
a Weekly journal of practical information, art, science, mechanics, chemistry, and manufactures.
NEW YORK, MAY 3, 1879.

ATERICAN ITIDUSTRIES.-NO. 10.

sewing machines.

In pursuance of our purpose of illustrating and giv account of important American industries, we have reached a department of the mechanic arts pre-eminently American in its origin and development.
Thirty years ago there was not a thoroughly prac tical sewing machine in existence; whether such a thing was possible was an unsettled question; how to sew successfully by machinery, if possible, was a problem for the solution of which American genius was projecting and experimenting in various directions. To-day all the markets of the civllized world are supplied, we might say glutted, with an almost endless variety of sewing machines, and almost every conceivable kind of stitching on every species of material that may be sewed is done by machinery. That family is poor indeed that cannot afford one of these most effective of labor-saving machines, and that most effective of labor-saving machines, and that
family must be rich that can afford to do without one. family must be rich that can afford to do without one.
Let those who aseribe the privations and sufferings of the poor to the baneful effects of labor-saving machinery consider the tens or scores who now earn a comfortable livelihood with this admirable instrument, where formerly one with unremitting toil gained a scanty subsistence by plying the hand needle.
The approved form of machine stitch for general purposes is the so-called lock stitch, formed by the interlocking of two threads, which is accomplished by means either of a shuttle or of a rotary hook. Hence arise the two leading systems of sewing machines.

Happily it does not devolve upon us to decide the question of the relative merits of these systems, or of the particular forms of machines put forth by different manufacturers. We have the highest appre-
ciation of the efforts of all who have effectively worked for ment of new purposes, or of A. B. Wilson discarding the the development of this useful art; whether of Elias Howe shuttle and whittling the model of a thoroughly original, inmodifying old devices and applying them to the accomplish-• genious, and effective substitute therefor from the end of a
broomstick. We have chosen to present
 broomstick. We have chosen to present our readers with some illustrations of the works of the Wheeler \& Wilson Manufacturing Company.
Without going into the history of this concern, we might say of those from whom it derives its name, that A. B. Wilson, ly the original inventions of the rotary hook and four-motion feed (to say nothing of his admirable complete machines), placed himself in the foremost rank of inventors and achieved enduring fame; Nathaniel Wheeler, who for about twenty-five years has been the president of the company, by his sound practical sense and administrative ability, as well as by his knowledge of mechanics and practical skill in mechanical operations, has been the chief developer and organizer of an immense and successful industry.
The works of this company are situated in the thriving city of Bridgeport, in the State of Connecticut. The principal buildings consist of the main factory for metal working, assembling, testing, etc. occupying one complete squarc, 368×307 feet, under one roof; a wood working factory, covering a second square, 526×219 feet; a foundry and needle factory pon a third, 368x232 feet; the works altogether coving over seven acres of ground. To illustrate and describe the whole would require a large volume Our artist has made sketches of a few rooms and in teresting operations.
The main machinery room is that in which the principal mechanical operations are performed in the production of the metal parts of the sewing ma chines. This fireproof room is L-shaped, 300 feet in length, 210 feet in width in one part, and 100 feet in [Continued on page 274.]

WHEELER \& WILSON SEWING MACHINE MANUFACTORY.

Srientific American.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. pUBLISHED WEERLY AT
NO. BY PARK ROW, NEW YORK.
O. D. MUNN.
E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN
One copy, one year postage included....
One copy, six months. postake included
8320

MUNN \& CO., 37 Park Row. New York.
The Scientific American Supplement
is a distinct paper from the SCIENTIFIC AmRRICAN. THE SUPPLEEMENT is issued weekly. Every number contains 16 octavo pages, with handsome
cover uniform in sizewith ScIENTIFIC AMERICAN. Terms of cover. uniform in sizewith Scientific American. Terms of subscription
for Suplemrnt 85.0 a year, postage paid, to subsc bers. Single coples 10 cents. Sold by all news dealers throughout the country. Combined Rates.- The SciEstritc American and SUPPLEMENT
will be sent for one gear, postage tree, on receipt of seven dolars. Both will be sent for one year, postage tree. on receipt of sev
papers to one address or different addresses, as desired. papers to one address or different addresses, as desired.
The safest way to remit is by draft, postal order, or re The safest way to remit is by draft, postal
Address MUNN \& CO., 37 Park Row. N. \mathbf{Y}.

Scientific American Export Edition.
The Scientipic Am erican Export Edition is a large and splendid per-
podical, issued once a month. Each rumber contains about one hundred podical, issued once a month. Each rumber contains about one hundred
large quarto pages. profusely plates and pages of the four preceeding weekly issues of the scientric
Americns, with its splendid engravings and valuable intormation: Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, 85.00 a year, sent prepaid to any part of the world. Single copies 50 cents. Marufacturers and others who desire to secure foreign trade may have large, and haindsom ely displayed an
nouncements published in this edition at a very moderate cost. nouncements published in this edition at a very moderate cost.
The Scievtific̃ ambican Export Edition has a large lation in all commercial places throughout the world. Address MUNN \&
CO... 77 Park Row, New York.

VOL. XL., No. 18. [New Series.] Thirty-fifth Year.
NEW YORK, SATURDAY, MAY 3, 1879.

Contents.(Illustrated articles are marked with an asterisk.)	
Academy of Sclences	New
Accident, remarkabie. to a stag ${ }^{\text {a }}$ (279	Tro
erican indus	
Astronomical no	
mboo,	Mosqu1
dge, rail way, hfting a.......	Museums
, steel, large.	促 and
Cable, South African	one in relatio
Carpet beetles,	atents, abroad. importance of.. 283
Dow.................................. 270	Prapue, the, in
eases	Public works in F
tric	ler, clutch
Erratum	Railway not
Exhibition	
	Scariet fever
evalioxera.0.1.......... 281	So
ntions, agricultural, new..... 280	

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMEENT INO. 174.
For the Week ending May 3, 1879.

progress of electric Lighting.

While the sensational reports in regard to electric illumi nation have subsided, the electric light is making friends in various quarters. The Waltham Bleachery, Mass., have been using two generators of the Wallace-Farmer pattern. Ten lights supply 112 four foot gas burners. The generators require twelve horse power apiece, and the horse power is estimated at one cent per horse power per hour. It is stated
that the quality of the light is that the quality of the light is good; no complaint is wade of its fickering. Washburn \& Moen, of Worcester, Mass., use
the Brush electric light to a limited extent, lighting but a the Brush electric light to a limited extent, lighting but a
portion of one of their works. They state that they get much more light than from gas for an equal expenditure of money No accurate experiments, however, have been made.
The Riverside Mills, of Providence, R. I., employ two Brush generators. One machine has been running about two months in a weaving room, and part of the rest of the mill has also been lighted by electricity. These mills run night and day, and use a large number of gas burners from 10 to 12 hours per day, and therefore are peculiarly well fitted for the employment of the new light. Twenty electric lamps have taken the place of 230 five foot burners ina weaving room, and give a better and more satisfactory light. The work re quires an unusually strong illumination.
The lighting of the Boston Music Hall by electricity has been postponed until a larger machine of the Brush pattern can be completed. In the preliminary trials it was found that the light would be unpleasant to a general audience, and it is therefore proposed to modify its color and brightness by the employment of suitable glass or porcelain shades.
W. Mattieu Williams, F.R.A.S., in a recent paper gives an interesting resume of early English experiments on incan-
descence, particularly those by a Mr. Starr. The latter de descence, particularly those by a Mr. Starr. The latter de namo-electric machine. Since the thick copper wire, usually made useof, necessarily is wound on the armatures in a spiral, made useof, necessarily is wound on the armatures in a spiral,
there is a certain loss of compactness and an increase in resistance, which Mr. Starr proposed to obviate by using a core of square section, and winding around it broad ribbons of sheet copper, which were insulated by cementing on its surfaces a layer of silk ribbon. This ribbon is to be laid with one edge against one side of the core and carried on until the
angle, then it is to be turned over so that its opposite edge angle, then it is to be turned over so that its opposite edge may be laid along the next side of the core, and so on. chines would have certain obvious advantages. The experi ments of Starr, however, on lighting by incandescence did not result in much success, and they were unfortunately brough to an end by the untimely death of the inventor. Prof Williams, who has devoted much attention to the manufac ture of gas, believes that there is a greater field for invention in gas manufacture than in the field of electric illumination. The by products, ammoniacal salts, liquid hydrocarbons, and coke, are sufficient, in his opinion, to cover the whole cost residuum that costs nothing. He thinks that gas might be delivered to consumers in London at one shilling per thousand cubic feet "if gas making were conducted on sound commercial principles-that is, if it were not a corporate monopoly, and were subject to the wholesome stimulating influence of free competition and private enterprise." He there fore thinks that any comparison of the two methods of illumination based upon the present cost of gas is essentially
misleading, for future invention can materially reduce the price of gas.
Prof. W. E. Ayrton also takes up the subject of electric lighting by incandescence, and proves that the electromotive force necessary to be maintained at the two ends of a wire of platinum, 5 centimeters in length and 1 millimeter in diameter, and at the ends of a piece of carbon, 2 centimeters in
length and 1 millimeter in diameter, is 0.2848 volt, or about one-third of a Daniell's cell in the case of the platinum, and $0 \cdot 46013$ volt, or about one half that of a Daniell's cell in the case of the carbon wire. It is, therefore, possible to produce a light with an electromotive force less than that of a Daniell's
cell, but not with a Daniell cell itself, since the internal re sistance of the cell is far greater than that of the incandescent wire or rod of carbon. He was enabled to use the method of incandescence in 1873, when the government was employing divers to recover the property sunk in the French mail steamer Nil off the coast of Japan. An ordinary carbon rod was first scraped very thin, and then, with connecting wires
afflxed, it was placed in a vacuum globe; and by heating it with an electric current, and passing air through the globe, it was burnt to the required degree of thinness; the current was then stopped and the air pumped out and n nitrogen illumina tion certainly will provoke inquiry into the subject of the cost of gas, and, therefore, ought to be encouraged.

scablet fever.

As an enemy to life and health scarlet fever now stands about where smallpox did a few generations ago. It is a contagious disease, more or less malignant, subject to wide and rapid variations in scope and severity, yet apparently rising steadily in importance as a factor of the general death rate. Just now there is scarcely a large city in which it is not epidemic.
Seeing that medical skill has been able to bring smallpox under practical subjection, there has very naturally arisen a popular feeling that medical science ought to be equal to the task of discovering a means for preventing scarlet fever, at
least as efficient as vaccination has proved in the case of
smallpox; and when this expectation has been unreasonably encouraged by the confident assertions of over-sanguine practitioners and theorists, that this, that, or the other drug may be counted on as a sure and trustworthy means for securing mmunity from the scarlet fever, it is not surprising that people are disappointed by the failure of the medical profes ion to arrest the spread of the disease, now the most destruc tive of all the infectious diseases.
That the failure has not arisen from lack of effiort on the part of the profession, medical literature abundantly testifies. That final success is not impossible no one would have the presumption to assert, though the prospects of immediate success are far from bright. The cause of the disease is as little understood as its cure. The microscope is as helpless as the telescope to detect the contagious principle, and no means for destroying it has been discovered, except a tem perature higher than any patient can endure.
Inoculation seems to be almost universally attended with unfavorable results. Balladonna, so long insisted on as prophylactic, fails to justify its reputation; and the long list of anti-fermentatives and similar remedies offers nothing that he experienced practitioner can resort to with any confidence in its efficacy.
" Indeed," says the editor of the Medical Record, "the logic which leads to the administration of any known anti-fer mentative as a prophylactic has too unstable a ground to de serve much respect. In the first place, the question of what is the contagious principle of scarlatina has not yet got beyond the domain of probabilities. We can say, with much positiveness, to be sure, that it is no visible form of bacte rium or micrococcus, and we can, perhaps, infer from analogy that it is a particulate something too small to be detected by the microscope, that it is albuminoid in composition, and multiplies at the expense of physiological processes. Whether it is living or dead, whether it is the degenerated protoplasm of man or the modified protoplasm of vegetable, whether it acts in conjunction with bacteria or feeds directly upon the tissues, all these questions are much beyond the pathologist as yet. But, in any case, it is very hard to see how antifermentatives can reach this virus. If it is dead, we certainly need not give such drugs to kill it; if it is living, there is no evidence or probability that the system can be so saturated as to destroy such infecting protoplasm and not the living matter of the tissues at the same time. In the blood of per sons deafened with quinine or salicylic acid the bacterium disports himself with as much activity as elsewhere, and the amoeboid movement of the white blood corpuscles can still be easily seen. It is a fact, to be sure, that there are drugs, like quinine, which affect the size and internal movements of the blood globules, but we cannot infer from this that there are prophylactic germicides, which will not prove to be homicides at the same time. The idea, then, we repeat, tha anti-fermentatives will be efficacious, though not impossible, is inherently improbable, while the idiosyncrasy of the scarlet fever poison will oblige observers to collect a vast number of cases in order to prove the prophylactic power of any par ticular drug. We do not wish to discourage experimentation, but it should be remembered that therapeutics are not advanced by continually announcing on the basis of a dozon cases new powers in drugs which further experience at once disproves.'
Must the problem be, therefore, given over as hopelessly insoluble? No scientific physician would admit a proposi tion so disgraceful to the profession. While internal medication is recognized as thus far a failure, it should still be tried experimentally-but not depended on. Ultimately a remedy may be discovered; meantime external methods for increasing the comfort of the sick, for preventing the distribution of infected epidermis, and for diminishing the exposure of the well, may do very much toward restricting the spread and lessening the malignancy of the pest. Particularly can good be done by making general the knowledge already assured for the mitigation of the disease and for preventing its dis tribution.

better late than never.

It is not an uncommon thing to hear young men complain that their early schooling was deficient in quantity, poor in quality, or-if neither of these-was wasted through boyish indifference and folly. They would get on better in life if they knew more, they are free to admit, but they do not see that they are daily wasting opportunities which, if improved, would in a few years give them a fairly good education. They think themselves too old to learn, and spend more time regretting their lack- of knowledge than would suffice to give them the knowledge they need. It is said that the father of Professor Sumner, of Yale College, could neither write nor read when he came to this country, a young English mechanic. Within twenty years thereafter he was known as one of the best read men in Hartford, one of the most cultivated communities in the country. Instead of wasting his time in idle regrets for his deficient schooling, he learned to read, and read to good purpose. In a similar way many of the best, most honored, and most successful men our country has known have begun their acquaintance with letters after reaching manhood; and there is no reason why the most illiterate mechanic in our land, if possessed of natural ability and a sincere purpose, may not increase his enjoyment in life, his opportunities for improving his social and financial condition, and the chances of his family for the highest success in life, by an honest effort to retrieve by study the disadvantages by which early poverty or lack of educational opportunities has surrounded him.

museuns of europe.--LETROPOLITAN MUSEDE OF

 ART.As educators of the people the public museums of Europe perform no insignificant service. The artist and the artisan are not only allowed free access to such picture galleries and museums, but are encouraged to study and copy from the beautiful objects of art there exhibited.
Societies under various names, and patronized by the opulant and learned, and often supported in part by the government, award prizes for superior workmans copy or improve upon the original designs.
We read in a London contemporary that the new Sèvres Museum is doing its utmost to afford valuable instruction to those interested in studying the history and the progress of ceramic art. During the last few months a methodical classi fication of all the examples exhibited has been accomplished, and each one is classed according to its historical and geographical position as well as with regard to its technical worth. For this purpose labels are attached to all the pieces, giving the date and place of manufacture and the marks on various pieces, so that a wide knowledge can often be gained of a subject merely from studying theselabels, 4,000 of which have lately been affixed. It is to be wished, says the same paper, that South Kensington could be made equally instructive in the way of ceramic labels.
Pity it is that our new Metropofitan Museum of Art is situated so far from the heart of this city as to ren der it almost unavailable to strangers, and to that class of residents who much appreciate its treasures, and who would derive the most benefit from frequently visiting it. But its inconvenient location in a hollow at the upper side of the Central Park is not the worst feature. The building itself is so lacking of architectural beauty-is such a monstrosity in design-that the visitor is almost repelled from entering after reaching it. Certainly but a fraction of the number who visited the Metropoftan Museum of Art when it was located in Fourteenth street will pay it a visit in its present out-ofthe way position.
barfy's new process for preserving iron.
Professor Barff lately gave a lecture in London on the re sults obtained by his new process since its first announcement, about two years ago, an account of which was then published in the Scientific American.
The process consists, in brief, in subjecting the surface of the iron to the action of superheated steam at a high temperature. The result is the production upon the surface of the iron of a hard, smooth, and durable skin of black oxide of iron, which prevents rust far better than any paint, lacquer, rubber, or other compound or process heretofore known.
Iron articles to be treated by this new process are first cleaned with dilute sulphuric acid, and afterward with bran water. They are then placed within a muffle, the temper ature of which is 500° or 600° Fah.; dry superheated steam at a temperature of $1,000^{\circ}$ Fah. is admitted, atmospheric air being carefully excluded. The formation of the black oxide skin rapidly takes place.
This coating has peculiar properties. It is so hard that it resists emery powder and the file. Many substances which adhere to ordinary iron will not stick to this prepared iron. For cookery the new process is especially useful. Barff stew pans and other utensils are more cleanly, as arrowroot and other substances can be cooked in them and the vessel cleaned with great ease. Barff vessels can be heated red hot without injuring the skin. Barffed iron is proof against damp, water, hot or cold, and stands exposure to the weather far better than galvanized or painted iron. Barffed boiler and ship plates, whether of iron or steel, are superior to all others, as they do not corrode and sediment does not readily adhere. The process is applicable to almost every conceiv able form of iron manufacture, and appears to be a scientific, important, and valuable contribution to the industrial wants of the world.
Professor Barff's interesting lecture is given in full in the current issue of our Supplement, No. 174. See table of current issue of our
contents in another column.

VERMONT MARBLE

Prof. J. P. Henderson, of Loyola College, Baltimore, Prof. J. E. Watson, of Oberlin College, Ohio, and some students of mineralogy, have been testing the capacity of Vermont and other marbles. and other monumental stones to withstand the corroding influences of our climate. The results appear in a long letter from Prof. Henderson to the Nashua (N. H.) Gazette. Their first examination was of granite, of which 382 different specimens were tested. While the most of these were composed of such material as would wear tolerably well in the open air, nearly every piece showed a lack of ability to withstand long exposure to rough weather.
Marble was then tried, and as Vermont and Italian mar bles are most used for out-door monuments, attention was given chiefiy to these. The principal quarries of Vermont are the West Rutland, Sutherland Falls, East Dorset, Pitts ford, and Columbian. In point of durability, the West Rut land marble was found to take the precedence, and the other followed in the order of their names. They found also tha our native Vermont marbles are better adapted to stand our climate than the Italian, which is rapidly going out of use and will most likely disappear entirely for outside work. Prof. Henderson says: "The depth of most Vermont quar ries now is such that better marble is obtainable than was
produced by them three years ago. Hence our verdict, as
rendered by the above course of research and reasoning, is, don't select as stock for cemetery work marble of a dark or bluish cast, but, rather, select the light color with greenish cloud."

The Gary Motor
 To the Editor of the Scientific American

In your issue of April 5, page 209, you publish a lette from me and make the following remarks: "None of the experiments here mentioned by Mr. Gary are new; there is no neutral line in any such sense as he asserts: what he above especially claims as his discovery is simply a very old, well known phenomenon imperfectly and erroneously alluded to in his italics. . . All he appears to have done is in his italics. to revive a few time-honored experiments, and trot out fore the public an ancient perpetual motion delusion."
With all due regard for the opinions and assertions of the Scientific American, may I take the liberty to ask it to "trot out" before its many intelligent readers some of those time-honored experiments," or tell them where they may be found; and will it also tell them where the "old and wel known phenomenon" alluded to in my italics may be found and in what manner I have imperfectly or erroneously al and in whal
luded to it?
Surely the Scientific American must be in position to do this, as "time-honored experiments" must be on record Can the Seientific American refuse to do this and maintain its well-earned reputation for fairness and ability?
W. W. Gart.

