he were endowed with practical omniscience and omnipresence, that he mightalways know when and where he was likely to be defrauded by a false sale in which the purchaser should act in good faith, and at the same time be able to appear on the spot at the critical moment to disprove the fraudulent seller's claim to proprietorship. On such terms no property would be worth the trouble and cost of maintaining possession of it.
For instance, what would any man's farm be worth if any swindler could sell it from under him; or, what amounts to the same thing, if any buyer, purchasing in good faith, could hold the property on that plea alone and in spite of the seller's lack of ownership? Or what would any horse or wagon, plow or thrashing machine be worth, if any thief could sell it and the purchaser's title be good simply because he bought in good faith and for his own use?
It is sheer absurdity to ask such questions; and no one would be quicker than farmers to denounce such a reversal of the rules of law, were such a thing proposed, however much the innocent purchaser might suffer from his investments in stolen goods. The courts very properly hold that it is the buyer's business to find out whether the man he buys of has a right to sell; and if he neglects so to do, he, and not the true owner, must suffer the consequences. The law will punish the fraudulent seller if he can be caught and convicted; but it is no part of its business to make good the buyer's loss-
The nature of the property sold does not alter in any way the moral or legal principles involved. The buyer can gain no title beyond that which the seller is able to convey. This is common sense, as it is common law. Yet a body of people styling themselves the National Grange Patrons of Husbandry have had the assurance to petition Congress to reverse this rule in all questions pertaining to patent rights. And the farmers of Northern Indiana have induced their representative, Mr. Baker, to introduce into the House a bill designed to make good faith on the part of the purchaser of a patent right a legal title to ownership, though the seller has no title to convey.
That a great many farmers hàve been swindled by fraudulent patent sellers is only too true. So other men have bought stolen horses in good faith, and town lots to which the seller had no legal title, and mining claims that had been uttered by men without proper authority to issue them, and stolen bonds, and in a thousand ways have paid their money and had no choice but to consider their loss the purchase price of dear experience. It remained for farmers to demand of Congress a special law for their protection, to shift the burden of their unwisdom to the shoulders of the rightful owners of what they thought they were buying.

THE ATCHISON, TOPEKA AND SANTA FE RAILROAD OVER

 THE RATON MOUNTAINS.The railroad over the Raton Mountains, of standard 4 81/2." gauge, is a branch of the Atchison, Topeka and Santa Fé Railroad, under the names of Pueblo and Arkansas Valley, in Colorado, and New Mexico and Southern Pacific, in the Territory of New Mexico. The Ratons, a spur of the Sangre de Christo range, culminate in Raton (or Fisher's) Peak, 9,800 de Christo range, culminate in Raton (or Fisher's) Peak, 9,800
feet above the level of the sea, while the summit of Raton's Pass is reached by the grade line at an elevation of 7,720 feet above the same plane. The following details of grade and curvature are condensed from a paper read by Mr. James D. Burr before the American Society of Civil Engineers:

From La Junta, Col., to Trinidad, a distance of 81 miles, maximum ascending grades of 60 feet per mile have been used, with adverse grades of 30 feet per mile. Curves of 1,146 feet radius are used, with a compensation or reduction of grades on curves at the rate of 0.05 foot each 100 feet for each degree of curvature. Between La Junta and Trinidad there are but three short planes of descending gradients of any considerable moment. In order to locate a line on 30 feet ascending grades to the north, from La Junta to Trini-dad-compared with the location of the Kansas Pacific surveys made in 1871-2 on 70 feet maximum gradients each way -a loss of 3,000 feet in distance was sustained. From Trinidad the line follows the valley of the Purgatoire; thence, turning sharply to the south, it ascends the northern slope of the mountain proper by Raton Cañon, on two planes. The first plane, from the mouth of Raton Creek to Morley, 8 miles, is nearly a uniform ascent of 105.6 feet per mile. At Morley, with an elevation of 6,727 feet above tide water, a water tank, turn-table, etc., have been established. At the south end of this grade the second inclined plane commences, having 3.5 per cent maximum grades. Between Morley
and Summit there are 3 miles of maximum supported grade. and Summit there are 3 miles of maximum
The average ascent is 151.4 feet per mile.

The summit is passed by a tunnel, which will be 2,011 feet long. . At the south portal of this, 7,584 feet above th sea, the line commences to descend the southern slope of tw: mountain, on $3 \cdot 32$ per cent maximum gradients, to Willow Springs, which has an elevation of 6,595 feet above tide, having made a descent of 990 feet in 38,400 feet, or a unform gradient of $2 \cdot 58$ per cent. On the mountain division, from Trinidad to Willow Springs, maximum curves of $573 \cdot 7$ feet radius are freely used. Maximum grades are compensated for curvature at a rate of 0.05 feet per degree of curva ture, each 100 feet. The outer rail has been elevated at the rate of $1 / 2$ inch per degree of curvature. From Willow Springs to Las Vegas, 110 miles beyond, the line has been located on 70 foot maximum gradients, with 6° curves from maximum curvature.
The excavation at each end of the tunnel being very deep, 56 feet at the north portal and 50 feet at the south end, mostly in solid rock; a shaft near the south portal was begun on June 1. The shaft reached the roof of the tunnel section July 9. Up to August 31 the track had reached a point 65 miles south of La Junta, and it became evident that the com pletion of the tunnel must be hastened or a temporary track built over the mountains to avoid delay. It was, therefore, decided to build the mountain track, and a location for a "switch-back" was made at once. Before the close of De cember, 1878, the track had been laid, and the work of transporting material for the construction of 118 miles of the N. M. and S. P. Railroad began. At first the switch back was operated by the ordinary eight-wheeled American en gines, with 17 inch by 24 inch cylinders, 60 inch driving wheels, weighing about 35 tons; but the advent of the " Uncle Dick," a "consolidation" eight wheeled connected engine from the Baldwin shops, revolutionized transportation on the "Mountain Top" line.
The ordinary round trip, $51 / 2$ miles, requires 50 minutes. The ordinary train consists of 7 loaded cars, of 43,000 pounds each; tank of coal, 44,000 pounds; and engine, say 120,030 pounds. Eight loaded cars can be taken over at one time quite readily, and at one time 9 loaded cars were taken at one trip, so that during the day of ten hours $6,020,000$ pounds could very readily be moved over the mountain with one engine. The capacity of engines of this class is more han double that of the two engines of 16 inch by 24 inch cylinders, while the quantity of coal consumed is but little more than that consumed by a single light engine. As to controlling trains on these steep inclines it is a question of brake and adhesion to the rail. Under fair conditions of rail one single hand-brake to each car, together with the driver and tank brake, with three brakemen to a train of eight cars, is sufficient for safety, unless the train should acquire a speed of 18 . to 20 miles per hour, in which event all the wheels in the train might be skidded far enough to lead to disaster. In the "Uncle Dick" this is reduced to a minimum; for, as sand can be delivered ałong the rails in front of all the wheels, and two sets of air brakes may act on all drivers simultaneously with sufficient force to slide all the wheels, the maximum of adhesion is obtained.

DR. DANIEL DRAPER'S CONTRIBUTIONS TO METEOROLOGY.

In his report as Director of the New York Meteorological Observatory, for 1878, Dr. Daniel Draper takes occasion to review-briefly the work done by him in the observatory during the ten years since it was founded and placed in his charge. The high value of this work can be fully appreciated only by those familiar with the influence which his inventions have had in promoting the constant and exact recording of weather changes by automatic apparatus, and the important bearing which his special studies of climate have had on the recent rapid progress of the science of meteorology.

These studies have been serviceable in two directions-in correcting popular errors with regard to climatic changes, and in solving great problems in connection with the general sweep and movement of atmospheric changes.
Of the former sort may be mentioned the researches proving that, contrary to popular impression, the clearing of and does not diminish the fall of rain; that the climate of the Atlantic States is not undergoing appreciable change; and that, considered in periods of five years, the summer temperature of the United States has not undergone any modification.
Of the latter sort are the determination of the great law that a very large proportion of the atmospheric fluctuations of the United States cross the country from west to east; that these fluctuations continue across the Atlantic, and that the time of their arrival on the European coast may be predicted. It is on the basis of these studies that the suc cessful prediction of the arrival of American storms in Europe has been made possible, an achievement of the high est scientific and practical value.
In the meantime Dr. Draper has, as already remarked, invented and improved a variety of meteorological apparatus by which the work of meteorological observation has been turned over to automatic machinery, and the records of atmospheric fluctuations made continuous and unerringly ac curate. The several pieces of apparatus employed in the observatory are minutely described by Dr. Draper in his report, and the descriptions, with engravings, appear in the current issue of the Scientific American Supplement.
The entire outfit of a working observatory is covered by
seven pieces of apparatus: 1. Barometer; 2. Dry and wंet metallic thermometers; 3. Sun thermometer; 4. Instrument for recording the direction of wind; 5. Instrument for recordiug the velocity of wind; 6 . Instrument for recording the force of wind; 7. Rain gauge.
For the most part these instruments can be fashioned and set up by any bright boy; and we can imagine nooccupation more agreeable and profitable during these long winter evenings, or the leisure days which are so common in winter, than their construction and erection in the garret, the barn, or the shop-loft. There certainly can be no more direct or enjoyable method of beginning the study of the fascinating and always profitable science of the weather. If the student has any mechanical skill the simple clock-work employed in some of the pieces of apparatus can be easily made; the cheap machinery of a "dollar clock" can be purchased almost anywhere by such as do not choose to attempt this part of the work. In each case the method of making and using the instrument is given with such minuteness of detail that no intelligent person need be afraid of undertaking the practical study of meteorology by means of them, making if he will every part of his observatory. A very little daily attention thereafter will make the intelligent possessor of such apparatus weather-wise beyond the wildest imagination of the oldfashioned oracle, even though he be the much-quoted "oldest inhabitant.
It may serve as an encouragement to those who may contemplate the practical study of the weather by the means indicated, to say that the inventor of the apparatus described made with his own hands the several pieces he employs; and that by their use he has made the New York Observatory, though housed in a little garret room at the top of the old Arsenal building in Central Park, one of the most efficient meteorological observatories in the world. It is to be hoped that the construction of a new building for his use on some elevated part of the park, where instruments can be placed for the taking of sun spots, earth magnetisms, earth tem. peratures, and so on, may not be longer delayed.

trade marks in congress.

The proposed constitutional amendment giving Congress the power to grant, protect, and regulate the exclusive right
to adopt and use trade marks was reported back from the to adopt and use trade marks was reported back from the
Committee on Manufactures,December 17, with their unanimous approval, and referred to the Committee on the Judiciary. The Committee on Manufactures expressed a strong desire that the resolution might be agreed to by Congress early in the session, that the amendment might be submitted to the State legislatures in session this winter, as a number of them would not meet again for two years.
The committee urge the necessity of protecting trade marks for the benefit of purchasers, as well as for the encouragement of manufacturers. They insist, also, that the control of the matter should be vested in Congress. Trade marks are not and cannot be confined to State lines; and the treaty-making power, of which this has become an incident, is one solely within national control. The fact that other nations-Great Britain, Germany, France, Belgium, Spain, Russia, and others-have made trade marks a subject of national interest, is further urged as a reason for our following their example.
Undoubtedly a wisely drawn national trade mark law would greatly simplify the regulation of trade marks, and in many ways be a benefit to trade. It is obvious, however, that a law presenting the obnoxious features of the one now declared unconstitutional would not and should not so meet the approval of the several States as to induce them to surrender to the general government their reserved rights in this matter.
The provisions of the law of 1870 with regard to the fraudulent use or counterfeiting of trade marks were quite sufficient. The party misusing a trade mark was made liable to an action for damages; and the party aggrieved was entitled to have his remedy according to the course of equity to enjoin the wrongful use of his trade mark and to recover compensation therefor in any court having jurisdiction over the person offending. In 1876 Congress saw fit to pass an act for the special punishment of trade mark offenders, which put the matter on an entirely different footing. It provided a maximum fine of oue thousand dollars or two years' imprisonment, or both, for offering for sale goods bearing a fraudulent trade mark; for affixing such a mark; for putting up packages bearing such a mark; for manufacturing such a mark, or having in possession the means employed in such manufacture, such as dies, brands, engravings, or the like; for in any way dealing in or having in possession any representation, likeness, similitude, copy, or colorable imitation of any private label, trade mark, or the like; for having in possession any used or empty box, envelope, wrapper, case, bottle, or other package to which is affixed a trade mark which might have been obliterated but had not been, so as to prevent its fraudulent use.
The power which such provisions put into the hands of vindictive men to harass or injure their rivals was as unjust
and as unreasonable as the punishent and as unreasonable as the punishment provided was excessive. But this was not the worst feature of the law. In one sentence-three yards long, carpenter's measure-section
7 provided that if the owner of any registered trade his agent were to make oath that he had reason to believe that any one was offending in any of the particulars given above, either of the judges of the Circuit or District courts above, either of the judges of the Circuit or District courts
of the United States, or the commissioners of the Circuit
the United States marshal for that district to invade the sus pected party's premises and seize any suspected article-as, for example, an empty match box or gin bottle bearing a fraudulent trade mark, or a genuine mark which might have been but was not obliterated. And any one who should
knowingly aid or abet any one in violating any of the pro knowingly aid or abet any one in violating any of the provisions specified was, in section 8, made liable to a fin
five hundred dollars, one year's imprisonment, or both.
It is safe to predict that the legislatures of the sever States waill be little likely to put it in the power of Congress to repeat such enactments, even should the proposed amendment to that effect be favorably considered by the Houses now in session.
A more favorable method of securing all that is necessary with regard to the national registry and protection of trade marks is offered in Mr. Caswell's bill, introduced in the House, December 15. This bill embodies the idea set forth by Mr. Bartlett in our issue of last week, namely, that the
Commissioner of Internal Revenue be empowered to furnish at a nominal price, to such as may desire the incidental protection thereby afforded, a special revenue stamp, to be known as a trade mark stamp, the fraudulent use or counterfeiting of which would be punishable after the manner of other offenses against the revenue laws. The objections to this method were sufficiently stated by us last week. Its advantages are obvious, not the least of which is the sim
plicity of its working and the absence of any necessary surrenders of State rights to the general government.
The disposition to hurry the action of Congress in this matter, manifested by the Committee on Manufactures, is much to be deprecated. The existence of State regulations substantially protecting the rights of manufacturers in the matter of trade marks largely removes the alleged urgency of the case, so that immediate action is not so much needed as a permanent and practical settlement of the question on a basis of justice and sound policy. The advantages of the trade mark system are not so great as to warrant any invasion of the just rights and privileges of the people to secure them.
It must not be forgotten that the theory of the protection of purchasers by trade marks, so strongly urged by the committee on manufactures, holds good only so long as the owners of trade marks choose to maintain the original quality of the wares in connection with which the marks acquired their value. But the public have no guarantee that such will be the case, or that the confidence they repose in any mark may not be grossly abused by the original owner or some subsequent purchaser of it. Practically, therefore, the benefit arising from the protection of trade marks accrues chiefly if not entirely to the owners of them. If trade marks were granted only in cases of positive superiority on the part of the wares to be marked, as a sort of reward of merit for real excellence, their influence so far as purchasers are concerned would be vastly different; and the standing of the trade mark owner. before the people would be to some degree comparable with that of the patentee. As the matter stands there can be no comparison between them. As a rule, neither the trade mark nor the thing marked adds anything new or valuable to the common stock either of useful ideas or material goods. Yet under the old law, as we have seen, a greater degree of protection was accorded to the owner of a trade mark than to the owner of a patent for invention; a national cheapening of the value of original and useful ideas that should be avoided in future legislation. It is neither just nor politic to place the man who, originat ing nothing, simply appropriates for his own use something from the common stock of words, phrases, or form3, on a
higher level before the law than the man whose thought and labor had created something of public benefit through the advancement of the useful arts.
Under proper restrictions a national trade mark law, as
Iready said, might be desirable. The matter, however, already said, might be desirable. The matter, however, hould not be over-hastily considered, either in Congress or in the state legislatures, should it be referred to them. And the subject should be treated with especial caution at this time, when public sentiment is so ill-disposed toward any-
thing partaking of the nature of monopoly, or looking like an unnecessary surrender of rights and privileges either to the national government or to individuals.

a dissertation buread.

About eight years since considerable commotion was created at home and abroad by a published statement that a certain legally chartered medical college in Philadelphia was selling degrees. The rumor proved true, and the institution was suppressed. It is, however, a fact that at that very time one of the smaller German universities was conferring degrees upon men who had never seen a German university, without even the formality of their visiting that country, much less of submitting to an examination. Bad as this was, the said institution required, as nearly all German in stitutions now do, an original investigation, the results and details of which were to be presented in the form of a issertation.
Recently Berlin has been greatly disturbed by the discovery in that city of a large dissertation factory conducted by one Doctor (?) Rosenbaum, who also gave private lessons have succeeded candidates for examination. The authorities his curious establishment, and found that it had been idely and extensively patronized. Strange as it may seem, the dissertations furnished were not merely articles copied
from an encyclopedia, but really scientific productions,
showing that brains and talent were engaged in this nefari ous swindling scheme. The charge for a doctor's disserta-
tion was only $\$ 112.50$, while small papers were furnished tion was only $\$ 112.50$, while small papers were furnished
for $\$ 37.50$. Every profession was represented, for the bureau supplied dissertations in jurisprudence, medicine philosophy, history, philology, and theology. Owing to the judicial investigation now in progress many details are with held for the present. It is thought that an investigation will result in degrading a number of persons who have gained heir promotion by virtue of these false papers.
The discovery of so deep and dangerous a plan of systematic educational swindling among the honest Germans should lead them to be more lenient toward us for our sharp Yankee tricks and incite us to suppress our own factories of bogus or worthless degrees, that we may be more blameless than vaunted Germany. Our medical colleges especially should be closely watched in the matter of giving degrees. The title, too, of professor, should be more sparingly ap plied to second rate teachers, and made to mean something.

influence of electricity on vegetation.

