a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, aRT, SCIENCE, MECHANICS, CHEMISTRY, aND MANUFACTURES.

NEW YORK, FEBRUARY 22, 1879.

AMERICAN INDUSTRIES,-NO, 6

tee manufacture of reed organs
it is anywhere more clearly manifested than in the manufacture and sale of reed organs, one hundred of which are now exported for every organs, imported.
The honor of bringing these instruments to the degree of perfection which has given them a high reputation
oth at home and abroad, belongs chiefly to the Mason \&
Hamlin Organ Co., several departments of whose extensive
At the late fair of the Mechanics' Charitable Association,
in Boston, the jury, after much deliberation, and the care-
in Boston, the jury, after much deliberation, and the care-
them, and after a review of the history of the growth of this branch of industry, said in their Report that "the specialties of Messrs. Mason \& Hamlin have commended the reed organ to artists and men of genius, both in this country and in Europe, in a degree claimed by no other manufacturers;" and still further, "it is not too much to repeat that Messrs. Mason \& Hamlin have done more to bring the in rument in general favor and repute, both at home and in freign countries, than all other manufacturers." This high tribute is just.
(Continued on page 114.)

Frientifir Smerican.

MUNN \& CO., Edioors and Proprietors. pUBLISIED TEEELLY AT
NO. B'Y PARK ROW, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy one year, postage included...
One copy, six months, postage included
 RTMinge copies of any desired
address on recent or to cents
Remit by postal order. Addres

The Scientific American Supplement Is a distinct naper from the ScIENTIFII AMERCAN. THE SUPPLLEMENTI
is issued weekly. Every number contains 16 octavo pages, with handsome

Scientific American Export Edition

VOL. XL., No. 8. .[New Series.] Thirty-fourth Year. NEW YORK, SATURDA $\bar{Y}, \overrightarrow{F E B R U A R Y} \overline{22,1879 .}$

Contents.(Illustrated articles are marked with an asterisk.)	
Hine back, to dosgivel	to
terr Maysooth 113711.	Meati
	Mort,
,	Orrand C , reed
Car drivers' malad	Patents, American, recent....... 115
	Phosphrount tin f
anker defer	er, rranmmission
Cospeation tustral	俍
Domer ober vatiry, paper	
Exxlosion of defagaratin	
Frost, to keep rome	Treas ini
Garment dyers meararana for Glass, manuracture of	Telegraphy arial
Goods, American, at Sheffeld.... Goods, American, in Australia... 116	Temperatures, ${ }_{\text {, }}^{\text {Tith }}$ Tereo, a protection
Green ciarsila A Anolis ${ }^{\text {B }}$.	Tree, ${ }_{\text {Treal }}$
em, dangetreeo new**....	

TABLE OF CONTENTS OF THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 164.
For the week ending February 22, 1879 .

THE NEW PATENT BILL.-8HALL IT PASS THE HOUSE ?
In our last issue we recorded the fact of the passage by the Senate of the new patent bill (Senate Bill 300), which is now before the House of Representatives.
This bill, as we have on several occasions tried to show, is likely, if it becomes a law, to impair the future value of property in patents; and therefore it behooves all who wish to preserve the existing privileges of inventors to use their bes influence with their Congressional representatives to defeat or
set aside the measure. Whatever is done in this direction mustbe done quickly. Congress is to adjourn finally on the 4th of March, and the bill must either pass or suffer defeat by or before that day
An esteemed correspondent writes us that he thinks it would not be difficult to defeat the bill if we would formulate specific instructions addressed to inventors and patentees, telling them how to band together to oppose the passage of the bill, specifying exactly what they ought to say to their representatives in Congress in order to induce them to giv it their adverse votes.
Inventors, says our correspondent, are generally unlettered men, and although they fecl strongly opposed to this attack on their interests, many of them do not know how to give proper expression to their views
We suppose that what our correspondent desires is that now, in this closing hour of the contest, we shall briefly re capitulate the status of the present law and point out the scope of the intended substitute.
The present law, substantially, has been in operation for some forty years. It secures to the inventor an exclusive property in his own invention for the small period of seventeen years, at an official cost of thirty-five dollars. During this term no person may interfere with the patent without liability for infringement
The existing practice of the United States Courts is to construe the present patent laws liberally in favor of the in ventor and against the infringer. But on the other hand, the courts are careful to guard the interests of the public against the claims of unauthorized or pretended patentees; and the more widely a new device is wanted for public use, the more particular are the judges to require the clearest evi dence

The law, as it stands, as shown by the practice of the courts, provides ample safeguards for the public interests, as against untenable or wrongfully granted patents. The courts also regulate the measure of damages, so that even infringers are never overmuch punished.
At the same time it must be confessed that a patent as now granted means something. It means that a man shall any or prons. It means that his patent shall not be taxed out of existence after it is once granted. It means that a poor man who owns a patent shall enjoy the protection of the courts, and that rich and grasping corporations or combinations of interests shall not have power to harass, annoy, and altogether rob
him of the fruits of his toil and ingenuity him of the fruits of his toil and ingenuity.
The amazing progress of the country during the past forty years is undeniably due to the fostering influence of the present patent laws. They have given impetus to manufactures, supplied thousands of new industries, and rend
the American name famous for industry and progress.
The present laws and practices of the courts have worked and are still working so well that it seems a great pity to change them, except as to such minor particulars where obvious corrections may require.

To boldly overthrow them and reverse, by legislation, the accustomed practice of the courts, seems to be suicidal. But this is what Senate Bill 300 seems designed to accomplish. It is the offspring of the combined efforts of the wealthy railway companies and other interests, who have become impatient to seize and appropriate to their own use every really valuable and important invention, without the customary formalitics of payment or the
Senate Bill 300 provides substantially, by section 2, that the patentee shall not for the future enjoy the fuil and exclusive right to control his patent; but anybody who desire may, by legal procecdings, which the inventor must defend, take the right from him.
It provides, by sections $3,4,5,10,11$, that infringers may call the patentec into court and subject him to heavy costs and vexatious legal proceedings, so as practically to compel the inventor to deliver over his invention for the use of the infringers, thus reversing the present practice.
In short, the new law aims to punish the inventor and protect the infringer; whereas the present law aims to protect the inventor and punish the infringer.
Section 12 of the new law aims to tax the majority of pat ents out of existence after they have been issued, by requir ing the inventor to pay a tax of $\$ 50$ at the end of four ycars and $\$ 100$ more in nine years, or in all $\$ 185$ for the patent, instead of $\$ 35$, as at present.
In our last number we gave a brief summary of the de signs of all the sections of the bill, of which there are twentyfive; to which, and also to the several interesting discussions given by us week by week for a long time past, our readers are respectfully referred. We hope that every inventor and patentee who wishes to defeat this bill will make energetic use of the short time now remaining to assist members of
the House in reaching the truth on the subject. and thus enable them to cast their votes intelligently.

CREOSOTED WOOD AS A PROTECTION AGAINST TEREDOES,
CREOSOTED WOOD AS A PROTECTION AGAINST TEREDOES. ago undertaken by the Royal Academy of Sciences, of Amsterdam, to determine the best means of preserving wood from destruction by the teredo (Teredo navalis). The examination made by Mr. Harting (one of the commission of investigation), embodied in a recently issued report, is very instructive. It is ascertained that the mechanism of the molusk is of a twofold nature. Those animals which are found in calcareous rocks make their excavations chemically through the agency of a dissolving acid secretion; but the teredo that perforates wood employs mechanical means only. The teredo appears to have existed at a geological period carlier than our own; this view being confirmed by the discovery of fossil wood perforated by a species of this mollusk in the Eocene formations. It has been discovered also that certain circumstances favor the increase and ravages of the animal; these being a moderate rainfall, an increase of the saltness of the water, and an increase of temperature. The experiments of the commission included processes that had been recommended to the government to protect marine works; and the pieces of wood experimented upon were allowed to be prepared by the inventors themselves. The ports of Flessingue, Harlingen, Stavoren, and Nicuwendam were selected first for the trials, the woods used being oak, red fir, common fir, and pine, in pieces about 3 fect long by about 12 inches square. By the side of these blocks other blocks of the same kind of wood were placed without any preparation, as counterproofs. The trials consisted (1) of coatings applied to the surface; (2) impregnation with different substances which modify the interior and exterior of the wood; (3) use of exotic woods.
All exterior applications-such as coal tar, paraffine varnish and Claasen's mixture of coal tar, resin, sulphur, and powdered glass-absolutely failed. A coat of mail consisting of nails is costly, and an examination of some piles proved that the coating of iron and rust was not proof against the ravages of the teredo in the interior. Sheets of iron, copper, or zinc are found effectual only as the surfaces remain intact and undamaged. Nature itself often affords a better protection than this in covering marine timber with barnacles or other shell fish. As to the second remedy-impregnationthe following substances all proved inefficacious and worthless: Sulphate of copper, copperas, acetate of lead, and mer curial and arsenical salts. The soluble glass and chloride of calcium process also proved powerless. Oil of paraffine injected into the blocks proved of no avail, as in about two years fully developed teredoes were found in all the pieces. Of the oil of creosote process, however, more favorable results are recorded-all of the woods prepared with this substance having been found intact.
The conclusions drawn by the commission are that the only effectual prescrvative is creosote, though in using it care should be taken that the oil is of good quality, the impregnaion thorough, and that woods be used that will absorb the oil readily, as fir and other resinous woods. These conclusions are confirmed by the experiments of Mr. E. R. Andrews, of this country, who also has made interesting experiments with creosoted wood. A pine slab was taken, half of it was thoroughly impr nated with the oil, the other half being left untreated. It was then exposed during the season of 1877 in the waters of the Gulf of Mexico. When it was re moved it was found that the creosoted portion was clearly and sharply defined by its darker color, and that it was perfectly sound, while the untreated half was riddled by teredoes, which had perforated it quite close to the edge of the creosote.

SKATING ON ARTIFICIAL ICE.

A skating rink, offering 16,000 square feet of artificial ice in one sheet, is in successful operation in this city. The projector, Mr. Rankin, is widely known in connection with the ice trade, particularly in the West and South, where his machines for producing ice are largely used. His present enterprise is notable chiefly for its magnitude, the area of ice produced being very many times Jarger than anything of the sort previously attempted. Something like nine miles of gas piping are required for the circulation of the refrig erating liquid, which is pumped through the pipes after having had its temperature sufficiently reduced in a freezing chamber some two hundred and fifty feet long, in which ice is liquefied by means of salt and other solids. The principle involved is simply that of the ice cream freczer. A tight floor was laid over a surface 200 feet by 80 feet; on this floor a network of pipes was laid, and the whole flooded by two or three inches of water. On pumping the refrigerating fluid through the pipes, the water is frozen and kept so cold that the surface of the ice remains dry, though the atmosphere of the rink is warmed by half a dozen large furnaces. The project might have been carricd out equally well and much more profitably at midsummer, when a skating rink would have been more of a novelty. Mr. Rankin informs us that the temperature of the refrigerating liquid is raised but ten degrees while on its nine mile journey.

A new composition of iron and steel is described. A cast iron mould is divided into two sections by means of a transverse plate of thin shect iron. The two metals are then poured into the respective compartments. The sheet iron partition prevents the mixture of the metals and facilitates the welding by itself being brought into a state of fusion. It is said that the product is well adapted for safes, and that it resists drills.

RECENT EXPERIMENTS WITH "LAUGHING GAS."
Protoxide of nitrogen, or "laughing gas," the anæsthetic properties of which were discovered by Sir Humphry Davy, is used at the present time by a very large number of dentists for producing insensibility during the process of extractıng teeth. But this insensibility cannot be prolonged for any great length of time owing to the fact that asphyxia is liable to supervene. For this reason, American surgeon dentists have succeeded in performing lengthy operations by means of this gas, only in producing short, but repeated anæsthesia, separated by intervals of sensibility. The reason of this is that anæsthesia can only be produced by making the patient respire pure protoxide of nitrogen, without any admixture of air; the result is that asphyxia is a concomitant of anæsthesia. The celebrated physiologist, M. Paul Bert, has recently been experimenting on this subject with difficulty, and obtaining from laughing gas anæsthetic effects that may be indefinitely prolonged, while at the same time they shall be absolutely free from any dangers arising from asphyxia. The results of his investigations were pre sented in a paper read before the French Academy of Scicnces on the 11th of November. It is proper to remark here that M. Bert's experiments were made upon animals solely. The fact that protoxide of nitrogen must be administered in a pure state signifies that the tension of this gas, in order that it may penetrate in sufficient quantity into the organism, must be equal to one atmosphere. In order to obtain it, under the normal pressure, it is necessary that the gas be in the proportion of 100 per cent. But if we suppose the patient placed in an apparatus where the pressure may be carried up to two atmospheres, we shall be able to sub mit him to the desired tension in making him respire a mixture of 50 per cent protoxide of nitrogen and 50 per cent air; we ought then to obtain anæsthesia, while at the same time we maintain the normaLguantity of oxygen in the blood, and consequently preserve the normal conditions of respiration. And this is just what happens. In M. Bert's experiments he tells us that he entered an apparatus constructed for the purpose, and there under an increase of pressure of one fifth of an atmosphere he caused a dog to respire a mixture of five sixths of protoxide of nitrogen and one sixth oxygena mixture in which, as may be seen, the tension of the laughing gas is preciscly equal to one atmosphere. Under such conditions the animal fell, in one or two minutes, into a complete state of anæsthesia, and had it not been for its respiration, which was executed with perfect regularity, it would have seemed to be dead. This state was found to last serving its red color the heart its regular beats, and the temperature its normal degree. During this whole period temperature its normal degree. During this whole period, while all those of animal life were absolutely annulled. while all those of animal life were absolutely annulled.
When the bag containing the mixed gases was at length When the bag containing the mixed gases was at length
removed, the animal was observed, at the third or fourth removed, the animal was observed, at the third or fourth
inspiration of pure air, to suddenly recover its sensibility, will, intelligence, and natural friskiness. This rapid return to a normal state, so different from what is observed on the administration of chloroform, is due to the fact that laughing gas does not, like the latter, form chemical combinations in the organism, but is simply dissolved in the blood. As soon as none of it longer exists in the inspired air, it rapidly escapes from the system, through the lungs, as analyses of the blood have proved. As a result of many very careful experiments, M. Bert states that he feels himself authorized to maintain that the use of protoxide of hydrogen is perfectly harmless; and furthermore, he strongly recommends surgeons to use this gas under pressure, with a view of obtaining its anæsthetic effects as long as possible. By measuring, as above indicated, the barometric pressure and the centesimal composition of the mixture, so as to have for the protoxide of nitrogen the tension of the atmosphere, and for the oxygen at least the normal tension in the air, they will obtain a state of insensibility and a muscular resolution as complete as they desire, with an immediate return to sensibility and perfect state of well being, on removal of the anæsthatic agent. The sole difficulty in the way relates to the apparatus necessary to make the application of the anæsthetic under tension. For army purposes this is insuperable, but in cities the difficulty is easily remedied, for in such places compressed air baths are always obtainable, and in fact might be easily constructed in the surgical wards of hospitals at small expense. This, however, is a matter of secondary consequence, the solution of which remains with surgeons themselves; to whom, as well, it belongs to resolve the numerous questions of detail that always accompany the application of a new therapeutic agent.

A PAPER OBSERVATORY DOME.

An astronomical observatory has recently been erected for the Rensselaer Polytechnic Institute, at Troy, in the matur ing of the plans for which Prof. Dascom Greene has intro duced an improved method of constructing revolving domes. In making the preliminary inquiries, be ascertained that a dome of the required dimensions, constructed in any of the methods in common use, would weigh from 5 to 10 tons, and require the aid of cumbersome machinery to revolve it. It therefore occurred to him to have the framework made of wood of the greatest lightness consistent with the requisite strength, and to cover it with a paper of a quality similar to that used in the manufacture of paper boats; the advantages in the use of such materials being that they admit of great perfection of form and finish, and give extreme lightness,
strength, and stiffness to the structure. A contract was ac-
cordingly made with a well-known firm of builders of paper cordingly made with a well-known firm of builders of paper
boats, for the construction of the dome, and the undertaking has been carried out with great skill and success. The dome is a hemisphere, with an outside diameter of 29 feet. The framework is covered with paper about one-sixth of an inch thick after drying, and is of a superior quality, manufactured expressly for the purpose at Westield, Mass.; it has a structure as compact as that of the hardest wood, which it greatly excels in strength, toughness, and freedom from any
liability to fracture. The weight of the dome and its liability to fracture. The weight of the dome and its ap purtenances, as completed, is about 4,000 pounds. It is supported on six 8 -inch balls, which roll between grooved iron tracks, and can be easily revolved by a moderate pressure applied directly, without the aid of machinery.

THE WOODBURY PLANING MACHINE CASE.

At Boston, in the United States Circuit Court, January 28th, 1879, Judge Lowell rendered a decision in this im portant and long contested patent litigation. He decides that the Woodbury patent is invalid. A gigantic monopoly thus probably receives its death blow, for it is not likely that the Supreme Court will reverse the decision, though an appeal still lies to that tribunal. The enemies of our exist ing patent system who are claiming that the present rights of inventors shall be abridged, may see, from the principles laid down in this important decision, that the present laws as they stand afford the public ample security against the triumph of invalid patents or the progress of unauthorized patent monopolies.
The leading features of the Woodbury case, as found in udge Lowell's decision, are as follows:
The patent was issued to Joseph P. Woodbury, April 29, 1873, and is for an improvement in planing machines, by which flat bars are placed before and behind the cutters to keep the stock firm during the operation, instead of the rollers, which were used by Woodworth, the inventor of this class of machines. This change, though slight, has proved to be of great value, and is now in general use; and this suit is defended by an association of persons who are inte rested to continue such use. The patentee is dead, and the plaintiffs are a corporation to whom he had assigned his patent.
The history of this grant, which was made twenty-five years after it was first applied for, and twenty-seven years after the invention was completed, is remarkable. The inventor made application June 3, 1848, and appointed an attorney, but did not give him all the usual authority. The power was so worded as not to enable him to withdraw the application. The office rejected the application February 20,1849 , and nothing further was done until October, 1852, when the attorney withdrew the application, and received back $\$ 20$, of which Woodbury had no notice. In Febru ary, 1854, Woodbury instructed another solicitor to call up and prosecute this rejected application. There was, at that time, a rule in the patent office, that an application which should not be renewed or prosecuted within two years after it had been rejected or withdrawn, should be concluively presumed to have been abandoned.
But in revising the patent laws in 1870, Congress enacted ' that when an application for a patent has been rejected or withdrawn, prior to the passage of this act, the applicant shall have six months from the date of such passage to re new his application, or to file a new one; and if he omit to do either, his application shall be held to have been abandoned. Upon the hearing of such renewed applications, abandonment shall be considered as a question of fact."