Huntingdon, Pa., March 31. 1879.
Remarks.-In the letter of Mr. Gary's, published in ou paper of April 5th, after describing his experiment of bring ing a bar of magnetized iron into the vicinity of a magnet, he says: "What I claim as my discovery is that the iron, if of proper proportions, will change its polarity before it comes in contact with the magnet."
This alleged new discovery we specified as old and well known. Mr. Gary now desires us to state where this old and well known experiment may be found described. We will not now occupy space further than to give one reference, be cause the phenomenon is very familiar to experimenters Mr. Gary will find it in "Rudimentary Magnetism," Snow Harris, 2d edition, revised by Noad (London: Lockwood \& Harris, 2d edition,
Co., 1872), page 31.
The author, in describing the influence of the pole of a "agnet upon a bar of soft iron, says:
"It is, however, to be observed that the mean line will vary with the distance of the iron from the magnetic pole, and will approach the center of the iron as we increase its distance from the pole, and conversely, will approach the near extremity as we decrease its distance from the same pole; so that on making contact with the magnet the mean line van ishes, and the whole mass exhibits the same polarity as the pole of the magnet."
This may be readily demonstrated with an armature of considerable width, and the fact holds good in an armature of any kind. This affords the true explanation of Mr. Gary's sheet metal and tack experiment; shows the non-existence of any neutral line in the sense by him asserted; and proves that his alleged new discovery is simply a very old, well known phenomenon, imperfectly and erroneously set forth n his claim.
Mr. Gary claims from first to last that there exists in the magnetic field a neutral line, where the polarity of an induced magnetized iron bar ceases and beyond which it changes. A method of proving that there is no reversal of polarity in the iron is illustrated by the accompanying engravings. Two helices without iron cores, having opposite pole pointing in the same direc
tion, are connected with a
battery, as in Fig. 1. When the armature is remote from the helices, polarity manifests itself in the bar in accordance with the established laws of magnetism, and a needle presented to the N end will have its S end at tracted. On moving the armature quite near the
helices the same end of the
 armature will repel the B end of the needle and attract the N end; but the polarity of the armature has not been reversed, anomalous as it may ap pear. This may be verified by disconnecting the battery, a shown in Fig. 2, when the magnetism remaining in the bar will be found the same as in its first position in Fig. 1 As to the possibility of making the force of permanent magnets available as a source of power, Mr. Gary absurdly claims to cut off the attraction of the magnet by the use of a thin piece of sheet iron placed on his so-called neutra line; but this is no cut-off. The sheet iron acts simply as little power, sufficient, of course, to affect the delicately poised needle placed in its immediatevicinity; but when ne needle is removed a short distance from the sheet iron
armature, the superiority of the inducing magnet will asser itself, and the needle will obey it almost as if no armature were present.
As there is no real basis for Gary's pretended claims to a new discovery concerning magnets, it follows that he is no better able to make a magnetic perpetual motion machine than his various predecessors. Some very curious frauds have been perpetrated in this line. Dircks, in his "Per petuum Mobile," describes and engraves some alleged magnetic perpetual motors, one of which is stated to have been seen in the year 1821 in actual operation by crowds of people. Like Gary's, it was alleged to be run only by permanent magnets; but it was subsequently found out to be a deception.
We were called upon recently by a gentleman who stated that he was the friend and helper of Mr. Gary. He averred that he had himself seen Gary's magnetic motor in operation that as many as three hundred people had also seen it. Al we can say is that if the witnesses suppose that the machine was worked by permanent magnets, like many people before them, they were grossly deceived.

The Plague in Russia.

There is no doubt, says the London Lancet, that the medi cal profession in Russia are at the present momentin a state of profound unrest as to the near future of plague there From the beginning of the outbreak in the province of As trakhan, there has been a fear-determined perhaps by the course which the plague pursued during its recent prevalenc in the province of Ghilan, Northwestern Persia-that this outbreak was probably but the forerunner of a wider and more serious manifestation in Russia which might be looked for in the course of spring. The cessation of the outbreak in the province of Astrakhan has not in any degree modified this view of the subject, and as the spring draws on ex pectation is on the alert to distinguish the first indication of that which is dreaded. The occurrence of another and hap pily not fatal case of plague within the infected area on the Volga, in the course of last week, gave rise to a momentary fear that the period of intermission between the forerunning outbreak and the greater invasion apprehended had come to an end. It is not, however, the indication in this direction which exercises at the present moment the minds of ou professional brethren in Russia. Their attention is fixed upon seeming forerunners of the dreaded malady, which would appear to be scattered almost over the whole area of Russia in Europe. Our readers will remember the case of bubonic malady, unattended with much general disturbance of the system, which Professor Botkine observed a few weeks ago in St. Petersburg, and which he pronounced to be the slight form of plague which often precedes the deadlie manifestations of the disease. The weight of medical opinion in St. Petersburg declared itself against Professor Botkine's view of this case.
It is now known that the case in question is not the only one of the sort which has occurred in St. Petersburg, and that the ater cases have been free from the complications which led to doubt in the earlier case. It is now known, too, that simi lar cases of this dubious bubonic affection have been ob served also in Vitebsk, Tsaritsyn, Odessa, and in Warsaw and it may be inferred that there is at present widely scattered in Russia a form of bubonic disease, of seemingly trivial character, unfamiliar to the medical profession there, and which it is feared may be of the sort which preceded the several recent appearances of plague in Mesopotamia, which occurred also prior to the late outbreak of plague in the province of Astrakhan, and which is, in fact, a form of plague.
Under these circumstances, it can be understood with what anxiety the near future as to plague is regarded in Russia by those who are most competent to judge of the possibilities of the case, and how anxiously obscure form of disease are now being scanned over a large part of that empire. It is well that this state of things should be fully apprehended here. We shall not now have long to wait before the fate of Russia and our own prospect as to plague for the present year may be determined. But with the events of the Mesopotamian and Persian outbreaks before us, if Europe should be so fortunate as to escape from any further appearance of plague this year, it will be premature to think we have escaped with only the circum scribed explosion on the Volga until another winter and spring has passed.

Iron in New Zealand.

The Government of New Zealand has, within a few years, constructed over 1,000 miles of railroad, all the material for which, except the sleepers, have been carried out at a heavy charge in the way of freight, etc., from England. The present Minister of Public Works, the Hon. James MacAn drew, has determined to make the experiment of promoting the iron industry in the colony, and has, in the terms of the dvertisement, which we published last week, calling for ten ders for 100,000 tons of steel rails (or any portion thereof to be manufactured in the colony from New Zealand ores.
A pamphlet containing full information on the subiect, illus rated by maps and plans, has been published by order of the Government, and may be had from the Agent-General of the colony, Sir Julius Vogel, K.C.M.G., at 7 Westminster Chambers, London, by ironmasters and others desirous of obtaining further information on the subject.
the other. Power is distributed from four main lines of shafting, which have not perceptibly deviated from correct adjustment since they were first placed in position, thirteen years ago.

In this room there are no less than 1,003 separate machines for special mechanical operations, a large portion of which are automatic-that is to say, practically speaking, possessed of such intelligence and skill as to direct and control their own movements-only needing consciousness to rise to the plane of the skilled mechanic.

The number of driving be 1,676 , of the total length of 39,510 feet, or but 90 feet less than $71 / 2$ miles. This is exclusive of short feed belts, etc., of which there are probably as many more.
Here may be seen good examples of the economical results of the division of labor. Take, for example, the rotary hook. No man makes a hook. It is forged here, turned yonder, one machine makes this cut, another that, and so it is passed on from machine to machine, until after 128 dis. tinct operations, that one part is completed, inspected, and ready to take its proper place. So the making of a glasspresser involves, we are told, 32 different operations, and a hemmer 70.
In neighboring rooms are the plating, japanning, and ornamenting departments.

We were struck with the apparent excellence of the japanuing, its smooth surface and brilliant luster, and were surprised to find, upon inquiry, that by peculiar processes and materials this extraordinary finish was produced more expeditiously, and at less cost, than ordinary and inferior work
Here we may remark that
being given the liberty of the shop, we improved the oppor tunity to make inquiries, and in our probings for information one of the mechanics " let out" to us the following: Upon one occasion when Mr. Wheeler (the president) was deeply interested in improving the process of japanning, he stripped off his coat and put his hands to the work to demonstrate how it should be done-not a rare thing for him to do.

A Hibernian employe, happening to see him thus engaged, and not knowing or not recognizing the man, exclaimed to one of the workmen, "Be gorra, but it must be hard times outside!-to see a fine appearin' gintleman like that, rubbin' machines at a dollar and a quarther a day!' If we ought not to have repeated this anecdote, we beg pardon of whoever may be offended.
One of our sketches shows a portion of the assembling room. Here is illustrated the mechanical precision resulting from making all parts of the machines to exact gauge.

In assembling a machine each part is taken from an indefinite number of that kind, yet all come together with the most perfect fit. In other words, all parts of the same kind are perfectly interchangeable. The holes for the shaft bear ings in the beds of the machines are reamed out with diamon reamers, producing a perfectly true and polished interio surface, the contact between which and the shaft, though air tight, allows perfect freedom of motion.
For each part of the machine a standard model and a standard gauge are carefully kept, by which the working and inspection gauges are tested from time to time, and kept in the highest degree of exactness.

-cutting, grinding, and tipping the blank, swaging, cutting to length, rough-pointing, tipping, grooving, eye punching, burring, hardening, tempering, polishing, brushing, scouring, buffing, etc., etc.-now number thirty-three hav ing been recently reduced from fifty-two by improved mahinery.
In this department, as may be seen by our illustrations, useful employment is found for the gentler sex.
The buildings of the woodworking factory, or cabinet works, are two in number, each 526 feet in length. Here is made all the furniture for the machines, from a plain table top to the most elaborate and expensive full case or cabinct. The raw material is cut to dimension at the company's mill in Indianapolis, and transported here to be worked up into the desired forms.
The company's aim is to produce, forgeneral purposes, substantial and well finished rather than simply showy work. In this department, as in all others, every piece of work is subjected to the most rigid inspection, and if any be faulty in any particular it is rejected.
A noticeable feature here is the perfect smoothness and luster produced in finishing the surface of the wood. For this purpose is used a " woodfiller," invented and patented by Mr. Wheeler, by means of which, we are told, the time, labor, and cost of wood finishing are materially reduced, with the production of better results as to the finish itself, the natural beauties of the colors and grain of the wood being fully developed and permanently fixed.
Some of the salient features of the processes of production having been thus. briefly touched upon, the conclusion will have been anticipated that the complete products themselves are in all respects thoroughly substantial and as The organization and maintenance of the perfect system | nearly perfect as can be made from the best materials by the which prevails throughout these works reflect the highest credit upon the secretary, Mr. Wm. H. Perry, who has been connected with the company almost from the time of its oundation.
Passing through a tunnel under the street we reach the buildings in which are the foundry and the needle factory Of the former we will only say that for convenience and per fection of all appointments it is not surpassed.
As the sewing machine proper is useless without the needle, the latter is, of course, an article of prime importance. No department of these works is more interesting than the mechanical processes of converting steel wire into perfectly finished needles, and in no department are more wonderful illustrations of the triumphs of inventive genius; but we cannot attempt a detailed description of the machinery and processes, some of which, in fact, we are not at liberty to describe. The distinct operations in the making of each needle
most skilled labor with the most effective appliances. These products consist of sewing machines of various styles, suited as well to the heaviest manufacturing in cloth and leather as to the lightest domestic purposes.
In the heat of the lively competition which has existed for years among the rival manufacturers of sewing machines, it has been the custom for each company to claim that its par ticular machines were the best in the world.
There are few sewing machines that are not very much better than none. As we said at the outset, it is no part of our purpose to judge of their relative merits; but the fact that at the Paris Exhibition of 1878, the only grand prize or sewing machines from all the world was awarded to the Wheeler \& Wilson Company, as is attested by the highes uthorities, certainly indicates that the claims of superiority on the part of this company are far removed from idle boast ing. At all events, it is gratifying to be able to state the

WHEELER \& WILSON SEWING MACHINE MANUFACTORY.
fact that throughout the world American products in this branch of industry are more highly esteemed and fetch a materially higher price than those of any other country.

Enormous Public Works in France.

While England is groaning under the effects of a commercial depression which promises to be of long continuance, France, though it has its share in the general stagnation of trade, is occupied with gigantic projects for public improvements. The Republic, scarcely less than the Empire, adopts the paternal theory of government, and is setting itself to work to add incalculably to the means of internal intercourse and the facilities for commerce while providing employment for its laborers.
This theory of government is by some considered to be a false one, but it can be easily shown what can be done under it in the direction of public improvements. So the drainage of Haarlem Lake was done, and that of the Zuyder Zee in Holland is now being done by the Dutch government, which guaranteed the investments made by the capitalists. The only question to make such governmental management successful is whether honest men can be found to direct it. Unfortunately, as the majority of our government employes are politicians, and these, as a class, cannot be quoted as examples of honesty and disin. terestedness, it is better for us to keep the government entirely out of all such enterprises, which experience has prọved can be done quicker, cheaper, and better by private contract.
M. de Freycinet, the Minister of Public Works in France, has outlined a scheme of railway, canal, and harbor extension, for 1879, which will cost the enormous sum of $\$ 800,000,000$, and will probably have legislative sanction for it in its entirety. The money for these unpáralleled works he proposes to raise by an issue of three per cent bonds, redeemable in seventy-five years; and that he can get the whole amount without trouble the experience of all recent French loans affords` abundant proof. The new chance for investment is eagerly awaited by capitalists, large and small; for enormous sums are now lying idle in bankers' hands.
One of the main features of the plan, and that which will consume the greater part of the vast appropriation, is the extension of the railroad system of France. The rest of the money will mainly go to the construction of new harbors and the improvement of the old ones. Another great public work which is urgently demanded by several of the which is urgently demanded by several of the
departments is a canal from Creil-sur-Oise to departments is a canal from Creil-sur-Oise to
Beauvais, Amiens, and Albert, with two important branches. It is averred that this extensive canal would be of the greatest value to the north of France; and it would certainly be the most considerable of all navigable French waterways, and would have the effect of reducing by one half the present freight charges from English ports to Amiens, Paris, and beyond.
A scheme for the construction of a network of metropolitan railways in Paris was hardly perfected before M. de Freycinet stepped in and claimed the perfected lines as belonging to the category of lines of general interest. Their concession has therefore been transferred from the Municipal Council to the general government. The cost of their construction is estimated at nearly a million dollars a mile. The Minister of Public Works has also obtained the appointment of a supreme commission on the treatment and utilization of French rivers, composed in equal thirds of legislators, officials, and manufacturers or agriculturi iov. it will consider irrigation, motive power, inundation, water supply, sewage, and similar questions. Add to all this his vast project of harbor improvement, and we see that ment, and we see that
M. de Freycinet has laid M. de Freycinet has laid
out a scheme of public out a scheme of public
works for France which works for France which
will occupy the Republic for many years to come, constituting a system of internal improvements of extraordinary magnitude, which, if it is successfully completed, will itself make the new Republic memorable for generations.
One of the most interesting features of the plan is the construction of what are known as light or narrow gauge railways, largely as feeders to the main lines, on the most extensive scale. A commission was appointed last January to examine into this class of railways, this class of railways,
both at home and abroad, and report on its value and feasibility; and the result of their inquiries has determined M. de Freycinet to build the nar-
row gauge railways throughout all France. The English engineering journals find fault with the conclusions of this commission, but they are very interesting.
They recommend a reduction of the gauge to 1 meter (3 feet $33 / 8$ inches), and in some instances even to 75 centimeters, $3 / 4$ of a meter (2 feet 6 inches), whereas in England a. 3 foot gauge is preferred. They advise the dispensing with fences except at especially dangerous points and near dwellings; that the stations should consist merely of a waiting room, ticket office, and station master's lodgings; that the cars should be of two classes, with possibly an upper story; that they should be without useless ornamentation; and that the rolling stock should be at a minimum-in fact, that everything should be arranged with a view to strict economy Under these conditions they estimate the cost of the roads, per mile, at an average of about $\$ 22,000$. They put th

SEWLNG MACHINE MANUFACTURE.

average speed at from 9.3 to 12.4 miles an hour. The
subject of narrow gauge railways is now one of the subject of narrow gauge railways is now one of the
most interesting in the whole range of railway questions, and it is well worth careful thought and study. During the last few years they have been built more or less extensively here and abroad, and they are likely to come into still greater use, as being cheaper in construction and in working, especially in new countries.

RECENT MECBANICAL ITVENTIONS.

An improved tenoning machine has been patented by Mr. George H. Gregory, of Cannon's Station, Conn. It consists in a revolving cutter stock, which is recessed and provided with cutter heads, which are adjustable both laterally and longitudinally. The machine is designed for cutting tenons of round and oval shape.
An improvement in steam boilers, patented by Mr. Stephen J. Gold, of Cornwall, Conn., has a series of water receiving pipes that extend through a portion of the fire chamber and
onnect with the steam space. The object of the invention is to secure the maximum area of heating surface, together with the greatest compactness.
Messrs. B. J. Feldman and Theodore Schlag, of Franklin, Pa., have patented an improved fan for driving flies from the table. It consists of a novel arrangement of fans or feather holders, and mechanism for operating them.
An improved carriage step has recently been patented by Mr. Richard N. B. Kirkham, of Kansas, III. The step is arranged to fold up compactly, and is operated by a lever and a chain or cord.
Mr. William H. Stickle, of Terre Haute, Ind., has devised an improved vehicle spring which, it is said, overcomes the waying side motion, the jostling, and bumping which are common to ordinary vehicles.
An improvement in pianoforte actions, recently patented by Mr. G. O. V. Roederer, of Indianola, Texas, is proo against atmospheric influences, all of the movable parts, as well as the supports, being made of sheet metal.
Mr. Theodore Bickerman, of Henry, Ill., has pat ented an improved windmill, in which the rim spokes, and rods are made of gas pipe, securing both lightness and strength. The sails are made of sheet iron or wood.
An improved screw press, which may be operated by steam or horse power, has been patented by Mr. P. R. Campbell, of Hurricane, Miss. It consists of a combination of mechanism, by means of which a trong pressure is easily obtained.
Zenes McGinnis, of Petrolia, Pa., has devised an improved coupling for sucker rods of oil pumps, by means of which the rod may be coupled and un coupled without ascending the walking beam.
An improved weighing scale, in which the weights are suspended so that when the material to be weighed is put into the scoop the weights are lifted one after the other until the desired weight is attained, has been patented by Mr. D. Hallock, of Coxsackie, N. Y.
An improved log roller for transferring logs from the log deck to the sawmill carriage has been pat ented by Mr. Esau Tarrant, of Muskegon, Mich. It consists of abar inaving movable ratchet teeth for en gaging the surface of the log and in novel mechanism for operating the toothed bar.
Mr. John R. Fish, of Grand Rapids, Mich., has patented an improved locomotive smokestack, which contains a novel arrangement of spark arresters, which offer little obstruction to the draught, but effectually prevent the escape of sparks.
An improvement in rotary water meters, pa tented by Mr. Henry J. King, of Middletown, N. Y., is provided with a spiral screw for operating the registering mechanism. The screw is made in sections, and may be adjusted on its shaft, which is journaled in the water pipe.

AN INPROVED AYIALGAMATOR.

The accompanying engraving represents an amalgamato constructed on a novel principle, and having a peculiar ar rangement of mechanism, by which an oscillating or vibratory motion is given to the amalgamated copper pans about their own axes while at the sa me time they are moved in circular path and raised and lowered
The pans, I, which are concave, are provided with internal rims or ledges, to prevent the swashing of the content of the pan over its edges. Three or more pans are supported by short shafts journaled in the frame, E , which is suspended by the rods, a, from the standards of the frame, A, and oscillated by the cranks, k, whose shafts are connected by an inclined shaft and gear wheels so that they rotat together. The support o each pan is connected with the crosshead, J, by means of a short forked means of a short forked rod, which imparts to th pans an oscillating motion about their own axis as
the supporting frame, E , is moved with a gyratory motion by the cranks, k and is raised and low ered at its upper end by an eccentric on the upper horizontal shaft. Each pan is provided with a sheet iron spout, which discharges into th next below. The quick silver readily unites with the copper to form an amalgam, which arrests the small particles of precious metal, and the escape of the quicksilver from the pans is prevented by the use of iron spouts, which do not become amalga mated.

This improvement was recently patented by Mr Charles C. Peck, of Mel rose, Mass.

RALIWAY NOTES.

