
a WeEkly jolrrnal of practical information. art. Sclence, me'hanics, Chemistry, aw) manufactures.

LORILLARD's TOBACCO FACTORY.-[Soe page 17.]

Srientific gmeritan.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
pUblished weekly at
NO. B' PARK ROW, NEW YORK.
O. D. MUNN.
A. E. BEACH:

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, six months, postage included

Clubs.-One extra copy of The Scientifio American will be supplied gratis for every club of five subscribers at 83.50 each ; additional coples a same proportionate rate. Postane prepaid.
Cr Singie copies of any destred number of the SUPPLEMENT sent to one
ddress on recelpt of 10 cents. diress on recelpt of 10 cents.

MUNN \& CO., 37 Park Row, Ne
The Scientific American Supplement is a distinct paper from the ScIENTIFIC AMERICAN. THE SUPPLEMENT is issued weekly every number contains 16 octavo pages, with handsome cover uniform in size with Scientific American. Terms of subscription for SUPPLEMENT, 85.00 a year, postage pald, to subscribers.
10 cents. Sold by all news dealers throughout the country.
Combined Rates. - The ScIEvTFIC American and SUPplemen will be sent for one year, postage tree, on recelpt of
papers to one address or different addresses. as desired.
The safest way to remit is by draft, postal order, or registered letter
Address MUNN \& CO., 37 Park Row, N. Y.
Sclentific American Export Edition.
The Scientific American Export Edition is a large and splendid perilarge quarto pages, profusely illustrated, embracing: (1.) Most of the large quarto pages, profusely Mlastrated, embracing: (.) Most of the AMERICAN, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses
Terms for Export-Edition, 85.00 a year, sent prepaid to any part of the Terms for Export -Edition, 85.00 a year, sent prepald to any part of the
world. Single copies 50 cents. Manufacturers and others who desir to secure foreign trade may have large, and handsomely displayed an nouncements published in this edition at a very moderate cost.
The Scievtiric Am Erican Export Edition has a large
The SCievtific American Export Edition has a large guaranteed circu
lation in all commercial places throughout the world. Address MONx Co.. 37 Park Row, New York.

VOL. XL., No. 2. [New Series.] Thirty-fourth Year.
NEW YORE, SATURDAY, JANUARY 11, 1879.

TABLE OF CONTEN'TS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 158,
For the Week ending January 11, 1879.

A REMCRDY WORSE thas the DIGzagg.

Senator Windom's direct assault upon the patent system as a whole proving a hopeless failure, he returns to the charge in an amendment for the encouragement of infringers. It provides that no recovery of damages or costs shall be had against the defendant in any suit brought for the alleged infringement of a patent by the use of any patented device, process, invention, or discovery, if it shall appear that the defendant purchased the same for his own private use from the manufacturer thereof or from a dealer engaged in the open sale of the same, unless it shall also appear that the defendant at the time of such purchase had knowledge or actual notice of the existence of such patent, but this provision shall not apply to purchasers from foreign manufacurers or dealers.
Senator Booth very pertinently argued that, by the terms of the constitutional provisi労 with respect to patent rights, Congress was empowered to grant to inventors and authors only " the exclusive right" to their respective writings and discoveries; and asked: "Now, how can that be an exclusive right if Congress says by law that a person other than the inventor may use the invention and not be liable in damages? A patent is as much property in the hands of its owner as a horse or an ox. From its incorporeal nature it is impossible to punish its piracy by criminal law as you do the larceny of personal property. The committee were unanimously of opinion that the inventor would be stripped of all his security if he were not allowed to follow the patented thing wherever he could find it, not that he might ented thing wherever he could find it, not that he might bring vexatious and annoying suits against every one who
might innocently use a device, but in order that he might cut off the market against a piratical manufacturer."
Further on Mr. Booth said: "The amendment offered by the Senator from Minnesota says that an infringer in certain cases shall not be liable to damages unless he had actual notice of the existence of the patent. Of course that destroys the remedy in all those cases, for it is absolutely impossible that the patentee should know who is going to use his patent or that he should give notice to everybody. In the case of great manufacturing companies and railroad corporations, to whom is notice to be given? Then, as to the word ' knowledge' in the amendment, we know how hard it is to bring knowledge home to an individual, especially where 'ignorance is bliss.' But how can you bring knowledge home to a corporation that has no soul to receive it? Inventions, as has been said before, are nearly all the work of laboring men, men who toil with their hands. In that field they seek the prizes of life and receive their patent of nobility. Under the amendment of the Senator from Minnesota these achievements of these toiling men may be absorbed by manufacturing companies and railroad corporations who simply choose to close their doors to the truth and shut their eyes to the light. Under this theory the best patent adviser of a corporation or a manufacturing company would be the lawyer who knew the least law and would always advise his clients that there was no existing patent.
"But the loss does not fall, as I have indicated, chiefly upon inventors, great as that is; but by removing the incentive to invention you dry up the very spring at its source."
The mischievous tendency of Mr. Windom's amendment needs no more forcible illustration. It is but another attempt to prevent a local and limited wrong by wholesale injustice to many. There is not an existing institution which may not be and has not been made the instrument or the excuse for wrong doing. Shall we abolish our courts because judges have been incompetent and juries corrupt? Or the church because it has been used as a cloak for rascality? Equally unwise would it be to abolish the inventor's right to his own, because a morally innocent user of a patented article may possibly suffer wrong through the misconduct of another. That in Minnesota and elsewhere men have misused the provisions of the patent law for blackmailing operations, no one will deny. Possibly such things can be prevented by an amendment of the law, which shall not at the same time open the door for the admission of greater wrongs. If so, the country would be glad to see it done. But neither country nor Congress, we believe, will assent to any remedy so much worse than the disease as that proposed by Mr. Windom.

