
a Weekly journal 0f practical information, arit, science, mechanics, chemistry, and manufactures.

	NEW YORK, JUNE 7, 1879.	

THE AUTOPHONE

The instrument illustrated by the accompanying engrav- partially unwound full size in Fig 2 , representing the en. ly small, but sufficiently large for the perfect operation of ings is the autophone for which letters pat have been tire issued in the United States and Europe to Professor Merritt Gally, of New
York city. This instrument is claimed by the inventor to be both original in its conception and fundamental in principle, and it is believed to be the first successful invasion of the domain of music by automatic mechanism.
The autophone is operated by a thin shect of paper only three and seven eighths inches in width, punctured with small holes. The instrument is provided with any number of stops, provided with any number of stops,
and, if a reed or pipe instrument, with and, if a reed or pipe instrument, with
any number of sets of reeds or pipes. The invention is applicable to instruments of any quality, from the cheapest piano or cabinet organ to a grand church organ. The music sheet is prepared to represent not only the notes, but also the entire expression required to render the music in the most perfect and artistic manner. The perforations in the sheet, which correspond with the stops, occupy such positions as to operate any stop, or number of stops for any passage, or note or part of a note, that will senote, that will seIt will readily be seen by a musician,
says Professor Galsays Professor Gal-
ly, that this is more than can be accomplished by the hands of the most expert performer. The hands being occupied in fingering the keys, preing the keys, pre-
vents the possibilivents the possibility of manipulating the stops when it would often be desirable to do so.
The mechanism, which is operated by the music sheet for the stops, is as sensitive and rapid in its action as that in its action as that for the note keys, rendering it possible to produce an unlimited variety of " expression."
Fig. 1 represents a cabinet organ to which the invention is applied. The woman represented at the organ is placing ine orgn its placing into its bearings the ing the strip of pering the strip of per-
forated paper which forated paperwhich
is to produce the is to produce the music. The mechanism by which this sheet operates is connected with the ordinary pedals of the instrument, and therefore requires no skill requires no skill except to operate the bellows. To give the reader an accurate idea of the dimensions of this sheet, and the punc-

Fig. 1.-GALLY'S AUTOPHONE OR SELF-PLAYING MUSICAL LNSTRUMENT. are not 1 er par ir are not for the passage of air to the
pipes or reeds of the instrument for producing the sound. The air passing through these small punctures simply trips sensitive devices that operate the valves which, in manual perform ing, are operated by the ordinary finger keys. The lines of punctures in the edges of the sheet represent the stops and "expression" devices. The air through these punctures operates the stops by means of a similar mechan ism to that which opens the valves to the reeds or pipes.
Although the music with its "expression" is prepared according to the rendering of the best artists, the instrument is not limited to this or any set "expression" for the piece to be performed. For those without musical skill the "expression" prepared in the music sheet enables them to produce perfect music without requiring instruction or prac tice. The instrument, however, is not limited to the "expression" prepared in the music sheet, but affords to the accomplished musician the widest sose for cise of his personal taste and skill, the stops being abso lutely under the control of the performer, so that he may vary the "ex pression" at plea sure. This is done with greater facility than by any ordinary arrangement of stops, being controlled by sensitive finger keys. Four of these finger keys are represented in Figs. 1 and 3, each side of the recepta cle of the punctured strip in connection with button stops Otherwise than the fact that these but ton stops turn to the right and left to bring in or shut off the parts of the instrument which they represent, in stead of being drawn and pushed, they operate in a manner similar to ordinary draw stops.
In Fig. 4 one of the finger keys s nd its corresponding button stop is represented full size. Turning the button with the lettered portion toward the operator accom plishes the same result as drawing an ordinary stop, or [Continued on page

Srientifir gmoritan.

ESTABLISHED 1845.
MUNN \& CO., Edioors and Proprietors. published weekly at
NO. 3 ' 7 PARK ROW, NEW YORK
o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

$\mathbf{3 y}_{3} 28$
subu
sunde

MUNN \& CO., 37 Park Row, New York.
The Scientific American Supplement
s a distinct paper from the Scievtific American. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavopages, with is issued weekly. Every number contains 16 octavo vopages, with handsome
cover. uniform in size with ScIENTIFIC AMERICAN. Terms of subscription cover. uniform in size with SCIENTIFIC American. Terms of subscription
for SUPPLEMLNT, 10 oents. Sold by all news dealers throughout the country. Combined Rates.-The Scievtiftc American and SUPPLement will be sent for one year, postage free, on receipt of seven dollars. Both
papers to one address or different addresses. as desired.
The safest way to remit is by draft, postal order, or registered letter Address MUNN \& CO., 37 Park Row, N. Y.

Scientific American Export Edition

The Scientific American Export Edition is a large and splendid perodical, issued once a month. E.ch numbar contains about one hundred
arge quarto pages, profusely illustrated, embracing
(1.) Most of the arge quarto pages, profusely illustrated, embracing (1.) Most of the
plates and pages of the four preceding weekly issues of the sclestric
AMERICAN, with its splendid engravings and valuable information : (2.) Terms for Export Edition, 85.00 a year, sent prepaid to any part of the world. Single copies 50 cents. Manu facturers and others who desire to secure foreign trade may have large, and handsom ely disp
nouncements published in this edition at a very moderate cost.
nouncements published in this edition at a very moderate cost.
The ScIETMTIFIC AMEIICAN Export Edition has a large guaranteed circulation in all commercial places throughout the world. Address MUNN \&

VOL. XL., No. 23. [New Series.] Thirty-fifth Year. NEW YORK, SATURDAY, JUNE 7, 1879.

Contents.	
(Illustrated articles are marked with an asterisk.)	
Angora goats turned to prot	
	al for Peter Cooper, a....... 353
A utophone, the ${ }^{\text {a }}$................. 351	New York Academy of Sciences 35
Beds, insulated 362	Notes and Queries $3: 3$
Chloral a poison an	
Chloride of magnesia i	est mine map, the............ 361
Cothing in its relation	
ating iron	ap
Compressed air for	lain talk
Communications.	work
Dentistr	Recent A
nag	Reciprocating pump. Donnadieu 35
tric tight the	Refr ${ }^{\text {a }}$ eratins liquid from beets. 33^{2}
ric liz	
	Some aspects of labor 3 31
ling the	Specimens of Turkish pottery*.. 361
osulphite as a therape	ham
ernational Canal Congress .:. 352	swift, capt
Localizing telepho	
ndon Inter. Agri. show......... $3 \overline{3}$ agnetic motors................... 352	Trajectory of molecules, the ${ }^{352}$

TABLE OF CONTENTS OF
 THE SCIENTIFIC AMERICAN SUPPLEMENT
 NO. 179 ,

For the Week ending June 7, 1879 .
I. ENGINEERING AND MECHANICS.-H. M. S. Comus. The first of
the six steel corvettes built at Glasgow for the British Navy. 1 illus. A Light Draught Stern Wheel Steam Yacht. Detail drawings of the fast river yacht, built at Rock Istand, III, for government use, and de
scribed in SUPPLEMENT No. 172. 3 figures. Table of measurements. scribed in Supleme.vT No. 172. 3 figures. Tabe of ineasurements.
Watt's Single-Acting Simple and Compound Engines. 6 illustration of small and light engines for steam launches, torpedo boats, and simi
lar uses. Of uses.
War Mand
7co lb. shells. 1 illustration. The fnishing of Palliser shells. TC0 lb . shells. 1 illustration. The flishing of Palliser shells.
End of the Age of Brass. The discarding of locomotive or Economy of plain engines.
Standard Meters. By Prof. J. E. Hilgard. Bronze, iron, and pla Standard Meters. By Prof. J. E. Hilgard. Bronze, iron, and pla-
tinum standards and their behavior. The International Bureau of Weights an 1 Measure
Weights an i Measures.
Locomotive Electric Light. Description of an English portable elec
tric light apparatus. tric light apparatus. 1 illustration.
II. TECHNOLOGY.-Iron and Steel at the Paris Exhibition. New uses of iron. Allotropy of metals. Schutzenberger's investizations. Cool ing hot journals. Von Heren's method
III. ELECTRICITY, LIGHT, ETC.-Electricity in air. Electrifled dust. $\underset{1}{\text { A Millustration. }}$
The Japanèse Magic Mirror. Professor Ayrton's explanation of its
magic quality. Friday evening discourse at the British Royal Insti magic quality. Friday evening discou
tute, London, January 24 t 1 illustration
Newtonian Telescope for Amateurs. How to make
yet powerful and accurate instrument. 1 illustration
IV. ARCHITECTURE AND SANITARY ENGINEERING.-An English Convalescent Home. The Hunstan retreat for the sick poor of the
Eastern counties, 1 ili,ustration. Common Defects in House Drains. By Elior C. Clarke, C. E., en-
gineer in chirge of sewerage work, Boston, Massachusette. gineer in ch chge of sewerage work, Boston, Massachusetts. An ex-
ceptionally valuable paper, from the 11th annual report of the State ceptionally valuable paper, from the 11th annual report of the State
Board of Health, 34 figures, showing a great variety of efecets in house drains and sewer connections, and the necessity of thorough and intelligent sanitary supervision of house drainage.
V. NATURAL HISTORY.-Plant and Animal Life. By A. R. Grote,
A.m., 7 illustrations. Relations of life and structure. The development of life. Protoplasm, bathybius, protomoeba. Multiplication of fresh water amœba. Growth of the red snow. Bryopis. Growth o
engloona agilis. Egg of the dog in different stages. Life inseparable from motion, and motion the result of material relationships. On the Queen Bee, with Especial Reference tc the Fertilization of her Eggs. By Jorn Hunter. The nature and development of the queen
bee. The impregnation of the queen bee. A difficult problem bee. The
solved.
Bolved.
Insect Powder. Superiority of Dalmatian to Persian'powder. Effect
of pyrethrum powder upor
of pyrethrum powder upon house flies, aphis, etc.
Chrystalogenesis. Investigations of M. Lecoq de boisba
A New Element. L. F Nilson's discovery of "scandium."

THE TRAJECTORY OF MOLECULES

In " The Fourth State of Matter," Scientific American, January 25 , last, an account was given of the experiment made by Mr. William Crookes, showing the high probability of a fourth state of matter, more ethereal than the gaseous, in which matter take on an entirely new set of properties At a social meeting of the British Royal Society, April 30, Mr. Crookes exhibited a series of experiments illustrating still further the curious behavior of electrified molecules in extremely rare media.
By the improvements made in the Sprengel pump by Mr. C. H. Gimingham it is now possible to produce vacua in which the pressure is measured in millionths of an atmo sphere. It is with vacua so produced, in the more perfect of which the pressure is as low as one millionth of an atmo sphere, that Mr. Crookes' investigations were conducted.
It will be remembered that the discoveries in question wer made in the dark space around the negative pole within vacuum tube and separating it from the luminous glow. This dark space was found to be a region of molecular activ ity similar to that in front of the vanes of a radiometer, by which activity the negative pole, when free to move, is set in motion.
The phenomena exhibited in his first published experipact, the illumination of lines of pressure the casting of molecular shadows, the magnetic deflection of molecular streams, and the like-were shown anew, and supplemented by even more beautiful effects, though nothing absolutely by even more beaut
new was developed.
In some of the experiments variously-shaped poles were used, causing the molecular streams to converge to a focus, to diverge, or to move in parallel lines. By one apparatus the four principal phenomena of molecular physics in high vacua-namely, the phosphorescent light of molecular impact, the projection of molecular shadows, the magnetic deflection of the trajectory of molecules, and the mechanical action of molecules projected from the negative pole-were beautifully illustrated.
The vacuum tube inclosed a circular concave negative electrode, and at its center of curvature a light wheel was pivoted upon a horizontal axis. The wheel was a disk of thin mica, carrying around its periphery a number of equidistant radial vanes of aluminum, making the wheel look like a waterwheel. When the tube was placed in connection with an induction coil, the stream of molecules concentrated upon the wheel fell in line with its axis, in which case no motion re sulted. But on bending the stream of molecules up or down by magnetic action the focus of impact would fal above or below the

Vat a hively rate

Very brilliant effects were also produced by causing the molecular stream to fall on naturally phosphorescent sub stances, as, for example, diamonds. At such times different sorts of diamonds were distinguished by different colors-
blue, pale blue, orange, red, green, and pale green-African blue, pale blue, orange, red, green, and pale green-African diamonds emitting a blue phosphorescence. Rubies, on the other hand, whatever their normal tint, all assumed under the molecular hail the deep "pigeon's blood" red, characteristic the molecular stream the same ruby color, though normally without a trace of color.
Thus far these researches of Mr. Crookes seem to be bril liant rather than instructive in their results; but it is alto gether too early to pronounce upon their possible value.

THE INTERNATIONAL CANAL CONGRESS

An international canal congress, for discussing projects American isihmus, met in Paris May 15. M. Ferdinand de Lesseps was fitly chosen president. Since the main object of the convention was to compare routes and decide upon the one to be recommended as a practical enterprise, the principal interest naturally centered in the Committee on Technique

Up to this writing, May 22 , six routes have been under ex amination and discussion, namely, the Nicaragua route the Panama route, the San Blas route, the Tiati-tolo route, the Tuyra-Caquirri-Atrato route, and the Atrato-Napipi route. At first the Tiati-tolo route, known as Lieutenant Wyse's lockless canal and tunnel route, seemed to have the brightest prospects, from the strong party and personal influeñce known to be working in its favor. The Sub-Com mittee on Tunnels, however, found that its probable cost had been greatly underrated, and that under the most favor able conditions it would cost $\$ 160,000,000$. This discouraging blow was followed by such an able presentation of the impracticability of the scheme by the English engineer, Sir John Hawkshaw, that the project was abandoned.
Already the choice seems to be narrowed to two projects, the Nicaragua route and the Panama route, and a decision will probably be reached in the course of a week.

A Medal for Peter Cooper.

At the late meeting of the British Iron and Steel Institute in London, the Bessemer Medal of the institute was pre sented to the venerable Peter Cooper as "the father of the iron trade in America." In his presentation speech the President spoke of Mr. Cooper's half-century connection with the iron trade, his Baltimore rolling mill in 1830, his building and running the first American locomotive, his exand direction of the great Cooper Institute in this city. In
view of the fact that it is through the efforts of Mr. Cooper and other leaders in the American iron trade that England's greatest rival in iron production has almost reached supremacy, this recognition of his labors by the English iron and steel producers is particularly handsome.

SCIENCE AS A DETECTIVE.

A correspondent tells at greater length than we have space for the story of an attempted fraud which was exposed by chemistry.
An emery wheel guaranteed to stand 600 revolutions was un at the speed, of 1000 revolutions, and burst, doing a large mount of damage. A suit to recover was instituted, based on a letter written by the seller of the wheel, in which the strength of the wheel was rated at 1,600 revolutions. While in the office of the prosecutor endeavoring to effect a settlement, the defendant observed that a certain make of ink was used, and he learned by a casual inquiry that the same ink was used exclusively by the prosecutor. The defendant had for several years used another ink. Taking samples of the two inks to a chemist, he was able after analysis to secure a solvent for the one which would not affect the other.
The case came to trial. Evidence was taken as to the kind of ink each party employed. Then the chemist was called, and in the presence of the jury applied the solvent. which removed the interpolated " 1 ," and left the rest of the writing untouched. The proof of the forgery was sufficient, and the case was dismissed, leaving the dishonest prose cutor to defend himself from a criminal charge.

A NEW REFRIGERATING LIQUID FROM BEETS.

In Europe the principal supply of sugar is derived from beets; the annual production of beet sugar being now seven hundred thousand tons. Besides this a large quantity of beet molasses is produced, a portion of which is distilled and a coarse sort of whisky made; the stuff remaining in the re tort yields potassium salts, which are employed as fertilizers. Sugar, spirits, and potash have heretofore been the chief products manufactured from beets. But Mr. Vincent has now ucceeded in realizing from the refuse that remains after the beet molasses distillation, a combustible gaseous body which is easily condensed into liquid form, and is called chloride of methyl.
This liquid, obtained as stated from beets, is used in the preparation of some of the aniline colors; but it is now found to be especially valuable as a refrigerating agent. By its rapid evaporation a temperature of $-55^{\circ} \mathrm{C}$., or $67^{\circ} \mathrm{F}$. below cero, may be maintained, which is far below the freezing point of mercury. Prof. Huxley says that by this means mercury (which freezes at $39^{\circ} \mathrm{F}$. below zero) may be frozen by the pound. For the manufacture of ice this new beet root product promises to become of much importance.

MAGNETIC MOTORS.

Is there an available source of encrgy in magnetism? There are very many inventors who believe that there is, and every year many attempts are made to produce economica magnetic motors. A short comparison between the force of magnetism and other natural forces will answer our ques tion.
An
An iron steamship plies between New York and Liverpool; it is more or less a magnet under the influence of the earth. Yet the helmsman does not allow for the attraction of the north or south poles of the earth upon this magnetic matter. This attraction is immensely inferior, even if the steamship were made of steel and been magnetized to saturation, to the rift of the tides, or even to the effect of the gentlest breeze. The force of gravitation, however, sinks the heavy vessel deep in the water, and is ready to draw it with all on board to the very bottom of the ocean. While the force of magnetism decreases or remains constant when the masses of the atracting magnetic bodics are increased, the attracting force of gravity steadily increases with the masses of the two bodies, between which this attraction acts.
It is sometimes proposed to utilize the magnetism of the earth in magnetic motors by supplying any waste in the energy of a permanent magnet from the store in the earth. Let us see how much this force of the earth's magnetism is in comparison with the force of gravity, which is our universal measuring force, so to speak. Suspend in a vertical position from one end a cylindrical bar of iron which is about one oot in length. It should be hung by a very short wire or thread from its north pole. Hang beside it a brass rod of the same dimensions, and provide it with the same length of suspension. Then set the two rods to swinging, and count the number of swings which each makes in a given number of seconds. It will be found that the two rods will accomplish very nearly the same number of swings in the same time The rods will differ very little in weight, and their moments of inertia will be very nearly alike. The vertical force of the earth's magnetism, therefore, must be small in compari son with the force of gravitation; for the iron bar is acted upon by both gravity and the earth's magnetism, and yet it vibrates at nearly the same rate as the brass bar. An iron bar, such as we have used in the above experiments, will be rendered feebly magnetic by the earth's magnetism, and could hold a light cambric needle at its extremity; but nothing ore. This is the force from the earth which we can coun upon to renew the magnetism of steel when it has been de prived of it.
It has been said that it is possible to lower the energy of a magnet by vibrating an armature composed of a thin plat of iron in front of the magnet. An experiment will speedily
convince those who have no theoretical convictions upon the subject that it is not possible to do this. Having measured in any way the lifting effect of a magnet or its action upon a compass needle placed at a fixed distance, cause a thin plate of iron to vibrate by any automatic arrangement very rapidly in front of the magnet; and after some time has elapsed examine the strength of the magnet: it will be found as strong as before. The rate of vibration can be carried as high as 3,000 vibrations per minute, and still the magnet will be unaffected. If one endeavors to use the magnetic energy of the earth as a source of motive power, disappointment will surely result; for the earth's magnetism is too feeble to do an appreciable amount of work. Moreover the energy stored up in permanent magnets is feeble, compared with that of other forces. A horseshoe permanent magnet, the strongest that can be made, will not lift 200 pounds; and the lifting force does not increase with the size of the magnet, except to a very limited degree. Very strong electric magnets, however, can be made. Prof. Henry succceded in lifting 640 pounds by one that he constructed. It might be supposed that there is no limit to the amount that an electro-magnet can lift; for we can intcrease the strength of the current which circulates about the iron to a very great amount. There is a limit, however, to the amount of magnetism which can be imparted to soft iron. This limit has been placed at a lifting power of 354 pounds to the square inch.
Let us now inquire into the expense of producing this effect. One pound of coal yields $7 \cdot 200$ thermal units; one pound of zinc yields $1 \cdot 200$ thermal units. One pound of zinc costs ten times as much as a pound of coal. It will be seen, therefore, that any magnetic motor will be sixty times as expensive as a steam motor of the same horse power; for we have no better agent for producing electricity in batteries than zinc. The inventors of magnetic motors should there fore turn their attention to the discovery of a cheaper source of electricity than zinc. The modern dynamo-electric machine affords another source of magnetism. This machine, however, requires a powerful steam engine to run it, and its useful effect is necessarily less than that of the steam motor which is employed to generate the current of electricity. If the useful effect of such a machine for producing electric currents was greater than the work of the steam motor, we should have perpetual motion.

