a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES,

		NEW YORK, APRIL 26, 1879.

mOTES ON FADENCE AND ITS MANUYACTURE.

 No. III.In our last issue we gave a brief history of faience ware. The present article treats on enameling and baking
Faience must be baked twice: the body must first receive the necessary bardness, then, after the enamel has been applied to it, it must be baked again to vitrify the coating. These two operations may be carried on either together or separately in the same oven. An oven suitable for accomplishing either purpose alone is represented in Fig. 1. Fig. 5 shows an oven for carrying on both operations together. It is divided into two compartments, the upper one of which, being the hot test, is used for the first operation, while the enameling is done in the lower compartment. There are two fires, A compartment. There are two fires, A
and B, situated on opposite sides of the and B, situated on opposite sides of the
oven. Fig. 4 illustrates the position of the articles in the oven. They are placed on plates of unenameled faience or " biscuit," supported by pillars of the same material. The success of the operation depends greatly upon an ex act regulation of heat. In this respect experience is the only guide. To ob serve the progress of the operation, cups formed of the same material, en ameled and bare, are placed into a spe cial compartment, easy of access, and heated to the same degree as the main portion of the oven. From their condition the progress of the operation may be observed. An oven large enough for about a gross of ordinary pottery consumes about seven cubic yards of wood during one operation, which lasts about 36 hours.
The enamel consists of: Minium (ox ide of lead), 52 parts; oxide of manga nese, 7; brick powder, 41; total, 100. The substances are fused together and reduced to powder; the enamel is then ready for application. This enamel is intended for brown pottery. For white faience a mixture is used consisting of oxide of tin, oxide of lead, silex, sea salt, and carbonate of soda.
The oxides of lead and tin are intimately mixed and calcined; a yellow powder is thus obtained, called "calcine," and forming the base of white enamel. It is mixed with the other ingredients in the following proportions: Calcine, 47; sand, 47; sodium carbonate, 3; sea salt, 3; total, 100
This mixture, melting at a temperature of 70° Wedgwood's pyrometer, is fused, and when cool it is finely pulverized. For application to the biscuit, it is triturated with water, which holds a considerable portion of the powder
in suspension. The articles to be enameled are simply dipped into this liquid, a sufficient quantity of the powder adhering to the surface. When the external surface is to be enameled brown the vessel is first dipped into the brown enamel; after drying, it is filled with white enamel, emptied, and allowed to dry again.
When dry all traces of enamel must be removed from the bottom of the vessel, as otherwise, in baking, the bottom would adhere to the support. The enamel is removed from the bottom by means of brushes; this operation is very in jurious to health, as it fills the air with fine particles of lead
a beautiful luster. The coating is hard, and does not crack or scale off when it is of good quality and properly pre pared.
When articles are to be decorated by painting, the paint is applied to the enamel when the latter has become cold. The goods are then again moderately heated, by which the color are firmly attached to the enamel. The pigments used are essentially the same as those used in porcelain painting.
"Fine" faience, properly so-called, is a product of modern times, and must be distinguished from the "common" faience just described. It consists of an inner white, opaque body covered by a crystalline lead glaz ing. The first "fine" faience was made in England, toward the end of the last century, by Wedgwood. It was he who discovered that silex is bleached by calcination, and that calcined silex bleaches clay. Pottery made from this material is very white and hard, ring ing when, struck with a hard body, with a clear metallic sound. Its beauty and durability soon brought it into grea demand, and for practical purposes it is to-day universally used in preference to its rivals. It was also called balf porcelain, opaque porcelain, and china, although originally the latter term wa used to designate regular porcelain china, or fine faience. It cannot be cut by steel, and differs from porcelain proper only by its opaqueness, the latter being translucent and more com pletely vitrified. China industry is of the utmost importance in Europe, espe cially England.
As stated above, the material consist of levigated clay and calcined silex, to which sometimes a little chalk is added. The glazing is of variable composition, but consists generally of oxide of lead or minium, silex, feldspar, and soda It is prepared and upplied like ordinary enamel.
In England three varieties of china are distinguished: 1. Pipe-clay ware,

Fig. 1.-POTTER'S OVEN

 compounds, which are inhaled and swallowed by the opera- |containing a little chalk. 2. Stone ware. 3. Feldspar ware. tives. This manipulation is called varnishing and brushing and is illustrated in Fig. 2.Fine faience goods must be placed in the oven very carefully. They are generally inclosed in muffles, made from biscuit, and these are placed on top of each other in the ovens; the latter holding about 20 to 30 of them, according to size. Fig. 6 represents one of the chambers, containing several plates and a bowl in position.
By the application of heat the enamel is fused and partially penetrates into the biscuit, to which it imparts its color and

English pipe-clay, according to Schuhmann, is composed as follows: Clay, 86 parts; silex, 13; chalk, 1; total, 100.
The glazing for pipe-clay ware consists of : Sand, 31 parts minium, 30; litharge, 27; calcined feldspar, 7; borax, 3 crystal glass, 2; total, 100
Stoneware, according to Oppermann and Battenaire, consists of: Clay, 87 parts; silex, 13; total, 100 ; and is glazed with the following mixture: Silex, 42 parts; minium, 26; borax, 21; sodium carbonate, 11; total 100.
[Continued on page 258.]

Fir 2.-APPLYING ENAMEL.

Fig. 3.-PLATE MACHERRS

Istientific ©

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
pUBLISEED WEEELY 4 T
NO. 3 ' 7 PARK ROW, NEW YORK.
O. D. MONN.
A. e. beach.

 fre single coples of any desired number of

MUNN \& CO., 87 Park Row, New Yort

Scientific American Export Edition

VOL. XL., DTo. 17. [New Series.] Thirty-ffith Year. NEW YORK, SATURDAY, APRIL 26, 1879.

TABLE OF CONTENTS OF THE sCIENTITIC AMERICAN sUPpivicant No. 178 ,
For the Week ending April 26, 1879. Price 10 cents. For sale by all newsdealers.

 Liternan
 Hatamidis

THE BITE OF THE GREAT NEW YORE EXHOBITION.
The location of the buildings for the New York Exhibition of 1883 is just now the subject of much discussion. Though many conflicting interests are involved it is obvious that th question must be determined by a few paramount conditions
Whatever local advantages may be offered by any or all o the suburban sites proposed, the single condition that the Ex hibition must be easily and quickly accessible to the million people on New York lsland, on foot as well as by horse or steam conveyance, should compel the selection of a site on the island and not above Central Park.
Accessibility by water from the surrounding cities, and convenience in handling materials as well as passengers, re quire that the site chosen should be near the water; the North River front offering by far the greater advantages.
As any money contributed by the city and State should be put into a permanent building (as was done at Philadelphia) the chosen location must comprise, in part at least, lands suitable for permanent occupancy by public buildings, and if possible already belonging to the city.
The temporary structures must be near the permanent buildings, and in a place suitable for the wholesome housing and accommodation of vast multitudes. In all probability the sites of such buildings mustalso be public land, since the enterprise could not afford to pay rent, and private citizens are not likely to contribute private property for such uses without remuneration.
Where can such a situation be found? The projectors of the Exhibition have pitched upon the lower part of Central Park, against the invasion of which the press and the public have very forcibly protested. It is true that he necessary damage to the park might not be so great as many fear; possibly the use of the Ball Ground and the
Green (west of the Mall) might result in no permanent curtailment of those open spaces, and no injury except to the turf, which could soon be replaced. Nevertheless any invasion of the city's too limited breathing space, even temporarily or for the most laudable purpose, should be deprecated. From an artistic point of view the park would make an admirable setting for the Exhibition buildings; but the cost would, at the least, be altogether too great.
The city has already set apart for a museum and zoological garden the sixteen-acre area bounded by 8th and 9 th avenues and 78th and 81st streets, and known as Manhattan Square. The plan of a magnificent structure there has already been perfected, and one wing built, making, so far as it goes, the best planned museum building in the world. The money contributed for a permanent building by the city and State of New York could be used in completing the central cross of this museum building. The rest of the plan might be developed as one story temporary buildings, giving, with the main building, 16 acres of exhibition space. Tem porary structures covering 40 or 50 acres more will be re quired for the purposes of the Exhibition.
Instead of going into the park for sites for these buildings why could not the city utilize therefor the now unused road ways between Manhattan Square and the river, comprising four broad avenues intersected by cross streets at righ angles, all as yet unoccupied, and all graded, paved, lighted, and drained by the city at enormous cost? A more conve nient and wholesome situation for a great fair could not be found. The river front would accommodate all the shipping of the Atlantic coast. The Hudson River Railway and the two elevated roads traverse the region already, and could easily be made to furnish quick and comfortable conveyance for 300,000 visitors a day, in addition to the almost limitless facilities afforded by the river
The crossing of 9 th avenue by the Boulevard at 64th stree would furnish an ample site for a vast building in the form of a St. Andrew's cross; the junction of the Boulevard with 10th avenue another site, equally good. Between 78th and 86th streets the Boulevard runs midway between 10th and 11th avenues. The three avenues with the cross streets would, any where in this neighborhood, furnish sites for Exhibition buildings surpassing in magnitude any ever dreamed of hitherto.
The diversion of the pl asure driving on the Boulevard to 9 th or 11th avenue for a mile or so-the only inconvenience likely to accrue from the temporary occupation of the streets named by Exhibition buildings-would be as nothing com pared with the evils and inconveniences sure to attend an in vasion of Central Park. And the absence of immediate park surroundings to the buildings would be no serious objection to the proposed site for the fair, since it would be but a step from Manhattan Square into the park opposite the Lake and the Ramble.
The streets proposed to be occupied are of ample width fo Exhibition buildings; the Boulevard is 150 feet wide, the avenues 100 feet, and the cross streets from 60 to 100 feet.

FROST AND YELLOW FEVER

On the theory that yellow fever is propagated by germ which cannot withstand a freezing temperature, the United States Senate has passed a bill appropriating $\$ 200,000$ for the construction of a steel refrigerating ship to disinfect th holds and cargoes of vessels coming from infected ports.
The projectors of this plan of disinfection claim that no mere experiment is contemplated. The project, they say, is sure to succeed, since artificial refrigeration is a simple and well established process, and it is certain that yellow fever germs cannot withstand frost; accordingly it is perfectly vessels from the tropics may bring to our shores.

Unfortunately, however, these confident statements involve several hypotheses which sadly lack confirmation. The germs themselves are hypothetical. We have no positive proof of their existence as living organisms; still less proof that frost kills them. It is true that an undetermined something, under favorable conditions not wholly understood, suffices to propagate the disease. It is true also that yellow fever epidemics in this country are stopped by cold weather. Yet, while the fever is not apt to rage in any locality during two successive seasons, except in the tropics, the proof that frost is the arresting agent, and that it is able to put an end to the disease permanently (or until it is reimported) is very far from satisfactory. It is no uncommon thing for refugees from fever districts to return to their homes weeks after frost has set in, and then sicken and die of yellow fever. It is even asserted, on fair authority, that cases of sickness, which no one would hesitate to pronounce yellow fever during the summer season, have occurred repeatedly during the past winter in towns along the lower Mississippi; yet there has been no lack of severe frost in that region.
The recent outbreak of yellow fever on the United States Steamer Plymouth, after spending the winter at Boston, and being subjected to freezing and fumigation, complicates the matter still more. The Plymouth came to Boston last fall, from a cruise among the West Indies, with yellow fever on board. The vessel was free from the disease during the winter; and if there is any truth in the theory that frost is fatal to yellow fever, no cases should have occurred on that vessel without reinfection. Yet as soon as the steamer, which left Boston March 15, had arrived in southern waters (about 300 miles southeast of the Bermudas) fever broke out and the steamer was forced to return. But one stop had been made at St. Georges, Bermuda, where there has been no yellow fever for several years.
If the infection of yellow fever can withstand the winter climate of Boston, why should it not that of Memphis or New Orleans? If it can, the importation of the disease is not necessary to start an epidemic next summer, in which case the most thorough refrigeration of incoming vessels will not suffice to stay the plague.
There is another objection to the spending of so much money on an experimental vessel. If refrigeration should prove adequate for the disinfection of yellow fever ships, one efrigerating vessel will scarcely begin to do the work required in all our southern ports; twenty would be none too many. And why should a special steel ship be constructed to carry the simple apparatus needed for the production of cold? Any existing river steamer or fair sized tugboat would suffice for that purpose; and the $\$ 200,000$ appropriated would fit up and charter a large number of such small ves sels, each provided with all the machinery needed to refrigerate the hold of any vessel, should the experiment sustain the projector's thcory. While two hundred thousand, or two hundred million, dollars would not be too much to pay for preventing an epidemic of yellow fever next summer, it is altogether too much to pay for an experiment which could be made for a tenth of the money, especially when there is a possibility that the wasted funds may be sorely needed in the practical application of the methods, the efficiency of which the experiment is expected to confirm.

THE AUSTRALTAN EXHIBITIONS.

The occurrence of two great Exhibitions in Australia, within a year of each other, is in some respects unfortunate; et it may prove an advantage to exhibitors from this counry and Europe, since it will be comparatively easy to ransfer exhibits from the one to the other, and thus save he double ocean transit that would be required were the two Exhibitions more widely separated in time. Had Victoria and New South Wales united in a common exhibition, the display might have been grander, though it may well be doubted whether the commercial effect would have been so valuable. It must be remembered that Sydney and Melbourne are capitals of states together as large as France and Germany, and soon to be as populous; and in the absence of means of communication but few in either colony would be reached by an exposition at the capital of the other.
Though the smaller city, Sydney, has boldly taken the lead in inviting the world to compete for her trade, and will open the first world's fair south of the equator in September next, Melbourne follows in October, 1880. Like every other public work in New South Wales, the Sydney Exhibition is a government undertaking, and a large sum of money has been voted for carrying it out. The building is well advanced, and France and England have asked for more space than can be allowed. For American exhibitors there has been reserved 30,000 square feet on the floor of the main building, and half as much more for machinery. Already a considerable quantity of exhibits has been shipped from this port, and there is reason to hope that the United States will be creditably represented. It is proper to add that, with the exception of freightage, exhibitors will have no charges or commissions of any sort to pay. The space provided is free.
The foundation of the Melbourne Exhibition was laid February 19. The building is to stand in the center of a large public park-Carlton Gardens-on the highest land in he city, and is to cover seven acres; the whiole Exhibition will occupy about twenty acres. The cost of the buildings and all expenses incidental to the Exhibition will be defrayed out of funds voted by the Victoria Parliament. Applications for space should be made not later than June 30 next. There will be no charge for exhibition space. American manufac-
turers will not need to be urged to secure for themselves a favorable representation in these exhibitions. The Australian market is an inviting one, and American goods have been received there with signal favor.

the bicycle as a practical boad vehicle.

Now that the interest in this means of locomotion is in creasing in this country, the question, Is the bicycle a practical road machine? is often asked, especially by those whose experience with the velocipede of 1869 fully demonstrated the impracticability of that article for such a purpose. In relation to the subject, a correspondent sends us the following:
On January 7 last, the writer purchased a bicycle with 52 inch driving wheel; weight of machine, 44 lb . Since that date, for a period of eleven weeks, I have ridden it 350 miles over the common roads of this section (Essex county, N. J.), riding 26 days, and ranging from 20 minutes to 3 hours' riding time per day. The speed has varied from 6 to 17 miles per hour, and I have ridden without difflculty through slush, mud, and snow, and over ice, frozen ruts, and cobble stone pavement. All ordinary hills have been ascended with comparative ease; extraordiuary ones, peculiar to mountainous regions, it has not been my fortune to essay. The fatigue occasioned 'by a long or swift run is surprisingly slight a transient. No stiffeess or soreness follows the effort.
A few days ago your correspondent took a 16 mile run over roads and under circumstances which afforded a good test as to the utility of the machine. Starting at 5 P.M., a stiff hill was ridden down at a walking pace by "backpedaling," a curve at its base rendering it unwise to fy it. Three miles of lumpy, macadam road, very much out of repair, was succeeded by a better one, connecting with a common dirt road, which was slowly recovering from the effects of the winter season. This extended nearly two miles, and was ridden over slowly, but without trouble. Turning to the left, up the knubbly Montclair turnpike, I found the wind strong against me, so getting well over the handles, I climbed slowly for two miles to Montclair. Here I turned and ran down, making the two miles in 7 minutes. The final run home of six miles, including the muddy dirt road, occupied 30 minutes. No fatigue was felt after this runthe exercise manifested itself only in an amazing appetite.

Is THE HOON INHABITED;

The question as to whether the moon is inhabited by organic beings-if not like those that live on our own globe, at least of a kind specially adapted by their structure and nature for existing under the very different physical conditions that obtain on our satellite-is one that has attracted attention for ages, and one, too, that has been argued pro and con with great ability by many learned and eminent men. The opinion of nearly all scientists of the present day, however, is that the moon is a "dead planet;" and that, inasmuch as she has but a slight and very rare atmosphere, and that, as a consequence, no water exists on her surface, she is entirely unfitted to be the dwelling place of any organic beings whatever-at least of any kinds that our minds can form any conception of. On the other hand, those who can form any conception of. On the other hand, those who
take the opposite view argue (to use the words of Dick) that " matter appears to have been created chiefly in subserviency to mind; and it is highly improbable that the Creator would leave a globe containing a surface of $15,000,000$ square miles altogether destitute of sensitive and intellectual beings, especially when we behold its surface diversified and adorned with such a vast assemblage of picturesque and sublime scenery, and when we consider that every department connected with our globe is peopled with sentient beings of every description. Although seas and rivers and a dense atmosphere are not to be found connected with the lunar orb, and although some of its arrangements are different from those of the earth, yet these circumstances form no valid objection to the moon being inhabited, for the Creator can in all cases adapt the inhabitant to the nature of the habitation provided for him, as he has adapted the birds for winging their filght through the air, the fishes for gliding in the water, and man and quadrupeds for traveling the dry land." Among the noted scientists of the present day who hold this opinion, but who found it on the latest discoveries of science rather than on the wisdom of the Creator, is the cele brated French astronomer, M. Camille Flammarion, who is at present organizing a subscription for the purpose of found ing at Paris a free observatory created by private means. M. Flammarion not only believes that the moon is inhabited,
but he believes that it will be possible to construct a telescope of such power as to bring the lunar orb so near our eyes that the question may be practically settled. In connection with this project he has recently written a long and interesting article entitled "Is the Moon Inhabited?" in
which he ably reviews all the facts bearing on the subject. This article, which we have translated from one of our French exchanges, will be found in Scientific American Supplement No. 170.

nfterest-beariva notes.

By the failure or so many savings banks and trust companies throughout the country a great many persons have not only suffered severe losses, but a large number have been greatly distressed by the loss of all their accumulations, at a time, too, when they most needed them. Not only those who were unfortunate in having their money in these weak
institutions have been sorely troubled, but depositors in solid institutions have been sorely troubled, but depositors in solid
companies naturally become apprehensive for the safety of their savings and withdraw their deposits.

While we do not recommend persons of small means to keep their money about their person or hid in a stocking under the
bed to tempt thieves, theire are a great many who do this, for the reason they have lost confidence in all savings institutions. .To this latter class of persons the new ten dollar in-terest-bearing certificates, now being issued by the United States Treasury, will be found equally safe and convenient as gold or greenbacks for circulation, and interest on their investment will be constantly accruing, therefore they are better to hoard than either silver or gold.
These notes are convertible with accrued interest at 4 per cent per annum into 4 per cent bonds of the United States, issued under acts of July 14, 1870, and January 20, 1871, upon presentation at the office of the Treasurer, Washington, D.
C., in sums of $\$ 50$ or multiples thereof.
The certificates are a little shorter and somewhat wider than legal tender notes, which they otherwise resemble. A vignette of Benjamin Franklin is in one corner of the face side, with the figures and word ten in the other corner. They are dated April 1, 1879, and certify that the sum of $\$ 10$ has been deposited with the Treasurer of the United States under act of February 26, 1879; this certification bears the signatures of the Treasurer and the Register, and the Treasury seal.
On the back of the certificate are the words "ten dollars," and the following: "Interest on this note will accrue as fol lows: For each 9 days, or $1-10$ of a quarter, 1 cent; for each quarter year; 10 cents; for each entire year, 40 cents."

THE ATILINE COLORs.