At a recent convention of railway men in Boston a prominent speaker expressed great satisfaction in view of the improvements adopted lately by railway managers to increase the comfort and safety of trainmen and passengers; yet much more, he said, remained to be done. Among the improvements and economies of the near future there were named: An improved freight car coupling; a suitable power brake for freight trains; the Miltimore safety axle, with independent wheels; the rail system of electric block signals; gas for lighting and heating passenger cars, without danger from fire in case of accident; shelter and protection for freight train men when on the road; and suitable resting and reading rooms for their comfort and improvement when waiting for delayed trains.
AT the late meeting of the Master Car Builders' Association in this city, the safety of trainmen-or rather the urgent need of devices for enhancing their safety-was discussed at considerable length. The President, Mr. Leander Garey, spoke of the effect of interchanging cars, whereby the cars of each road are scattered all over the country, and the resulting need of much more careful inspection of freight cars. Inspectors look to their running gear, draw attachments, and brakes, but seldom or never to dangerous ladders, loose brake wheels, broken running boards, or other things upon which merely the lives of brakemen depended.
Letters were read from a number of master car builders, yardmasters, and others, in which the deficiencies of the average freight car were severely criticised. Among the improvements needed to lessen the risks of trainmen, a master car builder mentioned better steps for climbing the cars. Such steps should be at the ends of freight cars, and the one at the sill should be stopped, so that a man's foot cannot slip off. There should be a strong step secured to the side of the sill, with a firm hand-hold at a proper height above it. . Then the steps should be made reliable. Too often they are fastened on simply with screws that have been hammered in to their heads, and consequently give way when a strain is put on them precisely at the moment when a man's life depends upon their solidity.
A yardmaster mentioned as causes of accidents to train hands, first, the different heights of the draw bars; second, the insufficiency of follower heads and springs, which should be strong enough to stand a reasonable concussion without giving way; third, to the different kinds of draw bars employed. He strongly urged the adoption of a uniform style of draw bar, and recommended the Safford as best for saving fingers and hands, particularly when accompanied by the Griffiths attachment, he approved of it. Brake staffs, he thought, should be uniformly on one side, not, as now, sometimes on one and sometimes on the other, so that ofttimes brakemen are injured for life, or even killed, by being caught between them.
Another yardmaster expressed the opinion that the general adoption of the Safford bar and its use at a uniform height from the track would render mutilations and deaths in the work of coupling at least infrequent-would, in fact, do away with 90 per cent of the present proportion of injuries
The need of wider running boards on the tops of cars was also insisted on; as also were guarded brake wheels, and frequent reliefs of trainmen in bad weather.
THE superior strength of American cars has been frequently shown in cases of derailment. Whereforeign cars would have been knocked into kindling wood the American have withstood the shock wonderfully, to the relatively great protection of the passengers. An unusual and unusually severe test of their strength is reported in the Journal of the Franklin Institute:
When the Pennsylvania Railroad depot was demolished by a ornado last fall, a heavy car shed was blown over upon several trains of cars, which were under it, ready to be dispatched. So great was the strength of these cars that they held up the wreck. The 10 inch cast iron columns, 25 feet long, that supported the roof girders, fell in many cases directly against the cars with the force due to their own weight and that of the whole roof, probably at least six tons to each column, impelled by the force of the wind added to that of gravity. Notwithstanding this, not one of the cars was wrecked. In one instance a column struck a car near the middle and snapped off, but the framework of the car was not broken; the lower part of the column rested against the car, the upper part on its roof. A car that will stand, with out injury, the impact of a 10 inch cast ironcolumn, with six tons of extra weight, driven by a gale of 75 miles an hour, contains an excess of strength that is very assuring to the traveler.
Iv Russia the machinery of factories and the engines of railoads and steamers are chiefly in charge of foreigners, on account of the lack of experienced native mechanics. It is now realized that this state of things is neither economical nor patriotic; and besides there have been accidents because the foreign mechanics and engineers did not understand the Russian language. In order to bring about a change the government, in 1871, ordered the railroad companies to pay 15 ru bles per verst (two thirds of a mile) for the establishment and support of railroad schools. About 320,000 rubles a year are collected under this order, and now there are about twenty such schools. Twenty more are to be opened this year. These schools are situated on the railroad lines, and each of them is provided with a machine shop, where every pupil is obliged to work not less than three hours daily. The full course requires four years. Each student chooses his
specialty as mechanic, engineer, or telegraphist. Besides these there are five conductors schools. As the railroad
schools have proved successful, other branches of industry are to follow the example. Many steamship companies and factories propose to establish schools to secure experienced hands for their service.
Great advantagesare claimed for the Prosser " twin cylinder " cars for the transportation of grain. They are said to be cheaper, lighter, more durable, occupy less space, easier draught, will not laminate the track, may be run at a greater speed, lower the center of gravity, reduce the windage of train, remove the weight of load from axle, require less oil, less attention, less parts, can dry wet grain in the car, and prevent it from heating, souring, or moulding while in transportation.
More specifically the elements of superiority of the new car are shown by the following figures:

Weight of car	10 tons.
Weight of load...	10 tons.
Weight of car and load..	20 tons.
Amount drawn by engine	600 tons.
Weight of cars	300 tons.
Weight or load	
${ }^{60} 0$	
10,000 bu. at	\$1,500 ${ }^{\text {da }}$
Cost of traneit	1,000
	500

The unpleasant noise of escaping steam from safety valves, open steam pipes, vacuum brakes, and the like, is said to be entirely suppressed by discharging the steam through a smal chamber filled with glass or metal beads. The beads-from one quarter to five sixteenths inch in diameter-are held in place by copper gratings, and the steam is entirely silenced by its passage through the tortuous interstices between them. At the same time it escapes freely, with little or no back pressure. The device has been patented.

A Berlin paper says, in regard to one of the steps recently taken toward concentrating the railroads under the govern ment, that it is to be feared that when the private roads have ceased to exist, the State, as the sole possessor of the whole railroad traffic, will dictate much higher rates than are now had; and the fact that this can be done only through the law, and with the consent of the representatives of the nation, will afford in appearance only a protection against such an excessive increase of charges. For the administration will need, to justify the increase, only to show that the lower rates do not cover the working expenses and the interest on the cost of the roads; and as it at present works at greater expense than private enterprise, it will probably be easy to show that justification.
The Grand Duke Nicholas of Russia has issued a pamph let urging the speedy construction of an Orenburg-Tashkend Railway. His argument for this route, based on that of De Lesseps and Cotard, is, in brief, as follows: If a grand circle be drawn of the globe between London and Calcutta, the seg ment of it intersected between the two cities goes through Am sterdam, then a little south of Berlin, then through Varsow, through Southern Russia to the Caspian Sea, which it cuts somewhat above 44° of latitude; then through the Sea of Aral, proceeds to the east of Samarkand, cuts the Indus about a hundred miles south of its great angle, and goes down the valley of the Ganges to Calcutta. Russia is in possession
of the Asiatic part of that shortest route to India. Sheought consequently to construct at once the line of railway which most closely follows it-to wit, from Orenburg to Tashkend.
THE construction of a line of railway from the port of San Jose de Guatemala to the town of Escuintla, the center of the chief coffee district, has been begun. The distance is 28 miles, and it is intended to build the road hereafter to the city of Guatemala, 32 miles beyond Escuintla. The govern ment guarantees a certain profit on $\$ 1,000,0000$ capital, and loans the company $\$ 210,000$. The project includes a final extension from Guatemala 140 miles eastward to the port of San Tomaso on the Atlantic coast. Part of the material has been shipped from San Francisco, with a large number of Chinese laborers.

The lowest cost of carrying freight yet reported is found in the report of the Northern Central Railway for 1878, which gives the cost per ton per mile on the Eusquehanna Division (47 miles long) as 0.35 cent per ton per mile. On the whole road, however, the average cost is about twice as much, and on one of its branches, 9 miles long, the cost is nearly ten times as much- 3.246 cents per ton per mile. It is not often the companies report separately the cost on different sections of the same road. If they did, perhaps some of them would show a lower cost than this.
The report of the New York State Engineer and Surveyor of Railroads for 1878 shows that the total paid up capital invested in the steam railroads reporting in the State is $\$ 392$,164,754.25, and the proportion for New York, pro-rating the roads lying in the State and in adjoining States, is $\$ 287,826$, 957.05 . This is an increase in the total aggregate of $\$ 7,255$, 616.49. The paid up capital of the horse roads amounts to
$\$ 23,167,130.36$-a decrease of $\$ 73,357.63$. This ${ }^{\circ}$ decreasowa caused by roads reducing stock.
The total number of miles of road built (main line and branches), including leased lines out of the State, is $8,390 \cdot 73$ of which 5,752 24 are in this State. The double track, in cluding sidings, amounts to $4,358 \cdot 33$ miles. There have been 107.79 miles of steam, and 8.24 miles of horse railroads buil during the year. The total miles of road owned by hors railroad companies are 426.03 , and the double track and sid ings are 278.19 miles.
The steam railroads doing business in this State own 2,80 engines, 1,993 first-class passenger cars, 358 second-class pas senger and emigrant cars, 741 mail, baggage and express cars and 59,412 freight cars. Of the 278 steam roads now in ex istence in this State, 47 companies operate their own and other roads, 5 are operated by receivers, and 1 is leased and operated by a private person. There are also 7 corporations formed under the laws of other States leasing and operating roads in this State-a total of $\mathbf{6 0}$.
Sixty-one-horse railroad companies operate their own and other roads. Two steam roads, the New York and Harlem and the Utica, Clinton and Binghamton, operate part of their roads as horse roads, and 2 are leased and operated by private persons-a total of 65 .
There are also 2 steam roads owned and operated by pri vate parties.
There are 71 steam and 4 horse roads leased and operated by other roads, and 1 road owned by private persons is ope rated by a steam railroad company; 72 steam and 15 hors railroads are not in operation.
The number of passengers carried by the steam roads was $48,769,084$, an increase of $8,756,863$, classif ying the roads las year to correspond with the present report, and an average of 20.84 miles was traveled by each passenger. The horse roads carried $244,290,364$ passengers during the year, an in crease of $5,748,628$. The number of tons of freight carried by the steam roads was $38,320,573$, an increase of $3,335,792$.
The one thing wanting to make a direct railroad communi cation between India and Europe is a railway from Alexan dretta, the nearest point on the Persian Gulf, to Kurrachee. A committee has been formed in London, consisting of the Duke of Sutherland and several other noblemen and gentle man, to acquire certain routes through the valley of the Euphrates to complete the connection. This done, it will be possible to go from London to Kurrachee in about seven days-a distance which it now takes nineteen days to cover.
The Belgian Government has decided on the abandonment of wooden railway sleepers. Its example will doubtless find imitators, if indeed the example be not improved upon, and steel be used eventually instead of iron. It should be noted that it is not the longrine, or longitudinal sleeper, that has been adopted, but a German system of cross sleepers.
The greatest railroads in India are composed of the Punjab and Delhi system, some 1,200 miles in length, meeting at Delhi the East Indian Railway, which goes to Calcutta and which is about 1,000 miles in length, with a branch a Allahabad to Jubbelpore, some 250 miles additional in length. More, it connects with the great Indian Peninsular system which is carried on to Bombay, some 550 miles. This system runs through a chain of mountains, called the Thull and Vhrne Ghatz, where the engineering difficulties have been immense, and 15 miles of tunnel made. The line then runs from Poonah to Magpore, where it is connected with th Madras Railway, some 850 miles in length. This line also serves Bangalore, the garden of the Madras Presidency, and the coolest spot in the plains of India. In the same direction is the Hyderabad State Line, belonging to the Nizam. The Bombay and Baroda Railway runs to Giucwarah, thence through Central India to Ahmedabad, where it is connected with the Rajpootan State Railway, running to Delhi. At Cal cutta is the Eastern Bengal Railway, which goes to Barrach pore, thence to Kooshteah, from which a line of steamers con nects with Assam, the great tea growing country of India. In Oude is the Oude and Rohlkund line, which runs 500 miles through some of the richest plains of that fertile region. The noble bridge, about $11 / 4$ mile in length, which spans the Ganges at Cawnpore, belongs to this company. These com prise the general grand trunk system of railways in India.
The Railoay Age has given a list of forty-eight railroads that were sold under foreclosure during the year 1878, repre senting a total mileage of 3,902 miles, $\$ 160,014,500$ of bonds and debt, and $\$ 151,616,700$ capital stock-the entire amoun of bonds, debt, and stock being $\$ 311,631,200$.
A summary of foreclosure sales during the last three years stands as below; the moral is evident:

Year.		No. of Roads.	Mileage.

A sivale locomotive on the Kansas Pacific recently haule train of 58 empty and 15 loaded cars, with caboose at tached, from Ellis to Brookville, a distance of 102 miles, in 9 hours and 30 minutes. The monster locomotive "Uncl Dick," described in a late number of this paper, has already achieved distinction by climbing the steepest grade of the mountain division of the Atchison, Topeka, and Santa Fe Railroad, drawing 22 loaded cars.

HOUSEHOLD INVENTIONS.

An improvement in curtain fixtures has been patented by Mr. J. S. Henry, of North Belle Vernon, Pa. It consists of a suspended ratchet hook pivoted in front of the roller, and extended below the ratchet, to form an eye or loop for the cord.
An improved child's chair, constructed so that it may be readily adjusted as a high chair or carriage chair, has bee patented by Mr. C. H. Barnes, of Poughkeepsie, N. Y.
A flower stand, provided with one or more trays, sup ported by a single central standard, has been patented by Mr. Thomas Murgatroyd, of Clarinda, Iowa. By slightly modifying the construction the stand may be used as a workstand.
An improved candlestick, which will hold the candle firmly, and yet admit of burning the whole of it, has been patented by Mr. A. J. Smith, of Ukiah City, Cal. It consists of a standard fixed to the usual bottom, and having a thimble with fingers or prongs, which slides over it and holds the candle.

A NEW CLUTCH PULLEY.

We present engravings of two forms of clutch pulley manufactured by Messrs. James Hunter \& Son, of North manufactured by Messrs. James Hunter $\&$ Son, of North
Adams, Mass. In these pulleys a friction band is employed to clutch the boss of the wheel, and the means for operating the bands are both simple and efficient. In the form shown in Fig. 1, the pulley is placed on a sleeve, D, which is se cured to the shaft, and is provided with a flange for receiv ing screws which enter the friction band, A. 'The latter sur rounds an enlarged hub or boss of the wheel, and is split and provided with two ears, through which passes a bolt having a cam formed on its head that engages a similar cam formed on one of the ears. A lever, B, is secured to this formed on one of the ears. A lever, B, is secured to this
bolt, and is curved-so as to be enğaged by a cone, C, on the bolt, and is curved so as to be
shaft The cone is grooved shaft The cone is grooved
circumferentially to receive circumferentially to receive
the fork of the shifting the fork of the shifting
lever. Iti requires very little effort and only a slight movement of the shifting lever to operate the clutch. This device is so simple.that no special description of its no special description of its operation will be required. By moving the cone, C ,
toward the pulley the free end of the lever, B, is thrown outward, the ring, A, is contracted, and the boss of the pulley is clamped so that it is carried around with the shaft.
The clutch shown in Fig. 2 is similar to the one just described, the difference being that a right and left hand screw passes through the ears, E, and is turned so as to contract the split ring by the action of the toggle, F, when the sleeve, G, is moved toward the pulley. Of course it will be understood that moving either the cone, C, or the sleeve, G, away from the pulley releases it. The device is applicable to both driving and driven pulleys.

Pumping Money.

The above may appear to be a somewhat singular title for a paper, but, according to the Foreman Engineer and Draughtsman, it is literally true that a vast number of sovereigns, and, indeed, of other coins, are annually pumped into existence at the Royal Mint. Without entering into a detailed account of the numerous processes and manipulations by means of which ingots of gold are transformed into small circular disks of metal, of the exact size and stand ards of weight and of fineness for the reception of impressions, it may be said that those impressions are finally due to the action of the air pump. A very large proportion of the sovereigns, therefore, issued from the mint presses since the erection in 1810 of steam machinery for the purpose of coining, have undoubtedly been pumped, as it were, into the channels of circulation. Let us, then, proceed to explain the contrivances and means by which the operation of pumping sovereigns is performed at the Tower Hill money manufactory. We will commence with the prime mover. This is a steam engine of twenty horse power, on the combined high and low pressure principle, and which was erected in 1846 by the justly celebrated firm of George \& Sir John Rennie. Originally this engine was intended only for pumping water from a deep artesian well on the premises for the supply of the coining department, but in 1851 Mr . J. Newton advised that the engine in question should be made to pump money as well as water, and showed how it could be done. The merit of entertaining the proposition and of ordering it to be carried into effect certainly belongs to Captain (now General) Harness, R.E., who was Deputy-Master of the Mint in the year named. This highly talented officer gave instructions to the Messrs. Rennie for the construction, under the eye of the inventor, of the necessary apparatus and appliances for the purpose.

An air pump of considerable dimensions constituted the main feature of the scheme, and this was formed on a per fectly novel plan. It consisted of a cast iron cylinder, close-
ly resembling in exterior appearance that of an ordinary and steam engine. but very different in its internal arrange land steam engine. but very different in its internal arrange-
ment. The piston of the pump was made up of a series of cast iron rings, and these were pressed out against the sides of the accurately bored cylinder by springs of steel. The effect was to make the piston perfectly air-tight, and yet capable of be ing easily moved upward and downward in the cylinder. There were no valves in the piston, as there are in those of almost all air pumps employed in manufacturing processes. The base of the cylinder was a hollow casting of iron, and so was its cover. In these hollow castings the inlet and outlet valves were placed. The upper casting contained sixty four small apertures, which were covered by small pieces of steel saw-plate, each about two inches long by one inch wide and fastened by a screw at one end. These delicate springs were, in fact, the valves. Thirty-two of them were made to open to the atmosphere, and thirty-two to the exhaust or vacuum pipe. The hollow base or bed plate of the cylinder was furnished in a precisely similar manner. The diameter of the cylinder was three feet six inches, and the length of stroke of the piston three feet. The pump was placed ver tically, and immediately below the working beam of the en gine to which the piston rod was attached.
By this method of construction the air pump became double-acting, and whether the piston was ascending or de scending it constantly exhausted air from the vacuum tube through the inlet valves, and discharged it through the outlet series. Nothing in the shape of machinery could work more smoothly than did this pump, and this arose mainly from the peculiar character of the valves. The cost of the whole apparatus, with cast iron exhaust tube, two hundred eet in lengt
It has been said that the exhaust tube was two hundred
eet in length. This arose from the fact that the engine
impact their impressions. The presses then rebound, carrying with them their pistons. The pneumatic valves again open self-actingly, the dies descend upon new blanks supplied to them by mechanical fingers, another batch of sovereigns is pumped into bright and glorious being, and so long as the greatair pump is exhausting the vacuum chamber and the presses are fed with blanks, so long the series of minor pumps will proceed with their work, and streams of gold, silver, or bronze coins will flow down from the presses into reservoirs placed below to catch them.

The Academy of Sciences

The annual session of the National Academy of Sciences began in Washington, April 15. Vice-President Marsh presided, and delivered the opening address, in which he paid a feeling tribute to the late President of the Academy, Professor Joseph Henry, and gave a review of the work of the body during the past year. The members present were Professor Spencer F. Baird, Professor Charles F. Chandler, of New York; Mr. E. D. Cope, of New Jersey; Mr. Theodore Gill, Professor Julius Hilgard, Mr. George W. Hill, of New York; Professor O. C. Marsh, of Connecticut; Professor Alfred M. Mayer, of New Jersey; General M. C. Meigs, Dr. . Weir Mitchell, of Philadelphia; Professor Simon Newcomb, Professor H. A. Newton, of Connecticut; Professor E. C. Pickering, of Boston; Mr. Raphael Pumpelly, of New York; Admiral John Rodgers, of San Francisco; Mr. Fairman Rodgers, of Philadelphia; Mr. Charles A. Schott, Professor W. P. Trowbridge, of Connecticut; Dr. J. H. Trumbull, of Connecticut; General G. R. Warren, United States Army; Dr. J. J. Woodward, United States Army ; Professor Henry Draper, of New York; Mr. C. S. Pierce, Dr. S. H. Scudder, of Cambridge; Dr. Elliott Coues, Professor Francis S. Walker, and Professor G. 'F. Barker, of Philadelphia.

