
a WEEKly Jourval of practical inforyation, art, science, mechanics, chemistry and manufactures.

[^0]

Srientific Gmericam.

ESTABLISHED 1845
MUNN \& CO., Editors and Proprietors.
pUblished weekiy at
NO. 3 ' 7 PARK ROW, NEW YORK.
o. D. MUNN.

TERMS FOR THE SCIENTIFIC AMERICAN

One copy, one year, postage included...
One copy, six months, postage included
one copy, six months, postage included 1860 Clubs.-One extra copy of The ScIEntific American will be supplied
gratis for every club of five subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.
Remit by postal order.
Remit by postal order. Address $\begin{gathered}\text { MUNN \& CO., } 37 \text { Park Row, New York. }\end{gathered}$ To Advertisers. - The regular circulation of the Scientific American is now Fifty Thousand Cop
publishers anticipate a still larger circulation.

The Scientific American Supplement

is a distinct paper from the Scientific American. THE SUPPLEMENT s issued weekly. Every number contains 16 octavo pages, with handsome
cover. nuiform in size with ScIENTIFIC AMERICAN. Terms of subscription cover. uniform in size with SCIENTIFIC AMERICAN. Terms of subscription
for SUPPLEM F , 85.00 a year, postage paid, to subscribers. Single copies 10 cents. Sold by all news dealers throughout the country. Combined Rates. - The Scientific American and Supplempat wil be sent for one year, postage tree, on receipt of se papers to one address or different addresses, as desired.
The safest way. to remit is by draft, postal order, or registered letter
Address MUNN \& CO., 37 Park Row, N. Y.

Scientific American Export Edition.

NEW YORK, SATURDAY, DECEMBER 6, 1879.
Contents.
(Illustrated articles are marked with an asterisi.)

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT INO. 205.

For the Week ending December 6, 1879.
Price 10 cents. For sale by all newsdealers.
engineering and mechanics.-Shafting, Couplings, and Hang ers. 9 figures.
Machinery fr
Machinery from an Insurance Point of View. By A. J. Bates. (Con-
tinued from No. 204
How to Prevent t
for the rapid spread of fire through buildings.
Principles of Horseshoeing ING, V.S., London.
Shingle Manufacture
Advantages of Cumberland, Maryland, as a Manufacturing Center.
II. MINING AND METALLURGY.-The Lexington Oil Belt, San
County, California. Recent developments. Promising wells. County, California. Recent developments. Promising wells.
The Sutro T'unnel. An address before the Bullion Club, by the
III. TECHNOLOGY AND CHEMISTRY.-Bracewell's Improved Bleach ing Kier. 2 fgures.
Wood Stains.

Stains.
On Gelatino-Bromide of Silver. By D. Van Monckioven.
Heliotypic Printing Plates. How prepared.
A New Quantitative Analytical Method of
Prof. A. Classen's process.
Turkey Red Oil. By G. Stein.
Determining Sulphur. By Albert Colson.
Compound Nature of Phosphorus. By N. Lockyer
Spongy Silver.
Fast scarlet wi
ELECTRICITY
ures. 1. The friction machine. 2 . The di-electric induction apparatus
e figThe Most Powerful Telescope in Existence. By E. N Eison.

V. MEDICINe and hygiene.-Curious Case of Loss of Personal Iden| t'ty |
| :--- |
| The |

Properties. By C. T. Kingzert.
Neuralgia Cured by Nerve Stretchi
Neuralgia
Anti-fat.
vi. natural history.-The Orang-Outang of the Garden of Acclimatization, Paris. 1 full page illustration. South African Baboons. Notesby H. N. Moseriey.
in Borneo-The orang's fighting propensities.-The orang-outangs tion.
The
The Homing Instinct in Pigeons.
Phylloxera.
Hedge Hog and Vipe
VII.-ARCH.EOLOG Y.-New Explorations of the Ruins at Palenque, Mex

THE TRADE MARK DECISION

The three cases of the United States against Emil Steffens, Adolph Witteman, and W. W. Johnson-all prosecutions for violations of the trade mark laws embodied in sec tions 4,937 to 4,947 of the Revised Statutes-were decided by Justice Miller in the United States Supreme Court, at Washington, November 17. The lower courts had been divided in opinion as to the constitutional power of Con gress to legislate on this subject. It was maintained by counsel who sought an affirmative answer to the question that two clauses in the Federal Constitution furnish suff cient warrant for the legislation in dispute, namely, the 8th clause of section 8 , article 1, which provides that Congress shall have power to pass laws to promote the progress of science and the useful arts by securing for limited times to authors and inventors the exclusive right to their inventions and discoveries; and the third clause of the same section, empowering Congress to regulate commerce between the States and with foreign nations. The court declared the attempt to identify trade marks with works of authorship and invention to be surrounded by insurmountable difficul ties. If the symbol, however plain, simple, old, or wellknown, had been first applied by a claimant as his distinct ive trade mark, he could by registrations secure the right to its exclusive use. While such legislation might be a judicious aid to common law on the subject of trade marks, and within the competency of legislatures whose general owners embraced that class of subjects, the court was unable to find any such power in the constitutional provision concerning authors and inventors.
With regard to the argument that a trade mark is used to identify a particular class or quality of goods, and that as so used it is a valuable aid or instrument of commerce, and comes within the scope of the constitutional provison cited, the court held that the clause quoted does not bring within the control of Congress every species of property which is the subject of commerce, or which is used in Virginia (Wallace vs. Louisiana, 8 How. 8 , Paus did not limit the use of trade marks to inter-state or inter national commerce, as it should do if based on the constitution or provision quoted in its support. If it referred to all trade and to commerce between all points, it was obviously an exercise of power not conferred upon Congress. That this was the purpose of the legislation in question seemed, in the opinion of the court, to be evident. It contemplated the establishment of a universal system of trade mark registration for the benefit of all who had already used a trade mark, or who wished to adopt one without regard to the character of the trade to which it was to be applied or to the locality of owner. Such legislation was, in the opinion of the court, in the excess of Congressional power. I had been urged that if Congress had power to regulate trade marks used in commerce with other nations and
among the several States, its legislation, so far as it related to that class of cases, should be held valid; but to this the court held two objections: First, that there was nothing to show that the trade marks in the three causes under con sideration were used in that kind of commerce; and, second, that it was not within judicial province to give the words used by Congress a narrower meaning than they were mani festly intended to bear. 'To do so would be virtually to make a law which would be only partial in its operation, and which would complicate rights which parties would hold in some instances under acts of Congress and in others under State law. The question of the treaty-making power of the General Government over trade marks, and the duty of Congress to pass any laws necessary to carry such treaties into effect, was left untouched. The only question in the three cases under review was whether the statutes of 1870 and 1876 could be upheld in whole or in part as valid and constitutional, and that the court answered in the negative.
From this decision many have hastily inferred that no protection remains for the property rights of merchants and manufacturers in trade marks, and no means of preventing the markets from being flooded with spurious wares bearing well-known and respected labels. But such is not the case Those who have been using trade marks have acquired a common law right to them; and in case they are counterfeited their owners can at once bring suit at equity to restrain and to recover damages in the courts of any and
every State where the infringement occurs; or in the United every State where the infringement occurs; or in the Unted States cou
ent States.
The advantages of the laws which have been deciared un constitutional lay simply in their enabling all suits for infringements of trade marks to be brought in United States courts, and in providing for a formal registration of trade marks by the Patent Office, the certificate of which was accepted in all the courts of the country as prima facie evidence of ownership. Another advantage of such regis tration arose from the facility it afforded for determining whether a desired trade mark had been previously adopted by another, thus preventing unintentional infringements. It is proper to add that this decision does not in any way affect the protection of trade labels by copyright.
The Patent Office will continue to register trade marks as heretofore, notwithstanding the unconstitutionality of the laws upon which such registration has been based, trusting, doubtless, to prompt action on the part of Congress to furnish the necessary legislation for the permanent continu-
ance of the work. Should this fail, Congress will no doubt provide by appropriate legislation the means for returning
the fees received for the 8,000 or more trade marks thus fa registered.

A WESTERN TOW-BOAT

The Pittsburg coal firm of W. H. Brown \& Co. have just completed and added to their fleet of tow-boats the Harry Brown, a typical Western river tow-boat, being the most powerful and complete high pressure craft of its kind afloat. The peculiar and hazardous conditions which attend the safe delivery at New Orleans of a "tow" (from 200,000 to 500,000 bushels) of Pittsburg coal cannot be fully shown here, no are they likely to be clearly comprehended by any but river men. The first 500 miles below Pittsburg comprises a suc cession of tortuous windings, of shoals and "riffles," and bars and counter-currents. To successfully run this gaunt let with a cumbersome, deeply laden tow, containing tens of thousands of tons of coal, boats of the Harry Brown type are required, with light draught and enormous steering as well as propelling power. Their pilots must have absolute control over a rigid mass that often takes up all the available water in the channel, both as to width and depth. To render this possible the Western river man places his boat behind his fleet of coal-laden boats and barges, and by means of great hawsers binds the whole mass of a score of craft into a solid " tow."

On the Ohio and Mississippi rivers the Hudson River or canal system of towage would be utterly useless. Hence in the Harry Brown's construction features unintelligible to Eastern boatmen may be noted. Her dimensions are as follows: Length on deck, 210 feet; beam, 42 feet, over all, 52 feet; hold, $51 / 2$ feet. Engines, one pair, high pressure. 26 and $\frac{3}{16}$ diameter of cylinders, 10 feet stroke. Seven steel boilers, 40 inches diameter and 28 feet long, furnish the necessary steam, at 170 pounds pressure, test pressure of boilers being 260 pounds hydraulic. An auxiliary or "nigger" boiler, 38 inches by 10 feet, supplies steam for engines operating capstans, etc. The wheel, located at the stern of the boat, is 26 feet 4 inches in diameter, length of buckets, 32 feet, each bucket or paddle being 32 inches in width. The wheel shaft, upon which the greatest strain is brought to bear, and upon which the safety of boat and tow depends, is a special feature of the Harry Brown, being the first wrought steel shaft ever imported and used upon a river tow-boat. It is of crucible steel, from the works of Krupp at Essen, and weighs alone 20,600 pounds; with flanges, etc. 40,000 pounds; and cost 13 cents per pound delivered in New York. Its dimensions are: Length, 36 feet 7 inches diameter at journals, 13 inches; in center, 15 inches. Rud ders, four in number: one pair, balanced, 25 feet long; one pair, wing, $141 / 2$ feet long; actuated by steering wheel, $121 / 2$ feet in diameter, with 16 inch barrel.
Ready for business the Brown draws only 3 feet 4 inches forward and 3 feet aft, a great desideratum, enabling her to return to port during a season of low water. In service, and to maintain steam at 170 pounds, the boilers will evaporate 5,000 gallons of water per hour, and the engines evolve 1,750 horse power. This boat, with a favorable stage of water-9 to 12 feet at Pittsburg-is expected to take to New Orleans and other Southern ports from 28 to 30 loaded coal boats, say 600,000 bushels, or the total output of 6 acres of a $41 / 2$ foot vein of Pittsburg coal. Such a tow measures 850 by 200 feet, and reduced to tons of 2,000 pounds, contains 22,800 tons. A loaded coal boat draws from $71 / 2$ to 8 feet, a barge from 6 to 7 feet. The former's load is 23,000 to 25,000 bushels, the latter 12,000 to 13,000 bushels.

In the Harry Brown is embodied every feature that long experience could suggest or money procure to make her the model of her class. At present prices for iron, etc., she could scarcely be built for $\$ 60,000$, though her actual cost was $\$ 50,000$.

the great gas well and carbon factory at MURRAYSVILLE, PA.

About a year ago, in boring for oil at Murraysville, near Pittsburg, Pa., the boring tools tapped an extraordinary vein of natural gas. The flow was estimated at about 50,000 cubic feet per hour. Recent measurements show that instead of decreasing, the present flow is fully 10,000 feet per hour greater than the first estimate, while the pressure at the mouth of the well is 90 pounds per square inch. This enor mous quantity of natural fuel has, up to this time, been mostly wasted, but will soon be utilized for the manufacture of carbon black, or " lamp" black, as it is more commonly called.
A Pittsburg firm, Messrs. Sherriff \& Hazely, are at work upon a contract for the machinery and fittings of what will probably be the largest carbon black factory in the world. The appliances for collecting the soot from the Murraysville gas are the following: Near the well is erected a frame building, 300 by 175 feet, and into it the gas is led in four parallel lengths of 250 feet each, of 2 inch gas pipe. Along the sides of these are fitted short branches of $1 / 2$ gas pipe, terminating in a slight upward curve and tipped with ordinary gas burners of 6 foot per hour capacity. Above these burners, at a distance of 10 inches, are placed a series of cast iron plates, contlguous and forming a smooth surface whereon the carbon black is deposited. A small car traveling on rails laid between burners and plates, and furnished with a scraping device, plies forward and back every ten minutes during the twenty-four hours. This carriage is propelled by stean
power, operating through wire rope and suitable gearing, ever, they contained different proportions. In other words, drums, etc. The smoke or carbon black is scraped into pans hung upon the car, and these are dumped at each end of the route into receptacles, which are in turn emptied and deposited in the purifying and packing house. After simply removing cinders, etc., by passing through sieves, the soot is ready for the market. The daily product of this plant will be $1 / 2$ pound carbon black per burner, i.e., 2,000 pounds, there being 4,000 burners. Another plant of 4,000 burners is to be erected, the 8,000 burners to turn out two tons of carbon black daily. There will then still be 12,000 cubic feet of gas go to waste hourly, sufficient to light a good sized town. The owners of the Murraysville gas well refused $\$ 20,000$ for it from the Edgar Thomson Steel Works, of Pittsburg, who wanted to connect the well with their works by a gas main, wanted to connect the well
The phenomenon of an invisible gaseous substance issuing from the earth made visible, condensed into solid form, and packed up for market is strikingly illustrated in this establishment. The gas as it issues from the ground is unseen, but a given volume of it is found by chemical analysis to consist approximately (we do not mean to say absolutely and exactly) of twenty-four parts by weight of carbon and four parts of hydrogen; in other words, a quantity of the gas that weighs 28 pounds is made up of 24 pounds of carbon and 4 pounds of hydrogen. This hydrogen seems to have the power of imprisoning and concealing the carbon from human view. But carbon is carbon, whether in this gas or existing in the carbonic acid that gives pungency and effervescence to the soda water we drink, or in the lamp flame imparting its brilliancy, or in the sparkling diamond, the hardest of substances and the purest form of carbon.
The carbon that comes up in the gas well is rendered visible by separating the hydrogen from it, which is done by the heat of the flame. The hydrogen contained in the gas is burned up by uniting with the oxygen of the air, but only a portion of the carbon is burned; the unconsumed portion of the carbon, liberated by the burning of its hydrogen, rises up against the plates, where its sticks fast until scraped off as described.

NEW YORK ACADEMY OF SCIENCES.

The Chemical Section of the New York Academy of Sciences met Monday, Nov. 9, Prof. Newberry in the chair. Mr. Kunz exhibited a specimen of fluorspar, one half of which was of an amethyst tint, and which had been fash ioned into a rude ornament. It was found near Elizabeth town, Harden county, Ill., where fluorspar occurs in immense deposits.

He also exhibited a rock crystal pitcher of exquisite work manship. It was made of an unusually large piece of crystal, and is without a flaw. Messrs. Tiffany \& Co., to whom it belongs, value it at about six hundred dollars.
The paper announced for the evening was on the ADULTERATION OF FOOD
by Prof. A. R. Leeds, of the Stevens Institute of Tech nology, who had undertaken the investigation of a large number of articles of domestic consumption as a part of the work devolving upon him by his connection with the New Jersey Board of Health.
Prof. Leeds prefaced his remarks by the reassuring state ment that many of the fears awakened in the public mind by the discussions in the newspapers concerning the deleterious or even poisonous character of various substances said to be used in the adulteration of many articles of food are entirely groundless, and that the most searching analyses in his own laboratory failed in nearly all cases to reveal their presence, although the articles tested were for the most part purchased at the meanest shops, whose custom consisted of the poorest class of the community. The adulterations and used for the purpose of increasing the weight or bulk of the articles sold. Such adulteration must of course be branded as fraudulent; but while it is an offense against public morality, it is not one against public health. The following are some of the articles examined.
It has been objected to by some that bread is adulterate with potatoes, but this addition, so far from being injurious, actually improves the quality of the bread. A few samples of bread contained very small quantities of alum, said to be used for the purpose of making it whiter and lighter. Some contend that a very little alum is not injurious because it is rendered inert by the phosphate of lime contained in the flour, and also by the acids of the gastric juice. Not the slightest trace of copper was revealed in the bread examined by the most searching methods of analysis. Saleratus wa found in nearly all cases to consist, as it should, of perfectly pure bicarbonate of soda; but cream of tartar was found to
be adulterated in some cases as much as sixty per cent. with be adulterated in some cases as much as sixty per cent. with terra alba. Baking powders, which should consist of bicar bonate of soda and cream of tartar in suitable proportions, kept from combination by the admixture of a little starch powder, were found to vary greatly in the amount of their effective constituents. All the sugars examined were found to be perfectly free from all injurious substances, while the cheaper grades of sirups contained considerable glucose, substance much inferior in sweetening power to cane sugar No trace of strychnine, cocculus indicus, or other poison popularly supposed to be used in the manufacture of liquors, beers, etc., were discovered. No sulphuric, nitric, or hydro chloric acids were found in vinegar. All the samples exam ined derived their activity from acetic acid, of which, how

some of them were more or less diluted with water. None

 of the samples of milk examined were found to contain any more serious adulterant than water. A diligent search was made to find brightly colored cucumbers whose tint would seem to indicate that copper had been used to make them more attractive; in none of them, however, was even the faintest trace of copper found to be present. Canned goods were found to be free from all deleterious substances. Spices procured from various sources differed greatly in strength, and all contained foreign substances increasing their bulk and diluting their pungency. Different samples of teas examined chemically and under the microscope revealed the fact that they were adulterated by leaves of other plants to a very great extent. Some of the cheapest kinds, selling (say) for 35 cents a pound, contained no tea leaves whatever. Candies were found to be much more free from injurious substances than the public has been led to believe. Many of them contained a large admixture of glucose, but the coloring matters used were comparatively harmless. In some of them aniline colors were used, which, although poisonous, cannot be fairly so-called in the very minute quantities neces sary to color candy.Prof. Leeds also examined green wall papers for arsenic, and exhibited several tubes containing arsenic extracted from them. These papers must be condemned as highly injurious, especially as the arsenic is but loosely applied to the surface and is easily diffused through the air, whence it finds its way into the lungs. One specimen of arsenic shown was extracted,
tree candle.

ree candle. He concl

He concluded his paper by remarking that three things were necessary to keep the practice of adulteration in check a strong public sentiment kept aroused by the public press the enactment of stringent laws; and the appointment of competent persons to execute them.
Mr. Kunz remarked that a firm in New York city made a fortune by selling cocoanut shells to the manufacturers of spices, who ground them up to increase the bulk of thei products.

Capt. Blake stated that it was perfectly impossible to buy pure tea at 35 and 50 cents a pound, seeing that a good article costs $\$ 1$ a pound at Fouchow.
C. F. K.

The New York Academy of Sciences met Monday even ing, November 17, President Newberry in the chair. A large number of minerals was exhibited, among which a
rough diamond from Brazil and a diamond crystal from South Africa attracted much attention. They were shown by Mr. Kunz, expert in gems at Tiffany \& Co.'s. The first paper of the evening was on some

recently discovered caves,

by Prof. Newberry. A great many caves having been dis covered in this country within the last few years, it may not be wholly devoid of interest to those who have not made them the subject of special study, to describe the method in which they were formed. An excellent illustration is furnished by the triangular plateau of Central Kentucky, which, like all the formations abounding in caves, consists chiefly of limestone rock. This rock, by its numerous fissures and joints, as well as by its solubility in water charged with car bonic acid, is peculiarly liable to be attacked by the action of rain water, which always contains a small percentage of carbonic acid. The surface of this plateau is always dry and no rivulet or brook is found upon it. The rain almost immediately finds its way to the underground channels which previous rains have hollowed out, and continues the work of excavation. At first the natural joints or seams of the rock are widened into fissures, and then, where some portions are more soluble than others, these fissures are further hollowed out into caves, some of them twenty and thirty and even more feet long, whose ceilings and floors are adorned with beautiful stalactites and stalagmites de posited from solution as the water containing carbonate of lime slowly filters in and evaporates. In this way immens tracts of country, where limestone is the principal forma-
tion, are literally honeycombed with subterranean caves. The Mammoth Cave itself is a member of such a system of caves. In many cases, especially in the region of the Upper
Missouri, and between the Rocky Mountains and the Sierra Nevada, the same volcanic action that upheaved the lime stone also brought up from below springs containing metal lic substances in solution. These substances were then de posited in the fissures of the rock and also on the walls and floors of the caves. The most common are ores of iron such as limonite, and of lead, such as galena. Many forunes have been made and lost again by those who made it heir business to explore these limestone regions for caves containing lead. The method followed is that of simply sinking wells at intervals and examining the excavated min erals. In this connection Dr. Newberry told an amusing story of an enterprising individual who had spent several fortunes acquired in this way. When at length his purse was nearly exhausted, he spent his time driving around the country to examine the wells dug by others in the hope that his superior experience would enable him to recognize signs He suineral deposits which had escaped the eyes of others He succeeded in purchasing an unpromising looking well for a hundred dollars, and, upon exploring it, he found sufficient indications to warrant him in buying up considerable
land around. When he had established his title, he descended his well alone to continue his search. To his grea surprise, he struck a passageway leading into a cave that
ontained thousands of tons of lead ore. He jumped down into it, stuck his candle into the sand, and began to reflec how he could apply his new fortune to a better purpose than his former ones. His pleasant reverie was, however, brough to a sudden close. His last candle went out, and he was lef in darkness so dense that he could not find the hole through which he had entered. After many fruitless attempts he finally thought of the following very sensible method. As he tried each spot along the walls of the cave by raising his pickax above his head and feeling his way with it, he marked the place with a stone. He finally regained the upper re gions hungry and faint, after an imprisonment of forty eight hours. Notwithstanding his good resolutions, th new fortune did not last much longer than the old ones
The caves found between the Rocky Mountains and the Sierra Nevada, in the region of the lost mountains, so-called because short mountain chains rise there at intervals from a perfectly level surface, are distinguished by the fact that they contain the precious metals associated with iron and lead: gold with iron pyrites and silver with galena. The celebrated Emma mine and the Eureka are examples of this kind of deposit. The fluctuations in the value of mining stocks of this kind depend upon the beautiful uncertainty as to the continuity of the deposit. It may "pinch out"that is, become so insignificant at any time that it will no pay to work any longer; and then again it is just as likely that new openings into rich deposits may be found.
The next paper was on a new proof of the

SUbSIDENCE OF OUR COAST,

by Prof. G. S. Martin. He exhibited specimens of peat that had been washed ashore at Long Island. They were simila to those found by Scudder on the Nantucket beach, and by Dall at Nahant. Their appearance indicated that they had been burrowed into to such an extent as to cause them to be broken by the action of the waves and detached from ancien peat bogs, whose edges crop out along the coast under the surface of the sea. These bogs, which belong to the period f glacial, or perhaps to that of terrace, elevation, thus fur nish an additional evidence of the subsidence of portions of our coast extending through long periods of time.
C. F. K.

The American Institute of A rchitects.

The thirteenth annual convention of the American Insti tute of Architects began in this city, Nov. 19, nearly all the chapters being represented. In his annual address, President Walter spoke very hopefully of the influence exerted by the rganization in raising public opinion to a higher level in all atters pertaining to architecture. Works of recent date ex hibit, he said, a freshness in their architectural handling that seems to indicate the advent of a new era in the art of design. The manifest tendency of architects to break away from the rammels of conventional rules, and to make style subservien o the spirit of the age, indicates a progress in the develop ment of independent thoughthitherto unknown. Architec ture, both in this country and in Europe, is obviously in a transition state. What may be the result remains to be seen; if, however, architects are careful to design their works on true æsthetic principles and in conformity with the sci ence which underlies the art, it is not likely to be regrette hat they show a disposition to do their own thinking Classic forms and combinations are everywhere yielding to more ornate compositions bearing the names of fashions of building having no trace whatever of paternity, either ancient or modern. Particular stress was laid upon the claims of domestic architecture, particularly with reference to improvements in processes for warming and ventilating dwelling houses, the disposition of sewer gas, drainage, and other sanitary questions.

THE NATIONAL PUBLIC HEALTH ASSOCIATION

The annual convention of the American Public Health Association took place at Nashville, Tennessee, Nov. 18. Over two hundred members were present at the first session including nearly all the leading sanitarians of the country The programme announced some weeks since in this pape contained many subjects of interest and importance to the whole country; and there is reason to expect large public benefits to flow from the united attention brought to bear upon the great questions of public sanitation treated in the numerous papers and discussed by the members.

The description of Ward's steam generator, on page 323 of current volume, states that the generator furnishes steam to a single engine. Mr. Ward informs us that it supplies steam for two engines, $93 / 4$ cylinders, 36 inch stroke, making 35 revolutions per minute

A Ban on Inflammable Goods.
In consequence of recent disclosures the directors of the North German Lloyd's Steamship Company have decided o refuse transportation on their vessels to the class of heavy French silks which are so weighted with chemicals and oils as to cause danger of spontaneous combustion.

A Handsome Tribute.-The Lords of the British Ad miralty bave given orders for the making of a handsom piece of furniture from the timbers of the old Arctic ex ploring ship Resolute for presentation to Mrs. Grinnell, the widow of the late Henry Grinnell, of New York, who fitted out at his own expense two expeditions for the search of Sir John Franklin

NEW TRAMWAY MOTOR.

The accompanying engravings represent a very successful little motor used in propelling tramway cars. In the month of March, 1877, sixty-five locomotives of this style were in use in Strasbourg, Hamburg, Geneva, Paris, Milan, Rome, Madrid, and Turin. It is stated that trials made with this and other locomotives in Berlin, Cologne, Porte, etc. resulted in a victory for the Brown locomotive.

The movement of this machine is very quiet and regular The movement of this machine is very quiet and regular

Where did the Israelites Cross the Red Sea ? This query, some explorer has suggested, may be solved

Proposed River between Manchester and Liverpool A meeting has been held in Manchester for the purpose of Christian at W en four theories prevaluding to the subject, says that three or tion of a tidal navigation for seagoing steamers between The Arabs say several miles spot crossing wis promontory of Atakah and Ayan Musa, where the Red Sea and stated that the length of the channel between Manches is about ten miles wide. This view is strengthened by the ter and Liverpool would be about 36 miles. The minimum Bible reference to the walls of water on both sides of the width of the navigation would be 200 feet, and the minimum mechanism is simple, and the locomotive can be attended army, but, as Dr. Schaff says, "it is impossible that six hun- depth at low water spring tides would be 10 feet, or abou to by a single per son. The exhaust makes little noise, in fact is hardly perceptible. The gentleness of the action is due to the transmission of the motion by the lever, A which gives a A, wach a perfect equilibrium to the moving parts. There are controlling levers at both ends of the locomotive, so that in whatever direction the train moves the engineer can always sit in front. The fire box is furThe fire box is fur nished with an clined grate, upon which the descent of the coal is very regular. A single charge of coal lasts about one hour.
The boiler is of
the style generally used in small.locomotives, but the vertical part is so large that the level of the water can vary about nineteen and a half inches, which corresponds to about seventy-five gallons. The boiler is filled at the station, and the engineer need not waste time during the trip to refill the boiler, and it is therefore possible for a single person to run the engine, as has been proved at Strasbourg. The distribution of the steam in the cylinders is obtained by means of peculiar mechanism which receives its motion directly from the crank. By this means the expansion can be regulated to any desired degree. With a boiler pressure of 150 lb ., and Beziers, where and Beziers, where the grade isfromone to one and a quarter inches, these machines draw four cars with 200 to 250 passengers. In order to diminish the noise of the exhaust steam it is allowed to pass into a vessel situated between the cylinders and containing water. The pressure in this vessel is almost constant, which causes the steam to escape continuously and with noise. The chimney consists of two sheet iron cylinders, between which there is a packing there is a packing of mineral wool, which prevents all
vibration. vibration.
The steam passes from the vessel between the cylinders into a series of short tubes placed in the chimney. At every stroke of the piston stroke of the pisto a good draught is obtained, which superheats the smoke and gas, and makes it invisible at the top of the chimney. If the normal atmospheric temperature is higher than
50°, this method will answer, but in winter a surface condenser, over which the steam passes after leaving the cylinder, is required. The axle boxes are constructed so that the smallest curves can be turned without difficulty.

A Coat of gum copal varnish applied to the soles of boots and shoes, and repeated as it dries until the pores are filled and the surface shines like polished mahogany, will make the sole waterproof, and it lasts three times longer. 2 feet more wate than exists at low
the steam may be cut off early in the stroke. In Strasbourg the walls of water of which the Bible speaks. This place is

NEW TRAMWAY MOTOR

red thousand armed men, with women and children, and heir herds of cattle, could have crossed so great a distance in one night without a prodigious accumulation of miracles.' nother theory places the crossing at the head of the gulf, little north of Suez. Here is a shoal channel, four miles long and less than half a mile wide, in which there are several islands and sand banks, bare at low water. The Israelites might easily have crossed here; indeed, so strong is the tide that a strong east wind-such as we are told the walls of water of which the Bible speaks. This place is generally favored by modern biblical critics. The reader

ubject was adjourned.-Warrington Guardian

Crushed by an Anaconda. its tremendous coils, when suddenly a piercing cry escaped

TRAMWAY MOTOR-LONGITUDINAL SECTION.

One of the most intrepid wild beast tamers in Europe Karolyi, a Magyar of colossal stature and extraordinary phy ical strength, has recently fallen a victim to a dread contin gency of his perilous profession. He was performing befor a crowded audience in Madrid the other day one of his mos sensational feats, which consisted in allowing a huge bo constrictor, over twenty feet in length, to enfold his body in him, which was greeted by the pub lic with a round of applause, under th supposition that its utterance consti tuted a part of the performance. I proved, however, to be the outcome of a strong man's death agony. The gigan ic snake had tight ened its coils and cushed poor Kano crushed poor Karo yi's life out of him with one terrific squecze. As his head fell back and his eyes became fixed in a glassy stare, the plaudits died away, and were succeeded by the tillness of utter illness of utte const ϵ rnation. Th nake and its life ess victim swaye or a second or two of inexpressiblehor ror and then top pled over on the boards of the stage; but the boa did not in the least relax his rip upon the crpse, which re mained for more han an hour im prisoned in its hi deous thraldom, no body daring to ap proach the lith
will recall the fact that it was here that Napoleon, deceived monster, of whose powers such appalling proof had been by the tidal wave, attempted to cross in 1799, and, in his given. At length it occurred to one of Karolyi's attendants own words, nearly became a second Pharaoh. As we have to place a bowl of milk in a cage within sight of the mighty said, it is not likely that any of the rusty old chariots, nor serpent, which slowly unwound itself from the dead body so much as a broken axle or harness buckle, will ever be and glided into its den, irresistibly tempted thereto by its brought to light. Possibly some papyrus may be found favorite dainty. A post mortem examination of the unforwith a private record of the wonderful event. But the tunate athlete's remains discovered no fewer than eighty search for this would be about as uncertain as the hunt after \quad seven fractures of his bones effected by the constriction of the precious stones that Aaron wore in his breastplate. the serpent's coils.

HINTS TO THE YOUNG STEAM FITTER.

 by whunk beadwisThe low pressure gravity circulation is at present very much used in the steam heating of private houses, churches, and schools. Its principal merits, when well done, are: It is safe; it is noiseless; the temperature of the beating surface is low and uniform; all the water of condensation is returned into the boiler except a very small loss from the air valves; it is easy to keep the stuffing boxes of the heater valves tight and it is no more trouble to manage than a hot water apparatus.
There áre four systems of low pressure steam piping, whose principal features are.
1st. Main distributing pipes and distributing risers, with corresponding return mains and risers (see Fig. 1, at A). 2d. Main distributing pipes and distributing risers, with a corresponding return main and a separate return riser for every coil or heater, the return risers not to be connected to each other until they are below the water line (see Fig. 1, at B).

3d. Main distributing pipes and distributing risers, with corresponding return mains and no return risers, the distributing riser carrying the water of condensation back through a relief to the main return pipe on the floor of basement (see Fig. 1, at C).
4th. (The single pipe job always a small one.) A single pipe for every heater, run directly from the top of the boiler to the heater, rising all the time in the direction of the heater, and of size sufficiently large that the steam passing to the heater to supply the loss from condensation will not interfere with the condensed water returning along the bottom of the pipe.
nomenclature.
The same names always apply to the same part of the circulation, no matter what the system. The word circulation means the whole distribution of pipe in any one job.
The Main Steam or Distributing Pipe.-The nearly horizontal live steam main, generally near the cellar ceiling ($a^{\prime} a^{\prime \prime} a^{\prime \prime \prime}$).

The Main Return Pipe.-The nearly horizontal pipe on the floor, or thereabouts, of the cellar, for carrying the condensed water back to the boiler, $b^{\prime} b^{\circ} b^{\prime \prime \prime}$.
The Steam Riser. -The pipe that carries the steam from the main distributing pipe to the radiators ($\left.c^{\prime} c^{\prime \prime} c^{\prime \prime \prime}\right)$.
The Return Riser.-The pipe that carries the condensed water from the radiators to the main return ($d^{\prime} d^{\prime}$).
The Steam Riser Connection.-The pipe that joins the main distributing pipe and steam riser ($\epsilon^{\prime} e^{\prime}$).
The Return Riser Connection.-Tbe pipe that connects the return riser with the main return pipe on the floor, and which has one or more T's in it below the water line to receive the steam riser relief $(f f)$.
The Sieam R ser Relief.-The pipe that connects the bottom of the steam riser with a Tin the bottom of the return riser connection or main return pipe below the water line, to carry the water that run down the steam riser into the return riser connection or main return pipe $(g g)$.
Main Relief Pipes.-Connec tions between the main steam and return pipes, to throw the water carried from the boiler, and what is condensed in the main steam pipe, into the return main, also as an equalizer of pressure in the system (h).
Radiator Connections.-The pipes which run from the risers to the radiators, both steam and return, usually no longer than is necessary to get spring enough for the expansion of the risers ($i i i$)
A Relay.-The jumping up of a main steam pipe, with a main relief at the lower cor ner. This is to admit of keeping the main steam pipe near the line of the risers and the ceiling, and above the water line when the main lines are long (j).
Pitch.-Is the inclination given to any pipe, and in the steam mains of a low pressure apparatus should be down and away from the boiler (excep in system No. 4), and if possible toward the boiler in the main return. (When the water and steam run in the same direction through pipes one source of noise is prevented.)
Water Line.-The general level of the water in the boiler throughout the apparatus. In some cases, where the boilers are at a distance, or in a sub-cellar, and the fitter wishes to gain the advantages of having returns and reliefs coming together below water, he makes an artificial water line by raising the main return pipes higher than his connections before he drops to the boiler. It is also necessary to bring a relief from the main steam pipe to this raised part of the return to pre. vent siphoning into the boiler.

Fig. 1.-SYSTEMS OF PIPING.

The general practice with steam-heaters is to reduce one size of pipe for each floor. This rule is not arbitrary, but as architects' specifications usually call for it there are no objec tions, provided the pipe is large enough.
In system No. 1 the return riser is generally one size smaller than the steam riser, but it should never be smaller than a $3 / 4$ of an inch pipe.
In system No. 2, where many return risers are brough down in the same place, a 1 inch pipe for large heaters and a $3 / 4$ pipe for small ones are usual
When the risers are all in the outlets should be plugged up with pieces of pipe, a foot or so in length, instead of the ordinary plug, as the latter is often difficult to get out when the plastering is done.
The risers should then be tested with cold water to from 100 to 200 pounds per square inch; this will prove if there are any cracked fittings or split pipe, and will save much time and annoyance when steam is gotten up.
The best way to cover a riser recess is with a board. Have grounds put on before the plastering is done, and screw a panel on afterward. Some architects require the recess to be plastered over, using slate or coarse wire cloth to hold the plaster. The latter makes the best work, as the heat from the riser will not crack it
When automatic air valves are to be used on the steam heaters, a $3 / 8$ inch pipe should be run in the riser recess, with an outlet at each floor to receive the air valve connection. The lower end of this air and vapor pipe should be taken to the nearest sewer outside of the sewer traps.
At this stage of the work, and before the floors are laid, the radiator connections should be run and firmly fastened in their places, making due allowance for the thickness of the furring on the walls, the plastering, and the baseboard. The radiator connections are usually run 1 inch or $1 \frac{1}{4}$ inch for the steam connection, with a corresponding $3 / 4$ or 1 inch pipe for the return, according to the size of the heater; one and a quarter inch steam being enough for a radiator of $1: 0$ square feet of heating surface at low pressure, with a main of sufficient size.
When the radiator valves are threaded right-handed the elbows on the ends of the connections may be left-handed, to admit of connecting by a right and left hand nipple below the valve and between the valve and elbow, or vice versa.
When both valves are at the same end of the radiator, itis better to have the right and left nipples between the valves and the radiator. With this arrangement both valves of the radiator can be connected simultaneously, and the movement of the radiator will be in the direction of the valves. It also admits of the disconnection of a heater, after simply closing the radiator valves.
When the radiators are to be connected by any of the foregoing plans the connections can be firmly fastened, but not confined at their ends, that they may come in their exact places through the floors. The free ends of the connections should be closed with pieces of pipe long enough to come above the floors when laid. The air pipe should also be run at the same time and brought through the floor in close proximity to the position the air valve will occupy on the heater.

At this stage of the work the steam-heater usually waits until the floors are laid, plastering done, partitions set, and the basement graded.
Steam Mains.-Nearly all the success of the apparatus depends on its steam mains, their sizes, and how they are run.

A job has never yet been spoiled by having its steam mains large; still there should be a limit to their size, to prevent unnecessary expense and to keep the condensation and radiation of the distributing pipes at a minimum consistent with the actual requirements of the heating surfaces.

The size of steam mains depends on the pressure of steam to be used, the distance it is to be carried, the temperature of the exposure of the heating surfaces, and their extent. look between the joists, it is best to keqp the T's about But as it is not my intention here to speak of steam used exhalf way between the laths and the flooring, as this admits of nippling up, and leaves room for crossing the pipes, if required, below the floor. But if the outlets come at the side of the joists care must be taken that the T's come in the exact place. In a building with the risers resting on the bottom and all the expansion upward, the top outlet must be the lowest from the top of the joist, but only low enough to come within $3 / 4$ of an inch of the floor when expanded to their utmost; so also with the rest of the T's, according to their distance from the bottom of the riser.
With low pressure steam, the steam risers should be large
pansively, I shall endeavor to give sizes only for direct-return or gravity circulation apparatus.
Gravity circulation apparatus are of two kinds, low and high pressure. The low pressure apparatus depends on the difference of level of water in the return risers and the boiler for a circulation, irrespective of the steam pressure at any part of the distributing pipes; but the maximum pressure of steam to be carried must never exceed the equivalent of a difference in level of water between the water line of the boiler and the lowest part of the distributing main.