A PLAN OF CO-OPERATIVE CHABITY.

There are two classes of people who need and should have assistance: first, those who, through physical incapacity, are unable to provide for themselves wholly or in part; second, those who are able and willing to work, yet are without employment. The first class includes orphan children and aged people having no friends or relatives able to care for them, the sick, the crippled, and the like. These need the assistance of the charitable, and it should be given
kindly, and as abundantly as the means of the charitable may justify. The second class includes some in temporary want from accidental causes, and vastly more chronically in in point of skill, intelligence, or endurance.
Is it not possible to employ the latter class to their own advantage, and at the same time as a means for providing more comprehensively for the wants of those that are entirely helpless-this, too, without diminishing in the least the productive value of the labors of others?
Call the two classes respectively A and B. Charity says that B should be provided with work according to the individual capacity of its members. To furnish that work requires capital and supervision, which under the circum-
stances must be provided without charge. Obviously it will not do for charity to provide work beyond the demands of trade and at the same time pay the market rate of wages to the incompetent. That would hurt the self-supporting classes certainly by diminishing the value of their labor, possibly, also, by seriously diminishing the demand for labor. For the regular manufacturer to compete in the open market with the products of organizations charging nothing for capital or supervision would be impossible except by paying his workmen less or working them harder, neither of which would be a satisfactory result of charity. On the other hand, it would utterly destroy the beneficence of the nominally charitable labor organizations, if the slightest suspicion could arise that the managers of it were speculating on the necessities of the poor.
There are in any community, say, one thousand men and women of class B. They are out of work, and there is no demand for their labor. Yet they would be glad to do anything for the time to gain an honest support. They will work for half the usual rate of wages rather than waste their time in idleness or be an absolute burden upon the charitable; and it is infinitely better for them and for the community that they should be so employed in default of something better.
There are in the same community a larger or smaller number of class A, whose wants are now meagerly supplied by charity. At present the larger part of them affect but imperceptibly the market for food. fuel, clothing, and the like. They simply go without, and to a considerable extent the members of class B fall under the same rule.
Now we believe it quite possible, without adding to the already heavy burden upon the charitable, save in organization and direction, also without materially affecting the status of the self-supporting workers of the community, to make work for the unemployed, for the better supplying of the needs of both A and B. In this way. Provide productive occupation for the unemployed; pay for such work all that it is worth; and use the products of it exclusively for charitable purposes. So far as possible let the inmates of all asylums, hospitals, and the like be clothed by the labor of those employed by charity. In like manner let those furnished with employment have the benefit of the products of charitable workshops. Also, so far as possible, let all outdoor assistance be drawn from the same stores.
For example: A sewing woman is out of work. True charity would set her to work for pay. But it will not do for organized charity to furnish the needed work and pay the same for it as is received by the sewing woman who finds work for herself. Nor would it do to pay less and throw the cheapened product upon the market to compete with the unassisted work of the self-supporting. But by means of the furnished work charity might secure, with a given outlay of money, a double good-employment for the unemployed, and a larger bounty for the helpless. And it would also furnish a suitable means for sifting out from the deserving poor the lazy and undeserving. The wider the association of such charity workshops the wider the range of employment that might be furnished, and the greater the aggregate benefit. And by means of them willing workers out of work through the natural operations or misfortunes of trade would run no risk of pauperism; and at the same time their limited pay might be made to go much further than otherwise in supplying their necessities, without cheapening in the least the value of independent labor.

MISS HOSMER'S MOTOR.