Some months ago, says La Nature, M. Grandeau, director of the agricultural. station at Nancy, announced that experiments made upon Indian corn and tobacco proved that atmospheric electricity exercises a very favorable influence upon vegetation. M. Maudin, director of the National Botanical Garden of Antibes, to-day makes known some fact which go to prove directly the opposite. He experimented on other plants, and in another climate; and, as will be seen, he draws the conclusion that M. Grandeau's inferences were too general. According to him, atmospheric electricity, like all other agents of vegetation, plays a useful part, but which, in its absence, can be replaced by another force The experiment was made in the following manner.
In a kitchen garden bed well exposed to the light, two squares of 51 decimeters each were selected at 7 meters apart, and in each of them was planted a bunch of dwarf kidney beans, a lettuce, a tomato plant, and two cotton seeds. One of the beds was left to itself, and the other was covered with an iron cage, the four uprights of which terminated in points to attract all of the atmospheric electricity. For a fortnight the two cultures appeared to be alike; but the end of this period, a difference was observed between hem, and the difference, which was to the advantage of the cage, kept increasing more and more. The bean plants under the cage were much better developed and much richer in seeds than those in the open air. As for the lettuce, its height in open air was 1 meter, and under the cage, $1 \cdot 20$ meters; its total weight was 337 grammes in the open air. and 427 grammes under the cage. The tomato plant in the open air had attained a height of 0.8 of a meter, and under he cage, 1 meter; its weight in open air was 0.072 of a kilogramme, and under the cage, 3.754 kilogrammes. While under the cage the plant bore 83 tomatoes, weighing 2162 zilogrammes, the number on the plant in the open air was only 37 , with a weight of 1.08 kilogrammes.

the common reward of intelligence and

 ENERGY.The Recorder, of Americus, Georgia, reports the case of a armer, near that place, whose experience shows very clearly what there is in the common Southern complaint that farming cannot be made to pay in the South. Of this man the Recorder says:
"He began life since the war, a poor young man, as a farm hand, working for wages. He has inherited nothing, and has been engaged in no business except farming. He, his year, will make 90 bales of cotton, has not brought a single bale to market, does not propose to sell a bale before spring, and he is able to hold it. He owns one of the best plantations in Southwest Georgia, and it is his boast that he buys nothing upon which to feed man or beast, except sugar and coffee, but, on the contrary, has something to sell of almost any product of Southern soil. Last year he made 1,600 gallons of sirup, and this year has sold over 200 pounds of butter.'
If such examples are rare in the South-as they probably are in too many parts of our country-the fanlt lies more in the men than in their surroundings. There is no part of the settled portions of the United States so poor in natural advantages and opportunities that men of intelligence, pluck, and energy, cannot win therein, if they will, a fortune which, in comparison with that of their less enterpris:ng neighbors, may seem phenomenal.

Animal Rubber

An insect, which produces a species of India-rubber, has been recently discovered in the district of Yucatan, Central America, by an American explorer. It is called neen, and belongs to the Coccus family; feeds on the mango tree, and swarms in these regions. It is of considerable size, yellowish brown in color, and emits a peculiar oily odor. The body of the insect contains a large proportion of grease, which is highly prized by the natives for applying to the skin on account of its medicinal properties. When exposed to great heat the lighter oils of the grease volatilize, leaving a tough wax, which resembles shellac, and may be used for making varnish or lacquer. When burnt this wax, it is said, pro. duces a thick semi-fluid mass, like a solution of India rubber.

The Second Avenue Elevated Road.-The first train was run over the Second Avenue Elevated Railway, Decem

The Detroit River Problem

A board of engineer officers, under orders from the War Department, have been making inquiries with regard to the proper means of solving the transportation problems that have arisen at Detroit, Mich. Briefly stated the difficulties to be overcome and the interests to be reconciled are these:

At Detroit two immense streams of commerce come into direct interferecce, namely, one by water and the other by railroads. The problem before the Board was to soarrange by either bridge or tunnel that these might cross each other with the least injury to both, and in such manner as to accommodate the railroad traffic, and at the same time do no material or undue injury to the interests of navigation. The magnitude of these conflicting interests at this point may be realized from official statements, which show that the number of vessels of various kinds passing Fort Gratiot lighthouse during the fiscal year ending June 30,1879 , was 22,150 , and that the business of the railroads crossing the river at Detroit during the year 1878 was as follows: 129,113 passengers, 12,258 passenger cars, 3,873 baggage cars, and 104,359 freight cars.
The board are unanimously of the opinion that a tunnel under the river offers the most complete solution of the problem. They, however, indorse the bridge plan conditionally. A former board of examiners reported against a bridge project which contemplated draw openings of 166 feet. The present board regard a bridge more favorably in consideration of the facts that draws of more than 200 feet have been since constructed, and that it is now proposed by bridge builders of high reputation to construct them with openings of 300 feet on each side of a pivot pier, or of 400 feet between two pivot piers. With such a bridge they hold that with the present traffic there will be ample time during the intervals between the passage of vessels to move all trains across the bridge. There will occasionally be delays, but the railroads can accommodate their time tables to compensate for any ordinary delays. They say, however, that in case authority to construct a bridge should be granted by Congress it should be distinctly provided that vessels have the right of way, except when moving trains are passing over the bridge.

Cotton and Corn.

The report of the Department of Agriculture as to the condition of the cotton and corn crops, Dec. 15, shows that owing to favorable weather in all parts of the cotton belt the crop will be somewhat better than was previously reported. Imperfect ripening in some of the Northern States slightly reduces the average yield of corn per acre. The figures still leave the corn crop larger than that of any previous year by $150,000,000$ bushels. The States and Territories west of the Mississippi River return over 100,000,000 bushels more than in 1878.

HORIZONTAL DOUBLE-ACTING FORCE PUMP.

We give herewith an engraving of a very substantial and efficient force pump made by the well known Goulds Manufadturing Company of Seneca Falls, N. Y. It is intended for feeding boilers, elevating water, and for other purposes requiring a first class pump.
The working parts of the pump are all brass. The cylinder is brass lined; and by unscrewing the brass nuts at the side, both the upper and lower valves are accessible, without disconnecting either the suction or discharge pipes. The gears are cut, and aresix inchesand sixteen inches diameter respectively. The relative sizes of these gears may be changed if desired, arranging them so as to work against a very heavy pressure, or to run faster, against lighter ppessure. The connecting rod has strap joints with gib and key, and strap joints with gib and key, and with brass boxes. The crosshead
runs on two substantial guides, takruns on two substantial guides, tak-
ing all the lateral pressure from the stuffing box and piston, and at the same time forming a brace from the pump eylinder to the pillow blocks. The pulleys are eighteen inches diameter and five inches face, and have an outside bearing. .The frame is all cast iron (weighing over 700 lb.), very heavy and strong, occupying a space five feet long by two feet three inches wide-at the pulleys three feet three inches wide. The whole pump weighs about $1,000 \mathrm{lb}$. The pulleys may be run at from 120 to i 60 revolutions, which would give 90 to 120 strokes of pump respectively. For continu ous work the less speed is the best for the economical working of the pump. When used for fire protection it may be run at the higher rate of speed.

A Use for Blast Furnace Cinder.

The following method of utilizing blast furnace cinder in jacketing steam pipes is recommended by Mr. Franz Butt genbach : Mix 150 parts of cinder dust, 35 parts by weight of fine coal dust, 250 parts of fireclay, and 300 parts flue dust, with 10 parts of cows' hair, add 600 parts of water,
into which 10 or 15 parts of raw sulphuric acid has been poured, and make a stiff dough of the whole. This is thrown in small amounts upon the warmed pipe, hardening rapidly. Upon this rough coat a second, third, etc., is laid, according to the thickness which is to be used. By the action of sulphuric acid, gypsum is formed, and the silica, rendered free, hardens. The mass becomes as hard as porcelain, and is still porous. It adheres firmly, and never cracks. Mr. Buttgenbach states that he has tested its merits by ten years' use, and has found it to meet all requirements.

GOPHER AND ANT DESTROYER.

The California ground squirrel, commonly known as the gopher, is a great pest to the farmer, destroying enormous

MELCHER'S GOPHER AND ANT DESTROYER

quantities of grain and doing great injury to gardens and orchards. The cutting ants which infest many of the Southern States and parts of California and Mexico, and the moles which are found in various parts of the country, are all enemies to the agriculturist, and destroy millions of dollars' worth of crops every year.
The accompanying engraving represents a novel and effective gopher and ant destroying apparatus, patented by Mr. John C. Melcher, of O'Quin (Black Jack Springs
P. O.), Texas. It consists in a fire chamber, having around

THE GOULDS DOUBLE-ACTING FORCE PUMP.

The Need of Mechanical Industries in the South.
Commenting upon the general need of new industries in he Southern States, the New Orleans 7 imes says:
One often hears the remark that the South is slow to take up manufactures which will, undoubtedly, add millions to her wealth, and provide employment for thousands of hands that now perforce are idle. But it must be remembered that, previous to the civil war, the attention of the Southern people was concentrated upon agriculture, which paid, or was supposed to pay, a magnificent profit. The war demonstrated better than anything else could have done the inherent weakness of a people whose entire reliance is placed on one branch of industry. The growth of Southern manufactures has since been slow but steady.
In looking around one finds innumerable articles which were formerly imported now made at home. The magnificent machinery used to take off the sugar crop is now made in New Orleans. And the same is true of many other branches of industry. Cotton manufacturing now, for the first time, comes forward under really favorable auspices, and it is not unreasonable to suppose that it will progress as similar industries have done.
New Orleans has a large population which could furnish the very best class of skilled labor. Our people have all the aptness and taste which they inherit from the Latin race. The great problem we must face is how to convert this large mass of people, who are idlers from the force of circumstances, into bread-winners, adding health and vigor to the community.

A Rise in Rubber.

Owing to reports of a partial failure of the rubber crop of Brazil, and the clever management of speculators at Para, the price of rubber was forced from 50 cents to one dollar a pound during the second week in December. During the excitement it is said that in one day several houses in New York and Liverpool bought $2,000,000 \mathrm{lb}$. of rubber at prices ranging from 75 to 80 cents a pound. Though the report of a short crop was strenuously disputed the price continued far above its natural level. The Para district produces about half the rubber crop of the world, or from $15,000,000$ to $18,000,000 \mathrm{lb}$., the other half coming from Africa and the East Indies.

ENGINEERING INVENTIONS

Mr. Seth C. Doyle, of Harrisonville, Mo., has patented an improvement in the class of couplings in which a swinging link is raised and held in horizontal position for engagement with the drawhead of an opposite car by means of a lever which is attached to the same car as the link.
Messrs. James B. O'Donnell and William J. Dever, of Hazleton, Pa., have patented a brake that can be easily applied to coal or freight cars, gondolas, oil cars, and the like. It is operated by the contact of one car with another.
Mr. Gustave J. Crikelair, of New York city, has patented an improved apparatus for elevating water above the height to which it would naturally rise, by the combined action of gravity and compressed air.
An improved water elevator, patented by Mr. Robert M. Catlin, of Tuscarora, Nev., relates to apparatus for raising water by compresscd air, and the apparatus is especially intended for use in mines as a substitute for pumps. The use of pumps for that purpose is open to many objections and disadvantages, such as loss of power from friction, and by reason of the distance the plungers are placed from the motor, the disarrangement of valves and other mechanism, and the cutting out of the piston heads and cylinders by the grit contained in the water
Mr. Samuel S. Burt, of Marquette, Mich., has invented an improvement in elevated railways. It pertains, first, to securing the track rails upon ties which are so constructed that their ends are made elastic, thus adapting them to yield when a train passes over the road. The manner of construction adopted to secure the requisite elasticity is the bottom a sharp flange which cuts into the ground to slot the ends of the ties and insert rubber blocks bearound the ant or animal hole, forming a tight joint. The tween the posts separated by the slot. fire chamber has an air space under the grate, which communicates with the air forcing pump through a short section of flexible tube. An internal pipe extends from the bottom of the fire chamber upward to convey the poisonous fumes from the top of the chamber down into the chamber formed by the flange.

A fire having been made in the fire chamber, the poisonous compound is dropped in upon it, and the opening in the top of the chamber is closed. The air-forcing machine being started, all of the smoke and poisonous vapors are forced down into the hole, killing everything animate with which it comes into contact.

Mr. John M. Cayce, of Thompson's Station, Tenn., has patented a motor designed to operate without weights, springs, magnetism, or expansive gas, which he calls the "hydro-buoyant motor," for the reason that it takes advantage of the buoyant value of a float contained in a body of water. It consists in arranging the float in a receptacle filled with water in such a manner that the float is free to rise, and in rising shall communicate its power to extraneous mechanism, the operation being made continuous by reversing the position of the receptacle containing water, which gives a renewed position to the float, from which it may again rise.

Astronomical Notes.

Obiservatory of Vassar College.
The computations in the fellowing notes are by student of Vassar College. Although merely approximate, they will enable the observer to recognize the planets.
M. M.
positions of planets for jandary, 1880.
Mercury.
On January 1 Mercury rises at 5 h .49 m . A.M., and sets at 3h. $5 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.
On January 31 Mercury rises at 6 h .58 m . A.M., and sets at 4 h .12 m . P.M.
Mercury will be near the waning moon on the morning of the 10th.

Venus rises on January 1 at 3 h .56 m . A.M., and sets at 1h. 53m. P.M.

On January 31 Venus rises at 4 h .47 m . A.M., and sets at 2h. P.M.
Venus, although less brilliant than in December, will yet be very beautiful in the early mornings of January, and on the 8th may be seen north of the waning moon.

Mars.
On January 1 Mars rises at 7 m . after noon, and sets at 3 h . 10 m . the next morning.
On January 31 Mars rises at 1 lh . $24 \mathrm{~m}^{\circ}$. A.M., and sets at 2 h . the next morning.
Mars is easily known by its reddish tint; it is among the stars of Aries, and on the 20th will have the same right ascension with the moon, and be $2 \frac{1}{2} 2^{\circ}$ south of the moonin declination. The satellites of Mars are so small that only the largest telescopes will show them. They are exceeding difficult objects even with a glass of 12 inches diameter.
An ordinary telescope with an object glass of 3 inches diameter will show markings on the surface of Mars, and the whiteness of the polar regions.

Jupiter.
Jupiter sets early in January, and is farther from us than in the Autumn.
On January 1 it sets ait 9 h . 28 m . P.M., and on the 31 st it sets at 8 h .1 m . P.M.
Observations upon it must be made between 6 and 7 P.M.
During that hour the first satellite will disappear on the 6th by going behind the planet; on the 7th, will reappear from transit; on the 14th, will be invisible, because in transit; on the 15 th , will come out of shadow; and on the 30th, be seen to pass from the face of Jupiter. During that hour the second, or smallest moon, will reappear from transit on the 4th; will be in transit on the 11th; and behind the planet on the 27 th .
On the 14th the largest moon will pass off from the face of Jupiter between 6 and 7 P.M.
On the 8th the most remote of Jupiter's moons will be in transit between 6 and 7 P.M. On the 25th this moon will pass from the disk.
On the 21st, between 7 and 8 P.M., the first satellite, or that nearest Jupiter, and the third, which is the largest, will enter upon the disk of Jupiter nearly together; if the planet is not too near the horizon this will be a very interesting sight.

Saturn.

The large planets are all becoming more distant.
On January 1 Saturn sets just before midnight; on the 31st it sets at 10 h .11 m. P.M
Saturn will have the same right ascension as the moon on the 17 th , and will be 813° lower in declination.
Although small telescopes will show the two satellites, Titan and Khea, when Saturn is in its best position, probably Titan only can be seen during January. It should be looked for early in January on the west of Saturn as seen in the telescope.

Uranus.
Uranus is coming into better position. It is very remote, and appears only as a very small greenish white moon, when seen in the field of the telescope. It is still near the star λ Leonis, but by a retrograde motion it passes that star and will be found late in the month west of it and 2^{\prime} south of it in declination.

Neptune
On January 1 Neptune rises about 1h. P.M., and sets at 2 h .33 m . A.M. of the next day.
On January 31 Neptune rises at 11h. 1m. A.M., and sets 35 m . after midnight.
On the 1st Neptune passes the meridian about 13 m . before Mars, and is 5° south of Mars.

A Novel Theory as to the Origin of Diamonds.
One of . Dr. W. B. Fletcher's frogs escaped from his frogarium some time ago, and was found the other day behind a register at his office starved to death and shrunk to half its former dimensions. The doctor dissected it, and coming to its lungs found these organs clogged with thousands of black crystals which looked like coarse gunpowder. Under the microscope those crystals presented regular facets with smooth surfaces, presenting the same angle of crystal. lization as the diamond. On burning they gave off carbonic acid gas, and they are pure crystals of carbon, as the diamond is. According to the Indianapolis Herald, the doctor ingeniously theorizes that in the ages gone by the huge reptiles of the antediluvian period, dying under circumstances similar to those under which the frog did, may have formed large crystals of carbon in their lungs which were afterward transformed into the hard and lustrous diamond.