Let us now turn our attention to other agents which we can use as sources of power. A pound of water converted into steam occupies about 1,250 times its former volume at the ordinary pressure of the atmosphere. This would give over 18,000 pounds pressure on the squareinch, if the water when converted into steam was not allowed to expand. Liquid carbonic acid at $86^{\circ} \mathrm{C}$. in assuming the gaseous form exerts over 1,000 pounds on the square inch. The explosion of gunpowder can exert pressures from 5,000 to 20,000 pounds on the square inch, and the explosive force of nitro-glycerine has not even been estimated with any precision, so tremendous is the energy developed. It can readily be seen that a motor which is driven by the expansion of steam, by the explosion of gas and common air, or by the explosion of gunpowder or nitro-glycerine affords with the feeblest of these agencies work which far surpasses what the most sanguine inventor of magnetic motors can even dream of
Electro-magnetism is a swift and nimble servitor ready to convey ideas from mind to mind around the world in an instant. The attempt to yoke Pegasus to a plow and to make him perform the work of oxen has often been delineated by artists. We remember to have seen a series of cartoons which represented the mournful attempt. There was the delicate, highly-strung steed beside the sturdy beasts whose true province was to drag the heavy weight, and the various stages of
the agony of Pegasus were vividly depicted. The cartoons the agony of Pegasus were vividly depicted. The cartoons could have been called "Electricity in Harness," and would equally well have illustrated the attempts of the inventors of magnetic motors.

UNDERGROUND TELEGRAPH WIRES.

In a late issue of the Scientific American notice was taken of the difficulties experienced in England in the use of telegraph wires underground. Notwithstanding the apparent success of the system in Germany, the electrician of the British telegraphs pronounced decidedly against underground wires as less efficient, less durable, and much more costly than the ordinary system. The system of insulating underground wires patented by Mr. David Brooks, of Philadelphia, is said to be open to none of the usual objections, being at once cheap, durable, and efficient. This plan is substantially as follows: The wires are wrapped in cotton and bundled together in a tight netting, to the number of 50 or less, then inclosed in a pipe and laid in the ground. Insulation is effected by oil which is poured into the pipe after it is laid, and the pipe is kept full by having the source of supply in an elevated vessel. A mile of line was thus laid about two years ago in West Philadelphia, with complete success. A line across the Schuylkill, in 35 feet of water, has been in operation since April, 1877, with increasing insulation. It is said that a line on this system will be laid between New York and Philadelphia this summer, and that the system will soon be generally adopted in this city. The exclusive right to construct telegraph lines in the United States under Mr. Brooks' patent was purchased a short time since by General Stager, of Chicago, one of the vice-presidents of the Western Union Telegraph Company, and president of the Western Electric Manufacturing Company. The purchase was made, however, for General Stager's personal benefit, and not on account of the Western Union Telegraph Company, as first reported.

Localizing telephone calls.

The district telephone companies employ various kinds of alarms by which attention can be called to messages about t be sent. Vibrating reeds and magneto-call bells of many patterns are found to be most efficient devices. A summons however, sent to one house will necessarily be heard in all this has been found to be very objectionable. There ar many theoretical ways in which a call can be localized, so to speak. The most obvious way is to employ a set of reeds r tuning forks which will only respond to definite notes At the sending office the proper reed or other vibrating means is set in action, and the reed or tuning fork at one station responds only. There are, however, certain practi cal difficulties in the use of this method: it is comparatively costly and requires accurate adjustment. Niemoller, in a late article in Wiedemann's Annalen der Physik und Chemie, describes a simple method of setting a wire in vibration, which might be also turned to account in localizing calls on telephone circuits.
A steel wire stretched between two points is provided with a platinum point at its middle; this point dips into a vessel containing mercury. A current of electricity is passed over the half length of the wire, and a magnet placed above the middle point of the half length through which the current passes serves to maintain the vibration of the wire. The application of this simple interrupter to telephone circuits is obvious. At the sending office a wire could be stretched with definite weights over a long channel of mercury, and the length of the wire could be readily altered by simple bridges. In each office or station wires could be stretched on suitable sounding boards, provided with electro-magnets placed above their quarter lengths, and tuned to respond to the note of the wire at the central office. Only the wire which is of the proper length and tension would respond to the same length and tension of the wire at the central office. The wires could vibrate between bells or could strike when their amplitude of swing was at its greatest upon some sounding substance. This method also requires careful ad justment, but it is much cheaper than any system of reeds.

mOLECULAR CHEMISTRY.-NO. II.

The discovery that bodies combine in constant definite proportions by weight was followed by one of almost equal importance. At the beginning of the present century, Gay Lussac and Alexander von Humboldt found that one part
by measure (one volume) of oxygen combines with exactly by measure (one volume) of oxygen combines with exactly two parts by measure (two volumes) of hydrogen, and that ured in a state of vapor. After numerous experiments, Gay Lussac announced that all gases and vapors combine in definite proportions by volume, and also that the combining volumes have simple numerical relations to each otber as well as to the volume of the resulting compound, the latter being compared while in a state of vapor.
While the 100 grains of water in our last paper contained eight times as much oxygen as hydrogen by weight, this hydrogen takes up twice as much room as the oxygen. Still, we are not able to answer the question, How many atoms of each does it take to make the smallest possible quantity of water? At the first glance it would seem as though we needed to know either the number of atoms contained in a given volume, say a cubic inch, or else their size, and information on these points appears to be no more accessible than on the number or the size of the atoms contained in a given weight. Nevertheless the problem was most beautifully solved by the Italian physicist, Avogadro.
Reasoning on the remarkable fact that all gases undergo very nearly the same diminution of volume, when subjected to the same pressure, or to the same degree of cold, Avogadro concluded that this could be accounted for most simply by supposing that all gases have their particles separated by equal spaces, or, what is the same thing, that equal volumes contain the same number of particles.
Armed with this important deduction, we may now re urn to the study of the composition of water and reason as follows: The hydrogen in water occupies twice the space of the oxygen; therefore it contains twice as many particles, or in other words, water contains two particles of hydrogen for every particle of oxygen, and we may write $\mathrm{H}_{2} \mathrm{O}$ as a formula representing its composition by weight and measure. The combining weight of H being taken as unity, that of oxygen will be 2×8, or more accurately, 15.960 ; for the O in $\mathrm{H}_{2} \mathrm{O}$ was found to weigh eight times as much as two volumes of H, consequently it weighs sixteen times as much as one volume.
As equal volumes of different gases contain the same number of particles, the weights of these particles must be the same as the densities of the gases, when hydrogen is taken as the unit both of weight and volume. This follows directly from the definition that density is the amount of matter contained in a given space. The densities of a very great number of gases, as well as of vapors, have been deter mined by independent methods with the utmost care, and he correctness of Avogadro's deduction has been again and Wheneve
Whenever, therefore, an element forms either gaseous combinations or such as may be reduced to a state of vapor,
we have two trustworthy means of determining its atomic weight: we can ascertain the percentage composition by chemical analysis, and we can determine the density of the as or vapor into whose composition it enters.
The atomic weights of elements that do not form gaseous
combinations are ascertained from the results of chemica analyses, aided by two important laws, which need only be briefly stated here, as they are not essential to our chain of reasoning. The first, discovered by Dulong and Petit, i that all atoms have the same specific heat, a conclusio deduced from the fact that the products of the specific heats of the elements by their atomic weights differ very lit tle from the number $6 \cdot 4$. The second law is that of Mit scherlich, that the crystalline form of substances furnishes an indication of their atomic structure. When two bodies are isomorphous, that is, when they have crystals of the are isomorphous, that is, when they have crystals of the
same form, their composition may be expressed by analosame form, their composition may be expressed by analo-
gous formulas. The latter law is true within certain limits gous
only.
Let us now test our formula for the composition of wate by the discovery of Gay Lussac, stated at the beginning of this paper. Suppose, for convenience of illustration, that the unit volume of hydrogen contains one thousand parti cles; then an equal volume of oxygen must contain one thousand particles, and so must one of water, vapor, or of any other gaseous substance. But two volumes of hydrogen containing two thousand particles combine with one volume of oxygen containing one thousand particles to form two volumes of water vapor containing two thousand particles, which is equivalent to saying that two particles of wate vapor consist of two atoms of hydarogen plus one atom of oxygen. Now, what does one particle of water vapor con sist of? We cannot divide by 2 , or else we shall obtain a half atom, which is impossible. The only way out of the difficulty is to conclude that the particles of hydrogen and oxygen are all double, i. e., that they consist of an undetermined but even number of atoms. Then we shall see that two volumes of hydrogen containing two thousand HH, combine with one volume of oxygen containing one thousand 00 , to form two volumes of water vapor contain ing two thousand $\mathrm{H}_{2} \mathrm{O}$

The combination of two atoms of hydrogen among them selves is called a molecule of hydrogen, that of two atom of oxygen among themselves a molecule of oxygen, and the union of two molecules of hydrogen with one molecule of oxygen forms a molecule of water. To resume, one volume of water vapor occupies two volumes, consists of volume of water vapor occupies two volumes, consists of
three double atoms, and weighs 17.960 times as much as one three double atoms, and weighs 17.960 tim
volume ($=$ one double atom) of hydrogen.
Our standard of comparison for molecules is the hydrogen molecule H_{2}, whose density is 1 , and whose molecular weight is 2 . Hence we must multiply the densities of other gases by 2 to obtain molecular weights comparable to that of hydrogen. For example
The density of arsenic vapor is about $150 \cdot 2$ times that of hydrogen. Its molecular weight is therefore $2 \times 150 \cdot 2$, or $300 \cdot 4$. A study of its compounds shows that this molecule is composed of AS_{4}, or of 4 atoms each weighing $\frac{300 \cdot 4}{4}=$ $75 \cdot 1$. The correctness of this atomic weight may be tested as follows, by the law of Dulong and Petit: The specific heat of arsenic 0814 multiplied by $75=6 \cdot 113$, which is sufficiently near the average.
The density of chlorine is about 35.25 times that of hydrogen. Its molecule then weighs $2 \times 35 \cdot 25$, or 70.5 . A comparison of the analyses of its compounds shows this molecule to be composed of Cl_{2}, or of two atoms, each weighing $35: 368$.
The density of mercury vapor is about 100 times that of hydrogen; its molecule is, therefore, about 200 times as heavy as that of hydrogen. A comparative study of its compounds indicates that this molecule contains but a single atom; or, speaking more accurately, half as many atoms as the hydrogen molecule. This view satisfies the law of Dulong and Petit; for $200 \times \cdot 03332$, the specific heat of mercury $=6 \cdot 66$. A similar study of ozone assigns to it a molecule composed of three atoms of oxygen, O_{3}.
On the supposition that the hydrogen molecule contains only two atoms-the lowest even number-the other ele ments have molecules consisting of one, two, three, and four atoms. It is evidently of no consequence to our reasoning whether the hydrogen molecule contains two atoms or a multiple of two, because all our other molecular weights, being only ratios, are affected proportionally.
We are now prepared to begin the study of the relative izes of the molecules of simple and compound bodies.
We have found that a given volume of oxygen contains as many particles as an equal volume of hydrogen, and that these particles weigh 16 times as much; therefore each particle of oxygen weighs 16 times as much as each particle of hydrogen. If these particles occupied the whole space, that is, if there were no interstices, we could conclude that the partic
As we have not however, any mean of knowing the real or absolute size of these particles, we shall be obliged, at the outset of our investigations, to define a molecular volume, or the volume of a molecule, as the cubical space of which, at a given moment, it occupies the center-a definition that involves no hypothesis. There is no difficulty in conceiving a given volume as divided up into equal cubes, each containing a molecule.
C. F. K.

The Fall River (Mass.) Nevos relates the following as a fact: Two men were conversing about the anticipated strike the other day, when one of them, a mule spinner, remarked that he had been in 26 strikes during his lifetime. "Well," said the other, "did you ever make anything by it?" "Not once," was the reply; "lost every time."

GALLY'S AUTOPHONE

[Continued from first page.]

turning the lettered portion at right angles, as showr in the engraving, accomplishes the same result as pushing in an ordinary stop.
The sheet or strip of music is marked at its head with the number of button stops which should be turned on before starting the mechanism. These stops, although turned on, are operative only when perforations in the edges of the sheet occur which indicate their action. Wherever these punctures do occur, even for a note or a part of a note, or an entire passage, the effect of the stop is produced. Thu far it will be seen that the effect of the stops is limited to the set expression indicated by the punctures of the sheet. The variety which may be given in the expression to accord with the judgment or taste of the performer differing from that represented in the music strip, is produced in the following manner: By the use of the finger keys, $a b$ Fig. 4, the performer renders inoperative at will any of the stops represented in the sheet, and substitutes others at pleasure. The key is double-acting, arranged to be depressed at either end. Depressed at b renders inoperative the stop that would otherwise come into action. Any stop that is turned off and not to come into action is thrown into action for the time desired by the pressure of the key at a. If the performer does not wish to use any of the stops indicated in the music strip, all the button stops are turned off before commencing the piece, and by pressing on the different key at a, any variety of expression is given. These keys are very sensitive, requiring only a slight touch, but they perfectly and instantaneously control the stops of the instru ment.
For example, a single note which for the best effect is to be begun softly, and would on an ordinary instrument bein creased by the swell only, is in this instrument increased no only by the swell, but by an accumulation of stops commenc ing, if necessary, with only a single stop, and ending if de sirable, with an accumulation of ten.

Although the time in which the music is written is, by the mechanicalmotion, strictly adhered to, nevertheless, to avoid mechanical appearance in the rendering of the music and to divest it of every feature that might be in the least objection able, or that in any way might fail to realize the most per fect conception of the artist, the instrument is provided with an ingenious mechanical device, by means of which the time may be instantly changed, accelerated, or retarded through any passage, note, or part of a note, or a "hold" made on a note, at the will of the performer, especially adapting the in vention for rendering accompaniment for singing. The first key to the left of the receptacle for the sheet (see figure) op erates a mechanism for retarding the movement of the shee for retarding the time of a passage, producing a "hold" o a perfect rest, which is not indicated in the arrangemen punctured in the strip. The degree and duration of the retard is controlled by the degree of pressure applied to the key. A positive hold on the key produces a "hold" on the tone. A positive hold between the notes produces a "rest," the length of time the key is thus held.

To repeat a passage or part of a passage not arranged in the sheet to be repeated as ordinarily performed, and to enable the operator to repeat any part at will, once or suc cessively, without limitation, the key just described, in con nection with the draw-knob at the right of the receptacle recalls for repetition any desired part of the music-strip the return being instantly made to prearranged limits, only so much of the strip being drawn as is desirable. The con venience of this device in singing, or in playing dance-music will be seen at once, as comparatively short strips answer the purpose as well or even better than very long ones, besides lessening their cost.

The instrument may be arranged for any number of oc taves; the music strip however need not necessarily be in creased beyond the width already mentioned
The autophone is not only adapted to organ music, but is equally well adapted to the piano. The "expression" pro duced upon the organ by the operation of the stops, in con nection with the music sheet, is produced in a similar way upon the piano, the soft and loud pcdals not only being acted upon on the music sheet, but the variety of touch required for the best effects is fully attained. This invention, as applied to the piano, as with the organ, is not limited to the set expression prepared in the music sheet, but allows of as great variety in the personal expression of the artist

The autophone seems destined to prove invaluable in it application to orchestrions; the small, cheap music sheet accomplishing all, and even more, than the very expensive barrels of such instruments. The addition of variety in expression which this invention will impart to orchestrions, and which they have not heretofore possessed, will, it is claimed, increase their value.
The narrowness of the sheet, and the fact that it is not necessarily thick and cumbersome, but is light and cheap, ar important qualifications. This music, we are informed, will be sold as cheaply as ordinary sheet music. It is made by machinery specially adapted to the purpose, and the perfo rations being so small, leaves it very strong and durable.
The autophone is adapted to instruments having a key board that may at pleasure be used for manual performing, as' shown in Fig. 1; or it may form a part of an instrument not having finger keys, for use by those who are not musicians, and who do not desire the addition of the ordi nary key board to the instrument. It is also made as an at
tachment to perform upon organs or pianos already in use and may be readily placed upon or removed from the instru ment
The invention is represented in this form in Fig. 3, in which the ordinary key board of an instrument is shown, the attachment being moved toward it to be placed over the keys. If the instrument be a wind instrument, as an organ the connecting rod, shown as attached to the foot pedals, i connected to the ordinary pedals of the organ, the pedals shown being used when the attachment is employed to per form upon a piano.

C D represent padded binding screws, which take hold of the uprights of the instrument at each end of the key board, to hold the attachment firmly in position. A line of strikers, corresponding with and striking upon the keys, are operated by mẹchanism similar to that already mentioned. Connec tions are also made from the attachments with the ordinary tops and "expression" devices of the instrument, and are operated by the punctures of the sheet or other finger stop keys, as heretofore explained. One of the strikers is shown at E projecting under the attachment. The rod supports shown are movable. In the form shown the attachment is light and portable, and may be easily carried by hand. When not desirable to have this portable a case is provided supported by casters.
Using the language of the inventor, the autophone is con structed on purely scientific principles, is as simple as it is wonderful, requires no adjustment, and is always ready for action. Its mechanism is so perfect and its operation so free, that it is not liable to get out of order, and, with ordinary care, will last for an indefinite period. It is, in all es

sential respects, unlike anything heretofore invented, either in structure, action, or musical results.
Professor Gally is better known to the public as the inventor and manufacturer of the Universal printing press. Further information regarding the autophone may be obtained by application to the inventor at his office, No. 9 Spruce Street, New York City.

The Electric Light in a Fish Marke

In the celebrated Billingsgate Fish Market in London, the electric light proved a complete failure, for the unexpected reason that it was too good. Business at Billingsgate begins at 3 o'clock in the morning, most of the bargains being struck by gaslight. When the searching electric candle was turned on, its brilliant whiteness literally showed the fish in such a new light that the trade was demoralized outright. Soles that would have fetched a shilling a pair by gaslight looked dear at sixpence, while turbot fresh from the sea looked a week old. The result was a general outcry. The copious and ornate dialect of the locality was enriched by a number of notable additions during the few days of the new light and for fear of a revolt among the " bummarees," as the fish alesmen are called, the corporation was obliged to restore the familiar yellow gas lights.

By the death of Captain W. H. Swift, America has lost one of the pioneers of American engineering. While still a cadet of the United States Military Academy his service egan with Major Long's expedition to the Rocky Moun ains, 1818-21. During the next ten years he was employed on the early surveys for the Chesapeake and Ohio and (proposed) Florida canal, the Ithaca and Oswego and Catskill and Oswego railroads; and in 1831 in surveys for the Boston and Providence, Providence, Norwich and Worcester, and Providence and Stonington railroads. Appointed 1832 brevet captain and "assistant topographical engineer" (as the captains were then officially styled), he was among the pioneers in our coast survey work; being employed for the next ten years on the geodetic survey of the Atlantic coast From 1836 to 1849 he was the resident and constructing en gineer of the Massachusetts Western Railroad (now incorporated in the Boston and Albany). As an officer of topographical engineers, he, with ex-Governor .John Davis of Massachusetts, was employed in making an examination of the Illinois and Michigan Canal, the completion of which had in 1841 been suspended for want of funds, resulting in his becoming one of three trustees into whose hands the work was committed and remained until its completion in 1848.

The work with which Captain Swift's name has been mos intimately associated is the first Minot's Ledge Lighthouse off the town of Cohassett, Mass. The erection of this iron skeleton tower-the first of its kind-was a work of great originality as well as difficulty. Resigning from the army in 1849, Captain Swift was president (1849-51) of the Phila delphia, Wilmington and Baltimore Railroad; of the Mas achusetts Western Railroad (1851-4); continuing presiden of the board of trustees of the canal named till 1871; president of the Hannibal and St. Joseph Railroad since 1856. For the last fifteen years of his life he made his home in this city.

The Gold Medals won at Paris.

