a WEEKLY JOURNAL 0F PRACTICAL INF0RMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.


## A NEW STEAM TILLER. <br> of steam. When the rudder is influenced by the waves or the steam ports great rigidity or elasticity may be given to

 Steam is now made to perform almost everything in the by the expansion or contraction of steam, the cut-off alters its the hold of this engine, according to the requirements of the way of heavy labor, to the saving of muscle and energy that position in relation to the valve and automatically arranges particular vessel.may be more profitably employed; and since inventive the steam passages so that the piston is returned to its proper Few and simple as are the parts of this machine it is possigenius has devised means of governing steam with absolute position. The details of the cut-off are shown in Fig. 2; ble, by balancing the valves and suiting the diameter of the cyaccuracy, there seems to be no limit to its economical applica- the valve, G, which covers the cut-off, F, acts like a four linder to the work to be performed, to overcome great resisttion. way cock. The spindle of the cut-off, F, is connected with ances with a slight effort. The inventor says that this system of A recent invention in steam engineering, which exhibits ; the lever, I, and is moved by the rudder, as already de- valves is considered by experts to be novel and very valuable. in a marked degree the controllability and adaptability of, scribed. By enlarging or gradually narrowing the ends of In Fig. 3 is shown a pattern of a slide valve suited to spesteam, is Mr. Herbert Wads orth's steam tiller, an engraving of which we present herewith.
This machine (Fig. 1) is pro vided with a steam cylinder, similar to the cylinder of a steam engine, containing a piston, the rod of which is attached to a crosshead, A , that slides on ways, B , secured to the bed supporting the cylinder. The tiller, D, as it is carried to starboard or port ied to starboard or port, lides through a socket pivoted to the crosshead.
The motion of the rudder is communicated to the steam cut-off by means of the shaft, C, crank; J, rod, K, crank, I, and the hollow valve spindle. When the tiller is amidships the valve handle, H , is at right ngles to the cylinder and arallel to the tiller. By mov ng the lever, H , to right or left, steam is admitted to one znd or the other of the cylinler, which, acting on the tillr through the piston, piston od, and crosshead, moves the udder; and when the rudder eaches the desired position he cut-off will have been noved the amount necessary o prevent further entrance
 cial purposes. Its working is essentially the same as that of the valve already described. The ports are set side by side, parallel with the sides of the valve. The supply port is in the middle, the other ports lead to opposite ends of the cylinder.
In Fig. 4 is shown another application of the controlling valve and cut-off described above. Two oscillating steam cylinders are employed in working the rudder. They are placed on opposite sides of the chest, A, and are supplied with steam through the controlling valve, B. The piston rods of the two cylinders are connected with cranks placed on opposite ends of the shaft, C , at right angles to each other. Upon this shaft, half way between the pillow blocks which support it, there is a worm which engages a toothed sector, D, on the rudder-post, E. To an extension of the rudderpost is secured an arm, F, which is connected with the arm, $G$, of the controlling valve.* By shifting the lever, H , the supply of steam to the two cylinders may be in

creased or diminished, or its direction may be changed, so that the engines will be reversed or stopped. This engine is remarkable for its simplicity. The cylinders may be detached and changed if required, one size of bed answering for three different sizes of cylinder, which may vary only in diameter, the stroke being the same, so that the castings or engines of different power are the same except in the matter of the cylinders and pistons, and all the parts are in-terchangeable-a feature of modern engine building that cannot be too highly valued.
Further information may be obtained from Herbert Wadsworth, 26 Merchants' Bank Building, 28 State street, Boston, Mass.

## Srientifir smmerim.

ESTABLISHED 1845.

# MUNN \& CO., Editors and Proprietors. published weekly at <br> NO. B' PARK ROW, NEW YORK. <br> o. D. MUNN. <br> A. E. BEACII. 

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included..
Clubs.-One extra copy of THE SciENTIFIT AMERICAN will be supplied
gratits for every lutb of five subscribersat 83.20 each; additional copies at
same proportionate rate. Postage prepaid.


## MUNN \& CO., 37 Park Row, New York.

The Scientific American Supplement


Scientific American Export Edition.




VOL. XL., No. 13. [New Series.] Thirty-fourth Year.
NEW YORK, SATURDAY, MARCH 29, 1879.


## how our patent laws promote and improve

 american industries.On another page we print in full a most suggestive paper recently read before the Manchester (Eng.) Scientific and Mechanical Society, by Mr. Frederick Smith, a prominent builder of that city, contrasting the qualities, styles, and prices of American and English builders' hardware-a
paper which the Ironmonger pronounces one of the most paper which the Ironmonger pronounces one of the most
seriousindictments yet preferred against British workmanship in that department.
The field covered by the paper-the supplying of house builders' hardware-embraces a multitude of conveniences, but no real necessities. Why is it that America has been prolific in novel devices and clever improvements in this department of manufacture as in so many others, while England has gone on stolidly copying ancient forms, changing only to cheapen by the introduction of poor material and sham construction? Mr. Smith mentions several reasons that English manufacturers have given him for the state of things he, as an Englishman, so greatly deplores; but evidently he is not satisfied with any of them, and very justly; for none of them touches the real cause-the radically dif ferent attitude of the public mind toward inventions, char acteristic of the two countries.
In England the user of household inconveniences accepts them as matters of fact; or if he grumbles at them he never thinks of trying to change them. It is not his business; and if he should devise an improvement, ten to one he could not get it made. To patent it is practically out of the question, for if it were not condemned off-hand as trivial, the patent fees would make it cost more than it was likely to be worth. The mechanic who makes such things is trained to work to pattern, and not waste his time on experiments. Besides, if he should make a clever invention he would not be able to raise the necessary fees for a patent, or to get any one to help him thereto. The manufacturer "makes what his customers call for." Why should he spend his money and spoil his plant to introduce improvements? So things go, until some pestilent Yankees flood the markets with better articles at a lower price; and British consumers suddenly discover that they want something that the native manufacturer cannot make. The need was there; but invention did not follow. How happened it that the American manufacturer did not pursue the same uninventive course? What produced the radically different attitude of the Ameritions proceeded and flourished?
ions proceeded and flourished
o doubt several causes have been at work: freedom of hought and action; popular education; a blending of races; and the tide of adventurous spirits naturally resorting to a new and free land. These have had their influence undoubtedly; but all these have existed, more or less completely, in other new lands, without that outburst of creative energy which has made America the nursery of inventions, great and small. The determining cause, the one condition that prevailed here and not elsewhere, was the circumstance that almost from the start new ideas were given a market value in this country. Unlike all others, the American patent law directly encouraged independent thinking in all classes. The fees were low and the protec tion offered fairly good. Men soon found that it paid to invent; that one of the surest roads to competency was patented improvement on something of general use. If a household utensil or appliance went wrong or worked badly, every user was directly interested in devising something better; and, more than that, he was interested in making his invention known and in securing its adoption. The
workman at his bench had an ever-present inducement to contrive something at once cheaper and better than the article he was hired to make. He could patent his improvement, or the wholly original device he might hit upon, for a few dollars; and his patent would count as capital. It would make him his own master, possibly bring him a fortune. The manufacturer could not rest contented with the thing he set out to make, for the meanest hired man in his em
ploy might suddenly become a competitor. He must be constantly alert for possible improvements, or his rivals would get ahead of him. The result is a nation of inventors, at whose hands the newest of lands has leaped to the leadership in the arts, almost at a bound.
There is talk of changing all this; of emulating the conservative spirit of the Old World; of putting inventors under bonds; of stopping the rush of industrial improvement-to enable a few short-sighted yet grasping corporations to get along without paying license fees for such inventions as they happen to approve of. They profess to want inventors to go on making improvements. They are willing to ascribe
all honor to the successful inventor; but they are determined not to pay him for his work. Still more they are determined to change the attitude of the public mind toward inventors and inventions, if such a change can be wrought by plausible misrepresentations. The fact that they were able to inveigle one branch of the American Congress into assenting to their unjust and mischievous scheme is one of
the anomalies of our recent history. It should be taken as a the anomalies of our recent history. It should be taken as a
timely warning of impending danger to all the industrial interests of the country. It is outrageous that the inventors of the land, after having raised their country to the first rank among industrial nations, should have to defend their constitutional rights against Congressional invasion; but the fact exists; and the defense should be made a matter of personal interest and effort not only by every

The cattle plague, which is creating so much anxiety throughout the Eastern States, is a contagious fever, affectng cows chiefly, characterized by extensive exudations into the respiratory organs, and attended by a low typhus inflammation of the lungs, pluræ, and bronchia. It has prevailed n Europe for ages, at times developing into wide-spread scourges, causing incalculable loss. It was imported into England in 1839, and again three years later; and it was estimated that within twenty-five years thereafter the losses by deaths alone in England had amounted to $\$ 450,000,000$. In 858 the disease was carried to Australia by an English cow, and, spreading to the cattle ranges, almost depopulated them. In 1843 an infected Dutch cow brought the disease to Brooklyn, where it has since lingered, slowly spreading among the cattle in Kings and Queens counties. In 1847 several head of infected English cattle were imported into New Jersey, and, spreading among a herd of valuable cattle, made it necessary for them all to be slaughtered, the only certain method of stamping out the disease. In 1859 four infected cows were imported into Massachusetts from Holland; the plague spread rapidly, and was stamped out only by persistent effort, the State paying for over 1,000 slaughtered cattle. Since 1867 the disease has not been known there. Meantime the pest had invaded Eastern Pennsylvania, Delaware, and Maryland, where it has since prevailed in isolated localities. The absence of large herds of moving cattle in these districts, except for speedy slaughter, has prevented the disease from developing into a general plague.
The recent action of the British Council in forbidding the importation of American live cattle is likely to prove of inestimable benefit to this country, in forcibly calling attention to the grave risk that the presence of the disease on Long Island and elsewhere constantly entails. Fortunately the drift of the cattle traffic is efstward, and as yet there has been no propagation of the poison in the great cattle ranges of the West. Unless summarily arrested, however, the disease will surely reach those sources of our cattle supply, and occasion losses that can be estimated only in hundreds of millions of dollars.
The experience of all countries into which this disease has gained access appears to prove that there is only one way of getting rid of it-namely, the immediate killing of all infected cattle, and the thorough disinfection of the premises in which they are found.
The disease is purely infectious, and is never found in regions where it has not gained a foothold by importation. Palliative measures have in every instance failed to eradicate the disease, and are only justifiable, as in Australia, after the plague has reached dimensions utterly beyond the each of any process of extermination.
Professor Law, of Cornell University, one of our best informed veterinary surgeons, most emphatically opposes every attempt to control the disease by quarantining the sick or by the inoculation of the healthy. "We may quarantine he sick," he says, " but we cannot quarantine the air." To establish quarantine yards is simply to maintain prolific manufacturers of the poison, which is given off by the breath of the sick, and by their excretions, to such an extent that no watchfulness can insure against its dissemination. Besides, the expense of thorough quarantining operations would amount to more than the value of the infected animals whose lives might be saved thereby. Inoculation is still less to be olerated at this stage of the pest.
The Professor says: "Germany, Holland, Belgium, France, and England, have been treating the victims of this plague or nearly half a century, but the result has only been the ncrease of disease and death. Our own infected States have been treating it for a third of a century, and to-day it exists over a wider area than ever before. Contrast this with the results in Massachusetts and Connecticut, where the disease has been repeatedly crushed out at small expense, and there can be no doubt as to which is the wisest course. As all the plagues are alike in the propagation of the poison in the bodies of the sick, I may be allowed to adduce the experience of two adjacent counties in Scotland when invaded by the inderpest. Aberdeen raised a fund of $£ 2,000$, and though she suffered several successive in vasions, she speedily crushed out the poison wherever it appeared by slaughtering the sick beasts and disinfecting the premises. The result was that little more than half the fund was wanted to reimburse the owners for their losses, and the splendid herds of the couny were preserved. Forfar, on the other hand, set herself o cure the plague, with the result of a universal infection, the loss of many thousands of cattle, and the ruin of hundreds of farmers. Finally the malady was crushed out in the entire island by the method adopted by Aberdeen and other well advised counties at the outset."
And again, "Cattle have been inoculated by the tens of housands in Belgium and Holland, and of all Europe these re the countries now most extensively infected. France, Prussia, Italy, Austria, and England have each practiced it on a large scale, and each remains a home of the plague. Australia has followed the practice, and is now and must continue an infected country. Our own infected States have inoculated, and the disease has survived and spread in spite of it, and even by its aid. Whatever country has definitively exterminated the plague (Norway, Sweden, Denmark, Holstein, Mecklenburg, Switzerland, Massachusetts, and Connecticut), that country has prohibited inoculation and all other methods that prevail on the principle of preserving the sick, and has relied on the slaughter of the infected and the thorough disinfection of their surroundings. So will it be
with us. If any State adopts or allows any of these temporizing measures, that State will only repeat the experience of the past alike in the Old World and the New, will perpetuate the disease in the country, will entail great losses on its citizens, will keep up the need for constant watchfulness and great expense by the adjoining States for their own protection, and will indefinitely postpone the resumption of the foreign live stock trade, which, a few months ago, promised to be one of the most valuable branches of our internationa commerce."
We are persuaded that the position taken by Professor Law, and other similar-minded veterinary surgeons, is the only safe one. The disease can be stamped out now with comparatively small loss. If triffed with, and tolerated, it cannot but result in a great national calamity

## Spain a field for machinery and patents.

From a too lengthy communication to admit in full to our columns, a resident of Madrid communicates to the Scientific American some facts relative to the fertility of the soil of Spain, her necessity for improved agricultural and other implements, and closes with the assertion that it is a good field withal for patents. We cull from the letter as follows:
I have lived, says the writer, for a number of years in this beautiful coun try, so little understood by foreigners, so little appreciated by its own inhabitants. The Spain of romance, poetry, and song, is the garden as well as the California of Europe. But it stands in great need of the health-giving touch of the North American enterprise. We have here the same mineral treasures, the same unrivaled advantages of climate, that made Spain once the industrial and commercial emporium of the world.
But Spain is awakening. She is endeavoring to shake off her lethargy. The late Exhibition of Paris has proved this; and those who are familiar with the past history and present condition of Spain have been astonished at the result of this effort. A new era has commenced for the country, and it is everywhere evident that a strong current of enter prise and industry has set in. But it is with nations, as with individuals, when they have remained long in complete inaction, brain and muscles are torpid and cannot at first obey the will. Spain needs the assistance of other nations hardened and inured to toil.
The plows now used to till the land are precisely such as were those left by the Moors in the unfinished furrow, when with tears and sighs they bade farewell to their broad fields, their mosques and palaces, whose ideal architecture is still the wonder of the world, to go forth as outcasts and exiles in obedience to the cruel edict that drove them away to the deserts of Africa.
I doubt whether there is an American plow in Spain, much less a steam plow. Sowing and reaping machines are here unknown, and grain is tread out by oxen and mules just as it was in Scripture times, and cleaned by women, who toss it in the air to scatter the chaff. Everything is primitive and Oriental here as yet.
Spain could supply all Europe with butter and cheese, and, on the contrary, these articles are imported in large quantities from England, Holland, and Switzerland. The traveler crosses leagues and leagues of meadow land where not a tree is to be seen, nor one sheep pasture, and which are ne vertheless watered by broad rivers that carry away to the ocean the water that would, by irrigation, convert these fields into productive farms. There are many places in Spain where the wine is thrown away for want of purchasers and vats in which to keep it. In the Upper Aragon, the mortar with which the houses are built is made with wine instead of water, the former being the most plentiful. Aragon needs an enterprising American company to convert into wholesome table wine the infinite varieties there produced, and which our neighbors the French buy and carry away to convert into Bordeaux.
We want American enter prise in Galicia and Asturias, where milk is almost given away, to convert it into the best of butter and cheese; and also in those same provinces, where delicious fruit is grown in such abundance that it is lef $t$ on the ground for the swine.
Spain needs many more railroads and canals, all of which, when constructed, are subsidized by the government; the railroads at the rate of $\$ 12,000$ a kilometer, and many more additional advantages are offered for canals.
With regard to commerce with Spain, we have to lament the same indifference on the part of the Americans. I have, for instance, an American double-burner petroleum lamp. All who see it admire and covet it, but they are not to be had here. If we except one American in Madrid, who brings mostly pumps and similar articles on a very small scale, we have no dealers in American goods here. Wooden clothes pins, lemon squeezers, clothes horses, potato peelers, and the hundreds of domestic appliances of American in vention, elsewhere considered indispensable, are in Spain unknown.
We had confidently expected that the new Spanish law on patents would draw the attention of American inventors toward this country, that to-day offers a wide field for every new practical invention, but I am sorry to see that, with the exception of Edison and a few others, the Americans have
not yet availed themselves of the easy facility for taking patents for Spain, where new inventions and new industries are now eagerly accepted and adopted. And while the Americans are thus careless as to their own interests, the

French take out and negotiate, in Spain, American patents with insignificant variations.
Let American inventors be assured that any new invention useful and practical, and above all, requiring but little capital to establish it as an industry, will find a ready sale in Spain.
I could enlarge to a much greater extent upon the indifference of American inventors, merchants, manufacturers, and business men, as to the market they have in Spain in their respective lines, and upon the importance of building up a trade with this country, but to do so would require more space than I think you would feel justified in occupy ing in your columns.