NOVEL HAT SWEAT.

We give herewith an engraving of an improved hat sweat ately patented by Mr. Caesar Simis, of No. 10 Broadway, New York. The sweat has two rows of ventilating holes connected by transverse slits, and along the back of the sweat there is an elastic band which presses the slotted portion inward, making it convex and diminishing the size of the hat. The slits may extend entirely around the sweat, or they may be formed in the front part only, as may be desired.

By means of this improvement two important advantages are secured, which will be appreciated by both hat dealers

IMPROVED HAT SWEAT.
and hat wearers. One advantage is that of the most perfect and thorough ventilation of the hat; the other is the adaptability of the leather to any shape or to any pressure brought to bear upon it by the head. In fact it converts the hat into a perfect "' conformator," avoiding the usual fitting and shaping of stiff bats, and saving a great amount of time, labor, and expense. A stiff hat provided with a sweat of this kind is much more comfortable to the wearer than an ordinary soft hat.
To the hat manufacturers this invention is of great importance, as it obviates the necessity of using so many different sizes of blocks, as the hat provided with this improved leather or sweat will answer for two, and in some cases three different sizes of heads. For the same reason it is of great value to the retailers.

IMPROVEMENT IN EYE-GLASSES

The engraving represents an improvement in nose-clamps for eye-glasses recently patented by Mr. Alonzo C. Blethen, of Lynn, Mass.

BLETHEN'S IMPROVEMENT IN EYE-GLASSES.

The frame of the glass is of the usual form, and the attachment consists of a clip having at its ends hooks for engaging the projecting edge of the frame. A short piece of small elastic tubing is stretched over the clip, and forms a y lelding surface, which affords a firm hold upon the nose without being uncomfortable to the wearer.
This improvement will be appreciated by those who have worn the ordinary glasses with ribbed or serrated edges, as it does away with the irritation. and discomfort caused by a continual pressure of such a surface upon the nose.
Further information in regard to this improvement will be furnished by the inventor on application.

Moulding Mixture for Gelatine Photo-Plates.
For moulding the,gelatine relief Leipold's mixture may be employed, and by the exercise of care very perfect may be obtained. The following receipt for Leipold's mixture is taken from Husnik's Heliographie:
Seventy parts of bitumen are melted at a moderate heat, and to the melted bitumen there are added the following, each being melted previously: 425 of spermaceti, 200 of stearine, and 170 of white wax. All these being well incorporated, 70 parts of finely ground blacklead are stirred in. The plate to be moulded being thoroughly swelled, is removed from the water, dried with a cloth, and gradually raised to as high a temperature as it will bear without in jury to any details of the device, this being generally about 35° C. A metal border being now fixed round the edges, the above composition, which ought not to be at a higher temperature than $40^{\circ} \mathrm{C}$., is poured on, the composition being allowed to flow over the plate in one continuous wave. The thickness of the layer of composition may vary from half-an-inch to one inch in thickness, according to the size half-an-inch to one inch in thickness, according to the size
of the plate, and no attempt should be made to remove the cast until the next day, when it will generally separate with great ease. The mould is next made conducting with bronze powder, and electrotyped. The first electrotype cast obtained should be very slightly oiled, and a second cast made in it will be the required printing plate.

Curious Speculation Concerning Electrical Action in

 the Human Body.At a recent meeting of the London Physical Society Dr. Shettle read a paper on the "Influence of Heat upon certain forms of Induction Coils, considered more especially in relation to the Inductive Power which the Blood Exercises on the Various Structures of the Body." The author found that when a copper and zinc wire were insulated from each other by parchment paper and paraffined silk, and wound in close proximity to each osher, a (induced) current was indicated on a galvanometer whose terminals were connected to the neighboring ends of the zinc and copper wires respectively, the other ends being left free. When the latter were connected across the deflection was nik On raising the temperature of the two wires by causing hot water to flow inside the coil into which they were wound, the deflection was largely increased. These experiments led Dr. Shettle to imagine that there is a similar action in the animal body. The heart is made up of nerves and muscular fibers winding spirally, and some of these wind round each other so as to form a spiral cord, round which the blood capillaries also wind. Dr. Shettle compares these nerve and muscle bundles to the coils of zinc and copper wire in his experiments, and infers that electric currents may be induced in them as in the wires. The flow of the warm magnetic blood would also end to produce currents in them. Dr. Shettle further drew attention to the fact that animals live and move in a magnetic field, and that electricity must be generaied in them by their movements, internal and external.

Failure of the Iodine Test for Starch.-Puchot noticed, in testing a sample of butter suspected of containing starch, that the iodide of starch reaction is impaired by the presence of certain nitrogenous organic substances, among them albumen, whether from milk or eggs.

The Solar System in Miniature。

The London Times describes an interesting if not useful invention by an Italian, Signor N. Perini, long a resident of London. For want of a better name it is called a planetarium, though vastly different from anything of that name hitherto constructed,
It is erected in the center of a room of " ordinary size," with a high ceiling. On entering the room one sees a high circular chamber, or box, standing on twelve wooden pillars On entering underneath this chamber, and looking up, à On entering underneath this chamber, and looking up, a
dome is seen, deep blue, and sprinkled with stars, the chief northern constellations being in their proper places, and round the base of the dome the names of the signs of the zodiac. Pendent from the top of the dome by a nafrow tube is an opal globe, lit inside by gas, and representing the sun. From wires, almost invisible, the planets are suspended around the sun, of sizes and at distances approxi mately proportionate to the real sizes and distances, and each having its proper inclination to the plane of its orbit The various moons are in their places, and Saturn has his rings. The general effect on looking up at this arrange ment from below is impressive, and this effect is increased when Signor Perini, by simply turning a key, sets the system in motion, rapid or slow, as he chooses. The sun turns on his axis and the planets in their orbits, all in time accurately proportionate, and on watching the movements for a short time one easily realizes the immense differences in length of the years of the earth and those of the outer plan ets. By an ingenious watch-work arrangement inside the earth, which is the size of a walnut, our world is made to revolve on its axis, the latter, by a special effort of ingenuity of Signor Perini, being always made to point to the same quarter of the heavens. The same arrangement causes the moon to revolve round the earth in its own proper orbit. Perhaps the great triumph of this in vention is the fact that the planets revolve round the sun in proper elliptical orbits which are traced around the inside of the dome. The dome is fourteen feet in diameter at its base and fourteen feet high. In the chamber above the dome the machinery invented by Signor Perini is arranged, the details being as jet
secret. The moving power is clock-work, the criginality in the arrangement being, we believe, the method by which the inventor effects the elliptical motion of the planet. Not a sound is heard when the machinery is in motion, the whole working in that " solemn silence" which \cdot the hymn tells us is characteristic of the starry sky. The inventor could, we believe, make his planetarium of any size, from the dome of St. Paul's to a little thing that might be used for school instruction. Signor Perini has devoted his nights and mornings to this structure for seven years, and has expended upon it something like $\$ 3,500$; the earth itself, we believe, has cost him $\$ 200$. We believe he has been prompted to this work solely by the enthusiasm of a mechanician, and by a desire to do something to enable those interested in astronomy to realize, as far as possible, the arrangements of the solar system.

The Clay-Pits of Pennsylvania and Delaware.
The chairman of the Committee on Crude Materials reported to the Potters' Association that the immense deposits of fine, pure kavlin in Chester and Delaware counties, Penn., and across the line, in the State of Delaware, are sufficient, if properly opened and worked scientifically, to supply all the potteries of this country for a century. He adds, however, that the clay mines of this rich region have been thus far opened and worked in the most unscientific, slovenly, and wasteful manner. And the worst feature of all is that what clay they do get out is absolutely spoiled for the finest wares by this slovenly, wasteful process of mining. The system, or rather want of system, upon which these mines have been and are being worked is to open a small, insufficient area at the surface, just to enable them to reach the top of the clay, with an opening too small to enable them to separate the strata and keep the coarse and fine yellow and white clays from being mixed. Then, at every rain-fall, earth, sand, and gravel are washed down the bank into the pit; the sides of the pit cave in and cover all the clay over, then they are compelled to stop, clean out and separate the dirt and clay as best they can. Then they begin to get out clay until another caving in takes place, when all is mixed and turned into confusion again. Some of these pits have been worked over and over so long in this way, and the excavation become so large, and the dirt thrown around so loose, that regular land-slides occur, burying machinery, tools, and clay all in the utmost confusion. It needs no prophet to tell what kind of clay results from this process. There are one or two mines more broadly and better opened, where the different strata could be kept separate, but instead of doing this they systematically mix the white and yellow veins together, by taking alternate tubs of each, which is then washed and sold as best clay. The National Kaolin Company, with a pit in much confusion, under all the disadvantages of land-slides, are, by sharp, personal supervision, and with an evident intention of doing the best they can under the circumstances, getting out some really fine clays. The new mine opened by Major Willaner has been opened on a broader scale than most others, and he promises to immediately clear off a still larger area of superincumbent earth, sufficient to prevent its being washed into the pit among the clays. Then, if the fine white clays are kept separate from the yellow, thus making two grades of clay-i. e., a first and a second qual-ity-a great step will be taken in the right direction, for that is the direction in which our clays must be worked.

A Nitroglycerine Explosion.

A magazine of nitroglycerine and mica powder on Fox Island, opposite Amherstburg, Ontario, exploded December 12. The explosion was felt forty miles away, in Leamington and Ruthven, shaking every house in both towns. At Fletcher, on the Canada Southern Railroad, forty-four miles away, the people ran out of their houses in alarm, the shock was so severely felt.
The cause of the explosion is not known, but it is supposed to have been caused by hunters leaving a fire on the island, which reached the magazine. At the time of the explosion an immense blaze lighted up the whole heavens, the earth trembled, and a tremendous report followed. There were about three tons of nitroglycerine, besides mica powder, in the magazine at the time. Nothing remained of the magazire, a hole 60 feet in diameter and 15 feet deep marking the spot where it stood.

The great Suspension Bridge between New York and

 Brooklyn.In a lecture on the Brooklyn bridge, Mr. E. F. Farrington, Master Mechanic of the work, gave some interesting facts in regard to the construction of the bridge. The lecture was illustrated by a large sectional view of the roadway, showing the carriageways and foot-walks on the outside of the roadway, and the two trackways for the cars, that are to be run across the bridge by means of an endless chain. Four high trusses were also displayed, which will run the whole length of the bridge, distributing the weight more evenly and stiffening the structure against the action of the wind. High above the flooring proper will be built a promenade, 15 . feet in width, from which pleasure-seekers and others may obtain an excellent view. The roadway will be 135 feet above high tide, and its length from tower to tower is 1,595 feet 6 inches. It has two land spans (from the towers to the anchorages) of 930 feet each, and an approach on the Brooklyn side of over 900 feet, and on the New York side of over 1,500 feet. The total length of the
bridge will be a little over one and ore eighth miles. The suspenders which hang from the cables and support the roadway have enormous strength. The greatest weight which will ever be brought to bear on them is. 10 tons apiece, yet they have been tested with a weight of over 140,000 pounds without giving way. There are no such things as rotten wires in this bridge. The first wire was thrown across the East River on the 23d of May, 1877; on the 11th of June following the process of running the wire across began. The process of wrapping the cables was so tedious, that frequently not more than 15 feet was wrapped in a day.
If the requisite funds are not withheld, the completion of the bridge is promised in eighteen months, or the middle of 1881.

NEW MUSICAL INSTRUMENT.

Undoubtedly the happiest households in the land are those in which music forms a part of daily life. It is not neces sary to inaugurate a grand concert, nor to employ an orchestra, nor an organ to produce music that is enjoyable, that will render home pleasant, and cultivate tastes of the children and older ones.
The little instrument shown in the accompanying engravings is designed not for anything pretentious, but for home use and pleasure.
Some of the recent improvements in musical instruments have reduced the matter of playing to a mechanical performance, so that with properly prepared sheets any music may be played correctly. The phonographic piano shown in the accompanying engraving is an instrument that can be furnished at a small cost, and will play any tune in a purely menished at a small cost, and will play any tune in a purely me-
chanical manner, something on the principle of the wonderful phonograph.

Fig. 1.

phonographic dpright piano.

A child can play it as well as a grown person, and it affords a great deal of amusement to both young and old. Fig. 1 in the engraving is a front view of the instrument, and Fig. 2 is a rear view, giving an idea of the arrangement of the endless strip of paper in which the tune has been perforated. This strip is inserted between rollers, and the door is closed, when, by turning a small crank, the paper strip is made to move through the instrument and over the key board. The keys or strikers press through the perforations, when the hammers strike the bars and produce music which it is said is clear, loud, and melodious. Theinstrumentdoes not get out of tune, and it will furnish music for dancing, or an accompaniment for singing. Paper strips may be perforated for any new music and readily applied to the instrument.
The manufacturers of this instrument are the well known Massachusetts Organ Co., 43 Washington street, Boston, Mass., who will furnish further particulars on application.

The Armor of the Polyphemus.

Mr. J. L. Buskett, of St. Louis, Mo., claims that the method of convex armor plating of three inch steel, proposed for the British naval vessel Polyphemus, and described as the invention of Sir George Sartoris, was anticipated by himself several years ago.
Under date of November 26, Mr. Buskett writes as follows: "I had a model made which two years ago I took to Washington City and submitted to several of our principal ordnance officers, who declared the idea to be impracticable. Last June I was again in Washington and called upon Commodore Jeffries, Chief of the Ordnance Department of the Navy, to whom I explained my idea, and he also declared it to be totally impracticable and useless. Being poor and not having money to make the necessary experiments myself, I left my model at the office of A. H. Evans, Esq., and for the time being abandoned all hope of having it tested by our government.
'Judging from the meager description in the article referred to, I am inclined to think my invention was not only first conceived, but is superior to that of Sir George Sartoris, in that in mine the plates are not only convex, but are also circular in form, and each one fastened to the vessel by a single round bolt passing through the center, so that the plate is set in motion at the moment of impact, and the deflection of the missile made certain."

New Steamers

The Compagnie Générale Transatlantique, one of the largest French steamship companies, has lately given an order for the construction of several large steamers to four English shipbuilders, and this fact has excited considerable indignation in French mercantile circles. The president of
the company has addressed a letter to a French journal ex-
plaining the circumstances under which the order was in trusted to English instead of to French hands, and stating the following interesting facts. Whe vessels were required to be delivered in eight months, and when estimates were invited from the principal French shipbuilders they all, with one exception, declined to tender on the ground that the time allowed was too short. The Société des Forges et Chantiers du Havre et Marseilles offered to build six vessels at $1,400,000$ francs $(£ 56,000)$ each, and to deliver the first in ten months and a half, the second in twelve months and a half, and the rest in fourteen months. Fourteen English firms tendered, besides several whose offers arrived too late to compete, and four of them agreed to deliver the vessels at an average of $1,139,750$ francs each. This is 260,250 francs, or $£ 10,410$, less per vessel than the lowest French estimate, and each firm contracted to deliver the vessels within seven months and a half.

MECHANICAL INVENTIONS.

An improved device for stopping horses, patented by Mr. Isaac J. Warner, of Watertown, Conn. , consists in mechan ism for pulling upon the $b^{i t}$ of a horse, constructed so that power may be applied to the mechanism by operating a lever, or from the running gearing of a vehicle, to check and hold the horse should he become frightened or fractious In the latter case the apparatus works automatically without the presence of the driver. The same device answers for checking and unchecking without alighting from the vehicle. It is also useful in breaking and training colts. It is simple and inexpensive, and does not injure the appearance of the vehicle. The inventor states that it may be applied to sleighs as well as carriages.
Messrs. William E. Jones and Benjamin P. Myers, of Jones' Station, Ohio, have patented an improved carpenters' lever for facilitating the laying of floors, wainscoting, weatherboarding, and especially to overcome the difficulties attending the use of warped and crooked lumber.
Mr. John L. Copp, of Rochester, N. H., has invented an improved buffing machine for boots and shoes. The improvements consist in a swinging standard hung upon a driving shaft, and extending over the bench, to the upper end of which is jointed an arm that carries the sandpaperend of which is jointed an arm that carries the sandpaper-
ing roll, and is capable of movement to bring the roll to the positions required. The roll is driven, by pulleys and belts, from an intermediate cone pulley on the standard, which is driven by a belt from the driving shaft.

An Advertiser's Experience.

To the Editor of the Scientific American:
Permit me to use a little of your valuable space to give ex pression to my views of advertising one's business, and the best medium. Some nine years ago, while still in the oil business, I had associated with me as salesmen practical engineers and chemists. Our observations led us to devise some plan whereby we could lubricate the bearings without the great waste of oil and consequent drip. The result was a lubricating compound known as "lubricene," which met every requirement, and reduced the cost of lubrication to its minimum.
We considered ourselves among the benefactors of the human race, and as such looked for our reward. We prepared our machinery, and began manufacturing and sending out samples and salesmen. Every one admitted we had a " good thing," but we found it slow work, and were forced to the conclusion advanced by a successful business man that "the more confidence you have in your goods the more need there is to advertise it." Acting on this hint we got out pamphlets, showcards, etc., but the response was very limited. We then resorted to the different trade journals, and now after these years of experience we are free to say that we have had a far larger return from the Scientific American than any four other papers combined. We are glad we advertised.