The gold medals awarded to the United States exhibitors t the Paris Exhibition have been received and distributed by Commissioner-General McCormick. The medals weigh three ounces each. Each medal bears the name of the exhibitor to whom it was awarded, and is accompanied by a diploma with the signatures of the Ministers of Agriculture and Commerce and the French Commissioner-General, designating the group and class in which the award was made The medals are one hundred and six in number. There are twenty-three "diplomas of honor," which are considered equal to gold medals, and were chiefly given for exhibits made by the government or by public institutions. The Commissioner-General has not yet been advised when the silver and bronze medals will reach this country.

American Made Telescopes.

The perfection of workmanship attained by American opticians in making telescopes and microscopes has often won high praise from scientific men both at home and abroad. In 1861 European astronomers may be said to have had their eyes opened by Clark's discovery of a minute companion to the brilliant Sirius, with the eighteen inch object glass made for the Chicago Observatory. The monster tele scopes of Herschel and Lord Rosse, and the great achroma tics in the chief European observatories, had given no hint of this star's existence, although there were mathematical reasons for believing that Sirius had a companion. Since its discovery this delicate star has been seen with compara tively small telescopes, and now Mr. Jay Harcourt, of Wap pinger's Falls, announces to Admiral Rogers that one fine night in April he saw the companion of Sirius with a Byrn telescope of only four and a half inches aperture. Several other persons saw the star, and they certify to the correct ness of the observation. The maker here alluded to is John Byrne, of New York city.

The London International Agricultural Show. The International Agricultural Show, to open June 1, promises to be very successful. Six hundred and fifty-one exhibitors of implements and machinery have applied for space, some two hundred and fifty more than at Bristol last year. The sheds for these exhibits would form a line three miles long, if all the space asked for were conceded. An additional mile of sheds will be required for machinery in mo tion. A correspondent writes that American manufacturers are among the foremost applicants outside of England, and adds:
" There is some uncomfortable foreboding here as to the issue of certain firms with whom your makers of mowers and reapers especially come into competition; nevertheless a vigorous effort is being made in the hope that the English firms will be able to show a better front in London than in Paris."
The report of the National Cotton Exchange shows that he cotton movement by rail routes this season is the largest ver known. There has been an increase of 186,651 bales in the direct shipments by rail from producers to Northern mills. The receipts of cotton at all United States ports for the year ending April $\cdot 30$, were 4,283,641, against 4,183,552 last year. These figures give gratifying cvidence that the importance of this great staple to the industries of the country is to be still further increased.

Prof. Riley, Entomologist of the Department of Agriculture, has resigned.

THE DONNADIEU RECIPROCATING PUMP.

This pump, which is represented in the accompanying encal motion to the barrel. This combined rod and delivery dinary pumps, the piston being fixed and the barrel pipe is guided by stays working on pins at each joint of the able. From this arrangement result several important ad in the top of the hollow rod itself, or the hollow rod may vantages, namely, the suppression of the connecting rod and stuffing box, simple and easy erection, and greatly diminished friction.
In ordinary pumps with movable piston, friction is chiefly due to the packing of the piston in the barrel and of the piston rod in the stuffing box, and the working of the rod in its guides, to which must be added that of the water in the rising main. The usual cupped leather, forced against the interior of the barrel by the whole pressure of the water while being impelled upward, is in this pump superseded by
 works equally well above or under water Another advantage which should not be lost sight of is the ease with which the pump is got at for inspection, there be ing no bolt to unscrew and no joints to break. By merely taking out three pins without the aid of any tool, the piston and the two valves are freely exposed.

Coating Iron with Iridescent Copper

A writer in the London Mining Journal thinks the inven tion of Dr. Weil, of Paris, for coating iron and steel with copper or nickel in such a manner that the surfaces shal be iridescent, opens a large field for the employment of metal for decorative purposes. He has found that the best mode of preparing the metalizing bath and the best propor tions of ingredients are indicated in the following directions First, 35 parts of crystallized sulphate, or an equivalent amount of any other salt of copper, are precipitated as hydrated oxide by means of caustic soda or some other suitable alkaline base; this oxide of copper is to be added to a solution of 150 parts of Rochelle salt, and dissolved in 1,000 parts of water; to this 60 parts of best caustic soda, containing about 70 per cent NaO , is to be added, when a clear solution of copper will be formed. Other alkaline tartrates may be substituted for the Rochelle salt above mentioned, or even tartaric acid may be employed, but in the case of tartaric acid or acid tartrates a small additional quantity of caustic alkali must be added, sufficient to saturate the tartaric acid or acid tartrate Oxide of copper may also be employed precipitated by means of hypochlorite, but in all cases the proportions between the copper and the tartaric acid should be maintained as above, and it is advantageous not to increase to any notable extent the proportion of the caustic soda
The great advantage of the present process as compared with that proposed by the same inventor a few years ago, is that he now substitutes a Gramme machine for the alkaline bath before used. The object to be coppered is to be cleaned with a scratchbrush in an alkalino-organic bath, and attached to the cathode, and immersed in the coppering bath, and treated with the usual precautions, when it will become rapidly coated with an adherent film of metallic copper. As the bath gradually loses its copper, oxide of copper as above pre pared should be added to maintain it in a condition of activity, but the quantity of copper introduced should never ex ceed that above prescribed as compared with the quantity of tartaric acid the bath may contain. If the quantity of cop per notably exceeds this proportion certain metallic irisation are produced on the surface of the object. These effects may be employed for ornamental and artistic purposes. Accord ing to the time of the immersion, the strength of the current and the proportion of copper to the tartaric acid, these irides cences may be produced of different shades and tints, which may be varied or intermingled by shielding certain parts of the object by an impermeable coating of paraffine or varnish, exposed. All colors, from that of brass to bronze, scarlet, blue, and green, may be thus produced at will.
If it be desired to deposit nickel, the only modification of the above process requisite is the substitution of precipitated oxide of nickel for the oxide of copper, produced by precipi tation as above mentioned. In the above process it will be co
observed that the introduction of sulphuricacid into the bath While the dampness of the atmosphere affects the evapo is avoided, at least except in such insignificant quantities as ration through the lungs as well as the skin, clothing, by may still adhere to the precipitated metallic oxides. Now, I night as well as by day, regulates that of the latter. All cov think it will occur to most of your readers that the amount ering which impedes this evaporation acts injuriously of ornamentation that could be produced with metal work Though no material is quite faultless in this respect, there is treated by the above process would justify a large outlay for still a great difference in their structure. The less they are
providing the necessary plant. The ornamental iron casting made both in Great Britain and France are really beautiful in form and design, and by the judicious coloration of them with combinations of iridescent brass and scarlet, brass and blue, or brass and green, would produce effects which would insure their general adoption.

Clothing in its Relation to Health

Approximately, the human body when clothed resembles a steam jacketed pipe; the clothing forms the outer cover ing, between which and the body there is a layer of steam and heat, and which are constantly ascending. The place where this current of hot air and steam passes out into the atmosphere is the narrow ring between the neck and the shirt collar. This opening plays, therefore, an importan

Fig. 2.-THE DONNADIEU PUMP.

part in the maintenance of the temperature of the human body. If it is enlarged, the heat and steam escape more ackly, and the skin is soun cooled; if, on the contrary, it mufler, partially closed, by being closely buthe or ture of the skin raised. Thus there is nothing more inju dicious than the constant wearing of a muffler or the thick neckerchief of our forefathers, becauses it impedes the evapo ration of the matter which ourht to pass out of the skin tion of the matter which ought to pass out of the skin hough, for the same reason, it is of great value in case of old.
ering which impedes this evaporation acts injuriously.
Though no material is quite faultless in this respect, there is
roper degree of hardness to insure the best results, the handle of the instrument is turned, and at the same time words are spoken against the diaphragm, which immediately set up in it vibrations, which are communicated to the plate or style. Wiile this is moving up and down, following the vibrations of the diaphragm caused by the voice, the stearine coating of the bar, $a b$, is steadily drawn in the direc tion of the arrow below the vibrating bar, receiving from it a phonogram similar to that produced on the tinfoil of an ordinary phonograph.
The stearine bar is then roated with a fine surface of plumbago, so as to give to it an electrically conducting surface and it is then electro-plated with copper by the ordinary process. Out of the copper coating so formed the stearine is removed, and a rigid backing of lead or other metal having been run over the outside convex surface of the copper,

A SIXPENNY PHONOGRAPH

a firm copper lined matrix or mould is formed, the whol resenting the appearance shown in Fig. 3, and consistin of a rectangular block having along the center of one of its sides a semi-cylindrical groove, c, of copper, which bears upon its surface certain raised striations corresponding to the depressions which were made by the diaphragm on the surface of the stearine. Into this groove is laid a piece of lead wire of about three or four millimeters in diameter, and the two being put into a press and squeezed together, the surface of the lead wire receives a permanent impression, which is an exact reproduction of the original impression made upon the stearine bar. From one copper matrix a very large number of lead impressions may be made, and we are told that the whole process can be gone through, and lead wires, each containing the record of a short sentence, can be made and sold with a profit for one halfpenny each.
We have had an opportunity of testing this simple little instrument, and the words come out of it with remarkable distinctness, though of course with but feeble power; and among the following words, all of which we have heard it utter, some were unmistakably clear: "Mon cher ami," "Louis Quatorze," "Victor Hugo," ", La République," " Octavie," "Bonjour," "Lambrigot," " Misérable," and "Miracle," and it is a curious fact that while in the phono graph the words "Phonograph," and "How do you do?"

Compressed Air for Blasting in Mines.

At a meeting held at Manchester, England, recently, Mr Joseph Dickinson, H. M. Chief Inspector of Mines, in the chair, a paper " On the Advantages of Compressed Air a High Pressure ($8,000 \mathrm{lb}$. and upward to the square inch) as compared with Blasting by means of Gunpowder or other Explosives," was read by Mr. W. E. Garforth, of Dukinfield. After referring to the various efforts which had been made to dispense with gunpowder for blasting in mines, Mr. Garforth stated that a machine had been invented by Messrs. Gar orth, of Dukinfield, for bursting down coal by means of compressed air. The machine was portable, of small dimen sions, so as to be suitable even for small mines, and could be worked by two men, and by it air had been compressed to 946 atmospheres, or $14,200 \mathrm{lb}$. per square inch. The com pressed air was conveyed through wrought iron pipes to a cast iron cartridge 12 inches long, placed in a hole drilled in the coal, and the cartridge, when its known breaking strain was reached, burst and broke-down the coal.
A machine had recently been made by Messrs. Garforth which was capable of giving $2,000 \mathrm{lb}$. pressure to the squar inch, and by permission of Messrs. Morland, of Hollinwood a trial was made at the Bower Colliery in the presence of some of the members of the Geological Society under the fol lowing conditions: The coal known as the Bower Mine wa 5 feet thick and very hard. It was undercut to the depth of 4 feet 6 inches, and by a drilling machine a hole was cut $391 / 2$ inches in depth and 7 feet from the cut end of the coal. The cartridge, $113 / 4$ inches long, $33-16$ inch diameter, and $9-16$ inch thick, was put into this hole and stemmed tight. The pipes and machine were then attached, and at $9,553 \mathrm{lb}$. pres sure per square inch, the coal was broken down, the quantity being estimated at between 5 and 6 tons
After describing the great difficulties which had been ex perienced in perfecting the machine and the cartridges, Mr Garforth proceeded to lay before the members his idcas of how this great power, obtained by means of compressed air could be utilized. He would first state that among other points which had been proved by the experiments which had been made were: (a) that $14,200 \mathrm{lb}$. pressure per square inch could be obtained; (b) that a pressure of $9,550 \mathrm{lb}$. per square inch was sufficient to break down the coal in a hard mine like that of Bower Colliery; and (c) that the pressure when obtained could be kept for hours both in the machine, pipes, and cartridges. In the suggestions which he was about to mak he felt convinced that a machine to meet the requirements of deep mining should be such as not to require too much manual labor, owing to the high temperature experienced in deep and extensive workings.
What he proposed was to use a vessel or small receiver made so very strong that the bursting point would be six or seven times the required pressure, proved beyond doubt to be perfectly safe in transit, also of such a capacity as would allow highly compressed air to expand into the pipes and cartridges without reducing the pressure below the known bursting point of the cartridge. The air compressing machinc necessary to fill this receiver with highly compressed air might be fixed on the surface, or, if preferred, at the bottom of the shaft, and worked by steam in the ordinary way These portable reccivers should then be charged with air to the required pressure, sent into the various working places, attached by means of a valve and pipes to the car tridges with the coal, and then by simply opening the valve the air in the receiver would rush into the cartridge and explode it, the operations re quiring little or no manua quiring little or no manual abor, O f er could be placed at a sufficient distance away to obviate the use of pipes; the re ceiver could be placed near and the valve opened by other means.
If the expansion of the air were found to be such as to make the recciver too large, small hydraulic pump might be connected to it, and by forcing water through the

A SIXPENNY PHONOGRAPH

 which bears upon its uppersurface a phonographic embossed record corresponding to a certain word or sentence, by which it was originally produced. The method is as follows: The upper surface of a rectangular prism of glass, or other hard and rigid material, is thickly coated with stearine wax, which is then scraped into a convex form, as shown in the diagram, Fig. 2 , in which a represents the glass bar and b the convex coat ing of stearine. This bar is then fixed into a simple phonographic instrument, which, by means of a screw or other mechanical contrivance, traverses it at a suitable speed below a diaphragm. This diaphragm is rigidly held around its circumference by an annular framework (not shown in the diagram), and is in every respect exactly similar to the diaphragm of an ordinary phonograph. To the center of this diaphragm is attached a thin flat plate, whose lower end is cut out to a concave curve to fit the convex surface of the stearine, b. When all is properly adjusted, and the temperature is so arranged as to give to the stearine surface the
come out with exceptional distinctness, so in this instrument the words "Bonjour," and the name of the inventor, " Lambrigot," are the clearest of those we have heard.
It is only fair to Mr. Edison, the inventor of the phonograph itself, to point out that the plan of producing a phonogram on a stearine surface, and afterwards reproducing it in copper by the process of electrolysis, was suggested by im long ago, but we do not understand that M. Lambrigot claims any novelty for that portion of the invention, bu more especially for having produced a little instrument at he cost of a few pence, which can demonstrate the action of the phonograph and illustrate some of the most beaut phenomena connected with the science of acoustics.
The sixpenny phonograph described as above in Engineer ing , is a novel affair, but we doubt if it is, after all, as sim ple and effective as one described and illustrated in our columns some eight months since. Page 118, Vol. 29.
valve opening upward, the water would thus occupy the place of the air, and by this means any pressure which had been lost through expansion could be recovered, or, if neces sary, increased to more than the original pressure. As water was; comparatively speaking, incompressible, the time taken to effect this operation would not be long nor the labor very great. In the same way that machines were improved upon the original idea, so he felt convinced that in a short time this great force of ten, fifteen, or twenty thousand pounds ressure per square inch would be so utilized that they would be able to put into the hands of the miner a power that, when gunpowder and other explosives were prohibited, would en able him to get the coal with the same facilitics as now, with out the risks from blown out shots, explosions, or the production of deleterious gases.
It might appear strange to old miners when it was proposed to place a small machine in the hands of the workmen, but
certainly not more strange than it did to engineers when men chipped and worked by hand what was now done by planing, riveting, or other machines. When they considered the great restrictions at present placed upon the use of gunpowder and other explosives in mines, and that every day the coal to be got lay at a greater depth, and the difficulties of getting increased more than pro rata with the depth, he thought there could be little doubt that in a few years the government would entirely prohibit the use of explosives in mines. He now proposed to compare the two systems of breaking down coal -by gunpowder and that by compressed air at $8,000 \mathrm{lb}$. pressure per square inch or upward. The undermining of the coal would in both cases be about the same, also the time taken to drill the hole, provided the machine drill was used. If the arrangement of the receiver as proposed in the fore going remarks, with or without hydraulic pump, were carried out, then the time taken to fire the gunpowder or burst the cartridge by compressed air would be about the same. In stemming the hole there would be a gain in favor of gunpowder of about ten minutes, but at the same time it would be at greater risk. If instead of the portable receiver a machine had to compress the air to the required pressure, there would be a gain of about thirty minutes in favor of gunpowder; but, as they were aware, when a shot had been ex ploded by gunpowder the working place was filled with smoke for a quarter, half, and in some cases three quarters of an hour, so that the gain in time was more than counter balanced.

Compressed air, however, possessed advantages ever gun powder which could not be too highly estimated, ahove all as regarded safety. He thought there was no one connected with mining but would admit that the time had now arrived when some power ought to be found to supply the place of gunpowder when it was prohibited, to enable us to produce coal as economically then as now. Should gunpowder and other explosives be prohibited, what was the best means to supply their place? He thought for the reasons he had named in the foregoing paperthat compressed air would stand fore most, especially for its safety. Although monetary considerations might, to a certain extent, weigh with people, no one could deny for a moment, after seeing the lavish expenditure made by colliery proprietors for the safety of their men, that safety was the main consideration with both mine owner and the managers.-Colliery Guardian.

THE NEW YORK ACADEMY OF SCIENCES.

A meeting of the New York Academy of Sciences was held Monday evening, May 12, Prof. Newberry in the chair. copper and silver in maine.
At the request of the president, Dr. Hamlin, the author of a very interesting book on tourmalines, gave an account of the new mineralogical discoveries in Maine. Until very recently it was not known that either copper or silver existed in Maine. A copper belt, some two miles long and from 200 to 400 feet wide, has now been discovered about the middle of the southern part of Maine, directly on the coast; but it is impossible as yet to present any trustworthy information in regard to the richness of the deposit.
Some twenty miles to the northeast of this copper belt silver has been found in flakes, masses, and filaments, specimens of which have found their way to Boston for exhibition. A shaft has been sunk some hundred feet deep, and it is reported that the ore increases in richness with the depth.

geological notes.

Dr. Newberry announced the receipt of a collection of fossils from Moosehead Lake, and also of one from Fort Bennet, Dakota, which latter appeared to the finders as of vegetable origin, resembling a species of nuts, but which on examination proved to consist of saurians' teeth, having some resemblance to the teeth of crocodiles, but not being as yet sufficiently investigated for identification.
Further geological investigation of the north shore of Long Island confirms the conclusion previously arrived at, that the micaceous sandstone found there in the glacial drift, and containing impressions of dicotyledonous leaves, belongs to the cretaceous period. Its source has not as yet been ascertained.

The paper of the evening was by Dr. Albert R. Leeds, of the Stevens Institute of Technology, on the presence of peroxide of hydrogen in the atmosphere.

peroxide of hydrogen in the atmosphere.

The existence of hydrogen peroxide in the atmosphere has been doubted by many investigators. The reason of this is to be found in the difficulty of ascertaining its presence, see ing that several other substances, such as ozone, nitrous acid, and nitric acid, give almost identical reactions. Numerous tests have been devised to distinguish these substances, but nearly all are liable to objections. A solution of iodide of potassium and starch is colored blue by ozone as well as by the peroxide. The addition of sulphate of iron, or of lit mus, has been recommended, but the results hase lead in caustic potash, with the addition of a few drops of basic acetate of lead, in which the peroxide of hydrogen produces a precipitate of binoxide of lead. A freshly prepared solution of guaiacum that has not been exposed to the light, and to which a watery infusion of malt has been added, first turns pink and then blue by the action of the peroxide, and forms
a test of such delicacy that one part in ten millions can easily be detected. Yet this test is also affected by ozone. The investigations in progress at the Institute seem to indicate however, that ozone acts upon it much more slowly than per-
oxide of hydrogen does. The same remarks apply to the test of A. Levy, of Paris, who uses arsenious acid and arsenite of sodium, which are converted into arsenic acid and sodium arsenate by the action of ozone.
Reasoning from the analogy of the recomposition of nitrate of ammonia from nitrous oxide and water, our distinguished chemist, Sterry Hunt, threw out the ingenious suggestion that the nitrates in the atmosphere might be due to the combination of atmospheric nitrogen with evaporating water.
Later, Schönbein, the discoverer of ozone, came to the same conclusion from different premises, and actually found nitrites in the air wherever water was evaporated. Bohlig, however, demonstrated that in these experiments the proper precautions had been neglected, and that the nitrites found pre-existed in every case in the atmosphere. When the air was previously purified from every trace of nitrites none was a fortunate fact, for if nitrites were formed by mere evaporation of water in the air, atmospheric tests would be of no value, as we could never determine to what agency our reactions were due. In another sense, however, it was un fortunate, as it deprived us of a very plausible explanation of nitrifaction in the atmosphere, on which plant life is in a reat measure dependent.
The most extensive investigations of the presence of hydrogen peroxide are those of Schoene, of Moscow, who examined all the snow, hail, rain, and sleet that fell in Moscow for one year, beginning July 1, 1874, and ending June 30, 1875. He found peroxide present in 208 out of 215 specimens of hail and rain, and in 86 out of 172 specimens of snow and sleet The average amount was 0.17 c.c. in 1,000 cubic meters of air. His method was to add his sample to a weak solution
of iodide of potassium and starch, and to compare the color of iodide of potassium and starch, and to compare the color ation with that produced by standard peroxide solutions of different strength. He found among other interesting results that the equatorial winds were much richer in peroxide of hydrogen than the polar winds. Houzeau, of Paris, was un able to find any peroxide in the atmosphere of that city, and it is suggested that it may be absent in some localities. Prof. Leeds found none in Hoboken, although his processes are so delicate as to enable him to detect minute quantities like the
following: $100,000,000$ parts of air were found in one following: $100,000,000$ parts of air were found in one
analysis to contain 16 parts of ammonia, 10 parts of nitrous acid, and 17 parts of nitric acid, equivalent to 15 parts o nitrite and 20 of nitrate of ammonia.
The influence of these substances may be of the utmost importance in relation to health and disease, as well as to vegetable life and growth. But the investigations made in reference to their determination, both qualitative and quantitative, will be of limited utility so long as any doubt is possible as to the reliability of the tests employed. When the New Jersey Board of Health desired Dr. Leeds to furnish them with trustworthy ozonometers to be used in systematic observations throughout the State, he was obliged to reply hat there were none he could recommend.

induced magnetism.