The controversy between Miss Hosmer and Mr. Chapman with regard to the magnetic motor which both claim as their own has developed one fact of considerable interest. It comes out in an interview with her which Mr. Louis J. Jennings reports to the World. To prove the futility of Mr. Chapman's claim, Miss Hosmer said that the model which that gentleman was at work on in London "is and has always been entirely worthless. Nothing whatever can be done with it or made out of it. It is on the wrong principle altogether; and, indeed, it is only within the past fortnight, in this very house, that I hit upon the expedient by which the difficulties that have puzzled me could be overcome. Thus, although Mr. Chapman claims the invention, he is ignorant at this moment of the only mode by which it can be turned to practical account. He has claimed the discovery before it was perfected. The means of surmounting all obstacles occurred to me only the other day, and you would see the truth and importance of what I am saying to you if I could reveal the secret to you."
There is a frankness in all this which is inexpressibly charming. Seeing, however, that the model in question-a "worthless" thing, " on the wrong principle altogether"was confidently described by both Miss Hosmer and Mr. Chapman, not to speak of the Post's correspondent, as the most wonderful invention of the age (not excepting the Keeley motor), the cautiously minded may well be excused for not throwing up their hats until the new expedient is proved to be really better.
Mean Distance of Water Molecules.-Hermann Herwig concludes that no two molecular layers in water can be more than $1-86$ of a millionth of a millimeter apart, and that the same is true with regard to the mean distances of adjacent molecular centers. Sir Wm. Thomson had previously estimated the least value of the same distances at 0.05 millionths of a millimeter. These two estimates, one being less than four-fold the other, furnish satisfactory approximations to the true value.-Ann. der Phys. u. Chem.
the first electric laicps.
There seems to be little doubt but that Professor Moses G. Farmer, at present connected with the torpedo station at Newport, was the first to make successful experiments with the electric ligat in this country, and that his discovery dates as far back as 1859. A correspondent of the New York World communicates to that paper a recent interview with Professor Farmer, which he commences with the following extract of a letter, written by the Professor some time since to a gentleman in Salem, Mass. :

- Some few of the citizens of Salem (among them exMayor Williams, Mr. George D. Phippen, Mr. J. H. Phippen, and perhaps others) will doubtless recollect a parlor at No. 11 Pearl street, Salem, Mass., which was lighted every evening during the month of July, 1859, by the electric light, and this electric light was subdivided too! This was nineteen years ago, and it was undoubtedly the first private dwelling house ever lighted by electricity. A galvanic battery of some three dozen six-gallon jars was placed in the cellar of the house, and it furnished the electric current, which was conveyed by suitable conducting wires to the mantelpiece of the parlor, where were located two electric lamps on each end of the mantelpiece. (I would not wonder if the screw holes were there at this day.) Either lamp could be lighted at pleasure or both at once by simply turning a little button to the right for a light, to the left for a dark. No matches, no danger, no care to the household, nor to any one except to the man who attended to the battery. The light was noticed as being soft, mild, agreeable to the eye, and more delightful to read or sew by than any light ever seen before. Its use was discontinued at that time for the simple reason that the acids and zinc consumed in the battery made the light cost about four times as much as an equivalent amount of gas light.'
Professor Farmer was requested to give his views-first, upon the gas company scare; second, as to the merits of the electric light; third, regarding the mode of conducting it through the public streets; fourth, as to its cost; fifth, regarding the production of electricity.
Speaking of the scare in the gas stock market, the Professor said he thought it was certainly premature, for at present there was not more than one hundred electric lights in practical use throughout the land, and, compared with the number required for the illumination of the country, they were as nothing. "Suppose," said he, " you wanted to give light to the citizens of New York, each one requiring equal to a 10 -foot gas burner. Reckoning on the basis of $1,000,000$ people you would want $10,000,000$ candle lights. If you wanted it divided up into small lights you could not expect to get more than 500 candles per horse power, and that would require at least 20,000 horse power to light the city. In order to accomplish this there would have to be made machines, steam engines (to a large extent purposely for it), magneto-electric machines to furnish the electricity, and it would not be advisable to have them average more than 5,000 candles each for fear of getting out of repair. That would require 2,000 magneto-electric machines, which could not be produced in a moment. It would perhaps be desirable to have 5 electric lamps to each machine, and that would require at least 20,000 lamps.
