

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Purifying Rancid Butter.

Calvin Peck some ten years ago obtained a patent for re storing and preserving butter; his invention relates to a new process for purifying butter, having especial reference to arresting fermentation and restoring rancid butter. His process consists in melting the butter in a clean vessel under a slow and regular heat, and while it is melting he adds two ounces of pulverized alum to every five pounds of butter, the butter being stirred gently while melting. When thoroughly melted it is strained through a fine strainer into clean cold water. The butter will rise to the surface quite pure and transparent. The alum coagulates the albumen, the caseine, and other foreign matter, all of which are retained in the strainer, leaving the butter perfectly pure and clean, and of uniform consistency.
When the butter is sufficiently cool to be in good working order, it is carefully taken out and thoroughly worked, adding to each five pounds of butter three ounces of good dairy salt, one ounce of clean saltpeter, and one ounce of pulverized white sugar. The butter is then packed in clean vessels, and is fit for use.
By covering it with strong brine and keeping it in a cool place, it is claimed it will remain sweet for any desired length of time.
Apropos to the above a correspondent in Land and. Water answers an inquirer in its columns who wants to know how to sweeten rancid butter, as follows: If her butter is very bad, premises the writer, I cannot promise that the following plan will entirely restore it; but I can at least describe a process which I once watched at an agricultural show, where a machine for washing butter was at work and where some very horribly odorous butter was in a few minutes
rendered edible. It did its work very quickly and by the simple turning of a handle, and the same sort of process might be accomplished by means of a wire sieve or a strainer anywhere. The butter was forced through a finely perforated receptacle into a large tub of fresh cold water. It came rapidly raining down in a fine capilliform shower, lying upon the clear water in a tangle of golden filaments, singularly beautiful, till the water was all covered with them. When the whole lump had been thus transformed into yellow threads, they were stirred and beaten about in the water with a wooden beater; then collected and pressed into a fresh limp of greatly improved appearance, and again forced through the machine in another shower of delicate filaments. This process was repeated several times, till the butter had been washed literally through and through.

Shoeing Horses.

The Rev. W. H. H. Murray, whose advice is worth heeding, says about shoeing: The nails should be quite small and driven in more gently than is the custom. There is no reason why the smith should strike a blow at the little nail head as strong as he would deliver at the head of a spike in an oak beam. The hoof of the horse is not an oak stick, and the delicately pointed and slender headed nail is not a wrought iron spike, and yet you will see the nailer whack away at them as if it was a matter of life and death to get them entirely set in at two blows of his hammer. Insist that the nailer shall drive his nails slowly and steadily, inead of using violence. In this case, if his nail is badly pointed and gets out of proper line of direction, no great in-
jury is done. It can be withdrawn and a new one substituted, without harm having been done the foot. But the wift, blind, and violent way prevents all such care, and exposes the horse to temporary, if not permanent injury Gentleness should be exercised in clinching the nails. Neve allow a smith to touch a rasp to the outer surface of the hoof. Nature has covered it with a thin filament of enamel the object of which is to protect the inner membrane and fiber from exposure to water and atmosphere. The ename is exactly what nature puts on the surface of your finge nail, reader. Under no circumstance should it ever be touched. If it is removed nature will be wickedly deprived of her needed covering, and cruelly left exposed to the ele ments.

AMERICAN INDUSTRIES, NO. 13
the manufacture of wire
Wire rope has become an important article in almost every branch of industry, and its uses are constantly multiplying. trength for strength, it is now cheaper than the manila or ordinary hemp cordage used for hoisting or rigging purposes, and when used as a substitute for belting or shafting in conveying power long distances, the cost is trifling when compared with them. The use of galvanized ship rigging is rapidly increasing, and a majority of all vessels which have been built within the last ten years have been fitted throughout with wire standing rigging. Its elasticity is about the same as that of hemp, while its lasting qualitie are equal to that of the ship it is used on. In our presen issue we give a brief description of the methods followed at [Continued on page 322.]

Fig. 1.-THE MANUFACTURE OF WIRE.

Sriontific Ampriram.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.

published meekiy at

NO. B'Y PARK ROW, NEW YORK.

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.
One oopy one yar. postape included.i.i.
 sume proportionate rate. Postage prepaid

mUNN \& CO., 37 Park Row, New York.

The Scientific American Supplement
is a distinct paper from the SCIENTIFIC AMERICAN. THE SUPPLEMENT is issued weekly. Every number contains 18 octavo pages, with handsome
cover. uniform in size with Scerintific American. Terms of subscription for Superemert, 85.00 a year, postage paid, to subscribers. Single copies
10 cents. Sold by all news dealers throughout the country. 10 cents. Sold by all news dealers throughout the country.
Combined Rates. - The Scievtific American and will be sent for one year, postage free, on receipt of seven dollars. Both will be sent for one year. postage tree, on receipt of
papers to one address or different addresses, as desired.
The safest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 37 Park Row, N. Y. Address MUNN \& CO., 37 Park Row, N. Y.

Scientific American Export Edition. The SCientific American Export Edition is a large and splendid per-
odical, issued once a month. Each number contains about one hundred
arge quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the SCIENTIFIC
Amprican, with its splendid engravings and valuable information : (2.) AMPRICAN, with its splendid engravings and valuable information: (2.)
Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, 85.00 a year, sent prepaid to any part of the world. Single copies 50 cents. Manufacturers and others who desire
to secure foreign trade may have large, and handsomely displayed an to secure foreign trade may have large, and handsom ely displayed an-
nouncements published in this edition at a very moderate cost.
The ScIEvTIFIC AMEIICAN Export Edition has a large guaranteed circulation in all commercial places throughout the world. Address MUNN co. 37 Park Row, New York.

VOL. XL., No. 21. [New Series.] Thirty-fifth Year.
NEW YORK, SATURDAY, MAY 24, 1879.

Contents. (Illustrated articles are marked with an asterisk.)	
Anæsthetic. new Ane.......... .. 331	Inventions, miscellaneous......... 326
Arsenic antidote to 321	Iron frm, new.
A word to insuran	Iron,preserving
co	Meteoric dust.i.l.i.l.i... ... ${ }^{330}$
	Therophene, he, in mines........ 32
Rutter, rancia, purifying......... 319	Mocrern enterpri
Cable, Atlantic.	Moulding and carving machine*. ${ }^{323}$
rich*	ric oxid
Cotton, prospects	Orchis family, the $:$:................: 327
Cows, vegetable.	Patents, American, recent........ 325
matory urns, scented.......... 325	Postal cards, in
Iosmognath, the brown*......... ${ }^{329}$	${ }^{\text {Powder blasts, }}$ Presence of mind
Dies for pipes and bo	Rotary engine. neww*........... ${ }^{3} 3$
Disorder of bank clerks......... ${ }_{\text {Wducation, hand training in.... }}^{321}$	Satchel
ectric light in Cleveland........ ${ }_{329}$	Shoeing horses.................... 319
Eleetric light	Sore throats, a caus
tric light in	
sograph, a simple............ 330	Telegraph wires, undergroundi.:
ding the California desert... 324	a 1
, aspha	
r, rar . Morton on	Wire, manufacture of**.........: 319
enhouse, a cheap............... ${ }_{325}^{325}$	World circuit and time puzzle.... 321

TABLE OF CONTENTS OF
the sientific american supplement NO. 177.

For the Week ending May 24, 1879

THE MENTAL REQUIREMENTS OF MODERN

 ENTERPRISES.Formerly the art of war, statecraft, the bar, the pulpit, poetry, and philosophy monopolized the brains of mankind. In these professions and pursuits men of superior mental force found expression for their thoughts; and besides these here were few occupations likely to invite or to develop the higher order of minds. The magnitude, complexity, and scientific character of modern material enterprises-commer-
cial, constructive, manufacturing, agricultural, and the like -have well nigh reversed the old state of things. The learned professions, so-called, no longer offer the only nor even the most inviting fields for intellectual effort; nor do they furnish the most effective means of mental development and culture. As an inevitable result, professional men no longer overtop their fellows in intellectual stature. Indeed it is sometimes asserted that the highest order of minds are now drawn to practical affairs, leaving to the professions only those of inferior rank. Relatively this may be largely true; yet it by no meansfollowsthat the leading men of to-day in the purely intellectual callings are in any way inferior to the average of their predecessors. They are tried by a higher standard they are surrounded by non-professional men of a mental stature impossible in former times; and so, although really great, they seem relatively small. Many a soldier, statesman, jurist priest, or writer, vastly famous in his day, owes his historic greatness rather to the littleness of his neighbor than to his own intrinsic nohility.
Speaking of the requirements of modern transportation, Prof. David Swing remarks that men are giving to railways now a mind which travel and carriage could never have thus diverted from learned pursuits when men journeyed on horseback or carried goods in pack saddles. In those days only a few boys who could feed horses, and a few drivers who could flourish a whip, were absorbed by the carrying business. The railway, with the pomp and circumstance of its engines and palace cars, its vast machinery and money power, now attracts and employs men who would have been Pascals and Newtons, and Wesleys and Washingtons a hundred years ago. The external management of the railway has created, he says, the "railway king" of to-day, who had and could have had no counterpart in the days of the pack-horse; and as a consequence we must admit that "the steam car diverts great brains, and places upon the railway throne men who would once have been princes in statesmanship, or literature, or religion."
"Of course," remarks Professor Swing, " to this statement the objection is ready that perhaps the railway is making men of large brains out of those who would have been only teamsters in the mountains or sleepy drivers along a canal. This objection is indeed valid; but after you have estimated it at its full worth, the feeling will yet remain that many of the modern material pursuits are so immense and attractive, that they are actually drawing away a brain power which in other circumstances might-have found its way into the field
of high statesmanship, or high thought, or into a broad and powerful pulpit."
The underlying sentiment of this complaint seems to be a vague and unreasonable fear that just so far as practical af fairs call for and develop mental force and a high quality of thinking, statesmanship and philosophy and religion, and all the other purely intellectual pursuits, will be robbed of their supply of superior men. If the mental force of the race
were a fixed quantity, and every great mind employed upon invention or transportation or other material pursuit must of necessity be diverted from statecraft, philosophy, or literature, there might be some ground for complaint-provided it were certain that invention and productive industry were less beneficial to the race than a correspondingly high order
of closet thinking. But the mental force of a people is not a fixed quantity; and instead of diminishing the supply for any particular calling, every new calling which invites or develops a higher order of intellectual power or executive capacity practically increases the mental f
The cirum if not immediately.
The circumstance that our preachers and politicians do not tower above the rest of men as they used to is no evidence that they are intellectually inferior, but rather that the common intellectual average of men of affairs is higher than it used to be. To manage properly a great railway, steamship line, manufactory, or to devise and develop a novel and use-
ful industry, often calls for a wider range of knowledge, higher grade of intellectual and moral force, than is needed to rule a state, command an army, compose a book of philosophy, or fill the loftiest pulpit.

three successful efforts.

Three notable feats of human effort and endurance have just been brought to successful issue. The first was of questionable utility in spite of the possible advantage of knowing the maximum capacity of the human frame for long-continued and severe exertion. In the six days walking and running match, in London, ending April 26, the winner's score was 542 miles, beating by 21 miles the best previous record in a similar contest. During the first three days the winner, Brown, made 300 miles, a feat never before achieved. It is said that he left the track at the close in excellent physical condition.
The second achievement was also of doubtful utility. As a means of advertising his already sufficiently advertised swimming suit, designed for life saving. in case of disaster
at sea, Capt. Paul Boyton undertook last winter the terrible task of floating and paddling from Pittsburg to New

Orleans. The Ohio was full of ice when he started, and the venturesome swimmer was often in imminent peril from being crushed in the ice floes as well as frozen by the intense cold. The voyage of 2,342 miles was completed in 80 days, the voyager being reduced almost to a skeleton by the severity of his self-imposed task.
Of a very different nature was the splendid feat of the Sugar Notch coal miners, who, to rescue seven comradessix men and a boy-buried in a mine, accomplished the great work of driving and timbering a passage way of 1,200 feet through rock and coal, mostly rock, in the brief space of four days and nights. The imprisoned miners were found alive and well, notwithstanding their confinement of five and a balf days. The party had been shut in by the falling of some acres of mine roof, caused, it is said, by a reckless stripping of the supporting pillars of coal; and luckily the door boy, who had gone in to warn the miners of their danger when the roof began to give way, rode a mule, which the men killed and ate after they found they could not get out. There was plenty of pure water in the mine, and, though gas accumulated somewhat in places, a spot was found where the air was fairly good and it was safe to build a small fire for cooking their mule meat.
It must not be forgotten that the noble band of rescuers toiled with slender hope of finding their buried comrades alive. If the latter had not been crushed by the falling roof or drowned by water, there was a strong probability that they had perished by the fire which broke out in the mine when the roof fell, or had been smothered by the liberated gases of the coal. Yet the bare possibility of saving life urged the generous toilers on, and happily their efforts were rewarded by the highest success.
The men who planned and cut the relief drift were not urrounded in their labors by admiring crowds, like the con estants for pedestrian honors; they had not the almost daily "grand receptions," " ovations," and the like which gave the river swimmer an abundance of noisy notoriety and sub stantial encouragement. They were probably unconscious of doing anything specially commendable; anything more than any miner would do for a comrade in distress. Yet who will say that the achievements of Brown or Boyton, however plucky or enduring, were not trivial in comparison?

the electric light in paris.

The application of the General Electric Light Company for a three years' concession of the lighting of a number of public ways in Paris was rejected by the Municipal Council, January 28; and it was decided, at the same time, that the city should no longer contribute pecuniarily or otherwise to the experiments of the company. The reasons for this decision are, in brief, the practical failure of he electric light to meet the wants of public lighting steadily, efficiently, and economically. In their report the Counil express the conviction that electric lighting is still in a pe riod of trials and tentative processes, especially as to the reg ularity of its working. The frequent number of extinctions and their duration require the maintenance of gas apparatus concurrently with the electric apparatus, thus complicating matters and increasing expense. Finally, the high cost of electric lighting does not allow of its adoption for public uses.
Very naturally the City Gas Company is much elated at he failure of what threatencd to be a serious rival. In the annual report of the Council of Administration of the company, presented March 27, it is asserted that the clectric light was unequal in intensity and color; in foggy weather its brilliancy diminished with distance much more rapidly than gaslight; and its sudden and frequent extinction made it in compatible with the requirements of a service so important as public lighting. This everybody knew; but not so many were aware that in the Avenue de l'Opera a steam engine of twenty horse power was necessary to supply the electric centers extending along 360 meters, and that the application of electric lighting to the 1,800 kilometers of the streets of Paris, at present lit by gas, would require a motive force of 100,000 horses, more than double the power employed in all the industrics of the departments of the Scine and Seine-et-Oise united; and the street lighting represents only the ninth part of the gas lighting in Paris.
How far a report by the clectric company would modify these assertions we do not pretend to say. Obviously, how ever, up to this stage of the contest the victory rests with gas. At any rate the officers of the gas company are confident that the gas industry has nothing to fear from electric experiments thus far conducted.

NEW PROCESS FOR PRESERVING AND ORNAMENTING

 IRON.We recently published an account of the Barff process of reserving iron by forming upon its surface an enamel of ron oxide by means of superheated steam and a high tem-都
We have now to describe another process, discovered by I. Dodé, bý which iron is not only preserved from rust, but its surface may be ornamented, so as to resemble gold or sil ver, all at a comparatively small expense.
In the Dodé process the iron article, cast or wrought, is first dried, and then dipped in or painted with a composition of borate of lead, oxide of copper, and spirits of turpentine, which soon dries on the surface of the article. The objects are then passed through a furnace and heated to cherry red, the highest temperature being from 500° to $700^{\circ} \mathrm{F}$. At this heat the metallic pigment fuses, enters the pores of the iron
and becomes homogeneously adherent thereto. Iron articles so heated are rendered impervious to rust. The process is superior as a preservative to galvanizing, while the cost is estimated at only half a cent per superficial square foot. This coating is of dark color.
The above is the foundation process, after which other processes, which give ornamentation to the article, may be added as follows: After the iron has been treated as just described, it may be enameled, so as to have a smooth polished surface, by painting it with a compound made of borate of lead, litharge, and essence of lavender. An extensive variety of colored enamels, of great durability and fine polish, may thus be produced. The cost is two to three cents per super ficial square foot.
When an ornamental surface resembling dull silver is wanted, the iron article, after having been treated by the process first above described, is now painted with a mixture of dry chloride of platinum dissolved in ether. The article is then again heated to 350° to 400° Fah., whereby the platinum becomes incorporated with the inoxidated surfaces, and a firm, durable, and excellent dull silvered appearance is attained. The cost of this last process is stated to be from three to six cents per superficial square foot.
When a highly polished silver surface is wanted, two coats of the cnamel, before mentioned, are first given, and an increased quantity of the platinum solution is used.
A golden surface, instead of silver, may be obtained by preparing a compound in which chloride of gold instead of platinum is used.
A paper on this discovery was lately read before the So ciety of Arts, London, followed by a very interesting discusciety of Arts, London, followed by a very interesting discus-
sion, all of which are given at length in our SUPPLEMENT sion, all of which are given at length in our Supplement
for the current week, No. 177. Many splendid specimens of iron articles trented by the process were at the same time submitted for inspection.

WHO ORIGINATED the atlantic cable?

The recent cable celcbration has called out a claim for the late Col. John Henry Sherburne, of Washington, D. C., as deserving the honor of originating occan telegraphy. The claim is based on the following entry in the journal of the Senate of the United States Senate for the second session of the XXXth Congress. to wit: "Monday, January 28, 1849. The Vice President presented the memorial of John Henry Sherburne and Horatio IIubbell, praying the aid of Government in the establishment of a telegraphic communication across the Atlantic Occan, which was referred to the Committec of Commerce."
In the memorial referred to the geographical points are indicated from which the communication can be most conveniently made between Newfoundland and Ireland, the distances given, the probable existence of soundings quite across suggested, or the possibility of anchoring buoys without soundings, and the apparatus necessary to effect the design
The sudden death of Colonel Sherburne is claimed, by his son, to have prevented the carrying out of his father's favorite project.
The right of Cyrus W. Field to the honor of inaugurating the first Atlantic cable does not seem to be in any way lessened by the earlier project of Colonel Sherburue and Mr. Hubbell. The idea of occan telegraphy was not original with cither. As early as 1842 , Professor Morse telegraphed through insulated wire, a submarine cable, stretched between Castle Garden and Governor's Island. And with reference to later investigations, Professor Morse wrote in a letter to the Secretary of the United States Treasury, under the date of August 10, 1843, these memorable words: "The practical inference from the law just clucidated is that a telegraphic communication on my plan may with certainty be established across the Atlantic! Startling as this statement may now seem, the time will come when the project will be realized."
Possibly, if Colonel Sherburne had lived, he, and not Mr. Field, would have been the founder of the first Atlantic Field, would have been the founder of the first Atlantic
Telegraph Company. Possibly also he might have fought the enterprise through to successful issue. This, however, is a question of fact, not of possibilities. Col. Sherburne proposed-and died. Mr. Field proposed, and happily lived to sce his plans succeed.

THE WORLD-CIRCUIT AND TIME PUZZLE

The everlasting problem of the two men traveling in opposite directions around the world and meeting to find their time reckoning at variance, must be the source of much revenue to the postal department. Sooner or later every youth falls foul of it, and, getting into a dispute over it, appeals to his favorite newspaper for a decision. The number of such communications coming to the office of the Scientific American is in one sense highly gratifying, in that it shows no small percentage of the youth of the country to be among its friends. Nevertheless the incessant repetition of even an intercsting question becomes monotonous in the course of y ears. In the hope of setting the matter at rest for a little ing of disputation, the question may properly be taken out ing of disputation, the question may properly be taken out
of the department of "Notes and Queries," and considered of the department of "Notes and Queries," and
at greater length than would be possible there.
The great trouble with the question clearly arises from the circumstance that it involves two different ways of noting time-by sunrises, and by actual duration as measured by the clock-while those who attempt its solution do not always seep the two ideas of time distinct and separate.

Sometimes the journey is supposed to be made in one day
at others a year is allowed. Let us begin with the first case. Assuming it possible to travel at the rate of 15° an hour, so as to make the circuit of the world in twenty-four hours, we will consider the cases of A, B, and C, the first going westward, the second eastward, the third remaining at home. The time of starting is, say, noon, January 1, and each is pro vided with an accurate calendar clock.
At noon, January 1, A starts on his journey, travels with the sun, and makes the circuit of the world in twenty-four hours by the clock.
B, starting at the same instant, travels eastward at the same rate (15° an hour), and completes his journey in twenty-four hours by the clock.