Mr. Wolcott then exhibited an experiment to show that a wire, magnetized at its middle point by contact with the pole of a magnet, had the same polarity at both ends. Prof. See ley then made some remarks on induced magnetism, which were discussed by Mr. Warner, and the Academy adjourned
C. F. K.

Hyposulphite as a Therapeutic Agent.
Anthony's Bulletin contains a communication from a correspondent proclaiming the rare virtues of hyposulphite of soda as cure for erysipelas. Medical men are familiar with the use of hyposulphite as a somewhat active aperient, and it is regarded by some as very valuable in removing impurities of the blood; but it has not come much into use in medicine. We place the new claim for it on record, but would caution our readers against experimenting with disease Erysipelas is too dangerous a malady to be tampered with and should be placed under the treatment of a competen medical man. We subjoin the communication in question
"I take pleasure in communicating the needed informa tion concerning the virtues of hyposulphite of soda in erysipelas. Of course, when erysipelas proceeds from a wound it is more delicate to manage, and requires the best surgical skill; but when it is of the milder form, on the outside skin in the face or any other part of the body, proceed as fol lows: Take of hyposulphite of soda any quantity, and mak aight, or ten ounces. If the individual is a strong, hearty man, and the disease has a good start, give your patient one man, and the disease has a good start, give your patient one
tablespoonful every hour for twelve hours; then degrease the dose, as the benefits become manifest, say once in three hours. It may cause diarrhea; but never mind, it will de stroy any febrile symptoms. Twenty-four hours is generally sufficient to produce a decided change for the better, unless it has six or seven days' start, in which case it will take longer. The results are generally so wonderful that I have never known the remedy to fail. With an old person you may substitute a teaspoonful for tablespoonful, and once every two hours. You may put this down: that the sooner you can get a good quality of the soda solution into the body the sooner the trouble will be over. Now, for an outward
application: use equal parts of the soda solution and glycerine; saturate cotton flannel with the above, and lay on the part affected. Eat simple food-avoid all exciting food and drink; farinaceous diet is absolutely necessary. If you
can bathe the part affected with the above solution, do so; then lay on the saturated cotton.
"Hypo is equally as efficacious in any poisons from in ects or vegetables; old wounds in sores are soon healed by washing the parts in a solution of soda. It is also good in typhoid fever, caretully administered.
"Now, if a person has a form of erysipelas that is not so decided, but (say) chronic, let him take a teaspoonful every night of the solution, and the disease will be entirely re moved, if kept up for a month. The disease seldom o never attacks a person the second time when eradicated by the soda treatment
"If any other information is needed, I shall be very much pleased to communicate, for I consider the foregoing has saved my life, and it has cured fifty persons in succes sion without fail right under my own supervision.'

RECENT MECHANICAL INVENTIONS.

An improved apparatus for automatically measuring and discharging grain has been patented by Mr. Robert H. Edmiston, of Loveland, Col. It is particularly intended for use in connection with thrashing machines to measure the rain as it is delivered from the thrasher
Mr. Daniel D. McIntyre, of Sterling, Neb., has invented an improved washing machine, consisting of a semi-cylin drical suds box, having a slotted bottom, and having a pump barrel for creating a circulation of the suds, as the semi cylindrical rubber is operated by means of a hand lever.
An improved press for compressing cotton and other simi lar materials has been patented by Mr. W. J. Butts, of Willow Green, N. C. It consists in a horizontal box mounted on wheels, and drawn forward by a screw, the ribbed bed at the end of the box being drawn forward by a crew toward a fixed ribbed platen, so as to compress cotto ontained in the box
Messrs. F. E. Cross and R. G. Speirs, of Waterbury, Conn. have patented an improved machine for straightening and cutting wire. It is arranged to work automatically, and it consists in an arrangement of clamps and a stopping device in connection with cutting mechanism, which cannot be de scribed without an engraving.
An improved grain toller has been patented by Mr. David Waugh, of Willsburg, W. Va. It consists in a notched roating disk arranged in the grain tube. It is contrived so that the grain that passes through the notch as the disk re o'ves is counted as toll.
$\Lambda \mathrm{n}$ improvement in machines for dressing millstones has been patented by Mr. David L. Ellis, of Homer City, Pa It consists in the combination of an adjustable slide provided with a rubber block or strip and set screw, and a peculia arrangement of frame and feed screw.
Messrs. S. S. Black, of Fredericton, N. B., and Charles A. Black, of Chicago, Ill., have invented an improved ma chine for trimming the sole edges of boots and shoes. It consists in a combination of ingenious devices, whereby the sole is quickly and neatly trimmed.

Large Farming a Precarious Business.
The following figures are given by a San Francisco cor espondent of a Philadelphia paper, as evidence flat farm ing on a gigantic scale is profitable neither to the country nor to the farmer. He says: "The largest wheat produce in California, or in the world, is Dr. H. J. Glenn. He was formerly from Monroe County, Missouri. He is a man of great enterprise and energy. His ranche lies in Colusa great enterprise and energy. His ranche hes in Colusa
county, and comprises 60,000 acres, nearly all arable land. He has this year 45,000 acres in wheat, which, at a low cal He has this year 45,000 acres in wheat, which, at a low cal-
culation, will produce 900,000 bushels. His wheat will sell culation, will produce 900,000 bushels. His wheat will sell
for 85 cents per bushel, or $\$ 765,000$. Dr. Glenn has been farming ten years, and one would suppose he ought to have a handsome sum to his credit in bank; but what with failure of crops-which occurs two years in every five-and the enormous interest he pays on his loans, he is said to owe round million of dollars. Last year his credit was bad as he had no crop. Now, with his splendid crop in prospect he will probably get out. The Dalrimples of St. Paul, who, ten years ago, were the largest farmers of wheat in Minnesota, raising as much as 40,000 bushels in a single ear, went to the wall. Another large wheat raiser is D M. Reavis, whose land lies on the borders of Colusa and Butte counties. He is also from Monroe county, Missouri, and has an unpretending little estate of 15,000 acres, 13,000 of which are in wheat, which he thinks will average this year 30 bushels, or 390,000 bushcls. He also is hard pressed, and I am told is paying 9 per cent on a couple of hundred thousand dollars of borrowed money. If farmers raising half a million to a million bushels of wheat cannot get out of debt, it might be well to inquire what is the use of having o much land? The truth is that from the frequent failure of crops in California and the waste that attends on large operations of that kind, farming on a gigantic scale in this portion of the Pacific coast must be considered a failure North of this, in Oregon and Washington Territories, there is no failure of the harvest; farming operations are carried on on a smaller scale, and consequently the farmers, while not rolling in wealth, are all well to do."

Rapid Communication.

A merchant, sitting in his office in South St., New York, recently received an answer to his dispatch sent to Shanghai six hours previously. Thirty thousand miles in six hours is good time, even for the telegraph. The charge to Shangha is $\$ 2.80$ per word; to Yokohama, $\$ 3.05$; but the code, o cipher, is so well systematized by certain mercantile houses, that a single word serves for a dozen when transcribed.

The Electric Light

Mr. W. H. Preece, the eminent electrician, recently delivered, at the Albert Hall, London, a lecture on the Exhibition of Electric Lighting Apparatus. The Prince of Wales, the Duke of Edinburgh, and a large assembly of ladies and gentlemen were present. The Werdermann light was one of the first shown, and while it lasted, was both bright and steady. Much attention was also excited by the light produced by iridium rendered incandescent by electricity, and much satisfaction was expressed at its extreme brightness, purity, and steadiness. The Lontin light also made a brilliant show, and the Rapieff was greatly admired on account of its steadiness. Then came the turn of the socalled "candles," constructed on the systems of Jablochkoff and Wilde. The former of these, ranged round the upper corrider, for an instant shone brightly, but afterward gave evidence of capriciousness. On the other hand, the Wilde lamps, from their being close together instead of distributed over a wide circuit, or from some other cause, burned very steadily and well. Mr. Preece then introduced the audience to the "holophote," a powerful lamp for "illuminating the depths of the sea," about to be introduced into the ports at Spithead, with a view to testing their value in detecting the advance of an enemy's torpedo. He next referred to the advantage of the " arc" over the "incandescent" system in economy of power, and the strength of the incandescent lamps in their great steadiness and durability. The WallaceFarmer lamp was then tried, and with very satisfactory results; and the eyes of the audience were next directed upward toward the great Siemens light, or rather chandelier, hanging from the inside of the dome, and which made a noise far less agreeable to the ears than the light was to the eyes.
Mr. Preece dwelt upon the many short-comings of the electric light as at present produced-the noise, the flickering, the deep shadows, and the whiteness of a light which sets all calculations based upon the warm yellow of gaslight at a defiance. On the other hand may be set the absence of smoke and the purification instead of poisoning of the air in large buildings.

A NEW STEAM HAMMER.

The accompanying engraving illustrates an application of Mr. Wadsworth's steam controlling valve to a steam hammer having a rotating anvil, the valve and the anvil block being both under control of the same lever.
The valve, being substantially the same as that described in connection with the stcering apparatus patented by the same inventor, and illustrated on page 191 of current volume of the Scientific American, will not be described in detail in this connection. It is perhaps enough to state that it is capable of perfectly controlling the admission of steam to opposite ends of the cylinder, so that a blow of any desired strength may be given.

The value of this valve as applied to the working of a steam hammer lies in the facility with which the ponderous machine may be controlled, and the exemption from the possibility of accidents, such as the striking of the piston on the cylinder head, in case of the moving of the anvil from below the hammer, the valve being so contrived as to admit steam at the proper point in the stroke to cushion the piston.
The lever, A, of the controlling valve is moved through the medium of the rod, B , bill crank lever, C , and rod, D , by the lever, E , which is fulcrumed in a ball and socket joint, and is capable of universal motion. The lower end of this lever extends through two slotted and pivoted sectors below the floor, which are arranged at right angles to each other, and are connected one with the controlling valve, and the other with the mechanism by which the anvil is turned. This construction admits of controlling all of the movements of the machine by a single lever. Moving the lever to the right or left effects the steam supply, and moving it forward or backward sets in operation the mechanism which turns the anvil. The anvil, as will be observed, is made convex on one of its sides; it has also a rounded corner and a square corner, all of which are found very convenient in forging irregular work.

Although this machine is intended for bending ships' ribs and performing other similar operations, the details of some of the parts by which this kind of work is done are omitted for the sake of giving a clearer idea of the other parts.

The ingenious valve used in this hammer seems as well adapted to one of its applications as another, performing its functions easily and with precision, whether used in the steering apparatus previously described or in the hammer shown
in the engraving. Further particulars relating to this in vention may be obtained by addressing Mr. Herbert Wads worth, Merchants' Bank Building, 28 State street, Boston.

ATTACHMENT FOR BOILER FEED PUMPS.

The accompanying engraving shows an improved attach ment for boiler feed pumps, for introducing into the boiler

CLEGG'S FEED PUMP ATTACHMENT

along with the feed water any liquid for preventing or re moving incrustation or scale, or to prevent foaming. It consists in a short pipe screwed into the lower end of the pump, having at its outer extremity a cup for containing the liquid to be introduced into the boiler. Between the cup and the pump there is a check valve in the pipe, also a stop cock for closing the communication between the cup and pump. Out-
side of the check valve there is a small air cock, which may be used to admit small quantities of air to the pump to act as an air cushion to the plunger to obviate pounding and the consequent wear and tear of the pump.
This invention was recently patented by Mr. Benjamin Clegg, of 526 Richmond street, Philadelphia, Pa., from whom further information may be obtained.

RECENT AMERICAN PATENTS.

An improved waste valve, which is applicable to either wooden or iron pumps, has been patented by Mr. Perry A Peer, of Comstock, Mich. It consists of a pivoted cover ar ranged to slide over an aperture in a base plate that is secured to the pump.

Mr. Edwin A. Benson, of Detroit, Mich., has patented an improvement in hydrants, which provides for removing, re placing, repairing, renewing, or otherwise manipulating the ground faucet or valve of a hydrant without removing or digging around the box which contains it.
An improvement in car brakes has been patented by Mr. Nathan Webb, of Sacramento, Cal. The object of the in vention is to provide a simple car-connecting brake clamp that can be used as a supplement to any other brake connecting clamp.

A hand car, adapted for running upon a track and dump ing its load, and which may be used for loading wood or coal upon locomotive tenders, and for other similar purposes, has been patented by Mr. Stephen Johnson, of Hunts ville, Texas.
An improved steam rock drill, in which the valve is shifted by the piston before it has completed its stroke, so that the piston will be cushioned, has been patented by Mr. Thomas J. Murphy, of New York city.

An improved weather strip, patented by Mr. Lawrence Scully, of Meridian, Miss., consists in a strip of rubber fit ted to a groove in the bottom of the door, so that both of the edges of the strip project below the door and act as fenders against wind and rain
Mr. William J. Orr, of Rock Hill, S. C., has patented an improved dust-excluding and car-ventilating window, which consists of a series of vertical parallel pivoted transparen slats between which the air passes freely, and which may be so adjusted that when the train is in motion a draugh will remove the air from the car.
An improvement in the class of burners used for burning gasoline, naphtha, etc., has been patented by Mr. William H. Russell, of Sedalia, Mo. It consists in a burner tube having a cup near its upper end, a base piece at its lower end, and a hollow wire wound around the upper end of the burner and concealed in the cup with its ends extending to the base piece, one communicating with the supply pipe and the other with a chamber leading to the burner.
An improvement in passenger registers for cars, omnibuses, etc., has been pa tented by Mr. S. B. Crane, of Davenport, Iowa. The seat or foot rest is made movable so that when a passenger sits the device closes an electrical circuit which is connected with a recording device

An improved spark arrester patented by Mr. Allan Talbott, of Richmond, Va., is intended for arresting sparks as they issue from the furnaces of steam boilers, and preventing them from passing into the open air. It consists in a number of in verted hollow truncated cones placed at the bottom and top of the smoke stack.
Mr. Martin Rabenau, of Baltimore, Md. has patented an improved apparatus for treating leaf tobacco for developing its fla vor, increasing its burning qualities, and darkening its color.
Mr. Thomas H. Locher, of Alburtis, Pa., has patented a chair having a frame made entirely of band iron. The object of the invention is to produce a chair hav ing the greatest strength and rigidity with the employment of a small amount of material.

An improved heat regulator for incubation has been patented by Mr. Frederick Meyer, of Doylestown, Pa. It consists in a lever carrying a tube with reservoirs at each end containing ether and mercury when the heat expands the ether the mercury is forced to one end of the lever, causing it to tilt and operate the damper.
An improved pole attachment for vehicles has been patented by Mr. James L. Dykes, of Demopolis, Ala. The object of this invention is to furnish combined thills and tongue which may be readily adjusted as thills or tongue.
Mr. George W. Williams, of San Diego, Cal., has patented a simple and efficient trap for catching animals. It consists of a toothed ring secured to one end of a bent spring, the other end of the spring being provided with teeth and helddown by a tripping device.

TERRESTRIAL GASTEROPODS

Next to the insects no class of animals presents such a vands, or numerous irregular stripes. About forty different variety of families and species as the mollusks. While the edible snail, which is very common throughout this the majority of them inhabit the sea, a limited number abide country and Europe. in sweet water, and a few only live on dry land. These all belong to the order of Gasteropoda, and differ from the majority of other mollusks by being supplied with well developed pulmonary organs, enabling them to breathe atmo spheric air. They may be divided into two groups-snails and slugs-the former of which are provided with a helical shell, while the latter are entirely naked shell, possessing instead of a shell only a calcareous deposit under the shield forming the fore part of the back. As the anatomical structure of both groups is identical we may describe them jointly. From the head protrude two pairs of tentacles, which have the form of the finger of a glove, and may be retracted and projected. The posterior pair carry the small black globular eyes. The tentacles are very sensitive to the touch and the eyesight is apparently very poor; the animal.depend on its feelers, principally, for guid ance. The mouth is located in the center of a thick muscular mass; in the upper lip lies embedded crescent-shaped grooved plate, forming the upper jaw. Directly below and opposite to this is placed the tongue, which carries on its uppe surface a disk lined ${ }^{\text {with numerous }}$ transverse rows of teeth. In eating the snail grasps its food between the upper jaw and tongue, and rubs it to a smooth paste between the fric tion plates. By the peculiar motion of the tongue the paste is conducted into the œsophagus and stomach On both sides of the tongue are situ ated the salivary glands, connected with the mouth by separate ducts. Behind the stomach is found a vo luminous liver. This is traversed by the intestine, which turns, after leaving it, and leads to the anus located in the neighborhood of the branchial opening. Into the same opening are also emptied the secre tions of the kidney, which is situa ted near the heart.
Two minute glands near the en trance of the œsophagus are the only organs that might be considered organs of hearing.
Respiration takes place through the branchial aperture, from which the air is conducted to the lung, a cavity nearly filled with a porous, spongy mass, from which numerou minute veins lead to the heart. The latter has two chambers, and by its pulsations sends forth the purified blood coming from the lung on its journey through the body, from which it returns again to the lung, The ${ }_{2}$ oot, or rather the ventricular plate bearing that name, is formed of powerful muscles, which propel the animal by alternate contractions and expansions.
Among the principal condition necessary for gasteropodal life on dry land are moisture and warmth. If deprived of moisture by being, for instance, placed in a pasteboard box in a dry room, most snails wil die soon. Instances are, however on record in which snails have bee kept, apparently dead, for month and even years, and revived again by the application of a little warm water. It is, therefore, natu ral that snails prefer moist spots, shady places under shrubs, trees, stones, etc. Many prefer to creep below the layer of leaves and mos covering the ground in forests, and some even live between the bark and wood of trees.
The most common family is that of Helix, of which alone nearly 5,000 species are known. They all have shells which have either the familiar form of the garden snail or are a little more elongated. The shells are generally wound from right to left, that is, when the mouth of the shell is placed to the right of the observer, the umbilicus turned toward the latter, the whorls will be seen to pass down from right to left toward the end. The whorls may either come into contact in the center and form a spindle, or may remain separated, forming a hollow shell. In some of these the umbilicus is closed, in some open.
The shell consists of about 5 per cent of animal matter 90 per cent of carbonate of lime, and about 5 per cent of other mineral substances.
In our engraving are illustrated two of the commonest snails indigenous in Europe. The smaller ones are Helix aspersa, the common garden snail. It varies greatly in color and form, but is usualiy of a bright yellow color with brown

TERRESTRIAL GASTEROPODS.

tion does not entirely stop, there is necessarily going on constant interchange of air and moisture, the former flow ing in, the latter out. When the air becomes moist and warm, as on approach of rain, the air entering the shell carries back the moisture exhaled, the body of the animal, which was wrinkled up and retired to the innermost portion of the shell, swells gradually, until the diaphragm is torn, and the animal resumes its usual mode of life. The period through which this sleep extends varies greatly with exterior conditions.