## PETER COOPER AS AN INVENTOR

The successes of Peter Cooper's long and useful life are well known. Not so many are aware of his varied experi ence in the direction of failure, particularly in the field of invention. More than once he has found his best devices profitless because ahead of his time, or because of conditions, political or otherwise, which no one could foresee. He possessed the rare qualities, however, of pluck and perseverance, and when one thing failed he lost no time in trying some thing else. Before he was of age he had learned three trades -and he did not make his fortune at either.
In a familiar conversation with a Herald writer recently, Mr. Cooper related some of his early experiences, particu larly with reference to enterprises which did not succeed. His father was a hatter, and as a boy young Cooper learned how to make a hat in all its parts. The father was not successful in business, and the hatter's trade seems to have offered little encouragement to the son. Accordingly he learned the art of making ale. Why he did notstick to that calling and become a millionaire brewer, Mr. Cooper does not say. Most probably the national taste for stronger tipple could not at that time be overcome, and ale could not compete with New England rum and apple-jack. The young mechanic next essayed the art of coachmaking, at which he served a full apprenticeship. At the end of his time his employer offered to set him up in business, but the offer was not accepted, through fear of losing another's money. He felt that if he took the money and lost it he would have to be a slave for life. So he quit coachmaking and went to work for a man at Hempstead, L. I., making machines for shearing cloth. In three years, on $\$ 1.50$ a day, Cooper had saved enough money to buy his employer's patent. Immediately he introduced improvements in the manufacture and in the machine, which the war with England made a great demand for by excluding foreign cloths. At this time Cooper married. In due time the family numbered three, and
"In those days," said Mr. Cooper to the reporter, smiling as the remembrance came to his mind, "we kept no servants as they do nowadays, and my wife and myself had to do all that was to be done. After our first child was born I used that was to be done. After our first child was born I used
to come into the house and find my wife rocking the cradle, and I relieved her from that while I was there. After doing that for a few days I thought to myself that I could make that thing go of itself. So I went into my shop, and made a pendulous cradle that would rock the child. Then I attached a musical instrument which would sing for it, and at the same time the machine would keep the flies off. The latter the cradle swung under it backward and forward it would create wind enough to drive away the flies. The machine create wind enough to drive away the files. The machine
was wound up by a weight, and would run for nearly half an hour without stopping. I took out a patent for it, and one day a peddler came along with a horse and wagon, as they do in the country, and saw the cradle. He struck a bargain with me and bought the patent right for the State of Connecticut, giving for it his horse and wagon and all the goods he had with him. They afterward made some there, but nothing like as good as mine. It was a beautiful piece of furni. ture," said Mr. Cooper regretfully, as he thou ght of it as a thing of the past. "They after ward substituted springs for the weight movement, but that kind was not so good."
About this time the war with England ended and the market was spoiled for the shearing machines. Then, we believe, Mr. Cooper tried his hand at cabinetmaking, but that failed, and he set up a grocery store where the Bible House now stands. While selling groceries Mr . Cooper made an
invention which ought to have made his fortune, but it did not. The story is best told in Mr. Cooper's own words:
'It was just before the Erie Canal was completed, and I conceived a plan by which to tow boats by the use of all the elevated waters on the line of the canal. To demonstrate that that was practicable I made with my own hands a chain two miles long, and placed posts 200 feet apart in the East River from Bellevue dock down town about a mile. These posts supported grooved wheels to lay the chain in, forming an endless chain. The whole was moved by an overshot waterwheel placed at the Bellevue dock. A reservoir twelve feet square and three deep held the water to turn the wheel.
At the suggestion of Governor Clinton Mr. Cooper tightened his chain and pulled up the end post just before the grand trial of his device was to come off. He succeeded in getting stone enough to anchor the post, however, and the to the chain, and the passage back and forward-two mileswas made in eleven minutes.

I ran that boat some ten days," says Mr. Cooper, "to let people see what could be done, and carried nearly a thousand

52 people in one boat. I made the whole chain myself and planted the posts. As I could find no wheels to suit me I
made the moulds and cast the wheels myself out of block tin made the moulds and cast the wheels myself out
and zinc. It was no small job, I can tell you."
This was unquestionably a grand invention. In itself it was a perfect success ; but it was not used. Mr. Cooper tells why:
"It
"It demonstrated completely that the elevated water power along the line of the canal and every lock in the canal could be made use of to drive the boats. Governor Clinton ave me $\$ 800$ for the privilege of buying the right to the plan in case he should want to use it on the Erie Canal. In making the canal he had promised the people along the route that as soon as it was finished they could sell their horses to tow the boats, their grain and fodder to feed the horses, and their provisions for the passengers. On reflection he thought that if he took all that away from them he would have to run the gantlet again, and he could not afford to do that. There never was anything done with the plan until a few years ago, when Mr. Welch, president of the Camden and Amboy Railroad and Canal, invented exactly the same thing and put it in practice on his locks on the canal. He founditsaved half the time and great expense. He went to Washington to take the time and great expense. He went to Washington to take
out a patent for it, and when he got there he found that I out a patent for it, and when he got there he found that I
had patented the same thing fifty-three years.before. My pat ent had run out, so he could use the plan on his canal. I has also been used on one lock on the Erie Canal. If they could have used that chain on the whole length of the Erie Canal it would have saved many millions of dollars."
This would not be a bad place, were there room for it, to speak of " undeveloped" and therefore worthless inventions; and the assumption that if an inventor does not make his in vention immediately profitable it must be good for nothing and should be dispatented. But the moral goes without tell and sh
ing.
Mr.

Mr. Cooper's next attempt at invention was made about the same time, but in quite a different direction. It was during the struggle of the Greeks for independence, and wishing to do something for their assistance, Mr. Cooper undertook to make a torpedo boat for them. Mr. Cooper says:

It was a small one that could be taken on board ship and used to destroy any vessel that cafe to destroy them. It was fixed with a rotary steam engine and a screw wheel to propel it. It was intended to be guided from the ship or the shore. There were two steel wires fixed to the tiller of the rudder, and the operator could pull on one side or the other and guide the vessel just as a horse is guided with reins. It was so arranged that at night it would carry a light with it dark side toward the object to be destroyed, and by simply keeping the light in range with the vessel it would be sure to hit it. The torpedo was carried on a little iron rod, project ing in front of the torpedo vessel a few inches under water Contact would discharge the torpedo and bend this iron rod. This would reverse the action of the engine and cause the torpedo vessel to return right back from whence it came, ready to carry another torpedo."
Unfortunately the torpedo boat was not ready in time to go with the ship carrying the contributions for Greece. It was stored in Mr. Cooper's factory (he had then turned his atten tion to glue) and was destroyed by the burning of the factory It seems to have been quite a promising affair for the time. Mr. Cooper says :

I experimented with it at once to see how far it could be guided. I made a steel wire ten miles long and went down to the Narrows to test the matter. I had steel yards fastened to one end of the wire, and to the other end the torpedo ves sel was attached. It got about six miles away when a vessel coming into the harbor crossed the wire and broke it Although the experiment was not complete it showed that for at least six miles I could guide the vessel as easily as I could guide a borse.'
Mr. Cooper's work as the pioneer locomotive builder n this country; his later inventions and improvements in the manufacture of railway iron and wrought iron beams for fire proof buildings; his application of anthracite coal to iron puddling, and his other successes are almost as widely known as his philanthropic efforts for the education and advancement of the industrial classes of this city.

After all, we are not sure but the story of his long and varied and always honorable career, told by himself, would not be worth, to young people who have to make their way in life through many difficulties, more eventhan the advantages of the noble institution which bears his name.

Taste for Reading.-Sir John Herschel has declared that "if he were to pray for a taste which should stand un der every variety of circumstance and be a source of happiness and cheer fulness to him through life, it would be a taste for reading." Give a man, he affirms, that taste, and the means of gratifying it, and you cannot fail of making him good and happy; for you bring him in contact with the best society in all ages, with the tenderest, the bravest, and the purest men who have adorned humanity, making him a denizen of all nations, a contemporary of all times, and giving him a practical proof that the world has been created for him, for his solace, and for his enjoyment.

## Africa Crossed Again.

Information has been received by way of Lisbon, March 12, that the Portuguese explorer, Pinto, has succeeded in raversing Africa from west to east, and has reached Trans val. The latitude of his course across is not men

## CURIOUS FACTS IN MAGNETISM

At the meeting of the New York Academy of Sciences February 17 th, the article in the March number of Harper's Magazine, entitled "Gary's Magnetic Motor," was incidentally alluded to, and Prof. C. A. Seeley made the following remarks: The article claims that Mr. Gary has made a discovery of a neutral line or surface, at which the polarity of an induced magnet, while moving in the field of the inducing pole, is changed. The alleged discovery appears to be an exaggerated statement of some curious facts, which, although not new, are not commonly recognized. If a bar of iron be brought up, end on, near a magnetic pole, the bar becomes an induced magnet, but an induced magnet quite different from what our elementary treatises seem to predict. On the first scrutiny it is a magnet without a neutral point, and only one kind of magnetism-namely, that of the inducing pole. Moreover, the single pole is pretty evenly distributed over the whole surface, so that if iron filings be sprinkled on the bar they will be attracted at all points and completely cover it. Now. if while the bar is covered by filings it be moved away from the inducing pole, the filings will gradually and progressively fall, beginning at the end nearest the inducing pole and continuing to some point near the middle of the bar; the filings at the remote end will generally be held permanently. When the bar is carried be yond the field of the inducing pole it is simply a weak magnet of ordinary pro perties-i. $e$., of two poles and a neutral point between them.

A plausible and simple explanation of this case is that the inducing pole holds or binds the induced magnetism of op posite name, so that it has no external influence; the two magnetisms are rela ted to each other as are the positive and negative electricities of the Leyden jar Let the inducing pole be N. ; the S of the bar will be attracted by it and bound, while the N . of the bar become abnormally free and active. On moving the bar from the pole the bound magnetism is released and a part be comes residual magnetism. Now when the residual balances the free magnet ism which is of opposite name, we ar on Gary's neutral line. In a restricted sense there is a change of polarity over the half of the bar contiguous to the in ducing pole; on the other half there is no change of pole in any sense. Experi ment with a shingle nail in the place of the filings, a la Gary, bring the nail to the induced bound pole, and it may be held, except at the neutral line. Now if one will read the magazine article with such ideas as these he will feel pretty sure that the writer of it has used words recklessly, that Gary has not made an original discovery, and that the "neutral" line, whatever it be, has only an imagined relation to the "princi ple " of the motor.
The Gary Motor as a perpetual motion scheme, of course, is not worthy of serious notice from a society devoted to sci ence. It has no noteworthy novelty of construction or conception. Mr. Gary is afflicted with the very old delusion of the cut-off or shield of magnetism, which is to cost less than what comes from it. His cut-off is a sheet of iron, which we know acts simply as an armature.

A New Phenomenon in Statical Electricity.
M. E. Duter, in a paper read before the French Academy in December, showed that when a Leyden jar is charged with either positive or negative electricity its internal volume increases, and that this effect is a new phenomenon, unexplainable by either a theory of an increase of temperature or of an electrical pressure. The experiment was performed by an electrical pressure. The experiment
means of a flask-shaped Leyden jar with means of a flask-shaped Leyden jar with
a long tube attached to its neck, and cona long tube attached to its neck, and con-
taining a liquid which served as the inner taining a liquid which served as the inner
armature. The author's attention had been armature. The author's attention had been
called to the fact that this phenomenon had been observed ten years ago by M. Gori. His researches,just made public, leave no doubt of the accuracy of M. Duter's view, that the glass of the jar really expands. According to the theory of elasticity the effect of an internal pressure in a hollow sphere is in the inverse ratio of its thickness. M. Duter, therefore, had three flasks made of the same volume, but of thicknesses of $4 \mathrm{~mm} ., 0.8 \mathrm{~mm}$., and 0.5 mm . respectively. They were filled with water and enveloped by tin foil. Each carried a capillary thermometer tube, in which the variations of the height of liquid served to measure the changes in volume due to electrification. He found that these changes were imperceptible in the thick glass, very marked in the flask of mean thickness, and rose to 30 mm . in the thinnest. The variations in volume were very nearly in inverse ratio of the square roots of the thicknesses.


## parts.

The upper portion of the cylinder is lined with chilled iron plates, L , and an inclined chute, X , leads to the discharge opening, H
A rigid shaft, B , carries the circular crusher, C , and moves in a ball and socket joint at the upper end, and ex tends eccentrically through the boss of a bevel wheel, G, at its lower end, and rests on a step supported by a lever that may be adjusted by the screw, R. The wheel, G, is driven by the pinion, $P$, on whose shaft there are a pulley and a fly wheel.
The double gyratory motion of the crusher, C , causes it to approach all portions of the lining, L, crushing whateve lies between.
It is said that this machine is capable of crushing 10 tons of the hardest
Musée de l'Industrie.

## A NEW ORE CRUSHER.

The accompanying engravings represent an improved ore


Fig. 2.-HORIZONTAL SECTION.
crusher, which is said to be very effective and economical
in the use of power.
A short vertical cast iron cylinder, A, having in one side

## RECENT AMERICAN PATENTS

Enos Richmond, of Troy, N. Y., has invented a steak tenderer, having a plunger studded with chisel-pointed rods and arranged in a case in connection with an elevating spring. A blow upon the knob at the top of the plunger forces the chisel-pointed rods through holes in the casing into the meat, the casing resting on the surface of the steak.

Messrs. A. W. Southard and Volney R. Sears, of Falls City, Neb., have patented an improved invalid bedstead which is provided with ingenious mechanism for placing the invalid in different positions.
An improved spring attachment for carriage tops, which is designed to prevent the rear bow from being bent by the weight of the top when turned back, has been patented by Mr. Robert E. McCormick, of Doylestown, O.

Mr. Espy Gallipher, of Schellsburg, Pa., has devised an axle journal having a groove lengthwise uponits upper side which extends back upon the surface of the axle and communicates with an oil cup. A sliding rod occupies a por tion of the groove; when this rod is drawn out it permits the oil to fill the groove; when it is pushed into the groove in the axle, the oil is ejected and a further supply is cut off.
An improved pill machine, invented by Messrs. W. N Fort and R. R. Moore, of Lewisville Ark., is adapted to the manufacture of pills in large quantities. The machine has mechanism for grinding and mix ing ingredients, a grooved wheel and trough for forming the pills, and a device for applying powder
An improvement in millstone adjustments has been patented by Mr Stephen P. Walling, of South Edmes ton, N. Y. This invention consists in a screw applied to the end of the mill spindle on which the stone is rigidly held, so that the running stone may be forced by the screw away from the stationary stone and held against the action of a spring at the opposite end of the spindle, the object being to prevent the stones from becoming dulled by contact with each other.
An improved attachment for sewin machines for soaking or waxing the thread as it passes the needle, has been patented by Mr. Pedro F. Fernandez, of San Juan, Porto Rico. The invention consists in a frame secured to the arm of a sewing machine by a thumb screw, and provided with a clamping device for holding wax or soap.
A novel combination of a toggle and springs and levers for operating a drag saw has been patented by Mr. Harvey Hughes, of Wheat Ridge, Ohio. The saw, while properly guided, is free

## Fig. 1.-BROWN'S ORE CRUSHER.

charge opening, $H$, contains all of the movable
ap or down without affecting the leverage An improvement in filters, which consists in re-enforcing the felt disk with a backing of wire cloth to enable it to resist heavy water pressure, has been patented by Mr. B. P. Chatfield, of Aiken, S. C.

A basket having light sheet metal sides attached to a wooden bottom by crimping the edges over a rib on the periphery of the bottom, has been patented by Mr. Samuel Friend, of Decatur, Ill. The handle and lid may be easily removed to permit of packing and storage
An improved cross bar for fastening doors, patented by Mr. Richard Condon, of La Salle, Ill., has a spring acted portion which engages a socket on the door casing, and is retained in that position by a spring catch.

A NEW IRONING TABLE.
The accompanying engraving represents a convenient and inexpensive table recently patented by Mr. Albert H. Hogins, of Morrisania, N. Y. It is more especial ly designed for ironing, but it may be used for other purposes when closed up The top is made in two tapering sections, A B. The section, B, is narrower than the other, and is pivoted at its wider end to a bar, E, which slides into a socke formed in the table. The table has five legs, one of which, $D$, is attached to a sliding rail that supports the narrower end of the movable part of the top. The table is provided with a drawer in one end and with a tray, C, for containing blank ets, etc.
The convenience and practicability of ihis table for general laundry use, wil be apparent without further explanation The board, B, when drawn out will be used for ironing skirts, shirts, and other garments requiring a board of this cha racter, and when the table is closed to gether and fastened by the hooks, it may be used in ironing larger articles. When closed it presents the appearance of an or dinary table and may be used as such.
Further information may be obtained
HOGINS' IMPROVED TABLE.

## A NOVEL ENGINE REGULATOR.

The accompanying engraving represents two different styles of regulator, invented by Mr. Stenberg, in which the effect of centrifugal force is utilized. In a vessel, A, of para bolic shape is placed a disk, C , which floats on glycerine contained by the vessel, and is attached to the walls of the vessel by an annular membrane, so that it may rise and fall in a vertical direction as the glycerine is carried with more or less force toward the edge of the vessel by centrifugal ac less force toward the edge of the vessel by centrifugal ac
tion. The inner surface of the vessel, $A$, is provided wit tion. The inner surface of the vessel, A, is he vessel is communicated to the glycerine To the center of the disk, $C$, is attached a ve tical rod, which extends downward through the hollow shaft and is connected with gover nor valve. An increase of speed throws th glycerine toward the periphery of the valve and, raising the disk, C, closes the steam valve a diminution of speed permits the glycerine to all back, when the disk descends and the valve opens.
The disk, C, has a small aperture for th admission and escape of air, and the appara tus is adjusted by pouring lead into the groove in the disk.
The regulator shown in Fig. 2 operates upon the same principle, but it is adjusted by mean of a spring.
This apparatus is manufactured by Blancke Bros., Magdeburg.-Musée de l'Industrie.

## A Strange People.

Botel Tobago is an island in the South Seas which has lately been visited by a party of United States naval officers. They were sur veying a rock east of the South Cape of For mosa, and called at this island. They found a curious race of Malay stock. These abori gines did not know what money was good for. Nor had they ever used tobacco or rum They gave the officers goats and pigs for tin pots and brass buttons, and hung around the vessel all day in their canoes waiting for a essel all day in their canoes waiting for chance to dive for something which might be thrown ove board. They wore clouts only, ate taro and yams, and ha axes, spears, and knives made of common iron. Their ca noes were made without nails, and were ornamented with geometrical lines. They wore the beards of goats and small shells as ornaments.
Such is the account of these strange people given by Dr. Siegfricd, in a letter read at the last meeting of the Philadelphia Academy of Natural Sciences.