Woodbury's application was thereafter revived, and after a long contest before the patent office, a patent was issued in the name of the inventor, dated under date of April 29, 1873. Meanwhile, the invention had for many years been brought into general public use, for as no patent existed al the lumber workers enjoyed the free use of the invention. The Woodbury party then began suits for damages against those who continued the use after the issue of the patent.
Nothing could be collected for the use prior to the pate Nothing could be collected for the use prior to the patent. The defense of Keith was, that Woodbury was not the ori-
ginal and first inventor, and, therefore, that the Woodbury patent was invalid. It was successfully shown that the machine built by one Anson, at Norwich, Connecticut, anticipated the invention of Woodbury.
The invention of Woodbury was made in 1846, and the machine of Anson was made in 1843. Of the date there is no doubt, for Anson applied for a patent on his invention in 1844. His machine was organized to mould or "stick," as the witnesses call it, sashes for windows, and similar articles, was adapted to planing, and was used for planing slats for blinds. There is no doubt that Anson's machine had bars
instead of rollers, for he says so in his specification. The machine has been running ever since, and was produced in court.
" Two points," says Judge Lowell, " are taken against this machine. 1st. That the bed is not sufficiently solid to answer the purpose of Woodbury's bed, which is to resist firmly, like an anvil, as he says, the blows of the cutter. Upon the
evidence, and upon inspection, I think the bed is a solid bed, within the meaning and use of the Woodbury machine, for all purposes of planing such stock as was likely to be planed upon it. And if the machine were to be enlarged to do general planing work, I see no reason to suppose that a
similar bed, modified only as any mechanic would modify
it, would not answer the purpose. The solid bed was not new with Woodbury, but was part of the Woodworth organization, which was the starting point of all these machines, and its benefits were well known and likely to be adopted by Anson. 2d. The other question is whether the bars which Anson made instead of rollers, had a yielding pressure. If not, they would not work on an ordinary planing machine, though they might possibly do in a small machine for special purposes. The machine in court has a machine for special purposes. The machine in court has a
yielding pressure, by means of weights, which allows the bar to give about three-eighths of an inch. Mr. Waters say about three-sixteenths of an inch: but he is considerably un der the mark. To all appearance this organization is as old as the rest of the machine; but as the question of novelty on the part of Woodbury depends upon whether the weights were introduced thirty-five years or thirty-three years since, the appearance is of no great significance. The witnesses all think that the machine has remained unchanged in this particular from the beginning. It seems probably that any one who substituted bars for rollers would make them yield, because the rollers of Woodworth's machine were made in that way. It was not the yielding which was new, but the substitution of bars for rollers. The distinguished ex pert of the plaintiffs says, 'I have never seen a Wood worth planing machine organized with either rollers o bars to bear down the rough stock upon the bed-piece, by acting upon the rough surface of the stock, that was not so constructed as to allow the roller or bar, as the case might be, to yield to the inequalitics almost always existing in sawed lumber; nor do I ever expect to see such a machine in practical use.' His meaning is, that the machine would stop whenever a board having the usual inequalities was at tempted to be passed through it.
" In a machine like Anson's the difficulty might not present itself so often, or so soon, but I should suppose it would make itself felt sooner or later, and would need to be remedied before the machine had been run for a day.

The witnesses, sixteen in number, are all on one side, and include, apparently, all persons now living who ought to be called. They testify from their recollection, with more or less positiveness, and with apparent fairness. None of them points to any change by which the pressure bars were made yielding after the machine was finished in 1843, but, as I before said, they all think them unchanged.
"Against this there is the evidence, which is entitled to much weight, that the drawings accompanying Anson's ap plication for a patent do not show any opportunity for a yielding pressure, or but little. The model is somewhat damaged, and the suggestion is made that it may have been tampered with. As it appears to-day there is some play to the rods of the pressure bars.
'I do not think this negative evidence sufficient to discredit the recollection of the witnesses. The patent which Anson asked for had nothing to do with the bars, and there is no reason to suppose that he understood that there wa any such advantage in bars over rollers as Woodbury saw and made known. He was not concerned with the particular matter of a yielding pressure bar; but if he made it to yield, he made the thing which Woodbury is, by a very proper and indeed necessary fiction of the patent law, presumed to have had knowledge of; and, therefore, when Woodbury pointed out the great advantage of this organization, he was merely, in intendment of law, applying an old machine to a more extensive use. I believe him to have been an original and meritorious inventor, but of a change which was not difficult to make or to invent, and of which, as it turns out, he was not the first inventor. Bill dismissed with costs."

A NEW AND IMPORTANT MINERAL

About the first of December of last year, Dr. Henry Wurtz eceived a specimen of a newly discovered mincral, said to occur in considerable quantities in Utah, where it is found in veins of pipe clay. This mineral is of a dark brown color and waxy feel, and is easily impressed by the finger nail Dr. Wurtz made a preliminary examination, and found that it fuses at a little over $70^{\circ} \mathrm{C}$., and evidently consists of a number of homologues of the paraffine series, such as those found in Europe in Moldavia and Galicia. It is the first deposit of the kind known on this continent, and may prove of great value to that section of the country.

Cold ether dissolves about 12 per cent of a soft paraffine of greasy consistence and having the color of burnt sienna. It becomes transparent on melting and resembles the ur pethite of Johnston.

Boiling ether dissolves about 37 per cent, and leaves on evaporation a hard, waxy material, somewhat darker than the first portion. It is probably to be classed with ozokerite, notwithstanding its apparently greater hardness.

The third portion, insoluble in boiling ether, and comprising about 52 per cent of the original mass, is very dark brown and decidedly harder than beeswax. It appears to approach in character the Moldavian species of zietriskisite, but its melting point is somewhat lower. Lack of sufficient material has hitherto prevented Dr. Wurtz from determining the various points of interest with satisfactory precision
C. F. K.

A recent number of the Indian Tea Gazette reports that new species of tea shrub, resembling that which grows in China, has been discovered in Armenia, near Trebizond. The peasants pick the leaves and dry them in the sun, and large quantities have been sent to. Persia, where the new product is highly appreciated

[Continued from first page.]

Prior to 1861, only a few reed instruments, known as sera phines, melodeons, etc., were made in America. In tha year Messrs. Mason \& Hamlin introduced important im provements, changing the form, improving the mechanism, and otherwise modifying the instrument, so that it was deemed worthy of the name which it has since borne The improvement was so great that large popularity followed sales rapidly increased, and numbers of other reed instru ments ceased their manufacture, making organs instead. In numbering their instruments, Mason \& Hamlin have already reached 103,000 , having actually made and sold nearly this number.
In 1867 these makers, having taken highest honors at the more important industrial exhibitions in America, sent their new instrument to the World's Exhibition in Paris, placing it in comparison with instruments of the class from Euro pean makers. Its great merits were at once recognized; the jury awarded them the first medal, and even rival makers pronounced the Mason \& Hamlin organ "worthy of imitation." At every one of the world's exhibitions since, Mason \& Hamlin have boldly placed their organs in competition with the best similar productions of the world, and at every one have borne away the highest honors. At the Paris Exhibition of 1878 they received the only gold medal a warded to any American musical instruments, and, in addition, the highest co-laborer's medal.
And this suggests the fact that while their success as manu facturers is to be largely ascribed to the peculiar skill of those who have associated themselves in this company, which has enabled them to introduce so many improvements, it \cdot is in no small degree due, also, to the high standard which they set before themselves at the start, and to which they have rigidly adbered. Any mechanic who visits their factory will see evidence of the scrupulous selection of only best material, and the employment of every machine and facility for best work. The temptation to manufacturers during the last few years to lower their standard, and be satisfied with some thing less than the best, has been very great because of the strong competition in prices; and this has been especially the case in the manufacture of articles like organs, in which there is such abundant opportunity to cheapen. But the Mason \& Hamlin Company have successfully resisted this temptation. The standard of their work is as high to day as ever, and the excellence of their organs the makers state to be greater than ever before.
The New York office of this company is located at 25 Union Square; their factories are in Cambridgeport,Mass., virtually a part of Boston. Obviously we cannot represent in detail many of the various steps in the manufacture of these instruments. The reeds, which are the most important part of the organ, are made from brass by the automatic machinery and mechanical appliances, shown in the upper right hand view in the title page engraving. Each reed consists of a block of brass baving an oblong aperture, to which is fitted a tongue, secured to the block at one end, the other being left free to vibrate. The tongues of the reeds used by this company are secured by iron rivets, experience having shown that this mode of fastening is preferable to all others, the reeds secured in this way being less liable to loosen
in the operation of in the operation of
voicing, or by long continued vibration. The shaping of the parts of a reed and the fastening of them together is comparatively a simple matter, as the greater portion of the work is done by presses and other ma chinery adapted to chinery adapted to the purpose; but the vollyg, as it is technically called, is quite a different matter. Here neither machinery nor mechanical appliances are of any avail, the success of the process beingdependentchiefly upon a nicely trained musical ear. Voicing, which is the most difficult and important process in making an organ, consists in shaping the tongue of the reed so as to secure the best effects. This art was originated by Mr.
Hamlin, of the Mason Hamlin, of the Mason in 1848, and is now practiced, professedly at least, by all American and many European makers. It is an art that can be acquired by practice only, and it is found that but few are able to master it. The room in which the voicing is done is shown in Fig. 4. From this apartment extraneous noises must be excluded, otherwise slight defects in quality or timbre might not be discovered.

Each reed must vibrate in a cell of proper proportions, by
which it is isolated from the others; these cells vary in size and form, according to the reeds which they are to receive, and are cut from the solid piece of wood which forms the reed board. The machinery employed in doing the work is shown in the left hand figure at the top of the front page engraving; it is of novel and ingenious character, and insures greater accuracy and uniformity than can be attained by handwork.
In the action rooms-one of which is the subject of the lower view on the front page-is made the apparatus which actuates the valves when the keys are depressed, a part of th

Fig. 4.-VOICING ROOM
organs that must be delicate and yet strong, and very precise in its operation. In this department many ingenious machines are employed in forming the several parts, each of which is made absolutely perfect, so that when all of the pieces are assembled the completed action is as perfect as achinery and skilled artisans can make it.
The organ cases are made in the department illus trated in Fig. 5. The mode of manufacture is similar to that of furniture generally. This company have received much credit for the tasteful designs
ship displayed in their organ cases.

Fig. 5.-CASE MAKING.
Progress of Petroleum $\left.\begin{aligned} & \text { The oil business for the year } 1878 \text { presents a great contrast } \\ & \text { with that of the preceding year. The year } 1877 \text { was marked }\end{aligned} \right\rvert\, \begin{aligned} & \text { them imagine that hierarchy of which he had spoken watch } \\ & \text { ing Faraday piddling over his magnets. They would cer }\end{aligned}$ with that of the preceding year. The year 1877 was marked by considerable and certain prosperity both to the refiner and the producer; while the year just closed has been one exceedingly small margins and low prices.
The chief causes for the low price in the producing
egions have been the increased certainty with which oil
has been obtained and the extent of territory which ha been developed during the year. The Bradford ficl has steadily increased in yield and importance, and almost all the old operators have become attracted there The Bradford field at the beginning of the year yielded 8,750 barrels per day from 1,100 wells, and at the end of the year t yielded 23,700 barrels per day from 2,950 wells, showing a very marked increase in the activity of the operators, and an increase of 14,950 barrels in the daily yield. This in crease more than compensated for the falling off in the pro duction of all the other districts; and the aggregate yield of the year is in considerable excess of the aggregate produc tion of the preceding year-showing $15,163,462$ barrel against $13,135,671$ barrels for the preceding year; an increase of $2,027,791$ barrels during the year just closed. The daily average production was 41,543 barrels against 35,988 barrels Thus it will be seen the production of the year 1878 wa largely in excess of any year in the history of the trade The prices of crude at the wellshaveruled quite low, and with slight fluctuations have gradually declined during the year
The stocks of crude have been considerably larger than those carried in any previous year, but they have been carried with greater ease than heretofore, as the tankage and pipe line facilities have been largely increased. The expor of refined and crude (in the absence of the official tigure we have estimated it as equivalent to $10,000,000$ barrels of crude) compared with the exports of the previous year (which were equal to $10,425,502$ barrels of crude) shows a decrease of 425,502 barrels. With the exception of London, the principal old European ports have taken considerably less oil this year than last; but the ports of China and the East Indies have more than doubled their receipts.
The number of producing wells in Pennsylvania at the close of December, 1878 , was 10,337 . The average produc tion per well was 4.1 barrels. -Storell's Reporter.

The Value of Practical Men.

In a recent lecture on electric lighting, Professor Tyndall took occasion to say a good word for inventors, practical men, who take up the resuits of purely scientific investiga tion and turn them to public advantage. Speaking of the problems involved in electric lighting, Professor Tyndall said that all the laws of the subject were known, and there was no room for a discovery in the scientific sense, but there was room for the application of such mechanical ingenuity as had given us the sewing machine, the phonograph, and many other things. The investigator and discoverer pur sued his theme for the sake of gaining knowledre; the in rent was ally to make money, though he in recognized that in many cases the inventor was stimulated by love of his art. Sometimes these men spoke disrespect fully of each other, as Cuvier despised the man of practical application, probably not taking into account that the ap plication of science reacted on science.
The amelioration of the condition of the community was at any rate, an object worth laboring for. Still, it was well to remember that those discoveries and application which struck the public mind and excited so much dis cussion, oftencomfrom men whose sole stimulus was an in cussion, oftencomfrom men whose sole stimulus was an in tellectual one. As to he philosophic aspec f the question, ther was a small cohor of social regenerators,
men of high aims, and men of high aims, and
for whom he had great for whom he had great
respect, who would respect, who would cientific men to a hier archy which would de termine the particular subjects that the scien tific man ought to pur sue. Where that hier archy was to get its wisdom they never ex plained. Those writers denounced and scoined all reference to what they considered to lie far apart from human needs, and yet upon ensible conceptions os of molecules, for in tance-sometimes de pended the greates discoveries. When the ecble magneto-clectric spark was first intro duced, an Oxford don expressed his great re gret that such a dis covery should have been made; for, l:e said, it put a new ing Faraday piddling over his magnets. They would cer-
tainly have sent him back to the bookbinder's bench as a tainly have sent him back to the bookbinder's bench as a
far more dignified occupation. Yet it was Faraday's spark far more dignified occupation. Yet it was Faraday's spark
that now shone, and which be hoped would illuminate ou quays and halls, and esplanades and squares, and possibly also our homes.

RECENT AMERICAN PATENTS

In engineering we notice an improved sectional boiler by R. Cosslett, Jr., of Bristol, England, which is composed of a number of inclined tubes having connections which alternate in position and insure a complete circulation.
An improved tube fastening for boilers, contrived so that the tubes may be readily inserted and removed, is the invention of Mr. W. H. Walsh, of Fort Worth, Texas. The device appears well calculated to strengthen the boiler.
A mining car truck, the invention of Messrs. W. McGaskill and J. Meinhard, of Virginia City, Nev., is provided with wheels which turn independently, and with self-lubricating axla boxes which exclude dust from the journals.
Among mechanical patents we find a cotton press, by Mr. J. J. Hines, of Savannah, Ga., which consists in a combination of two toggle joints, with a peculiar windlass arranged in relation to the platen, so that the power is advantageously applied to the cotton bale
Among agricultural inventions we find an improved wheel cultivator by Mr. N. T. Remy, of Brookville, Ind., which is adjustable as to width, and is arranged so that either of the horses attached to the machine may draw in advance of the other without changing the direction of the machine.

Mr. Daniel C. Fosgate, of Rochester, Minn., has invented a sulky plow, the frame of which may be leveled and the plow adjusted by the driver while in his seat
Another sulky plow, of novel design, devised by Mr. L Brown, of Wartsburg, Washington Ter., has its plow supported at one side of the sulky, and is provided with a ready means of adjustment.

A new form of rotary churn, invented by Mr. John McAnespey, of Philadelphia, Pa., has its dasher bars so disposed as to render it very effective.
Mr. Thomas P. Williamson, of Golconda, Ill., has patented an Apparatus for Dividing or Colonizing Bees, consist ing of two hives, each made in two sections, having vertical movable walls.
An improved Fence by Mr. Josiah H. Bailey, of Wilmington, Ohio, is cheap, strong, and durable, can be easily and quickly erected or removed. It consists partly of wood and partly of iron; wooden posts are avoided
Mr. William A. Yeatts, of Little River, Va., has an improvement in Cutters in which the hay and straw are subjected to a shear cut by the reciprocation of the knife or knives in the arc of a circle; the knives cut at every stroke backward and forward
Mr. J. K. Boswell, of St. Louis, Mo., has a device for heating, cooking, and for drying clothes or fruit. The apparatus has the appearance of a piece of ornamental cabinet furniture, the internal parts being made of metal and the outside of wood.

A NEW ICE CREEPER.

The desirability of an efficient ice creeper is admitted, but the amount of time consumed in attaching and detaching

The improved can shown in the accompanying engraving is the invention of Mr. Edwin Norton, of Chicago, Ill. It is intended for the use of packers of canned goods, and afterward to be used by families, thus saving the cost of new cans, an important item when the amount of money annually ex pended for the ordinary wax sealing tin cans is considered. The cans used by packers can be used but once, as they are destroyed in opening

Fir 1

NORTON'S FRUIT CAN.

This can has two caps, the inside one being made of thin tin, which may be readily punctured and cut when the can is opened, and it cuts out smoothly, so that the contents may be readily removed, and the can will be left in good condition for further use. The outer cap adheres by friction, and there is the usual wax groove common to such can tops, which permits of using wax or cement in sealing in the usual way.
For further information address Messrs. Norton Brothers, Chicago, Ill.

The St, Gothard Tunnel.

It has been held that the workings in the Nevada silver mines are the hottest in the world; nor is this remarkable, seeing that the said workings are driven in what may be termed the crust of a recent volcano. If the stories which reach us from the St. Gothard Tunncl be true, the heat in the heading must be even greater than that in the silver mines. The total length now bored is 13,500 yards from both ends. The workmen, we are told, are subjected to such a temperature that "they can wear no clothes whatever. They return to the mouth of the tunnel streaming with perspiration, their faces are yellow and ghastly, they cannot bear the light of the sun, they walk with bent shoulders, and stagger as if carrying burdens too heavy for their strength."
This seems to denote phenomena which deserve attention. In the Nevada mines the temperature is high for very good reasons. In deep mines it is high because the nearer we approach the center of the earth the hotter things get, for reasons not too well explained. But in the St. Gothard tun nel there is no approach to the center of the earth, and the constant escape of cold air from the perforators ought to make the place chilly, rather than the reverse. Can it be that a volcano may be tapped before the tunnel is finished? Speaking seriously, says the Engineer, there would appear to be some very great defect in the ventilating arrangements, in consequence of which the lights used exalt the tempera ture. If it can be shown that the heat is as great as it is said to be, the matter should be investigated by some competent authority, as the results of such an investigation may throw light on certain questions now very obscure.

Dangerous Houses.

Houses that have been empty may become fever breeder creepers of the ordinary form is sufficient to prevent their general use.
The accompanying engraving shows an ice creeper that may be folded up against the sole of the boot when not in use, and may be readily unfolded so as to present four points to the surface of the ice.
The invention consists in a strip of metal turned upon it self to form a spring, and bent outward, forming ears, be tween which is pivoted the right angled arm of the plate which carries the spurs.
When the device is in use it is arranged as shown in Fig 1. When it is not in use the concave surface of the plate is folded up against the narrower portion of the shoe sole.
A patent for this invention was recently granted to Mr. Edward D. Austin, of Erie, Pa,
when they come to be re-occupied. An English sanitar officer alleges that he has observed typhoid, diphtheria, or other zymotic affections to arise under these circumstances The cause is supposed to be in the disuse of cisterns, pipes, and drains, the processes of putrefaction going on in the impure air in them, the unobstructed access of this air to the house, while the closure of windows and doors effectually shuts out fresh air. Persons moving from the city to their country homes for the summer, should see that the drains
and pipes are in perfect order, that the cellar and closets are and pipes are in perfect order, that the cellar and closets are
cleared of rubbish, and the whole house thoroughly aired before occupying. Carbolic acid used freely in the cellar is a good and cheap disinfectant.

Aerial Telegraphy

Professor Loomis, of Washington, according to the New York Tribune, appears to be still enthusiastically carrying on his experiments in aerial telegraphy in West Virginia. Aerial telegraphy is based on the theory that at certain elevations there is a natural electric current, by taking advantage of which wires may be wholly dispensed with. It is said that he has telegraphed as far as eleven miles by means of kites flown with copper wire. When the kites reached the same altitude or got into the same current, communica tion by means of an instrument similar to the Morse instrument was easy and perfect, but ceased as soon as one of the kites was lowered. He has built towers on two hills about twenty miles apart, and from the tops of them run up steel rods into the region of the electric current. The Professor announces that he has recently discovered that the telephone can be used for this method of communication as well as telegraphic inst:uments, and that of late he has done all his talking with his assistant, twenty miles away, by telephone, the connection being aerial only. He claims that he can telegraph across the sea without other wires than those necessary to reach the elevation of the current. There seems no immediate probability, however, of our getting on with out poles and wire and ocean cables.

Explosion of Deflagrating Matter.

The author examines into the causes of an explosion by which a M. Zédé had been severely wounded. The latter which a M. Zede had been severely wounded. The latter
was endeavoring to find a compound which without exploding should be entirely resolved at the lowest possible temperature into gases and vapors, and which should serve as a motive power. For this purpose he employed a mixture of gun cotton and of nitrate of ammonia. After finding the most suitable proportions he was studying in how far the speed of combustion, very slow in the open air, might be modified under increased pressure. On one occasion, when modting fire to the mixture contained in his apparatus, there occurred a violent explosion, attended by a flash of light. occurred a violent explosion, attended fify atmospheres, was The tube, which had been tested up to fifty atmospheres, was
shattered to pieces, and the experimentalist was seriously wounded. It would appear that a slight decrease in the orifice through which the gases escaped had changed the nature of the process from deflagration to detonation. M. Dupuy de Lome, in Comptes Reridus.