C remains at home.
When it is noon, January 2, by C's reckoning, both by the sun and by the clock, the three men compare their reckonings. Obviously the three clocks will agree in indicating noon, January 2. During the preceding twenty-four hours, however, the sun, to A, has been steadily at the meridian, and utterly useless as an indicator of time movement. A has seen neither sunrise nor sunset, and in comparison with C's sun reckoning, he has missed one sunrise, and has accordingly lost one day. Meantime B has seen the sunrise twice, once more than C , and twice more than A . By sun reckening, therefore, A and B are two days apart.
Suppose the time of the journey prolonged to a year of 365 days, the calendar clocks not being interfered with. Obviously all three clocks will register the same absolute duration, and stand, at noon, January 1, one year later than the time of starting.
Assuming A's progress westward to be uniform, he must, by the direction of his travel, lengthen each day (in other words, put back sunrise) nearly four minutes, the aggregate for the year making one whole day; and of course, if his speed is variable, that would be the average gain-that is, to each day's length, making the aggregate number of diys for the year one less than if he had stood still. As a consequence, he will see the sunrise but 364 times in 365 days by the clock in other words, his date by sun reckoning will be noon, December 31, the year of starting.
The days of B, on the other hand, will be similarly shortened. He will see the sun rise 366 times in 365 days by the clock, and his date, by sun reckoning, will be noon, January 2 , the year after starting.
Thus, reckoning by sunrises, A will be one day behind C, and B one day ahead of C. The reckoning of A and B will, therefore differ by two full days.
Since the meridian of 180° E. or W. of Greenwich falls in mid Pacific, touching no land of consequence, it is usually chosen as the line for time correction, the day lost or gained being there added or dropped, as the case may require.

PROF. BERT'S NEW ANESTHETIC.

Not long since we calied attention to an important paper read by M. Paul Bert before the French Academy, and in which the author suggested the benefits to be derived in surgical operations from the use of nitrous oxide as an anæsthetic, when combined with oxygen and administered under tension. M. Bert's conclusions were drawn solely from experime
mals.
The first trial of the new anæsthetic on a human being has recently been made in Paris, and has proved so successful in every respect that it deserves to be made known in all its de-
tails. The experiment, according to the Paris correspondent tails. The experiment, according to the Paris correspondent of the Lancet, was performed on the 13th of February, in the "Acrỏpathic" establishment of Dr. Daupley, Rue Malesherbes. Dr. Labbé, surgeon to Lariboisière Hospital, was to operate on a young woman of twenty for in-growing nail; and M. Préterre, who has great experience in the use of nitrous oxide, was to apply the gas. The other persons present were Prof. Paul Bert, and MM. Reynard, Laffont, and Blanchard. At 11 o'clock the party entered the large compressing bell of the establishment, and the patient reclined on some mattresses on the floor. At ten minutes past eleven the pressure had increased to 17 centimeters without any of the party having experienced any discomfort, except some noises in the
ears and a feeling of tension in the membrana tympani, but which were easily removed by a movement of deglutition. At this moment M. Préterre applied to the patient's nose and mouth the apparatus which he is in the habit of using, and which communicated with a large bag containing 120 liters of the following mixture: Nitrous oxide, 85 parts; oxygen, 15 parts. After a few scconds of hesitation the patient began sibility and muscular relaxation were complete minute insenthen leisurely performed the opere complete. Dr. Labbé then leisurely performed the operation, during which the
patient never gave a single sign of pain or reflex action. Her eyes were shut and insensitive, the pupils slightly contracted. About the fourth minute, as Dr. Labbé was beginning the dressing, there were a few contractions of the hands and feet; but this was all, and, as the operation was now over, the apparatus was removed.
It was then fifteen minutes past eleven. The contractions ceased, and the patient remained motionless and asleep for half a minute. She then complained of pain in her toe, and
cried a little. Less than a minute afterward she cried a little. Less than a minute afterward she sat up, and declared she had felt nothing during her sleep, but that (to
use her own words) "she had gone to heaven, and had seen everything blue with stars." She declared she felt no pain, except slight headache, to which she is subject. Nothing could be more striking than this calm and quiet awakening,
compared with that which follows chloroform. Her pulse had been constantly calm, and her complexion natural and rosy.
The following technical figures given by Prof. Bert are of scientific interest: The depression commenced at 11:15 o'clock, and ended at 11:19. The total pressure having as cended to $75 \mathrm{c} .+17 \mathrm{c} .=92 \mathrm{c}$. The tension of the nitrous oxide was expressed thus: $85 \times \frac{92}{7} \frac{2}{5}=104$, or, in other words, was slightly above that of pure nitrous oxide breathed in the open air under normal tension. The tension of the oxy gen was $15 \times \frac{92}{75}=18 \cdot 4$, or, in other words, slightly below that of ordinary air (20.9). But the difference is too slight to be of any consequence.
This experiment has successfully shown that Prof. Bert's mixture, which does not produce any anæsthetic phenome non under ordinary pressure, has the effect when applied un der tension of producing complete insensibility. Prof. Bert, therefore, claims for the new anæsthetic that its application is simple, that it is easily dosed, that it is perfectly harmless, and that it is not preceded by a period of excitement, or fol lowed by the stage of reaction.

The Microphone in Mine Disasters

The buried miners at Sugar Notch tried very hard, by pounding on the walls and doors of their rocky prison, to let their friends outside know they were alive, but did not suc ceed. The question is raised whether the long and distressing uncertainty as to their fate might not have been relieved had a microphone been employed. Also whether it would not he possible to devise and make known to all workers underground a simple code of microphonic signals, to be underground a simple code of microphonic signals, to be
communicated by rapping and heard by means of the micommunicated by rapping and heard by means of the mi-
crophone, whereby some sort of intercourse might be kept up between those without and those within a mine under such circumstances.

International Postal Cards.

The Post Office Department has approved a design for the new international two cent postal card provided for by the Universal Postal Union and the recent act of Congress. On the upper left corner are the words " Universal Postal Union, United States of America," in English and French, the Postal Union requiring that the inscription shall be in the language of the country from which the card is sent and in French. On the right upper corner is the stamp, consisting of the head of Liberty copied from the gold double eagle, surrounded by a ribbon border, with a monogram "U. S." at the top and a buckle at the bottom with the figure " 2 " in octagon blocks on either side. In the upper half of the circle are the words "postal card," and in the lower half "two cents." The card has also, to more clearly define it from the ordinary one cent card, a neat border around the edge on the address side.

Hand-Training in Education.

In a paper on hand-training in the public schools read before a Massachusetts County Teaching Association, the reader, Rev. G. L. Chaney, laid special emphasis on the need of giving public school children the proper bias toward, not against, manual labor. At present children are taught in such a way that they look down upon manual labor. Education should not thus be prejudicial to the la labor. Education the country. Industrial education is abboring interests of the country. Industrial education is ab-
solutely necessary for us as a people. Hand-training is in solutely necessary for us as a people. Hand-training is in
reality mind-training, or "brain-building by hand." Mr. reality mind-training, or "brain-building by hand." Mr.
Chaney argued that special trade schools should be mainChaney argued that special trade schools should be main-
tained by manufactories, for which the public school training should be a preparation. The work of the Industrial School Association in Boston was alluded to as an example of what might be accomplished in the manipulation of tools common to all the trades.

Antidote to Arsenic

Dr. James B. McCaw, according to the Canudian Journal of Medical Science, remarks that dialyzed iron (which has recently been recommended as an antidote to arsenic) is simply a peroxide of iron, and exceedingly sensitive to oxygen. Hence, on slight exposure to the atmosphere, it unites with the oxygen of the latter, forming a solid oxide. He suggests the following formula as one not generally known for an antidote to arsenic, and claims for it precedence over all others; first, because it forms the surest antidote; and second, because the ingredients are always readily accessible, even to the country physician who carries saddle bags: Tincture of chloride of iron, one drachm; bicarbonate of soda (or potash), one drachm; tepid water, a teacupful. Mix. The sesquioxide of iron is immediately formed in a solution of chloride of sodium. Give this mix ture almost ad libitum. It is a perfect antidote to arsenic.

American Coal in Switzerland.

The Continental and Sioiss Times, published in Geneva, ontains the following suggestive advertisement:
"American anthracite coal for sale at 50 francs per 1,000 kilos. Carriage free. Apply J. Lafond, 10 Ruc Bonivard."

If American coal can be sold at a profit in Geneva, we see no reason why a more advantageous market may not be found at Marseilles and other ports on the Mediterranean, thus furnishing an opening for another of our products.

Professor Lewis Swift, of Rochester, has been clected Fellow of the Royal Astronomical Socicty of England, as a token of appreciation of his astronomical discoveries.

the mandfacture of wire.

[Continued from first page.]

the works of "The John A. Roebling's Sons Company," at Trenton, N. J., for preparing the wire used in the manufacture of wire ropes and bridge cables.
The first operation necessary in making wire of either iron or steel, is that of rolling a wire rod from a solid bar, which usually is either $11 / 4$ or $1 \frac{1}{4}$ inch square. These bars are heated in a furnace to a welding heat if of iron, or to a bright cherry-red heat if of steel. They are then passed through the rolls a number of times-the size each time re-ducing-until the short thick bar becomes a very long round rod. As the size is reduced and the length is increased, it becomes possible to have the rod in several sets of rolls at the same time, and each of the rolls is reducing the size. This rolling mill, which is shown in our engraving, is arranged on the Belgian system, and is the first one introduced in the United States. It is capable of rolling rods which will make a piece of telegraph wire half a mile in length. After the rolling the reductions of size are accomplished by cold drawing through a steel die. This operation is shown in the sketch entitled "Wire Drawing." The coiled iron rod is placed on a reel, and is drawn through the die by a wire block, which winds it again into a compact coil. After being drawn cold once or twice the wire becomes very

Example.-A horizontal beam, 16 feet in length, sustains a floor 2 feet each side of it-if the weight of floor and load that may be expected to get on it be taken as 75 pounds per square foot, we should find the total load sustained by the beam to be its length, multiplied by the number of square feet sustained, multiplied by the load on each square foot, or $16 \times 4 \times 75=4,800$ pounds. This would be equivalent to a center load of 2,400 pounds.
2 d . (Converse of first.) If a beam sustain a certain load a the center, it will sustain twice as much load, provided it be uniformly distributed.
3d. The safe load should not exceed one fourth or one fifth the breaking load in bridges, or in floors subject to much vibration from moving bodies. In roofs the safe load should not exceed one fourth or one third the breaking load. (These precautions are necessary for two reasons: timber is injured by a load much below the breaking load, and imperfections n workmanship and materials are constantly occurring.) 4th. (The safe load is assumed to be one fifth the breaking oad.)
To find the safeload that a horizontal pine beam, supported t both ends, will sustain:
Rule.-Multiply the breadth of a beam by the square of its depth, and that product by the number 90 ; divide this result by the length of the beam between the supports, and the quo
ain safely at center when there is supposed to be no support at its center? If borizontal and 16 feet long, the safe center weight $=2 \times 16 \times 90$ divided by 16 , or 180 pounds: dividing this result by 16 and multiply by 20 , the safe center weight is 220 pounds. This would correspond to a uniformly disributed load of 440 pounds. If the rafter be supposed to carry two square feet for each foot in length, the load would be 104 pounds to each square foot.

Note.-A rafter of these dimensions would need a support at the center; in that case its horizontal span would be 8 feet instead of 16. The result would be a safe center load of 440 pounds, or a safe distributed load of 880 pounds; but this is distributed over a rafter 10 feet long instead of 20 , so that on the same supposition as before the safe load becomes $41 \cdot 6$ pounds per square foot; a safe load for any roof.
Remark.-This rule, although sufficiently exact for ordi nary purposes, and safe for ordinary roofs when the factor of safety, five, is used, must be replaced by more exact and complicated rules when very exact results are required. 'This is safe for all farm buildings.
6th.-When the dimensions of a horizontal beam that will safely carry a given load are wanted, the following rule must be used:
The product of the breadth into the square of the depth equals the ioad at the center divided by 90 for pine, or by th

Fig. 2.-DRAWING STEEL WIRE

stiff and hard, which makes it necessary to anneal it and get it in such a soft condition that it will admit of further cold drawing if desired. The annealing ovens are represented as being discharged in the upper right hand view. The wire is allowed to remain in the annealers at a dull red heat for twelve hours. All the labor and hoisting in this department are done by hydraulic machinery. After being annealed the wire has a very thin coating of oxide of iron on its surface, which it is necessary to remove before the wire can be fur ther reduced by cold drawing. The oxide is dissolved in a weak solution of sulphuric acid, and a coating of lime water is then put on to keep the surface of the wire bright and prevent it from rusting. This operation is shown in sketch entitled "leesing the wire." The method of drawing steel wire is substantially the same as that for iron, the difference being that it requires more care and greater experience. The size to which wire is drawn is regulated by the size of ropes it is intended to make; this ranges from No. 3 wire gauge, which is $1 / 4$ inch in diameter, to No. 36 wire gauge, which is of the thickness of a bair.
The best wire ropes for general use are made of Swedish iron, while in special cases ropes made of fine crucible steel wire are necessary for economical work. For hoisting ropes, which have to stand constant bending and twisting, the lower grades of steel, such as Bessemer, have proved themselves to be almost worthless. Where only a tensile strength is required, as in bridge work, Bessemer steel can be made fully equal to any other quality.

Rules for Finding the Weights that Timber of a Given Size, Supported at Both Ends, will Sustain.
R. C. Carpenter, of the Michigan State Agricultural Col lege, communicates to the Post and Tribune, of Detroit, the following useful table:
1st. If a weight be uniformly distributed from end to end of a horizontal beam it produces the same effect on a beam as though one half the weight were gathered at the center of the beam.
tent will be the number of pounds in the load that the beam will safely carry at the center. If the load is uniformly dis tributed it will be twice the safe center load, and the foretributed it will be twice the safe center load, and the fore-
going result may be doubled to obtain the total distributed load. (See rule first and second.) If any material besides pine is used instead of the number 90 must be used the num bers in the following table:

Material.
White oak..
Redte ork........
White ash
What oal
White ash.
Black ash....
White cedar or arbor vite.
Tamat.....
Sprarack....
Spaple.....
Mickory
Hickory....
Rock elm..
Locust....
White pine.
White pine.
E.rample.-What will be the center safe load of a pine beam, 4 by 6 inches, supported in two places, and 12 feet long be tween the supports?
(1) If the depth be 6 inches and the breadth 4 inches he center load will be equal to $4 \times 36 \times 90$ divided by $12=$ 1,080 pounds.
(2) If the depth be 4 inches and the breadth be 6 inches, the center load is $6 \times 16 \times 90$ divided by $12=720$ pounds. From these examples it is seen to be always most economical to set a horizontal beam on its edge, or place it so that the greatest dimensions shall correspond to its depth.
5th. To find the weight that an inclined beam (as rafter) will safely bear at the center distance between sup ports
Rule.-Find the center weight by the fourth rule-that a beam of length equal to the horizontal span or spread of the inclined beam, will safely sustain-divide this result by the horizontal span of the inclined beam, and multiply it by the length of the inclined beam.
Example.-What will a pine rafter, 20 feet long, with 12 feet rise and horizontal span of 16 feet, of 2 by 4 inches, sus-
umbers given under the fourth rule for any other material By assuming the depth the breadth can be found.
Example.-What sized pinc beam, 16 feet long, will safely support 1,000 pounds at its center? 1,000 divided by 90 equals $77 \cdot 1$, equals the breadth multiplied by the square of the depth. If we assume the depth to be 3 inches. its square is 9 and the breadth $11 \cdot 1$ divided by $9,=13$.

Hence the answer is a piece 1.3 by 3 .
When the load is distributed over a number of square feet the center load must first be found by multiplying by the number of feet and dividing by 2

7 th. If the beam is inclined divide the center load by the length of the beam. Multiply this quotient by the horizontal space, and proceed as in the sixth.
8th. The amount an upright beam will safely carry when subjected to a pulling strain can be found by multiplying the number of square inches of its cross section by the strength of one square inch.
The following table gives the safe strength of different woods:

9th. The amount an upright post loaded at upper end wil sustain can be found approximately in the same way as the tensile load; the amount per square inch should be taken about four fifths that given in rule eight. This is an approxi mate rule that cannot be relied on in cases where very accu rate results are required.
These rules give accurate results with the exception of rules fifth and ninth. The results given by rule fifth are safe and do not differ much from the true results. Those given by rule ninth for the size of posts are very near correct when the posts are of moderate length.

A NEW SATCHEL DESK.

This is a unique and novel portfolio, stationery repository, and " grip sack" combined; a sort of portable office and wardrobe, which comes nearer meeting the actual wants and comforts of persons whose vocations or inclinations call them away from home than anything of a similar nature that has come under our notice.
The patent combines a valise and desk; each independent
in case of fire it can be carried out without the least trouble or damage, thus making the satchel desk a more secure place for valuables than a bureau, strong box, or even a safe under certain circumstances.
The inventor informs us that the patent covers an endless variety of interior arrangements, so that by suitably altering the stationery portion of the satchel desk, or sub-dividing ng clothing compartment the device can readily be changed

Sticky Fly Paper.-Boiled linseed oil and resin; melt and add honey. Soak the paper in a strong solution of alum and then dry before applying the above.

MOULDING, CARVING, PANELING. AND DOVETAILING

 MACHINE.We present herewith an engraving of one of the most useful of recent machines for woodworking. It is capable

THE KAPLAN SATCHEL DESK.

of the other. Its exterior size, appearance, and finish are into a sample case for groceries, liquors, drugs, jewelry, etc that of the ordinary sixteen inch satchel, weighs but little if any more, and locks with a spring.
The case is opened by placing it sidewise on a level surface, with the pocket side, Λ, uppermost, and unfastening the little eatch attached to the movable side, then the lock knobs on the cover are pressed toward each other, releasing the top, which may be swung upward against the pocket side. The writing tablet, F, may then be turned down, and the device is ready for use.
When open it displays a drawer, B, of sufficient size to contain legal cap paper without folding, an envelope and card case, C, an inkstand drawer, E, a pen and stationery tray, two pigeon-holes for files and correspondence, a drawer in the middle for sundries, and a folding tablet, F, covered with velvet or desk cloth on one side and with silicate for pencil memoranda on the other. The valise pocket is opened by pressing the knobs of the catch and then raising the lid, which reveals the clothing compartment, A, and the collar portfolio attached to the under side of the cover. This valise pocket contains a space equal to if not larger than one side of the ordinary 16 inch satchel. It occupies one half the capacity of the satchel desk. Persons who wish to write while " on the road," or while stopping at pleasure resorts, or while camping out or visiting, will find the satchel desk, duly equipped, a covenience of no mean nature. It seems to be just the thing for a large class of travelers, tourists, and pleasure seckers abroad or at watering places.

The necessity of borrowing writing materials or putting up with inferior ones will be dispensed with, order and system in correspondence can be maintained, and the conven iences incidental to writing at one's own desk at home at one's own desk at home may be enjoyed at any place or under almost any circumstances.
For domestic use as a lady's secretary, this " satchel desk" should become popular, inasmuch as it costs less than an ordinary desk, takes up no appreciable amount of space in a room, and can be easily carricd to any part of the carricd to any part of the house. It may also be made the receptacle for jewelry and other valuables, because its compactness permits it being stored away in any safe corner or hiding place where burglars could not reach it without being discovered, and

Fig. 1.-BOULT'S MOULDING, CARVING, AND PANELING MACHINE.
of performing a great varicty of work, such as the shaping and edge moulding usually done on shapers; surface paneling, or ornamentation of almost any design or size; moulding scroll or bracket work; and dovetailing on any thickness, from a cigar box corner to an inch and a half plank. In fact almost all the ornamentation formerly done on wood by hand can readily be done on this machine at a cost but very little greater than plain work; giving a richly ornamented surface at slight cost.
In its construction it is very simple and substantial, and is just as complete and well adapted to any of the various kinds of work it is capable of doing as though made for one variety of work only. It is easily understood and operated by any good mechanic.
The spindle, D, which carries the cutter at the upper end, is arranged to be raised and lowered by the pressure of the foot on pedal, F , and this motion is regulated by the adjusting screw and hand wheel, H . The cutter projects through the table from below, and penetrates the lumber like an auger, and cuts when revolving in cither direction. Above, and in same axial line with tne cutter, the guide and pressure plate is supported by the bracket, K , and adjusted to the re quired height by the hand screw, N.
Reverse motion is given to the spindle by shifting belts on countershaft, or by the use of friction pulleys, either of which is furnished with the machinc.
Some of the cutters used with this machine are shown in Figs. 2. 3, and 4. Fig. 2 in Figs. 2, 3, and 4. Fig. ting panels on the surface of lumber. Fig. 3 shows a cutter made from solid stecl, and used for moulding the edges of plain or irregular work. Fig. 4 is used for moulding the openings of scroll or bracket work.
This machine is now so well and favorably known as to need no special commendation from us. We are informed that it is not only used in all parts of this country, but that it has also found its way into every quarter of the globe, being at present used in Canada, Australia, Chili, Peru, Brazil, Denmark, Swe Per, Russia Germany, Swit den, Russia, Germany, Swit erland, Cuba, Jamaica, Eng land, Scotland, India, China, Japan, in Asia, and in Africa.
Manufactured only by the Battle Creek Machinery Co., of Battle Creek, Mich., U.S.A.