April 16, the venerable Professor William B. Rogers, "the Nestor of American Geology," was elected President of
the Academy. The other
the Academy. The other
officers were re-elected, as follows: Professor O.C.Marsh, vice-president; Professor J. H. C. Coffin, home secretary; Professor F. A. Barnard, foreign secretary; Mr. Fairman Rogers, treasurer; and Professors Baird, Agassiz, Gibbs, Newcomb, Hall, and General Meigs, the counsel.
The papers read the first day were as follows: "On Ghosts in Diffraction Spectra," and on "Comparisons of Wave Lengths with the Meter," by Professor C. S. Peirce, of Cambridge; on Peirce, of Cambridge; on "The Relation of Neuralgic Pain to Storms and the Earth's Magnetism," by Professor S. Weir Mitchell, of Philadelphia; on "Continuation of Researches in Connection with the Discovery

HUNTER'S CLUTCH PULLEY.

house had been erected at that distance from the stamping

 presses. Instead of being carried underground, as in the pneumatic dispatch system, the tube was in this case carried over the roofs of the coining rooms, and, descending thererom, was atached to the great acuum chamber.The vacuum chamber had existed from the period of the
rection of the mint, and was originally devised by erection of the mint, and was originally devised by Messrs.
Boulton \& Watt, the well known Boulton \& Watt, the well known engineers of Soho. They had supplied a steam engine of ten horse power, and two single-acting air pumps, each of which discharged air only in its downward stroke, for exhausting the chamber. This cumbrous and comparatively costly, though for its day very ingenious and valuable arrangement, was set aside when the new air-pump came into use. It had performed its mis sion, and was henceforth to be reserved as a duplicate in the event of the derangement, by accident or otherwise, of its modern supplanter. A regulating, or relief valve, and a barometer gauge fitted to the vacuum chamber, enabled the
attendant to control and adjust the extent of rarefaction within the latter.
It will now be comprehended that at all times when the engine and pump are in action a vacuum of more or less extent must exist in the chamber. The chamber, it may be explained, moreover, is a horizontal tube of iron about fifty feet leng, and two feet six inches in diameter. It runs along the floor of the mint pump room, in a line parallel to that in which the eight coining presses stand. Arranged along the top of the vacuum chamber, and supported by pipes open ing into it, are a series of eight cylinders. These are vertical, and fitted with pistons, the rods from which are connected by levers and cranks with the presses. The cylinders are open-topped, and consequently their pistons are exposed to the pressure of the atmosphere once a vacuum exists be low them. This is the case when the pneumatic valves with in the cylinders are open to the vacuum chamber. The air within the cylinders then rushes down to the exhausted tube, the atmospheric column drives the pistons after it to the bottom of the cylinders, and the pistons drag with them the central screws of the coining presses. The instant that the
beautifully engraved dies are thus made to come into conbeautifully engraved dies are thus made to come into con-
tact with the disks of gold the latter receive by the force of
 of Oxgen in the Sun," by Professor Henry Draper, of New York; on " Vowel Theories Based on Experiments with the Phonograph and Phonautograph," by Professor R. Graham Bell; and on "The Palæozoic Cockroaches," by Dr. S. H Scudder, of Cambridge.
The programme for the second day's session included papers by Mr. E. C. Pickering, on the "Eclipses of Jupi ter's Satellites;" by Mr. C. S. Peirce, on "Errors of Pendu lum Experiments," and on "A Method of Swinging Pendu lums," proposed by Mr. Faye; by Mr. E. W. Hilgard (read by Mr. Pumpelly), on "The Loess of the Mississippi and the Aoeilian Hypothesis;" by Professor J. Le Conte (read by Mr. S. K. Gilbert), on the "Extinct Volcanoes about Lake Mono and their Relation to Our Glacial Drift;" by Professor J. E. Hilgard, "Report of Progress of the International Bureau of Weights and Measures;" by Mr. G. K. Gilbert n "Stability and Instability of Drainage Lines;" and by Professor C. F. Chandler, on "Polariscope Methods."
Among other papers announced were "Critical Remarks on Observations Alleged to be of Intramercurial Planets," by C. H. Peters; and on "The Extinct Species of Rhino ceros and Allied Forms of North America," by E. D. Cope

The New York World's Fair.

At a recent meeting of the Executive Committee of the United States Board of Trade, and the members residing in New York, the decision of the Committee in favor of 1883 was approved. The Board has invited the governors and mayors throughout the country to send delegates or com missioners to a great national convention, with reference to the fair, to be held June 18 next.

Dew.
Mr. George Dines, who has made extensive experiments nd observations on the formation of dew, finds that the depth of deposit in England in an evening rarely exceeds a hundredth part of an inch; and that the average annual depth of the dew deposited upon the surface of the earth does not exceed an inch and a half.

EMERY BAND POLISHING MACHINE.
There are many things which cannot be very well polished by means of grindstones, emery wheels, or any rigid tools in common use. Polishing by hand must be resorted to in the finish of many articles, in which that part of manufacture is the more costly. We need not mention any of the many purely ornamental articles to find illustrations of this. Most of the brass fittings for boilers have corners and com. pound curves, difficult to polish and sometimes impossible to get at with any ordinary wheel, or even an annular emery or polishing wheel. For work of this kind, the machine we illustrate herewith seems to recommend itself. It will be seen to consist chiefly of a standard provided with bearings, carrying a driven pulley, over which runs an emery band, which is also carried by five loose rollers, the upper one of which is supported in a movable bearing acted upon by spiral springs to keep the belt tight.

EMERY BAND POLIBETNG MACHINE

The bands used are endless, and usually of leather covered with emery of a number suitable to the work to be done. Some bands are of tape specially prepared for the purpose. The emery coating is easily renewed by the user. The machine is made by Slack's Emery Wheel and Machine Company, Manchester, and seems to be generally applicable for polishing irregular and curved forms.-Engineer.

A NEW ANTI-FRICTION JOURNAL BEARING

The accompanying engraving shows a novel anti-friction journal bearing which was first publicly introduced at the American Institute Fair, in this city, last fall, where a balance wheel, six feet in diameter, weighing 1,755 lbs., and provided with this ingenious mechanism, was run by a single thread of No. 40 spool cotton, instead of a leather belt. Since then the patentees have exhibited their invention upon railroad cars, wagons, machinery of various kinds, and in fact, wherever there is circular motion. Upon railroad cars the decrease of friction is said to be so great that a single locomotive can draw a train of loaded cars, equipped with these bearings, as easily as it could draw the same numb of empty cars provided with the ordinary journal bear ings.
The device also effects a great saving of expense from the fact that it is operated en tirely without lubricants, in fact they would only be a hindrance to it; and it is said that " hot boxes" are impos sible where the device is em ployed. The officers of a sin gle line of railroad recently stated that they had to dea with the annoyance of thre thousand hot boxes in a single month.
The same difficulty is expe rienced more or less on ocean steamships and yachts, in mills and factories, and in fact, everywhere where there
s rotary motion. This device was invented by Mr. William Tucker, patented by Messrs. Tucker \& Avery, and is manufactured by Mr. John G. Avery, of East Brookfield, Mass. We are told that the invention proceeded from a suggestion made by the Scientific American, some months since, in which we set forth the desirability of a device of this kind. The invention, which is shown in Figs. 1, 2, and 3, com prises a shell, b, containing hardened steel rolls, a, a journal, A, of hardened steel, revolving upon these rolls, and the whole working in a box, B , lined with hardened steel. The shell contains sixty rolls, no two of which are in line with each other, and as the journal revolves entirely upon these rolls, friction is decreased to the minimum, and nolu bricants are required. The box and journal, also being of hardened steel, are very durable, and will far outlast those equipped in any other way. Rolls are also set in the end of the journal, thus decreasing the friction at that point.
We are informed that this bearing has been in constan use on a road wagon without lubricants, without showing any wear; also that a hand car on one of the principal rail roads has been used eight months with the same result, and one of the Boston street railways has a car fitted with the journal that has run over 5,000 miles without. appreciable wear. Mr. Avery has successfully applied the principle to engine slides and other sliding surfaces.

HISCELLANEOUS INVENTIONS.

An improved process of inlaying metallic ornaments in wood or stone has been patented by Mr. L. A. Amouroux, of West Mount Vernon, N. Y. In consists in working the alloy in a hot or melted state into engraved or indented portions of the surface to be ornamented, and afterward polishing al together.
Mr. Lyman R. Dexter, of Lancaster, N. H., has patented an improvement in sleds, which consists in a novel clamp fo securing the runner to the upright. This device is an im provement on a clamp for which the same inventor received a patent in 1869.
An improved safe or vault, provided with air and water tight chambers entirely surrounding it, has been patented by Mr. Samuel A. Wilkins, of Victoria, Texas. The chambers are arranged so that they may be filled with water from the exterior of a building. The inventor also provides an ingen ious burglar alarm.
Mr. John B. Belcher, of Charlotte, Mich., has patented an improved strap for rubber boots, which consists of a rigid ring connected with the boot leg by a strap. The inventor claims that the strap is stronger and more convenient than the ordinary ones.
Mr. G. G. Wright, of Winchester, Conn., has devised an improved rotary engine, having several novel features, which cannot be clearly described without an engraving. The ob ject of the invention is to render the parts simple and ac cessible.
An evaporating pan having a corrugated bottom stamped from a single piece of sheet metal, the corrugations of which extend alternately from opposite sides, so as to form a tor tuous passage for the liquid, has been patented by Mr. John L. Bleeker, of Cincinnati, \mathbf{O}.

An improvement in riding saddles has been patented by Mr. William M. Herring, of Spring Hill, Texas. The pommel has a hollow neck, and is formed in one piece with the fork and web, and wooden filling pieces are provided, which mplete the tree.
Mr. William H. Fix, of Moffatt's Creek, Va., has patented an improvement in axes, the object of which is to adapt the broad ax or hand ax for use by either a right or left handed person. The ax head is pivoted to the handle, so as to ro tate in the plane of the axis of the handle.
An improved cover for the steps of wagons, carriages, and other vehicles for preventing the slipping of the feet in wet, muddy, and snowy weather, has been patented by Mr. William Mellon, of Philadelphia, Pa
A runner stone-provided with a ventilating channel cut diametrically across the face, and having its bottom beveled upon opposite sides of the eye, away from the direction of the rotation of the stone-has been patented by Mr. George Helfert, of New York city.

AVERY'S ANTI-FRICTION JOURNAL BEARING.

an miproted water elevator

The water elevator shown in the accompanying engraving the invention of Mr. A. W. Coates, of Alliance, Ohio. It consists, as will be seen from the engraving, of a cylinder, A, which is wholly or partly submerged in the water of the well. A weighted piston, B, is fitted to the cylinder, and connected with a lever or handle, D, fulcrumed in a stand ard on the well platform. The cylinder is provided with valve covered apertures in the bottom, and also with a de livery pipe, C, having a check valve at its lower end. The piston is provided with a downwardly opening valve held up by a spring. This valve allows any water that may escape

A. W. COATES \& CO.'S WATER ELEVATOR.

through the packing of the piston to return to the interio of the cylinder.
The pump is operated by depressing the handle so as to aise the weighted piston; the handle is then released, when the descent of the piston by its own gravity forces the wate up the delivery pipe. The quantity of water raised may be measured by restricting the movement of the handle by means of the pins in the standard near the end of the handle. These pins also serve to hold the piston in an elevated posiion, so that all that need be done to raise a quantity of wate s to release the handle from the pin which retains it
Further information in regard to this invention may be btained from Messrs. A. W. Coates \& Co., of Alliance, \mathbf{O}

The South Arrican Cable

The telegraphic cable to connect the European and Asiatic telegraphic systems with Cape of Good Hope will be 4.000 miles long, extending from the Red Sea cable, at Aden, around Cape Guardafui and along the east coast of Africa to Port Natal, where it will make a junction with th present land line to Cape Town. The cable will be laid along the coast, the depth being moderate along that side of the continent, and th facility for repairing possibl breakages has been carefully ascertained. The cable wil touch at Zanzibar, Mozam bique, Sofala, Delagoa Bay and thence to Durban as the submarine terminus, from which point the land tele raph becomes available to complete the circuit to Cape Town. The cost of con structing and laying the cable s estimated at $\$ 7,500,000$. The line from Durban to Zan zibar is to be finished in July and the whole cable by the middle of November.

REMARKABLE ACCIDENT TO A RED DEER
The accompanying engravings represent a curious mishap to one of the red deer in Windsor Park, the follow ing account of which is given by Mr. Frank Buckland, in Land and Water.
On the 16th of January last, one of the keepers who has charge of the deer in the royal domains was going his rounds, when he suddenly came upon the scene as represented in Fig. 1. A magnificent red deer was lying on his back, with his leg tightly fixed in the forked branch of a whitethorn tree. This unfortunate animal was lying on his near or left side, with the tip of his righ shoulder resting against the trunk of the tree. The chest and fore part of his body were clear of the chest and fuspend his borear of the ground, suspended by his right or off foot in the
fork of the tree. Immediate examination showed the keeper exactly what we see in the engraving, Fig. 2, except that the body of the animal (in the engraving) is no longer attached to the foot. The keeper attempted to remove the foot, bu found it so tightly fixed that with all his force he was quite unable to do so. The shank bone of the stag's foot was fractured and splintered diagonally. The fractured bones had made their exit by a cut through the skin, thus causing a compound comminuted fracture. The portion of the bone below this fracture-tough and strong as the red deer's shanks are-was shattered into minute fragments the size of dice. The bone was again fractured at its lower part, and the thick skin entirely lacerated through. The large sinews at the back of the bone, as well as the wire-like sinews that work the toes of the foot were elongated and pulled out, and in fact everything was broken right off except two very slen der sinews and a small portion of the skin. The total length of the portion of the deer's leg caught in the tree is seventeen inches; from the fracture to where it was torn off, eight inches The leg was caught by the branches of the tree about four feet from the ground, and the lowest boughs carrying leaves were about nine feet from the ground. The deer was dead, and it is no known how long he had been held a prisoner by his foot.

As there were no eye witnesses as to how this occurred to the stag, it becomes somewhat difficult to account for this extraordinary event. It is probable, however, that in consequence of the weather the animal was short of food, and tha in his wanderings he had observed above his head something edible on the lower branches of deer feed in snowy weather. These he could not reach when standing on all fours. He, therefore, probably raised himself upon his hind legs, and when stretching himself upward and forward, the hoofs of his hind legs slipped from under him, or else, when letting himself down again, his right leg slipped suddenly between the forked branches of the tree, and was instantly held there tight. The animal then probably began immediately to struggle, but the more he kicked and fought the tighter the wrist of his foot got wedged in; in fact, when the preparation was brought to me the foot was so tightly fixed into the notch of the tree that it could not have been more jammed if it had been hammered down, and then a long screw passed through it. In his struggles to get loose the first thing that happened was the fracture of the leg bone. This allowed the animal to fall on his back, from which position, of course, he could not rise. Terri bly alarmed at wha had happened to him the poor stag then be gan to pull and tug at his captive leg, assist ing himself so to do by means of his horns n his frantic exertion o get free, the stag second time broke his eg, then the skin gav way, and lastly, the large tendons. If his strength had lasted long enough to have uptured the two small ptred it is soll that he might have es caped, leaving his leg in the fork of the tree Prince Christian, hav ing been informed of the accident, judicious ly ordered the portion of the tree which held the foot to be sawn off bodily. He then kind ly sent the whole thing

Fig. 1.-aCCIDENT TO A sTAG IN WINDSOR PARK
the sea bottom by one end, while the other spreads. Then a mouth, stomach, tentacles, and corporeal partitions are soon formed, and the last become quite hard from accumu lations of particles of lime
Coral animals belong to the class familiarly called polyps, and they multiply themselves by eggs and also by budding until there are countless numbers living together in one com munity. Different kinds of coral bud in different ways; some grow in bunches, others in round masses, and so forth A piece of dead coral shows the spot were every animal has lived. As a mass of coral grows, the lower crea tures gradually die, but their hard skeletons, con sisting mainly of carbonate of lime, remain and urnish a firm foundation for those that work bove them By the striking of the wave gainst this foundation, its interstices graduall become filled with mud, bits of shells, and ubstances win mud, bits of shells, and othe保 grows firmer and firmer. If such a foundation is laid upon an elevation of the ocean floor, it is likely to continue to increase in size; but by the time it has reached the sea-level, the whole com munity of coral animals has become lifeless, for these polyps cannot live out of water. The beating billows break off portions of the skeleto formation, which are soon worn into sand by the water, and afterwards, perhaps, thrown with other debris upon the surface of the mass, which s thus supplied with soil. Then perhaps seeds are scattered upon this soil, which give rise to vegetation, and so a pleasant home is prepared for man.
These coral structures, called reefs, are often circular in form, and many of them inclose a ake or lagoon, whose waters furnish an excel ent harbor for ships.
These reef-builders have not only built up large islands, but also considerable portions of the continents of Europe and America; and some of their structures must be of great age as remains of a prehistoric civilization have been found upon them.-From a lecture delivered by Praf. B. F. Mudge in Science Observer.

Industrial Uses of Bamboo.
A late report of Dr. Schlich, Conservator of Forests in Bengal, says that there are about 1,800 square miles of pure bamboo forests in the Arra kan division of British Burmah, within a mode rate distance of the coast, and all accessible by navigable streams. All these bamboos hav flowered several years ago, and the ground is piece of coral is composed of the skeletons of tiny animals now covered with seedlings, which make the forest impas that in life are covered with a gelatinous substance. More sable. The question as to the practicability of using this than a thousand species of the coral animal have been described by Dana in his work entitled "Corals and the Cora Islands."
Of the sub-kingdoms into which the animal kingdom is divided, namely, vertebrates, articulates, mollusks, radiates, and protozoans, coral animals belong to the radiate division. These creatures have no sense except a low degree of sensitiveness, and live in salt, clear water, having a temperature of from 68° to 85° Fah. They do not live singly, but grow together in clusters, which start from a single, little animal, that is soft, oval; white, and jelly-like, and has the power of rapid motion. It attaches itself either to a rock or $\left\lvert\, \begin{aligned} & \text { of this plant in the arts of industry, } \\ & \text { its origin in the multitude of uses for } \\ & \text { and for so long a time past has bee } \\ & \text { Besides being used in the latter count }\end{aligned}\right.$ plant for purposes of paper-making has several times been raised by Mr. Thomas Routledge, of England, and he has very recently returned to the charge again in a pamphlet en titled " Bamboo and its Treatment," wherein he has brought together information from botanists and cultivators well worthy of serious attention. From the Lumberman's $G a$ zette we learn that a company has been formed in Fngland, with a large capital, for the extensive and various utilization of this plant in the arts of industry, the enterprise having which the material is country in the construction f the construction weaving, Bamboo is there utilized for al most every conceivable purpose for which wood is resorted to in other countries. It forms the posts and the frames of the roofs of huts ; scaffolding for building houses; raised fioors for storing produce, in order to preserve it from damp; platforms for merchandise in warehouses and shops; stakes for nets in rivers; bars, over which nets are spread to dry; the masts, yards, oars, spars, and decks of boats. It is used in the construc tion of bridges across tion of bridges across creek, for fences; a a levee for raising wa ter for irrigation. It is the material of which several agricultural implements are made, as the harrow, the handles of hoes, clod breakers, etc.; hackeries or carts doodles or littors, and biers are all made of it and a common mode of
carrying light goods is to suspend them from the end of a piece of split bamboo laid across the shoulder. Further, a joint of this material serves as a holder of many articles, as pens, small instruments, and tools, and as a case in which little articles are sent to a distance; a joint of it also answers for the purpose of a bottle, and is used for holding milk, oil, and various fluids, a section of it constituting the measure for liquids, in bazaars. A piece of it, of small diameter, is used for a blowpipe to kindle the fire, and by gold and silver smiths in melting metals. It also supplies the place of a tube in distilling apparatus. These, of course, comprise but a portion of the uses to which this valuable material is applicable, and it opens up a wide field for mamufacturing industries.

NEW AGRICULTORAL ITVENTIONS:

A gang plow in which the tongue and axle frame are combined with a pair of plow beams, connected adjustably at the rear end and pivoted to the tongue in front, so that it may be readily operated, has been patented by Mr. L. M. Kelly, of Litchfield, Ky.
An improved cultivator fender, which may be used with either a one horse or two horse cultivator, has been patented by Mr. Andrew Simmons, of Green Vale, and Michael Simmons, of Lena, Ill. It is designed to prevent the earth from being thrown upon the plants by the cultivator plows.
Mr. R. D. Norton, of New Sharon, N. J., has patented an
improved pulverizing disk harrow, in which some of the details of the machine are perfected so that it is rendered more durable and effective.
An improved machine for the distribution of liquid or powdered poison upon cotton or other plants has been patented by Mr. Thomas B. Taylor, of Mount Meigs, Ala. It consists mainly in a perforated cylinder mounted on bearings supported by a plow beam, and capable of turning so as to sift or sprinkle the poison on the plants.

Ozone in Relation to Health and Disease.
Henry Day, M.D., in an address delivered before the Congress of the Sanitary Institute of Great Britain, gives the history of the discovery of ozone, and notices the successive heories of Schöenbein, Williamsom, and Odling concerning its nature. He then describes the pathological action of this form of oxygen, and revoals facts which will probably startle those who believe ozone and "ozonized" articles of food or of medicine to be universally beneficial. He describes the death of animals after exposure to ozonized air under ymptoms closely resembling those of acute bronchitis. He considers that if present in excess in the atmosphere, catarrh, bronchitis, and even pneumonia would be its natural results. Whether there is ever such an excess as would involve these consequences is an open question. He feels also bound to admit, according to the researches of Dr. Moffat, that durng " ozone periods," apoplexy, epilepsy, vertigo, neuralgia, and diarrhea are more frequent. Further investigations in this direction are imperatively needed, but what has been said may serve as a caution to dabblers in science who keep an ozone apparatus in action in their sitting-rooms as a prophylactic against diseases in general.
The absence or the deficiency of ozone has been, perhaps, too hastily placed in connection with zymotic disease. But that such a connection exists in case of cholera can scarcely be doubted. The author shows that in 1864, in the Bombay Presidency, cholera was in its greatest ascendency when ozone was either wanting or at its minimum; that the disease showed a most marked decrease when ozone was registered as increasing, and when at its maximum the epidemic ceased altogether if the maximum continued for any time. Similar results were obtained at Strassburg in 1854 and 1855, and the experiments of Mr. Glaisher and of Dr. Moffat give confirmatory testimony. Whether there may be other causes in operation in addition to deficiency of oxygen is still doubtful. As a disinfectant the author pronounces it the best, safest, and least objectionable known. That it may kill disease germs-whatever they may be-is no doubt highly probable from its action on the superior animals; but the question arises, pertinently says the Chemical Neros, Which will be killed first? and adds, We are somewhat surprised at finding in this address no reference to the well known and justly admired work of Dr. C. B. Fox.