AN IMPROVEMENT IN NECK YOKES.

The accompanying engravings represent in perspective and in section a novel neck yoke ring recently patented by Mr . Leopold Biddle, of Knoxville, Iowa.
The sleeve which encircles the neck yoke is made in two parts, fastened together by screws or rivets passed through the projecting ears. In one side of the sleeve there is a socket for receiving the head of a T-shaped iron, around which is placed the leather ring that encircles the pole; an iron or steel ring may be substituted for a leather one if desired, and the sleeve may be made of brass, bronze, or malleable iron.

BIDDLE'S NECK YOKE RING

This device permits of all necessary movements of the neck yoke, and does not in any way detract from the strength of the yoke.

To Make Fabrics Impermeable to Water.

The Bavarian Industrie und Geicerbe Blatt says that M. Yon Mallmann, of Paris, has recently taken out a patent for new process of rendering any woven fabric impermeable to water without affecting its color or impeding the free passage of the air. The process consists in immersing the cloth in a bath composed of water, acetate of alumina, and Iceland moss. The latter article is first boiled in the water and the acetate of alumina afterward added. The fabric is allowed out and dried.

The Spring Oatlook.

The United States Economist and Dry Goods Reporter of this city discovers, since the first of January, encouraging business prospects for the future. Values of all kinds of property have been adjusted to a specie basis, and the close of the first month of resumption finds more gold in the Na tional Treasury than at its commencement, although $\$ 25,000,000$ have been paid out therefrom. This fact sets $\$ 25,000,000$ have been paid out therefrom. This fact sets at rest the doubts that croakers originated about the failure
of the Treasury department to continue to pay gold on demand, and assures the public that honest money is once more triumphant. The excess of our exports over imports for the year 1878 exhibits the gratifying balance of $\$ 305,000,000$, with every prospect of being further increased during 1879.
During the first three weeks of January, 1879, 9,000 packages of domestic goods have been exported in excess of the amount shipped from all other ports for the corresponding period of 1878. China, Japan, Mexico, and South America are cultivating with us closer commercial relations, and our cotton fabrics are finding in these countries a widely
extended and rapidly growing market. Our breadstuffs and provisions are the chief articles of freight carried by the large flect of steamers that almost daily leave our seaboard cities for European ports, and the shipments promise to assume such magnitude in the future that larger vessels of immense freight capacity are being constructed to accommo--date this growing trade. The trunk lines of railway are being used to their full capacity in transporting the produce of the West to the seaboard, while the elevators in the chief cities of that region are crowded with grain waiting for cars to transport it East.
The recent large advance in railroad bonds and mortgages is an indication of the confidence felt by the public in their security as a permanent investment, while the rise in railway stocks also demonstrates clearly that the effects of the panic are rapidly disappearing, and that a new tide of prosperity a waits the country. Railroads were the first to feel the financial upheaval in 1873, and they also give the first sure indi cations of a commercial revival. Real estate is improving and in this city vacant lots that could not have been sold at
even a nominal price two years ago, have advanced in some even a nominal price two years ago, have adv
cases 100 per cent within the last six months.
The great drygoods interest, which is larger than that of any other in the land, has before it an encouraging outlook. Prices of cott on and woolen fabrics, both foreign and domes-
tic, are now so low that any change must be upward instead tic, are now so low that any change must be upward instead of downward. Merchants cannot lose by the wide fluctuation have generally been weeded out, a higher degree of mercantile efficiency and honor is being developed, and the business gencrally is passing under more systematic methods and control. There are $40,000,000$ of people to be clothed, the chic portion of whom have made but limited purchases during the last five years, and now, with better times in view, will become large consumers of all kinds of merchandise. To the capitalist, banker, merchant, manufacturer, artisan, and laborer, there is the sign of a business improvement. It will be slow, but it will be steady and permanent. While Europe is threatened with social and commercial disasters, and distress and suffering prevail through declining trade, in the United States peace and plenty abound, and the business of the entire country is reviving on the solid basis of specie payments. We have had our disasters and trials; they multiplied for a time thick and fast; but having been led by a kind Providence safely through them, we enter upon a higher commercial destiny than we have ever known before.

American Goods at Sheffield.

Some time ago we had occasion to call attention to a re port by Dr. W ebster, United States Consul at Sheffield, touching upon the subject of the sale of American hardwares in the town whence he wrote. The same gentleman has now forwarded a further report to the State Department at Wash ington, the subject matter of which will, no doubt, prove exceedingly interesting to the manufacturers of the town, as
well as to hardware traders throughout the country. The well as to hardware traders throughout the country. The
consul states that there was at first a good deal of prejudice against articles of American manufacture, it being alleged that, although they might do well for a time, they would not last. These suspicions, Dr. Webster says, have been proved to be wide of the truth by the testimony of large importers, who have not only done well in the past, but are now doing an increasing business. As a means of furthering the connection, the consul warns his compatriots not to allow the quality of their wares to depreciate, inasmuch as "sharp and intelligent critics are watching our productions," so that American exports must be kept up to the highest standard.
Having thus admonished his friends across the Atlantic, Dr. Having thus admonished his friends across the Atlantic, Dr.
Webster gladdens their hearts by saying that the Englis' people, having been accustomed to articles of a heavy make, will use the Amcrican lighter wares if really good.
As an example of the favor which certain imported goods have found of late years, the writer of the report instances the case of Amcrican hay forks, which were originally distrusted as being wanting in strength, whereas at the present time they are very much liked. So, at least, Dr. Webster tells us, and he grounds his observations in part on the circumstance that one Sheffield firm has sold over 2,500 dozen of these forks this season, and could have disposed of even more had they possessed the stock. American scythes and scythe-snaths, too, are coming into use, and the worthy con sul tells his countrymen that "a large trade in them is looked for next year."

Leaving these generalities, however, the report next deals $\begin{aligned} & \text { better and cheaper article. At two factors' stores in our }\end{aligned}$ with specific quantities, and we are shown some of the details neighborhood, where I saw the other day a pile of American of the business done by one firm alone at Sheffield in various cheese, I was told they were obliged to have them, as every American articles. The figures given are so suggestively sig- one was inquiring for them, while my cheese, which I admit nificant that we reproduce them here for the benefit of those skeptics whose doubts can only be removed by statisticalevidence. Says the consul: "The following are some of the rticles and quantities sold, viz. : 2,145 dozen locks, 14,676 ron planes, 1,185 dozen boxwood rules, 2,952 dozen hat and coat hooks, 220 dozen hammers, 572 dozen weighing machines, 2,520 screw wrenches, 230 dozen saws, 600 dozen
drawer pulls, 1,680 dozen auger bits, 753 axes, 4,000 braces, 2,800 fretwork saws, 20 tons oil stones, 2,400 dozen axle pulleys, 32 dozen scythes, 250 dozen snaths, rakes, glass cut ters, etc. Other firms are engaged in the same line of business, the aggregate of whose sales would be several times the above amounts. One dealer has imported goods to the amount of $£ 7,000$, consisting, among other things, of locks, spokes and rims, hubs, brackets, augers and bits, bench crews, tailors' shears, sash fasteners, hammer and axle handles, planes, spoke shaves, wrenches, hay forks, axle and frame pulleys." The aggregate value of all these goods would necessarily amount to a very considerable sum, which represents not merely the loss to Sheffield of that value, but of double the total given, inasmuch as not only have the local manufacturers lost trade to that extent, but they have paid so much for the goods from other quarters. Facts of his formidable aspect should furnish ample food for cogita tion in the steel and cutlery capital, and ought to cause in quiries to be made as to how the invasion can best be met
and repelled. If something be not donepretty soon Sheffield would appear to run the risk of becoming a mere distributing center for American and foreign hardwares, and her own sta ple industries may possibly fall into comparative desuetude -London Ironmonger.

A NEW STEAM WAGON.

A new style of road vehicle, designed to be propelled by mechanical power, has made its appearance in London, Eng land. The carriage closely resembles an ordinary dog cart the shafts are very short, and incline together, meeting two feet in front of the dashboard; between them there is a third wheel, working upon an upright shaft, which could be this handle is worked by reins, in the hands of the driver.

NEW STEAM WAGON

The motive power is obtained by the combustion of ben zoline, a small jet of which is admitted into the burner. It is then set on fire, and is completely consumed by a current of air, which, until the machine is in action, is produced by turning the small handle already alluded to. The burner, about the size of an ordinary chimney pot hat, and quite as elegant, is lined by coils of a copper tube containing water; this tube is calculated to bear $2,000 \mathrm{lbs}$. on the square inch, and in working only receives 60 lbs . ; so that practically it is not likely to burst, and, if such an accident did occur the results would not be serious, as the whole tube only con tains a pound of water. The steam generated in this tube passes at one end into the cylinders of a small torpedo en gine, which rotates a horizontal shaft; it then passes into a cooler, where it is condensed by the effect of a current of cold air driven against the outside of the vessel by a revolving fan, and the water so produced is forced back into the other end of the tubular boiler by a force pump; hence there is not the slightest escape of steam, nor is there any smoke, as the benzoline is entirely consumed by the current of air The revolving engine shaft works the driving shaft, not directly, but by the medium of two cones placed side by side, their bases being reversed in position. A figure of 8 band
connects the two, and, as it is moved toward the base of connects the two, and, as it is moved toward the base of
one it nears the apex of the other, and thus increases or diminishes the speed of the driving shaft, which is connected with the driving wheel, or off wheel, by an endless band. London Field.

American Cheese in England.
A Somersetshire dairyman, writing from England on American cheese, concludes his communication as follows: "It seems to me that unless there be some stir and a great improvement made in the general average make of our cheese, we must give up cheese making, and quietly allow difficult climate to contend with, miles distant, has a more difficult climate to contend with, and the extra cost of boxes
and carriage, to beat us out of our very boots. Let dairy farmers use their eyes, and they will find this persevering Yankee opponent pushing his cheese into every little shop both in our towns and villages, and even hawking them to our door, while we are holding our cheese because he sells a
are not best, although better than a good many dairies, are not wanted."

The Echo, published at Sydney, tells the Australians that it is enough to set a reflective man thinking to see the almost universal use now being made, in almost every handicraft, of tools of American manufacture. The limit of ingenuity, says the editor, scems to have been reached in England. Such firms as Elkington \& Co. are being entirely cast in the shade by the Tiffanies and similar firms of America. If there is any labor-saving, novel, ingenious instrument invented, from a sewing machine to a needle gun, ten to one but it comes from the fertile brain and skillful fashioning hand of some clever American inventor. To leave Edison's marvels alone, look at the wonderful machines now elaborated to save labor in agricultural work. The reaper and binder, and a host of others, will suggest themselves immediately. Our bushmen work with American axes, the very handles being of a new Yankee pattern. We ride in American buggies, lounge in American chairs, and get weighed in American weighing machines. American inventions for domestic pur-poses-from the washing, wringing, potato and apple paring, churning, and other housework machines, down to the latest dodge, a self-weighing cheese knife, are the wonder and delight of our housewives. In the workshop their marvelous self-adjusting planes, screws, chisels, and splendid tools of all kinds are entirely ousting the old-fashioned productions of Sheffield. It is hightime technical education and schools of design were established, or Yankee ingenuity will entirely beat us out of the market. As one of their own writers puts it: "One of the principal reasons for the success of the American manufacturers abroad is the adaptability of American mechanics. They are not only thoroughly competent to make anything that is required, but they can also design tools for any conceivable purpose. They can make machinery for any work whatever, and they are always ready to learn. They do not think that theirs is the only way in which a thing can be done. It is the versatility of American mechanics that pushes their products on the foreign market."

Australian Competition.

At a recent meeting in Melbourne of the principal Aus tralian meat preserving company, it was stated by Sir Samuel Wilson that the meat then in course of packing in the tins cost "a farthing less than nothing per sheep;" or, in other words, that the sums realized from the sale of the skins and tallow were sufficient to cover, or rather more than cover, the original prime cost of the animals. It follows that the cost of the tins in which the meat is packed, and the expenses attending its cooking and shipment, are the only charges which the preserved meat has to bear.
Commenting on these facts the British Farmer's Gazette remarks that "American preserved meats have lately been running the Australian produce very close in the English markets; but the invention of machinery which enables twenty-four tins to be packed in Melbourne in the same time in which one tin is filled by hand in Chicago ought to enable our colonial brethren to distance all competition.
Is it true that Melbourne is so far ahead of Chicago in the use of machinery? If so, our American inventors will have to lend a hand. It will not do to be beaten so easily.

The Ice Crop of the Hudson.

The ice crop of the Upper Mississippi is very great, and the same is true of other northern rivers from Minnesota to Maine; but the probability is that more ice is taken from the Hudson than from any other stream or body of water, not only in the United States, but in all the world. The harvest this year has been the most successful ever known, both as regards quantity and quality. The total capacity of the ice houses along the Hudson exceeds $2,000,000$ tons. These have been filled to overflowing with ice of the finest kind, and upward of a million tons in addition have been stocked for early consumption.
During the gathering time over 10,000 men, nearly 2,000 boys, 900 horses, and 100 steam engines, were employed in getting in the crop. The pay of the harvesters has ranged from $\$ 1$ to $\$ 1.75$ a day. The season began the first week in January, and continued throughout the month.

Original Advice for Drinkers.

Barkeepers in this city pay on an average $\$ 2$ per gallon for whisky. One gallon contains an average of sixty-five drinks, and at 10 cents a drink, the poor man pays $\$ 6.50$ per gallon for his whisky. In other words, he pays $\$ 2$ for the whisky and $\$ 4.50$ to a man for handing it over the bar. Make your wife your barkeeper. Lend her two dollars to buy a gallon of whisky for a beginning, and every time you want a drink, go to her and pay 10 cents for it. By the time you have drunk a gallon she will have $\$ 6.50$, or enough money to refund the $\$ 2$ borrowed of you, to pay for another allon of liquor, and have a balance of $\$ 2.50$. She will be able to conduct future operations on her own capital, and when you become an inebriate, unable to support yourself, shunned and despised by all respectable persons, your wife will have enough money to keep you until you get ready to fill a drunkard's grave.-Lecture of C. T. Campbell at Maysville, $K y$.

While assistant sanitary inspector of the New York Board of Health, Dr. A. McLane Hamilton made a special study of the maladies incident to the work of street car drivers. The most common, though not the most serious, of car drivers' maladies was found to be chilblains, from which not one in ten of the Third Avenue drivers escaped. The car driver invariably stands at his work, and his feet and legs are inevitably chilled by inaction and exposure. The impeded circulation of the blood due to long standing brings on a train of symptoms to which chilblains are a triffe.
Even in warm weather a few weeks' driving is almost sure to bring on a swelling of the legs, with persistent pains in the feet, followed by numbness in the legs and ultimately by partial paralysis.
The doctor finds two immediate causes for this lamentable state of things: first, the constant gravitation of the blood and other fluids to the lower extremities; second, the drivers habit of standing with their weight thrown on their heels. The result is, says Dr. Hamilton, that the perpetual jar and jolting of the car are transmitted by direct vibration along the bones of the leg and thigh to the spinal column that continues and rests on them. In the first stages of the disease resulting from this source the man becomes irritable and nervous without being able to assign any reason for it. A little later he has dull pains in the lumbar region, and an intolcrable sense of weight in the legs. The immediate caluse of these symptoms is congestion of the spinal cord and its meninges, the disease being, in point of fact, a species of meningitis that seldom proves fatal in itself, but is the precursor of other nervous maladies of a more serious complexion.
In the course of a pretty careful canvass among car drivers, to test the correctness of Dr. Hamilton's statements, a writer for the New York Timessays that he found scarcely a single driver of five years' standing who did not confess to wearing bandages, or to being subject to very considerable inconvenience from the symptoms of varicosity and spinal irritation, and medical men who have the largest practice with people of this class, express doubts whether a car driver's average term of service exceeds seven years.
We are confident that it would be no difficult thing to devise a seat for car drivers, with a brake lever, so that they could drive and manage the car while sitting. With the utmost consideration the car drivers' position will be severe enough. It is sheer cruelty to subject them to needless discomforts.

Disinfection by Cold.

In a letter to the Congressional committee on the subject of epidemic diseases, having special reference to yellow fever, Mrs. Elizabeth Thompson states that the designs for a refrigerating steamer by Professor John Gamgee, of London, England, are far advanced at the Navy Yard, but it will re quire at least three months from the date of signing contracts o construct this life-saving ship and its machinery
It is intended that this steamer shall proceed to New Orleans, as the port most threatened, and there try the effect of extreme cold in the disinfection of ships coming from infected ports. Mrs. Thompson says:
"The Board of Experts [authorized by Congress to investigate the yellow fever epidemic of 1878] declare that 'ships are especially dangerous,' and 'remain sources of infection for months after having been infected with the poison;' that yellow fever poison is not able to withstand the influence of frost, and when exposed to a freezing temperature it is rendered innocuous and is probably destroyed;' that 'if the apparatus ancl experiments now projected for the utilization of extreme cold for this purpose should be found to be of practical application to the disinfection of the holds and other parts of vessels, their success would prove to be a sanitary acquisition of incstimable value.

The losses to this country by yellow fever ' have been variously estimated at sums ranging from $\$ 100,000,000$ to $\$ 200,000,000$,' and it has been computed that New Orleans alone suffered to the extent of $\$ 15,335,000$. Millions have been spent in ships of war, and I earnestly hope that the opportunity we now have of testing nature's great preventive for yellow fever-cold-may be taken advantage of with promptitude and liberality.'
The experiment would seem to be worthy of a trial, and, properly conducted, would be comparatively inexpensive. In the hands of a practical Yankee an ordinary tug-boat could probably be fitted out with refrigerating apparatus sufficient to test the question inside of a fortnight.

Transission of Pow or thock Island Arsenal The experimental line of water power machinery with able transmission, devised by Col. D. W. Flagler, for the Rock Island Arsenal, is said to work admirably. The full plans of Col. Flagler embrace 4065 -inch turbine wheels, working on two separate shafts, 20 whecls to a shaft. But now only four of these turbines are in place; the shaft is 9 inches in diameter, and 100 feet loner. On the shore end of the shaft there is a driving pulley 15 feet in diameter, which receives a wire rope three fourths of an inch in diameter, which ascends to a tower and continues on to the shops. There are six spans of transmission, each span 400 feet in length, making the distance from the dam to the south row of shops 2,400 feet, almost a half mile. The ends of these spans are station towers of trestle work, each 40 feet high, these stations consisting of receiving and driving pulleys,
each 15 feet in diameter. On one of the towers the cable
turns at right angles by means of bevel gears. The four turbine wheels now being tested yield 240 horse power; and there was not a hitch in the whole length of the cable and machinery. This force will be used this winter for the shops. The great dams, the water power canal, and the minor parts of the work, have cost about $\$ 1,000,000$. The pen stock is entirely of iron; and the turbines are so placed on the shaft that the stoppage of one by driftwood or other wise will cause no derangement of the others.

The Adiroudack Survey.

The reorganization of this survey, made necessary by legis lative action last winter, has been successfully carricd out and the work accomplished during the past season is re ported to be more than usually extensive and satisfactory. Many valuable scientific and geographical results have been obtained. A large number of the higher peaks have been measured with level and rod, and hundreds of miles of level have been completed, covering the portions under survey with stations and permanent rock bench marks. The corners of counties have been marked, and county and town lines located. The chief rivers and lakes of the wildernes have also been surveyed throughout their whole extent.

STOP MOTION HAND PIECE FOR DENTAL ENGINES.

The advantage of being able to instantly stop the revolu tion of a dental burr, drill, or disk, must be obvious to every operator. Since the introduction of dental engines it is an easy matter to cut away the substance of the tooth so as to expose a nerve or unduly enlarge a cavity. To obviate such accidents, Dr. E. Osmond, of Cincinnati, O. (S. E. corner 8th and Elm streets), has perfected a stop motion hand piece for dental engines.
This instrument was recently patented and is now being brought to the notice of the dental profession. The hand piece is shown both in perspective and in section in the engraving.
The button, A, when pulled by bending the fore or middle finger, moves the arm, D , and the ring, E, which carries the clutch, F, downward out of engagement with the notched upper portion of the shaft, instantly breaking the connection and stopping the burr or drill. On removing the finger the parts regain their normal position and the drill is again set in motion. The instrument has a simple and effective drill holder, provided with a retaining spring, J, which may be exposed to view by drawing back the trigger, B. By pulling back the finger piece, A, and trigger, B, simultaneously, the drill may be changed while the engine runs.