As might be inferred from the low state of development of the eyes, light is only of secondary importance to the well being of snails; they seem to prefer shady, dark spots. Snails are used as an article of food. Among the ancient Romans they were esteemed as a great delicacy. Special gardens were devoted to breeding them. Pliny relates of Fulvius Lippinus as one of the principal snail park owners, who is also said to be the discoverer of a delicious pate of grape juice, wheat flour, and other ingredients with which snails were served

In Switzerland, Bavaria, Wùrtemberg, and Austria, snai culture at one time attained considerable importance. They were raised in numerous gardens; at Ulm alone over te millions were annually raised, and shipped partially to Aus tria. Although this industry has now nearly disappeared, snails are still eaten in large quantities in Austria. The are collected in the fall and kept between layers of oats fo use. The snails most esteemed in those countries are H pomatia, asperisa and hortensis
Snails are of great importance as an article of food and commerce in Italy, where numerous kinds are consumed in large quantities. The principal seat of the snail trade is Palermo, but all larger cities have numerous establish ments dealing in them, and in some places snail growing and snail hunting form distinct trades. Snails are extreme ly cheap, and this accounts for their enormous consumption In the " flying" street kitchens a plate of snail soup can be had for one or two soldi, and this, together with a handfu of maccaroni and a slice of watermelon, forms the daily repast of the average Italian lazza rone.

To the second group of terres trial gasteropods, Limacidce, belong our common slugs. They have no sheli, but a calcareous deposit of more or less firmness in the shield covering the neck may be regarded as the rudiment of the shell. Ana tomically the slug corresponds to the shelled snail, except that the en trails, which in snails are contained in a bag extending into the interio portion of the shell, are, in the slugs, contained in the main body which is ordinarily covered by the mantle.

Slugs are divided into two sub families-Arion and Limax. Ario rufus, as a representative of the former, is very common throurhou Europe, about five inches long and of variable color, generally black or reddish-brown. Similar in appear ance and size is Limax ater, or road slug of Europe; it is generally black or dark-brown, and very common. This species is represented in the engravíng.

ngora Goats Turned to Profit

The San Francisco correspondent of the Baltimore Sun reports more hopeful prospect for those who have invested so largely in the raising of Angora goats on the Pa cific coast. Hitherto these animal have not been profitable owing to the lack of a market for mohair He says

The owners of some thousands of these goats, before abandoning the enterprise, concluded to try some way to utilize them. They estab lished experimental works in San José, the beautiful garden city, fifty mıles south of San Francisco. Af ter much experiment and vexatious discouragement they have now flourishing factory, with fifty hands, over one half women. "The An gora Robe and Glove Company" have founded a new and very pro fitable industry. They have a large tannery, and they have created an unlimited demand for goat skins till now of no paying value. Thei goods, like the woolen fabrics of the coast, challenge comparison with like goods in any part of the world. We have a vast domain of moun tain land, with evergreen shrubber for goat pasture and a climate that is their paradise. What we sadly want is diversified agriculture and manufacturing industry There is scarcely anything combining these qualities that we cannot raise on this coast, and the crowning success w
cord will doubtless encourage others in other directions.

Plain Talk to Southern Iders.

Under this heading, the Mercury, of Mcriden, Miss., gives some very pointed advice to Southern women, and winds up with a little advice to Southern boys. We quote the letter premising that from the best of our information and belief, the women of the South have been more prompt to throw off the old prejudice against honest labor than the young men have. The Mercury says
"Our Southern boys must be bred to trades instead of professions, be taught to prefer the plow handle to whittling on the streets and sunning themselves in front of grog shops. Work is the only, open sesame, to the cave where wealth is deposited. Industry and frugality is the great need of the South, but these will not be seen until false pride disappear and self-help takes its place."

DRAINAGE.

The State Board of Health of Massachusetts has lately made public the following useful information:
Local boards of health are reminded that, at this time of the year particularly, special attention is required to secure cleanliness about dwellings and throughout towns.
No decaying matter should be allowed in cellars. On the contrary, they should be kept sweet and clean, and as much also be made dry, by draining if necessary. It should be remembered that the air of houses is supplied largely from cellars; so that the common practice of stering all sorts of rubbish there should be condemned. If the air of the cellar is impure, it often gives rise to various ailments in the persons breathing it in the rooms above; and not seldom becomes one predisposing cause of such diseases as typhoid fever, diarrhea, dysentery, cholera infantum, diphtheria, scarlet fever, sore throats, and numberless conditions of ill health which cannot be described under any particular name. If the air in the cellar is damp, neuralgia, rheumatism, and affections of the lungs and other respiratory organs are very apt to follow.
The air supplied to furnaces should never be from cellars, but from the outside atmosphere, and, if possible, on the sunny side of the building. This is a very important mat ter in schools, where there would generally be no difficulty in following the best methods. . The air supply should never be drawn from shady back yards, or the vicinity of privies, sink-spouts, etc.
If kept clean ashes may be used to advantage in filling up low spots of land, making paths, etc.
Garbage should never be allowed to accumulate; all that is not fed to fowls or animals on the place should be kept in tight receptacles, and carried away frequently. Pig•pens should not be permitted in thickly settled places.
There should be no soakage into the ground near wells or houses permitted from stables and barns. It will often be found economical to save.all the manure, liquid and solid, by receiving it in water tight vessels, etc., or mixing it with loam, under cover, and frequently carting it away.
Chamber slops, and slopwater generally, should never be thrown on the ground near houses. They may be placed directly on the soil of gardens, etc., or pumped up from water-tight cesspools, or be used by distribution under the surface of the soil, in the manner described on p. 334 of the "Seventh Annual Report of the State Board of Health," and
now introduced in the town of Lenox, Mass. The chamber now introduced in the town of Lenox, Mass. The chamber
slops alone can be easily disposed of by mixing them with ashes or loam, as at the Pittsfield Hospital, by the method shown on p. 87 of the " Ninth Annual Report of the State Board of Health." If the kitchen slops are discharged directly into a cesspool care should be taken that the pipes do not get clogged with grease.

Earth closets serve a good purpose, particularly for sick people and invalids, if carefully attended to, and if well dried loam be used for them in sufficient quantity; they are more easily managed if liquid refuse be kept out of them.
The ordinary privy should be abolished. It is dangerous on two grounds: 1st. It must be so far from the dwelling as to seriously expose children, particularly during bad weather. 2 d . It corrupts the air, the soil, and consequently too often the wells. Instead of the common privy-vault, which is not safe even if cemented, it is best to use under the seat some receptacle which can be frequently removed and emptied. Galvanized iron tubs, barrels sawn through the middle, etc. answer the purpose very well. If kept thoroughly disinfect ed with dry earth or ashes, they can be near houses, connect ed by passageways, and will not corrupt the wells
If water closets are used, and there are no sewers, the best disposal of the sewage is by the flush-tank, and irrigation un der the surface of the soil, as described on p. 135 of the "Eighth Annual Report of the State Board of Health." If cesspools must be used, they should be tight, and often emptied by the odorless process, or else have their contents pumped out on the surface of the ground for fertilizing purposes, where that can be done without causing a nuisance If the sewage is placed on the soil in the morning of a dry clear day, when the sun is shining, and in places where i may be readily absorbed by the earth, the odors from it are the least offensive. In very loose soil, and remote from dwellings, ordinary loose walled cesspools may be used without danger for a short time; but even then the custom can not be approved.
The evils arising from want of attention to the suggestions briefly given above are many, and undoubtedly much illhealth can be thus explained. Good water, from deep wells, is much better than rain water, which is soft, and does not is much better than rain water, which is soft, and does not
contain the lime, etc., so beneficial to health. If the wells contain the lime, etc., so beneficial to health. If the wells
and springs are kept free from contamination, as they may and springs are kept free from contamination, as they may
be with some care, until houses and streets become placed closely together, the water furnished by them is of the very bestquality. A few illustrations of the baneful effects, when contaminated, are given.
A clergyman living in one of our towns reports as follows:
"About a year ago my son, thirteen years old, was taken sick with diphtheria. It was quite a severe case, and was very obstinate, resisting, day after day, all treatment; medicines did not have their usual effect. By and by we thought of the water (which was found upon chemical examination to be polluted with organic matter like that found in drains and cesspools). We immediately stopped using the water, concluding that the impure water was the probable cause of
the boy's sickness, and the probable reason why the medicine would not work; for they had been mixed in this water, and he had used it for a gargle.

With change of water, the sick boy at once began to mend, and was soon about the house again. This was the third case of diphtheria in our family within the space of some two years, and they were the only cases in the neigh orhood, which led us to suspect something was wrong.
' I had myself been subject to a chronic irritation in my hroat, often amounting to soreness and serious trouble, and also to frequent attacks of diarrhea, especially through the
warm weather; but, for a year past, or since we ceased to use that water, I have had no trouble worth speaking of in either of these ways.

The well is in the cellar, almost directly under the sink, 3 feet only to the right of it. The top of the well is $21 / 2$ fee from the cellar wall. The drain, originally of plank, was 16 feet long, so that the cesspool was within 17 or 18 feet of the well. But this was not the worst feature of the case. This plank drain, after a time, rotted away, so that the filthy water began to soak into the ground just outside the cellar wall and within 6 or 8 feet of the well, and almost directly over it. The earth, when we removed it to lay a new tile drain, was good manure as deep down as we dug, and I know not how much deeper.
" The water looked clear, except just after heavy rains, and had no ill smell or ill taste about it. We now use cistern water and leave the well untouched."
This case shows what great danger to health may exist unuspected, when the rules suggested above are not followed out. It is impossible to say that a well is safe at any ordi nary distance from a source of constant pollution of the neighboring soil, like a privy, cesspool, barnyard, etc. ' Often the filth goes a long distance, sometimes not very far. There is always a risk; and, even if well marked sickness does not occur as narrated above, more obscure affections are probably
Dr. J. G. Pinkham, in his " Report on the Sanitary Condition of Lynn," published in the "Eighth Annual Report of the State Board of Health," reports the following two cases, the illustrations in which are most clear and convinc ing:

Case No. 1.-'The diagram explains the position of the well, and shows the certainty of its pollution. The soil and subsoil are loose; contamination occurs both by surface drainage and from soakage. Five cases of typhoid fever oc

curred in 1875, in the family living in the house, and seven more, with one death, among other persons using the well water. This house became the center of infection for whole neighborhood.
Case No. 2.-The well is 25 feet in depth, a portion of it being dug into the rock. The vault is 10 feet distant on the same level. There is a cesspool in the garden below, and a stable on the left. The buildings and well are on a side hill. The premises are kept clean, and the water, whicb is clear and of good taste, has been used for many years. The oc currence of typhoid fever in the family led the physician in

ttendance to suspect the water, which, upon chemical ex amination, proved to be very much contaminated. There were five cases of typhoid fever in the family, and several others, with one death, among neighboring persons using the water.
Where wells are not in use the corruption of the air from
foul privies, and by the emanation from the soil of the pro-
ducts of decomposition of filth, becomes a prominent factor in the spread of such diseases as typhoid fever, dysentery, diarrhea, diphtheria, etc. In towns, sources of filth on some premises may be more injurious to the health or more offensive to neighbors than to the occupants of the place itself. Different people are differently susceptible to disease, too, so that the filthiest places are not always necessarily those where there is most sickness.
A marked illustration of disease due to polluted air, when the drinking water was pure, occurred in a school in this State, in 1864, where 51 out of 77 young ladies in the institution were attacked with typhoid fever, of whom 13 died; 3 servants also died of the fever. The vaults of the privies were shallow, filled to overflowing, and emitted a very offensive odor, which at times pervaded the whole building. The kitchen drain discharged its contents on the surface of the ground, and a few rods from the school there was a foul barnyard.
Where ilth has accumulated, and it is necessary to use a disinfectant, or if for other reasons it is desirable to do so, earth, lime, or chloride of lime will serve a good purpose. If it is wanted in liquid form, it may be made by adding to a pailful of water three pounds of copperas (sulphate of iron), with a pint of Calvert's carbolic acid, one pound of chloride of lime, or one half pound of lime.
For use inside of houses, a solution of nitrate* of lead or chloride of zinc (Burnett's disinfecting fluid) is recommended. Whitewashing in cellars, sheds, etc., is a most excellent means of purifying the air. Prevention of the accumulation of filth, however, is better than the use of disinfectants. "To chemically disinfect (in the true sense of that word) the filth of any neglected district, to follow the body and branchings of the filth with really effective chemical treatment, to thoroughly destroy or counteract it in muckheaps and cesspools, and ashpits and sewers and drains, and where soaking into wells, and where exhaling into houses, cannot be proposed as physically possible; and the utmost which disinfection can do in this sense is apparently not likely to be more than in a certain class of cases to contribute something collateral and supplementary to efforts which mainly must be of the other sort" (prevention of filth).
Directions for soil pipes, drains, etc., will be issued in a succeeding circular. At present it need only be said that ewers are of the first importance where the water carriage system is generally used for removal of sewage. Where for any reason they cannot be introduced, the greatest consideration should be used before $1 t$ is decided to introduce water closets, if the result must be to drench the soil with filth and water by means of cesspools.
It is in the highest degreeimportant that each town should have an independent board of health to devote their attention to these matters. It is desirable that at least two thirds of such a board should be composed of persons not otherwis connected with the town government, and that there should be at least one physician on the board.

Chloride of Magnesia in Gas Meters

Owing to the difficulty and expense of obtaining a good dry meter wet meters are still largely in use, and the question of what shall the liquid be is an important one. Water is, perhaps, the worse possible filling; it freezes in winter and evaporates in summer. Alcohol is free from the former disadvantage; but not from the latter. Glycerine, the use of which was first proposed by Prof. H. Wurtz, is better than either. A solution of chloride of magnesium has also bee tried and found to be excellent, when the gas is free from ammonia, which is, unfortunately, seldom the case, as the white spots on our argand chimneys tell us. Goebel has tried chloride of magnesium, and found that when there is only $0 \cdot 3$ ramme of ammonia in 100 cubic meters of gas serious re ults follow in a few months. A part of the salt is decom posed, forming sal ammoniac, which combines with a second portion of the former to form a double salt, magnesia being precipitated as white powder on the clockwork and wheels. The double salt subsequently decomposes, liberating hydro chloric acid. Chloride of magnesia is most effective in purifying gas from ammonia.

Amyl Nitrite in Ague.

Dr. W. E. Saunders, of Indore, India, regards the nitrite of amyl as the most powerful diaphoretic, and uses it in all cases of fever to produce sweating. In a report of several cases of ague treated with this drug, printed in the Indian Medical Gazette, he claims that in no instance did the amyl fail to remove the attack in about one-third the usual time, and in most cases the fever did not return. The drug may be mixed with an equal part of oil of coriander, to make it less volatile and to cover its odor, and administered as folless

Four drops of the mixture or two of amyl are poured on a small piece of lint, which is given into the hands of the patient, and he is told to inhale it freely. He soon becomes flushed, and both his pulse and respiration are much acceler ated; and when he feels warm all over, the inhalation is dis continued, as the symptoms continue to increase for some time afterward. A profuse perspiration now sets in, which speedily ends the attack; in some cases, however, the cold stage merely passes off without any hot or sweating stage.

* One part in one hundred of water. Cloth soaked in such a solution

 and hung up in a foul air. quickly destroys bad odors.\dagger One part n two hundred of water for foul liquids, etc. This is used by order in the German navy for bige water. Labarraque's disinfecting
fluid (chlorinated soda), one part to four of water, may be used with soap in washing floors, etc.

May Meetings.

During the first week in May the American Medical Asso ciation, the National Board of Health, and the Sanitary Council of the Mississippi Valley, were in session at Atlanta, Ga. Their meetings were largely attended. The epidemic of yellow fever last year, and its possible outbreak during the coming summer, naturally gave great prominence to questions relating to quarantine methods and general sanitation. The Medical Association chose New York as the place of its next meeting in June, 1880. Dr. Lewis A. Sayre, of this city, was elected president. The National Board of Health will meet again in Nashville, Tenn., next October. The annual session of the American Institute of Mining Engineer was begun in Pittsburg, Pa., May 13. Over one hundred prominent metallurgists were present at the first session. The closing session was set down for Friday, May 16. The sixth annual convention of the National Millers' Association began in Chicago, May 13, six hundred members present. In his an nual address, the president, George Bain, proposed that the association be organized as a corporation on a legal basis for the purpose of carry ing on suits regarding patents; that an attorney be appointed to look to the interests of the association as against the encroachments of pat entees; that the success attending their efforts against the impositions of the Cochrane patent should encourage them to wage uncompro mising warfare against the Denchfield patentees, and that a better system and practice of grading and inspection should be adopted.

The annual meeting of the Silk Association of America was held in this city May 13. The secretary re ported that while there had been no great failures in the silk indus try during the year, there had been, on the other hand, no \mid Many choice works of this artist are known, his refined instance of remarkable prosperity. The prices of silk have steadily declined during the year from 20 to 30 per cent, and in February fell lower than at any time during 30 years. More silk was consumed in this country last year than in preceding years, the imports being 38 per cent over those of 1877, and there has been a large increase in the receipt of raw silk from Japan and China. European raw silks have been cheaper than the Asiatic product. With the decline in the value of the raw material, manufactured goods have become cheaper. The lowering of prices and the abhave berome cheaper. The lowering of prices and the absence of tariff excitements have also ena
to make costly experiments and imto make costly experiments and im-
provements during the year. The genprovements during the year. The gen eral tendency in woven goods has been toward work of the higher grade. The mills have been fully employed, but great expense has been incurred in the improvement and alteration of machin ery. A decided advance has been attained in the production of dress silks, and more of them are made, and of a higher class, than ever before. If they are kept up to the standard there is every prospect of their displacing the loaded silks of Europe in our market by supplying a better and cheaper ar ticle. Nearly all the weaving mills are producing broad goods. The number of paying members of the association has been doubled during the year, and includes among its members nearly every silk manufacturer in the couritry The following officers were chosen for the coming year: President, Frank W. Cheney, Hartford, Conn.; Vice Presidents, A. B. Strange, New York, William Ryle, New York, Robert Ha mil, Paterson, N. J. ; Treasurer, S. W Clapp, New York; Secretary, William C. Wyckoff, New York.

American Mutton.

We must be prepared to hear shortly that American sheep are subject to no end of hideous diseases, and that the use of American mutton is hazardous in the extreme. The exportation of sheep to England increases rapidly, and the profits of English breeders are seriously threatened. Something will have to be done; and we shall not be surprised if an epidemic of tape-worms, or something equally distressing, is soon reported among eaters of American mutton. It is not possible that American sheep can be wholly exempt from the numerous maladies to which all flesh is heir-when exported!

Quick Work with wool.

The exploit of the English baronet, Sir Roger Throck morton, has been bettered by an Austrian clothier. Sir

Roger wagered that between sunrise and sunset a coat could be made for him out of wool from the back of a sheep Accordingly the sheep was sheared at dawn, the wool was dressed and dyed, woven into cloth, cut and made to fit before nightfall. An Austrian clothier has done all this in baronet, who allowed himself from 4 A.M. to 9 P.M

STOOL OF INLAID WOOD AND EMBROIDERED CLOTH.
The design shown in the accompanying engraving is by J. Androuet du Cerceau, who lived from 1515 to 1558 . It
contains grotesque masks and other fanciful decorations.

STOOL AFTER AN ELEVENTH CENTURY PATTERN.
taste having a large share in the art embellishments of the Renaissance period.

Bacon, in his instruction, tells us that the scientific student ought not to be as the ant, that gathers merely, nor as the spider, that spins from its own bowels; but rather as the bees, that both gathers and produces.

SPECIMENS OF TURKISH POTTERY.
The specimens of Turkish pottery shown in the engrav-
ing are of modern manufacture, but in strict resemblance
to the oldest ware produced at Gallipoli, near Constanti nople. It is green and gold, and is almost identical with forms of pottery in common use in Persia and India.

The Oldest Mine Map.

Dr. Gurlt, a German metallurgist, who has devoted much attention to the study of the history of mining and metal lurgy, exhibited recently, before a German society, a copy of what appears to be the oldest map of a mine known. It is the plan of an Egyptian gold mine from the time of King Seti I., or about 1,400 B. C. The original, drawn on papyrus, is at the museum of Turin. Italy.