Varying Velocity of Sound.

Some interesting experiments have been made at the U. S . Arsenal at Watertown, Mass., to determine whether the velocity of sonorous waves is or is not affected by variations in intensity and pitch. A 6 lb . brass field piece was placed in the midst of a large level field, and behind it, at distances ranging from 10 feet up to 110 feet, were placed a series of membranes electrically connected with a chronograph, which would thus give the instant at which the sound wave from the gun met each membrane in succession. The experiment was repeated many times and always with the same result. It was found that immediately in the rear of the cannon the velocity of sound was less than at a distance, but that going further and further from the cannon the velocity rose to a maximum considerably above the ordinary velocity, and then fell gradually to about the ordinary. When the gun, however, was pointed at right angles to its first position it was found that the position of maximum velocity was brought nearer to the cannon, and if the gun had been turned in the direction of the line of membranes, which was impracticable, it is thought the retardation which produced the first low velocities would probably have become an acceleration.

The heaviest charges of powder caused the greatest deviations from the ordinary velocity. The experiments, accordingly, prove that the velocity of sound depends to some extent on its intensity, and that experiments on the velocity of sound in which a cannon is used contain an error, probably due to the bodily motion of the air near the cannon. Evidently a musical sound of low intensity must be used for a correct determination of the velocity of sound.

JAPANESE MIRRORS

Mr. R. W. Atkinson, of the University of Tokio, Japan, communicates to Nature the following interesting account of these curious mirrors.
A short time ago a friend showed me a curious effect, which I had previously heard of, but had never seen. The ladies of Japan use, in making the $\quad:-1$ nt a small round mirror about 1-12 to $1 / 8$ inch in thickness, maat un - - 'nd of speculum metal, brightly polished and coated with mercury. At the back there are usually various devices, Japanese or Chinese written characters, badges, etc., standing out in strong relief, and brightly polished like the front surface. Now, if the direct rays of the sun are allowed to fall upon the front of the mirror, and are then reflected on to a screen, in a great many cases, though not in all, the figures at the back will appear to shine through the substance of the mirror as bright lines upon a moderately bright ground.
I have since tried several mirrors as sold in the shops, and in most cases the appearan
I have les distinctines.
I have been unable to find a satisfactory explanation of his fact, but on considering the mode of manufacture I was led to suppose that the pressure to which the mirror was subjected during polishing, and which is greatest on the parts in relief, was concerned in the production of the figures. On putting this to the test by rubbing the back of the

japanese magic mirror.

mirror with a blunt pointed instrument, and permitting the rays of the sun to be reflected from the front surface, a bright line appeared in the image corresponding to the posi tion of the part rubbed. This experiment is quite easy to repeat; a scratch with a knife or with any other hard body is sufficient. It would seem as if the pressure upon the back during polishing caused some change in the reflecting sur face corresponding to the raised parts whereby the amount of light reflected was greater; or supposing that, of the light which falls upon the surface, a part is absorbed and the rest reflected, those parts corresponding to the raised portions on the back are altered by the pressure in such a way that less is absorbed, and therefore a bright image appears. This, of it forward as perhaps indicating the direction in which a true explanation may be looked for.
The following account of the manufacture of the Japanese mirrors is taken from a paper by Dr. Geerts, read before the Asiatic Society of Japan, and appearing in their Transactions for 1875-76, p. 39 :
-For preparing the mould, which consists of two halves, put together with their concave surfaces, the workman firs powders a kind of rough plastic clay, and mixes this with levigated powder of a blackish tuff-stone' and a little charcoal powder and water, till the paste is plastic and suitable for being moulded. It is then roughly formed by the aid of a wooden frame into square or round cakes; the surface of the latter is covered with a levigated half-liquid mixture of powdered 'chamotte' (old crucibles which hav served for melting bronze or copper) and water. Thus well prepared, the blackish paste in the frame receives the con cave designs by the aid of woodcuts, cut in relief. The two halves of the mould are put together in the frame and dried
Several of these flat moulds are then placed in a melting box
made of clay and chamotte. This box has on the top an opening into which the liquid bronze is poured, after it has been melted in small fireproof clay crucibles. The liquid metal naturally fills all openings inside the box, and consequently also the cavities of the moulds. For mirrors of first quality the following metal mixture is used in one of the largest mirror foundries in Kiôto:

For mirrors of inferior quality are taken:
"After being cooled the melting box and moulds are crushed and the mirrors taken away. These are then cut scoured, and filed until the mirror is roughly finished. They are then first polished with a polishing powder called to-no-ki, which consists of the levigated powder of a soft kind of whetstone (t-ishi) found in Yamato and many other places. Secondly, the mirrors are polished with a piece of charcoa and water, the charcoal of the wood, ho-no-ki (Magnolia hy poleuca) being preferred as the best for the purpose. When the surface of the mirror is well polished it is covered with a layer of mercury amalgam, consisting of quicksilver, tin, and a little lead. The amalgam is rubbed vigorously with a piece of soft leather, which manipulation must be continued for a long time until the excess of mercury is expelled and the mirror has got a fine, bright, reflecting surface."
Professors Ayrton and Perry give the following explanaPon of the phenomena of the Japanese mirror:
The magic of this Eastern mirror arises not, as has been supposed, from a subtle trick on the part of the maker, nor from inlaying of other metals, nor from hardening of por tions by stamping, but from the natural property possessed by certain thin bronze of buckling under a bending stress so as to remain strained in the opposite direction after the stress is removed. And this stress is applied partly by the megebo or 'distorting rod,' and partly by the subsequent polishing, which in an exactly similar way tends to make the thinner parts more convex than the thicker."

Lifting a Rallway Bridge without Stopping Traffic.
A dispatch from Easton, Pa., dated April 10, states that the cleverest feat of engineering ever attempted in that re gion has just been successfully carried out. It seems that owing to their immense weight, the iron shoes, in which rest two of the spans of the long bridge of the Lehigh Valley Railroad, had sunk about an inch, throwing the bridge ou of grade. The inside masonry of the pier being less solid than the outer casing, it was evident that the depression would continue; accordingly an iron casting, 12 feet long, feet 3 inches wide, and 3 inches thick, and weighing 7,000 pounds, was placed under the spans to elevate them, the spans being raised for that purpose by hydraulic jacks. The spans weigh 180 tons each. The spans were raised, the ma sonry redressed, the castings placed in position, and the spans lowered, without the stoppage of a single train.

A Large Steel Bridge.

The five span steel railway bridge over the Missouri River at Glasgow, Mo., is the first large bridge in this country built entirely of steel-from nuts to girders. The American Bridge Company built it of steel manufactured by the Edgar Thompson Bessemer Steel Works, but the steel was made by the A. T. Hay process. This consists of a decarbonizing followed by a recarbonizing of the iron, by which much greater tensile strength and elasticity are secured. This kind of steel allows of the construction of a much lighter bridge than if made of wrought iron, and is not affected by frost or cold weather.

Erratum.

In the description of Messrs. Pew \& Wearts' carbureter, in our last issue, there is an obvious error in the statement of the economy of the apparatus. It should read: The gas meter registers one foot per hour for each burner, instead o the usual six feet, or only one hundred and twenty-five feet during five tests of five hours each, as compared with seven hundred and fifty feet, the amount usually consumed.

Importance of Patents Abroad.

The American Consul at Verviers, Belgium, in a dispatch to the Department of State, recommends American inven tors to procure patents for their inventions in Europe as well as in the United States; that the drawings in the Scien tific American are extensively copied in Europe, and American inventions are thus reproduced with no profit to the inventors.

The Mexican Exhibition.-At the end of March 600 mechanics and laborers were engaged on the Exhibition Building, which was making rapid progress. Señors Riva Palacio and Sebastin Camacho are reported to have offered to advance the Government a loan of $\$ 200,000$ toward com pleting the Exhibition Building at an early day.

IT is said that the oil that exudes from orange peel when bent between the fingers, will check the progress of carbun cles in their incipient stage. Perhaps the oil may also be useful for other cutaneous eruptions.

CALCAREOUS BPONGES

This group of sponges received its name from the crystal line calcareous deposits scattered throughout the entire body of the sponge, and forming a skeleton similar to those formed by the silica composing the greater portion of silicious sponges. These calcareous deposits are formed by slende needles arranged in groups of from four to six each around a common center. The sponge possesses a small quantity a common center. The sponge possesses a small quantity retain their original shape and size, and pre sent, whether alive or dead, a chalky appear ance.

The most elaborate monograph of calca reous sponges is that of Haeckel, the natural ist, in which he proves beyond doubt that the so-called one hundred and eleven species of calcareous sponges sent to him from all parts of the globe cannot be considered distinct species, but that they possess the capability of adapting themselves in form and structure to the variable conditions presented by differ ent localities. Haeckel has, however, for the sake of convenience, divided these specie into several families, the structural differ ences of which evince a progressive tendency from the simple to the complex. We are ac quainted with the successive stages of deve lopment of a few species only, and of these the most important one is that of the larvæ If a calcareous sponge arrived at maturity, which is generally the case in May, is cut in slices or torn apart in small species, the lar væ are liberated and may be observed by means of a good microscope. They cousis of two portions, -differing greatly in appear ance. One of them is composed of long conical cells carry ing a long thread each (Figs. 1 and 2). The other consists of a number of round cells, rendered opaque by granu

Fig. 3.-Leucandrapenicillata lar deposits. lar deposits.
Shortly after separating from the mother sponge the larva attaches itself to a rock. The threads attached to the cells of the upper half disappear, and the interior of the conical cells rapidly fills with calcareous crystals penetrating soon to the surface. An aperture is formed, lined by masses of crystals; the sponge grows and hardens gradually. The following spring it sends forth swarms of larvæ, which are carried to great distances by the sea currents.
The larger quantity of the water necessary for the maintenance of sponge life is alternately drawn in and ejected through pores scattered throughout the superficial crust of the sponge. Of these sponges there are three groups-bag sponges or ascones, bulb sponges or leucones, and honeycomb sponges or sycones. Bag sponges form closed or open cylinders, the walls of which are very thin. They are frequently so small and tender that they are hardly noticeable. Often a number of cylinders are united together, forming agglomerations of the size of the fist. To this family belong the beautiful Ascetta clathrus found plentifully in the Gulf of Naples and the Ascaltis botryoides, met with in the Northern seas.
The second family is characterized by an excessive development of the calcareous deposits. Among the most common representives of this family is Leucandra penicillata, illustrated in natural size by Fig. 3.
The highest degree of development is attained by the third family. Numerous individuals are united so as to form round disks resembling a honeycomb. The individuals have the shape of an elongated cup, Fig. 4, or a cylinder resting on a short stem. The edge of the cup is lined with a row of long slender needles.
Haeckel speaks as follows of the conditions under which the calcareous sponges pass their semi-animal life :
Calcareous sponges are found only in the sea. Not a single species has so far been found in fresh water or even in the months of rivers. Not a single species has been met with in the Baltic, the waters of which are very poor in salt, and this is also the case in the fjords of Norway. Placed in fresh water they die in a short time. Water containing a large percentage of mineral substances in solution seems, therefore, to be indispensable for maintaining the life of calcareous sponges.
Most of the species so far examined have been obtained from considerable depths. To all appearances light is injurious to their development, as the larvæ invariably select dark, shady spots for permanent attachment.
 ndefinitely
The author adds that preserved rose hips, properly repared, give a epared, give an exquisite flavor to sauces, go well with found

Fig. 1.-Sycandra glabra, 1:600 beef, veal, and chicken, and combine well with truffles and mushrooms; and that a dash of Madeira wine in no wise injures the preserve. Wild rose bushes exist everywhere, by the roadside and in flelds, all over the country, and their fruit can be had for the gathering. It only remains for the American housekeeper to take the hint and try the experiment.

The Fruit or the Rose Bush as a Preserve.

Brillat-Savarin, in his "Physiologie du Gout," says that the discovery of a new dish does more for the human race han the discovery of a star." If this be true, a writer in one of our French exchanges (La Maison de Campagne) has elevated himself above the average astronomer in announc ing the discovery that the scarlet fruits of the rose bush, or " rose hips," as they are called, are capable of being made

The Grape Phylloxera

Latest Facts about the Phylloxera : read by C. V. Riley at the recent a nual meeting of the Missouri State Horticultural Society.]
The fact that about 280 tons of California grapes were re eived weekly and sold in the markets of Philadelphia du ring the past season, is sufficient to show that the grape in terest in this country is increasing in importance, and to lead to the hope that the discouragement which the Missouri grape grower naturally feels, after four consecutive unfavorabl seasons, must needs soon give way befor brighter prospects that, it seems to me, ar necessarily in store for him. One thing i sure, namely, that the interest manifested abroad in our American grape vines does no flag. These vines are constantly discussed in the foreign horticultural journals, while on periodical, entitled La Vigne Americaine (Th American Vine), is entirely devoted to them. It is a source of no little satisfaction to me that the varieties which I first recommended seven years ago, are in the main those stil sought for and used by the French sufferer from phylloxera, as stock on which to graf their viniferas. It is further interesting to observe that the grounds which I took in re gard to grafting above ground, in my 7th Re port, pp. 108-116, are justified by the expe rience had during the last few years in France Such grafting is found to be quite practical notwithstanding the want of faith shown in it by our earlier ampelographers.
I sincerely hope that this question of graft ing the vine above ground as a means of evad ing the injuries of phylloxera, or of improv ing such varieties as do not succeed upon their own roots, will be discussed by your society, so as to bring out whatever experience on the subject the Missour grape growers have had of late. The fears which I ex pressed in my 7th Report, as to the danger of the introduc tion and spread of the phylloxera in California, have also been more than justified, since many vineyards have already been seriously many vineyards have already been seriously
injured or totally destroyed by the insect. I injured or totally destroyed by the insect. I
am glad to be able to confirm, in this connection, the truth of the statement of Mr. P. J Birckmans, of Augusta, Ga., namely, that this insect does not occur in that locality. While spending a few days with him last September, I was able to verify its non-occur rence there; and here let me remark that, however much contempt a Missourian may have for the Scuppernong, no one can wit ness the prolificacy or experience the delicacy Fig. 4.- Sycan. and sweetness of such varieties as Tende pulp and Thomas, as they grow in that region, without hav ing a due appreciation of their value for the Southern States. Regarding the range of phylloxera, it had often been as erted that around Washington the root insect was not to b I have found it extremely abundant, both in the vineyards of the district, and of those just across the line in Virginia, some of the latter suffering to such an extent that the crop was a failure, though the owners were unsus picious of the cause

After reviewing, in my 8th Report, all that was then known of the habits and natural histo ry of the grape phylloxera, I drew certain prac tical conclusions, to the effect that complete knowledge of its habits, instead of simplify ing its destruction, showed that it was almost if not quite hopeless to expect its destruction by any possible or practical means, and ren dered preventive measures all the more urg ent. I expressed my doubt as to the valueof decortication of the vines, and the burning of the bark in winter, or by any means which aimed at the killing of the winter egg upon the branches and canes of the vine. Diligent search has failed to reveal these winter eggs in anything like the quantity one might expect, and the fact remained that the insect could go on propagating under ground for at least four years without the necessary inter vention of the impregnated egg. Further re searches, made since, confirm me in the belief that the normal mode of hibernation of the species is as a young larva upon the roots. From the results of the deliberations of the International Phylloxera Congress, held last summer at Lausanne, and that held at Montpellier, in France, it was conclusively proved that decortication, as I had anticipated, was of little or no avail.
Before leaving the question of phylloxera, let me briefly refer to certain theories firs propounded by Prof. A. C. Cook, and that have been extensively promulgated during the past two years, as to the relation of phylloxera and grape-rot. I took occa sion, last spring, to protest, in the New York Tribune against the supposed connection between the two, and i will not be out of place to repeat the reasons:

Already, in 1871, when I first announced the presence of phylloxera on the roots of American vines, and explained
the injury which it caused, there were writers who, not content with the simple facts, went much further and asserted that this little insect must also be the cause of mildew, rot, etc Professor Cook has jumped to similar false conclu sions, and has, during the present winter, promulgated before various societies his belief that the phylloxera is the cause of black rot in grapes. This is sensation, not science, and it is to be deplored, coming from the source it does. The phylloxera occurs in most grape-growing sections of the country east of the Rocky Mountains, and will quite naturally be found on vines on which the fruit has rotted.
" But an experience covering several years, and the examination of hundreds of vines, with rot of fruit and without it , enables me to deny the assertion that the insect is more numerous on the former than the latter. The phylloxera disease has its own peculiar characteristics, which are at once distinguished from other vine diseases by those under standing it. There are also very conclusive reasons for discarding the views of Prof. Cook. 1. In France, where the phylloxera has been so very destructive, the black rot has not accompanied or followed it. 2. The rot, so far as I have observed it, is no worse on the susceptible than on the more resistant varieties; while many cases might be adduced of healthy vines, and those least affected with the insect suffering most from rot. 3. On account of three successive wet summers of 1875, 1876, and 1877, in this part of the country (Missouri), the phylloxera has been less numerous and less injurious than at any time since 1871, and many vines that were suffering near to death have recuperated, yet no year since the time mentioned has black rot been worse than it was last summer."

Currespoudence.

The Genesis of the Mosquito

To the Editor of the Scientific American:
For several years past I have noticed in warm weather, that my wooden cistern, which is above ground, has been infested with peculiar looking little red worms. I have heard many others like myself complain of these worms, and I had taken it for granted that they were a species of earth worm. However, last summer I procured a glass jar and sprinkled the bottom of it with a very small quantity of sand and clay. I then half filled the jar with clear fresh water, and, after putting a dozen of these worms in the jar, 1 tied a piece of cloth over the mouth, and placed it in a light, airy place.
The worms were from half to three fourths of an inch in length, of a bright red color, and had rather a jointed appearance about the body. They would crawl on the bottom of the jar, swim through the water by a rapid bending of the body backward and forward, and occasionally come up to the surface of the water and fioat.
Within twenty-four hours after placing them in the jar, I noticed that they had all gone down to the bottom of the vessel, and had enveloped themselves separately in a kind of temporary shell made of earth and sand.
In a few days after this I saw one of these worms crawl out of his temporary house at the bottom of the jar, and swim to the surface of the water. Here, after twisting about for a few seconds, he ruptured a thin membrane that enveloped his body, and came out a full fiedged mosquito ready for business. I noticed many of the other worms going through the same performance within a short while afterward. Some of the mosquitoes were much larger than others, but, as I have already stated, some of the worms were also larger than others.
F. W. Coleman, M.D

Rodney, Miss., April, 1879.

Remedies for Carpet Beetles, Moths, etc

To the Editor of the Scientific American
At this season we are frequently besieged by inquiries in relation to the "carpet beetle," moth, etc. Many of your readers may be glad to know of the following simple remedies:
First.-Steep one quarter of a pound of Cayenne pepper in a gallon of water; add two drachms of strychnia powder. Strain and pour this tea into a shallow vessel, such as a large tinned iron milk pan. Before unrolling a new carpet, set the roll on each end alternately in this poisoned tea for ten minutes, or long enough to insure the saturation of its edges for at least an inch. After beating an old carpet, roll and treat all its seams and edges to the same bath. Let the cirpet dry thoroughly before tacking it to the fioor, in order to avoid the accidental poisoning of the tacker's fingers by the liquid. It is perhaps unnecessary to state that the residue of the liquid should be thrown out where it will not be drunk by any domestic animal, or if preserved for future use, carefully labeled "poison."
This preparation will not stain or disfigure carpets nor corrode metals in contact with the carpet, as will most preparations of corrosive sublimate.
Second.-One pound of quassia chips, one quarter of a pound of Cayenne pepper steeped in two gallons of water. Strain and use as above. This preparation. although irritating to the human skin, especially on cut surfaces, has the advantage of not being poisonous.
To either of these teas from one quarter to one half more boiling water may be added at the time of first using, if greater depth of the liquid in the vessel be required. When it is desirable to treat carpets that are not to be taken up, either of the above preparations may be applied by means of
any of the common atomizers to every seam and margin with good results, although a second, and even third, appli cation may be needed. Francis Gregory Sanborn. Consulting Naturalist.
Andover, Mass., April 10, 1879.