ENGINEERING INVENTIONS

Mr. William J. Orr, of Rock Hill, S. C., has patented a improved car coupling, the principal feature of which is bumper having a recess in its upper side to receive a link of approximately rectangular form, and hold it for engagemen with another bumper of similar form.
An improvement in hydraulic engines has been patented by Mr. James Talley, Jr., of Kansas City, Mo. The novelty of this invention lies in an arrangement of parts for regulating the volume and force of the water allowed to act on the wheel or rotary piston.
A simple and effective car brake, that will apply as wel to wheels when running on curves as when they are running on a straight line, has been patented by Mr. John Meissner of New York City. It is stated that the efficiency of the brake increases with the increasing weight of the car and its load.
Mr. T. S. La France, of Elmira, N. Y., has devised an im proved steam boiler, which consists in an arrangement of a cluster of flues in the fire chamber, joined at their upper end to a single pipe passed through the crown sheet. It is stated that a great extent of water surface may be exposed to the heat without taking up too much of the crown sheet and limiting the space for smoke flues.
An improved safety regulator for pumps and water pipes has been patented by Mr. T. J. Smith, of New York City. The object of the invention is to avoid the necessity of a separate line of pipe from the water level to a pump on each floor, and to automatically cut off the communication with the street main when the water pressure exceeds the usual point, while admitting of the use of pumps during the period of increased pressure.

The Prospects of Cotton.

Mr. Edward Atkinson, one of the shrewdest business men of New England, has lately made a trip through the cotton States to investigate the prospects of cotton culture in the South. The results of his investigation have been given in the Herald. Touching the main point of his inquiry, he says:
'I consider an ample supply of cotton as sure or even more sure than that of any other crop. So long as the cotton States can buy from the West corn and bacon at such prices that forty cents will pay for all that an adult laborer can eat in a week-about three and a half to four pounds of bacon and a peck of meal-the South will raise cotton. It is their money crop. It is now the product of the farm and not of the plantation. The farmers of northern Georgia make a hundred bales of cotton where they made ten a few years since, and the increase of cotton by white labor in Georgia, North Carolina, and Texas will offset any possible decrease in Louisiana and Mississippi, even if the exodus amounts to a severe drain on labor. Moreover, the value of the seed of cotton has hardly begun to be known. Within ten years the seed will be worth half as much as the bale, if not fully as much. The lint left on the hull by the gin is useful for batting; the hull for tanning or for the extraction of dyestuffs; the spent hull for paper stock, for which it is admirable; the kernel first for oil and the residue for feed. There are new methods lately disclosed for extracting every particle of oil, which leaves the residuum sweet, dry, and extremely nutritious for food for sheep or cattle-more nutritious than beans; and if the residue be fed to sheep on the cotton field the crop of cotton will be doubled and the clip of wool added thereto."

A Suggestive Device.

Mr. George Wall, of the Peradeniya Botanic Gardens, Ceylon, has devised an ingenious method of fumigating coffee trees for the cure of the leaf disease. A paper umbrella, with a curtain hanging from it, is dropped over the tree, and fastened by the handle; a lighted sulphur fuse is then placed underneath, and it is said that the fumes are retained long enough to attack the spores of the fungus.
Possibly the plan might be found useful for destroying, by fumigation the parasites of other plants.

IMPROVED MICROPHONES.

A new and improved form of microphone has lately been devised by Mr. Frank Dowling. The improvements, say the Evectrician, consist mainly in the use of a thin diaphragm to take up the sound waves, and a magnetic adjustment with which the pressure of the carbons may be varied. The diaphragm may be of animal or vegetable parchment, or thin lndia-rubber, or it may be a thin plate of metal. The vibrating disk is two or three inches in diameter, and screwed firmly between two boards. To the center of the disk is fastened a small piece of carbon, from which a thin wire passes to one terminal screw. A rod of carbon about an inch in length, having a piece of iron or steel rod fixed in one end, is balanced on its axle, and rests lightly against the carbon block. A small bar magnet is adjustable by a brass screw either to or from the rod projecting from the balanced carbon, and thus the pressure between the carbons may be regulated.
For transmitting speech it is preferable to have the diaphragm in a vertical position, but for experiments it is horizontal.

This microphone is much more sensitive and of less resist ance than others, and transmits speech perfectly and distinctly. Speaking at a distance of about 200 feet from the transmitter can be heard, and some sounds about a mile distant. With a battery of two cells it will act as a receiver
having a similar transmitter. This microphone will receive speech and other sounds. Mr. Dowling considers that this is due to vibrations imparted to the carbon and diaphragm by the current itself, the current and vibrations being varied by the transmitter. He is of opinion that this is also the cause of the " singing noises" observed sometimes.
In another speaking transmitter the diaphragm causes a small carbon ball to vibrate in a carbon tube or case. This requires no adjustment, and may be used in any position. The magnetic adjustment may be applied to ordinar lever microphones, and Mr. Dowling finds it preferable to

DOWLING'S IMPROVED MICROPHONE

balance the carbon lever on a vertical axle, the lower axis being pointed and working on a plate. The magnet tends to draw this against a carbon block.
Mr. Dowling has also devised a remarkably small micro phone. It consists of two small blocks of carbon, having cup shaped hole in each, and a small carbon ball placed inside. The blocks are insulated by parchment or some other non-conductor placed between them. One of these in a case having a binding screw at each end, forms a very portable microphone. The ball is, in this case, the vibrator, making contact between the carbon blocks. A microphone has been made in this way only $1 / 8$ inch (cube) in size, being covered with paper, wires being placed against opposite sides. The usual size is $1 / 4$ inch (cube), either with or with out a casing of wood. The speaking microphones mentioned above come nearer to perfection as transmitters than any others, and, unlike others, do not get out of order.

A SIMPLE ELLIPSOGRAPH.

The accompanying illustrations represent a simple attach ment for compasses for drawing ellipses. It consists in

品 1

adding an extra point to the compass and then employing it in a manner similar to the way the trammel is used for the same purpose. From the consideration that the draughtsman does not have many ellipses to draw, the cross bars have been dispensed with for the sake of simplicity and the triangle made to take their place. It will be observed that the point inserted in the compass leg, and also the one on the sliding piece, are blunt at the end, so as not to catch on the paper in sliding along the edge of the triangle.
This instrument has the disadvantage of only drawing a quarter of the ellipse at a time, and of requiring a little

On the other hand, it possesses the advantages over the tram mel of a greater range of work, of not requiring an add tional pen and pencil to keep in order, of compactness, of simplicity, and cheapness.

Professor Morton on the Gary Motor.

The following note from Professor Morton was latery read at a meeting of the Franklin Institute, Philadelphia:
Dr. Isaac Norris, Secretary of the Franklin Institute.
In reply to your favor of the 10th, asking for a note on the "Gary motor," to be read at the next meeting of the In stitute, I would say, that though I have not time at present to go inta any lengthened discussion, and indeed do not think that such a subject merits so-much attention, I wil with pleasure contribute the following remarks to the proceedings of next Wednesday.

This so-called " Gary" motor comes before the public in a double character. First as a perpetual motion machine, which is to do work without transformation of energy. In this light I think we may at once dismiss it as a fraud or blunder, to take its place with materialization of spirits, and other matters which are not subjects for the investigation of scientific students, but rather in the line of the police detective.
Secondly, however, Mr. Gary appears as the supposed discoverer of some new facts in reference to the action of magnets, which, though they certainly can no more enable us to create energy than to create matter, may add to our means of utilizing natural forces and existing sources of energy. In this view his claim of discovering what he calls a neutral line round magnets is worth investigation.
On looking into this matter, however, I find that he has only reobserved a set of phenomena, which are so old as to have been described in the Principia of Sir Isaac Newton book ii., prop. xxiii., scholium to theorem xviii, where 'I find as follows:
" The virtue of the magnet is contracted by the interven tion of an iron plate, and is almost terminated at it; for bodies further off are not attracted by the magnet so much as by the iron plate."
All Mr. Gary's experiments which will work are readily explained by the well known principles of magnetic induction, by reason of which a piece of soft iron near a magnet is inductively magnetized by the same, and rests upon it, and thus "contracts the virtue of the magnet" and neutral izes its action on exterior bodies.
There is no evidence whatever of the existence of any ncutral line about a magnet, but the very experiments cited by Mr. Gary as proving it simply demonstrate that in cer tain relative positions the opposing actions of a permanen magnet and a piece of soft iron magnetized by induction from it, neutralize each other's effects upon a third magnetic body, such as a piece of iron or a compass needle.
Fully to work out all the relations between the mutual ac tions of three such bodies in any case is of course a problem of considerable complexity, but by no means a new one, and among many others a very able discussion will be found in the "Philosophical Transactions" for 1831, page 501 et seq. by Sir Wm. S. Harris, under the title." On the Power of Masses of Iron to Control the Attractive Force of a Magnet.' Also an earlier memoir by the same author in the Edinburgh Philosophical Transactions, 1829. This subject is also fully treated in Harris' "Rudimentary Magnetism," published by John Weale, London, $1850 . \quad$ Very truly yours,

Henry Morton
Stevens Institute of Technology, Hoboken, N. J.,
April 12, 1879.

A Plan to Flood the California Desert.

Within a recent period, geologically speaking, a large por tion of Arizona and the Colorado plateau has been converted into a desert by the drying up of an arm of the Gulf of California, cut off from the sea by silt brought down by the Colorado river. Some years ago it was proposed to refil the old sea bed, now known as the Valley of Death, by turning into it the water of the Colorado. General Fremont has been urging another plan. He says that a canal ten miles long would lead the waters of the Gulf of California to the bed of a lake, and another cut-off, fifteen miles from the upper end of the lake, would admit the waters to the great basin, parts of which are 350 feet below the sea level. Six basin, parts of which are 350 feet below the sea level. Six
months are estimated as the time required for the work, and the cost one million dollars. General Fremont, as the Governor of Arizona, lays great stress upon the value of this engineering work in reclaiming desert land in that Territory, in which purpose the United States is not strongly interested at this time. But the new inland sea might prove serviceable in opening up a water route through Southern Califor nia of value to commerce, and in this respect of some national importance.

The Russian Imperial arsenal at Petrozavodsk has just completed its 40,000 th cannon. The works, which are situ ated on the shores of Lake Onega, in the Olonetz government, were founded in 1774, since when it has been the cus tom to brand each cannon cast with a consecutive number. Most of the field artillery of native manufacture employed by the Russian army is cast at Petrozavodsk, the heavier ordnance being manufactured at Perm or St. Petersburg. The budget of the foundry mostly amounts to a million rubles a year. The iron used at the works is brought from the half a dozen mining establishments that exist in the province of Olonetz.

©゙arrexpmadmas.

Alleged Vermont Marble.

To the Editor of the Scientific American.
I see that in your last issue you quote a report on marble by Professor J. P. Henderson, of Loyola College, Baltimore and Professor J. E. Watson, of Oberlin College.
Permit me to say that no such person as J. E. Watson has ever been connected with this college in any way, and the president of Loyola College denies that any such man as Henderson was ever there.
I suspect that the paper which you quote is a fabrication of some marble company in an endeavor to create a prejudice against dark colored marbles.
I have no pecuniary interest in the matter, but I think a fraud ought to be "spotted." I have seen a copy of the Rutland Herald for April 5, which exposes this pseudo-scientific report.

Albert A. Wright,

Prof. Geol. and Nat. His., Oberlin College. Oberlin, Ohio, April 29, 1879.

Preparation of Nitric oxide.

by s. к. hitchings.

This gas as usually prepared, by the action of nitric acid on copper, contains nitrous oxide and some free nitrogen, as is well known; but the extent of this impurity, I think, is not generally known.
I have in a number of cases observed failures in class experiments with it, by its supporting ordinary combustion brilliantly instead of extinguishing it, as it should. This fact led me to make a quantitative examination of it, in which I found that the gas first formed in the reaction contained about 95 per cent of nitric oxide, but as the solution in the gencrator became saturated with cupric nitrate, the quantity of impurity gradually increased, and when it became nearly saturated, an analysis resulted as follows: Nitric oxide, $53 \cdot 6$; nitrous oxide, $31 \cdot 6$; nitrogen, $14 \cdot 8$; total, $100 \cdot 0$. This would, of course, account for its supporting combustion so readily and causing so much trouble to teachers, and I would suggest that a piece of apparatus might be easily made, which would avoid getting so much of this impurity, by simply introducing a siphon tube through the cork of the generator, and attaching a piece of rubber tubing and a compressor to the delivery tube, so that when the acid became somewhat saturated the delivery tube could be closed and the solution drawn off, then more acid added and the process go on. By this means, I think, a gas sufficientlypure for ordinary experiments could be obtained.

A Cheap Greenhouse.

The Germantown Telegraph says: The cheapest plan of erecting a greenhouse that we have any knowledge of-and we used one successfully for many years-is to dig out a pit in a side hill, where the upper end will be just above ground and the lower end will be two or three feet above ground, where the door must be, with two or three steps down for an entrance. Wall up, roof the wall, and cover the whole with sash, as in hotbeds, the sash having more fall, say three feet in a width of two, the house being fifteen by ten. Erect in this the stand of shelves, and when it is time to take up the summer flowers, bulbs, etc., store them here. The glass should be covered with thick straw mats, which can be removed even when the weather is coldest, in clear weather, for an hour or two at midday, to get the warmth and influence of the sun. At such times ventilation also should be attended to, by slightly opening a sash or two. No fire is needed. Nearly all readily flowering plants will bloom, and there will scarcely be a week during the winter that a bouquet may not be gathered, if the house is properly managed.

Asphalt and Timber Floors.
A new method of laying down floors has been adopted in France, and is said to have obtained a wide application. It consists in putting down flooring, not as hitherto, on joists, but in embedding the bearding in asphalt. The new floors are used mostly for ground stories of barracks and hospitals, as well as churches and courts of laws. Pieces of oak, usually $21 / 2$ to 4 inches broad, 12 to 30 inches long, and 1 inch thick, are pressed down into a layer of hot asphalt not quite half an inch thick in the well known herring bone pattern. To insure a complete adhesion of the wood to the asphalt, and obtain the smallest possible joints, the edges of the pieces of wood are planed down, beveling toward the bottom, so that their cross section becomes wedge-like. Nails, of course, are not necessary, and a perfectly level surface may be given to the flooring by planing after the laying down. The advantages of this flooring, which only requires an even bed on which to rest, are said to be the following:

1. Damp from below and its consequence, rot, are prevented.
2. Floors may be cleaned quickly and with the least amount of water, insuring rapid drying.
3. Vermin cannot accumulate in the joints.
4. Unhealthy exhalations from the soil cannot penetrate into living rooms. Asphalt being impermeable to damp, rooms become perfectly healthy, even if they are not vaulted underneath. In buildings with several stories, as in hospitals, the vitiated air of the lower rooms cannot ascend, an
object which it has hitherto not been possible to attain by any other means.
5. The layer of asphalt will also prevent the spreading of fire from one floor to another in case of conflagration.

The Interlocking of Homes.

The Springfield Republican remarks that the houses in American cities are fast coming to be, in a sense, like the rooms of a big hotel, having a call bell in every room to reach the office, and a way in the office to reach every room. The telephone puts people in such easy communication that it is easier to talk to a neighbor through it than to go to him; a men having offices in the same building find it more convenient to talk to each other from their desks, by way of the telephone office, than to cross a hall. And this is only the beginning of the means by which the homes in a city are to be interlocked.
The Chicago Times, eighteen months ago, announced with a great flourish that it had connected its office by pneumatic tubes with the Western Union office at an expense of $\$ 20,000$, so as to save ten minutes' time in receiving its messages, Now the streets are torn up around the City Hall Park in New York to connect every newspaper office there in the same way. The packages travel about a mile in three minutes, and announce theirarrival by an automatic arrangement. If the plan works well for this special purpose, it will not be long before a pneumatic express tube for all the lighter articles of daily marketing and convenience will come to be as frequent in well-appointed houses as the telephone.

IMPROVED STOCK AND DIES FOR PIPES AND BOLTS. The tool which we illustrate is intended to meet the re quirements of those who have been annoyed with the numerous inconveniences arising from the use of the common stocks and dies. In its construction the inventor has aimed to retain all the advantages of the old methods, while at the same time gaining many others in addition.

Fig. 2.-DIE FULL sIzE

The tool belongs to the class of divided dies, and by means of the adjusting screws, as shown in Fig. 1, the dies can be moved to and from a common center, within the variations of a given size of fittings. The dies have a double taper, that is, the taper at the entrance for the first few threads is greater in degree than the standard taper, which forms a lead to the dies, causing them to start on the pipe without filing, even when there is a swell or burr, and requiring no pressure whatever to start the dies on the pipe. In Fig. 2 one of the dies is shown separately. It will be seen that the thread can be reached readily, and that the dies, when dull, may be sharpened by grinding. This obviates the necessity of sending them to the manufacturer-a saving both in time and expense. These dies are interchangeable in the stock, and do not need adjusting to cut the standard size of thread for which they are made. They are made adjustable for variations from tho standard size. Both stock and dies are marked to shew when the dies are set for cutting standard

F'g. 1.-ARMSTRONG's Improved stock and dies sizes. Altogether, the new tool seems to be a very useful and desirable one. Any mechanic who has had experience with ordinary solid dies will readily appreciate the advantages possessed by this improved tool. Mr. F. Armstrong, Bridgeport, Conn., and 347 Broadway, New York, Room 15, is the manufacturer.

Scented Crematory Urns.

Aninteresting archæological observation has recently been made quite accidentally. It is well known that the urns found in Roman burial grounds, and containing the bone remains of cremated bodies, are often covered with clay cups or dishes. The object of these dishes was supposed to have been to contain spices, which sent forth agreeable odors durplaced.
ing the progress of the cremation. Herr Dahlem, a wel known German archæologist, was able to verify this view in the following manner: He had obtained a dish of this kind which was broken, and, after cementing it, had placed it upon a stove for the purpose of drying the cement. Shortly afterwards he noticed a strong and by no means unpleasant odor proceeding from the heated dish. It seems, therefore, that the ingredients burned in the dish some fifteen centu riss ago had left traces behind, which announced their pre sence upon becoming heated. Herr Dablem remarks that the odor was not unlike that of storax. -The Nation.

A New Iron Firm.

Mr. Richard Pancoast, for several years the New York manager of the well known Philadelphia house of Morris Tasker \& Co., has formed a copartnership with Mr. H. G. H . Tarr for the transaction of business in pig and manufac tured iron. The new firm, in addition to a general commission business in iron and piping, have been appointed agents for the Reading Iron Works. The office of Messrs. Pancoast \& Tarr is at 28 Pratt street.

Underground Telegraph Wires.
The favor with which underground telegraph wires are viewed in Europe does not prevail in England. In a recent lecture before the Society of Arts the Electrician of the Eng lish Postal Telegraph Department, Mr. W. H. Precce, said that there are 10,000 miles of underground wires in Great Britain, but the system does not prove economical.
There is an increase of three or four times in the cost of the underground lines. Their capacity for carrying currents is reduced three or four times. The gutta-percha coating is attacked not only by rats and mice, but very largely by an insect called the 7 cmpeltonia crystallina, and is also in fluenced by a fungus.