There is another condition under which this system will
work, and that is an increase of pressure sufficient to nearly establish a pressure throughout the apparatus, the difference in pressure at any part of the apparatus not to exceed th equivalent of a head of water between the water line in boiler and the lower part of the steam main. It is then a high pressure.gravity circulation.
A well arranged gravity circulation should be made to work at any pressure, for with its heating surface properly proportioned it can be made to meet the exigencies of fall, winter, or spring weather by simply carrying a pressure suit able to the occasion
To have the water of condensation return directly into the boiler under all conditions and pressures, the main pipe must be large enough to maintain the pressure of the boiler to within 1 or $11 / 2$ pounds in every part of the apparatus, and the water line of the boiler should be not less that 4 feet from the bottom of the horizontal distributing mains, at their lowest part, and that only in short mains, such as the generality of city business buildings and blocks. In large public buildings and others that have their boilers in out houses, the difference between the boiler line and the mains should be all it is possible to get.
A main should not decrease in size according to the are of its branches, but very much slower, and should be rated by the heating surface and the distance it is to be carried. Neither should the main at the boiler be equal to the aggregate size of all its branches-an expression very much in vogue in specifications for steam heating.
Mains which have given the best results leave the boiler of sufficient size (calculated from practical results), and are re duced very slowly, if at all, until very near the end.
The area of the cross section of a 1 inch steam pipe is taken as unity for the sake of easy calculation in the rating of steam pipes, and the area of a 1 inch pipe in the main, at the boiler, to each 100 square feet of heating surface, mains included, is deduced from the size of the mains and heating surfaces of some of the best heated buildings in the United States, and has been the writer's rule for some years.
When the main steam pipe leaves the boiler it should, i possible, be carried high up at once, and have the stop valve at the highest part in the pipe, so that condensed water can not lodge at either side of it when shut. This will prevent cracking at this part of the pipes when the valve is opened. If this arrangement cannot be carried out, and the valve has to be nippled on the dome of the boiler, or if there are seve ral boilers and they have to be made interchangeable with regard to their use, there should be a relief of large size in the main, just outside the valves.
It is well to mention here that a relief which leaves the steam pipe must be brought into the return pipe in a position corresponding exactly to where it leaves the main; that is, when it comes from the outside of the main stop valve it should be taken to the outside of the main return valve. Otherwise, if an attempt is made to shut off, and both valves are closed, the water will back up and fill the apparatus. So also with all branch risers or connections; if there is a valve in the steam part, there must also be one in the return, and reliefs must leave the steam pipe and enter the return on corresponding sides of the respective valves.
From the highest point the main steam pipe should drop slowly as it recedes from the boiler (1 inch to 10 feet being a good pitch), that the course of the steam and the water may be in the same direction.
A main steam pipe should not run very close to the wall up which the risers go. There should be room enough for a riser connection 2 or 3 feet, and when the mains are long and the expansion much the distance should be increased.
The T's in the main, for the riser connections, are better turned up than sidewise, as by nippling an elbow to them you can get any desired angle, and should the measuremen for the main be a little out it will make no difference. This arrangement also makes a good expansion joint if the mains have much travel.
Where the pipe reduces in size it is well to put in a relie in the lower side of the reducing fitting, as the water that is pocketed there by the large pipe pitching in the direction of the smaller one may be the cause of cracking and noise in the pipe. Some steam-heaters use an eccentric fitting in reducing, which brings the bottom of the pipe on the same line and makes nice work.
When it is necessary to have stop valves to the risers the steam-fitter often places them in the riser connections, with a valve also in the riser relief. This arrangement requires three valves, and also stops the local circulation and equaliza tion of pressure
It is better to use only two valves, one to the steam and one to the return riser, and place them a few inches up the riser, above the riser connection, which brings them also above the steam riser relief, saving a valve and lessening the chances for noise in the pipes.
In system No. 2, where the returns are carried down sepa rately and collected together below the waterline, the return valve should be below all such connections, and the steam riser relief should have a separate connection with the main return and have no valve. Straightway valves are best for risers
The extreme end of a steam main should be connected by a relief with the main return, being in fact a continuation of the main down and into the return.
Stop valves in main steam pipes are either globe, angle, or straightway. When a globe valve is used it should be turned with its stem nearly horizontal, as shown in Fig. 2. The rea-
son for this is obvious, when we consider that the water of condensation in any pipe runs along the bottom of it. Whe a globe valve is turned up, as in Fig. 3, the water in the pipe has to half fill it before it fiows over the valve seat to pass along in the pipe. Not so when the valve is on its side for then the side of the opening of the valve seat is as low as the bottom of the pipe.
Neither should the stem of any valve be quite down to the horizontal position when it can be avoided. It should be raised enough (10 degrees) to prevent water from collecting in the threads of the nut and stem, and being forced out, by the pressure of the steam, through the stuffing box, making a constant dropping of water, which is almost impossible to hold with ordinary packing. Not so with dry steam; it can be held.
Globe or angle valves should be so turned in a heating apparatus that by simply closing the valve to be packed and its corresponding valve in the return, or vice versa, and waiting for the steam to cool down, the stuffing box or gland can be removed without the escape of steam. To do this it is necessary to have the pressure side of every pair of valve turned toward the boiler. What is meant by the pressur side of a valve is the under side of the disk.
Main Return Pipes.-In small apparatus (up to 3 inch steam pipe) they are usually run one or two sizes smaller than the corresponding steam pipe.
In returns, which are below the water line, or are trapped to give them an artificial water line and are consequently always full of water, there are no currents but the flow of the water toward the boiler. This style of return admits of the smallest piping, but good practice has placed it at one quar ter the area of the steam pipe, for all conditions, for appa ratus with larger than 3 inch steam pipe
In dry returns-i.e., which have no water line-there are local currents, often going in contrary directions, the water gravitating toward the boiler, the steam flowing to the heaters, and the air, the greatest source of annoyance to the steam-heater, going every place and any place excep out of the air valve. This style of return is not much used, but in ca
One half the area of the steam pipe has been found in practice to give good results in dry return pipes.
Check valves are generally used in return pipes wher they enter the boiler. Some steam-heaters leave them out on account of the back pressure they cause to the return water, but the practice is very much to be condemned when two or more boilers are connected, as an inequality in draught or the cleaning of a fire will make a small differ nce of pressure between boilers, causing the water
rom one boiler to another through the return pipes
Check valves of large area in the opening, with a smal bearing on the seat, can be made that will not give more than a quarter of a pound back pressure. If the valve is not ground and cleaned frequently when the job is new, there will be nothing but the actual weight of the disk to over come.
It is sometimes convenient to reduce a return pipe where it enters the boiler for a short distance of its length. 'This may be done to a limited extent, bearing in mind the actual quantity of water to be admitted to the boiler in a given time.
A TABLE OF LINEAR EXPANSION OF STEAM PIPES (TO WITHIN 0.01 iNCH) FOR EACH 100 FEET IN LENGTH, AT REQUIRED BY THE STEAM-FITTER.

stronomical Notes.

Observatory of Vassar College. The computations in the following notes are by student of Vassar College. Although merely approximate, they wil enable the observer to recognize the planets. M. M

positions of planets for december, 1879

 Mercury.On December 1 Mercury rises at 8 h .37 m . A.M., and sets t, 5 h .26 m . P.M
On December 31 Mercury rises at 5 h .47 m . A.M., and sets at 3 h .6 m . P.M
Mercury should be looked for during the last week of December, before sunrise, a few degrees north of the poin of sunrise.

Although less brilliant than in November, Venus will be very beautiful in the early morning through December. On the 1st Ventus rises at 3 h .9 m . A.M., and on the 31 s t 3 h .54 m . A.M.
It will be at its greatest western elongation on the 3 d . On the 10th of December Venus and the narrow crescent of the waning moon will rise nearly at the same time, Venus being north of the moon. A telescope of three inches aperture will show that the disk of Venus, like that of the moon, is
seen only partially enlightened by the sun. It will be half illuminated in December.

Mars was in its best position in November, but it will be
more likely to be observed in December, as it comes to the meridian during the evening and precedes the beautiful group of the Pleiades.
On December 1 Mars rises at 3h. P.M., and sets at 5 h .8 m the next morning.
On December 31 Mars rises at 59 m . after noon, and set at 3 h .13 m . the next morning.
A small telescope will show peculiar markings upon Mars it is, however, less interesting then Jupiter and Saturn, as its newly discovered moons can be seen only by means of the largest telescopes
On the evening of December 23 the moon will be seen to draw near to Mars, and after midnight to pass east of the planet, Mars being about 3° lower than the moon in alti tude.
Jupiter is still the great light among the planets, yet is setting earlier, and is perceptibly more remote from us.
On December 1 Jupiter rises at 26 m . after noon, and sets 11h. 7 m . P.M.
On December 31 Jupiter rises at 10h. 38m. A. M., and sets at 9 h .31 m . P.M.
If we take the hours from 8 to 10 P. M. for observing Jupi er we shall not see the first satellite during a part of that period on the 5th, 14th, and 21st, because it is behind the planet; it is unseen because in transit across the planet, De cember 6 and December 13; on the 30th it reappears from the shadow, having been eclipsed.
The second satellite, the smallest, is not to be found a ome part of the period from 8 P.M. to 10 P.M., because be hind the planet December 1, and in transit across the plane December 10 and 17
The third satellite reappears from transit December 9, and disappears December 27, by passing into the shadow of Jupiter.
The fourth satellite will not be seen on the evening of De cember 31, because in Jupiter's shadow. The moon will pass east of Jupiter on the evening of December 18

Saturn.

With a powerful glass Saturn is even more interesting than Jupiter; with an ordinary glass its ring and the two larger satellites can be seen.
On December 1 Saturn rises at 1h. 51m. P.M., and sets a bout the same hour the next morning.
On December 31 Saturn rises at 11h. 53m. A.M., and set m. after midnight.

Between December 18 and December 24 the moon passe Jupiter, Saturn, and Mars by its motion in orbit; it passe Saturn before noon of the 21st. On the evening of the 20 th Saturn will be east of the moon; on the evening of the 21 st Saturn will be west of the moon.

On December 1 Uranus rises at 11h. 27 m . P.M., and on the 31 st at 9 h .29 m. P.M.
Uranus is near the star Lambda Leonis, 214° nearer th horizon when that star culminates, or between 4 and 5 A.M. during December.
Neptune comes to the meridian at 9 h .50 m . P.M. of De ember 1 , and at 7 h .50 m . December 31.
Its position is not much different from that of Mars. On the 1st Neptune is 4° south of Mars, and passes the meridian 14 m . earlier. On the 31 st Neptune is 15 m . earlier than Mar in coming to the meridian, and 5° south of Mars. Only a powerful glass will enable the observer to distinguish it from a fixed star.

Relation of Masters and Apprentices.

We have often thought that if masters properly compre hended the relation they sustain to their apprentices and em ployes, their pecuniary interest would not only be greatly enhanced, but that a positive good would be rendered to every branch of industry in which they are engaged.
The first duty of a master should be to present in himsel an example for imitation in the elements of industry, moral ity, system, and the other attributes which constitute a supe rior mechanic or workman. They should, moreover, ob serve and study the dispositions and minds of their appren tices, with a view of conciliating their regard and confidence and through this means to establish a free and familiar inter course, and render the task of instruction and development more simple and easy. As the apprentice advances in know ledge and skill, suitable evidences of appreciation and en couragement should be given them. This will stimulat their ambition and exertion, and create among them a worth spirit of emulation.
Where the character of an apprentice is such as to require a tight rein upon his actions, and the deprivation of privi leges, and other suitable punishments for idleness and mis conduct, care should be observed that these curbs and pun ishments do not descend into such acts of tyranny as will destroy the spirit and ambition of the youth, and renderhim obstinate, unruly, and beyond all future influences of excel lence and good. Besides a thorough instruction in his trade or profession, and a sound and healthy education to other wise render him fit for his social position in life, it should be the aim of a master to instill into his pupil all the scien tific and other knowledge possible, even should such know ledge have no direct bearing upon the business or trade in which he is engaged. Such acts of interest, kindness, and confidence as these, and others of a corresponding character, cannot fail to produce the most marked beneficial result upon the interests of the master, and the happiness and future of the grateful apprentice.

AMERICAN INDUSTRIES.-No. 25.

he manufacture of spool cotton

The manufacture of spool cotton requires machinery and processes so elaborate and so expensive, that the industry cannot be profitably conducted except on a very large scale. For this reason the making of the spool cotton used in this country is mainly confined to a few large factories, and we are informed that there is but a single company in America that makes all numbers of six-cord sewing cotton from the raw material. This is the Willimantic Linen Company, whose works we illustrate
The company began business in the manufacture of linen; being deprived of flax by the breaking out of the Crimean war, they turned their attention exclusively to cotton thread, but the original style of the firm was retained.
The business offices of this company are located at Hartford, Conn.; the works are at Willimantic, on the river of the same name, about 125 miles from New York and 90 miles from Boston, on the New York and Boston Air Line Railroad. Two other railroads-the Hartford and Providence and the New London Northern-pass through the place, and hundreds of their passengers every day catch sight of the great, gray, six story mills of the thread company, built up of granite quarried out of the very ground on which they stand; and see, too, the rows of neat and comfortable tenements ranged along the streets. There are four large mills, picturesquely set upon the east bank of the river, and stretching, with their surrounding grounds, over a space of three quarters of a mile. The buildings and grounds are noticeably clean and orderly in appearance. By a series of noticeably clean and orderly in appearance. aided by a sharp natural fall, a force of fifteen hundams, aided by a sharp natural fall, a force of fifteen hun-
dred horse power is secured from the river for the factodred horse power is secured from the river for the facto-
ries. In these mills, as we learn from the elaborate descripries. In these mills, as we learn from the elaborate descrip-
tion of them in Scribner's Monthly, to which we owe much of the information here given, more than a thousand work-people-women and men, and girls and boys-are kept constantly busy at the various labors that combine to make thread.
The first operation in the preparation of the raw material or spinning is to run it through machine called a " picker" which cleans about a thousand pounds a day
The picker picks or beats out the dirt and seeds, and the cleaned cotton rolls out of the machine in laps, which are carried to the carding room, shown in one of the lower views in the engraving on the first page. The carding machine arranges the cleaned fibers parallel to each other, and delivers the cotton in a thin, narrow ribbon. After this operation the strand is run between sets of rollers, one set revolving faster than the other. This is called "drawing," and it is one of the most important parts of thread making. If one set of rollers, for instance, turns ten times as fast as the other, the strand that passes out between them is, of course, ten times lengthened and ten times as fine as the original. This is a "draught of ten," as it is called. The drawing may be in any ratio, and any number of strands may be run together into one at the same time that that is drawn. Five strands, for example, drawn with a draught of ten, would make a new strand half the size and ten times as long. This process of uniting strands is called doubling, and the doubling, running together, drawing down, and reuniting and redrawing are carefully watched, so that the size of the strand and the amount of work on it may be at any time known. The operation is repeated again and again; but all this doubling is not done without interruption. After the first few drawings, the long white ribbons of cotton which, in this condition, are called "slivers," are passed through another machine, which combs them again to remove all foreign substances; it also takes out all of the short fibers, leaving only the longer fibers to be worked into thread. The short fibers which are removed are sold for other manufactures. After combing, the sliver is doubled and again reduced in size, and then twisted for the first time in the roving frames and wound upon large spools, and it is afterward drawn and twisted in two separate machines before it is carried to the spinning mules.
The room in which the spinning is done is repre sented in the larger view in the engraving. In each of these machines there are several hundred spindles, which revolve very slowly as they are carried forward by the carriage in winding the thread on the spindle, but revolve with great speed as the carriage draws back in the operation of spinning. The spinning mule is entirely automatic in its action. The marvel of it all is the mathematical precision with which it begins, stops, and reverses, and the care with which it suitably varies its work each time to the needs of its case. The mule is all the while attended by a barefooted and lightly-dressed man or boy, whose business it is to unite such strands as accidentally part. On these mules the yarn is made of any size that is required. It is at Willimantic spun down to a fineness that rivals even the spider's web.
From the spinning mules the cops go to the cop winders, where two strands are wound together on a single spool. These two strands are twisted in a machine in which the bobbins revolve at a speed of about 5,000 revolutions per minute, and the thread is wound on the bobbins by a simple differential arrangement, which accommodates itself to the increasing diameter of the bobbin. Three of these double strands are twisted together, forming the well-known six cord spool cotton.
The spools from the twisting machines are conveyed to reeling machines, which form hanks suitable for bleaching, dyeing, etc.

During every step in the progress of the cotton, from the raw state to the finished thread, it is repeatedly examined by experts, and if at any stage it is not in all respects up to the standard it is rejected and never finished. Delicate instruments, which are used in testing the thread, are to be seen in all departments of this immense establishment. It is only by continually and closely watching the various steps in the manufacture of thread, that a uniformity in quality is the man
is
It is established by all spinners that 7,000 grains shall be pound in cotton, and that yarn of which 840 yards weigh this pound, shall be number "1." Every now and then, therefore, all through the mill, a very accurately gauged reel, or some similar instrument, is used to measure off an even fraction of 840 yards. The measurer may be careless in taking off his sample, but that makes no matter. At exactly the right point the reel breaks the strand and calls attention to the fact by ringing its signal bell. Then this sample, say 120 yards or one seventh of "a hank," is weighed on scales also gauged to show the most delicate variations. If the yarn or roving is number one, and weighs one-seventh of 7,000 grains, it is exactly correct; if 120 yards of No. " 30 ," for instance, were being sampled, it should weigh one-thirtieth of one seventh of 7,000 grains. Every time a variation appears, the cotton is made to thicken up or thin out as is needed. This testing is done repeatedly, and the results are recorded in books kept for the purpose, so that the course of any of the cotton on its three weeks cruise of three thousand miles through the factory, can always be traced and faults found and corrected at once. Nothing more impresses one with the wonderful accuracy of the process than to watch one of these testings, note the exact measurement of the sample, and rigidly careful weighing, and see the gravity with which the overseer marks down the pettiest variations to the 28,000th of a pound! It all tells upon the thread, and making it correct through all its

After the thread is made the work on it is by no means nished. To prepare it for market it must be inspected, and the spools and boxes are also made in the factory.
After the operations already described the hanks of thread are placed upon reels and transferred to large spools in the department represented in one of the upper views. The thread is then conveyed to the winding machines which take the spools, and, holding them between centers, revolve them, start the thread, wind it back and forth with the utmost precision, making allowance for the beveled ends, stop when the required 200 yards are wound, nick the spool, put in the thread, cut it off, and release the spool, all without attention. All that is required of the attendant is to see that thread is supplied, and to keep the hoppers full of spools.
One of the most interesting machines in this establishment is the machine for ticketing the spools. One girl supplies it with sheets of printed labels, and another feeds it with spools; it does the rest automatically. Provided with the labels, it cuts out, pastes, and fastens the proper mark for each end of the spool, and prepares a hundred spools
minute. The machine does the work of many girls, minute. T
never tires
The winding machine, the ticketing machine, and the automatic spool-making machine-inventions belonging to the Willimantic Company-are so essential to the thread business that the privilege of using them is rented by other manufacturers.
Everybody knows the sizes of thread. Every seamstres knows whether she wants No. 30 or 60 or 120, and knows, when she hears the number, about what is the size of the strand alluded to; but how the numbers happen to be what they are, and just what they mean, not one person in a thousand knows. It is a simple matter to explain. The standard of measurement is the same already recited. When 840 yards of yarn weigh 7,000 grains (a cotton pound), the yarn is No. 1; if 1,680 yards weigh a pound it will be No. 2 yarn. For No. 50 yarn it would take 50 x 840 yards to weigh pound. This is the whole of the yarn measurement. Thread measurement rests on it. The early thread was of the yarn it was made of. No. 60 yarn made No. 60 thread, though in point of fact the actual caliber of No. 60 thread would equal No. 20 yarn, being three 60 strands. When the sewing machine came into market as the great consumer, unreasoning in its work and inexorable in its demands for mechanical accuracy, six-cord cotton had to be made, as a smoother, rounder product. As thread numbers were already established, they were not altered for the new article, and No. 60 six-cord and No. 60 three-cord are identical in size as well as number. To effect this, the six-cord has to be made of a yarn twice as fine as the three-cord demands. The No. 60 six-cord would be six strands of No. 120 yarn. To summarize: yarn gets its number from the arbitrary formula that 840 yards weigh 7,000 grains. Three cord spool cotton is the same number as the yarn it is made of. Six-cord spool cotton is made of yarn that is double its number.
s simple a thing as thread seems to be, the Willimantic Company makes 1,200 different kinds, and it takes 10,000 dozen spools to hold each day's product.

The St. Gothard tunnel makes steady progress, no Jess han 3,000 workmen being engaged upon it. Nearly 10 tons of dynamite are used per month

MISCELLANEOUS INVENTIONS.

Mr. A. Edward Barthel, of Detroit, Mich., has invented a hammerless self-cocking and rebounding firearm, the im provements being applicable to shotguns, rifles, or revolvers, either single-loaders or magazine arms.
Mr. Zebina M. Hibbard, of Brooklyu, N. Y., has patented .trace fastener provided with a screw stem that works in the threads of the ferrule, and is provided with a shoulder that fits within a rabbet of the ferrule
Mr. Simeon Garratt, of Columbus, O., has patented a selfacting car coupling, which will couple high or low, which, when running, will only come apart by the use of the lever, but which will immediately separate should the cars run off the track.
An improved adjustable harness pad has been patented by Jacob Johnson, of Ashland, Neb. The object of this inven tion is to provide a harness pad which may be adjusted to the back of a horse of any shape or size.
An improved bale tie, patented by Mr. William H. Roane, of Pine Bluff, Ark., consists of a rectangular plate, having opposite edges bent over toward the outside, forming flanges or lips, through one of which is made a transverse rectangular slot in line with the outside of the plate, while the ether is provided with a similar slot, and with an opening through from the edge of the lip or flange.
An improved spark arrester, patented by Messrs. Silas Byram, of Middletown, Ind., and William R. Hansford, of Hicksville, O., consists of two pipes set one within the other, with an annular space between them, the inner pipe being constructed in vertical sections, with lower edges inclined or drawn inward that are held apart by lugs or straps extending from one to the other, while fixed im the longitudinal axis of each section is a conical deflector, and encircling each section is an annular flange whose diameter is the same as the internal diameter of the outer pipe.
An improvement in candlesticks, patented by Mr. Andrew J. Smith, of Ukiah City, Cal., consists in providing a slitted match box rising up in the candle holder from the bottom of base.
Mr. John Henry Hettinger, of Bridgeton, N. J., has invented an improved can cover, which is simple, readily adjustable, and efficient, and may be used for cans and jars paint cases, etc. It may also be applied to barrels, boxes, or cases of wood, as well as of metai, by only changing the ma erial of which it is constructed.
An improvement in electric speaking telephones has been patented by Mr. Frank P. Mills, of Ishpeming, Mich. The object of this invention is to increase the sensitiveness of speaking telephones and the resulting effects by a new ar rangement of the permanent magnet and the armatures thereof; and it consists, essentially, of a circular or cylindrical magnet surrounding the helix, the poles of which are brought close together, but insulated from each other by a peculiar arrangement and construction of armatures
Mr. Oscar Kleinberger, of New York City, has patented suspender having its ends formed of braid or cords which cross and overlap each other two or more times, and are fastened together at their junctions by threads or cords, thus forming a series of button holes or loops of like size.
Mr. Charles P. Blatt, of Elizabeth, N. J., has patented a simple and effective device for keeping beer and other liquids when "on tap" cold and supplied with common air or carbonic acid. It consists of a box or cabinet containing an air-tight chamber, an ice chamber, and a place for the barrel or other vessel containing the liquid.
Messis. Hartwell A. Crosby and George F. Thompson, Jr. (administrator of Michael W. Thompson, deceased), of St. John, N. B., have patented an improved sash stop and lock. The object of this invention is to provide a more simple and durable sash stop and lock than those now in use. To close a window provided with this device, one has only to reach up and pull down on the thumb piece. If the win dow is partly open and it is desirable to raise it higher, it is only necessary to push it up, and the pawl will hold it at any point.
An improvement in riding plows, patented by Mr. Alfred Belchambers, of Ripley, Ohio, consists in a riding attach.
ment composed of a frame mounted on wheels and drawn behind the mouldboard.

Commercial Enterprise

Our English contemporaries seem to be awakening from their lethargy and to realize the cause for the depression in trade among their manufacturers.
Acute observers of the "spirit of the age," says one of the foremost trade journals of England, must have noticed the inborn love of conservatism, and the desire to follow in the footsteps of our fathers or predecessors that distinguishes us from our Continental neighbors and our American cousins. Progression in this country is usually the result of competition, or the force of circumstances, frequently impelling our ironmasters and our colliery owners to move with the times, and the steady-going British manufacturer to remodel his plant, improve his patterns, print his catalogues, and advertise his productions.
There can be no question that in many departments of trade the English name was at one time pre-eminently con spicuous, and our foreign rivals had to be content to follow the lead we were setting them. But, in too many cases now, the position is reversed, and "Jack is as good as his master."

It is unfortunate that such should be so, but a great deal
of the present depression in trade is to be attributed to the
apathy of British traders. After being over-credulous for years they are now becoming over-cautious, and improve ments or investments which show a good chance of being remunerative are either neglected altogether or postponed to an indefinite period.

The Wagon Hardware Trade.

Pittsburg seems to be a " head center" for the trade in wagon hardware. A recent article in these columns gave our readers an idea of the extent of the wagon and carriage building trade in the United States. A Pittsburg firm, Messrs. Lewis, Oliver \& Phillıps, employ about 700 men upon wrought iron wagon fittings. They control nearly 100 patents, covering the devices used and the processes for turning out the different parts by machinery. The firm make the necessary fittings for 90,000 wagons per annum, supplying the following wagon-making concerns: Studebaker, of South Bend, Ind.; Milburn, of Toledo, O.; Schuettler, of Chicago Baine, of Kenosha, Wis. ; Austin, Tomlinson \& Webster Co., of Jackson, Mich., Molne Wagon Co., Molne, Ill. ; Kansas Manufacturing Co., of Leavenworth, Kansas, and others.

artificial haymaking.

On these islands, says the London Graphuc, where farmers suffer far more often from excess of moisture than from excess of sunshine, and where crops, which up to the last moment have promised well, are often seriously injured by wet during the process of gathering in, a successful method of artificial drying without the aid of the sun's rays would be an immense boon. For many years Mr. W. A. Gibbs, of Gillwell Park, Chingford, Essex, a gentleman engaged in mercantile pursuits in the city, and also, we may venture to observe, favorably known among the poets of the day, has also devoted much attention to this hay-saving problem. By slow degrees he invented a really practicable process, which is thus described:
"Streams of hot air from the mouth of a hot blast fan connected with a portable engine, are directed upon masses of wet hay or grain laid in open troughs, and brought in turn, by occasional lifting of forks, under the direct action of the air. By increasing the temperature of the blast it of the air. By increasing the temperature of the blast it
was found that the drying process could be proportionately was found that the drying process could be proportionately
expedited. Eventually the scheme was perfected by bringing the hot blast fan to bear upon a shed divided into two compartments by an iron partition, and having a space between the iron floor and the ground. Hot air, supplied from the hot-blast fan by means of a duct from an underground furnace, communicates with thirty-two conical perforated tubes on the floor, on which are spiked the wet corn sheaves. These tubes of course are used only for grain. The crowning success of the whole process is an atmospheric hoist, worked by the same engine as the hot blast, which elevates and sends up to the top of a stack, 22 feet high, as many as 960 sheaves per hour."
This year, owing to the unprecedented wet summer, Mr. Gibbs' invention has come to the front and been recognized by practical men as one of extreme value. He says, in a letter to the Field: "On Tuesday in last week I lent one of my hay driers to Mr. Ashcombe, of Sewardstone, a practi cal farmer of long experience and large 'holding.' He started it at $9 \mathrm{~A} . \mathrm{M}$., and in ten hours had dried and stacked the produce of ten acres, estimated at one and a half loads per acre. The total cost was $£ 510 \mathrm{~s}$. for the ten acres, rathe less than it would have cost to make the hay in the field, had that been possible. The hay was made from unripe, rank, weedy grass which had been perpetually rained upon; Mr. Ashcombe and his men were inexperienced in the use of the machine, and had no help from me; the hay drier was wholly uncovered, and heavy showers fell on the hay
while it was being dried." Yet, in spite of these unfavor able conditions, the result was a complete success. Already several leading agriculturists, among whom is the Duke of Sutherland, have purchased these machines. The price of the large size is $£ 350$, but cheaper forms for small holdings, ranging from $£ 50$ to $£ 90$, are in use, and have done good service.

AN IMPROVED SCREW DRIVER

The engraving given herewith represents an improved screw driver recently patented by Mr. George Abrams, of Philadelphia, Pa. It consists of a handle through which extends a shaft, having on the upper end a crank and upon the lower end a socket for receiving the screw drive

Mr. William H. Silsby, of Chico, Cal., has patented an improved grain separator of that class in which the grain is thrashed and immediately separated from the straw by end less belts. It consists in a peculiar arrangement of part which cannot be readily described without an engraving Mr John M. Whitney, of Mount Pulaski, Ill., has invented an improved windmill and pump for use in supplying water for stock and other purposes. It is so constructed that the wind wheel may be in operation so long as the wind blows with sufficient force, while the pump will operate intermitently, or only at such times as the tank or trough is empty, or nearly so.
Mr William F. Rundell, of Genoa, N. Y., has patented an improvement in mowers, which consists, first, in the con struction and arrangement of a clutch for connecting the main shaft with the driving gear; second, in the peculiar ar rangement of the gauge wheel for the inner end of the cutter bar with respect to the cutter bar and carrying frame; third, in the peculiar form of joint connecting the outer end of the pitman to the cutter bar; and fourth, in the peculiar construction and arrangement of the draught attachment.

The New Cunard Steamer.

Mr. John Burns, one of the proprietors of the Cunard Steamship Company, writes to the London Times
"It may interest the public to know that my partners and I have just concluded a contract with Messrs. James and George Thomson by which that firm is to build on the Clyde, for our fleet, a screw steamship the size of which will be exceeded only by that of the Great Eastern, while the speed will be greater than that of any ocean steamer afloat. This new vessel will be of 7,500 tons and 10,000 horse power her dimensions being 500 feet in length, 50 feet in breadth and 41 feet in depth, propelled by inverted direct acting compound engines, with three cylinders and seven oval tubu lar boilers, having thirty-eight furnaces and 1,000 feet of effective fire grate surface. She will have an extra prom enade deck, and will practically be a five decker, being fitted for 450 first class and 600 steerage passengers, with accommo dation for a crew of 200 officers and men. Her cargo capa city will be equal to 6,500 tons, with 1,700 tons of coal and 1,000 tons of water ballast, having a double bottom on what is called the 'longitudinal and bracket system.'
"، This vessel has been designed, after lengthened consideration, to meet the requirements of our traditional service, and we have adopted in every detail of the ship and engines the most advanced scientific improvements compatible with the safe working of so great a vessel. Among the impor tant matters into which we have crucially inquired has been that of the employment of steel instead of iron, and after a practical and thorough examination into the merits of both materials we have adopted steel for the hull and builers, but under a provision so stringent that every plate, before ac ceptance, will undergo a severe and rigid test by a qualified surveyor appointed and stationed at the steel manufactory for that special purpose. and that the manipulation of the steel by the builders shall be subject to an equally carefu supervision by qualified engineers of our own appointment. The steel is to be made on the Siemens-Martin process, and all rivets as well as plates throughout the ship are to be of steel. The name of the new vessel is to be the Sahara, and she is to be ready for sea in March, 1881."

The prize of $\$ 100$ offered by Stillman B. Allen, of Boston, to the boy of York county, Maine, who should raise the greatest amount of corn on one-eighth of an acre this year has been awarded to Joseph Milliken, Jr., of Biddeford, who raised 1,404 pounds

THE IBEX.

Of the genus Capra, which includes several species, th ibex or steinbok is a familiar and excellent example.
This animal, an inhabitant of the Alps, is remarkable for the exceeding development of the horns, which are sometimes more than three feet in length, and of such extraordinary dimensions that they appear to a casual observer to be peculiarly unsuitable for an animal which traverses the craggy regions of Alpine precipices. Some writers say that these enormous horns are employed by their owners as "buffers," by which the force of a fall may be broken, and that the animal, when leaping from a great height, will alight on its horns, and by their elastic strength be guarded from the severity of a shock that would instantly kill any animal not so defended. This statement, however, is but little credited.
To hunt the ibex successfully is as hard a matter as huntmg the chamois, for the ibex is to the full as wary and active an animal, and is sometimes apt to turn the tables on its an animal, and is sometimes apt to turn the tables on its pursuer, and assume an offensive
hunter approach too near the ibex, the animal will, as if suddenly urged by the reckless courage of despair, dash boldly forward at its foe, and strike him from the precipitous rock over which he is forced to pass. The difficulty of the chase is further increased by the fact that the ibex is a remarkably endurant animal, and is capable of abstaining from food or water for a considerable time.
It lives in little bands of five or ten in number, each troop. being under the command of an old male, and preserving admirable order among themselves. Their sentinel is ever on the watch, and at the slightest suspicious sound, scent, or object the warning whistle is blown, and the whole troop make instantly for the highest attainable point. Their instinct always leads them upward, an inborn "excelsior" being woven into their very natures, and as soon as they perceive danger, they invariably begin to mount toward the line of perpetual snow, The young of this animal are produced in April, and in a few hours after their birth they are strong enough to follow their parent.
The color of the ibex is a reddish brown in summer, and gray-brown in winter; a dark stripe passes along the spine and over the face, and the abdomen and interior faces of the limbs are washed with whitish-gray. The horns are covered from base to point with strongly marked transverse ridges, the number of which is variable, and is thought by some persons to denote the age of the animal. In the female the horns are not nearly so large nor so heavily ridged as in the male. The ibex is also known under the name of bouquetin.

Preservative of the Dead.
The United States Consul-Ge neral at Berlin, Mr. Kreismann, has communicated to the Department of State a new process patented in Germany for preserpatented in Germany for preser In 3,000 grammes of . fact glasses of the basic series, either consisting of sidero of alum, 25 grammes of cooking dissolved 100 grammes melane, or decomposed into a red resinoid substance. The peter, 60 grammes of potash, and 10 grammes of arsenic
by
zeolites, showing the crystalline forms of christianite. acid. When cool it is filtered. To 10 liters of this liquid The presence of these readily alterable basic glasses at once 4 liters of glycerineand 1 liter of methylic alcohol areadded. reveals the source of the clayey matter with which they are The process of embalming is by saturating and impregnat- associated, as wherever rocks of this type occur their de ing the bodies with it. From $11 / 2$ to 5 liters of the liquid composition into clay is observable. are used for a body.

Volcanic Products at the Bottom of the Pacific.
The Abbé Renard and Mr. J. Murray communicated to the Geological Section of the British Association, at Sheffield, the results of an examination of the materials brought up by the Challenger's instruments from the bottom of the central Pacific. The area from which the materials submitted to the Abbé Renard were derived extends from the Sandwich Islands to $30^{\circ} \mathrm{S}$. lat., having the Low Archipelago approximately in its center. Volcanic matter was found to play an important part in the formation of the bottom, being present in the form of lapilli and ashes distributed in great abundance in the "red clay," of which we have heard
so much. The lapilli nearly all belong to the basaltic type, passing from felspathic basalt to allied rocks, in which the vitreous base acquires greater and greater development, of the basalt, when the fragments become mere glassy rocks of the basic series, generally containing some crystals of peridote, innumerable crystallites, the latter sometimes grouped in opaque granules, sometimes arranged regularly grouped in opaque granules, sometimes arranged regularly
around the peridote microlites. From the forms of these volcanic fragments, which are often coated with manga nese, their association with volcanic ash, and their lithologi cal constitution, they cannot be derived from submarine flows of lava. They are rather incoherent volcanic products, or lapilli, the accumulations of which in the Pacific form a series of submarine tuffs.
One of the most remarkable facts, brought to light by these soundings in the Pacific, is the large share taken in the formation of these sedimentary deposits by palagonites, rfectly identical in lithological characters with those of
cily, Iceland, and the Galapagos islands. Many are in - Sicil

THE IBEX.
which they are developed is easily understood if we bear in mind the lithological nature of the basic tuffs and of ther products of decomposition.-Nature.

NATURAL HISTORY NOTES

The Beheading of Flies by a Western Plant.-In the Bulletin dela Société Botanique de France (vol. xxiv.), says Professor Asa Gray, there is an account by M. J. Poisson of his observations upon Mentzelia @rnata as cultivated in the Jardin des Plantes, Paris, and the very singular mode in which it causes the destruction of flies. It is so curious that the essential points of M. Poisson's communication are here recapitulated, in the hope that observations may be made in this country, either by the few who are able to cultivate this ornamental plant with success, or by those who can examine it in its native stations. It is well known that the roughnes this and some related Loasace is owing to the stiff ristles of the surface being provided with an armature, at rtain points along their length, of retrorse barbs. Ther are three or four whorls of these barbs, and four or five barbs to each whorl, on the larger bristles; in the smaller there is only a terminal whorl of barbs, in the manner of a glo chidiate bristle. Mixed with these harpoon-like bristles are some soft ones, tipped with a capitate gland, which secrete a viscid matter attractive to in sects. It appears that flies so attracted thrust in their probos cis between the thickly-set glo chidiate bristles to feed upon the secretion of the glands between and below. The retrorse barbs interpose no obstacle to this; but when the proboscis is with drawn, its dilated and cushion like tip catches in the barbs, and holds all fast. The harder the backward pull, the firmer and more extensive the attachment to the sharp barbs. The wounded and impaled organ becomes con gested and swollen, and the insect is seldom able to disengage .it. Especially is this the case with the larger flies. Some per ish by exhaustion; but more of them, passing round and round in a circle, and in one and the same direction, come to an end by twisting off their heads. In sects too small to be impaled on the barbs are held fast by the viscid secretions of the glands, and likewise perish. In these respects the arrangement comes under the head of those recently illustrated by Kerner, for the exclusion of unwelcome guest from the blossoms. And thi may be extended to the flies also which might reach the blossom on the wing, but are attracted rather to the glands beneath, to their own destruction. Profes sor Gray requests those who have good opportunities of ob taining Mentzelia ornata, and its much more common relative, M nuda, both of which occur in the Western prairies and plains, to investigate the matter and ascertain whether this charge o cruel behavior is well founded.
Cactus Spines.-The spines must, says Moseley in his " Notes of a Naturalist," be a most effi cient protection to the cactus from being devoured by large animals. "I have often noticed that if one approaches large animals. "I hand slowly toward some of the forms with closely set long spines, doing it with especial care to try and touch the end of one of the spines lightly without getting pricked one's hand always does receive a sharp prick before such is expected, the distance having been miscalculated. There seems to be a special arrangement in the color of the spine in some cases, possibly intended directly to bring about an illusion, and cause animals likely to injure the plant to ge pricked severely before they expect it, and thus to teac them to shun the plant While the greater length of th then spines next the surface of the plant is white, the tips ar dark colored or black. The black tips are almost invisible
as viewed at a good many angles against the general mass as a background. The spines look as if they ended where the white coloring ends, and the hand is advanced as if the prickles began there, and is pricked suddenly by some unseen black tip. The exveriment is easilv tried in any cactus house at home."
Hybrid Shad.-Mr. Seth Green has recently called attention to the fact that it has been customary for the last four
years at the shad hatching works on the Hudson River, whenever an opportunity offered, to impregnate the spawn of the shad with the milt of the white bass. He says that these eggs have hatched out in quite as large a percentage as those impregnated with the shad milt. The young fish look very much like small shad, but their actions are so entirely different that they are readily distinguishable while in the hatching boxes. The attention of fishermen and others is particularly called to the fact that such hybrids now exist in the Hudson, and they are requested if any such be caught to make known the fact through the papers or other wise, describing as particularly as possible the appearance, characteristics, etc., of the strange fish.