Take a little of any of the brighter aniline colors on the point of a knife and sprinkle it on the surface of still clear water in a transparent vessel. Immediately lines of color will curve downward through the water, intersecting and
blending till the whole vessel assumes the brilliant tint. Occasionally a little mass, more abrupt in its movements than the rest, will strike directly downward, but before it goes far it will divide and sub-divide and form an inverted tree of color in the liquid. Having reached the bottom it will sometimes start upward, as though it had accomplished its mission and had no time to spare on its return. Often a mass of colored liquid will take the form of the smoke rings of a locomotive, and sometimes two of these rings will chase each other downward, the one in advance opening and allowing
the other to pass through, which in turn waits for its comrade, and so on till they are destroyed by frequent collisions. Some of the colors are very different when seen by reflected
and transmitted light, and the blending of the two when the vessel is placed in different positions with regard to the sunlight is very beautiful.
What are these aniline colors, and whence are they proCured?
It is
It is surprising what a mine of wealth has been found in the refuse matter of our gas works. The bituminous coal, which is there heated in great retorts, yields much that can be utilized besides the gas upon which our cities are so de pendent. Upon the retorts, as a crust, gas carbon is formed this is a good conductor of heat and electricity, and supplies the carbon cylinders or plates used in several galvanic batteries, and also the poles for the electric light. Most of the
devices for electric lighting require this product of the old devices for electric lighting require this product of the old system for their successful operation. The interesting scientific toy, the microphone, which renders audible the tramp of a fly, the rustling of the softest brush, the noises of insects far too faint to be distinguished by the unaided ear, uses the conducting power of gas carbon as a necessary agency. Certain vapors pass from the retorts and condense in the colder
tubes. From some of these almost all the ammonia salts, so tubes. From some of these almost all the ammonia salts, so
indispensable to the chemist and various manufacturers, are procured. The nitrogen of the vegetables of the old carboniferous age, now for the first time released from its long imprisonment in the coal, comes to us in the form of these am moniacal liquors. Anotherliquid thus condensed is coal tar while in the retort, after the volatile ingredients have been expelled, remains a hard material resembling anthracite coal, and which is useful for the same purposes as that article$\stackrel{\text { coke. }}{\text { We }}$
We will take the coal tar and trace out some of the pro ducts which may be derived from it. No less than forty different materials have been extracted from this unpromis-ing-looking article by the art and skill of chemists. When subjected todistillation it is separated into various substances which are more or less volatile. By raising its temperature gradually, and collecting in different receivers the compounds that pass off, these may be obtained distinct from each other in tolerable purity. At about the temperature of boiling
water, benzol, or benzine, distills. The use of this for diswater, benzol, or benzine, distills. The use of this for dis-
solving grease is well known. As the temperature is raised there pass off in succession toluol, phenol, naphthalene, anthracene, increasing in weight and solidity, the last being a heavy greenish oil. In the retort is left pitch, which is ex-
tensively used in the construction of pavements. The benzol tensively used in the construction of pavements. The benzol,
when subjected to the action of strong nitric acid, forms nitro benzol, the artificial oil of bitter almonds, which under the name of myrbane is an article of perfumery. By the action of hydrogen this nitro-benzol is converted into aniline. The second product of the distillation of coal tar, toluol, may be passed through a similar operation, the resulting product be gg toluidine.
We have now arrived at the basis of our aniline colors. From the thick black grimy coal tar are produced the brightgorgeous dyes, rivaling in beauty the tints of the rainbow or of the sunset clouds. are the coal tar colors. Surely, never
was a stranger transformation; no substance could be found which at first sight would be accounted more utterly devoid of beauty than gas tar, and no stronger contrast could be seen than a bottle of it side by side with a transparent brilliant solution of aniline red, green, or violet. Many inks, both black and colored, are nothing but some of the products of aniline or its allied substances, dissolved in alcohol or water, and the brightly dyed ribbons of our streets are made beautiful, but often not permanently so, by the action of these marvelous coal tar colors.
It would not be interesting, except to a scientific man, to go over the various chemical changes by which aniline and toluidine are converted into the various colors. A combination of the two gives rosaniline, which is a kind of starting point in the manufacture. From this base, by the action of various acids, many of the colors are derived, while some are obtained from phenol and the other original products of coal tar distillation. though all are popularly but incorrectly known as aniline colors.
In the laboratory of the chemist the methods have been evolved and the products first obtained. Kept for a long time as a mere curiosity, their value as dyes was finally made known, practical men secured the secret of their manufacture, and vast industries, principally abroad, aggregating millions of dollars of capital, have sprung up. It is one of the many cases where the man of science, not for any mercenary purpose, but impelled by the love of investigation and diecovery, has been a great material benefactor. Without his researches the grimy coal tar would have been grimy coal tar still, useful to paint fences, to preserve wood, and a few other minor purposes, but not suspected to be so rich a mine of wealth and beauty. One of the most brilliant discoveries of science in this line has been 'he artificial production of the coloring matter of madder. Thedyeing quality of madder has been known for at least 2,000 years, and raising the plant and preparing the roots have been important industries in Zealand and many tropical countries. But recently two German chemists, working upon the known analysis of alizarine, a coloring principle of madder, have built up the substance itself, using as a base anthracene, one of the re sults of the distillation of coal tar. The artificialalizarine differs in no respect, chemical or physical, from the natural, possesses the same coloring properties, and its use has to some extent diminished the demand for the cultivation of madder. By what chemical process the plant, in nature's laboratory, forms its coloring principle we do not know; but we can trace every step of its formation from coal tar, and alizarine must henceforth stand side by side with safranine and the other socalled aniline colors.
It was about 50 years ago that Unterdorben separated from indigo a substance which he called crystalline, which afterward became known as aniline, from the Portuguese anilindigo. Until within 20 years it was deemed an unimportant substance, indigo beingitself too costly to support any extensive manufacture; but since it has also been found in coal tar a continued succession of coloring products has been drawn from this apparently inexhaustible source; one of the latest of these has been uranine, a beautiful green fluorescent dye The aniline colors are not permanent. We have heard of the labels of bozes which were marked with aniline inks be coming entirely white, no vestige of a letter remaining, upon exposure to the sunshine in the transit, to the manifest inconvenience of the expressman. The writer having occasion to use some charts, made them partly with ordinary black ink and partly with crimson. In course of time the crimson faded away, leaving the black characters rather meaningless by thenselves; and this in a position where no direct sun rays ever reached.
Some of them are, however, much more permanent than others, and for purposes which do not involve great expos ure or rough usage they answer very well, while their bright ness gives the dyer a power he cannot possess with the fast colors. Magenta, mauve, solferino, roseine, Tyrian purple, picric acid, and many others, enable him to add inumensely not only to the brilliancy but to the variety of his shades. The extensive employment of these colors in many articles of ordinary use has led to numerous experiments on their physiological effects on the human system. Pure aniline is a strong poison in the stomach, and both aniline and nitro benzol, when taken into the lungs in a state of vapor, are very injurious. Numerous instances of serious impairment of the health of workmen employed in aniline factories are on re cord. In one case a workman broke a carboy of the liquid and in wiping it up respired a large amount of the vapor; in few hours his face and body assumed a leaden hue; his gums, eyes, and lips a bluish appearance from the formation of coloring matters in the blood, and the whole system was seriously deranged. Energetic treatment, however, saved his life. But the aniline colors, which are not pure aniline are much less injurious. They adhere so closely to the dyed fabrics that there is no danger of their floating as dust in the air, as in the case of arsenical dyes, and when pure are bu slightly poisonous even when taken internally, though hurt ful substances, like arsenic, lead, and mercury, are used in the manufacture, and may exist in a greater or less degree in the colors themselves.
As ingenions apparatus, intended to reproduce telegraphically at a distance the pictures obtained in a camera obscura, has, says Galignani, recently been invented by M. Senleeq, of Ardres. The principle on which it is based is the property possessed by selenium of presenting a very variable and very sensitive electrical resistance according to the dif ferent gradstions of light.
[Continued from frrst page.]
Feldspar ware, according to St. Amand, consists of: Clay, 62 parts; kaolin, 15; silex, 19; feldspar (decayed), 4; and covered with the following glazing: Oxide of lead, 52 parts; kaolin, 25; silex, 13; crystal glass, 10; total, 100.
The machines used for shaping fine faience are identical with those used for ordinary faience. For some articles which are manufactured in very large quantities, as plates, special machines have been devised.
Fig. 3 represents a plate machine. The shaft of the wheel carries at the top a circular block of wood, forming the counterpart of the inside of a plate. A suffcient quantity of clay, rolled so as to form a sheet of the required thickness, is placed upon this block and pressed down closely. To a standard is attached the shaping tool or "caliber," movable in vertical direction. Its profle at the lower edge corresponds exactly to the external form of the plate. By causing the wheel to revolve slowly, the plate is brought into the desired shape.
For forming articles not of circular shape or otherwise difficult to form, moulds of plaster of Paris are used. These, when dry, rapidly absorb the water from the clay and cause it to harden rapidly.
To bake the biscuit, the temperature must be brought up to about 100° Wedgwood's pyrometer; for enameling, 10° to 30° are sufficient.
Although not strictly belonging to the faiences, we may nevertheless mention in connection with it the so-called " gray pottery" (grès-cérames). It consists of dense, heavy material, which rings with a metallic sound. It is opaque, of a finely grained texture, and sometimes nude, sómetimes glazed with a mixture of salt, oxide of lead, and silica.
Ordinarily it receives a sort of vitreous covering all over the surface, consisting of silicate of sodium and alumina, during the first baking, and a repetition of this latter operation is thus rendered unnecessary. The purpose is accomplished by simply mixing sea salt with the fuel used for baking. The salt evaporates, and the vapor, coming in contact with the heated articles, decomposes; the sodium oxide andthe various other oxides generally contained. in sea salt unite with the

Fig. 4.-POSITION OF ARTICLES IN OVEN.
silica of the vessels and form a glass, which penetrates into the pores of the clay and renders it impermeable and glossy. This simple process is the invention of Wedgwood. 100° to 120° of heat (Wedgwood) are required to finish it. Fig. 7 represents an oven used for baking gray pottery. Thearticles to be gray pottery. The articles to be
baked are placed on Wedgwood shelves.
Gray pottery is very hard and brittle. It cracks frequently on sudden changes of temperature and when directly exposed to the fire. This quality of ware may be white or colored. The follow:" ing is the composition of the material used in its manufacture:
White.-Kaolin, 25 parts; clay, containing a little kaolin, clay, containing a little ka
25 ; feldspar, 50 ; total, 100 .
Colored.-Kaolin, 14 parts; clay, 14; silex, 15; pegmatite (decayed). 27; sulphate lime, 21; sulphate of baryta, 9 ; total, 100. Black.-Kaolin, 2 parts; clay, 48; calcined ocher, 43; manganese (black), 7; total, 100.
Gray pottery was manufactured extensively thousands of years ago by the Chinese and years ago by the Chinese and
Japanese. A Japanese vase is Japanese. A Japanese vase is
exhibited at the Lourre, $21 / 2$ feet exhibited at the Louvre, $21 / 2$ feet
high and 2 feet wide, which was high and 2 feet wide, which was
manufactured at Meissen by manufactured at Meissen by
Boettcher, previous to the invention of porcelain.

BLABTITG BY COMPRESSED AIR.

The risk attending the use of gunpowder or other explo sives in coal mines has led to the trial of compressed air for breaking down coal, experimentally that is, and the experi-

Fig. 6.-OVEN FOR BAEING AND ENAMTGLING.
ment seems decidedly promising. A small portable mament seems decidediy promising. A small portable ma-
chine was used, by which two men were able to compress chine was used, by which two men were able to compress
air so as to give a pressure of $14,200 \mathrm{lb}$. to the square inch. The compressed air was conveyed through wrought iron pipes to a cast iron cartridge, 12 inches long, placed in a hole drilled in the coal; into this cartridge the air was forced until it burst, breaking down the coal. A pressure of $\mathbf{9 , 5 5 0}$ lb. to the square inch was found sufficient to break down hard coal.
In a paper lately read before a meeting of coal miners, at Manchester, England, one of the inventors of this system, Mr. W. E. Garforth, of Dukinfield, expressed the conviction that before long a pressure of ten, fifteen, or twenty thousand pounds per square inch would be so utilized that they would be able to put into the miner's hands a power that would enable him to get out coal, without risk, either from blown out shots, explosions, or the production of deleterious gases.
Comparing the two systems of breaking down coal-by gunpowder and by compressed air at $8,000 \mathrm{lb}$. pressure per square inch and upward-Mr. Garforth thought that the latter would be nearly, if not quite, as expeditious as the former, while it possessed many signal advantages, especially in the matter of safety.

Remedies for Bilionsneas.
Dr. Rutherford says: "As yet we have found 4 grains of ridin a certain remedy for biliousness. It may be made into

Fig. 7.-OVEN FOR GRAY WARE.
a pill with confection of roses, and taken at bedtime. It produces no disagreeable sensations, and on awaking in the morning the yellow tongue is clean, and the headache and malaise are gone. As iridin, though a powerful hepatic, is not a powerful intestinal stimulant, it is well to give in the morning an ordinary mild saline aperient, such as Pullna water. Iridin, though an agreeable remedy at the time, has a somewhat depressing effect, and it probably should not be taken much oftener than once a week."

Dr. Rutherford also states that "euonymin is a hepatic stimulant in man as it is in the dog. Two grains of it made into a pill with confection of roses, and taken at night, seem to be as efficient a remedy for biliousness as iridin. If the dose be not too great it leaves no depression. A dose of a dose be not too great it leaves no depression. A dose of a
saline aperient should be taken in the morning. I have been saline aperient should be taken in the morning. I have been
much struck with the success of euonymin in functional demuch struck with the success of euonymin in functional de-
rangement in several persons who had tried nearly all the rangement in several persons who had tried nearly all the
commonly used cholagogues with varying and often limited success. I have no doubt that in consequence of our experiments euonymin will come to be a universally employed hepatic stimulant."

The spectrum of Brorsen9s Comet.

Professor C. A. Young, of Princeton, writes to the New York Times saying that Brorsen's comet has not an excepYork Times saying that Brorsen's comet has not an excep-
tional spectrum, as indicated by Huggins' observations of tional spectrum, as indicated by Huggins observations of
1868, but falls into line with all the other comets. Professor 1868, but falls into line with all the other comets. Professor
Young's observations were made upon the evenings of April 1 and 2, and a comparison between the spectrum of the comet and that of the flame of a Bunsen burner showed a coincidence exact within the limits of observation.

RECENT AMERICAN PATENTS.

An improvement in oil stills has been patented by Mr. Clark Alvord, of Kendall Creek, Pa. It consists in a series of metal rods arranged permanently in the bottom of a still, and projecting downward toward the fire and upward into the oil. The object is to thoroughly distribute the heat through the oil.
An improved soldering machine, patented by Messrs. An improved soldering machine, patented by Messrs.
Joseph W. Miller and Bernard Coll, of Baltimore, Md., is designed for rapidly soldering the tops and bottoms of cans, pails, etc. It has novel features, which cannot well be de scribed without an engraving.
An improved water elevator, patented by Mr. A. W. Coates, of Alliance, Ohio, is provided with a weighted

Fig. 6 interior moffle.
plunger, which, by its descent, forces water up through a stand pipe.
Mr. W. E. Washburn, of Sackets Harbor, N. Y., has patented an improved hampering pad for horses, which consists of two plates, one carrying points, which stand opposite perforations in the other, when they are in their normal condition pressed apart by a spring. When the horse presses against a fence or other object with his breast he is pricked by the points.
Mr. C. S. Piersons, of Sandy Hill, N. Y., has patented an improvement in harness, which renders it stronger, lighter, and more durable, and less expensive more durable, and less expensive
than ordinary harness. Its conthan ordinary harness. Its con-
struction cannot be described struction cannot be
without an engraving.
A compact and convenient re ceptacle for holding flour for household use, has been patented by Mr. Joseph Johnson, of Marshalltown, Iowa. The invention consists in a cylindrical receptable having a grid for supporting the body of the flour, porting the body of the flour,
and a rotary sieve for sifting it and a rotary sieve for sifting it
and delivering it to a chest, upon and delivering it to a chest,
which the receptacle rests.
which the receptacle rests.
Mr. G. D. Eighmie, of Poughkeepsie, N. Y., has patented an improvement in men's drawers, which consists in cutting the
material so that each leg portion shall have a single lengthwise seam on the back. The cloth is cut on a bias to secure elasticity.
An improvement in lanterns, patented by Mr. Parrick J. Clark, of West Meriden, Conn., is designed to prevent the disturbance of the flame by currents of air, and to keep the top of the lantern cool.
Mr. Josiah Watts, of Brooklyn, N. Y., has patented a fan driven by a spring and clockwork. The stroke of the fan may be lengthened or shortened, and its velocity may be varied.
An improved car axle box lid, patented by Mr James Seath, of Terre Haute, Ind., is fitted to the end of the oil box, which is made convex and provided at each side with tongues, which fit in grooves in the ends of the cover.
Mr. Charles H. Fuller, of Akron, Ohio, has patented an improved stuffing box for piston rods, in which the old packing may be retained, when new is added. The invention consists in a hollow gland having a conical interior, which receives a portion of the packing.
An improved windmill regulator has been patented by Enos C. Daniels, of Lyons, Ohio. The invention consists mainly in a vane which holds the windmill out of the wind, excepting when force is applied to it. It is a simple device for controlling the action of the mill.

a nover botary engine.

We give herewith an illustration of a rotary engine of novel character, which the inventor, Mr. Lorenzo B. Lawrence, of Monticello, Cal., calls a rotary vacuum engine. It consists in an arrangement of curved tubes, A, which are cpen at both ends, and supported by a wheel, B, secured to a hollow shaft, and having tubular spokes, which project behollow shaft, and having tubular spokes, which project beyond the periphery
the curved tubes, A.
The hollow shaft is supported by plumber blocks, which rest upon the sides of a water tank, into which the curv tubes dip. One end of each curved tube is always left open; the opposite end is provided with a valve, I, which closes automatically as the open end touches the water. Opposite the open end of each curved tube there is a gas burner, F, which is pi voted to one of the tubular arms of the wheel, B, and i moved by a cam, G, attached to the plumber block. This burner receives gas through the hollow shaft and arms of the wheel, B. The valves, I, are operated by the same cam through the levers, J.
The pivoted burners are arranged with reference to a continuously burning station ary gas jet, L , so that the gas is let on as they come oppo site the stationary jet, the lat ter serving to ignite the gas as it issues from the pivoted gas burners.
As the mouth of the curved tube nears the water the valve, I, is closed, and the burner, F, is turned aside bhuttiag off the gas supply By the heat of the gas flam the air is rarcfied in the tube B , and as the tube strikes the water, the air is cooled, form ing a partial vacuum, which draws the water into the tube causing that side of the wheel to preponderate, and inducing a rotary motion, which is continued so long as the gas is supplied and ignited in the manner described.

A New Explosive.

The staff of the Austrian artillery have been for some time engaged in making experiments at the arsenal of Zamky, says Galignani's Messenger, on a material which is said to possess far greater explosive power than any other substance hitherto discovered. During a series of investigations relative to dynamite and compressed gun cotton, M. Nobel found that the latter could be prepared in such a way that it could be completely dissolved in nitro-glycerine. The product is a gelatinous and gummy substance which, at the highest pressure, does not part with any of the nitroglycerine. That explosive gelatine resists water, cannot be fired by any shock, but only goes off with difficulty and imperfectly when ignited. Further experiments showed, however, that with it a new compound could be formed, admirably adapted to all military purposes. This is prepared by simply adding a little camphor to the gelatine. The proportions are 4 per cent of the former to 96 per cent. of the latter, which consist of 90 per cent of nitro-glycerine and 10 per cent of fulmi-cotton. The gelatinous mass is elastic, transparent, of a pale yellow color, and can be cut with a knife. When set on fire in the open air it burns like dynamite or dry compressed gun-cotton. It only takes fire at a very high temperacure, and the action of the camphor
s very evident in that respect, for the ordinary gelatine by itself explodes at 200° Centigrade (392° Fahrenheit), while the heat required to produce that effect after the addition of the camphor cannot be tested by any of the apparatus usually applied to that purpose. The new composition cannot be fired by a blow, even from a projectile; it shows no sign of alteration even after having been left in running water for 48 hours. When solidified by cold it forms a mass resembling sugar-candy, and is then more sensitive to mechanical action, but as soon as it is thawed it resumes al its original properties. When exploded, however, it pro duces less smoke than dynamite or gun-cotton, with a clearer and more sonorous report, and has far greater force than either. The principal objection to its adoption was the difficulty of igniting it, but that has been overcome. When cotton flber is subjected to the action of sulphuric acid, a white pulverulent substance is obtained, which has received the name of hydro-cellulose, is easily soluble in nitric acid, when it becomes nitro-hydrocellulose. This compound, mixed in the proportion of 40 per cent with 60 per cent of nitro glycerine, forms the most powerful means of ignition ever hitherto discovered. By properly constructed firing-cartridges of that substance the explosive gelatine becomes as manageable as ordinary powder, with less danger and far greater expansive force.