## REMEDY FOR THE NEW CARPET BEETLE

Noticing a statement made by Mr. J. A. Lintner, to the ef fect that the Persian insect powder would probably prove un availing as a remedy against the ravages of the new carpet beetle (Anthrenus), W. L. Carpenter, of the U.S.A., was led to institute some experiments with this well known insecti cide, the results of which he communicates to the curren number of the Naturalist. A small quantity of the powder was introduced, on the point of a penknife, under a tumble beneath which various insects were consecutively confined The movements of the insects brought them in contact with the poison, which readily adhered to their body; in endeav oring to remove it from their appendages a few particle ould be carried to the mouth and thence to the stomach with fatal effect. The results were briefly thus: A honey bee became helpless in 15 minutes; a mad wasp in 8 minutes; small ant in 5 minutes; a large butterfly resisted the effect for over an hour, and apparently recovered, but died the next day; a house-fly became helpless in 10 minutes; a mosquito in 15 ; and a flea in 3 minutes. In experimenting on beetles, an insect was secured as nearly the size of the carpet beetle could be found. It was easily affected, and became helpless in 12 minutes.
In these, and experiments with various other insects, the scent from the powder did not produce any bad effect on hose subjected to its odor where actual contact was not pos sible; but when carried to the mandibles the effect was to produce complete paralysis of the motor nerves. The experi ments prove that all insects having open mouth parts are pe culiarly susceptible to this popular insecticide. As a result, the writer does not hesitate to recommend the powder to housekeepers as an infallible agent in destroying the carpet beetle and preventing its ravages. The Persian insect powder liberally sprinkled upon the floor before putting down a carpet, and afterward freely placed around the edges, and never swept away, will suffice to preserve a large sized car pet. No ill effects from its use need be feared by the house holder, since the drug is poisonous to no kinds of animals ex cept insects.

## Banina Flour.

The banana has recently found a new use in Venezuela. It has the property of keeping the soil moist round it, in a country where sometimes no rain falls for months; so it ha been employed to give freshness, as well as shade, to the ooffee plant, whose cultivation has been greatly extended (Venezuela produced $38,000,000$ kilogrammes of coffee in 1876). The Venezuelans can consume but little of the banana fruit thus furnished, so that attention is being given to in creasing its value as an export. At the Paris Exhibition
were samples of banana flour (got by drying and pulverizing he fruit before maturity) and brandy (from the ripe fruit) The flour has been analyzed by MM. Marcano and Muntz It contains $66 \cdot 1$ per cent of starch, and only 2.9 of azotized matter.

## NEW STENCIL PEN

The accompanying engraving shows new form of stenci pen invented by Mr. J. W Brickenridge, of La Fayette Ind en invented by Mr. J. W. Brickenridge, of La Fayette, In

Origin and Progress of ocean Telegraphy.
At the celebration in this city of the twenty-fifth an niversary of the formation of the company for laying the first Atlantic cable, Monday, March 10, the projector of the enterprise, Mr. Cyrus W. Field, spoke as follows
Neighbors and Friends: Twenty-five years ago this evening, in this house, in this room, and on this table, and at this very hour, was signed the agreement to form the New York, Newfoundland and London Telegraph Com New York, Newfoundland and London Telegraph Com It was signed by five persons, four of whom -Peter Cooper, Moses Taylor, Marshall O. Roberts, and myself-are here to-night. The fifth, Mr. Chandler White, died two years after, and his place was taken by Mr. Wilson G. Hunt, who is also present. Of my asso ciates, it is to be said to their honor-as migh have been expected from men of their hig position and character-that they stood by the undertaking manfully for twelve long years, through discouragements such as no body knows but themselves. Those who applaud our success know little through what truggles it was obtained. One disappoint ment followed another, till " hope deferre made the heart sick." We had little help from outside, for few had any faith in our enterprise. But not a man deserted the ship all stood by it to the end. My brother Dudley is also here, who, as the counsel of the com pany, was present at the signing of the agre ent and went with Mr. White and myself he week after to Newfoundland to obtai he charter and was ourlegaladiser throug hose anxi ans troubled wens when解 seemed very doubtful. At St. John's the irst man to give us a hearty welcome, and ho alded us in obtaining our charter, wa Mr. Edward M. Archibald, then Prime Min ster of Newfoundland, and now for mor than twenty years the honored representa tive of Her Majesty's Government at this port who is also here to-night. It is a matter fo 2 is a longitudinal section of the pen; and Fig 3 is a vertical prateful acknowledgment that we were spared to sce ac ection of a portion of the driving apparatus. In this instru- complished the work that we began; and that we meet now ment compressed air is used as a motive force for driving at the end of a quarter of a century, to look with wonde he perforating needle. The inverted cup, shown in detail at what has been wrought since in other parts of the world in Fig. 3, has its mouth closed with a flexible diaphragm, Our little company came into existence only a few wecks which is vibrated rapidly by a pitman having a convex end before the Western Union Telegraph Company, which is en attached by its center to the middle of the diaphragm. The titled to share in our congratulations, and has kindly brough pitman is reciprocated by a simple treadle motion, which will a connecting wire into this room, by which we can this be readly understood by reference to Fig. 1.
The cup has a small aperture covered by a valve to admit of the entrance of air when the diaphragm is drawn down. The pen, shown in detail in Fig. 2, has a cup and flexible diaphragm similar to the one already described. The diahragm rests upon the enlarged end of a bar which carries at its lower end a perforating needle. The pen is connected with


BRICKENRIDGE'S PNEUMATIC STENCIL PEN
the driving mechanism by a flexible tube. The needle ba is pressed lightly against the diaphragm by a spiral spring. When the treadle motion is operated the impelling dia phragm is rapidly vibrated, and through the medium of the ir contained in the flexible tube it communicates motion to the pen diaphragm and consequently to the needle bar an eedle. If, while the needle is reciprocated in this way, the pen is moved over the surface of the paper, a line of fine per forations will be made. With this instrument stencils may be made for making multiplied copies of maps, drawings, and manuscripts. vening communicate with every town and village from the Atlantic to the Pacific. and by our sea cables, with Europe sia frica Austali New Zealand the West Indies, and Whi, New Zall indes, and death but once, very different has it been with the Atlantic Telegraph Company, which was formed in London in 1856 , to extend our line across the occan. At its beginning ther were eighteen English and twelve American directors, thirty in all, of whom twenty-nine have either died or retired from the board. I alone still remain one of the directors.
Many of the great men of science on both sides of the At antic, who inspired us by their knowledge and their enthusiasm, have passed away. We have lost Bache, whose Coas Survey mapped out the whole line of the American shores and Maury, who first taught us to find a path through the depths of the seas; and Berryman, who sounded across the Atlantic; and Morse; and last, but not least, Henry. Acros the water we miss some who did as much as any men in their generation to make the name of England great-Fara day and Wheatstone, Stephenson and Brunel-all of whom gave us freely of their invaluable counsel, refusing all com pensation, because of the interest which they felt in the solu tion of a great problem of science and engineering skill. It is a proud satisfaction to remember that while the two Gov ernments aided us so generously with their ships, makin surveys of the ocean, and even carrying our cables in the first expeditions, such men as these gave their support to a enterprise which was to unite the two countries, and in the end to bring the whole world together.
Others there are, among the living and the dead, to whom we are under great obligations. But I cannot repeat the long roll of illustrious names. Yet I must pay a passing tribute to one who was my friend, as he was the steadfast friend of my country-Richard Cobden. He was one of the first to look forward with the eye of faith to what has since come to pass. As long ago as 1851 he had a sort of pro phet's dream that the ocean might yet be crossed, and ad ised Prince Albert to devote the profits of the great London xhibition of that year to an attempt thus to unite England ith America. He did not live to see his dream fulfilled
But though men die, their works, their discoveries, and their inventions live. From that small beginning under this roof, arose an art till then scarcely known, that of telegraph ng through the depths of the sea. Twenty-five ycars ago there was not an ocean cable in the world. A few shor lines had been laid across the channel from England to the Continent, but all were in shallow water. Even scienc hardly dared to conceive of the possibility of sending human intelligence through the abysses of the ocean. But when we ruck out to cross the Atlantic, we had to lay a cable ove 2,000 miles long, in water over 2 miles deep. That great
success gave an immense impulse to submarine telegraphy
then in its infancy, but which has since grown till it has stretched out its fingers tipped with fire into all the waters of the globe. "Its lines have gone into all the earth, and its words to the ends of the world." To-day there are over 70,000 miles of cable, crossing the seas and the oceans. And, as if it were not enough to have messages sent with the speed of lightning, they must be sent in opposite directions at the same moment. I have just received a telegram from Valentia, Ireland, which reads, "'This anniversary witnesses duplex working across the Atlantic as an accomplished fact"-by which the capacity of all our ocean cables is doubled.

Who can measure the effect of this swift intelligence pass ing to and fro? Already it regulates the markets of the world. But better still is the new relation into which it brings the different kindreds of mankind. Nations are made enemies by their ignorance of each other. A better acquaintance leads to a better understanding; the sense of nearness, the relation of neighborhood, awakens the feeling of brotherhood. Is it not a sign that a better age is coming, when along the ocean beds strewn with the wrecks of war, now glide the messages of peace?
One thing only remains which I still hope to be spared to see, and in which to take a part, the laying of a cable from San Francisco to the Sandwich Islands-for which I have received this very day a concession from King Kalakaua, by his Minister, who is here to night-and from thence to Japan, by which the island groups of the Pacific may be brought into communication with the continents on either side-
and America-thus completing the circuit of the globe.
But life is passing, and perhaps that is to be left to oth hands. Many of our old companions have fallen, and we must soon give place to our successors. But though we shall pass away, it is a satisfaction to have been able to do something that shall remain when we are gone. If in what I have done to advance this enterprise, I have done sometling for the honor of my country and the good of the world, I am devoutly grateful to my Creator. This has been the great ambition of my life, and is the chief inheritance which I leave to my children.

## ©゙urxaymatuce

## The Gary Motor

To the Editor of the Scientific American
In your article on the "Gary Motor," issue of March 8, page 144, you say: "There is no neutral line in the sense that polarity changes when Mr. Gary moves his piece of sheet iron with its attached shingle nail across the pole or near the pole of a magnet." "The most delicate instruments fail to detect such a change of polarity," etc. Mr. Gary's claim of a neutral line is of course absurd, but you are wrong in saying that the polarity does not change under the conditions described in the Harper's Monthly article. Mr. Gary is perfectly correct in claiming a change of polarity in that experiment, although his other claim of deriving from this change of polarity a continuous motion without consuming energy are manifestly absurd.
The change of polarity is easily explained. If a bar of soft iron, whose length is two or three times the distance between
 the poles of the horseshoe magnet, be placed in front of the latter as in the sketch, and at some distance, poles will be induced, as shown by the letters N S. Now let the bar approach the magnet. When within a short distance consequent points will be formed and the polarity at the ends will be reversed the bar having four poles, as in the second sketch. The bar of softiron must have certain dimensions depending on the size and power of the horse shoe magnet. By using a power ful electro-magnet in place of a permanent one, a soft iron bar of considerable size may be used, and the change of polarity exhibited by showing the repulsion in one case for the south pole and in the other for the north pole of a heavy perma nent magnet. When in the prope position a verysmall movement of the soft iron bar is sufficient to produce the change Wm. A. Anthony
Cornell University, Ithaca, N. Y., March 2, 1879.

## Gary's Neutral Line

## To the Editor of the Scientific American:

I have just read the article in the issue of March 8, on the Gary Motor, and cannot refrain from offering a suggestion on the subject. When I read the article referred to in Har per's, I formed the same opinion of the so-called invention that the writer in the Scientific American has expressed, and, in the main, such is my opinion still. I, however tried the experiment by which Gary claims to prove the ex istence of his neutral line, and soon found the same explana tion that the writer in the American has given. I then, curiously enough, modified the experiment in precisely the manner he suggests, placing the magnet in a vertical posi-
tion, and using first a piece of sheet iron and then an iron
wire under it. This was before seeing the article in the
Scientific American. My experiment is well illustrated by the writer's diagram, except that the nail should be a the end of the iron wire, where its polarity is of course most strongly marked. But the result is not as he states it. For, as the wire is brought up toward the magnet, the nail sheet iron is used, the point at which the nail drops off is farther from the magnet than in the case of the wire, and when it is brought nearer it will again pick up the nail, which then continues to cling until the iron touches the magnet and afterwards. Thus the existence of a line in which the soft iron, or induced magnet, does not attract the nail, and above and below which it does attract it, is demonstrated That the polarity of the induced magnet is reversed when it crosses this line may be de monstrated as follows: When it is held beyond (or below) this line (Fig. 1), the negative pole of the per
 manent magnet, the positive being
the a distance, may be made to approach the iron
 larity of that part of the magnet which it touches, namely, negative. Hence in the position indicated in Fig. 1, the po larity of the induced magnet does not correspond with that of the permanent magnet, but is as indicated by the letters. On the other hand, if the positive pole alone be made to approach, the nail will drop; but when it is very near, or in contact, it again holds the nail, and the iron is now positive; and if the negative pole also be now brought into contact, the po
larity of the soft iron will correspond with that of the mag net, as shown in Fig. 2
These experiments should be performed with the soft iron under both poles of the magnet, and the ends of the former should extend somewhat beyond the poles of the latter, or the nail is liable to jump to the magnet as the "neutral" line is crossed. The position of the letters in Fig. 1, of the previous article, represents the po larity of the induced magnet to be the same as that of the perma nent, which is true only within (or above) the line described; and this together with his statement that no such line can be discovered, ap pears to indicate that the writer re lied upon his knowledge of the laws of magnetism to state what would
 be the result, without test'ng it ex perimentally. It is probable that this reversal of polarity is susceptible of explanation by the known laws of magnetic currents, but if it has hitherto escaped observation, its discovery is certainly deserving of notice, and may lead to valuable results. Of the fact, any one may easily convinc himself by the simple experiments above described
G. H. Felton, M.D

Haverhill, Mass., February 28, 1879

## Pneumatic Clocks

Th the Editor of the Scientific American
In the description of the pneumatic clock, copied from $L a$ Nature, and published in your journal of date 1st of March, the invention is credited to me. Such is not the case. By an arrangement between Mr. Wenzel, Mr. Brandon of Paris, and myself, patents have been obtained in France, England, etc., for the clock, and issucd in my name; but the honor of the invention belongs exclusively to Hermann J. Wenzel, of San Francisco.

> Yours faithfully,
E. J. Muybridge.

San Francisco, Cal., February 27, 1879.

## The Ice Cave of Decorah, Iowa

To the Editor of the Scientific American.
Some years ago I visited the "Ice Cave" of Dccorah, Winneshick county, Iowa, and having since been unable to receive any explanation of the wonderful phenomenon ex hibited by it, I write, hoping that you or some correspondent may explain the paradox

The thriving town of Decorah lies in a romantic valley of the Upper Iowa River, and the cave is almost within its cor porate limits. Following the left bank of the stream, one soon reaches the vicinity, and with a hard scramble through a loose shale, up the side of a precipitous hill, forming the immediate bank of the river, the entrance is gained-an open ing 5 feet wide and 8 fect high. These dimensions gencrally describe the cave's section. From the entrance the course i a steep decline-seldom less than $40^{\circ}$. At times the ceiling is so low that progress on hands and knees is necessary About 125 feet from the entrance the "Ice Chamber" is reached. At this spot the cave widens into a well propor ioned room, 8 by 12 feet. The floor is solid ice of unknown thickness, and on the right hand wall of the room a curtain
tally in the rock at the height of one's eyes. Close cxamina tion discovers the water oozing from this crevice, and as it finds its way down the side it freezes in the low temperature of the chamber. Singularly this one crevice, and that no wider than a knife edge, furnishes this, nature's ice house, with the necessary water. It was a hot day in August, the thermometer marking $80^{\circ}$ in the shade when the visit was made, and comparatively the cold was intense. In common with all visitors, we detached some large pieces of ice and with them hurriedly departed, glad to regain the warmth of the outside world.
tion with this wonde is that the water only freezes in the summer. As the cold of actual winter comes on the ice of the cave gradually melts, and when the river below is frozen by the fierce cold of Northern lowa, the ice has disappeared and a muddy slush has taken the place of the frigid floor. I would add that the ice chamber forms the terminus of the cave. Beyond a shallow crevice in the crumbling rock forbids further advance. The rock formation of this region is the Portland sandstone
Why should the temperature of the ice chamber be such as to freeze the water trickling into it? And above all, why should the ice disappear with the cold of winter

## Mansfield, O.

H. M. W

## THE WRITING TELEGRAPH

On the evening of February 26, 1879, the writing telegraph f Mr. E. A. Cowper, of London, was exhibited in operation before the Socicty of Telegraph Engineers, in that city. It is a curious and remarkable in vention. By its use the handwriting of the operator may be transmitted, but a double circuit, that is, two telegraph wires, are used The operator moves with his hand an upright pointer or stylus, with which he writes the message on paper. The stylus has two arms connected with it, one of which arms, when the stylus makes an upward movement causes a current to be sent over one wire while the other arm causes a current to pass over the other wire when the stylus is moved laterally. These two motions are, at the re ceiving end of the line, made to operate on the needles of galvanometers, and the latter are by silk threads combined or connected with a delicately suspended ink tube, from which a minute stream of ink falls upon the strip of paper below it; the arrangement being such that the combined motions of the galvanometers so move the ink pen as to make it correspond to the motion of the stylus at the sending end. The apparatus is said to work very well, and it is expected that it will form a useful adjunct to the art of telegraphy. We present herewith a facsimile of writing done by this new instrument, which has been worked with success over line of forty miles length. It is hardly pro bable that it can compete in rapidity with some of the telegraph instruments now in use but for many purposes it is likely to become important, while in point of ingenuity it is certainly a great achievement, and the author is deserving of the highest credit.

## Rare Geological Specimen

Rev. R. M. Luther, while absent in attend ance upon the Missionary Convention, held in Addison, Vt., obtained through the kindnes of the Rev. Mr. Nott a rare and curious geo logical specimen from the shores of Lake Champlain. It is a slab of limestone, abou eleven inches long by six inches wide, which seems to be composed almost entirely of fos sils. There is not half an inch square of the surface which does not show a fossil. There are many varieties, some of which have not been identified, but among those which have been are many remains of the Trinucleus con ceniricus, some specimens of Petraia, frag ments of the Orthis, a number of Discinæ several well preserved specimens of Leptenæ and impressions of Lingula. The latter is the only shell which has existed from the firs dawn of life until the present time without change. The specimens of existing Lingula are precisely similar to those found in the earliest geological formations. There are also in the slab several rare specimens of seaweed, remains of which are seldom found at so carly an age in the geological history of the world. The slab belongs to the lowe Silurian formation, the first in which organic remains are found. It is probably from the Trenton epoch of that age. If geologists can be trusted, at the time the little ani mals, whose remains are thus preserved, were living, the only part of this continent which had appeared above the primeval ocean was a strip of land along the present St. Law rence River and the northern shores of the great lakes, with promontory reaching out toward the Adirondacks, and few islands along what is now the Atlantic coast line.-Benn few islands along w
ington (Vt.) Banner.