RECENT AMERICAN PATENTS.

Mr. Albert Whiting, of Rochester, N. Y., has devised an improved machine for raising and floating hides in tan vats. This is an improvement on patent 205,596 .
A lantern, combined with a hood to be worn by a horse, has been patented by Mr. L. C. Macauley, of Augusta, Wis. The inventor claims that both driver and horse can see the condition of the track to better advantage than when the lantern is placed on the carriage.
Messrs. P. J. Clark and Joseph Kintz, of West Meriden, Conn., have patented an improved drip-dish for lamps. It consists of a dish to be screwed on the lamp bracket or stand, and provided with a metal fount holder, which securely holds the lamp.
An improvement in boot and shoe heel burnishers has been patented by Mr. James Murray, of East Orange, N. J. It is especially adapted to work on concave French heels.
An improvement in breast-yoke connections, patented by Mr. J. W. Vineyard, of Gallatin, Tenn., consists in a socket piece for attachment to the neck yoke, in which is fitted a ball on the end of a metal loop or eye for supporting the tongue. The ball and socket give perfect freedom to the movement of the tongue; and the connection is said to be neater and more durable than leather.
An improvement in steels for long corsets has been patented by Mr. Joseph Beckel, of New York city. The lower ends of the steels are bent inward and provided with pads, which prevent them from hurting when the wearer sits down.
An improved device for preventing the sand and dust from working in at the inner end of the hub of a carriage wheel and cutting and wearing the axle and axle box, has been patented by Mr. Robert Schnell, of St. Paul, Minn.
A knife board, which consists of a box provided with an inclined bottom having a concave upper surface, forming a bearing for the edge of the knife while it is being polished, has been patented by Mr. A. M. Ward, of New Haven, Conn.
Conn.
Mr. David C. Carleton, of 121st street and 3d avenue, New York, has patented, both in this country and in Canada, an improved bridle bit, which is calculated to give perfect control of the horse The arrangement of the bit and bridle cannot be clearly described without an engraving The bit is supported by a nose band and a strap passing to the crown picce of the bridle, which prevents it from dropping from the horse's mouth when the check rein is unfastened.
An improved carpet stretcher, consisting o two arms connected together by a pivot and having T-shaped heads, one bcing provided with hooks for engaging the carpet, the other being adapted to a jointed extension piece, has been patented by Mr. J. D. Whitney, of Plo
ver, Wis. The stretching of the carpet is effected by straight ening out the toggle formed by the two pivoted pieces.
An improved coat, supplied with an extra lining which may be readily detached and replaced by another one, has been patented by Mr. Nils Malmar, of Brooklyn, N. Y.
Mr. Cornelius Barnhart, of Walker Valley, N. Y., has patented an improved heating stove, which may be used for heating several rooms, and is so constructed that the parts most liable to be burned out may be easily removed and re

An improved machine for filling and corking bottles has been patented by Maria E. B. Miller, of Omaha, Neb. This machine is designed to fill the desired number of bottles sim ultaneously, and with exactly the same quantity of liquor.

A NEW FLOUR, GRAIN, AND BOLTING CLOTH INSPECTOR. a very compact and simple motor is required. The bearing
The accompanying engraving represents a convenient little instrument, which the inventor, Mr. H. J. Deal, calls the Board of Trade flour, grain, and bolting cloth inspector. It consists of an ivory spatula, in the center of which is mount ed a fine lens of sufficient power to detect anything irregular in the flour or grain. When not in use the cloth glass, which is hinged to the handle of the spatula, is folded down, as shown in Fig. 1. When it is desired to use it it is unfolded and brought over the opposite side of the handle, as represented in Fig. 2. The length of the link which supports the glass is equivalent to the focus of the lens, so that no adjustment will be required. The square aperture in the handle bclow the lens is equivalent to one sixteent of a square inch, or one fourth of an inch on each side. When the handle is placed over the bolting cloth the number of its meshes may be readily counted and its quality in spected.
In using the larger lens the flour or other substance to be examined is first smoothed with the ivory spatula; the lens is then held at a suitable distance.
The instrument is designed for the use of the Board of Trade, millers, and others who have occasion to inspect grain, flour, or any similar substance.

This invention was recently patented by Mr. Henry J. Deal, who may be addressed at 35 Union Square, NewYork, or at Bucyrus, O.

A word to Insurance officers.
The Plumber and Sanitary Engineer sug gests to lifc insurance companies, that instead of merely hammering at a man's chest to find if he has a tendency to any disease, would it not be well for the medical examiners of life insurance companies to inquire if he has not got a cesspool leaking into his well, or un-
trapped pipes beneath his basins and closets?
More persons die of zymotic diseases in New York than from almost any other malady, yet a man living in the midst of contagious influences, and hence daily liable to take diphtheria or typhoid fever, would yet find little trouble in getting a heavy policy on his life.
If insurance officers would give this subject their attention they might save many losses to their companies, and also benefit the public generally; for if men found that their homes were rated as "hazardous," they would soon begin to think of finding a remcdy for the difficulty.

A NEW ROTARY ENGINE.

We present herewith an engraving of a rotary engine recently patented by Mr. John Henderson, Jr., of Waterbury, Conn., which possesses several novel points that seem worthy of notice. The cylinder, as will be seen in the sectional view, Fig. 2, is made in two diameters, the smaller fitting the solid hub or boss, A, secured to the engine shaft, the lareer receiving the sliding wings or pistons, B, during one half of a revolu tion. Upon each side of the hub there are flanges which are grooved to re ceive pistons, and are packed around their peripheries by beveled packing rings, G, which are adjusted by set screws in the cylinder covers. The pistons are in fact formed on opposite ends of a on opposite ends of a single piece extending through the hub and hav-
ing two mortises, F (Fig. ing two mortises, F (Fig.
3), containing springs, which press outward the axles of two pairs of rollers which roll in cams formed in the cylinder heads, and move the pis. tons as the hub revolves, so that while one is drawn into the hub to allow it to pass the abutment the other is projected so the it may be acted upon by steam pressure. Steam js admitted to and exhaustea from the cylinder through poppet valves, C, which are operated by eccentrics on the principal shaft through the rock shafts, E, and the lifting rod, D. It will be noticed that the engine is symmetrical, that is, the valves, eccentrics, etc., are alike on both sides of the cylinder. A reversing valve, H, is placed at the top of the engine for directing the steam into one side of the cylinder or the other, as the case may require.

The inventor informs us that this engine will reverse as readily as a locomotive, and that it may be used whereever $|$| blank. |
| :--- | :--- | cup.

HENDERSON'S ROTARY ENGINE.

crew Propulsion

A new feature in connection with the working of the screw propeller has recently been determined by Mr. R. Griffiths, whose name has long been known in connection with this method of propulsion. Hitherto screw propellers have been placed as close as possible to the stern post of vessels, bu this position Mr. Griffiths has proved to be the wrong one From a long course of careful experiments he has been led to conclude that the propeller should be placed some little distance from the stern post and close to the rudder post to get the best effect as regards speed. To demonstrate this some trials were recently made with a model boat 5 feet in length fitted with an ordinary screw driven by clockwork. The screw was four-bladed, $31 / 4$ inches in diameter, and 3.9 inches pitch, and was, in fact, a copy of the screw with which the Peninsular and Oriental Company's new steamship, the Kaisar-i-Hind, is fitted. By fixing the screw $5 / 8$ of an inch from the stern a speed of 100 feet per minute was obtained. By increasing the distance to $3 / 4$ of an inch the speed was increased to 104 fect per minute. Placed at $1 \frac{1}{4}$ inch from the stern post, a specd of 110 fcet per minute was attained. The screw was then shifted to what Mr. Griffiths considers to be the best position -namely, $21 / 2$ inches from the stern post, and this resulted in a speed of 114 feet per minute. This shows an ultimate increase of 14 feet per minute upon the first arrangement. The or dinary screw was then removed, and in its place was fitted a Griffiths four-hladed screw of similar dimensions to the one it replaced, but having the forward edge of cach blade cut off. This-screw was first fixed $11 / 4$ inch from the stern post, and a speed of 116 fect per minute was made. At $21 / 2$ inches-the best position-the speed was 122 feet per minute A part of the deadwood, $11 / 2$ inch long, was then removed from the stern and the wa was placed 2 inches from the end of the feet per minute. The screw was then removed $1 \frac{1}{2}$ inch forward, or $1 / 2$ inch from the end of the wood, and the speed was only 48 feet per minute. It will be seen that in both cases the highest speeds were attained with the screw in what Mr. Griffiths considers the best position, but that the Griffiths screw gave a higher speed than that of ordinary construction under similar conditions. So far as these experiments go, Mr. Griffiths has certainly made out a rood case, and if the results of practice only correspond with those we have given, an important advance will have been made in screw pro-

Effects of Breathing Noxious vapore
In some experiments lately made by M. Poincare on the effects of poisoning by sulphide of carbon, he often
found in the bloodvessels

Messrs. P. J. Clark and Joseph Kintz, of West Meriden, ship thus exposed, when the speed attained was 110 Conn., have patented a novel fastening for securing the lamp fount in the drip cup. It consists in a cup having near the bottom inwardly projecting ribs or lugs, which engage a flange formed on the bottom of the fount, the flange being notched to admit of placing it in the bottom of the

An improvement in the class of ice-making apparatus in which the vapor of the ammonia is driven from its solution by heat, and afterward condensed by being passed through cooling pipes, and then expanded through pipes to produce the cold by freezing, has been patented by Mr. Charles B. Lee, of Galveston, Texas
Mr. Isaac Morgan, of Augusta, Ga., has patented an improvement in separators for flour mills. The object of the invention is to separate the half ground bran, cracked wheat pulsion.-London Times. surfaces are all large and well calculated to withstand wear and all of the parts are readily accessible and very easily adjusted. The steam joints are all arranged so that they may readily be kept steam tight without creating undue friction or wear.

MISCELLANEOUS INVENTIONS.

A lantern, for use in millstone dressing, has been patente by Mr. P. V. Coogan, of New York City. It throws a clea light upon the land or furrow of the stone, and is contrived so that the draught produced by it carries off the fine dust arising from the stone.

Fign. 1

Tiq. 2 found in the bloodvessels drops, apparently of this substance, condensed anew after absorption by the lungs. Still, the great volatility of the sub stance rendered this improbable a priori, and, is he had not succeeded in chemically determining what the drops were, he hesitated to express the view referred to. He has since obtained like results. with other substances not mis cible with blood, and which are much less volatile than sulphide of carbon, especially spirit of turpentine and nitro benzine. The chemical determination, indeed, was as difficult as before; but from the fact that it was only in animals that had respired those vapors that free drops had been found in the circu ation looking exactly like the substances furnishing the vaprs he thinks the matte pors, worthy of atenion. Work men who respire vapors of this kind are evidently ex posed to a poisonous action variable with the vapor's com position, and also to mechani cal disturbances of the circu lation and nutrition, similar o those produced by embolia and the introduction of air into the veins. Thus may proba cuttings, and other results of grinding from the thoroughly |bly be explained the sudden deaths observed in the course ground chop, and carry it off to a suitable receptacle, from which it may be taken for a second grinding.
Mr. Albert Clarke, of Sheffield, England, has devised an improvement in the manufacture of scissors, consisting in flying out scissor blanks from a sheet or strip, which has one or more projections or indentations in its sides, the projec-

he orchis family

The peculiar manner in which fecundation takes place in the flowers of the plants belonging to the orchis family has always attracted the attention of naturalists, and when Dar win, a few years ago, published the results of a series of ex periments and observations, made with a view to throw ad ditional light on the mode in which mutual fecundation is effected between individuals of the same as well as different species and genera, the work was received with much interest by the entire scientific world
Generally only one, rarely two, stamens are developed in plants of this family. The stamen is considerably longer than, but entirely coherent and confluent with, the style on which the two-celled anther is situated. The latter consists of a slender stem or caudicle, to which are attached two club-shaped arms. The glands of the stigma, to which the stalks of the pollen masses cohere, are contained in a com mon sac formed by a fold in the lower portion of the stigma.

The pollen grains of tho orchidaceæ vary in shape as well as in structure and appearance. The pollen is sometimes pulveru lent, and in isolated grains, as in some spe cics of neottiæ, but mor frequently cohering in waxy masses or clusters. To effect fecundation th pollen must, by reason o its position relative to the stigma, be forced by some mechanical means from the pouches in which it is contained, the anther being moved toward the ex tremity of the stigma, which, like the base of the anther, is covered a maturity with a viscid mass.
The perianth may bc divided into two portions the outer, consisting of the three sepals, and the in ner, formed by three pe tals. Both sepals and pe tals are of the same texture and appearance. The upper or posterior petal appears gencrally, on account of the twisting of the stalk and ovary, to be the lower or anterior one and is called the lip. To this is attached the necta ry in form of a spur. The nectar contained in it serves solely to attract in sects, the intermediation of which is, in the majority of the orchidaceæ, indispensable for fecunda tion. As soon as an insect inserts its trunk into the nectary, the anther moves forward, the pollen is forced from the pouch, and attaches, by means of the waxy mass by which it is held together, to the trunk and head of the insect. Fre quently butterflies, bees, etc., are found, the trunks, heads, and fore legs of which are covered with pollen. The insects rarely effect the fecundation of a flower by its own pol len. In the majority of cases the pollen is deposited on the stigma of a flower visited afterwards, to which it adheres by means of 〔species. J. Müller states that the pollen of a species of the viscid mass covering the stigma. It happens frequently ondidium acted like poison on the flowers of the individual that the pollen is perfectly developed, while the female or- that had produced it and killed them. gans of reproduction are not yet ready to reccive it, and it seems as if the large majority of orchidaceæ were almost entirely dependent upon the services of insects for the procreation of offspring. This may explain the great variety of species occurring, as well as the differences frequently observed between individuals of apparently the same species. This peculiar mode of fecundation led Darwin to conclude 'that, according to the laws of nature, mutual fecundation must take place between individuals belonging either to the same or different species of living organisms, and that hermaphrodites are unable to fecundate themselves for an indefinite period.
As stated above, the male and female organs of generation arrive at maturity at different periods. In some the stamen arrives at maturity before the stigma; these are called
protandria, while those in which the contrary takes place are called protogynia. The orchidaceæ were, together with a few plants belonging to other families, but showing simi lar peculiarities, formerly placed apart from the phaneroga mous as well as cryptogamous plants, under the name of di chogamæ (twice married), but this classification has, of late years, been abandoned
The non-maturity of one organ at the period of full maturity of the other naturally renders both indifferent to each other and nature has in its wisdom remedied this evil by the inter mediation of animal agents
This has been proved beyond doubt by innumerable expe riments. Hildebrand and Scott, who are among the closest and most diligentobservers in this respect, found it impossible to fecundate a flower with its own pollen, but they were most successful when they fecundated flowers with pollen derived successfur when they fecundated fowers with pollen derived
of other plants, and on account of this they bave by some been believed to be parasites. Closer investigations, how ver, have shown this idea to be erroneous.
The orchidaceæ vary greatly with respect to the form of all their vital parts. While some bear tubers similar to those of colchicum, others possess a spindle or bulb shaped root, and others again rise from amidst a network of fine fibrous chizomas. Those that, like the vanilla, climb up on tree rocks, send out numerous aerial roots, which, even when not reaching the soil, contribute much toward the mainte nance of the plant. In our greenhouses orchidaceæ are fre quently met with; the rich, glossy, silvery strains of aeria roots attract general attention. Instances are not uncommon in which the connection between the plant and the soil hav been gradually broken, until the plant remained suspended in the air from a wire, without any other means of sup ort than the gases and vapors inhaled by the pores of the aerial roots. These, and especially the epidermis are in this case altered in structure to suit the cir cumstances. The pore are found to be larger in number as well as in size The epidermis become thicker, and the aeria roots generally become in superior degree fitted to discharge the duties which formerly devolved on the subterraneous roots.
The leaves vary grea ly in form and size. In some genera, as Vanda Agræcum, Phajus, they are very large and fleshy while in others they re main quite small. Orchi daceæ of tropical climate especially are distin guished by their thick fleshy leaves, the epider mis of which is very thick and tough. They are ver succulent, and serve as cis terns for storing water which enables the plan to survive the heated term. Frequently the leaves are transformed into bulbs, which, apparently dead during the hot season nevertheless send forth nu merous young shoots a soon as the first rainfall supply the necessary mois ture. Of plants the flow ers of which surpass in elegance and beauty of colors anything else the vegetable kingdom pro duces, we misht natural ly expect the leaves to bo more or less devoid ornamental beauty in colo or shape, yet Blume met with some most beautifu species on the Malaya Islands, the leaves of which were lined on onc side with a velvet-like tis sue of silvery hue, while the other reflected in grea brilliancy all the colors of the rainbow.
While the orchidace ${ }^{2}$ indigenous in the tempe rate zones are generall annual or biennial herb of from six inches to eighteen inches in height, the tropical zones posses a great many which ar perennial; in these the stem is of a ligneou texture, and they generally climb upon trees or rocks. Thei flowers emit fragrant odors, and excel all others in the varie ty and brilliancy of their colors as well as in shape. Some species of Sobralia, for instance, attain a length of from species of Sobralia, for instance, attain a length of from
twenty to thirty feet; Aerides and Vanda reach a height of four to six feet. On the Fiji Islands some species are found the stalks of which are hard enough to be worked into canc and whip sockets of great durability.
A true representation of this class of orchidaceæ is the vanilla plant, which is also in fact the only one from which a product of commercial value is obtained
The culture of indigenous as well as exotic orchidaceæ in gardens and nurseries has become both a science and an art. Large volumes have bcen written on the best modes of rais ing and propagating them
Species indigenous in tropical zones must be kept in hot houses at a temperature corresponding to that under which they live in natural conditions. Due attention must be also
paid to a proper regulation of the moisture of the atmosphere. In many cases exposure to direct sunlight must be avoided, as in the dense forests of America and Africa, or the jungles of India. direct light does not reach these plants, but they only receive it as reflected from and transmitted through the foliage of the trees.
Many orchidaceæ require also a very rich humus soil. That of the forests and swamps is very rich in decaying vegetable matter, and the nearer the soil in which they are to be raised approaches to that naturally selected by them the better they will develop. In France very good results have been obtained by planting the seeds or tubers in a stratum of half decomposed moss, species belonging to the genus Sphagnum being generally preferred on account of the large quantity of water which they are able to retain. This artificial soil must be well fertilized by guano, as it contains in itself little nourishment.
The duration of flowering, as well as the time at which it begins, varies greatly with the different species, and this circumstance is one of the principal reasons for the favor with which orchids are generally regarded. Odontoglossum, Aerides, Agrecum, Vanda, Zygopetalum, Saccolabium, and others flower for periods extending from a few days to several weeks. On the other hand there are others that flower only for a single day.
The irregularity existing in this respect permits the artificial prolongation of the period of flowering of some species by the aid of another. Instances are related in which plants, which generally flower from one to two days only, plants, which generally flower from one to two days only,
were kept in bloom for some time by being fecundated were kept in bloom for some time by being fecundated
with the pollen of another species flowering through a with the pollen of another species flowering through a
longer time. New varieties of great beauty have also been obtained in this manner
The geographical distribution of the orchidaceæ is very extensive, hardly any portion of the globe being entirely de-
void of them. They abound, however, principally in the hot zones, especially in America. During the past few years quite a number of interesting species have been discovered in Australia and on the islands of the Malayan Archipelago. One of the most common orchids found throughout the temperate zone, on both hemispheres, the vanilla, belongs to the group Arethusea, the members of which belong exclusively to the tropical zones. Epidendrea are of American origin, it being questionable whether the few species found in Asia are indigenous there. All the other genera have members indigenous in all continents.
Excepting the pods of the vanilla plants the articles of commerce derived from the orchid family are of little importance. The tubers of Orchis Morio, Militaris, Mascula,
Micculata, and other species, contain large quantities of micuilage and starch, and they were formerly largely used as an article of food. Dioscorides mentions this fact, stating an article of food. Dioscorides mentions this fact, stating
thitt by drying the tubers lose their peculiar bitter taste. This is done to some extent at the present day, especially in Egypt, Nubia, and Abyssinia.