Any of the well known dental engines may be used in connection with this instrument. Suitable meaus are provided for compensating for wear, and the finish is consistent with the use for which the tool is designed.

Chlorophyl as a Coloring for Preserved Vegetables. At a recent meeting of the F'rench Society to Encourage National Industry an important paper was presented by M Personne on a process now being used in France for the preservation of vegetables in their natural green color, the process being based on the substitution of chlorophyl for the poisonous salts of copper formerly employed for this purThe ppert, made process of presing industrial application of this process requires two operations, the first called washing, and the second, boiling. Washing consists in immersing the vegetabies in boiling water for about five minutes, and then suddenly plunging them in cold water. Boiling is effected by placing the washed products in carthen vessels (or, better still, in hermetically sealed tin boxes) and exposing them to a temperature of 120° in steam boilers. It is readily seen that, after the operation, although the vegetables still retain their natural taste, they have lost their natural color and have become of a yellowish tint. The the taste, however, is not satisfied with the preservation of having his eye pleased with the beautiful green color that the fresh vegetable possessed. As the export trade in these products is immense, it becomes absolutely necessary to accede to this demand, and so an artificial coloration has bitherto been effected by means of the salts of copper-principally the acetate and sulphate-added to the water in which the
vegetables are washed. T'o the use of these metailic salts, however, there are many grave objections; and not the least
of these is that of their poisonous nature. To find som means of doing away with the use of these toxic agents, by the substitution of some harmless matter, became the objec of long and serious study to Professor Guillemore, of the University. He found at length, by experiment, that the less the quantity of chlorophyl in the vegetable the more rap idly and completely did it disappear on boiling; and that the fibers of the vegetable put in contact during boiling with soluble chlorophyl become saturated with it at a tempera ture of 100°; and finally, that the vegetables saturated with this chlorophyl, during the operation of washing, preserve and retain this color thereafter during boiling. After many experiments, the following has became the industrial process of fixing this chlorophyl coloring in a definite manner
Spinach treated with a solution of soda gives up to the al aline solution the chlorophyl, which it contains in large quantity; this alkaline solution is neutralized by hydrochloric acid added to the water in which the vegetables are to be washed. The chlorophyl, set free, unites with the vegetables, and this addition to the color which they naturally pos sess allows them to preserve their deep green tint, which otherwise would be destroyed by the boiling. The process which is simplicity itself, has the immense advantage over the old one, that it introduces no injurious clement into the preserved vegetables; indced the products employed-chlorophyl and chloride of sodium-are such as make part of our daily food supply.

A Novel Temperance society.

An association has been incorporated in this city, to be known as "The Business Men's Society for the Encourage ment of Moderation." The purposes avowed by the society are to encourage moderation in the use of alcoholic bever ages, to promote a knowledge of science and statistics rela tive to the manufacture and sale of alcoholic liquors, to dis seminate among the pcople useful information regarding the principles of moderation and the means of carrying such prin ciples into practical effect.
The socicty is also to exert its influence to induce retai liquor dealers to provide for teetotalers stimulating and nour ishing beverages which contain no alcohol, and to encourage the establishment of places of cheap recreation and amuse ment where no intoxicating liquors shall be sold.
The pledges to be provided by this society are of thre sorts: A total abstinence pledge, operative for one year, and renewable thereafter at the will of the pledger; a moderation pledge, binding the person who takes it not to drink during business hours; and finally, a unique engagement meant to prevent the person taking the pledge from partaking of in toxicating liquors at the expense of another person, and from extending an invitation to any other person to drink at his expense.

Utah Mineral Wax.

The great deposit of mineral wax, or native paraffine, lately discovered in Southern Utah, is described by Professor J. E. Clayton, of Salt Lake City, as occupying an area 60 miles long by 20 miles wide, and in some places forming a bed 20 fect thick. It contains more or less clay in seams and layers; but this is readily eliminated by melting, the earthy matter settling and leaving the paraffine nearly pure. It is quite black in the mass, but the sections are translucent. The quantity is said to be enormous; so great, indeed, that it cannot be controlled by any individual or company, but must prove a source of wealth to whole communities
Professor Henry Wurtz pronounces the mineral to be zietriskisite, and says that it differs from paraffine by being insoluble in ether, and otherwise. Professor J. S. Newberry finds the specimens brought by him from Utah to be true ozokerite, and similar in all respects, except color, to that from Galicia; a true paraffine, melting at $60^{\circ} \mathrm{C}$., and being soluble in ether

As to the origin and geological relations of this remarkable bed of paraffine-which, so far as known, is without parallel in quantity in the world, and is as much of a "wonder" as our basins of petroleum-Professor Newberry cannot speak with any confidence until he has visited the locality where it occurs, as he hopes to do in a few weeks. He suspects, how ever, that it will be found to be an evolved product, the dis tillation of beds of cretaceous lignite, and the residue of a petroleum unusually rich in paraffine.

Coal Bunker Defenses

The British naval authorities have been making experi ments for some time with the view of testing the power of re sistances to heavy shells of coals in the bunkers of men-of war. The latest tests at Portsmouth seem to indicate that loose coal is the most effective means of protection yet dis covered, and in the case of light, unarmored, or only partly armored vessels, the bunkers are built around the machinery In the case of the Oberon it was proved by actual experimen that a shell from a sixty-four pounder at two hundred yards would neither penetrate the coal nor set it on fire.

High Temperatures

By concentrating the electricity from a 13 horse power machine into the space of half an inch by inclosing carbon points in a block of lime, Mr. Edison claims to have produced the highest temperature ever reached by artificial means. When dropped into the flame, pieces of iridium, one of the most refractory oi metals, volatilized immediately. A small screw driver passed across the flame would be cut in two, the part touched by the heat melting instantly. Even parts of the lime crucible fused under the intense heat.

an merproved parallel ruler

We give on this page an engraving of a novel parallel ruler recently patented by Mr. George Cousins, of Oswego, N. Y. It is intended for all of the purposes for which parallel rulers are commonly used, and in addition to this it may be used for duplicating designs, curves, etc.
The plate, A, which forms the body of the ruler, has formed in it two oppositely disposed segmental openings whose straight sides form an angle of 45° with the beveled edges of the ruler. It has also several small circular aper tures, which may be utilized in forming curved lines.
Parallel with one of the edges of the plate, Λ, a shaft, C , is journaled in suitable supports. On the ends of this shaft and outside of the bearings there are grooved wheels, D, which do not quite touch the surface on which the plate, \mathbf{A}, rests.
To one of the wheels, D, is an arm, E, secured by the screw, F, as shown in Fig. 2, and in the groove of the same wheel there is a pin that strikes the stop which is secured to the plate, A , by the screw, I. This stop is arranged to engage the arm, E, also
On the shaft, C , is placed a spiral spring, K , which returns the pin in the groove of the wheel to the stop on the plate, A, as indicated in Fig. 3.
The side of the wheel, D, is graduated so that the arm, E, may be adjusted at any required distance from the pin in the groove. This distance governs the space between the line formed along the edge of the ruler.
In drawing parallel lines the arm, E, having been adjusted as already described, the shaft, C , is pressed down until the wheels, D , touch the paper on which the lines are to be made; this tips up the beveled edge of the plate, A. The in strument is now moved forward, by rolling the milled portion of the shaft under the fingers, until the arm, E, strikes the stop on the plate, A, when the plate is allowed to regain its former position and the line is drawn. In drawing the suc cessive lines the operation is repeated
Section lining is done along the straight edges of the segmental openings, and curved lines are formed along the curved sides of the openings. Various designs may be duplicated by fastening patterns to the plate, A, so that they will move with it.

a COMBINED CHOPPER AND CULTIVATOR

We give herewith an engraving of a new agricultural machine recently patented by Mr. John W. McMillan, of Brookhaven, Miss. This implement combines, in compact and usable form, a planter, chopper, cultivator and a fertilizer distributer; in fact, it seems to be all that is required for the treatment of an entire cotton crop.
The machine, as will be noticed by refer ring to the engraving, carries two oppositely disposed plows, H , fixed to adjustable stand ards, G, guided by the plates, E, which are bolted to the forward end of the main frame. This frame is supported by two large wheels having corrugated or ribbed rims, and by two smaller wheels, S , which follow the small plows, A , at the rear of the machine. The standards are adjusted vertically by the hand lever at the rear of the machine through the rod, M, and angled lever, J. Behind the axle of the driving wheels there is a crank shaft which takes its motion through intermediate gearing from a bevel wheel on the axle.
This gearing may be thrown into and out of gear by means of the shorter lever at the rear of the machine, which communicates by a bar, F with an ancled lever con nected with the movable por tion of the gearing. Th crank of the shaft refe to moves an shaft referred which is attached a hoe whose motion is similar t that of the hand implement The upper end of the ho arm passes through a spring support, which allows the hoe to yield under undu strain.

Plows and hoes of differ ent sizes and shapes, and colters, and harrow teeth may be attached. The plow may be adjusted laterally an vertically, and the variou parts are adjustable to sui different kinds of work. I it stated that the machine will " flat-break " land, ridg up and bar off, scrape and chop out cotton, as well as the most experienced hand. It is capable of distributing from 10 lbs. to 1,000 lbs., of fertilizer to the acre, and wil easily perform the several operations for which it is de signed.

McMILLAN'S CHOPPER AND CULTIVATOR its axis and also swing like a hinge
ble, melts at $330^{\circ} \mathrm{C}$. $\left(626^{\circ} \mathrm{F}\right.$.), does not heat at all when in use, and hence requires but little, if any, lubricator, and as it is scarcely at all affected by acids, cheap oils can be used. A great advantage is that no mould is required in which ic cast it. The axle is placed in the box, which is closed with boards on each side and well stamped down with clay, and the metal poured directly into the mould thus formed When cold the shell is taken out and cleaned, the oil hol bored, and it is ready for use. If not overheated this metal shrinks very little, if any, on cooling, and hence fills the mould most accurately, so that by using this metal irstead of rough coating there is a saving of the cost for mould, fo pattern, for boring out, and for fitting. It is said to last longer than other castings, will bear as great pressure and greater speed. The price in Berlin is, for No. 0, containing 5 per cent of phosphorus, $\$ 50$ per 110 pounds; and for No 1, containing $21 / 2$ per cent of phosphorus, $\$ 22.50$ per 110 pounds.
The same alloy of phosphorus and tin is also employed for the manufacture of phosphorus bronze with great advantage both as regards cheapness and convenience, so that phos phorus bronze can be made in that manner with but littl more expense than common bronze.

MISCELLANEOUS INVENTIONs.

Mr. William Vogan, of Newcastle, Pa., has an improved gate, which may be opened and closed by the wheels of a pass ing vehicle, and is not liable to become clogged or frozen fast. A grain registering device for hand measures, which is contrived so that the act of "striking off" the surplus grai contrived so that the act of "striking of "the surplus grats wilring a
Mr. J. F. Christian, of Nurnberg, Germany, has devised button having the head and shank formed of two separate pieces, which may be readily put together or separated.
An improved vehicle spring, which is adapted to the bolsters of wagons, and ha several advantages over the ordinary spring has been patented by Messrs. R. MacKelle and B. Lent, of Peekskill, N. Y.

An improved middlings separator, which purifies the middlings (driving off the dust and other impurities) and separates them into different grades, is the invention of Mr. W. P Anthony, of Chambersburg, Pa.
An improved Pavement, formed of two courses of planks crossing each other at righ angles, a layer of coal tar and sand, irregular bois d'arc blocksset on end with their inter stices packed with sand, the whole covered with coal tar, has been patented by Mr. Samu el L. Shellenberger, of Denison, Texas.
A novel guide for matching machines, in tended to prevent the planer knives from splitting the edges of the boards and to guard against the breaking of the knives, is the in vention of Mr. P. Cardiff, of Marshfield, Ore gon.

An improvement in brick machines, in

Cousins' parallel ruler.

 pin as shown in Fig. 3. The trace is put upon the pin while vented by Mr. J. McL. Mitchell, of Dunlap, Iowa, is con the tongue is parallel with the head, as in Fig. 1; the tongue is afterward allowed to take the position shown in Fig. 2. This invention was recently patented by Mr. Allen Smith, f Fort Randall, D. T., from whom further information may be obtained. ived so that while pressure is exerted on one set of bricks, the bricks previously pressed are discharged from the moulds.A novelty in gate rollers, the invention of Mr. William Schwendler, of Appleton, Wis., consists of a flanged rolle fitted to a screw pin by a ball joint, so that it may turn on

A shuttle box motion for looms, in which springs are dis A shuttle box motion for looms, in which springs are dis
pensed with, and an easy and sure movement is secured, i the invention of Mr. John Barker, of Whittenton (Taun ton P.O.), Mass.
Mr. J. A. Novinger, of New Bedford, O., has an improve ment in gravitating platform animal traps, which insures a enewal of the bait after cac operation of the trap
An improvement in recfing fore and aft sails, by Mr. J L. Dickenson, of Hempstead N. Y., saves time and labo in reefing, and brings the sai into proper shape for a storm ail. It has the advantares of a try sail, and insures the se curity of the gaff when the vessel rolls.
Mr. Valentine Cook, of New York city, has an im provement in beer coolers The main feature of the in vention is the device for strengthening the large shal low pans used in the proces of beer cooling.
A sight for firearms, which combines the advantages of the different sights in gen eral use, has been patented by Mr. W. Matthews, of Camp Bidwell, Cal.

GREEN CAROLINA ANOLIS; OR, THE AMERICAN CHAMELEON.

by daniel c. beard.

Perhaps the first creature that attracts the eye of the Northern naturalist upon landing at Florida is a small, slender lizard, which appears omnipresent, to be seen running up and down the walls of the Old Fort at St. Augustine, peering in at the windows of the hotel at Pilatka, scampering over the logs of the swamp at Tocoi, or scrambling along the garden fences at Jacksonville. It may also be seen exhibited for sale along with young alligators, wildcats, black bears, and many other queer objects to be found in the jewelry stores at Jacksonville
The specimen from which my illustrations are made I captured at Tocoi. When first taken he was of a sooty black; five minutes afterward, when I opened the handkerchicf in which I was carrying him to show my prize to a little creature I had wrapped up, a beau tiful emerald green lizard. It was only then that I discov ered my specimen to be the so-called American chame leon. I was some what ashamed of my ignorance until I met a certain na turalist from Michi gan, who had made quite a collection of what he took to be distinct species of distinct species o saurians, and had carefully preserved them in spirits, onl to find upon inspection, that they were
all exactly alike in form and color, all having assumed a yellowish-brown tint after immersion gentle pets, and would run over my hands waiting eagerly for me to catch flies for them. Although quick in their for themselves unless I first crippled the insect by removing a wing. They loved the sunshine and fresh air; the latter they would swallow occasionally in great gulps, expanding One, after trying in vain to bite a lead pencil, with which

deliberately shook off his tail, and scampered away, leav

 ing three fifths of his length wriggling upon the floor, wher it continued to twist for some time. A drop or two of blood moistened the stump where the tail had been, but though the loss of the latter appeared to cause no physical pain the little cripple seemed ashamed of his odd appearance and hid himself in corners. He remained in my room for a month longer, but I seldom caught sight of him.It is the color-changes of this little saurian that attract and interest all observers.
The negroes and even intelligent white inhabitants of the district frequented by this reptile tell many fabulous stories of its wonderful powers in this respect. Experiments with specimens which were in my possession at different times seemed to demonstrate that emerald green, gray, and sooty black and reddish yellow were the limits of its power When frightened or pleased it turned green; if agitated for some time in apparent indecision, the color would fade and
return in blotches. Under an ordinary magnifying glass it could be seen that the hollow around the eye changed first. Then the hexagonal plates upon the head showed the color, commencing at the edges and gradually spreading over each plate, the centers being the last points to turn. If a num ber of these animals be placed in alcohol they will be found to assume a dirty yellow or brown tinge. This is probably the natural hue of the skin with the coloring matter re moved. The pigments appear to be contained in a network of vessels beneath the skin, and to be somewhat, though not altogether, under control of the animal. One, placed upon a bright crimson cloth, assumed a reddish yellow color, and though it did not approach the brightness of the cloth, a
friend, I was amazed to find, in the place of the dark, dingy in alcohol. Two anoli that I kept in captivity proved very movements, and able by the help of their tail to spring quite a distance, these little animals never could capture the thies a sort of pouch under their neck by the process. Though gentle when treated with kindness, when tormented they would show fight, opening their mouths in a ludicrous way. I had been stroking his back and otherwise plaguing him,

MORTENSEN'S TORPEDO BOAT.

casual observer would hardly have noticed the lizard mo tionless upon it.
Green is its favorite color, and black I never saw but in one instance. When hiding in the Spanish moss or upon a tree trunk it assimilates the gray, while yellowish red it assumes with apparent effort. When put and left upon a red substance or in a cigar box, the color of the latter it approaches very nearly. From tip of nose to tip. of tail measures from five to six inches, the tail being three fifths of its total length. The head is rather large, triangular in shape, apex at the nose, and covered with small hexagonal plates from the nose to just behind the eyes. The rest of the body is covered with small papillous points; the nostrils are means of these screws the boat mar be propelled forward or backward, and raised or lowered, as may be required
The boat is capable of being operated wholly under the water; or the top portion may be removed, when it may be propelled on the surface.

Development of the Lizard.

At a recent meeting of the Royal Society Prof. K. Parker presented a communication embodying part of his work on the structure and development of the skulls in the lizard group. His researches on the embryos of the common Brit ish lizards have led him to very unexpected results. Hith erto we have been accustomed to regard the crocodiles and
near apex of the nose; the animal has no apparent external ears; it has bright, intelligent, almond-shaped eyes; large mouth, ten well defined teeth upon each side of the upper jaw, and four well defined teeth in the lower jaw, the inter mediate space being filled with minute points; and four well developed legs, five toes upon each, each toe swelling out into a soft pad, terminating in a hooked claw. The pad or middle of the toe, under the magnifying glass, shows an odd arrangement of folds or flounces in the skin, each flounce, tuck, or fold being armed upon its edge with minute points, one half of them pointing up and the other half down, as shown in the illustration. Thus may we explain the crea ture's ability to run up or down the side of a house with equal facility.
In the illustration 1 have shown the lizard upon my finger, with mouth open; the dark color representing its favorite green hue. At the bottom in the moss is the same animal in his gray coat. In the circle appears a magnified view of the teeth, the second toe of the hind foot much enlarged, showing the peculiar arrangement of the folds of the skin upon the under side; and an enlarged view of the hind leg, and the head as it appeared under the glass while changing its color.

A NEW TORPEDO BOAT.

The accompanying engraving represents partly in section a torpedo boat recently patented by Mr. H. Mortensen, of Leadville, Col. The hull A, of the boat, has an arc-shaped keel, B, that runs the entire length, and projects beyond the stern. A portion of the keel is cut away at the stern to receive the rudder, C , which is pivoted in the stapport thus formed, and is provided with two arms, a, one on each side, that project at right angles to the face of the rudder, to re ceive the thrusts of the screw rods, which project through the stern of the boat, one on each side of the keel. The hull is divided into several compartments, one of which is de signed to contain the men that operate the torpedo-project ing mechanism, another contains the men who introduce the torpedo into the projecting apparatus and attach it to the movable rod, and there are compartments for containing either air or water, as occasion may require. In the upper part of the boat there is a chamber which contains compressed air for the supply of the crew and for working the machinery. Under the several compartments already mentioned, there is a compartment for containing water forced in against an air cushion. This chamber acts as an ac cumulator of power which is expended in working the torpedo projecting apparatus.

A cylinder containing a piston is placed longitudinally in the hull, and provided with a loading chamber which projects through the bow of the boat.
The water required for working the piston may be forced into the accumulator chamber before the boat is started. or it may be forced in by hand or otherwise while the boat is under way.