A Thriving state

In reporting on the iron and steel industries of Belgium, s represented at the Paris Exhibition, Assistant Com missioner J. D. Morrell says that there is something amazing in the comparative prosperity of the Belgian iron and steel industries, when their spare natural resources are taken into consideration, and when the same industries of more favored countries are experiencing a greater or less depression. The causes for this condition of things, Mr. Morrell says, are to be found in cheap labor, long hours,
the technical education of workingmen, strict economy in

London respecting the milk served from infected cows, it is said, has largely incressed the trade in condensed milk within a short time.
It would seem, therefore, that while the metal trades and some of the other important industries of the country are greatly depressed, the articles of food and drink are paying a good profit to the dealers.

Iron in New Mealand.

The Government of New Zealand has, within a few years, constructed more than one thousand miles of railroads within its colony, all the material for which, except the leepers, having been transported, at heavy cost, from Eng and. The present Minister of Public Works, Mr. Jame MacAndrew, has undertaken the experiment, with a view of promoting the iron industry of the colony, of advertis ing for proposals for one hundred thousand tons of stee rails, to be made from the native ores of New Zealand. In addition to the advertisement in another column, a pam phlet has been printed by the Government containing maps and diagrams, which may be had from Sir Julius Vogel Agent of the Colony, on application at 7 Westminster Cham bers, London.

Aronnd the Borld in Thirty Daye

In a letter to the Herald detailing some of his plans for the coming summer, Mr. Samuel A. King, the aeronaut says that during his thirty years' study of aerial navigation, in the course of which he has made somewhat over two hundred ascensions, without injury to life or limb, he has teadily endeavored to avail himself of whatever experienc or suggestion might afford to make traveling in the air practical, definite, and useful. Numerous and often costly ex periments have shown him that, with no mechanical appli ance or power yet discovered, is it possible to journey def ance or power yet discovered, is it possible to journey def-
nitely and with certitude through the air to any previously
designated point, in opposition to the direction of a prenitely and with certitude through the air to any previously
designated point, in opposition to the direction of a pre vailing wind. The balloon therefore, remains to-day what it was in the days of the Montgolfiers, a machine that all the skill and ingenuity of man cannot prevent from floating with the wind, which controls and directs it abso lutely from the moment it is launched. The application of any known mechanical power, to be of any use a against a wind directed upon the vast surface of a balloon, is entirely impracticable in consequence of the weigh involved. Mr King is con fident, fident, however, that a grea deal can be accomplishe with the balloon, slave to th wind though it be, and that it is possible to operate them so as to greatly prolong thei carrying ability. As the re sult of a long series of ex periments Mr. King speak confidently of his ability to make a balloon voyage of month's duration a time suf ficient, with a thirty-five mile breeze, to circumnavigate th globe; and he claims to have demonstrated to his own sa tisfaction that it is not only feasible to construct a balloon that will maintain the bulk of its lifting power, but that it administration, attention to minutest details, and use of the is also easily practicable to keep it afloat and in transit fo most improved labor-saving machinery. The population of Belgium is very dense, $5,000,000$ people inhabiting 12,000 square miles of territory. The country is a hive of industry There is no room for drones. Every man has his work to do, and he must be content with small wages, for high wages would soon put an end to all employment by destroying the ability of Belgium to compete in foreign markets. Strikes are exceedingly rare, and when they do occur they are soon terminated, because the Government will not tolerate them. Personal economy is essential to existence. The labor of women and children is utilized. Railroads through its own territory, favorably situated seaports, and a trading spirit handed down from the middle ages, aid in securing foreign purchasers for Belgian manufactures. Belgium utilizes all her resources. She is industrious and frugal. She neglects none of her opportunities. Mr. Morrell concludes this portion of his report by the remark that much of the distress existing in other countries might be obviated by the practice of the same virtues, and that it would not involve the reduction of wages to the Belgian standard.

Proftes on Beer and Milk.

According to the English newspapers, the depression of trade in Great Britain does not extend to every industry. The celebrated brewers, Bass \& Co., it is stated, divided a profits for the year 1878 the almost incredible sum of Lactic :400,000. The Anglo-Swiss Condensed Milk Company, it Butyric is also stated, divided a profit of $\mathbf{£ 6 0 , 0 0 0}$. The alarm in . Mycoderma aceti
this length of time. a spheroidal (captive) balloon, having a diameter of 65 feet and a capacity of 150,000 cubic feet, inflated with hydrogen maintaining a second balloon of like dimensions as a reserve in case of accident. If his experiments with these are sa tisfactory he proposes to construct an air ship double the size of his captive balloon, for a transatlantic voyage, to be undertaken "in earnest," some time in 1880, following the well-established storm path on which the Herald bases it European weather forecast

The Sizes of Ferment:
The Brever's Guardian has compiled from trustworthy authorities the following table, showing the sizes of the va rious ferments found in beer and other fermented liquors:

Diameter of the Cells in Fraction of an Inch.

Saccharomyces cerevisiæ 00031 to 00035

\cdots	minor.	15
"	ellipsoideus.	.00024 by 000176
"	pastorianus.	. 0007 by 00035
*	exiguus	.00098 by 000118
*	apiculatus	. 0002336 by 000118
"	mycoderma	. 000118 to 000787
as ferment.		$\cdot 000047$ to 000055
"،.		.0000984
ic		. 00000887 by 000687
erma ace		$\cdot 000059$ by 000118

EDIBOI'S ELEOSROC:TS IICAL TMKEPHOKE.
Mr. Edison has recently improved his carbon telephone so much that in conjunction with a magnetic receiver it far surpasses for power and clearness of articulation every other system of telephone that has been introduced
As long. however, as there was in connection with the instrument no more powerful receiver than the Bell telejhone or instruments of similar principle, the carbon telephone, although possessing many points of superiorityover other systems, was limited in its power to the capabilities of the receiver with which it was connected, and until quite recently no receiving telephone had been introduced which would develop or do justice to the power of the carbon transmitter.
Mr. Edison has now applied, with remarkable success, the principle of the electro-motograph to the construction of a telephone receiver, which, on account of its extraordinary power and perfection, must before long supersede the feeble instruments of other systems, and sec.rre to itself a great commercial future. No one who has heard this new telephone can fail to have been astonished at its clear, articulate, and loud tones; it might appropriately be called "The Shouting Telephone," for its "voice" is louder than that of any ordinary speaker, and we have failed to distinguish any difference in clearness of articulation between its utterances and those of a person engaged in conversation. Where it is in use it is of course unnecessary to go at all near the instrument, for it may be fixed against the wall of an office, and its messages heard at any part of the room spoken in a loud clear tone, and even the high notes of whistling are reproduced with such perfection as to make it almost difficult to believe that some one in the room is not whistling loudly near this instrument.
This extraordinary instrument, which is illustrated in Figs. 1, 2, 3, and 4, consists in its simplest form of a diaphragm which is set into vibration by the variations of friction taking place between a metallic strip and a chemically prepared rotating cylinder, under variations of the strength of an electric current passing at the point of contact of the metallic strip and the cylinder. In its simplest form the apparatus consists of a cylinder composed of chalk and potassium hydrate with a small quantity of mercury acetate moulded round a flanged roller or reel of brass, which is lined with platinum on those surfaces which are in contact with the mixture, which is kept in a moistened condition. Upon the upper circumference of the cylinder, which is caused to revolve on a horizontal spindle, a metallic strip is caused to press with a firm and uniform pressure by means of an adjustable spring. The portion of the strip which bears upon the cylinder is lined with platinum, and the opposite end is attached to a diaphragm of mica, four inches in diameter, firmly fixed by its circumference. The cylinder is

connected to the copper clement of a battery, and the strip to the zinc pole, with a transmitting telephone included in the circuit. If, when no current is passing through the instrument, the cylinder be rotated at a uniform speed away from the diaphragm, the friction between the cylin der and the strip causes the diaphragm to be drawn inwards, that is, toward the cylinder, and the dia phragm would take up a fixed position dependent upon its own rigidity and the friction between the cylinder and the strip. The instant, however, that a current is transmitted through the instrumen that friction is reduced and the diaphragm flies back by its own unopposed elasticity, the variation of friction being proportional to the variation of the strength of the electric current; and so marvelously sensitive is this combination that the variations in the strength of the electric current caused by the human voice speaking against a carbon transmitting telephone instantly produce their corresponding variations of friction, and the diaphragm repeats the words, but very much louder than they were originally uttered at the distant station.
Fig. 1 is a perspective view of the apparatus, which is in reality three instruments in one, com bining a transmitter, receiver, and call bell, and, therefors, has a somewhat complicated appearance The whole of the upper portion, however, is the call bell and signaling apparatus, by which attention is attracted at the other station, and by which such calls are received; this differs in no respect from an ordinary electric bell, having a key and switch by which it is thrown into circuit. In front of the box, which is of cast iron, is seen the large diaphragm, but even this has a more compli-
cated appearance, in consequence of the transmitting carbon telephone being fixed in front of, and concentric with it. If the transmitter and call bell apparatus were removed, the he transmitter is not only perfectly reproduced by the mica diaphragm, but its sound is so greatly increased as to constitute what in
loud voice.
Mr. Edison has found that this instrument, like the mag. netic receiver, produces far more satisfactory results when working on an induction circuit than when it is connected directly with the carbon transmitter; he therefore adopts the plan of placing the receiving instrument in circuit with the secondary wire of an induction coil, the transmitter and bat tery being on the primary circuit. Fig. 4 will explain how the connections are made for a single pair of instruments. In this diagram T is the carbon transmitter and R the clec-tro-chemical receiver, B is the battery, and C an induction coil. The undulatory character which is given to the voltaic current by transmission through the carbon disk, whose re sistance is continually varying under the influence of sonorous vibrations, produces by induction a correspondingly undulatory current in the secondary circuit of the induction coil, C , and this varying current being transmitted by the line wire to the receiving instrument, by varying the intensity of electro-chemical decomposition going on between the chalk cylinder and the platinum point which presses on it, causes a corresponding variation of the coefficient of friction between the two surfaces.
The secret of the great power of the instrument, by which it speaks with a voice to be distinctly heard all over a large room, is that the mechanical motion of the diaphragm is produced not by the electric current, as in all other telephone receivers, but by local mechanical means, such as a train of clockwork or rotation by hand; the electric current merely controls the time when that mechanical force is exercised, and the amount which is brought into play. It may, mechanically, be compared to a frictional coupling or clutch through which a machine is driven by a steam engine, and which at any moment may be made to transmit the full power of the motor to the machine, or by varying the friction to transmit only a portion of that power.

Swine in the United statem.
A review of the pork packing season in the West, published in Cincinnati April 3, shows the number of hogs packed during the year ended March 1 to have been 10, 858,692 , an increase of $1,810,126$ head over the preceding year. According to a statement of the Commissioner of Ag -iculture, the number of hogs in the country at the beginning of the present year was nearly $35,000,000$; over $2,500,000$ more than was reported the year before.

Snakes as Pets.

Of all ungrateful, ill-conditioned, disagreeable reptiles, the black snake takes the lead, and, with the exception of the from with mica, and a small winch handle projecting shown in Fig 2 which is. Fig 3 , which is a vertical section taten through the center of the diaphragm. Referring to Fig. 2, A is the chalk cylinder mounted on the horizontal shaft, B B, which, by a inder mounted on the horizontal shaft, B B, which, by a
spur wheel and pinion, can be rotated at a moderate speed spur wheel and pinion, can be rotated at a moderate speed
by turning the winch handle, W. The spindle, B, turns in, by turning the winch handle, W. The spindle, B, turns in,
and is supported by the long boss bearing shown in the figure, and which forms part of the cast iron bracket, H H , to which every part of the apparatus, except the diaphragm and its connected strip, is attached. D is the diaphragm, which consists of a disk of thick mica, 4 inch diameter, and C is a metallic strip attached to its center, and which is pressed tightly against the upper portion of the cylinder by means of the stiff spring, S , whose pressure can be regulated by the screw, E. A comparison of Figs. 3 and 4 will make the arrangements of parts clear. G is a countershaft, which can be turned through a small angle by depressing a lever keyed on to it on the outside of the case; the effect of this is to raise, by means of the forked lever, $L \mathrm{~L}$, the damping roller, K , against the surface of the chalk cylinder, and so ocThe roller, when not in use, rests in a trough of water, T,

nd has only occasionally to be raised when the cylinder becomes too dry to give the best results. When this instru ment is connected to a carbon telephone, with no greater battery power than two Bullor cella, any sound uttered into

I mon water snake, is the most pucious of all serpents I ever handled; it would bite fiercely when caught, and, fur fer, it would bite in captivity whenever the temptation of We could not tame it to any extent until, by beating it smartly and repeatedly, we at length succeeded in getting it to a state of sullen, reluctant decency. Its bite caused some blood to flow, but otherwise amounted to nothing. The water snake (Nerodia sipedon) was as snappish and unappreciative of kindness as the black snake, would bite when first captured and also afterward during captivity, though in this latter state not always, but as the caprice seized it. The copperhead (Ancistrodon contortrix) we had only in two instances. One was brought to us half dead, and died the same evening. The othor we captured alive by placing the foot (well booted) on the reptile's neck, and inserting the snake by dcgrees into a box. It was always an uncivil, untamable animal, utterly indifferent to the comforts and allurements of civilized life. We contented ourselves with letting him alone and looking at him through the wire gauze front of his box. A large rattlesnake (Crotalus durissus) was sent us from the Blue Mountains, but it had been so long in captivity before reaching:us that all the spirit was out of it. It had large fangs, but never showed any disposition to use them, and though we took it from its box a dozen times a day and handled it sometimes not over-delicately, still it never resented any of these liberties. Twenty-five years have since passed away, yet, when I now think of our temerity in this instance, it is never without a shudder. What I did then with impunity I would not now repeat for a million of money.-Beionces Nowe

Curnespondente.

A Telephone Twenty-eight Years Ago.

To the Editor of the Scientific American:
Will you allow me to call attention through your valuable paper to some early work relating to the telephone, which those who know of it regard as quite important in the history of this invention?
In the latter part of 1851, Mr. Edward Farrar, of Keene, N. H., quite recently mayor of that city, was occupying leisure moments in trying to transmit sounds over a tele. graph wire, and actually succeeded in telegraphing music, and used a true telephone as a receiver!
His friends have been for some time desirous, in the interest of science, that his work should be more widely known, and in his own modest silence, I have obtained his permission to make the statement of it.
Some three years after his first actual telephonic success he had a correspondence with the Professors Silliman, of Yale College, with view of pursuing his work farther, but the replies he received were of such nature as to lead him to suppose that further attempt was hopeless, and under that impression and pressure of professional duties he laid it aside. I have before me some of that correspondence, and will quote from one of Mr. Farrars letters a description of his experiment, and a statement which shows how closely he came to inventing a complete speaking telephoné:
"Each reed of a melodeon is furnished with a small meallic point, which, while the reed is at rest, approaches near to the surface of mercury in a very small cup underneath the recd, into which the point dips when set in motion. The reeds are connected with one pole of a battery, and the cups

with the other. The current is broken with each vibration of the reed. At the remote end of the wire is a temporary magnet, with an armature fixed upon a spring in near prox imity to the magnet, and which is affected as a reed at the other end of the line is set in motion."
What he here calls a "spring" will be seen by the figure to be a real telephone. It was made of two upright thin spruce boards, $\mathbf{A} \mathbf{A}$, to one of which was fixed the armature B, and to the other the electro-magnet, C. The boards were seven or eight inches wide, about two feet long, and placed half an inch apart, and joined at the top by a strip glued between them.
He continues-"'The effect is that the armature vibrates with the reed set in motion, and, the pitch of a sound depend ing on the rapidity of vibration, it will be the same in the reed and armature. A tune on the instrument will therefore produce a tune on the armature. What may appear somewhat strange, several different tones may be heard when chords are struck upon the instrument.
" The object of my inquiry was this. If the current power could be varied by some slight variation of a vibrator to be affected by the atmosphere as the tympanum of the ear is, the supposition is that the sounds of the voice might be reproduced by the means stated above(!)"
When it is remembered that Mr. Farrar penned the above in May, 1854, it is to be regretted that he was turned aside from so interesting an inquiry at so critical a point, and that he did not take that one step which would have then produced the speaking telephone.
We believe Reiss' telephone was made in 1861, ten years later than Mr. Farrar's. Can any earlier work than his be named? S. H. Brackett,

Teacher of Natural Science, St. Johnsbury Academy,
St. Johnsbury, Vt

The Fast Ice Boat
 To the Editor of the Scientific American:

Fifty-two or fifty-three years ago the past winter, Mr Daniel Bray, then of Richmond, Ontario county, N. Y., a boy about 16 or 17 years of age, constructed an ice boat whieh was successful in all respects. It was used on Honeoye Lake, in that cousty, and is said to have run a the rate of a mile in a minute, when the ice was in good con dition and the wind fair. It was built as follows: He used
a light, flat bottomed boat for the body, to guard against accidents that might ensue from running into air holes. Underneath this and about one-third the distance from bow to stern, he placed a plank crosswise, about sixteen feet long, which he securely fastened to the boat, and to each end of this plank was fastened large flat bottomed skates, the inner edges being a little the highest. A heavy stout rudder was next attached, on the inner edge of which was also fastened a large skate, but this was creased in the center. Sails, same as now used for sailing on the water, were supplied, when our young voyager was ready to "fly with the wind." I have heard eye witnesses and those who have rode in it say it could be run faster than the wind blew. I also notice in your paper of a recent date, a cut of a velocipede sleigh, the exact counterpart of one made by Mr. Bray thirty years ago, and used by the writer when a boy.
J. B. B.

Steamboat Smaller than the "6 Nina,"

To the Editor of the Scientific American:
That "smallest steamboat in the world" is larger than one made and used years ago by S. H. Roper, of this city (inventor of the Roper Caloric Engine). Roper's boat was 14 feet long, 17 inches wide, 12 inches deep, made of $1 / 4$ inch
cedar; and after going about the harbor and four miles to ea, as far as Nahant, he would take it on his shoulder and carry it home.

- The boiler, of 1-20 inch steel, was 8 inches diameter, 18 inches Gigh, vertical, 63 tubes, and carried 250 lbs. steam; cylinder, 1 inch diameter, 2 ínch stroke; screw, 12 inches; speed, 8 to 10 miles per hour. The boat drew 2 inches of water without passengers. Screw set at an angle.
The engine was condènsing, and one gallon of water was a supply for one day. Δ rotary gear pump fed the boiler, sometimes against 300 lbs. pressure. The same engine was used on a velocipede to travel about the streets upon. The condenser was a pipe, which formed the keel of the boat. The fuel used was wood, about $21 / 2$ bushels of maple for day's trip. Smokestack, 5 feet high.
G. B. G.

Boston, March 14, 1879.

The Circle not squared.

To the Editor of the Scientific American
Referring to your issue of April 19, Q. E. D. has not only not squared the circle, but he has shown that he does not even comprehend the problem. There is no difficulty in finding the area of a circle, and, no difficulty in finding the side of a square of exactly the same area. The pith of the famous problem is to find by a regular geometrical construction a line whose square shall be equal to the area of the given circle. And this Q. E. D. has not done. Rolling a circle on a plane is no more a geometrical process than inding the circumference of the circle with a piece of tape New York, April 10, 1879.
A. B. C.

ENGINEERING IIVENTIONS.