代nrxaymadence.

EDISON'S ELECTRICAL GENERATOR.

To the Editor of the Scientific American:
The letter of Mr. Upton, on page 337, is far from being sat isfactory, at least to myself, for it tends to frustrate the realization of the plans I bad suggested of relieving Mr. Edison from the appearance of having put forth a preposterous claim for his electric generator. It has almost brought me into the thick of a controversy; I barely escape and reserve $m y$ valor for another day. I protest that up to this time I do not know that there is any disagreement between Mr. Edison and myself. Mr. Upton is indeed Mr. Edison's as. sistant, and his letter purports to be authorized, and yet I cannot find anywhere irrefragable proof that Mr. Edison is the author of the preposterous claim, or that he ever indorsed it. I believe it is best, indeed, as I did in my article on page 305, to assume, until its falsity is proved, that Mr. Edison in the matter of that preposterous claim, or anything else, has not treated with indignity the revered memories of Ohm, Faraday, and the other fathers of electricity. Mr. Edison, like myself, appears to love peace and quietness, and perhaps the guilty author of that preposterous claim will never be discovered and punished. The disagreement which so far is developed is between Mr. Upton and myself only, and far is developed is between Mr. Upton and myself
it will not long continue if he will take my advice.
The matter in Mr. Upton's letter which is offered as especially pertinent to the preposterous claim is comprised in the two following sentences:
1.,,The writer of the article (on page 242) simply stated that the machine was so constructed that when used at its normal capacity the exterior resistance shall be nine times as great as the internal, so that ninety per cent of the power of the current could be used outside."
2. '"Yet all that was claimed in the article (page 242.) was perfectly true, and has been carefully verified."
I have not been able to satisfy myself as to what are the intent and meaning of sentence 1. I cannot find out what "normal capacity" is. I cannot find out what the thing is which was simply stated; why did not Mr. Upton state it simply? Among various theories of the intent of sentence 1 which I have worked out, the most plausible is, that the sentence is a device like those terrible engines which Knickerbocker, in his history of New York, relates were employed by the ponderous Dutch warriors. This theory derives confirmation from the fact, which appears on page 308, that Mr. Upton found it a fair thing to fire, without warning, at short range, and point blank, hot shot of Calculus (!) right into a gentleman by the name of Weston
But sentence 2 is direct, explicit, and emphatic. It is so admirable in its way that I quoteit again: "Yet all that was claimed in the article was perfectly true, and was carefully verified." Now, as nothing was claimed (on 242) but what is covered by the preposterous claim, this latter is signed, sealed, and indorsed; it is represented as having been verified; it is reasserted strenuously. Did Mr. Upton pen that sentence, with the demonstration on page 305 before his eyes?
I reproduce, from page 242, the preposterous claim: "Mr. Edison claims that he realizes ninety per cent of the power
applied to this machine in effective external current," and applied to this machine in effective external current," and
thereupon soon follows the explanation that the great econthereupon soon follows the explanation that the great econ-
omy is due to the employing of a resistance ratio of $1: 9$. For the demonstration of the fallacy of this I refer to page 305.

I might stop here, far I have said all that is required concerning the matter of the preposterous claim. Mr. Upton introduces several other and extraneousthings which are calculated, like that sentence 1, to befog and lead astray the hasty reader, and I shall therefore briefly notice them. The
larger part of the letter is devoted to remarks which are aimed more or less directly at myself personally. The general effect of these is substantially that of the trite retort, you're another; but I meet them in detail by pointing out that a part are intended to show that I had overlooked something important, and the rest that I use technical terms ignorantly and recklessly.

1. After a very ingenious prelude, in which I am made to take a rather funny part, the following climax is reached "It seems never to have occurred to the doctor that it is in the power of the maker of the machine to exert this 'moral
suasion' on the wire covering the armature, so that it shall suasion' on the wire covering the armature, so that it shall
be more effective and redouble its exertion when greater resistance is offered for it to overcome." Mr. Upton is correct; it really never did occur to me. But feeling that such a confession, on account of its brevity, is rather weak, I append the remarks of one whose opinions are worth their weight in diamonds, and are the delight of the world: "If so be ye overhaul yer masheen, to
wire, and make them irons, which ye call magnets, a leetl
heftier, why then yer masheen will be bigger; and howbei ye do these things, why ye'll have a bigger masheen. Big ger, did I say? No! Why? For the bearings of the obse wation is in the application
unsby's greatest efforts.
2. Mr. Upton neatly gets round to the remark that I de liberately state that current and foot pounds are the same that energy is directly proportional to the current, etc., and
he corrects and instructs me by remarking that "foot.ounds he corrects and instructs me by remarking that "foot pounds are always measured by the square of the current," etc.
Moreover, he says: "Dr. Seeley's distinction of outside from inside current seems to me ridiculous." Mr. Upton, no doubt,made himself quity merry at the discovery of all these blunders of mine. Now I reply: Mr. Upton would not have discovered those blunders unless he had been looking for them; the wish is father to the thought. I do not think anybody else has found them, or is likely to find them. When we are obliged to write in the telegramic style, as we are when limited as to time and space, we spontaneously take up abbreviated expressions which hypercritics might object to. Thus we may use the letter C for current or strength of current or energy of current, and no one but the hypercritics will misunderstand or complain unless some positive ambiguity results. Life is too short to write with a view of satisfying the hypercritics. 1 might quote many precedents for the expressions I used, but I content myself with a single one, for the reason that it is from an authority which, I am sure, Mr. Upton greatly respects; the authority, please understand, is not Mr. Edison: possibly it is Mr. Upton him-
self. If Mr. Upton will turn to page 242 he will find the self. If Mr. Upton will turn to page 242 he will find thereon
the preposterous claim as originally propounded, and he will the preposterous claim as originally propounded, and he will
observe that the last two words are "external current"" How observe that the last two words are "external current." How
is it now? Will Mr. Upton ever again say, "the distinction of outside from inside current seems to me ridiculous?"
After finishing my case, Mr.Upton goes on: "In conclusion, I may state that the methods which are employed for testing Mr. Edison's machines were fully described in a paper read by me (in August) at the Saratoga meeting of the American Association. At that time (in August), as now, full results were withheld until Mr. Edison was fully satisfied with the performance of the machine." I find in this pretty plain evidence that Mr. Edison did not-and this
I have contended for from the first-put forth the prepos I have contended for from the first-put forth the prepos-
terous claim. He had full tests in August as well as on October 11th, He had full tests in August as well as on that 90 per cent; if he had realized it, he would have been fully satisfied with the performance of his machine, for his machine would be the greatest invention of all time.
Mr. Upton concludes by mentioning that Mr. Edison hopes soon to have a machine with a resistance ratio of $1: 20$. I trust this is not quite true. It would be almost a public calamity if Mr. Edison should employ his great talent on such a puerility. I quote again: "His machine is so made that it would be impossible to use it with the same resistance outside as inside, as it would heat the wire on the armature so as almost to burn it, by carrying a current so much in excess of that for which it was intended." The truth of this must be evident to any one who is a tolerable expert on machines; but I quote it as further evidence that Mr. Edison is not the author of the preposterous claim, and to raise the query whether we cannot relieve Mr. Upton also from suspicion.
A few weeks since (suppose) the startling announcement was made in the papers that X, a dear and distinguished
friend of mine, had lifted himself over a tall fence by pulling friend of mine, had lifted limself over a tall fence by pulling
on his boot straps. Many respectable peonle influence on his boot straps. Many respectable people, influenced
mainly by their exalted and often proved faith in the ability of \mathbf{X}, accepted the announcement as true; for my friend was an eminent authority and exceedingly expert in the matters relating to the alleged achievement. The hopeful people at once began speculations on the applications of X's discovery to rapid transit and other great projects. The larger part of the community, however, remembering some-
thing of the little lessons in natural philosophy of their school days, denied the claims set up for \mathbf{X}, and they scoffed at him. At this juncture it seemed to me a proper thing
and a duty towards a friend and to the public to and a duty towards a friend and to the public to make an explanation. I said that the feat proclaimed was really an inpossibility, that it was a contradiction of the law of action be precisely balanced by the pressing down of the feet in the boots, etc.; that my friend was of too good sense to claim impossible performances; that the announcement was an exaggeration, or came from a wicked partner, etc. My ex-
planation was calculated to pacify the scoffers and to make all lovely again. My friend had no call to say anything, unless to indorse my explanation or to turn the whole affair into mild but pleasing entertainment by relating how the announcement originated in a little badinage of his, in which he proposed to lift himself over the fence, by pulling on the boot straps of his carriage after slinging them over a pulley, etc. But the affair is going to terminate differently and sadly. For a gentleman by the name of Z , who is an assist ant (some say a partner) of X , has written a letter to the public which purports to be authorized by X , in which the
original claim is reasserted and enlarged. Mr. Z says: Spring, at its normal capacity, is the pleasantest season of the year. X never denied Newton's laws. Yet all that was claimed in the papers was perfectly true, and has been carefully verified. X has positively lifted himself over a fence ten feet high, and it may be mentioned that he hopes to lift
himself over a fence 20 feet high. There are- doors in the
fence, but they have patent locks on them. (What does this mean?) This S isn't much of a doctor, and I wouldn't trust him with a sick cat. He spells Jerusalem with a G, and his name is mentioned in connection with a neighbor's he roost." This letter of Z 's is a great trouble to us, but I pro test and persist that X is innocent. No one can foretel what is to come out of all this embarrassment.
But all this is supposition. Perhaps it isn't apropos of anything. "The bearings of an obserwation is in the appli cations on it."

Charles A. Seeley

A Note from Mr. Edison.-The Hughes Microphon and the Blake Transmitter

To the Editor of the Scientific American:
In reference to the communication from T. D. Lockwood, which appeared in the Scientific American (No. 21), No vember 22, 1879, regarding the carbon telephone, I wish to say that his statement that the scientific men of Europe have supported the claim of Hughes that the microphonic action is different from the carbon telephone, is absolutely false, and as a fact just the contrary is the case. Also that the Paten Office has declared that the Blake transmitter filed in the Patent Office in 1879 infringes several of my patents filed in 1877. In fact there is not the slightest difference between the carbon transmitter and the so-called Blake transmitter, except in size of parts and delicacy of adjustment
T. A. Edison.

Menlo Park, N. J., November, 1879

CROSS BREEDING AMONG FISH

Mr. Robert B. Roosevelt, so well known in connection with fish breeding, is responsible for some surprising assertions with regard to the inter-crossing of distinct species of fish. Some two years ago the eggs of a shad were placed in a pan of fresh water which could not have contained any milt of the male shad. This done, the eggs were mixed with the milt of a striped bass and they were immediately fertilized. They were then placed in the shad-hatching boxes, and fully 10,000 young cross-breeds were the result. They were turned into the river at the proper time, and it is not yet time for them to return, if they follow the customs of their mother.
That the hybrids are likely to tbrive and breed is thought probable after the perfect success that has followed the crossing of the California salmon and the common brook trout. Mr. Roosevelt says: "We have crossed fifteen or twenty different breeds, and all successfully, and I can assure you that the result is a strong argument in favor of Darwinism, for it shows that all fish may possibly have grown out of one or two varieties. This would account for what is called the 'land-locked salmon' which is found in lakes having no communication with the sea. The object of this crossing and breeding is to improve the fish, just as they cross neat cattle and horses, and even fruits and flowers. The result will be to make fish food plenty, and to add a large number of 'queer fish' to the number already in existence."

THE INTERNATIONAL DAIRY FAIR

The second annual International Dairy Fair in this city, to be opened in the American Institute building, December 8, promises to be the largest and finest exhibition of the kind ever held in this country. Nearly three thousand entries have already been made by intending exhibitors, and ten thousand dollars will be given as premiums. It is expected that at least 300 specimens of fine cattle will be exhibited, representing the most celebrated herds in the country. Especial attention will be given to this depart ment of the fair. In addition to many novelties there is promised an elaborate comparison of the methods of butter and cheese manufacture as employed a hundred years ago and to-day in our best factories.

STEAM TOWING ON THE ERIE CANAL

The first through tow on the Erie Canal from Buffalo to Rochester, by the steam cable towing system, arrived at the latter city, November 18. The tow consisted of five canal boats, carrying 1,200 tons of grain. The distance, 96 miles was covered in 39 hours, a saving of 23 hours as compared with horse power. It is expected that the cable system will be completed the entire distance from Buffalo to Troy, 345 miles, shortly after the reopening of navigation in the spring. The existing canal boats will be used without alteration and the boats will yield a larger revenue owing to the sav ing of time on each trip. The traffic of the canal this year has been unusually great, and it is expected that the new system will largely increase its capacity.

New Military Projectile.

Experiments have recently been carried on at Grenoble to test the efficacy of a new apparatus, made by M. Lamarre. The invention consists of balls to be projected by guns of a fortress for the purpose of throwing a strong light on the enemy's position during the night; the principal object be ing to prevent the digging of trenches or the performance of other military operations. Shortly after leaving the can non, the Lamarre fire ball discharges a light sufficiently bright, and lasts long enough, to enable guns to be pointed at the works. The projectile is, moreover, provided with a grenade, which explodes after a certain time, and is designed to keep the enemy's troops away and prevent them from putting out the unwelcome light.

GLASS TUBING.

The manufacture of glass tubing is surprisingly simple. The glass blower takes a small quantity of melted glass from the pot with his blowing tube, rolls it slightly on a marble slab to give it a cylindrical form, he then adds a small quantity of glass from the same pot, and blows the enlarged mass while rolling it, taking great pains to keep the shape cylin drical. If tubes of large caliber are required, the inside diame ter of the cylinder is enlarged, and the glass is allowed to cool slightly before drawing. For tubes of very small caliber, such as thermometer tubes and other capillary tubes, the internal diameter of the cylinder is decreased and the glass is used very warm.
In making a piece of glass tubing the assistant places a ball of glass against the end of the glass cylinder by aid of his blowing tube. Now the men, each holding an end of the glass cylinder by means of thei blowing tubes, begin to separate walking backward. The cylinder is thus lengthened, and at the same time made smaller in diameter, and the diameter, of course, depends upon how much the tube is drawn out.
When the tube has attained the right size it is generally too warm and soft to admit of laying it down without destroying its shape; it is therefore cooled by means of a fan as shown in Fig. 1. When it be comes sufficiently cool it is laid upon a series of equidistant paral lel wooden blocks of uniform height, where it remains until it becomes cold. It is then cut into lengths with a diamond or a file. If the tubes are to resist great pressure or changes of temperature, they are annealed with great care. They are sometimes plunged into boiling linseed oil and slowly cooled.

Reading Room of the British Museum.

The dome of the British Museum reading room, in which the electric light is now used, is 140 feet in diameter and 106 feet high. In this dimension of diameter it is only inferior to the Pantheon of Rome by 2 feet; St. Peter's being only 139; Sta. Maria, in Florence, 139; the capitol at Washing. ton, $1351 / 2$; the tomb of Mahomet, Bejapore, 135; St. Paul's, 112; St. Sophia, Constantinople, 107, and the Church at Darmstadt, 105.
The new reading room contains $1,250,000$ cubic feet of space; its " suburbs," or surrounding libraries, 750,000 . The building is constructed principally of iron, with brick arches between the main ribs, supported by twenty iron piers, having a sectional area of 10 superficial feet to each, including the brick casing, or 200 feet in all. This saving of space by the use of iron is remarkable, the piers of support on which the dome rests only thus occupying 200 feet, whereas the piers of the Pantheon of Rome fill 7,477 feet of area, and those of the tomb of Maho met 5,593 feet. Upwards of 2,000 tons of iron have been employed in the construction The weight of the material used in the dome is about 4,200 tons, namely, upward of 200 tons on each pier
The uprights or standards of the bookcases in the British Museum reading room are formed of wrought iron galvanized and framed to gether, having fillets of beech inserted between the iron to receive the brass pins upon which the shelves rest. The framework of the bookcases forms the support for the iron perforated floors of the gal lery avenues, and which ar generally 8 feet wide, th central 6 feet being appro priated to the perforated floor, and the remainder being a clear space between the back of the books and the flooring, by which contrivance the light from the skylights (in all
cases extending to the full width of the avenues) is thrown cases extending to the full width of the avenues) is thrown down the back of the books on each story, so that the lettering may be easily discerned throughout the book ranges. The shelves are formed of iron galvanized plates, edged with wainscot and covered with russet hide leather, and having a book fall attached. They are fitted at each end wih galvanized iron leather, covered, and wadded pads placed next the skeleton bookcase framing, to prevent injury to the binding when the books are taken out or replaced. Between these pads the skeleton framing of the cases forms an aperture by which a current of air may pass and ventilation be kept up throughout. The shelves rest upon brass pins, the holes for which are pierced at three quarters of an inch apart from center to center; but by a contrivance in cranking the shaft of the pin, which may be turned upward or downward, this interval is practically halved, and the position of the shelves may be altered three-eighths of an inch at a time.

The reading room contains three miles lineal of bookcases, ight feet high; assuming them all to be spaced for the ave aged octavo book size, the entire ranges form twenty-five miles of shelves. Assuming the shelves to be filled with books, of paper of average thickness, the leaves placed edge to edge would extend about 25,000 miles, or more than three times the diameter of the globe)

Slag Boiler Covering.

Mr. Franz Buttgenbach, the well known metallurgist gives the following method for the utilization of blast furnace cinder as an insulator for steam pipes, etc. : Mix 150 parts of cinder dust, 35 parts by weight of fine coal dust, 250 parts of fire clay, and 300 parts flue dust, with 10 parts of cow's hair, add 600 parts of water into which 10 to 15 parts of raw sulphuric acid has been poured, and make a stiff

Fig. 1.-COOLING GLASS TUBES

dough of the whole. This is thrown in small amounts upon the warmed pipe, hardening rapidly. Upon this rough coat a second, third, etc., is laid, according to the thickness which is to be used. By the action of sulphuric acid gypsum is formed, and the silica, rendered free, hardens. The mass becomes as hard as porcelain, and is still porous. It adheres firmly, and never cracks. Mr. Buttgenbach states that he has tested its merits by ten years' use, and has found it to meet all requirements.

AGRICULTURAL INVENTIONS

An improvement in sulky-plows has been patented by Mr. William J. Meharry, of State Line, Indiana (Sheldon, Illinois, P. O). The object of this invention is to furnish an improved sulky attachment for plows, which shall be simple in construction, may be readily attached to any ordinary plow, will materially lighten the draught, and will allow the plow to be readily controlled.
Messrs. John J. Howell and Osnel H. Wienges, of Fort Motte, S. C., have invented an improved handle, which is so that very inde neous surface matter

Impurities in gelatine may be classified under two headsmechanical and chemical-the latter being far more difficult to remove thar the former, inasmuch as they are more o less in combination with the material itself. Fortunately they do not appear to exert the same injurious action on the emulsion as the mechanical, which, although simply in state of suspension, are yet exceedingly difficult to remov by simple filtration, especially after the emulsion is formed, as many of them are in quite as fine a state of division as the bromide itself; hence it is clear that any means which may be adopted to remove the one will also remove the other.
The mechanical impurities in gelatine principally consist f lime in the form either of the sulphates, carbonates, and phosphates, fat or grease, sometimes animal fiber, and alway is generally present in considerable quantity owing to the sheets o flakes, while in the jellied form being exposed on nets of string or wire in a strong current of air to dry, when, as a matter of course any, dust that comes in contact with them adheres and dries into the gelatine. In some of the English manufactories wire nets are em ployed, but on the continent those made of string are principally in use, and fibers of that materia adhere to and are detached with the gelatine. It is said that these nets are greased to prevent the flake from sticking. If this be the case it will account for some of the fat generally present in gelatine. We are told that it is the custom with some of the continental manufac turers to wash the surface of the sheets of their finest kinds with finest kinds with warm water after they are dry so as to remove the extra

Although, as we have said, it is almost impossible to emove the insoluble matter by mere filtration, owing to th viscousness of the solution, yet it may be entirely elimi nated by adopting the process commonly employed in the culinary art for clarifying jellies. This consists of mixing with the solution of gelatine some albumen of white of egg and then raising the temperature sufficiently high to coagu late the albumen, which in coagulating imprisons the inso luble particles. The,whole is then put into a flannel bag and suspended in front of a fire, when the solution passe through perfectly clear ind transparent, even if an opaque sample of gelatine have been used, and at the same time al fatty particles will be retained by the coagulated albumen. In practice, however, it will be found very difficult to trea successfully thick solutions in this way, as they will not pass through the strainer in the same manner as thin ones, such as are used for jellies, and also that strong solutions set much quicker and at a higher temperature than weak ones, so that some other plan must be adopted to avoid the necessity of filtering the solu tion if a strong one requir purification.
The method we have em ployed with perfect succes does not require filtration a all, yet the solution is ren dered perfectly bright and transparent, and free from al solid particles as well as fatty matters. For this purpos the gelatine to be purified is placed in cold water until i has become swollen. It is hen transferred to a beake placed in a water bath heated to a temperature of $110^{\circ} \mathrm{Fah}$. -not higher-until it is dis solved; then some well whisked white of egg is tirred in. The proportion constructed that it may be med have used has been two ounces of albumen to each easily gar an farm implen and which may attached to another, and when attached will hold the implement firmly and securely
An improved farm gate has been patented by Mr. George Johnson, of Waucousta, Wis. This is an improvement in the class of horizontally-swinging farm-gates, which have suitable attachments for holding them at different elevations for the purpose of avoiding snow or other obstruction, while being opened or closed. The invention relates to the construction of the attachments or devices which hold the gate in different vertical adjustments.

Nearsightedness and the Color of the Eyes.-M. Nicaté stated, at the meeting of the French Society for the Advancement of Science, that as one of the results of his examination of 3,434 eyes in relation to myopia, at Marseilles, this defect was observed far more frequently in light than in dark eyes, blue and gray eyes furnishing 18 per cent, and black and brown eyes only 11.27 per cent.
 our or five ounces of dry gelatine. Now, with a whisk, or better still, one of the American egg beaters, convert the whole into froth. To do this easily it may be necessary to heat the solution somewhat, so as to render it more limpid but care must be taken that it does not rise beyond 120 Fah., otherwise the albumen will be coagulated before it time. After the whole is converted into froth the tempera ture of the water bath must be quickly raised to nearly boil ing point, and then allowed to remain undisturbed for some time.
As the albumen coagulates it will rise to the surface of the solution, carrying with it all the solid impurities, leaving the lower part quite clear. This may take some little time, according to the strength of the solution; but the tem perature must be maintained until it is clear. It may then be allowed to cool, and the whole turned out (which may be easily done by placing the beaker in water for a few second and then inverting it), and the top part cut off and rejected. The other part may then be used direct for the emulsion, or it may becut into thin slices and dried in an atmosphere free
from dust, and preserved for future use. The drying may be much facilitated by digesting the thin slices in strong alcohol, so as to displace the greater part of the water before commencing to dry, and by this means the chances of it becoming contaminated with dust will be much reduced.
The object of converting the greater part of the solutio into froth is this: If the albumen was simply stirred in and then coagulated it would remain in suspension, owing to the density of the solution; but, when the whole is con verted into froth, the air bubbles as they rise to the surface carry the coagulated albumen, together with its imprisoned impurities, before it. As an example of the efficacy of this method of purification we may mention that we once mixed some gelatine with a solution of Indian ink which had been passed through filtering paper, and then treated it in the manner described, the result being that the whole of the coloring matter was removed with the albumen, which floated on the top like soot, while the lower portion was not only transparent, but perfectly devoid of color.
This experiment not only proves the efficiency of the process, but also shows that it is impracticable to purify the emulsion with albumen after it is made, as has been sug gested, for the purpose of removing the coarser particles of bromide, because the whole would be removed in the same manner as the coloring matter of the Indian ink was.-Brit ish Journal of Photography.

Letters Patent. How and in What Manner they can be Taken Out
In this age of improvements and inventions the subject of patents is of great interest. The laws which govern patents are among the most important on the statute books looking to the protection of industries, as they grant inventors, their heirs and assigns, the exclusive right for a specified period to new discoveries and inventions of a novel and useful character. Every invention or discovery to be patentable must possess the merit of either novelty or utility. A patent will not be granted to an applicant for an article discovered and invented by another, but inventors will not prejudice their rights by allowing the public sale of that invention for two years before applying for a patent, and a valid patent will not be issued in case this use extends over a longer period A "prior invention" does not hold good, if the party has simply conceived the idea of the thing patented; it is necessary that it should be reduced to a practical form or complete invention before a claim can be established. Whoever re stores an abandoned or lost art or invention may obtain a patent for it.
An invention patented in a foreign country can receive a patent in the United States, if it has not been in public use
two years prior to the application, but the American patent two years prior to the application, but the American patent
will not continue beyond the time granted by the foreign patent. In determining

whether an invention is new,

it is only necessary to ascertain if it is different from any thing previously patented. In deciding the question of nov elty it is necessary to decide whether an invention is really novel, or whether it consists in a double or analogous use of something already known. For instance, a patent will not be issued to a person who first applies to railroad cars a kind of a wheel previously used for other conveyances. Neithe can the discovery of a principle, a natural law, scientific truth, or property of matter be a subject of a patent. But whoever
makes a new and useful application of any of these things by embodying the principle of the law in mechanism, or describing a new process by which the discovery may be of practical utility, may obtain a patent for his invention, which consists not in the abstract principle, but in its practical application.
Persons wishing to obtain letters patent usually apply to a solicitor of patents or attorney, and furnish him with a model of the invention desired to be patented, except in cases of designs, compositions, and processes. The petitioner takes oath that he believes himself to be the original and first inventor of the invention, and that, to his knowledge, it has not been known or used before. Accompanying this petition and oath must be a model of the invention if the case will admit of it, with drawings and specifications. The application must be signed by the inventor unless he is dead, when it must be signed by his executor or administrator. The specification is a full description of the invention, in writ ing, and the manner and process of making and using it. The description is followed by the claim, in which the applicant must particularly specify the part, improvement, or combination which he claims as his own invention and dis covery. Where there are drawings the specification must
refer by letters and figures to the different parts. In the case of the composition of matter, specimens of the composition and of the ingredients sufficient in quantity for the purpose of experiment must accompany the application.
the chief objects of the specifications
Are to make known the precise nature of the invention, and to enable the public from the specification itself to practice the inventionafter the expiration of the patent. The object of the claim is to fix with accuracy the extent of what is claimed as new. It is sometimes fatal to a claim to call an invention a machine when it is a process, and it is of the utmost im portance to the inventors that the specifications are plain. The petition, oath, model, specification, drawing, etc., ar forwarded to the Patent Office at Washington by the solicito or attorney. The Patent Office, as those who have seen it
are well aware, is one of the most notable buildings in the
nation's capital, as it is one of the most important. Here ar
preserved all records, books, models, drawings, specifications etc., pertaining to patents. The office is under the supervision of the Secretary of the Interior, but the Commissioner of Patents is the chief in charge of the office. The officers consist of a commissioner, assistant commissioner, and three exam iners-in-chief, besides one chief clerk and examiner in charge of interferences, and a host of primary examiners. These primary examiners are men versed in some special department of mechanics, etc., and models, drawings, specifications, etc., are given to them for examination, with due reference to their special qualifications.
If an applicant is dissatisfied with a decision, he can be heard by the board of examiners-in-chief, and then, if stil dissatisfied, before the Commissioner on appeal. Appeals from the Commissioner can be taken in all cases, except interferences, to the Supreme Court. Where an inventor is not ready to file a complete specification, and desires furthe time, but wishes to secure his right, he can file a caveat which will be placed in the secret archives of the Patent Office; and if there be any application within a year for any thing which appears to interfere with his claim, he shall have notice, and may appear and prove pricrity; and by a second caveat he may renew it for another year. Patents can be procured in foreigu countries, and a great many are take he patent office in washington Is more than self-supporting, and to-day is said to have at least $\$ 1,000,000$ to its credit. Last year there were 20,260 applicants for patents, and 12,354 patents were granted, be
sides 1,455 trade marks and 492 labels. Of the patents, 832 were held for the final payment of dues. The cost of obtain ing a patent is usually about $\$ 60$, $\$ 25$ of this amount being the fee of the solicitor and the balance is paid at the Patent Office. The State receiving the largest number of patents per capita last year was Nevada, but usually the order is as follows: Massachusetts, Connecticut, Rhode Island, New York, and the District of Columbia. It is to be expected that Massachusetts and Connecticut will stand at the head of the list. The intuitive ingenuity of the Yankee is constantly designing something new and exploring the laby rinths of science and art in its efforts to lighten the labo of man, and it will be a long time before he can be ousted from his position at the head of designers and inventors. Boston Globe.

Fire Liosses.

The statistics of fires for the month of September show that the losses by fires reported in the United States that the losses by fires reported in the United States
amounted to $\$ 5,349,300$, and in Canada to $\$ 264,800$. Of the United States loss, the insurance companies paid $\$ 2,208,200$, and of the Canadian loss $\$ 165,000$, or less than one half. The loss for the corresponding month of last year was $\$ 790,500$ less than the aggregate amount above given. This total loss of $\$ 5,349,300$ was distributed, says the Fireman's Journal, generally throughout the States and Territories, New York State suffering the most severely, her loss being $\$ 767,700$; Illinois comes next, with a loss of $\$ 439,600$; Iow lost $\$ 322,500$, and Massachusetts $\$ 281,600$. Dakota had a exceptional fire at Deadwood, where the loss was $\$ 1,070,000$ which is not included in the classification of average losses.
For the nine months ending with September, the recorded losses of the United States amounted to $\$ 61,150.100$, and in Canada to $\$ 6,014,800$-an aggregate of $\$ 67,164,900$. The aggregate losses for the same period last year were $\$ 50,626$, 500 , showing a gain for 1879 of $\$ 16,538,400$. Should the last three months of the year only equal for each the loss of September, the recorded loss for the year will be $\$ 84,007,200$ But it is estimated that one third of the actual losses are not recorded, so that the estimate heretofore made that the annual loss by fire is $\$ 100,000,000$ is not far out of the way The statistics for the past ten years show, excepting great conflagrations, a yearly increase in the fire losses of the country. This is positive demonstration that the means fo controlling fires have not kept pace with the build ing operations of the country. Including the great conflagrations, the fact becomes apparent that improvement in fire extinguishing machinery has not kept pace with the latest methods of construction. As a matter of fact, the means for fighting fires in the seven, eight, or nine story buildings of modern times, constructed of the most inflammable material, are no better than they were twenty years ago, before the era of tall buildings, and when better methods of construction prevailed. The steam fire
engine is the only real advance in fire extinguishing maengine is the only real advance in fire extinguishing ma-
chinery that has been made within the present generation, and the capacity of these has not been increased to accord with the modern style of architecture. Machinery that is equal to fighting a fire in a three story building is wholly ineffectual when the flames are raging a hundred or more feet above the street level. That our engines have not greater capacity is not the fault of the manufacturers. The demand has been for light engines that could be quickly
drawn to a fire, rather than for those of great capacity in throwing water. As a matter of fact, the light engines are more serviceable three times out of five. It is only in those cities where tall buildings are numerous that more powerful engines are required, and in those greater importance is laid upon the ability of the lighter ones to get quickly to a fire nd put it out before it gets headway, than upon great olumes of water to suppress one that is well agoing. Pre relied upon. This would be all well enough if it could
always be trusted. But conflagrations will come in spite of every precaution, and, in such an emergency, the engine that can throw the greatest volume of water steadily for all the time required is the best one.
But to return to the statistics, which show an annual waste of $\$ 100,000,000$ of property every year. This amount of actual values, the product of the people's industry, is thrown away yearly. There is no return for it in any shape Insurance companies may make good individual losses, bu the money must come from the pockets of other individuals, and, eventually, is paid by the producing classes. It would be far better if we could take $\$ 100,000,000$ a year in new crisp, greenbacks from the National Treasury and burn them up, if by that means we could save for business purposes the property destroyed by fire. But suppose Congress should appropriate this sum of money to be burned up every yea -what a howl of indignation would be raised by the tax payers of the country! How they would denounce the wastefulness of our legislators, and how quickly they would relegate them to private life. But would it be any worse for Congress to thus squander the substance of the nation than it is for the careless and wasteful taxpayers to do it? The waste is the same, and careful and prudent tax payers are forced to contribute to make up the losses of those who are neither the one nor the other. What we wan is better legislation to control the erection of buildings, and legislation to prevent insurance companies from encourag ing incendiarism by paying more for property that is de stroyed by fire than it was worth while standing. In othe words, the payment of losses by insurance companies should be restricted to two-thirds the value of the property de stroyed. With such a law in force, property owners would be compelled to carry one-third of the risk themselves, and this would destroy all motive to incendiarism, and induce prudence and care in the management of property. Such law enforced rigidly in every State would reduce our fire losses more than fifty per cent the tirst year.

Telegraphy in France

By the end of the present year, of 87 chief towns of de partments, only 26 will not be provided with direct tele graphic communication with Paris. These 26 towns com municate through intermediate offices. The total number of direct wires from the French capital to provincial centers i 113, and several of these centers have more than one such wire Thus, Amiens has 2; Bordeaux, 3; Marseilles, 4; Montpellier 2; Nantes, 2; Toulouse, 2; Trouville, 2; and Versailles, 39 Twenty-five of these lines are subterranean. As regards di rect wires to foreign centers, Paris has one to Amsterdam, one to Antwerp, one to Basle, three to Berlin, one to Berne one to Bergeux, three to Brussels, one to Cologne, one to Florence, one to Geneva, nine to London, one to Metz-Ham burg, one to Milan, one to Mülhausen, one to Rome, one to Strasbourg, 'one to Turin, and two to Vienna. There is als a direct submarine wire from Marseilles to London.

The Telegraphic System of the World.

The system of telegraphs in Europe comprised, at the end of 1877, 265,809 miles of lines, and 769,768 miles of wires. There were 19,627 government telegraph stations, and 12,708 railway and special stations. The number of employés amounted to 61,984 , and the number of instruments to 41,708 . The number of paid messages was, in round num bers, $86,000,000$, of which $20,000,000$ were international dis patches. The number of other telegrams forwarded amount ed to about 7,000.000. M. Newman Spallart gives the fol ed to about $7,000.000$. M. Newman Spallart gives the fol
lowing statistics for the other parts of the world. In Amer lowing statistics for the other parts of the world. In Amer-
ica (1875 to 1877), 114,157 miles of wires; 8,756 stations; 23 , ica (1875 to 1877), 114,157 miles of wires; 8,756 stations; 23 ,
000,000 telegrams. In Asia (1875 to 1876), 24,521 miles of 000,000 telegrams. In Asia (1875 to 1876), 24,521 miles of
wires; 489 stations; $2,300,000$ telegrams. Australia (1875), 23,582 miles of wires; 689 stations; $2,500,000$ telegrams Africa (1874 to 1876), 8,148 miles of wires; 196 stations $1,200,000$ telegrams.

A New Colorado Mining Tunnel.

The Boulder Nevos and Courier says: "A tunnel has re cently been started at the base of Seaton Mountain, about one mile from Idaho Springs, having a course north 24° east It cuts at right angles all the lodes, and some of them at depth of 2,300 feet. Thirty-seven already discovered will be cut by this tunnel, many of them well and favorabl known by their rich and abundant production of ores. Of these, the projector of the enterprise has secured thirty-fou odes, and arranged for the purchase of the balance when desirable, thus wisely avoiding any possibility of disput over titles, surface claims, or side lines in the long hereafter. This tunnel, christened the 'Idaho,' is considered in many respects the largest and best constructed tunnel in the country for mining uses. Bed rock was reached at a distance of 48 feet, at which point the first lode was cut, the vein mat ter assaying well. Very strang and promising mineral vein have been cut within each successive 25 feet since reachin solid rock. This tunnel, if continued on its course, will reach Black Hawk at a distance of three and a half miles.'
Men of science, students, inventors, and every other clas of persons desirous of keeping up with the times should be come regular subscribers to this paper. They will find it paying investment, for the Scientific American not only contains a record of all the important discoveries and inven tions of this country, Great Britain, and other English speaking countries, but translations from the French, German, and other foreign scientific and industrial publications, nearly all of which are received regularly at this office.

Busimes and extomal.

The Chargefor Insertion under this head is one Dollar a linefor each insertion; about eight words to a line. Advertisements must be received at mublication office as early as Thursday morning to appear in next issu. tisers a circulation of not less than 50,000 copies every weekly issue.