The rods by which the rudder is operated are threaded, one being provided with a right hand and the other with a left hand thread, and work in fixed nuts, and are provided with driving mechanism operated by a suitable motor or by hand.
The boat has a removable upper portion, which is secured to the hull by means of bolts. The top is comparted in the same manner as the hull, and both top and hull are provided In the top there are two entrances, d, provided with hinged covers that are packed to ren der them water tight.
The compa!t ments for contain ing the crew ar provided with win dows, which open inwardly, so tha theymay be repaired replaced in cas of breakage.
In each side o In each side o the boat there are
recesses inclined in opposite directions each of these re cesses contains screw propeller, the shaft of which ex tends into the boat and is connected with 'a motor By
turtles as the highest groups of the reptile family, chiefly on the evidence of the structure of the soft and more impor tant vital organs. But the evidence from the skull leads Prof. Parker to regard the lizards not only as the most highly specialized of reptiles, but the group which approaches most closely towards birds. The term "lizard" is, however, at present used so vaguely as to include the hatteria of New Zcaland and chameleon, both of which are often regarded as types of distinct orders of reptiles. The chame leon, however, which in many respects approximates to ward crocodiles, is regarded as the lowest of the lizards, and even more distant from the higher types than tortoises and turtles. Yet the lizard skull is found to be but slightly modified from that of the snake. On the whole the charac ter of their skulls leads to the conclusion that birds differ less from lizards in structure than does the ordinary perfect insect from its pupa. Of old the strong resemblance which the lizards termed "blind worms" present to ser pents led to the conclusion that we see in them the limbs first coming into existence, but Prof. Parker not only regards the serpent as the more ancient and more generalized animal, but also as one which shows evidence of its degradation by thę loss of limbs, which he believes the ancestral forms of the serpent types possessed. Of late years it has been customary to attach great importance in classification to the modification as presented by the ear bones. Judged by this standard the lizard is closely related to the tortoise and crocodile, and all three types are regarded as differing but little from the bird in this respect. The snake, however, is of a lower grade in the structure of the ear, while this feature in the chameleon is even less specialized than in frogs and toads. As concerns the theory of the skeleton and of the skull, Prof. Parker is led by his researches to conclude that the skull was the part of the animal first formed. Subsequently the joints of the backbone came in successive gencrations into existence, while the limbs and the bones which support them were of more recent origin than the trunk. From the indications furnished by development of the embryo there is reason to believe that some of the lower vertebrates had a long head, including as many as 14 or 15 divisions, which succeeded one another in a line from the front back ward, and from this, as well as from the supposed comparatively late origin of the backbone, Prof. Parker is led to describe as absurd the well known "vertebral theory of the skull," originated both by Goethe and by Oken, and elaborated by Owen. Another important conclusion of Prof. Parker's, based chiefly on the researches of Mr. Balfour, is that the neck comes into existence by a long series of evolutions as a result of the subdivisions of the second vertebra, and serves "to bind the shortening head to the retreating body." In conclusion Prof. Parker expresses his opinion that even those who are content to work at the development of the lowlier types, such as the worm and the crayfish, are helping to throw light on the solution of the vertebrates.

photography on Wood.
 by professor J. husnik.

I adopted the method of exposing gelatinized paper alone under a negative, and when the chromium salt had been washed out, placing it on a plate of glass and laying on the ink with a very small glue roller. With this I succeeded completely; I obtained beautiful pictures, perfect in the half tones, which could be at once laid on the wood block, and be printed off at onc impression. Gelatine paper can be easily prepared, and kept in stock, according to the process described in my book Das Gcsammtgebiet des Lichtdrucks, by placing sheets of paper in a perfectly horizontal position, and coating them with a dilute solution of gelatine, and they need only be sensitized at the moment of use with a one per cent solution of chromate; by this means the above described method is rendered thoroughly simple and practical, as well as being certain in its results. The wood block itself requires a very simple preparation; it must be rubbed down with whiting to which some adhesive substance has been added. This rubbing can be best effected by the ball of the hand. Gelatinc paper can also be purchased from the dealers, and even my own photo-lithographic transfer paper will answer the purpose very well, provided that, before immersing it in the chromate solution, it be wiped over a few times with a damp sponge, and then rinsed well in
clean water. This is done to remove any soluble matter clean water. This is done to remove any soluble matter
from the surface. Afterwards the paper is dipped for some minutes in a one per cent solution of chromate, then drained, and hung up to dry at an ordinary temperature. Sensitized in this way it remains good for the above named purposefor from three to five days.

The Manufacture of Glass in Pittsburg.
Pittsburg, Pa., produces more than half the glass made in the United States. Its factories number 73 , with 690 pots, and give employment to 5,248 hands, whose wages approach $\$ 3,000,000$ a year. The materials employed in the manufacture were, the past year, 12,110 tons soda ash, 48,340 tons of Sand, 152,000 bushels of lime, 1,218 tons nitrate soda, 793,500 bushels of coke, 4,525,760 bushels of coal, 4,025 cords wood, 6,055 tons of straw, 2,760 barrels of salt, 250 tons pearl ash, 330 tons of lead, 150,000 fire brick, 2,955 tons of German clay. The packing boxes cost $\$ 484,250$, and required 2,109 kegs of nails. 96 wagons and 130 horses were employed in hauling. The space occupied by the buildings is equal to 208 acres, and the capital in buildings, machinery, and grounds is, in round numbers, $\$ 3,500,000$. The business produces about $\$ 7,000,000$ a year.

moranda for Garment Dyers.-Substances Reagents Suitable for Removing Spots.

Steam has the property of softening fatty matters, and hus facilitating their removal by reagents.
Sulphuric acid may be employed in certain cases, espe cially to brighten and raise greens, reds, and yellows; but it must be diluted with at least 100 times its weight of wate and more, according to the delicacy of the shades.
Muriatic acid is used with success for removing spots ink and iron mould upon a great number of colors which it does not sensibly affect.
Sulphurous acid is only used for bleaching undyed goods, straw hats, etc., and for removing fruit stains upon white woolen and silk tissues. The fumes of burning sulphur are also employed for this object, but the liquid acid (or a solu tion of the bisulphite-not bisulphate-of soda or magnesia) is safer.

Oxalic acid serves for removing spots of ink and iron and the residues of mud spots, which do not yield to other cleansing agents. It may also be employed for destroying the stains of fruits and of astringent juices, and stains of urine which have become old upon any tissue. Nevertheless, it
is best confined to undyed goods, as it attacks not merely fugitive colors, but certain of the lighter fast colors. The best method of applying it is to dissolve it in cold or luke warm water, and to let a little of the solution remain upon the spot bef ore rubbing it with the hands.
Citric acid serves to revive and raise certain colors, especially greens and yellows; it destroys the effect of alkalies and any bluish or crimson spots which appear upon scar lets. In its stead acetic acid may be employed.
Liquid ammonia, formerly called volatile alkali, is the most energetic and useful agent employed for cleaning tis sues and silk hats, and for quickly neutralizing the effect of acids. In the latter case it is often sufficient to expose the goods to the fumes of this alkali in order to remove such spots entirely. Ammonia gives a violet cast to all shades produced with cochineal, lac, the redwoods or log wood, and all colors topped with cochineal. It does not deteriorate silks, but at elevated temperatures it percepti bly attacks woolens. It serves to restore the black upon silks damaged by damp.
The carbonate of soda (soda crystals) serves equally in most of the cases where ammonia is employed. It is good for hats affected by sweat.

Soda and potash only serve for white goods, of linen, hemp, or cotton; for these alkalies attack colors and injure the tenacity and suppleness of woolen and silk. For the same reason white soap is only to be recommended forcleaning white woolen tissues.
Mottled soaps serve for cleaning heavy stuffs of woolen or cotton, such as quilts; for such articles which do not require great suppleness or softness of feel the action of the soap may be enhanced by the addition of a small quantity of potash.
Soft potash soaps may be usefully employed in solution, along with gum arabic or other mucilaginous matters, for cleaning dyed goods, and especially self colored silks. This composition is preferable to white or marbled soaps, as it re moves the spots better, and attacks the colors much less.
Ox-gall, which can be obtained from the butchers in a sor of membranous bag (the so-called gall bladder), has the property of dissolving the majority of fatty bodies without injuring either the color or the fiber. It may be used preferably to soap for cleaning woolens; but it should not be employed for cleaning stuffs of light and delicate colors, which it may spoil by giving them a greenish yellow, or even a deep green tint. It is mixed also with other matters, such as oil of turpentine, alcohol, honey, yolk of egg, clay, (fuller's earth), etc., and in this state it is used for cleaning silks. To obtain a satisfactory result gall ought to be very fresh. To preserve it a simple method is to tie the neck of the gall bladder well with a string, and hold the bladder in boiling water for some time. This being done it is taken out and let dry in the shade.
Yolk of egg possesses nearly the same properties as ox gall, but is much more costly. It must be used as quickly as possible, for it loses its efficacy with keeping. It is sometimes mixed with an equal bulk of oil of turpentine.-Moniteur de la Teinture.

Whooping Cough and Fungus.

Some years ago M. Svetzerich made the assertion that whooping cough was caused by a certain fungus. This as sertion seems lately to have been confirmed by the researches of M. Yschamer, who says he has found certain lower organisms in the spittle of whooping cough patientsorganisms not met with in any other disease accompanied by cough and expectoration. Examining the spittle after it
has been a short time suspended in water, there are found corpuscles about the size of a pin's head, of white or slightly yellowish hue, and these show, besides apathetical cells, a network frame of polygonal meshes,. with rounded greenish sporules; at a more advanced stage, colorless hyphæ are seen, and large sporules, yellowish or brownish red, sometimes even ramified. It is interesting to learn that the champi gnons in question are quite identical with those which, by their agglomeration, form the black points on the skins of oranges and the parings of certain fruits, especially apples. Thus, M. Yschamer, by inoculating rabbits with this dark matter, or even causing it to be inhaled by men, produced fits of coughing several days in duration, and preser.ting all Ithe characters of the convulsive whooping cough.

The Geological Relations of the Atmosphere. At one of the recent sessions of the French Academy of Sciences a communication, with the title which heads these notes, was read from Professor Henry Hunt. This paper, of which we make a brief abstract from the text contained in one of our French exchanges, puts forth a curious theory. Taking into account the enormous quantity of carbonic acid stored up in the vegetation forming the coal deposit, and the much greater quantity of the same gas which is met with in the calcareous formations, Professor Hunt belicves that it must be admitted that this gas has an extra-terrestrial origin He believes that our atmosphere should be considered as a universal cosmic medium, condensed around the centers of attraction by reason of its mass and temperature, and occu pying all the interstellar spaces in a state of extreme rare faction.
By considering the question from this standpoint he de duces the conclusion that the atmospheres of the different celestial bodies should be in equilibrium, and so much so that every change that supervenes, be it either by condensaion of aqueous vapor or carbonic acid, or by the setting free f oxygen or any gas whatever, would make itself felt in al the rest of the planets through the effect of diffusion. So hen, during those periods in which a great absorption took place on the face of our globe, our atmosphere would have been constantly fed by new portions of gas coming from the universal medium, and consequently from the gases sur rounding the other planets.
From this it is understood that the proportion of carbonic acid in the atmosphere of the other planets must have ex perienced an equal diminution, at the moment that the ex cess of oxygen spread over the surface of our globe was equally diffused through their atmospheres.
Professor Henry Hunt sces in this theory the explanation of the origin of the cosmic dust.

A Quicksilver Motor

A street car motor to be run by quicksilver is being manu factured at Aurora, Ill. About 800 pounds of civicksilver is to be placed in a reservoir at the top of the car and to pour down over a cast iron over-shot wheel, producing an equiva lent of three horse power. The quicksilver is to be returned to the reservoir by pumps placed underncath the car, to be operated by a brakeman by means of a crank on the fron platform.-St. Louis Miller.

There must be some mistake here in the calculations. Al lowing a distance of 10 feet from the quicksilver reservoi to the point where it strikes the wheel, then the utmost force yielded by the fall of the 800 pounds of liquid metal will be a little less than one quarter of one horse power. To pump up the liquid again would keep the brakeman constantly at work. He could propel the car faster and to better advantage by simply walking behind the vehicle and pushing it forward with his hands, thus dispensing with the weight and cost of 800 pounds of quicksilver, reservoirs, pipes, wheels, etc. In order to realize three horse power from a wheel arranged as above, 10,000 pounds, or five tons, of quicksilver would be required; and to pump it back the labor of fifteen men would be necessary. We fear that the new motor is destined to stand still.

The Metric or Decimal System.

The following simple table gives all that there is in the metric or decimal system of weights and measures:

MONET.

10 mills make a cent.
10 cents make a dime
10 dimes make a dollar.
10 dollars make an eagle.
length.
10 milli-meters make a centimeter
10 centi-meters make a decimeter.
10 deci-meters make a meter.
10 * meters make a decameter.
10 deca-meters make a hectometer.
10 hecto-meters make a kilometer.
10 kilo-meters make a myriameter.

weigit.

10 milli-grammes make a contigramme.
10 centi-grammes make a decigramme.
10 deci-grammes make a gramme.
$10 \dagger$ grammes make a deccagramme.
10 deca-grammes make a hectogramme
10 hecto-grammes make a kilogramme.
10 kilo-grammes make a myriagramme

capacity.

10 milli-liters make a centiliter. 10 centi-liters make a deciliter.
10 deci-liters make a liter.
$10 \ddagger$ liters make a decaliter
10 deca-liters make a hectoliter.
The square and cubic measures are nothing more than the quares and cubes of the measures of length. (Thus, a square and a cubic millimeter are the square and the cube of which one side is a millimeter in length.) The are and stere are other names for the square dekameter and the cubic meter. -Boston Transcript.

* A meter is equal to 39366 American inches.
\dagger A gramme is equal to $15 \cdot 433$ grains troy
\ddagger A liter is equal to 2.113 American pints.

\triangle WONDERFUL TREE.

The plant illustrated in the accompanying engraving is perbaps one of the most extraordinary vegetable productions, in many respects, on the face of the globe. Seldom, if ever has the discovery of a new plant created such an amount of interest in the scientific world as did this. In the year 1860 an Austrian botanist, Dr. Frederic Wel witsch, while making explorations in South west Tropical Africa, under the auspices of the Portuguese Government, came upon an elevated sandy plateau about 500 miles south of Cape Negro. Here his at tention was at once attracted to a number of curious objects rising from a foot to a foot and a half above the surface of the soil, varying from 2 to 14 feet in circumference, and having a flat, somewhat depressed top of a dingy brown color, and appearing more like large stools or small tables than any living plant. When his amazement at beholding such a scene was over, Dr. Welwitsch's first proceeding, of course, was to secure both a plant and sufficient and proper materials for determining its scientific classification. These materials were subsequently sent to Kew with the request of the discoverer that Dr. Hooker should examine and classify the plant; this the latter did, naming it Welloitschia mirabilis. The result of Dr. Hooker's labors was the subject of one of the most interesting papers ever read before the Linnæan Society.

As we have before stated, the Welwitschia rises no higher than a foot or so from the surface of the soil, and may, therefore, be called a dwarf tree. The roots branch just below the stock, penetrate several feet into the ground, and fix themselves so firmly in the hard, sandy parched soil that it was found extremely difficult to dig up a plant with the roots entire. The most peculiar part of this plant is the crown, into the edges of which (at the point of junction with the stock) the leaves are inserted. The outline of this crown is of an irregular oval or oblong form, and its surface (and,indeed the whole exterior of the tree) is of a dirty brown color, hard, rugged, and cracked, and has been aptly likened by Dr. Hooker to the crust of an overbaked loaf of bread. It is seldom or never flat, but usually sunken or concave toward the center. From the edges, toward the center, the surface is covered with little pits, the marks or scars of fallen flower stalks. The leaves, like all other parts of the plants, are very extraordinary; each plant possesses two only, corresponding in width to the loles of the crown, and running out right and left to the enormous length of six feet, and one twentieth of an inch in thickness. These leaves (which are not true leaves, but "seed leaves" or cotyledons) are normally entire, although they are seldom seen in that state, as they soon be come split to the base into strips. They lie spread out flat on the ground, are of a leathery texture, and of a bright green color, with almostimperceptible parallel veins. The are described as being persist ent during the whole life of the plant, which is said to be a hundred years or more
This fact affords another instance of dissimilarity with other plants; for we know that the first or cotyledonary leaves of most plants drop of as soon as second leaves are produced. The Welwitschia is diecious, that is, its male and female flowers are born on separate plants. The in florescence is supported on di chotomously branched cymes which spring from the smal pits or scars, before spoken of upon the crown of the tree close to the point of insertion of the leaves, and even occa sionally below them. The fruit or cone (which is the only part of the plant bearing any general resemblance to the conifere, to whichit is related) are, when fully grown, about two inches long, with four slightly convex sides, and of a bright red color. The seeds, whicl are contained one in each scale, are surrounded by a broad, light-colored, trans parent wing. It is highly probable that the fertilization of the female flowers is effected by insects, as it appears "that a pollen-feeding group of coleoptera, the Cetonice, abound in the regions inhab ited by the Welwitschia.' Dr. Hooker, after a careful microscopical examination of "Marié-Davy" couple may often be substituted here, where this extraordinary plant, placed it in the natural order Gneta. the pen is not required for very hard and continuous use. $c e c x$, and regards it as having a very close affinity with the The battery is connected in the usual way to the primary tergenera Ephedra and Gnetum. Outside of the high scientific minals of a small induction coil, B, and for this purpose one The world is full of possibilities for whoever can sce interest with which it is invested, this plant has no recognized of the little coils generally accompanying the cheap French them. The art of original personal seeing and thinking is use. Its leaves, being tough, leathery, and not softly fibrous, sets of apparatus for "vacuum tube experiments," answers what we all lack most.]
are not adapted for cordage, weaving, or any similar pur poses. Its tough trunk is of such an uneven, fibrous grain that the saw seems rather to tear than cut it; and besides, it is use.

No wonder, then, that the plants have been allowed to grow for centuries unmolested by the natives, and, consequently, p to the time of its discovery hidden from the eye of civilzed man.

A SIMPLE ELECTRIC PEN
We give below a description of a simple electric pen,
very well if certain simple improvements be applied thereto As a rule these tiny " Ruhmkorffs" give a secondary spark of from one eighth to three sixteenths of an inch in length, but would give a much longer one only that the vibrating armature is not sufficiently delicate, while the condenser is ften only a delusion and a snare. The former should be more delicately adjusted, a really elastic bit of spring being added if necessary, and the latter should be taken out and replaced by a sound and practical condenser, containing 300 or 350 square inches of tin foil, carefully insulated with paraffin paper. When these alterations are completed, it will be found that the spark is increased in length to som five sixteenths of an inch, or even more. The des or writing slab consists of a plate of glass or vul canite of suitable dimensions, upon which has bee evenly laid a perfectly smooth, but rather smaller sheet of silver or tin foil, D), the whole being pro tected from damp by a coat of thin amber varnish at one corner of the slab is fixed a binding serew E, in contact with the metallic surface, and con nected by a wire with one terminal of the seconda ry coil.
The writing stylus or "pen," F, consists of an vory or vulcanite tube, pointed at its lower extremi y, and provided at the other end with a small bras terminal; from the latter a stiff wire, furnished with an extremely fine platinum point (p) proceeds in the interior of the tube, and is capable of adjust ment by a small set screw. In practice this pla tinum point should be (when the stylus is turned up) very slightly below the Jevel of the aperture in the ivory. The "pen" being then connected to the free terminal of the secondary, and the little coi set so that the primary sparks appear almost con tinuous by reason of their very rapid succession, sheet of paper laid upon the slab, C, will be quick y perforated in a series of minute holes if the point of the stylus be gently drawn over it. Any writ ing, plan, or outline drawing, may be traced in this way upon the paper, although in a somewhat slowe manner than with an ordinary pen. When removed from the slab the paper is found to be a kind of stencil plate, from which, by laying in succession upon a number of sheets of paper, and applying the ink roller or "dubber," many hundred fac-simile copies may easily and quickly be ob tained.
If an "electro-stencil" of a large architectural or other plan or of a map be wanted, a slightly modified stylus wil facilitate the work. Fig. 2 shows such an instrument drawn o scale (half the original size), Fig. 3 being a section of the same.
A represents the terminal for the recention of wire from coil. B is a brass tube extending to within an inch of the " writing," or lower end of the stylus, where it receives a pointed platinum wire, C which can be fixed at any required height by means of the set screw, D. A smal ivory wheel, E, enables the stylus to travel easily and evenly over any long continu ous lines, either with or with out the aid of a ruler.
[Other applications of this simple and casily constructed electricpen will suggest them selves to the intelligent read er, and it may readily be made (if really needed) far more rapid in its action than the costly instrument before al luded to. Its use infringes no patent, as its action depends upon well known principles, which have been applied somewhat in the same way for lecture demonstrations.
The circumstance that a whole generation of students and inventors have misse this simple and uscful appli cation of electricity, strik ingly illustrates the blindness even of thoughtful men to practical opportunities which lie close at hand, but a little out of the common channels of thought. For many year it has been a well known fact that the spark of an intensity coil is capable of perforating paper; and now no one can see the practical application of that knowledge withou of that knowledge withou wondering why he neve thought of it. Who can tell what myriads of similar opportunities-what multitudes what myriads of similar opportunities-what multitudes
of good things"-are within the easy reach of whoever will get his mind out of the ruts of habit? what we all lack most.]