An improved steam boiler having an annular water space and an inner cylindrical receptacle through which the flues pass, and having the inner and outer water spaces connected at intervals at the top and bottom, has been patented by Mr. William Hopkins, of Dubuque, Iowa.
Mr. George II. Cobb, of Palmer, Mass., has devised a novel automatic cut-off for steam engines, which consists in a sliding cam of peculiar shape, which rotates with the engine shaft and is moved by the governor. This in connection with the usual eccentric gives the required motion to the slide valve of the engine.
An improved gauge cock, capable of indicating the heigh of the water in the boiler through a wide range, has been patented by Mr. Joseph B. Leger, of Handsborough, Miss. The principal feature of the invention is a curved tube, which projects into the boiler, and may be turned up or down to the surface of the water. The discharge tube at the out side of the boiler projects in the same direction and for the same distance as the inner tube, and serves to indicate the height of the water.
Mr. Andrew Harvey, of Detroit, Mich., has patented an improved accessible joint, valve, and trap protector for underground pipes. The joint is made large enough to ad mit a person, and it is accessible by a manhole from the sur face of the ground.

The Tables Turned.
It is not many years since the freightage of Atlantic teamers was almost wholly this way. We were importing heavily from Europe, and with the exception of cotton we sent little or nothing in return. In a recent letter to the London Times, Mr. David McIver, member of Parliament for Birkenhead, and one of the owners of the Cunard line of steamers, declares unhesitatingly that from his own experience as a carrier, he does not know of any nation whose trade prospects at present are so gloomy as those of Great Britain. The depression in the United States and elsewhere does not at all approach the depression there. The British exports to the United States are comparatively nothing, exports to the United States are comparatively nothing,
either as regards volume or value. The British food importations are steadily increasing, and the balance of trade is so overwhelmingly against Great Britain that he sees nothing except ruin in prospect for home industries, whether manufacturing or agricultural, if the present state of things is allowed to continue. The export trade from Liverpool to the United States is so small that whenever the restrictions n the importation of United States cattle are removed, gen
trade deliberately intend to make the outward voyages with water ballast only, without joining in the scramble for the little outward freight which other owners have been recently carrying as ballast at merely nominal rates.

PREMUNA FOR BOY8.

The disposition of farmers' sons to escape from farm labor at the earliest possible moment is doubtless due less to the nature of the work than to the fact that farmers' boys are usually expected to work as a matter of course, and without any personal interest in the result. His efforts receive no special recognition or reward, and few opportunities are ffered him for personal distinction or profit.
Mr. Stillman B. Allen, of York county, Maine, believes that much good might be done by taking more account of boys' labor on farms, and sets a practical example by offering a series of premiums to the boys of his county, for individual efforts in farming. Thus, to the boy (under sixteen) who shall raise the most Indian corn on one eighth of an acre of land during the coming season, he offers a premium of $\$ 100$. To the boy who shall raise the next largest quantity, $\$ 50$, and to the five boys who shall raise the next largest quantity, $\$ 10$ each.
The conditions are easy, and the awards are to be made by the President of the County Agricultural Society. At the end of the season each contestant will have to make and sign a full report, giving the shape, description, and location of land, when planted, when and how many times hoed, when stalks were topped, if at all, when harvested, and how much is raised, and as nearly as can be estimated, the value of manure, and number of days' labor spent upon the crop, excluding the husking, when he may have all the help he wants from the boys and girls in the neighborhood. The example set by Mr. Allen is worthy of being widely followed, not only for the immediate effect in heightening the interest of boys in farm work, but for its indirect effect in raising the standard of such labor. The boy that has learned by actual trial that it is possible, by careful cultivation, to get from an eighth of an acre as large a crop as the tion, to get from an eighth of an acre as large a crop as the
average farmer gets from twice or thrice the ground, will average farmer gets from
not soon forget the lesson.

Collection of Meteoric specimens
Mr. Charles B. Shepard, of New Haven, Conn., has accumulated, it is believed, the largest collection of meteoric stones in the United States, if not in the world. The collection embraces more than five hundred meteoric stones and metcoric irons. The total weight of the collection is about twelve hundred pounds. The largest iron, procured from Colorado, weighs 436 lbs., and the smallest, from Otsego county, N. Y., weighs half an ounce. The largest entire stone, procured from Muskingum county, Ohio, weighs fifty-six lbs., and the smallest one, from Sweden, weighs less than fifty grains. The specimens have been gathered from all parts of the world. The catalogue begins with one which fell November 7, 1492, in Alsace, and ends with one which fell February 12, 1875, in Iowa county, Iowa. There are none between 1492 and 1753, but most of the years since the latter date are represented and some years by several specimens. Nearly every country in the known world is represented in the list. The entire collection is in one of the buildings in Amherst College. Mr. Shepard makes one statement which will surprise most persons. He says: "There have been several instances of death occasioned by meteoric stones. Two monks in different places were thus killed in Italy, and two sailors on shipboard in Sweden."

Heinrich Wilhelm Dove.

Heinrich|Wilhelm Dove, the celebrated meteorologist, died April 5. Professor Dove was born at Liegnitz, Prussian Silesia, October 6, 1803. He studied at Liegnitz, Breslau, and Berlin. In 1826 he became a teacher, and afterward a professor extraordinary in the University of Königsberg. In 1829 he was invited to a similar chair in Berlin. In 1837 he was admitted to the Academy of Sciences, and in 1845 became a full Professor of Physics. He distinguished himself by his researches in electricity and meteorology, and published various works upon these subjects. His reports and isothermal maps afforded the first representation of the isothermal lines of the whole globe for every month of the year. He was the first to announce the presence of a secondary electric current in a metallic wire at the moment that the circuit of the principal current is completed. He was Director of the Prussian Observatories, and made many useful reports. He began in 1837 the pablication of " A Com. plete Repertory of the Physical Sciences," in which he was to be assisted by the most eminent men of science; but the progress of the work was interrupted. His book on the distribution of heat on the surface of the globe has been trans. lated into English.

Diphtheria in Fowls.
A fatal disease prevailing among fowls at Marseilles is described by Nicati and Garard to be very like diphtheria. Thick false membranes of yellowish color covered sometimes the mouth and the pharynx, sometimes the eyes, in one case they were found reaching: into the bronchi, and affecting the lung. One hen died the day after the first symptoms appeared others in three and five days, while some remained ill fo weeks. The hen so attacked utters a peculiar kind of cry, opening its beak with difficulty. Symptoms of a similar nature have still more recently been observed by M. Nicat in a pigeon house in Marseilles.

A CONVEITEAT BOX FOR ARTIBTA

The accompanying engraving shows a novel and convenient box for artists' use, recently patented by Mr. William H. Brownell. of Brooklyn, N. Y. It answers the double purpose of a receptacle for palette, colors, and other tools and materials, and of an easel for supporting the board canvas or tile upon which the work is to be done.
The box, as will be seen by reference to the engraving, consists of four sections, hinged together alternately at opposite ends, and capable of closing compactly together so as to be readily carried by the handle.
When the box is opened for use it presents the appearance shown in the engraving. Everything contained in it is accessible, and it holds the board or tile firmly and in a convenient position. A pin is provided for holding the rest stick, and the whole affair seems well adapted to suit the needs of artists either in the field or studio.

American Petroleum in Europe

A dispatch received by the Department of State from Mr. James R. Weaver, United States Consul at Antwerp, calls attention to the serious and growing dissatisfaction now felt in Europe with regard to the quality of refined petroleum imported of late from this country, and expresses fears that unless some satisfactory explanation thereof be given, the government of Belgium will be called upon to restrict the importation of refined oil by the imposition of a heavy duty, or prohibit it altogether unless it comes up to a high fixed standard. Either of these regulations would bedisastrous to the American petroleum trade. An expert sent to Europe by one of the largest of the American oil refining companies to investigate the complaints says that the difficulty does not arise from imperfect refinement of the oil, but from the fact that the oil now obtained, particularly in the Bradford district, differs materially in its characteristics from that heretofore exported, especially in specific gravity, and requires different wicks and burners. He affirms that the oil now produced is no more liable to explosion than the duced is no more hiable to explosion than the earlier quality, and that it cannot be improved by more tho- stated that this apparatus effects a saving of over eighty per ough refinement without great additional cost. The whole cent in the expense of lighting. question is about to receive special attention at Bremen, where a general assembly of delegates from various parts of Europe will shortly be convened to consider the complaints	Where a general assembly of delegates from various parts of	the Western Union Telegraph Omce, Philadelphia, the gas
Europe will shortly be convened to consider the complaints	meter registered one foot per hour for each burner, instead	
and difficulties, and decide upon such remedies as the cir-	of the usual six feet, or only six hundred and twenty-five	cumstances demand. Mr. Weaver warns American refiners feet, during fix feet, or only six hundred and twenty-five and exporters that unless they take some steps to remove the present dissatisfaction, there is great danger that they will ge large part of their pres ent European trade.

A NEW CARBURETER The problem of economi cal artificial illumination has of late received more than ordinary attention; but the entire effort seems to have been in the direction of elec trical lighling; quite recently, however an apparatus ha been patented which las oward the solution look problem in another way. We refer to Messrs. Pew \& Wearts' carbureter, shown in the accompanying engraving. This machine, which the inventor calls the "Eclectic Gas Machine," is designed to produce an illuminating gas from a light hydrocarbon by the admixture of a suitable quantity of common air, or it may be used to enrich the or dinary illuminating gas. The machine is quite simple in its construction, although the few wheels shown give it the appearance of complication There is, however, nothing fine or intricate about the gearing; it is driven by a weight, and its sole office is to work two small diaphragm air pumps, A, B, through the medium of the crank, con necting rods, and working beam. These pumps force air through the regulator, C, seven hundred and fifty feet the amount usually into the large reservoir above. When the maximum pressure is reached the raising of the flexible diaphragm in the regulator carries upward the brake lever, D, bringing a brake against the fly wheel, E, and stopping the action of the pumps. When the pressure diminishes, the brake falls away,

PEW \& WEARTS CARBURETER.

sumed.
 This system is covered by three United States patents,

 issued since the first of the year to Mr. Pew.For further information address Messrs. Pew \& Wearts, 239 Broadway, New York.

Neglect of Rent a Oause of Drunkennesk.
In the opinion of Dr. Jackson, "the refusal to take proper physical rest, when tired from labor, is one of the most im portant and powerful in inducing a love for and an indulgence in the use of ardent spirits. Men work till they get so tired that they cannot wait to feel sensibly rested by processes of change going on in their systems from suspension of labor. They either want to work more hours than they are able to do; or when they have done as much as they feel themselves at liberty to do, they are so tired that they cannot rest. They get rest, therefore, in artificial ways, by resorting to eating and drinking. Some get rested by drinking tea, others by drinking coffee, others by chewing and smoking tobacco; but the great majority of tired people in this country-and the larger share of our people are tired-drink ardent spirits in some or other of its forms or preparations. They fall back on stimulants instead of the intrinsic vitalities of their bodies. They therefore are lifted up into false conditions. Accepting these as true, they keep on working till they become so functionally impaired as to induce positive inability to work longer, or they become so constitutionally depreciated as to be smitten with incurable disease."
There can be no doubt that the neglect of physical rest is, as Dr. Jackson asserts, the occasion of much over-frequent resorting to alcoholic or other stimulants; but it is not by any means apparent that too long-continued work is the only or the main cause of the deficient rest which results so disastrously. Whether workers or not, those who stimulate too much do so not because they have no opportunity to rest, but because they spend in dissipation the hours they should and could devote to sleep.

The Balloon Expedition to the Pole.
The veteran aeronaut, Prof. John Wise, has removed his residence from Lancaster, Pa., to Louisiana, Mo., and he communicates to the Kansas City Times the following letter regarding Commander Cheyne's plan for reaching the North Pole by the use of bal loons. The venerable Professor says: Nothing could give me more plessure than to be one of the explores. I have me more pleasure than to be one of the explorers. I have such a confrmed belief in the habitableness of the Polar archipelago, and of its uniqueness as to climatic and comforta-
ble conditions, that I believe no one would want to get out ble conditions, that I belie
of it that ever got into it.
We know that it is surrounded by an ice wall that is insurmountable by all ordinary means of land and water vehicle, and hence the air ship will be the successful craft. Beyond the eightysecond parallel no human foot has yet trodden, unless it was Kane, in whose time the world was not yet oblated so much as to present the condition of a basin that receives the sunbeams in half the year against its glacial sides. The earth of necessity is becoming more oblated all the time, if there is any truth in the law of motion as we comprehend it, and whatever theory we may adopt as to its original formation, whether by slow nebular accretion or by sudden condensation of cometary matter, it is a plastic body, and does conform itself to the law of centrifugal and centripetal conformation.
An electrical mystery surrounds the North Pole region, something in the nature of the coil magnet, from which such amazing developments proceed in the mode of light and electric magnet machinery that draws the attention of the scientific master minds of the day.
For over a hundred years the most daring and persevering efforts have been made to enter this basin. That it enter this basin. That be an archipelago, the shape of the earth and its mo-
and any necessity to the existence of animals, and what of it | seized, even when their surface affords no purchase, either is human's should be disposed of by hibernation for three or four months in the year. Why, Mr. Editor, it does me good just to think of the thing, and to go into it would more then rejuvenate me for another three-score and eleven.

John Wiae.
Elm Cove Cottage, near Louisiana, Mo., April 2, 1879.
IMPROVED BARREL FOR BREECH-LOADITG SHOT GUNS.
The accompanying engraving represents an improvement in rifle barrels for breech.loading shot guns, recently patented by Mr. Joshua Stevens, of Chicopee Falls, Mass., Fig. 1 being a per spective view showing the gun and attachment; Fig. 2 shows the breech of the rifl barrel; and Fig. 3, a longi tudinal section of the same The rifle barrel, B, is fitted to the shot gun barre A, and provided with a longi tudinal recess for receivin the slide, D, in which i the slide, D, in which is
pivoted a lever, E, having at pivoted a lever, E, having at its rear end a short projec-
tion, c, extending inward. The rifie barrel, B, is inserted into the rear end of the barrel of an ordinary breech-loading shot gun, the flange formed on the end of it entering the recess made in the shot gun barrel for the reception of the cartridge flange. The car tridge is now inserted and the gun is used in the ordinary way. After the discharge the barrel of the gun is tilted down, and the extractor starts the people imagine. During the past five years the Virginia rifle barrel out of the shot gun harrel; this operation moves crop has ranged between 225,000 bushels and 780,000 bushthe slide, D, slightly and starts the cartridge shell. Should els. The lowest crop of Tennessee was 175,000 bushels; the this prove insufficient the rifle barrel is drawn out far highest, 305,000 bushels. Of North Carolina, the lowest crop enough to admit of raising the lever, E , which operation moves the slide, D , and ejects the shell. An attachment of this kind must prove a valuable acquisition for the sportsman.

THE GREAT CRAB-GPIDER

The great crab-spider belongs to the typical genus of this family, and is one of the formidable Arachnida that are said to prey upon young birds and other small vertebrates, instead of limiting themselves to the insects and similar beings strictly prime, have ranged as follows: October 7, first sale, which constitute the food of the generality of the spider race. new crop, at $\$ 1.25$; and during the rest of the month at All spiders are carnivorous, the dimensions of their prey varying with those of the destroyer, and it is by no means an illogical supposition that a spider hose whose spad of light equals that of a human hand, might suck the juices of some of the smaller and more helpless ertebrates.
In Madame Merian's well known work on the insects of Surinam, there is a careful and forcible sketch of one of these great spiders (Mygale avicularia) engaged in preying upon a humming bird, which it seems to have taken out of its nest. She gives also a description of this spider, mentioning that it chiefly feeds upon ants, but that when they fail, it climbs the trees and catches the humming birds. For a time this ac count was believed, and the spider re ceived the specific name of avicularia in consequence of its bird-catching pro pensities. After a while, however, several persons ventured to discredit the story, and at last both the account and the illustration were set down as simple fabrications of the imagination. Experiments were also tried, dead hum ming-birds being put into the dens of these spiders, without any result, and the whole of Madame Merian's accoun was bodily denounced as fabulous.
Lately, however, the Mygale has been seen repeatedly to kill the young, not only of the humming-bird, but of other vertebrates, and thus Madame Merian's reputation for veracity remains intact.
The Mygale spins no web to serve it as a dwelling. It burrows and lies in ambush in the clefts of hollow ravines, in volcanic tufas, or in decomposed lava. It often travels to a considerable distance, and conceals itself under leaves to surprise its prey, or it climbs on the branches of trees to surprise the colibris (i. e., humming birds) and the certhia flaveola (a bird allied to our common tree creeper). It usually takes advantage of the night to attack enemies, and it is commonly on its return toward its burrows that one may meet it in the morning and catch it, when the dew, with which the plants are charged. slackens its walk.
The muscular force of the Mygale is very great, and it is particularly difficult to make it let go the objects which it has

CRAB-SPIDER, OR MATOUTOU

$\$ 1.20$ to $\$ 1.10$. November-Sales during month at $\$ 1.05$ 11,85 and 80 cents. December- 80 and 85 cents. January -75, 80, and 85 cents. February- 85 and 80 cents. March $-80,821 / 2,85,90,821 / 2$, and 95 cents.

Important and Excellent Appointments.
The appointment of Clarence King to the Directorship of the Consolidated National Surveys was confirmed by the Senate April '3. The same day the Senate confirmed the appointment of Dr. John B. Hamilton as Surgeon-General of the Marine Hospital Service.
A few days earlier Professor Francis A. Walker was appointed Superintendent of the coming Census.

It is doubtful if these offices could have been otherwise illed so wisely and acceptably.

Unconsidered Usen of Wood
The London Timber Trades Journal notes that there are countless ways in which wood is being consumed, beside the larger uses for fuel, building purposes, and the like; and that in the aggregate these unconsidered uses amount to a serious drain upon the forests, while little or nothing is done to insure a supply for future demands. The enumeration of the special uses of wood in the arts forms a very interesting chapter. One of the principal uses of the wood of the holly dyed black, is to be substituted for ebony in the handle of metal teapots, etc., and the strong straight shoals, de prived of their bark, are made into whip handles and walking sticks. The lime tree forms the best planks for hoemakers and glovers upon which to cut their leather, and s extensively used in thema nufacture of toys and Tun bridge ware, and by the turn or for pill boxes, etc. ; and the nner bark is made into rope and matting. The sycamore urnishes wood for cheese and cider presses, mangles, etc.; and when the wooden dishes and spoons were in common use they were most y made of this wood. It is used now also in printing and bleaching works, for beetling beams, and in cast iron founries for making patterns. The yew is used by the turner and made into vases, snuff boxes, and musical instru ments; and it is a common saying among the inhabitants of New Forest that a post of yew will outlast a post of iron. Where it is found in sufficient quantities to be employed for works underground, such as water pipes, pumps, etc., the yew will last longer than any other wood. Gate posts and stakes of yew are admirable to wear, and in France the wood makes the strongest of all wooden axletrees. Of the beech are made planes, screws, wooden shovels; and common fowling pieces and muskets are also stocked with it, and beech stave for herring barrels are not unknown. The sweet or Spanish chestnut furnishes gate and other posts, railing, and bar rel staves, hop poles, and other such matters, such as strong and good charcoal, though scarcely equal to that of oak for domestic purposes, but considered superior to that of any other for forges.
wood that can be used for cog of wheels, excelling either the crab or the yew; but its application in this manner is about at an end. As a fue it stands in the highest rank, emitting much heat, burning long, and with a bright clear flame. In charcoal it is highly prized, not only for culinary purposes and the forge, but also fo the manufacture of gunpowder, into which, on the Continent, it enters in large proportion.
In Russia, many of the roads are formed of the trunks of the Scotch pine, trees from six inches to a foot in diameter at the larger end being select ed for the purpose. These are laid down side by side across the intended road the thick of one alternately with the narrow end of the other,and the branch es being left at the end to form a sor of hedge on each side of the road When thus laid, the hollows are filled up with earth, and the road is fin ished, being analogous to the cor duroy roads of North America. In Germany casks are made of larch which is almost indestructible, and they allow of no evaporation of the spiritu ous particles of the wine contained in them. In Switzerland it is much used for vine props, which are neve taken up, and which see crop afte crop of vines spring up, bear thei fruit, and perish at their feet withou showing symptoms of decay. The un injured state in which it remains when buried in the earth or immersed in water renders it an excellent ma terial for water pipes, to which purpose it is largely applied in many parts of France. The butternut is esteemed for the posts and rails of rural fences in America, for trough for the use of cattle, for corn shovels and wooden dishes Shellbark hickory provides baskets, whip handles, and th backbows of Windsor chairs.: The pignut hickory is pre ferred to any other for axletrees and ax handles. The suga maple is used by wheelwrights for axletrees and spokes, and for lining the runners of common sleds. Dogwood is used for the handles of light tools, such as mallets, small vises etc. In the country it furnishes harrow teeth to the Ameri can farmer, and supplies the harness of horses' collars, etc. also lining for the runners of sledges. The mountain laurel
is selected for the handles of light tools, for small screws, of the "Mechanical Dictionary:" "Agricultural Impleboxes, etc. It most resembles boxwood, and is most proper ments."
to supply its place. Bowls and trays are made of red birch, and when saplings of hickory or white oak are not to be found, hoops, particularly those of rice casks, are made of the young stocks and of branches not exceeding one inch in diameter. Its twigs are exclusively chosen for the brooms with which the streets and courtyards are swept. The twigs of the other species of birch, being less supple and more brittle, are not proper for this use. Shoe lasts are made from birch, but they are less esteemed than those of beech. Inmense quantities of wooden shoes are made in France from the wood of the common European alder, which are seasoned by fire before they are sold. The wood of the locust is substituted for box by the turners in many species of light work, such as saltcellars, sugar bowls, candlesticks, spoons, and forks for salads, boxes, and many other trifling objects, which are carefully wrought into pleasant shapes and sold at low prices. The olive is used to form light ornamental articles, such as dressing cases, tobacco boxes, etc. The wood of the roots, which is more agreeably marbled, is preferred, and for inlaying it is invaluable. Of persimmon turners make large screws, and tinmen mallets. Also shoemakers' lasts are. made of it equal to beech, and for the shaft of chaises it has been found preferable to ash, and to every species of wood except lancewood. The common European elm is used for the carriages of cannon, and for the gunwale, the blocks, etc., of ships. It is everywhere preferred by wheelwrights, for the naves and fellies of wheels, and for other objects. White cedar serves many subsidiary purpose From it are fabricated pails was tubs, and churns of different forms. The ware is, wask light, and neatly made, and instead of becoming dull, like that of other wood, it grows whiter and smoother by use. The hoops are made of young cedars stripped of the bark and split into twoparts. The wood also supplies good charcoal. Théred cedar furnishes staves, stopcocks, stakes, and is also used for coffins.
A few special applications of wood in this country are mentioned, separated into trades, namely:
Sleves, usually of black or water ash for the bottom and oak or hickory for the circle; whipstocks, white oak; baskets, willow, white oak, and shellbark hickory; picture frames, white pine and sweet gum; saddletrees, red maple and sugar maple; screws of bookbinders' presses, hickory and dogwood; hatters' blocks, sour gum; corn shovels, butternut; shoe lasts, beech, and black or yellow birch.
To attempt any comprehensive review of the list of American applications would require another column or more.