The Ice Cave of Decorah, Iowa.

To the Editor of the Scientific American:
"H. M. W." is mistaken about the formation of the Uppe Iowa Valley, Winneshiek county, Iowa, where the Decoral Ice Cave is situated. It is in the Trenton limestone, which is highly fossiliferous, and manufactured into monuments, table tops, paper weights, etc., presenting, when polished, a very beautiful appearance.
The Ice Cave is a fissure in the Trenton limestone cliff facing to the south, and runs nearly parallel with its face, is about 100 feet long, and varies from 2 to 6 or 8 feet in width. Height irregular, in places compeling progression on hands and knees. Says White's "Geology of Iowa," vol. 1, p. 80 "The formation of the ice is probably due to the rapid evapo ration of the moisture of the earth and rocks, caused by the heat of the summersun upon the outer wall of the fissure and the valley side. This outer wall is from 10 to 20 feet in thick ness where the ice is most abundant. The water for its pro duction seems to be supplied by slow exudation from the innef wall of the cave." It forms the most rapidly during the extreme heat of summer, and disappears in winter en tirely. From several years' acquaintance with the cave, believe the above explanation correct.
A. M. M.

Waukon, Iowa, April 2, 1879.
C. B. A. submits another explanation, namely, that the ic is due to the rapid evaporation of the moisture percolating through the soil and rocks above. To produce the ice " two conditions are necessary: first, that the supply of moisture in the cave must not be (as it was when I visited it, a hot day in June, after much rain) great enough to warm the cave and thus overcome the cooling tendency of the evaporation to form ice or to melt the ice that may have been previousl formed.
"Second, the supply of water must be sufficient to carry on the evaporation and leave a surplus for conversion into ice. This condition is met only during the summer months, when the temperature is high enough to create a current of air upward through the cave, and when supply of water is not so great as at other seasons. In the winter the ground is frozen and water prevented from soaking through, and so the ice formed in the summer evaporates. Also, the temperature outside and inside being so nearly the same, very little air passes through."
C. G. C. writes that a counterpart of the Decorah Ice Cave occurs on the south side of Black River, at Watertown, N . Y., the rock being the well known Black River limestone.

Telephones and Sounders.

To the Editor of the Scientific American:
As some of your readers appear to find difficulty in using telephones and sounders in the same circuit, I would recommend the following plan, which has been found to work well in practice upon a line where there are twenty offices and nearly as many telephones in use

The diagram shows the arrangement. The in wire, which comes from the zinc pole of the battery, is carried to the key and from the key to the relay or main line sounder, and thence to a binding post marked A. B is another binding post, from which the out wire goes to the line. P T S is a two point switch, one point of which, T, is joined to the wire between the key and sounder. \mathbf{P}, the point on which the switch tongue turns, is joined by a wire to the post, A, and the point, S , to the post, B . All these connections are beneath the table, the posts, A and B, rising above, and in them the conducting cords of the telephone are inserted. When the switch tongue rests on S the sounder only is in cir cuit, and can be used to call. When the tongue rests on T the telephone is in circuit, and the sounder is cut out. When the telephone is not in use the switch should be kept on S , closing the circuit through the sounder and preventing waste of battery. Care should be taken that the \mathbf{Z} pole of the tele phone is attached to the post which receives the zinc wire from the battery, the post, A , in the arrangement as described. If desired, bells may be substituted for sounders

Jopin E. Norcross.

Tracing the Hudson under the Sea.

The Atlantic Coast Pilot, published by the United States Coast Survey, explains the origin of the curious deep holes met with along the New Jersey coast, some distance out at sea. Of these "mudholes," as they are termed, nine are
known to navigators, the deepest anc' the furthest out bein the hundred and forty-five fathom hole, 83 miles southeast of Sandy Hook light vessel. These remarkable depressions, as the Pilot points out, bear the appearance of having been originally a continuation seaward of the Hudson River Valley They were in all probability scooped out by the river being forced to run through narrow gorges. Several of these gorge can still be traced running almost parallel with the New Jersey shore line. In fact, the soundings along the coast would seem to indicate that the whole coast line, ages ago was many miles seaward of its position to-day; that then the Hudson River entered the ocean at least a hundred miles southeast of its present mouth, and that the whole continent has since subsided, the sea encroaching further and further inland, as the country gradually sank.

Astronomical Notes.

Observatory of Vasbar College.
The computations in the following notes are by student of Vassar College. Although only approximate, they will nable the ordinary observer to find the planets.
M. M.

POSITION OF PLANETS FOR MAY, 1879

Mercury.
On May 1 Mercury rises at 4 h .20 m . A.M., and sets at $\mathbf{5 h}$ 6m. P.M. On May 31 Mercury rises at 3 h . 40 m . A.M., and ets at 5 h .38 m . P.M.
Mercury will be best seen near the middle of the month, in the morning, as it is then at its greatest elongation.

Venus.
On May 1 Venus rises at 6 h .45 m . A.M., and sets at 9 h . 54 m . P.M. On May 31 Venus rises at 7 h . 21 m . A.M., and ets at 10h. 29m. P.M
The motion of Venus among the stars from night to night is very perceptible. On May? 1 it will be 4° south of Pollux in declination, and will precede that star by about 2° in right ascension. Venus and the crescent moon will be nearly in conjunction May 24.

Mars.

On May 1 Mars rises at 2 h .27 m . A.M., and sets at 0 h .58 m P:M. On May 31 Mars rises at 1h. 22m. A.M., and set t 0h. 51m. P.M.
Mars is very distant, but its ruddy color and its nearness o Jupiter on the morning of the 9th will cause it to be easily found.

Jupiter.

Jupiter is coming into a better position. It rises on May 1 at 2h. 35m. A.M., nearly with Mars; and sets at 1 h 25 m . P.M. On May 31 Jupiter rises at 48m. after minnight, and sets at 11 h .47 m . A.M.
Although Jupiter is in south declination, it is so large a planet that it will be very conspicuous in the early morning. Jupiter will be near the waning moon on the morning of the 14th.

Saturn rises on May 1 at 3 h .57 m . A.M., and sets at 4 h 11m. P.M. On May 31 Saturn rises at 2h. 6m. A.M., and sets at 2h. 28m. P. M.

On May 1 Uranus rises at 0 h .47 m . P.M., and sets at 2 h 16 m. A.M. of the next day. On May 31 Uranus rises at 10 h 51 m . A.M., and sets at 18 m . after midnight.
Uranus follows the bright star Regulus on May 1 by 2° in right ascension, and is one third of a degree below it in dec lination. The position changes very little during the month.

Brorsen's Comet.
This small periodical comet has passed its perihelion and is approaching the earth. It resembles a nebulous star, and moves so rapidly by one and another star that with little op tical aid the observer can see the change in an hour's watch. Its motion is from the constellation Camelopardalus to that of Ursa Major. After April 21 the comet is circumpo lar and does not set in this latitude. Following the ephemeris of Schulse, the comet will be nearest the earth on May 10 Its place at that time will be among the small stars in the head of the Great Bear

How to Prevent Diseases among Children.
A correspondent of the New York Times says that he has followed a reconmendation from a lady to evaporize a little carbolic acid daily in the heaters as a disinfectant and a pre ventive against contagious diseases, and the results have been most satisfactory. "I have a large school, and out of the whole number only two pupils have been sick with scar let fever, and even these cases were indirect ones. In my own family, which consists of fourteen children-fortunate ly not all my own-and five adults, not one has been afflict ed with any malady, not even with a sore throat, for longer than a day or two. We certainly keep the house minutely clean, ventilate it thoroughly every day, and never heat the rooms above $66^{\circ} \mathrm{Fah}$. During my thirty years' experience I have never seen the like.'
We think it probable that the use of a small quantity of carbolic acid in the manner above mentioned may in some cases be beneficial. But if it were the golden rule in every family to keep the house minutely clean, ventilate it thoroughly every day, and never heat above 66° Fah., there would probably be little need of carbolic acid or any other would
drug.

To inverwiors.

An experience of more tuan thirty years, and the preparation of not less than one hundrea thousand apple patents at home and abroad, enable us to un
tions for derstand the laws and practice on both continents, and
to possess unequaled faclities for procuring patents everywhere. In addition to our faclities for preparing
drawings and specifcations quickly, the applicant can drawings and specifcations quicky, the appicant can fice without delay. Every application, in which the fees to the Patent Offce the same day the papers are signed
at our office, or recelved by mall, so there is no delay in at our office, or received by mall, so there is no delay in
flling the case, a complaint we often hear from othe sources. Another advantage to the inventor in securing
his patent through the sclentific American Patent Agency, it insures a special notice of the invention in Agency, It insures a special notice of the livenilon in
the ScIEvirc AmERIOAN, which publication often
opens negotiations for the sale of the

Business and extsoual.

The Charge for Insertion under this head is One Dollar

 a line for each insertion: about eight words to a line. as early as Thursday morning to appear in next issue.Sutton's Patent Polley Cover.-If you are losing power get it again by using these covers. Calculate
how much power you are losing and find the gin you how much power you are losing and ind the gain you
will make in your work by adopting a positive remedy Send for a circular. Address Joseph Woodward, pro
priet.r and manufacturer, P. O. Box 3419 , New York. The best results are obtained by the Imp. Eureka Tu bine Wheel,and Barber's Pat.Pulverizing Mills. Sendtor
descriptive pamphlets to Barber \& Son, Allent own, Pa Valves and Hydrants, warranted to give perfect sati Try the new fragrant Vanity Fair cigarettea, both Try the new fragrant Vanity Fair Ci
plain and halves. Most exquisite of all.
Yacht Engines. F.C.\& A.E.Rowland, New Haven, Ct. For Punches, Patent Bending Rolls, Radial Drills, an
ngle Iron Shears, Hilles \& Jones, Wilmington, Del Belcher \& Bagnall, 25 Murray St., N.Y., have the mo economical steam Engiues, Boilers, Pumps, in ma
also improved wond and iron working machinery. 17 and 20 in. Gibed Rest Screw Lathes. Geo. S. Lin-
coln \& Co., Hartford, Conn. New Pamphlet of "Burnham's Standard Turbin Wheel "sent free by N. F. Burnham, York, Pa. Vertical Burr Mill. C. K. Bullock, Phila., Pa. Sheet Metal Presses, Ferracute Co., Bridgeton, N. J.
Excelsior Steel Tube Cleaner, Schuylkill Falls,Phila.,Pa Machine Diamo Bevins \& Co.'s Hydraulic Elevator. Great power,
simplicity,safety,economy,durability. 94 Liberty St.N.Y. A Cupola works best with forced blast from a Baker
Blower. Wilbraham Bros., 2,318 Frankford Ave., Phila. For Solid Wrought Iron Beams, etc., see advertise-
ment. Address Union Iron Mills, Pittsburgh, Pa., for aph, etc
Split Pulleys at low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shatting appearance as Whole Pulleys. Yocom
The Ornamental Penman's, Engraver's, Sign Writer's, and Stonecutter's Pocketbook of Alphabets; 32 plates;
20 cts.; mail free. E. E F. N. Spon, 446 Broome St., N. Y. Linen Hose.-Sizes: $11 / \mathrm{in}$ in., $20 \mathrm{C} . ; 2$ in., $25 \mathrm{c}, 213$ in.,
29c. per foot, subject to large discount. For price lists of all sizes, also rubber lined linen hose, address Furek
Fire Hose Company, No 13 Barclay St New York If in want of Emery Wheels or Emery Wheel Ma chinery, write to us for catalogue and prices. Lehig
Valley Emery Wheel Co., Welssport, Pa
Dead Stroke Power Hammers; cheapest and best for
general forging and die work; 500 in use. P. S. Justice, genera I Iorging a
Palladel phia, Pa.
Wanted-A New or Good Second-hand Screw Ma-
chine. Address Jerome Redding \& Co., Boston, Mass. chine. Address Jerome Redding \& Co., Boston, Mass.
Downer's Improved Boiler Liquid is gaining many Downer's Improved Boiler Liquid is gaining man
friends from the ranks of skeptics. To try it is to be
convinced. A. H. Downer, 17 Peck Slip, New York.
Manufacturers can save 25 per cent of customary outlays by use of H. W. Johns' Asbestos Liquid Paints,
which are of a higher grade than any other paints fo tructural purposes. Samples and price lists sent free mail. 87 Maiden Laue, New York.
Forsaith \& Co., Manchester, N. H., and 218 Centre St., New York. Specialties.-Bolt Forging Machines,
Power Hammers, Combined Hand Fire Eugines and Hose Carriages, new and 2 d hand machinery. Send stamp
for illuistrated catalogues, stating just what you want. Partner Wanted.-See "Enterprise," an Adv. on page 6. Address W. W. Pearce, Cuero, Texas.

Partner Wanted.-A party with limited capital.-Ad-
dress Des Moines Linseed Oil Works, Des Moines, American Watch Tool Co., Waltham, Mass. Lathes for Optical Instrument Makers.
Electro-Magnetic Engine and Battery complete, in running order. for ${ }^{\text {\&2. }}$
Co., Cor. Centre and White Bts., New York.
Fac-simile Signatures elegantly Engraved on
Wor 82.
A First-class Pattern Maker desires a steady Job
ddress J. A. Smith, South Newmariet, N. H.
For Sale-State Rights or Entire Patent of Self-Feed
ing Oil Stove. J.D.Lane, 1012 Lafayette Ave.,B'klyn, N. Y.
I want to buy a few patents (old or new), whole or in
part. W. P. Harvey, Port Jackson, Mont. Co., N. Y.
New American Edition of the Catechism, and Hand
Book of the Steam Engtne; 900 pages; 150 illustrations. Book of the Steam Engine; 900 pages; 150 illustrations.
Price, by maill, 81.75 . Send for circular. F. Keppy Sclen Price, by mail, s.75. Send for circular.
tife Book Publisher, Bridgeport, Conn.
For Sale-81/2 ft. Boring and Tarning Mill; 2 Radia
Drills; and 1 Combined Punch and Shear. Hilles Drils; and 1 Combined
Tehigh Valley Emery Wheel Co., Weissport, Pa.,
will be pleased to nil be pleased to send their catalogue on application,
special prices when sizesare
Presses, Dies, and Tools for working Sheet Metal. etc.
Fruit \& other can tools. Bliss \& Willams, B'klyn, N. \mathbf{y}

Nickel Plating.- \mathbf{A} white deposit gaaranteed by usin Hydraulic Elevators for private honses, hotels, an
public bulldings. Burdon Iron Works, Brooklyn, N. public bulldings. Burdon Iron Works, Brooklyn, N.
Needle Pointed Iron, Brass, and Steel Wire for
purposes. W. Crabb, Newark, N. J.
The Lathes, Planers, Drills, and other Tools, new and Wond-hand. of the Wood $\&$ Light Machine Company,
Worcester, are being sold out very low by the George Worcester, are beink sold out very low by the Georg
Place Machinery Agency, 121 Chambers St., New York.
Hydraulic Presses and Jacks, new and second hand. Lathes and Machinery for Polishing and Buffing Metals . Lyon \& Co., 470 Grand St., N. Y.
Solid Emery Vulcanite Wheels-The Solid Original Cantion, Wheel -other kinds imitations and inferior Cautlon.-Our name is stamped in full on all our best
Standard Belting, Packing, and Hose. Buy that only. The best is the cheapest. New York Bel
log Company, 37 and 38 Park Row, N. Y.
Portland Cement-Roman \& Keene's, for walks, cis
erns, foundations, stables, cellars, bridges, reservoirs Portland Cemenl-Roman \& Keene's, for walks, cis-
terns, foundations, stables, cellars, bridges, reservorrs,
breweries.etc. Remit 25 cents postage stamps for Practibreweries.etc. Remit 25 cents postage stamps for Practi-
cal Treatise on Cements.
S. . L. Merchant $\&$ Co.,
E3 Broadway, New York.
Galland \& Co.'s improved Hydraulic Elevators. Office Steam Tug Machinery, Engines, Boiliers, Sugar Ma Steel Castings true to pattern of and durability. Gearing of all kinds. Hydraulic cylinders, crank shafts, cross heads, connecting rods, and ${ }_{407}^{\text {and circular, address Chester } \mathrm{St}} \mathrm{L}$
For Sale Cheap.-Second-hand 8 foot Boring and Turning Mill, Lathes, Planers, Drills, Bolt Cotters,
Circulars. D. Frisble \& Co., New Haven, Conn.
Elevators, Freight and Passenger, Shafting, Pulley
and Hangers. L.S.Graves \& Son, Rochester, N. Y. and Hangers. L.s. Graves \& Son, Rochester, N. Y.
Machine Cut Brass Gear Wheels for Models, etc. (new Hst). Models, experimental work, and machine work
generally. D. Gillbert \& Son, 212 Chester St.. Phila., Pa. Best Turkey Emery in kegs, half kegy, and cans;
beral rates by the ton. Greene, Tweed $\&$ Co., 18 Park Place, New York.
Blake's Belt Studs. The most durable fastening for
rubber and leather belts. Greene, Tweed \& Co., N. Y. Holly System of Water Supply and Fire Protection for ities and Villages. see advertisement in scirstific
Ambican of this week. Howard's Bench Vise and Schleuter's Bolt Cutters. HowardIron Works.
Best Power Punching Presses in the world. Highes Deoxidized Bronze. Patent for machine and engine For Sale.-7 foot bed Putnam Planer 2950 . For Sale.- 7 foot bed
Pool \& Co., Newark, N. J.
Milling, Profling, Cam Cutting, Revolving Head Sche (achines. Pratt \& Whitney Co., Hartford, Conn.
Hydraulic Cylinders, Wheels, and Pinions, Machinery
Castings ; all kinds; strong and durable; and easily worked. Tensile strength not less than 65,000 1bs. to
square in. Pittsburgh Steel Casting $\mathbf{C o}$., Pittsburgh, Pa Hand Fire Engines, Lift and Force Pumps, for fire and all other purposes. Address Rumsey \& Co., Senec
Falls, N.Y., and 93 Liberty St., N. Y. city, U.S.A.
For Shafts, Pulleys, or Hangers, call and see
ept at 79 Liberty St., N.Y. Wm. Sellers \& Co.
Wm. Sellers \& Co., Phila., have introduced
HEW BOOKS AND POBLICATIONS. abellen zur Bestimmung der Miner
alien nach ausberen Kennzeichen Herausgegeben von Dr. Albin Weisbach Leipzig: Arthur Felix.
Contaitward appearance, and other properties neces don, outward appearance, and other properties neceswith such remarks as may be of special interest. Only one feature diminishes the value of the book for practical porposes-the minerals are arranged in groups solely according to the similarity of their outward appearance. To determine a specimen the stadent must, therefore, se-
lect one of the numerous tables and hunt up among its embers one the properties and behavior of which will ost of much time. Had the reverse order been chosen as by Fresenius inhis "Qualitative Chemical Analysis," the practical value of the book would have been much greater. Nevertheless the completeness and conciseness
of the work rnder is valuable as a book of referenceto the chemist, miner, and mineralogist.