On Bronzes and Bronzing

Bronzing, in the narrower sense, includes only those manipulations whereby the appearance of bronze is imparted to the surface of an article made of metal, wood, plaster, or other like mass, by covering it with a metal. The meaning of the word has been extended so as to include every process whereby a metallic appearance is imparted to any non-metallic object, or the bright surface of a metal is covered with a thin, dull coating of brown, reddish, or even black color, to protect it from change.
In the former kind of bronzing very finely divided or pulverized metal is dusted upon the object after it has been painted with oil varnish and almost dry; in the latter kind of bronzing several different methods are employed. In the following lines we propose to describe the various operations, etc.

1.-BRONZE COLORS

For the first kind of bronzing different bronze colors, metallic or dust bronzes, are employed; these are finely pulverized metallic alloys, which are much used to cover wooden plaster, and metallic articles on account of their beautiful color and metallic luster. They are mostly made from the scraps and waste of real or imitation gold or silver leaf and other alloys, beaten very thin, mixed with honey or gum solution, and rubbed upon marble slabs. On a large scale the metal foil, greased with olive oil, is rubbed through wire sleves by means of wire brushes, and pulverized in steel mor tars, then polished with revolving brushes.
The commonest bronze colors are: real gold leaf, Dutch leaf, mosarc gold, real silver leaf, imitation silver leaf, mosaic sllver, copper bronze, bronze-colored bronze or bronze powder, the greenish copper bronze, brownish gold bronze, goldcolored copper bronze, blue bronze, and some alloys of bronze metal.

A.-REAL gold bronze

This is made from the scraps of the gold beaters, and called in German grätze, krätze, schäbe, or schawine (scrappings, shavings). They are mixed with honey, or gum, and ground on a glass plate, or under the hardest granite, to a very deli cate powder, washed frequently with water, and then dried.
The different shades or color of gold bronze are distinguished as red, reddish, deep and pale yellow, or greenish These shades are due to the amount of gold, or the proportion of gold to that of silver and copper.
By boiling with solutions of different salts or acidified liquids still other shades of color can be imparted to the bronze; if boiled in water acidified with sulphuric, nitric, or hydrochloric acid a bright yellow is produced; if the solution contains sulphate or acetate of copper it will be reddish; other shades are obtained by boiling with a solution of table salt, green vitriol, tartaric acid, or saltpeter.
Gold bronze can also be made by dissolving gold in aqua regia, and precipitating as a metallic powder by means of a solution of sulphate of iron, and then boiled out in different ways. The sulphate of protoxide iron must be dissolved in boiling water, and then sulphuric acid dropped into it, and stirred until the flakes of basic sulphate of sesquioxide dissolve again.
Gold bronze is also made by dissolving gold in aqua regia and evaporating the solution in a porcelain dish. When nearly dry some pure hydrochloric acid is added, and the operation is repeated to expel any free chlorine and make a pure chloride of gold. The dry salt is dissolved in distilled water (1 liter to a ducat) and (8° Baumé) solution of pentachloride of antimony stirred in as long as any precipitate is produced. This precipitate is the gold bronze, which finds, when dry, the most extensive use for painting upon porcelain and glass.
Metallic gold in powder can also be obtained from solution in aqua regia by putting in a bright strip of some electro-positive metal like iron or zinc. The color of the gold bronze depends upon the composition of the gold employed. Its luster is improved by rubbing the dry powder.

B.-Imitation gold bronze.

This is made, like the real gold bronze, from the waste of beating of the so-called Dutch leaf, by triturating with a solution of gum, washing in water, and drying quickly, then rubbing again to increase the luster. The color depends upon the proportion of copper to zinc; if the former predominates it is redder; if the latter, yellower; so that the deepest red consists of pure copper, the bright yellow of 83 parts copper and 17 of zinc, the orange red of 99 parts of copper and 1 of
zinc. The violet and green shades are obtained by heating zinc. The violet and green shades are obtained by heating
with a greasy substance-oil, wax, or paraffine-which produces a sort of patina.

C.-mOSAIC GOLD.

This substance is a compound of 64.63 parts of tin and 35.37 of sulphur, is free from taste or odor, soluble only in hydrochloric acid, aqua regia, and boiling caustic potash. It serves exceedingly well for bronzing plaster casts, copper, and brass, by mixing with 6 parts bone ash and rubbing on wet, also for making gilt paper and for gilding pasteboard and wood, when it is painted on with albumen or varnish. Mosaic gold of golden yellow color and metallic luster is obtained by heating 6 parts sulphur and 16 of tin amalgam with 1 part of mercury and 4 parts sulphur. A beautiful mosaic gold is made from 8 parts stannic acid and 4 of sulphur. The most beautiful and purest mosaic gold, which most closely resembles real gold, is made by fusing 12 parts of
pure tin, free from lead, with 6 parts of mercury to an amal. pure tin, free from lead, with 6 parts of mercury to an amal-
gam. This is mixed with 7 parts flowers of sulphur and 6
parts sal ammoniac, and subjected for several hours to a gen- with a solution of 15 grammes aniline blue in $11 / 2$ liters alcotle heat, either in a glass retort or an earthen crucible, at first \mid hol, and stirred until dry. This manipulation must be re-
below a red heat, afterward, when no more vapors escape, it can be raised to a dark red. On heating, the sal ammoniac first escapes, then vermilion and some chloride of tin sublime off, and the mosaic gold remains on the bottom. The upper strata consist of delicate transparent brilliant flakes of the most beautiful mosaic gold.

D.-REAL، sILVER bronze.

This is made either by triturating the scraps of silver foil or by
per.
E.-imitation silver bronze.

This is obtained by triturating the scraps of imitation silver leaf, washing, drying, and polishing to increase the luster.

F. - mosaic silver

This is an amalgam of equal parts of tin, bismuth, and mercury; 50 grammes of good tin is fused in a crucible, and as soon as melted 50 grammes of bismuth are stirred in with an ron wire until it is all liquid; the crucible is then removed from the fire, stirred as long as liquid, and then 25 grammes mercury added, and all mixed uniformly until stiff enough to be ground upon a stone.

G.-COPPER BRONZE.

This is made by rubbing copper foil very fine, or by pre cipitating from solution by strips of bright iron, then wash ing, drying and grinding. By grinding together copper powder and fine mosaic gold, in different proportions, very different bronzes are obtained.

H.-bronze powder,

or bronze-colored bronze, also called antique bronze, is made from 16 parts copper and 1 of tin, beaten into leaves and then ground up. J. Brandeis, in Furth, has invented a hammer and grinding apparatus for this purpose. The alloy is first rolled into sheets, then hammered out so thin that 1 kilo covers 120 square meters. Bronze powder is also made by
dissolving bronze fillings in nitric acid and putting a rod of metallic zinc in the solution.

I.-Greenish copper bronze.

This is obtained when copper bronze is put in a flask and covered with strong wine vinegar, stirred occasionally, left standing in the air, dried, and intimately mixed.
If copper bronze, or a bronze made by mixing mosaic gold with copper powder, is mixed with one quarter, one third, or one half its weight of verdigris (acetate of copper) a bronze is produced which imitates in color the patina upon antique bronzes.
Artificial patina powder is produced by treating bronze castings with different salts. Vinegar, nitrate of copper, sal ammoniac, common oxalate of potash, and similar com pounds are employed to produce artificial patina. These solutions are used to oxidize one part of the bronze powder superficially, which is then ground with clean metallic bronze powder, producing a greenish bronze powder, with which the appearance of antique patina can be produced upon plaster casts or wooden objects.

K.-BROWNISH GOLD BRONZE.

This is made from fine clean iron filings by moistening re peatedly with a little water and exposing them to the air, then boiling several times and drying in the sun or on a stove. It forms a deep rust-brown powder, which becomes more in tensely red if some nitric acid were added in the last boiling. It is elutriated to separate any metallic particles, and dricd. By mixing this powder with imitation gold bronze mosaic gold, copper bronze, and greenish bronze, separately or to gether, the most varied and different shades of bronze color can be obtained.
L.-GOLD-COLORED COPPER BRONZE

A copper bronze with golden color is produced by boiling together an amalgam of 1 part zinc and 12 parts mercury, some hydrochloric acid, a filtered solution of purified tartar crystals, and copper bronze precipitated from the nitrate by means of iron. This copper bronze has a reddish golden color, if only boiled a short time, and a deep yellow or green bright yellow by longer boiling. Another golden copper bronze is obtained by boiling the copper bronze with a solu tion of 1 part gold in aqua regia, evaporated to dryness, dis solved in 8 parts water, the solution boiled, and one half part gnited magnesia added, then boiled until the yellow color disappears. The precipitate of oxide of gold and excess of magnesia is filtered out, placed in a flask, and a boiling solu ton of 8 parts cyanide of potassium in water poured upon it. Aurate of soda can also be boiled with the copper powder. The gold salt, prepared as above described, is dissolved in 130 parts of water and 11 parts bicarbonate of soda added, and boiled; then the copper bronze powder is put in and boiled until the desired color is obtained. If any gold re mains in solution it can be recovered in metallic state by ad dition of a solution of protosulphate of iron.
M.-bloe bronze.

The blue bronzes are produced in the wet way by coloring white bronze with aniline blue. For a long time vain at tempts were made to obtain permanent and beautiful blue shades by heating by means of so-called "Anlauf" colors, which are due to thin films of oxide, as in blue steel. A white bronze made of pure English tin is boiled for 5 hours then wash of 20 grammes of alum in $41 / 2$ liters of water
peated six or eight times until the desired blue color is ob tained. When the bronze is dark enough it is washed in warm water, and before it is quite dry a large spoonful of petroleum is poured upon each kilo of bronze, intimately mixed, and the odor allowed to escape into the air for a few days.
To obtain the copper in the form of flakes, which is the best for making bronzes, the oxide is best reduced by means of the more volatile oils of petroleum, such as gasoline, rhigoline, or petroleum ether. The reduction by rhigoline vapors is accomplished in a combustion tube, in layers 1 to $11 / 2$ centimeter deep, at a high temperature. The oxide is easily and completely reduced and converted into a loose scaly metallic form, which must be allowed to cool in an atmosphere of petroleum vapor and pulverized in an agate mortar. The other methods of reduction leave the copper in the form of powder, which is less suitable for making bronzes.

N.-SUbSTITUTES FOR bRONZE COLORS

Besides the mosaic gold, or tin bronze, already mentioned, the following are also used:
Tungsten Bronzes.-Of these there are two kinds, the socalled safron or gold bronze, which is a tungstate of soda and tungsten, forming beautiful gold yellow brilliant crystals; the other is called magenta bronze or violet bronze, and is a tungstate of tungsten and potash, violet crystals that glisten like copper in the sun. By igniting metatungstate of potash strongly, tungstic acid can be prepared of a beautiful dark blue steel color. Unfortunately the tungsten bronzes do not fill their purpose completely, for on pulverizing they take a cubical form instead of the scaly form, and cannot be evenly distributed over the article to be bronzed.
Chromium bronze, or violet chromium chloride, forms beautiful violet crystalline flikes that sparkle like mica, is easily applied, but, unfortunately, too expensive as yet for use.
We may also mention titanium bronze, crystallized iodide of lead, and organic bronzes, which latter are derivatives of hematoxyline, and which have been employed for more than ten years in making bronze paper. Recently others have been made from coal tar colors. The best of the crystalline coal tar colors is the acetate of rosaniline, which produces a beautiful effect by its fine gold-green color and metallic luster. Not less beautiful are murexin and the green hydro chinon.
The mica bronzes, also called " brocade" or crystal colors, are made of mica, which is pounded up, then ground, boiled in hydrochloric acid, washed with water, until free from acid, and separated according to the size by means of sieves. Prepared in this way, the flakes of mica have a beautiful vit reous luster and silvery appearance, possess a metallic ap pearance, are perfectly indifferent to sulphurous emanations, nd resist all changes in the air. It is suited to most me allic, papier maché, wood, glass, and plaster articles, and oys, for flowers, paper hangings, sealing wax, etc., also for painters and cabinet makers, and especially for decorative painting.
Mica bronzes can be made of a great variety of colors, the most important of which are the following:
Pink, mica colored with a decoction of cochineal, and hence soluble in hot water, so that the color is not fast. It turns blue with ammonia or hydrochloric acid.
Carmoisin, prepared with bluish fuchsin, is soluble in hot water, turned yellow by hydrochloric acid, and the color is destroyed by ammonia.
Violet, made by Hofmann's violet, is very soluble in water, ammonia destroys the color, hydrochloric acid changes first to green then to yellow.
Bright blue, prepared with Prussian blue, or finely pulverized indigo, is not soluble in water even if acidified, un less oxalic acid is used, nor in alcohol.
Dark blue, produced with purified aniline blue or with Girard's violet, is but slightly soluble in water, turns blue in hydrochloric acid, and loses color in ammonia.
Viol-blue, colored with logwood, is slightly soluble in water, not at all in alcohol, completely soluble only in dilute hydrochloric acid, and then forms dirty violet flakes.
Light and dark green are colored with turmeric and aniline blue, are insoluble in water, but soluble in alcohol
Golden is made with turmeric, is slightly soluble in water, more so in alcohol.
Silver is the pure mica, probably brightened by a decoction of bark, is more soluble in water than in alcohol; finally,
Black, probably a mixture of logwood pigment with lit mus.
In using these mica bronzes the article must first receive a ground color, white lead for silver, ultramarine for blue, etc. For this purpose we may employ either oil paint or a glue sizing consisting of 4 parts glue and 1 part glycerine, rubbed together and applied with damar or light copal varnish. As soon as this size is dry it is coated with a paste of 4 parts starch and 1 part glycerin, and a sufficient quantity of brocade strewn over it, left half an hour to dry, and the excess of the powder dusted off. It can also be pressed on with a roller. If a ground of oil paint is used, the varnish is allowed to dry until it is no longer very sticky, when the powder is strewn on as in other cases. A beautiful appearance is pro duced by a final coating of thin alcoholic damar or copal varnish.
Steel bronze consists of micaçous iron (eisenglanz) in fine powder. It is not very durable.

ctusiness and extsual.

The Charge for Insertion under this head is one Dollar a line for each insertion; about eight words to a line Advertisements must be reccived at publication office
as early as Thursday morning to appear in next issue.

Packers of Canned Goods please address Norton Srothers, Chicago, Ill, for particulars regarding Nor
on's Improved Can, illustrated in this number, ion's Improved Can, Illustrated in this number. They
will supply Cans complete, Tops only, or Dies, with License, to those who make their own cans.
Steam Tug Machinery, Engines, Boilers, Sugar Ma-
chinery. Atlantic Steam Engine Works, Brooklyn,IN.Y. Jarvis Patent Boiler Setting, same principle as the
 ton, Mass H. W. Johns Asbestos Liquid White Paint has bee
dopted for interior and exterior wood, iron, and ston aopted for interior and exterior wood, iron, an.
work on the U. . C. Capitol, at Washington, D.C.
Best Turbine Water Wheel, Alcott's, Mt. Holly, N. J. Valves and Hydrants, warranted to give perfect sation
faotion. Chapman Valve Manuf. Co., Boston, Mass. For Steam Pumps send to Dean Bros., Indianapolis, Ind Little Giant Screw Plates, Adjustable. Dies, Taps, etc. Vells Bros., Greenfield, Mass.
For Solid Wrought Iron Beams, etc., , see advertise-
ment.
Address Union Iron Mills, Pittsburgh, Pa., for ment. Address
lithograph, etc.
"Vick's Floral Guide" contains a colored plate, 500 lustrations, 100 pages, descriptions of the best flower
nd vegetables, and how to prow them; all for 5 cents and vegetabes, and how to grow them; all for 5 cents
in English or German. Add. James Vick. Rochester, N. \mathbf{Y} Carbon Pencils for Electric Light. 1 College Pl., N. Y. For Sale cheap.-A Stave Saw, nearly new; cylind
$13 \% \times 24$ feet. Dodge, Churchill \& Co., Monroe, Wis.
Magneto-Telephone Call Bozes, 85. Indiana Electri
Works, $3 \Varangle$ E. Washington St. Indianapoolis, Ind. Stamp Works, 3% E. Washington St., Indianapolis, Ind. Stamp or circular
Deoxidized Bronze. Patent for machine and engine Journalls. Philiadelphia Smelting Co.. Phila., Pa.
Kimballs Catarrh Cigarettes, an instantaneous relie and a peasanut smoke. T.ey contain no tobacco.
Vertical Burr Mill. C. K. Bullock, Phila., Pa.
Bunnel1's New Nickel Solution; rapid in action; white and perfect deposit on all metals; works on zinc. iron price. Guaranteed to infringe no patent. Bunnell, 112
Liberty St., New York. ciberty St., New York.
For Power\&Economy, Campbell \& Co., Newark, N.J. Catalogues and Circulars of our latest Scientific Publ ations, mail free. E. \& F. N. Spon, 466 Broome St., N.Y
Case Hardening Preparation. Box 73, Willimantic, C
H. Prentiss \& Company, 14 Dey St., N. Y., Manufs.

Needle Pointed Iron, Brass, and Steel Wire for all
purposes. W. Crabb, Newark, N. J.
Belcher \& Bagnall, 25 Murray St.. N.Y., have the mos economical Steam Engines, Boilers, P'umps, in mar
also improved wood and iron working machinery.
Hydraulic Elevators for private honses, hotels, an
public buildings. Burdon Iron Works, Brooklyn, N.
Diamond Saws. J. Dickinson, 64 Nassau St., N. Y.
Bolt Forging Machine \& Power Hammers a specialty For Sale Cheap.--Second-hand 8 foot Boring and Turning Mill, Lathes, Planers, Drills, Bott Cutters, et
Circulars. D. Frisbie \& Co., New Haven, Conn.
., New Haven, Conn.
Presses, Dies, and Tools for working Sheet Metal. et
Fruit \& other can tools. Bliss \& Williams, B'klyn, N. Y
For Sale. - Brown \& Sharp Universal Milling Machine Bement Profling Machine ; frrst-ciass 2 d hand Machine
Tools. E. P. Bullard, 14 Dey St., N. Y.
Nickel Plating.-A white deposit guaranteed by using 1,000 2d hand machines for sale. Send stamp for deGalland \& Co.'s improved Hydraulic Elevators. Office The Scievtipic American Export Edition is pub The Scientific american Export Edition is pub-
lished monthly, about the 15th of each month. Every number comprises most of the plates of the four preceding weekly numbers of the SCIENTIFIC AMERICAN, with
other appropriate contents, business announcements, etc. It forms a large and splendid periodical of nearly one hundred quarto pages, each number illustrated with
about one hundred engravings. It is a complete record about one hundred engravings.
of American progress in the arts.
Brush Electric Light.-20 lights from one machine.
 The Lathes, Planers, Drills, and other Tools, new and
second-hand, of the wood \& Light Machine Company econd-hand. of the Wood \& Light Machine Company
Worcester, are to be sold out very low by the George
Place Machinery Agency, 121 Chambers St., New York.
Alcott's Turbine received the Centennial Medal.

Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel - other kinds imitations and inferior.
Caution.-Our name is stamped in full on all our best Standard Belting, Packing, and Hose. Buy that only. The best is the cheapest. New York Belting and Packng Company, 37 and 38 Park Row, N. Y.
Manufacturers of Improved Goods who desire to build up a lucrative foreign trade, will do well to insert a well displayed advertisement in the SCIENTIFIC America
Export Edition. This paper has a very large foreign circulation.
Pure Turkey Emery in 10, 60, and 250 lb . packages; al numbers; any quantity; lowest rates. Greone, Twee \& Co., New York
C. Hoadley, Consulting Engineer and Mechanical and Sclentifl Expert, Lawrence, Mass
For Shafts, Pulleys, or Hangers, call and see stock
kept at 79 Liberty Bevins \& Co, 79 Libert. Wm. Sellers \& Co
Bevins \& Co.'s Hydraulic Elevator. Great power, For Town and Village use, comb'd Hand Fire Engine Hydraulic Presses and Jacks, new and second hand Lathes and Machinery for Polish
E. Lyon \& Co., 40 Grand St., N.
Pulverizing Mills for all hard sub
purposes. Walker Bros. \& Co., 23 d \& Woos St and grindin The Lambertville Iron Works, Lambertrille ., build superior Engines and Boilers at bottom prices. Inventors' Models: John Ruthven, Cincinnati, 0. Sheet Metal Presses, Ferracute Co., Bridgeton, N. Best Wood Cutting Machinery, of the latest improve kinds, eminently superior, manufactured by Bent
Margedant \& Co., Hamilton, Ohio, at lowest prices.
Steel Castings true to pattern, of superior streng and durability. Gearing of all kinds. Hydraulic cylinders, crank shafts, cross heads, connecting rods, and
machinery castings of every description. For price list and circular, address Chester Steel Castings Company velina St.. Philadelohia, Pa.
Elevators, Freight and Passenger, Shafting, Pulleys Wm. Sellers \& Co., Phila., have introduced a ne jector, worked by a single motion of a lever.
Machine Cut Brass Gear Wheels for Models, etc. (new list). Models, experimental work, and machine work
generally. D. Gilbert \& Son, 212 Chester St., Phila., Pa.
Holly System of Water Supply and Fire Protection for Cities and villages.
American of this week.
Diamond Self-clamp Paper Cutter and Bookbinders Best Power Punching Presses in the world. Highest Fine Taps and Dies for Jewelers, Dentists, and MaOak Tanned Leather Belting, Rubber Belting, Cotton Belting, and Poli
Park Place. \mathbf{N}.
\mathbf{Y}
Improved Steel Castings; stiff and durable; as soft less than 65,000 lbs Steel Casting Company, Pittsburg, Pa.

(1) G. N. S. asks for the process of tinhandled. A. The articles are cleansed by pickling them for a few minutes in a bath composed of 6 lbs . o water and 8 lbs. of sulphuric acid, and scouring them with sand. They are then heated to the melting poin
of tin and sprinkled with rosin powder, or dipped in of tin and sprinkled with rosin powder, or dipped in melted rosin,and then in molten tin covered with tallow, brushed with a piece of hemp, and rubbed dry with saw
dust or bran. If small, they are simply placed, after heating, in a shallow vessel with some melted tin, and brushed about with a piece of hemp sprinkled with dr
(2) G. J. S. asks how aniline black may be dissolved without the use of acids or glycerin, and how the color may be made permanent. I wish to use it for ink. A. There is an aniline black in the market quit
soluble in hot water; it is called soluble nigrosine.
(3) J. E. F. asks how to make a freel fowing black ink for sketching, etc. A. Triturate solutrain the hot solution. When cold, bie ink afforded cady for use.
(4) G. McM. asks how to color billiar balls. A. Red.-Soak the pieces for a few minutes weak nitric acia, and then in a strong decoction of co hineal in ammonia water. Black.-Use nitrate of silve ight. Or steep for several days in a decoction of logwood, 1 lb galls, and then for a fow hours in acete f iron (iron liquor). Green.-Steep in a solution of verd ris, to which a little nitric acid has been added, or in solution of distilled verdigris in acetic acid. Sal ammoniac is sometimes added to this solution. Do nut use
metallic vessels. Purple.-Steep in a weak aqueous solvtion of terchloride of gold, or boil for some time in ounces aqueons solation of logwood extract, and then a boiling until the ivory is sufficiently colored. Yellow.Steep for 24 hours in solution of lead acetate, and after drying in solution of potassium bichromate. Or steep the pieces in a saturated solution of orpiment (sulphide of arsenic) in strong ammonia, and dry. The depth of solution. Blue.-Stain them green and then imme in hot solution of pearl ash Or boil in logwood de coction and then in aqueous solution of copper sul phate. Or steep them in weak solution of sulphate of
indigo, to which a little tartaric acid has been added The coal tar colors, though brilliant, are apt to fade.
(5) C. E. N. asks how to make, and how
hot and cold water in a bar room. A. Use a cloth cushion moistened with clear solution of 1 part shellac In about 10 parts of alcohol, applying a few drops of lin ion of polishing.
(6) E. D. S. asks: Is there anything that is applicable to window glass that will keep frost from
accumulating on it , in cold weather? A. Glycerin is accumulating on
sometimes used.
(7) H. M. A. asks if freezing injures cider drinking or for vinegar. A. N
(8) C. L. H. asks: Can you kindly tell ne in your paper some effective, cheap alarm for a bell telephone\& Iam unable to use an electro-magnetic bell
for reasons. A. Such an alarm as you require is dein Scientific American Stpplement No. 161 ,
(9) H. M. N. asks: 1. What causes such a variety of colors to appear on oily water? A. It is due to the phenomenon called by physicits interence of ight, caused by the vant incknesses of the film of soap bubbie. 2. Why is tallow for steam engine cylin ders preferable to any other lubricator! A. Pure tallow has less tendency to decomposition than oil under simiar conditions. A pure hydrocarbon is, however, pre (10) by many, especially in high pressure engines. No. 149, you describe how to make a simple electric No. 149, you describe how to make a simple electric should the sman hole which is in the bottom of all flower pots be closed9 A. Yes. 2. Should I put the
same solution which is used in the pipe bowl, in Fig. 3, same solution which is used
in the flower pot? A. Yes.
(11) Keho asks: Would a ten pound cannon ball sink to the bottom, if thrown in the deepest part
(12) L. E. L. asks (1) for an explanation of the principle of the gyroscope. A. See Scientifio American, vol. 38, p. 335. 2. How can I make a cheap
telephone? A. Scientific American Supplement No. 142, contains full instructions for making telephones.
(13) C. M. D. asks how a Maynooth battery is made and charged. What liquid in the porous cup, and what in the iron one? A. It consists of a water tight cast iron cell, containing a porous cell, withi which is a plate of zinc. The iron cell is charged with and the porous cell with sulphuric acid 2 parts, nitric acid 1 part, water 18 parts.
(14) M. asks: Is there any cure for cracked plantation bell without recasting it? A. Drill to the hole. If the bell is too hard to admit of this treatment, we know of no cure
(15) "Reader" writes: I have a hard rub ber comb, it acts on paper and hair the same that a magulphur, was, glass, and other substances, when rubhe with silk, flannel, or fur, become electrified and acquis
(16) A. H. V. asks if Brazilian pebble spe tacles are injurious to the eyes. A. They are generally
(17) Otto writes: It is asserted that the whole mass of water in the Hudson (down to the very
bottom) would flow north during the flood tide. Is it possible? A. We do not think the entire mass of water lows back with the tide. For a considerable distance which the downward flow of the river is simply retarded.
(18) C. N. A. writes: I desire to construct an induction coil according to the method given in SUPbe possible to use corser wire than No 36 for sould 3 dary coil, without destroying the effect-say No. 30 or 32 ? A. No. 30 or 32 will not do as well as No. 36 .
(19) L. H. asks: 1. In making India ink pictures with a brush how are the shades made smooth and merged evenly out into the white of the card board
on which they are painted so that they will look like photograph? A. The first requisite is the proper quality of paper. The tints should be carcfully washed, one ver the other, beginning with the lightest. 2. Is there of written manuscript? A. Manifold paper is not ex-
(20) A. H. writes: I have occasion to work (20) A. H. Writes: I have occasion to work
in pearl, and I find a great deal of trouble in doing so, especially in turning it, it being so extremely hard. Will ou give me some particulars in working it? A. There
are two kinds of shells used in the manufacture of small articles; the porcelainous and the nacreous. The former are extremely hard, and can be worked only with the ap paratus employed by the lapidary. The latter are more ome facility, The pieces should be roughed out on ome facility. The pieces should be roughed out on a smoothed with pumice stone and water, and polished with rotten stone wet with sulphuric acid slightly diluted.
(21) G. J. B. asks: Is it possible for the ground under fifteen feet of water in the ocean to rceze? An old captain in this place says he has known it to be frozen off Fire Island in 15 feet of water. A. Not
in water freely open to the sea. In conflned coves it might possibly happen in the latitude of Fire Island, but
(22) G. W. M. writes: My friend holds that not one half of the leading astronomers believe the
moon to be a lifeless planet without air or water, and I hold that fully four fifths of the astronomers believe it considered as lifeless by most astronomers.
(23) E. H. G. asks: Would a sheet of copper placed between two zinc plates, in place of the placurrent of electricity? A. It would afford a fair current for a short time.
(24) P. F.: Kienmayer's amalgam for elecrrical machines is prepared as follows: one part of zinc and one part of tin are metted together and removed from the fire, and two parts of mercury stirred in. The mass is transferred to a wooden box containing some chalk,
and then well shaken. The amalgam before it is quite cold is powdered in an iron mortar and preserved in a stoppered glass vessel. For use a little lard is spread over the cushion, and some of the powdered amalgam sprinkled over it and the surface smoothed by a ball of leather.
(25) W. C. M. asks for the names of the latest and best receipt books and chemistries on dyeing,
as he is in the dyeing and scouring business for ladies' and gentlemen's goods. A. The Scientific American Supplement contains the latest information on the subject of dyes. See Nos. 53, 55, 68, 74, 75, 76. Napier's
"System of Chemistry applied to Dyeing" Gibson's "System of Chemistry applied to Dyeing." Gibson's
"American Dyer." 0 'Neil's "Dictionary of Dyeing etc." Smith's "Dyer's Instructor."
(26) J. L. asks: 1. Will the armatures of a number of telegraph instruments all make the same Would all move the same distance if the circuit should be closed before the armature of one had reached its full distance from the magnet? A. Yes, as we understand you. 3. Will the telephone work on a line in connection with a battery, or must the battery be cut out? A. A battery does not interfere with the working of the telephone when the circuit is continuous. 4. What the Morse telegraph? A. It has in many instances replaced the telegraph.
(27) C. W. asks: 1. What kind of carbon used in the porous cup of a Leclanche battery, and is it powdered, granulated, or in lump? A. Use carbon from gas retorts. It should be coarsely powdered. 2.
In what proportion is it mised with the peroxide of In what proportion is it mised with the peroxide of
manganese? A. We have see batteries fllled with the carbon alone that seemed to work quite as well as those containing the peroxide of manganese. The proportions of the two should be about equal. 3. Should the porous cup should be filled. 4. Will a pencil of zinc such as is generally used give as strong a current as a piece of xinc placed around the cup as in the carbon battery? A. Yes.
(28)
(28) W. S. R. asks: How can I polish a piece of marble? A. Smooth it with sand and water appied with a marble rubber, then rub it with pumice tone, and finally with a
(29) B. E
(29) B. E. B. asks how the gilt work on gas fixtures is produced. A. In some cases it is simply
brass, spun, burnished, or polished, and lacquered; in other cases it is produced by the application of bronze
(30) J. McA. writes: Wishing to construct dynamo-electric machine, after the plans given in Supmagnet is excited by battery or not, require an induction coil to be used, to produce an electric lights A. No induction coil is required. 2. Would common Western
Union local battery answer instead of Bansen cells; if Union local battery answer instead of Bansen cells; if so, how many? A. 16 or 12.3 . A light of what candle
power will this machine produce? A. We do not know the photometric value of the light, but we think it would equal 4 or 6 gas jets. 4. Will increasing width, height, and wire on both magnet and armature increase the (31) "Cay I have made pair of "Canuck" writes. I have made in Popular Science Monthly. Used a steel bar one quarter inch diameter and flve inches long for core, and wound for one half inch on bar silk covered No. 60 copper wire until the diameter of bar and wire was about three quar-
ters inch or seven eighths inch. Took the thinnest ferrotype plates for diaphragms and have used a Daniell battery varying in strength from one to twelve cells, still it fails to transmit sound. A. Use three eighths inch magnets, and No. 36 wire. No battery is required. See ScIEstific a merican Supplement No. 142, for directions for
(32) C. H. K. asks how many pounds pressure (steam) per square inch a boiler made of No.
14 standard gauge, charcoal iron, will stand with 14 atandard gauge, charcoal iron, will stand with
safety. Size of boiler 12 by 24 inches. Single riveted safety. Size of boiler 12 by 24 inches. Single riveted
seams. A. Safe working pressure, 40 to 50 pounds.
(33) W. W. asks: What is the largest sized steam boiler that can be practically heated by rude petroleum? A. So far as we know, the limit is the
(34) H. T. asks what is used to black the inner surface of tubes of fine optical instruments. It must be easily applied. A. Coat the surfaces with good gold
size, and, while still adhesive, dust over it quickly lomp black, or, what is better, ivory black reduced by grinding to an impalpable powder.
(35) A. B. D. asks in which position can a bell he heard the farthest, on an open prairie, close to
he ground, or on a tower two hundred feet high. A. On the tower.
(36) F. A. T. asks how to put a polish on fine walnut furniture. A. Mix with two parts of good
alcoholic shellac varnish, 1 part of boiled linseed oil, shake well, and apply with a pad formed of woolen cloth.
Rub the furniture briskly with a little of the misture Rub the furniture bris
until the polish appears
(37) T. J. B. asks: Should the slides of an engine be set a triffe lower at the end towards the crank
to hold the weight (of piston) off the lower surface of the eylinder on a horizontal engine or not? A. They ald be level.
(38) S. wants to know how much steam power would run a fan to furnish an ordinary blast for
cupola with a melting capacity of not more than 300 a cupola with a melting capacity of not more than 300
bs. of iron. Fan the old style. A. It probably would not require more than half a horse power, at most.
(39) N. G. asks what photographers use to polish
rolls.
(40) G. E. asks how to melt old rubber belt ginand scraps of rubber,such ash it again and make it elastic so that it can be reed in mak-
ing the moulds for plaster casts. A. Old rubber cannot be melted as you suggest-it suffers partial decomposition in heating and does not again assume its original properties. Such moulds can be made from the gum
rubber, as described on pp. 35 and 105 , vol., 38 , screvrubber, as described on pp. 35 and 105 ,
TIFICAMERICAN, but they are too costly.
(41) H. N. D. asks how to make steel run sharp when poured in moulds. A. It is ouly necessary
to nse a suitable quality of steel to insure this result.
(42) G. D. H. asks for the method of manufacturing oakum. A. By picking old hempen rope into
(43) C. A. H. asks: Is there any work published giving a history of the success reached in at empts at utilizing anthracite coal dust or culm for the purposes of fuel, or which explains the peculiarities of ion? A. There is some valuable information on the ubject in Bourne's "Steam, Gas, and Air Engines,"
(44) W. H. C. asks for a simple method of electroplating. What shall I use to remove the fatty par-
ticles entirely from the work? A. For silver plating the bath consists of potassium-silver cyanide, prepared by precipitating solution of silver nitrate with potassium ynide,and redissolving the washed precipitate in excess of potassium cyanide solution-potassium cyanide, 12 and use in a porcelain or glazed vessel. For the white ing bath dissolve 13 or glazed vessel. For the whitenwater, add one quarter oz , troy of silvercyanide and filter esolution. The baths are provided with silver feeding plates for anodes proportioned in size to the surface the work to be plated. These are connected with the positive pole of the battery. The cleaned articles are再nected by a copper wire with the zinc pole of the atcry, dipped for a minute or two in the whitening ilver transferred to the plating bath, under similor con itions. 3 or 4 Smee celds withplates 10x4inches will enerally suffice for the plating bath, and 4 or 5 simila ells for the whitening bath; 20 to 30 minutes in the plating balh is usually sufficient to plate the work pro perly. Articles of copper, brass, or German silver, to be inutes in strong po cleaned by boiling them for a few of oil or grease, and, after rinsing, in dilute nitric acid remove any oxide, and again thoroughly rinsed. It must not be touched by the hand after cleaning. Just
before putting the work into the bath, dip it mo mentarily in strong nitric, or a mixture of equal parts nitric and sulphuric acids and rinse quickly. After his treatment it is sometimes dipped for a moment in ilute aqueous mercurous nitrate solution, and rinsed gain. This has the effect of coating the clean metal on of the icle on p. 209, vol. 38.
(45) J. S. L. asks: Of what material are the rinter's inking rollers made? A. Usually of glue and hose of glue and glycerin are glae, glycerin and oil melted in water by the aid of a salt water bath into a ery thick paste, to which undiluted glycerin is added quantity by weight the same as that of the dry glue. he mixture is then thoroughly stirred and furthe mandrel in iron or copper mould well lowed to cool slowly and thoroughly before being re
(46) W. B. K. asks: Can you tell me about nd sized boiler and fly wheel for a cylinder 1 inch bore 3 inches high. Fly wheel, 6 to 8 inches in diameter
(47) M. J. W.-See Schuman's "Manual of leating and Ventilation.'
(48) J. E. P.-A gravity battery should be ased
(49) E. asks: How can I become a mechan cal draughtsman? A. Study lessons in mechanical dewing
(50) F. J. H. writes: I wish to cast a can on having brass and copper. I would like to have ook nice and be strong. A. For a large gun, copper, $90 ;$ tin, 10. For a small gun, copper, 93 ; tin, 7
(51) A. G. R. asks: Is there any invention for conveniently unloading hay in barus by removing Yes, but there is room for improvement.
(52) J. J. J. asks: 1. Can you refer me to a good book on draughting? A. See Prof. MacCord's drawing lessons in Scientific American SUPPLEMENT. . Where can I get good draughting tools 9 A. Consult nvisible int? A See Scientrific American Supple ment No. 157.
(53) A. C. B. asks: What power is cheapest nd most convenient for a small shop requiring 4 or
(54) T. B. asks: What is allowed for shrink age of iron in bridge building? A. An allowance of oneeighth inch in 1,500 f
of 1° Fah. is a mple.
(55) F.W. Peirce asks if there is not a point in the periphcry of a wagon wheel that stops for an in-
stant as it comes into contact with the ground. A. Yes.
(56) M. A. R.-For full description of inuction coil, see Scientific American Supplemen
(57) G. I. T. asks: Would you recommend

Minerals, etc.-Specimens have been re eived from the following correspondents, and examined, with the results stated:
Carl.-It is arsenopyrite or mispickel, containing a ittle cobalt and a trace of nickel. It contains about 45 per cent of arsenic.-F. M. M. $-I_{2}$ is an excellent quality - lime carbonate. A_{2} chlorite schist. B_{2} contains sand, clay, mica, iron, oxide, and peaty matter. D_{2}, ortho-
clase. F_{2}, quartz. H_{2}, anhydrite.-J. S. G.-The mica (biotite) has little commercial value. Those varieties containing a high per cent of potash are sometimes utilzedfor fertiizing purposes. G. F. M. - It is kaolin, con taining about 10 per cent of quartz sand. If properly tery, porcelain goods, etc. Fine English kaolin bring in New York from $\$ 15$ to $\$ 17$ per ton (barreled). A A It is ferropyrite or crystallized bisulphide of iron (iron 46.7 , sulphur 53.3) associated with quartz. When free from arsenic it is sometimes used as a source of sulphur in the manufacture of sulphuric acid and of sulphurous cid for bleaching. The mineral is commonly called ool's gold. See p. 7, vol. 36. J.D S.-The large piece ing undecomposed orthoclase-C $L-N a$ Nos. 2 and 3 gneiss and mica schist-the dark mica is biotite. No. 4, principally orthoclase.
Any numbers of the Scientific American SuppleMENT referred toin these \mathbf{c}
office. Price 10 cents each.

COMMONTCATIONS RECEIVED.

The Editor of the Scientific American gcknowledges contributions on the following subjects:
Heating and Pounding of Crank Pin Journals. By
On the Gyroscope. By N. D
On Mine Water in Fish Streams. By C. Smith. A Biography. By W. B. C On Middlings Purifier Contr
On Slorthand. By H. H.
On Slorthand. By H. H.
On the Sun's Rays. By B. B
On the Sun's Rays. By B. B.
On What Congress Ought to Do. By G. H. K.