Beports on the Paris Exhibition.

Governor McCormick, Commissioner General to the Paris Exhibition, requested the Assistant Commissioners to complete and forward to him their reports by the 1st of April. The following is a list of these reports:
Governor R. C. McCormick, Commissioner-General: "The Administrative Burcaus of the American Representation at the Paris Exhibition of 1878."
F. A. P Barnard, of New York, President of Columbia College, Assistant Commissioner-General: "The Exhibition at Large and the General Results thereof."
Daniel J Morrell, of Pennsylvania, President of the Cambria Iron Works and President of the American Iron and Steel Association: "Iron and Steel."
Donald G. Mitchell (Ike Marvel), of Connecticut: "Household Furniture and Accessories."
William W. Story, of Massachusetts: "Art."
Henry Howard, of Rhode Island: "Textile Fabrics."
William T. Porter, of Delaware, artisan expert: "Machinery.'
Thomas B. Furguson, of Maryland, Commissioner of Fish and Fisheries: " Fish and Fisheries."
William A. Anderson, of Virginia, of the Tredgar Iron Works: " Transportation."
George W. Campbell, of Ohio, grape grower: "Horti culture."
John J. Woodman, of Michigan, President of the Michigan Grangers' Association, and practical farmer: "Grains." A. J. Sweeny, of West Virginia, Mayor of Wheeling, artisan expert: "The Latest Devices in Machinery."
Samuel Dyshart, of Illinois, stock raiser: " Live Stock." Thomas F. Jenkins, of Kentucky, Professor of Chemistry. "Chemicals."
Floyd B. Baker, of Kansas, Editor of the Topeka Comnonwealth: "Forestry."
James D. Hague, of California, mining engineer: " Mines and Mining.'
Pierce M. B. Young, of Georgia, planter: "Cotton."
Aristides Gerard, of Louisiana, inventor: "Steam Engines.
Joshua Q. Chamberlain, of Maine, President of Bowdoin
College, and ex-Governor of Maine: "Education."
Eliot C. Jewett, of Missouri, mining engineer: "Technical Schools."
The following named reports have been requested from Honorary Commissioners appointed by the President on the nomination of the Governors of States:
Willam P. Blake, of Connecticut, Editor of the Reports of the Representation of the United States at the Paris Exhibition of 1867, Commissioner of the United States at the Vienna Exposition in 1873, and Commissioner to the Centennial Expostion at Philadelphia: "Ceramics."

Edward H. Knight, of the District of Columbia, Editor

The reports are carefully collated and indexed by the Commissioner General and will be delivered to the Government by May 1. They will fill four volumes royal octavo, uniform with the reports on the Paris Exhibition of 1867 and Vienna of 1873.
It is to be hoped that the printing of these reports will not be long delayed. The industrial world moves rapidly, not be long delayed. The industrial world moves rap
The Commissioner-General has learned from the Director General of the Exhibition that in spite of delays in the execution of the medals, he may expect the medals at an early date. As soon as received they will be forwarded to those to whom they were awarded.
The Commissioner-General expects to close up the affairs of his office by July 1. It appears that there will be a handsome sum to the credit of the Government out of the $\$ 100,000$ appropriated for a proper representation of the United States at Paris.

gray pottery.

The composition of that class of potter's ware designated as "gray" pottery was known thousands of years ago to the Chinese and Japanese. At the Louvre, in Paris. there is

to be seen a large vase of Japanese origin, several feet high, and of great beauty. In Europe gray pottery was first manufactured in Germany, in the provinces of Saxony, Bohemia, and Silesia, at the beginuing of the Renaissance Period. Later, Boettcher manufactured gray pottery at Meissen, previous to discovering the art of making porcelain.
Our engraving represents a vessel, probably used to hold water or wine, of Silesian origin. It shows elaborate ornaments of different colors, in relief, on a sky-blue ground. It is now at the Louvre Museum, and illustrates well the artistic taste of that period.

IEW AGRICULTURAL IIVENTIONS

An improved seed planter, having a rotating hopper, which rolls on the ground, and in which there are a number of seed pockets, which deposit seed in a furrow formed hy a plow or furrow opener, has been patented by Mr. William J. Ellis, of Oakland, Ga.

Mr. John Clayton, of the Grange Farm, Clayton (Brainerd P. O.), Minn., has invented an improvement in gang plows, the object of which is to regulate the width of the cut or furrow of the plow, so as to suit the power of the different teams that may be used, and to accommodate it to soil in which it is used. The plow is also provided with an adjustment for varying the depth of the furrow.
An improved rotary plow colter, which is provided with An improved rotary plow colter, which is provided with
means for excluding dust and dirt from its bearing, has been patented by Mr. John Clayton, of Brainerd, Minn.
An improved cutter for plows, which is designed to shield the mould board, and lessen the wear of the plow, has been patented by Mr. Charles W. Twigg, of Fincastle, Ind. I
consists of a cutter applied at the junction of the land side and mould board and extending to the beam.
Mr. Patrick Groom, of St. Louis, Mo., has patented an improved handle socket for shovels, spades, and scoops, which consists in making the shovel strap separate from the shovel blade, and securing it by rivets in a countersink formed in the blade.
A novel churn, that agitates and aerates the cream by centrifugal force, has been patented by Messrs E. B Older and F. E. R. Megow, of Independence, Iowa. This inven tion consists in a concave rotary dasher and a corrugated gatherer rotated by the dasher shaft
A hay rack and fence, which is constructed so that the fence may be supplied with additional bars or rails, to con vert a portion of the panels into feeding racks for cattle, has been patented by Mr. Louis Prince, of Nashville, 0.

The Fate of a Herd of Buffaloen.

An army officer who recently arrived in Chicago from the Yellowstone Valley, tells a story of what happened to a herd of buffaloes as they were migrating southward. The herd numbered 2,500 head, and had been driven out of the Milk River country by the Indian hunters belonging to Sitting Bull's band. When they reached the river they ventured upon the ice with their customary confidence, coming upon it with a solid front, and beginning the crossing with closed ranks. The stream at this point was very deep. When the front file, which was stretched out a quarter of a mile in length, had nearly gained the opposite shore, the ice suddenly gave way under them. Some trappers who were eyewitnesses of the scene said it seemed as if a trench had been opened in the ice the whole length of the column. Some four or five hundred animals tumbled into the opening all in a heap. Others fell in on top of them and sank out of sight in a twinkling. By this time the rotten ice was breaking under the still advancing herd. The trappers say that in less than a minute the whole body of buffaloes had been preciprtated into the river. They were wedged in so thickly that they could do nothing but struggle for a second and then disappear beneath the cakes of ice of the swift current. Not a beast in all that mighty herd tried to escape, but in a solid phalanx they marched to their fatal bath in the " Big Muddy." In a minute from the time the first ice broke not a buffalo's head or tail was to be seen.
Possibly occurrences of this sort, in ancient tertiary times, helped to form the remarkable deposits of bones found in the old lake beds of the great West and elsewhere. In these deposits the earth is literally crowded with the bones, sometimes chiefly of one type, sometimes comprising many distinct species. In the latter case the victims were probably swept away by sudden floods, their remains mingling con fusedly in quiet basins.

The Textile Industries of Finland.

It is reported by the German press that a large amount of spinning and weaving machinery is being transferred to Russia from German mills, closed on account of declining trade. The Grand Duchy of Finland is becoming one of the principal seats of Russian textile manufactures.

- There are five large cotton mills at Tammerfors, Abo. Nikolaistad, Forssa, and Kiroskoski. The imports of raw cotton have nearly trebled since 1866 . The spinning mill of Forssa has 18,000 spindles and 500 looms, and employs 1,500 hands. The mill at Abo manufactures thread only, and Kiroskoski only textiles. Mostly all the domestic weaving of linens has been superseded by the great linen mill of Tam of linens has been superseded by the great linen mill of Tam
merfors, the only one in the country. It has five turbines, and employs about 900 hands. There are six manufactories of cloth, one of knit goods, and five mills for the manufac ture of woolen yarns and textiles. The largest woolen cloth factory is near Abo, and turns out about 65,000 or $\mathbf{7 0 , 0 0 0}$ yards of cloth. The proximity of the Southern provinces to cotton supplies from Egypt will, of course, give them an ad vantage over such distant provinces as Finland.

Curiosities of Bismarck's Brains

In Dr. Busch's "Book on Bismarck," the Prince describes a horse accident he once had when riding home with his a horse accident he once had when riding lome with his ness," he says, "and when I recovered it I had only half. That is, one part of my intellect was clear and good, the other half had gone." Finding (on examination) his saddle broken, he called for his groom's horse and rode home. When the dogs there barked, by way of salutation, he thought them strange dogs, and scolded them angrily as such. Then he said the groom had fallen with the horse, and they should go and fetch him, and he became angry when they would not do that (because of a sign from his brother). He scemed to be himself and at the same time the groom. After eating and sleeping he was all right next morning. He points out that he had done all that was necessary in a practical respect herein the fall had caused no confusion of ideas. "ln short, it was a remarkable illustration of the fact that the brain lodges different mental powers; but one of these had been stupefied for some longer period of time by the overthrow."

The African Cable.-The steamer Kangaroo, with part of the cable to be laid between Natal and Aden, left the Thames April 7 for Natal via the Suez Canal. The Natal and Zanzibar section will be open for business in July. This will place South Africa within a week's communica tion of London. The remainder of the line will be completed before the end of the present year.

OLD HOMES MADE NEW.

It is sometimes very desirable that an old house should be made over. But very often such remodeling costs as much as an entirely new structure; sometimes it costs more. The reason of this is doubtless that the alterations are made without sufficient forethought; they are made as they suggest themselves one after another. And when all is done it is an old house after all; the alterations do not seem worth what has been expended to effect them, and the owner is disgusted. More careful planning would have prevented mistakes, produced better results, and lessened the cost.
We have before us a book* designed to aid any who wish to make an old home into a new, which, as it helps to disseminate true ideas, is welcome. By the courtesy of the publishers we present the illustrations of the present article.
The author of this book says very justly that whether a dwelling should be remodeled or not is often an open question. It should not be done unless the building, in its construction and material, is of such a solid and substantial character as to render its destruction unadvisable; or unless its preservation is highly desirable, owing to family associations, its peculiar style of architecture, or some historical interest. The convenience of the plan, its adaptation to the individual wants of those who are to occupy the house, should be the paramount consideration. Let the exterior grow naturally from the plan. Let architectural effect be obtained by the constructive portions of the work. Let the must effective result possible be secured at the least expenditure of
labor and detail ín design.
In our judgment the author has been generally very successful in these projected alterations. The illustration we present is, perhaps, one of the least striking, and yet any one can see in a moment by comparing these houses how much good taste can do in making a moderate outlay of money produce excellent results.
The house in question was, as is seen, simply a commonplace building. It was in excellent condition as regards its materials, and large, airy rooms with open fireplaces, and a generous hall. The wish was to improve its appearance without destroying the date and character of the building. A veranda was added on one side; a projection on the first floor gave a bay window, continued in square form above, and breaking the roof with a gable. Portions of the end gables were made to project, forming canopies over balconies from the attic floor. A new porch was added on the front, and new sashes with one light of on the front, and new sashes with one light of
glass were introduced in the lower part of glass were introduced in the lower part of
the windows. These simple, inexpensive the windows. These simple, inexpensive
changes interfered but little with existing work. The other illustration is of a remodeled hall. In the original house the stairway was narrow and inclosed. The desire was to make a hall that should be an attractive apartment, as well as a passage way. The old staircase was removed and a new one in hard wood built. A fireplace and settle were introduced at the foot of the stairs. The upper portion of the fireplace has the brickwork exposed, while the lower portion is incased for mirrors, etc. posed, while the lower portion is incased for mirrors, etc.
Curtains are substituted for doors. The end of the main Curtains are substituted for doors. The end of the main
hallway is marked and divided from the staircase by a newe hallway is marked and divided from the sta
column, finished with brackets. The whole makes a picturesque and comfortable apartment, a vast improvement on the "entry," which is really all that our halls usually are.
We need add only that the book is useful as a suggestion for plans and designs for building new as well as remodeling old houses.

A Possible Cause of Unexplained

 Fires.In a discussion of obscure causes of spontaneous combustion, by the French Academy of Sciences, a short time since, M. Cosson said that only a few days before, while he was at work in his laboratory, a portion of the boarding of the floor took fire. The fire began in the vicinity of an air-hole, fed with warm air from a stove an air-hole, fed with warm air from anay, on the fioor below. A four meters away, on the fioor below. A
similar accident took place two years ago, and in consequence M. Cosson had the boards adjoining the air-hole replaced by a slab of marble. The boards which now ignited adjoined the marble. The heat to which the boards were subjected was, however, very moderate, being only that of warm air at 77° Fah. Nevertheless, M. Cosson said the wood had undoubtedly been slowly carbonized. Being thus rendered extremely

* "Old Homes Made New." With Explanatory Text. By William M.

Woollett. New York: A J Bicknell \& Co.

view before alteration.
truce, it would undoubtedly have completed its work of desimilar. M. Faye stated that at Passy, a few days before warmth from the air-hole of a stove upon the woodwork had occurred at the house of one of his friends.
M. Dumas gave several analogous illustrations, and attri buted the occurrence to the property of matter in an extremely divided condition, of energetically absorbing air with the generation of heat. In powder factorics the pul-

VIEW AFTER ALTERATION.
porous, a rapid absorption of the atmosphere h ad resulted, and sufficient caloric was thereupon produced to originate combustion. The danger thus disclosed, said M. Cosson, is one to which the attention of builders ought to be directed. In the instance in question, M. Cosson was able to extinguish the fire with a little water, as he was present and witnessed
M. Dumas also cited a singular occurrence in the studio of a painter, which he had witnessed. The artist had taken some cotton wool to wipe a picture. He rubbed the oily surface of the painting for some time with the porous material, and then flung it from him; the cotton spontaneously ignited during its passage through the air. It is well to remember, concluded M. Dumas, that extremely porous or minutely divided matter, conducting air, is capable of instantly producing a very elevated temperature.

English versus American Castings.
A writer in the Engineer (London) endeavors to account for the success of American ironware in its competition with the home products of England. This competition, the writer says, is to be found in every ironmonger's shop in town and country, and particularly in furnishing ironmongery stores. "If we ask for locks, gas standards, roller-blind fittings, small brackets, hooks, and hat pegs, domestic apparatus and tools, substantial toys, and very many other things, we are shown American productions. The reason for this is not sufficiently obvious in all cases, though in many cheapness is the explanation. Hardly any English small castings are anything like as fine in surface, light in pattern, and cleanly turned out as are these American things. Small English castings often show the joint in the mould in which they are cast, fins are often not absent; and they are either turned out uncoated, or are daubed with a common black or dipped into a commoner. Most often screw holes are too large or too small. All this the Americans have changed. Their castings are light, though strong in design, they are clean, and are touched up on an emery or grindstone, and are nicely coated with a clear, brown varnish of great toughness and strength. The holes are almost invariably properly prepared to receive the screws for fixing. The screws themselves are colored to match the ironwork, and, at the same time, prevent rusting. The holes, too, are arranged so that where the greatest strain comes there are the most screws. Now, these are reasons which affect the purchaser ,only: but there are other reasons which affect the ironmonger, and which explain why he is so ready to show his customer the American articles. All the small articles to which we have referred are sent out by the English manufacturer done up in separate papers, or in paper packets tied up with string. Thus, when the ironmonger wants even one article, or only wants to show one to a customer, he has to undo a string, unfold paper or papers, do these papers up again, tic them, and redo these papers up again, tic them, and re-
arrange the label on the package. Instead arrange the label on the package. - Instead
of this old bungling way of kceping store and serving customers, the Americans supply their articles in paper boxes, sufficiently strong to last out the sale of the articles one or verized charcoal will often take fire spontaneously. It is for \mid two at a time. These boxes are easily and neatly stacked, this reason that it is usually pulverized with sulphur, which the labels are fixed once for all, and to open one and show robs it of the property in question. Wood deprived of its its contents, or take some out and reclose the box is the work moisture by the action of warmth, continued for a long time, of a moment. This question is one of much greater imis transformed into a substance analogous to lignite of turf. portance than at first sight appears. Folding up and reIts particles experience a species of pulverization, or minute tying parcels is irksome and exceedingly uninteresting work, division, which brings it into essentially the same condition and is such as is not done very quickly at any time. Piles as that of crushed charcoul. In this state it condenses the of packages which have been taken down to show customair and takes fire. M. Dumas said that he had known a case
a REMODELED HALL.
where a beam in a cart shed had taken fire in this way. Formerly, in the theaters, the lamp boxes, filled with refuse frequently ignited spontaneously in this manner. The oily dust and débris condensed the oxygen of the air. In works where Adrianople red is applied to cotton, impregnated with
fatty matter, spontaneous combustion frequently occurs.
 pounds each. neral at Constantinople, advises the Department of State that a demand for American flour will probably arise during the year in Turkey. As a large proportion of the flour imported will be
for transportation on animals into the interior, he advises that it be put up in strong sacks. Most of the flour brought from Russia is in sacks or bags holding fifty ot one hundred

These have to be done up, and some one must do it. Here is an important saving. One London ironmonger, whose sales in furnishing ironmongery, in a moderate sized shop, consist of about one half American articles, recently ar sured us that he had, from the saving of labor in this way, been able to dispense: with about one fourth the assistance he would otherwise have required for the increased business done in small articles."

The Nevada Paint Mine.

The paint mine at Reno, Nevada, comprises a ledge 42 feet wide and of unknown depth. The material is said to mix well with oil, and not to settle on standing. The mineral contains a small quanti. ty of silver and traces of gold.

American Flour in Turkey.

Mr. Heap, the United States Consul Ge
cause they cannot be done up while the customer is being served.