The tubers of orchids have, under the name of salep, been admitted into the reciparium of medicine, and are highly valued, in the form of mucilage, as an emollient and demulcent in inflammatory diseases of the stomach and bowels. The root of cypripedium, or lady's slipper, is also officinal, and is used as a popular household remedy in nervous and epileptic affections, but it is probably inferior to valerian. Ophrys nidus-avis was formerly used as a vermifuge, but seems to be of little value. A decoction of Neottia ovata forms a good dressing for wounds, but has been replaced by
other agents of more modern origin. Many other orchids are here and there used for gout, and other diseases, but with the exception of Spiranthes diuretica, which seems to be a good diuretic, none of them appear to be of special value.-T. Poisson in La Nature.

THE NEW YORR ACADEMY OF SCIENCES

At a meeting of the Biological Section of the New York Academy of Sciences, on Monday evening, April 28th, the President, Dr. J. S. Newberry, occupied the evening with some interesting notes on the various
"devices employed in nature for the distribution of seeds of plants."
The speaker remarked, in substance, that we find among plants a host of adaptations to enable them to overcome the many obstacles that they meet with on every side in their struggle for existence. In tropical countries, where plants are most highly favored, we find their vegetative parts highly developed; but as we ascend northward and approach the arctic regions, we find the energies of the plants more and more directed toward a greater increase of the reproductive parts; so in such latitudes arboreal vegetation becomes reduced to mere shrub-like plants, yet completely loaded down with a mass of flowers and fruit. The struggle for existence in this case is aided by redundancy of fruit, for at least 99 per cent of all the seeds produced by the flora of such regions
must, throurh the nature of the surroundings either prish must, through the nature of the surroundings, either perish or fail to germinate.
Plants being immovably fixed to the spot where they grow, must necessarily be provided with some way of distributing their seeds, in order to insure the perpetuation and extension of their species. As a large proportion of all the seeds that are produced must, through many causes, fail to germinate, many plants make provision against such an accident by yielding these in immense quantities. The tobacco plant, for instance, produces at least 350,000 seeds in each of its capsules, and thus. by this very redundancy, is enabled to

But coming directly to the subject to be especially consider
ed, there is a class of devices employed by plants to effec ed, there is a class of devices employed by plants to effec
the dispersion of their species over a wide extent of country the dispersion of their species over a wide extent of country,
which are mechanical; and such devices are various and con fined to no particular group of the vegetable kingdom.
The first method to be considered, and the one that is most conspicuous, is that of distribution by the wind, and we see the effort constantly being made by nature to spread seeds broadcast in this way. A large number of plants depend on
this method for their wide dispersion, and their seeds are so this method for their wide dispersion, and their seeds are so
constructed as to enable them to take every advantage of it The extensive order of plants, the Composite, depends largely but not entirely on this means. In many of the genera of this order, the one-seeded capsules remaining on the disk after flowering are surmounted by a tuft of fine hairs called florets. This being persistent and increasing in size as the fruit goes on maturing, forms a feathery sail to carry the seed far away through the air. The pappus varies in differ ent genera, both in form and size; sometimes it consists of hairs, sometimes of feathers, and sometimes it is mounted on a stipe, so that it resembles a parachute. Familiar examples of this may be seen in the dandelion, thistle, etc.; and it is by such a means thatis distributed the Erechtites, a composite
plant, which, from its habit of springing up suddenly on plant, which, from its habit of springing up suddenly on recently burned-over timber lands, where it was before un
known, has acquired the name of "fire weed." This device is not confined to composite plants; we find examples of likewise in the asclepiads or milkweeds, whose seeds are provided with long silken comose appendages, by means of which they are wafted to great distances by the wind. The
fruit of the virgin's bower, too, is furnifhed with fruit of the virgin's bower, too, is furnifhed with long plu
mose tails, like downy tufts, which serve a like purpos in mose tails, like downy tufts, which serve a like purpose in
the economy of the plant. Other familiar examples may be the economy of the plant. Other familiar examples may
seen in the seeds of the cotton plant, dog's bane, etc.
Another mode of wind distribution is by means of wha maybe called the " balloon." In many plants the seed vessels, during the progress of maturing their seeds, become greatly inflated and balloon-like; and when detached from the paren plant are readily carried through the air or rolled along the ground by the winds to considerable distances. We have familiar illustrations of this in our balloon-vine or Cardiospermum, which is very remarkable for its large, inflated mem-
branous seed capsules; in the common "bladdernut" branous seed capsules; in the common "bladder-nut" of our
woods; and in the " woods; and in the "ground cherry" and Bougainvillea. The varieties of this sort of fruit found in nature are very numerous.
The dispersion of the seeds of still another great group of plants is effected through the aid of " wings." Appendages of this kind, both to seeds and seed capsules, are various One of the more familiar forms is that known as the "sam ara," characteristic of such trees as the elm, maple, and ash.
By means of their membranous, wing-like expansions (entire and circular in the elm, or two diverging "keys" in the maple) this form of fruit is enabled, when ripe, to go flut tering away through the air like bits of paper. A like de-
vice is found in the fruit of the conifers, nearly all the spevice is found in the fruit of the conifcrs, nearly all the spe
cies of which are provided with seeds having their membran ous wings.
A very large number of plants are distributed through the involuntary acts of man and the lower animals. Toeffect this, seeds and fruits have been provided with various kinds of appendages, and one of the commonest of these is "hooks. Familiar examples are to be seen in the involucres of the bur dock, the outer surface of which is covered with scales terminating in hooks; in the "beggar's ticks" (Bidens), the achenia of which are two horned and adhere to every passerby; in the clotweed, the burr of which is covered with stiff
hooked prickles; and in the " hound's tongue" $(C$ ynoglossum $)$ hooked prickles; and in the " hound's tongue" (Cynoglossum), the seeds of which are armed with hooked prickles. In the leguminous plant, Desmodium, the seed pod or loment is
only covered with minute prickles, making it adhesive, but it also breaks up at the constricted joints, so that the seeds it also breaks up at the constricted joints, so that the seeds
have a greater chance of being still more widely scattered. Another method of seed dispersion is by what may be termed " explosion." This, too, is exhibited under a good many different forms. One of the most curious of these had lately come under the speaker's observation, and suggested to him the subject of his present remarks. Some time ago a student had brought him from Cuba a specimen of the
fruit of one of the Euphorbiaceere the "sand box" or Hur crepitans. This fruit is a hard and woody capsule, discoid in shape, something like a muskmelon, but very deeply ribbed, and about three inches in diameter. He laid the specimen on his writing table, and while reading the other even ing he was suddenly startled by an explosion as loud as the report of a rifle, fragments of some material at the same
time flying through the air to every part of the room. On examining these he found them to be the seeds and broken pieces of the sand box fruit. A study of one of these capsules shows it to be a marvel of ingenuity in the arrangement of its parts to accomplish seed dispersion. The rib-like processes are seen to consist of carpels placed parallel to a com mon central axis, and these on becoming dry open very sud denly with a loud detonation, the force being exerted by two
strong woody springs, between which the lenticular seed is trong wo
inclosed.
Other illustrations of seed expulsion by "explosion" are found in such plants as the balsams (Impatiens), the pods of which at a mere touch throw back their valves and eject the seeds with great violence; in the Mexican Astragalus, the vesicular pods of which explode when mature; in the g. an; in the common lupine, and in many other plants.

In some of the cucurbits, too, we find force of this kind exerted in the expulsion of the seed, particularly in the squirt-
ing cucumber, the fruit of which when fully ripe throws out its juice and seeds with considerable force through an open ing at its base. Many examples of this method of expelling their reproductive bodies are found also among cryptogams. In the liverwort (Marchantia) the minute spores are contained in globular capsules, and intermixed with spiral threads or elaters, by the untwisting of which they are ejected to some distance. In the "horse tails" (Equiseta) we find something analogous: the capsules of the plants are filled with minute spores, to each of which is attached (and wound spirally around it when moist) four club-shaped elastic appendages. These filaments are hygrometrical, and rapidly uncoil when they become dry and cause the spore to move about, and are admirably adapted to aid in the dissemination of the plants.
Many kinds of plants are distributed in still another way. Certain hard and indigestille seeds often accompany delicious and succulent fruits. The latter being eaten by man or the ower animals, the seeds pass through the alimentary cana unchanged and unharmed. By this means very many hard seeds, such as those of the dogwood (Cornus), etc., swallowed by birds, are often carried by them and deposited at a great distance from the place where they were produced.
Another method of seed distribution is by means of the " waves." A large number of tropical plants, whose seeds are so protected as to be unaffected by the action of water, are floated off to immense distances and deposited on the shores of foreign countries, where, if the conditions for it are favor able, they germinate. By this means the cocoanut has been transported from one country to another; and in this way the coral islands (which are of comparatively modern formation) have been stocked with this as well as with other tropi cal fruits. The well known sea beans, which grow on the river banks of Central America, are carried by the rivers to the ocean, and, transported by the waves of the latter, are often thrown on the coast of Norway.
Dr. Newberry then mentioned a method of seed dispersion common to one of our native trees, and which he stated he had never seen noticed in print. Our button-ball tree or scyamore (Platanus), although found in elevated places in the Eastern States, prefers the moist alluvial soil of bottom lands, and in such situations in the West grows luxuriantly and attains an immense size, the trunk sometimes reaching 10 to 12 feet in diameter. The seeds of this tree are produced in a "capitulum" or globular head attached to the branch by a stiff stem 4 or 5 inches long. In our common species these balls are solitary, but in a California species-the Platanus racemosus-three or four balls are borne on the same stem. These globular balls of seeds are persistent and hang upon the tree, on their long woody pedicels, throughout the win ter. By the action of frost, and through the effect of alter nate freezing and thawing, the woody pedicels become ultimately reduced to mere thin fibers, strong but exceedingly flexible. By the action of the winds of early spring the balls are beaten violently against the branches, and the seeds are thus detached and fall into the waters beneath. Now it so happens that all this takes place just at the season when freshets have caused the rivers to be at their highest, and as the waters afterward gradually subside the sceds are distributed far and wide over a large extent of country.
In conclusion, Dr. Newberry described and illustrated by drawing on the blackboard the curious pods of a Western plant, the Martynia proboscidea, or devil's pod. This plant has large showy flowers, and its fruit consists of an oval fleshy pod terminating in a long rostrum or beak. The pods when mature are woody, and when ready to discharge thcir seeds the beak splits into two very rigid incurved horns abruptly bent at the ends into a very sharp grappling hook. This device is frequently utilized by the plant to effect its distribution, and the mule is made to act as the agent to accomplish it. When the animal steps on one of the pods (a matter of frequent occurrence) the pod opens, and the two rigid hooks clasp around his fetlock, and there remain until noticed by some person, for it is impossible for the mule to remove the pod by any effort of his own. In this way the devil's The speaker is often transed to great distances.
The speaker suggested that the devices employed by plants n ine preservation of their seeds from injury would form interesting topic for discussion, and hoped some one paper.

Wheeling as a Manufacturing City.

In a recent conversation reported in the Tribune of this ity, Governor Matthews, of West Virginia, spoke of Whecling as one of the chief iron making cities in the country. It urns out yearly more than one-third of all the nails made in the United States, and fully one-fifth of the annual production of the entire world.
Wheeling is also heavily interested in the manufac ture of glass, which it ships everywhere -even to London. Brazil and Australia are among the best markets for its glass.
One feature of this industry is rather singular. Wheeling manufacturers make the beautiful glass chandeliers which have become so fashionable of late, but they import the cut-glass pendants from Switzerland, where the peasants make them by hand cheaper than they can be made by machinery in this country. Many of these chandeliers are sent to London, so the pendants make two voyages across the ocean.

the brown desmognath.

${ }^{\text {by }} \mathrm{c}$. FRw silss.
The brown desmognath (Desmognathus fusca, Rafinesque) is not described by Dr. Holbrook in his work on "American Herpetology." He seems to have considered it a variety of the black desmognath, for he gives Harlan's painted salamander (Salamandra picta) as a synonym, and this is certainly Rafinesque's brown desmognath. De Kay, in the "New York Fauna," calls it the painted salamander (S. picta). He does not say he cver saw a specimen taken in New York State, but says it has been found in Massachusetts and Pennsyl vania. Professor Allen states it is very rarely met with in Massachusetts, yet Professor Verrill says it is found in Maine. In portions of Pennsylvania it is quite common. We have forty or more specimens captured by my brother and my self in the eastern part of the State. Thus far [have found but one specimen in New Jersey. They inhabit shallow and stony spring brooks of hillsides and springs. I never have found them far away from spring water. They are rarely seen swimming, but must be looked for beneath the stones. When a stone, beneath which one is hiding, is first lifted up the desmognath is gene rally surprised and dazed, and remains quiet for a few seconds. It must then be quickly seized or it darts off into the water and escapes.
The metamorphoses of this species do not dif fer materially, so far as I have observed, from our other batrachia urodela. The young are furnished with gill tufts, and are entirely aquatic in habits. When young they are lighter in color than the adult, and often assume the color of the mud or sand of the stream they inhabit, and are thus not easily detected.
The brown desmognath feeds upon earthworms and insects. I found in the stomach of an individual three and a half inches in length an carthworm over two inches long.
The generic name, desmognathus, means band, or ligature jaw, so called on account of the tendinous ligament (one on each side) passing from the allas over the parietal and prootic bones to the jaw. This, like a ligamentum nuchu, supports or rather, in this case, gives great power to the head, which is necessary in pushing up stones when in search of the worms upon which it feeds.
The stagnant water of the aquarium seems ill fitted for the life of this lover of spring brooks, for we could never succeed in keeping them alive for more than a few weeks.
The species of salamanders cannot well be identified without study of their anatomy. Thus in the genus desmognathus the premaxillaries are united, with a pit or fontancle in the center; the occipital condyles are long and eylindrical the occipital condy vomerine and spheroidal teeth. In our present species (fusca) there are fourtcen costal plice or folds from the shoul der to groin; the tail is compressed and keeled. Color above
(in thirty specimens) dusky purplish brown to rusty brown; sides marbled, or "'salt and pepper " marked; beneath, dull yellowish white, dotted with pale brown dots. Length of adult three and a half to a little over four inches. Some of the medium sized specimens (in life) were marked on the back with two series of subquadrate brown-ish-red spots, and the tail with a red mesial line. Alcohol causes these markings to fade and almost disappear in the ground color. Holbrook, it appears, has described this immature variety under the name of Salamandra quadrimaculata. Our red marked specimens were captured with, or in the immetured with, or in the immediate neighbor the brown animals. The black species (D. nigra, Green) has only twelve costal folds, and is gencrally over six inches in length.

A Long Bridge

The bridge across the Volga, in the government of Samaria, Russia, on the line of the Siberian railroad, is described as the largest in Europe. It will be completed next year. At that point the Volga is about four miles wide in the spring season, and in autumn is 4,792 feet. The bridge will be supported by 12 piers, 85 fect high, with ice cutters, 35 feet high, at a distance of every 364 feet. The ice cutters are covered with men employed on the bridge; it occupies about 55 acres, and has 60 different buildings, insured at 100,000 rubles. Two
thousand men are employed, and among them are 100 Italian masons. Three steamers and seventy barks are used constantly for forwarding wood, stone, iron, and other materials. The bridge will cost $4,630,000$ rubles, or about $\$ 3,500,000$.

A RICH CHAIR

The accompanying engraving represents a rich chair in carved ebony, copied from a sixteenth century pattern.

BONY CHAIR.-SIXTEENTH CENTURY PATTERN.

Vegetable Cows.

Since the reading of a paper by the chemist, Boussingault before the French Academy, a few months agn, on the subject of the "cow tree," or Palo de Vaca, considerable atten tion has been attracted to the subject. This tree, which wa discovered and made known by Humboldt, belongs to the same natural order (Artocarpacece) as the poisonous upas tre But there are other trees known (perhaps not so well known to the general reader), the milky juice of which possesses similar properties to, a greater or less extent. For instance, the cow tree of Demerara," which was first observed by a traveler named Smith, in an excursion up that iver. It is described as a tree from 30 to 40 fee high, with a diameter at the base of nearly 18 inches. The tree is known to botanists as Ta berncemontana utilis, and to the natives as "Hya hya." It belongs to the same natural order (Apocynacece) as the Penang India rubber tree and the poison tree of Madagascar (Cerbera tangliiu), and our common American dog's bane. It oc curs in great abundance in the forests of British Guiana, and its bark and pith are so rich in milk that a moderately sized stem which was felled on the bank of a forest stream colored the water in the course of an hour, quite white and milky The milk is said to be much thicker and richer than cow's milk, and is perfectly innocuous and of a pleasant flavor, the natives using it as a re freshing beverage, and in all respects as anima milk
The Cingalese also have a tree, called by them the "kiriaghuma," but belonging to a differen natural order of plants, the Asclepiadaceex, which also includes our common milkweeds or silk weeds. This tree is the Gymnema lactiferum of botanists, and yields a very pleasant tasted milk, which is employed for domestic purposes in Ceylon.
There appears to be also a milk tree common in the forests about Para, and called by the natives the " massenodendron," but of which we have little definite knowledge, except that it wa for a long time used on board of one of the ves sels of the British navy cruising in Brazilian waters. It was said to suffer no chemical chang by keeping, nor to show any tendency to sour.
Another milk tree is the "tabaya dolce' (Euphorbia balsamifera), of the Canaries. This plant again belongs to a different natural orde from any of the foregoing, namely, the Euphor biacex, and one containing a large number of plants with acrid, purgative, and poisonou juices. Leopold von Buch states that the juic of this plant is similar to sweet milk, and, thick ened into a jelly, is caten as a delicacy
A species of cactus (C. Mammilaris) also yiclds a milky juice equally sweet and wholesome. The contains many details of ornament which have been fre-|milk is stated, however, to be much inferior in quality to quently copied. The covering is in perfect keeping with the majority of the above. The caoutchouc, or India rubber the chair, being in rich violet colored cut velvet relieved with gold thread embroidery. f commerce as it milk in color and density.

Large Powder Elasts.
 Some time since a blast of $12,000 \mathrm{lb}$.

The regular lighting of Monumental Park, Cleveland, 0
powder was ex ploded in the quarry of the Easton Pa. displacing 60,00 tons of rock. The discharg was deccribed in some of the newspapers as probably the heaviest charge not sub-aque ous ever fired in the country. To this a California minin journal takes exception, and says that much larger charge are frequently exploded in the gravel mines of that State Very recently the Reservoi Ditch Company put off in their mine, at Sucker Flat Yuba county, a blast of 50 , 000 lb . of Judson powder, very powerful explosive, and by which between 200,000 and 300,000 cubic yards of gravel, some of it indurated into a hard cement, were so shattered that the most of it can be piped off under the heavy head of waters there used. Occasionally even greater amount of powder than this is exploded by th larger hydraulic mining com panies, who find it economi cal to employ such heav

THE BROWN DESMOGNATH.

with the Brush electric light, began at eight oclock the charges, as doing more proportionate exccution than sma evening of April 29. This was the first public lighting with ones
the electric light of any city in the United States. Twelve ectric lights were used in the place of one hundred and ten ras burners, and gave a much more effective illumination The electric liohts are furnished the city, under contract, for Ion India-rubber in 12 parts of benzole, and to the solucautiously over a fire. Apply with a brush

a SEnsible fashion.