[OFFICIAL

INDEX OF INVENTIONS

Letters Patent of the Un

Granted in the Week Ending

 January 14, 1879,EACH BEARING THAT DATE. [Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list ncluding both the specifications and drawings, will be leased from this office for one dollar. In ordering, nd remit to Munn \& Co., 37 Park Row, New York city.

Abdominal supporter, gal
Air cooler. G. F. Meyer.
Amalgamator, J R. Abb
Bale tie, J. Johnson
Bale tie, J. M. Van Derzee
Basket, L. Stevens...........
Boot and shoe, W. I. M. Wood.
Boot and shoe laster, Copeland \& Raymond, et. 2 . Brick machine, G. Martí
 Calendar, W. F. Erther
Car brake, Hickey \& McNeill.
Car coupling H. F. W. Koehle
Car coupling, W. H. M Maple
Car coupling, G. A. Neal
Car coupling, G. A. Neal....
Car coupling, J. B. Safrord....
Car pusher, J. W. Fessende.
car pusher, J. W. Fessenden
Card, wrapping, R. A. Hope.
Caster, piano, W. V. Walla
Cart, self-loading, F. W.
Chain, halter, G. Kampf......................... etc., manufacture of. B. \mathbf{I}. Brooke Chimney block, A. H. Thorp
Churne, J. Wright.
Clock s, earth battery for electric, D. Drawbaug Cloth polisher, enameled, o. Currier.
Cocks, locker for stop, Harlin \& Yule Coin package, O. A. Dennis
Collar, J. W. A. Cluett
Cork fastener formen Graf \& Madlene
Corn husker, H. W. Price..................
Corn husking machine, J. Webber, Jr Corn, holder for hot, G. H. Dyer....... Crusher and grinder, grain, W. Braun
Culinary implement. H. Turner Culinary implement. I
Curtain, adjustable window, J. G. Mitchel curtain roller and bracket, Park \& Gleaso Dental impression cup, M. E. Toom
Disintegrating mill, L. J. Bennett Disintegrating mill, L.
Egg, nest, O. F. Woodward............
Electric machine, dynamo, E. Weston Electro-magnetic motor. C. A. Hussey Evaporating pan, E. T. Gennert.
Faucet. basin, J. Graves........
Feed water heater, H. C. De Torres....
Feed water, purifying, s. J. Hayeset al Fence, barbed, T. Shuman .
Fence post, iron, J. Vacaro.
Fluid exhauster and forcer, H.F.L. W. De Romill
Fruit Jar, L. Tozer.................
Funnel, measuring, G. B. Smitb
Farnace and stove grate. T. J. March... Gas lighter, electrio, Cutler \& Sandford Gas ilighter, elect
Gate, $\mathrm{V} . \mathrm{Vogan}$
Gopor
Governor and cut-off, automatic, L. H. Watson

Grain binder, O. L. Castle.
Grain binder, J. F. Steward..........
Grain conveycr. Smith \& Abshagen.
Grain conveycr. Smith \& Abshagen....................... 211,351
211,432
Grain. etc., drier, Roberts \& Worrell........

Harvester cutter, J. O. Br

 Harveadjustable stifi, M Brown ... Hatchet, J. R. Balley.Hay and straw cutter, W. A. Yeatt Hay conveyer, L. A. Greely
Hay elevator, G. Van Sickle. Hay loader, C. Pool
Heating apparatus Heating apparatus, G. Ke...ly.
Hog trap, J. \& G. L. Thatche Hop culture, S. Cummings nkstand, W. F. Redding
Ladder step, portable, s. Ellicoott.

$.211,383$ $.211,377$
 211,377 $.211,338$ 211,971

.. 2111,33
.. 211,51
. 21,45
211,39

8,540
211,37
211,399
2

211,307
211,399
211,412

211,412
211220
211405
Lantern, H. . L. Coe .
Lantern, J. H. Irwin
Lathe and planer tool posst, G. W.
Lightning rod coupling, E. S. Turner
Liniment. J. H. Ellis
Lock, w. H. Bramble
Measure, rotary, Heberline \& Boss
Musical instrument sounder, Marx \& Taubald
Newel post, H. H. Bea
Ore mill, J. R. Abbe...
Oyster shucker, R. Wells
Paper machine wire cloth, C. Van Houte Paper maker's size, stock for, W.A damson. 211,367,
Pavement, asphaltic, W. W. Averell.
Pavement, wood, S. L. Shellenberger
Pavement, wood, S. L. Shellenberger
Pen, pneumatic stencil, J. w. Breckenridge.
Pick handle socket, A. P. M
Planter, corn, H. Bagley
Planter, corn, H. Bagley.
Planter, corn, B. A. Welds
Plow and stal
Plow and stalk catter, grub,
Plow, sulky, J. Price
Plow, sulky gang, o. Ba
Plunger for drawing tubular articles, J.......... Potato digger, P. A. Wise.
Pressure gauge,
Pulley, expanding, D. Tho
Pulleys to shafts, attaching, J. H. La Ment
Pump, D. P. Manrose.
Sash fastener, G. H. Kervin
Saw, Robbins \& Bumpus
Scales, check rod for platform, F. Fairbanks.
Sewing machine buttonholer, L. Thomas....
Sewing machine gatherer, etc., L. Onderdonk Sewing machine gatherer, etc., L. Onderdonk.
Sewing machine take-up, etc., J. B. Sulgrove.
Sheet metal cutter, drawer, etc., E. Jordan. Shoe shaper, S. R. Ross, Jr
Shoe sole buffer, J. W.
Shoe sole buffer, J. W. Roger
Skiving machine, J. K. Krieg
siving machine, J. K. Krieg
spining frame spindle, J. E. Atwood (r)
Spoon holder, W. J. Doyle...
Steam boiler, J. M. Simpson
Stove leg base, J. M. Harper
Stove oil, E. R. Walker
Stove pipe joint, C. L. Driesslein
Stuffing box, steam engine, C. C. Jerome.
Tackle block, J. W. Norcross..............
Thermostat for carbureters, W. Pierce.
Thill coupling, J. Jacoby..
Thread washer and beater, E. Charlon
Tile for covering vaults,
Time lock, P. F. King.
Tobacco, package of plug, , L. J. Gordon
Torpedo boast, J. L. Lay............................. $211,301,211,302$,
Torpedo for or wendy, R. Hoses.........
Toy, candy, R. H. Moses.
Valve, vulcanized india-rubber, J. Murphy.
Vapor fuel generator, A. I. Ambler
Veneer cutter, C. W. Thompson.
Veneer cutter, C. W. Thompson.
Washing inachine, J. M. Curtice.
Washing machine, C. A. Dodge
Washing machine, w Haas.

Watch keys, manufacture of, D.
Weather strip, R. P Baldwin...
Weather strip, Millard \& Chase.
Wheelbarrow, metallic, J. Bean.
Whiffetree, A. Hance
Windmill, W. Frazier
Window screen, Wakeman \& Bataille...
TRADE MARKS
Axle grease or lubricator, J. Davi
Baking powder, steele \& Emery
Canned or preserved edibles, W. Numsen \& Sons,
Cutlery, F. Ward \& Co.
pices and mustard Je, Keasbey \& Mattison.. pices and mustard, Jewett \& Sherman Co....9.9.... to

DESIGNS.
Inkstand holder, A. Patit
Parasol, W. A. Drown, Jr...................
Telegraph insulators, J. M. Brookfeld
English Patents Issued to Americans.
From January 7 to January 21, inclusive
Anchors.-S. Whittier et al.,
Car coupling.-J. B. Safford, Buflalo, N. N.
Car coupling.-J. B. Safford, Buffalo, N. Y.
Caster for pianos.-W. V. Wallace, Dorset, Vt
Chair backs. -N . Harwood, - Mass.
Deer's horn. treatment of.-M.A. Bryson, New York city.
Drilling apparatus.-H. Richman et al., San Francisco
$\xrightarrow[\text { Firearms.-A. Burgess, Owego, N. Y. }]{\text { Cal }}$
Firearms.-A. Burgess, Owego, N. Y.
Fountain pens. -H . Walke, Hamilton, Ohio.
Friction clutches.-F.G. Bates et al., Philadelphia. N.Y. Gas carbureter.-H. W. Merritt et al, Boston, Mass.
Hat machinery.-H. A. House et al., Bridgeport, Conn. Hat machinery.-H. A. House et al., Bridge
Horseshoes.-J. C. Shaw, Washington, D. C. Lamp burners,-C. Benedict, Waterbury, Conn. Low water detecter. - W. Duryea, Glen Cove, N. Y Meat, preservation of.-A. A. Libby, Chicago, 1 Middlings purifier.-A. Hunter, Rochester, N. I.
Musical instruments. - M. J. Matthews Packing machine. -Cleveland Paper Box Machine Co Cleveland, Ohio.
Paper cutter.-N. S. Bailey, New York city.
Pressure regulator.-C.C.Barton et al., Rochester, N.Y Propelling vessels. Pumps.-C. Tyson, Philadelphia. Pa.
Riveting machines.-J. Lorillard, New York city.
Steam condenser.-II. W. Buckley, New York cily. Steam condenser.-HI. W. Buckley, New York cily.
Steam heating apparatus.-E. J. Knapp, New York cit

[^0]

ฐrientific Ammrican

FOR 1879

The Most Popalar Scientific Paper in the World.

 VOLOME XL,-NEW SERIES.The publishers of the SCIENTIFIC AMERICAN beg
to announce that on the Fourth day of January, 1879, a to announce that on the Fourth day of January, 1899, a
new volume will be commenced. It will continue to be the aim of the publishers to render the contents of the
now volume as, or more, attractive and useful than any new volume as, or more, attractive and useful than any
of its predecessors. Only $\$ 3.20$ a Year including postage. Weekly. This widely circulated and splendidly illustrated
paper is published weekly. Every number contains sixteen pages of useful information, and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery, representing En, Nineerties in Mechanics, Manufactures,
New Inventions, No.
Chemistry, Electricity, Telegraphy, Photography, ArchiChemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. tecture, Agriculture, Horticulture, Natural History, etc. formation of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as
possible abstruse terms. To every intelligent mind, possible abstruse terms. To every inteliigent mind,
this journal affords a constant supply of instructive
reading. It is promotive of knowledge and progress in reading. It is promotive of knowlets.
every community where it circulates.
Terms of Subscription.-One copy of THE Scies-
TIFIC AMERICAN will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States cents by the
months, $\$ 1.00$.
Clubs.-One extra copy of The Scientiric A meri-
CAN will be supplied gratis forecreryclub of fire subscribers CAN will be supplied gratis forevery club of five subscribers
at $\$ 3.20$ each; additional copies at same proportionate at $\$ 3.20$ each; additiona
rate. Postage prepaid.
One copy of The Scientific American and one copy of The Scievtific AMerican Supplement will be sent
for one year, postage prepaid, to any subscriber in the United States or Canada, on receipt of seven dollars by the publishers.
The safest way
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters

MUNN \& CO.

37 Park Row, New York.
To Foreign Subscribers.-Under the facilities of by post direct from New York,with regularity,to subscribers in Great Britain, India, Australia, and all other British colonies; to France, Austria, Belgium, Germany,
Russia, and all other European States; Japan, Brazil Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted,
 postal order or rdaft to order of Munn \& Co., 37 Park
Row, New Xork,
the use of galvanized iron tea kettles? A. No.
shavertisemputs.
 Engraraings sumy head aurvorisements at the same rate

1Allen's Useful Companion AND ARTIFCERS' ASSISTANT.

Fine Enish Ciot binding Gill Bak and Side.....5.50

 THF INDFPFNDFNT

Well and Favorably Known the World Over as the BEST Religious Weekly desirable features and adds new ones He sand continue ot oprit articleg from the pest
 COOK'S LECTURES. These famous Lectures, delivered in Boston every
Monday, by the Rev Joseph Cook, will be published in
full together with heintrod EX-PRES'T THEODORE D. WOOLSEY, will contribute 20 to aid articles on Socialism and Com-
wunism, the most important questions of the day. SERMONS
Sy eminent clerggmen in all parts of the country will
continue to be printed.

PREMIUMS.

THE SSAANDARD.

WOROESTER'S UNABRIDGED Pictorial Quarto Dictionary
 MPORTANT FOR ALl CORPORATIONS AND man's Thime Detector. capabie of accurately con-

 co ores onforirg or ink
coraling to law.

Automatic Fire and Water Alarms.

LAP WELDED CHARCOAL IRON
 ROEA DIVGI IRON WOUNH Fourth st, Phila.

GARDEN PETER HENDERSON\&CO.

Gold, Silver, and Nickel Plating.

$\substack{\text { tita ing } \\ \text { tianed. } \\ \text { N. } \mathbf{Y} .}$

Driven or Tube Wells

STEAM PUMPS.

HENRY R. WORTHINGTON, 239 Broadway, N. Y. 83 Water St., Boston.
 Price list issued Jan. 1, 1879, with a reduction exceeding 30 per cent.

A MANUAL FOR ENGINEERS AND Steam Users. 100 pages pocket size. Containing useful
tables Uner carefuly selected matter. Wil be mailed to
any address upon recertion of ten cents in stamps. Builder of Harris-Corlisi Hneris

 THE NEW OTTO SILENT GAS ENGINE.
 SECOND-HAND BOLLERS AND MA.

 SECOND-HAND ENGINES,

THE BROTHERS CHARLES AND JULIUS

THE GLANDULAR ORIGIN OF CON

 ARTIFICIAL INCUBATION-DESCRIP

THE PHENOMENA OF HUMAN LIFE.

 CATARRH. - BY DUDLEE S. REY

WARRANTED THE BEST. 1 H. P. Boiler \& Engine, 8150 2 H. P., \$175. 3 H. P., \$200. Tested to 2001 bs . Steam.
LOVEGROVE \& CO.,
152 N. 3d St.. Philadel phin,

$\$$

250 MARYLAND FARMS,

ICE-HOUSE AND COLD ROOM.-BY R.

 THE ART OF PRESERVING TIIE EYE-

cyduextigemerts.
Insice Page, each insertion $:=$ S5 ceuth ninne.
Engravings may head advertisemnents at the same rate per line, by measurement, as the letter press. Adever- tieements must be received at publication offle as acarly as Thursalay morning to appear in next issue.
AIR COMPRESSORS, HOISTING ENGINES AND OTHER MINING MACHINERY: Griffith \& WANEDGE. ZANESVILLE, ohio.

 FOR SALE CHEAP.
A very handsome Westley Richards Breech-Loading Shot Gun.
 जRPRGESRTELG, case with tools complete. A splendid weapon for deer and bear shooting. Built by E. M. Riley \& Co., London.
Address HODGKIN \& HAIGH,
 Better than any English make, and only one that is fully Catalogues furnished on application.

Liquid Paints, Roofing, Boilier Coverings,

(S)

European Salicylic Medicine Co., OF PARIS AND LEIPZIG.

Pond's Tools,

DAVID W. POND, Worcester, Mass. J. LLOYD HAIGH,

\mathbf{x}. 25 OMINT

 Noopertile futan
 THE DRIVEN WELL.
 American Driven Whill Patent, leased by the year WM. D. ANDREWS $\underset{\text { NEW }}{2}$ BRO.:.

CAMERON STEAM PUMP,

Also known as the "SPECIAL" PUMP, is the standard of excellence at home and abroad. For Price Lists, address CAMERON PUMP WORKS,

Foot East 23d Street, New York.

Mowry Car \& Wheel Works,

shepard's celebbiated Ssio screw Cutting Foot Lathe.

Wood-W̉orking Machinery,

 JOSEPE C.

 J. C. TTODD,

D]MONDRGKKRILS

Working Models Ad Frye mental Machien
60 chrer

 Smaticimitivich SAFETY STEAM BOILER,
 Requires or cestes. or
J. G. \& F. FIMMENICH,
BuItilo, N. \mathbf{x}. MACHINISTS' TOOLS.
 HOW TO REMOVE STAINS AND

 Every Man ${ }^{\text {TrF }} \$ 3$ Press pritat His Own N

ICEAT 81.00 PER TON.
The PICTET ARTIFICIAL ICE CO.

 Lathes, Planers, Shapers
 The George Place Machinery Agency

Photo-ProcessW ork of all kinds

Plates to Print with Type, 10c. per square inch and Upwards.

WIRE ROPE

Address JOHN A, ROERLING'S SONS, Manufactur-
ers, Trenton, N. J. or 17 Liverty Street, New York.
Wheels and Rope for convering power long distances.
MACHINIST GOODS
And Small Tools of all kinds. Catalogues sent
free. J. WILKINSON \& CO., Boston, Mass. B.W. Payne \& Sons, Corning N. Y.

RARE AND FANCY WOODS,
 186 to GEO. W. READ \& CO.,

and Streets. By T. J. Nicholl, C.E. Economical and

Harris' Corliss Engine,

 PERRY \& CO.'s STEEL PENS.

~2

Irison, Bhakemay, Taylor \& Co., Sole Agents for U.S., NewTYork
CHROME STEEL.
WAREHOUSE, 98 WILLIAM ST., NEW YORK
 Cast Steel and cent. more work than any other Passenger and Freight Elevators, STEAM ENGINES AND BOLLERS,
Hitcier Machine co., Boaton, Ma

PERFECT
PERFECT

 MUNN \& CO.

THE TANITE CO. STROUDSBURG, PA. EMERY WHEELS AND CRINDERS.

ROCK DRILLING MACHINES AIR COMPRESSORS

 MINING MACHINERT. Engines. Builers, Pamps,

PATENTS at AUCTION.
PRopuar Moniblis Sileg For terms, adiress N. N. BALDNESS.-BY GEORGE H. ROHE,

MTHENTS
 CAVEATE, COPYRIGHITS, TRADE

Messrs. Mann \& Co., in connection with the publicaion of the Scirntific American, continue to examine Improveme
Inventors.
In this line of business they have had over teirty yeans' Exprriznce, and now have unequaled facilities
or the preparation of Patent Drawings, Specifications, and the Prosecution of Applications for Patents in the Munn \& Co. also attend to the preparation of Caveats, Trade Mark Pegulations, Copyrights for Books, Labcls, of Patents. All business intrusted to them is done erms.
We send free of charge, on application, a pamphlet
containing further information about containing further information about Patents s.nd how
to procure them; directions concerning 'Irade Marks, Copyrights, Designs, Patents Appcals, Reisues In Copyrights, Designs, Patents, Appcals, Reis ues, In-
Pringements, Assignments, Rejected Cases, Hints on the Salc of 「atents, etc. Forei!, 1 Paterts.- We also Rena,
Synopsis of Foreign l'atent Laws, showing the cost and method of securing patents in all the principal countries of the world. American inveniors should bear in mind to the patentee in ris country is worth equally as much in England and some other foreign countries. Five patents-embracing Canadian, English, German, French, and Belgian-will sicure to an inventor the exclusive monopoly to his discovery among about one HUNDRED $\triangle N D$ FIFTY MILLIONs of the most intelligent people in the world. The facilities of buiness and s:eam communicat on are such that patents can be ob-
tained abroad by our citizens almost as easily as at home. The expense to apply Por an Englizh patent is dian, $\$ 50$.
Copies of Patents.-Persons desiring any natent
isued from 1836 to November 26,1867 , can be supplied Lesued rom 1836 to November 26,11867 , can be supplied
with official copies at reasonable cost, the price depending upon the extent of drawings and length of
specifications. Any patent issued commenced printing the drawings and speciflcations, may be had by remitting to this office $\$ 1$.
A copy of the claims of any patent issued since 1836
will be furnished for $\$ 1$ will be furnished for $\$ 1$.
When ordering copies, please to remit for the same as above, and state tat
A pamphlet, containing full directions for obtaining United States patents sent free. A handsomely bound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every patentee and mechanic, and is a useful hand book of
ence for everybody. Price 25 cents, mailed free.

Address MONN \& 00 .,
Publishers SCIENTIFIC AMERICAN,
37 Park Row, New York.
BRANCH OFFICE-Corver of F and rith Strets,
THE "Scientifc American" is printed with CHAS.
ENEU JOHNSON\& CO. 's NKK Tent Tenth and Lom:
bard Sts., Philadelphia, and 59 Gold St., Now York.

[^0]: Stone splitter.-T. Norris, Jr., Philadelphia, Pa.