## COWPER'S WRITING TELEGRAPH

The most recent of the brilliant series of telegraphic mar vels which has from time to time, and especially of late, engaged the attention of the world, is the "telegraphic pen "of Mr. E. A. Cowper, the well known engineer of Great George street, Westminster. This ingenious apparatus, which constitutes the first real telegraph, was publicly shown by its inventor at the meeting of the Socicty of Telegraph Engineers on Wednesday, February 26.

There had been no lack of copying telegraphs hitherto We have Bakewell's, Casselli's, Meyer's, and D'Arlincourt's, so recently tried at our General Post Office by Mr. Preece. All of these instruments telegraph an almost perfect copy of the writing or sketch submitted to them by means of synchronous mechanism. But the process is necessarily com plex and slow; whereas by the new device a person may take the writing pencil in his hand, and himself transmi his message in the act of writing it.

The principle which guided Mr. Cowper to a solution of tho problem which he has successfully overcome, is the well known mathematical fact that the position of any point in a curve can be determined by its distance from two rectan gular co-ordinates. It follows, then, that every position of the point of a pencil, stylus, or pen, as it forms a letter, can be determined by its distance from two fixed lines, say the adjacent edges of the paper. Moreover it is obvious that if these distances could be transmitted by telegraph and re combined so as to give a resultant motion to a duplicate pen a duplicate copy of the original writing would be produced. But inasmuch as the writing stylus moves continuously over the paper, the process of transmission would require to be a continuous one; that is to say, the current traversing the telegraph line, and conveying the distances in question (or what comes to the same thing, the up and down, and direct sidelong ranges of the stylus) would require to vary continuously in accordance with the range to be transmitted.
Mr. Cowper effects this by employing two separate tclegraphic circuits, each with its own wire, batte ry, sending, and receiving appa ratus. One of these circuits i made to trans mit the up and down component writing of the pencil's motion, while the other simulta neously trans mits its sidelong component. $\Lambda$ the receiving station these two components are then recomposed by a pantograph arrangement of taut cords, or levers, and the resultant motion is communicated to the duplicate penat that place The plan adopt ed by Mr. Cow per to transmit each continuous ly varying com ponent is to cause the resist ance of the cir cuit to vary very closely with the component in question. Fig. 5 shows how the apparatusi ranged for thi purpose. P i the writing style, which is held in the writer's hand in the or dinary way, while he shapes the letters one by one on paper pulled uniformly underneath by means of clockwork. To P are attached, at right angles, two arms, $a a$, one for each circuit; but as it is only necessary to consider one of the circuits, say that sending up and down motions, we will confine our attention for the present to the arm, $a$. One pole of the sending battery, B , is connected to the arm, $a$, the other pole being connected to earth. Now the arm, $a$, is fitted with a sliding contact at its free extremity, and as the pencil, P , is moved in writing, a slides lengthwise across the edges of a series of thin metal contact plates, C, insu lated from each other by paraffined paper. Between each pair of these plates there is a resistance coil, C , and the last of these is connected through the last plate to the line, L. It will be seen that as $a$ slides outward across the plates the current from the battery has to pass through fewer coils, since $a$ short-circuits a number of coils proportional to its motion. But the fewer of these coils in circuit the stronger will be the current in the line; so that the extent of the mo-
tion of the arm, $a$, in the direction of its length, that is to ${ }^{\prime}$, each set of contact plates to its particular line. Fig. 3 say, the direct component of the motion of the pencil along is an elevation of the sending instrument, in which the line of the arm, $a$, is attended by a corresponding change $a$ is the pencil as before, $c c$ the contact plates over which in the current traversing the line. If the pencil makes a the arms, $d d$, slide, $f f$ the coils, and $b$ the traveling slip of ong up and down stroke there will be a strong current in paper. he line, if a short one there will be a weak current, and so Fig. 2 is a plan of the receiving instrument, in which $h$ n. $\Lambda$ precisely similar arrangement is used to transmit the sidelong motion of the pencil along the line, L .

Fig. 5.


The current from the line, L , flows at the receiving station through a powerful galvanometer, G, to earth. The gal vanometer has a stout needle, one tip of which is connected a duplicate pen, P , by a thread, $t$, which is kept taut by second thread stretched by a spring $s^{\prime}$. The current from the line, $L^{\prime}$, flows through a similar galvanometer, $\mathrm{G}^{\prime}$, to earth. The needle of $\mathrm{G}^{\prime}$ is also connected to the pen, P, by a taut thread, $t^{\prime}$, stretched by means of the spring, $s$. Now since the needle of each of these galvanometers deflects in proportion to the strength of the current flowing through its coil, the points of these two needles keep moving with the varying currents. But since these currents vary the motions of the sending pen, the receiving pen controlled by the united movements of the needles will trace out a close copy of the original writing. We give on another page a facsimile

[^0] are the light pivote sulated $i$. sed in their zero posi on borneath, the hole one for each line. It will be understood that the varying currents from the lines are allowed to flow through the coils $i$, so as to deflect the needles, and that the deflections of the needles follow, so to speak, the variations of the cur rents. The electro-magnets are magnetized by a local bat tery; permanent magnets might, however, take their place with a gain in simplicity.
Now the writing pen, $k$, is connected to the nearest tip of the needle, $h$, of each galvanoscope by threads, $n n$, which are kept taut by the fibers, $o_{1} o_{2} o_{3}$, the springs, $o$, and the pins, $o_{4}$. In this way the motions of the needles are recom bined in the motion of the duplicate pen upon the paper, $p$ Fig. 1 is an elevation of the recciving instrument, in which $i$ are the coils as before, $j j j j$ the controlling electro-mag nets, $k$ is the writing siphon dipping with its short leg into the ink well, $m$, and $l$ is the bridge from which the writing shon is suspended by means of a thread and spring. The long leg of the siphon reaches down to the surface of the paper, $p$, which is pulled along beneath it in contact with the film of ink filling the point of the tube. When the si phon is at rest its point marks a zero line along the middle of the paper, but when the receiver is working, the siphon point forms each letter of the message upon the paper as it passes.-Engineering

## ALUMINUM.

The splendid exhibit of the French aluminum manufac turers at the late Exhibition has again called at tention to that metal, which is so admirably adapted to many purposes on ac count of its grea lightness and its stability unde the influence of the atmosphere While aluminum industry has industry has heretofore been thought to b contined to
France solely, we are now told by Mr. C Bambery, in the Annual Report of the Society of Berlin Instru ment Makers, that for some years past alumi num has been extensively ma nufactured in Berlin.
Three firms especially( Stück radt, Häcke, and Schultze) are en gaged in this branch of industry.

The articles ma nufactured prin cipally are nauti cal instruments as sextants, com passes, etc. The German navy is
The receiving pen is a fine glass siphon, drawing off ani-/supplicd throughout with aluminum mstruments. $\Lambda$ s a ine ink from a small glass holder. There are thirty-two proof of the superiority of German aluminum, it may herc oils, $C$, in each circuit, with a corresponding number of be mentioned that the normal sets of weights and balances contact plates, $c$, so as to get accuracy of working. A few used by the International Commission for the regulation Daniell's cells are sufficient to operate the apparatus, and of weights and measures, which lately was in session at writing has been already sent successfully over a line 40 Paris, were obtained from Stückradt, in Berlin, and not miles in length. The writing may be received either of the from any of the firms at Paris, the reputed seat of alumi same size or larger or smaller than the original, as the case num industry.
may be. At present the writing must not be too hurried, Aluminum is, in Berlin, generally used pure, and cast that is, unless the characters are bold and well formed; but pieces only are composed of aluminum containing about $\delta$ further improvement will, of course, quicken the working of per cent of silver
he apparatus.
The engravings, Figs. 1 to 4, illustrate the actual apparatus. Fig. 4 is a plan of the sending instrument, with the writing pencil, $a$, the traveling paper, $b$, the light connect g rods or arms, $d$ (which correspond to $a$ in the theoreti cal diagram above), the series of metal contact plates over which these arms slide, the resistance coils connected to which these arms slide, the resistance coils connected to metal would otherwise be well adapted, it remains so far
these plates, and the battery and line wires. It will be seen unavailable. Here then is a chance for some ingenious that each arm, $d$, is connected to its particular battery, and mind.

Nevertheless the use of aluminum will remain limited Nen in ease the cost of manufacturing it could be material y reduced, until some method shall have been discovered by which aluminum may be soldered.
This difficulty has, in spite of all efforts, not ye been overcome, and for some purposes, to which the

## an IMPROVED DOOR BOLT.

The accompanying engraving represents, in perspective and in section, an improved door bolt, recently patented by Mr. Thomas Hoesly, of New Glarus, Wis.
The principal features of this bolt will be understood by reference to the engraving. On the plate or body are cast two loops or guides for the bolt, and the plate is slotted under the bolt, and a lug projects into the slot and bears against a spring contained by a small casing riveted to the back of the plate. The end of the bolt is beveled, and its operation is similar to that of the ordinary door latch. Two handles are provided, one of which is of sufficient length to reach through the door, and a pawl or dog accompanies the


Fig. 2


## HOESLY'S DOOR BOLT.

bolt, which may be attached to the door with a single screw, and is to be used in locking the door. The bolt is very simple and strong, suitable for shops, out-buildings such as barns, stables, ctc., and some of the doors of dwellings
Further information may be obtained by addressing the inventor, as above

Chimney Flues.
Messrs. W. H. Jackson \& Co., of this city, whose long experience in treating refractory flues gives weight to their opinion, communicate to the American Architect the following useful information:
To secure a good draught the chimney should be of sufficient size, should be carried up above surrounding objects, should be as straight as possible throughout its length, and should be as smooth as possible inside, to avoid friction. As a draught is caused by unequal temperatures, the chimney should be so arranged as to avoid a rapid radiation of heat. If in an exterior wall there should be at least 8 in ches of brickwork between the flue and the exterior sur face. For country houses it face. For country houses it chimneys run up through the interior, as the flue is mor easily kept warm, and the heat that is radiated helps to warm the house. The most frequent cause of a "smoky chimney" is the insufficien size of the flue for the grate or fireplace connected ther with. The flue should not be less than one eighth the capacity of the square of the width and height of the grate or fireplace. That is, if the grate has a front opening 20 inches wide and 26 inches high, the flue should be 8 in x 8 in.; or, with an opening 36 inches wide and 32 inche high, the flue should be 12 in x 12 in .; and, to get the best result, the opening into the flue from the grate or fire place should be of a less num ber of square inches than the square of the flue, and neve larger, as no more air should
be admitted at the inlet than can be carried through the flue. Where there is more than one inlet to the same flue, the sum of all the inlets should not more than equal the size of the flue. A number of stoves may be connected with the same flue, one above another, if this rule is observed.
A square flue is better than a narrow one, as in two flues containing the same number of square inches the square flue would have the smallest amount of wall surface,
nace is closed with an iron plate, provided with a circular opening, through which the hopper enters the top of the urnace.
At the left in the larger engraving is seen an elevator, op erated by a steam engine, for conveying the garbage and re fuse to a platform, whence it is projected into the furnace by an inclined plane or chute.

Gas or smoke conductors convey the gas from the top of the furnace to the furnace of the boiler and to the heating oven, where it is used in heating air, which is conveyed through the iron pipes passing through the heating oven into a wind box, from which it enters the furnace at several points near the bottom by means of the tuyere pipes.
The consumption of the garbage is effected near the bottom
and consequently less friction for the ascending currents and less absorption of heat by the walls. Chimneys current be closely built, having no cracks nor openings through which external air may be drawn to weaken the draught. If they could be made throughout their length as impervi ous to air as a tube of glass, with interior surface as smooth, one cause of smoky chimneys would be removed. A down
ward current of air is frequently caused by some contiguous object higher than the chimney, against which the wind trikes. This higher object may sometimes be quite a dis tance from the chimney, and still affect it badly. A good chimney top constructed to prevent a down draught will remedy this difficulty. Each grate or fireplace should have a flue to itself. Under very favorable conditions, two grate or fireplaces might be connected with the same flue, but it is not a good plan. We have known grates and fireplaces con nected with two flues, where they have been built under a window for instance, and, owing to there being insufficient room for a flue of suitable size, a flue has been run up on each side of the window. This is a very bad plan, and never can work well; it requires too much heat to warm both flues, and if the room in which the grate or fireplace is situ ated should be pretty close, so that there was no other entrance for air, there is danger that it would circulate down one flue and up the other, forcing smoke out of the fireplace into the room.

## IMPROVED FURNACE FOR BURNING GARBAGE.

The refuse matter and garbage of large cities is in the main composed of animal and vegetable offal of the kitchens; of the sweepings of warehouses, manufactories, saloons, groceries, public and private houses; of straw, sawdust, old bed ding, tobacco stems, ashes, old boots, shoes, tin cans, bottles rags, and feathers; dead cats, dogs, and other small animals of the dust and sweepings of the streets, the condemned fruit, vegetables, meat, and fish of the markets, all of which compose a mass of the most obnoxious and unhealthy matter that can be deposited near human habitations.
The inventor of the furnace shown in the accompanying engravings aims to produce a change of form and of chemical nature and a great reduction in bulk of all such refuse and garbage within the limits of the city where it accumu lates, without screening, separating, preparing, or mixing, without the expense of using other fuel, without any offensive odors being generated in the operation, and to produce an entirely unobjectionable residuum or product that may be made useful.
As a rule organic matter largely preponderates in the re fuse, being as high in some instances as 94 per cent. There is always more than enough to generate sufficient heat to fuse the earthy or inorganic portion, which is mainly composed of sand, clay, and the alkalies from the coal and vegetable hes, etc
By producing a high degree of heat in the combustion of he organic portion of the refuse with a forced blast or forced draught, the non-combustible elements are fused, and form a vitreous slag, which is entirely inodorous and unobjection, and which may be utilized for many purposes.
The upper section or cone of the consuming furnace is built


## SECTION OF FURNACE

of the furnace, where the air is forced in, and is continued as long as the blast is applied, and while burning at the base it is continually sinking down at the top, so that it is necessary to keep filling all the time. The odoriferous gases and the hot products of such combustion are forced upward through the superimposed mass, and escape to the fires of the boiler and heating oven, and, being largely composed of carbonic oxide and the hydrocarbon gases distilled from the animal and vegetable offal of the garbage, are thoroughly consumed; and it is said that by this means not only are all the offensive odors destroyed, but the heat generated is uti lized for making steam and heating the air used for blast.

The refuse in its descent through the high furnace is ex posed to the drying action of the hot gases of distillation and the hot products of combustion, its temperature increasing in its descent the nearer it approaches the tuyeres, and becomes completely desiccated and combustible when it reaches the blast. The high heat in this way obtained by the combustion of the organic portion melts all of the inorganic portion, forming a vitreous slag or glass, which may be allowed to run continuously or by closing the tap may be allowed to accumulate, and can be drawn off at intervals. If there is an adequate supply of clay and sand in the refuse o combine with the ashes, the slag will run hot and free The combination of silex or alumina and an alkali in proper portions always yields a fusible, easy-running com pound.
The molten slag, as it run from the furnace, may be dis charged into tanks of cold water, which will pulverize or granulate it, making it like fine sand, or as it pours ove a runner, through which it flows, if struck with a forci ble air or steam blast it will be spun into fine thread-like wool.
The furnace once lighted and started may be kep running day and night con inuously for days, months, or years, if desired; but if it
at any time, the tuyere pipes
of boller iron, and lined with fire brick resting upon an iron ate, which is supported by iron columns.
The hearth is made of fire brick, and is in the form of an inverted cone, being smaller at the bottom and larger at the top, as shown in Fig 2
The sides of the hearthare perforated near the bottom with arches for the tuyeres or blast pipes, and also in front for the special blast pipe and the tapping hole. The top of the fur and the holes all stopped with clay, may be remove shut off the supply of air and it will then hold in fire for many days, and will be in readiness to start again at any time the pipes are replaced and the blast turned on.

This furnace is the invention of Mr. Henry R. Foote, of Stamford, Conn

## AN ANCIENT GREEK VASE

The vase shown in the accompanying engravings must not $\begin{gathered}\text { An improved apparatus for pressing tobacco has been pat } \\ \text { ented by Mr. F. B. Deane, of Lynchburg, Va. It consists }\end{gathered}$ be classed with ordinary ceramic ware, as it is a veritable mainly in the construction of a suspended jack, arranged to work of art. It is the celebrated cup of Arcesilaus, which travel over a row of hogsheads, so that a single jack gives is preserved in the collection of the library of Richelieu successively to each hogshead the desired pressure. street after having figured in the Durand Museum. It was An improved combined harrow and corn planter has been found at Vulsei, in Etruria. It was made by a potter of patented by Mr. M. McNitt, of Hanover, Kan. In this maCyrene, the capital of Cyrenaica, founded by Greeks from the island of Thera. It is remarkable that Cyrene, removed from the center of Grecian manufacture, should possess a A machine, which is adapted to the thrashing and clean many works of art. The traveler, Paul Lucas, discovered ing of peas and seeds, and for cleaning all kinds of grain, ha in the necropolis of Cyrene in 1714 Laul Lucas, discovered both in the topolis of Cyrene, in 1714, many antique vases,别 preserved in the Museum at Leyden. The Arcesilaus, who is simultaneously with the seed, and is provided with a device represented on this vase, is not the celebrated skeptical phi- for pressing the soil around the seed, leaving over the seed losopher of that name; it is Arcesilaus, King of Cyrenaica, a portion of loose earth who was sung by Pindar, and who was vanquished in the Pythian games under the 80th Olympiad (458 years B.C.).
The height of this vase is 25 centimeters, its diameter 28 centimeters. The paste is very fine, of a pale red. It is entirely coated with a black groundwork, which has been generally re-covered with a yellowish white clay, baked on.
According to M. Brongniart, this piece has been subjected to the baking process at least two or three times, thus indicating that the ceramic art had made considerable progress in Cyrene even at that remote epoch.