Blake Crushers, all sizes, with all the best improvements. at less tha
Co., Pittsburg, Pa.
Comb'd Punch \& Shears: Universal Lathe Chucks. Lamro Thring Maine Ma To Thrashing Machine Manufacturers.-The best,
cheapest, and most durable Grain Tally. Can be atcheapest, and most durable Grain Tally. Can be at-
tached to separators. Measures and registerscorrectly.
Shop rights or entire patent for sale. Address A. H. tached to separators. Measures and re.
Shop rights or entire patent for sale.
Seavey, North Huron, Wayne Co., N.
Agency Wanted to introduce some Novelty into Canada by ag
Ont.
The Friction Clutch Captain will start calender rolls for rubber, brass, or paper without shock; stop quick,
and will save machinery from breaking. D. Frisbie \& Co., New Haven, Conn.
Flanges, Pulleys, etc. P. Pryibil, 467 W. 40th St., N. Y. You can get your engravings made by the Photo-En-
graving Co. (Moss' process), 67 Park Place N. Y. for bout one-half the price charged for wood cuts. Sen amp for illustrated circular
Hoisting Machinery of all kinds a specialty
Castings of Crucible Steel, solid, act same as bar
teel. Specialty: Cast Cast Steel Plow Shares. Agristeel. Specialty: Cast Cast Steel Plow Shares. Agri-
cultural Wrought Steels of every description. Write us. Read, McKee \& Co., limited, Pittsburg, Pa.
For Sale.-Patent Automatic Planer Knife and Tool
Grinder. Also Patent Friction Clutch and Pulley. AdGrinder. Also Patent Friction
dress E. S. Fernald, Saco, Me.
A Firm in Scotland, representing a New York Leather Belting House, are anxious to obtain another represen
tation for American goods. Address B. J. H., P. O Box 2701, New York.
Presses, and Dies that cut 500,000 fruit can tops with For Sale.-One Horizontal Steam Engine, $20^{\prime \prime} \times 48^{\prime \prime}$; one $18{ }^{\prime \prime} x$ x $42 \prime \prime$; one $16^{\prime \prime}$
Works, Brooklyn,.
Wood Turning Lathes. P. Pryibil, 467 W. 40 th St.,N.Y. Light and Fine Machinery contracted for. Foot Lathe
Catalogue for stamp. Chase \& Wood man, Newark, N. J. Empire Gum Core Packing is reliable; beware of imitations called Phœnix. Greene, Tweed \& Co., 18 Par
Box-bell, $\$ 1.50$. Bell, Battery, and Push Button, $\$ 3$
Situation Wanted.-Have had ten years' experience as business. Understandmechanical drawing, tool making, etc. Best of references. Particulars by letters. Ad-
dress K., Box 254 Guelph, Ontario Canada ess K., Boxist, Guelph, Onin Canad.
The Genuine Asbestos Steam Pipe and Boiler Coverings are the most durable, effective, and economical of
any in use. H. W. Johns Manufacturing Company any in use. H. W. Johns Manufacturing Company,
Maiden Lane, New York, are the sole manufacturers.
A Gentleman, now Foreman in a large Manufactory heorettical and practical machinist, desires to chang his present position for one in which he may have a bet ter chance to employ his skill in all kinds of scientific o
industrial machinery. Address, for ten days, F. Lam ndustrial machinery. Address, for ten days, F. Lam See Staples \& Co. 's advertisem

Metallic Articles Colored in

解 in Single or Rainbow Colors. New Process. High cost metals imitated in cl
For best Fixtures to run Sewing Machines by Power
Thomas D. Stetson, 23 Murray St., New York, serves
Expert in Patent Suits.
The Baker Blower ventilates silver mines 2,000 feet P. Wheelbarrows.-The "A. B. C. bolted" will outlast
five ordinary barrows. \$24 per doz. A. B. Cohu, 197 five ordinary
Water $\mathrm{bt} ., \mathrm{N}$.
Y
Park Benjamin's Expert Office, Box 1009, N. Y. ReTo stop leaks in boiler tubes, use Quinn's Patent Fer tales. Address S. M. Co., So. Newmarket, N. H. Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts, importers Vienna lime, crocus,
etc. Condit, Hanson \& Van Winkle, Newark, N. J., and
The Secret Key to Health. - The Science of Life, or Self-Preservation, 300 pages. Price, only $\$ 1$. Contains
fifty valuable prescriptions, either one of which is worth more than ten times the price of the book. Illustrated sample sent on receipt of 6 cents for postage. Address
Dr. W. H. Parker, 4 Bulfinch St.. Boston, Mass. Wright's Patent Steam Engine, with automatic cu off. The best engine made. For prices, address william For Solid Wrought Iron Beams, etc., see advertise methograph, etc.
Presses, Dies, and Tools for working Sheet Metal. etc. ruit \& other can tools. Bliss \& Williams, B'klyn, N. Y.
Hydraulic Presses and Jacks, new and second hand, Lathes and Machinery for Polishin
E. Lyon \& Co., 470 Grand St.. N. Y.
Steam Excavators. J. Souther \& Co., 12 P.O. Sq. Boston. Bradley's cushioned helve hammers. See illus. ad. p. 302 Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinker St., Philadelphia, Pa,
Noise-Quieting Nozzles for Locomotives and Steam boats. 50 different varieties, adapted to every class of
engine. T. Shaw, 915 Ridge Avenue, Philadelphia, Pa Stave, Barrel, Keg, and Hogshead Machinery a spe cialty, by E. \& B. Holmes, Buffalo, N. Y.

Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel - other kinds imitations and inferior.
Caution.-Our name is stamped in full on all our best Standard Belting, Packing, and Hose. Buy that only. ing Company, 37 and 38 Park Row. N. Y.
For best low price Planer and Matcher, and latest improved Sash, Door, and Blind Machinery. S. Snd for
descriptive catalogue to Rowley \& Hermance, Williams descriptive
port, Pa.
Eclipse Portable Engine. See illustrated adv., p. 318. Special Wood-Working Machinery of every variety. Sheet Metal Presses, Ferracute Co., Bridgeton, N. Latest improved methods for working hard or soft metals, grinding long knives, tools, etc. Portable Chuck
Jaws and Diamond Tools. Address American Twist Drill Co., Woonsocket, R. I.
For best Portable Forges and Blacksmiths' Hand Diam, address Buffalo Forge Company, Buffalo, N. Y. steam Hammers, Improved Hydraulic Jacks and Tube xpande Sawyer's Own Book, Illustrated. Over 100 pages of
valuable information. How to straighten saws, etc. Sent free by mail to any part of the world. Send your fuii address to Emerson. Smith \& Co., Beaver Falls, Pa.
Eagle Anvils, 9 cents per pound. Fully warranted. Repairs to Corliss Engines a specialty. L. B. FlanTight and Slack Barel mach.
Tight and Slack Barrel machinery a specialty. John Elevators, Freight and Passenger, Shafting, Pulleys. The Horton Lathe Chucks; prices reduced 30 per cent The Horton Lathe Chucks; prices reduced 30 per cent. $\$ 400$ Vertical Engine, 30 H. P. See page 350.
No gum! No grit! No acid! Anti-Corrosive Cylinder Oil is the best in the world, and the first and
only oil that perfectly lubricates a railroad locomotive cylinder., doing it with half the quantity required of best lard or tallow, giving increased
power and less wear to machinery, with entire freepower and less wear to machinery, with entire free-
dom from gum, stain, or corrosion of any sort, and
it is equally superior for all steam cylinders or heavy work where body or cooling qualities are
indispensable. A fair trial insures its continued use. Address E. H.
Cedar St., New York.
Emery Wheels for various purposes, and Machines at
reduced prices. Lehigh Valley Emery wheel Company reduced prices. Lehigh Valley Emery wheel Company,

Machine Knives for Wood-working Machinery, Boo Binders, and Paper Mills. Large knife work a specialt. Stiles \& Co., Riegelsville N.J Magic Lanterns and Stereopticons of all prices. View able business for a man with small capital. Send stam or 80 page illustrated catalogue. McAllister, Manufac turing Opt
Patent Ste Patent Steam Cranes. See illus. adv., page $35 \mathbf{1}$ National Steam Pump. Simple, reliable, durable.
Send for catalogue. W. E. Kelly, New Brunswick, N.J. Renshaw's Ratchet (short spindle) uses taper and Electro-Bronzing on Iron. Philadelphia Smelting mpany, Philadelphia, Pa.
Improved Steel Castings; stiff and durable; as sof less than $65,000 \mathrm{lbs}$. to sq. in. Circulars free. Pittsburg teel Casting Company, Pittsburg, Pa.
Mineral Lands Prospected, Artesian Wells Bored, by a. Diamond Drill Co. Box 423 , Pottsville, Pa. See p. 349 Rue's New "Little Giant" Injector is much praised for its capacity, reliability, and long use wit
Rue Manufacturing Co., Philadelphia, Pa.
Catechism of the Locomotive, 625 pages, 250 engrav stood book on the Locomotive. Price $\$ 2.50$. Send for
catalogue of railroad books. The Rairoad a catalogue of railroad
Broadway, New York.
The only economical and practical Gas Engine in th market is the new "Otto" Silent, built by Schleich Steam Engines, Automatic and Slide Valve; also Boit ers. Woodbury, Booth \& Pryor, Rochester, N. Y. See
Ilustrated ad vertisement, page 85 .

Microscopes, Optical Instrm's, etc. G. S. Woolman

NEW BOOKS AND PUBLICATIONS

n Nostrand's Science Series. New
York: D. Van Nostrand.
Price 50 cents.
Numbers 45 and 46 of these reprints are Thermodynamics, by Henry T. Eddy, C.E. Ph. D., of translated from the French of M. Ledoux mining eng neer. The formeraims to give a brief and logical expos ion of the fundamental and simplest applications of onditions of effective working of the three classes ce-making machines
Kesume of Yellow Fever. (Quarantine and Home
dinen, M.D.
Abstract of report ly Dr. Clendinen, as ob an Committee of Intelligence, District Society of Berge the State Medical Society. The author has brought to gether a good many facts in the history of yellow feve which he finds well described by Hippocrates, 2,240 ears ago. He does not believe that the disease is lways imported, and denies the efficacy of quarantin orable.
Catechism of the Marine Steam En GINE. By Emory Edwards. Hustrated Philadelphia: Henry Carey
$12 \mathrm{mo}, 374$ pages. Price $\$ 2$.
Offered as a practical work for practical men, espe and firemen, who wish to adopt marine engineering as a
profession. For such men it is likely to prove very ser
viceable. They will at least find no trouble in under viceable. They will at least find no trouble in under-
standing what the author has to standing what the author has to say, his language being
admirably simple, direct, and free from mathematical admirably simple, direc
or scientific affectation

HINTS TO CORRESPONDENT
No attention will be paid to communications unless accompanied with the full name and address of the

Names and addre

We renew our request thatcorrespondents, in referring to former answers or articles, will be kind enough to of the question.
Correspondents whose inquiries do not appear after reasonable time should repeat them. If not then pubished, they may conclude that, for good reasons, the Persons desirin
Persons desiring special information which is purely of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, s we canno be expected to spend time and labor to obtain such information without remuneration,
Any numbers of the Scievtific American Suppleoffce. Price 10 cents each.
(1) O. R. writes : Your recipe on shoe dressing is very good. I find that the different ingredi ents give a good black liquid, which makes the leather smooth, soft, and black, but without gloss. Can you
inform me how to obtain a gloss? A. Increase the pernform me how to obtain a gloss
entage of shellac and ammonia
(2) H. C. asks how much fall would be equired in a ditch to carry the water three miles a water in the ditch would d dopend 4 . Me fow the soil and smoothness of the surface. 2. Could you refer me to some reliable work that treats on running water and ditching, etc.? A. "Fanning on Water Supply Engineering " is a good work.
(3) "Atlas" asks how to mount maps on cloth, and best kind of paste and fabrics for purpose. At stretch smooih factory cloth upon a frame and coat
it with glue size. Before this dries, apply a strong flour paste to the back of the map and lay it smoothly on the cloth. Let it remain until perfectly dry. If the map is to be varnished, apply two or three coats of isinglass
size, and after it becomes thoroughly dry flow on coat of varnish consisting of balsam of fir diluted to the proper consistency with turpentine.
(4) J. P. asks: 1. Can a current of elec without the use of either a battery or nermanent man nets to charge the machine with? A. Yes; see Suppl ment, No. 161. 2. What is the electromotive force of the Grenet battery when first connected? How long after it is put in action will it maintain its strength, and to what extent will the force of current decrease? A. 1.095 rapidly if the battery is allowed to remain in action any considerable length of time continuously. It is not adapted for a continued use, but where a strong current is required occasionally for a few minutes at a time
it answers a good purpose. 3 . What form of battery best combines strength of current, constancy, an conomy? A. Bunsen's, or some of its modifications.
(5) E. M. C. asks: Is there an easy way of distinguishing between $8 \mathrm{vo}, 12 \mathrm{mo}, 16 \mathrm{mo}, 18 \mathrm{mo}$, and other sizes of books, by those not practical printers, signatures (letters or figures) at the foot of pages.
(6) O. M. S. asks: Is a lightning rod sup ported upon large insulators and having no ground connection, supported
know of? A. No.
(7) J. S. B. writes: The yachts in use here of which there are many, are built on a flat model. They are very broad beam, the beam in some cases being about
$2-5$ of the length, and usually light draught. They are $2-5$ of the length, and usually light draught. They are
without keels, but furnished with center boards. Now, I am thinking of building a yacht, upon a deeper and nar peed? model, with woul. it do to make the keel in latter model in whole or part of iron, heavy enough so that ordinarily no other ballast will be needed? My object in this is to bring the center of gravity as much below the water line as possible, as it seems to me that by so doing we would be able to sail closer to the wind without going ver. Would my plan have that effect? A. The mere form of midship section does not determine the best deep water and strong winds, but the light draught fastest in light winds. The iron keel is good and should be heavy; do not make your cross section too full below.
(8) F. M. D. asks what is the horse power of an engine of $61 / 2 \mathrm{inch}$ cylinder, 14 inch stroke, 70 lb .
pressure, 180 revolutions. I am running an engine of pressure, 180 revolutions. I am running an engine
that size, there has been quite a dispute about it. One man said it was a four horse, another said 20 . I think it about an 8 horse. A. If you are working 70 lb . pressre on the piston, whole stroke, the available power is horse power; deducting 25 per cent for friction and other
(9) "Inventor" writes: I want to connect an engine or engines to a shaft running 390 or 400 revolutions per minute; how small ought the cylinders to be to give me 8 or 9 horse power, and what size upright tu bular boiler will furnish steam. Can I run the engines with success? How many engines are inch cylinder and 8 inch stroke will give you the A 6 inch cylinder and 8 inch stroke will give you the
power you want. A vertical tubular boiler shoudd have at least 220 feet heating surface. To run at such hig
speed successfully, everything must be well propor
tioned and nicely fitted. tioned and nicely fitted.
(10) J. F. asks: What is the best method of easily and economically separating in large quantities of salt water, the calcium magnesia. etc., so that the salt will remain pure? A. There are three methods em-
ployed for separating salt from calcium magnesia, etc.: ployed for separating salt from calcium magnesia, etc.:
a, by evaporation of the water by aid of the sun's heat; a, by evaporation of the water by aid of the sun's heat;
b, in winter by freezing; c, by artificial evaporation. The 6 , in winter by freezing; c, by artificial evaporation. The
first method is generally used on the coast lines of southern Europe. The arrangement of the salines or salt gardens is as follows: On a level sea shore is constructed a
large reservoir, which by a short canal communicates large reservoir, which by a short canal communicates
with the sea, care being taken to affordprotection agaiust the inroads of high tides. The depth of water in these reservoirs varies from 0.3 to 2 meters. The sea water
is kept in the reservoir until the suspended matter has is kept in the reservoir until the suspended matter has
been deposited, and is then conveyed by a wooden chanbeen deposited, and is then conveyed by a wooden chan-
nel into smaller reservoirs, from which it is conducted by underground pipes to ditches surrounding the salines where the salt is separated from the water. The salt is collected, placed in heaps on the narrow strips of land which separate the ditches from each other, and sheltered. As these heaps are left for some time, the deliquescent chlorides of magnesium and calcium are ab-
sorbed in the soil, consequently the salt is comparatively pure. If the salt water is derived from salt wells or springs, the brine is immediately boiled down. This boiling generally requires several weeks, the scum being removed and the soda and calcium sulphates deposited removed with perforated ladles. As soon as a crust of salt is formed on the surface of the liquid a temperature of $50^{\circ} \mathrm{C}$. is maintained. At this stage the
salt is gradually deposited at the bottom of the pan in salt is gradually deposited at the bottom of the pan in
small crystals, and being removed, is put into conical small crystals, and being removed, is put into conical
willow baskets, which are hung on a wooden support over the pan to admit of the mother liqnor (which contains the greater part of the magnesium and calcium chlorides) being returned to it. Finally, the salt is dred and packed in
(11) G. S. T. writes: A reservoir is 60 rods distant, descent 40 feet. One pipe of $11 /$ inch bore con
tracted to $3 / 4$ inch just at the lower nozzle, the other tracted to $3 / 4$ inch just at the lower nozzle, the other pipe of $11 / 2$ inch bore for 20 rods, 1 inch bore for the next 20, and the last 20 rods of $3 / 4$ bore. Which of the contracted just at the outlet the friction will be least.
(12) T. M. J. asks: 1. Will the water, if conveyed to the boiler in a 2 inch pipe, force itself 'into the boiler against a greater steam pressure than (say) in
a $1 / 2$ inch pipe? A. No. 2. In " Peck's Natural Philoa $1 /$ inch pipe? A. No. 2. In " Peck's Natural Philo-
sophy" there is an illustration of how a cask was bursted by filling the cask with water from the top of a tube 34 feet long. Will the heavier weight of water in a large pipe not add materially to pressure per square inch at the lower end of the pipe? A. No. 3. Could I overcome any resistance in the boiler by letting the water into the boiler through a funnel or a small hole on the principle of an
jector.
(13) J. R. H. asks: 1. Can exhausted steam be used to heat up a workshop? A. Yes. 2. In what
way does it affect the working of an engine? A. Proway does it affect the working of an engine? A. Pro-
duces a little back pressure on the piston. 3. And what per cent of power is lost between exhausting through a pipe 20 feet long, and one 120 feet long? A. Difference is not appreciable if pipe is large.
(14) G. E. T.-You will find directions for making batteries in Supplements, Nos. 157, 158, and
(15) W. H. B. asks, Does the microphone strictly magnify the sound or only transmit it? A. It
(16) C. K. M. asks: 1 . What is the best method of magnetizing a rat tail file $15 \times 1 /$? A. Inclose lated wire, and connect the helix with 4 or 6 cells of carbon battery. 2. Can I magnetize it with an ordinary Daniells battery, by wrapping it with insulated copper
(17) S. G McM. asks: 1. Will a etlephone that is constructed as described in Supplement, No.
142 , work when thecoil is made of No. 30 wire? If not, 142 , work when thecoil is made of No. 30 wire? If not,
will it with No. 32 A. No. 30 wire is too coarse. No. 32 might answer, but the results would not be satisfacwire be if made of copper? A. No. 18 will do.
(18) A. S. B. asks: How can I take grease out of marble? A. Mix sal-soda with two parts of quick-
ime in powder, moisten the mixture with soft water, coat themarble with this, and let it remain twelve cours. Then wash with water and a little soap if ne-
(19) J. D. asks: How can I make an alloy of copper which will attach itself to glass, metal, or por-
celain? A. 20 to 30 parts finely blended copper (made byreduction of oxide of copper with hydrogen or precipitation from solution of its sulphate with zinc) are made into a paste with oil of vitriol. To this add 70 parts of mercury and triturate well; then wash out the In ten or twelve hours it becomes sufficiently hard to receive a brilliant polish and to scratch the surface of tin or gold. When heated it becomes plastic, but does ot contract on cooling.
(20) A. L. C. asks why a piece of paper cannot be blown off the end of a tube if it is simply t. A. This phenomenon occurs only when the tube has a flange or its equivalent around the discharge opening. The adherence of the paper to the end of the tube is due to a vacuum formed on the surface of the card by the ateral discharge of air. This subject is fully treated
(21) A. H. asks: Where on the globe will New Zealand most probably; possibly a fittle A. In at some English missionary station in Polynesia. East al siberia is ruled out of the reckoning by the Russian time from San Francisco.
(22) L. P. B. writes: I wish to know what gives the kind of ink used with the hectograph the peculiar bronze luster? A. The ink consists of astrong in drying.
(23) W. C. B. asks what will remove iodine from marble. A. Try strong aqua ammonia.
(24) A. B.-Laboulbène recommends for the preservation of insects in a fresh state plunging them in a preservative fluid consisting of alcohol wint
an excess of arsenious acid in fragments; $11 / 2$ pint alcohol will take about 14 troy grains of arsenic. The living insect, put into this preparation, absorbs about
3-1000 of its own weight. When soaked in this liguor and dried, it will be safe from the ravages of moths, Anthrenus or Dermestes. This liquid will not change the colors of blue, green or rea beetles if dried after soaking from twelve to twenty-four hours. Hemiptera and O rthoptera can be treated in the same way. The nests, cocoons, and chrysalids of insects may be pre--
served from injury from other insects by being soaked served from injury from other insects by being soaked in the arseniated alcohol, or dipped
solution of carbolic acid or creosote.
(25) W. H. M. asks (1) whether methyl chloride is an article of commerce and whether it is expensive. A. No; it is a colorless gas at ordinary tem-
peratures and pressure; it is condensable to a liquid at minns $22^{\circ} \mathrm{C}$. To keep it in the liquid form it at minns $22 コ 一^{\circ}$. To keep it in the liquid form
mustbe stored in very strong and hermetically sealed vessels. 2. Would it be necessary to produce presure with the article, before evaporating, to produce a low temperature? If so, how much; if not, how low might the temperature be reduced by the use of an air pump t produce a vacuum and beginning at normal temperature
and pressure? A. Exposed to the air it (the liguid) evaporates with great rapidity, its temperature falling below $0^{\circ} \mathrm{F}$.; in vacuo this evaporation of course pro ceeds more rapidly than in air, and hence the reduction of temperature is greater. The greater the amount of liquid evaporated in a given time the lower the temperature attainable. 3 . How large a quantity of methyl chloride should
A. Six ounces.

Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined, with the results stated:
C. W.-The substances you send for examination denbergite 4. Artificial. 5. Red granite 6. 3. He in calcite. 7. Epidote. 8. Satin spar in dolomite. 9 Coccolite. 10. Dolomite. 11. Quartzite. 12. Horn blende. 13. Clinochlore. 14. Chlorite. 15. Natrolite 16. Spodumene. 17. Calcite. 18. Iceland spar. 19
Limonite. 20. Decomposing feldspar,-O. E C.-The Limonite. ${ }^{20}$. Decomposing feldspar.-O. E. C.-Th (from the alum used in its manufacture). -N . C.-Th rock consists of serpentine, hornblende and quartz wit copper and iron sulphurets (chalcopyrite and pyrite).E. E.-The rock is a talcose slate. Some of it would doubtless answer very well for furnace linings if it can e worked economically.-H. S.-Amygdaloid trap No.-1 is rutile-titanic acid=oxygen 39, titanium 61-100 No. 2. Titaniferous sand, mennoconite. No. 3. Ferruginous quartz containing crystals of rutile and iron pyrite also probably gold.-W. K.-The quartz contains nothing of value.-G. W. K.-It is clear quartz rock. Useful for glass making.-O. B.-The iron ore is hema-
tite of excellent quality.-J. C. M.-No. 1. Gypsum, tite of excellent quality.-J. C. M.-No. 1. Gypsum,
lime sulphate. No. 2. Calcite, lime carbonate. No. lime sulphate. No. 2. Calcite, lime carbonate. No.
Malachite and azurite, carries traces of silver. No. 4 Contains clay, sand, and lime phosphate.-J. M. F.-It is the mutilla
Southern States

COMMUNICATIONS RECEIVED.

On Ice Yachts. By J. E. K.
On Improvements in Telephones. By T. L. W. On Measuring the Uneclipsed Portion of the Sun's
Diameter. By L. L. Diameter. By L. L.
On a Curious Bone Formation. By E. L. W.
On the Great Wheat Belt of the United States. By d
On Patent Temperance Reform. By L. J. F On Patent Temperance Reform. By
On New Motive Power. By W. M. M.
A Theory of the Tides. By W. B., A Theory of the Tides. By W. B.,
On Sailing Iee Boats. By H. R. B On Paraffine in Oil Wells. By D F On the Velocity of Ice Boats. By P. On Small Steamers. By J. A. W.
The Law of Dust Explosions. By On the Speed of IceBoats. By T. S. S. On Making Copying Ink. By C. F. L. On Explosion of Dynamite. By N. .K.
[OFFICIAL.]
INDEX OF INVENTIONS

for which

Letters Patent of the United States
Granted in the Week Ending
November 4, 1879 ,
AND EACH BEARING THAT DATE.
[Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list, in cluding both the speciffications and drawings, will be
furnished from this office for one dollar please state the number and date of the patent desired, and remit to Munn \& Co., 37 Park Row, New York city,

Accordion and flute, combined, C. Bernhardt. ... 221,148 Acid, making tartaric, \mathbf{H}. Goldenberg ...
Aging and puri
$\&$ Lo chner.
Air compressor, W. Johnston
Animal trap, J. M. How
nimal rap, J. M. Hawk
Animal trap, G. W. Lewthwa
Anvil, horseshoe calk welding, E. J. Parker. 148 221,316 221,316
221,318
201304 221,1304
221,320
211,329
221,183 221,329
221,183

Automatic gate, S. Small..
Axle box, arar T. A. Bissell.
Axle box, car. I. P W Wendel.
Axles, die for making flap. C. Babco
Bag and sack fastener, C. R. Elliott
Bag holder, M. Pomroy
Ball trap, W. C. Hinman
Bed attachmentt invalid, R. O'Donnell
Bed bottom, spring, S. H. Reeves
Bed bottom, spring, S. H. Reeves
Bed or bed bottom, spring, E. A. Jeffery
Bedstead, wardrobe, F. R. Wolfinger...
Beer cooler, J. S. Flautt
Belt fastener, T. O. Potter
Billiard cue chalk block, C. A............
Back .
Blacking box holder, H. Weston.......
Blacking box holder, H. Weston........
Boring machine, log, Bartlett \& EEans.
Boring machine, rock, W. W.
Bottle stopper, L. Kutscher
Brick stopper, L. Kutscher...
Bride, M. R. Thurbe
Brusin cleaner, A. Hopfen
Buildings, construction of,
Button and stud, E. A. Robinson
Button, separable, C. F. Quinle
Cabinet, toilet, F. C. Zanetti.
alculator, mechanical, S. Pett
Can for hermeticall
Car brake, G. Smith..............s, C. C. Lane
Car coupling. C. B. Santee...
Car, freight, T. R. Hutton
Car roof, railway, H. Aldridg
Cars, pipe coupling for railway, J. E. Chapin
Cash register and indicator, J. \& J. Ritty
Chain, ornamental, A. Horst..
Clock escapement, C. E. Lord...
Clock movement, A. E. Hotchb
Clock pendulum, H. Camp....
Clock, striking, D. W. Bradley
Clothes pounder, C. W. Robinso
Coffee and tea, apparatus for preparing, J................................... Creaming can, J. S. Farley
Cultivator, J. Dierdorff...............................
Demijohns and bottles, lock stopper for, H. Gillingham
Dental drill, A. Hartman
Deodorizing and disinfecting, process and appa atus for, J. M. Hirsh.....
Drawer support, J. C. Hirsch.
Dust pan, G. H. Howe.
Earring, W. A. L. Miller...
Electric machine
Electro-magnetic machine, L. Drescher
Elevator bucket, W. G. Avery................... Equalizer, three horse, R. Scott
Fence, barbed, E. M. Crandal
Fince wire, barbed, S. H. Gregg................
Fibers, machine for cleaning and extracting, P
Sanchez File anch holder, paper, J. C. Moore Filter, water, , T. Tripp.....
Firearm lock, A. E. Barthel.
Firearm, revolving, A. E. Barthe
Firearm. revoiving, A. Hy
Fire escape, F. P. Mankin.
Furnaces, the gases from coking coal, process an
apparatus for utilizing in, L. Stevens Gleaner and sinder. E. W.Jenkins
oid, etc., apparatus for concentrating and ama
gamating, J. Patterson.
Governor, steam engine, F. Fosdick.
rinding mill, J. stevens....
Hair springstud, Monday \& Dohert
Hame, sheet metal, J. S.
Harness, C. H. Cooley..

Hay carrier. L. Y. Myers.
Hay loader. W. \& B. F.

Hay rack, J. Boy.d
Heating and cooking furnace, gas, H. Q. Hawley
Hides, machinery for stocking, unhairing, an
softening, R. Middleton
Hinge, gate. J. A. Grove
Hinge, gate. J. A. Grove...
Hinge, spring, W. Giifilan
Hinge, step, J. M. Dodge..
Hinge, stop, J. M. Dodge
Hoe, T. B. Lock wood...
Honey box for beehives, C. H. Connolly
Hoop machine, R. H. Nogar.
Horses' hoofs. moisture and pressure pad fo
D. C. Baker

Hose nozzle, adjustable, G. C. Palmer............
Howeling, crozing, and chamfering machine,
W. King
Hub sand band, w. H. stevens.,

Incubator, J.I.L. Campbell .
Indicator, W. L. Brownell.
Kaicator, W. L. Brownen......
Kettle, G. w. Fisher
Kneader, dough, J. W. \& A. Ruger
Knit mittens, manufacturing, E. I. Pearson
Latch, A. Wimmer..............
eather, rémovingextractivematterfromtanne
Plumer \& Kerans................
Letter package slasp, J. W. Ripley ..
Level, pendulum, I. . W. Winter......
Lid or cover for vessels, J. C. Boyle
Lifting jack for vehicles, L . Haversticl
Loom, J. W. Drummond (r)...........
Loom, circular, J. J. Greenough (r)
Loom, circular, J. J. Greenough (r).................
Loom drop shuttl booxes, mechanism for opera-
ting, L. J. Knowles......221,237, 21,238, 221,239,
Loom harness motion, o. W. Kenison....
Loom shuttle spindle, O. P. Richardson..
Loom shuttle spindle, O. P. Ri
Loom temple, w. H. Burns (r).
Lubricator, J. G. Barrington .
Measurin, J. J. G. Barrington
March automatic apparatus for, H .
Marchand
reat mincing
eat mincing machine, G. S. Oberdorff Metal, galvanizing, Wahl \& Eltonhead.
Metallic plates, manufacturing ornamented, w.
M. Hedges

221.31
221,353
221,164
221,260
221,20

Motor, F. M. Morgan
Neck band shaper, F
Nut lock, w. Gray
Oven, J. Graig
Oyster feeder, J. Langrall
Oyster feeder. J. Langrall
Packing for piston, plungers, etc., J. G. Willar
Paper bag, D Appel ...
Paper bag, D. J. Ferry.
Paper box, A. Matchett.
Paper caps, etc., machine for making plaite
W. F. Hunt.....
Paper cutting machine, G. R. Clarke et al......
Paper dishes, making, C. Ingersoll
Drake...
ipeand hos
Pipeand hose coupling,..........................
Planterand fertilizer distributer, combined see
N. Birdsall
lanter, corn, M. P. Brow
lanter, corn and on seed, Z. т. L
ock etbook lock, F. F. Weiss
Pocket, safety, J. Colton.
Pocket, safety, J. Colton 221,26
Printing, chromatic, J. Carson.............
Projectile for small arms, H. J. Nowlan.
Pulp screen. revolving, W. L. Longley...
Pump, W. Garvens.........
Pump, M. W. McCortney
.................
Pump for compressing airand gas, S. L.
Pump handle attachment, A. A Lamb.
Pumps, cylinder lining for, H. Eppin
Railway signal, F B. Aspinwall
Railway switch, H. D. Sprague
Razors, manufacture of, C. F. Pluemache
Razors, manufacture of, C. F. Pluemach
Refrigerating apparatus, T. Elkins........
Refrigerating apparatus, J. A. Whitney (r)
Refrigerating apparatus, , J. A. Whitney (r)
Refrigerator, H. M. Diggins
Rope clamping hook, J. Robert
Sash balance, W. Milner .
Sash. window, G. H. Padge
Saw mill buffer, reciprocating, J. D. Wilson.
Saw mill dog, J. Little.............................
Saws, machine for making scroll, J. F. C. Rider
Saws, machine for making scroll, J..........................
cale beam, Blawell .

hipping case and can. T. Allen
Shirt, T. M. \& E. Denhem.
Perry..
Spooling m
Spooling mac
Atwood..
Station indica
tation indicator, J. R. \& W.J....................................
Steam engine, A. Ehret.....
teel, manufacture of chrome, R. Brown.
Stereotype plates, machine for shaving and trim
ming, W . Soctut...........................
hanism for machi
tove, coal oil, J. M. Adams
Stove, heating, McCaw \& Brown
Stove or furnace, W. P. Miller .
Stove or furnace, W. P. Miller
Strings from intestines, making, P. \& J. Turner
Suspenders, L. \& O. Oppenheimer.
Tag fastener, W. T.
Tanning, M. L. Doty.....................
Telegraph lines, recorder for long, R. K. Boyle
Telegraph hines, recorder for long, R. K. Boy
Teegraph repeater, ftrealarm, A. W. Gray..
Telephone transmitter, C. A. Randall ...
Telephonic conductor, Holmes \& Greenfleld
enter clothing, Spitzli \& Lacy
Thill coupling, W. S. Layard
Thill coupling, T. W. \& H. K. Porte
Thill coupling and support, W. J. Morgan.
Thrashing machine spikes. die for, F. Transue
Toy gun, D. F Hale
Toy gun, D.F Hale
Traction engine, J. E. Praul
Traction engine, J. E. Praul
Tug link, H. J. Moreland...
Valve mechanism for direct acting eng:nes, G. E
Dow ..
Valve, saf
Valve, safety, F. B.
Vehicle shifting rail, J L. Fishe
Vehicle. spring, J. J. Kraiss.
Velocipede, R. Stee
Vise, F. C. Zanetti
Wagon brake, E. W. Pritchet
Wagon gear, E. P. Joslyn
Wash bench or stand, folding, M. S. Rawson
Wash bench or stand, folding, M.
Watch case, Colly \& Johnson..
Watch case, Colby \& Johnson.......
Water closet, hopper, J. Demarest.
Water meter, piston, Barton \&
Water motorn, W. F. Eyster............................
Wells, casing bead cap for oil and other. W.
Wells, casing bead cap for oil and other. W. B.
Edelen ..
Edelen
Whip lashes, fastening, J. I. Fowler.

Windmill, Morrison \& Tietjens..............
Window shade attachment, E. Metcalf.
Window shade cloth, making. B. Birnbaum
Window shade cloth, making. B. Birnb
Wire cloth, fastening for. M. Kennedy
Wire drawing machine, C D
Wood, compound for filling the pores of, T.
Wood, com
Hojer.

Wrench, W${ }_{221378}^{221,231}$| 221,231 | G |
| :--- | :--- |
| 221,388 | G |
| 221,343 | H |

rate fronts, F. S. Bissell.
Group of statuary, J.
Group of statuary, J. Rogers..... $\ldots11,886$
Handles of china and other vitrifled ware, C. F. A.11,480
11,886

Hinrichs ...
nit drawers
Knit drawers, swits Conde$\begin{array}{r}11,483 \\ .11,998 \\ \hline 11,899\end{array}$
Knit shirt, swits Conde...
Oil cloth, C. T. \& V. E. Mes 11,485 and 11,499
. 11,487 to 11,494
Watch chain ornaments, J. U. Gerow. English Patents Issued to Americans.
From October 24 to October 28, inclusive.
Centrifugal machina. E. E. Quimby, Orange, N. J.
Centrifugal machine, E. E. Quimby, Orange, N. J.
Coloring fibrous materials, H. W. Vaughan, Providen
$\left.\begin{aligned} & \text {. } 221,314 \\ & 221,216 \\ & 221,234\end{aligned} \right\rvert\,$
1,234 Drying apparatus, A. J. Reynolds, Chicago, Ill.
Grain elevator, w. . Stoll, Brooklyn, N. Y.
Musical instruments, apparatus for playing, J. Y. Smith,
Pittsburg, Pa.
Pittsburg, Pa.
Packing bottles, etc.. E. Vorster, New Orleans, La.
Shroud block. O. E. Huss, Washington, D. C.
Shroua block. o. E. Huss, Washington, D. C. L. La.
Stamp canceller, G. E. Emerson, San Francisco, Cal.
adurthemonts.

To Business Men.

The value of the SCIENTIFIC AMERICAN as an adver-
tising medium cannot be overestimated. Its circulationtising medium cannot be overestimated. Its circulationnow published. It goes into all the States and Territo-
ries and is read in the theries, and is read in all the principal libraries and reading
rooms of the world. A business man wants somethingrooms of the world. A business man wants something
more than to see his advertisement in a printed news-more than to see his advertisement in a printed news-
paper. He wants circulation If it is worth 25 cents perpaper. He wants circulation If it is worth 25 cents per
line to advertise in a paper of three thousand circula-ine to advertise in a paper of three thousand circula-eight thousand.
The circulation of the Scientific American is guar-
anteed to exceed Fifty Thousand every week.
For advertising rates see top of first column of this
ddress
MUNN \& CO., Publishers,
NEW ROAD LOCOMOTIVES, BY
Marshall, Sons \& Co. General description and one eñ
graving. SUPPLEMENT No. 56 . 10 cents.

MidicENTS

Inventors.
In this lin
In this line of business they have had over thirty
Years' experience, and now have unequaled facilities
fer the Preparation of Patent Drawings, Specifications,
for the Preparation of Patent Drawings, Specifications,
and the Prosecution of Applications for Patents in the
United States, Canada, and Foreign Countries. Messrs.
United States, Canada, and Foreign Countries. Messrs.
Munn \& Co. also attend to the preparation of Caveats,
Munn \& Co. also attend to the preparation of Caveats,
Registration of Labels, Copyrights for Books, Labels,
Registration of Labels, Copyrights for Books, Labels,
Reissues, Assignments, and Reports on Infringements
of Patents. All business intrusted to them is done
with special care and promptness, on very moderate
terms.
terms.
We send free of charge, on application, a pamphlet
containing further information about Patents and how
containing further information about Patents and how
to procure them; directions concerning Labels, Copy-
rights, Designs, Fatents, Appeals, Reissues, Infringe-
rights, Designs, Fatents, Appeals, Reissues, Infringe-
ments, Assignments, Rejected Cases, Hints on the Sale
ments, Assignm
of Patents, etc
Synopsis of Foreign Patent Laws, showing the cost and
Synopsis of Foreign Patent Laws, showing the cost and
method of securing patents in all the principal coun-
method of securing patents in all the principal coun-
tries of the world. A merican inventors should bear in
tries of the world. A merican inventors should bear in
mind that, as a general rule, any invention that is valu.
mind that, as a general rule, any invention that is valu,
able to the patentee in this country is worth equally as
able to the patentee in this country is worth equally as
much in England and some other foreign countries.
much in England and some other foreign countries.
French, an! Belgian-will secure to an inventor the ex-
clusive mouopoly to his discovery among about one
HUNDRED AND FIFTY MILIONs of the most intelligent
HuNDRED AND FIFTY MILLIoNs of the most intelligent
people in the world. The facilities of business and
people in the world. The facilities of business and
people in the wori. The facilities of business and
steam communication are such that patents can be ob-
tained abroad by our citizens almost as easily as at
home. The expense to apply for an English patent is
home. The expense to apply for an English patent is
$\$ 75 ;$ German, $\$ 100 ;$ French, $\$ 100 ;$ Belgian, $\$ 100$; Cana-
\$75; German, $\$ 100$; French, $\$ 100$; Belgian, $\$ 100$; Cana-
dian, $\$ 50$.
dian, $\$ 50$.
Copies of Patents.-Persons desiring any patent
Copies of Patents,-Persons desiring any patent
issued from 1836 to November 26,1867 can be supplied
with official coples at reasonable cost, the price de-
with official coptes at reasonable cost, the price de-
pending upon the extent of drawings and length of
pending upon the
specifications.
specifications.
Any patent issued since November 27, 1867, at which
time the Patent Office commenced printing the draw-
time the Patent Office commenced printing the draw-
ings and specifications, may be had by remitting to
ings and spect.