Yours very respectfully,
R. J. Chard.

6 Burling Slip, New York.

Preservation of Wood.

The improved French method of preserving wood by the pplication of lime is found to work well. The plan is to pile the planks in a tank, and to put over all a layer of quicklime, which is gradually slaked with water. Timber for mines requires about a week to be thoroughly impreg nated, and other wood more or less time, according to its thickness. The material acquires remarkable consistence and hardness, it is stated, on being subjected to this simple process, and the assertion is made that it will never rot. Beech wood prepared in this way for hammers and other tools for ironwork is found to acquire the hardness of oak, without parting with any of its well known elasticity or toughness, and it also lasts longer.-Amer. Building News.

The Science of Government.

Commodore Whiting, a century or so ahead of time, has presented to the Senate a memorial asking that body to aunthorize the President to invite all the governments on this continent to unite in an offensive and defensive confederation. The memorial proposes that each government remain independent in the administration of its own affairs, but be otherwise subordinate to the general government of the confederacy; the general government to have the executive right to declare war, to proclaim peace, to maintain armies

History of the Cucumber

A writer in a recent number of the Science Gossip says that the cucumber is known to have been cultivated for more than three thousand years. In ancient Egypt it was extensively grown, and so at the present day. The want of this vegetable was one of the grievances complained of to Moses by the Israelites in the Wilderness; we also find it mentioned in other parts of Scripture. It is mentioned in a particular manner by some of the early Greek writers on plants. Cucumbers grown in the neighborhood of Antioch were considered by the ancient Greeks the finest. Columella mentions that the inhabitants of Mendes, in Egypt, were accustomed to take the largest bramble bush they could find, transplant it to a warm, sunny spot, cut it down about the time of the vernal equinox to within a couple of fingers of the ground, then insert a seed into the pith of the bramble, the roots of which were well covered over with fine manure to withstand the cold. By this plan they were enabled to have cucumbers all the year round. This same author states that cucumbers ought to be propagated from seed that has been steeped in milk and honey for a couple of days, this method having the effect of rendering them sweeter and pleasanter to the taste.
Pliny states that in Italy the cucumbers are small, but in some countries are large and of a wax color or black. He tells us that the Emperor Tiberius was so fond of this vegetable that it was served up at his table all the year round. The same author appears to have considered the cucumber unwholesome in an uncooked state, as he tells us it will live in the stomach until the next day, and cannotbe reduced to food; but when boiled and served up with oil, vinegar, and honey, it makes a delicate salad; he also recommends a pinch of the seed beaten up with cumin and taken with wine as a good remedy for a cough.

The precise date at which the cucumber was first cultivated in England is unknown. It was probably introduced with other fruits and vegetables at the time the Romans were masters of the country. It became neglected in time and entirely lost, but was at length introduced again at the later part of the reign of Henry VIII. Parkinson, in his "Paradisus" (1656), tells us that in many countries they do eat cucumbers as we do pears and apples, paring and giving slices of them as we would to our friends of some dainty apple or pear. The cucumber was not generally cultivated till almost the middle of the seventeenth century, and it is stated that the first successful forcer of this plant in England was Thomas Fowler, gardener to Sir Nicholas Gould, of Stoke Newing. ton. Some years ago the cucumber was cultivated in large quantities in the outskirts of London, and it is stated in Dr. Wynter's "Curiosities of Civilization," that fourteen acres might be seen under hand glasses in a single domain, and that it has been known that 200,000 gherkins have been cut in a morning for the pickle merchants. In Loudon's time large quantities were grown in the fields of Hertfordshire, without the aid of glass, for the London markets during the summer moñths. The village of Sandy in Bedfordshire, has been known to furnish 10,000 bushels of gherkins in one week for pickling purposes.
The cucumber, notwithstanding its extensive use, is considered unwholesome by most medical men. Dr. Doran, in his "Table Traits," mentions that in the days of Evelyn (1699) the cucumber was looked upon as only one remove from poison, and adds that it had better be eaten and enjoyed with that opinion in one's memory. Abernethy also gave a quaint recipe for its use, which was to peel the cucumber, slice it, pepper it, putter vinegar to it, then throw it out of the window.
The extent to which this vegetable is consumed by the inhabitants of Egypt and the southwest of Asia, but also in European Russia and Germany, would scarcely seem credible to this country. You never see a Russian peasant at dinner but you see the lump of black bread and a cucumber. The vegetable seems certainly a singular dish to be so national in a country with a climate like that of Russia. Some writers say that there used to be a great annual fair at Leipsic for cucumbers, when the streets were heaped up a story high with that precious element of German cookery. In Germany barrels of half and also full grown cucumbersare preserved from one year to another by immersion in deep wells, where the uniform temperature and exclusion from air seem to be the preserving agents. Tartary has been aswhat authority is equally questionable with that of the melon. No modern traveler appears to have found it growmelon.

Ericine, a Color from Poplar Wood

This new coloring matter, says the Moniteur de Fils et Tissus, has received its name of ericine from Erica vulgaris, the botanical description of the common heath. It is prepared by heating with an alum solution the wood of (1st) the common heath; (2 d) different kinds of poplar.

A liquor is obtained of a fine, clear yellow color, which becomes turbid on cooling, yielding a yellowish resin. The liquid separated from the resin by filtration oxidizes rapidly in contact with air and light, becoming at the end of a few days of a beautiful golden yellow, capable of competing with similar substances prepared in France by means of the weld (wau) of Avignon berries, or even with those manufactured in England.
The operation is conducted thus: The stems of the common heath, or the new branches and twigs of the poplar,
in the following proportions: For 10 lb . wood, 1 lb . alum, 3 gallons water.

The whole is boiled for 20 ta 30 minutes, then filtered. The filtrate becomes turbid on cooling, and deposits a greenish yellow resin abundantly. When the liquid is sufficiently free from the resin, it is filtered again and left for three or four days (sometimes five, according to the weather and season) exposed to the double influence of light and air. The liquor thus acquires the golden yellow color, and is fiit to be worked either into extract or precipitated as a yellow lake. The extract is obtained in the usual way, by evaporating the mother liquor down either to a sirupy consistence or to the dry state.

The ericine extract has all the qualities belonging to the yellow extracts ordinarily found in commerce, but it surpasses most of them in brightness.
It is easily recognizable, not only by the peculiar orange appearance it possesses, but especially by chemical analysis, giving a peculiar brown coloration with alkalies, particu-
larly with ammonia; besides which the alum it contains larly with ammonia; besides which the alum it contains
can be easily detected by the well known reactions for alumina. Here are a few of the results obtained with this new product:

Greens.-In connection with indigo, Prussian blue, greens can be obtained on wood, silk, cotton, etc.
Chamois and noisette shades with oak rind
Green or bronze with most of the iron salts, especially sulphates.
Wood shades with nitrate of iron.
Orange in connection with red woods, as well as with cochineal, turmeric, etc.
Orange yellow with ericine extract alone. The goods are mordanted first with acetate of lead or manganate of potassium, tartar, or any other basic salt, or, better still, with muriate of tin; then it is dyed in a boiling bath with the necessary quantity of ericine.
Light yellow, on wool, cotton, etc., by simply dipping in the dye bath prepared with the extract.
Fast golden yellow obtained as follows: The liquor, oxidized by exposure to air, is treated with muriate of tin; this precipitates the lake, which has only to be collected on a filter and dried. This solid yellow can be employed in paper staining, in the manufacture of artificial flowers, calico printing; in one word, in all industries where a yellow in the solid is applicable. Finally it unites with Prussian blue or indigo to form greens, and with sandal wood to give oranges.

The Alum Industry of France.

The principal chemical factories for the production of alum, sulphate of alumina, and sulphate of iron in France numbering about 10, are grouped around Laon, La Fere, and Noyon. Others are met with at Lyons, Paris, Fon-
tainebleau, and Montpellier. They number 14 in all, and tainebleau, and Montpellier. They number 14 in all, and the value of the plant is estimated at $6,000,000$ francs. They
produce 180,000 tons of alum, sulphate of alumina, and sul phate of iron. These establishments use 70,000 tons of raw materials extracted from the soil or furnished by French industry, and supply to the railways and canals 40,000 tons to transport. They pay directly or indirectly in salaries a sum of $1,500,000$ francs to 1,200 workpeople. These factories produce annually alum and sulphate of alumina exceeding the national wants by 4,000 tons, which finds its outlet in exports. It is not necessary to enlarge here on the various industrial uses of alum and sulphate of alumina: the paper manufacture, dyeing, and currying are largely dependent on it. The use of sulphate of iron is even more extensive: in dyeing, in the purifying of gas, the polishing of plate glass, the disinfection of fæcal matters, and agricultural operations it is extensively employed. Even the residues of the manufacture are utilized, in the state of the mother liquor, or the exhausted ashes, for purifying the sewage waters of towns, and a fertilizer for artificial -grass lands. All these substances, therefore, are of real and indispensable utility as raw materials for a large number of industries. These facts are set forth in a memorial from the manufacturing chemists, complaining of the competition they meet with from Italy, and they oppose the renewal of the treaty of commerce with that country.
The importation of Italian alum has reached 2,000 tons, and the export of French alum dropped to 1,200 tons. In consequence five of the French chemical factories were closed last year. In 1876 a financial company became proprietors of the alum mines of Tolfa, formerly in the Papal States, which contain natural deposits of alum valued at $2,000,000$ francs. These operations were aided by the treaty of commerce, which admitted alum at a duty of 5 per cent ad valorem, and by introducing large quantities of this Italian alum, they naturally sent down the price of the bome production, so that it now fetches in Paris only about 13 francs the 100 kilos. The Italian company is enlarging its capital and operations, and pretends to be able to supply the universe with alum. Vessels loaded with 2,500 tons of the
mineral have been sent to France to supply new factories being established at Rouen and Avignon. These 2,500 tons of raw materials represent more than 7,000 tons of pure alum, as the mineral is so rich that it yields 300 per cent. This composition, it is alleged, will close many more of the chemical factories, and also those making sulphate of iron, as this can only be made cheaply from the aluminous schists of Picardy. What the result of the Government Commis sion appointed to take this matter into consideration has cut, crushed, and pulverized, are boiled with alum solution ${ }_{\text {been we do not know. }}$

Cast and sheet iron and papier

Cast and sheet iron and papier maché are the materials upon which pearl is generally inlaid. If the article be of cast iron, it is well cleaned from the sand which usually adheres to the casting, and is blackened with a coat of varnish and lampblack. When this is thoroughly dried, a coat of japan or black varnish is spread evenly upon it. Before the varnish becomes too dry, pieces of pearl cut in the form of leaves, roses, or such flowers as the fancy of the artist may dictate, or the character of the article may require, are laid upon the varnish and pressed down with the finger, and they immediately adhere to the varnished surface. The work is then placed in a heated oven and kept there for several hours, or until the varnish is perfectly dried. It is then taken from the oven and another coat of varnish applied indiscriminately on the surface of the pearl and the previous coating, and again placed in the oven till dry. This process is repeated several times. The varnish is then scraped off the pearl with a knife, and the surface of pearl and the varnish around it are found to be quite even. The pearl is then polished with a piece of pumice stone and water, and the surface of the varnish is rubbed smooth with powdered pumice stone, moistened with water.
It is in this unfinished state that the pearl has the appearance of being inlaid, and from which it derives its name. Its final beauty and finish depend altogether on the skill of the artist under whose hands the shapeless and almost unmeaning pieces of pearl are made to assume the form of beautiful flowers, leaves, etc. The artist traces the stems and leaves of the flowers with a camel's hair pencil dipped in a size made of varnish and turpentine; upon this he lays gold leaf, which adheres where there is size, and the superfluous gold is carefully brushed off with a piece of silk. The flowers and leaves are then painted in colors, and when dry the picture and surface of the article are covered with coat of refined white varnish.
The kinds of pearl used are three-mother-of-pearl, in the pearl oyster, or white pearl, as it is called by the artist, and it is known by its clear white surface; aurora shell, which can readily be told by its wrinkled appearance and its various prismatic colors, and is made from the shell of the genus of Mollusca known as the sear-ear or ear shell, and known to he conchologist as Haliotis; the green snail shell, which can be told by its glistening colors of light and dark green, or soft yellow and a bright and beautiful pink, blended together. To manufacture the pearl ready for inlaying, the workman cuts the rough shells in pieces with saws, and then grinds the pieces upon both sides upon a common grindstone until they are of the requisite thinness. Out of these pieces the artist cuts the forms of leaves, flowers, etc., with a pair of common scissors preparatory to placing them in the varnished surface. The necessary forms may be cut from the thin pieces of pearl by means of a punch and dies, with power applied by the foot of the operator. When a number of pieces are required of the same size, the pieces may be fastened together with glue as one solid plate, and then the required form marked upon the outside one; then these being held in a vise, the form can be carefully sawed out with a fine saw. By placing the cemented pieces in warm water, the glue softens, and the shells are easily sepaated, and the glue washed off.
This art of inlaying is not contined to the representation of flowers alone; landscapes with houses, castles, trees,
churches, and bridges are very easily made, and when repre sented as being seen by moonlight are very beautiful. The rising moon can be represented surrounded by clouds of gold and silver bronze; and when pieces of pearl are placed in certain positions to reflect their colors, the moonbeams are represented as glancing over the landscape in alternate light and shadow.
A varnished surface can be ornamented by transferring drawings or engravings to it, and the process is quite simple. A thin coat of copal varnish is spread upon the surface of the article, and when nearly dry the engraving is applied with its face downward and carefully pressed to exclude all air bubbles. When the varnish is sufficiently dry, the paper is thoroughly moistened with a sponge dipped in warm water, and the paper can be rubbed off, leaving all the lines of the print upon the varnished surface.-Hardware.

Nevada Names.

There is much in a name. A class of boys in geography will stumble dreadfully over a string of commonplace Smithtowns, Jonesvilles, Robinsonports, and so on. But we gaurantee that not one in twenty would miss in reciting lesson set down in genuine miners' terms, as, for example, this, from the geography of Nevada: "Buttermilk cañon is in the Paradise mountains, northwest from Eden, about ten miles from Gouge-Eye, on the road leading from Limburga to Whoop-'Em-Up, via Bull Town, Lay-'Em-Out, and Hunry, and just over the mountains from Bung-Eye and Knock-'Em-Stiff."

Claude Etienne Minie.

M. Minie, the inventor of many improvements in firearms, died recently at Paris. He was born in Paris in 1805, and after serving several campaigns in Algeria was promoted to a captaincy of chasseurs. Subsequently he devoted himself o inventing improvements that would perfect the service of the infantry. Favored with the special protection of the Duke of Montpensier, he was able to secure the adoption of various of his improvements, which affected the shape and make of balls, cartridges, and gun barrels.

TYPE CASTING MACHINE.
Great advances have been made in the methods of casting rix, extricating the type, and dropping it by a slide into type for printing purposes from the time of the wooden as rapidly as the crank or wheel of the machine is turned, blocks and rude types of Laurentius, of Haarlem, to the and a type is cast each time. On the rapidity of the motion improved hand moulds of Archibald Binny, of Philadelphia, depends the quantity produced. Such is the modern type $^{\text {and }}$ at the beginning of the present century. By the latter as casting machine-turning out one hundred types per minute, many as six thousand types per day were produced. The or sixty thousand per working-day of ten hours, every one hand moulds were supplanted in 1845 by the complex and of which is a mite contributed to the spreading of knowl effective American type-casting machines, which have edge over the world for good or for evil.
wrought an important revolution in the business.
Our engraving represents a type-casting machine made by Messrs Mack The average produc tion for this machine i about one hundred per minute for the ordinary sizes of printing type being far beyond the amount of product of the earlier methods The machines may be operated either by hand or power. The advan tage in using power is that it enables one man to attend to two ma chines.

Type metal is an amalgam of lead, anti mony, copper, and tin in such proportions as to produce a materia hard but not brittle ductile yet tough, flow ing freely, yet hardening quickly. Each letter is first cut in re verse shape on the end of a short strip of steel, the greatest care being taken to insure accura cy of proportion and harmony of appearance in the letters of the en tire alphabet. The least variation is inadmissi ble, as it would destroy the harmonious effec of the types when com posed or formed into columns or pages. The steel strips when fin ished are termed punches; and after cri ticism and approval, each punch is placed in a stamping machine, and a deep impression made of it in one side of an oblong piece of copper near its end These pieces of copper are called matrices They are dressed and fitted up with delicate skill, so that the types cast from them shall be of uniform height and accurate range. The are then ready for use in the casting machin The machine cast but one type at each revolution. It consists of a furnace, on thetop of which is a small reservoir of metal kep in a fluid state. In this reservoir is a pump, the plunger of which ope rates in a cylinder in the bottom, and pro jects at each stroke a small quantity of the molten metal out from a small hole in a spout or nipple in the front face. The mould in which the stem or body of the type is formed is of steel and is movable, being set in place in front of the reservoir, and worked by the action of the same machinery which operates the pump. The copper matrix, containing any special letter stamped into it with the punch, rests with its face against the bottom opening of the mould, being held in position by a curved steel spring shown in the engraving. The method of operation is as follows:
The initial movement of the machine brings the upper opening in the mould opposite to the matrix exactly against the hole in the nipple. A simultaneous action of the pump projects a stream of the liquid metal into the mould with considerable force, at the same time stopping the opening in the nipple by a small plug from behind to prevent the further escape of metal. The next movement draws the mould away from the nipple and opens it, throwing back the matlong stick, screwed tight, and the bottom of the type is. Jonas Dierdorff, of Goshen, Ind
neatly grooved by a planing-tool. The letters are after ward closely inspected with a magnifying-glass, and all im perfect ones rejected.