The following description of this vase is given in the catalogue of the Durand Museum: The King Arcesilaus is seated under a pavilion upon the deck of a ship. His head is covered with a kind of hat with a large brim, and his hair hangs down upon his shoulders. He is clothed in a white tunic and embroidered cloak or mantle, and he carries a scepter in his left hand; under his seat is a leopard, and his right hand he holds toward a young man, who makes the same gesture, and he is weighing in a large scale assafœetida, which is being let down into the hold of the ship. We know that he deals with assafætida because one of the personages (the one who lifts up his arm toward the beam of the scale) holds in his right hand something resembling that which is in the scale, and the Greek word traced near it signifies "that which prepares silphium." Assafœet ida, the resinous matter of the silphium, is used largely by the Greeks in the preparation of their food. The Orientals to-day make frequent use of it and call it the delight of the gods; while in Europe, because of its repulsive odor, it has long been designated as stircus diaboli.

## Snow-Raised Bread.

Somebody thinks he has discovered that snow, when incorporated with dough, performs the same office as baking powder or yeast. "I have this morning for breakfast," says a writer in the English Mechanic, " partaken of a snow-raised bread cake, made last evening as follows: The cake when baked weighed about three quarters of a pound. A large tablespoonful of fine, dry, clean snow was intimately stirred with a spoon into the dry flour, and to this was added a tablespoonful of caraways and a little butter and salt. Then sufficient cold water was added to make the dough of the proper usual consistence (simply stirred with the spoon, not kneaded by the warm hands), and it was immediately put into a quick oven and baked three quarters of an hour. It turned out both light and palatable. The rea son," adds the writer, " appears to be this: the light mass of interlaced snow crystals hold imprisoned a large quantity of condensed at mospheric air, which, when the snow is warmed by thawing very rapidly in the dough, expands enormously and acts the part of the carbonic acid gas in either baking powder or yeast. I take the precise action to be, then, not due in any way to the snow itself, but simply to the expansion of the fixed air lodged between the interstices of the snow crystals by application of heat. This theory, if carefully followed out, may perchance give a clew to a simple and perfectly in nocuous method of raising bread and pastry." And stop the discussion as to whether alum in baking powders is deleterious to health or otherwise.

## NEW AGRICULTURAL INVENTIONS.

An improved gate, invented by Messrs. P. W. McKinley and George L. Ellis, of Ripley, O., is designed for general use. It is operated by cords and pulleys, and can be opened without dismounting from the horse. It is constructed so that it cannot sag, and is not liable to get out of order.


## Fig. 1.-ANCIENT GREEK VASE

R. C. Harvey, of Danville, Va. The improvement consists in arranging the knives so that one begins and finishes its cut in advance of the other.
Mr. William Bradberry, of Darrtown, O., has invented an improvement in reciprocating churns. The aim of this inventor is to utilize the resistance of the milk as a source of power. To accomplish this a peculiar combination of mechanism is required, which cannot be clearly described with out an engraving.
M. Javel, in a recent lecture, tries to answer the question, Why is reading a specially fatiguing exercise?" and also suggests some remedies for this fatigue. First, M. Javel says reading requires an absolutely permanent application of eyesight, resulting in a permanent tension of the organ, which may be measured by the amount of fatigue or by the production of permanent myopy. Secondly, books are printed in black on a white ground; the eye is thus in pre sence of the most absolute contrast which can be imagined The third peculiarity lies in the arrangement of the charac ters in horizontal lines, over which we run our eyes. If w maintain during reading a perfect immobility of the book and the head, the printed lines are applied successively to the same parts of the retina, while the interspaces, mor bright, also affect certain regions of the retina, always the |same. There must result from this a fatigue analogous to that which we experience when we make experiments in "accidental images," and physicists will admit that there is nothing more disastrous for the sight than the pro longed contemplation of these images. Last ly, and most important of all in M. Javel's estimation, is the continual variation of the distance of the eye from the point of fixation on the book. A simple calculation demon strates that the accommodation of the eye to the page undergoes a distinct variation in proportion as the eye passes from the begin ning to the end of each line, and that this variation is all the greater in proportion to the nearness of the book to the eye and the length of the line. As to the rules which $\mathbf{M}$ Javel inculcates in order that the injurious effects of reading may be avoided, with re ference to the permanent application of the eyes, he counsels to avoid excess, to take notes in reading, to stop in order to reflect or even to roll a cigarette; but not to go on reading for hours on end without stopping As to the contrast between the white of the paper and the black of the characters, va rious experiments have been made in the 1 n troduction of colored papers. M. Javel ad vises the adoption of a slightly yellow tint But the nature of the yellow to be used is no a matter of indifference; he would desire yellow resulting from the absence of the blu rays, analogous to that of paper made from a wood paste, and which is often mistakenly corrected by the addition of an ultramarin blue. which produces gray and not white M. Javel has been led to this conclusion both

An improved machine for harvesting cotton has been pat- ffrom practical observation and also theoretically from th ented by R. H. Pirtle, of Lowe's, Ky. This machine car- relation which must exist between the two eyes and the ries two vertical cylinders armed with teeth or spurs, and colors of the spectrum. His third advice is to give prefer two inclined endless belts provided with teeth. The teeth ence to small volumes which can be held in the hand, which of the cylinders and the belts remove the cotton from the obviates the necessity of the book being kept fixed in one place, plants, and deliver it to a receptacle carried by the machine. and the fatigue resulting from accidental images. Lastly Messrs. Julius Fern and Samuel Bligh, of Oneonta, N. Y., M. Javel advises the avoidance of too long lines, and there have patented an improved power for churning and other fore he prefers small volumes, and for the same reason those purposes where little power is required. It consists in the journals which are printed in narrow columns. Of course combination of a drum and weight, a train of gearing, and every one knows that it is exceedingly injurious to read with a pallet wheel arranged to oscillate a balanced beam. insufficient light, or to use too small print, and other com An improvement in the class of feed cutters in which two mon rules. M. Javel concludes by protesting against an in or more knives work between parallel bars attached to the vidious assertion which has recently been made "in a or more knives work between parallel bars attached to the vidious assertion which has recently been made "in a
cutter box, has been patented by Messrs. J. N. Tatum and neighboring country," according to which the degree of civilization of a people is propor tional to the number of the short sighted shown to exist by statistics; the extreme economy of light, the abuse of reading to the detriment of reflection and the observation of real facts, the employment of Gothic characters and of a too broad column for books and journals, are the conditions which, M. Javel believes, lead to myopy, especially if successive gencrations have been subjected to these injurious influ ences.

## Phosphorescence

M. Nuesch records, in a recent number of the Journal de Pharmacie, some curious observations regarding luminous bacteria in fresh meat. Some pork cutlets, he found, illuminated his kitchen so that he could read the time on his watch. The butcher who sent the meat told him the phosphorescence was first observed in a cellar, where he kept scraps for making sausages. By degrees all his meat became phosphorescent, and fresh meat from distant towns got into the same state. On scratching the surface or wiping it vigorously, the phosphorescence dis appears for a time; and the butcher wiped carefully the meat he sent out. All parts of the animal, except the blood, acquired the phenomenon over their whole surface. The meat must be fresh; when it ceases to be so, the phosphorescence ceases, and Bacterium termo appear. None of the customers had been incommoded. It was remarked that if
a small trace of the phosphorescent matter were put at any point on the flesh of cats, rabbits, etc., the phosphorescence gradually spread out from the center, and in three or four days covered the piece; it disappeared generally on the sixth or seventh day. Cooked meat did not present the phenomenon, but it could be had in a weak manner, from cooked albumen or potatoes. No other butcher's shop in the place was affected. The author is uncertain whether to attribute the complete disappearance of the phenomenon to the higher temperature of the season, or to phenic acid, or to fumigation with chlorine

## The Charms of Natural Science.

The Earl of Derby, in an address at the Edinburgh University, said: "Of the gains derivable from natural science I do not trust myself to speak; my personal knowledge is too limited, and the subject is too vast. But so much as this I can say-that those who have in them a real and deep love of scientific research, whatever their position in other respects, are so far at least among the happiest of mankind.

No passion is so absorbing, no labor is so assuredly its own reward (well that it is so, for other rewards are few); and they have the satisfaction of knowing that, while satisfying one of the deepest wants of their own natures, they are at the same time promoting in the most effectual manner the interests of mankind. Scientific discovery has this advantage over almost every other form of successful human efforts, that its results are certain, that they are permanent, that whatever benefits grow out of them are world-wide. Not many of us can hope to extend the range of knowledge in however minute a degree; but to know and to apply the knowledge that has been gained by others, to have an intelligent appreciation of what is going on around us, is in itself one of the highest and most enduring of pleasures."

The Vesuvius Railway.-The Italian Ministry of Public Works, in union with the Ministry of Finance and the Prefecture of Naples, has issued the concession for the construction of the Vesuvius Railway. The line will run along that part of the mountain which has been proved, after the experience of many years, to be the least exposed to the eruptions. The work is to be commenced immediately, and it is believed that it will come into use during the present year. A sufficient number of carriages are being built to convey 600 persons during the day. The line is to be constructed upon a: iron bridge, built after a patented system.

## The Pottery Tree.

Among the various economic products of the vegetable kingdom, scarcely any hold a more important place than barks, whether for medicinal, manufacturing, or other purposes. The structure and formation of all barks are essentially very similar, being composed of cellular and fibrous tissue. The cell contents of these tissues, however, vary much in different plants; and, for this reason, we have fibrous or soft, woody, hard, and even stony barks. To explain everything which relates to the structure of bark would lead us into long details which our space will not permit. Briefly stated, the bark of trees (considering, now, those of our own climate) consists of three layers. The outermost, called the " cortical," is formed of cellular tissue, and differs widely in consistency in different species; thus, in the cork oak, which furnishes man with one of his most useful commercial products, the cortical layur acquires extraordinary thickness. The middle layer, called the "cellular" or " green bark," is a cellular mass of a very different nature. The cells of which it is composed are polyhedral, thicker, and more loosely joined, and filled with sap and chlorophyl. The inner layer (next the wood), called the "liber," consists of fibers more or less long and tenacious. It is from the liber that our most valuable commercial fibers are obtained. In some plants the fibrous system prevails throughout the inner bark; but what we wish to refer to more particularly at present is a remarkable example of the harder and more silicious barks, and which is to be found in the "Pot tery Tree" of Para. This tree, known to the Spaniards as El Caouta, to the French as Bois de Fer, to the Brazilians as Caraipe, is the Moquilea utilis of botanists, and belongs to the natural order Ternstromiacece. It is very large, straight, and slender, reaching a height of 100 feet before branching; its diameter is from 12 to 15 inches; and its wood is exceedingly hard from containing much flinty matter. Although the wood of the tree is exceedingly sound and durable, the great value of the tree to the natives exists in the bark for a purpose which, to say the least, is a novel one in the application of barks-that of the manufacture of pottery. The Indians employed in the manufacture of pottery from this material always keep a stock of it on hand in their huts for the purpose of drying and seasoning it, as it then burns more freely, and the ashes can be gathered with more ease than when fresh. In the process of manufacturing the pottery the ashes of the bark are pow
dered and mixed with the purest clay that can be obtained from the beds of the rivers; this kind being preferred, as it takes up a larger quantity of the ash, and thus produces a
stronger kind of ware. - Though the proportions of ash and clay are varied at the will of the maker, and according to


Fig. 1.-SPRINKLING POT SPONGE.-(Eucleptella aspergillum.) the quality of the bark, a superior kind of pottery is pro duced by a mixture of equal parts of fine clay and ashes. All sorts of vessels of small or large size for household or other purposes are made of this kind of ware, as are also ases or ornamental articles, many of which are painted and lazed. These articles are all very durable, and are able to stand almost any amount of heat; they are consequently


Fig. 2.-SPONGE CRYSTALS MAGNIFIED.
uch used by the natives for boiling eggs, heating milk, and indeed for culinary purposes generally. A brief glance a the structure of the bark will show how it comes to be so well adapted for this purpose. The bark seldom grows more than half an inch thick, and is covered with a skin or epi-
dermis; when fresh, it cuts somewhat similar to a soft sand stone, but when dry, it is very brittle and flint like, and often difficult to break. On examination of a section under the microscope, all the cells of the different layers are seen to be more or less silicated, the silex forming in the cells when the bark is still very young. In the inner bark the flint is deposited in a very regular manner, the particles being straight and giving off branches at right angles; that of the porous cells of the bark, however, is very much contorted, and ramifies in all directions. In the best varieties of the tree, those growing in rich and dry soil, the silex can be readily detected by the naked eye; but to test the quali ty of the various kinds of bark, the natives burn it and then try its strength between their fingers; if it breaks easily it is considered of little value, but if it requires a mortar and pestle to break, its quality is pronounced good. From an analysis of this singular bark, that of old trees has been found to give $30 \cdot 8$ per cent of ash, and that of young $23 \cdot 30$ per cent. Of the different layers of old bark, the outer gave $17 \cdot 15$ per cent, the middle $37 \cdot 7$, and the inner 31 . The wood of the tree, in comparison with the bark, is relatively poor in silex, the duramen of an old tree giving only 2.5 per cent of silex.

## GLASS SPONGES.

The natural history of sponges had, up to the middle of this century, been comparatively neglected. Until 1856, when Lieberkuhn published his treatise on sponges, very little or nothing had been written on the subject. Later, Haeckel did much to determine their exact nature, and it is now universally admitted that sponges form one of the connecting links between the animal and the vegetable king dom.
Sponges, generally considered, consist of fine porous tis sue, covered, during life, with viscid, semi-liquid proto plasm, and are held in shape and strengthened by a more or less rigid skeleton, consisting chiefly of lime or silica. The tissue consists of a very fine network of threads, formed probably by gradual solidification of the threads of protoplasm. The inorganic skeleton is formed by larger and smaller crystals and crystalline threads. In the various families of sponges the quantity of inorganic matter varies greatly; some sponges are nearly devoid of an inorganic skeleton, while other families consist chiefly of lime or sili ca, the organic tissue being only rudimentarily developed.
As observed in their natural state, sponges are apparently lifeless. When, however, a live sponge is placed in water containing some finely powdered pigment in suspension, it will be noticed that in regular, short intervals water is absorbed through the pores of the tissue and ejected again through larger openings, which are called "osculæ." Following up these into the interior, we find them divided into numerous branches, the walls of which are, under the mi croscope, found to be covered with minute cells, fastened at one end only and oscillating continually. By means of these cells the sponge receives its nourishment.
Sponges with very rigid inorganic skeletons may be diided into two classes-calcareous and silicious-according to whether the skeleton is chiefly composed of lime or silica. Our engravings represent two species of the latter kind, which are, on account of the peculiar appear ance of their skeleton, called glass sponges. Fig. 1 represents the "sprinkling pot sponge," Eucleptella aspergillum. It is generally found in very deep water throughout the Pacific. Specimens were found over fifty years ago, but, as they had to be brought up from depths between 500 and 800 fathoms, they remained very scarce and sold at fabulous prices.
The skeleton is formed by small crystals and long threads of vitreous silica, cemented together, during life, by protoplasm. They are arranged in longitudinal and annular bands so as to form a long curved cylinder about nine to twelve inches long, the walls of which are about one inch in thickness. The threads and bands are interwoven with the greatest regularity, and when the skeleton is freed from the adhering organic matter, it looks extremely beautiful.
The mode in which the intersecting bunch es of crystals are connected is shown in Fig. 2. The upper end of the cylinder is closed by a perforated cover, which probably has given rise to the name of the sponge. The upper portion of the cylinder is surrounded by a few irregular, annular masses of organic tissue, which adheres loosely only to the skeleton. The lower end is formed by a bunch of long threads, rooting firmly in the ground.
Up to about ten years ago the price of specimens of this sponge was very high. A that time, however, a colony of Euclentellas was found near the cities of Cebu and Manila in the East Indies, in a depth not exceeding 100 fathoms, and since they have appeared in larger quantities in the market. It is remarkable that, con trary to their habits, these organisms have immigrated int regions to which they were totally unaccustomed. Yet i must be regarded as a greater curiosity that they have been accompanied to their new abode by a few animals living


#### Abstract

in equally deep water and never met with before at depths less than three or four hundred fathoms. Among these animals is a Phormosoma (water hedgehog), noted for its long spines. Glass sponges are not confined to tropical regions. They are met with in latitudes as high as the Färöe Islands, where the beautiful Holtenia Carpenteria abounds. It is represented in Fig. 3. Its cup-shaped skeleton is similar in structure to that of the Eucleptella; numerous crystalline needles protrude from the surface of the upper part. Lately some specimens of Holtenia have been found on the coast of Florida. Glass sponges serve as dwellings for numerous animals, especially crustaceæ. A small shrimp inhabits the tubes of the Eucleptella, a male and a female generally living together. They are shut up as in a prison in their crystalline home, as they are generally too large to pass through the meshes formed by the bundles of crystals. It was formerly believed that these skeletons had actually been built by the shrimps, and we can find no explanation for this curious circumstance, other than that the shrimps entered these habitations while very small and became too


 large to leave them.
## Plants Protected by Insects.

Mr. Francis Darwin, in a lecture on " Means of Self-Defense among Plants," delivered lately at the London Institution, said that one of the most curious forms of defense known is afforded by a recently discovered class of plants, which, being stingless themselves, are protected by stinging ants, which make their home in the plant and defend it against its enemies. Of these the most remarkable is the bull's-horn acacia (described by the late Mr. Belt in his book "The Naturalist in Nicaragua"), a shrubby tree with gigantic curved thorns, from which its name is derived. These horns are hollow and tenanted by ants, which bore a hole in them, and the workers may be seen running about over the green leaves. If a branch is shaken the ants swarm out of the thorns and attack the aggressor with their stings. Their chief service to the plant consists in defending it against leaf-cutting ants, which are the great enemy of all vegetation in that part of America. The latter form large underground nests, and their work of destruction consists in gathering leaves, which they strip to form heaps of material, which become covered over with a delicate white fungus, on which the larvæ of the ants are fed, so that literally they are a colony of mushroom growers. The special province of the little stinging ants, which live in the thorns of the acacia, is, therefore, to protect the leaves of the shrub from being used by the leaf-cutters to make mushroom beds. Certain varieties of the orange tree have leaves which are distasteful to the leaf-cutters, this property of the leaves thus forming a means of defense. Other plants are unaccountably spared by them-grass, for example, which, if brought to the nest, is ant once thrown out by some ant in authority. The bull's-horn acacia, in return for the service rendered by the stinging ants, not only affords them shelter in its thorns, but provides them with nectar secreted by glands at the base of its leaves, and also grows for them small yellow pearshaped bodies, about one twelfth of an inch in length, at the tip of some of its leaflets, which they use as food. These little yellow bodies are made up of cells containing protoplasm rich in oil, and afford the insects an excellent food. When the leaf unfolds, the ants may be seen running from one leaflet to another, to see if these little yellow bodies are ripe; and if they are ready to be gathered they are broken up by the ants and carried away to the nest in the thorn. Scveral small birds, also, build their nests in the bull's horn acacia, thus escaping from a predatory ant which is capable of killing young birds. The trumpet tree, another plant of South and Central America, is also protected by a standing army of ants; and, like the above mentioned acacia, grows for its protectors small food bodies containing oil, but instead of secreting nectar in its leaves it harbors a small insect (coccus), whose swect secretion is much relished by the ants. Dr. Beccari mentions an epiphytal plant growing on trees in Borneo, the seeds of which germinate, like those of the mistletoe, on the branches of the tree; and the seedling stem, crowned by the cotyledons, grows to about an inch in length, remaining in that condition until a certain species of ant bites a hole in the stem, which then produces a gall-like growth that ultimately constitutes the home of the ants. If the plant is not fortunate enough to be bitten by an ant it dies. These ants, then, protect their plant home by rushing out fiercely on intruders, and thus are preserved the sessile white flowers which, in this plant, are developed on the tuber like body.