Scientific American Supplement.

To be had at the SOIENTIFIO AMERICAN Office, and of all Newsdealers. In ordering, please be particular to specify THE NUMBER of the Supplement that contains the paper desired.

THE CHEMISTRY OF GAS MANUFACture. By A. Vernon Harcourt, F.R.S., one of the
Metropolitan Gas Referees. An interesting and
valuable paper, showing the Origin of Coal. How
Coal was Formed. Greatest Depth for Coal. Coal was Formed. Greatest Depth for Coal.
Changes in Col by Heat. Oil front Coal. Gases
Crom Coal. Other Substances Derived from Coal.
Varieties of Coal. Coal Tar and its Remarkable
roducts. Naphtha. Benzol. Creosote. Anthracene Oil. Pitch Coke. How Aniline is produced.
Mauve. Anthracene. SUPPLEMENT 72. Price 10

ON A NEW CHEMICAL INDUSTRY. By M. Camille Vincent. Description of a new and
ingenious process by means ot which the waste
liquors from the still in the beet-sugar industry,
which were formerly thrown away as useless, are now converted into two valuable commercial pro-
ducts- Ammonia and Chloride of Methyl, he latter
used in the production of Methylated dye colors, With 2 engraving. prodion of Methylated dye
10 cents.
PRODUCTS OF COMBUSTION.-BY Thos.Wills, F.C.S. Lecture elelivered before the Bri-
tish Association of Gas Managers. Heat a Mode of
Motion. Spontaneous Combustion of Iron. Decay and Combustion Identical, and Same Amount of
Heat Evolved in Each Case. Chical Action and
Spontaneous Combustion of Zinc-ethyl. Phosphorus set on Fire by Water. Combustion of Bisulphide
of Carbon. Inflammabinity of Coal Gas. Curious
Differences resulting from the manner of Friring Gun-cotton. Combustibles and Non-combustibles.
Temperature Produce by the Blowpipe. Quantity
of Air required for Combustion. Illuminating Fuels Candles, Sperm Oil, Gas. Amount of Vitiation
of the Air produced by Gas-burning and Respiration. Ventilation, and its Curious Dependence on
Buiding Material Enormous quantities of Air re-
quired for Coal Mines. Dangersfrom Organic Matter in Vent lated Rooms. Products of Gas-combus
tion, and Injury to Metals, Book-bindings, etc., by 140. Price 10 cents each.
SUSPENSION', SOLUTION AND CHEM cal Combination--ByWm. Durham, F. R.S. Experi
ments on Suspension of Clay in Water. Clay in Acia
Solutions, Clay in Salt Solutions with Investigations with 12 other Solutions, resulting in Four Con-
clusions. SUPPLEMENT 116 . Price 10 cents. ON THE CONSTITUTION OF MATTER in the Gaseous State. An Important and valuable
Contribution to Science. By Charles Adolphe Adele
Wurtz, Professor of Chemistry at the Ecole de
Medecine, Paris. Being a lecture, with brilliant
experiment reenty experiments, recently delivered by him at the Roya
Institute before the Chemical Society Londo
This lectureembodiesthe Most Recentand Accurat ter, and shows the Most Important Ad vances Made vastamount of of nntormation. Clear and concise forma
PARAFFIN.-WHAT IT COMES FROM Several Methods, of Manuracture: How to obtain
the Best Results; the Yield of Tar; Composition o
Paraffin. SUPPLEMENT 119. Price 10 cents. SMALL LABORATORY FOR PHARMA A Compact, Comicnient, and Economical Equach ment tor working, with cost, and four engraving,
showing arrangement in detail. SUPPLEMENT 99.
Price 10 cents.

Metallurgy.

\mid IRON AND STEEL-AN INAUGURAL \mid by EEward Williams, concerning steel in bulk for
railway requirementsand constructive works. The
subject is treated under the following headings:
The Inital Processes; the Bessemer Discovery;
Puddling Improved Working ; Steel and its Uses Puddling; Improved Working; Steel and its Uses;
is Remeting necessary? the New Steel-Making
Process; Steel-Making Economises; the Futuro of
Iron ; Iron-Making Furnaces; American and other Process; Steel-Making Economies; the Future of
Iron; Iron-Making Funaces; American and other
Foreign Competitions; Wasteful Ingot-Making
 Manufacture., Containedin SCIENTIFIC AMERICA
SUPPLEMENT, No. 181. Price 10 cents. METALLIC MINERALS.-THEIR PRO
 information on the principal metals; their ancient
and modern uses; metallic veins what they are,
their courses in the eart; mineral leases and royalties; the tamous Tavistccki Mrines; history of the
Anglesea Mines; metals dissolved in water; how
mineral veins are worked; iron and its uses; lead mineral veins are worked; iron and its uses;
ores and uses of lead; tin ores and uses of tin
of copper. SUPLEMENT 54. Price 10 cents.
THE PROPERTIES OF IRON ${ }^{*}$ AND Steel-By Daniel Adamson, C.E. Read before the
Iron and Steel Institute, with 5. Figures and 2 Diagrams, being one of the most recent and valuable
papersever given to the public. How Testing Ma-
chines impose False Conditions. Endurance of Iron
and annes impose False Conditions. Endurance or
nd Steel under Concussive Force Thirt Exper
ments upon Plates. Annealed Stee. Thol Effects of Su
phur, Phosphorus, and Cinder. Tensile Strength Iron and Steel. Drilled and Punched Holes. Rule
to Find the Power Required to Punch Steel Plates.
The Ten-inch TTest. Welding of Steel Boiler Plates.
A thoroughl Practical and most Valuable Paper
 Cron, Mir Iron, etc., embracing 40 varieties of Iron and
Steel. Thes Tests are illustred by two full pages
of cuts showing the Behavior of the Metal wnder
Torsion, Tension and Concussion, with the Effect Torsion, Tension, and Concussion, with the Effects
of Punching. The Results embraced in one page
of Tables giving Size of Specimen, Permanent Set
Induced Mivimum Strain per cent of Erongation of Tables, giving Size of Specimen, Permanent set
Induced, Maximum Strain per cent. of Erongation,
Final Breaking Strain, Bending, Drifting before and after Annealing, Composition, of Specimen, and
all Particulars. Corrosion Tests. Concussion re-
sisted best My Mild Steel. Corrosio of Iron vs. Steel
by Sea Water. Steel for Ship-building. Best ouality for Steel Rails. Best varietiies for Gun Barrels. In-
jury done by Finishing at Black Heat by Hammer-
ing. Making Steel Fly Shatts, ett., and other Valu-
able Pratical Conclusions. SuPPLEMENT $\mathbf{1 5 0 .}$ IRON AND STEEL.-BY DR. C. W. SIEaccounts of the most recent practical improvements
in the Production, Working and Application of
Iron and Steel ;embracing the question of Labor in
its relat Iron and Steel; embracing the question of Labor in
its relation to Capital; the Character, Value, Cost,
and Production of the thious kinds of Fuce, inclu-
ding Bituminous Coals, Coke, American Fuels,
Peat, Natural Gas Fuel, Liquid Fuel, Solar Fuel.
Nit Motive Powers and their Transmission over long
distances. Water Power; its Transission by Steel
Ropes; its Transmission hy Erecisicity Wy Wind
Power. Bessemer Steel History. Siemens. Wind
Martin Steel. The Regenerative Furnace. The
Open Hearth System. The Use of Ferro-Manganese. Open Hearth system. The Use of Ferro-Manganese.
Use of Chromium. Production of Mild Steel.
Pining of Steel. The Applicitions of Steel. Iron
and Steel Nomenclature. Wroughtron. Mechanical ect from the Ore. Metrocess. of Protecting Iron Dron an
Stel from Rust. Ainsli's Method. Bartis Method. THE MANUFACTURE OF WROUGHT Shon Pipe.-Choice of Iron. Rolling. Bending th ing the, Pipe; Manufacture of Gas Pine, with four

MELTING POINTS OF METALS AND other substances; New Method of Determining.
By Dr. Himly. A Ample and Exact Method. SUPTHE FLOW OF SOLIDS.-BY LEWIS ware, c.E. Novel and Curious experiments. Cold
metal caused to flow through orifices, and the laws
governing such fov, with mathematical calcula-
tions, and 13 illustrations. SUPPLEMENT 82 . Price

BRIEF HISTORY OF BESSEMERSTEEL By Henry Bessemer. An exceedingly interesting
sketch of the history of Bessemer stee, from the
period of the greatinyention down to the present ime, as given by Mr. Bessemer himself at a meet
ingof the Iron and Steel Institute, and wherein the
celebrated inventor recalls some of the incidents connected with his first presentation of the disco
ery to the scientific world, such as the incredulit
of those to whom he suggested the use of his ste for rails etc. Concluding with a sketch of the the his
tory of the Bessemer steel as applied to ship-build-
ing. Illustrated with 6 engravingsof the specimens
that wers paper. Contained in the author to illustrate his
PLEMENT, No. 183 .

THE TREATMENT OF IRON TO PRE VENT CORROSION.-By Prof. Barff. An interest-
ing paper detailing the theory and practic of oxi-
dizing the surface of iron by means of superheated steam to prevent rusting. The author's method
which is herein describe. is justly considered on
of the most valuable discoveries of the age. Con
t tained in ScIENTIFIC AMERICAN SUPPLEMENT, NO
174 and 175.0 To be had at thisottice, and of al
newsdealers. Price 10 cents each, or 20 cents fo
the tor
STEEL.-PRESIDENTIALADDRESS BY August, 1889. An ablecreview of the thevelopment of
Steel during the last forty years in its mechanical and economic aspects, pointing out the variousne tion, and the new applications that have gradually
been made of it in the industrial arts. Contained in
SUPPLEMEN, No.

BLAST FURNACE SLAG.-AN INTER esting paper descriptive of the many new and imas Furnace Slag, and the methods of its prepara-
tion, including Slag Shingle,Slag Sand, Slag Bricks
Slag Stone, Slag Mortar and Cement Slag Slag Stone, Slag Mortar and Cement, Slag wool,
Slag Glass, Sag Railway Sleepers, slag Paving
Blocks, etc. SUPLEMENT 199. Price 10 cents. EXPERIMENTS ON ALLOYS OF SILOer witridgen Jr. Being a series of Axperiments
Onterbride, Exat the United States Mint, Philedelphia,
Con the Effects of Silver Alloyed with Arsenic, with
ont
Antimony, with Bismuth, with Lead. Interesting Antimony, with Bismuth, with Lead. Interesting
particulars of the resultsof each experiment. SUP
PLEMENT 185. Price 10,cents.

Civil Engineering TROCriptG AND OHEAP SPAR BRIDGES. pages of drawings. covering illustrations of all the details, for a bridge of 100 feet span or less: speciThe drawingsare from the Spar Bridge exhibited
at the Centennial, in the U. S. Department of Mili-
ary Engineering. tary Engineering. These bridges are wholly com-
posed of undressed stuff. SUPPLEMENT 71 . Price
10 cents. LOUISVILLE RAILWAY BRIDGE OF the Cincinnati Southern R. R., over the Ohio river.
2 pages of engravings. SUPPLEMENT 55 . Price 10 THE NEW POINT SUSPENSION Bridge at Pittsburg, Pa.-By the Am. Bridge Co.
With description and 8 figures. SUPPLEMENT 34.
Price 10 cents. CARLISLE BRIDGE, DUBLIN ; AND Foot Bridge over River Nesa, at Invernass ; both
liustrated. Also WROUGHT 1 RON BRIDGEDE
SIGNS of improved construction. 2 illustrations.
THE PROPOSED NEW IRON BRIDGE Cver the St. Lawrence River, at Montreal.-By
Charles LLege, C.E. 5 engravings. SuPPLEMENT THE VICTORIA BRIDGE (IRON), BRISbane, Queensland.-By Robinson and 1PAnson.
With description and 14 illustrations. SUPPLE-
MENT 10. Price 10 cents. GIRARD AVENUE BRIDGE.- A DEscription, with dimensions, working drawings, and
perspectives of Girard Avenue Bridge, Phila., Pa.
With foundations of piers. 10 engravins.
PLEMENTS 1, 2, and 4. Price 10 cents each. SuPTHROSTLE NEST BRIDGE, MANCHES ter, eng.-A. Fowler, engineer.
perspective view. SUPPLEMENT 69. Pryations and
6rice 10 cents AMERICAN IRON BRIDGES. $-\triangle$ VALU able paper on iron bridge building. By T.
Clarke, C.E. SUPPLEMENT 32 . Price 10 cents. THE KENTUCKY RIVER BRIDGE. Specifications, dimensions, with 8 illus. Also il-
lustrated descriptions of the TAY BRDGE, the
POUGHKEEPSIE BRIDGE, the Lauria Floating
Dock, and other Engineering Work Slape Dock, and other
MENTS 66 and 95 . Engineering Works.
CLEOPATRA'S NEEDLE.-ITS REMOV al from Egypt to England. Details, with 9 en-

THE UNITED STATES NEW .IRON Landing Pier Del. Breakwater Harbor; built on
iron screw piles. Designed by Lieut. Colonel J. D.
Kurtz, U. Corps of Engineers. A full history,
with map, description, details, and scale drawings.
 THE GREAT JETTY WORKS AT THE Mouth of the Mississippi River. A history of the
work, with precise details of the construction di- di-
mensions, method, etc.
By Chief Assistant Engineer of the Works. With 11
illustrations, including large chart of the South
Pass and the Lines of the Jetties. SUPPLEMENT 21. Price 10 cents

DREDGING AND DITCHING MACHIN ery.-The latest and most successful machin-
ery now in practical operation at Lake Fucino
With scale drawings and details, showing construcWith scale drawings and details, showing construc-
tion, operation, and economy. By M. A. Briesse,
M.E. Amost excellent and valuable paper upon
the subject. SUPPLEMENT 8. Price 10 cents. AMERICAN BRIDGE ENGINEERING.Compiled by G. S. Morrison, E. P. North, and J.
Bogart, of the America Societyof Civii Engineers.
Containing particulars of the Illinois and St. Louis Containing particulars of the Rlinois and st. Louis
Bridge, designed by James B. Eads; the arrange-
ment of the arches: form and dimensions of the spans; weighto iron irare structure , , irimensions,
and total cost. The Girard Avenue Bridge, Phila-
delphia, designed by Clarke, Reeves \& Co.: descrip-
tion of trusses; the dead-load of the structure; the lion of trusses; the dead-load of the structure; the
limit of strain on the parts; the kind of firon used
the foors,
Jervis, New Yolls, and roadways. Bride Gor Port
S. Morrison, Engineer he foors, sidewalls, and roadways. Bride ent Por
Jervis, New York, G. S. Morrison, Engineer,
general description. Tron Rairoad Bride over the
Ohio Rever, at Louisville, Kentucky, Albert Fink Engineer: its length, and general description of
the spans, with a statement of the quantity of iron
in some of the princial spans. Rock Isiand Draw
Bridge, designed and built by C. Shaler Smith, in some of the principa spans. Rock Tsiand Draw
Bridge, designed and buit by C. Shaler Smith,
C. E., lenth and weitht of the piot span,
description of the twin-table; how the span
is rotated. Kentucky River Bridqe Cincinnati
 Forty-first Street, Philadelphia, Wilison Rros. \& Co., general description; principal dimensions. Cincin.
nati Southern Railiroad Bridge over the Ohio hiver
at Cincinnati, kuilt by Keystone Bridge Co.; dimensions; entire cost; description of trusses, floor,
girders, etc. PPoint Bridge, Pittsburg, Penn.
designed by Edward Hemberle. Engineer, gener
description; total length, and heisht above water. Short descrintion of the Iron Derricks used by the
Passaic Rolling Mill Company, of Paterson,
in erection of the New York Elevated Railroad.

SEWAGE WORKS FOR SMALL TOWNS. -Designs made by Baldwin Latham, C.E., for the
town of Skipton, England. 2 pages of ililstrations,
eiving the details of this most simple and
effective system.

THE SOUTH PASS JETTIES. BY MAX E. Schmidt, C.E. A paper read before the Convermithacing a a eneraldescription of works, togethe
with abstractsof the plans and specifications of the works which were adopted for consolidating the
Jetties; the constructions at the Sea end of the
Jetties; comprising a full description of the novel mode adoptedin the construction and deposition of
the Concrete Blocks, the machinery and imple-
ments employed, the ingredients composing the Concrete and how mixed; accompanied by a table
of Cement tests, etc. Illustrated with 17engravings of machinery, sections, charts, plans, etc. Contain-
ed in SUPPLEMENT Nos. 200 and 201 . Price 10

MINERS' LINGO:-A COLLECTION OF all the terms used by miners, accompanied by de-
finitions of the same, as piven by Mr. M. B. Carpenthr in his New Mining Code. Indispensable to all
those engaged directly or indirectly in the mining
industry, or interested in mining stocks, and who
desire toread accounts of mini desire toread accounts of mining operat.
derstandingly. SuPPLEMENT, No. 181.
ROCK-DRILLING MACHINES. BY JOHN Darlington. Tools, described and illustrated. Best Machines and Tools, Air Pressure, etc., used. at
Mont Cenis, St. Gothard, Musconetcong,Maesteg,
Cwmbran, Port Skewet, ${ }^{\text {Saarbruck, }}$ Ronchamp, Cwmbran, Port Skewet, Saarbruck, Ronchamp,
Blanzy, Minera, and Ballacockish Tunnels, with
three illustrationso Mod Method of Driling. The Cut MENT 1O3. Price 10 cents.
KIND-CHAUDRON PROCESS FOR SINKng and Tubing Mining Shafts. Read before AmeriDeby, C.E. A valuable exhibitof the cost ${ }^{\text {methods }}$, methods,
and tools employed, by 22 illustrations. SUPPLEF
MENT 82. Price 10 cents. CALIFORNIAN MINING STAMPS, MORtars, Dry and Wet. Sectional, and Wet Crushing MorShoes, Dies, etc. Guides, Screens, and all the appa,
ratus carefully described, with Mode of Work, and
Ten Ilustrations. SUPPLEMENT 95 . Price 10 THE GREAT COMSTOCK LODE.-BY A. g. Schack, E.M., describing the geology of the re-
gion, qualities of ores, method of working: all of a
highly interesting character; with many diagrams and sections, showing leads, shafts, and veins. SuP-
PLEMENT 73. Price 10 cents. TUNNELS AND ROCK-BORING MA-chinery.- By John Darlington. Dimensions, and
Methods employed in the Mont Cenis St. Gothard, Hoosac, Sutro, Musconetcong, and Severn Tunnels,
Rapidity of Work, Performances and Cost of Va-
rious Machines, Amount of Water, Compressed Air, etc., required, and nine illustrations. The Altenberg
Zince Mines, Aix-la-Chapelle Perseberg. Mines,
Sweden; Shaft at Salzberg. Altenwald; Marie
 Frances Level, Yorkshire; Frederichsegen Wrexem
Mineral Mines; Johann Coliery, Prussia ; Maesteg wall; Carn Brea, Cornwall; Ballacorkish, Isle of
Man. For each Mine or Tunnel is given the number
of Holes in Heading. Character of Rock. Labor
 ROCK-BORING MAOHINERY. - FROM the Work of R Schram. Comparative Merits of
the several Systems; the Ram, the Lever, the Du-
plex, the Rotary, and the Direct-acting. The Burleigh, Sach, Warrington, Ferroux, Brandt, Oster-
Kamp, Lisbeth, Reynolds, and other Machines, with
Interesting Trials and Practical Experience with each. SUPPLEEENT 140 . Price 10 cents. Also,
in Same number, COMPRESSED AIR IN MINES.
By M. By M. G. Johnson. Its first use in the Mont Cenis
Tunnel and Econo Iny. Loss of Power by Loss of
Heat; the Cold produced. Hioh $v s$. Low Pressures. HYDRAULIC MINING IN CALIFOR-nia.-ByAugust J. Bowie, Jr. Four illus. Construc-
tion of Flumes. The USe of Wrought Iron Pipes.
Table showing. Details of Construction of Wrought
Tron Iron Pipe for the Spring Valley Water Company of
San Francisco. Profile of Wrought Iron Pipe for the
Cherokee Gravel Mines. Two Tables giving Thickhess of Iron, Size and Distances of Rivets, and other
particulars for various Sizes of Pipe. SUPPLEMENT NEW HAND-LEVELS. ABNEY'S LEVEL for Prospecting, Computing Amount of Grading in
Laying Out House Sites, Terraces, Drives, etc.
Bohnes Automatic Level Description and Costo
each, with four figures. SUPPLEMENT 133. Price 10 cents. DRILTS WORKED BY COM pressed Air.-By H. W. Pendred, C.E. Description
of the most recent and best practice. SUPPLENEW METHOD OF BALANCING THE Winding Engines of the Deep Shafts of West-
phalia.- By W. Fairley. A Simple, Pratical Con-
trivance, with Description of Construction and
Workin,

Mechanical Engineering
HARDENING AND TEMPERING OF paper. What Steel is, and a comparison betweent
 and Water. The distinction between Hardening
and Tempering. The Expansion and Distortion of
Steel. The Weak Points. Decarbonization. Proper success in every operation. SUPPLEM ENTS $9 \mathbf{9}, \mathbf{1 0 3}$, FITTING KEYS AND KEYWAYS.-BY CUTTING OUT KEYWAYS. BY JOSHUA Several methods employed, with deven illustrations. The qualities of the various drills, square files and
safe-dges, roughing out, etc. The best tools de-
scribed and illustrated. SuPpLEMENT 79. Price
10 . MACHINES AND TOOLS FOR WORKING
 \&e American Watch Company, Ames \& Co..Pratt
Mr Whitney, the Puthan Company, Brown Sharp,
Mr. Corliss, W. Sellers $\&$ Co., and others. The Corliss
 Gear Cutter; a Marked Change in Heavy Shearing
Machines; Smithing and Forging. SUPPLEMENT DIFFERENTIAL WHEELS OF NEW Form. By Prof. C. W. MacCord. The Action of
Epicyclic Trains Explained, with five figures. Con-
tained in SuPPLEMENT 134. Price 10 cents.

NEW FORM OF TOOTHED GEARING. By Prof. C.W. MacCord. Elliptical Bevel Wheels. An
Interesting Mathematical Application and Enter.
taining Mechanical Study. With Five Ficures and Directions for Draughting. SUPPLEMENT 141.
Price 10 cents. THE EFFECT OF PUNCHING OF IRON and ${ }^{\text {ateel Plates.-By A.c. Kirk. }}$ Read before the
Institution of Naval Architects. ${ }^{\text {The }}$ The Weakening
Effects of Punching vs. Drilling periments with Six Tables for Iron and Steel, giving
Strain brought to bear, Elongation, and all particu-
ars of the eftects of Punching and Drilling, and six lars of the effects of Punching and Drilling, and six
illustrations, also Hardening and Tempering of
Steel, by Joshua Rose. SUPPLEMENT 95. Price 13
cents.

Mechanical Engineering.
FILES $V S$. EMERY WHEELS AND MILL-
 Milling Tools, Buff Wheel, Files, etc., and Grades
and Character of work to which each should be ap-
pilid. Best Methods for Hard Metal Work, Saw
Filing Roughing Down, Trimming of Castings CUTTING TOOLS FOR LATHES AND Planers.-By Joshua Rose. With nine figures. A
valuable epaper full of fractical information. SUP-
PLEMENT 38. Price 10 cents. SURFACE PLATES OR PLANOMETERS, and Scraped Surfaces. A valuable treatise for
mechanics who desire to execute truthful work. By
Joshua Rose. With seven engravings. SuPPLEMENT A. 10 cents.
rawings, showing the ACCIDENT.-WITH fy-wheel, the reasons for the breanage; with prac-
ticaldirections for the avoidance of suchoccurrence.
BY Joshua Rose. SUPPLEMENT $\mathbf{3 0}$. Price 10 . FRICTION. A SERIES OF EXPERIments on Friction, proving the falsity of the former
formulas thereon and giving others in accordanee
with actual results. By Prof. A. S. Kimball. SuP? with actual results. By Prof. A. S. Kimball. SU
PLEMENT 76. Price 10 cents.
ELLIPTICAL GEARING.-BY PROF ELLIPTICAL GEARING.-BY PROF ogy. With eight engravings. A most clear and ex-
cellent exposition of the subject.
Price 10 SUPPLENENT 2. Price ILLE'S TOOL HOLDERS. - TOOL Holder for Lathe. Simple Tool Holder for Planing
Machine. Double Tool Holder for Planing Ma chine. Shaping Machine Head. Simple Tool
Holder, witt Vertical utter, for Slotting Machine.
Double Tool Holder, with Horizontal Cutters, for Slotting Machine. W.
147. Price 10 cents.
STONE-SAWING MACHINERY. - A valuable and interesting paper, read before the So-
ciety of Engineers, with twenty illustrations. SUP-
PLikiziris 54. Price lu cents. MILLING MACHINES AND MILLING
Tools.-An excellent practical treatise. By Jostuaa
Rose. Seven engravings. SUPPLEMENT 16. Price SKEW-BEVEL WHEELS.-BY PROF. C A. MacCord. The subject of laying out the teeth
of Skewbevel wheels has been made, by the man-
ner in which it has been hitherto treated, to seem ner in which it has been hitherto treated, to seem
more complicated than it really is. Bya caref
study of this article, wherein the author treats a plain and practical manner of "Pitch-Surfaces
and how to Draw Them, Tooth-Surfaces and how
to Construct them, and Special and Singular Relations of Pitch-Surfaces.", Any ordinarily e
draughtsman will be enabled to construct
wheels and their teeth in a manner which
 described are demonstrably correct throughou
and the degree of accuracy attainable in the re
ults will depend wholly on the care and skill
 HOW TO ADJUST LINE SHAFTING.By Joshua Rose. A valuable, practical paper,
illiustrated with 8 figures, showing how, by a very
simple plan, shafting , may be accurately lined.
SUPPLEMENT, No. 190. simple plan, shafting may be accurately
SUPPLEMENT, No. 190 .
Steam Engines and Boilers
BOILER TEST, MANCHESTER STEAM Users' Association. Series of highly important tests
made by subjecting boilers to hydraulic presure
to the busting point, and exhibing the weaken-
ing effects of steam necks, manholes, etc. Twelve
ON THE PRIMING OF STEAM BOILERS.
By Wm. Major, Engineer, Danish Navy. Read before
Society of EEngineers. Two figures. An Important
Paper, explaining a new and probable theory of the zause of Priming; giving Experiments on the sub-
jeect, and enumerating the advantages of subsstitut-
ing Petroum for Tallow in Boirss, to prevent
Priming. SUPPLEMENT CORNISH PUMPING ENGINES OF THE Hull Water Works. Two pages of engravings, to
scale. With description. SUPPLEMENT 17. Price10
cents. Valve gear and parallel motion of same MENT 23 ong price of engra 10 cents.
ASHWOR'H'S COMPOUND ENGINE with Variable Expansion Gear. With nine illus
t ations. SUPPLEMENT 28. Price 10 cents.
MARINE ENOGINNE. BY CRAMP \& SONS. PUMPING ENGINE OF THE LEHIGH Zinc Works. Two pages
STEAM BOILER ECONOMY. A SERIES of Important Experiments by the Societe Indus-
trielle e Mulhouse,sowing the comparative econ-
omy of various types of boiler. omy of various types of boiler. Seven illustrations.
SUPPLMENT 76.10 cents.
ENGINES OF THE "BRITANNIC," 'IHE Fastest Ocean Steamer in the world. Two elevations
of engines, four Indicator Diagrams, dimensions,
one SUPPLEMENT 51 1. 10 cents. ENGINE OF THE STEAMER HUDSON. 1 page of engravings. General description; also ta-
ble of dimensions and performances of the single
engine steamers Hudson, Knickerbocker, and New Orleans of the Cromwell line. SUPPLEMENT 61.
10 conts.
CNGINES OF THE "LOUDOUN
Castle," a Fast Ocean Steamer.-Three elevations, Castle," a Fast Ocean Steamer.-Three elevations,
dimensions, and description. SUPPLEMENT 79. 10
cents.
STATIONARY BOILERS. - OFFICIAL Tests at Centenmial Exhibition. Description of Ex-
periments on 15 Boilers of various kinds, and com parative tabular statement, giving pressure in
Boiler, Temperature of Steam, Moistureof Steam,
and amount of Superheating, Water Evaporated,
Coal Consumed, Rating of Boiler, and many other particulars. Also Coal and Firing, percentage of
Refuse, Calorimetric Observations, etc. SUPPLE-
MENT 89. 10 cents.
GREAT CORLISS ENGINE AT THE CEN tennial.-Dimensions and general description. With
full page perspective engravin, and two pages of
outlinedrawings made to scale. SUPPLEMENTS 19 ,
WATER IN STEAM.-BY PALAMEDE Guzzi, C.E. Measurement of the WaterMechanically
Suspended in Steam, with two figures. What has
been done, with full description of or New Improved
Apparatus. Measurement of Water Mechanically been done, with full, description of a New Improved
Apparatus. Meastementon Water Mechanically
Suspended in Stearm. By J. B. Kntertht. Description
of Improved Apparatu, and Method of Operating.
SUPLEMENT 114. Price 10 cents. PLACING CRANKS ON SHAFTS AT Gravings. A valuable paper. SUPPLEMENT 23.
Price 10 cents. How TO SET A SLIDE VALVE-BY -BY Josha Rose. seven engravings. The best practi-
cal tratiseon the subject, givinotin condensed form
simple and plai directions, Which will enable any
person to set Slide
SUPPLEMENT 13. Price 10 cents. THE SLIDE VALVE. BY SAME AUTHOR. In Supplement 51. Price 10 cents. A clearex-
planation of Lap, Lead, Clearance, etc. With eight
illustrations of Valve Movements STEANC ENGINES AND BOILERS FOR High Pressures. By Loftus Perkins. Benefits of
High Pressure, with practical plans and specifica-
tions of sucessful Engines and loilers ow in use,
with Indicator Diagram. SUPPLEMENT 8 in LIQUID FUELS.-BY H. AYDON
 fuel, C.J. Richardson's, Simm and Barff's, Aydon's,
and Dorsett's. Practical Working of each method,
and comparative economy. SUPPLENENT 119.
Price 10 cents. THE MORRIS BLOWING ENGINE, with two pages of illustrations. Supplement 39.

Railway Engineering.
LO COMOTIVES.-SPECIFICATIONS, Dimensions, etc. of the Tank Locomotives
of the London, Chatham and Dover R. R. With
three engravings. SuPPLEMENT 23. Price 10 cents. NARROW GAUGE SWEDISH LOCOMOtive, with a page of engravings. SUPPLBMENT 41 .
Price 10 cents. Locomotives of the EIGHTEEN
INCH RAILWAY at Crewe, Eng. Two engravngs. SUPPLEMENT 44. 10 cent
NARROW GAUGE LOCOMOTIVES. IN dian State Railways, engraving and dimension
SUPPLEMENT 53 . 10 cents. EIGHTEEN OUTLINE FIGURES OF Locomotives exhibited at the Centennial, show-
ing their measures with a table of principal di.
mension of each
Pricion of 10 cents
BALDWIN LOCOMOTIVE.-LARGE EN graving in sectional elevation, with measures,
scalc, and table of dimensions. SUPPLEMEN 38
NEW ROAD LOCOMOTIVES. - BY Marshall, Sons \& Co. General description and one
engraving. SuPPLEMENT 56 . Price 10 cents. EXPRESS PASSENGER LOCOMOTIVES, Great Western R.R. Withfive engravings, and tables
of all the principal dimensions. SUPPLEMENT 58 ?
Price 10 cents. LOCOMOTIVE FOR BURNING PETRO leum.-Used on Russian Railways. With descrip
tion and five illustrations. SUPPLEMENT 63. RACK RAILWAY LOCOMOTIVE OF the Kahlenberd Railway near Vienna. Five eleva-
tions, and all particulars. SUPPLEMENT 70. 10 FIRELESS AND HOT WATER LOCO motives.-History of the inventions on this subject
giving. Dates of Patents, ett. Descrition and
Workire of ADparatus, etc. SUPPLEMENT 111. 10
cents.

COMPRESSED AIR STREET RAILWAY Car.-Description, withengravings, dimensions, and
particulars of the Mekarski Streetcars, now used in
Paris, and propelled by compressed air. SUPPLEIENT 18.10 cent
NEW RAILWAY LOCOMOTIVE CRANE,
by Black, Ha wthorne \& Co. 4 engravings to scale imensions, etc. SUPPLEMENT 54. 10 cents. LOCOMOTIVE INJECTORS, WITH EN graving. SUPPLEMENT 42. The same number con-
tains sectional eleation of locomotive for Dom
Pedro Railway, with table of dimensions. 10 cents. STEAM TROLLY OR CHAIR. USED ON
Oude Railway. Two engravings. SUPPLEMENT 63. LOCO
LOCOMOTIVE CONNECTING‘ AND Parallel or Copupling Rods. By Joshua Rose. With
10 illustrations. ${ }^{\text {practical and useful paper. }}$
SUPPLEMENT 31. 10 cents. STEAM STREET RAILWAY CARS. BY A. Brummer, M.E. Economical, no noise, ©effec-
tive, With working drawingsof car,
ers, dimenine, boil 22. 10 cents.
ENGLISH RAILWAY CAR COUPLINGS. ENGLISH RAILWAY CAR COUPLINGS
A valuable treatise, showing the existing construc-
tion and the character of improvements wanted.
With twenty engravings. SUPLEMENT 21. 10
STANDARD FREIGHT CARS OF THE New York Central and Hudson River R'ys. With
working drawings and full specifications, showing
dimensions and all particulars. Designed by Leander Garey, Supt. of Cars.
SUPPLEMENT 18.10 cents.
ELECTRO-MAGNETIC RAILD'Y BRAKE of M. Achard, now in Use on the Northerr Railway
of France. Description of a very successul system
of Powerful Continuous Brakes SUPPLEMEN 111 of Powerful Continuous Brakes. SUPPLEMENT 114c.
Price 10 cents. In the same number is an Instruct
ive Paper on Fireless and Hot Water Locomotives. LOCOMOTIVES AT THE PARIS EXHIBI-tion.-Engines for the Western R.R. of France, buil
by MM. Ernest Gouin et Cie. Full Description and
Dimensions, with Three Elevations and Two Se Dions to Scale. Contained in SuPPLEMENT 135
Price 10 cents.
FIELD RAILWAY FOR RAPID CON ing the possibility of Constructing a Railway as
rapidly as artes.
avoided. Freight transported. Cost per mile, and is
 RAILWAY APPLIANCES AT THE Philadiolphia Exhibition. A paper read betore the InGalton, F.R.S. Showing the characteristic differ-
ences between American and European Railways,
etc. Both of the above papers are contained in WIRE RAILWAY IN USE AT HAREwood Coal Mine, British Col. A Successful and
Economical Construction; Grading avoided; 120
tons of coal per day tarird 3 miles with 20 horse
porer
Trice 10 cents. Tunnels of cast iron. Bishop's Plan. Dimensions,
stimates and tull particulars. By Perry F. Nurssy,
C.E. With ten illustrations. Suprumarnt 20.
Price 10 cents.

RAYNOR'S PLANS FOR IRON SUB-
marine Railway Tunnels. By George Raynor, C.E.
With description and ten illustrations. SUPPLEmarine Railway Tunnels. By George Raynor, C.E.
With descrition and ten illustrations. SUPPLE-
MENT R4. Price 10 cents. RON RAILWAY TIES AND SLEEPERS.
By Charles Wood, C.E. 12 illustrations. The
various Systems of Iron Sleepers; the Bowl, Pot or Oval; the Longitudinal Wrought Iron; the
Transverse Wrouht Iron. Practial experience
With each. Durability of Wrought Iron for Sleep-
ers. Adjustment of Gaupe or Curyes. Spreadin
 Potel's Sleepers. Wood's Cross. System. The sev-
eral systems illustrated, with particularsof Ballast-
ing, spikes, Keys, Collars, Chairs and Tools; Labor,
First Cost, Repairs, Wear, Corrosion, etc. SuPLEMENT 125. Price 10 cents.
NARROW
Billeri GAUGE RAILWAY.-THE Binerica and Bedford, Mass., Two-foot R.R. 4 illus-
trations. The Route, Grade, Cuts Curves Ties,
Ballasting, Culverts, Bridges, and Rails. The Loco-
motives, sions. Particupars and Diamensionsof, other Rolling
Stock. Equipment and Cost of Road. SưPLE-
MENZ 115 . Price 10 cents.

PASSENGER ENGINES OF MIDLAND Pailway, with table of dimensions. 3 engravings.
SUPPLEMENT 7 P. Price 10 cents. The same number contains report of valuable information given
before the Master Mechanics
Association, concernRAILWAY VELOCIPEDES.-DESCRIP track of railways, and one of which is employed for various purposes by the officials of several of the
argest Western railroads. Two engravings. SUPFRANCQ'S FIRELESS LOCOMOTIVE.Full pageillustrations of a form of firelessengine
now doing successful service on the railuway be-
tween Rucil and Marly-le-Roy, showing the engine n perspective and in section, and its working parts

Hydraulic Engineering

 TURBINE WATER WHEELS.-A RE port of the Official Tests of Turbine Water Wheelsmade during the Centennial Exhibition of 1876.
With thirty one illustrations. Embracing Drawings and Descriptionsof the apparatus used for each test. Power and Revolutions of each wheel. Engravin and descriptions showing the Construction of the showing the Names of the Exhibitors of the severa
wheels. tested. Date of each test. Diameter op
wheel. Fraction of gate. Weight on the scale in pounds. Revolutions per minute. Horse Power of of
wheel. Head on wheel, in feet. Head on weir, in
feet. Flow over weir. Head on weir due to leakfeet. Flow over weir. Head on weir due to leak-
age. Horse Power of the water used. Percentage
of efficiency realized by each wheel. Together with other valuable and interesting peerticulars. SuPPLE
MENTS 59 and $\mathbf{6 1}$. Price 10 cents each. THE HYDRAULIC RAM. HISTORY OF its invention. The latest improvements and work-
ng of the ram. most successful Dimensions, valve
seats, etc. Fischerst Ram and others. SuPPLEMENT 11. Price10 cent

WATER SUPPLY FOR TOWNS AND Villages.-By Clarence Delafield, C.E. A A valu-
able report showing the cost and merits of the
various systems-Discussion of the Holly system, its merits and defects-The reservoir system, with
pumps, cost and advantages-Results obtained and pumps, cost and advantages- Resuls obtained an
economy of use of various systems in different
towns, with names and duty realized-Facts and figures to enable town committees to judge for
themselves as to the system best suited for their
wants-The best sources of water supply-Water-wants-The best sources of water supply-Water
bearing rocks-Artesian wells, their feasibility xater-How surface water is rendered impure-
Cost of water pipec, from to to 12 inches diameter
for towns, including laying, all labor, materials for towns, including laying, all labor, materials,
cates, oints, etc. Estimates of income, water-rates
for suply of 1,000 buildings. Contained in SuP-
PLEMENT 27. Price 10 cents. HYDROSTATIC JOINT FOR GAS AND
 Deflection Without Leakage.