No attention will be paid to communications unless
accompanied with the full name and address of the accompan
writer.
Names a
Names and addresses of correspondents will not be
given to inquirerse
We renew our request that correspondents, in referring Oo fermene onswerg or art that correspondents, in referring
name kind ene the date of the paper and the page, or the number
nam of the question.
Correspondents whose inquiries do not appear after
a
reasonable time should repeat them.

obtain such information without remuneration.
Any nnmbers of the Scientirn Amerrian surpie-
MENT referred toin these columns may be had at this
offce. Price 10 cents each.
(1) H. C. R. asks: What kind of varnish used to obain the fine finish on fish rods, and how is nish 2 parts, boiled linseed oil 1 part, shake thoroughly before using, and apply with a cloth pad, rubbing the article to which the polish is applied, until the varnish
is dry and hard.
(2) H. ${ }^{\text {A. A. M. asks: Will you inform me }}$
square foot. A. As surfaces, no. In terms, yes.
"foot square "is a square 12 inches on a side ($=144$ sq "foot square" is a square 12 inches on a side ($=144 \mathrm{sq}$
in.) A " square foot" is 144 sq , in. in any shape.
(3) B. asks: What is the lifting power of street gas per cubic foot? A. The average when petro-
leum is not employed for "enriching," is about 35 lbs . eum is not employe
(4) "Science" writes. My intention is to learn the engineering profession, but I have a liking to Which steamship, locomotive, or steamboat engineering. 1. Which. in your opinion, is the best and most skille
position of the three, and receives the best salary? position of the three, and recerves the best silalar 2. Wh is the salary of locomotive engineers on our Western roadss A. We do not think there is any standard; the
differ on different roads and with the kind of train. differ on different roads and with the kind of train.
(5) A. T. T. asks: Will a crank give the ngine? A. Yes.
(6) R. C. L. asks: How can I obtain a high chish on cattle horns? A. a, scrape the horn carefully smooth with powdered
(7) H. S. C. writes: A portable 2 horse power steam engine can be purchased for two hundred hinists and steam men of this why are not our ma ondreds of men waiting for a steam road wagon whic we know can be got up for less money than to pur horse engine would cost nearer $\$ 40 ;$ than $\$ 200$. Ha youconsidered the expense of a skilled engineer, the
(8) J. D. H. writes: If J. A. F. (43) " Note nd Queries," ScIENTIFIC Aberican, March 8, will reace the blast nozzle to
(9) G. M. D. asks: 1. What is waterglass? at is waterglass ing excess of the alkaline base, soluble in water. 2.
How are agates polished? A. Usually horizoncal disks iron, pewter (or copper), wood, and leather covere ith moistened emery of different grades of fineness, sand, rotten stone, or tripoli, and putty powder, respec
tively. (10) J. F. \& J. H. W. write: We saw in Sc entiryc, February 22, an alloy of tin and phosphorus.
Is phosphoras a metal, and how is it mixed with tin or copper? A. Phosphorus is non-metallic; it may be clay beneath meited metal by means of a rod of baked
(11) J. M. asks if hair can be produced on the face by artiftcial means, and if so, how. A. See answer No.
Americans.
(12) W. C. writes: 1. A train is traveling at a speed of 50 miles an hour. A cannon placed on direction as the train; the projectile from cannon has same velocity as train. How far will projectile be car ried in an hours A. Add the uniform speed of the
train to the range of the projectile. 2. Reverse the cannon and shoot in opposite direction. How far will it
carry? A. If the ball leaves the gunat same velocity as rain is running it will fallnearly vertically to the ground
(13) H. C. R. asks: How long has the enase? A. The horizontal engine, built under the directou of Franklin Peale, Esq., was erected in 1837,and removed in the end of 1877 , after 40 years' service. The
"steeple "engine was erected in 1850 ,and is still in use.
(14) S. M. D. asks: Is there any process by Which iron can be prevented from rusting, When not
painted; if so what is it? A. See articles on Professor Barfi's process, No. 126, Scientimo American Suprl rent, and pp. 327 and 367, vol. 39, Scientifyc Amer
(15) V. writes: I propose to lay an inch or one and a half inch iron pipe from this office to
another offlice, 260 feet distant, and the pipe is to lie
mostly undergoound and to be used t will have three turns or elbows in it Conld conve sation at one end be heard distinctly at the other? A Yes, if the corners torned are not too sharp. Make the carves or your elbows of large radius, say 12 or 18
(16) T. D. H. asks: What will set the colors in new calico or gingham that are likely to fade, without injury to the goods? A. The mordant will de pend altogether upon the character of the dye or color
used on the goods. Many dyes (such as the coal tar or used on the goods. Many dyes (such as the coal tar or
aniline series) become bleached by prolonged exposure
(17) O. S. W. asks: Is ozone produced (17) O. S. W. asks: Is ozone produced
during the process of ironing cotton clothing? I have requently noticed the odor of ozone on going into th the odor of hypochlorons acid and of nitrous vapors is often mistaken for ozone.
(18) L. L. W. asks: 1 . Why is the pres ent apparatus of log chip and line preferred by naviga vessel? A. Because of cheapness and simplicity; further, "old salts " understandit. 2. Is there any rea son why the telephone should not in time carry the voice
across the ocean through the cable? A. The electrical current works so slowly through a long submerged cable
(19) A. P. S. asks how to polish pearl shell (19) A. P. S. asks of pearl for umbrella handles). A. a. Smooth on a common grindstone wet with oap and water wheel. c. Finish with rotten stone moistened with sulphric acid a little diluted with water.
(20) O. W. F. writes: If three men have a to carry with a lever (and the other man at one end) to carry with a lever (and the other man at one end)
where will they place the lever so as to carry two third
of the shaft? A. Three feet from end of shaft.
(21) E. S. C. writes: My engine is horizontal, 6 inches stroke, 3 inches diameter: what size size of paddle wheels and how many strokes to the minute, when the engine runs at 300 strukes? A. Your engine would probably drive a light skifl about 5 to 6
miles per hour in still water: it would, however, depend miles per hour in still water; it would, however, depend
much on your b iler, and whether the engine is geared or works direct on paddle wheel shaft. Paddle wheels bout 41/ feet diameter by 15 inches face would suit.
(22) J. R. F. writes: We have a 75 horse high pressure engine which exhansta by way of a Berry-
nan heater up through pipe 30 feet high. We have a man heater up through pipe 90 feet high. We have a
hole at the bottom, and the steam condensed is now running to waste. Can I utilize this water by pumping it back into the boilers, or would the grease from the cylinder prevent my using it? A. As the Berryman heater eats all the feed water you require, the gain by return(23) H. L. V. asks: 1. What is "manifold" paper? A. The white paper is only very fine thin writing paper. The black is soft paper, prepared by being smeared with a composition of grease and plumbago or
lampblack; this mixture is allowed to remain on for 12 hours, and the paper then wiped with a piece of wool or cours, and the paper then wiped with a plack, and write
coton white paper over black, with a blunt point. 2. What was the size and capacity of the Mary Bell, said to have been the largest steamboat on the Missisippis. A. We do not know; will
some correspondent at the West inform us? 3. Our some correspondent at the West inform us? 3. Our
canary chews the quill end of suchof his feathers as fall canary chews the quill end of suchof his feathers as fall
out. What does it need? A. Cuttle fish. 4. What are some good works on spectrum analysis? A. Spectrum Analysis, by H. E. Roscoe; Spectrum Analysis,by H. Schellen, and Spectrum Analysis, by Professor Red-
(24) F. G. writes: In reply to B. S. S., April 12, you say it is known in practice that higher results are obtained by throttling. Do you mean by that that it is advisable in an automatic cut-off engine folbs. absolute, to throttle the steam and allow it to folow enough further to make the average pressure the greatest when working without exppansion or with a xed expansion. We think there is gain in all cases in or the engine.
(25) J. S. P. asks how a soft solder for tin vessels can be made, which is used by heating from the
lame of a candle. There is such a solder sold on our streets, which so far has given satisfaction. A. Melt together 2 parts of block tin and 1 part of lead. Take a adle having a small hole in the bottom, and hold it over the stream of melted solder is cooled by the water it
(26) C. L. asks: If in a room 50 feet long there is a mirror as one end, will the reflection of an object at the other end of the room appear in size the sume ane 50 feet from the observer standing at the mirror, or will it appear the same as one 100 feet from the per50 feet away. Toa pertanding at the mirror fompears or it would appear to be 100 feet distant.
(27) W. G. H. asks: 1. Can an ice boat run locity of the wind? A. No. 2. Do the Gatling guns when fired at an object send the successive shots to the same point if the aim of the gon is not altered, or do the
(28) C. P. T. asks: 1. Is there any back movement in the carrent of a stream of water in a hose checked, so as to occasion bursting of the hose? A. Yes. 2. If no, does it extend back to the engine or hydrant throwing the stream? A. Yes. 3. Would the pressure or strain on the hose be less after the stream was closed,
or greater than while the stream was in motion? A.
(29) J. H. asks what kind of oil is the best to use in boilers to keep them free from scales; also the lard oil on piston valve, rods, etc. 9 What effect has petroleum? A. Mineral oil can be used in boilers. Special mineral oil are prepared for cylinders, though good Pu e tallow and lard oil can be used without injurious
(30) J. B. M. writes: 1 have a vertical boiler (20 H. P.) without fines or tabes; it is 10 feet high:
the firebox is a shell within a shell, 4 inches berwen the walls, with 4 apertures equidistant for the escape of moke and flame some 6 inches below the crown sheet; the firebox is 5 feet high; from the crown sheet upward is the steam chamber or dome; the boiler stands on a around the boiler there is a sheet iron jacket, the size of the ring, the entire length of the boiler, fitted close by a cap of same at the top. Now, the questions I wish you
to answer are these: 1 . I want to put a brick wall in place of the iron jacket. Is it essential that I should run the wall the entire length of boiler, or would it do as the usual water line in boiler) until the bricktouched the boiler, and continue to the top; or had I better keep the wall the same distance from boiler all the way up? A. The latter way would be the best. 2. Could I put in a heater made of ordinary wrought iron piping (say 1 inch diameter), placing it between the wall and boiler, where it would be acted on by the heat of he it having the same connected directly to save fuel by it, having the same connected directly to feed
pump? A. It would be better to use cast iron pipes. 3 . pump: A. It would be better to use cast iron pipes. 3. an inch pipe soon choke up by formation of lime cake? A. You should arrange the pipes so that they could read-
(31) J. B. asks: Is there any rule for findIng the diameters, focal lengths, and distances apart of piece of any power; also the diaphragm apertare and
of the lenses are as 1 to 3 , and their distance apart is \mid right, except that you have made no allowance for fric equal to half the sum of their focal distances. The lens tion.
should be placed abour mid way between the lenses, an its aperture should be as small as possible without cut ing down the fiel. Eye-pieces of different focal lengths may be used with the same objective.
(32) L. O. asks what to apply to old plaster Paris busts, that have become dirty, that will make them look like new. Dust has settled in the pores and I can
not remove it. A. Give them a dead coat of caina white, or you may varnish them and apply a coating of silver, old, or bronze colored bronze powd
(33) W. D. S. writes: 1. I have a vertical boiler, 4 feet high, 27 inches diameter (including furnace, which is internal and 18 inches high); boiler has nine teen 2 inch flues; is made of five sixteenth iron; engine 3 inch bore, 7 inch stroke, running 350 . We have no 80 lb . steam pressure Could we with safety increas this pressure; the boiler has been in use only 2 years; or could we run a larger engine with the same boiler, sa $41 / 2 \times 41 / 2$? A. If your boiler is five sixteenths inch thick, of good iron, and well made, you may carry 120 lb . with out hesitation. 2. I noticed in a recent number of the Silentific American a correspondent wants to know if oil will stop priming. I frequently use the common
black lubricating oil, feeding it with feed water with good effect. Will it injure the boiler? A. No
(34) G. H. P. asks: 1. What is the expansion of glass between 32° and 212° Fah? A. Glass which
at 32°. is $1,000,000$, at 212° becomes $1,000,861$. 2. How to solder brass on to a valve seat of a steam cylinder. Clean the valve seat, coat it with solder by means of heavy soldering iron. Tin the brass plate, heat it quite
hot, and put its tinned side downward on the valve seat. the brass plate has not sufficient thickness to admit this treatment you may " sw
(35) S. A. B. asks: 1. How can I put a very high polish on steel? A. The steps in the process are as ufferheel Corse wet stone, za, foe wet st 3 d , buffwheel having fine emery applied; 4th, crocus, differen
degrees of fineness. 2. On brass? A. Finish as finely s possible with files, then with Scotch gray stone and finally, with the powder of Scotch gray stone and oil, or with rotten stone and oil. 3. How is the so-called powdered pumice stone and water. Finish with rotten (a) S. .
(36) S. F. writes: I have an induction coil, of Ladd's make (London), of the following dimensions: Length of coil proper, 11% inches; diameter of coil
proper, 5 inches; diameter of core, $11 / 2$ inch; base board proper, 5 inches; diameter of core, $11 / 2$ inch; base board
containing condenser, $193 / 4$ by 9 inches; condenser plates, 19 by $81 / 2$; number of condenser sheets, unknown ength of primary wire, estimated, 75 feet; number promising to give a spark in air of 4 inches but I never realized more than 3 inches, and then a feeble spark. The battery which I employed with thiscoil consists of four gallon jars, in each of which there are immersed a zin plate 6 by shes betw wo carbon plates of the sam ze. The constrich of the battery is that of Grene olution of bichromate of potash and sulphuric acid. he battery not strong enough to give the desired result, or can you suggest any other reason? A. Your battery seems to be ample. The coil may have been injured by n internal discharge, or it may be that the interrupter not properly adjusted. If the spark from the primary the condenser.
(37) C. H. M. asks: 1. For a method of proning briniants resembling diamonds. A. Pure caustic enious a arefully selected, are ground together, placed in smal ass pots (the French clay pots will answer if the fir harge is discarded after several hours firing) and heate o quiet fusion in a suitable furnace for about 24 hours hen cooled very gradually and cut. The art of imitat g the diamond and oiner precious stones has attaine great perfection in Egypt and Greece, as well as in composition of the colorless French Pierres de Stras: Silica, 38.1 ; alumina, 1.0 ; oxide of lead, 53.0 ; potash 9 ; borax and arsenious acid, traces- 100,2 , Give imple method of qualitative test for the presence of
ilver in ores. A. Reduce the ore to an impalpable po silver in ores. A. Reduce the ore to an impalpable powour or more, with constant stirring; boil with pur itric acid; filter; evaporate the ipitate which does not dissolve in boiling water and blackens on exposure to sunlight indicates silver. Gold, any, remains in the powdered ore. If the ore contain chlorides the silver may escape detection by this test. timer ito proceed as follows: Mix the ore with 10 or rom silver 10 or 3 pig graled test lead-free eas, in a small scoifer, and expose in a rary ot open muffle until the ore is a nearly white fised metal cisappears beneath the liquid slag of lith rge. Then remove, cool, break, hammer, and clean the lead button; place it in a dry bone ash cupel of equa weight, and expose in the muffle until all the lead is lagged and absorbed by the porous bone ash, leaving
 mall quantities of silver hom or the capel. Very mall quantitie of siver and gold the
(38) J. A. writes: In my last Scientific merican, April 5, No. 14, 1 notice in answer to L. B tions per minute, 60 lbs . steam, 20 horse power, by my ule I only make $13 \cdot 7$ horse power. My figures are:
> $50 \cdot 2656$ square inch
$60 \mathrm{lbs}. \mathrm{steam}$.
$\begin{aligned} & 3015 \cdot 9360\end{aligned}$
> h. p. $\quad 150$ rev. per m.

$-13 \cdot \mathrm{~h} . \mathrm{p}$
I I am wrong, please tell me where I make my mistake I am only an novice any way. A. 150 revolutions per
minnte is 300 feet; double your result and you will be then
(39) W. A. J. asks: What chemical action takes place when sulphuric acid is applied to common salt? A
Salt $\underset{\substack{\text { NaCl } \\ \text { Salt }} \underset{\mathrm{H}_{2} \mathrm{SO}_{4}}{\text { Sulphuric }} \text { acid }}{\text { and }}=\left(\begin{array}{c}\text { bisulphate } \\ \mathrm{NaHSO}_{4}\end{array}+\underset{\mathrm{NaCl}}{\text { Salt }}\right)+\begin{gathered}\text { Sydrochlo } \\ \text { ric acil } \\ \text { HCl. }\end{gathered}$ When strongly heated on the hearth of a reverberatory formation of neatrion is completed, resulting in th NaSO_{4}) and hydrochloric (muriatic) acid.
(40) H. S. asks how to arrange an earth se of an earth battery for this We could not advise the ase of an earth battery for this purpose. You should
ase a Smee or a Daniell battery, or one of the forms of he gravity battery.
(41) A. E. asks how o make a drill point hat will enable him to drill through glass, porcelain, or ransparent china pictures. A. Make the drill of the nest quality of steel, heat it to a cherry red, plunge pliers, and draw down the temper except at the end protected by the pliers. Wet the glass or porcelain with turpentine to which a little gum camphor has been added.
(42) H. L. asks what size of engine and boiler to run a velocipede capable of carrying one perhaps some of our readers will furnish this informa-
(43) S. R. E. asks whether or not honey will keep in glass cans, A Yes, if the jars cure for see stings? A. Dissolve 3 parts of pure car fic or stings? A. Dissolve 3 is
(44) J. M. asks: 1. How long will the car bon remain good in a Fuller bichromate battery? A. burglar battery 4 in illon holls me how to make an electric light in my house with these 4 cells. 2. You cannot make an electric light with four uller cells.
(45) A. B. P. asks: Would it not be much illustrated in Supplement nand power electric machine magnets of malleable iron, and have them permanen maguets, or can common cast iron be permanently mag netized as well? A. Neither cast nor malleable iron rewill get the best results by using the electro-magnet.
(46) J. P. B. asks: If a telegraph line No. 14 galvanized wire be used, how small a piece of plate to coul be used in damp earth as a ground plate, to give the electricity as free a pass to the ground r 12 square feet. A thin copper plate would answer etter than the boiler iron.
Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined, with the results stated:
A.-It is a variety or syenite or hornblende schist-it
has little commercial value.-G. S. A.-The ore contains races of silver -J. H. G.-It is mica schist of value.

OMMUNICATIONS RECEIVED

On Binding. By E. C. M
On squaring the Circle. By C. P. K.
On a New Form of Telephone and Battery. By H. W. F.
Horse

Horse Shoeing. By C. S
On Cleaning Lamp Chimneys. By S. B.
On a Rare Geological Specimen. By H.
On Animal Intelligence. By H. D. O.
official.]
INDEX OF INVENTIONS for which
Letters Patent of the United States wer Granted in the Week Ending March 25, 1879
AND EACH BEARING THAT DATE
[Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list, ncluding both the specifications and drawings, will be furnished from this office for one dollar. 1 n ordering, and remit to Munn \& Co , 37 Park Row, New York city

Agricultural engine, \mathbf{G}. Kratz Air tight vessel detachable cover, F
Alarm and door knob, F. N. Cottle Alarm and door knob, F. N. Cottle............... \& Green

$\underset{\text { pple mill }}{\substack{\text { Gre }}}$
pple mill and cider press. P. McClanahan'........ nal syringe,
$\mathrm{A}, \mathrm{W} . \mathrm{H} . \mathrm{Fix}$.
Axle box lid, car, J. Seath
Axle, car, H. Watkeys....
Bail for hollow ware, J. Murdool Balloon, aerial, A. Apraxine
Barrels, handling, Clark \& Wilhelm Bed btead, invalid, Stice \& King.
Blacking stool, boot. W. W. Shipma
Bleaching keir. T. Fletcher
Bleaching keir, T. Fletcher
Boiler head flanger, R C. Nugent
Boot and shoe, G. Champomie
Boot and shoe, G. Champomier

W. A. \& W. F. Johnston
Bottle washer. Miles \& Lovet

Bottles, marking, R. M.
Broiler, A. C. Selleck.

Burglar alarm, J.D. William................
Butter, preparing and packing, J. Higgins Butter, preparing and pac
Can opener, T. F. Wilson.
Candlestick, A. J. Smith .
Car brake, railway, Veron \& Edeline
Carriage top, J. E. Lines
Cement for leather, wood. etc., W. R. Hicks

Coffins, bending lumber for. L. D............................213,
Coloring matter, J. P. Gress
Coltering matter, J. Clayton
Corn sheller, hand, G. W. Grim
Cultivator, carriage, T. Meikle.
Dash board, J. E. Lines
Dental engine hand piece, Johnston \& Browne.
Desk, school, J. B. Sherwood...
Desk or settee, school, J. K. Ot
Desk or settee, schoo, J. K. Otis
Door holder, R. H. Barnard
Drying kiln, C. W. Boynton
Drying kiln, C. W. Boynton
Egg tester, D. W. Pomeroy
Elevating and conveying movement, G. Sanford. Levator stopper, H. A. Guild
Envelope case, C. H. Norris
Fanelope case, C. H. Norris.
Fan,
Fare register, w. H. H. Hornum.
Faucet and tap attachment, Kronenberg \& Dieh
Fence, w. . W. White............................
Fence post, L. C. Grant
Fire alarm, automatic, P. H. Van Der Weyde.
Firearm, magazine, G. F. Evans
Firearm, magazine, W. W. Wetmore
Fire escape ladder , C. Chamer
Fire escape ladder, C. C. Chamberlain
Flower and work stand, T. Murgatroy
Fluting machine, J. E. Wils
Folding chair, H. B. Smith
Fruit jar wrench, Sherwood \& Dudiey
Gas engine, Wittig \& Hees
Gas generator and carbureter, F. F. Williams.
Glass for
Gas generator and carbureter, J. F. Williams
Glass for ornamentation, grinding, J. Story.
Glassware shaper and fint
Glassware shaper and fnisher, Atterbury \& Beck.
Grain, device for removing metallic substances
from,
Grain door, G. C. Ba
Grain elevator, pneumatic, F. Taggart
Grain, machine for separating metallic substan
from, C. Wheeler, Jr
from, C. Wheeler, Jr
Grain meter, A. Gle
Grate, W. Meclave
Grindstone tool holder, M. S. Curtiss
Hair, treatment of, J.
Harrow, o. Bayles...
Harvester, J. F. Seiberling (r). Harvester finger bar, W. H. Davis.....
Hat stiffening machine, Yule \& Stome. Hay elevator and carrier, G. H. Fo
Hay fork, horse, J. R. Fitzhugh.
Hobby horse, I. A. Stowe
Hoe, scuffe, T. V. Munson
Hog ringing implement, J. H. Brow
Hoof expander, C. H. Shepard
Horse detacher, , . P. Jewatt....
Hose coupling, J. W. Kennedy.
Hose coupling,
Hot air furnace, D. Milson...
ce maker, C. B. Lee.....
njector, A. Friedmann
Insect trap for protecting fruito....................... \mathbf{l}
Joint, valve, and trap protector for undergroun
Joint, valve, and trap protector for undergroun
pipes, accessible, A. Harvey...........
Key fastener, A. E. Peck.