A story, good enough to be true, is told of a young Englishman, who had been giving voice to the time-worn complaint of snobbish people about American society: "It is quite impossible, you know, to have a high-toned society where there is no aristocracy."
"What do you mean by aristocracy?" a lady asked. " Why-aw-you-know; I mean ten thousand people who live anywhere and have nothing to do."
"As for that," replied the lady, "we have such a class too; but we call them tramps."
The answer was something more than polite chaffing. There is a world of difference, on the score of comfort and cleanliness, between living anywhere with nothing to do, backed by a fortune sufficient to make life a pastime, and doing the same with a beggar's wallet; still, in spite of the superficial contrast, the moral difference is not so very great. The man whose only claim to consideration rests upon the The man whose only claim to consideration rests upon the
circumstance that the chance of inheritance has made him circumstance that the chance of inheritance has made him
able to gratify his selfish desires without personally making any return to the world for what he enjoys, is not intrinsically nobler, nor does he really play a much nobler part in life, than he who lazily sponges a precarious existence from those who have enough to do to provide for themselves.
The world owes neither a living; and the fortune of the The world owes neither a living; and the fortune of the richer only adds to his moral obligation to do
ful with the superior means at his command.
The idea that a man's merit is in proportion to the cost of The idea that a man's merit is in proportion to the cost of
his keeping and the unproductiveness of his life has never his keeping and the unproductiveness of his life has never
thriven in this country; and it has always been common for thriven in this country; and it has always been common for
young men of inherited wealth to take an active part in the young men of inherited wealth to take an active part in the
world's real work. In the industrial, as well as in the professional world, honorable success has been won through manly exertion by many a young man who might have squandered his time and fortune in idleness or worse. And if the tendeacy of flush times had been to cultivate a different spirit among the sons of the suddenly rich, the financial overturnings of the past five years have shown far too plainly the risk attending a youth of dainty idleness to give the vicious tendency much encouragement. Indeed the popular vicious tendency much encouragement. Indeed the popular current seems rather to be strongly setting in the opposite
direction, and it is quite the fashion now for young men of wealth to strike out for themselves, particularly in new and non-professional fields.
From Maine to Oregon, from Michigan to Texas, young men of wealth and culture, men who might be idlers-mere society men and nothing more-are to be found among the ranks of the doers, using their fortunes only to help them to larger and more productive labors than the empty-handed could undertake. A Newport correspondent names a number of the sons of the wealthy residents and summer visitors of of the sons of the weathy residents and summer visitors of that fashionable watering place, who are thus employed.
Agricultural pursuits attract the most of them. Several are managing farms. Two have gone into the market gardening and milk business, and are making it pay. Two are devoting their time to the raising of poultry on a large scale. Such undertakings in the vicinity of centers of population, wealth, and culture, are more likely to result satisfactorily and profitably than sheep or cattle breeding in the South or West, hitherto the more popular occupations of adventurous and active young men of wealth, since they do not necessitate the abandonment of the enjoyments and advantages of society and friends. The East is full of opportunities for men of energy and means to make money by outdoor operations, and, at the same time, to improve immensely the conditions and character of country life. The drift of young men of spirit and education has too long been toward the cities. It lies in the power of the leaders of the new fashion to set the current in the opposite direction, vastly to the benefit of both city and country.

Meteoric Dust.

Mr. Cowper Ranyard has made a communication to the Astronomical Society on meteoric dust, in which he has thrown out some interesting speculations as to the explanation of the relative distribution of land and water on the globe and as to geological climates. He says that meteoric dust exists to a much greater extent than was formerly suspected. In 1867 Dr. Phipson published the result of many experiments in many countries, which showed that, by exposing a sheet of glass covered with pure glycerine to a strong wind, he has collected on it black angular particles, ever, only in the winter months he has found this to be the case. In 1871 Dr . Nordenskjöld collected, by a magnet, meteoric iron particles from snow which had fallen near Stockholm. In 1872 he collected much of it from snow lying on ice in Finland. The Arctic Expedition of 1872 had opportunities of collecting snow far removed from human habitations, and they found large proportions of magnetic particles. M. Tissandier, in 1874-5-6, published in the Comptes Rendus a series of papers on atmospheric dust, in which, among other things, he has alluded to the iron found in the dust collected on the towers of Notre Dame. Again. Dr. Walter Flight published in the Geological Magazine, in 1875, a paper in which he collected the evidences of iron "dust" found in holes in the ice in Greenland. In 1876 Mr.
John Murray published a paper in the "Proceedings of the Royal Society of Edinburgh," in which he gave an account of his examination of the bottom of the oceans and seas visited by Her Majesty's ship Challenger. In many of the deposits magnetic particles were found. It was suggested that the nickel present prevented oxidation, while the fact
that the meteoric particles which had fallen into the sea had not been washed away, was attributed to the water being deep and not near the scourings of land surfaces which would cover it up. Again, in 1876, M. Young examined the
iron particles found in the snow which had fallen at the Hospice of St. Bernard. Mr. Ranyard submits that all these facts go to show that meteoric matter falling in the lapse of ages must materially contribute to the matter of the earth's crust. In the course of a year millions of meteors enter the earth's atmosphere. Most of them are "consumed" in the higher regions, but many particles reach the earth without having undergone change. There is little doubt that high above the earth's surface the air is impregnated with dust. The researches of Von Niessl show that many of the me teoric masses enter the earth's atmosphere in directions indicating that they do not belong to our solar system. It is therefore probable that a large quantity of meteoric dust is derived from sources outside our system. The earth and the planets, as they are carried along with the sun in its motion through space, would thus receive a larger proportion of meteoric matter on their northern than on their southern hemispheres, and Mr. Ranyard suggests that this may ac count for the preponderating mass of the continents in the northern hemisphere of the earth and for the fact that the great peninsulas all taper to the south. Another important inference to which Mr. Ranyard directs attention is that it isknewnthat when meteoric masses are heated large amounts of occluded gas are given off. One of the results from a continuous fall of meteoric matter is that gaseous matter is probably being continually added to the atmosphere. According to whether the earth were passing through a region of space in which there are many or few meteors, the heigh of the atmosphere would be increased or decreased. When decreased, the temperature at the sea level would be that of our mountain tops and a glacial period would result. When increased, the temperature would probably be like that of the carboniferous period.-London Times.

Substitutes for Gold and Silver

Some very beautiful alloys, applicable as substitutes for gold and silver in the manufacture of jewelry and similar purposes, have been produced by Messrs. Meiffren \& Co., of Marseilles. • To make an alloy having the appearance and color of gold, they place in a crucible copper as pure as possible, platinum, and tungstic acid in the proportions below stated, and when the metals are completely melted, they stir and granulate them by running them into water containing 500 grammes of slaked lime and 500 grammes of carbonate of potash for every cubic meter of water. This mixture, dissolved in water, has the property of rendering the alloy still purer. They then collect the granulated metal, dry it, and after having remelted in a crucible, they add a certain quantity of fine gold in the proportion hereinafter specified. An alloy is thus produced which, when run into ingots, presents the appearance of red gold of the standard $750 \cdot 1000$, and to which may be applied the name of "aphthite," or unalterable. They can change the color of the alloy by varying the proportions of the different metals. As flux they use boric acid, nitrate of soda, and chloride of sodi um previously melted together in equal proportions. The proportion of flux to be employed is 25 grammes per kilogramme of the alloy. The proportions they employ, by preference, for producing an alloy of red gold color are Copper, 800 grammes; platinum, 25 ; tungstic acid, 10; and gold, 170 grammes.
The alloy used in imitation of silver consists of iron, 65 parts; nickel, 23 parts; tungsten, 4 parts; aluminum, 5 parts; and copper, 5 parts. The iron and tungsten are melted together, and then granulated, as in the case of the previous alloy, except that in this instance the water into which the mixture is run contains one kilogramme of slaked lime and one kilogramme of carbonate of potash per cubic meter. The nickel, copper, and aluminum are also melted together and granulated by running into water containing the same
proportion of lime and potash. Care should be taken durproportion of lime and potash. Care should be taken dur-
ing the melting to cover the metals contained in the two crucibles with a flux composed of one part of boric acid to one part of nitrate of potash or niter. In the crucible containing the aluminum and copper they place a lump of sodium of about two grammes in weight when treating five kilogrammes of the three metals (nickel, copper, and aluminum) together to prevent oxidation of the aluminum, and they also add charcoal to prevent oxidation of the copper. Before granulating the metal in each crucible it should be well stirred with a fire-clay stirrer.
The granulated metals are dried, as in the former case then melted together in the same crucible in the proportions above indicated, and well stirred, after which the alloy is run into ingots. The alloy thus obtained, to which may be given the name of "sideraphthite" (or unchangeable iron), presents the same white appearance as platinum or silver, proved metallic alloys are capable of resisting the action of sulphureted hydrogen, are unattacked by vegetable acids, and but slightly attacked by mineral acids; they are also perfectly ductile and malleable.-London Mining Journal.

Presence of Mind.

Professor Wilder gives these short rules for action in case of accident: For dust in the eyes, avoid rubbing, dash water into them. Remove cinders, etc., with the round point of a lead pencil. Remove insects from the ear by tepid water; never put a hard instrument into the ear. If an artery is
cut, compress above the wound; if a vein is out, compress
below. If choked, get upon all fours and below. If choked, get upon all fours and cough. For light burns dip the part in cold water; if the skin is destroyed, cover with varnish. Smother a fire with carpets, etc.; water will often spread burning oil and increase the danger. Before passing through smoke take a full breath, and then stoop low, but if carbon is suspected, walk erect. Suck poison wounds, unless your mouth is sore; enlarge the wound, or, better, cut out the partwithout delay. Hold the wound, or, better, cut out the part without delay. Hold the
wounded part as long as can be borne to a hot coal, or end wounded part as long as can be borne to a hot coal, or end
of a cigar. In case of poisoning excite vomiting by tickling the throat or by water or mustard. For acid poisons give acids; in case of opium poison give strong coffee and keep moving. If in water float on the back, with the nose and mouth projecting. For apoplexy raise the head and body; for fainting, lay the person flat.

A Peculiar Disorder of Bank Clerks.

According to the British Medical Journal, Dr. Manouvrie has published, in the Bulletin Médical du Nord, some novel observations on a disorder to which bankers' clerks are subject under certain circumstances. It has been repeatedly noticed for years that after having handled for some days in succession large quantities of silver five-franc pieces they suffer from disturbances of the respiratory and digestive or gans. These troubles have been ascribed to a dark greenish metallic dust, which is raised by taking the coins from the bags wherein they are usually kept, weighing them, and put ting them back. This dust impregnates the atmosphere of the room, blackens the skin, and penetrates into the respiratory and digestive tracts together with the air and saliva As a rule, this process is only gone through at rare intervals during the year, and lasts only a few days, so that the clerks soon recover their health and do not feel much affected by this dust. But in the years 1872 and 1874, when the money which had been paid by France to Prussia as a tribute was returned to France through mercantile transactions, the clerks spent several weeks in handling the coins which had not been taken out of their bags in some years, and the affection spoken of above was now more marked than ever.
The symptoms of this peculiar disease are frequent sneezing, coryza, and angina; the expectorations are black. There is a disagreeable metallic taste in the mouth, spoiling the flavor of food, loss of appetite, colic, nausea, and violent thirst The bowels are mostly constipated; diarrhea seldom prevails. The blue line along the gums, which is often noticed in patients who have been subject to treatment by silver, is absent. There is great feeling of prostration and frequent headaches. Owing to the peculiar circumstances under which this affection has been first observed, there can be no doubt as to its being due partly to the copper (verdigris) and partly to the oxidized state of the silver; both metals are used in the coinage of the five-franc pieces, in the proportion of nine tenths of silver to one tenth of copper. The constipation seems to be caused by the silver, because copper invariably causes diarrhea. It is said also that silversmiths often suffer from colic, which is caused by their work. The patients were treated with purgatives and a milk diet, and the disorder soon ceased.

Kissing Pets a Cause of Sore Throat.

A writer in the British Medical Journal, in a communica tion to the editor in regard to the possible cause of the re cent outbreak of an epidemic of sore throat at Darmstadt, says: "It is well known that women and children are in the habit of kissing pet cats and dogs, especially when these favorites are ill with discharge from the nose, cough, and sore throat, and even use their pocket handkerchiefs to wipe a way the secretion. I have seen this done frequently. As such mistaken sympathy is exceedingly dangerous, I think a notice in the Journal to this effect would tend to its dis couragement. It is a common saying that, 'There! the cat has got a cold; now it will go through the house;' and, as this remark has been repeatedly verified, it shows how care ful people should be to avoid contact with such a mode of contagion. I do not affirm that this was the way in which the disease was contracted, either within or without the pal ace walls, but I feel sure the habit of kissing pets is a source of danger that should be widely known and prevented."

Electric Light in the New York Post office.

Five of Maxim's electric lamps have been placed in the post office of this city to light the great room on the ground floor. The lamps are thought to act very well, and as they are hung high the glare is not unpleasant to the eyes. Each lamp gives about 5,000 candle power, and is connected with a dynamic machine of about four horse power. The light is that of the voltaic arc, and French carbons are used. Each carbon or candle will last about five hours, and when burnt out another lamp is swung into position in place of it. The cost of each lamp is estimated at about 3 cents per hour.

A Large Tow.

On the evening of April 20 the towboat Joseph B. Williams left Louisville, Ky., for New Orleans with 36 boats and barges, containing $645,089 \mathrm{bu}$. coal and $35,000 \mathrm{bu}$. cokein all 380,089 bu., equal to 25,213 tons. This is the largest tow ever moved by one steamer on the Western waters, and probably in the world. The tow measured 258 feet in width over all, and with the towboat, 862 feet long. There were nearly 4 acres of black diamonds on the tow. Some idea of $\begin{array}{ll}\text { sippi rivers may be formed from the above. } & \text { H. L. B. }\end{array}$

TO INVENTORS.
An experience of more than thirty years, and the pr aration of not less than one hundred thousand applic derstand the laws and practice on both continents, and
to possess unequaled facilities for procuring patents to possess unequaled facilities for procuring patents
everywhere. In addition to our facilities for preparing everywhere. In addition to our facilities for preparing
drawings and specifications quickly, the applicant can rest assured that his case will be filed in the Patent Of fice without delay. Every application, in which the fees have been paid, is sent complete-including the model-
o the Patent office the same day the papers are signe t our office, or received by mail, so there is no delay in fling the case, a complaint we otten hear from othe sources. Another advantage to the inventor in securing his patent through the Scientific American Paten Agency, it insures a special notice of the Invention in
the Sclentific American, which publication often opens negotiations for the sale of the patent or manu-
facture of the article. A svnopsis of the patent laws foreign countries may be found on another pag and persons contemplating the securing of patent
abroad are invited to write to this office for price which have been reduced in accordance with the times, and our perfected facilities for conducting the business.
Address MUNN \& CO., oftice ScIENTIFIC AMERICAN.

まusiness and exsonal.

The Chargefor Insertion under this head is One Dollar a linefor each insertion; about eight words to a line. as early as Thursday morning to appear in next issue. Sutton's Patent Pulley Cover.-If you are losing power, get it again by using these covers. Calculat
how much power you are losing and find the gain you will make in your work by adopting a positive remed y. Send for a circular. Address Joseph Woodward, pr
prietor and manufacturer, P. O. Box 3419, New York.
The best results are obtained by the Imp. Eureka Tur escriptive pamphlets to Pat.Pulverizing Mills. Send for Fry the new fragrant Vanity Fair Cigarettes, both Blabe, Most exquisite of all
Blake's Belt Studs. The most durable fastening for National Steam Pump; best and cheapest. Send f A Anburn, N. Y., March 1, 1878. H. W. Johns Manu-
facturing Co.. 87 Maiden Lane, N. Y. Dear Sirs: In answer to your inquiry as to how we iike your paint, we are
more than entirely satisfled with it. As you are aware, we are large users of paint, and of all that we have eve used, are satisfied yours is far superior; it it put on with body, and, as far as our experience goes, will stand the eather better than any other paint we know of. Your oof paint is unsurpassed; we used one coat on a tin
ooof, and te-day it looks as fresh, and the color is as right, as when first applied, and there is no sign of it racking. Respectfully yours, Josiah Barber
For Sale Cheap.-A few State Rights for a Clothe land, o.
Blake Crusher, Improved 10×4. Evans Screw Press, No. 2. Both good as new; about half price. J. E. Mit Steel Stamping Figures, $\$ 1$ per set; Name Stamp, 15 For Screw Cutting Engine Lathes of 14, 15, 18, and Best Turkey Emery in kegs, half kegs, and cans; Best Turkey Emery in kegs, half kegs, and cans
liberal rates by the ton. Greene, Tweed \& Co., N. Y. Wanted-New Machinery on Commission, in larg new store near Liberty St. Superior advantages. No
charge for storage or cleaning. Address P. O. Box 1012, New Yor
Combined Universal Concentric or Eccentric and Inependent Jaw Chucks. Pratt \& Whitney Co., H'tf'd, Ct. nd prevention of scale in steam boilers, is safe, effec tive, and economical. Fully guaranteed. Try it. 17 Pec

Shaw's Noise Quieting Nozzles subdivide the steam to numerous fine streams. All parties are cautione ve., Philadelphia,
The Horton Lathe Chucks; prices reduced 30 per cent.
Wess The E. Horton d son Co
Wanted.-A Stcond-hand Phonograph. Address, with son Co., Mo.
Agents for Patent Medicine will hear of something to their advantage by addressing F. S. Ide, Box 121, Provi

For Sale.-A New No. 5 Stiles \& Parker Geared Punching Press; latest and best ; cheap; no use for it
B. D. Washburn \& Co., Boston, Mass. Lincoln's Milling Machines; 17 and 20 in
athes. Phoenix Iron Works, Hartford, Conn. Leni.
Louisiana Sugar Growers.-Your attention is called to lulu, Sandwich Islands, on page 334 .
Air Guns.-H. M. Quackenbush, Manufacturer, Her
Boilers ready for shipment. For a good Boiler send
Boilers ready for shipment. Fo
Hilles \& Jones, Wilmington, Del.
The only Portable Engines attached to a boiler havin
 Magnets, Insulated Wirc, etc., for experiments. Cata logue free. Go
Boston, Mass.
Shaw's Mercury Gauges, 5 to 50,000 lbs.; accurate. re New and durable. T. Shaw, 915 Ridge Ave., Phila., Pa New Pamphlet of "Burnham's Standard
Wheel" sent free by N. F. Burnham, York, Pa Sheet Metal Presses, Ferracute Co., Bridgeton, Vertical Burr Mill. C. K. Bullock, Phila., Pa.
Eagle Anvils, 9 cents per pound. Fully warranted. Diamond Planers. J. Dickinson, 64 Nassau St., N. Clipper Injector. J. D. Lynde, Philadelphia, Pa. A Cupola works best with forced blast from a Bake For Solid Wrought Iron Beams, etc., see advertise ment. Address Union Iron Milis, Pittsburgh, Pa., for
lithograph, etc.

Presses, Dies, and Tools for working Sheet Metal, etc The Ornamental Penman's, Engraver's, Sign Writer's 0 cts.; mail free. • E: \& F. N. Spon, 446 Broome St., N. Y. Linen Hose.-Sizes: $11 / 2 \mathrm{in}$., $20 \mathrm{c} . ; 2 \mathrm{in} ., 25 \mathrm{c} ; 21 / 2 \mathrm{in}$. 9 c. per foot, subject to large discount. For price lists
oall sizes, also rubber lined linen hose, address Eurek
 Forsaith \& Co., Manchester, N. H., and 213 Centre S., New York. Specialties.- Bolt Forging Machines,
Power Hammers, Combined Hand Fire Engines and lose Carriages.new and 2 d hand machinery. Send stam or illustrated catalogues, stating just what you want. Split Pulleys at low prices, and of same strength and ppearance as Whole Pulleys. Yocom \& Son's Shafting Nickel Plating.-A white deposit guaranteed by using Needle Point Ion, Brass, and Stel Wie for Need. Pointed Iron, Brass, and
purposes. W. Crabb, Newark, N. J. The Lathes, Planers, Drills, and other Tools, new an econd-hand, of the Wood \& Light Machine Company,
Worcester, are being sold out very low by the George lace Machinery Agency, 121 Chambers St New York. Solid Emery Vulcanite Whcels-The Solid Original Emery Wheel - other kinds imitations and inferior
Caution.-Our name is stamped in full on all our best Standard Belting, Packing, and Hose. Buy that only.
The best is the cheapest. New York Belting and Packgh Company, 37 and 38 Park Row, N. .
Hydraulic Presses and Jacks, new and second hand Lathes and Machinery for Polishing and Buffing Meta
E. Lyon \& Co., 470 Grand St., N. \mathbf{Y}.
Portland Cement-Roman \& Keene's, for walks, cis beweries etc. Remit 25 cents postage stamps for Practi cal Treatise on Cements. S. L. Merchant \& Co., Broadway, New York
Pulverizing Mills for all hard substances and grinding
purposes. Walker Bros. \& Co...23d \& Wood St, Phila. Pa The Improved Hydraulic Jacks, Punches, and Tàbe C. M. Flint, Fitchburg, Mass., Mfr. of Saw Mills and The best Friction Clutch Pulley and Friction Hois gg Machinery in the world, to be seen with power applied, 95 and 97 Liberty St., New York. D. Frisbie \& Co New Haven, Conn
No gum! No grit! No acid! Anti-Corrosive Cylin only oil that perfectly lubricates a railroad loco required of best lard or tallow, giving increased
power and less wear to machinery, with entire free dom from gum, stain, or corrosion of any sort, and
it is equally superior for all steam cylinders or heavy work where body or cooling qualities are
ndispensable. A fair trial insures its continue Address E. H. Kellogg, sole manufacturer, 17
ise. Ad
Cedar St., New York.
The 1879 Pennsylvania Lawn Mower.-Light draught nd easily adjusted. Machines warranted. See illus on, Philadelphia, Pa.
Deoxidized Bronze. Patent for machine and engine , Sp Wood-working Machinery, Waymouth Lathes. Spe
cialty, Wardwell Patent Saw Bench; it has no equal Improved Patent Planers; Elevators; Dowel M
Rollstone Machine Company, Fitchburg, Mass
Acme Lathes.-Swing, 7 in.; turn, 19 in. long; back and price to W. Donaldson, nd Augusta, Cincinnati, Ohio
The Twiss Automatic Engine; Also Vertical an Dead Pulleys that stop the running of loose pulley nd their belts, controlled from any point. Send
atalogue. Taper Sleeve Pulley Works, Erie, Pa. The only economical and practical Gas Engine in the Schumm \& Co., Philadel phia, Pa. Send for circular. Hydraulic Cylinders, Wheels, and Pinions, Machiner Castings; all kinds; strong and durable; and easily worked. Tensile strength not less than $65,000 \mathrm{lbs}$. to
square in. Pittsburgh Steel Casting Co., Pittsburgh, Pa The scientific Americain Export Edition is pub plate of the four ing weekly numbers of the SCILNTIFIC AMERICAN, with
other appropriate contents, business announcements, tc. It forms a large and splendid periodical of nearl about one hundred engra vings. It is a complete recor

NEW BOOKS AND PUBLICATIONS.