Leadville-The Place

This infant city of the past year, with its closely built streets, its bustle of trade, its throng of teams that fill and block the way, and its surging masses of humanity that move in ceaseless currents from daylight until the midnight hour, is one of the marvels of the age. The site is favorable-a smooth plateau, sloping gently to the west, rounding off into California gulch on the south, and rising to a slight ridge on the north. When the town began, the plat was covered with pine trees, but nearly all nave fallen, and each day diminishes the few that ought to be carefully preserved. Fortunately, thick forests surround it on all sides, and most of the timber is green, furnishing excellent building material at the lowest possible cost. Building is going forward faster now than ever before, and the town spreads visibly day by day. Along all the roads leading out north and east, strings of foundations, half built or completed cabins, stretch continuously for a distance varying from half a mile to two miles. On the other sides they do not reach so far. There are hundreds, perhaps thousands, of these squatter claims, and it is nothing unusual to hear of their sale for $\$ 50, \$ 100$, and it is nothing unusual to hear of their sale for $\$ 50, \$ 100$,
or $\$ 200$ each, when the improvement is nothing more than or $\$ 200$ each, when \log, poles, or slabs.
The altitude is about 10,400 feet above the sea, and the outlook is grand and magnificent. To the east, beyond the swelling green of the fine forests, are the shining peaks of the Park range. Northward are lofty summits that close in the head of the valley of the Arkansas. Westward across the wide level valley. are those stupendous masses, Massive mountain, Mount Elbert, La Plata mountain, and all the magnificent Sawatch range, here the mother mountains. Southward the view is down the valley of the river-a vanSouthward the view is down the valley of
ishing vista, shut in by mountain walls.
The characteristics are those of any prosperous mining camp, but on a marrelous scale. There is an air of permanence not common to such, but otherwise the history of its growth has been a hundred times repeated in California, Nevada, and the Rocky Mountain States and Territories. Life is intensified. Everybody who has' anything to do is on the jump. The rasp of the saw and tattoo of the hammer are heard from daylight to dark seven days in the week. Business occupies the same time and reaches far into the night as well. You must elbow and push your way through the crowds that till the sidewalks, and wait for an opening in the teams and vehicles that throng the streets to cross from one side to another. Rents are fabulous. Real estate has advanced a thousand per cent in three or four months. Such is Leadville at a glance.-Denver Neios.

Spontaneous Combustion.

There was an interesting discussion on this subject at a recent meeting of the French Académie des Sciences. M. Cosson described an accident which had occurred in his laboratory a few days before. While the narrator was work ing in the laboratory, a portion of the boarding of the floor spontaneously took fire. The boards were in the vicinity of an air hole, fed with warm air from a stove four meters away on the floor below. A similar accident took place two years ago, and in consequence M. Cosson had the boards adjoining the air hole replaced by a slab of marble. The boards which now ignited adjoined the marble. The heat to which the boards were subjected was, however, very moderate, being only that of warm air at $25^{\circ} \mathrm{C}$. Nevertheless, M. being only that of warm air at $25^{\circ} \mathrm{C}$. Nevertheless, M.
Cosson said the wood had undoubtedly been slowly carbonCosson said the wood had undoubtedly been slowly carbon-
ized. Being thus rendered extremely porous, a rapid abized. Being thus rendered extremely porous, a rapid ab-
sorption of the oxygen of the atmosphere had resulted, and sufficient caloric was thereupon produced to originate combustion. The danger thus disclosed, said M. Cosson, is one to which the attention of builders ought to be directed. In the instance in question, M. Cosson was able to extinguish the fire with a little water, as he was present and witnessed its beginning; but had it occurred at night, during his absence, it would undoubtedly have completed its work of destruction. M. Faye stated that at Passy, a few days before, a similar case of spontaneous fire, due to the action of the warmth from the air hole of a stove upon the wood work, had occurred at the house of one of his friends. -Manchester (Eng.) Cotton.

Mildew in Cotton Goode

The different varieties of mildew that attack cotion goods belong to the fungoid class of plants-a division, perhaps, more numerous than any other section of the vegetable world. They propagate themselves by spores or seeds, which are generally diffused from bursting cells. These are carried-invisibly to the naked eye-upon every breeze in all directions, being deposited upon and in everything with which they come into contact. Few, probably, of the mi lions thus borne by the winds find fit habitats for development, and consequently perish in a short time. Too little is known of them to state with any degree of correctness the duration of the vitality of these germs. Doubtlessly it will be longer or shorter, accordingly as the circumstances in which they are deposited are favorable or otherwise. The plants, however, are purely parasites, finding their chief And they are not particular whether these be living or dead -at least both living and dead organisms are subject to attack by the same or different species. They have cellular or tack by the same or different species. They have cellular or development. When full grown they are rarely uniform in shape. Contrary to nearly every other kind of vegetable
life, they absorb oxygen and exhale carbonic acid. This
causes the disagreeable odor always experienced in the pre-
sence of mildew. These parasites, in several of their nusence of mildew. These parasites, in several of their nu-
merous species, are found in cotton plantations, and in all merous species, are found in cotton plantations, and in all
probability the species peculiar to the plant is one of those with which merchants are too familiar. It is not unlikely that the spores, or seeds, are brought over in abundance with the raw cotton to this country, lying dormant until favoring circumstances stimulate their development. The germs are so minute that they can with ease run the gauntlet of all processes cotton undergoes in its transformation into cloth. It may be objected that these insignificant atoms of life could never preserve their vitality when passing along with cotton in the form of yarn through a trough of boiling size. This may safely be granted; but we do not size our wefts, and it is with the latter that it may be carried into a habitat fitted for its future growth. This view receives a considerable amount of confirmation from the fact that mildew most frequently takes place in goods in transit to India and China; otherwise expressed-when these germs are carried through latitudes identical with those of their native fields. Surrounded with every requisite condition-embedded in a mass of vegetable fiber, composed of interlaced threads the interstices of which contain a sufficient supply of oxygen in the atmosphere filling them; a large quantity of moisture, taken up by the natural, absorbent power of cotton from our humid atmosphere, or otherwise introduced; closely packed in an air-tight covering, and subjected for weeks to the stifling heat of a ship's hold in its passage through tropical oceans -sure, if there be a living germ of mildew in a ship's cargo of gray cloth, here are forces sufficient to render its development assured.-'Textile Manufacturer.

What Came of one Hive of Bees.

In a memorial to Congress relative to the coming census of the United States, the superintendent of the census of 1860, Mr. Kennedy, gives the following statistics as an illustration of the stupendous results from a single hive of bees, transported to the Pacific coast less than thirty years ago. From the single county of San Diego, California, in 1876, there was shipped the astonishing figure of $1,250,000$ lbs. In 1877 there were in that county 23,000 colonies of bees, and in one day, September 6, 1878, there were shipped from that port 78 barrels, 1,053 cases and 18 tons; and that from and including July 17 to November 10, 1878, less than our months, that one county exported over 1,000 barrels, 14,544 cases, and nearly 20 tons. He who would strike out (from the census report) the item of honey, could not have known, so great has the interest in this product become, that many people in California have from 500 to 1,000 hives, and that over 1 l 0 people in one county have each more than 100 colonics of bees. According to the London Neios of January 18, there arrived in November, at Liverpool, 80 tons of honey, the product of the bees of one individual; and that a Mr. Hodge, in the first week of January last, landed 100 tons at a London wharf, the product of California. The annual product of honey has grown to $35,000,0^{-}-1 \mathrm{lbs}$. annually.

Westurard Progress of the Imported Cabba; WVorm.
In 1860, in my second report, in treating of thi. asect, I emarked, "There is every reason to fear that it , dy some day get a foothold in our midst," after showing that it was then confined to certain restricted parts of Canada and New England, and had not spread west of New York. It has been making further progress westward every season since. The past year it has done considerable damage as far west as Chicago, and I have also received good testimony
that it was observed around St. Louis. I have given my reasons in the report referred to for believing that it will prove much more disastrous to the cabbage fields around St. Louis than the southern cabbage worm (Pieris protodice), which has always been with us, and has done, at times, considerable damage; and Irefer those who wish to be prepared with a full knowledge of the habits of this species, to the same report
As remedies, few liquids will prove more effectual than hot water, judiciously applied, though 1 lb . of whale oil soap, dissolved in about 6 gallons of water, or even a strong
tar water, may be used to advantage. The application should be made several times during the year, as it will be most effectual when the worms are young.
As preventive measures, the worms may be induced to transform under flat pieces of board laid upon any object that will raise them about an inch from the surface of the ground. These boards should be examined every week and the transforming larvæ or the chrysalids destroyed. The butterflies may also be captured by hand nets and prevented from laying their eggs.-Professor C.V. Riley, before the Mo. State Horticultural Society.

Borers in Apple Trees.

Now is a good time, says a writer in the Rural Sun, to cut out these pests where they have not been attended to
A few days ago I went over an orchard that has fallen into my hands, and in one day's work think many valuable rees have been saved. As many as five full grown borers were cut out of one tree five inches in diameter. In some instances these were found running up the trunk six inches, and not over an inch apart parallel. It takes very close searching sometimes to find them. Sometimes a thin wire can be used with good effect, when the knife and chisel can hardly reach them. In quite a number of instances I found

They seem to know just where to find them when above ground, and rarely fail to bring them out. They need no peck a large place at all times, as their hard pointed, barbed tongue can be inserted and haul them out. It should be a rule among all to let these useful birds live undisturbed. They are tame, and boys are prone to stone them, or, when beginning to shoot, practice on these poor fellows.

When a tree is completely girdled by the borer or mice, it can often be saved by taking twigs of last year's growth, cutting wedge shape at both ends, and inserting in the bark below and above the injury, thus conveying the sap through them. Thus have we saved many a valuable tree that would them. Thus have we saved many a valuable tree that would
otherwise not have survived the summer. After cutting out the borers fill up with earth over the wounds, and they will heal up if not too severe.

Flowers in Winter.

With but little trouble, says a correspondent of the Country Gentleman, any person can keep up a constant succession of beautiful flowers in the house from the holidays until the scason of their blooming in the yard or garden. To do this, cut some small twigs of the various flowering shrubs or trees growing in the yard or lawn, and put them in bottles or jars containing pure water. If the weather is very cold when the twigs are cut, care must be taken not to injure the buds, which is very easily done when they are frozen. After the twigs are cut lay them in a cool room a few hours, then put them in the bottles of water, and let them remain two days in a cool place where the water will not freeze, after which they should be brought to the heat gradually. They will bloom if brought to the warmth when first cut, but the flowers and foliage are not so strong and luxuriant. After bringing them to the warmth the bottles should be filled up with fresh water every day.
When treated in this way, all the following named shrubs bloom nicely: Daphne mezereum, Forsythia, Spircea pruni folia, Deutzia gracilis, Lilac (white and purple), Pyrus ja ponica, Syringa, Wiegela, and many others. The twigs of the Cercis canadensis (Judas tree, sometimes called Red Bud, which grows very abundantly in many places in our woodlands), when thus treated give a great profusion of beautiful red and purplish pink flowers, and are exceedingly beautiful. I use hyacinth bottles, the tall ones of different colors. Beginning early in the winter with the Daphne and the Forsythia, they being among the first bloomers of spring, I tie few twigs together with a soft woolen string (if tied tight it stops the flow of the sap), put them into the bottles, and give them plenty of light and water, and in two or three wecks have a nice bunch of flowers, the red contrasting beautifully with the yellow. In about a week after starting the first I set a couple more bottles, and so on until the fine fine warm weather of spring produces them out on the lawn. The Japan quince does not produce flowers on the small twigs of the last year's growth, but the buds are formed on the two year old wood; hence care must be exercised in selecting from this shrub, or no flower buds will be obtained. I now have Forsythia, Spirea prunifolia, Lilac, Deutzia gracilis, and Daphne cneorum in full bloom, making a beau tiful display in the window.

The Trade in Birds,

A busy but quiet industry in this city is that of the bird fanciers. A dealer in canary birds says that last year he imported 100,000 birds, which were readily disposed of at fair prices. They are generally brought from the Hartz mountain region of Germany. From the large dealers a fine male canary, with a good voice, can be bought for $\$ 3$.
Choice specimens, with extraordinary vocal powers, bring sometimes $\$ 10$. Female birds for breeding purposes sell for \$1. Next to the canary the mocking bird is most in demand. Those whose vocal powers are well developed are sold for $\$ 25$ and upward. The birds come from Virginia and other Southern States, and also from Mexico. The bullfinch is highly regarded when well trained. A good whistler is worth from $\$ 25$ to $\$ 40$. The goldfinch, chaffinch, nightingale, lark, and the linnets and thrushes are also prized as songsters. Of other birds not songsters, thirty different species, kept as pets for their beauty or acquirements, may
be found in market. Of these the parrot is most in demand. A well trained bird, of either the gray African variety or the green American, is worth $\$ 50$, or even $\$ 100$. The most brilliantly colored birds are the Australian paroquets and strawberry finches.

Sod Fences.

A Louisiana paper says that Mr. Joseph Jefferson has been fencing his orange grove plantation in that State in a novel and effective way. He begins by erecting, for each side of his fence, sods three feet in width, divided into five layers, at an angle of 75°. The soil from beneath the sod exactly fills the space between the erected sods, leaving a three foot ditch on each side. On the top of this sod-andsoil fence, which is four and a half feet at the base and three feet high, he plants cuttings of the Macartney rose, which are protected by a panel of boards. This fence, while within the reach of any man who will shoulder his spade and work, possesses the advantages of an impassable bartier, of permanence, of not needing repairs, of drainage, and of being a most beautiful ornament. Mr. Jefferson will soon bave inclosed a section of his plantation containing 2,600 acres, and at one half the cost of a stake fence. It is thought that this most economical and useful fence will ultimately be generally adopted in the Southern States.

TO INVENTORS. An experience of more than thirty years, and the preparation of not less than one hundred thousand applicatlons for patents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. In addition to our facilities for preparing drawings and specifications quickly. the applicant can rest assired that his case will beflled in the Patent OfHice without delay. Every application. in which the fees nave been oald, is sent complete-including the modelto the Pateat Office the same day the papers are signed at our office or received by mall, so there is no delay in filing the case. a complaint we often hear from other sources. Another advantage to the inventor in securing nis putent through the Scientiflic American Patent Agency. It insures a special notice of the invention in opens nezotiations for the sale of the patent or manufacture of the article. A synopsis of the patent laws in foreign countries may be found on another page, ard persons contemplating the securing of patents abroad are invited to write to this office for prices, which have been reduced in accordance with the times, and our verfected facilities for conducting the business. Address MUNN \& CO.. offle Scientific american.

Eusiness and extsonal.

The Charge for Insertion under this head is One Dollar a cine for each insertion ; about eight words to a line. Aavertisements must be received at miblication office

Satton's Patent Pulley Cover.-If you are losing ow much power you are losing and find the gain you will make in your work by adopting a positive remedy. send for a circulur. Address Joseph Noodward, p.
prietor and manufacturer, P. O. Box 319 , New York. The best results are obtained by the Imp. Eureka Turblne Wheel.aud Barber's Pat.Pulverizing Mills. Send for
descriptive pamphlets to Barber \& Son, Allentown, Pa.
The Railway Record, a joumal of practical engineering and rallway news, 28 pages, sent postpaid one year on
recelpt of price, 8 . Adress, The Rallway Record, 87 w York.
Valves and Hydrants, warranted to give perfect satisKimballs Catarrh Cigarettes, an instantaneous rel nd a pleasant smoke. They contain no tobacco.
Dead Palleys that stop the running of loose pulleys and their belts, controlled from ang pont. Sen
catalogue. Taper Sleeve Pulley Works, Erie, Pa.
Partner Wanted.-A suitable party with limited capital can open negotlations with a vlew to partnership. by
addressing The Des Moines Linseed Ou Works, Des
oines, towa.
Renshaw's Ratchet (short spindle) uses taper and
quare shank drills. Pratt \& Whitney Co., Hartford, Ct. The Globe (MIner) Street Lamp; most durable; none "The best Article we ever had," is the (almost unanimous) verdict of those who fully test Downer's Im-
proved Anti-Incrustation Liquid. It removes scale; it prevents its formation; is not injurious; does not caus the water to foam. A trial will establish the
claims. A. H. Downer, Proprietor, 17 Peck Slip.

Manfs. of Cracker Machine A. C. Wertz, Reading

Wanted-Improved Stump Puller, with descriptio glander, Clarksdale, Miss. re St., New York. Specialties-Bolt Forgink Machines tre et.. New York. Specaities-Bolt Forging Machines,
Powe Hammers, Combined Hand Fire Eugines and Hose Carriages, new and 2 d hand machinery. Send stamp
for illustrated catalogues, stating just what you want
For best, low priced Electric Bells, and other Elec. trical Apparatus, address
Hanover St., Boston, Mass.
Split Pulleys at low prices, and of same strength and
ppearance as Whole Pulleys
Yocom \& Son's Shafting appearance as Whole Pulleys Yocon
Yacht Engines. F.C.\& A.E.Rowland, New Haven, The Asbestos Roofing is the only reliable substitute or tin, it costs only about one half as much, is fully durable, and can be easily applied by any one. H.
Wanted-A Second-Hand Bolt Cutter, to cut from $1 /$ or $\$$ inch up to $11 /$ or $11 /$ inch, and
Address P. O. Bor 56 . Hazleton, Pa
Want to know if any one manufactures a Machine t twist Dr
ton, Pa.
Wanted-New or 2 d hand Engine Lathe, 8 ft . 18 in .
wing. Address, with lowest cash price, II. II. Perkin wing. Addre
Kewanee, ml .
Dead Stroke Power Hammers; cheapest and best fo general forging and die marking. Phllip 8 . Justice
Wanted--A Machine for Cutting a Hide into a Con ubes for sewing machine belts. Address Edmund Hill 31 Jefferson St., Philadelphla, Pa.
Linen Hose.-Sizes: $11 / \mathrm{in}, 20 \mathrm{c} . ; 2 \mathrm{in}$, , $25 \mathrm{c} ; 21 / \mathrm{in}$ i,
29c. per foot, subject to large discount. For price lists of. all sizes, also rubber lined hose, address E
Hose Company, No. 13 Barclay St.. New York.
For Punches, Patent Bending Rolls, Radial Drills, and Belcher \& Bagnall, 25 Murray St., N.Y., have the most
economical Steam Engines, Bollers, Pumps, in market; also improved wond and iron working machinery.
17 and 20 in . Gibed Rest Screw Lathes. Geo. S. Lin-
coln \& Co., Hartford, Conn.
New Pamphlet of "Burnham's Standard Turbin heel " sent free by N. F. Burnham, York, Pa.
Vertical Burr Mill. C. K. Bullock, Phila, Pa Gaume's Electric Engine. 171 Pearl St., B'klyn, N. Y. Sheet Metal Presses, Ferracute Co., Bridgeton, N. J. Clipper Injector. J. D. Lynde, Philadelphia, Pa. Berins \& Co.'s Hydraulic Elevator. Great power, A Copola works best with forced blast from a Baker
Blower. Wilbraham Bros., 2,318 Frankford Ave., Phila.