Reports coming in from all parts of the country indicate greater demand for skilled labor than has existed for several years. And the redistribution of labor during the years of depression threatens in some instances to work no little temporary inconvenience to reviving industries. From New England, for example, there comes the curious report that several cotton mills find it impossible to go on tor lack of hands. A large number of the more thrifty and forehanded cotton operatives left the East for the West when work failed in the mills, and now cannot be recalled, having taken up farming on their own lands, or engaged in some other oc lands, or engaged in some other oc-
cupation. This readiness of American workmen to leave one calling for another when occasion demands is one of the most encourag ing features of our industrial classes, since it prevents any long continued distress among any class of operatives, when their special business fails, and equally prevents any protracted lack of labor in any field when a demand for it arises. The New England cotton mills will not have to wait long for hands if they can offer the average inducement in the way of wages, and if they cannot do that it is evident that there is no urgent demand for their products, in which case the world wil not suffer from their suspension.
The demand for unskilled labor even in this city where the glut of day laborers was supposed to be greatest not long since, is manifestly quite up to the supply. On this seore a city daily remarks in a recent issue:
"It is commonly supposed that there are thousands of destitute and unemployed working men in New York who are anxious to get work at any wages which will suppor them. The steamship companies, it Many choice works of this artist are known, his refined / seems, would be glad to find some hundreds of this pre sumed multitude. They have failed, although they required only unskilled labor and have offered at least the means of daily subsistence in return for it. How much of the appar ent and undeniable destitution in this city is a real consequence of a real lack of employment, therefore, and how much proceeds from the habit of promiscuous almsgiving without inquiry and from the growth of a positively vagrant pauper class in this country, are questions worth look grant paup

Touching the same general topic a well-informed Phila-
Touching the same general topic a well-informed Phila-
delphia paper says: " The iron and steel trade was one of the "The iron and steel trade was one of the
very first to succumb to the pressure of the times, but even that is now exhib iting more activity that at any previous period since 1873; other trades are doing even better, and the number of mills and works which remain shut down for sheer want of remunerative business are exceedingly few. That any should stop, however, for want of hands, is most remarkable, in view of some of the speeches that are occasionally made in Congress and out of it by the self-styled labor reformers. According to the statements of these gentlemen, there are at the present time in the neighborhood of a million industrious skilled workingmen vainly seeking employment; but we are afraid that after deducting, say nine tenths of the number (as imaginary?) the other tenth is largely made up of the vicious tramps who vagabondize through the country to the terror of the agricultural population, and who would not work if they were ever so well paid for it. If work is wanted some of them can certainly find it among the mills of New England, which so greatly need operatives as to stop for want of them."
Existing and widely threatened strikes for higher wages still further testify to the increased demand fo testify the for labor. How far these strikes will re tard reviving industry and delay the
better times coming for American labor
We are strongly inclined to believe that
remains to be seen. We are strongly inclined to believe that
the good sense of the vast majority of our industrial classes the good sense of the vast majority of our industrial classes
will forbid their making haste thus to kill the industrial will forbid their making haste thus to kill the industrial
goose that is beginning to lay golden eggs, at the dictation of a misguided few who are determined to rule or ruin. Strikes are unprofitable at all times; at this stage of industrial revival they cannot be other than suicidal.

A system of pneumatic tubes took the place of telegraph lines in Paris on May 1, for the transmission of messages from one part of the city to another. The charge is 50 centimes, or 10 cents, for open, and 75 centimes for sealed messages.

Girdling the Grape Vine

The girdling of a grape vine has a very marked influence on the fruit: it causes it to grow much larger, to ripen sooner, and makes it of better flavor. Girdling consists in taking a rim of bark about one fourth or one sixth of an inch wide from the trunk or branches of the vine. Some recommend taking this rim of bark from the main stem, others from the side canes. As many may not understand the operation or the effect it has upon the vine, it may save the life of many a vine if we examine and see how it grows. A vine does not grow, as may appear at first sight, from the bottom upward, but from the top downward. The roots take from the soil what moisture the plant needs; also the mineral matter. This food cannot be used by the plant unless there is water in the soil to hold it in solution, as it must be in a liquid form to be taken up by the roots. This crude or undigested food or sap is carried to the leaves, not through the bark, but through the entire wood of the vine. When it reaches the leaves, it comes in contact with the carbon absorbed from the atmosphere by the leaves; here it is digested, and is now ready to be used by the vine in making new growth in what is called the cambium region, and is deposited in the form of cells just beneath the bark, so that all growth is made from the downward flowing sap, and not from the upward.
If a vine is girdled by taking away a rim of bark, a break is made, so that the sap as it descends cannot pass over this gap, and all growth must take place above where the bark has been removed. If the main trunk is girdled, that por tion below the girdle must go without receiving any support from the rest of the vine until this wound can be healed over and complete circulation renewed. All this time the roots have furnished crude sap for the part of the vine above the girdle, and have received nothing in return. This cannot help weakening the roots, and if followed up it must entirely kill the vine. This gap may heal over (as it probably will if not done too late), when the circulation will be restored once more; but there has been a strain on the roots, and they must be somewhat exhausted. If only girdled once the vine may not be permanently injured; but if followed up it must be weakened, and the moment its vital forces begin to lag will disease of some form step in and hasten the work of destruction. If instead of girdling the main trunk a side shoot is taken (taking care to leave some untouched), the injury may not be enough to be felt by the roots, and the vine will not be injured to any extent. After a vine is girdled, the crude sap is taken up the same as before and is digested by the leaves. This prepared sap descends as far as the place where the rim of bark has been removed, and can go no farther. The result is, the branch is crowded with food that must be made use of, the fruit has more than the usual amount of nourishment supplied it, which causes it to develop faster, grow larger, and makes it of better flavor. If a single branch be tried, the effect of girdling can be distinctly seen; the cane girdled will show ripe fruit, while that on the remainder of the vine will hardly bave begun coloring. I think the best results from girdling will be obtained if done in the following manner: As soon as the fruit is half grown, take a rim of bark from the side canes (leaving part ungirdled to supply nourishment to the roots, and to keep the vine in a healthy condition) near the main trunk. The rim of bark should not be over one
fourth of an inch wide. This will make the fruit grow nearly as fast again as on canes that have not been girdled. The vine at this season is growing very vigorously, and will heal over the wound made by taking away this rim of bark in a short time. As soon as the natural circulation is restored, the fruit will seem to have stopped growing, and that on the rest of the vine will partly catch up with it; but if as soon as the circulation is restored another break is made by taking away another rim of bark, just above where the first one was taken, the fruit will ripen fully two or three weeks earlier than that on the rest of the vine. Last season I tried this method on a Concord vine. The first girdling caused the fruit to increase in size nearly as fast again as it did on the canes that had not been girdled. The wound healed over in a few weeks, and the berries seemed to come to a stand still. I removed another rim of bark just above where the first one was taken, and it was astonishing how quickly the berries began coloring. They were larger than those on canes not girdled, of better flavor, and ripened fully fifteen days sooner. If any one will take the pains to grow new canes each year to girdle the next, and cut away the canes girdled the year before as soon as they have produced one crop of fruit, I see no reason why girdling should not be practiced, and would even recommend it, as the fruit will ripen so much earlier that it will be in no danger of injury from early frosts, which in this latitude often destroy the crop. But do not girdle the main trunk, only the side branches, and grow new canes each year to girdle the next. If instead of this the main trunk is girdled, the vine will become weakened, and in

Cotton Mills for China.

The Berlin correspondent of the London Morning Post recently made the following statement in a communication to that journal: "The Chinese government has purchased machinery and engaged experienced engineers and spinners in Germany to go out to China and establish mills there The government hopes by this means to make its country independent of Russian and English manufacturers, and to supply the home market with home produce. The mills ar
to be constructed and worked on the European principle.' "Is this statement correct?" it has been asked. We know that it is, for the design of the government of the Celestial Empire has been heard of in Lancashire, and negotiations have been opened here having the above object in view. Here, then, we have the prospect of another competitor of a formidable character springing up to confront us. Doubtlessly, also, the new industry will be founded, cherished, and developed under a system of protection as rigid and uncompromising as the government may deem it safe to inau gurate. The result of this experiment, presuming that it will be made, can hardly be predicted. We shall have to wait patiently, and observe if the ingrained conservatism of Chinese nature will permit at home such a startling innovation upon the methods of spinning and manufacturing, im memorially old, that are in vogue in the country, as would be the planting of cotton spinning and weaving establishments upon the English system. Should this, however, take place, it will need no prevision to safely affirm that the industry of the West in another thirty or forty years will have to stand face to face to a competitor whose formidable char acter will dwarf all previous ones into insignificance. The personal qualities of John Chinaman, as shown abroad, where he has latterly begun to appear more frequently, reveal the fact that he is patient, docile, sober, industrious, and possesses great power of adapting himself to and master An put. Should he, therefore, in his own home take kindly to western methods of labor, the industrial and commercia states of the world would speedily be revolutionized. This is a possibility of the future

Noumeite.

At the recent World's Fair in Paris, noumeite-a massive form of garnierite or hydrated silicate of nickel and magnesia -was exhibited in large quantities
In a recent number of Dingler's Journal Prof. Rudolph van Wagner states that the largest nickel works in France mak all their nickel, its alloys, and the salts used for nickel plat ing, from this New Caledonia ore alone. The ore, as it reaches the factories, has the following average composi reach
tion:

It occurs in serpentine, and possesses a beautiful 100 color, similar to, but not easily mistaken for, malachite. It color, together with its variegated and clouded appearance has led to selecting the finest specimens and polishing them for use as setting in breastpins, earrings, and other orna ments. It is more especially to these selected and polished specimens that the name of noumeite is applied. Being mas sive and dense it cannot equal the fibrous malachite with it beautiful satin luster, but may yet find extensive use along with lapis lazuli in mosaics and the like
The methods employed in extracting the nickel from the New Caledonian ores are quite different from those in use for other nickel ores, and much simpler. In the so-called mixed process the ore is treated with hydrochloric acid and the solution precipitated by oxalic acid. The nickel being now combined with an organic acid is readily reduced by simply heating it in a crucible with lime and charcoal to high temperature. The metal thus obtained contains $99 \cdot 5$ per cent of nickel. In the other method, known as the we process, the ores are likewise treated with hydrochloric acid the iron and alumina precipitated with carbonate of lime, and every trace of sulphuric acid removed with chloride of barium. The nickel is afterward precipitated as oxide by means of chloride of lime and lime water. The metal ob tained by reducing this oxide is of excellent quality, and can be beaten out under the hammer, which is not the case with either the English granular or the German cubical nickel. Riche's analysis gave the following results

Chloral a Poison Antidote.
According to the Lancet, Professor Huseman, of Göttin gen, has been engaged in a long series of observations on
the antagonistic and antidotal actions of drugs, and, among these, investigations relating especially to chloral.
Chloral hydrate is known to ace as an antidote to strych nine, lessening the spasm, and even preventing death. It has a similar action in the case of the mixture of strychnine bases sold under the name of brucin, and also against the opium alkaloid, thebaia, which simultaneously tetanizes and lessens sensibility. The spasms produced by chloride of ammonium diminish under the employment of non-fata doses of chloral hrydrate, and can indeed be completely stopped. Nevertheless death occurs, probably from the ter. The antidotal effect of chloral on the action of the poisons which cause convulsions by their action on the brain, is not the same for all these substances. The quan tity of the poison which can be counteracted by the antidote appears to be considerably greater in the case of picro toxin than in the case of codeia Of the latter indeed
fatal dose, and even a quantity half as much greater, can be rendered harmless, but twice the fatal dose cannot be counteracted, and is still fatal. Calabrin is counteracted by chloral hydrate in about the same degree as codeia. The symptoms produced in rabbits by poisoning with baryta are not materially altered by the action of chloral, which does not appear to prolong life. So, also, with carbolic acid; the spasms produced by it are not arrested by chloral, and the minimum dose fatal to rabbits still produces death. The combination of a fatal dose of carbolic acid with a non-fata dose of chloral hydrate causes in rabbits a remarkable fall of temperature, which is not produced by the action of eithe of these alone. As a rule, when chloral antagonizes the ac tion of these cerebral poisons, the respiration sinks in fre quency much more than in the case of the analogous action of chloral on the tetanizing poison. The depression of temperature caused by the chloral is also independent of any peripheral loss of heat. The elevation of temperature due to division of the spinal cord is hindered by chloral hydrate.

ASA PACKER.

Judge Asa Packer, President of the Lehigh Valley Railroad Company and founder of the Lehigh University, died at Philadelphia Saturday, May 17. He was born in New London county, Conn., December 29, 1805, and at the age of seventeen, with no inheritance save a sound frame, an earnest purpose, and sterling character, set out to make hi way in the world. He journeyed on foot to Susquehanna county, Pa., where he apprenticed himself to a carpenter When master of his trade he married, and spent a numbe of years farming a piece of land owned by his wife's father Tiring of that occupation, the young couple removed to Mauch Chunk, where Mr. Parker took command of a canal boat, and engaged in the business of transporting coal. In a couple of years he was able to build himself a boat and to enter into a profitable partnership with his brother. In 1840-43, he and his brother were building boats at Pottsville to carry coals to New York by the Schuylkill navigation sys tem. Later, Mr. Parker took up the double enterprise of mining as well as transporting coal.
In 1852 he began the gigantic undertaking of building the Lehigh Valley Railroad, which was finished in 1855, and with its branches, opened up the entire anthracite region of Pennsylvania. As Mr. Packer had foreseen, the railway at once gave an enormous impetus to the coal mining business, and developed other interests and industries proportionally adding greatly to the prosperity and wealth of the State. While carrying on these vast material undertakings $\mathbf{M r}$ Packer found time to carry on constantly the studies which he began in the evenings while learning his trade, and to render excellent service to his State and the nation in judicia and legislative capacity. His judicial title was acquired by service as county judge. In 1844 he was elected to the Stat Legislature, and in 1852 was sent to Congress, where he erved two terms.
In his business career Mr. Packer acquired great wealth and used it most creditably. He gave munificently and steadily to charitable, religious, and educational objects, rowning his life-work by the establishment and liberal en owment of the Lehigh University, an institution designed ith special reference to the needs of young men preparing to undertake the great mining, manufacturing, and other ma erial interests of the country. In its course of studies th chief places are assigned to civil, mining, and mechanical ngineering and other departments of practical and indus ial science. To the endowment of this institution Mr Packer gave in all upwards of $\$ 2,000,000$.
Mr. Packer's personal life was marked by exceptional centleness, kindliness, simplicity, and sincerity. He made many friends and retained them to the end. His entire ca eer exemplified not only the highest type of success in per onal and practical affairs, but paid the highest tribute to he institutions under which he lived, which made it pos sible for one, without wealth or family influence to begin with, to gain great wealth by honorable means, to bencfit his age and country, and to leave behind him monument that must make his life grandly productive through many generations.
Some years ago, at a meeting of eminent Pennsylvanians, Colonel J. W. Forney pronounced an eloquent tribute to Mr. Packers life and character, worthy of recalling at thi time. In it he said:
" Here is a cbaracter for youth and manhood to study Here is a lesson to the one to move on in the path of im provement, and a stimulant to the other never to despair in the darkest hour of disaster and misfortune. We pick out Asa Packer as the miner picks out a piece of coal to show the value of the precious deposit from which it is taken; we pick him out to show what can be won by personal honesty, industry, and kindness to men; by courage in the midst of bad luck, by confidence in the midst of gloomy prophecy, by modesty in prosperity, and by princely generosity when fortune comes with both hands full to realize a just ambi ion. Mr. Packer's whole career exemplifies the truth that in the United States there is no distinction to which an young man may not aspire, and with energy, diligence, in telligence, and virtue attain. When he set out from Mystic Conn., to make the journey to Pennsylvania on foot it is not probable that his entire worldly possessions amounted o $\$ 20$. These possessions are estimated at $\$ 20,000,000$, al which has been accumulated, so far as known, withou wronging a single individual.'

zusimest and 2ersomal.

The Charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Advertisements must be received at publication office

The best results are obtained by the Imp. Eureka Tur

 bine Wheel,and Barber's Pat. Pulvertzing Mills. Send fo bine Wheel, and Barber's Pat.Pulverizing Mills. Send fordescriptive pamphlets to Barber \& Son, Allentown, Pa.
Catechism of the Locomotive, 625 pages, 250 engravings. The most accurate, complete, and easily under
stood book on the Locomotive. Price $\$ 2.50$. Send for a catalogue of railroad
Broadway, New York
H. W. Johns' Liquid Paints are strictly pure linseed oil paints, and contain no water. They are the best an most economical paints in the world
Trout and other fish sure to bite. See outside page. Cutters shaped entirely by machinery for cutting teeth
of gear wheels. Pratt \& Whitney Co., Hartford, Conn.
For Sationary or Portable Engines, Circular Saw Mills, Grist Mills, and Mill Machinery. good and cheap. address
the old manufacturers of Cooper Mfg. Co., Mt.Vernon, O
For Sale.- 10. in $\times 30 \mathrm{in}$. Horizontal Engine, Huntoon ew Yacht Engine 3 in shaft, built to order, \$250. W. Walter, 541 West 35th St.. New York.
A Draughtsman of many years' experience desires a Situation: best of references. Address T. Y. Edwards Brooklyn, E.D., N. Y
Downer's Anti-Incrustation Liquid, for the remova and 'prevention of scale in steam boilers, is safe, effece-
tive, and economical. Fully guaranteed. Try it. 17 Peck tive, and econo
Slip, New York.
Wanted.-We wish to do Drop Forgings in exchange for new or good second-hand Milling Machines. W. H
Baker \& Co., Syracuse, Makers of Breech-loading Guns.
H. Prentiss \& Co., 14 Dey St., New York, Manufs. , Dies, Screw Plates, Reamers, etc. Send for list. "Workshop Receipts" for Manufacturers, Mechan ics, and Scientific A mateurs. Illustrated.
E. \& F. N. Spon, 445 Broome St., New York.
For Screw Cutting Engine Lathes of 14, 15, 18, an in. Swing. Address star Tool Co., Providence, R. I. Shaw's Noise Quieting Nozzles subdivide the steam
into numerous fine streams. All parties are cautioned
against purchasing from infringers. T. Shaw, 915 Ridge against purchasing from
Ave., Philadelphia, Pa.
The Horton Lathe Chucks; prices reduced 30 per cent ddress The E. Horton \& Son Co.,Windsor Locks, Con For Sale.-A New No. 5 Stiles \& Parker Geared Punching Press; latest and best; che
B. D. Washburn \& Co., Boston, Mass.
Lincoln's Miliing Machines; 17 and 20 in . Screw Air Guns.-H. M. Quackenbush, Manufacturer, Her-
kimer, N. Y.
Boilers ready for shipment. For a good Boiler send
Boilers ready for shipment. For
to Hilles \& Jones, Wilmington, Del.
The only Portable Enginesattached to a boiler having
cold bearings. The Peerless and Domestic. Francis cold bearings. The Peerless and Domestic. Francis
Hershey, successor to F.F.\& A.B.Landis,Lancaster, Pa. Shaw's Mercury Gauges, 5 to 50,000 lbs.; accurate, re
liable, and durable. T. Shaw, 915 Ridge Ave., Phila., Pa New Pamphlet of "Burnham's Standard Tur
Wheel" sent free by N. F. Burnham. York, Pa.
Sheet Metal Presses, Ferracute Co., Bridgeton, N. J. Diamond Tocis. J. Dickinson, 64 Nassau St., N. Y. Eagle Anvils, 9 cents per pound. Fully warranted. Clipper Injector. J. D. Lynde, Philadelphia, Pa.
A Cupola works best with forced blast from a Bake
Blower. Wilbraham Bros., 2,318 Frankford Ave., Phila. For Solid Wrought Iron Beams, etc., see advertise ment. Adderss
Presses, Dies, and Tools for working Sheet Metal, etc Split Pulleys at low prices, and of same strength and Wpearance as Whole Pulleys. Yocom
The Scientific american Export Edition is published monthly, about the 15th of each month. Every
number comprises most of the plates of the four precednumber comprises most of the plates of the four preced-
ing weekly numbers of the SCIENTIFIC AMERICAN, with
other a ppropriate ther appropinate contents, business announcement ne hundred quarto pages, each number illustrated with about one hundred engravings.
of American progress in the arts.
Forsaith \& Co., Manchester, N. H., and 213 Centre St., New York. Specialties.- Bolt Forging Machine Hower Harriagmes, new and 2 d hand machinery. Sengines an stam Hose Carriages, new and 2 hand machinery. Send stamp
for illustrated catalogues, stating just what you want. Linen Hose.-Sizes: $11 / 2$ in., $20 \mathrm{c} . ; 2$ in., $25 \mathrm{c} ; 21 / 2 \mathrm{in}$. of all sizes, also rubber lined linen hose, address Eurek Fire Hose Company, No. 13 Barclay St., New York.
Nickel Plating.-A white deposit guaranteed by using
our material. Condit,Hanson \& Van Winkle,Newark,N.J. Needle Pointed Iron, Brass, and Steel Wire for all purposes. W. Crabb, Newark, N. J.
The Lathes, Planers, Drills, and other Tools, new and second-hand, of the Wood \& Light Machine Company,
Worcester, are being sold out very low by the George Worcester, are being sold out very low by the George
Place Machinery Agency, 121 Chambers St., New York.
Hydraulic Presses and Jacks, new and second hand Lathes and Machinery for Polishing and Buffing Metals
E. Lyon \& Co., 470 Grand St.. N. Y.
Solid Emery Vulcanite Wheels-The Solid Origina Emery Wheel - other kinds imitations and inferior Caution.-Our name is stamped in full on all our best
Standard Belting, Packing, and Hose. Buy that only. The best is the cheapest. New York Belting and Packing Company, 37 and 38 Park Row, N. Y.
Dead Pulleys that stop the running of loose pulleys and their belts. controlled from any point. Send fo
catalogue. Taper Sleeve Pulley Works, Erie, Pa.