Lamp, Clark \& Kintz..

Lantern, P. V. Coogan
Last block sawer, McGregor \& Kemper...
Lathe, wood turning, A. D. Waymoth
Lead and crayon holder, J. Hoffman
Lever and connecting rod, cam mechanism for
changing the throw of a, B. Eastwon
changing the throw of a, B. E
Lightning rod, H. W. Farley (r).
Lock, A. E. Marshall
Lubricator, C. H. Parshall
Match box, A. Romain.
Measuring tool, combination, S. G. Otis.
Milker, cow, J. Con
Musical instrument. mechanical,
Neck band stretcher, P. O'Thayne
Vursery chair, C. H. Barnes
Nut lock, L. D. Allen.
Organ and piano case, Heymann \& Bu
ttoman, adjustable, N. Y. Landis
Oren, baker's, D. McKenzi
Paper organ pipe, G. Beach

Pen, fountain. T. Prioux
Pen holder, G. R. Bickers
Pen holder J. R. Bicker
Pen, soluble ink, J. Hofman
Photographic burnisher, w.
Pipe cutter, C. M. Fogelquist
Pipe cutting tool, H. Reichardt.....................
Planter, check row corn, H. N. McConoughey (
Planter, seed, W. J. Ellis.
Plasterer's tool, J. H. Lucas.
Plow, W. S. Johnson.......
Plow, gang, J. Clayton....
Plow sulky, J. \& A. T. Warwick
Plows, combined implement for setting the points
Kennedy....................................
Preserving and condensing fresh food, C. Morfit
Printing press, R. J. Stuart
Printing press, oscillating, G. W. Hun
Propeller for boats, chain
Propeller force, R. Bean (r) M. H. H
Pump, force, R. Bean (r)..... ...
Pump. force, W. H. Richmond
Pump, valve, J. Scherer...
Pumping engine, compound steam. G. F. Blake
Quartz mill, amalgamating, A. B. Paul.
Railway bars, carriage for, T. Critchlow
Railway bed, J. M. Seymour
Railway bed, J. M. Seymo
213,728

Refrigerator for liquors, etc., A. Drache 21 Refrigerator, B. Rose	
drill, J. B. Joh y engine, G. W	
otary engine, G.	
Rowing apparatus, G. H. FeltRubber articles, India,	
Rubber trimmings, flishing hard, M.	
\| Sash lock, J. H. Banta..	
Saw setter, W. Dunn...........Scale beam, J. Weeks (r)	
Scissors, manufacture of, A. Clarke............................	
Screw, C. C. Doten............................. 2 Seed drill and fertilizer distributer, E. P. Hollis.. 2	
Seeder and fertilizer distributer, D. F. Hull. 21	
, E. B. Wa	

ing in the operation of. J. B. Underwood Sewing machines, clutching and braking device
for power driven L sternb e 213,713
$.213,704$
Refrigerator for liquors
Refrigerator, B. Rose.
Rock drill, J, B.
Rotary engine, G. W. Greene
Rotary engine, G. G. Wright
Rowing apparatus, G. H. Fel
Rowing apparatus, G. . . . Woffenden....................................
Rubber articles, India,
Rubber trimmings, fnishing hard, M. Mattson.
Sash lock, J. H. Banta.
Saw setter, W. Dunn..
Scale beam, J. Weeks
Scissors, manufacture
Screw, c. C. Doten.
Seed drill and ferti

 for power driven, F. G. Tees................... 213
Sewing machines, power driven device, F.G.Tees 21
Steam engine, H. A. Jamieson
Steam generator, J. Everding Steam generator, J. Everding213,556
Steam pipe covering, Field \& Howard........... $2: 3,558$
Steam trap, J. Jamison
Stuffing bux, C. H. Fuller
Suppository,
Suppository, C. L. Mitchell
Swing, C. W
Swing, C. W. McGregor.......
Swing chair. Galt \& Blaisdell
Table leg, , L. P. Dean.....
Tan vat, C. H. Manning (r)

Telegraph, automatic, T. A. Edison.. 213,555
Testing machine, T. Olsen...............3355, 213,586
Thrashing, hulling, and cleaning clover seed, ma-

Tobacco roller and cutter, L. \& J. D. Smith....... 213,702
Toy, ball, W. C. Farnum213,642
Trees, compress for, E. A. Quinby........
Trees, compress for, E. A. Quin
Type case, H. H. Thorp. .
Type case, H. H. Thorp.
Universal joint, C. D.
Universal joint, C. D. Goubet......................... 213,
Valve or cock, W. A. \& W. F. Johnston............................23,
Vapor burner, J. Irwin..........
Vapor burner, J. Irwin.
Vehicle dash, G. M.
Wagon, F. A. Hill.
Wagon, F. A. Hill...............
Wagon body, L. J. Fitzgerald.
Wagon body, L. J. Fitzgerald. \ldots............... ${ }_{2}^{213,5058}$
wagon, dumping, A. B. \& T. C. Davis.......32
213.632
Wagon, dumping, A. B. \& T. C. Davis............... 213.6
Warping machine drop wire, w. Bancroft....... 213,6
Washing machine S C
Warping machine drop wire, w. Bancroft.......... 213,
Washing machine. s. C. McCullough 213,
Watch case G. W. Le
Watch case, G. W. Ladd
Watch safety center pinion, G. W. Dickinson ...
Water indicator and alarm, A. S. Patton........
water meter, rotary, H. J. King...............
Water meter, rotary, H. J. King.................... 213
Water wheel, turbine, J. C. Clime........213,624, 213
Weft stop mechanism, F . . . Tucker (r)
Weft stop mechanism, F . . . Tucker (r)............
Wells, automatic pipe holder for artesian and
other, T. C. Little
Wells, device for drilling, A. M. Comstock
Wellls, tubing, R. Mikk
Windmill, R. W. Burt
Windmill, regulator, E. C. Daniels.
window frame, sheet metal, J. Hilgers.
Wire annealing apparatus, C. H. Morgan
Wire annealing apparatus, C. H. Morgan........... ${ }^{213} 213$,
Wire articles, attaching rims to, D. Sherwood
Wire splicing machine, L. Brightman.............. 213,6617
Wooden rings, machine for rounding the inner
Wooden rings, machine for rounding the inner
and outer tdges of, J. G. Baker 213,6
DESIGNS.
Car basket rack brackets, R. E. Goodrich........... 11.121
Carpet, W. L. Jacobs
Carpet, D. McNa
Carpet, H. Horan
Carpet, H. Horan
Carpet, G. W. Piggot
$.213,624,213,6$
an and
213.653

Sewing machines, power dri
Shaft coupling, H. James..
Shoe fastener, H. C. Klein..
hoe fastener, H. C. Klein.
Shutter hook, E. J. Steele
Shutter worker, H. Law
Sifter, ash, M. V. B. White.
Skate, roller, w. F. Corneliu
213,710
213,660
213,66
213603
Skate, roller, w. F. Cornellus.
Skiving machine, J. R. Moffitt
213,703
213,579
213,51
213,546
Skiving machine, J. R. Moffitt....................... 213,5521
Smelting furnaces, condensing fumes from,
Wis.
Wiley, Jr...
Soldering iron heater, J. Burgess................
Sole marking tool for channeling, J. S. Turner
Sole marking tool for channeling, J. S. 'Turner
$\begin{array}{r}213,722 \\ 8,646 \\ 21393 \\ 213,712 \\ 213,655 \\ \hline 8\end{array}$
Spigot hole shield, G. B. Cornell 213495
pinning mule and jack, Dobson \& Macqueen.... 213,634

Pteam boilers, mud and water discharge for, Mc-
Ilvain \& Spiegel.............................. 213,582

team boilers, preventing incrustations in, Doen - 213,582
213,600
213,594
213,605
Steering gear for vessels. J. C. Cot...............213,556
23,559
213,52
213629
Stone, compound for artiffial, C. F. Peirc

Stone attachment, H. A. Tinkham....
Stud and button, Raffenbeul \& KahlStove attachment, H. A. Tinkham...
Stud and button, Rafflenbeul $\&$ Kahl
496 Table leg, L. P. Dean... 213, 213,Telegraph, automatic, T. A. Edison.. 21
Testing machine, T. Olsen..................213,525, 213
Thrashing, hulling, and cleaning clover seed, ma-

.${ }^{8,641}$
$. .213,497$
213727

gavortitumats．

 CLARK ON FUEL： ITS COMBUSTION AND ECONOMY

 II WARRRANTITDI！

HOW TO SELL PATENTS．We een our
 Stean Engine Works Superinten－

Sold at all Stationorss，or sont on reccipt of $\$ 1.50$ KEUFFEL \＆ESSER，NEW YORK．
Fan Pressure and Exhaust Blowers． ALBERT BRIDCES，
Lehigh university．－Tuition Free

 TOBACCO FIBER PIPES，15c．； 11.25

 M

TirkT NEW AND SECOND－HAND
 FOR SAKE，
SILK COVERED MAGNETS，

RUBBER BACK SOUARE PACKING，

 For Packing the Piston REsits and Valve Stemis of Steam Engines and Pumps． reates but littlie friction．in lengths of about 20 feet，a d of all sizes from X to 2 inches square． JOHN H．CHEEVER，Treas．NEW YORK BFLTING \＆PACKING CO．， 37 \＆ 38 Park Row，New York．

LAP WELDED CHARCOAL IRON Boiler Tubesi，，Steam Pipe，Light and Heavy Forgings
Fnxines，Bors，Cotton Presses，Rolling Mili and Blast
Furnace Work．

Steet Stamps

Lathes，Planers，Shapers

TTS Cung FREE！ Pall ${ }^{\text {remedy for fits，Epilepesyo }}$

 nowned specificand a valuable Treatise sent to any
sufferer sending me his Hostofice and Expres
Address．Dr．H．G．ROOT， 183 Pearl Sreet，N．Y

PERFUMERY：－BY W．AA SAUNDERS，

1SHEPARD＇S CEl．EBRATED

CE－BOAT WHIFF．FUULL WORKING

ARRERESOIN， FOR ALL PURPOSES． Brooklyn，E．D．，New York．

AHEAD OF ALL COMPETITION！
 SEVEV SIZER ROR HAND USE．
THREE

 GRAIIAM，EMIEEN \＆PAGAMORE，

MACHINIST GOODS
And Small Tools of all kinds．Catalogues sen
free．
A．J．WILKINSON \＆CO．，Boston，Mass
\square DUC＇S ELEVATOR BUCKET，

T．F．ROWLAND，Sole Manufacturer，Brooklyn，N．F．
MINE AOCIDENTS，MECHANICAL AP－

DYERS AND MANUFACTURERS FIND

BALDNESS．－BY GEORGE F．ROHE，

ranfater EDMUND DRAPER，
Manufacturer of First－class Eingineers＇Instruments
Established in 1890.228 Pear St．，Phila．，Pn．

量
5
RYKES＇BEARD ELIXIR $マ マ$ Z 2

STEAM PUMPS． HENRY R．WORTHINGTON enaines for
 Price list issued Jan．1，1879， with a reduction exceed－ ing 30 per cent．

BOQIER

 PRACTICAL SCIENCE

 aid

 E．\＆F．N．Sirculars 446 Catalogue free． Broome St．，New York．

FLƠWERS

ค

タicutific Ammericau

OR 1879．

The Most Popalar Scientific I＇aper in the World． VOLUME XL，－NEW SERIES． The publishers of the SCIENTIFIC A MERICAN beg
to announce that on the Fourth day of January，1899，a new volume will be commenced．It will continue to be
he aim of the publishers to render the contents of the the aim of the publishers to render the contents of the
new volume as，or more，attractive and useful than any

Only \＄3．20 a Year including Postage．Weekly．
This widely circulated and splendidly illustrited
paper is published weekly．Every number contains six－ paper is pubished weenly．Every number concains six－
teen pages of useful information，and a large number of original engravings of new inventions and discoveries， representing Engineering Works，Steam Machiner
New Inventions，Novelties in Mechanics，Manufacture Chemistry，Electricits Telegraphy，Photography，Arch tecture，Agriculture，Horticulture，Natural History，et All Classes of Renders find in The：Scientific formation of the day；and it is the aim or the publishers to present it in an attractive form，avoiding as much as possible abstruse terms．To every intelligent mind， reading．It is promotive of knowledge and progress in Ter subsid
Terms of Subscription．－One copy of The Scren postage prepaid，to any subscriber in the United State or Canada，on receipt of thrce dollars and twenty
cents by the publishers；six months，$\$ 1.60$ ；three months，$\$ 1.00$ ．
Clubs．－One extra copy of Thescientific Amer t \＆3．20 each；additional copies at same proportionate rate．Postage prepaid．
Ofe copy of The Scievtific American and one copy for one year，postage prepaid，to any subscriber in the
United States or Canada，on receipt of seven dollars by the publishers．
Txpress sate way to remit is by Postal Order，Draft，or axpress．Money caref ully placed inside or envelopes， astray，but is at the sender＇s risk，Address all letters and make all orders，drafts，etc．．payable to

MUNN \＆CO．，

37 Park Row，New York
To Foreign Subscribers．－Under the facilities of
the Postal Union，the Scientific AmERICAN is now sent the Postal Union，the SCIENTIFIC AMERICAN is now sent
by post direct from New York，with regularity，to subserib－ rs in Great Britain．India，Australia，and all othe British colonies；to France，A ustria，Belgium，Germany Russia，and all other European States；Japan，Brazil， Mexico，and all States of Central and South America
Terms，when sent to foreign countries，Canada excepted 4 ，gold，for Scientipic American， 1 year； 89 ，gold，fo both Scientipic Ambrican and Suppiement for year．This includes postage，which we pay．Remit by
postal order or draft to order of Munn \＆Co．， 37 Park Row，New York．

gavertisements.

Pansighyinia Lawn Mower

 LLOYD, SUPPLEE \& WALTON,
 ENTERPRISE.

 HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.
W. b. FRANKLIN,V. Pres't. J. M. ALLEN, Pres't J. B. PIERCE, Sec'y.

HWH.JOHIS
Liquid Paints, Rooing, Boiler Coverings,
 Pond's Tools, Enetine Lathes, Planers, Drills, de.
DAVID W. POND, Worcester, Mass. $\overline{\text { DYSPEPSIA }}$ BY DR C . F. F KUZZE.

Mill Stones and Corn Mills.

 The George Place Madininery Agency Machinery of Every Description.
Chambers and 103 Reade CHROME STEEL, \%

J. LLOYD HAIGH,

Roots' Rotary Hand Blower,

FOR ALI KINDS OF BLACESMITHEING.

JOSEPEI C. TODD

 J. C. TODD,

10 Barclay St., Nen York, or Paterson, N. J.
DEAN BROTHERS,

indianapolis, ind., DeanSteamPumps

THE DRIVEN WELL.

Adress JOHN A. ROEBLNGS SONS, Manufactur-

Wood-Working Machinery,

兓Portahle Grain Mills, For Mill and Farm. Built on the
Wurable and scientific principles
 ing a specialty for 13 years.
WALKER BROS. \& $\mathbf{C O}$., gineers, Founders \& Machinist
23d and Wood St., Phila., Pa AIDS TO DRAWING.-A VALUABLE

 et gir

$\underset{\substack{\text { Hp } \\ \text { phe } \\ \text { me }}}{ }$

Working Models

SALESMENC125 A Math anax

No Seriulst! Mo Paling!

Thin lumber. $1-1 \mathrm{t}$ to $1 /$ inch thick. cut and seasoned by our recently patented machines, equal ip not tuperior to
the sawed ynd planed wood. bely smoot. Hut ind in
ail cases perfectly geasoned. Ued by the largest manuancturers in the country and givink entire satisfaction
In addtion to or specilty, our uyal complete stoe

GEO. W. READ \& CO.,
186 to 200 Lewis Street, New York.

RET RARE OPPORTUNITY, 县D

 The J. L. Mot Iron Works,
 WATER GLOSETS.

MACHINISTS' TOOLS.

 NEW HAVEN MANUPACHURENG: CO: How TO REMOVE STAINS AND

 THE ONON IRON MILLLS. Pitaburgh, Pa, Mana.

48
4warbanted the best. 1 H. P. Boiler \& Engine, 8150 . 2 H. P., 8175.3 h. P, , $\$ 200$. Testea to200 1bs. Steam. 152 N. 3 da St.. Philader

ICE AT 81.00 PER TON. The PICTET ARTIFICIAL ICE CO.

NOVELTIES, NOTIONS, Watches, Cheap Jewelry, Stationery Packages.
 MINING MACHINERY, Engines. Boilers, Pnmps,
 FOR IRON AND STEEL, LATHE DOGS, BOTH FOR
Machinists and Amateur, send tor circular tol
C. W.LE COUNT, South Norwalk, Conn.

THE NEW OTTO SILENT GAS ENGINE

NEWSPEAFECT FITE

The Koch patent File for preasitg neqgapera

 evardoram

MONN \&
Publabers Scriz

THE TANITE CO. EMERY WHELS AND CRINDERS

PATENTS at AUCTION

 Driven or Tube Wells

BESTAADCHEAPEST ENGINE LATHES

Pyrometers. $\substack{\text { For } \\ \text { For } \\ \text { ExY } \\ \text { Boi }}$ or showinn he
 DAMOND ROEK BRILS
 THE AMERICAN DIAMOND ROCK BORING CO
SEND FER PAMPHETET, M MTM CAVEATS, COPYRIGIITS, THADE Messrs. Munn \& Co., in connection with the publicaUinn of the SCigntific American, continue to examine
Improvements, and to act as Solicitors of Patents for inventors.
In this line of business they have had over thirty
years' exprience, and now have unequuled facilities for the preparation of Patent Drawings, Specifications, and the Prosecution of Applications for Patents in the
Cnited States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, Reissues, Assignments, and Reports on Infringements
of Patents. All business intrused to them is done with special care and promptness, on very moderate with spe
terms.
We sen
e send free of charge, on application, a pamphlet
taining further information about Patents ontaining further information about Patents :nd how
to procure them; directions concerning Trade Marks to procure them; directions concerning Trade Marks
Copyrights, Designs, Patents, Appeals, Reis:ues, Infringements, Assignments, Rejected Cases, Hints on sue Sale of Tatents, etc.
Foreight Puteuts.-We also send, free of charge, a
Synopsis of Foreign l'atent Laws, showing the cost and method of securing patents in all the principal councries of the worla. American inventers should is valu-
mind that, as a general rule, any invention that is vil mind that, as a general rule, any inventiorthat is vallu-
able to the patentee in this country is worth equally as much in England and some other foreign countries.
Five patents-embracinr Canadian, English, German French, and Belgi:in-will secure to an inventor the exclusive monopoly to his discovery among about one
HUNDRED AND FIFTY MLLIONS of the most intelligent hundeed and fiftr mllions of the most intelligent
people in the worid. The facilities of business and steam communication are such that patents can be ob-
tained abroad by our citizens almost as easily as at home. The expense to apply for an English patent is
$\$ 75 ;$ German, $\$ 100$; French, $\$ 100$; Belgian, $\$ 100$; Canadian, $\$ 50$.
Copies of Patents.- Persons desiring any ratent
iesued from 1836 to November 26 , 186iz, can be with official copies at reasonable cost, the price despecifications. Any patent issued since November 27, 1867, at which
time the Patent Office commenced printing the drawings and specifications, may be had by remitting to this office $\$ 1$.
A copy of the claims of any patent issued since 1836 will be furnished for $\$ 1$.
When ordering copies, please to remit for the same-
as above, and state name of patentec, title of inven-
A pamphlet, containing full directions for obtaining United States patents eent free. A handsomely bound
Reference Book, gilt edges, contains 140 pages and Reference Book, git edges, contains 140 pages and
many engravings and tables important to every patntee and mechanic, and a aseral hand book of

Address MONN \& CO.,
Publishers SCIENTIFIC AMERICAN,

THE "Scientific American" is printed with CHAS.
ENEUJOHNSON\& CO." INK. Tenth and Lom-