Advance in Iron.-At a meeting of the Philadelphia Iron Merchants' Association, March 11, prices of all descrip tions of merchant iron were advanced fully 5 per cent.

Fig. 3.-HOLTENIA CARPENTERIA.
the ascent from the ground floor to the upper rooms of a three-storied house, or to enable the traveler sitting in a
railway train to tell, by watching its face, whether he is railway train to tell, by watching
ascending or descending an incline.
Such slight variations are more easily observed on the aneroid than on the mercurial barometer, and therefore it is commonly stated that the ancroid is the more sensitive instrument. This, however, is a fallacious conclusion. It is not the superior sensitiveness of the movements of the instrument, but the greater facility of reading them, that gives this advantage to the aneroid, the index of which has a needle point traveling nearly in contact with the foot of the divisions; the readings are further aided by a needle point register attached to a movable rim, which may be brought point to point against the index, thus showing the slightest movement that human vision may detect. A magnifying lens may be easily used in such a case.
It should be understood that the aneroid barometer is not an independent instrument; it is merely a device for repre regulated the movements of the mercurial barometer. It this comparison should be renewed from time to time, as the elastic properties of the metal may and do vary.
An adjusting or regulating screw is attached to the back of the instrument, and is usually movable by a watch key.
Besi

Besides this, the magnified reading of course magnifies any primary error, and is largely dependent on the accuracy of the mechanism.


The Albo-Carbon Light.
The aneroid barometer was invented by M.Vidi, of Paris. It consists essentially of a circular box, the face of which is made of thin elastic metal, rendered more elastic by being stamped and pressed into concentric circular wave-like cor rugations. This box is nearly exhausted of air, and its elastic face supports the pressure of the atmosphere, and yields to it with elastic resistance in proportion to the amount of pressure. Thus, if the atmospheric pressure increases, the face is pressed inward; if atmospheric pressure diminishes, the elastic reaction of the metal moves the face outward.
These movements are communicated to an index by suitable These movements are communicated to an index by suitable
and very delicate mechanism, and registered in largely magnified dimensions, by the movements of this index upon the face of the dial.
Aneroid barometers are now made of pocket size, compensated for temperature, and with double scales, one read ing the height of the barometer column, the other the elevation obtained. I have, says Prof. W. M. Williams, used one of these during many years, and find it a very interesting traveling companion. It is sufficiently sensitive to indicate

We need hardly remind our readers that numerous unsuccessful attempts have been made at various times to enrich ordinary coal gas by the aid of volatile oils. Upon the present occasion we have to place before them particulars of a process having the same object in view, but which is so far dissimilar in that it deals with a solid substance instead of a liquid oil. The invention has been brought into its present practical shape by Mr. James Livesey, C.E., of No. 9 Victoria Chambers, Westminster, in conjunction with Mr. Kidd, with whom it originated. The process consists in the employment of a substance called albo-carbon, which is the solid residuum of creosote. This material is moulded into the form of candles, which in large lamps are placed in a metallic vessel or receiver near the gas burner. The albo-carbon is warmed by the heat of the burning gas, the heat being trans mitted to the receiver by a metallic conductor. Upon the albo-carbon being raised to the necessary temperature it volatilizes, and as the coal gas passes over it to the burner its vapor becomes mingled with the gas, and greatly raises its luminating power. Of course when first lighted the coal gas only is burned, but in a few minutes the albo-carbon communicates its enriching vapor to it. The only alteration necessary to the present gas fittings is the vaporizing chamber, which is of simple construction, although at present the details of the various arrangements necessary for the different kinds of lights have not yet been fully worked out. This invention is now being tried experimentally in the eastern section of the Westminster Aquarium, where we recently examined it, and found it to afford a marked improve ment upon the ordinary system of gas illumination, although a smaller number of burners is being used. Tried alternately with ordinary coal gas, the higher illuminating power of the albo-carbon light was very remarkable. It appears that there are 200 burners fitted at the Aquarium with the new light, and these successfully take the place of 500 ordinary gas burners previously in use. The illuminating effect is stated to be doubled, with an additional advantage as regards economy. The reduction of cost arises from the smaller quantity of gas consumed with the albo-carbon process than without it, and the very small cost of the enriching material. According to our information, 1,000 cubic feet of ordinary gas as generally used will, by the albo-carbon appliance, give as much illumination as $3_{r} 000$ cubic feet without it, and the cost of the material to produce this result is only 1s. 6d. Experiments have been made with this light by Mr. T. W. Keates, the consulting chemist to the Metropolitan Board of Works, who reports very favorably upon it, as does also Dr. Wallace, of Glasgow, who has obtained some very satisfactory results with it. It is claimed for the albo-carbon material that it is perfectly inexplosive, safe and portable, that it causes no obstruction and leaves no residuum, and that the receivers can be replenished almost indefinitely without any accumulation taking place, so perfect is the evaporation of the albocarbon. On the whole the display at the Aquarium speaks greatly in favor of the new process of gas enrichment, which, other things being equal, bids fair to find its way into prac-tice.-Engineering.

## English and American Hardware

Mr. Frederick Smith, Manager of the Union Land and Building Company (limited), re cently read a paper on the above subject before the Man chester Scientific and Mechanical Society. Mr. H. Whiley, Superintendent of the Manchester Health Department, pre sided. The following is the text of the paper, as given in the London Ironmonger. The lecturer said:

A spectator in any of our courts of justice will generally be struck with the amount of hard swearing which is given to the court, under the name of evidence. He will find one set of witnesses testifying, under oath, to one thing, and another set, also under oath, to the very opposite. Some prove too much, some too little, some are of a totally negative character, proving nothing, and some are of no charac ter at all, and therefore are willing to prove anything. To some extent the same phenomena are to be observed in ref erence to the question of foreign competition. On the one hand the manufacturers hold up to our affrighted vision the picture of our mills stopped, our machine shops standing empty and idle, our hardware trade slipping through our fingers, our ships rotting in our own and in foreign ports, and our greatness as a producing nation for ever passed away On the other hand, the journalists who take the labor side of the question, the trades-union leaders, and a large number of the workmen themselves, hold that we have little or nothing to fear from our foreign rivals; that the depression, like those atmospheric ones of which our American cousins are con stantly warning us, will pass away, and leave us with better times to follow. I will, therefore, as far as possible, keep out of the region of speculation, give you a few facts, show |you some examples, and leave you to draw your own in
ferences. Some two or three years ago ordinary axle pulleys of English make were difficult to get; the price was scandalously high, and the quality as scandalously low. Out of a dozen probably four would not turn round without sticking, and the casting was-well, simply vile. I show you a sample rather above the average, and the retail price for this in ferior article was 22s. per gross. All at once the Americans deluged the English market with the pulley which I now show to you, and it needs no explanation of mine to satisfy the mechanical minds present of the superiority of the transatlantic article; but when we also bear in mind that the price of the American was from 25 to 33 per cent less than the English pulley, you can understand how the build ers exulted, and how the Volscians of the Birmingham district were fluttered. Then, and not till then, would the English maker condescend to believe that it was possible to improve upon the wretched things which he had foisted upon his customers, and he at once commenced to copy the American pulley. He has not yet succeeded in producing such a beautiful casting, büt I venture to say that he has improved the quality more in the last eighteen months than in the previous eighteen years.
Now take the ordinary door furniture. For generations the English builder and householder has had to be content with the stereotyped, with all its aggravating propensities. First, the little screw (so small as to be scarcely perceptible to touch or to sight) shakes loose from its countersunk deor next, the knob itself, formed of a bit of sheet brass, turn round on its shank and the door cannot be opened, or the shank, not having a sufficient bearing on the spindle, work loose, and the whole thing is out of repair. It is the same thing to-day as it was when it tormented my grandfather; for, of course, no improvement could be made until Uncle Sam sent us his cheap, strong, serviceable, and sensible " Mineral Knob."
The English maker says: "But look at the many devices which we have invented for door furniture." Granted, and some of them very good, but none of them so good as thisfor the money. Plenty of them well adapted for extraordi nary use, but none of them cheap enough and strong enough to be placed in competition with this in fitting up the dwelling of the ordinary Englishman. The spindle and furniture of a lock is the portion which is liable to and receives the most rough usage.
I have here an ordinary cheap set of china furniture o English make, which I dare not drop lest I should break it, but as you see, I dare throw its Yankee competitor the whole length of this room. The retail price of this English set is ninepence-the price of the American is less than sixpence. The English spindle is fitted with the usual little screw, the knob is loose, the roses are china, and liable to break with the least strain or blow. The Ameriean set, as you see, has a long shank; the form of the knob is a very oblate spheroid, giving a good grip and free play for the fingers between the knob and the door. The rose is japanned iron, and has small studs or teeth projecting on its inner side effectually preventing it from turning round with the spin dle; the screw is strong, and is tapped through the spindle itself, insuring both security and perfect steadiness. Several small washers are supplied with each spindle, enabling
the slack to be taken up perfectly, and at the same time pre venting the spindle from sticking with any ordinary amount of friction.
I will now show you a cheap American rim lock. First you will notice that both sides are alike. Next, that by pull ing the latch forward it can be turned half round, and is thereby converted from a right hand to a left hand, or vice versa, in an instant. This is an important point to a
builder, but our lockmakers do not seem to know it. Several attempts have been made to introduce locks of this kind, but the fancy prices put upon every article which departs, in ever so slight a measure, from the antediluvian patterns mostly used, practically prohibits their adoption. The car cass of the lock is of cast iron; the casting, like all the small American castings, is simply perfect; bosses are cast round
the follower and keyholes; the box staple is one piece of the follower and keyh
But there is another point, and, to my mind, the most important one. Whatever opinions may be held as to the rela tive quality of this lock, whether it is better or worse than an English one, it is at least an honest article. It makes no pretentions to be any better than it is. It does not entrap the unwary purchaser by pretending to be a first-class article when at the same time it may be a swindle.
I will now show you an ordinary 6 inch rim-lock of English manufacture. At a short distance it looks like a superio article; the follower and keyhole appear as if they were bushed with brass. But let us take it to pieces, and see what we can find. The follower is a rough casting, not turned at the bearings, and is in no sense a fit. The screw holes are not countersunk, but merely punched in; the key is of the roughest and worst fitting description; the inside is as rough and cheap as possible; the key is cut so as to deceive the purchaser into the belief that there are twice as many wards in the lock as is really the case, and the bushes prove to be thin plates of brass riveted on, and not bushes at all. In short, the whole article is a vile fraud, and the maker was a swindler. This is strong language, but I think you will
agree with me when I maintain that it is not stronger than agree with me when I main
the circumstances warrant.
the circumstances warrant.
But there are still its de
But there are still its defects of bad design and useless
orkmanship. The lock is of the usual form given to the

English rim-lock, that is, it has a flange which requires tobe prove it they have added so much to its cost as to preven let into the edge of the door. I have fixed hundreds of them, the improved articles from coming into general use. and have never yet been able to see a use for this flange. It The difference between the English and American inven is one great obstacle to the general introduction of a reversi- tor and designer seems to consist in this-that while an En ble lock; it adds to the labor of fixing without adding to the glishman devotes all his energies to the improvement of an security of the door, for if the door is to be forced from the outside, the box staples give way first; if from the inside, the unscrewing of the box staple is all that is necessary to give egress; if the door requires easing, it effectually prevents it being done-in fact, it is a nuisance, and nothing but a nuis-
ance. But our lockmakers do not appear to give these things a thought; their doctrine seems to be, "As it was in the beginning, is now, and ever shall be."

Again, notice that the edges of the iron which lie against the door and the sham bushes are ground bright. Here is labor wasted, for as soon as the lock is fixed these polished portions are hidden for ever. Next, take the box staple. As is usual, it is fearfully and wonderfully made up of sheet iron, square iron, and brass; the outcome of which is that the showy brass striking piece comes unriveted, the door comes unfastened, and the tenant's temper comes unhinged. Why, in the name of common sense, could they not substitute a
neat malleable casting? In our own houses I have long since neat malleable casting? In our own houses I have long since
discarded the ordinary box staple for draw-back locks, and find it cheaper to buy a cast iron staple, and throw away the one supplied by the English lockmaker.
Bear in mind that I have shown neither of these locks as forples or high-class goods, but as samples of the furniture fixed in the houses of the working and middle classes of this country; and when I tell you that the American lock, fitted with the mineral furniture, is at least 25 per cent cheaper than the English abortion I have shown to you, you will begin to realize what our English markets have to fear from
the Americans.
Here is a common, cheap English mortise lock, and you will naturally ask why the outside of this lock is ground bright, when it is buried in the door and never seen except it has to be taken out for repairs. I have asked the same question, and for 20 years have paused for a reply. This lock is not reversible, the follower is not bushed, and the inside is rough and cheap. Contrast it with this neat American lock, and notice again the bosses to receive the wear; notice also that the bolts are brass; the latch-bolt is, of course, reversi ble-I never saw an American lock which was not. The body of the lock is cast iron; and, seeing that there are no strains upon a mortise lock, it is quite as good as if it was of wrought iron. There is no unnecessary grinding, but the iron is
japanned, and the japan is as much superior to the English compound as is the lacquer ware of the Japanese to that which is executed in Birmingham and palmed upon the ignorant buyer as Japanese work. In fact, as you can see for yourselves, the English japan looks almost like gas tar beside the American. This American lock is a two-lever, and there is no sham about the key, which is made of some kind of white metal and is small and neat. This lock is only $21 / 2$ per cent higher in price than the English.
Before leaving these locks, let me say a word or two upon the relative wear upon their different portions, and their relative safety. The English maker appears to ignore the fact that nineteen-twentieths of the wear of a lock is upon the latch, spindle, and follower; the amount of actual wear upon the rest of the lock is comparatively slight. Let any of you consider the number of times you open and close a door, compared with the times you lock it. Our drawbacks and large rim locks are used about once a day; the great bulk of our mortise locks are not used, except as latches,
once a week. One argument used by our manufacturers against the American lock is that, being made by machinery, there is necessarily a great duplication of parts, and a conse quent lowering of the standard of security; while their own
locks, being made by hand, are not alike, and therefore canlocks, being made by hat be so easily opened.
Let any of you put this argument to proof, by trying how many front doors you can open with one key in a row of ing up to dwellings such as are found in Manchester, rangour own manufacturers made their locks sufficiently well to our own manufacturers made their locks sufficiently well to
give this security, there would be some force in what they say; but so far as security is concerned, they might as well make their locks by machinery as make them in the way they do.
I now show you two thumb latches, one of American and one of English make. Notice the general finish of the American latch; the shape, the mode of construction, and everything about it proves that brains were used when it was designed and made. The English "Norfolk latch," on the other hand, is ill designed, uncomfortable in hand, clum sily finished, the japan hangs about it in lumps, the latch is clumsy, the catch is clumsier, and the keeper, a rough piece of hoop iron, seems as if designed to " keep", the latch from doing its duty. In this case the American latch is 25 per
cent cheaper than the English one; and the English latch is of the same pattern as the one that was in use when I was a boy, only that it is a greatly inferior article.
I will now introduce you to the well known nuisance which we have been accustomed to use for fastening our cupboard doors-the cupboard turn-and without further latch of American make, costing about 5 per cent more, wice as efficacious, and five times as durable. In this case no improvement has been made in the English fastener. It
is just as it was when I went to the trade, about 28 years is just as it was when I went to the trade, about 28 years
ago, and although many attempts have been made to im
existing shape, the American throws the old article unde his bench and commences de novo.
I think I have made out a case against the English hard ware manufacturer, but when I have pointed these matter out to merchants and ironmongers, I have been met with various reasons for this manifest inferiority. I do not know how far these excuses may be valid, but one man say that the reason, as regards locks, is somewhat as follows The locksmiths of the district wherein they are made in many cases work at their own homes; one man making one part of a lock, while other men make other parts. This goes on generation after generation, and the men become mere machines, not knowing how the entire lock is constructed, and not caring to know. Another attributes it to the influence of the trades-unions, and says that if a manu acturer wants a different kind of lock, the price for the work is immediately put higher, even though the actual labor may not be increased. A third says it is due to the drunkenness of the hands, and their consequent poverty and physical and social demoralization, which prevents them from rising to such an intellectual level as will enable them to see the evils of their system, and adopt the right means to remove them. A fourth boldly says, "We make these goods because our customers want them." How far the reasons assigned by the first three are correct I am unable to say, but for the fourth, the extent to which the builders of England have patronized the Americans is a complete answer. This defense, "Our customers want them," is as old as the hills, and has been used to cover every kind of deception and inferior article ever manufactured. Our Lancashir manufacturers use it when they are charged with sending china clay and mildew (and call it calico) for the mild Hin doo and the Heathen Chinee to dress themselves in. Our but er merchants use it when they make up grease and call it butter; and our hardware merchants use it when they send us sham locks, and call them brass bushed, etc.
It is the duty of the manufacturer to invent for his custo mers, and it is preposterous to say that the builder would prefer that embodiment of fraud-the English rim-lock, which I showed to you-to the American lock, which, at any rate was an honest article, especially when the latter had the reat advantage of being considerably cheaper. I am afraid that the swindling and greed of our merchants is having the effect of thrusting us out of the markets of the world, in luding our home markets; and when it is too late, these me who are making the name of English goods a byword and a reproach, even among the Hindoos, the Chinese, and the un tutored savages of the South Sea Islands, will find that "honesty is the best policy."
We have been accustomed to hear a deal of buncombe talked about the honesty of the Englishman, and the want of hon esty of the Yankee; about the enterprise of our manufac turers and the skill of our workmen; but if what I have hown to you is to be taken as a specimen, it is time we set our house in order. Since commencing the paper I have read the discussion between Messrs. Chubb and Hill, and am t a loss to know why Messrs. Chubb entered into the aren If all the English makers tried to reach Chubb's standard we should keep our markets, at least so far as high quality is oncerned; and to see Messrs. Chubb acting as champions of he English lockmakers is something like seeing Messrs. Horrocks taking up the cudgels for those people who manu facture china clay and call it calico, the proportion of fiber in the material being just a little greater than that found in hair mortar.
In conclusion, I wish it to be understood that I bring these facts before you in no exultant spirit. I am an Englishman, and the future welfare of myself and my children depends very much upon the future of English manufac tures; but we cannot be blind to the fact that the apathy and conservatism of our manufacturers, the greed of our merchants, and the ignorance and drunkenness of our work men, are weighing us so heavily in the race for trade that a member of our own family, whose leading business should be to produce food for us, is outstripping us with the great est ease. Our boasted supremacy as a manufacturing people is leaving us, and leaving us under such humiliating circum stances-and if the men of Birmingham and the district are content to dwell in their present "fools' paradise," it is the duty of every lover of his country to speak as plainly as pos sible to them
Of course I am prepared to be told that as I am not a lock maker my opinion is worthless; but I have been about 28 years as man and boy, employer and workman, in the build ing trade, and if I have not got to know something about builders' hardware during that period, I have made but a poor use of my time. I do not know if I have added to your stock of knowledge, but deeming the subject an important one, I have done the best I could in the time at my disposal.