" While some of the manufacturers are prepared to supply in a certain time their particular style of lamp, yet the public has not decided which is the best to use. No lamp at present in use has such manifest superiority that every person will buy that particular one. None at present in use is properly adapted to minute and profitable subdivision of the electric light. This is an entirely different condition of things to gas illumination, in that factories already exist, and the means of supplying gas tixtures, tubing and piping. Gas pipes are already laid in the streets, which would be utterly worthless for the distribution of electricity for the purposes of the electric light, and while competent electrical engineers are sufficiently well acquainted, theoretically and practically, with the distribution of electricity for telegraphic purposes, yet a distinct branch of electrical engineering science needs to be inaugurated and carefully studied before any expensive system of electric distribution should be entered upon; and although I expect to see the electric light widely introduced, and that very soon, yet I do not conceive that it is going to supplant and displace, to a very large extent, the consumption of gas immediately. But it may and doubtless will have the effect to stimulate and hasten the use
of gas for heating purposes as well as those for illumination, and so I expect the consumption of gas to increase rather than decrease after the effect of the scare is over. I venture the opinion that in five years from now there will be more gas consumed than there is to-day, proportionately also with the increase of the population. One of the effects of the introduction of the electric light for the purpose of illumination will be the stimulating inventors to produce apparatus for the consumption of gas for heating purposes."
Touching the merits of the electric light, Professor Farmer said it would eventually approximate the quality of daylight for the display of goods and merchandise in warehouses. It would be vastly superior to gas for the illumination of workshops and manufactories, for with the same expenditure a better and greater diffusion of light would be obtained. He considered a room fairly lighted that has one candlelight to 125 cubic feet of space, very well lighted with one candle to 75 cubic feet of space, but with the electric light properly distributed it would be easy to have one candlelight to each forty or fifty cubic feet of space, and this would be accounted a very brilliant illumination. The light,
he thought, would render great service in the mining regions, he thought, would render great service in the mining regions,
lessen the expense and diminish the dangers. It will render it perfectly feasible to carry on great enterprises by night as well as by day, such as tunnels, bridges, and constructive operations in general, and prove useful for billiard halls, which are lighted with difficulty by gas, and if necessary great agricultural operations could be carried on by night a profitable expense in harvest time. The lighting of street and other public thoroughfares will be accomplished satisfactorily and at much less expense than the present mode of lighting by gas, and so there would be more illumination for less money; and a good street lamp at night is preferable to policeman.
With reference to the mode of conducting electricity through the streets, the Professor said that copper wire was the cheapest conductor, and so will be universally used. The best mode of insulating wires underground for conducting electricity for electric illumination was as yet unde veloped, and will need careful investigation, because the frequent accidents to which subterranean wires are exposed will necessitate the having of a corps of electrical engineers for this special occupation or art, for while it is somewhat of purposes, still the conditions would be that of another department.
Regarding the cost where power is already in use for manuacturing purposes, and where there is an available surplus and it can be used for the production of the electric light, as at Fall River, Providence, Lowell, Manchester, Nashua, Cohoes (N. Y.), and multitudes of other places, the electric ight can be furnished very much cheaper than gas is at present supplied, perhaps for from one quarter to a half the cost. There are two elements that enter into the cost of the electric light-the cost of the power consumed in producing it, which costs only when used, and the cost of interest on blister, which is as great when not in use, for it, like blister, draws all night long. So if the light is only to be used for an hour or two the cost of interest and depreciation
might exceed the cost of the power consumed. For instance, the horse power in some cases could be furnished at $\$ 70$ per year, while the interest and depreciation on a 5,000 candle machine might cost as much more. So if the light is to be used but a small portion of the time, it would be relatively considerably more expensive than if required to be used all the time. The cotton manufactory would be at one extreme and the coal mine at the other.
Of the production of electricity, Mr. Farmer said that it cannot be stored and the storehouse drawn on at pleasure. It must be produced as and when wanted. The electricity for the purpose of illumination is produced by the movement of coils of copper wire in the ne:ghborhood of magnets. Electricity is developed in condition whenever it is moved across the lines of force streaming from a magnet. The electricity is more powerful the more rapid this motion; more powerful the longer the wire, and more powerful the greater the intensity of magnetism in the magnet. These are the fundamental facts that underlie the construction of all mag neto electric machines. Any more technical description of the process of producing electricity would scarcely be understood by the general reader. In concluding the interview, Mr. Farmer said: "While our gas stocks have depreciated, and may not, possibly, return to their former value, I do not ook to see the companies cease to pay good, fat dividends."