The American Journal of Otology. A
Quarterly Journal of Physiological Acoustics and Aural Surgery. Ne
York: Wm. Wood \& Co. $\$ 3$ a year. Two numbers of this periodical have been published tical utility. It is edited by Dr. Clarence J. Blake, of Boston, in conjunction with Professor A. M. Mayer, Hoboken; Dr. Albert H. Buck, and Dr. Samuel Sexton,
of New York; Dr. C. H. Burnett, of Philadelphia; Dr. . Orne Green; of Boston; and Dr. H. N. Spencer, t. Louis. Just now the department of acoustics oshing to the front rank in importance as a field fo of distinctive representation in journalism. The Amer an Journal of Otology takes a position with the highes scientific periodicals of the world.
The Coal Trade. By Frederick E. Saward New York: 1879. Price $\$ 1$
and abroad, by the editor of the Coal Trade correctly described as a valuable compendium of sta istics relative to coal production, prices, transportation and related interests, the world over. The author notes
that $235,000,000$ tons of coal are annually used by the Anglo-Saxon race, while all the other races use not more that it is because the Anglo-Saxon race so augments it terial civilization.

American Chemical Journal. Edited by RICAN Chemical Journal. Edited by
ra Remsen, Professor of Chemistry in
he Johns Hopkins University. Baltimore: he Johns Hopkins University. Baltimore:
Innes \& Co. $\$ 3$ a vol. Single numbers 50 cents.
The avowed object of this journalis to provide for the by American chemists. Hitherto such papers written either had a semi-private publication, or have bee widely scattered among periodicals not specially devoted to this science. In addition the journal will reprint entire orgive abstracts of the more important chemical ontributions to other, especially foreign journals. It tions, processes, and investigations. The first number April) contains a valuable report by Professor J. W, Mallet, of the University of Virginia, on the recent important changes in the industrial applications of chemis ry; a discussion of Lockyer's latest hypothesis, and other valuable papers.
Applications of the Physical Forces.
By Amedee Guillemin. Part I. 40 cents. The aim of this edition of Guillemin's admirable work is evidently to bring it within the reach of many who would not think themselves able to buy the complete work outright. Jt is to appear in eighteen monthly parts. Whoever wishes to become acquainted with the rts and industries, and in the greater art of original in vestigation, will not find elsewhere so beautiful and a ractive a presentation of the great subject. The work will be illustrated by four colored plates and nearly five hundred engravings.
The Science Index. Edited by A. Hilde brandt. Manchester, Eng. : Bow Cham
bers, 55 Cross street. January, 1879. 19s. a year.
The object of this index is to supply a monthly guide the more important articles of a scientific nature The first issue (quarto, pp. 64) covers the periodicals. January, 1879, classifying and, in many instances, briefly describing the more valuable articles appearing in some orty different papers and magazines. The enterprise is novel one, and promises to be extremely useful to students and journalists.
Organon of Science. By John Harrison Stinson,
Ayres.
12mo, pp. 158.
This is an ambitious little book. The author describes it as a scientific work, and says that the science, the principles of which it sets forth, differs from all other
sciences in that it shows the only keys which can be sed in unlocking the mysteries of any science. Unfo unately the keys are very rusty; the print is barel be translated into English before many will underta read the work. It is asking too much of a man to xpect him to learn a new science and a new language t one and the same time
A Manual for Engineers and Steam
Users. By John W. Hall. Providence,
R. I.: Wm. A. Harris. 16mo. pp. 109. 10 cent
Though intended primarily as a guide to the users the Harris-Coriss engines, and an advertisement of the merits, this little manual will be found to contain con siderable infor
and mechanics

 HINTS TO CORRESPONDENTSNo attention will be paid to communications unles accompanied with the full name and address of the
writer. writer.
Names
Names and add
iven to inquirers
We renew our request that correspondents, in referring o former answers or articles, will be kind enough to
name the date of the paper and the page, or the number of the question.
Correspondents whose inquiries do
reasonable time should repeat them
Persons desiring special informat
ation which is purely should remit from $\$ 1$ to $\$ 5$, according to the subject as we cannot be expected to spend time and labor to obtain such information without remuneration
Any numbers of the Scientific American Supplement referred to in these co
office. Price 10 cents each.
(1) II. II. S. asks for the best method of ardening stecl. A It depends upon the quality of the teel. As a general rule it showl be heated to chery ed and plunged into cool (not cold) clean water and ded to the water.
(2) J. A. asks what jewelers use to make Solder having the proper degree of fusibility is the first equisite. Use pure borax as a flux
(3) G. J. asks why it is that, in opening the waste valve, such, for instance, in our common wash
bowls, a whirlpool immediately is created. A. By the form of the bowl there is a greater or higher colum above the oullet than at any other point, and the water what gives the rotary movement is a doubtful question
(4) D. H. M. writes: In our mill we have a steam engine 14 inches diameter of cylinder and 28 ing under a steam pressure of 70 lbs . to the square inch the piston has traveled half the length of the cylinder Please give me the horse power of the above engine. A.
See p. 267 (4), current volume.
(5) P. C. asks: Do you know of any artifithat will induce the smoke and heat to return and pass under the furnace so that the same can be utilized? I consider the escape of smoke and heat from smoke racks an unnecessary loss. A. No, but by a proper ar the loss of heat pase of blast in ashpot, you can prevent a well proportioned boiler this is not worth while; it has been frequently tried and abandoned.
(6) C. H. T. asks: 1. What book could I get that would give me the most information on steam power and the engine, and where could I get such a
book? A. For a beginner Renwick or Lardner on the steam engine; you may obtain it from industrial pubishers who advertise in our columns. 2. What is high and low pressure? A. Ordinarily engines (high) ex-
hausting into the atmosphere, and (low) exhausting into
(7) C. W. H. asks: 1. What is meant by he pitch of a propeller? A. The advance the propeller 2. How to find the horse power of an engine? A. See p. 267 (4); current volume.
(8) E. N. asks: 1. How can I determine See $p .267$ (29), current volume placed on a safety valve? A can. 2. How much pressure will a boiler stand, $1 / 4$ inch sound? A. If of good iron and in good condition, 60 to 70

(9) H. R. M. asks (1) for the necessary lengths of the radin for the calves of an achromatic obective to be 12 inches focal length. A. The radius of inches, approximately, It will vary with different nches, approximately. It will vary with different spe-
cimens of glass. 2. Do opticians use any grinding powder between the last grade of emery and the final polish with rouge? If so, what is it? . A. Pumice stone is used.
(10) J. J. C. asks what is the meaning of he letters \mathbf{O}. G., as applied to moulding. A. The ogee, or cyma recta, is compounded of a co
vex surface, the latter leing the lowest.
(11) J. N. D. writes: Does the moon oscillate rom north to south, and vice versa, during regular and niform periods? A. The face which the moon presents uns not always exactly the same, there being a slight apparent (not real) oscilation due to the real nequal ing is called libration.
(12) E. P. D. asks: What is the carrying trength of a steel cylinder; For example, take a cyldier made from one sixteenth inch steel, 4 feet in 30 feet, the weight to be placed on the top end What will it carry before bending or collapsing? Of course the joints are supposed to be made equal to continuous steel. A. We know of no experiments with steel tubes that would form a basis of calculation in your case. You tubes in " Fairbairn on Iron Ship Building," page 54, and n "Clark on Britannia and Conway Bridges,", vol. i,
pages 343 to 364 .
(13) A. F. asks: 1. How can I make electrotypes when my mould is plaster or wax, or the way
o do it in any shape or form, having impressions of very size, principally of careos and medals? A. The solution may be prepared by agitating one ounce of powdered copper sulphate with each pint of hot water,
and letting the solution cool and settle. If the mould
. is not saturated or coated with paraffine, stearine, or some other waterproof substance (before coating with
graphite) it is apt to soften and crack or fall to pieces graphite) it is apt to soften and crack or fall to pieces
through absorption of the electrotype. 2. Is there any place where I can learn modeling in clay, free exce Union? A. We know of no other free institu-
(14) F. II. B. asks how to make a cement for fish vases, to set the glass perfectly water tight, and
will not poison the water. A. The following is well recommended: Resin, $1 \mathrm{lb} . ;$ tar, 4 ounces, linseed oil, bout 2 ounces, melt together over a gentle fire and pour nto the angles of the aquarium while in a liquid state, but not when boiling, as this would crack the glass. The ement becomes firm in a few minutes. If too liqui and heat again ; if not sufficiently fluid add more oil. The cement will not injuriously affect the water
(15) G. B. M. asks: What is the cause of the ridges on the surface of a board which has been put
through a planing machine? A cylinder with but one knife seems to register as many marks to the inch as one containing six knives. A. If your knives are pro-
perly adjusted it is probable that your cylinder or knife perly adjusted it is prob
(16) M. M. asks: 1. What gives the lifting power in hydraulic jacks, such as are used in raising loand ram. 2. How are they constructed? A. Same
(17) G. P. asks: What should be the rela tive proportion of the grate and the chimney or flue in a
furnace for melting brass; say the furnace is diameter and 25 feet the height of chimney? A. Make he area of the chimney about half that of the grate.
(18) C. F. asks: 1. If an electric current is used to make an induced current in a second closed cirwhat it would have been if the second circuit had not been there, and the former current had not induced another current, other things being the same? A. the carrent wind induced current. 2. In the Bell transmitting tele-
rary phone, is the polarity or direction of the current from diaphragm; or only the intensity changed, the direction or polarity remaining the same? A. In the new transmitter the primary current is changed in intensity; the secondary current changes direction for each vibra-
tion of the diaphragm. 3. When no battery is used
but only the current induced by the diaphragm, is a
positive, then a negative, current sent in the same dipositive, then a negative, current sent in the same di-
rection, or a positive in one direction, then a negative in rection, or a positive in one direction, then a negative in
the other direction, for cach motion of the diaphragm? A A positive current passes in
negative in the opposite direction.
(19) R. S. asks: What is the difference be ween a German "loth" and an American ounce, or beecn a German and an A weight. The German pound contains $5,522 \cdot 96$ grains, apothecaries' weight. The American pound (apotheca es') contains 5,760 grains, apohe
(20) R. A. S. asks: 1. Will you please tell me how high water will run in a siphon? A. About as high as it can be drawn with a pump, 26 or 28 feet. 2 .
What is the composition of which crucibles are made? What is the composition of which crucibles are mad (21) "Tinsmith" asks: 1 What is the diffe nce between "coke tin plate" and "charcoal til plate?" A. The tern s "coke " and "charcoal" refe the quality of iron from which the tin is made. ${ }^{2}$
(22) W. P. H. asks: 1. What kind of metal will demagnetize a horseshoe magnet? A. We know of one. 2. Which win run the thin iron spindles? A. The one with the wooden axle.
(23) G. T. asks: 1. Which is best, a 6 inch The bi-convex 2 What would be the best distance A focus? A. 10 or 12 inches. 3. Will not this lens do for a camera obscura, with mirror? A. Yes
(24) C. F asks: 1. Would the galvanome er be deflected by a coil of wire that surroundsa strong ar magnet? A. Yes, if the bar were inserted or re netic field in the telephone by the vibration of the laphragm? A. The magnet is temporarily weakene by the approach of the diaphragm. 3. What are the
best works on magnetism? A. "Rudimentary Magnetism" by Harris.
(25) S. Z. asks: 1. How can be determined he augmenting power of any microscope? A. It i vision with the naked eye by the focal length of the ns or combination lenses. For example, taking 10 inches as the average distance for the minimum of disdiameters, one of $1 / 2$ inch 20 diameters, and so on. Can you tell me in what consists the greater value which the short horn cattle have over the common ones? A. Their bones are smaller, they fatten easier
are better milkers, and it might be said that they are are better milkers
(26) A. F. H.-A new and useful combination is patentable though its clements are old, if the re tive action of its elements, and not a mere aggregation of several resslts, each the separate product of one of whe elements or groups of elements. It is immateria
27) A. asks: Would it be any advantag for a locomotive to have a glass gauge. Providedther were plenty of gauge cocks in proper places, would it sist? We thin deceptive indications of gauge cocks
(28) C. K. asks what kind of a book to ct to study cam motion, leverage, and mill gearing. A Mill Work.
(29) E. S. writes: I have tried to melt brass a crucible in a common hard coal stove, but it woul not melt, and not having a forge, 1 intend to make a 5 inches inside diameter and 12 inches high, and is to eshaped like a cupola for melting iron. I intend to use coke for fuel, and would like to have your opinion of it. A. A blast furnace of thiskind isnot adapted to melting brass; an ordinary coal stove will answer every purpose, if the draught is good. It may be
(30) E. N. asks: Where shall I place a weight on a safety valve lever in order that the steam blow off at 80 lbs . pressure per square inch in th lbs.; the lever is $3^{5 /}$ inches from fulcrum to valve stem, and weighs 6 lbs . The weight is $731 / 2 \mathrm{lbs}$. Please als give me the rule by which to figure the same. A Se p. 267 (29), current vol. of Scientific American.
(31) A. P. F. asks: Will a safcty valve work well with a steel coil wire spring on top of valve
exposed to heat of stcanı as soon as valve rises? W have one in that shape on steam fire engine, and when the team raises the valve it will blow down the pressure 40 r 501 bs ., unless screwed down to get more tension on the pring; and if screwed down when hot from steam blow ing off, will not rise until the pressure runs up 40 or 50 A. Your valve is not a safety valve, but a dange valve. You should get rid of it at once, and
(32) J. H. asks: 1. In what number and volume of the Scientific American is the diagram of Hacckel's theory of evolution? A. See vol. 34, p. 167 In Knight's Mcchanical Dictionary, page 90, an am he fuel to gain the same pressure of steam. Could I use mmonia instead of water, with a coil of pipe, for a steam arriage, as described in Scientific American, No ebruary 22d, page 116? A. Many attempts have otive pow ammoniacal gas instead of steam fo motive power,but so far unsuccessfully. It is almost im possible to prevent the escape of the gas in a working
machine. This is a source of danger and is injurious to he men. Its economy in practical working has not bee monstrated. It would not suit your purpose, as yo monia in aliquid state.
(33) J. W. F. asks the number of gallons a till will hold, 6 feet in diameter, 25 feet long, filled to a adard callons nearly.
(34) J. R. F.-You will find an excellent article on the use of petroleum in steam boilers in Sc Hific Amemon Sol (35) C. K. asks what end of a telephone coil to attach to zinc pole of battery, in order to hav he current increase the magnetism, when telephon nd sounder of a Morse instrument are used on sam he wire from the zinc pole of the battery should 20 round the magnet in a left handed direction. If it be outh, the wire from the zinc pole should go around the get in a right handed direction.
(36) F. A. M. asks. 1. Has either the Bell or Gray telephone been operated over the At'antic cable? A. No. 2. What obstacles, if any, would there be to with which the electrical impulses follow each other renhic commuication.
Minerals, etc.-Specimens have been re cived from the following correspondents, and xamined, with the results stated:
G. P. H.-It is a deposit of carbonate of lime, containing a small amount of phosphoric acid. By proper reatment it might make a good lime. The industria cid fits especially for the great affinity for carbonic alkalies. Slaked lime isemployed in the preparation of mmouia from sal-ammoniac and of hypochlorite of calcium (bleaching powder). Lime is used in the puri cation of illuminating gas from carbonic acid, etc.; in he refining of sugar; in the manufacture of soda; in tanning, to remove the hair and prepare the hide; in making of mortar etc.-C. H. B-It is not properly clay, but a loam, a mixture of clay and sand It form with water a slight plastic mass, and is not very refrac tory. We see no reason why the loam, as represented by this sample, should not make good bricks and article coarse pottery if properly burned.-F. L. R. B.-It is lay, containing a large percentage of silex. It is not ndicative of the presence of any of the noble metals.-
H. M. C.-They are not samples of meteoric iron, but ite. Some of the samples react very muc

COMMUNICATIONS RECEIVED

Gary's Perpetaal Motion and Neutral Line. W

 an a bliged to decline as useless the further discussion e matter.On the Gary Motor. By P. J. D
On the Gary Motor. By
On Heat. By E. C. F.
On a small Stcam Boat. By B. J. McD.
On Dreams. By R K. T.

On Dreams. By R.K. T

INDEX OF INVENTIONS
or whice
Granted in the Week Ending
April 15, 1879,

AND EACH BEARING THAT DATE

 [Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed lis,

 furnished from this office for one dollar. In ordering ease state the number and date of the patent desireAdvertising device, F. J. Bailey
Advertising device, F. J. Bailey....
Air compressor, A. Spencer.....
Air heater and cooker, w. Pickhard
Amalgamator, Forster \& Firmin.... Attrition mill, H. A. Duc, Jr. Attrition mill, J. J. IHayes............
Axle box, vehicle, J. A. Mackinnon. xle, vehicle, Reichelderfer \& Wer Bale band tightener, F. M. Logu Bale tie, J. L. Sheppard (r).... Baling press, P. K.
Basket, A. Ulrich.
Bither Billiard table, H. W. Collender. Bolt cutter head, Morgan \& Ander Book cover, copy, J. w. C. Gilman Boot and shoe heel burnisher, J.
Boot and shoe heeler, T . Cowburn Boots, rubber, G. Watkinson............ racelet hinge joint,

Breakwater or pipe, J. Johns.
Brush, shoe, G. D. Mitchell...
Bucket, well Buckle, F. . . Johnson
Buckle, N. F. Revell. ugs from vines, apparatus for re................ lecting, Wood \& Smith Can heading machine
Can head maker, C. P.
Candle, F. Maguire..

Car brake, J. Meissner....

ar, street, J. A. Ayres

Cars, card holder for street. C. Q. Ring
Carriage wrench, E. A. Robbins
arriage canopy top, children's, J. M. Crosby.
Cartriage primer, J. Gardner for tubs, C. F. Rapp

Centrifugal machine, Walker \& Patters
Chains, link for drive, \mathbf{C}. w. Levalley Chalns, link for drive,
Cheese hoop, G L. Fr
Churn, M. S. . Lyon.
Churn, J. W. Rogers. Churn, J. W. Wilson...........
Clay pulverizer, w. L. Gregg Clock for utilizing watch movements,
Clothes drier, w. H. Uren
Clothes rubber, Burkhardt \& Hopkins Clothes rubber, Burkhardt \& Hopkins....
Clover hulling concave, Lippy \& Stocking Clover hulling concave, Lippy \& Stocking...
Coal breakers, cylinder teeth for, E. H. Jone Coat, N. Malmar Cofree mill, H Matkin....
Coffin plate, R. J Coffin plate, R. J Howdon
Colters, hub for plow, S. J. Adams
Combing Combination chair, C. J Higgins.....
Core anchor and stud, C. D. Woodruff Corset, L. H. Foy
Corset steel, J. Beckel

Cream from milk, separating, G. A. Kennedy

 Cultivator, W. H. DickeyCut-off, adjustable, T. E. L. Collins Ditcl er, road, I. Karsner
Dough kneader, Dows \& Berkeley. Drawer pull, G. W. Tucker
Electric light apparatus, P. Dieh1.. Elevator, S. A. Bates
Elevator, G. Muller.