MISCELLANEOUS INVENTIONS

Mr. William Gardner, of New York city, has patented an mproved apparatus for keeping lager beer, ale, porter, cider etc., fresh and lively from the time it is tapped until the contents of the cask are exhausted. The invention consists of a combination of devices which cannot be clearly described without engravings.
An improved fire lighter, patented by Mr. Samuel M. Craig, of Austin, Tex., consists in the arrangement of a clamp holding a match and a slide provided with a rough-
ned surface by means of sandpaper or some other suitable material, so that when the rough surface is drawn across the head of the match, the match is ignited and will light the kindling materials.
An improvement in tellurians has been patented by $\mathbf{M r}$. Gideon McBride, of Dover Hill, Ind. The object of this invention is to furnish for the use of schools an improved ellurian of simple construction, by which the ellipticalorbit of the earth around the sun and the orbit of the moon around eearth together with all the phenomena resulting from be relation of sum, arth and moon togethe and lucidly illustrated, embracing among others the succes sion of day and night, the changes of the sea :sons, the changes of the moon, solar and lunar eclipses, the entrance and progress of the sun into and through each of the twelve signs of the zodiac, the entrance and progress of the earth into and through each of the twelve months of the year etc.

Mr. Fortonato C. Za netti, of Bryan, Texas, has patented improve ments in the construc tion and arrangement of cabinets for contain ong sewing, writing and shaving material and various other arti cles of domestic use in frequent demand.

Mr. John Boyd, of La Grange, Ind., has patented an adjustable bay rack for wagonso sleds, that may be lengthened or short ened at will. The scc tions can be easily separated from eac other and handled by one person. It may be lengthened or extended from twelve to twenty feet or more to fit any length of wagon or sled within reasonable lim its.

Mr. John G. Barring ton, of North Sidney Nova Scotia, has pa tented an improved oi cup or lubricator for those parts of machin ery that have a recipro cating upward and downward movement it consists of a globular cup provided with an interior vertical valve and a screw cap carry ing a tube provided with a regulating spring and rod. A con caveplate of sheet metal is attached to the top of the tube As the machinery to which it is attached moves up and down the resistance of the air to the movement of the plate operates the device.

An improved attach ment for cultivators which will do away with stay rods or chains, will give a di rect dıaught, and wil prevent any down

STEAM TYPE CASTING MACHINE.

tones; and finally, they are set up in lines, slipped into a draught upon the horses' necks, has been patented by Mr

Mr. Moritz Leiner, of New York city, has patented an mproved combined slate cleaner and pencil holder, which consists in a vessel or cup provided with a sponge upon its lower part, and having a stopple provided with sponges a one or both ends, and the cord provided with the loop and the hook.
An improved egg carrier, patented by Mr. George W Peck, of Omaha, Neb., is designed especially for carrying eggs, but it may be used for other purposes. It consists in a box having a cover made with cleats or flanges to rest upon the edge of the body. The body is made with a cross parti tion projecting above its edge so as to pass in between the ide cleats of the cover and rest against the cover. The box is provided with a novel and efficient fastener,

THE BRAZILIAN PORCUPINE

In Southern America the porcupines find a representative in the coendoo, an animal which is not only remarkable for its array of quills, but also for the prehensile power of its long tail.
As might be presumed, from the prehensile tail and the peculiarly armed claws, the coendoo is of arboreal habits, finding its food among the lofty branches of trees. On the level ground it is slow and awkward, but among the more congenial boughs it climbs with great ease, drawing itself from branch to branch by means of its hooked claws; but seldom using its tail, except as an aid in descent. The food of this animal consists of leaves, flowers, fruit, bark, and the soft woody substance of young and tender branches, which it slices easily with its chisel-edged incisor teeth. During the summer months the coendoo becomes extremely fat, and its flesh is then in great request, being both delicate in flavor and tender in cbaracter. The young of this animal are born in the month of September or October, and are very few in number.
The total length of the coendoo is about three feet six inches, of which the tail occupies one foot six inches. Its nose is thick and blunt, like that of the common porcupine, and the face is furnished with very long whisker hairs of a deep black. The sumerous spines which cover the budy are parti-colored, being black in the center and white at each extremity. Their length is rather more than two inches on the back, an inch and a half on the fore legs, and not quite an inch on the hinder limbs. A number of sbort quills
are also set upon the basal half of the tail, the remainder of ; and I am now enabled to give the following account of it by that organ being furnished with scales, and tapering to its Dr. Day:
extremity. The color of the scales is black. The entire under surface of the tail is covered with similar scales, among which are interspersed a number of bright chestnut hairs. The abdomen, breast, and inner face of the limbs are clothed with dense, brown, coarse hairs. It is a nocturnal, sleeping by day, and feeding by night.

SNAKE EATING SNAKE.

We do not know that either of the snakes shown in the engraving is a snake-eating snake, but it is certain that a portion of one snake, by accident or otherwise, has passed between the jaws and through a considerable portion of its body. The double specimen from which our engraving is made, and which we now have before us, was captured in a hay field near the village of Collinsby, Canada, by Mr. John Filmer, a well known engraver of this city.

It is Mr. Filmer's opinion that while thrusting the fork into the hay to get a lift he must have struck the belly of the larger snake, making the opening through which the smaller one was partly liberated. Both snakes were alive. The larger one is familiarly known as the garter snake; the smaller one as the common brown snake.

Sea Snake Caught in Submarine Telegraph wire.

Mr. Moginie has called upon me, says Frank Buckland, the celebrated naturalist, in Land and Water, with a lovely specimen a lovely specimen of a sea snake
which he wanted which he wanted
properly mounted in a bottle for the board-room of the Eastern Extension Telegraph Compa ny. One of the cables belonging to this company was being raised from the bottom of the sea, I believe in the Indian Ocean. When the cable came to the surface the snake in question was found coiled tightly round the telegraph cable. Luckily it was killed before it could do any mischief, as these sea-snakes are excessively poisonous. In the College of Surgeons there is a sea snake which crawled up the anchor chain of a man-of-war when she was moored in the mouth of the Ganges. The midshipman of the watch saw something moving along the chain,
ransversely to the body, and not as in a fish. If the telegraph wire passed from one rock to another, or from an ele-
vated spot to the bottom of the sea, it would not be difficult to imagine that a whale swimming past might very easily become entangled. Should its transverse tail have hitched over the wire the animal would become frantic, and rolling itself round and round, it might burst the wire in two, but still be held fast, due to telegraph wire encircling its tail just below the origin of the fin."
and without thinking, went to pick it up. The venomous brute immediately turned upon him and bit him. The poor young midshipman did not live many hours after the accident. Mr. Moginie's snake is about a yard long, and the general color of it is white, and it is most beautifully marked on the back with black, or rather dark chocolate, patterns.
The tail is, as in all sea snakes, quite flattened, like the end of an oar. This, of course, gives the animal great power of swimming. My friend, Dr. Day, luckily came in just as I was consulting Sir Joseph Fayrer's magnificent illustrated was consulting sir Joseph Fayrer's magnificent inlustrated

COENDOO, OR BRAZILIAN PORCUPINE.-Cercolabes prehensilis. be suitable.

Intellect in Brutes
The Duke of Argyll, in his "Reign of Law," was, I think the first who promulgated the dictum that man is the only tool-making animal. As far as I can ascertain, this assertion is admitted by developmentists, yet it is undoubtedly true that the Indian elephant makes two implements, or form and alters certain things so as to adapt them specially to ful fill definite purposes, for which, unaltered, they would not

One evening soon after my arrival in Eastern Asam, and while the five elephants were as usual being fed opposite the while the five elephants were as usual being fed opposite the
Bungalow, I observed a young and lately caught one step up to a bamboo stake fence and quietly pull one of the stakes up. Placing it under foot, it broke a piece off with the trunk, and after lifting it to its mouth, threw it away. It repeated this twice or thrice, and then drew another stake and began again. Seeing that the bamboo was old and dry, I asked the reason of this, and was told to wait and see what it would do. At last it seemed to get a piece that suited, and holding it in the trunk firmly, and stepping the left fore-leg well forward, passed the piece of bamboo under the armpit, so to speak, and began to scratch with some force. My surprise reached its climax when I saw a large elephant leech fall on the ground, quite six inches long and thick as one's finger, and which, from its position, could not easily be detached without this scraper, or scratch, which was de liberately made by the elephant. I subsequently found that it was a common occurrence. Leech scrapers are used by every elephant daily. On another occasion, when traveling at a time of year when the larme flies are so tormenting to an a timent noticed that the one I rode had no fan or wisp to beat them off with. The mahout, at my order, slackened pace and allowed her to go to the side of the road, where for some moments she moved along rummaging the smaller. jungle on the bank; at last she came to a cluster of young shoots well branched, and after feeling among them, and selecting one, raised her trunk and neatly stripped down the stem, taking off all the lovoer branches and leaving a fine bunch on top. She deliberately cleaned it down several times, and then laying hold at the lower end broke off a beautiful fan or switch about five feet long, handle included. With this she kept the flies at bay as we went along, flapping them off on each side every now and then. Say what we may, these are both really bona fide implements, each intelligently made for a definite purpose.-S. E. Peal, in Nature

Mating of Queen Bees.

At the late Bee-keepers' Convention, Chicago, Professo J. Hasbrouck, of Bound Brook, N.J. after relating many failures, went on to state the plan which he had finally found successful. It was as follows:
I took an empty ugar barrel, clean and tight, with cover fitting tightly over theupperhoop and into this cove I.cut a round hole about four inches across in the center, and fastened a piece of glass against it on the-under side. I now waited until I had the queen again in the trap, which happened about 2 o'clock. I put three drones with her and threw them all into the barrel standing in the brïght sunlight, and quickly closed the lid. They all im mediately flew to the glass, and be-
ransversely to the body, and not in a fish. If the tele fore I had got ready to look at them fairly the quee
ore I had got ready to look at them fairly, the queen had mated with one of the drones. I took the barrel
into a room and caught the queen and returned her to the nucleus. I had two other young queens which I expected would soon be out, and I had traps then set to catch them but in my anxiety to see if the thing could be done again, I could not wait for them to come out, so I went to the hive and caught one of these queens with a queen cage and put her into the barrel with drones. She mated about as quickly
as the other. I next tried the third, and she likewise mated; not one of the three being in the barrel five minutes.
This was my last queen for the season. But I have done. I can hardly expect that every queen will mate as soon as these did; but the arrangement, simple as it is, accomplishes everything that seems to be necessary-namely, it induces the bees to fly without the loss of any time, to fly in close proximity to each other, and to keep constantly turning so as to notice immediately a mate when near; and so, I believe that queens can be put through the process with sufficient rapidity to make the method satisfactorily practical. With the right kind of a fertilizing cage, it does not appear to be essential that the queen should be caught on her way out to mate. I think she should be confined to the nucleus, till she is certainly old enough to mate, and then picked out and put into a fertilizing cage; but neither she nor the drones should be taken hold of with the hands nor squeezed or touched with anything that would daub them in the least.
Observing this caution, I think that any bee-keeper who will try, can in this way have all his queens fertilized in confinement; while the trouble required is as nothing compared to the loss he can prevent, and the control he can exercise over the purity and improvement of his stock.
J. Boggs, of Havana, Ill., gave his experience in the matter. He had covered over a hive in which were some queen cells with mosquito netting. When one of the queens hatched out and flew against the netting she had mated with a drone.
Mr. Clemet, of Iowa, had tried an experiment almost similar, and with equally good results.
Mr. King, of New York, stated that he had a correspondent in North Carolina who stated that he had been successful in fertilizing artificially.

An Oil-Producing Insect.

We extract from La Emulacion, published at Merida, Yucatan, the following notes on an interesting insect to which we briefly referred not longago. This insect, which has considerable economic use in Central America, belongs to the same genus as the cochineal, and is called by the native name of "ni-in." Being unknown to science, the author names it Coccus adipofera. The females are of a coral-red, and are covered with a fine whitish powder. They live on trees belonging to the genus Spondias, and known as "hog plums," their food consisting of the sap. They adhere to the trees by means of their beasis, remaining motionless, and existing in such large numbers that they frequently cover every portion of the plant.
There is extracted from these females 26 to 28 per cent of their weight of a bright yellow fat having an odor sui generis, and which when recently melted is homogeneous, but in a short time becomes granular and of a lighter color. It is the most quickly drying oleaginous substance known, since it becomes immediately covered over with a pellicle full of wrinkles and folds; and, if this pellicle be dipped into the grease to exclude its surface from contact with the air, the whole mass shortly becomes transformed into an infusible and insoluble resinous substance. Applied to paper or any other surface, this grease dries in six or seven hours so as to form a smooth lustrous surface, and almost odorless. Mixed with copal, or any other resin, and turpentine, it forms a golden-yellow drying varnish. Its melting point is 36°. Heated to a temperature of 200° to 210° until it becọmes glutinous, it changes on cooling into a bland elastic mass (caoutchouc of ni-in) which is almost insoluble in spirit of turpentine, but soluble in bisulphide of carbon. In 95 per cent alcohol it is but slightly soluble. The various properties of this fatty matter, and its behavior with acids and alkalies, prove that its chemical composition differs from that of all other oils known. Like all drying oils, it forms by the action of heat a glutinous substance; but, while heat is indispensable to make such oils more siccative, the ni-in grease loses a portion of this property through heating. The elastic substance of oils is soluble in ether, and especially in turpentine, but that of ni-in is nearly insoluble in these materials.
In some localities in Central America this oil is largely employed for painting wooden utensils, such as ladles, etc., a mass being made with color, chalk, and the grease, and applied precisely as in ordinary oil painting. It has been observed that articles painted with it may be preserved for a long time. Guitar manufacturers also use the grease in varnishing their instruments. As yet it has received no application in pharmacy. It is probable that the ancient race which formerly peopled Central America used this greasein painting their buildings, and it is for this reason that, after a lapse of several centuries, the decorations are still to be seen in that perfect state of preservation which caused the admiration of Mr . Stevens when he visited these ruins in 1842. The journal above quoted trusts that attention will be paid to the propagation, instead of the careless destruction, of the insect, to the end that a native industry may spring up which will give the country a supply of oil that shall prove a substitute for linseed oil, which is now imported from foreign lands, and which, it adds, is often adulterated with fish oil.

Skatol.

In his researches on the volatile substances contained in human fæces, Brieger isolated a series of bodies belonging, some to the fatty and others to the aromatic class. The
principal aromatic product of the decomposition of aibumen in the intestinal canal, is a substance resembling indol, to
which he has assigned the name skatol. It crystallizes in brilliant white plates and possesses an intense fecal odor.
It fuses at 93.5°, and is difficultly soluble in It fuses at $93 \cdot 5^{\circ}$, and is difficultly soluble in water. Warmed
with dilute hydrochloric or nitric acid, it gives a violet with dilute hydrochloric or nitric acid, it gives a violet
color. Analysis gives it the formula $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}$, its vapor den sity being $65 \because 2$. Blood albumen, digested with pancreas and water at 36° C. for six to ten days, yields skatol on distillation. Two and a half kilogrammes albumen gave one gramme of skatol.-Ber. Berl. Chem. Ges.

Markets.

Commenting on the influence of the power looms invented by Erastus B. Bigelow, whose recent death was noticed in late number of this paper, a contemporary says:
Prior to Mr. Bigelow's invention America was making ingrain carpets, but the demand was limited and the popular impression favored English goods. The adoption of his loom by the Lowell Company at once sent the products of that now famous corporation to the front, and for a while the good housewives of the country would have no other. From that time the trade has steadily increased until to-day, with the exception of a few yards of such goods as those designed by Mr. Morris, no such thing as a foreign ingrain is ever seen in this market, the total importation of their goods last year being $\$ 957$, while the city of Philadelphia alone last year made over twenty million yards, mostly ingrains, and the Lowell and Hartford Companies, E. S. Higgins, Stephen Sanford, D. M. Read and others added several millions more. The enormous extent of American consumption can be seen from the fact that the total production of Great Britain in all kinds of carpets was less than fourteen million yards.
In other grades of carpets the advance has been no less astonishing. Next in popularity and extent of consumption to the ingrain come the tapestry Brussels. A glance at the figures of the Custom-House will probably surprise the uninitiated reader. Beginning with the time when importations were at their highest, the following are the numbers of square yards of tapestry carpets landed in this country:

On the other hand all the American manufactories were running on these goods in 1872 only 143 looms. There are now in operation, and in many cases running over-time, 649 looms, producing over $8,500,000$ yards of (three-quarters wide) carpet. There are now going up or contracted for by various manufacturers 200 more looms, which will bring the production up to $13,000,000$ yards.
In the more expensive body Brussels the importations have decreased in nearly the same ratio, as follows:

It is noticeable, moreover, that our machinery has improved with equal rapidity, until to-day the Murkland or Duckworth looms are almost as much better than the old Bigelow looms as these were better than their predecessors.