AMERICAN INDUSTRIES.-No. 1.

by hammton s. wicks.

It is proposed, in this series of articles, to give a concise and intelligent description of the leading industries of this continent. Those situated near, and holding immediate relation with the commerce of the metropolis, will be first considered. Just opposite this city, and immediately dependent n it, lies Jersey city, a workshop of the metropolis of no ittle importance. Its shipping interests are large, and it is the site of such extensive manufacturing industries as Lo rillard's Tobacco Works, The Dixon Crucible Co., Colgate's
Soap Works, extensive sugar refineries, iron and steel works, etc. etc.
The first of these industries we illustrate and describe is the Lorillard Tobacco and Snuff Manufactory, and an engraving illustrating some of the processes is shown on the first page.
how tobacco and snuff are made.
Since the reign of William III. of England the use of tobaco has become a universal custom throughout the civilized world, although long before his time it had been used quite extensively, having been originally introduced to the atten tion of European colonists by the Aborigines of this country. Many of the most profound thinkers have been inveterate mokers, chewers, and snuffers; and not a few have lived to an advanced old age with the pipe, snuff and tobacco box as their constant companions.
The tobacco industry of America is a very important one. It utilizes the soil of largetracts of land in many Southern and Western States. It gives employment to hundreds of thousands of people, both in the field and in the factories. It interests large aggregations of capital, and pays into the national treasury fully 34 per cent of the internal revenue.
For the full illustration of this industry it would be necessary to visit some of the quaint villages of Virginia and Kentucky, such as Lynchburg or Henderson, where about this season of the year the planters bring in to market their wagon loads of tobacco leaf, where the speculators or "pinhookers" (as they are called) barter with them for its sal
in lump, and where the old time negroes stationed on every corner with long "tobacco horns" call the merchants to the commission sales at the different warerooms. This portion of the industry, as well as the tedious culture of the leaf on the plantations, is merely initiatory, though none the less interesting and useful. The most complicated, and also very interesting and important part of the industry is the manu facturing of the leaf into the various grades of chew ing, smoking, and snuffing tobacco that the market demands.
The illustrations on the first page of interior views of \mathbf{P}. Lorillard's extensive tobacco factory will prove interesting, as showing the different processes of manufacture. The reader must understand that the leaf used in large manufac tories is selected with the greatest care by experts, who de termine by the color and smell the quality requisite for any particular grade. The manufacture of plug tobacco is the most extensive in the Lorillard establishment. The machine in the illustration entitled " Rolling the Lumps," is the plug making machine, one of the most ingenious machines known to the trade and wholly controlled by the firm. After it has been sweetened, flavored, and dried the leaf is fed into this machine as "fillers." Being placed as evenly as possible in the long trough by girls it is pressed and cut into the exact size of plugs required by the wonderful automatic ac tion of the machine. The illustrations showing the method of " Covering Lumps" and the " Pressing" give very accu rate ideas of those processes. Each plug is weighed after coming from the plug machine, and a standard weight is obtained by taking from or adding to each before covering hem. A broad handsome leaf is now wrapped by expert hands about the plug, and it is ready for the pressing room. Here the plugs are put into smooth iron "cells" within a large frame and submitted to powerful hydraulic pressure or several hours. A finishing pressure is afterward given hem in another set of hydraulic presses called "pots." Each plug is stamped with the Lorillard tin tag, which is a guarantee of its genuineness.
For the manufacture of fine-cut chewing tobacco the same care in selecting the leaf is exercised as in the plug. The 'Dipping of the Leaf '" is shown in the illustration; a solu ion of licorice and sugar, etc., being used for the purpose, and on this and the quality of the leaf depends the character of the tobacco. After stemming the leaf, it is taken to the cutting room, shown in the illustration entitled " Making Fine-cut." Here it is arranged in a trough and forced by the endless chain through a small square aperture, where it is cut into long silken threads by a powerful knife, which makes 1,200 revolutions per minute. All that now remains is to dry and prepare it for the market. Smoking tobacco is similarly made.
In the manufacture of snuff time is required. The process of fermentation lasts from six months to a year or more. Before going into the grinding mills, shown in the illustration, it is thoroughly cured, and after being ground and before it is filled into the bladders for sale it is again ured, until its fragrance and mildness are of the most ap proved quality. The factories of the Lorillard tobacco works occupy a fuls block, 405 feet in length and 210 feet in width, in Jersey City, N. J., and bounded by Washington, Warren, Bay, and First streets, and nearly the whole of another block in addition. The house has an age of 118 years, having been originally founded in 1760 by Pierre Lorillard, a French Huguenot. In the year 1870 the present firm took control of affairs, with Mr. Charles Siedler as general partner. The factory in Jersey City as it now stands was erected in 1875, and is the largest institution of the kind in the world. Last year the sale of plug tobacco exceeded $10,000,000$ pounds. Of tobacco and snuff the sales aggregated more than $14,000,000$ pounds, and $\$ 3,500,000$ revenue tax was paid to the Government. There is no State in the Union, with the exception of Virginia, that made such good show either in the manufacturing of tobacco or the tax paid as this one house. An army of over 2,500 men, boys women, and girls is kept constantly employed. About $\$ 14,000$ is dispensed weekly for the labor, and it would amount to a calamity to these people if such an institution were to cease its operations from any cause even temporarily.

PATENT OFFICE PRACTICE.

Commissioner Paine announces that hereafter letters paent and certificates of registration will be perfected and ready for delivery upon the day of their date. The last ssue, under the rule heretofore existing, will bear date of December 17, 1878. Then there will be a hiatus until Janu ary 7, 1879, on which day, and subsequently, patents and ertificates will be deliverable as soon as signed.
The Official Gazette of even date with the weekly issue will continue the usual announcements respecting the perfected patents and certificates of that date, but no information, either by Gazette or otherwise, will be given as to any pending case about to issue, except to the party in interest, until such case has been finally signed and sealed.

A novel thermoscope and hydroscope, the invention of Col. Aristide Gerard, has recently been patented both in this country and in Europe, and is controlled by the Automatic Safety Company, of No. 40 Charles street, New Orleans, La. This invention is designed for the speedy detection of abnormal heat or water in steamers and other vessels, and is said to be very effective.

CHICHESTER WATER WORES.

The prominent position now taken among engineering questions by those of water supply, especially to small places, will make the following illustrated description of Chichester water works of considerable interest to our readers. The works contain several features of engineering interest, and are such as are suitable for a large number of towns.
The source of supply is a well sunk in the chalk, adjacent to a powerful spring one and a quarter miles west of the city. The exact position of the well was determined by the certainty of an adequat upply being obtainable near the spring, while its location so far from Chichester was fixed with a view to avoid the contaminated water inclosed in the geological basin over which the city stands.

The works consist of a pumping station at the source of supply, a main pipe, $21 / 2$ miles long, passing through the city to a service reservoir and tower, and four miles of distribution pipes. They were designed to supply eventually a population of 10,000 persons with 20 gallons per head per day. At the pumping station the sinking of the well was commenced with wooden cylinders 6 feet diameter inside the curbs, for a depth of 17 feet, after which it was continued with wrought iron cylinders 5 feet 8 inches inside diameter. The cylinders were 9 feet long, connected by angle irons 3 inches by 3 inches. The plates were $\frac{7}{16}$ inch thick, and the rivets were countersunk on the outer side. The wooden cylinders were lined with brickwork in cement, and the junction"between the brickwork and iron was securely calked with oak wedges. A foundation for the superstructure of the engine house and the engines was secured by a dome of cement concrete.