American Watch Tool Company, Waltham, Mass.
For Solid Wrought Iron Beams, etc., see advertiselithograph, etc.
The Railiway Bunditr, a handbook for eetimating he probable cost of American Rallway Construction an Equipment, by W. J. Nicolls, C. E., of 231 puges, printed on fine toned paper, bound in morocco; ;ent on recelpt
of price, \&2.00. Address, The Rallway Record, 37 Park Row, New York.
Use D. L.'s new soldering flux; solid sticks; superior substitute for acid; no tarnishing or corroding; easy to apply ; cheap. Address, D. L., Box 79, Bristol, Conn. Presses, Dies, and Tools for working Sheet Metal, etc.
Fruit \& other can tools. Bliss \& Willams, B'klyn, N. Y. Fruit \& other can tools. Bliss \& willams, B'klyn, N. Y. Nickel Plating.-A white deposit guaranteed by using
our material. Condlt,Hanson \& Van Winkle,Newark,N.J. Hydraulic Elevators for private honses, hotels, and Hydraulic Elevators for private honses, hotels, and
public buildings. Burdon Iron Works, Brooklyn, N. $\mathbf{~}$. The Lathes, Planers, Drills, and other Tools, new and Worcester, are beink sold out very low by the George Place Machinery Agency, 121 Chambers St., New York. Hydraulic Presses and Jacks, new and second hand. Lathes and Machinery for Polishing and Buffing Metals.
E. Lyon \& Co., 470 Grand St., N. Y. Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel - other kinds imitations and inferior.
Caution.- Our name is stamped in full on all our best Standard Belting, Packing, and Hose. Buy that only. The best is the cheapest. New York Belting and Pack-
tng Company, 37 and 38 Park Row. N. Y. ng Company, 37 and 38 Park Row. N.
Portland Cement-Romian \& Keeners, for walks, cis-
terns, foundations, stables, cellars, terns, foundations, stables, cellars, bridges, reservoirs,
breweries.etc. Remit 25 cents postage stamps for Practical Treatise on Cements. S. L. Merchant \& Co., 53 Broadway, New. York.
Needle Pointed Iron, Brass, and Steel Wire for all
purposes. W. Crabb, Newark, N. J. Galland \& Co.'s improved Hydraulic Elevators. Office Puladway, N. Y. (Evening Post Building, room 22.) Pulverizing Mills for all hard substances and grinding
purposes. Walker Bros. \& Co... $2 \mathrm{~d} \&$ Wood St., Phila., Pa. Manufacturers of Improved Goods whodesire to build p a lucrative foreign trade, will do well to insert a well Export Edition. This paper has a very large foreign cirulation.
Mill Stone Dressing Diamonds. Simple, effective, and
durable. J. Dickinonon, 64 Nassau St. N C. M. Fint, Fitchburg, Mass., Mfr. of Saw Mills and and The best Friction Clatch Pulley and Friction Hoist-
ing Machinery in the world, to be seen with power applied, 95 and 97 Liberty $S t$., New York. D. Frisble \& Co., New Haven. Conn.
Eagle Anvils, 9 cents per pound. F'olly warranted. Walrus Leather for Polishing Agricultural Implements and all kinds of metal. Greene, Tweed \& Co., N. Y. Rubber Hose, Suction Hose. Steam Hose, and Linen
Hose; all sizes. Greene, Tweed $\&$ Co.., 18 Park Pl., N. \mathbf{Y}. The scientific Aurrican Export Edition is pub-
Hished monthly, about the 15th of each month. Every nished monthly, about the 15 th of each month. Every
number comprises most of the plates of the four preced-
 other appropriate contents, business announcements,
etc forms a large and splendid periodical of nearly one hundred quarto pages, each number illustrated with about one hundred engravings. It is a complete record
of American progress in the arts. No gum! No grit! No acid! Anti-Corrosive Cylinonly oil that perfectly lubricates a railroad loco-
motive cylinder. doling it with hair the quantity required of best lard or tallow, giving increased Dower and less wear to machinery, with entire free-
dom trom or corrosion of any sort, and It is equally superior for all steam cylindcrs or
heavy work where body or cooling qualities are indispensable. A. fair trial insures its continued
use. Address $\mathbf{E . C}$. Kelloge, sole manufacturer, 17
Cedar St., New York. The 1879 Pennsylvania Lawn Mower.-Light draught and easilly adjusted. Machines warranted. See illus-
trated cditorial, Scl. Am., No. 14 . Lloyd, Supplee \& Walrated cditorial, Scl. Am., No. 14. Lloya, Supplee \& Wal-
ton, Philadelphia, Pa.
Electm-Bronzing on Iron. Philadelphia Smelting Special Notice.-Send for Electroplater's Catalogue Improved Steel Castings; stiff and durable; as soft ess than 6500 lbs . to sq. in . Circulars free. Pittsburg Steel Casting Company, Pitteburg, Pa.
Wood-working Machinery, Waymouth Lathes. Spe-
dalty, Wardwell
Patent Clalty, Wardwell Patent Saw Bench; it has no equal.
Improved Patent Planers; Elerators; Dowel Machines. The only economical and practicar, Mass. market is the new "Otto" silent, bullt by Schletche schumm \& Co., Philladelphia, Pa. Send for circular.

HINTS TO CORRESPONDENTS.
No attention will be paid to communications unless
accompanied with the full name and address of the writer.

Names and addresses of correspondents will not be

 We ren to inquirers.We renewour requestthat correspondents, in referring name the date of the paper and the bage, or thenger to of the question.

Correspondents whose inquiries do

reasonable time should repeat them.
Persons desiring special information which is purely or a personal character, and not of general interest, hould remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and
Any numbers of the Scientific P nerican Suppi offce. Price 10 cents each
(1) G. R. P. asks: What is the best manual or field assaying and mineralogical handbook for; one with some theoretical knowledge of the sabject \& A
Consalt the works of Professor Blossom and P. de P. Ricketts, School of Mines, Columbia College, New
(2) R. A. F. asks what the size of the ports leading from the steam chest to the cylinder of an ingine shoula be, 2 友 inch bore, 4 inch stroke. A. $1 / 8$ inch long.
inch
(3) S. A. B. asks: Is there anything that prevents hard water from foaming in the boiler? A. Introducing a small quantity
(4) C. H. \& G. W. H. as k for the rule for calculatingthe horse power of an engine. A. Multiply the area or the piston by the average pressure per square inch, inute, and divide by 33,000 ; quotient is the
(5) F. C. S. asks: 1. What kind of rubber is used for rabber stamps, and how is it prepared to receive the impression? A. Purified gum rabber (caoutdition about 5 per cent of sulphor is thong incor porated with it by a kneading process. 2, Will the rabber used by dentists answer the parpose? A. No; it usually contains an excess of sulphur.
(6) "Subscriber" writes: Sunday night, March 16, a hard rain fell in this section of countryThe next day and for several days after there could be seen a yellow substance very much resembling pul-
verized sulphur. A few pronounced it eggs. Your opinion is desired. A. It is the pollen of the white pine
(7) cinu strus
(7) B. asks if there are any compressed air engines manufactured in the United States, and if
30 where and by whom? A. If you mean engines driven by compressed air, there have been some built by way of experiment; we know of no party who makes business of building them.
(8) W. K. H. writes: We have a 10×24 engine, driving wheel $91 / 2$ feet, saw pulley $11 / 2$ feet, with 80 lbs saw 56 inches, 15 teeth with $11 / 8$ inch feed; aw with 30 teath ought we to have power couse same or is there too much leverage against the engine? A If your cutting instrument (the saw) cuts with equa effect in both cases, the -power required will be
double with $21 / 4$ inch feed, that for 1% inch feed.
(9) C. B. asks: How may I separate trate of silver from nitrate of copper so that I may pro acid to the warm solution, gather the precipitate on filter, wash it with fresh water, dry, mix with a little powdered borax and rosin, and heat strongly to fusion in a small crucible; cool, break the crucible, hammer the button of silver, dissolve it in warm nitric acid, evapo-
rate the solution nearly to dryness in a porcelain dish, rate the solution nearly to dryness in a porcelain dish,
and dissolve the residue (nitrate of silver) in distilled or
(10) F. W. B. writes: Engine 27 on this ooad has a diameter of piston of 14 inches and exhaust road has a diameter of piston of 14 inches and exhaust
$21 / 8$ inches. Engine 76 has a diameter of piston of 16 inches and exhaust 3 inches. Which engine has the greatest area of exhaust in comparison with its area of
piston surface? A. The 16 -inch cylinder with 3 inch exhaust; the difference is very small.
(11) F. C. R. asks: 1. What is the horse power of an engine, the cylinder of which measures 3×194 inches, thickness of piston $1 / 2$ inch\% A. Power
would depend upon pressure of steam and number revolutions per minute. 2. Would such an engine have power enough to propel a small boat. say 16 feet long
and 3 wide, weighing about 80 lbs 9
(12) C. F. F. wants to know (1) if ordinary river water will do as well for reducing alcohol for vine-
gar as rain water? A. If the water is suitable for rinking purposes, yes; from the same river? A. Ordinarily, yes. 3. Also about what amount of rain falls per annum upon a foot of
surface in this state (Iowa). A. Consult the meteorologial reportsot yourstates). A. Cover the (13) R. \& T.-It consists chiefly of lime carbonate, iron oxide, alumina, silica, and organic
matter. Use a feed water heater, and blow off frequently. (14) D. K. E. F. asks (1) whether a small dinary row boat of $16 \mathrm{x} 31 / 4$ feet without much difficulty or cost. A. About 3 horse power nominal. 2. Also about what the engine would cost and how many miles per hour it would run a boat of this size? A. Cost (15) R. G. asks (1) for a simple rule for findgithe gear wheels for cutting different threads on the
$\frac{\mathrm{T}}{\boldsymbol{t}} \frac{\mathrm{S}}{t^{\prime}} \mathrm{I}=\mathrm{N} ; \quad \frac{t}{\mathrm{I}} \frac{t^{\prime}}{\mathrm{T}}=\mathrm{S} . \quad \mathrm{T}$ represents the number
of teeth in wheel on traverse screw; \mathbf{s}, number in stud
wheel gearing in mandrel; t, number in wheel upon mandrel. and t^{\prime}, number in gearing upon stad pinion, gearing in T; I, number of threads per inch upon tra-
verse screw; N, number to be cut. 2 . What is the horse power of an engine, the cylinder being 10% inches diameter, stroke 24 inches, number of revolutions per minute 63, mean pressure 60 lbs . Also the same cylinder and stroke, with 66 revolations
Aee reply to \mathbf{C}. H. on this page.
(16) F. R. asks how to find the horse power a bele will pull, when the width and speed are known. A. A simple and safe rale ls, 1 inch width of
belt running 600 feet per minute equale 1 horse power, hence multiply the width in inches by speed in feet per minute and divide by 600 -result is the horse power. (17) H. H. C. asks for the rule for finding tonnage multiply together length, breadth, and depth
(18) D. K. asks: What will make a good article for quickly removing the black coating from cretion lime phosphate. The best method is to have it remove by a dentist. The use of acids for this purpose is in jurions, since the enamel is also affected.
(19) O. B. asks: Is there often or ever any ing an ordinary working steam pressure: A. Alway after eballition commences.
(20) J. S. writes: I have a No. 2 Blake pump; I had occasion to take of the steam chest, and
pump by hand, but pump would not throw nuntl I cor ered the ports air tight. I would like to know why pump will not throw until ports are covered. A. The pump took in air through openings. 2. I am using sulphur and copperas water. What would be a good pre-
paration to use, to save my boilerя A. The introduction paration to use, to save my boiler? A. The introduction
of a small quantity of soda (dissolved) or lime water ould be beneficial.
(21) E. E. C. asks: Does common sulphuric nitric or other mineral acids attack white rubber tabing nd stopples? A. If concentrated, ye
(22) "Worker" writes: I wish to fasten cloth or leather on an iron wheel (the iron is planed,
not polished); the wheel runs 5,000 turns per minute. cannot use a wooden wheel for the work. A. If poselcae lap the strip several times around, roughen the periphery of the wheel, warm it, and fasten the strip with
a melted mixture of equal parts gutta percha and black pitch. Allow the cequent to thoroughly harden black using the wheel. If the strip is not tightly lapped it
will be difficult under the circumstances to hold it firmly position
(23) B. asks: 1. Is there any oil cheaper than alcohol to run toy engines that gives as little smokeq A. No. 2. What power and what will be the
cost of engine, boiler, and hand pump to run a row boat cost of engine, boiler, and hand pump to run a row boat
that will carry 3 or 4 persons at say 6 or 7 miles per that will carry 3 or 4 persons at say 6 or 7 miles per
hour? A. About 8 horse power; cost about $\$ 550$.
(24) E. P. writes: I have a quantity of bones, about 10 bushels, which I would like to reduce to a state suitable for fertlizing. What shall I use to dis-
solve them! A. Ground bone or "bone dust " is exsolve them! A. Ground bone or "bone dust "is ex
tensively used for fertilizing purposes. The ground bone may be converted into socalled ammoniated enperphosphate by mixing it thoroughly with about 40 per cent of common sulphuric (oil of vitriol), somewhat diluted with water, and permitting the misture to stand for a week or more that the reaction may be complete.
Warm hydrochloric acid will dissolve the bones, but Warm hydrochloric acid will dissolve the
this is not used, as a solution is not required
(25) J. A. F. writes: I am putting up a steam engine and boiler, and in putting in the pipe for the water-glass and gauge cocks, I wished to have the that came came from the steam dome larger than the one that came from the water in the boiler. The proprietor
held that they should be the same size. Who is right? A. It makes no difference whether of same size or not; but they should be large enough to keep free at all times. 2. He holds that if a gauge were placed in the bottom of the boiler and one in the dome,they would both show the
same pressure; I say that the one in the bottom of the same pressure; I say that the one in the bottom of the
boiler would show the weight of the water the most. Am boiler would show the weight of the w
right or wrong? A. You are right.
(26) M. A. B. writes: While riding on a lo comotive, several days ago, I noticed small flakes pass ap and down in the glass water gauge. On asting the ennass thout this he said hat his were small pieces of the glass gets quite thin when it finalls on until there something in the glass or water, or is this always the case? A. Water gauge tubes usually decay or wear away at the ends in the stuffing boxes; we have never seen or heard of such flaking off as you describe.
If any of our subscribers have noticed such action If any of our subscribers have noticed such
upon tubes, we shall be glad to hear from them.
(27) J. A. C. writes: I have read your ar icle on Peter Cooper's life with great interest. I wish jou could extend it. But to my mind it suggests a question not directly mentioned by you; the loss of time and effort in learning three trades and the doubts and
difficulty in learning any. Can you show how a boy difficulty in learning any. Can you show how a boy
may know whether to learn a trade or not, and how he may know what trade to learn? A. The boy had better learn the trade he fancies; or, if he has no preference, the trade which he can undertake under the most
favorable conditions. Whatever his ultimate occupafavorable conditions. Whatever his uitimate occupa-
tion may be, the learning of any trade in youth will be an advantage to him; by trade we mean of course some form of manual labor whereby a man may earn an
honest living. The greater the inteligence and skill involved in its mastery, the better, if the boy has the physical and mental capacity for it. In every case
boys should be encouraged to learn a trade, as a neces boys should be encouraged to
(28) M. M. W. writes: Please answer hrough the columns of your paper the following queswheel or one with a large wheel? A. The latter.
(29) F. J. R. asks (1) how to make a calculation on a safety valve, so that 1 may set it, and tell gaage. A. Multiply weight in lbs. by its distance in inches from fulcrum, divide the product by the distance in inches from the fulcrum to the bearing point
on the valve, divide this quotient by the ares of the on the valve, divide this quotient by the area of the
valve in square inches, the result is pressure per square valve in square inches, the result is pressure per square
inch; this does not take into consideration the cffective inch; this does not take into consideration the cffective
weight of the lever and the valve, but the error is small weight of the lever and the valve, but the error is small
and may be neglected. 2. Will you also recommend me some good books, that will explain machinery, and where I can buy them? A. Haswell's Pocket Book will be useful for you. It can be purchseed from dealers who advertise in our columns.
(30) G. A. H. asks: Which will create the etter dranght, a seven inch pipe over a six inch fue or a narily in favor of the 7 inch pipe.
(31) P. J. writes: 1. At this place large uantities of sawdust, chips, and similar refuse from planing mills are being deposited in the shallow water at the shore here. What is going to become of this in time, and what are the sanitary effects of the material
while the changes are going on? A. It depends much while the changes are going ons A. It depends much
npon the nature of the soil or drift-if ndisturbed it npon the nature of the soil or difit-if undisturbed it
may ultimately pass into a variety of brown coal or may ultimately pass into a variety of brown coal or
lignite. Under the circumstances we think the slow pro cess of change will not very materially affect the healt near residents. 2. Are any injurious ellects to heall etc., in a back yard exposed to the weather! A. Proba bly not, to any extent. II
(32) J. A. L. asks: How are the marks of a boxwood rule put on, and how are they colored which indents the wood and leaves the ink
(33) J. D. C. asks for a rule for calculat ing the power of a double toggle joint press, the toggle being operated by a right and left hand screw passing through nuts in the middle joint of the toggle. A. By the principle of virtual velocities: the power applied to travel of the handle in a (small) unit of time, the product divided by the movement of the platens in the same time; the result, less the friction of the machine, will give the pressure on platens in that particular position but the power is constantly changing with the change in the angle of the links. This rule is not strictly accu-
(34) "Squirrel" writes: A hunter discovers a squirrel upon the trunk of a tree. As he follows around the tree the squifrel keeps on the opposice side tance in circling the tree than the squirrel. Does or docs he not go around the squirrel in making a circle of the tree? A. He goes round the squirrel. (1) He goes round everything within the circle of his course, whether the included objects are at rest or in motion. It make no difference whether the squirrel keeps-the tree be the time. or none of the time, the thunter goes part of him. 2. It is admitted that the hunter goes round the tree, he must, at some stage of the journey, go between the squirrel and the tree, which is contrary to the conditions of the case.
(35) F. asks: 1. What instruments are ased in making perspective drawings? A. The camer 2. And what is the best instrument for describing an ellipse? A. The trammel and the ellipsograph.
(36) W. S. G. asks if there is any cheap means of deudorizing carbon or ground oil. A. It can not be completely deodorized, but the unpleasant odor
may be nearly destroyed. Violently agitate it for some time with about three per cent of sulphuric acid, an after settling draw off from the scum and impurities taining a few per cent of chloride of lime (calcium hypochlorite), settle, draw off, and agitate with weak aque ous carbonate of soda solution. Finally, agitate with perfectly clear.
(37) J. F. writes: A friend of mine say that the driving wheels of a locomotive should be mad as light as possible. and that the best place to put the weight is in the boiler and frames. I say that the bes is less required on the journals. Who is rights A Your friend is right; weight placed below the spring is much more injurious to the rails than the same weight above the springs, hence, the wheels, axles, boses, and eccentrics should be as light as consistent with, their
(38) W. F. C. asks: 1. How long will a U magnet retain its power! A. If provided with an
armature and not jarred or suddenly separated from its armature it will retain its magnetism indefinitely. 2 Whire can I get a good magnet? I don't seeanything of the kind advertised in your columns. A. Dealers in philosophical instruments keep them, and they may
usually be purchased from dealers in gencral hardware 3. What metal is most easily attracted by the magnet or on what substance has the magnet the most powe
to attract or repelp A. Another magnet. 4. How can to attract or repel? A. Another magnet. 4 . How can
make a powerful electro-magnet? A. By bending a bar of round iron into a U form and placing on each limb a bobbin of insulated copper wire. The power of a mag net depends on its size. upon the size of the battery in the wire used and the number of convolutions of the
(39) R. C. writes: In a recent number of made in England for ozone. Could you tell me where any regular observations are made in this country, an what method they use? A. Few systematic observa tions upon atmospheric ozone have been prosecuted, or
if carrled on, have rarely been published. You will find If carrled on, have rarely been published. You will find
an exhaustive article on this subject in No. 154 of the an exhaustive article on this subject
Scientirio American Surplement.
(40) H. S. H. asks: 1 . What is Ohm's " law,' or where can I find it? A. Ohm's law is as follows The strength of the current is equal the the electro mo
tive force divided by the resistance. You will find Ohm's law in almost any work on physics. 2. Which o the following batteries will do the most work at the ceast expense: Daniell, Grove, Carbon, or Leclanche
A. It depends much on the kind of work required. Fo open circuits the Leclanche is best; for closed circnits the Janiell is best. 3. Winit in any way affect the working of any of the above, to close them up wate tight? A. Most batteries generate gas,which must have
an escape. 4. Will the Leclanche battery be affected by any motion (say that a smail boat) that will cans think that motion would seriously affect the working of the Leclanche battery
(41) H., I. \& Co. ask: When running a high
mproved condenser, condensing with cold water at CO
emperature Fah., how many times the volume of co ensed steam will be required in cold water at 60° in 0 rder to procure 1 lb . vacuum? Also how much to procure
10 lbs . vacuum? A. Compute the temperature of the water of condensation by rule in Haswell's Pock sook, page 577; from this temperature ascertain from this from 147 lbs , the result will be the amount of acuum obtained. Note that your 80 lbs . pressure above the atmosphere, and its temperature is 323° Fah. he temperature due to 1 lb . val
due to 10 lbs . vacuum $160^{\circ} \mathrm{Fah}$.
(42) B. M. A. asks if there is a flux tha will make tinsmith's solder flow as freely on cast iro sit does on tin. A. A good flax for this parpose in
made by putting zinc into muriatic acid ontil bubbling ceases.
(4.3) D. B. L. asks how the precious metals re separated from each other and from the base metals ents of Metallurgy," by J. A. Phillips, London, 187 .
(44) W. H. C. writes: I contemplate mak ga lightning rod by riveting strips of sheet copper to ether and nailing the same to my house, using prope oints. Is there any danger of shingle being set fire by ghtning passing down the same, or other objection to rod constructed on the above plan? A. If the coppe cood it would be efficient
(45) R. E. H. asks: $1 .{ }^{c}$ Will a steel spring give back as much force in the recoil as was spent in
compressing it, and if not what is the waste? A. Yes, mpressed and then allowed to expand give back much force in the expansion as it received in the compression? A. Yes.
(46) W. S. writes: 1. We use plaster of Paris moulds for pottery and earthenware. What can chips: A. Try a hot solution of alum and water glass. What work will give me the most information on the年erent metals and clays used in the industrial arts ${ }^{3}$ their fusing points, manupacture, and cost? What is the best work on the analysis of clays, soils, etc. . A
You may consult Wagner's "Chemical Lechnology," Cook's report on New Jersey clays, and Caldwell'

Analysis."