An Englishman's View of Protection.

In a long letter to the Sheffield Daily Telegraph, discussing the causes of industrial depression in England, Mr. Edward Sullivan, of Sheffield, uses some plain language with regard to " the sophisms, the paradoxes, the theories of Free Trade." He says: "In America, France, Belgium, Germany, Switzerland, Holland, in fact, wherever the common sense of mankind is allowed to assert itself, the first and great commandment, the 'whole law and the proph ets, of political economy is allowed to be this: 'That national prosperity depends on general employment.'
'The skill or industry of the workman in his trade is his capital, 'the capital of labor;' in an industrial community the capital of labor is the chief productive capital of the country, but without general employment it is valueless. It is general employment that turns over this capital, and makes it increase and multiply.
'The 'capital of labor' cannot afford to remain long idle. If employment is denied in one place it speedily emigrates to another more congenial.
'This is the first lesson of political economy as. read by the light of universal suffrage in France and America, and so it would be the reading in England, too, if we had universal suffrage."
Further on he says: "America, France, and Belgium bave never swerved in one single instance from their policy of result ?-that the capital of labor has been steadily turning over, accumulating and multiplying, and enriching all classes of the community. In America, especially, the effect of protecting the employment of the people has been
little short of marvelous. The best workmen of England little short of marvelous. The best workmen of England have flocked to her; industries that ten years ago had no existence, have sprung into vigorous life; she has multiplied her make of Bessemer steel eighteen times in ten years; she has seven hundred iron works in full operation; she now supplies herself in almost every manufactured article she requires; and neither war nor rebellion, nor debt, nor soft money, nor hard money, has been able to cause more than a temporary derangement of her prosperity.
" This is the country that Mr. Vivian tells us, in his interesting notes on America, 'has the curse of protection
upon it,' ' and,' adds he, with a genuine burst of free trade
fanaticism, 'where man interposes his short-sighted laws, the best provision of Providence is shackled and blighted.'
Are weto understand that America is shackled and blighted, Are we to understand that America is shackled
or merely that fre trade has a Divine origin?
' We see what America is. What she would have been if free trade had been her destiny instead of protection we can easily realize. There would be no iron works, no cot ton works, no glass works, no paper factories, no teeming hives of industries; every manufactured article would be imported from Europe. Her iron and coal mines would be still undeveloped; she would remain a purely agricultural country, like Russia, and her progress and civilization would be indefinitely postponed."

David Haviland.

David Haviland, of New York, founder of the firm of Haviland \& Co., porcelain manufacturers, of Limoges, France, died December 12, in his sixty-fifth year. Mr. Haviland was born in Westchester County, N. Y., in 1814. In 1836 he was engaged in the importation of English earthenware, but owing to the superiority of the French ware he isited France in 1840
Resolving to discover if possible the secret of the producion of French porcelain, Mr. Haviland went to Paris and afterward to Forcy, but finding himself unable successfully to prosecute bis work in those places, he finally established himself in 1842 at Limoges, the only place where good kaolin is to be found in France. Here he built his manufactory. The industry of poscelain had then hardly obtained a footng, and Mr. Haviland found that he was obliged to manufacture everything connected with the work. However, despite the many difficulties to be surmounted, the undertaking did not prove too formidable for his energy and perseverance He began to make shapes, and employed four professors to educate 200 pupils, as no good painters were then to be found in the place. At first he did not attempt to make any porcelain, but he soon was able to undertake its manufacture. With the increase and development of the business many improvements were made, so that a great part of the modern process of manufacturing and decorating this kind of ware originated with his firm. The faience called the Limoges would more properly be called the Haviland, since it is all produced at their Auteuil factory, it being impossible, it is said, to secure at any distance from Paris artists of sufficient reputation to paint this ware.
The Limoges factory is in the center of the city, and covers three acres of ground. There are nine double kilns for porcelains, twenty-one muffles for fixing the decorations, and about 1,200 persons are continually employed.

The Healing Power of the Imagination.

The records of medical practice are full of illustrations of the influence of the imagination, for good or evil, over the functions of the body; and philosophy finds in them a key to the wonderful persistence of many popular superstitions. The firm belief that any disastrous physiological result, even death itself, will surely follow a given act or occurrence, is very apt to bring about the dreaded calamity; and every repetition of the seeming sequence of cause and effect, tends to confirm and strengthen the mischievous belief. As a means of counteracting this tendency of perverted imagination, charms for averting evil often play a really beneficial part. The protection is as imaginary as the dreaded evil; but, assuming a belief in the fictitious danger-a belief strongly tending to make the danger real, the charm substitutes a more hopeful belief, and the danger eases.
A curious illustration of this action of the mind is eported from San Francisco, in connection with a case of transfusion of blood. An aged negro, at the point of death, was saved by this operation, the blood-about eight ounces -being taken from his wife's arm. The man recovered, but the woman went into a curious decline, against which tonics and nourishing food were of no avail. At last the patient confided to the doctor the secret of her ailment, which kept her from resting day or night. "I tell you, doctor," she said whisperingly, "its that blood of mine the old man is carrying about inside of him; and, doctor, when that old man comes back, I want you to give me my blood back." The doctor, seeing that the woman would not be appeased unless he complied with her request, promised to return the next day, first informing her of the dangers of the operation, and that it was resorted to only in the most urgent cases. She would hear of no explanations, but demanded that the operation be gone through with. It was accordingly done the next day, the doctor taking from the man about half an ounce of blood and transfusing it into the woman's veins. After the operation the woman brightened up perceptibly, saying, "I'll be all right now, doctor." And that the operation did prove a success was fully de monstrated by the sick woman, who began work a few hours afterward, declaring that the "doctor was a wonder ful man, and now that she's got her own blood back again she was all right."

The Electric Light at Sea.

The pioneer in the use of the electric light in passenger steamers, the Inman steamship City of Berlin, arrived at this port, October 14. Six electric lamps were employed, four in the main saloon and two in the steerage, each of 400 candle power. The passengers expressed themselves as highly delighted with the new method of illumination.

The Chargefor Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Advertisements must be received at publication office The publishers of this paper guarantee to advertisers a circulation of not less than 50,000 copies every weekly issue.
Inventors' Institute, Cooper Union. A permanent exbibition of invent
Broadway, $\mathrm{N} . \mathrm{y}$.
Wanted-Situation as Analytical Chemist or Assayer. Address H. F. Starr. 91 Mt. Pleasant Ave., Newark, N. J.
Elevators.-Stokes \& Parrish, Phila., Pa. See p. 421. The Steam Pipes, Boilers, etc., of the Tradesman's National Bank, Broadway National Bank, and First Na tional Bank, are protected with H. W. J. Johns' Asbestos
Boiler Coverings. E . W. Johns Manufacturing Company, No. 87 Maiden. Lane, New Yorrb, sole manufac-
turers of genuine sesbesto simuid Pains Wanted-A Nut Machine and a Bolt Header. Ad${ }^{\text {dress, }}$, stating N .
Twelfth Year. Prof. P. H. Vander Weyde, Editor. Send 10 cents for a specimen copy of the Manufacturer
and Builder, the best and cheapest mechanical journal published. Address H. N. Black, Publisher, Box 4379
New York city.
A New Health Almanac and Annual of Phrenology
for 1880 , will be sent to every reader of the Screvryy for 1880, will be sent to every reader of the Scientriri
A MERICAN who will send three 3c. stamps to the pub-
 Attention is directed to the new and readable prospectas of
columns.
Wanted-Watchman's
Works, Lockport, M. Y.
Band Saw, Jig Saw, and other Wood-working Machines. P. Pryibil, 467 W. 40th St., New York.
Jewerry Boxes with Safety Locking Device. Security
against sneak thieves and dishonest domestics against sneak thieves and dishonest domestics. Just
the thing for a Holiday Present. See adv. of Frothing. the thing for a Holiday Present. See ad
ham \& Emory, safe Mffrs, outside page.
Srick Presses for Fire and Red
St., Phila.. Pa. 8. P. Miller \& Son.
Combined Step Ladder, Ironing Tab
Combined Sten Ladder, Ironing
Good thing sure. See adv. last week.
Crucible Steel Castings that weld and work like bar steel. All articles diffcult to forge. Special facilities
and skill in plow castings and agrieultural work. Also agricultural wrought steels and shapes.
McKee $\&$ Co., limited, Pittsburg, Pa.
Fire on the Hearth.-Open grate and warm air furnace mine. Telephones repaired; parts of same for sale. Send
stamp for circulars. P. ©. Box 205 , Jersey City, N. J. Hub Mortisers; latest improved. Witherby, Rugg \& Riiharason, W
Machine Drawing Copies, 10 cents each. Descriptive list and catalogue of scientifc books sent free by mail on
application. E. \& F . N. Spon, 466 Broome St., $\mathrm{N} . \mathbf{Y}$.
The Friction Clutch Captain will start calender rolls and will save machinery from breaking. D. Frisbie \&
Co., New Haven, Conn.
For Sale.-One Horizontal Steam Engine, $20^{\prime \prime} \times 48^{\prime \prime} ;$
one $18^{\prime \prime \prime} x 42 y^{\prime \prime}$; one $16^{\prime \prime \prime} \times 36 k^{\prime}$. Atlantic Steam Engine
 The Baker Blower ventilates silver mines 8,000 feet
deep. Wilbraham Bros., 2318 Frankford Ave., Phila, Pa. Park Benjamin's Expert Office, Box 1009, N. Y. Re-
cipes and information on all industrial processes. To stop leaks in boiler tubes, use Quinn's Patent Fer rules. Address S. M. Co., So. Newmarket, N. H.
Nickel Plating. -Sole manufacturers cast nickel an.
odes, pure nickel salts, importers vienna lime, crocus. odes, pure nickel salts, importers Vienna lime, crocus,
etc. Condit, Hanson $\&$ Van Winkle, Newark, N. J., and etc. Condit, Hanson \& Van Wir.
92
Wrights Patent Steam Engine, with automatic cutoff. The best engine made. For prices, ad
Wright, Manufacturer, Newburgh. N. \mathbf{Y}.
For Solid Wrought Iron Beams, etc., see advertise ment. Address
lithograph, etc.
Presses, Dies, and Tools for working Sheet Metal. etc.
Fruit $\&$ other can tools. Bliss $\&$ Williams, B'klyn, N. \mathbf{Y}. Hydraulic Presses and Jacks, new and second hand. Lathes and Machinery for Polishin
E. Lyon \& Co., 470 Grand St.. N. Y.
Bradley's cushioned helve hammers. See illus. ad. p. 406.

Split Pulleys at low prices, and of same strength and appearance as Whole Pulless. Yocom \& Son's Shafting Noise-Quieting Nozzles for Locomotives and Steamboats. 50 different tarieties, adapted to to every class of
engine. T. Shaw, 9 , Stave, Barrel, Keg, and Hogshead Machinery a specialty, by E. \& B. Holmes, Buffalo, N. Y
Eclipse Portable Engine. See illustrated adv., p. 389 . Forbest Fixtures to run Sewing Machines wherep power
is used, address Jos. A. Sawyer $\&$ Sonn, Worcester, Wass,
Sheet Metal Presses. Ferracute Co., Bridgeton, N. J.
Solid Emery Vulcanite Wheels-The Solid Original
Emery Wheel-other kinds imitations and inferior Emery Wheel- other kinds imitations and inferior
Caution.-Our name is stamped in full on all our best caution.-Our name is stamped in full on all our best
Standard Betting. Packing, and Hose. Buy that only.
 The best is the cheapest. New York
For best low price Planer and Matcher, and latest improvea Sash, Door, and Blind Machinery. Send for
catalogue to Rowley \& Hermance, williamsport, Pa.
The New Economizer, the only Agricultural Engine with return fue boiler in use. See adv. page 405 . Special Wood-Working Machinery of every vari
Levi Houston, Monigomery, Pa. See ad. page 405.
Latest improved methods for working hard or soft
metals, grinding long knives, tools, etc. Portable Chuck metals, grinding long knives, tools, etc. Portable Chuck
Jars and Damond Tools.
Drill Co., Woonsocket, R. I.

For best Portable Forges and Blacksmiths' Hand
Blowers, address Buffalo Forge Company, Buffalo, N. \mathbf{Y}. Light and Fine Machinery contracted for. Foot Lathe
Catalogue for stamp. Chase \& Woodman, Newark, N. J. Machine Diamonds. J.Dickinson, 64 Nassau St., N. Y. steamHammers, Improved Hydraulic Jacks, and Tube Expanders. R. Dudgeon, 24 Columbia St., New York. Sawyer's Own Book, Illustrated. Over 100 pages of valuable information. How to straighten saws. etc.
ent free by mail to any part of the world. Send your ali address to Emerson Smith \& Co., Beaver Falls, Pa
Eagle Anvils, 9 cents per pound. Fully warranted. Repairs to Corliss Engines a special
ers Machine Works, Philadelphia, Pa.
Tight and Slack Barrel machinery a specialty. John
Greenwood \& Co., Rochester, N. Y. See illus'd adv. p. 30. Elevators, Freight and Passenger, Shafting, Pulleys. Hangers. I. S. Graves \& son. Rocher \mathbf{N}. Oak Tanned Leather Belting, Rubber Belting, Cotton belting, Polishing Belts. Greene, Tweed \& Co., N.York
Walrus Leather, Solid Walrus Wheels; Wood Wheels covered with wal
The Horton Lathe Chucks; prices reduced 30 per cent. $\$ 100$ Vertical Engine, 30 H. P. See page 350 .
No gum! No grit! No acid! Anti-Corrosive Cylinder Oil is the best in the world, and the first and
only oil that perfectly lubricates a railroad locomotive cylinder, doing it with half the quantity power and less wear to machinery, with entire free-
dom from gum, stain, or corrosion of any sort, and it is equally superior for all steam cylinders or
heavy work where booy or cooling qualities are
indispensable. use. Address E. H.
Cedar St., New York.
Emery Wheels for various purposes, and Machines at
reduced prices. Lehigh Valley Emery Wheel Company educed prices. Lehigh Valley Emery Wheel Company, Comb'd Punch \& Shears; Universal Lathe Chucks. Lambertvile Iron Works, Lambertvile, N. J. See ad
Patent Steam Cranes. See illus. adv., page 353
National Steam Pump. Simple, reliable, durable.
Send for catalogue. W. .. Kelly, New Brunswick, N.J. Deoxidized Bronze. Patent for machine and engine ournals. Philadelphia Smelting Co., Phila., Pa
Hydraulic Cylinders, Wheels, and Pinions, Machinery
Castings; all kinds; strong and durable; and easily Castings; all kinds; strong and durable; and easily
worked. Tensile strength not less than 65,000 lbs. to worked. Tensile strength not less than $65,000 \mathrm{lbs}$. to
square in. Pittsburgh Steel Casting Co., Pittsburgh, Pa. Mineral Lands Prospected, Artesian Wells Bored, by Rue's New "Little Giant" Injector is much praised R its capacity, reliability, and long use without repairs. Rue Manufacturing Co., Philadelphia, Pa.
Catechism of the Locomotive, 625 pages, 250 engravings. The most accurate, complete, and easily under-
stood book on the Locomotive. Price $\$ 2.50$. Send for a catalogue of railroad books. The Railroad Gazette, 73 Broadway, New
The only econo
The only economical and practical Gas Engine in the
market is the new "Otto" Silent, built by Schletcher arket is the new "Otto" Silent, built by Schletche
Schumm \& Co., Philadelphia, Pa. Send for circular.
For Machine Knives and Parallel Vises, see adverFor Machine Knives and Parallel Vises, see adverSteam Engines, Automatic and Slide Valve; also Boilers. Woodbury, Booth \& Pryor, Ro
illustrated advertisement, page 421.

NEW BOOKS AND PUBLICATIONS.