Architecture and Building

FOUNDATIONS.-FROM A VERYVALU able paper on the subject of American Evgined-
ing, as illustrated by the American Society of Civil
Engineers at the recent Paris Exhibition. Compiled by a Committee of the Society, composed of
Mosss.. George S. Morrison, Edvard'P. North,
John America; its characteristics, and the featuresthat
distinguish it from Europan methods. The free
use of Timber, Crib Work, Piles, Caissons, Coffer
Dams, Screw Piles. The Cushin. System. The use
Doms, Screw, Piles. The Cushing System. The
Tow ersof the New York and Brooklyn Suspension
Bride. The Piers of the St. Louis Bridge. The
St. Charles Bridge over the Missouri River. The St. Charles Bridge over the Missouri River. The
Poughkeepsiie Bridge orer the Hudson River-the
boldestexample of timber foundation on record.
Bridge Superstructure. Bridge Superstructure-Notes on the Earier
stylesof American Bridges. The Burr Bridge and
the Town Lattice. The MacCalium Truss. The duction of IronBridges. The Squirewhipple Bridge-
The Fink and Bollman Trusses. The Whipple, Mur-
phy,or Linvile Trusses. The PostTruss. Thepeculiphy,or Linville Trusses. The Post Truss. Thepecui-
arities of Americanas compared withEuropean iron
bridges. Introduction of Iron Trestles. Smith's Trestie Bridges. Improvements that have taken
place in the lastten years. Descrition of the old
and new Viaducts of Portage, New York. The Passaic Draw Bridge ; general dimensions,
weightsadopted for calculation, weight of iron in
structure, and general description of the Bridg structure, and general description of the Bridge.
Oak Orchard Viaduct; generap dimensions, weight
of iron in structure, and short description. The Rockville Bridge; a full description of the struc-
ture, including the weightof iron used therein and
general dimension. SUPPLEMENTS, $\mathbf{1 8 7}$ and 188
DOUSE DRAINS AND THEIR COMMOI sistant Engineer in charge of the Improved Sewe
age Work, Boston, Mass. With Silluustrations. A
important and Valuale Paper, showing the Esse
tial Conditions for Efficient House Drainage; the proper sizes, forms, and best materials for drains
the evil results of making them too large ; the
proper inclination for drains; the best methods of proper inclination for drains; the best methods o
making them tight; the right and the wron
methods of conneting drains with sewers, with
engravings How leaks in drains occur and how ngravings How leaks in drains occur and ho
letecte. Descriptions of the most common defect
indrans, with engravings. Torether with mat in drains, with engravings. Together with many
valuable suggestions and directions of great value
to housekeepers and owners of property, whether in town or country. This paper is beased on theo
servations of the author during an extended e perience in the actual construction of drains and
sewers, and present in conciseform the latest and
best information on the subject. Contained in

COMPACTED BEAMS TABLING, IN

HEATING BY HOT WATER-A VALU able practical article.-By a Hot Water Engineer,
fully explaining the natural principles which must
be understood and be understood and kept in view by all engineers
who wish to achieve success in this nethod of who wish to achieve success in this nethod of
warming buildings; showing how to calculate and warming buildings; showing how to calculate and
properly arrange the piping, and how to construct
the ruplo cistern; descrining the best form of
boilerp boilers, how they should be made, and what they
should be made of and how they should be seta a and
giving recipe for the best kind of cements to be
used in this department of engineering tilus used in this department of engineering. Illus-
trated with 3 diagrams. SUPPLEMENT, No. 1 71. STREET PAVEMENTS AND SIDE-Walks.-A description of the best kinds at present
in use in various large cities of the United States,
with the cost per square yard By F. Shanly, C.E.,
Cith Ene City Engineer of Toronto. SuPPLEMENT 33. Price
0 cents. WARMING AND VENTILATION.-BY . Galton, R.E. An exceedingly clearand Instruc-
five paper. The Movementsof Air in Buildings,
nd its Passage through Brick Walls etc Chara r of Poisonous Emanations, and How Detected. Cheap and Effective Ventilation, with Economy of
Fuel, and no Draughts. SUPPLEMENT 94. Price
10 cents. THE VENTILATING AND WARMING of School Houses.-By Dr. F. Winsor. Tests of
Purity of Air. True Philosophy of Ventiation.
Experience in War Proving Importance of Pure Air. Removal of Germs and Stenches. Necessary
Cubic Space, and Frequency of Renewal. Proper
Humidity. With New School House Design. SuPFIREPROOF CONSTRUCTION. - READ y F. Schumann, C.E., before the American Insti-
nte of Architects. With 16 Figures. Maximum Temperature of a Fire. Protection of. Constructive Fron Holk. Detaile Arches, and Corrugated Sheet-iros,
Arches. Protection of Lower Flange of Beam.
Cast-iron Protected Columns. Slated Roofs, with
Pstion Purlins, Bolts, and all Details. Flat Rooofs Covered
with Metal Sheets or Cement. Burnt Clay Tile Root.
Metal Box Roof. Ordinary Floors. SUPPLEMENTS

FIREPROOF DWELLINGS OF CHEAP Construction-A valuable and important paper,
 tion of comfortable one-story, 16 ft. front, dwell-
ings, of brick and concete, finkbed complete, at a
cost of $\$ 1,200$. Plan No. 2exhibits the construction of a comfortable 23 ft. front, two-story dwelling,
of brick and concrete, finished cellar, for $\$ 1,700$. Several of these dwellings, on
both plans, have been built at the price stated.
This valuable paper also contains the Report of the City Authorities of Chicago, certifying to the fire-
proof nature of these buildings, as determined by
severe trials by fire made in their presence with sevore trials by fire, made in their presence, with
other useful particulars. SUPPLEMENT 91. Price CURVILINEAR ROOFS.-AN IMPORtant and valuable paper, illustrated by 50 figures,
exhibiting the forms of all the principal styles of
curvilinear roofs now in use. Embracing the drawings of the roof of the great railway depot of
the Northern of France Paris. SUPPLEMENTS 40, SCHOOL HOUSE DESIGN. BY F. LANGdon, Architect. With Engraved Plan. Being a
new and exellent design for villages and small cities; combining strength, beauty, and conve-
nience, Also, an important and exhaustive paper
on the Antilation and Warming of School Houses.
By Dr. F. Winsor. SUPPLEMENT S8. Price 10
$\$ 150$ SUMMER COTTAGE. IBY S.B.REED, Architect. A Neat two room House for family of
four. Dimensions, Cost of Materialsand Labor, Six
Plans and Elevations, and all Details of Construction, given in SUPPLEMENT 136, withan illustrated
description of an IMPROVED, CONSTRUCTION
FOR GREENHOUSES CONSERVATORIES, etc.
Price 10 cents

HOW TO BUILD CONCRETE WALLS.Practical directions how to build wallsfor barns, thed, which and other purposes, by the concrete me-
SUPPEMENT 13. Price 10 cemits. CONCRETE AS A BUILDING MATE-rial.-A Lecture delivered before the Royal Insti-
tute of Architects, London, by A. Payne, with dis-
cussion of the subject by prominent architects. cussion of the subject by prominent architects.
This lecture and the extended discussions nf the
subject tare contained in SuppLEmexs $\mathbf{2 6}$ and $\mathbf{3 4}$. Subject are contained in SUPPLEMENTS 26 and 34.
Price 10 cents each. They present a large amount
of valuable information upon concrete building, in CONCRETE B UILDING.-DESIGNS FOR cottages built of conerete, with elevations of the
cottages and plans; also engravings of the appara-
tus, ingredients, metho oo mixing, reparins, and
wind working the concrete cost, etc. By Henry Macau-
lay, architect. With eleven illustrations. SUPPLE-
MENT RO. Price 10 cents.
CONCRETE DOCKS OF NEW YORK.With two engravings, showing the foundations of
the docks, and the metho of of thaking the concrete
blocks. SUPPLEMENT 23. Price 10 cents. CONCRETE FLOORS FOR BUILDINGS. By A. C. Ponton. A valuable article, containing in-
formation derived from actual experience in the
use of use of concrete slabs for floors, with tests of
strengtth, etc. SưPLEMENT 36. Price 10 cents.
The set of six numbers containing the articles on
concete, sent for 66 cent. BETON CONCRETE IN ARCHITECTure and Engineering, with 20 illustrations. Beton Beton;'Beton Dwellings and Fountain, Brooklyn,
N. Y.; Beton Church; Beton Culvert Linin, Erie
R. Rid Ben Arches, Church Tracery, et.; Beton-
lined Railway Tunnels; Beton Pavements; Crushlined Railway Tunnels; Beton Pavements; Crush-
ing Strentt of Beton; Superior Strength of Beton
Arches, etc. SUPPLEMENT 118. Price 10 cents. CONCRETE DWELLINGS.-READ BY B. H. Babbage before the Adebiaide Philosoppical
Society. Details of Successfuland Instructive Ex-
periment. A Dwelling constructed entirely of Lime periment. A Dwelling constructed entirely of Lime
Concete-Walls. Roof. Staircases, and Arches fif.
teen fect in width. ScPPLEMENT 111 : Price 10
cents.
THE CEMENTS AT THE CENTENNIAL axhibition. By Q. A. Gillmore, U.S. A. The Port-
land Cements and Their Tests, andsfour methods of
Manufacture. The Natural Quick-setting Cements,
etc.; Materials for Cements ; Localities where Ob
for etc.; , ; Sipecific Uses for the various Cemerts ; A
tained
Large and Valuable Tabular Statement of the
Crushing and Tensile Strenoth of each variety Crushing and Tensile Strength of each variety ex-
hibited and Names of Exhibitors .Excellent articles
on Concrete Construction and other Architectural and Encrete construction and other Architectural
10 cents. INCRUSTATIONS ON BRICK WALLS. By William Trautwine. The various causes: Bricks
Burned with Coal Fires; Sulphate of Magnesial
Dampness; Effect of common Mortar. Remedies.
Alo Rempor Also Report of the Sub-committee, on the samesub-
ject, appointed by the University of Pennsylvania.
Suppen FOOT-WALK PAVEMENTS.-A PAPER rear before the Association of Municipal and Sani-
tary Engineers By Buckinghap, C.E. With
Directions for Making the Bestand Cha Capest Walka
of Cements and other materials. SUPPLEMENT 82.
Rrice 10 cents.

These papers may be had at THE SCIENTIFIIC

Architecture and Building.

 IRON AS A BUILDING MATERIAL--

NOMENCLATURE OF BUILDING
 paper read before the American Society of Civil
EEnginers. An exhastive article on tione cut
ting and Masonry, various Methods.of Dressint

 THE MATHEMATICS OF CONSTRUC tion-By R. G. Hathield, Architect. The Graphi-
 Price 10 cents.
CHIMNEY CONSTRUCTION. - READ before the Civil and Mechanical Engineers' Society,

 also. Important Account of How a chimney was
Straightened. SUPPLEMENT 116. Price 10 cents. CONCRETE WALLS.-A PAPER CONaining a hint worthy of being considered by every
farmer, and designed to disper som of the erron-
ous outions that

 dill pan is unecessary. Tells how to build the
driveways, and sums up the total cost. SUPLLE-
MENT, No. 183.
HOUSE DRAINAGE.-VALUABLE DI-

 portance of putting a plan to the work on' record;
the proper way to drain wet sites for houses;
method of isolating sewers from houses by tran

MASONRY AND BRICK.WORK. - BY

EFFECT OF THE MOTION OF AIR within an Auditorium upon its Acoustic Qualiin this paper are entirely new to science. The
authorshows that in most cases where thecoustic
properties of public hals ane bat hat this is duue

Naval Architecture, Marine Engi-

 HEORY neering, Navigation. THEORY OF STREAM LINES IN RETrion to the Resistance of Ships. By WilliamFroude, C.E., F.R.S., President of the Mechanical
Section, British Associanion. With 33 illustrations.
valuable and exhaustive. treatise arge amount of practical information concerning he flow of water, its power, the movements of
bodiesin water, etc. SUPPLEMETS $\mathbf{3}, 4,5,6,8$.
Price 10 cents each. 50 cents for the series. WAVE LINES.-BY DR. J. COLLIS Browne. A Description of their Form, and How
Ships Ought to be Constructed to Meet them. With
an Illustration of Dr. Browne's Improved Yacht an lasist, with an account of her Remarkable Per-
formances. and thitreen figures. Contained in SUPP-
fLEMENT 135. Price 10 cents.

Whips. VE-MA K-f NG R RESISTANCE OF Ships. By same author. With 4 illustrations. SUP-WAVE-MOTION.-BY PROF. OSBORNE Reynolds, F.R.S. Read before the Brittsh Assocta-
tion. Iaws of Wave-Motion, with examples and
hree illustrations. Interesting Analogy between ave-Motion and Transmission of of Lighte, Heat,
Sound, etc. New Views on the subject, with Mathe-
natical Demonstrations. SuPPLENE STEEL TORPEDO BOATS.-DESCRIP. STEEL TORPEDO BOATS. - DESCRIP. tion and 5 Drawings of Boat is ft. Tong, weighing
but 14 Tons. Engines, 50 h. p. Steam Pressure,
120 lbs. The Surface Condenser, Ventilation, the
Thent Torpedo Apparatus, and the Screw. Apparatus for
Throwing Greek Fire. SuPPLEMENT 116 . Price
10 cents. ACTION OF SCREW PROPELLERS.My James Howden, Institution of Naval Architocts. increasing the efficiency of the propeller.
do, in
True direction taken by the strams of water, with
9 illustrations 9 illustrations. Centrifugal action on the water
impossible.
Hub, etc. Suproveved attackent of Blade to SCREW PROPELLERS, THEIR SHAF'TS and Fittings--By Hamilto w. Pendred, M.E. An
able treatise, showing the present practice, its ad-
vantares and defects. With 25 figures. SUPPLF-

STEAM YACHT LADY FRANKLIN.

 steam yacht of excellent performance eeonomicalin fuel, length 48 ft., double engine, cylinder $6 \not /$ in.
diameter and 8 in. stroke; boiler vertical, 4 in. iron, diameter $38 \mathrm{in}$. With two engravings. Col
tained in SUPPLEMENT, No. 171 . 10 cents. TWIN SCREW STEAM LAUNCH.-IL tion of a Screw Steam Launch built, for passenger
service in shallow waters in the East Indies. Boat
Spo propelled by twin screws; dimensions 56 ft. long,
f1/ itt. beam, and $3 \mathrm{ft.9}$ in. deep; draught 2 ft. 9 in.
SUPPLEMENT, No. 171 . LIGHT DRAUGHT STERN-WHEEL Steamer, built for the Hudson Bay Company.
Lightness and Economy of Construction. Diment sions, and tw
Price 10 cents.
THORNYCROFT'S SCREW PROPEL ler--Used on the fastest small steam launches in
the world. With two illustrations, and a a account of Trials. SUPPLEMENT 77. Price 10 cents. In
the same number is a description and engraving of
Paddle Engine for light draught steamboats. The firing of boilers, etc. SMALL STEAM TORPEDO BOATS.-BY Institution. Engraving and Complete Description
of the Steel Propeller "Lightning." 84 ft. Pong; speed 19 knots per hour. Also, other boats, their structiveness proved by Trial. Valuable Experi-
ence in War, etc. SuPPLEMENT 79. Price 10 cents.
SMALL STEAMBOATS AND YACH̛TS The Black Hawk, $15 \mathrm{ft} .10 \mathrm{in} .10 \mathrm{ng} ; 4 \mathrm{ft}$.9 in . beam eter, 32, in. in. high; weight, 300 lbs.; piston, $4 / 2$ in.
stroke, 41 in .; 3 horse power; speed of boat, 6 to
mif milesan hour. Perspective and working drawings
of this boat and machinery. SUPPLENENT 14.
Price 10 cents. The same number contains views of the fast steam
yacht Continental. Length, 50 ft., $6 / 2$ ft. beame $31 / 2$
t. depth then two 6 in. cylinders, 6 in. iameter, 8 in. t. depth; two 6 in. cylinders,, in. diameter, 8 in.
stroke, 74 horss power ; speed, 17.9 miles per hour.
A Thirty-foot Steam Launch. .Aproximate cost
 giventer. General directions for construction are
10 cents. A FForty-foot Steam Launch.-With three-cylinder
engine. Drawings to scole, dimensions and general A Remarkably Fast and Small Steam Launch.-De-
Signed by H.S. Maxim, M.E. Now running in New
 10 miles per hour. An legant boat. With descrip-
tions, dimensions, and drawings to scale. SuppLeLIGHT DRAUGHT, FAST, STERN Wheel, steam Yachts. These yachtsare 34 feet long,
 working drawings, dimensions, and particulars of
vessel, engine, boiler, and wheel, furnished by the
author. The serviceable character of these boats,
their simplicity of their simplicity of construction, roominess, and
light draught renderthem very desirable especially
for shallow waters.
Contained
in STEAM FOR SMALL BOATS. - REports of Trials of Stear Yachts, giving description
of engines, and their management, proportion of
boat, enine and screw, and other valuable facts.
With Engravings. SUPPLEMENT 158. Price 10
In With
cents.

Row Roarts, Sail Boats, Etc. HOW TO BUILD BOATS CHEAPLY.-A series of plain, practical articles, showing how any
intelligent person, by following the directions, may
build a boat with economy. Each article so accombuild a boat with, economy. Each article ss accom-
panied by drawings, diagrams, directions, dimen-
The Three-Dollar Scov.- Directions for construc-
tion, seven illustrations. SUPPLEMENT 25. Price The Five-Dollar Rowiny Skiff.-With full directions
for construction. Thirteen illustrations. SuPPLEThe Fourteen-Dollar Sailing Skiff.-With fourteen illustrations. Full directions for construction of The Twelve-D llar Row Boat.-Twenty-five illustrations. Ihiustates the construction of a graceful
ribbed boat light weight. SHows the method of so-
curing good lines, how to bend and arrange the ribs dimensions of all, the parts, and directions for con-
struction in full. SUPPLEMENTS 30, 32. Price 10 The Sixteen-Dollar Framily Boat.-With seven illusconstruction. A handsome and commodious boat.
SUPPLEMENT 36. Price 10 cents. The Fifteen-Dollar Whitehall Row Boat.- With three
illustrations. Tables of measures and full directions for construction. SUPLEMEMENT 37 . Price 10 cents.
Thisnumber also contains fourteen excellenterac Thisnumber also contains fourteen excellent prac-
tical rules for the management of sail boats, by an The Fifteen-Dollar Sailing and Rowing Canoe.-With
ight illutrations, including perspective of double eight illustrations, including perspective of double
ale rig. Tables of dimensions and directions in full
for construction. SUPPLEMENT 39. Price 10 cents. A Thirty-Dollar Tacht.- With eight illustrations,
including perspective of sail rig. Tables of dimen-
sions and full directions for construction. SUPPLESions and full directions for
MENT 42. Price 10 cents.
A Three-Hundred-Dollar Center-board Yacht.- With truction. A fast and serviceable vessel. SUPPLE-
MENT 67. Price 10 cents. The entire series of 10
numbers, relating to boat building, sent for $\$ 1$. The series embraces about 100 illustrations.
SAILBOAT WITH ROLLER CENTER.
NEW CAT-RIG. BY CAPT. R. B. FORBES. A Simple, Handy Sail that can be Reefed from the
Standing-room in less than One Minute. Adapted
to Cat, Sloop, and Schooner Riss. Two fioure to Cat, Sloop, and Schooner Rigs
BOATS' RIGS.-NINE VARIETIES OF Rigs in Actual Use, for Yawls and Open Boats and
Yachts. The Handiest Rigs for Cruising. The End
ish Style. Nine figures. Also, Description with

CATAMARAN, OR DOUBLE-HULLED Harbor. Directions for Constructing ar Cheap,
Simple and Handy Boat, with four figures. SUP-
PLEMENT 117. Price 10 cents. THE LIFE BOAT CANOE EVANGEList. A sailing canoe for Sea Cruising with one
 construction, safety, and high speed. Full direc-
tions for construction, dimensions, and illustra-
tions of three sizes of these boats, costing from
 FOLDING OR COLLAPSIBLE BOATS for ships.-By Rev. E.L. Berthon, M.A. Read be-
fore Society of Arts. With three engraving,
Showing eonstruction, with full description. SuPт 84. Price 10 cent
SHARPIE MODEL SAIL BOAT.-BY E A. Van and F. W. Tuttle. Working plans and de-
scription of a sai boattatter the "Sharpie mode

- a form of boat which for speed and seagoin qualities has no equal. With the aid of the drawings and directions here given almost any one with
a few tools, and at small expense, can build a really good sail boat or steam yacht on this plan, giving
much more room for machinery and crew than the
more costly "Carver" or "Clinker" built boats of more costly "Carver" or "Clinker" buil
THE CRUISING CANOE "JERSEY Blue." ByW. P. Stephens, Commodoreof the Jersey
Blue Canoe Club. Full description, with engrav
ings, of the best form as yet devised of a canoe ings, of the best form as yet devised of a canoe
for general cruising purposes. The boat here de-
scribed was built after several cruises in a Rob Roy scribed was built after several cruises in a Rob Roy
and "American Model "Nautilus, and the changes
that have been made from the established form are that have been made from the established form are
such as the large experience of the builder has
shown to be needed. By the aid of the minute instructions here given, and the accompanying
figures, which are drawn to a scale this crat may
be easily constructed. C \sim ntained in ScIENTIFIC americin Supplement, No. 164. Price 10 cents. A NOVEL BOAT RIG.-BY H. R. TAYior. Practical directions for rigging a small sail complete control of the helmsman, being quickly
lowered in case of danger, and as quickly raised
again, with a single hand, while the othar is upon the tiller. By the aid of the author's descrip-
tion and the accompanying detail figures any one can fit his boatt up with this peculiar rige and there-
after avoid all the danger that accompanies sailing in small vessels rigged in the ordinary style. Illus

BOAT LINES. HOW TO GET THEM.By R. Gooper. Practical Directions, both for De-
signing and Building, with 11 figures. SUPPLEMENT
140. Price 10 cents.

ICE-BOATS Ice Boats
and management. With workingTRUCTIO ction. Vour engravings
 1. The same number also contains the rules and
ragulations for the formation of ice-boat clubs, the
sailing and management of icc-boats. Price 10

ICE-BOAT WHIFF.-FULL WORKING drawings and description, with dimensions of the
model ice-vacht Whift, the fastest yacht in the
world. Exhibited at the Centennial, by Irving Grinnell. With
Price 10 cents.
Pneumatics.
COMPRESSED AIR MIOTOIS., BY GEN H. Haupt, C.E. Being a Report to the Pheumatic
TramwayEngine Co.of New York, concerning the
use of Compressed Air as a Motor for propelling use of Compressed Air as a Motor for propelling
Street Railway Cars. Exhibiting the feasibility of
the system and the Practical Success obtained as eve system and the Practical success obtained
evinced by trials of the Pheumatic Cars and Com-
pressors on the SecondAvenue Railway, New Yor pressors on the SecondA Avenue Railway, New Yo
City. Witha a general description of the Air Com
pressors, the percentages of Power Realized out
the Power Consumed in pressing the air; the exte of the air compression and how used in connection
with heat in the car; the ost perqnile ; the distance
traveled by the Pueumatic Motor; increase power by using the cylinders as air' pumpsease of
and cold by compression and expansion; gradesthe Pneumantic Motor can overcome and effects of using a compression of fifty atmospheres advantages and moral and sanitary influences; estimate of the cost of power by the use of the pneumatic sys way; tables showing the quantities of air consumed
on each trip of the car, the reductions of pressure on each trip of the car, the reductions of pressure,
ett., with many other interesting and valuable par-
ticular, theoretical and practical. Contained in
ScINTIFIC

COMPRESSED AIR PNEUMATIC DIS patch System used in Paris. With description an
NEW AIR COMPRESSOR OF M. DUBOIS, with description, dimensions. Prilustrated by en-
gravings. SUPLEMENT 22. Price 10 cents.

COMPREASSED AIR MOTIVE POWER.practice. The locomotives worked by compressed
air in use in St. Gothard Tunnel Works, with diPrice 10 cents cach
GREAT BLOWING ENGINEs HIGH Speed and Novel Construction.- Built by weimar
Machine Works. An accurate description, giving
performances, dimensions, new devices, and five performances, dimensions, new devices, and five
elevations. This engine easily reaches 100 revolu-
tions per. minute with a discharge of 5,000 cubic
tent peir feet of air at 10 lbs. pressure. SUPPLEMENT 51. 10
cents. Also in same number, ROOT'S FOREG-
BLAST BLOWWERS, GAS EXHAUSTERS, AND
BLACKSMITH'S TUYERES. 12 figures. FORCE OF WIND. HOW TO ESTIMATE Required Strength of High Builings,
Chimneys, and Sires. Formulas for Force of Wind
at Various Velocities against Vertical Surfaces, and against Roofs at various Pitches; with three figures NEW METHOD TO DETERMINE WIND'S Velocity, and to Test the Correctness of Anemome-
ters- By John H. Long. A Paper read before the
Kansas Academy of Sciences. One Cut. SUPPLE-
MENT 110. Price 10 cents.

Technology.
TOBACCO AT THE PARIS EXHIBITION. Valuable Details of Tobacco. Culture; How to
Raise a Good Burning Tobacco; How to Raise Mild
or Strong Tobacco, as Required.
 and south America. Particulars of Snuff Manufac-
tures, and the Manufacture and Flavoring of Chew-
ing and Smoking Tobace. The Host Approved
Processes and Apparatus. The Automatic Torrifer,
etc. The Manufacturs. Ptc. The Manutacture of Cigars and Cigarretter
Statistics of the Annual Consumption and Produc-
tion of Tobacco, and the Revenues paid in the lead tion of oubacio, and te Revenues paid in the lead-
ing countries. Clear and Practical Information on
every depart.nent of the Tobacoo Trade. SUPPLE-
MENTS 133, 136. Price 10 cents each.

THE SILKWORM- - A BRIEF MANUAL

175.

THE TECHNOLOGY OF THE PAPER

 bath. Ra Wr Fibrous Materialn, their characteris-
tics and Treatment Preparatry to Pupping Cot
oit

 THE ART OF MARBLING ON PAPER.-

 THE MANUFACTURE OF GRAPE SU-

BEET ROOT SUGAR MANUFAOTURE.
 THE GRANULATTON OF WHEAT.-BY
Oscar Oexle CEL. Treatmentof Middlings. Prac-
 ON THE PREPARATION OF DEX

MANUFACTURE OF ARTIFICIAL BUT-

 PIPES FOR GAS AND OTHER PUR-

 DYEING RECIPES. - YELLOW CAN-

 SILVERING GLASS - THE LATEST AND
 FREEZING MIXTURES. - THE SEV.
 ICE MAKING AND ICE MACHINES.-

ON THE PRESERVATION OF WOOD.

 Barium, Sulphate of Zinc and Copper, etc. A valu-
abte practical paper. SUPPLEMENT 119. Price 10 LOGWOOD-A LECTURE BY PROF. George Jormain, showing the nature and extensive
usses.t hisvaluthe dyent material the metoods
of its preparation; the chemical condititions of its

 dye woods. SUPPLEMENT E4. Price 10 cents.
WOOL DYEING- BY GEORGE JARmain. Lectures read before the Society of Arts,

Technology.
GLYCERINE TN WEAVING, DYEING,
Printing, and Finishing. By M. H. Herberger. GlycePrinting, and Finishing. By M. H. Herberger. Glyce-
rine as a Lubricant; Glycerine in Tanning; Glyce-
rine as anvent ofte Animal Dyes and other Col-
ors; its Antiseptic Properties; Glycerine for Printors; its Antiseptic Properties; Glycerine for Print-
ing on Woolens; for Dissolving the Aniline Colors.
Qualities of Glycerine required for various pur-
poses. SUPPEMENT 108. Price 10cents.
SYSTEMATIC EXERCISES. - THEIR Value in the Prevention of Disease.-By Edward TT.
Tibbits, M.D. A highly important and valuable
paper. Read before the Leeds and West Riding papits, Read before the LLeeds and West Riding
padico-Chirurgical Society. How much Exercise
Mvery one ought tTate. Muh Disease Result of
Over-gratification of the Appetites. Cultivation of Ohe Will a Cure for Bodily and Mental Illls. Criminal
Negligen of Mothers. The Moral Infuenc of
Bodily Exercises, and How they Aid in Controlling
the Appetites and Passion. Contained in SuPPL Bodily Exercises, and How they Aid in
the Appetites and Passions. Contained
MENTS 150,15 . Price 10 cents each.
JAPANESE LACQUER - ITS MANU MAN and facture and application. With a19 illustrations THE INOXIDATION OF IRON AND the Coating of Metals and other Surfaces with
Platinum.-My I. M. Stoffel, Co.E. A description of
the processes of M. Dode for the inoxidation of iron, the enameling of metals, and the platinum
coating of metals. In these processes (to the appli-
cation cation of which there is scarcely any limit in the
industrial world heat is sustituted for galvanism,
the use of acid is entirely dispensed with, and there the use of acid is entirely dispensed with, and there
is thus no caus to encourage oxidation. Compared
with electroplating and galvanizing, Dode's proces ses, by reason of their moderate cost and facility of
application, present such advantageous features
that a large field tor operation is thereby opened. hat a large field tor operation is thereby
that
SuPPLEMENT, No. 1\%\%. Price 10 cents.
HOW TO DO IT AND HOW NOT TO DO It. A series of sixteen engravings, being sketches
from life, showing the Right and the Wrong Posi-
tions of working in executing various labors, such
as Fine and Rough Chiping Rough Filing, Draw
Filing Scraping, Boring, Grinding, Pattiern Sawing,
et etc., etc. With Many excellent practical hints. How
to execute True Work, etc. SUPPLEMENT 88. Prico
10 cents. HOW TO MAKE SPIRAL SPRINGS.By Joshua Rose. With three engravings of the
tools, which are easily made, and completepractical
directions for working, including hardening and CASTING METALS; MEDALLIONS, Vases, and other articles in fusible alloys.-Full
direction for home and shop practice, with engav-
ings. By George M. Hopkins. SuPPLEMENT 17. SOLDERING.-AN EXCELLENT PRAC-
tical treatise for homeand shop use. By G. M. Hoptical treatise for homeand shop use. By G. M. Hop-
kins. With eight illustrations. SUPPLEMENT 20.
Price 10 cents.
PRACTICAL DYEING RECIPES.-A collection of practical formulas which have all
been verified as perfectly reliable, and which are
warranted to come out satisfactorily if the proportions are adhered to, and the manipulations be
workmanlike. Recipes for Blue or White Zephyr;
Scotch Blue on Worsted--one Bath; Scotch Green on Worsted-one Bath; Jacquineaux on Worsted;
Drab on Worsted one Bath, Gold on Venetian
Carpet Yarn-one Bath ; Red Brown Slubbing ; Scaret Braid-One Bath; Slate Brain-one Bath;
Light Drab on Cotton ; Blue on Cotton; Brown on
Cotton ; Chrome Orange on Coton Carpet Yarn; Cotton; Chrome Orange on Cotton Carpet Yarn;
Black on Common Mixed Carpet Yarn for Filling ;
MENT, No. Cotton and Wool Mixed Yarn. SUPPLE-
ME. ON THE MANUFACTURE OF Matches.-By John A. Garver, A. B. An exceed-
ingly interesting paper. The Chemistry of the
Matth Daners of their Manfacture and une;
Wax, Safety, and nhenerousurious varieties.
Commercial Statistics. SUPPLEMENT 84. Price

Photography.
PRINTING BY PHOTOGRAPHY.-BY
 zincography. Phototypic or Raised Printing
Bocks, by Swelled Gelatine Process. Zinc Etching,
and other methods. Line Engraving on Metal
Plates. Printing of Half-tone Subjects from Metal engraving. Woodbury's Methods of Engraving and Printing. Collotype Printing. Other Methods of
Producing Photosin Pigment. Dusting-on Process.
Autotype Printing. SuPrements, 143, 146. PHOTOGRAPHS ON WOOD FOR ENgraving. By Edward Pocock. Practical Directions
for Transferring Photos that will not Cut Up un-
der the Graver. Also, a method of developing a Photo on Wood which may be Penciled on if de-
sired, with instructions. SUPPLEMENT 53. Price
10 cents.

PHOTOGRAPHIC PRINTINGS.-BY John L. Gihon. Items of information on every
Class of work, as Plain and Albumen, Porcelain
and Carbon Printing. Paper for Printing, and its and
Preparbotion Printe. The Sensitizing Por Printhing, Printing and
its results. Toning. Fixing the Image. Prints
on Plain Paper. Permanent Pigment Printing. OUPLEEMENT 144. Price 10 cents.
SOW TO USE PHOTOGRAPHIC BACK, grounds.-An addess delivered before the Photo-
qraphic Congress, Philadelphia, by L. W. Seavy.
With 14 illustrations. A valuable paper, explaining the various methods of so using backgrounds
as to produce the best effects with examples of the as to produce the best effects, with examples of the
wrong methods. Full of useful practical ideas for
photographers. SUPLEMENTS 48, 49. Price 10 PAPER NEGATIVES.--INSTRUCTIONS and Recipes for this Process. The Cyanotype Pro
cess, coloring and Preserving Photos, etc. SUPPL
MENT 9 or. Price 10 cents. DRY PLATE PHOTOGRAPHY.The Gelatine Process. A complete and practical
description of themethod of preparing the sensitive
gelatine emulsion. By don
well known chemist Monck well known chemist and photographic discoverer.
Bing a report of his recent lecture before the
members of the Belgian Photographic Association. members of the Belgian Photographic Association.
These gelatine dry plates are more sensitive than
the ordinary wet pates, and Dr. Van Monckhoven
ielieves that the gelatine plates will sooner or later supersede wet plate photorgaphy and otther forms
of dry plate practice. The lecture embraces; (1)
The Organization of the Dark Room. (2) The The Organization of the Dark Room. (2) The
Nature of the Emulsion. (3) Preparation of the
Gelatino-Bromide Emulsion. (4) Application the
Emulsion to the Glass. (5) The Preservation of the Emulsion to the Glass. (5) The Preservation of the
Prepared Plates. (6) The Exposure in the Camera.
(7) Development of the Image. (8) The Pyro-
. ${ }^{\text {and }}$. development. (9) Fixing the Image. (10) Intensi-
fying the Image. (11) Retouching and Varnishing.
With two Illustrations. Contained in SUPPLE-
MENT 205. Price 10 cents.

Electricity and Electrical Instru

 TELEPHONE CALLS.-BY GEORGE M. Hopkins. Plain and complete practical directionsfor making an excellent although inexpensive
signaling apparatus, working without a battery and which, in the modified form here described, is
so simplified that one bell and two magnetsaro dispensed with. Full directions also for making an
alarm to o used with a battery and a closed cir-
cuit. By the aid of the minute descriptions, and the 6 scale drawings hereingiven, any one canc con
struta very efficient telephone call of either o
the above kinds, which may be used in con the above kinds, which may be used in con-
nection with any of the telephones employing
permanent magnets, and which will answer well
tor rooms where the noise is not
 Call, and also a description (illustrated with 2 en-
ravings) of the Call Bell and Morse Combination
for telephone lines.
ELECTRIC LAMPS.-A COMPREHEN-
 the in use, viz., The Brush Elactric Lamp and
Maxim's Lamp, Lang Lamp, Wallace-Farmer Lamp, without gearing, and the
Maculating apparatus of the same The, Jobloch Maxim's Lamp, with and without gearing, and the
regulating apparatus of the same. The Jobloch-
kourt Candle, and the arrangement of the light ap-
paratus
Foucault's The Westorn Lamp, Duboscq's, Lamp, Are Archerean's
 orms, the Regnier Electric Light, Reynier Samp
the Werdemann Electric Lich Lisht, the Sawyer-
Mann EIectric Lamp, Farri, Burne, Directions
for making a simple, and effective Electric Lamp tor making a simple, and effective Electric Lamp
Platinum Lamp, Figures illustrating carbon pen-
cils an they appear under conditios varie by cils as they appear under cond, strength of current, Edison's Electric
position and streng
time. and what is known of it up to the present
SuPLEMENT, No. $\mathbf{1 6 2}$. EXPERIMENTS WITH THE INDUC of many interesting and beautiful e experiments
which may be perormed with the induction coil, nd which exhibit the phenomena peculiar to the
secondary current. Illustrated with 15 engravings. Experimentsto show the Path of the Electric Spark
over Mica; the Rotating Disk; Experiments with
the ELeyden Jar ; the Fulminating Pane; the Gas
Pistol S Stateham's Fuse; the Decomposition o Pistol; Stateham's Fuse; the Decomposition of
Water, and the Apparatus for Effecting it; Geiss-
ler's Tubes; Geisslers Tubes howing Magnificent
Striæ; Luminos Points shown by Bell Glass; Exlers Tubes; Geissiers Tubes showing Magninicent
Strie; Luminous Points shown by Bell Glass; Ex-
periments with the Electric Eg; the apparatus for
showing the beautiful experinent known as Gas
siot's Cascade. SUPPLEMENT, No. 166. Price 10

HOW TO MAKE A WORKING TELE-phone.-By Geo. M. Hopkins. A valuable, practical
paper, containing directions for construction of a
cheap, simple Telephone. With Five Working
Drawings, and View showing Line in Practica Drawings, and View showing Line in Practical
Operation, The Magnets, the Diaphragra, the
Mouthpiece, and all parts clearly shown, with full
Instructions How to Make the Magnets, size and ar-
manrement rangement of 14 cents.
THE HUGHES TELEPHONE. SIX FIGures. Sound converted into Undulatory Electrical
Currents by Unhomeneneos Conducting Sub-
stances in Circuit. The Simplest Telephone and the
 which may be performed by any person with a few
nails, pieces of sealing wax, a glass tube wontaining
powders, and a few sticks of charcoal. Containe in SUPPLEMENT 128. Price 10 cents.
THE INDUCTION BALANCE AND SON-ometer-By Geo. M. Hopkins. Plain directions
for making the simple yet wonderful apparatus
devised by Prof. Hughes, and called indiferently
the "Sonometer" or "Audiometer." With these
Whention spections and the accompanyingeter, figures in theser-
spective and detail, any one with a little mechan-
cal ingenuity and at a trifing cost can construct ical ingenuity and at a triffing cost can construct
for himself an instrument that will yield him a
world of interest and amusement. SUPLEMENT,
No. 196.