Fare box, c. T. Yerkes, Jr
Farm gate, E. L. Rugg ...

Fence post, E. C. sturdivant

Field roller, T. S. Monger.

Firearm, sight for. O. D. Warfiel

Fruit cans, cleaning tops of, S. T. Strang

Gas, purifying and increasing the illuminatin

 GasGas washer, J. M. Hartman
Glassware shaper and finisher, T.......
Glassware shaper and finisher, w. Betterbury. Glassware shaper and finisher, w. Beck............
 open-ended, Atterbury \& Beck Grain drier, Buhler \& Pye
Grain drill, P. E. Brownin Hame strap and pad, J. M. Sharp Harrow, C. D. Price..........
Hat and cap. A. Rosenbluth Hat or cap, A. Meyering.
Hay, etc., stacker, J. Dill
Hay elevator, , A. H. Mason....
Heating apparatus, W. Durye
Heating apparatus, W. Dur
HIoisting jack, A. Gorrell..
Horse hitcher, J. A. Field

H
I
In
In
I

${ }_{\mathrm{L}}^{\mathrm{L}}$

amp stree, H. E. Butler

Lamp, street, J. Irwi
Lantern, E.P. Follett.
Lath, metallic, , , G. H. Cacauler..........................
Letters in gold or silver leaf on glass, etc., mak
ing, M. D. L'Amoreaux...
Loom shuttle, T. E. Roberts.
Loom shuttle, T. E. Roberts.........................
Loom temple burr roll, Prouty \& Sprague........
Mangle, C. Reese Medical compound, W. H. Ridgway Metals by electrolysis, separating, E. Andre..... .
Metals, composition for cleansing the
 Microscope for
H. J. Deal.
Middlings purifier, J. H. He Redfeleld
Mining machinery, \mathbf{R}. Cotter.
Monument, J. R. Wimer.
Mutfer, head, s. K. Troeelicht
Nail distributer, A. Morrison
Nursery chair. A. B. Steven
Nut lock, H. W. Layton.
Oat separator, J. Magone
Oat separator, J. Magone.
oils, case for retailing. A. Reynolds
Ovens, regenerative hot blast, J. M. Hartman. Pall falstening, Laskey.
 Paper box, G. L. Jacger
Paper box machine, E. M Paper or board, compound, J. O. Gregg Paving and roofng com
Paving block, F. Geib
iano and organ case, II. W Smith... Plant irrigator and propagator, C. A. Smith Planter, cotton and corn, T. V. Cardwe Plow, IV B. Allen.......
Plow, Meikle \& Coleman
Plow, A. W. W'ashburn.
Plow, snow, Osgood \& Morse
Plow, sulky, T. E. Jefferson. Plow, sulky, T. E. Jeffers
Plow, sulky, J. M. Payne. Prison lock, L. M. Ham.
Pump and water pipe safe Punch, ticket, Hall \& Furlong.
Rag or waste picker, J T. Slack Rocking chair, S. Willershausen Roll for utilizing steel ralls, w.
Rooffing material, T. New (r).
Rope sheave, T, M Righter Rope sheave, T. M. Righte
Rotary engine, S. B. Davis Sad and futing iron, H. E. Crocker Sand guard, R. Schnell. Sausage stuffer, W. Teamer
Saw, circular, .. . H. Hil.....................
Scow, reversible dumping, J. W. Mitchell...... Scow, reversible dumping, J. W. Mitchell......
screw clamp, hand, W. F. Lane................

${ }^{214,267}$	Sew
214	Sewing machine, J. Bip
214.381	Sewing machine treadle, Von Cort \& sher
	Sewing machines, clutch for fly wheels of
214,4	16,
214,288	Slingling bracket, W. D. Walker................. 214,300
214384	Shoe, J. L Cross 214.371
el 214,362	Shoes, lined tongued, W. A. Springer. 214,264
214,474	Shovel handle, E. Smith.
214,361	Skates, ankle support for, E. H. Bar
254	Skeleton crate for hats, etc., w. J. Winghart.
1398	SkJlight, G. Hayes (r).................e.674, 8,675, 8,676
214,431	Slate, C J. Higgins............. 24,298
,367	sleigh, bob, C. c. Forncroo
214,429	Sluice gate, Tainter \& Par
214,392	Soldering machine, G. H. Perkins
229	Spinning machine spindle driving mechanism,
297	J. E. Braunsdorf
270	nning spindle and mechanism for driving the
${ }^{214,247}$	same, J. E. Braunsdorf....................... 214,355
${ }_{214,352}$	Spool maker, H. E. Kiy. 214,300
,401	Stamp affixer, postage. G. M. Barney............... 2142322
24,410	Steam boiler, R. R. Doan
373	Steam boiler, T. S.
1336	steam engine boiler and cylinder, T. J. Fa
39	'steam engine, compound condensing apparatus
	for, J. Houpt (r) 8.670
	Steam generator, Mead \& Graham....... 214.420
	Stench trap, T. J. F
	stench trap, w. e.
	Stove, F. Schifferle........ -.... 214,262
${ }_{2}^{214,45}$	Stove, heating, C.
	Supply and distribution
	under pressure, J. J . R Rhodes 214.452
	Table, sink, etc., A Z Zundorff.................... 214.271
	Tackle hook, C. H. Roloson 214,318
	Tanners' vats, eleva
	Tea kette, E. L.
	Telephone transm
	common lines to. W. Gillett 214,218
${ }_{4}^{467}$	Textile fabrics, ornamenting, w. w. Carpenter... 214,279
468	Tobacco, medicated, N. M. Compton 214,240 Tobacco, treating and curing, C. Hornbostel...... 214,391
412	Thill coupling, H. E. braunfeld 21, 235
414	Thrashing machin
	Time lock, J. B. Overmyer............... 214.438
	ce carrier, E
,273	Trunk lock guard, J. W. C. Haskell...... 214,252
	Truss. L. B. stuart............................ 21449
8,677	,
	Valve, air, I. M. Scott........ 214.321
	Ive, coupling, G. Westingh
${ }^{214,537}$	Valve of tanks for supplying water to b
${ }_{2}^{214,358}$	
	Vaporizer, C. P. Ball 24,349
	Vehicle spring. J. Enders......................... 214,244
. 214,458	Vehicles, corner iron and rest for shifting rails of,
- ${ }_{2}^{214,423}$	C. T. Haydock14,296
	din b
21.3576	Wagon brake, J. H. Lawson............ 214,407
. 214,24	Wagon, brake, B. Robinson.................... 214,456
214,245	Wagon rack, L. Talcott.. 214,471
	Wagon running gear, S. J. McDonald............... 214,421
, 2142378	
. 214,425	washing machine, C. H. Lane et al....................214,404
	Washing machine, A. Hart........... 214.386
	Washing machine. P. C. McCune 214,36
, 214	Washing machine, G. W. Nichols............... 214.437
	Water elevator, A. F. Humble.................... ${ }_{\text {21/4, }}^{\text {21/33 }}$
$\begin{array}{r} 214,353 \\ \cdot \\ \cdot 214,277 \end{array}$	Water elevator, E. C. Plumer........................ 214,444 Water
	Water from rivers, obtaining pure, H. O. Ames... 211,343
	Whip rounding machine. H. Lombard........... 214.2257
	Yoke connection, breast, J. w. vineyard......... 214,475
$\begin{array}{r} 214,379 \\ .214,422 \end{array}$	TRADE MAR
214,278	Barb fence wire, Ohio steel Barb Fence C
	Bitters, Siegert \& Hilijos
214,317	Cigars, Bott \& Frintrup......... 7,180
迷	
. 214	
318	Horse nails, The Putnam Nail Company7,188, 7,189
	Iron and steel, w. Barrows \& Sons
	${ }_{\text {I }}$ Kid ploves. J. Gntman \& Co..................... 7,182
	Company................................. 7,191
	nd short cut smokiny tolaceo, plug, and
214,388	chewing tobace $(0$, cigars, and cigarettes, , H.Welsh 7,212
,211	
214,339	Mineral paint, Lake Superior Iron Ore Paint Co..... 7,184
${ }_{214,326}^{24,41}$	Prints, Edystone ME. Company $\%, 205$
315	
214,479	Saduders hardware, North \& Judd Mg. Company...
${ }_{2141408}^{2145}$	Salt, A. Deakin............................. $7.194,7,195$
${ }_{214,450}^{214,45}$	
. 214,260	Spool cotton thread, Willimantic Linen Company.. 7, 187
. 21,294	Watch cases, Brooklyn Watch Case Company 7,199
${ }^{214.406}$	designs.
	Font of printing types, w. w. Jackson.......11.161, 11,162
214,325	Font of prrnting types, R. smith 11.164
	mp, J. Graham
	minated signs, B .
	Neck ruching, A. B ok......................... 11,153
	Sheet metal boxes, J. S. Field 11,158
	Side frames of sewing machines, Miller \& Diehl... 11,156
	Stocking, J. Phipps.............................. 11,163
${ }_{\text {214, }}^{214,309}$	
	From April 18 to April 22,
. 214	
${ }_{214,385}^{214,43}$	Chain cable, C. A. Chamberlain, Camden, N. J.
	Coats, N. Malmar, Brooklyn, N. Y.
	Corset fastener, G. C. Judson, Newton. Mass.
${ }_{8}^{8.6681}$	Fireplaces, H. Clayton, Lexington, Ky. Fruit drier. A. J. Reynolds et al.. Chicago, ill.
	Fruit drier, A. J. Reynolds et al.,. Chicago, in.
	Machine guns. F. E. Schultze, New York
	Musical instruments, M. J. Matthews. Boston, Ma
	Petroleum, refming, W. Ryder et t lu, Thiladelphia, Pa.
	K. Katzenstein, New York cit
244,43:	

Aduextisempty.
Unite Paye each insertion -:-75 cents a line.
 tiseenents musst be rectivel at publication oftice as ear
as T Thursalay
morning to appear in next issue.

BAIRD'S Buoxs

FOR PRACTICAL MEN.

 I. List of Important Books on METALILLRGYY MET

 Industrilenty carey baird \& co.,

ADDAPID
Wonderful Invention:
LTo of Ading Firures
from Left to Right

SetamininuMn,
Batavin, X . X ,
PATENT RIGHT FOR SALE-HAN

A PRACTICAL TREATISE COMBUSTHIONT OF COAL

 Paris, . , 1878 Australia, 1877 Santiago, 1875 Vienna, . 187
J. A. FAY \& CO'S WOOD WORKING MACHINERY

 PATENT RIGHT FOR SALE, OF A COMPLETE SEW PATENT RIGHT FOR SALE, OF A COMPLETE SEW
ing Machine, or tolet on royalyo Address
G. HANCOCK, Box 330 , North Adams, Mass.

Wood-Working Machinery,

COLD ROLLED sharming

 Feo. Place Machinery Agency, 121 Chambers St., Nost Mass
Patent JEWELER'S LATHE

The American Bicycler

sphotokingravinger (67Tarkilace ver vorb)

L. smith hobart, President.

JOHN C. MOSS, Superintendent
TYPE-METAL RELIEF PLATES A SUPERIOR SUBSTITUTE FOR W00D-CUTS AT MUCH LOWER PRICES.
Persons desiring illustrations for Books, Newspapers, Catalog
an have their work done by us promptly and in the best syle.
Our LReilief Plates are engraved by photo-chemical means

THE DINGEE \& CONARD COS

Shafts, Pulleys, Hangers, Fitc.

STEAMBOATS.

Hancock Inspirator Co. 52 CENTRAL WHARF,

BIG PAY plese tree. Thaybor Pros.

STEAM PUMPS.
henry r. worthington,
 Price list issued Jan. 1, 1879, with a reduction exceeding 30 per cent.

PATENTS at AUCTION.

$\$ 77$ A Month and expeneses guarateed to A Aents:

$\$ 25$ to $\$ 5000$ Juhdidionsid invested In Wall st Inys

THE DRIVEN WELL.
 WM. D. ANDREWS \& BRO.,

Baker Rotary Pressure Blower. (Q)

Scicutific Ammericam

The Most Popalar Scientific Paper in the World

VOLUME XL--NEW SERIES.

The publishers of the SCIENTIFIC AMERICAN beg
to announce that on the Fourth day of January, 1879, a hew volume will be commenced. It will continue to be the aim of the publishers to render the contents of the
new volume as, or more, attractive and usefulthan any of its predecessors.
Only $\$ 3.20$ a Year including Postage. Weekly.
This widely circulated and splendidly illustrated paper is published weekly. Every number contains six-
teen pages of useful information, and a large number of original engravings of new inventions and discoveries, representing Engineering Works, steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures Chemistry, Electricity, Telegraphy, Photography, Archiecture, Agriculture, Horticulture, Natural History, etc All Classes of Readers find in The Scientific AMERICAN a popular resume of the best scientific in-
formation of the day; and it is the aim of the publishers o present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind, his journal affords a constant supply of instructive
eading. It is promotive of knowledge and progress in reading. It is promotive of knowledge and progress in
every community where it circulates. IFIC AME of Subscription.-One copy of The Scies postage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollars :ind twenty or Canada, on receipt of three dollars and twenty
cents by the publishers; six months, $\$ 1.60$; three cents by the
months, $\$ 1.00$.
Clubs.-One extra copy of Tre Scientificameri-
CAN will be supplied gratis for every club of five subscribers at $\$.320$ each; additional copies at same proportionate
ate. Postage prepaid. ate. Postage prepaid.
One copy of The Scievtific American and one copy or one year, postage prepaid, to any subscriber in the United States or Canada, on receipt of seven dolars by The safest way to remit is by Postal Order, Draft, or ecurely sealed, and correctly addressed, seldom goe astray, but is at the sender's risk. Address all letters MUNN \& CO.,
37 Park Row, New York. To Foreign Subscribers.-Under the facilities of
the Postal Union, the ScIENTIFIC Ambrican is now sent by post direct from New York, with regularity,to subscribBritish Great Britain, India, Australia, and all other Russia, and all other European States ; Japan, Brazil, Terms, when sent to foreign countries, Canada excepted, \$4, gold, for SCIENTIFIC AMERICAN, 1 yaar; ${ }^{*}$, gold, for both SCIENTIFIC. AMERICAN and SUPPIEMENT for
year. This includes postage, which we pay. Remit by
postal order or draft to order of Munn \& Co., 37 Park Row, New Xork,
chaluertisments.

The Best, the Cheapest. GRNUINE WALTHAM WATCHES No Brass, Nickel, or Plated Cases are ever Sold bj Us. PRICES GREATLY REDUCED.

,
The George Place Mactinery Agency Machinery of Every Description.
Chambers and 103 Reade Streets, New York.

IE UFFNER \& IDUNN, Patentce and sole Manufacturers of the Excelsior Stee
Cleaners. Price tivper inch Sed foriorcular.
SCHU YIKILL FALLS, PHILA., PA.
Mill Stones and Corn Mills

Pond's Tools, DAVID W. POND, Worcester, Mass.

H.W.JOHIMS'

Liquid Paints, Roofing, Boiler Coverings,

To Capitalists and Manufacturers. Forty thousand dollars (\$40,000) will purchase control
ling interest in the stock of of on of the trest and monst prosperous manufacturing establishments in Ontario
Mreprous afes, wood and Iron Working Manhines
Machinery nearly new. Established reputation and

"The 1876 Injector."

J. LLOYD HAIGH,

WID PDP

or every descrition for Railoza and Mining Uso

BOILER COVERINGS.
WITH THE 6AIR SPACE" IMPROVEMENTS

enngunce exchosinety.

DEAN BROTHERS
DeanSteam Pumps Boiler Feeders an
ing
Macininers.
pirpeses.
RARE OPPORTUNITY,
r

$\stackrel{1}{a}$,
an
ch

FOR SALE CHEAP, express rifle,
No. 57 bore. Weighs about 8 liss. English sole leather
case with tools complete. A splendid wapon for deer
and bear shooting. Built by E. M. Riley \& © Co. London.
Address HODGKINS \& HAIGH,

Louisiana SUGAR Growers
 necessary for all the purposesof sumenufacture. Aply
P.A. DE LANLX, C.E., Honolulu, Sand wich Islands.

1John A. White, 107 LIBERTY STREET, NEW YORK.
J. H. BLAESDELL

ICEAT 1.00 PER TON.
The PICTET ARTIFICIAL ICE CO.

THE UNION IRON MILLS. Pittsburgh. Pa.. Manu Girders (patented

 xe shall be pleasedto furnish estimatestor allt he Beam
complete, for any specific structure,so that the differenc

MINING MACHINERY. Engines, Boilers, Pamps

HARTFORD

STEAM BOILER
Inspection \& Insurance COMPANY.
W. b. FRANKLLN,V. Pres't. J. M. ALLEN, Pres't J. b. Pierce, Sec'y.

Holly's Improved Water Works.

Steel Castings,

BOLT CUTTERS.
 Howard Irou woris, BuIfle, V. Y

No Sawdust! No Planing!

 the sawed and planed wood, being smooth, ,thaterna ind in facturers in the country, and giving entire setivfatation
In addition to our specialty, our usual complete stool
of sawed lardwod, Lumber, and veneers, tgured

GEO. W. READ \& C0., 186 to 200 Lewis Street, New York.
 ELASTIS NEW TRUSS

Eggleston Truss Co., Chicago,

MaChinists' TOOLS

Send for new inlud rimproved patterns.
Lathes, Planerats, Drills, \&c. NEW HAVEN MANUPAGGURING CO.

Steatstamps

Lathes, Planers, Shapers

THE TANITE CO., STROUUSBURG, PA.

ROCK DRILLING MACHINES AIR COMPRESSORS

 SHAFTING PULLEYS,HANGERS, etc. Driven or Tube Wells

PYrometers. For niownin heat of

 Shepards celebrated Foot and Power Lathes, Drill Presses,
Sorols, Ciroular and Band Sas , saw

FOR TEN DOLILARS CASA,

RMAENTS
 CAVEATS, COPYRIGHES, TRADE

Messrs. Munn \& Co., in connection with the publicaion of the Scientific American, continue to esamine
Inventors. yeairs' experience, and now have unequaled facilities
for the preparation of Patent Drawines, Specifications and the Prosecution of Applications for Patents in the Cnited States, Canada, and Foreign Countries. Messrs.
Munn \& Co. also attend to the preparation of Caveats, Trade Mark Regulations, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements
of Patents. All business intrusted to them is done with special care and promptness, on very moderate

We send free of charge, on application, a pamphlet containing further information about I'atents and how Copyrights, Designs, Patents, Appeals, Reissues, In ringements, Assignments, Rejected Cases, Hints

Foreign Patents.-We also send, free of charge, Synopsis of Foreign l'atent Laws, showing the cost and ries of the world. A merican inventors should bear in mind that, as a general rule, any inventicn that is valu mble to the patentee in this country is worth equally a
much in England and some other foreign countries Five patents-embracing Canadian, English, German, French, and Belgian-will sccure to an inventor the exHUNDRED AND FIFTY MILLIONS of the most intelligen eople in the world. The facilities of business and ained abroad by our citizens almost as easily as at \$75; German, \$100; French, $\$ 100$; Belgian, $\$ 100$; Canadian, $\$ 50$.
Copies of Patents.-Persons desiring any patent issued from 1836 to November 26,1867 , can be supplicd
with official copies at reasonable cost, the price dcwith official copies at reasonable cost, the price c.-
pending upon the extent of drawings and length of specifications.
Any patent issued since November 27,1867 , at which ings and specifications, may be had by remitting to this office $\$ 1$.
will be furnished for $\$ 1$
When ordering copies, please to remit for the same tion, and date of patent.
A pamphlet, containing full directions for obtaining Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every pat entee and mechanic, and is a useful hand book of re
ence for everybody. Price 25 cents, mailed free.

Adress MUNN \& CO
Publishers SCIENTIFIC AMERICAN, 37 Park Row, New York.
BRANCH OFFICE—Comer of F and 7 th Streets,