Mathematical Tables. First Series. By
Professor James Mills Peirce. Boston: Ginn \& Heath.
Contains tables, chiefly to four figures, as follows: Logarithms; logarithms of circular functions; logarithms of sums and differen ces; inverse circular functions; logarithms of hyperbolic functions; natural sines and cosines, natural tangents and cotangents, natural
secants and cosecants, table of proportional parts. In addition are ten sections devoted to instruction with re-
gard to tables in general and the particular uses of the tables given.
Key to the Universe, or a New Theory Demonstrations, wid Mathematical Demonstrations AND Tables. By
Orson Pratt, Sen. Published by the
author, Historian's Office, Salt Lake City, Utah.
Mr. Pratt's theory rests upon a double hypothesis in-
olving: I. A continuous orbital propulsion, arising from volving: I. A continuous orbital propulsion, arising from
the velocity of gravity and its consequent aberrations; the velocity of gravity and its consequent aberrations;
II. A resisting ethereal medium of variable density. The A resisting ethereal medium of variable density. The object of the theory is to "extend the universality"
of the law of universal gravitation. The author asserts and essays to demonstrate mathematically the existence of an ocean of rotating currents, set in motion by the millions of miles; so that all bodies entering the sun's dominions must partake not only of his controlling power of gravitation, but also of the great controlling
power of rotation, which in connection with ethereal repower of rotation, which in connection with ethereal re-
sistance must determine their orbital paths, ${ }^{\text {p }}$ prescribe their annual periods, and point out their axial rotation
$\begin{array}{ccc}\text { Samuel of } & \text { Scientific } & \text { Serials. } \\ \text { By } \\ \text { Scudder. } & \text { Cambridge: } & \text { Li- }\end{array}$ Samuel H. Scudder. Cam
brary of Harvard University.
This excellent catalogue covers the entire range of
scientific serials of all countries, including the transscientific serials of all countries, including the trans-
actions of learned societies in the natural, physical, and actions of learned societies in the natural, physical, and
mathematical sciences, from 1633 to 1876. There are added an index of towns (places of publication); an index of titles; and one of speccial subjects, such as anatomy, astronomy, botany, chemistry, etc. Thus in the index of towns under New York, the searcher is
referred to the pages in the national division, United referred to the pages in the national division, United
States, in which the scientific serials of New York are entered. Here, for example, we find the Scientific American described, mentioning its scope, time of beor more other scientific periodicals which have started
and died since this paper began to be published. For
students engaged in special investigations or in looking up the history of any science the catalogue must be tremely useful. As the library of Harvard has no funds for the publication of such volumes it is to be hoped that this and similar ventures which it has in hand may somehow be made to pay their cost
Elements of Differential Calculus,
with Examples and Applications.
ITh Examples AND Applications.
By W. E. Byerly, Ph.D. Boston: Ginn
Heath. Price $\$ 2.50$.
\& Heath. Price $\$ 2.50$.
A text book embodying the results of Professor
Byerly's experience in teaching the calculus at Cornell and Harvard. It is practical throughout,and apparentl well suited for the use intended. Its professed peculiar ties are the rigorous use of the doctrine of limits as a
foundation of the subject, and as preliminary to the adoption of the infinitesimal notation and nomencla ture; the early introduction of simple formulas and methods for integrating, and a rather elaborate treat ment of the use of infinitesimals in pure geometry.
Insect Lives; or, Born in Prison. By Julia \& Co. Ballard. Cincinnati: Robert Clarke
Designed to awaken in children an interest in the live of our more common moths and butterfies, and to show thainingly to study such lives scientifically and enter calculated to effect the author's purpose.
Foot Prints of Vanished Races in the
Mississippi Valley. By A.
St. Louis: Chancy R. Barnes.
Gives an account of some of the monuments and
relics of prehistoric races scattered over the surface of the Mississippi Valley, with suggestions as to their origin and uses. Mr. Conant is an enthusiastic student of American archæology in the field as well as in the
reports of other observers, and writes with unusual fullreports of other observers, and writes with unusual full-
ness of knowledge. His investigations lead him to the ness of knowledge. His investigations lead him to the
belief that the original inhabitants of America were Autochthons. The civilized tribes which the Spaniard found in Mexico were all branches of the great Nahu
family, whose origin has not been clearly traced. In the advent of the Toltec domination the first gleams of ancient American history begin to be visible. The original seat of the Nahua race, he is inclined to believe, must be sought for in the Mississippi Valley. The
Indians are a later race, evidently of Asiatic origin. Industrial History of the United States.

By Albert S. Bolles. Norwich, Conn.:
Henry Bill Publishing Company. 8vo, pp. 936.
This work occupies, and on the whole commendably, a decided gap in popular literature. Its most obvious
faultis the lack of a good index, indeed an index of fault is the lack of a good index, indeed an index of
any sort: a lack which seriously diminishes its usable ness and usefulness. Each great department of pro ductive industry is taken up in a special book, sepa vision. Here under agriculture and horticulture, there is a chapter of general history followed by chapters on agricultural implements, cotton, wheat, corn, sugar, tobacco, hay, minor crops, neat cattle, dairy products,
the horse, sheep, swine, horticulture, nurseries, and the horse, sheep, swine, horticulture, nurseries, and
fruit raising. In like manner the historical develop ment of each of the various lines of manufacture is ing the vast breadth of the field covered. Shipping and railroads; mines, mining and oil; banking, insurance, ment; and the industries of the eight he move honored with a separate book. The work is copiously
illustrated, the selection of the engravings being deterillustrated, the selection of the engravings being determined apparently by their availability oftener than by
their superior merit. The author has taken no little pains to bring his history well down to the date of pub lication, and his work is one that should go into ever of some of the political and military histories used as of some of the poitical and military histories used beneficial one to the country.

HINTS TO CORRESPONDENTS.
\cdot No attention will be paid to communications unless
accompanied with the full name and address of the accomp
writer.
Names and addresses of correspondents will not be wiven to inquirers.
o former answers or that correspondents, in referring name the date of the paper and the page, or the numbe of the question.
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them.
Persons desiring sp
Persons desiring special information which is purely should remit from $\$ 1$ to $\$ 5$, according to the subject as we cannot be expected to spend time and labor to obtain such information without remuneration.
Any numbers of the Scientific American Supple ment referred to in these colu
office. Price 10 cents each.
(1) H. P. G. asks (1) how to make a heap and serviceable emery wheel. A. Turn wheels rom well seasoned pine, of the form desired; place emery upon an iron plate heated to 200° to 212°,
coat the wheels with glue prepared as for uniting wood and roll the wheels in the warm emery After the glue ries, the surplus emery is brushed off and another coating of glue is applied and the wheels are again lowed to become thoroughly dry before use. 2. How can I make emery sticks? A. Prepare sticks of such forms as you may require, and coat them as directed for emery wheels, or
of glue or paste.
(2) F. J. W. asks: 1. Why do we hear sound farthest just before a storm, when the atmo-
phere is lightest? A. Two reasons are given for this phenomenon: one is, that the air being moist, has more than its normal conducting power; the other is, that the ow.lying strata of clouds confine the sounds to the earth. 2. If, as we are taught by philosophy and observation, cold contracts and heat expands the atmoshhere, why does rarefied air prove to be so cold as to reserve snow and ice at a few thousand feet above sen vel? A. The rarefied air in which the snow and ice exist is not rarefied by heat but by decreased pressure.
Rarefaction of air diminishes its heat-absorbing power. Another cause which infiuences the temperature at great heights is its removal from the ground which heats it by contact. And still another reason is that the air is drier, and therefore very diathermanous.
(3) A. H. asks how to make a cement for would be too expensive. A. Mix fine sharp furnace would be too expensive. A.
sand with hydraulic cement.
(4) A. McC. writes: I notice in the number for December 13, 1879 , on page 387 (11), J. S. P. laboratory work found the following excellent. Dissolve 32 grammes zinc in sufficient muriatic acid, and add 22 grammes sal ammoniac (am-
monium chloride), and evaporate to dryness. Dissolve monium chloride), and evaporate to dryness. Dissolve
the resulting salt in water, and filter. This will answer the resulting salt in water, and filter. This will answer or tin, zinc, and brass excellently, the parts to be sol-
(5) H. L. S. asks which side of a belt hould run in contact with the pulley? A. The grain (6) J. H. asks: Will you tell me the size of he cylinder of engine for boiler described bclow? Boiler orizontal, 7 feet long, 28 inches diameter, 164 -inch tubes 4 feet long, height of boiler 3 feet, dome 15 by 15 of the engine; probably a 5 inch cylinder and 6 to 8 ches stroke would answer.
(7) H: P. T. asks: Can sufficient gas be had through an ordinary dwelling house gas pipe (1/9 inch), with three Bunsen burners, to evaporate (through ecessary for a $1-6$ to $1 / 4$ horse power engine? A. Yes.
(8) W. L. writes: A blower being placed in a boat aft of a sail, blows hard against the same;
which way will the boat move? A. As action and reacwhich way will the boat move? A. As action and reac-
tion are equal, we doubt if the boat would move either way are equal, we doubt if them the mere blowing.
(9) J. W. D. asks: Was there an iron vesel or gun boat built or launched from or about the foot of 14th street, North River, by the Delamater Iron
Works, at or about the time of the war? A. Yes, the Matanzas.
(10) P. H. D. asks how to find the diameter of a small wheel of a given number of teeth to gear hto a larger wheel of given diameter and given numer of teeth. For example, what is the diameter of a heel which has six teeth, to gear into a wheel, two the diameters of the two wheels is the same as that of he number of their teeth. If one wheel has 6 teeth and the other 60 , the diameter of the small wheel is $1-10 \mathrm{th}$ the large one.
(11) J. V. asks for the rule for finding the ody by the by a moving body. Is it the weight of the motion in seconds or motion, and is the motion the motion in seconds or in minutes, that is, the initial
velocity? A . Formulagiven by Molesworth is $\mathrm{F}=\mathrm{V} \mathrm{W}$, $=$ force of blow in tons. $V=v e l o c i t y$ per second due
(12) R. B. S. asks: What is the difference between levigation and trituration? A. Levigation is the process by which substances are reduced to a state of minute division by rubbing them between two hard surfaces while the substances are formed into a paste
with water. Trituration is the comminution of subwith water. Trituration is the co
stances without the aid of a liquid.
(13) T. B. asks: 1. Can old Bessemer steel rails be worked over and made into new rails? A.
Yes. 2. Which side of a leather belt should be worked Yes. 2. Which side of a leather belt should be worked
to the pulley, the rough or smooth side? A. The grain to the pulley. the
or smooth side.
(14) A. D. F. asks for a good recipe for waxing fioors, and how it is applied. A. Stir 25 parts of
shredded yellow wax into a hot solution of 12 parts of shredded yellow wax into a hot solution of 12 parts of
pearl ash in soft water. Keep the mixture well stirred pearl ash in soft water. Keep the mixture well stirred
until effervescence ceasea, then remove it from the fire and stir in 12 parts of finely ground dry yellow ocher. It may now be poured into cans to cool. When wanted or use one part of it is dissolved in five parts of boiling for use one part of it is dissolved in five parts of boiling
water. Apply warm with a paint brush. It dries in a few hours, when the fioor is polished with a fioor brush and afterward wiped with a woolen cloth. It is said
that this wax coating will last for six months with ordinary use.
(15) H. D. K. asks for a description of a powerful battery about the size of a thimble, to be used
in some electric jewelry. A. The essential parts of uch a battery are, two plates of carbon, one plate of well amalgamated zinc, and a solution made by dissolving 2parts of bichromate of potash in 20 parts of hot
water, and when cold adding 1 part of sulphuric acid. The zinc plate is placed between the two carbon plates, leaving a space on each side. The carbon plates are connected togetherand with one of the conducting wires, he zinc plate is connected with the other conducting wire. The zinc and carbon plates may be attached to arubber stopper fitted to a small jar or bettle containing of the plates, and the solution may be brought into conct with the plates by turning the bottle down on its ide. This battery workspowerfully for a short time, but the solution soon becomes exhausted and must be
(16) F. Y. A. asks: How am I to judge pure lard oil? That which I usually get gums. A. Com-
pare color, smell, taste, specific gravity ($=0.9003$), and
reaction with a few drops of nitric and sulphuric acids with a standard sample of the pure oil.
(17) C. \& Co. ask: What chemicals are used in the dyeing of Pampas grass, red; blue, yellow etc. A . Use warm aqueous an
any of the soluble aniline dyes.
(18) R. M. asks: What book would you ad vise for new beginners in electroplating, brass, copper tin, silver plating, nickel, etc.? A. Consult Fesquet's
"Electro-Metallurgy;" Napier's "Electro-Metallurgy;' Roseleur's "Galvanoplastic Manipulations."
(19) Z. C. writes: In No. 21 of the current volume of the SCIENTIFIC American, you give a receip for making a " copying pad " as follows: 1 oz. Cooper's
gelatine to $61 / 4$ fluid oz. glycerine. I undertook to make a pad, following the receipt to the letter, and found that the pad would not abstract any ink (aniline accord ing to the receipt) from a piece of paper. I then heated the misture again and added another ounce gelatine This time the pad would give four good copies, and only six which were at all legible. Then I added $1 / 2$ oz more gelatine, and can now take 15 good copies. A
You will have better results if you use more glycerine You will have better results if yon use more glycerine as directed, and expel all or as much of the water as possible by heating over a salt water bath for some upwards of a hundred and fifty distinct copies.
(20) J. K. asks for some good stove polish that can be preparefat home-something that will no burn off. A. Common stove blacking is graphite or
plumbago reduced to a fine powder by grinding. We plumbago reduced to a fine powder by grinding. We
know of nothing better. 2. What will remove stains from stove zinc, and restore its look of newness? A. The planished surface is imparted by rolling the warm sheet metal; the finish cannot readily be restored. The surface may be cleaned and brightened by moistening it with a strong solution of oxalic acid in water, and drying with sawdust, or better, with whiting
(21) H. B. asks (1) for a receipt for making self-raising flour. A. The following are the composi tions of several of these powders in extensive use: 1 57 oz . 2. Bicarbonate soda, $241 / 4 \mathrm{oz}$.; sesquicarb. am monia, $21 / 4$ oz.; starch, 47 oz.; burnt alum, $26 / 2$ oz 3. Bicarbonate soda, 31 oz .; burnt alum, 291/2 $\mathbf{0 z}$.; starch 39 oz. 2. For cementing leather on friction pulle
Good glue is commonly employed, we believe.
(22) G. O. asks how to clear a warehouse of weevil. They live on thegrain in the cracks of the
floor when the house is empty. A. Dalmatian (Per ian) insect powder, when well distributed, does very
(23) B. F. M. asks: What chemicals are sed for taking the solar spectrum in colors? Can you tell me a compound that will turn yellow in daylight, also one that will turn red! A. Photographing in the natural colors has never been accomplished by direct means, although monochromatic prints in several color have been obtained. The results in color photography oy indirect means, attained by Vogel, Vidal, Alfred, and others have been notice Consult some late work on photography and photographic chemistry. See pp. 132 and 133, Vol. 35, Sofentific American.
(24) J. W. asks how phosphor bronze is formed, and how the phosphorus is added to the metal, and how mariy ounces is given to a pound of metal. A. Wrap the phosphorus-about 1-10th of one per cent ing a bell-shaped cavity at the end, beneath the surface of the molten metal (bronze). The phosphorus must be free from moisture, and great
handling it to avoid accident.
(25) R. H. B. writes: A correspondent of the Deirick states that gold was extracted from petro gold; if so, in what quantity? ${ }^{-}$A. According to Mr John Turnbridge, of $/$ Newark, New Jersey, small quan-
tities of gold have been found in petroleum residues. tities of gold have been found in petroleum residues.
See article "Petroleum and Gold," p.377, No. 24, Vol. See article "Petroleum and
39, ScIENTIFIC American.
(26) C. C. asks (1) for the name of the acid or testing gold and silver. A. The acid used with the
ouchstone is pure nitric acid slightly diluted. 2. What is the best material for polishing steel and brass? A. Emery flour and oil are in general use.

COMMUNICATIONS RECEIVED.

 On Collisions at Sea. By W.L. Fish Story. By C. F. L.On War Vessels. By J.L.R. On Panama Ship Railway. By W. E. A On Ice Boats. By L
On Ice Boals. By A. F. B.
[OFFICIAL.]
INDEX OF INVENTIONS for which
Letters Patent of the United States were Granted in the Week Ending
Gratent of the United States

December 2, 1879,
AND EACH BEARING THAT DATE. [Those marked (r) are reissued patents.]

A complete copy of any patent in the annexed list, including both the speciffcations and drawings, or any patent issued for one dollar. In ordering please state the number an Park Row, New York city.