Portland Cement-Roman \& Keen's, for walks, cis-
cerns, foundations, stables, cellars, bridges, reservoirs, erns, foundations, stables, cellars, bridges, reservoirs, cal Treatise on Cements. S. L. Merchant \& Co., 53 broadway, New York.
Acme Lathes.--Swing, 7 in.; turn, 19 in. long; back geared, screw cutting. Send 3 cent stamp for circular
and price, to W . Donaldson, southwest corner Smith and price, to W. Donaldson,
and Augusta, Cincinnati, Ohio
The Improved Hydraulic Jacks, Punches, and Tub The best Friction Clutch Pulley and Friction Hoistng Machinery in the world, to be seen with power ap
plied, 95 and 97 Liberty St., New York. D. Frisbie \& Co New Haven, Conn.
National Steam Pump; best and cheapest. Send fo
prices. National Iron Works, New Brunswick, N. J.
Wheels and Pinions, heavy and light, remarkably trong and durable. Especially suited for sugar mill and similar work. Circulars on applicatio
Steel Casting Company, Pittsburgh, Pa.
Wood-working Machinery, Waymouth Lathes. Spe cialty, Wardwell Patent Saw Bench; it has no. equal.
Improved Patent Planers; Elevators; Dowel Machines Rollstone Machine Company, Fitchburg, Mass.
The new " Otto" Silent Gas Engine is simple in connotion, easy of management, and the cheapest moto known for intermitten
Co., Philadelphia, Pa.
The Twiss Automatic Engine; Also Vertical a
Tacht Engines. N. W. Twiss, New Haven, Conn.
Pulverizing Mills for all hard substances and grinding Manufacturers of In. \& Co.. 23 d \& Wood St., Phila., Pa. Manufacturers of Improved Goods who desire to buil dis played advertisement in the SCIENTIFIC AMERICAN Expert Edition. This paper has a very large foreign
circulation.

HINTS TO CORRESPONDENTS
No attention will be paid to communications unless
accompanied with the full name and address of ccompanied with the full name and address of the
writer. writer.
Names and addresses of correspondents will not b given to inquirers
We renew our re
We renew our request that correspondents, in referring
to former answers or articles, will be kind enough to ame the date of the paper and thepage, or the numbe of the question.
Correspondents whose inquiries do not appear after
reasonable time should repeat them.
Persons desiring special information
Persons desiring special information which is purely should remit from $\$ 1$ to $\$ 5$, according to the subject as we cannot be expected to spend time and lab obtain such information without remuneration.
Any numbers of the Scientific American
Any numbers of the Scientific American SuppleAENT referred to in these co
office. Price 10 cents each.
(1) J. A. B. asks: Can you tell us of a good dair wash to strengthen the hair and scalp, after such Wilson's paper on treatment of the hair, Scientifi American Supplement, No. 102.
(2) W. H. C. asks: 1. Does it take more attery power to ring an electric bell of to work telegraph machine, and why, magnets of same resist
nce? A. No. 2. Why will an electric bell not wor through a telephone, and vice versa? A. Because th introduction of either into the circuit increases the re-
sistance beyond that which the battery is capable of sistance beyo
overcoming.
(3) E. S. writes: 1. I have a lot of printed postal cards, and would like to wash the print off. How
can it be done? A. We know of no practicable method. can it be done? A. We know of no practicable method.
2. Which is the most powerful known explosive, and how does it compare with powder? A. Probably the ocalled chloride of nitrogen (described in most work
n chemistry). For practical purposes, trinitroglycerin or Nobel's explosive gelatine-six to seven times as effe ive as common blasting powder. 3. What is the chem cal composition of the saliva of rabid animals? A. No determined, we believe. 4. Who invented the Gatlin bun? A. Dr. R. J. Gatling, of Hartford, Conn. 5. With what kind of an instrument did the British give eac With the heliograph
(4) L. P. S. writes: I have several very usty steel bits (for horses) which I wish to silver plate. I have a battery and every necessary for silver plating, but rust troubles me. How can I remove cheaply and
quickly? Dip in warm muriatic acid for a moment and quickly? Dip in warm muriatic acid for a moment and sulphuric acid, rinse, and suspend in the plating bath without touching. 2. Also a large mirror which looks as if it was dusty, but it is on the inside. Please tell how
to brighten it up. A. Resilvering will be necessary to brighten it up. A. Resilvering will be necessary.
See p. 1670 , No. 105 , Scientific American Supplement.
(5) C. L. aske (1) how stove cement is (a). L. asten iron filings with strong aqueous solution of salammoniac (ammonium chloride). A little
viphur is sometimes added, to make the cement harde quicker, but it is better without. 2. Which is the best wo horse engine in market? A. We cannot undertak terial would you use for cleaning white shirts made dirty through wear and which resist washing and bleaching A. Soak in a 10 per cent solution of chloride of lime calcium hypochlorite), then in water containing abo three per cent of sulphuric acid, and finally rinse well in cold water.
(6) F. C. F. wishes to know (1) the horse naking 120 revolutions current volume. 2. What is the rule to find the area
of a piston? A. Square the diameter and multiply by
0.7854. 3. What kind of paint is best to put on a tin roof
that has been painted once with common that has been painted once with common paint, and varnish answers very well.
(7) F. G. asks: Is there any truth in the asertion that anthracite coal loses its heating qualities after
No.
(8) V. \& B. ask what to impregnate wood with to render it incombustible. A. The following is phosphate of soda, $1 / 4 \mathrm{lb} . ;$ water, 2 gallons; dissolve Apply boiling hot if possible.
(9) E. L. N. asks how to make a black rinting ink, which shall be a heavy black, and of a bright color after printing. A. Small quantities of a copaivi, 9 ounces; lampblack, 3 ounces; indigo and Prus sian blue, $11 / 4$ ounce; Indian red, $3 / 4$ ounce; yellow tur pentine soap, dry, 3 ounces; grind upon a marble slab with a wooden muller until a pefectly smooth ink is ob
tained.
(10) J. E. L. asks (1) whether he can make paper canoe by covering a light, strong wooden frame work with a single piece of common card board $1 / 8$ inch sibly; but we think it would not be serviceable. 2 What inexpensive substance can be used for the wa proofing? A. See answer to F. C. R. This page
(11) F. C. R. writes: I am building a can vas boat, and would like to know what they use to prepared by saturating the dry fabric with a varnish prepared about as follows: Boiled linseed oil, 100 parts; wax, 15 parts; litharge, 3 ; oil of turpentine, $q . s$. The in is heated so as to readily melt the wax, which, to with it and the mixture thinned down sufficiently with turpentine.
(12) B. A. asks for the process for making chloride calcium. A. Dissolve marble dust, chalk, o the solution by heating it in an open porcelain lined pan, and collect the salt which separates on cooling.
This should be strongly heated (with constant stirring) to fusion in a clean iron pan to expel the remainin
(13) C. L. D. asks: 1. Is there any means f melting India rubber and have it retain its origina elastic property? Is there any means of applying it to wood and have it retain said property? A. No. Native
gum caoutchouc (unvulcanized rubber) is soluble in bigum caoutchouc (unvulcanized rubber) is soluble in bi-
sulphide of carbon containing about six per cent of sulphide of carbon containing about six per cent of
absolute alcohol. This solution on evaporating leaves the rubber in its original condition. 2. Is the slipping of belts affected by the distance the power stands from machine, and if so how? A. An increase in the length
of a belt increases its weight between the pulleys; this of a belt increases its weight between the pulleys; this of cour
leys.
(14) B. F. S. asks: Can a photograph b taken on any other substance than glass or tin? Can a
picture be thrown upon some kind of material that can picture be thrown upon some kind of material that can . Thereare several carbon and chromated gelatin proYou will find several Woodbury-that accomplish this ific American and Supplement. Consult also Vogel Chemistry of Light and Photography.'
(15) A. M. asks: 1. How can I make a good telephone, or where can I find descriptions? A. See the can I keep copper ores from tarnishing without spoilin heir general character, and if any lacquer is to be used, what is the best receipt? A. A thin coating of an alco
holic solution of bleached shellac will sometimes suffice
(16) W. V. R. writes: I have a large pile o inders, taken from a cupola after melting which con ains a large per cent of iron. Can I, after cleaning couring, melt them without mixing with other iron? have been told I could do so by using a flux of lime you inform me how to use the fux and in what. Can ions, etc., to charge the cupola, which is 22 inche diameter, in order to melt 1,500 or $2,000 \mathrm{lbs}$. of the scrap at a melt? A. The slag can be fused as suggested; but in order to determine the proportion of flux necessary the per cent of iron in the slag must be known. Unless the ful if it on be doub
(17) C. H. B. asks: 1. Is phosphorus very dangerous to handle? A. It may be handled with im punity under water-in the air it is inflamed by ver Will it show light in the dark, and how when dry. seen? A. Exposed to the air and moisture it exhibits (through slow oxidation) a faint, phosphorescent light. istant; darkness this light is fanntly visible 100 yard not at all. 3. What other substance that will sho light without flame? A. You might substitute a small spiral of platinum wire heated to incandescence by the
(18) F. S. asks (1) if
(18) ye 10 . 1900 is Explain all about leap years. A. The earthy 400 . circuit of the sun in 365 days 5 hours and 48 minute $49 \cdot 062$ seconds. This is called the solar year. The civil ear is ordinarily 365 days, the excess (5 h .48 m .49062 s .) amounting in 4 years to very nearly a day. Accordingl each 4th year is given 366 days. But this counts a htle too much, the excess amounting in a century to ears leap years, days. This little over one fourth of a day every century, which is nearly set right by counting each 400th year as a leap year. By these leap years and intercalated days (every civil and solar years are closely reconciled, the object
being to make the seasons permanently accord with the
calendar. By making a further correction of one day every 4000th year, counting each 4000th year as not a leap
vear-the error is so small that 21,600 years must elaps year-the error is so small that 21,6
before it will amount to a full day.
(19) E. S. W. asks: 1. How can I rid a house of cockroaches? A. A mixture, composed of 1 part of powdered borax and 2 parts of powdered sugar sprinkled
upon the floor where they frequent, will soon eradicate hem. 2. How can I find theside of the greatest square contained in a given circle? A. (a) If you mean the square exactly equal in area to the circle, it cannot be done. The square root of the area of the circle will give the side of a square approximately equal to the circle. Or multiply half the diameter of the circle by $3 \cdot 14159$. (b) If you mean the greatest square that can be drawn
within the given circle, draw two diameters at right angles to each other and connect by a straight line any wo adjacent extremities of such diameter. The last line will be the side of the required square. Or, take the square root of twice the square of half the diameter. 3. What is cyanide potassium? A. Cyanide of potas-
sium is a compound of cyanogen and potassium (KCy). It forms colorless cubic or octahedral crystals, deliquescent in the air, and exceedingly soluble in when exposed to the air exhales the odor of hydrocyanic (prussic) acid. The salt is anhydrous, and is nearly as poisonous as hydrocyanic acid itself.
(20) W. H. C. asks: 1. What quantity of oft iron wire should be used in the center of an induction coil $1 / 2$ the size of that described in Supplement
No. 160? A. Make the binder of wires about $1 / 2$ inch in diameter. 2. Why is wire better than one iron rod? a bundle of wires acquires and loses magnetism more (21) J.
(21) J. S. asks: How are carbon points that are used in electric lights made? A. By mixing
finely pulverized gas carbon with a little coking coal, finely pulverized gas carbon with a little coking coal,
and baking the mixture under pressure for several hours days.
(22) A. D. asks: Will you be kind enough to inform me if there is any cure for premature gray turning gray. My hair is thick, and far below my waist in length, but it -is losing its dark color. Is there any thing that could be taken internally to supply the colo ing matter and restore the scalp to a healthy condition A. Consult Scientific American, vol. 38, page 283 robably haly can be restored to a jet black, but injurious to by artificial means, which are decidedy Professor Erasmus Wilson, Scientific Amprican Sur ment No. 102
(23) H. F. asks: Is there a book that con ains all that is new relative to the telephone, micro "Speaking Telephone, Flectric Light, and other Nove ies," contains much on these subjects. You will also merican Struments

Minerals, etc.-Specimens have been reeived from the following correspondents, and examined, with the results stated:
T. S. B.-It is spiegeleisen (mirror iron), produced by melting, in a blast furnace with charcoal, a spathic ised in the Bessemer process of making mangan. W. -The supposed animated horse hair is a species of the genus gordius, frequently found in still water. Linnæus calls it gordius aquaticus.-P. B.-It is magnetite inclo ing granules of apatite or phosphate of lime.-G. L. .-If the pots are to be used for melting fine glass,a cla containing less oxide of iron will be requisite.-B.-Th J. M. H. -The gravel in large box consists chiefly quartz mica, hornblende, and feldspar, derived from the disintegration of a synaitic granite. The sample in small box contains much graphite.-D. M.-A dolerite containing crystallized lime caroonate and iron sulphide
-pyrite.-J. W. C.-Quartz containing illmenite-titanferous iron, and a trace of copper. The quartz is not puriferous.-W. J. B.-No. 1. Haytorite-a quartz chiefly of silica and aluminum silicate, with traces of lime phosphate and sulphate.-H. T.-It is galena (lead sulphide), a valuable ore of lead.

communications received.

On Crank Shafts. By R. G.
On Electric Light Telegraph. By F. P.
On Curious Application of Fluorescence. By P.P.
On Silver Powder. By J. C. W.
The Grand Discovery of the Ages. By D.
The Grand Discovery of the Ages. By
On the Metric System. By J. G.
On Brorsen's Comet. By T. J. L
On Brorsen's Comet. By T
On Planets. By P. \& J. S.

rofficial. 1

INDEX OF INVENTIONS

Letters Patent of the United States were Granted in the Week Ending April 29, 1879,
AND EACH BEARING THAT DATE. [Those marked (r) are reissued patents.]

A complete copy of any patent in the annexed list. ncluding both the specifications and drawings, will be furnished from this office for one dollar. In ordering, lease state the number and date of the patent desired Advertising case, J. R. Carney...................... 214,810
Air and gas compressor, W. F. Garrison 214,769

al trap, G. W. williams 214,	
Axile lubricator	
ball trap, C. M.	
Ea	
Belt shiftin	
Belt and lace le	
Bl	
B	
Bo	
Bo	
Proiler, steakk, J. M. Dick........... 214,814	Rocking chars, elastic attachment to, Beiersdorf 21487
	Sade Bunker......... H....................... 214,871
Ca	
Ca	
Ca	
Car	
Chain link, H. F. Barrows................... ${ }^{\text {24,4,89 }}$	Sewing machine, D. W. Godedll........ 214,903
clothes pou	Single tree coupling, H. E. Braunfela............... 214.4535
	Skylight turret and conservatory, G. Hayes (r).... 8 8,689
	Smoke and cinder fender, railway train,T.B.T.Taylor 21, 297
Collar pad, galvanic, Funk \& Bennett -......... 214,816	
Cooking vessel, G. Hand Aams ${ }^{\text {a }}$ 24,	Spe
	Spinning frames, yarn guide support for ring,
Corner iro	
Corner iron and trunk hinge, M. Maier 214,332	Spi
	spinning s
Cotton and hay press, W. A. O. Callaekhan.......... 214,388	
Cotton sack protector, D. w. Bulluck... 214,880	
	-
	Steam boiler, F. C. Weir \qquad 214,855
1833	
Cultivator, F. B. Kendal1.... 214,825	
Damper for stoves and furnaces, J. . . Brady...... 214,875	Sto
Egr beater, atmospheric, etc., H. E. Marchand.... 214,936	Stoves, fr
	Stump extractor, S. H. McGibeny............... 21,831
Frare register, , .H.H.Hornum.................... 214,774	Teaching arithmetic, device for J. M. Hitchecock. 212484825
Fence, w. v. Russell.................... 214,956	Teleph one, el
Fen	Telephone, electric speaking, G. M. Phelps 21,880
	Tir
Furnaces, cleaning door for, N. W. P. Pratt 214,51	Toy wind wheel. J. L. M. Du Four.. - 214,4995
	Toys, differential gearing for, A. S. Pennington.. 214,339
atus for utilizing waste, H. E. Parson.......... 214,946	Transportation, inland J. A. Collins 21,886
Gearing, A. G. Heinle............. 214,821	
Glass mould and method of removing articles	
Grain crade, Hulbert \& Elliott....................... 214,916	Vegetable cutter. O. H. Burdick...................... 21,8,09
Grain meter, E. Reisert........................ 214,953	Vehicle brake, J. L. Johnston.................. 214,290
Graphoscope, H. Pattberg 214,789	Vehicle wheel, J. Noteman....................... 214,837
Gri	
Hand protector	
Harrow, T. Rogers 214,955	watch chain, J. B. Peck............................. 214,947
Ha	Water closet cistern, J. M. Wilson................ 214,976
Ha	
	Water wheel, turbine, S. Goutner................ 214,904
	Weighing apparatus, C. A. Holcombe............. 21.995
Hay rack, J. H. Jackson 214.1824	Wind engine, S . T. Russell
Hen	Window shade, A. W. Lane..................... 214,296
se hitching device, I. W. Little 214,928	
Hors	ire looper and cutter, W. Wilson, Jr........... 214,977
Horseshoe nail machine. J. E. Wheeler........... 214,9298	
Hub attaching device, J. F. Bednar.................. 214,748	Work box, W. H. Conant 214,477
H	ing and
${ }_{\text {Hn}}$. Needham..................... 214.945
	ting bung bush
Inje	
	DE
chanism for straight, w. Aiken	Articles of stationery, C. J. Cohe
Label holder, J. . B. Gathright 214,770	Bread raising preparation, F. W. Jenkin \& Bro.... 7,247
Lamp burner, S. S.F. Hawley $214,77^{\text {a }}$	oil, Southern White Lead Company.......... 7,243
Land roller and pulverizer, G. W. Alibaugh 214,802	Che
Lapping machine, J. stafford...................... 214,794	Cigars, S. Lowenthal \& Co......................7,240,, ,245
Lathe do	
Lawn or garden sprinkler, C. W. King 214,78	
Lighting,	Lub
Mail bag, Gathright \& Drabelle e.................. 214,47	Rheumatic cure, M. J. Donovane.t.e. 7,253
Milk receiver, F. Donaldson 214,893	8
Millstone dresser, Cookson \& Hart. 214,889	
Millstone dresser, diamond, T. P. Benton........ 214,872	Thread. Lidgerwood Manufacturing Company 7.244
Moulds, runne	
Needle, J.	Pile salve, Fo
${ }_{\text {Packing for }}$	wh
Packing. piston, S. A. Y	
Packizg, salt or oil well, I	ESIGNS.
Pail, th, E. Guittard......................... 214,819	Cooking stoves, N. S. Vedder....... 11,775
Pen holder, fountain, W. W. Stewart.............. 214,7 ,	Spoon and fork handles, H. Vasseur 11,174 Stick 11,174
Photographic pictures, colored, J. B. ${ }^{\text {a }}$. Bonnaud 214,7	Stick candy, G. M. Mills........................... 11,12
Pill machine, B. . . L. Smedey ee.................. 214.449	
Pipe coupling, H. Cain.............. 214,881	
ee joint, w. c. Allison 214,404	Burner for liquid fuel, A. Burbank et al, Rocl
${ }_{\text {214, } 1488}^{212}$	
1., 211,973	Embroidering machines, M. Umstader, Norfolk
214,924	Gas, treatment of, W. H. St. John, Bay shore, N. Y.