SMALL ELECTRIC LIGHTS FROM BATteries. An article showing the cost of the production
of the Electric Light by the use of variousbatteries
as the Faure, Thomson, Bichromater of Potash, L Gourant De Tromelin, and Rotary, a and dem on-
strating, from the expense thus ascertained, the
superiority of machiness over batteries from the
point of view of cost of working. SUPPLEMENT,
No. 195 . point of view of cost of working. SuPPLEMENT,
No. 195. By Prof. W. E. Ayrton. A careful review of the
principles underling the use of electricity as a
motive power comparing this power with that
produced by steam, and showing by calculations produced by steam, and showing by calculations
and experiment that a dynamo-electric machine,
with a separate exciter, driven very fat with a low pressure, and sending by even quite a fine also running very fast and a magnetized by a sepa-
rate exciter, is an economic arrangernent for the
ransmission- of power, either for transmission of power, either for long or short
distances. SUPPLEMENT, No. 198. Price 10 cents. ELECTRICAL CLOCKS AND CLOCK Work. By Henry D. Gardner. Description and
figures of the principal inventions that have ben
patented in electrical clocks and clockwork, emracing: Baine's Electrical Pendulum and Dials or spring for propelling a pendulum; Jones' Prin-
ciple of controlling a number of indifferent clocks from one good one; Ritchie's ingenious modifica-
tion of Jones system; Dents further improvements; Bain's plan of setting the hands of indiffer-
ent clocks by electricity; Collins' method of Cor-
recting clocks: Ritchie's plan for correcting clocks by hourly currents; arrangement devised in tho
Great Westminter Clock for reporting its own
time to Greenwich; E. J. Dent's method of driving

TELEPHONE CALL, HOW TO MAKE. By George M. Hopkins. Complete working draw-
ing and instructions for makng the magneto
Call. Also directions for making several other
simple Telephone Calls. SUPPLEMEN 162 . Price HOW TO MAKE INDUCTION COILS. By George M. Hopkins. Practical instructions,
 ridges, and it will exhibit the phenomena of elec-
ric light in vacuo. SUPPLEMENT 160. Price 10
HOW TO MAKE A DYNAMO-ELECTRIC Machine.-By George M. Hopkins. Practical in-
structions, with complete scale drawing. This
machin may be run byand orpower. Itis easily
made; designed for experimental purposes will made; designed for experimental purposes; will
heat from 4 to 6 inches of platinum wire ; produce
the electric light; decompose water rapidy; mag
 porary use, take the place of 8 or
SLPPLEVENT 161. Price 10 cents.
THE ELECTRIC IIGHT.-A PAPER containing a detailed description of the principal
Electric Lamps of recent date, including the
Edison, Sawyer-Man, Wallace-Farmer, Brash,
Maxim, Tablochkoff, Rapieff, Reynier, and several Maxim, Tablochkoff, Rapieff, Reynier, and several
others- writh over 20 engravings. In SuPPLEMENT
162. Price 10 cents. MICROPHONES AND TELEPHONES.Recent Modifications and Improvements. Twelve
engravings, with full directions for making and
using. By Geo. M. Hopkins. Contained in Sup-
PLEMENT 163. Price 10 cents. These Microphones PLEMENT 163 . Price 10 cents. These Microphones
are easily made and afford a world of amusement

ELECTRICAL CABINET.-BY GEORGE M. Hopkins. Description of a simple, cheap, and which few in number, are ingeniously arranged
so that they may be recomined in various ways
to form several different pieces of apparatus to b used in performing a great variety of experiments.
The Cabinet may be arranged to form an Electric
Engine a Magneto Machine, a Sounder an Electric Bell, a Galvanomemeter, an Induction Coil, Electrtic
Pendulum, etc. This cheap and effective apparatus has been devised for amateur experimenters, old
and young, and with the aid of the working drawings and descriptions here given, may be very
easily constructed by any one possessing the least
mechanical ingenity. Text jlustrated with 14
engravings. SuPPLEMENT, No. 191. ELECTRO-MAGNETS.-BY GEORGE M. Hopkins. An explanation of the principles which
underlie the construction and operation of electromagnets, and which, when not thoroughly under-
stood, of ten puzzle the tyro; showing in addition,
how the apparatus is constructed tow the apparatus is constructed, how the arma-
tures are arranged, and illustrated with 49 figures
exhibiting the various forms of electro-magnets exhiviting the various forms of electro-magnets
eenerally used for electrical purposes. This paper
is eppecially valuable to those who wish to con-
struct their own apparatus. SUPPLEMENT, No

SMALL ELECTRIC LOCOMOTIVE EN pine.-How to make, with dimensions and particu-
lars. Illustrated by engravings. By G.F.Chutter.
SUPPLEMENT 19. Price 10 cents. THE GRAMME MAGNETO-ELECTRIC Machines. With working drawings, dimensions,
and particulars of construction. By M. Tresca.
SUPPLEMENT 17. Price 10 cents. GALVANIC BATTERIES.-A NEW AND valuable paper. By George M. Hopkins. Contain-
ing full instructions for the construction of nearly
every known form of Battery, and its mainte nance, comprised in three articles in SUPPLEMENTS
15758 , 159. Price 10 cente each. This paper
includes all of the principal batteries used for Experiment, Telegraphy, Telephony, Electro-meta
lurgy, Electric Light, ,
othoring Induction Coils, and
 puicksilver, Gas, , econdary, and Thermo-electrin
Batteries are included. It is the most comprehen-
wive paper yethbished on the subject. Illustrated
with nearly Fitty Engravings.
ELECTRIC CANDLE.-BY W. LUCIEN
Scarfe. Description of M. Jablochkoff's Candle, with an account of its Practical Operation, etc SUPPLEMENT 108. Price 10 cents.
THE MICROPHONE. INTERESTING
Description, by W.J. Lancaster, F.R.S. 3 Figures. Useription, by W.J. Lancaster, F.R.S. 3 Figures
a Mof the Instrument in Medicine. How to Make
Ms Experimend Entertaining Instrument. Curious Experiments. SUPPPLEMETN 137 . Price Price 10
cents. Also, in same number, A New Mercury
Telephone the Phoneidoscopeand the Phonoscope;
Reynier's Electric Lamp; Color Blindness, etc.
ON THE APPLICATION OF ROTATING Mirrors to the Measurements of Minute Lengths
Angles, and Times. By Alfred M. Mayer.
W neatstones Experimentsto Measure the Velocity
of Electricity and the duration of the Electric

 discharge of Mayeydenjar connecter with an inductio
coil. Prof MMavers Experimentso on the Electric Di
charge of the Inuction Coil. Descrition of Pro
Mayer's apparatus by which the whon history Mayers apparatus by which the whole history of
a fash from the coil is permanently recorded by
the discharge itself on a rapidly revolving disk the discharge itself on a rapidly revolving disk of
smoked paper. The new results that have been
obtained with this apparatus. This valuable and
interestinw paper, full of new and remarkable facts interesting paper, full of new and remarkable facts,
and with 21 cutsillumtrating apparatus and experi-
ments, is contained in SCIENTFIC AMERICAN SUP-

SIMPLE ELECTRIC LIGHT APPARAtus. By Geo. M. Hopkins. Two full-size Working
Drawings for Easily Made Apparatus, and three
drawings, showing all Detailsof Cells, and How to drawings, showing all Details of Cells, and Ho
Arrange, in Batery, with full instructions.
tained in SUPPLEMENT 149. Price 10 cents.

Light, Heat, Etc. Sound.

THE IDENTITY OF THE LINES OF Oxygen, with Bright Solar Jines, as shown in Pho-
ographst taben with Inceased Dispersion. A paper
ead by Prof. Henry Draper before the A merican SSOciation for the Adyancement of Science. SUP
PLEMENT 194. Price 10 cents.
EXPERIMENTAL DETERMINATION A the Velocity of Light. A paper read before the
Acmerican Assoctation for the Ad vancement of
Science, Augut, 1899, by Albert A. Michelson . S. N., describing the buildings, the delicate ap
n his experiment methods employed by the author
determine with what speed inht moves both in the air and in vacuo; and giving
pecimens of the observations, the data for working out observat
tained. Illustrate
MENT, No. 193.

FOW TO MAKE A PHONOGRAPH Half Instructions, with Eight working Drawings,
Construction easy and Inexpensive.
Contained in SUPPLEMENT 133. Price 10 cents,

ON THE MEASUREMENTS OF THE Lengths of the Waves of Light, preceded by short of the Phenomena of Diffraction and Interference
of Light. By Alfred M. Mayer. Theories that have
been put forth in regard to lisht. The undulator been put forth in regar t to light. The undulatory
theory and facts out of whichit has been woven. Ex-
perimentto show that one series of sonorous vibraperimentto show that one series of sonorous vibrapace of meeting. Philosophers led to seek for simi-
ar actions in the phenomena of light. The celebrat ed experiment of Fresnel on interference of light
described and explained. Huygents explanation of
the manner in which the waves of ether, causing the manner in which the waves of ether, causing
tight, are propagated. Description and explana-
tion of the phenomenon of diffraction of light. The various curious phenomena connected with the
diffraction of light, and an explanation of them. ent waves of light which cause in the eye the sen-
sation of color. Spectra and Frunhofer lines as sation of color. Spectra and Fraunhofer lines as
viewed through the diffraction grating. Descrip-
tion of the Spectrometer The action of a grating on a beam of light traversing action of a grating
the waves of light are measured with a grating
and a spectrometer. Mascart's improve a process of measuring. wave lengths. Table of
wave lengths of the principal Fraunhofer lines of
the solar spectrum. Description of Rutherfurd's the solar spectrum. Description of Rutherrurds
ruling-engine for cutting diffraction gratings,
with 12 figures inlustrating apparatus and experiments. Contained in Scientific American SupON THE DETERMINATION OF THE Number of Vibrations made in a second by a
Tuning-Fork, with Examples of the Uses of the
Tuning-Fork as a Chronometer to Tuning-Fork as a Chronometer to mark and regis-
ter minute intervals of Time. By Alfred M
Mayer. The Tuning-Fork, an excellent Timekeeper. Experiment to show how it may be made
oserve this purpose. How the velocity of rotaton of a wheel may be measured by a Tuning-
Fork. Description of the apparatus for showing
this. How the apparatus is used, how the calculations are made and the results that are oblained.
The laws of falling bodies written on a falling
plate by a Tuning-Fork. Examples of its application to such purposes. Experiments to show that
with such a simple instrument all the laws of fall-
ing bodies may be shown, and a permanent record of them preserved on the smoked plate upon which
they were traced by the viratating fork. The veForke Descrintion of the apparatus known as the
Tuning-Fork Chronoscope How it is used to de-
termine the comparative velocities of cannon balls given by various qualities of gunpowder, and the
importance of such tests to the efficiency of an
army. The speed with which the nervous motor and sensitive agent travels along the nerves meas-
ured with the Tuning-Fork. how the fork is used almost universally in physio-
logical experiments to time the speed of the
nerve nervous motive agent and the contractile waves
in the muscle. The graphic results of such an
experiment shown by means of a figure. The interesting facts that have been obse the ved by experi-
ments of this kind on man and the lower animals.
Illustrated with four engravings. SCIENTIFIC anican Supplement, No. 160.
THERMOMETERS. - BY R. J. MANN The common thermometer, and how made. Sensi-
tive, Maximum, Minimum, and Registering Ther-
mometers. Radiation Thermometers; Clock Regismometers. Radiation Thermometers; Clock Regis-
ter Thermometers;Deep-sea Thermometers; Self-
moving and Reristering Thermometers. The uses mo which the Thermometer is put, etc. Supple-
Thice 10 cents. THERMOMETER SCALE. - A VERY tantaneous Comparison of Numbers on the Fah-
enheit, the Reaumur, and the Centigrade Ther-
mometers; with Formula for Converting the Units ENT 141. Price 10 cents. IMPROVED REFLECTING MAGIC LAN-tern.-By J. B. Knight. One engraving. Showing,
how to construct an Excedingly Cheap, Useful,
and Convenient Lantern by which images of paper photographs, engravings, drawings, paintings, and
other opaque objects may be enlarged and thrown
upon the screen. SUPPLEMENT 87. Price 10 HORIZONTAL PENDULUM FOR THE Mrate Measurement of Gravitation, Deticate Vi-
brations, and Microscopic LLengths. Entertaining
Description of a Simple and Wonderful Instrument,
and How it Responds to the Motionsof the Heavenly Bodies, and can Measure the Velocity of Gravita-
tion; with four figures. SUPPLEMENT 112 . Price
10 cents.
Astronomy.
ANOTHER WORLD INHABITED LIKE
our own. A most interesting description of the our own. A most interesting description of the
planet Mars and its satellites by that renowned
astronomer and brilliant French writer, Camille Flammarion. The planet Mars, which comes next
o the earth. in order of distance from the sun, has
been the object of especial study with the author been the object of especial study with the author,
who was desirous of finding therein a confirmation of his theory of the plurality of the inhabited
worlds. Some of the more important pointstreated
of are: The atmosphere of Mars, and its clouds; the geography of the planet; its snow-clad poles; the
analogy of the martial climates with those of the
earth the red color earth; the red color of the continents of Mars, and
the gree color of its seas; the authorstheory that
the to the peculiar hue of the vegeShown of the planet; the meterorology of Mars
Mars, like the earth, the for tormer seot the of of inthrior
geologic changes ; map of Mars as constructed by geologic changes; map of Mars as constructed by
the author atter comparing more than 1,000 tele-
scopic draw ings, the diameter and superficial area scopic draw ings, the diameter and superficial area
of Mars; its density force of gravity at its surface:
beings living on Mars are necessarily only one-third as heary as terrestrial beings; conclusions of the
author that the inhabitants of Mars are fitt for
flying in its atmosphere; the satellites of Mars, their minute size, and their periods of revolution,
Illustrated with two engraving. SUPPEMENT,
Nos. 175 and $\mathbf{1 8 0}$. Price 10 cents each.
THE GIANT OFTHE WORLDS-BY CAplanet Jumitar; its. A A description of the colossal
velocity, and distance from the sun and eare, mass,
mase length of its days and years; the curious specula-
tions that have been made in regard to its inhabitheir number and appearance and probable constitained by different observerss probable geological
state of the planet at the present time; the prob-
baility of its being inhabited and speculations as to planet's four onermous satellites, their days and ed; ans, and the probability of their being inhabiter and
ed; as froen from his satelites ;
how the sun appears as viewed from the satellites the earth as appears as siewed from the satellites;
tuppear to the inhabitants of tained in SCIENTIFIC AMERICAN SUPPLEMENT, No.
196. Price ten cents. To be had at this office, and
from all newsdealers. VEIVUS, THE EVENING STAR. AN IN ion. Containing a resume, in popular form, of the
latest $k n o w l e d g e ~ c o n c e r n i n g ~ t h i s ~ w o n d e r f u l ~$ and only twenty-six millions of miles distant from
us. Incuding an account of the phases of Venus aytime its densitliancy, periods when seen in the physical features, deductions concerninge, climate and
in habitants, etc., with one illustration. Containe
in Scirntric n SCIENTIFIC AMERICAN SUPLLEMENT, No. 177.
Price 10 cents. To be had at this office and of ali
newsdealers. The same number also contains a valuable paper by Alfred M. Mayer, on the Measure-
ments of the Waves of Light, with a drawing and
description of the mode of using the Spectrometer.

These papers may be had at THE SCIENTIFIC
AMEICAN Offic, New Ork, or may ye ordered
throunh any Bookseller or Newsealers. In order-
 Promptly sent by mail to any.
Price Ten Cents each Number.

Natural History, Ceology, Biology. MT. RANIER OR TAKHOMA.-A DE. cription by Hazard Stevens cf his ascent of this
remarbable Volcano in Washington Territory.
This narrative, of absorbing interest to both the Naturalist and the general reader, gives the Jeo-
graphy of the regiont the Toils, Perils. and Adven-
tures of the expedition ; Discovery of a Cavern in dous Glacial System of the Mountain and the vast
River it Feeds. SUPPLEMENT 59. Price 10 cents. POLLEN.-BY W. G. SMITH. ILLUST'RAtions and descriptions of 93 varieties of Pollen from
well-known plants, and the hybrids between these
curious forms. SUPPLEMENT 62. Price 10 cents. CATASTROPHISM. - Address delivered $\underset{\text { before }}{\text { CLARE }}$ the Sheffield
 STUDIES OF MATTER AND LIFE--BY Prof. Henry J. Slack, F.R.R. A most interesting
and valuable paper, explaining the latest scientific
theories, researches, and calculations concerning theories, researches, and calculations concerning
the various Modes of Motion, the Ether of Space,
the Transmission of Wave Fores, the Limits of
Vision, the Size of Atoms, Motion, and Force of Vision, the Size of Atoms, Motion, and Force of
Atoms, Grouping of Atoms, Phenomenao Repro-
duction, Mental Phenomena. SUPPLEMENT 2\%.
Price 10 cents.
THE THEORY OF EVOLUTION.-THE
 lectures delivered in America by Professor Huxley.
THE PHENOMENA OF HUMAN LIFE.An address by Professor John Tyndall. A most
able and interesting paper, in which the Laws of
Energy and the Continuity of Motion as they are Energy and the Continuity of Motion as they are
found in the material universe are pointed out and
their existence trace in the Anima Economy and
the Human System. The operation of the Will and the Human System. The operation of the Will and
the Relations between the Mind and Body are de-
scribed in the clearest manner from the standpoint of the man of science. SUPPLEment 97 . Price 10
cents.
MAN AND HIS STRUCTURAL AFFINI-TIES.-Abstract of a Lecture delivered before the
Buffalo Society of Natural Sciences. By A. R.
Grote. A valuable and interesting paper, with 28 Ggure. Remarkable similarity of the tonery Struc-
fure of variousanimals. The Gorilla, with Portrait.
The Gorilla compared with Man. The Chimpanzee, he Orang-outang and several Apes and Monkeys.
our Relation to the Anthropoid Apes. Compara-
tive Brain Development. SUPPLEMENT 148 . Price BIOGRAPHICAL SKETCH OF AN IN-
 10 cents. address by Prof. O. C. Marsh, recently delivered
before the A Aerican Association for the Advance-
ment of Science, Nashvill, Tenn. Prof. Marsh,
who is so widely known for his remarkable Western Discoveries, especially of American Fossils, presents
in this address connected history of the dawn and
progress of Life in America, asshown by the latest deductions of Science, and confirmed by his extra-
ordinary Geolnical Collections. This paper is full
of fresh information, and forms one of the most ever piven to the public. ${ }^{\text {pid }}$ SUPPLEMENTS 90 and
Tents each. PLANT AND ANIMAL LIFE.-BY PROF. A. R. Grote. A highly instructive and interesting
lecture, illustrated with 20 engravings and givig.
in a poplar style a full exposition of the phenomena of Life from its first manifestation in the very
lowest organisms up to its perfect development
in man. Plants and animals made out of the atmosphere. Life invariably associated with motion,
The developmentof life. Protoplasm. Growth of
plants and animals. Organisms that are neither plants and animals. Organisms that are neithe
plants nor anmals. Ethalium. Difference be be
tween plants and animals. Spontaneous genera tion. Bathybius. Protamæba. Multiplication o
Fresh Water Amerba. Growth. of Red Snow
Structure and growth of Bryopsis. Description of Euglæne. Eggro of the highers animalscrip have firs
the Amoba form, and subsequently divide like
Euglæna; what the ultimate stage is to be whethe Euglæna; what the ultimate stage is to be, whethe
Euglæna, Amoba, fish, bird, dog, or man, not t
be determined from the organic contents of the original egg itself. Science in detecting the pro
cessof evolution asserts the unity of all Nature
II. Cell formation. All eggs are but specialize
cells. Development of the Spone cells. Development of the Sponge. Cell develop-
ment as itappears in the class of worms. Devel-
opment of the tape worm. The higher wormsbrates with no skull, nor brain, and no true heart the Amphioxus and lamprey., Description of the voussestem. The relative ranks of animal groups
influenced by the forms assumed by species in their
development. The Common Crab its zea and mecalops stage. The Tommon and its transformations.
Comparative structure of the legs of the toad and ird, and the wing of the latter. Ancient bird with teeth. The succession of animals in geologi
ages. The more fossils we find, the more clearl
the history of the gradual development of presen
species is made out. The differences now foun petween birds and reptiles atf one time tide no no
exist. Development of the brain. Evolution o
he horse. Evolution of bin he horse. Evolution of man; he passes in his ng existing animals. Experiments in transform
ing the Mexican Axolotl. The brain, the nerves,
instinct, and reason. No nerves, no min. Dif-
ference between instinct and reason one of degree

MO
Mo
Ho
Ho
Wo
To

 MYTHOLOGIC PHILOSOPHY.-VICE-
 MATERIALISM AND ITS LESSONS.-

 Mater the True Ob
MENT, No. 197.
POLYDACTYL HORSES, RECENT AND
 the feet of recent and extinct
MENT, No. 188 . Price 10 cents.
HISTOLOGY AND THE CELL-THEORY

 not Permanent. Irritation neesssary to Nytrition.
Containe in
Cricp

THE CA NONO OF THE COLORADO.

 HISTORY AND METHODS OF PALTE-
 e. Marsh. President., An important and valuable
papper, STPPLIMENT, Nos. 193 and 194. ${ }_{\text {Price }}$

THE FOSSIL FOREST OF THE YELLOW STONE NATIONAL PARK. By W. H. Holmes.

PROTOPLASM.-A PAPER READ BE

Archæolog
PERUVIAN ANTIQUITIES. BY E. R Heath, M.D. the mostrecent visitor to the home
the Incas.
thintensel yniteresting account of the
 surial mounds, near Truxillo Accounts of the
mmense treasure of Gold that have been found

 पuakes that have taken place on the Peruvian coast
The extrondinary Masonry
Lomposing the wall
emples houses, towers etc, in the Mountan di

ARCH ※OLOGICAL EXPLORATIONS IN TENNESSEE. By F. W. Putnam. An exceedplorations of the celebrated burial mounds of a prehistoric race in the State of Tennessee; ; illus-trated with 55 engravings, copied from the author's trated with 5 engravings, copied fram of ound by him, such as Weapons of War, and Household Implements, in Jasper, Flint, Hornstone, Copper, and Bone; Ornaments of Shell, Copper, and FlintEarthern Jars, Pots, Bowls, and Dishes, many of them of very curious shapes, and Pipes of Stone and earthernware of singular and interestingforms. Accompanied by descriptions of the various articles, and a map of the locality where found. Contained in SCIENTIFIC AMERICAN SUPPLEMENT,Nos. $\mathbf{1 6 9 , 1 7 0 , 1 7 1 , 1 7 2 ,}$ and 173 . Price 10 cents each, or 50 cents for the series.

MEDICAL USES OF CARBOLIC ACID.

 THE PREPARATION OF SKELETONS
 SEWER-GASES, AND THE TRANSPORT of Solidand Liquid Particlest therein-By E. Frankproving the suspension in the Atmosphere of Sonced
and
LIiquid Partices from Sewers, to which matter

 etc. SUPPLEMENT 67. Price 10 cents.
GROUND-AR IN ITS HYGIENIC RE-

 A COMBAT WITH AN INFECTIVE AT-
 of Air may be removed. Organic Intusions kept
olearfor months in contact with air. Facts tending
 HYGIENE OF THE HAIR.-BY PROF.
 YELLOW FEVER-A HIGHLY IN.

 TREATMENT OF ORGANIC HEART
 Embarrassment, embracing all the the Farioust kinnal
of local Congestions and Effusions; (z) Treatment
of the Cardiac Distress; (3) The proper management of the Heart Lesion itself. SUPLEEMENT, No. 172.
RELATIONS OF DYSPEPSIA WITH

 NERVOUS EXHAUSTION-BY GEO. M.
Reard, M.D A Comprehensive treatise, giving the

 Palpitations; Sudden Giving Way of General or
Special Functios;
dioiosncasies in Foon Medi-

 HOT WATER TREATMENT, - SERVIICE

 betes, Death of M. Mlaude Bernard, Blue Bile, the
Loction Smalloon. Epidemic, Fatal Laundry, Disin-

ON CHRONIC MALARIAL POISONING. - By Aifred L. Loomis, M.D. A Highly Instructive
clinical Lecture, deivered at the University Medi-
cal College, N. Y. According to Professor Loomis, the effects of malarial poison are manifested in surprising variety of forms and symptoms; so nutabulated. They embrace enlargement of the
spleen, neuralgias of different forms, that may or
may not be periodical; dyspeptic troubles which cannot be relieved by dyspentic remedies; head-
aches that are often treated ds cerebral diseases in portionsof the body; inpairment or mental fac-
ulties; inability to do work of any kind. not sick nough to go to bed, but tho ith and habitually too
tired to perform anything that requires the least
xertion ; shortness of breath; rapid, weak, irregu tired to perform anything that requires the least
exertion; shortnes of breath; rapi, weak, , irregu-
lar pulse; sleepless nights, etc. The infection appears to be far more widely spread than is common-
ly supposed; and all who have ailments that fall
within the catepory here mentioned will do well to
read this excellent iecture. SUPPLEMENT 102 .
Price 10 cents. THE GLANDULAR ORIGIN OF CON tagious Diseases.- Address by B. W. Richardson
M.D., President of the Sanitary Congress, England,
presents the Latest Researches and Facts concern presents the Latest Researches and Pacts concern
ng the Origin of Diseases, such as Small-pox
Measles, Scarlet fever, Diphtheria, Typhus fever
Typhoid fever, Erysipelas Hospita fever Puere ral fever (or the fever which ocurs to women in
chili-bed) Cholera, Yellow fever, Apue, Glanders
Boil and Carbuncle, Infectious Ophthalmia, showing that these diseases are caused by organic
poisons, how they are spread, and how they may
certainly be prevente. This one of the most valu
able important, clear, and interesting papers ever able, important, clear, and interesting papers ever
produced on this subject. SUPPLEMENTS 99 and
100. Price 10 cents cach. ON THE CURE OF CONSUMPTION.been treating consumption successfully for the
last twenty years, states that if the directions iven
in this paper are faithfully followed out and per isted in iner are faithrully followed out and per per given complete, embraces the drinks and food that
are to be used, the clothing that should be worn,
the baths and exercise to be taken directionsor eals, and the treatment, which includes prescrip ions for the medicine to be emploved, and direc
tions for taking. Contained in ScIENTIIC AMERI-
PAN SUPPLEMENT, No. 198. Price 10 cents.
THE CONDITIONS OF HEALTH IN THE Infant-A lecture delivered at Jefferson Medical
College, Philadelphia, by Wm. B. Atkinson, M.D.
This lecture, upona subect on which the books are almost completely silent, contains a. carefu
study of the frame of the child in a healthy state
from its birth up to the time when it and its dis
eases may no longer be regarded as peculiar, but as coming under the heading of diseases of adul
life. II treats of: The appearance and peculiar
ities of the infant at the moment of its birth; it
rapid tate of weight of male and fowth; its weight infants averag the skin and
its color, and its vascular nature
the bones their characteristics ; the pulse of the new-born-
child ; the respiration at different ages; the digest
ive sstem ; the secretion of saliva agn the period at
which this occurs; the act of nursing ; the state ot the bowels, and the pecularities of the urine; the
early development of the chidd'ssenses; the breath,
the tongue, the mouth, the lips, and the characters they should exhibit; the susceptibility of the in
fant to pain; the approach of first dentition
change of food; beginning of articulation; loco-

NOTES OF HOSPITAL AND PRIVATE Practice in San Francisco. By H. Gibbons, Sr.,
M.D. Brief Records of Observation and Experi-
ence during eighteen years of Hospital Practice treating of Pulmonary Consumption; Cough and
Night Sweats; Hemorrhage; Foods and Drinks for Tenacity of Intermittent Fevers, Typhoid Fever,
Rheumatism and Neuralia; Disease of the heart,
and Jaundice. SUPPLEMENT, 193. The The same number contains articles on appearance of the
Tongue in Disease; Aurar Therapeutics, and Trat-
ment of Strychia Poinoning by Chloral Hydrate
Apomorphia, and Electricity

BURNS.-A CLINICAL LECTURE BY R. J. Levis, M.D. No class of injuries so often
atailat thes. The varied character ot Burns and
heir classification. The effects following appliations of heat during different periods. Scal
nd its results. Effect of exposure to the sun emands to which attention should be directed
When the patient is brought in. Treatment of th
ain and of the shock How the clothesshould be pain and of the shock. How the clothesshould be blisters treated. Subsequen
removed and the but
local treatment of the burned surface. Th cal treatment of the burne surface. Th
Remediesto be employed. Treatment of exten-
sive burns; how the dressings should be prepared
Carbolized oil, carbonate of soda, linseed oil and Carbolized oil, carbonate of soda, linseed prepared.
ime-water, carbonate of lead and oil
mortification is to betreated. How visceral com-
plicationsare to be guarded against. Structural mortitication is to be treated. How visceral com
plicationsare to be guardd against. Structura
changes that are to bee aided by plastic surgery
SuppLEMENT, No. 176. The SSme number con
tains an interesting article on the "Rashes that ar

COLD WATER IN TYPHOID.-BY J. W. Kibbee, M. D. An account of a peculiarly inter-
esting case of typhoid and the author's method of
treating it, and from the fortunate results of which
he is led to the thenclusion thet phenomed to the conclusion that all morbid
fectly due to excessive feer of of any name are di- and that the remodal
of the later by water is a sure remedy. Contained
in ScIENTIFIC AMERICAN SUPPLEMENT, No. 171.

LOSS OF HAIR.-BY JNO. V. SHOE

SOUND AND THE TELEPHONE.-BY

Domestic Economy, Agriculture, Horticulture, Etc. The Farm.

FARM LAWW.-BY HoN. EDMOND H.

wheat culuture-by mr. gibson

the phylloxera. the complete

the catalpa tree for economic
 How to bulld a greentotse. -dr SRAPE CUTTURE UNDER GLASS. - BY

 PTOWS

19T Tren conts caid
 Cheap greentouses and how to

culture of the raspberry._

 CUITIUATION OFMEDICINALPLANT

 gardens -by peter henderson

tranted frutr trees- -Twenty.

CHEMISTRY OF THE POTATO-VALUE

fig culture at the north-a

notes on tobacco - by .w. K.

 PRUNING OF NELLT-SET. FRUTT
 uns 109?
$\underset{\mathrm{THE}}{\mathrm{THEACH} \text { TREE: }} \mathrm{HOW}$ TO PRUNE cranberry culture.-by a k.

 cultivation of peanuts.-where

shall grebnhouses. description

 outward marts of a good cow.

 points of a good horse.-being
 Tr filane of duto bises. The point of

 ON THE CARE OF HORSES.-BY PROF.

 mand THE PERFECC HoRse AND How to
 it An sstantanam shomstheapmeation plow exhibit at the paris ex.
 the horses motions scientift

 Whenemblbarrows at paris exhibl-

 horse.shoeinge.-by d. e. salmín,

A HOME-MADE HORSE POWER.-BY

 THE HORSE-MIS QUALITIES AS

ICE-HOUSE AND REFRIGERATOR-

 TCE-HOUSE AND COLD ROOU-BY R.

Domestic Economy, Agriculture Horticulture, Etc. The Farm.

 FOOD PRODUCTS OF THE PARIS EX hibition. Soups and Tablets, Soup Balls, DriedVegetables, Prepared Beans, Crystallized and Dried
Fruits, Dried Apple Sauce, Dried Eggs, Gelatines, French Confectionary, Nougat, PureLicorrice, Coffee
Substitutes, Sugar Coffee, Chocolate. SUPPLEMENT

HOUSEHOLD ORNAMENTS.-BY GEO .Hopkins. A paper containing directions for th objects for the adornment of the parlor and the
home, of woo, but finished in imitation of bronze
ware, including vases, urns, medallions, card re ceivers, brackets, match sases, picture frames, and
hundreds of other ar icles. With 6 illustrations. CHEAP HOUSEHOLD ORNAMENTS. By Geo. M. Hopkins. Practical Directions, with
illustrations, for making numerous Ornamental
Objects with the simplest Tools and Materials.

Fish Culture
SHORT BIOGRAPHY OF THE MEN ommissioner. A paper read before the Americal cust, 1879. An essay full of inent of st ncience, Au-
he scientist but to the general reader. The fo here treated of is known under at least 30 popular
names in this country, and is of great industrialim-
portance, not only for the oil whic so as a food, being used assuch in either a fresh
or salted state, or in oil under the name of "sha-
ines." The habits of the fish are somewh nomalous, and very little has hitherto been known
or written about them. Contained 1 In SCIENTFIO
AMERICAN SUPLEMENT. Ne 194 , Price 10 cents.

Ul Recipes.	ent and valuable papers on the subject ever published. Contained in Supplement 158. Price 10 cents.
CEMENTS.-RECIPES SELENTIC,	
tin's, Keene's, Parian, Hydraulic, Portland,	MISCELLANEOUS RECEIPTS.
Cements, and	cluding Moth and Roach
lin Stone; Artificial	
th Description and Uses of Lime,	
Lead, etc. SUPPlement 13	
UL RECIPES FOR THE CONF	Skeleton Leaves, to Make. Walnut Stain. Soluble
er, the Baker, and 'the Cook.-By J. W. P	Blue. To Relieve Casks of Mustiness. Fusible
son. Cream Cake, Doughnuts, Crumpets, Biscuit,	
isses. Apples a la Turque. Mead. Glair of Eg	
ke. Cocoanut Macaroons. Orange Slices	
eam, Fruit Ices, Iced Souffle. Lady Fin	
hite	
ed Clams. To Restore the Fragance of Oil of	Asiatic Black Ink; Arnold's 'Writing Fluid, Green
mons. Family Bread. Contained in Supplement	
6. Price 10.cents.	Ink; Indelible Inks for marking
-	ks,
arposes, Mineral Waters, etc., to wit: Simple	
up, Vanilla	
rup, Ba	Sho
${ }^{(2)}$ Coffee sirup, Wild Cherry Sirup, wintergreen	Ink
-	Ink
, Ambrosia Sirup,	gat
olferino Sirup, Capsicum	
up, Cherry Sirup, Strawberry Sirup, (2) Raspberr	
up	nicalities and the manipulations are simple. This
tawba	collectio
up, Sherry Cobbler Sirup, Excelsior Sirup, Fancy	Price 10
Fl	CL
Colognes for the Sick Room, by Geo. Leis. With	
cipes for the production of preparations that	Cleansing White Silk, White Woolen Articles,
ns. Supplement 7\%. Price 10 cents.	
FFUMERY.-BY W. A. SAUNDERS,	
armacist.-A valuable and practical paper upon	
ration of Perfume Extr cts. With formulæ	
	HOW TO MAKE RUBBER HAND
popular perrumes now on the mark	
an en ingre-	Stamps.-Practical directions. Supplement 83.
Victo	
Bouque	
Spring Flowers, Wood Violets, West En	Decorative Art.
	OP
PLEMENT 65. Price 10 cents.	
PA	
of Three Processes of Waterproofing Paper	-
chester, England. Supplement 96. Price 10	
SUMMER BEVERAGES. - A COLLEC-	Marble Clock. SUPPLEMENT 36. Clock in Car-
ble recipes for	Ca
rious	Ca
nion oustauntuse The list embra	64
negar, Champagne a la Min-	45. Antique Marble Vase. Supplement 98. Price
Orgeat Beverage, Holland	10 cents
nc	Carved Panel Ornaments forWood and Metal, for
	Stove Doors, etc. Supplements 36, 43, 50, 63,
fustian, Win	81, 82. Price 10 cents each
unch, Regents Punc	Designs for Lamp-posts. Supplements 4, 44,
Bishop, Princes ${ }^{\text {Punch, }}$ Cocoanut Beverage,	
Turkish Beverage, ice Coffee Beverage,Claret Bey-	
	Monument, with Railing. Supplement
	117. Cement Ornaments. Suppt
EMENT, No. 192. Price	Ch
therine Owen. Plain and pract	116. Designs for F
for making a number of fine fre	102. Price 10 cents
only apparatus needed to obtain perfect re	${ }^{\text {Marquetry }}$ Ornaments. Supplem
ing a brass saucepan, and a silver spoon a	136. Old German Carpet. Supple
- Foudants Panche Fondants, Chor	Price 10 cents each.
Roman Punch Drops. Supplement, No.199.	
CELLANEOUS USEFUL RECIPE	
ollection of about 40 valuable recipes for	sty
sehotd, Workshop, and Laboratory. Ho	Styles.
Recipes	PLEMENT 101. Price 10 cents each.
Fusiue, Paste for Scrap Books, Babbitt M	
How to make Gelatine Mo	A
ts. How to Weld Horn. Reci	
taining Horn Different Colors. Walnuts	
Render Cloth Fireproof and W	
nd Ro	
	Supplement 91, 128. Price 10 cents each.
ow to Make Sticky	House Trimmings, 29 Designs.
Fly Paper. Chemical Novelties. Recipe for Ivo-	Ent 68. Price 10 cents.
,	
om Cocoa. Method of Prepar	
the Dyestuff "Morine." A new Mineral Gum, a	the whole series being illustrated by about one hun-
	dred and sixty engravings. The designs are chosen
erior Gum, and Directions for ${ }^{2}$ Keeping Fru 10 cents.	ents

ARTIFICIAL FRUIT ESSENCES-FOR

 100 CHOICE PRACTICAL RECEIPTS
 CEMENTS. VALUABLE RECEIPTS FOR

HOW TO REMOVE STAINS AND

 $\stackrel{\text { sp }}{\mathrm{a}}$
${ }^{-1}$

INKS.-A COLLECTION OF UPWARDS

In
such as Gold Ink, Silver Ink, Carbon Ink, India Ink,
Drawing Ink; Marking Inkfor marking packages
of merchandise; Sympathetic Inks of all kinds and
colors; Japan Ink; Ink Powders; Hausmann's
Indestructible Ink; Close's Indestructible Ink,
Shoomakers Ink; Stencil Inks; Paprograh Ink
Inks for writing on Zinc Inks Ink Erasers. In these recipes, which have all been
gathered from standard authorities the material
civen easily obtainable; the directions are free from tech-
nicalities and the manipulations are simple. This
collection is invaluable. SUPPLEMENT, No. 15%

ISEAN TISUES WITH MINERAI

 seful instructions with nd mixed Tissues. TheseHOW TO MAKE RUBBER HAND

$\substack{\text { Pat } \\ \text { sit } \\ \text { sit } \\ \text { rin }}$

but weighing only thirteen pound one horse wowe
sith dimen
sions, arrangement of the lifting fans, etc. Sur
PLEMENT 50. Price 10 cents.
HOW TO DRAW A STRAIGHT LINE. By A. B. Kempe, B.A. With 33 engravings. An
important essay on the several mechanisms for drawing Mathematically Straight Lines. Direc
tions for making simple Home-made Instrument for this purpose; Beautiful Mathematical Prob-
lems; Geometrial Principles Involved; and full
Description of all the most successful apparatus. SUPPLEMENTS $\mathbf{8 4}, \mathbf{8 5}, \mathbf{8 6}, \mathbf{8 7}$. Price 10 ants

Miscellaneous

SOTO MOTORS.-A SERIES OF VAL. plying springs for the propulsion of street cars and
light road carriages. With plans and drawings of length and yower of springs, resistances, etc. Inilus-
lrations and descriptions of methods for drivi spring power. Supplements $\mathbf{4 6 , 4 7} \mathbf{4 7} \mathbf{4 8}, \mathbf{5 0}$
Price 10 cents each. Forty cents for the series.
VELOCIPEDE CARRIAGES OF LIGHT Construction.-Fast speed. Worked by hand cranks,
also by foot treadles. SUPPLEMENT 8. Price 10
cents.