The engines and pumps are in duplicate, each designed to raise on trial 10,000 gallons per hour against a head of 200 feet, with a consumption of $31 / 2 \mathrm{lbs}$. of Welsh coal per horse power estimated by the water lifted, and in actual work they each lift 11,500 gallons per hour against a head of 160 feet, with a consumption of 4 lbs. per horse power.

The engine is horizontal and of the usual compound type, with the high pressure cylinder toward the crank and in front of the low pressure cylinder. The diameter of the high pressure cylinder is $91 / 2$ inches, and that of the low pressure is 18 inches, and the stroke is 2 feet.

On the end of the crank shaft is placed a disk, from which the pump is driven direct from the main shaft. The pump is of the plunger and bucket type. The diameter of the plunger is 8 inches, that of the bucket 11 inches, and the stroke 1 foot 6 inches. Steam is supplied from two Cornish boilers of 4 feet diameter and 14 feet in length, with one flue in each of 2 feet $21 / 2$ inches diameter. The speed of the engines was designed to be 30 strokes per minute, and in actual work they run from 28 to 35 strokes per minute.
It is proposed to check the engines more by employing a slide valve on the steam pipe, which is to be kept open by the pressure of the column of water, and to be instantly closed by a spring when the pressure is relaxed.
The reservoir was designed to hold 100,000 gallons only, though provision was made for doubling its capacity event-
ually if necessary. It is 10 feet deep, and is built on a sub- the engraving, was built with a tank at the top 40 feet higher soil of wet sand and gravel, of Portland cement and gravel than the reservoir, into which, when a valve on the main at concrete (1 to 6), rendered with cement and sand (1 to 3), its base is closed, the water rises up an 8 inch pipe and and floated on the inside surfaces with cement and sand (1 through a self-closing 8 inch valve seated in the bottom of to 1). The main is taken throngh the wall so as to project .the tank. The ordinary outlet from the tank being only about 6 feet into the reservoir. This projection was bedded through the overflow at the top, and thence into the reser in and surrounded with cement, and then built round with voir, the tank is always kept full. The high service cisterns a block of concrete, having all its outer surfaces rendered of the consumers are filled from the rising main, which has in cement. All angles and corners were run with a fillet of thus an additional 40 feet of head thrown upon it during the cement, and thus a completely watertight job was effected time that the engines are pumping into or over the tonk
 the purpose of filling the cisterns. The 8 inch self-closing valve in the bottom of the tank contains a 4 inch valve, which works with it on the same spindle, except when raised by a chain pulled from the chamber on the ground floor of the tower.
In case of a fire occurring when the pumps are not at work, and the pressure in the city is consequently low, the valve on the main at the bottom of the tower being closed, and the chain pulled, an extra head of 40 feet is thrown upon the pipes. The quantity of water in the tank is suff cient to supply one hose of the Metropolitan Fire Brigade pattern for about thirty minutes, and would allow time for getting out the fire engine and for starting the engines at the pumping station.
It is conceivable that such " fire reservoirs" might be applied on a large scale where high pressures would be other wise difficult to obtain, and that they might be promptly brought into operation when needed by a telegraphic mes sage to the man in charge
The cost of the whole works, including a large sum spent in a parliamentary contest, amounts now to $£ 14,500$, and estimating that another $£ 1,500$ will be wanted to complete the distribution pipes, etc., for the supply of 10,000 persons, the total cost will be $£ 16,000$, equal to $£ 112 \mathrm{~s}$. per head. The engineer of the company is Mr. Shelford, of Westminster, under whose direction the works were completed.

A NEW REVOLVING INDEX.

The accompanying engraving represents a revolving index recently patented by Mr. Lübbe U. Albers, of Carthage, Ill. It is intended for the use of book-keepers and others requirng a ready means of referring to different names or items contained by the index.
To the center of the base, A , is attached a standard, C which passes through the lower bar, B, of the frame that supports the vertical rollers around which the endless belt,
without puddle. The whole was arched over in brickwork, and covered with an earth embankment.
The highest ground available for the reservoir is only 60 fect above Chichester Cross, which may be taken as the average available head at the reservoir for almost all the district to be supplied. This head is increased to about 100 feet at the Cross when the pumps are at work, but inasmuch as the supply to the higher parts of the district would thus have depended on the pumps, and would have been intermittent and uncertain, a high level service was arranged by which a cistern is filled daily for each consumer requiring it, and a tank at the high level is always kept full and available for the extinction of fire.
To effect this, instead of a stand pipe, the tower, shown in

E, passes. To this belt are attached a number of strips of sheet metal, which are bent outward to form slides for re ceiving the strips, F, of sheet metal which contain the strips on which are written the names, number of page, etc. These strips have at their upper ends the alphabet, and several of the strips, F , have small knobs for convenience in turning the endless belt. The belt and its supports may be inclined an any desired angle, and the strips may be removed when filled and filed for future reference. The advantages of this device will be apparent to those who require an index. It certainly will effect a considerable saving in time. For further particulars address the inventor as above.