The Scientific American EXPORT EDITION.

PUBLISHED MONTHLY.

The Scientific American Export Edition is a larg and SPLENDID PERIODICAL, issued once a month orming a complete and interesting Monthly Recor of all Progress in Science and the Useful Arts through
out the World. Each number contains about ONE HUNDRED LARGE QUARTO PAGES, profusely (1) Mustrated, embracing.
(1.) Most of the plates and pages of the four pre with its SPLENDID ENGRAVINGS AND VALU able information
(2.) Prices Current, Commercial, Trade, and Man facturing Announcements of Leading Houses. I connection with these Announcements many of the
Principal Articles of American Manufacture are exhibted to the eye of the reader by means of SPLENDID NGRAVINGS.
This is by far the most satisfactory and superior Ex Terms for Export Edition FIVEDOOLI
nt prepaid to any part of the world Single YEAR, 50 cents. For sale at this office. To be had at al News and Book Stores throughout the country.

NOW READY.

THE SCIENTIF'IC AMERICAN EXPORT EDITION FOR MAY, 1879, ILLUS TRATED WITH ONE HUNDRED ENGRAVINGS.

GENERAL TABLE OF CONTENTS

1879.

-INVENTIONS, DISCOVERIES, AND PATENTS.
Improved Amalgamator. One engraving.
Barf's. New Process for Preserving Iron.
Avery's Anti-friction Journal Bearing. Three engs.
Japanese Magic Mirror. One engraving.
Japanese Magic Mirror.
Gary Motor. Two figures
Gary Motor. Two figures.
Importance of Patents Abroad.
Emery Band Polishing Machine. One engraving.
New Clutch Pulley. Two engravings.
New Clutch Pulley. Two engravings.
TTelephones and Sounders. One diagram.
Ievephones and Sounders. One diagram.
Improved Emery Wheel Stand. One engravi
New Hydraulic Grid. Three engravings.
A New Locomotive. One engraving.
Therapeutic Machinery. Two engravings.
Improved Mangle. One engraving.
Improved Mangle. One engravin
Milk Cooler. One engraving.
The Patent Right Nuisance.
Recent American Patents.
Meig's Reflector for Candie. One engraving.
Rowells Impored Lens for Spectacles. Two engs.
Mirror Telegraph. Pianos.
Beaty Organs and
New Cut-off for Steam Engines. One engraving.
Edison's Electric Inuminator.
Machine for Testing Lurbicants. Three engravings.
Paper Cutting and Winding Machine. One eng.
A Few Novelties. Thirteen engraving.
Wooden Pendulums.
New Bolting Cioth Inspector. One engraving
New Bolting Cioth Inspector. One engravin
Dies for Pipes and Bolts. Two engravings.
A Simple Ellipsograph. One engraving.

New Rotary Sreamed Enginephone. Three ene engraving
New Satchel Desk. Three engravings.
Moulding and Carving Machine. Four engravings.
Apparatus for Testing Petroleum.
Apparatus for Testing Petroleum.
New Steam Boiler. Two engravings.
Design Patents.
A Novel Motor. One engraving.
New Provision Safe.
Thrasher, Straw Scale, and Sheaf Binider
II-MECHANICS AND ENGINEERING.
Lifting a Railway Bridge.
Large Steel Bridge.
Railway Notes.
Explosion of the Thunderer
Cast Steel Armor for
Cast Steel Armor for Ships.
Machinery in America.
Subterranean Telegraph System.
Longest Tunnel in the World.
Lubterranean Telegraph Sortem.
The Puen Tunel in the Worl.
Pow
A Long Bridge.
Asphalt and Timber Floors.
Underground Telegraph Wires.
Weights that Timber will Sustain.
Screw Propuls
Screw Propulsion.
Coney Island Pier
AII.-MIN Mechanics. Thirteen engravings.
Iron in New Zealand.
Geological Survey of Kentucky.
New Estimate of World's Age.
Hydraulic Gold Mining in California.
Preserving and Ornamenting Iron.
Preserving and Ornamenting Iron.
Meteoric Dust.
The Microphone in Mine Disasters.
The Microphone in Mine Disaste
Large Powder Blasts.
Substitutes for Gold and Silver.
Alleged Vermont Marble.
American Coal in Swizerland.
American Coal at the Medititerrane
Drilling Rock by Electricty.
Product of Iron and Stieel.
Malleable Nickel and Cobalt
V.-CHEMISTRY AND PHYSICS.

Progress of Electric Lighting.
Varying Velocity of Sound.
Astronomical Phenomenon.
Brush Electric Light
Artificial Lighting for Photography.
A Remarkabbe Conflagration. The River between New
York and Brooklyn set on Fire.
Distance of the Sun from the Earth.
Heat without Fuel.
Curious Property of Heat.
Velocity of Light.
Molecular Chemistry.
The Telectroscope.
Antidote to Arsenic.
Purifying Rancid Butter.
Prof. Morton on Gary Moto
Prof. Morton on Gary Motor.
The Preparation of Nitric Oxid
Mr Gary has the Last Word.
Mr Gary has the Last Word.
graving.
Telephone Concert

- NATURAL HISTORY, NATURE, MAN, ETC

Remarkable Accident to a Stag. Two engravings.
Remedies for Carpet Beetles, etc.
Coral.
Grape Phylloxera.
Ice Cave of Decorah, Iowa.

Genesis of the Mosquito.
Calcareous Sponges. Four engravings
Tracing the Hudson Under the Sea.
Tracing the Spudsen.
Fruit of Rose Bush.
Barrel Boring Insects
Barrel Boring Insects.
The Catalpa as a Timber Tree
Discovery of Male Eels.
Discovery of Male Eels.
Window Garden. One engraving.
Formation of Ice Caves. One diagram.
Marine Silk.
Blark Mlldew of Walls.
Large Orange Tree.
Oysters.
Cultivion of Manila Beans.
Strange Freak of Water Fowl.
Dakota Wheat Farm.
William Kingdon engraving.
Dr Isaac Has.
Dr Isaac Hays
Effect of Sea Voyage on Animal:
Notes on the Apple WOrm.
Powder Barrel toring Insects.
The Cotton Worm
The Cotton Worm.
Winter Habits of the Eel
Sex of Flowers.
The eCalamar. One engraving.
The Kanchil, or Pygmy Musk. One engraving
The May Bug , in Europe.
The .Digera Mollusk.
Natural History Notes.
Age of Seeds.
The English Sparrow.
Green Spored Toadstool.
Green Spored Toadstool,
English Saddle Horses.
Prospects of Cotton.
Prospects of Cotton.
Vegetable Cows
The Brown Desmognath. One engraving.
The Orchis Family. One engraving.
Shoeing Horses.
Chicle or Mexican Gum.
Clothes Mot
Equine Antelope. One engraving.
Edible Mussel. Two engravings.
Ramie Fiber.
Scientific Views of Nature.
Soot for Roses.
A merican Sumac.
David Page.
I.-MEDICINE AND HYGIENE.

Diseases among Children.
Ozone in relation the the Health, etc.
The Plague ir. \mathbf{l}
Scarlet Fever.
Odor of Human Hair.
Pain and the Weather
Singular action of Pilocarpine.
Remedy yor Whooping Cough.
Disinfection.
Discipline of Education.
Ether with cod liver oil.
Hand training in Education
Disorder of Bank Clerks.
Presence of Mind. Throats .
A Cuse of Sore
Breathing Noxious V Vapors
Cause of Consumption.
VII.-SCIENTIFIC MEETINGS, EXHIBITIONS, ETC.

Academy of Sciences.
Mexican Exlibition.
New York World's Fair.
Museums of Europe.
Antwerp Ind ustrial Exhibition.
International Exhibition.
Anternational Exhibition.
The National Academy.
The National Academy.
Patentee's Protective Association.
New York Acadeny of Sciences.
III.-INDUSTRY AND COMMERCE.

Industrial Uses of Bamboo
South Afrian Cable.
Public Works in France.
Pumping Money
Manufacture of Sewing Machines Five engravings.
Elegant Cabinet. One engraving.
Cleveland Liehted by Electricity.
Feathers in Textile.
Cheathers in Textile
English vs. American Rails.
Manufacture of Spool Thread. Five engravings.
Postal Zoological Gardens.
Manufacture of Billiard Tables. Six engravings.
American Meats in England.
American Meats in England
Who Originated the Atlantic Cable?
A Word o Insurance officers.
A Word to Insurance officers.
A Rich Chair. One engrrving.
Scented Crematory Urns.
A Suggestive Device.
Electric Lijht in New York Post Office.
Electric Light in Paris.
A Sensible Fashion.
A Cheap Greenhouse.
Interiocking of Homes.
International Postal Card
Internationan Postal
A New Iron Firm.
Modern Enteprises.
A Large Tow.
A Large Tow.
Manufacture of Wire. Five engravings.
World Circuit and Time Puzzle.
Block Island Breakwater.
Block Island Breakwater.
Suspension Bridges of the United States. Four en-
gravings.
Education in China.
Employment and Lab
Employment and Labor in Massachusetts.
Mistake in Honse Building.
New American Industries.
New Northwest.
Railway Notes.
V entilation of Sips at Sea.
Manufature of Tin Plates in New York
Greek Drinking Cup. Two engravings.
IX.- PRACTIICAL RECIPES AND MISCELLA-
NEOUS.

Better Late than Neve
Notes and Queries.
New
New Metallic Paint.
Study to have Ideas.
Formation of Charact
Formation of Character.
Nobility of Science.
When are Laws Discovered.
Marine Glue .
Dangers of Wall Street.
Impatience of Youth.
Seasonable Hints on Painting Walls.
Answers to Correspondents, embodying a large quantity of valuable information, practical recipes, and in-
structions in various arts. structions in various arts.
Single numbers of the Scientific American Export Edition, 50 cents. To be had at this office, and at all postpaid to all parts of the world.

MUNN \& CO., Publishers,
37 Park Row, New York.
To Advertisers: Manufacturers and others who
esire to secure foreign trade may have large and hand somely displayed announcements published in this ediThen at a very moderate cost.
The Scientific American Export Edition has a large
guaranteed circulation in all commercial places throughout the world. Regular Files of the Export Edition are also carried on ALL STEAMSHIPS, foreign and coastwise, leaving the port of New York. Address
MUNN \& CO., 37 Park Row, New York, MUNN \& CO., 37 Park Kow, New York.

FOR SECOND-HAND ENGINES, TO LARGE CONSUMERS OF FINE LIGHT

풒ICRO-TELEPHONE

The VICTOR ROCK DRILL,
 FOR SALE

 Mandecturras of Herses A ND Coffins

$\$ 77$ MMonth and exponese garanted to Agents:
WHITE HOLLY
RARE AND FANCY WOODS,
 15s to Geo lewis street, New york.

Hancocklinspirator

The Jackson Oil Mills.
"THE JACESON OIL MILLS,
Messrs. Fairbanks, Morse \& Co., $\begin{gathered}\text { Cincinnati, Ohio }\end{gathered}$
Gentlemen: After a trial of nearly four months of the
Inspirator, during which time it has been in almost constant use, night and day, it gives us real pleasure to
 of our fathers, and we know of no machine that does its
work as quietly-we may almost say as modestly-and as excellently.

```
                                    AlLISON, Sec'y.
```

Illustrated and descriptive circulars sent on appli-

Hancock Inspirator Co. 52 CENTRAL WHARF,

BOLT CUTTFRE:

Schlenker.s A itomitic Boit funters and HOWARD IRON WORKS, Bufialo, N. Y.
"The 1876 Injector."

BLAKE'S STONE AND ORE BREAKER AND CRUSHER.

Wood-Working Machinery,

 Send for crimalars.

THE FORSTER-FIR-

Patent JEWELER'S LATHE,

 Nanufactured by L. F. STANNDSHNew Haven, Ct. Send for circular.
 PATENT RIGHT FOR SALEE OF A COMPLETE SEW
ing Machine, or to let on royalty Address
 on Chronic malarial potsoning.

 a cien

THE DRIVEN WELL.
 WM. D. ANDREWS $\underset{\text { NEW BRO... }}{\text { Kink }}$

ADDAPID

AGENTS WANTED

HE BEST STEAM PUMP in AMERIC

STEAM PUMPS.

HENRY R. WORTHINGTON Sol hrondwnv, N. Y. so water st., Boston.
 Price list issued Jan. 1, 1879, with a reduction exceeding 30 per cent.

1 CIIIFORIII COLOMI
en thow. Those wishing to know all about and California Colonies, can by addressing California
Colony, 14 W. Swan St., Buffalo, N. Y., or Wendel TO FOREVIEN MACIINIST

IRON RAILWAY TIES AND SLEEPERS.

Prump

ฐrientific American

The Most Popalar Scientific Paper in the World. VOLUME XL.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN beg
to announce that on the Fourth day of January, 1879, a new volume will be commenced. It will continue to be
the aim of the publishers to render the contents of the the aim of the publishers to render the contents of the
new volume as, or more, attractive and useful than any

Only $\$ 3.20$ a Year includinc Postage. Weekly.
This widely circulated and splendidy illustrated aper is published weekly. Every number contains sixteen pages of useful information, and a large niscoveries, epresenting Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity, Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in The Scientific AMERICAN a popular resume of the best scientific ino present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in
every community where it circulates. Terms of Subscription.-One copy of The ScienTIFIC Americaiv will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty
cents by the publishers; six months, $\$ 1.60$; three cents by the
months, $\$ 1.00$.
Clubs.-One extra copy of The Scientific AmeriCAN will be supplied gratis for every club of five subscribers
at $\$ 3.20$ each; ; additional copies at samo proportionate
One copy of The Scievtipic American and one copy
of The Scievtific Americ An Stipplement will be sent for one year, postage prepaid, to any subscriber in tho United States or Canada, on receipt of seven dollars by The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes, Express. Money carefuly placed inside of envelopes,
securely sealed, and correctly addressed, seldom koes
astray, but is at the sender's risk. Address all letters astray, but is at the sender's risk. Address all let

MUNN \& CO.,

37 Park Row, New York. the Postal Union, the Scientific Americ An is now sent ers in Great Britain, India, Australia, and all other British colonies; to France, Austria, Belglum, Germany,
Russia, and all other European States ; Japan, Brazil, Terms, when sent to foreign countries, Canada excepted,
$\$ 4$, gold, for Scientipic AMERICAN, 1 year; $\$ 0$, gold, for both SCIENTIFIC AMERICAN and STPPI,EMENT for 1
year. This includes postage, which we pay. Remit by
postal order or draft to order of Munn \& Co., 37 Pars year. This includes postage, which we pay. Remit by
postal order or draft to order of Munn \& Co., 37 Park
Row, New York,

Caturthympaty.

AIR COMPRESSORS

ROCK DRILLS, GOMPRESSORS, FUSE, POWDER.

BAXTER ENGINE FOR SALE

COLUMBIA BICYCLE Ensy time iesin 7 hours

JOSEPH C. TODD,

J. C. TODD,
 10 Barclay St., New York, or Paterson, N. J.

Mill Stones and Corn Mills We make Burr Millstones, Portable Mills, Smut Ma
chines, , 'ackers, Mill Picks, Water Whels. Pulleys and
Gearing secially adapted to Flour Mills. Send for
catalogue.

The George Place Machinery Agency

H.W.JOHNS'

AIR Eingines.

BOILER COVERINGS.
WITH THE "AIR SPACE" IMPROVEMENTS.

D R RARE OPPORTUNITY, ED

FOR SALE CHEAP, FXPRESSRIFIF,
No. 57 bore. Weighs about 8 liss. English sole leather
case with tools complete. A Aplendid weapon for deer
cand and bear shoting. Built by E. M1. Riley $\&$ Co., London

Mannfacturer of First-cliss Engineers,
 ICEAT 81.00 PER TON The PICTET ARTIFICIAL ICE CO. Room 51, Coal and Iron Ezchange, P. O. Box zase, N. P

 Paris, . , 187 Australia,1877 Phila., . . 1876 Santiago, 1875 Vienna, . 187
J. A. FAY \& CO'S WODD WORKING MACHINERY

Railroad, Furniture, and Agricultural Implement Shope Planing Minls, etc., equipped at short notice, and the lowe cash prices. Send for

THE ONION TRON MILLS. Pittsburgh, Pa.. Manu-

 complete, for any specific structure,so that the differenc
in cost may at one be ascertained. Address
CARNEGIE. BROB. © CO., Pittsburgh, Pa. MINING MACHINERT. Enginfs, Boilers, Pamps,
Coal and Ore Jigs, Dust Burning Appliances, Draming
and advice free to customers. Jeanesville Iron Work

Louisiana SUGAR Growers

KEYSTONE
Vertical Mill

 HARTFORD

STEAM BOILER

 Inspection \& Insurance COMPANYW. b. Franhlin, V. Pres't. J. I. allen, Pres't. J. B. PIERCE, Sec'y.

RUFFNER \& DUNN, Patentees

MACHINISTS' TOOLS. Send for new insurratea cataogue.

HOW TO REMOVE STAINS AND

THIS NEW
ELASTIC TRUSS

Lathes, Planers, Shapers

THE DINGEE \& CONARD COS

Our THE BEST INTHE WORLD

 60 pages elegantly illustrated -and choose from
FIV Hundre Finest Sorts. Address
THE DINGEEE \& CONARD CO.

THE TANITE CO.,

Driven or Tube Wells
 Pyrometers, For atomna heat of

BRADFORDMILI, CO. French Buhr Millstones,

 CINCINNATTI, \mathbf{O}
R. Stewart, Pee,
N. R.Dualap, B|G PAY ${ }^{\text {to }}$ seellour free. Taybor Printing stamp. Sam.

MRATENTS
 MARKS, ETC.

Messrs. Munn \& Co., in connection with the publicaImprovements, and to act as Solicitors of Patents for
Inventors.
In this line of business they have had over thirty YEARS' Experience, and now have unequaled facilities
or the preparation of Patent Drawings, Specifications and the Prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs.
Munn \& Co. also attend to the preparation of Caveats, Trade Mark Regulations, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringement
of Patents. All business intrusted to them is done with special care and promptness, on very moderate
We send free of charge, on application, a pamphle containing further information about Patents and how Copyrights, Designs, Patents apeng rade Mark ringements, Assignments, Rejected Cases, Ilints on the Sale of Patents, etc.
Synopsis of Foreign l'ate also sena, method of securing patents in all the principal countries of the world. A merican inventors should bear in mind that, as a general rule, any inveution that is valumuch in England and some other foreign countries. Five patents-embracing Canadian, English, German, clusive monopoly to his discovery among about on gundied and fifty millions of the most intelligen people in the world. The facilities of business and
steam communication are such that patents can be obtained abroad by our citizens almost as easily as a 75; German, $\$ 100$; French, $\$ 100$; Belgian $\$ 100$; Can dian, $\$ 50$. Patents, Persons desiring any patent Copies of Patents.-Persons desiring any patent
issued from 1836 to November 26. 1867 . can be supplied with official coples at reasonable cost, the price ca pending upon the extent of drawings and length of
specifications. 27,1867 , at which ings and specifications, may be had by remitting to thisoffice $\$ 1$.
A copy of the claims of any patent issued since 1836 will be furnished for $\$ 1$.
please to remit for the same as above, and state nan
A pamphlet, containing full directions for obtaining United States patents sent free. A handsomely bound
Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every pat entee and mechanic, and is a useful hand book of refer
ence for everybody. Price 25 cents, mailed free.

Address MUNN \& CO
Publishers SCIENTIFIC AMERICAN,
37 Park Row, New York.
BRANCR OFFICE
Washington, D. C.