(47) C. B. F. asks: 1. What is the best and low water pressure? A. Consult our advertisin columns. 2. What will take linseed oil and putty stain out of a marble washstand? The above materials wer sed to cement water basin to the marble slab. A. Mix pa quantity of the strongest soap lees with quicklime, wenty-four hours; clean it afterwand the stone fo tty powder and water.
(48) J. M. H. asks: In a well eighty feet deep where should the cylinder be placed, at the top o the bottom-depth of water 20 feet? A. Place the
(49) W. B. C. asks whether a liquid tight acking for piston has ever been discovered. If ther iquid tight packing, is a cap packing of either leathe or India rubber.
(50) M. F. L. asks at what point the exhaust ne, and is it necessary that the egress opening should be larger than the ingress to the tank. A. If the ex haust is merely blown into the tank, above the water,
he egress may be somewhat the smaliest if you wish to se the water quite hot.
(51) P. F. S. writes: A is running an enhaust 2% inches diameter. \mathbf{B} is running an engine 16 nches diameter, and 24 inches atroke, with 3 inch lameter exhaust pipe. A contends that his exhaust is arger in proportion to his cylinder than B's. B con to the cylinder. Which is right? A. The proportion of exhaust in B's engine is the largest.
Minerals, etc.-Specimens have been re eived from the following correspondents, and xamived, with the results stated:
C. M. M.-It consists chiefly of quartz and orthoclase nd talcose schist, with a smail quantity of ferrugionons " matters. The rock probably contains a trace of silver "Exeter."-It is mispickel or arsenical pyrites-ar
senic 46.0 , sulphur 196 , iron $34 \cdot 4 .-$ H. S.-The wate contains much 46 , 196 , iron $34 \cdot 4 .-\mathrm{H}$. S. The wate typtic taste is due chiefly to the latter salt. It is no fit to drink. The brown precipitate is iron oxide-J. M.-The orthoclase rock contains micaceous or specular
hematite (iroL sesquioside) and ilmenite-titaniferous ron.-G. T. B.-We think your specimen is not me teric iron.-W. C.-It is graphic granite. Besides
graphite (plumbago or blacklead) it contains much iron graphite (plumbago or blacklead) it contains much iron
sulphide-pyrites-anà hornblende.-G. L. R.-The vermilion contains much oxide of mercury, which probably reacts upon the oils used and upon the sulphide of mercury, forming a basic sulphate.

COMMUNTCATIONS RECEIVED.

On a New Use for Petroleum.
On the Siphon. By J. E. H.
English Patents Insued to Americans.
xles. H. Watkeys, Syracuse, N. Y.
Candlestick, A. J. Smith et al., Ukiah Ctty, Cal. Clutch mechanism, T. w. Capen, Stamford, Conn
Engine, hot air, H. W. Sherrill, Jersey City, N. J. Gas checks for ordnance. B. B. Hotchkiss,
Gill Millstone driver, P. H. Chld Bress, Waynesboro', Va.
Pumping machinery, E. J. Molera, San Franclico, Cal. Pumping machinery, E. J. Molera, San Franclat
Rallway switch, J. B. Riverton, N. J. crews, c. C. Dayten, Plymouth, Mass.
[OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent of the United States were Granted in the Week Ending March 18, 1879 ,
AND EACE BEARING THAT DATE. [Those marked (r) are reissued patents.]

A complete copy of any patent in the annexed list,
cluding both the speciffcations and drawings, will be
including both the specifications and drawings, will be
furnished from this office for one dollar. In ordering, lease state the number and date of the patent desired phe remit to Munn \& Co., 37 Park Row, New York city,

Addressing machine, D. F. Bell

Annunccator. electric. L. Finger.....
Arle lubricator, vehicle, J. M. Smithl.
Bag holder, D. \& C. Garver (r)
Baling press, P. K. Dederick.
Barrel and cask scrubber, C. Pohl
Barrel cover, Black \& McManigal. Bellows valve, Badger \& Benjam
Bird cage support. F. W. Long.
Bit stock, L. C. D
Boiler, S. J. Gold
Boiler furnace and feed water heater, P. Suliviva
Book cover, removable, Douty \& Drake............
Book cover, removable. C.H.Drake. $213,402,213,40$
Joot and shoe soles and heels, manufacture of
J. M. Watton..........................
Boot and shoe laster, Trask \& Wheeler (r).
Boot strap, J. B. Belcher.
Bottle stopper, J. E. Wood
Bow, archery, F. Malleson
Brick mould, Allen \& Durly ..
Butter package, A. G. Stilson
Button fastening,. . W. Hatch (r)..........
Can case, J. M. Bean...
Car brake, B. F. Stewart.
Car coupling, I. A. Spear
Car, sleeping, C. C. Convers
cars, mechanism for driving fun blowers in rail
cars, safety guard for st
Card or ticket holder, S. Stiegilitz
Carpet sweeper. A. H. Knapp.
Carriage step, R. N. B. Kir
Carrlage top, F. Smiley
Casting stereotype plates, B. B.
Cement, Iortland, C. H. Slicer
Chimney cleaner, T. Toyson..
harn, A. K. Morse
Churn, Older \& Mego
hurn, S. R. Ruckel

Cigarette, medical, F. J. Clock dial, S. . Root.... Clothes stick

ocks, box and p F. Hickman.

Coin packare, C. H. Upton
collar, horse, M. Turley
Copper from its solution, apparatus for obtaining metallic, c. c. Blitner..39,
Cottoun chopper, Young \& Mo.....
Cotton press, T. B. Taylor
Cultivators, , MCGrew......
Curtaln fixture, J. S. Henry
Cut-ofr for steam engines, automatic. G. H. I......... Cobb Dental saliva ejector. G. B. Snow
Dovetaliling machine, miter, F. A. Gleason.........
Draukht equalizer, J. C. Bloom.............
Drawer pull, T. S. Alexander213,36,
Drawers, G.D. Eighmie............
Evaporating pan, J. L. Becker...
Feed water apparatus attachment, B. Clegg.....
Fire wheal, C. B. Lewis
Garden roller. J. W. Hobson.
Garment shaper and presser, J. Braun.
Gus Renerating furnace, Brook \& Wilson
Gus generating furnace, Brook \& Wilson
Gas rexulating burner, J. J. Kennevan.
Gearng, rarce, J. Kress................
Glavernor for steam engines, J. Milton.
Governor

Grain in vacuo, process ducing, J. B. Toumin

rain, separator, G. C. G. \& W. Stoll (r)
Grain separator, G. W. Baterad
un stock, J. C.Thompson.
Harrow tooth, D. D. Johnston
Hide stretcher, w. Coupe.
Hoisting drum and clutch apparatus, H. Whitele
Hose armor, In. Wakeman...........
Hub attaching device, R. Howland
L. A A Alluc ornaments in wood or ston

Klln for carbonizing street refuse, \mathbf{A}. Fryer
Knitting machine, J. A. Parr....................
Lamp firture, extension, F. R. Seldensticker.
Lamp, hanging, Clark \& Kintz
Lap jont for bollers,

Leveler, road, F. B. Kendal

Lime, oyster shell, C. H. Slice
Locomotive variable exhaust, E. R. Addison. Mall bag deliverer and receiver, J. Southwick
Match safe and candle holder, F. A. Farrell... Match sare and candie holder, Y. A. Farre.
Metals, coating, A. B \& w. Brown.....
Middlings separator, Forman \& Williams. Miller's proof starf and red stari, T. M. Logan Mowing machine, hand, G . W. Jennings (r)... Mucllage holder and distributer, H. S. Carley
Musical instrument, mechanical, , H. . Needham
Musical instrument, mechanical, E. P. Needham
Mustache cup and $\boldsymbol{\alpha}$ lass, A. Schenck.
Nose bag for horses, e. J. B. Whitak
Nozzle, noise quieting, T. Shaw..
Nut lock, E. C. Smith...........
Ore separator, H. Hochstrate....

satuettisements.
 Enurrovings may head advertisement at the same rate per inne, by measurement, as the letter press. Adver
tisemen me mest becived at publication afice as early
as Thursday morning to appear in next iseres. -TETF

HANCOCK INSPIRATOR

Lise special attention is called to the following letter from a practitested the Inspirator.

[copy.]

 JEW ZEALAND STEEL RAILS. WA TENDERS INVITED. TO IRONMASTERS.
factured in Neop The factured in New Zealand.
PUBLIC WORKS OFFICE Wellington, New Zealand,
Written TENDERS November 1878.

 such mannfuctureis, Under Secretary for Public Works.
JOHN KNOWLES,

4

Ten Thoostad Stem Enoelee Owners Wanted.

 FREEE

THE BIAESST THNQ OUT, Motroted
Bishop Gutta Percha Works.

BELTING AND PACKING COMP'Y.
 FMEPT

W

CHROME STEEL WAREHOUSE, 98 WILLIAM ST., NEW YORK.

 MACHINERY AT VERY LOW PRICES.

 shbpards celebratbd Sio Serew Culting Foot Lathe

THE DNEE \& CONARD FO'S

BLAKE'S STONE AND ORE BREAKER AND CRUSHER.

 BIaAKE CRUSHER CO., New Haven, Conn.
OUR FRESH STOCK OF
WHITE HOLLY ARE. AND FANCY WOOD8,

GEO. W. REA D \& CO.,
186 to 200 Lewis Street, New York.

WOOD WORKING MACHIIIERY R RYN WOMNNG OOOLS
 H.B. SMITH MACHINE CO

TTIN FURED!!

Phaophot- Bionse. 8PRINA WIRE

 Shafts, Pulleys, Hanyers, Eitc.

 BRADFORD MILLL CO.

 Paris, , , 2878 Australia,1877 Phila., . 1876
Santiago, 1875 Vienna, . 1873
J. A. FAY \& CO'S

WOOD WORKING MACHINERY

 ${ }^{\text {cosen }} \mathbf{A}$.

The fact that this shafting has 75 per cent. greater
strength, a finer finish and is truer to gauge, than any

 DYSPEPSIA. BY DR. C. F. KUNZE.

 ADPAPID ADDITION:

Lathes, Planers, Shapers
 MOSELEY IRON BRDDGE AND CORRIUGATED IRON

STEAM PUMPS.

HENRY R. WORTHINGTON, 39 Broadwav, N. Y. 83 Water St., Boston.
 densing. Used in over 100 Water-W orks statio Price list issued Jan. 1, 1879, with a reduction exceeding 30 per cent.

Fine Pamphlets prthed 75c. a Page
 LAP WELDED CHARCOAL IRON

Model Engines.

CASTINGS

DYERS AND MANUFACTURERS FIND Thomas' ONE DIP dyes, Jet Black No. 4 and Blue Blac
No
No
, the best and fastest blacks known. They sorte

EDMUND DRA1PER,
Manafacturer of FIrst-class Engineers'
Established in 18800. ${ }^{2} 266$ Pear St., Phila., Pa.
Steel Stamps

Primsing

Z゙ricutific Sumericam

The Most Popular Scientific Paper in the World.

VOLUME XL, -INEW SERIES

The publuhers of the SCIENTIFIC AMERICAN beg
to announce that on the Fourth day of January, 1879, a new volume will be commenced. It will continue to be the alm of the publishers to render the contents of the
new volume as, or more, attractive nd useful than any Only 83.20 a Year inciuding Pontige. Weekly
This widely circulated and splendidly illustrated
paper is published weekly. Every number contalns six. teen pages of useful information, and a large number or orikinal engravings of new inventions and discoveries representing Engineering Works, Steam MachInery,
New Inventions, Novelties in Mechanics, Manufactures, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity, Telegraphy, Photography, Architecture, Agriculture, Hortculture, Natural His ory, etc All Classes of Readers find in The Sctentifto formation of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as
posasble abstruse terms. To every intelligent mind,
thls journal atrords and this Journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in
everr community where it ctroulates. Terms of Subscription.-One copy of THE Scren. postage prepald, to any subscriber in the United States or Canada, on receipt of three dollars and twe itty
cents by the publishers; six months, $\$ 1.00$; thre cents by the
months, 81.00 .
Clubs.-One extra copy of ThescientificameriOAN will be supplied gratis for everv club of five subscriberr
at $\$ 320$ each; additional coples at same proportionat rate. Postage prepaid.
Ode copy of The Scientifio Amerioan and one copy
of The Scirntifio Amerioan Suppienent of The Scientifio Amerionn SUPPLEuent will be sent
for one year, postage prepald, to any subscriber in the for one year, postage prepad, to any subscriber in the
United States or Canada, on recelpt of seven dollare by the publishers.
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes, Express. Money carefolly placed Inside of envelopes, oecurely sealed, and correctly addressed, seldom poes
astray, but is at the sender's risk. Address all letters and make all orders, dratts, etc., payable to

MUNN \& CO.,
37 Park Row, New York.
To Fireign Subscribers.-Under the faclitites of
the Postal Union, the Scientific American is now sent Che Postal Union, the Scientipio Am ERICAN is now sen ers in Great Britaln, India, Australia, and all other British colonies; to France, Austria, Betylum, Germany, Mexico, and all states of Central and south Δ merica. \%4, gold, for Scientific AMerictin, 1 year ; 29, gold, for both Scirnticic American and SUPPI,EmENT for 1 year. This includes postage, which we pay. Remit by
postal orderor draft to order of M mana $\&$ Cor, 87 Park

caduertisemeuta．

ROCZ DRILLS．

National Drill and Compressor Co．，

John A．White 1207 LIBERTY ST．， nEW YORE．
J．H．Blaisdell，
HM H JOHIS
Liquid Paints，Rooing，Boiler Coverings，

Pond＇s Tools， DAVID W．POND，Worcester，Mass． AIR COMPRESSORS
HOISTNG ENGNESANDOTHER Mill Stones and Corn Mills． Miditate and
J．T．NoYE．\＆son，Bugaio，N．Y．
IMPORTANT FOR ANL，Corforations AND

FOR 8 ATIT．
 Sultable for Telephones，Sonoders，or Relasss．
 Baker Rotary Pressure Blower．

Warranted superior to ans
WILBRAHAM BROS 2818 Frankford Ave．

BOLT CUTHERS．
 HOWARD IRON WORES，Bnfialo，N．Y．

＂The 1876 Injector．＂

[^0]
BOILER COVERINCS．

WITE THE 6 AIR SPACE＂IMPROVEMENTS．
THE CHALMERSGPENCE CO．，Foot E．9th St．0 New York．Sole owners of the Air Space Patents．

NOVELTIES，NOTIONS， Watehes，Cheap Jewerry，stationery Packages．

HOW TO SELL PATENTS．This iltile book full ex－
plann how all patent can beold for good prices．Prye
25 cents．L．D．SNOOK，Barrington，Yates Co，
FOR TEN DOIIIARS CASH，
 Adares inip ition wit

 TO LARGE CONSUMERS OF FINE UIGHT

Steel Castings，
 Holly＇s Improved Water Works．

 AHEAD OF ALL COMPETITION！

LaWN Mower ？

J．LLOYD HAIGH，

WII ROPE

Sto Now York，or Pa
Wood－Working Machinery，

DEAN BROTHERS，

 Andind poits，RDD， DeanSteam Pumps

RUFFNER a dUNN，Patentces
 MACHINISTS＇TOOLS．

Lathes，Planers，Drills，\＆c． NEW HAVEN manctacturing con： ICE AT $\$ 1.00$ PER TON． The PICTET ARTIFICIAL ICE CO． zoom 51，Coal and Iron Eixchange，P．O．Box 308s，N．y

FARM LAW．ADDRESS OF HON．ED．

 TRUSTEES IN NEW YORK：
 JULIEN IE CESNE Resident Secretary T．J．TEMPLE，Manager for the Middle States． WESTERN UNION BUILDING，N． \mathbf{F} ．

PERFECT

NエWSPAPINR VOLS
The Koch Patent Flie，for preserving newspaper

MONTE \＆CO．

THE TANITE CO． STROUDSBURG，PA． EMERY WHEELS AND CRINDERS．

ROCK DRILLING MACHINES
AIR COMPRESSORS

PATENTS at AUCTION．
 SHAFTING PULLEYS，HANGERS，etc．
 spare the croton and save the coot．
Driven or Tube

The Columbia Biciccle， Mas brit rope prato．
 Bogandus patent untreral kecin－

PYrometers，For aboming haat of

 WOOD ENGRAVING At Photo－Engrailing Process Rates，by
T．PoNALDSON， 33 Part Row，N．Y． MEIENTS CAVEATS，COPYRIGRTS，TRADE Mesars．Mann \＆Co．，in connection with the publica－ dion of the Solisntifio Ancritonn，continue to examine Improvements，and to act as Solicitors of Patents for
Inventors． Inventors．
In this lin
In this line of business they have had over tairtr for the preparation of Patent Drawings，Specincations， and the Prosecution of Applications for Patents in the United States，Canada，andForeignCountries．Mesers． Monn \＆Co．also attend to the preparation of Caveats，
Trade Mark Regulations，Coprights Trade Mark Regulations，Copyrights for Books，Labels， Reissues，Assignments，and Reports on Infringements
of Patents．All business intrusted to them is done or Patents．All business intruated to them is done
with special care and promptaes，on very moderate terms．
We send free of charge，on application，a pamphlet
containing further information abont Patents and how toprocure them；directions concerning Trade Markg， Copyrights，Designs，Patents，Appeala，Reisenes，In－
Pringementa，Ageignments，Rejected Case fringements，ABsignments，Rejected Cases，Bints on
the Sale of Patents，etc．
Foreign Patents，We also Synopsis of Foreign l＇atent La ws，showing the coot and
methiod of securing patents in all the prinelpal coun－ methiod of securing patents in all the prinelpal coun－
tries of the world．American inventors should bear in mind that，as a general rule，any inventionthat is valu－
able to the patentee in this country is worth equally as able to the patentee in this country is worth equally as
much in England and some other nuch in England and some other foreign conntries．
Five patents－embracing Candilan，English，German French，and Belgian－will secure to an inventor the ex－ clusive monopoly to his discovery among abont ons
GONDRED AND JITTY murions of the most intelligent people in the world．The faclitities of business and steam communication are sach that patents can be ob－ tained abroad by our citizens almost as easily as at home．The expense to applif for an Engish patent is
$\$ 75$ German，$\$ 100$ ；French，$\$ 100$ ；Belgian，$\$ 100$ ；Cans． dian， 850 ．
Copies of Patents．－Persons desiring any patent iesoed from 1836 to November 28，1867，can be supplied
ith offcial copies at reasonable cost，the price de－ With official copies at reasonable cost，the price de－
pending upon the extent of drawings and length of specifications．
Any patent issued since November 27， 1867 ，at which
time the Patent Offce commenced printing the draw ime the Patent Office commenced printing the draw－
ings and specifications，may be had by remitting to
this office $\$ 1$ ． A copy of the claims of
will be furnished for $\$ 1$.
When ordering copies，please to remit for the eame as above，and state name of patentee，title of inven－ tion，and date of patent．
United States patents eent free Reference Book，gitt edges，contains 140 pages and many engravings and tables important to every pat－ entee and mechanic，and is a useful hand book of refer－ once for everybody．Price 25 cents，mailed free．

Address MUNA \＆CO．，
Pabliohers sCiENTIFIC AMGRRICAN， BRANCR OFFICE－Comer of F＇and 7th Strecto，

[^0]: SEGE EABLE AVERY FLHWER SEEDS PTIR HENOERSONACO． 35 Cortlandt St．，New York．
 LOWER AND FRUIT PLAN TS

 The George Place Machinery Agency