PA RI S EXHIBITION PRIZES, 1878. Department, enumerating Exhibits ind American Adinesses oase. Contained in SuP CLEMETTS 149,
150. Price 10 cents eath THE IDENTITY OF THE LINES OF tographs taken with Increased Dispersion. A paper
read by Prof. Henry Draper, before the A merigan PLEMENT 194. Price 10 cents.
SCIENTIFIC AMERICAN SUPPLE MENT. Any desired back number of the SCIEN-
TIFIT AMERICAN SUPPLEMENT Can be had at this INVALIDITY OF STATE LAWS CON cerning the Sale of Patents.-All laws of State Le-
gislatures that in any manner interfere with the
free sale of Patent rights, such as the requiring Pree sale of Patentrights, such as the requiring of
the agent or patentee to fle copies of patent, take
licenses, procure certificates, comply with forms, or which release the payee of ordinary wotes of hand
given for patent given for patents, have been declared uncons.
tional and void by the United States Courts. Al
State judges, sheriffs or other State officials who
Stat State judges, sheriffs or other State officials whi
undertake to interfere with patentees or their
agents in the free sale of patents, make themselve

VORTEX MOTION.-BY PROF. O. REY nolds.-A Lecture delivered at the Royal Institu-
tion. New Principle of Fluid Motion, and How
Disconer Discovered. Characteristics of Smoke Rings. Ed-
dies in Water, te., and their Mathematical Rela-
tions. Natical and other Applications, etc., writh
Beautiful Experiments. SUPPLEMET $\mathbf{8 5}$. Price THE NEW GERMAN PATENT LAW. Being the Full Text of the New Law for Patents,
passed July 1st, 1877, covering all the States of the
German Empire. SUPPLEMENT 80. Price 10 cents. THE POLICY OF PATENT LAWS.-BY Social Science Association at Saratoga Spre the
Sring,
189 in which 1879, in which the author, after rejiewing hat his-
tory and nature of Patents, the objections that have
been been made to Patent Laws, and the alleged annoy-
ances from them; andafter showing the beneficial
effects of Patents on prices, the benefits of Laws on effects of Patents on prices, the benefits of Laws on
the subject, and how Patents promote trade, rages
that the teachings of experience pronounce that the Policy which has of experededence pronouncle, and liberat that
ized Patent laws is just and sound, and ought not
to be abandor ized Patent laws is just and sound, and ought not
to be abandoned. Complete in Supplement, No.
197. 10 cents.

THE SCIENTIFIC AMERICAN REFERence Book, a bound book of 144 pages for 25 cents
On receipt of 25 cents $w e$ send by mail, post-naid a copy of a handsome little hound volume, entitiled
the SCIENTIFIC AMERICAN REFERENCE BOOK, con taining 144 pages, illustrated with engraving, and
forming one of the cheapest and most valuable
books of condensed reference ever printed. A mong 1. The Census of the United, States, by States, Terri-
tories, and Counties. in full, ,howing the area of the several States. Also, Trables of Cing the area of the
10,000 inhabitants. Compiled firo the Census. 2. Table of Occupations--Showing the principal oc-
cupations of the peopie of the United States, and
the number of persons engated in each occupation. Compiled from the last Census.
3. The Patent Laws of the United States in full
with Directions How to Obtain with Directions How to Obtain Patents, Official
Rules, Costs, etc., Forms for A plications for
tents and Caveats. Directions How to Introduce and Sell Inventions, Forms for Assignment, in
whole and part; Licenses, State, Town, County,
and Shop Rights ; Rights of Employer and Employes in respect, to Inventions; State Laws con-
cerning Patents; General Principles applicable to
Infringements; Synopsis of the Patent Laws of Foreign Countries, Costs, Procedure.
4. The Ornamental Design Patent Law (full text).-
Costs and Procedure for securing Design Patents for
Ornamental Productions such tile Fabraics, Patterns for woch as Designs for Tex Tor Metal Work,
New Shapes and Configurations of any article of New shapes and Configurations of any article of
Manufacture, Prints, Pictures, and Ornaments, to
be printed, woven, stamped, cast, or otherwise ap-
plied upon machinery, tools, goods, fabrics, manuplied up
factures. 5. The United States Trade-Mark Law (full text)-
With Directions, Proceedings. and Expenses for the 6. The Label Comyright Law (full text).-With Di-
rections, proceedings, and Cost of Registering Labets fors, Goods, Medicines, and Merchandise of all
kinds. 7. The General Copyright Law of the United States
fuil text), ior securing Copyrights on Books, Pamphlets, Charts, Maps, Photographs, Pictures, En-
graving, Works of Art, etc. With Directions,
Costs, etc. 8. The Principal Mechanical Movements, Described
and Illustrated by 150 small diagrams, of great
value to Inventors and Designers of Mechanism. val The Moderr Steam Engine.-With Engravings
9. Thing all the parts. na mes. etc, and a brief his-
tory of the Invention and Progress of Steam 10. Horse Pover.-Simple and plain rules for Cal-
culating the Horse Power of Steam Engines and
Streams of Water. 11. Knots.- Presenting engraving. of forty-eighs
different kinds of Rope Knots, with explanations at 12. Tahtes of Weights and Measures--Troy Weight;
Apothecaries' Weight A Voirdues or Cometr
cial Weight; French Weights; United States Smerard; Dry Measure; Land Measure; Cubic Measure;
Liquid Measure: French Square Measure French
Cubic, or Solid Measure; Measuring Land by Weight, with engraving of a section of the English
and a section of the French rules, of equal lengths. 13. Valuable Tables. -1 . Table of Velocity and
Force of the Wind; 2 . Table of the Specific Gravity and Weight per Cubic Foot and Cubic Inch of the
principal substances used in the Arts; 3 Table of the Heat-Conducting Power of Various Metals and
other Solidis and Liquids, 4. Table of the Mineral
Constituent absorbed per acre by different crops; 5. Table of steam
Pressures and Temperatures; 6. Table of the Ef-
fects of fects of Heat upon various bodies, melting points,
etc. 7 . Table of the Heat and Electrical Conduc-
tivity of various metals. 14. Genmetry in Brief, as Applied to Practical
purposes. With illustrations. 15. Electrical Batteries and Magnets.- Plain direc-
tions showing how any person may, at a cost of a
few cents, make and put in operation an effective few cents, make and put in nperation an effective
Electrica Bater, prepare and wind Electrical
Magnets, make a Yelegraph, and perform a variety 16. Interesting Illustrated Articles. - - . The United
States, its area, principal dimensions, length of coast, rivers, steam navigation, railways, tele-
graphs, with outline Map of the United states. 2. Vraew of with outhine Map of the Unitol at Washington, sith dimes.
sions and brief history. Views of the Patent Office, interior and exterior, dimensions and brief history.
Views of prominent buildings and streets, New
York and Washington. Distinguished American York and Washington. Distinguished American
Inventors, with portratits of Franklin, Whitney,
Fulton, Wood, Blanchard, Winans, McCormick, Goodyear, Marse, Howe, Lyaul, Eads,
phies and figures of their inventions.
17. Miscellaneous Information.- Force of Expansion
by Heat; Small Steamboats. Proper Dimensions
f Engines, Boilers, Propellers, Boats Incel oy Engines, Boilers, Propellers, Poats. Incubation,
Tfemperatureof. To Make Tracing Paper; Consti-
Tuents of Various Substances; Friction, how produced, and Rules for Calculation S. Specific Heat
dueat
Explained; Specific Gravity of Liquids, Solids,
Air, and Gases; Gunpowder- Pressure, Heat, and Explained; Specific Gravity ot Liquids, Solids,
Air, and Gases; Gunpowder- Pressure, Heat, and
Horse Power of; Copying Ink, tomake; Heat, its mechanical equivalent explained; Molecules ond
Matter, size and motion explained; Lightning and
Lightning Rods-valuable information; Value of Drainage explained; Amount of Power at present
Yielded from Coal by best Enginess Sound, its
Velocity and Action; Iiquid Glues, Recipes; Value
of Brains; Properties of Charcoal; Height of of Brains; Properties of Charcoal; Height of
Waves; Speed of Electric Spark, etc.; Valuable
Recipes. Tiie SCIENTIFIC AmERICAN REFERENCE BOok,
price only 25 cents, may be had of News Agents in price only at cents, may, be nd of the , undersigned.
all parts of the contry, and mail on receipt of the price. AIl the above or any desired numbers of the
ScreNTrIC AMERTCAN SUPPIEMENT can be obtained
through any Newsdealer, or at this Office. Price hhrough any Newsdealer, or at this Office. Price
lo cents each. In ordering, please be particular to
give the number of the SUPPLEMENT that contains
the article desired. the article desire
Any desired num

SUPPEMENT will ber sent the postpandific american to any part of he world $\begin{aligned} & \text { on receipt of } 10 \text { cents. Address MUNN } \&\end{aligned}$

MUNN \& CO., Publishers,
. 37 PARK ROW, NEW YORK.

TUBE WELLS FOR LARGE WATER

PLEMENT 110. Price 10 cents.
MINE ACCIDENTS, MECHANICAL AP.

 Compresor; Als. Locli, and Portabie Winding Gear.
SUPLEMENT 105.0 Price 10 cents.
NEW UNITED STATES GOV'T RULES

BOILER INSPECTION. RULES OF THE

 OFFICIAL SIGNAL RULES FOR VES. Sels-LIights for Sea-going Steamers; for Towing
Steamers; for steamers not sea-going; for Missis-

 H. M. S. INFLEXIBLEE.-LARGEST AND

 STEEL ARMOR PLATES.-TMPORTTANT. Trials of steel and Compound Steel-and-1ron Plates.
Sir Josent Whitworts Plates The Armor of the
Inflexible. SurPLEMEMENT 12. Price 10 cents. WIRE ROPES FOR SHIPS' CABLES. -

 SUBMARINE FOTTNDATIONS, BEING A Description, with dimensions and scale drawings of
the apparats employed at Polar Harbor, Austria.
SUPPLEMINT 30. Price 10 cents.
THE BALTIMORE WATERTORKS. -
 Supply and the New, with Three Profles of the
Aqueduct. SUPPLEMENT 135. Price 10 cents.
CAST IRON BUILDING FRONTS AND

 SPECTRUM ANALYSIS. BY PROF.

 counted for. The characteristic Spectra of the sev-
eral Metals and he Method of fany ing by he
Spectrum. SUPPLEMENT 79. Price 10 cents. CHEMICAL REAGENTS, BY MALVERN

 ARTIFTCIAL PRODUCTION OF HATL-

VEGETABLE COLORING MATTERS.

NEW DISTILLATORY APPARATUSFOR

STATE INSANE ASYLUM OF NEW JER,
seyi- With Two Illustrations and Ground Plat. De.
taited Description of one of the Best Constructed tailed Dicseription of one of the Best Constructed
Pot thin Institutionsin the oo notry with particulars
of the Best Apparatus and Meth of the Best Apparatus and Methods in use for the
Culinary Department, Ventiation and wirming,
Iighting, and Landry work. Also Fractian Ex perience in the Causes of Insanity, and Treatment
SUPPLEMENT 110_{1} Price 10 cents. SIGHT.-THE INFLUENCE OF SCHOOL
 Walls, Illumination, Method of Instruction, etc., to
prevent optical injury. Over, or Long Sight; its
Cause and Preventio. SurPLEMENT 6F. The same number contains valuable essays and remarks
on the suspension of Sewer Particles in the At-
mosphere; Treatment of Rheumatism; Coton
Chloral in Whooping Cough; Safe Administration Chloral in Whooping Cough; Safe Administration
of Chloroform, etc. Price 10 cents. HOW THE ATR PASSAGES ARE EXplored. By F. Seeger, M.D. Diagnosisof Disease of
the Larynx, with Deccription and two figures of the the
Laryngoscope and the Rhinoscope, and Diretions
How to Use. The Wonders of the vocal Orean ond Laryngoscope and the Rhinoscope, and Directions
How to Use. The wonders of the Vocal Organ and
the Voice. SuppLEMENT 108 . Price 10 cents. Also,
in same number, Physiological Notes; Near-sight-
ROTARY-LATERAL SPINAL CURVA ture.-By Prof. Lewis A. Sayre. Lecture delivered
at the Bellevue Hospital, N. Y . Pott's Disease. Dr Banning's Method. Broadhurst's Apparatus, and
others. Judson's Method. Philosophy
Curvature. Self-extension and its beneficial results as illustrated by several cases. SuPPLEMENT 111. CLUB-FOOT; SPINAL CURVATURE Hip-ioint Disease,-Lecture by Prof. L. A.Sayre at
Bellevue Hospitai, N. Y. Club-foot Treated by a
New, Painless Method. Several Cases described and Success in Treatment. Useful Suggestions for Ad-
hesive Plaster. How to Detect Incpient Hip-joint
Disease. How Distinguish between Hip-joint
Disease and Psoitis. Treatment Also Co Sublimate in Dentisistry, Mental Illusions, the Color
of the Retina, Insanity in the United States, Treat-
ment of Paralysio of the Eye Muscles. Antisegtie
Dressing, Near
Pricelo TREATMENT OF THE DROWNED.Simple Practical Directions, withengravings, show-
ing how to manipulate the bodies of persons talren
from the water, with a view to restore life by profrom the water, with a view to restore life by pro-
ducing artificial breathing tid These directions are
approved by various Health Board, and are of
much value. SUPPLEMENT 201. Price 10 cents. DIGESTION AND DYSPEPSIA. - BY Charles Richet, M.D. An abstract of a recent im-
portant lecture by this eminent French physician,
being the outcome of a remarkable discussion which being the outcome of a remarkable discussion which
has for some time past been going on among the
Medical Societies of Paris. Among the questions Miscussed are: (1) The influence of the various ali-
mentary substances upon the secretion of the Gas-
tric Juice. (2) The influence of such substances
 cure of dyspeptic troubles, as here presented, are
simple, and are said to be attended by the happiest
results. SUPPLEMENT 199. Price 10 cents. CONSUMPTION. - TUBERCULAR cha valuable paper, showing, the nature, anatomy,
and modes of origin of the above maladies. The
most approved methods of diagnosis. The most promising and successful modes of treatment, in-
cluding climates, diet. With accounts of the most
pproved Medical Treatment and Formulæ there or. Supplement 203. Price 10 cents.
WAYS OF REMEMBERING. - BY J. valuable paper upon the Memory. Showing how
we Remember, and how the Memory may be
steadily and surely Improved. Contained in SupLIEMENT 203. Price 10 cent
HINTS TO YOUNG MACHINE-TEND ers.-By an old Papermaker. Practical instru
tions for the tending and caring of Papermakin
Machinery. Showing how to clean a Dandy; ho
to make good edges; to keep paper trom o make good edges; to keep paper trom crushing
and worming; to stop crimping together with
many other valuabledirections, hints, and suggesSPONTANEOUS COMBUSTIO paper read before the Society of Arts, London, by
Chas W. Vincent, F.R.S. An able Exposition, cleary explaining the nature of Heat; how it, is pro-
duced by disruption and by combustion; how spon-
taneous combustion results; effects of fermenta taneous combustion results; effects of fermenta-
tion; spontaneous combustion of coal; ; spontane-
ous combustion on ships how carbon spontane-
ously ignites ous combustion on ships; how carbon spontane-
ouly ignites; Faraday' Interesting Experiments.
UPLEMENT 81. Price 10 cents. SIZING OF COTTON GOODS.-READ before the Society of Arts, by W. Thompson, F.R.S,
A most Full and Clear Description of the Process, mbracing: An account of the process of Weaving
of Siaining the object and utility of Size. A table
Stures, in which are enumerated the fi Sizing Mixtures, in which are enumerated the
Substances used: I, for giving Adhesive properties
of Size . to give Weigh and Body to the Yarn;
, for Softening Size or Yarn ; and 4 , for Preserving the Size from Mildew and Decomposition
Tests for these Substances, and Directions for Pre
paring, so as to obtain the results required. Pro paring, so as to obtain the results required. Pro
portionsoo Sizing. Use of Flour in Size. Weighting
Materials, China Clay, and its substitutes. "Soften ings," and Oils for Softening. East Winds and their
effect. Glycerine Grane Sugr, Mildew Preventives
and Tape Sizing. "slashing,", Packing, Namaged JAPANESE ART MANUFACTURES. JAPANESE ART MANUFACTURES.-
By Christopher Dresser, Ph.D., etc. Paper read be-
fore Society of Arts. The Japanese Potterat Work.
Curious mode of Making Scarfs. How the Japanese Print on Cloth. Japanese Process for Silk O
namentation. Japanese Weavin. How Fine Ja
panese Fans are made. Japanese Method of Makin Moulds for Ornamental Castings for Vessels.
Bronzes, etc. Japanese Lacquer Manufacture
Corious Method of Decorating Lacquer Work The
Love and Pursuit of the Beautifulin Japan. A very Love and Pursuit of the Beautifulin Japan. A ver
entertaining, instructive, and comprehensive paper EXPLOSIVE DUST.-A COMPREHEN Manufacturios and the tauners of many Castin variou
combustible substances can explode. Sirestaneou Combustion of Iran, Charcoal, and Lampblack in
Air. Flour Dust and Brewery Dust Fxplosions.
Explosions of Coal Dust in Mines. SUPPLEMENT
125. Price 10 cents.

HOW TO USE THE CARPENTER'S engravings. An excellent Practical Treatise on the
many Mathematical and Geometrical uses of the common Square, and explaining the manner of
using the various scales marked thereon. Also,
directions how to find a circle equal in area to tw siven circles; to lay off an octagon in a square; to
findthe center of a circle with a s suare, and many
additional problems. Also, the application of the Square to Roofing, Stair Building, etic. A Avaluable
and usefupaper. Supplements 88 , 89. Price
10 cents each ; 20 cents for the two. NEW PROCESS MTLLING.-ITS ECON cess. Its Parallels in the Hungarian Process, Pro-
the Montre Economique of France. :SUPPLEMENT
111. Price 10 cents.

MAGNETISM.-PRACTICAL EXPERI
ments in Magnetism, with special reference to the
Demagnetizationof Watches. By Alfred M. Mayer With 35 illustrations. A very interesting and valu-
able paper, full of useful information concerning Magnetism: embracing descriptions and instruc-
tions for the performane of a large number of
highly interesting and instructive experiments, which any person may readily execute at bome or
elsewhere, with very little or no cost. Showing,
among other things, the nature and magnetism, the direction of magnetic lines, how to make and use magnets, how to magnetize and
magnetize iron and steel; the laws of ma netic in
duction, with various remarkable convenient experiments to prove the earth's mag-
netism; how watches become magnetized and their time-keeping qualities become thereby injured, and be quickly demagnetized and restored to its origininal
condition as a time-keeper. This 1 one of the most
concise and practical papers on Magnetism ever concise and practical papers on Magnetism ever
published. The author is well known for his many
original scientiticinvestigation, and is at present
Professor of Physics in the Stevens Institute.
Contained in SuPPLEMENTS $\mathbf{2 0 6}$ and 207. Price HOME-MADE TELESCOPE STANDS. By T. D. Simonton. A valuable paper, descriptive
of a simple, effective, and economical method of
constructing an equatorial telescope stand. With three illus
10 cents.
PAINTING,VARNISHING, AND CLEANing of Cars.-A recent discussion before the Master
Car Painters' Association. Embracing a series of
Practical Questions, with Answers theretoby Practical Painters, upon the above subject; equally ap-
plicablet the Painting and Varnishing of all kinds
of Vehicles and other works where durable and su perior finish is desired. In this paper is shown: (side, preparatory to varnishing. (2) Which will
wear longest, two coats of hard rubbing varnish
and one of wearing bood, or one coat of hard rub-
bing and two coats of wearing body? (3) The best bing and wwo coats of wearing boty? (4) Varnishing
size for filding and working easily. (5) Inings. (5) The best drier and best mix-
ture for head linings. (6) The best and most economical style or ornamentation for head linings.
(7) The best method of painting and finishing a car
body. (8) The most economical and durable color for outside cars. (9) The best mode of painting over
old paint. All containedin SCIENTFIC AMERICAN
SUPPLETNT
PAINT IN CONSTRUCTION. BY ROB'T Grimshaw, C.E. Peculiarities and Chemical Consti-
tution of Haris White, White Lead, Zinc White, Ba-

METHODS AND RULES FOR CHINA Painting.-A series of practical directions for the
Oramentation of Porcelain, Earthen, and China-
ware. Showing the requisite brushes, instruments, core. , howing the requisite brushes, instruments,
colorsf and mode of operation; how to make and
trander PROGRESS OF GAS MANUFACTURE. Gas Managers. History of Gas Lightiting, and Pro
gress in Retorts. The Hydraulic Main; Gas Con-
densers. Washer densers; Washers and Scrubbers; Gas Purification;
Exhauters and Governors; Gas Holders; Mains
and Service Pipes; Electric vs. Gas Lighting. SupENGLISH BICYCLES: SPEED TWENTY mines per hour ; 200 miles made in one day. Weight,
Price 10 cents. 8 illustrations. SUPPLEMENT 73 . THE COAL TAR COLORS. - A LECTURE before the Society of Arts, by George Jarmain.
Aniline, Toluidine, Magenta, their Manufacture.
Chemical Reactions, etc. fully treated Instruc. Chemical Reactions, etc., fully treated. Instruc-
tions and Recipes for Dyeing with the Aniline
Crimson. Violet, Blucs, Greens, Brown, Black, Vel
low, Picric Acid, and Ponceau. Dyeng Mied
Fabrics of Cotton and Wool. Excellent suggestions DETECTION OF ALCOHOL WHEN used a a a Adulterant of the Essential Oils.- By Ed-
mind W. Davy, M.D. A New Test, with full Direc-
tions for Applying. SUPPLEMENT 95 . Price 10 PERFUMERY.-BY ALEX. B. LEVI Ph.G. Being reliable formulæ for the production
of the following Perfumes: Jasmin, Frangipanni
ssence Bouquet, Ylang Ylang Geranium,
 ockey Club, Millefleurs, Tuberose, Cologne Water
ACTION OF SEA.WATER ON LEAD and Copper.-A paper read before the Manchester
Literary an. Philosophical Society by Wh. H.
Watson, F.C.S. Also numerous chemical notes. THE ENEMIES OF BOOKS. THEIR NAT The Cockroach, the Deathwatch, the WWeevil, the
Tabby Moth, the Sugar Tioue, the Brazilian Traca,
nd their Larve described and illustrate THE NORWEGIAN LEMMING AND ITS Migration.- By W. Duppa Crotch, F.L.S. A highly
interesting Description of the animal, with an ac-
count of its astonishing periodical Misrations westward itto the Atlantic O pean, whereby myriads
of these creatures voluntarily drown. The Lemming on its travels; its numerous enemies, and its
nugnacity. How it Lives in Winter under the Snow. Its Widespread Destructiveness. Probable
Causeof these Suicialal Migrations. Singular Proof
of the former existence of the sunken continent of the former existence of the sunken continent
Atlantis. Also in same SUPPLEMENT the Intelli-
gence of Ants, etc. SUPPLEMENT 7 . Price 10

THE GEOLOGICAL ANTIQUITY OF plain, comprehensive review of the sub, Fect, bring trations. The invariable correlation between in-
sects and flowers. How they are fossilized. Fossil
Botany. Geological Evidences of Evolution. CorBotany. Geological Evidences of Eyolution. Cor-
respondence in the succession of Animal and
Vegetable life. Flowers necessary to Insects, and
Insects necessary to Flowers. Insects and Plants Ynsects necessary to Flowers. Tnsects, and
in the Devonian, the Swizerland Lias, the English
Stonefield Slate, the Tertiary Strata, the, Coal
Measures, a Greenland and other formations. Measures, a Greenland and other formations. A
Peculiar Aspect of Evolution. SUPPLEMENT 120.
EVIDENCES OF THE AGE OF ICE.By HenryW oodward, F.R.S. An able and Instruc-
tive Essay, with five illustrations, enumerating the
present climatic variations, the Geological and present climatic variations, the Geological an
other Proofs of the Glacial Epoch. Description of
the Age of Ice asstill seen in Greenland and upo
the Alps etc. Migrations of Man and Animal he Alps, etc. Migrations of Man and Animals
during climatic change. A stonishing Volcanic

STRAW FOR FODDER. BY PROF. G. C
Caldwell. Chemical Elements required by Animals.
Relative Nutritive Value and Digestibiity of vari-
ous articlesoof Fodder. OatStrig stive Sometimes better
than Meadow Hay. Improving Straw by Slight
Fermentation. Also, Directions for Grafting and

ECONOMIC PLANTS IN JAMAICA. Success of Coffee Cocoa, Sugar Cane, Pineapples,
Cocoanut. The Best Kinds and Best Methods of
Cultivation. Useful Timber Trees What has been done in raising Teak. Cultivation of Medicinal
Plants. 85 Cinchonia, Eucalyptus, Jalap. SuppeClover 85. Hone, Also, in same number, Potato Supple-
Price, 10 cents. Manu SUGGESTIONS TO THE FARMER AND the Grocer.-Eggs; Poultry Fertilizers; A Test of tion of Pepper; Green Hay; Calculus in Horses;
How to Soften Hard Water; New Mash for Horses
Preservation of Butter, ett., with useful Household

AGRICULTURAL SUGGESTIONS. POT ash in Agriculture. Formulas for Fertilizers. Obli-
gations to Commerce. Grape Culture. A Fruit Eva-
porator. How to Exterminate the White Daisy kRaising. Supplement 132. Price 10 cents. AGRICULTURAL SUGGESTIONS.-
How to keep Stalled Cattle clean. A simple plan How to keep Stalled Cattle clean. A simple plan
thatobviates the necessity of cleaning them. One
illustration Hop Culty in
Rain

AGRICULTURAL AND HORTICULTU-rasubjects.-Sussex Cattle, 1 fig. New Method of
Preserving. Fodder without barns. Two illustrations. Corn Storer and Hay. Birds and Gardens,
with 1 fig. Barnard Manure. Value of Cow Dung.
Toton Seed Manure. Manurial Substances. The Tulip Tree. New Grapes. Fertilizers in Gardene.
Lime Dust. Low-headed. Trees. Liquid Grafting
Wax. SuPLEMENT 70. Price 10 cents. AGRICULTURAL AND STOCK RAISING
 ests and Mesquite of Thickets. The Tsetse. SupPLE
MENT 121. Price 10 . CULTIVATION OF POTATOES. - A REport of the results of a novel contest by members
of the Franklin (Mass.)
the Larmers' Club to determine square rod of ground. The report, gives the opera-
tions of ten different competitors, the kind oo fer-
tive tiifizers used, the mode of cultivation, how the bugs
weremanaged, etc. The highest yield was at the
rate MENT 201. Price 10 cents.
COVERED BARN YARD AND FARM ered Homestead on a Norfolk (Eng.) Farm. Dill a Cov-
tions for Construction and Dimensions tions for Construction and Dimensions. Also How
to Construct a Covered Barn Yard with engraving,
dimensions, etc. SUPPLEMENT 118. Price 10
cents. ABORTION IN COWS.-BY L. FRANK. Causes; Frosted and Blighted Food; Violent Move-
ments Lead, Aniline, and other Poisons a Myste-
rious Infection, and Important Facts; Bacteria. PLOWS AT THE PARIS EXHIBITION. Plows and Ox-yokes of Java, Dutch East India,
China, Spain, $\begin{aligned} & \text { tend Italy. The History of Plows. In- } \\ & \text { teresting Remarks on the Agriculture of China, In- }\end{aligned}$ LIGHTING, BY ELECTRICITY: BY Robert Briggs, C.E. The Lamps, Magneto-electric
Machines and other aparatns now used at the
Railway station at La Chapelle, Paris. Practical ion at half the cost of Gast, and other advantiages.
Pixisi', Saxtons, Clarkes, Siemens and Halskes,
Vheatstone's, Nollet's All and Gramme Magneto-Electric Machines. The
Serrin and other Lamps. Jalochkoff's Candles.
Experiments in Electric

ILLUMINATION BY ELECTRICITY. BY J. Jarmin, de l'Academie des Sciences. How to Com-
pare the Electric Arch to the Sun. The Electric
Iight Equal the Sun. The Division of the Arch
by the Alternative Currents of Le Roux. The meni of Joablochkoff. New and Remarkable Experi- Condenser in Electric
mene tain all the Colors. Simple Methods of Preventing
the Bluish effect of the Electric Light. No Heat
from the Electric Light. The Noise from the
Electric Light. Cost. Faults heretofore in Electric Liectric Light. Cost. Faults heretofore in Electric
Lilhting. How to produce General, or Diftused
Ilumation. SUPPLEMENT 132. Price 10 cents.
THE TRANSMISSION OF POWER BY Electricity.-By N. S. Keith. Demonstrating the
possibility of utilizing the power of waterfalls, etc., at long distances. Careful electrical compu-
tations, descriptions of necessary apparatus, and
cost. SUPPLEMENT 8\%. Price 10 cents. ELECTRO-HARMONIC TELEGRAPHY. A paper read before the American Electrical Society,
Chicago, by F . L. Pope. The Three Laws of the
Pendulum explained. Vibrations of Chords, Bars, Pendulum explained. Vibrations of Chords, Bars,
Plates, Membranes, and Gases. Undulations upon
Liquids. How the Laws of the Pendurum govern
all Vibrations and Undulations. The Mutual Conall Vibrations and Undulations. The Mutual Con-
vertibility of Vibrations and Updulations. How to
Graphically Delineate Vibrations. What Sound is, THE PHONOGRAPH. - LECTU E BY Prof. J. W. S. Arnold. What Sound is. Music and
Noise. Construction of the Ear, and How we Hear.
Vocal Sounds made Visible. The Lissajous Curve
Construction mof Construction, of thibe. The Lissajous Curves.
Figures. Surplement 11 9. Price 10 cents. Five
VORTEX MOTION.-BY PROF. O. REYnolds. - A Lecture delivered at the Royal Institu-
tion. New Principle of Fluid Motion, and How
Discovered. Characteristico of SmokeRins, Ed-
dies in Water, etc., and their Mathematical Relaties in Water, etc., and their Matherans, etc., with
tions. Nautical and other Application
Beatiful Experiments. SUPLEMENT 85. Price ZIRCONIA FOR THE OXY-HYDROGEN tending - the use of the Drapercium The Dight for projejecting
Magnified Representations upon a screen from the Microscoope. The success obtained by the substitu-
tion of a Zirconi Cylinder for the Calcium. What
Zirconia is, and complete directions for preparing GRAPHICAL DETERMINATION OF Revolume and Surface of Bodies generated by
Revolution.-By Walter G. Berg. Guldin's. Rules,
with Five Figures. SuPPLEMENT 108. Price 10

EGYPTIAN OBELISKS AND ETHEIR Relation to Chronology and Art. By Basil H. Cooper.
A Lecture before the Society of Arts. London.
Egyptian Religious Ideas, and How the Form of the
Obetisk exprissed the Egyptian Religious
Obeiskeas, and tow hersed them. How the Monoliths were
Quarried. Engineering Feats. The Hieroglyphics and their
Vonderful Interpetation by the Rosetta Stone. In-
terpretation of Chronological Eras. SUPPIEMENT
119. Price 10 cents.

ROSE'S MACHINIST. THE COMPLETE PRACTICAL MACHINIST:
Embracing Lathe Work, Vise Work, Drills and Drilling,
Taps and Dies, Hardening and Tempering, the Making and
trated by 1130
pages. Chat CONTENTS.

NEW YORK BELTING AND PACKING COMP'Y.
 EMERYVWMANETS

spare the croton and save the cost.
Driven or Tube Wells

NIXON'S COPYING PAD.

LOOSE PULLEYS.

 WANTED-SPOKE MACHINERY. SEND BY WHOM
made ${ }^{\text {and }}$ lowest cash price to
E. POWELL, Chapinville, N. Y. SCRAP IRON AND OLD RAILS SUP-

ICE-BOATS - THEIR CONSTRUCTION

 ICE-BOAT AT WHIFF-- FULL WORKING

To Electro-Platers. B ATTERRES, CHEMICALS, AND MATE.
 BEATTY'S TOUR in EUROPE

Paris, . , 1878 Australia,1877 Phila., . . 1876 Santiago, 1875
J. A. FAY \& CO'S

WOOD WORKING MACHINERY

 ceonomizes lumber ind incerease
producs orthe hint
 Planing Mills, etc.,., ean uipped at.
caish prices. Send for Circulars.

Shafts, Pulless, Hangers, Eic.

Chlurtisments.

$1)^{6}$

Ganll Idininw withot Patumis
Scott's Gear Moulding Machines, AIR COMPRESSORS \& ROCK DRILLS.
Delamater Iron Works, Boiler Makers, Engine Builders, FOOT OF W. 13th ST., North River, NEW YORK Established 1841 ARTIFICIAL ICE COMPANY, Limited.
 SHAFTING, PULLEYS, HA NGERS, ETC,
 BRADPRODMILLi, CO.
 Portable Cora \& Fiour Mills,

Mov $1 M^{1}$
 Liquid Paints, Roofing, Boiler Coverings,

 Cigar Box Lumber, manfactured by on inew patent proce, SPANISHE The Best in the World. SPANISHE CEDAR,
MAHIOGANY,

WATCHMAN'S IMPROVED
 Mill Stones and Corn Mills.

The attention of Architects, Engineers, and Builder
is called to the great decinin in prices of wrought
 Hood the former, in many cases, would be adopted,
thereby saving insuranecand avoiling all risk of inter-
ription to business in consequence of fire. Book of de ruption to business in consequence of tire.
talled information furnished on apylication.
$\$ 10 t 0 \$ 1000 \left\lvert\, \begin{aligned} & \text { Invested in Wall St. Stocks makes } \\ & \text { fortunes every month. Book sent } \\ & \text { free explajing }\end{aligned}\right.$

J. LLOYD Handacturer of

WIPE HDP

 STEAM PUMPS.
henry r. worthington,

 Price list issued Jan. 1, 1879, with a reduction exceeding 30 per cent.

HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.
w. b. Franklin,v. Pres't J.m. Allev, Pres't. J. B. PIERCE, Sec'y.

SEND For HLUSTRATED MATAGGGT

PYrometers, For shomin hat or

AGOD PLAN. Conphing sand operiain many ordestin
 SHAFTING, PULLEYS, HANGERS, etc.

TOHN R.WHITLEY ECO

SCIENTIFIC AMERICANSUPPLEMENT.

A HOUSEHOLD NECESSSITY CEMENT PAINT

Machinists, Tools.

New AND IMPROEDD Patterns.
new illustrated catalogue. NEW HAVEN MANUFAGCURING CO.,

 fortulue outculy mod.

COLD ROLLED SHAPTING.

 909 Dead Stroke Power-Hammers
 PHILIP S. JUSTICE, Holly's Improved Water Works.

Bogardus patent universal fect

LARGE EQUATORIAT

"The instrument has an Object Glass 16 inches diame- ter, mounted on an Equatorial Stand.by Slater, and has

 an independed ont movarale hour circle to obviate ealeula-tion in fnding ; the hour circle reads to single minutes tion in finding; the hour circle reads to single minutes,
the declination circle is by simms and is divided on
silverto be read to to second this circle has fur ver
sive to bient with reading mi moscosopes.
 is a complete battery of eyepieces of magnifying powers
varying from 50 ot ogoo diameters, and a large daporal
exepiece for conveniently observing stars when in the zenthe large Object Glass being of unusually short focus,
the Thelescope is and miraby adapted for use with a Spec-
troscoly troscope, either for obser ving stellar sseectrat or spoe-
prominence There is a Star Spectroscope of my own
make, which is fited to the instrus.

"The 1876 Injector."

THE TANITE CO., STROUDSBURG, PA.

ROCK DRILLING MACHINES AIR COMPRRESSORS,

 FRIEDMANN'S PATENT EJECTORSElevating Water and Conveving Liquids for use in R. R. Water Stations, Factories, etc. They are splendidly adapted for conveying liquids in Brew-
eries, Distilleries, Sugar Reflneries, Paper Mills, Tanner-

NATHAN \& DREYFUS, Sole Manufacturers, NEW YORK.

Lathes, Planers, Shapers

HARRKIS-CORLISS ENGINE

 shepard's celebrated ${ }^{3 i 0}$ Serew Cutting Foot Lathe.

1880. 1880. 1880.

Thes sicutific Ammericau
thirty-fifti year.

> VOLUME XLII. NEW SERIES.

The publishers of the SCIENTIFIC AMERICAN beg new volume will be commenced. It will continue to be the aim of the publishers to render the contents of the
new volume as attractive and useful as any of its Only $\$ 3.20$ a Year including Postage. Weekily.

This widely circulated and splendidly illustrated paper is publ Led weekly. Every number contains stroriginal engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures. Chemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers. find in. The Scientific
AMERICAN a popular resume of the best scientic in formation of the day; and it is the aim oft sce publishers
to present it in an attractive form, avoiding as much as to present it in an attractive form, avoiding as much as
possible abstruse terms. To every intelligent mind, possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in
every community where it circulates. Terms of Subscription.-One copy of THE SCIEN-
TIFIC AMERICAN will be sent for one vear- 52 numbers ITFIC AMERICAN will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States postage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollars and twenty cents by the publishers; six months, $\$ 1.60$; three months, 81.00 .
Clubs.-One extra copy of THESCIENTIFICAMER-
CAN will be supplied gratis foreveryclub of fivesubscriber at $\$ 3.20$ each; additional copies at same proportionate ostage prepaid.
One copy of The Scievtific American and one copy
of THE SCIENTIFIC AMERICAN SUPPLEMENT will be sent for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dolars by the publishers.
The safest way to remit is by Postal Order, Draft, or securely sealed, and correctly addressed, seldom goes
astray, but is at then astray, but is at the sender's risk. Address all letters
and make all orders, drafts, etc., payable to

MUNN \& $\mathbf{C O}$.
37 Park Row, New York. To Foreign Subscribers.-Under the facilities of
the Postal Union, the ScIENTIFIC American is now sent by post direct from New York, with regularity, to subscribery in, Great Britain, India, Australia, and all other
Britishic colonies; to France, Austria, Belgium, Germany British colonies; to France, Austria, Belgium, Germany,
Russia, and all other European States; Japan, Brazil,
Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted,
$\$ 44$ gold for SCIENTIFIC AMERICAN, 1 year; $\$ 9$ gold, for $\$ 4$, gold, for Scientific American, 1 year; $\$ 9$, gold, for
both ScIENTIFIC AMERICAN and SUPPIEMENT for 1 year. This includes postage, which we pay. Remit by
postal order or draft to order of Munn \& Co., 37 Pars
Row, New York.

[^0]:
 NEW YORK, DECEMBER 6, 1879.
 $\left[\begin{array}{c}\text { [} 3.20 \text { per Annum } \\ \text { [POSTAGE PREPAD. }\end{array}\right]$