In the discussion which followed the opinion of the members present was unanimously in favor of the American ar ticles shown to them.

A high Indian official reports that the people of Cashmere are dying of famine like flies, and at the present rate of mor tality the province will be nearly depopulated by the end of the year.

## to inventors.

An experience of more than thirty years, and the pre Antion of not less than one hundred thousand applicaerstand the laws and practice on both continents, and possess unequaled facilities for procuring patents
verywhere. In addition to our facilities for prepari drawings and specifcations quickly, the applicant can rest assured that his case will be flled in the Patent $O$ ave been paid, is sent complete-including the model o the Patent office the same day the papers are signed our office, or received by mail, so there is no delay in Aling the case, a complaint we often hear from othe
sources. Another advantage to the inventor in securing his patent through the Scientific American Patent Agency, it insures a special notice of the invention in the SCIENTIFIC AMERICAN, which publication often
opens negotiations for the sale of the patent or manuforeign countries may be found on another page nd persons contemplating the securing of patents which have invited to write to this office for prices, nd our perfected facilities for conducting the business.
ddress MUNN \& CO., office ScIENTIFIC AMERICAN.

## Busimes and etersual.

The Chargef or Insertion under this head is one Dollar a line for each insertion; about eight worrds to a line
Adveetisements must be received at publication office as early as Thursday morniny to appearin. next issu. Valves and Hydrants, warranted to give perfect satis action. Chapman Valve Manuf. Co., Boston, Mass. Brown \& Sharpe, Prov., R. I. Best Gear Teeth Cut ters and Index Plates at low prices. Send for catalogue
Wanted-Galvanic Battery, Induction Coil, ElectroMagnet. Addres with description and Crice Box 1700, Boston, Mass.
New Steam Governor.-Entire right for $\$ 3,000$. Fo
Gutta Percha, pure and sheete
Gutta Anderson \& Repnolde, Sor sale in quantitie The new fragrant Vanity Fair Cigarettes. binations of rare Old Perique and Virginia.
Wanted-Second-hand Corliss Engine, 100 to 125 H . Address P. O. Box 1200, New Haven, Conn. 17 and 20 in . Gibed
Downer's Anti-Incrustation Liquid " for Remova nd:Prevention of Scales in Steam Boilers, is spoken of in highest terms by those who have given it a thoroug A. H. Downer, 17 Peck Slip, New York.

Mr. W. B. Adams, one of the most extensive contractors and decorators in this city, says he has used nearly
fifty thousand gallons of H . W. Johns' Asbestos Liquid Paints, and after an experience of twenty years with hite lead and other paints, and durabilit their wonderful covering properties, they are fully 2 per cent more economical than any others
New Pamphlet of "Burnham's Standard Turbine Gaume's Electric Engine. 171 Pearl St., B'klyn, N.Y Engines, 友 to 5 H. P. G. F. Sbedd, Waltham, Mass Clipper Injector. J. D. Lynde, Philadelphia, Pa. Diamond Drills, J. Dickinson, 64 Nassau St., N. Y. Eagle Anvils, 9 cents per pound. F'ully warranted. Case Hardening Preparation. Box 73,Willimantic, ct Vertical Burr Mill. C. K. Bullock, Phila., Pa.
Sheet Metal Presses, Ferracute Co., Bridgeton, N. J. Mundy's Pat.Friction Hoist. Eng.,of any power, double and single. Said by all to be the best. J. S. Mundy, New

Auction Sale.-The Machinery and Property of the
well known Hardie's Machine Works, 62 and 64 Church well known Hardie's Machine Works, 62 and 64 Churc
t., Albany, N. Y., will be sold March 26, at noon. No ostponement.
To Manufact
To Manufacturers or Capitalists.-A rare chance to Address S. A. Fisher, Maplewood, Mass.
Reflecting Telescope, $61 / 2$ inches aperture, well moun d, price only $\$ 70$. J. Ramsden, Philadelphia, Pa. See Hogins' Laundry Table, illustrated on page 194 ate, Canada, and entire right for sale.
Emery.-Best Turkey Emery in bbls., kegs, and cases
in quantities to suit. Greene, Tweed \& Co., 18 Park quantities to suit. Greene, Tweed \& Co., 18 Par
The scientific american Export Edition is pub umber comprises most of the plates of the four prece ing weekly numbers of the Scientific Amenican, wit her appropriate contents, business announcement tc. It forms a large and splendid periodical of nearl about one hundred engravings.

Gold, Silver, and Nickel Plater wants situation. Adress Pater, Oakville, Con
Amateur Photo. Apparatus, including instructions, Outfits for Nickel and Silver Plating, $\$ 5$ to $\$ 200$.
Union Silver Plating Company, Princeton, Ill. sor Curn Con Send for Circulars of Indestructible Boot and Sho
Soles to H. C. Goodrich, 40 Hoyne Ave., Chicago, For Sale.--Brown \& Sharp Universal Milling Machine Tools. E. P. Bullard, 14 Dey St., New York
For Sale.-7 foot bed Putnam Planer, $\$$
ool \& Co., Newark, N. J.
Bevins \& Co.'s Hydraulic Elevator. Great power,
simplicity,safety,economy,durability. 94 Liberty St.N.Y. A Cupola works best with forced blast from a Baker
Blower. Wilbraham Bros., 2,318 Frankford Ave., Phila. Shaws Noise Quieting Nozzles and Mercury Pressure auges. For Solid Wrought Iron Beams, etc., see advertise
ment. Address Union Iron Mills, Pittsburgh, Pa., fo ithograph, etc.
H. Prentiss \& Company, 14 Dey St., N. Y., Manufs Presses. Dies, and Tools for working sheet Metal Fruit \& other can tonls. Bliss \& Williams, B’klyn, N. Y.

| Nickel Plating.-A white deposit guaranteed by using | A |
| :---: | :---: | our material. Condit,Hanson \& Van Winkle,Newark,N.J. $\$$

public buildings. Burdon Iron Works, Brooklyn, N. Y The Lathes, Planers, Drills, and other Tools, new and eoond-hand. of the Wood $\&$ Light Machine.Compan Worcester, are to be sold out very low by the Georg
Place Machinery Agency, 121 Chambers St., New York. Hydraulic Presses and Jacks, new and second han Lathes and Machinery for Polishing and Buffing Metals

## Lou

Solid Emery Vulcanite Wheels-The Solid Origina Cmery whee -other kinds imitations and inferio tandard Belting, Packing, and Hose. Buy that only The best is the cheapest. New York Belting and Pack ing Company, 37 and 38 Park Row, N. Y
Pulverizing Mills for all hard substances and grinding Pos. Waker Bros. \& Co., 23d \& Wood St., Phila., Pa terns, foundations, stables, cellars, bridges, reservoirs reweries, etc. Remit 25 cents postage stamps for Pract Broadway, New York
Needle Pointed Iron, Brass, and Steel Wire for all
urposes. W. Crabb, Newark, N. J.
Manufacturers of Improved Goods who desire to build p a lucrative foreign trade, will do well to insert a well isplayed advertisement in the Scientific America irulation.
Band Saws, \$100; Scroll Saws, \$75; Planers, \$150 Universal Wood Workers and Hand Planers, \$150, and
upwards. Bentel, Margedant \& Co., Hamilton, Ohio. The best Friction Clutch Pulley and Friction Hoist Ma Machinery in the world, to be seen with power ap
plied, 95 and 97 Liberty St., New York. D. Frisbie \& Co lied, 95 and 97 Libe
ew Haven, Conn.
C. M. Flint, Fitchburg, Mass., Mfr. of Saw Mills and

Blake's Belt Studs; strongest, cheapest, and best fet ing for Leather or Rubber Belts. Greene, Tweed Co., New York
No gum! No grit! No acid! Anti-Corrosive Cylin nly oil that perfectly lubricates a railroad loco motive cylinder. doing it with haif the quantity equired of best lard or tallow, giving increase
power and less wear to machinery, with entire fre dom from gum, stain, or corrosion of any sort, and
it is equally superior for all steam cylinders or ndispensable. A fair trial insures its continued
indites ar
se. ase. Adress E. H.
ase.
Cedar St., New York.
The unprecedented demand for Kinney Bros.' New igarette, Swee
o their merit.
Wheels and Pinions, heavy and light, remarkably nd similar woable. Especially suited for sugar mill and similar wor
pittsburgh, Pa.
Deoxidized Bronze. Patent for machine and engine For Sale. -4 H. P. Vertical Engine and Boiler (New York Safety Steam Power Co.'s make), as good, and in
some respects better, than new. Address H. M. Quacksome respects better, that
enbush, Herkimer, N. Y
Wood-working Machinery, Waymouth Lathes. Spe ialty, Wardwell Patent Saw Bench; it has no equal
mproved Patent Planers; Elevators; Dowel Machines. ollstone Machine Company, Fitchburg, Mass. Galland \& Co.'s improved Hydraulic Elevators. Office
 The only economical and practical Gas Engine in th chumm \& Co., Philadelphia, Pa. Send for circular Dead Pulleys that stop the running of loose pulleys and their belts, controlled from any point. Send fo
catalogue. Taper Sleeve Pulley Works, Erie, Pa. Vick's llustrated Monthly Magazine is one of the mo beautiful nagazines in the world. Each number con-
tains a chromo of some group of flowers, and many flne tains a chromo of some group of flowers, and many fin
engravings Published monthly at $\$ 1.25$ per year. Ad dress James Vick, Rochester, N. Y.

## 

HINTS TO CORRESPONDENTS No attention will be paid to communications unles accomp
writer.
Name
Names and addresses of correspondents will not be given to inquirers.
We renew our request that correspondents, in referring tormer answers or articles, will be kind enough of the question. Correspondents whose inquiries do
reasonable time should repeat them
Persons desiring special information which is purel of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, s we cannot be expected to spend time and labor btain such information without remuneration.
(1) S. Q.-The speed of a circular saw a he periphery should be from 6,000 to 7,000 feet pe
inute. The number of revolutions per minute will course vary with the diameter of the saw.
(2) T. J. F. asks (1) for the best way to fasten emery on a wooden wheel, to be used in place of
a solid emery wheel. A. Cover the wheel with leather devoid of grease, and coat the leather surface, a portion at a time, with good glue; immediately roll the glued urface in emery spread out on a board. 2. How can I fasten small pieces of looking glass on iron? A. Use (3) W. C. asks: 1. What is the power of the simple electric light described in Supplement No 199? A. When supplied with a strong current it is equa to 5 or 65 -foot gas burners. It is designed for tempo
rary use only. 2 . What is the cost of manufacturin
35.
(4) L. D. asks: 1. Which is the better con ductor, silver or copper? A. Silver. 2. And the comwater and the above? A. Taking pure silver $100,000,000$, the conductivity of distilled water would b
(5) H. J. F. writes: In Supplement 162 simple electric light is described. I wish to light room 20x20x10 feet. 1. How large is the bell glass? A.
$21 / 2$ inches. 2. Can I use battery carbon? A. Use a car on pencil made for electric lamps. 3. How con I mal tray water tight after putting wire through? A. With gutta percha. 4. Thave one large cell Bunsen and one Smee. How many more and of what kind shall I get A. One of the batteries described in Supplements 157 . e the best.
(6) W. B. F. writes: I tried to make an lectric pen, like the one described in your Scientific American, of February 22 d , 1879 , using a Smee's batnot work. Is there anything wrong, or is a condenser ifferent from an induction coils A. A condenser con ists of a number of sheets of tin foil separated from ach other by larger sheets of paper. One half of the tin foil shects are connected with one terminal of the primary coil, the other half with the other terminal; the in foil sheets connected with one terminal alternate with those of the other terminal. The condenser
essential to the working of the coil. For complete di rections for making induction coils, Sceeviruo american Supplement No. 160.
(7) J. De F. asks: 1. Knowing the resist nce of a wire of given conductivity, length, and diame er, will the resistance of any other wire be in propo oped in the secondary coil of an induction coil to pr vent the use of paraffine as an insulating material?
With proper battery power, no. 3. How high in t With proper battery power, no. 3. How high in
list of non-conductors does paraffine stand? A. It ne of the best. 4. Will a cotton insulator soaked in renders the covering of the wire too thick. 5. Can you recommend any insulating material for making induc tion coils which will dry rapidly? A. Alcoholic shel lac varnish. Rosin towhich a little beeswax has been added is an excellent insulator; it must be applied in a
melted state. 6. What is the composition of the black melted state. 6. What is the composition of the black ta percha. 7. Is the magneto-electric machine described In the Scievtific American Supplewent patented? To which do you refer? Most, if not all of them are pat ented.
(8) B. V. F. writes: With reference to item 8, on page 139, of Scientific American, March think required to heat 1,000 cubic feet space. I burn some 8 tons coal to heat, in the whole year, such part of y house as must exceed $25 \times 20 \mathrm{x} 18=9,000$ cubic feet. We keep up a moderate heat at night. Ventiate mond families do; take part only of the cool air and nly in part of the coldest weather from the cellar which at such times is openedinto the main entries. House wood, back plastered, and stands alone. If 100 lbs coal would heat 1,000 feet one day, I ought to burn 900 ibs. a day, or nearly 14 tons in December and 14 more in anuary. A. We are glad to receive these data, which orrespond quite closely with some ©btained by rece entific American also agrees well with experiments on the use of hot air heaters for very small buildings rooms. Of course, the larger the space to be heated the more economically it can generally be done.
(9) W. M. S. asks: Will the coil described in SUPplement No. 160 do for the electric pen de If not how must it be changed? A. It is too large; mak $t$ one half the size given.
(10) B. G.-In reply to your inquiry as to Mr. Stroh's telephone experiment, we give the follow-
ing, which we clip from the English Mechanic: A sin ing, which we clip from the English Mechanic: A sin
gular experimental effect, of special interest just no from its possible bearing on the theory of the sourc of sound in the Bell telephone, has just been ob
served by Mr. Stroh, the well known mechanician. If telephone, $\mathbf{T}$, with the circuit of its coil left open, be

eld to the ear, and a powerful magnet, $M$, be move ently up and down along the length of the magnet, a hown by the arrow, and at a distance of an inch or two rom it, a faint breathing sound will be heard, the re
curring pulses of sound keeping time with the up and own motion of the magnet. The sound may be aptly compared to the steady breathing of a child, and there is a striking resemblance between it and the micro phonic sounds of gases diffusing through a porous
septum as heard by Mr. Chandler Roberts. We undertand that Professor Hughes is investigating the caus this curious sound by help of the microphone.
(11) " Enterprise" asks: What part of it olume will iron expand in passing from a temperatur of $60^{\circ}$ to melting temperature? A. The cubical expan on of iron for each degree (C.) between $0^{\circ}$ and $100^{\circ}$ is 00003546 of its volume, its volume being 1. This ratio since the mean coefficient of expansion for each degree
between $0^{\circ} \mathrm{C}$. and $300^{\circ} \mathrm{C}$. is 0.00004405 . The question ou ask has probably never been settled. You may form ing the melting point of the iron.
(12) P. L. O. asks for a good chemistry "or a beginner to study without a teacher. A. Fownes' Chemistry;" Gorup-Besanez, "Inorganic, Organic
(13) L. E. M. asks: What is the best method of keeping fine guns from rusting, and what oil hould be used? A. For the outside, clear gum copal Clean and heat the metal and apply a flowing coat of the iquid by means of a camel's hair brush. Do not handle until the coat becomes dry and hard. For the inside of the barrel a trace of refined sperm oil is as good as anyhing, but an excess should be avoided
(14) A. H. B. asks how much weight, fallor five h, win be required to produce one horse power $x 300=9,900,000$ foot pounds - so that the weight required is $9,900,000 \div-10=990,000 \mathrm{lbs}$.
(15) A. D. R. asks: 1. In renewing a Leclanche battery, do the zincs have to be amalgamated? A. They are usually amalgamated. 2. Will two cells arge size Leclanche battery give any light, using the
imple lamp described in Supplement No. 162? A. No.
(16) H. L. J. writes: In a recent issue of the Scientific American you state that the floating of solid iron on melted iron is on the same principle as
the floating of ice in water. I do not quite rnderstand he floating of ice in water. Ido not quite understand
how it can be. Please explain. A. Solid iron at an elevated temperature, floats upon molten iron for the same reason that ice floats upon molten ice-water-bediscussed at length in Tyndall's "Heat as a Mode of
(17) J. W. will find full directions for can ning corn, etc., on p. 394 (4), vol. 39, Scientific Ameri(18) "Amatcur" writes: I wish to make some small bells that have a clear ring. What metal
or metals can I use that I can melt easily? A. Use an or metals can I use that I can melt easily? A. Use an alloy of tin and antimony. See Scientific American (19) H.-A nutritious mixed diet is unques
 (20) W. F. writes: I have made an engine, and would like to find out what size of boiler it will re-
quire. The cylinder has $21 / 4$ irch bore and 3 inches stroke. A. It depends upon pressure and speed to be naintaine, 30 to 36 ercaltubular biner, 15 in
(21) R. G. (Salt Lake).-Please send full
(22) J. M. G. asks: If two persons each pull one hundred pounds on opposite ends of a rope, what will be the strain on the rope? A. The strain on
he rope will be 100 lbs .
(23) W. M. M. asks: In laying off a mill stone in furrows, what draught is given? What amount
of the space of a stone is given to furrows and what to grinding surface? A. There is considerable difference in the practice of various millers, and we ould
Minerals, etc.-Specimens have been re eived from the following correspondents, and examined, with the results stated:
S. (New Orleans.)-The powder consists of a mixure of zinc oxide and finely powdered resin. A quan-
itative analysis would be necessary to determine the proportions.