ELEVATION

SECTION ON LINE E.E

8ACK HOLDERS AND LIFTERS AT THE EXHIBITION. "So much sack."-Smakespeare.
The uses of convenient implements are spreading into all the industrial occupations, as we in the United States know better than any other people, for we have more inventions of that character than are to be found elsewhere.

Fig. $1 .-$ ROSE's sACK LIfter.
Churns of curious design, washing machines, egg beaters, apple parers, and scores of other conveniences for domestic uses and ordinary occupations are advertised and labeled as "American."
The word "sack" is said to be the only one that is the same in all languages. Here is one thing in common between the Hebrew, Irish, Greek, Cornish, French, Latin, English, Hungarian, Icelandic, and Gothic; here they unite. How this came about it is hard to say, but the legend goes that when tongues were confused at the Tower of Babel, the workmen finding that something was going wrong, each called for his sack to carry home his tools in, and that was the only word they all remembered.
The sack lifter of Messrs. Rose Frères, Fig. 1, is similar to Marshall's sack elevator, Fig. 2, but has a standing frame which is portable, but not designed to be used as a truck. The sliding bag holder is lifted by cord from a winch on the frame, and held by a click in a ratchet wheel on the crank shaft.
Marshall's sack elevator, Fig. 2, is a truck, with stay rod to hold it upright, and a winch by which the sliding frame holding the bag is elevated so that a person can take it upon his shoulder and carry it off without the assistance of a second person in lifting. It is specially intended for a person in attendance upon a thrashing machine; one man to tie the bags as they are filled, lift them, shoulder, and carry them off to the granary. shoulder, and carry them off to the granary.
Romaine's sack filler and weigher, Fig. 3, requires but little description to elucidate it. A spout with sliding door admits the grain, flour, or whatnot from the floor above. The bag is clipped by a ring to the funnel, which is sus. \mid w
pended from a crotch on the end of the weigh beam. The latter is upheld by a tripod. Price from 150 to 325 francs; weighing from 200 to 100 kilos
The small army mill, Fig. 4, stands upon three legs and grinds into a sack which is suspended beneath. It is worked by two men, grinds 20 kilogrammes per hour, cost 200 francs; four of them, packed in two boxes, are the load for a mule on the march.
The sack lifter and emptier, by Rose Frères, Fig. 5, enables one person to lift and to transfer the contents of one sack into another. It acts by means of a winch and rope, but the sliding frame is guided in such a manner that after attaining a certain elevation it tips over and brings the mouth of the sack to the open end of the bag ready to receive it. The French sack holder of Bodin is so much like the Gilbert, Fig. 8, with the addition of wheels, that it needs but to say, in addition to giving the illustration, Fig. 6, page 20, that its weight is 28 kilos, and its price 50 francs.
John the Baptist Normand fits the handles of the truck with notches, so that the spreading frame for the sack mouth may be adjusted in height for the length of the sack. The frame has four hooks on to which the bem of the bag is caught (Fig. 7). Price 35 francs.
The Gilbert (English) sack holder (Fig. 8) is a slanting frame, with a strut to support it, and a clip ring at top to spread the mouth of the sack. To state its purpose would be merely to make a list of things that can be put into a sack, which is needless. It dispenses with a man to hold the sack, and furnishes a rest for the measure in emptying. Its price is $£ 13 \mathrm{~s}$.; with wheels, £1 12s. Edward H. Knight. Paris, October 5, 1878.

Amateur Inventors.

The Philadelphia Ledger takes to task those papers which have sneered at Miss Hosmer's electric light invention on the ground that "amateurs rarely discover anything worth patenting." Of course, an amateur who knows nothing about mechanics, adds the writer, is not likely to make valuable

Fig.2.-warshall's (ENGLISH) sact elevator. contributions to mechanical progress; but there are many

the use of chemicals, including acids and cyanide of potassium. For this purpose he mixes with the paper pulp or passes the manufactured paper through an alkaline solution of peroxide of iron (or any salt of peroxide of iron) and errocyanide of potassium, or other base, in which the iron is kept from precipitating by the addition to the solution of tartaric acid, citric acid, sugar tartrates or citrates, or other

Fig. 4.-ARMTY MTLL.

organic substances baving the power of preventing the precipitation of oxide of iron by an alkali, or sulphocyanide may be substituted for ferrocyanide, or ferricyanide may be ubstituted for ferrocyanide and the salt of protoxide of ron for one of peroxide of iron. Upon the application of to paper manufactured or treated according to the invention a color or stain will be produced, whether the chemical be applied over ink or not.

Erin go Bragh.