222,243
222,293

Agricultural implement, Neal \& Stroud............. 222,151 C. v. Petraeus222,152, 222,15, Annunciator, pneumatic, C. E. Zindars............. 2 Bale tie. I M. Camp.............
Bed bottom, A. D. Campeli. Belaying device, A. stoddard Bell, door, J. B. Richard... Blank heating furnace, G. H. We.........
Blind fastening, window, N. M. Hutt Bolt extractor, J. McKeever . Hutto Boot and shoe counters, die for shap
Boot treeing machine, J. E. Crisp.. netallic Chsp
S. Ross, Jr.
Bosom board, F

Bosom board, F. M. Wright
ottle stopper, U.
Bracelets, metallic stock for, G. H. Boyce. Bridge gate, automatic draw, W. F. McGregor.
Broom winding machine, C. E. Lipe Broom winding machine, . .
Brush, Wadsworth \& Smith
Buckle, harness, G. D. Moshe
Buidding block, J. Tho
Bung, F. Tuchfärber.
Bung and bush, T. T. Brown
ting sunken vessels, Wardwell
Bushing, wooden, K. C. Gillette.
Button and fastening, J. H. Robertson
Button, boot and shoe, W. S. Boyd, 3d
Button or stud, R. B. Ban
Button, separable, W. Bourke
Cake machine, soft, J. T. Trot
Calculator, W. M. Briggs
Car brake, Sinn \& Stude
Crake, S. P. Tallma
Car brake and starter, T. L. Webster Car starter, A. Lemaire-Douchy
Cars, device for supplying fresh air to, J. B. Coll Cartridge, A. Tillmes
Cartridge capping implement, C. M. Spencer Caster, G. S. Andrews.
Cheese curd sink, H. C. Markham (r) Churn, L. D. Hovey.
Churn dasher, A. A. Wood
ay, etc., machine and process for disintegratin. loth cutting machine, chenille, Havers \& Geach Coffee roaster, J. Gryybowsk
Collar, horse, J. H. Snyder
Coloring matter, green, o. \mathbf{G}.
Cooking utensil, J. McMurra
Cotton scraper, chopper, and dirter, Force \& \mathbf{M} Connell.
Cremation purposes, building for, o. Ernst
Curtain fixture, A. B. Shaw.
ental engine hand piece, R. B. Donalds
Deodorizing commode, D. C. Hartman
errick, steam hoisting, C. C. Lyman.
Desk, school, D. Jackson.
Door check, A. F. Wittich... ...
Draught equalizer, w. T. Burrows.....
Drawer pulls, device for attaching, G. W. Tucke
Drilling machine, O. Smith
Elevator, B. Susser.
Embossed fabrics, manufacture of, F. Walton.
Explosive compound, E. J. Williams.
Eyeglasses, nose clamp for, A. C. Bl
Fanning mill, Be M. . Gilbert
Fare box, J. B. Slawson (r)
Fare box, J. B. Slawson (r).........................
Farm engines, fre box attachment for;
eather renovator, C
Hirearm, revolving, D. B. Wesson........................22, 167 ,
Fruids, preserving and drawing, J. Wol
Fruit and vegetable cutter, T. K. Knap
Fruit and vegetable cutter, T. K. Knapp........... 2222
lining, E. F. Althans et al.
Galvanic and medicated pad, combined, \mathbf{H}. E
Hunter.........................
Hunter.
Game board
Game board, W. Harmon......
Garment hanger, B. England
Garment hanger, B. England
Gas moter, liquid, A. Gateau.
Gas pressuregovernor, M. Lee
Grain binder, w. H. Berry
Grain drill, J. A. Shephard
rain, machine for separating metal from, c.................
Grate bar, Van Patten \& Perry.
Handcuff, R. H. Daley...
Handles of celluloid and similar materials on
lery, etc....................
lery, etc.,. S.
Harness, F. D. Thurman.
Harrow, J. Rogers...
Hat and cap sweat band, T. W. Bracher Hatch closer, J. W. Kohl
Hatchway, elevator, Hatchway, elevator, Murdock \& Beach....
Hay loader and press, combined, J. A. Shull Headers, apparatus for guiding, J. Steves ... Hoe, plantation, S. N. Gragg. .
 Horses, appliance for protecting the fetlock \sin ews of, Lehmann \& Borendt
Hose and pipe coupling, W.J. Stev
Hub, vehicle wheel, A. McKellar...
Hydrocarbon burner, R. S. Roberts
Hydrocarbon burner, R. S. Robertson...............
Ice tongs, pick, and hatchet, combined, W. s. H Inkstand, R. C. Nichols.
Key, H. H. Elwell (r)
Knit fabrics. tubul r, B. L. Stowe
Lampblack, apparatus for making H. B. W. Wing.
Lamp globes, cap for, H. H. Hulbert
Lantern, W. E., J. F., \& E. R. Mason
Lathe, button, A. A. Smith........
Locomotive pilot, F. F. Mortimer
Lyre, C. Kunkel
ing, J. Neumann..
Measuring can, liquid, Fitzgerald \& McIn
Meat, device for salting, T. J. Geale.....
eat mincing machine, steffe \& Knight
edichated beverage, J. G. Holland.
Nower, M. H. Johnston
Nut lock, Jones \& Russ
Oils, apparatus for storing, measuring, and draw-
Paper folding machine, Cole \& Eisenlord
aper, machine for the manufacture of carbon or
222,151

Paper from coniferous trees, making, J. M. Allen. 222 Pillowe frame, frame and holder, J.
Planter and drill Planter and drill, cond, J. L. Reberts .
Planter, corn, G. W. \& F. P. Murphey
Planters, check row dropper attachment for corn

Plow, gang, F. S. Davenport (r).........
Plows, harrow attachment for corn, G. W. \&
Howell...................
Polishing machine, J. Stever .
otassium, apparatus for
rocyanide, H. Bower
rocyanide, H. Bower.........
Printing and other machinery, stopping and r versing mechanism for, W. Scott....
Printing machine, box, P. B. H. Smith. Printing machine, cara, I. R Robbins.
Pruning implement, Cole \& French Puddling vessels, cooling circulation about rosa
ting, W. \& G. H. Sellers ting, W. \& G. H. Selle
Pump, J. R. Cushier
Pump, J. R. Cushier
Pump valve box, J. Watson.
Railway, portcble, J. K. Davis
Railway, rail, , S. Nicholls.
Railway rails, machin
Railway rails, machine for
Jones
Railway switch, J. B. Carey
Railway switch, J. B. Carey.
Railways, deadening noise
Bendix
Rectifying
Rectifying machine, G.
Reel for coiling metal strips, Miner \& Beveland
Refrigerating chamber, etc., G.
 Rendering apparatus, B............... Husbands ...
Roach trap, J. Herschman............. Roach trap, J. Herschman.....
Rope coupling, metal, P. Brady
Ruiing machine, paper. E. W. Blacklall
Saw tooth, inserted, R. H. Osgock
Scales, weighing, L, R. H. Osgood

Scarf, T. J. Flagg Screws, maching

Self-heating iron, S. s. Case

Sewing machine, double chain stitch, J.......... .
Sewingmachine quilting attachment,J.W.Starnes
Sewing machine table, D. Snitjer
Shaft prop, buggy, J. T. Baker...
Shaft prop, buggy, J. T. Baker..............
Sheet metal cans, die for making, J. W. Farrell.. Sheet metal cans,
Shock or jar recorde
Show box, J. Loeb
Sickle holder for grinding machines, L. D. Dana. Sifter, flour, F. G. Ford....
Signal light, C. D. Oatman
Sink outlets, cover for, P. Dowdican.
Sleeve adjuster, s. A. Felt...............
Snap hook, J. Stapleton...
Soldering iron heaters, fre pot for, J. T. . Brown.
Spinning and weaving rooms, electric heat and
Spinning and weaving rooms, electric heat an
vapor governor for, J. M. Bradford Spinning frame, G. E. Taft......... ...
Square, perspective T, E. M. Hamilton.. Staples, machine for making, J. Shellenberger..
Stirrup. L. Pulliam
Stone dressing and cutting machine,
Stone dressing tool, L. C. Gilmore
Stove back, adjustable, P. H. Fellows
Stove leg support, Cutting \& Leland
Stove pipe thimble, C.C. \& F. Campbell.
Stove pipe thimble, C.C. \& F. Campbell.
Supporting platform, W. M. Conger (r)
Supporting platform, w.
Target, ball, J. P. Newbold
Telephone
Telephone, carbon, G. M. Phel
Telephone, magnet, C. Ader
Telephone signal, visible, C. Ader

Phelps
jective for, E. Gundlach ...
Theater appliance, S. Macka
Thill coupling, H . Albers.
Thill coupling, R. R. Murdock
Thrashing machine, J. P. Smith.
Tiles and other articles in in
manufacture of, F. Koskul.
Toy gun, S. C. Washburne
Umbrella tip cup, G. W. McClintoc
Vehicle spring, S. W. Ludlow
Ventilator, T. Simmon
Violin, C. Kreutzer
Violin, C. Kreutzer.
Wagon draught attachment, L. Pullian.
Wagon, dumping, R. B. Sherar..
Washing machine, W. P. Brooks.
Watch case, A. Breese
Water
Water drawing and flitering apparatus for cis
terns, etc.. J. B. Lindsay..
water elevator, E. L. Browning
Water meter, ${ }^{2}$ ' . Moriarty
Water meter, 'T. Moriarty
Water-tight coupling for goose necks, flexible
T.J. McGowan.
T. J. McGowan .
wells, polish rod adjuster for Artesian and othe
O. B. Wickham..... Willow withes, mach

Windmill, T. Dewees
Windmill, s. M. Rittenho
Windmill, H. M. Wood
Windwheel, L. R. Walls

WANTED.-A 60 IN. LATHE, 20FT. BED;
 A 10 IN. $\times 18 \mathrm{nN}$. HORIZONTAL ENGINE;

Dead Stroke Power Hammers are superior to all others for forging and die
work. Over 50 now in use. Manufactured by

PHILIP S. JUSTICE,
North 5th Street, Philadelphia, Pa

HOW TO LEARN SHORT HAND.

Steam Fitters'\& Plumbers' Supplies.

 STURTEVANTS' FAN BLOWERS.

ICE-HOUSE A ND COLD ROOM.-BY R.

BI-EUTPEITDE OF
 CA TR PR IT

 NITELA MAN'F'G Co., Cleveland.

Drivers, Rod Cutters, Blind Stile Borers, adderess and
B. C. DAVIS, Binghamton, N . \mathbf{Y}. A 1 ENGINE FOR SALE.

WAŃTED. - TO BUY OR WORK ON

KNOW THYSELF.

Baker Rotary Pressure Blower.

器(rorcid blast)
Warranted superior to any

WILBRAHAM BROS. 2318 Frankford Are.

Driven or Tube Weils

To Electro-Platers.

$B^{\text {ATTERIES,CHEMICALS, AND MATE }}$

Pond's Tools,

HARDWOOD LUMBER VENEFRSS.
NEW YORK BELTING AND PACKING COMP'Y. \mathbb{O} The Oldest and Largest Manufacturers of the original \mathbb{O} EMERYWHEEIS

THE DRIVEN WELL.

 PRINCIPLES OF HORSE SHOEING.-

 Wood-Working Machinery,

-atent GRISCOM \& CO'S

Grain Speculation!

$\$ 10$ to $\$ 1000 \left\lvert\, \begin{aligned} & \text { Invested in Wall St. Stocks makes } \\ & \text { fortueses every month. Book sent } \\ & \text { free explaining everything }\end{aligned}\right.$ ortunes every month. Book sent
ree explaining everything.
O., Bankers, 7 Wall St., New York.
 For breaking hard and brittle substances to any size. Endorsed by the leading Mining
Manufacturing, and Railroad corporations in the United States and Foreign Countries
 Manufacturing, and Railrond corporations in the United States and Foreign Count
First Premium wherever exhibited, and hundreds of testimonials of the highest character.
Indispensable for making best McAdam Roads, Ballasting of Railroads, Crushing the hard Indispensable
Oes, Stone for Co Address BLakE CRUSHER C0., New Haven, Conn.

Sman Tools ofall kinds; GEAAR WHEELLS, parts of
sal , Boston, Mass.
ice ponds; amount of ice required, etc., and full direc-

 Paris, . , 1878 Australia,1877 Phila., , . 1876 Santiago, 1875 Vienna, . 1873
J. A. FAY \& CO'S WOOD WORKING MACHINERY

 cash prices. Send for Circulars.
J. A. FAY \& CO., Cincinnati, Ohio, U. S. A.

TOHMRRWHITTLFY\&CO
 sippers' discounts.

ICE AND ICE HOUSES-HOW TO MAKE
 Personally appeared before me, George A. Payne,
of 14 West
and, on being Sthe street, New York city
duty
 mot fivit
$\left.\begin{array}{c}\text { State of NEW York, } \\ \text { City and County of New York, }\end{array}\right\}$ ss. Geo. A. Payne.

Sworn before me this 22d September, 1879. B. Nones. Notary Public, ${ }_{91}$ Duane Street, N. \mathbf{Y} 1 Thatcher, Belmont \& Co. accept subscribers on their

THE HEKTOGRAPH. Gearlliliding withon Pathoms Scott's Gear Moulding Machiues, AIR COMPRESSORS \& ROCK DRILLS. Delamater Iron Works, Boiler Makers, Engine Builders, FOOT OF W. 13th ST., North River, NEW YORK. ESTABLISHED 1841.
LADIES' JEWELRY BOXES

$\underset{\text { PRICE, }}{ } \quad \mathbf{~} 6, \$ 8, \$ 10$, and $\$ 12$.

Mill Stones and Corn Mills.

To Business Men.

tising medium cannot be overestimated. Its circulation

 is ten times greater than that of any similar journal ries, and is read in all the principal libraries and reading rooms of the world. A business man wants something more than to see his advertisement in a printed news paper. He wants circulation If it is worth 25 cents peline to advertise in a paper of three thousand circula tion, it is worth $\$ 4$ per line to advertise in one of fortyeight thousand.
The circulation of the Scientific American is guar-
anteed to exceed Fifty Thousand every week. For advertising rates see top of first colum page, or address MUNN Co., Publishers,
$3 \boldsymbol{y}$ Park Row, New York.

The attention of Arehtects, Enginoers, ran Bullders
is called to the reat deelletin Pricher

Shafts, Pillegs, Iangers, Eic.

Liquid Paints, Roofing, Boiler Coverings,

 COLCMBIa bicYcLe.

 STEAM PUMPS. HENRY R. WORTHINGTON,
 WATER Works-Compound, Condensing or Non-C
densing. Used in over 100 Water-Works Stations. Price list issued Jan. 1, 1879, with a reduction exceed-
ing 30 per cent.

MAx
Holly's Improved Water Works.

WATCHMAN'S IMPROVED

 Bocinive Pirvi diversi kicen

COENTENNIAL AND PARIS MEDALS. VOLNEY W. New and Improved Patterns.". GELATINE PHOTO PROCESS. practical demonstration of the mode of working the
gelatinobromide proces. By D. Van Monckhoven
Treating of the orgization of the dark

actSHEIPARD'S CELEBRATED $\$ 50$ Screw Cutting Foot Lathe. Eotand Fower hatan pin rease

 THE PICTET
ARTIFICIAL ICE COMPANF, Limited, Ice Machines to make from 20 pounds per hour to 50 tons
per day, at 36 Cortlandt St., New York. F. O. Box 3083 . STEAM For SMAL BATS. -RE

J. LLOYD HAIGH,

For Biastinc. Site gilivele Eenomical. HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.
W. b. Firanflin,V. Pres't. J. M. allen, Pres't. J. B. PIĖRCE, Sec'y.

PETROLEUM AND ITS EXAMINATION $-{ }^{\text {By }}$ A. Bourgougnan. A deaserption, read before th

A. J. WILKINSON \& CO.,

0Machinists'Tools CUF BRASS GEARS.
$\begin{gathered}\text { Estimates promply Furnished. } \\ \text { Catalogues Mailed FREE. }\end{gathered}$
 LOOSE PULLEYS.
Cus=msw

ICE-HOUSE AND REFRIGERATOR.

"The 1876 Injector."

\$10,000. Mailed Free for 35 Cts.
SAFETY LAMP:
 AEENTS

PERFECT

NEWSPAPER FILE
The Koch Patent File, for preserring newspapers,
 Sery on who
Address

MUNN \& CO.,

THE TTANITE CO., STROUISBURG, PA.

FRIEDMAND'S PATENT

EJECTORS

Herating Water and Conreving Linquids from Mines, Quarries, Ponds, Rivers, Wells, Wheel Pits;
for use in R. . Water stations, Factories, etc. They Yre splendidily adapted for conveying Iiquids in Breweries, Distilleries, Sugar Refneries. Paper Mills, , Panner-
ies, chemical Works etc. Send for iluns. catalogue to

NATHAN \& DREYFUS, Sole Manufacturers, NEW YORK. Thelon\$3 Printing Press
Lathes, Planers, Shapers

HAKRRIN-CORLINS ENGINE

puriuplirg
 At10w rices Eargesthssortment. A. AF:

1880. 1880. 1880.

THIRTY-FIFTH YEAR.
VOLUME XLII. NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN beg
to announce that on the Third day of January, 1880 a to announce that on the Third day of January, 1880 , a
new volume will be commencee. It will continue to be new volume will be commenced. It whi contrue to be
the aim of the pubbishersto render the contents of the
new volume as attractive and useful as any of its new volume as
predecessors.

Only $\$ 3.20$ a Year including Postage. Weekly.

This widely circulated and splendidyly illustrated
paper is publ 'ed weekly. Every number contains sixpaper is pubr ' ed weekly. Every number contains six-
teen pages ot useful information, and a large number of tern pages of useful information, and a a large number of
oriminal engravingso of new invention and
represeoveries, representing Engineering Works, Steam Machicurs,
New Inventions, Noveltie in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Notural tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Realers find in THe SCIENTIFIC
AMERICAN a popular resume of the best scientific in.
formation of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind, this journal affords a constant supply of instructive
reading. It is promotive of knowledge and progress in Terms of Subscription.-One copy of THE ScIEN, postage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty
cents by the publishers; six months, $\$ 1.60$; three months, $\$ 1.00$.
Clubs.-One extra copy of The Scientific Ameriat $\$ 3.20$ each; additional copies at same proportionate
rate. Postage prep rate. Postage prepaid.
One copy of The Scientific American and one copy
of The Scientific American Supplement will be sent of The SIIENTIFIC AMERICAN SUPPLEMENT will be sent for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dollars by the publishers.
The safest way to remit is by Posta Order, Draft, or
Express. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes
astray, but is at the sender's risk. Address all letters astray, but is at the sender's risk. Address all lette
and make all orders, drafts, etc., payable to

MUNN \& CO.,

37 Park Row, New York.
To Foreign Subscribers.-Under the facilities of
the Postal Union, the Scientipic American is now sent bypost airect from New York, with regularity,to subscribere in Great Britain. India, Australia, and all other
British colonies; to France, Austria, Belgium, Germany, British colonies; to France, Austria, Belgium, Germany,
Russia, and all other European States; Japan, Brazil, Mexico, and all States of Central and South America.
Terms, when sent to foreign countries, Canada excepted, \$4, gold, for SCIENTIFIC AMERICAN, 1 year; $\$ 9$, gold, for
both SCIENTIFIC AMERICAN and SUPPLEMENT for both Scientific American and Suplement for 1
year. This includes postage, which wé pay. Remit bs postal order or draft to order of Munn \& Co., 37 Pars
Row, New York.