Any numbers of the Scientific American Supple
ENT referred to in these columns may be had at thi

## COMMUNICATIONS RECEIVED.

## Life Preserving Stone. By J

On Ventilation. By D. W.
What is Mental Action? By N. K
What is Mental Action? By N. K.
Panama Railroad or Canal. By G. R. P
Panama Railroad or
A Problem. By K.
A Problem. By K.
On the Gary Motor. By G. F, M
Magnetic Motor. By G. W. W., W. A. A., G. H. F House Warrning. By H. B.
The Injector. By M. A. B.
Columbus' Problem; Cure for Diphtheria; The Mul in Cure for Consumption.
A Visit to Tùa. By L. R.
On Vacuum in Pumps and the Atwood Machine. By P. J. D.
On the Patent Bill, By R.

## [OFFICIAL.]

INDEX OF INVENTIONS
Letters Patent of the United States were February 18, 1879,
ND EACH BEARING THAT DATE [Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list urnished from this office for one dollar. In orderin pease state the number and date of the patent desire and remit to Munn \& Co., 37 Park Row, New York city.
 Arrel cover, C. Brinton Barrel cover, C. Brinton


| Plow cutter, A. Aldarich ..... ................... 212,419 | (2anextis monts. |
| :---: | :---: |
| w, sul |  |
|  |  |
| mping |  |
| Radiator for steam heaters, Covert \& Snyder..... 212,380 |  |
| Railway crossing, Bernard \& Perkins ............ 212,432 |  |
| , c. | as Thurssay morning |
|  |  |
| Roocking chair, J. W. Hamburger................. 2 |  |
|  |  |
| Sa |  |
| Sa | The above isa lirge, irst-class enginering estabish- |
| Salt cellar, W. Sellers............................ 212.518 Sandpaper roll o. Gilmore | ita iron and drass foundries boilce shop, mathine |
|  | ata |
|  | Conneted with the works is a large, well-siocked enyi- |
| Sash fastener, G. w. Cary....................... 212,254 | best of modern tools in thorough repar. Builiaings |
| Sash fastener, J. B. Morris ........... . ......... 212, |  |
| Saw, ctreular, G | Sone alarge business and maintained a high reputation. |
| Saw hande | prk 200 men. At present about 100 men are employed. |
|  |  |
|  | ties at Albany, N. Y., by appointment, or New York, if preferred. |
| Sawing machine, seroll, N. P. Selden ............ 2 |  |
|  |  |
| Scales, welghing, G. L. C. Coulon................... 212,300 | only |
| Scarf pins, etc., making ball heads of, J. N. Allen. 212 | Sores only, Pla |
| 212,352 |  |
|  |  |
| Sewing machine, C. ©. Parmenter ............... 212,495 |  |
| Sewing machine plaiter, White \& Bowhannan .... 212,417 |  |
| Sheet metal vessel bottom, F. W. Moseley ........ 2 |  |
|  |  |
| Skate, C.T. Day (r). |  |
| 8,588 |  |
|  |  |
| S:nelting furnace, iron, P. L. Weimer............ 212,415 | alt |
| edee burnisher, T. P. Young ................ 212,342 | Olla |
| Sprinkling can, G. F. P | $\mathrm{h}_{\text {may }}$ ye seeen specemenso |
|  | Clinton M |
| sta |  |
|  | FOR SALE-GEAR CUTTER. |
|  |  |
|  |  |
|  | ${ }^{\text {cu}}$ |
| Steam piping for heating, etc., E. F. Osborne ..... ${ }^{212,220}$ |  |
|  |  |
|  | fou |
|  | 15 cts. 5 cts. cash and 10 cts. after satisfatory trial. |
|  |  |
|  | How to eonstruet reauction works for mineral ores of |
| 212,400 | Work with the tuel now nseod ando save 98 per cent. of |
|  |  |
| 212,514 |  |
| 373 |  |
| Telephony, electric, Black $\&$ Rosebrugh........ ${ }^{212}$ 212, Telephony, electric | \& Co., 111 Nassau St., New Y |
| epl |  |
| ill coupling, C. E. Gillespie et al..................... 212,308 |  |
| Thill coupling, M. F. Ten Eyck ....................... 212,333 |  |
| Thill supporter, vehicle, H. O. Re | d. Dive, 30 Hanover st., Boston, |
| Tiles for use as stands, frame for holding ornamental or fancy pottery, C. A. Wellington .... 212,335 | CATARRH. A Sure Cure. Samples by mail, 10c. GEO. N. STODDARD, Buffalo, N. Y. It cures loc. GEO. Nill cure you. Sample will prove. |
|  |  |
| les, paving blocks, etc., composition for drain, W. H. Haight.... |  |
| e upsetter, B. K. Taylor .................... 212,332 |  |
| Tobacco, curing, A. P. Poladura ......... ....... 212 |  |
| Tobacoo flavoring compound, D. Sternberg....... 212,331 | NOVELTIES, NOTION |
| Trobacoo manufacture, J. т. Harris.............. 212, | Watches, Cheap Jewelry, Stationery Pa |
| Tobacoo presser, F. B. Deane ................... ${ }^{212,446}$ | Agents and country stores supplied. Illustrated |
| Tru |  |
| Type |  |
|  |  |
| Umbrella runner, w. H. Belknap...................... 212,4 |  |
| Undersho or slipper, G. Gardner.............. ${ }^{\text {212,34 }}$ |  |
| Vehicle seat lock, W. G. Allen...................... 212,3 |  |
| Vehicle spring bolster, J. G. Snyder.................. 212,223 |  |
| Velocipede, E. C. F. Otto ......................... 212,49 |  |
| sh boiler, F. J. Boyer. |  |
| Washing and bath tub. J. B. O. Shevill ............ ${ }^{212,32}$ | Sins, Tape Measures, Poocket Rules, and Books |
| Water meter diaphragm, w. B. Mounteney....... 212 |  |
| Whip holder, Curtis \& |  |
| Wire measurer and cutter, c. (G. |  |
|  |  |
|  |  |
| AD | $\operatorname{and}_{\mathrm{pr}}$ |
| Boots, shoes, and brogans, W. F. Thorne \& Co...... 7,037 Cigars, Sullivan \& Burk ....................... ........ 7,035 | opticons. Scientiflc Lanterns, and accessory appara- tus to be used with them: Magic Lantern Slides, both colored and uncolored |
| Cigars, cigarettes, and smoking and ch bacco, $\mathbf{E}$ Hilson | str |
| baco, | in every department of Physics and Chemical Sci |
| Fertiizers for flowers, W. H. Bowker \& Co........... 7,041 |  |
| Grain fans, J. Montgomery......................... 7,032 |  |
| Hair goods for ladies' wear, M. E. Thompson ...... 7,040 |  |
| e | 24 Chestnut St., Philadelphia |
| the cure of neuralgia, and the like J. S. Nicolds. |  |
| oflng paper, carpet paper, or;paper felt, and build- | 00d-W or |
| Hewitt |  |
|  |  |
| Table cutlery, John Russell Cutlery Company ... .. 7,03 | deas Maachines,and |
|  |  |
|  |  |
| ned sleigh bell | THE DRIVEN WEL |
|  |  |
| Oil cloth, C. T. \& V. E. Meyer................11,024 to 11,026 | selling Licenses under the established |
|  |  |
| lish |  |
| From February 18 to February 21, inclusive. | MINING MaCHinery. Eugines. Boilers, Pumps, |
|  |  |
|  |  |
|  |  |
|  | T PA YSto sellour Rubber Hand Printing Stamps. Goods delivered in any country. Circulars free. |


The George Place Machinery Agency
Machinery of Every pescripion.
121
hambers and 113 Reade Streets, New York.
60 Chrom and fertumed Card [ing salkel. Nameen
ROOF PAINTING, For f5, by post ofice or or or


 IMPRTANT FOR ALL CORPORATIONS AND




Driven or Tube Wells


## A New and Valuable Work for the Practical Cyclopmdia of Applied Mechanics.  <br> Edited by PARK BENJAMIN, Ph.D.  <br> RPITENTS <br> CAVEATS, COPYRIGHTS, TRADE

Messrs. Munn \& Co., in connection with the publica ion of the Scientific American, continue to examin improvements, and to act as Solicitors of Patents for
Inventors. In this line of busi, and now have unequaled facilities for the preparation of Patent Drawings, Specifications, . Prosecution of Applications or Pates, Nessrs. Iunn \& Co. also attend to the preparation of Caveats, Trade Mark Regulations, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements
of Patents. All business intrusted to them is done with special care and promptness, on very modera We send free of charge, on application, a pamphlet containing further information about Patents and how
to procure them; directions concerning 'Irade Marks, to procure them; directions concerning Meale, Reissues, In ringements, Assignment
Fole of Patents, etc. Foreign Patents.- We also send, free of charge, a
Synopsis of Foreign Patent Laws, showing the cost and method of securing patents in all the principal coun-
tries of the world. A merican inventors should bear in mind that, as a general rule, any invention that is valuable to the patentee in this country is worth equally as
much in England and some other foreign countries. Five patents-embracing Canadian, English, German, French, and Belgian - will secure to an inventor the exlusive monopoly to his discovery among about on
UUNDRED AND FIFTY MILIONs of the most intelligen people in the world. The facilities of business and
steam communication are such that patents can be obtained abroad by our citizens almost as easily as at 75; German, $\$ 100$; French, $\$ 100$; Belgian, $\$ 100$; Can dian, $\$ 50$.
Copies of Patents.--Persons desiring any paten issued from 1836 to November 26,1867 , can be supplied with official copies at reasonable cost, the price de-
pending upon the extent of drawings and length of specifications.
Any patent issued since November 27,1867 , at which ings and specifications, may be had by remitting to this office $\$ 1$. claims of any patent issued since 183 A copy of the claims of any patent issued since
will be furnished for $\$ 1$.
When ordering copies, please to remit for the sam When ordering copies, please to remit for the same ion, and date of patent
A pamphlet, containing full directions for obtainin Reference Book, gilt edges, contains 140 pages an Reference book,
many engravings and tables important to every pat-
entee and mechanic, and is a useful hand book of reference for everybody. Price 25 cents, mailed free.

## MUNN \& CO.,

37 Park Row, New York.
BRANCH Park Row, New York.
Washington

Practiad Drandifisman's Book of

## AND MACHINISTS' \& ENGINEERS

 Drawing Companion.

## STEAM PUMPS. HENRY R. WORTHINGTON,

 The Worthington Duplex Pumping Engines FonWATER Works Compond, Condensingor Non-Con

Price list issued Jan. 1, 1879, with a reduction exceeding 30 per cent.


> HANCOCK INSPIRATOR

TESTIMONIALS.
 Thave fust received an order from the Engish Govern-
ment for 22 Number It Inspirators-making 24 machine
in all for the Government this month
B. H. WARREN, Agent. comannamyanve

sent on application to Descriptive Circulars Hancock Inspirator Co. 52 CENTRAL WHARF,

 Iron Sashes, Skylights, etc. $\overline{3}$ Dey street, New York.

## BLAKE'S STONE AND ORE BREAKER AND CRUSHER.




LAP WELDED CHARCOAL IRON Boiler Tubes, Stean Pipe, Jight and Heavy Forgings,
Engines, Boilers, Cotton 1 'resses, Molling Mil and Blast waw, kiso
PHOSPHOR-BRONZE
 BEARINGS, PUMP-RODS,
SPRING WIRE
DThosfinat- OBionve

Lathes, Planers, Shapers


HE BEST STEAM PUMP in AMERIC
 4500 in use.


Small Tools of all kinds; GEAR WHEEELS, parts of
MODELS, and materials of all kinids; Catalogues free.
GocDvow \& WiGTryA Fine Pamphlets prited 15 c . a Page

$\mathbf{\$ 7 7}$ OMont and expenese garantood to Agens

 Paris, . , 1878 Australia,1877 Phila., . . 1876 Santiago, 1875 Vienna, . 187
J. A. FAY \& CO'S

WOOD WORKING MACHINERY
 -ripinal in Desien, simple in Construction, arit or Exeellence
 J. A. FAY \& CO., Cincinnati, Ohio, U. s. A.

Pamm Screw Manlisiacturers, Bullders of Small Machinery and Fine Tools,

NEW YORK BELTING AND PACKING COMP'Y.
 EMERYWHEELS.
 John h. CHEEVER, Treas.

## THE SEVENTH <br> Cincinnati Industrial Exposition


NEW PERMANENT BUILDINGS
erected for the purpose.
Machinery Tested and Fully Reported upon.
Send for Rules and Premium Lists after April 1.
 THE FORSTER-FIR
 OAPDI as above.



smith hobart, President. John c. moss. superintendent. TYPE-METAL RELIEF PLATES
A SUPERIOR SUBSTITUTE FOR W00D-CUTS AT MUCH LOWER PRICES.
Persons desiring illustrations for Books, Newspapers, Catalogues, Advertisements, or any other purposes, can have their work done by us promptly and in the best style. our Relier Plates are engraved by photo-chemical means; are mounted on blocks
tereotype plates.
They have a perfectly smooth printing surface, and the lines are as deep, as even, and $a$ $p$ as they could possibly be cut by hand
Electrotypes may be made from them in the same manner as from wood-cuts.
Copy. The engraving is done either from prints or pen-drawings. Almost all kinds of prints can be re-engraved directly from the copy, provided they be in clearr, black lines or
stipple, and on volite or only slightly tinted paper. stipple, and on wofite or only slighty tinted pape
Pen drawings, suitable for engraving by us,
Pen drawings, suitable for engraving by us, must be made with thoroughly black ink,
on smooth, white paper. They should usually be made twice the length and twice the width of the plates desired.
When such drawings cannot be furnished us, we can produce them from photographs pencil sketches, or designs of any kind accompanied with proper instructions. Photograph
Change of Size. Wood-cut prints of the coarser kind may often be reduced to alf their lineal dimensions, while others will admit of very little reduction, and some of alf their

Most lithographic and steel-plate prints will admit of no reduction.
Very fine prints of any kind may be enlarged moderately without detriment.
Any prints which cannot be satisfactorily reduced or enlarged may be redrawn and hus brought to any desired size
In all cases of reduction and enlargement, the relative proportions remain unchanged.
Proofs.- Whenever desired, we will furnish tintype proofs of the drawings mad us, for approval or correction, before engraving A printed proof is furnished wit
Time. We cannot usually engage to fill an order for a single plate in less than from e to six days; larger orders will require longer time.
Estimates will be promptly furnished when desired. That these may be definite and orrect, the copy to be used-whether print, photograph, sketch, or drawing-shoul plate wanted, and of any other details to be observed. Terms.-To insure attention all orders must be
price charged the balance to be paid on delivery
Erice charged, the balance to be paid on delivery.
Electrotyping and Printing.-We have recently added to our establishment
隹
xcellent facilities for making electrotypes, and also three power presses specially fitted for inting plates of all sizes in the finest manner.
rrificial Light-We have just introduced this most important facility, which nables us to prosecute our work in cloudy weather, and to push forward hurried orders $i$
References.-Our plates are now used by the principal publishers in this city, an y most of the leading houses in every State in the Union.
Our General Circular contains a few specimens of the various kinds of our work, and

1. Portraits and Figure

Buildings and Landscapes.
Maps, Autographs, and Ornamental Lettering
Reproductions from Wood-Cuts, Steel-Plate Prints, and Lithographs.
be furnished at ten cents each.



NET ASSETS IN U.S. JAN. 1, 1888.....
TRUSTEES IN NEW YORK:
LOUIS DE COMMEAU ESQ., of De Rham \& Co.
CHAS. COUDERT, Ji., ESO RO. Of Coudert Bros.
CHAS. RENAUULD, ESQ., of Renauld Francois $\&$ Co
JULIEN IE CESNE, Resident Secretary.
WESTERN UNION BUILDING, N. F .



Market Value of Stocks over Cost...........
Acered Interest, Rents, and
Aer extended statement . .
 Total Assets, Dec. 31, $1898 . . . . . . . . .$. for reinsurance of all existing policies...... $28,560,68$ on

THE TANITE CO.. EMERY WHEELS AND GRINDERS.

ROCK DRILLINE MACHINES AIR COMPRESSORS
 PATENTS at AUCTION






 Pyrometers. For shownn heot of


## MACHINISTS' TOOLS.

Lathes, Planers, Drills, \&o.



Cigar Box Lumber, nintenctired by on new patent process. SPANHE Best in the World
Ho thin






FARM LAW. ADDRESS OF HON. ED MUND H. BENENTT, Aelivered before the Massachusetts
State Board of Agricilture. This in essay embricin
complete and practical information, valuable not onl ot the farmer but to every one. showing how to Buy
Farm, Bargains that are not Binding; Boundaries, and




## TIIIIMTM,

THE ONION IRON MILLS. Pittsburgh, Pa.. Manu


 cost of Insurance avoided, and the serious losses and in-
Cerruption to business caused by fre these and like con
 difference which now exists between the use of wood
and IIron in many cases the lither would be adopted
We shall bepeasedtoturnish estimatestoralthe beams
complete, for any specific structureso that the difference
 ICE AT \$1.00 PER TON. The PICTET ARTIFICIAL ICE CO.

## H.W.JOHIS' <br> ASESSTOS <br> Liquid Paints, Ronfing, Boiler Coverings,


$\$ 10$ to $\$ 1000$ Indersted in wal st sotsk make



[^0]:    of a sentence written by Mr. Cowper's telegraph.
    sentence written by Mr. Cowper's telegraph