A fictitious cabte dispatch of inordinate length, purporting to emanate from a staff correspondent who has, says the New York Tribune, been sent across the seas to find Mr. Edison, is an amusing jeu d'es prit in Saunders Irish News.
When the correspondent landed in New York, President Hayes went tearing down Broadway to the Battery in an open carriage drawn by six cream colored horses, and preceded by a number of outriders in scarlet and gold, and a squadron of siege artillery in full gallop. As they approached, the President descended from his carriage, saluted the correspondent on both cheeks, and immediately raised a cheer, which was at once taken up by his party, and repeated from the Battery to the Central Park. The President carried his guest off to the White House, where they had bird's-nest soup, bluefish, bread fruit, pilaff, and oysters in every style. After lunch the President drove the correspondent out (without the artillery) to see the sights in the immediate neigh-
mateurs self-educated in science and mechanics, and from borbood-the Falls of Niagara, the prairies, the Yosemite his class some of the most original inventions have come. \mid Valley, and giant trees in Mariposa County. When he Miss Hosmer's profession-art—has furnished the world learned that the Irishman had crossed the seas to talk with least two great inventors, who, though amateurs in Mr. Edison, the President urged him to do nothing of the one sense, led the way for " scientifically educated and practically experienced mechanicians." Robert Fulton and Professor Morse were both American painters, and both became distinguished American inventors, although they were amateurs in their particular fields of investigation. The history of invention points to the fact that entirely novel ways of doing things are likely to first suggest themselves to those who, being amateurs, have not become set in their ways of doing every-day work. Watt, although a mathematical instrument maker, did not stick to his trade, but invented many essential parts of the steam engine; Corliss was a country storekeeper; Elias Howe was more of a farmer than a mechanic when he made his first sewing machine, and Edison has "picked up" all that he knows about electricity, mechanics, and magnetism. Education and practical experience are very desirable things, but because an inventor's calling seems to show that he has neither one nor the other is no reason for throwing discredit on his invention in advance of experiment with it, and particularly before it has been described.

Paper for Preventing Fraud.
Mr. A. Nesbit, of Gracechurch street, London, is the manufacturer of a paper for checks, bank notes, deeds, law documents, or other instruments of a similar character, so as to prevent alterations by

Eig. 6.-ROSE'S SACK LIFTER AND EMPTIER,
sort. He remarked that the inventor was hardly ever at home, being generally in the Patent Office registering some new discovery, and besides he was so highly charged with electricity that it was dangerous to approach him. The electricity that it was dangerous to approach him. The
President remarked that the inventor was frequently seen with a regular nimbus around his head, a sort of domesticated aurora borealis, and one man who shook hands with him in a casual way, went home, took to his bed, and was prostrated by the violence of the electrical shock.

Anhydroue Sulphuric Acid.

The well known oil of vitriol, as our readers know, is a compound of sulphur, oxygen, and hydrogen, in the propor tion of $16,32,1$; and has received the formula $\mathrm{H}_{2} \mathrm{SO}_{4}$, or $\mathrm{H}_{2} \mathrm{O}_{\mathrm{SO}}^{3}$. Although we are not able to remove from this any water, as the last formula seems to indicate, yet a compound is known which will combine with water to produce the oil of vitriol, or common sulphuric acid, and hence it was called anhydrous sulphuric acid, or sulphuric anhydride, and supposed to have the formula SO_{3}. It is a white, silky solid, forming long needles like asbestos, and can be obtained in two or three different ways, usually by distilling so-called Nordhausen or fuming sulphuric acid at a moderate heat. It is also made by oxidizing sulphurous anhydride, $\mathrm{SO}_{\mathbf{2}}$.

Weber's investigations have proven that these crystals are not anhydrous, but mixed with a hydrate. By repeated distillations, fractional distillations, and recrystallization, he obtained the pure anhydride, which is, at common temperatures, a mobile, colorless liquid, which solidifies on cooling strongly to long transparent crystals, resembling those of saltpeter, but totally unlike those white, opaque, silky crystals formerly mistaken for sulphuric anhydride. The pure anhydride melts at $14 \cdot 8^{\circ} \mathrm{C}$. ($58 \cdot 6^{\circ}$ Fah.) and boils at $46.2^{\circ} \mathrm{C}$. ($115^{\circ} \mathrm{F}$.). The slightest trace of moisture converts it into the well known silky crystals. Weber succeeded in separating two hydrates, one having the composition $\mathrm{H}_{2} \mathrm{SO}_{4} \cdot 3 \mathrm{SO}_{3}=\mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{3}$, and the other, $\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{SO}_{8}$ $=\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$.
He also investigated the blue compound produced when sulphur and anhydrous sulphuric acid are brought into contact, and first described by Vogel in 1812, and finds that it has the composition $\mathrm{S}_{2} \mathrm{O}_{3}$. When dry flowers of sulphur are thrown into freshly prepared liquid sulphuric anhydride $\left(\mathrm{SO}_{3}\right)$ the sulphur melts to blue drops, which sink below and soon solidify. When a sufficient amount has collected the liquid anhydride is poured off, and the residue then removed by gently warming. It forms a crystalline crust which looks like malachite and decomposes, slowly at com mon temperatures, faster if heated, into sulphurous acid and sulphur $\left(2 \mathrm{~S}_{2} \mathrm{O}_{3}=\mathrm{S}+3 \mathrm{SO}_{2}\right)$. It dissolves with a blue color in so-called fuming, or Nordhausen, sulphuric acid. Water decomposes it, setting free sulphur and sulphuric and sulphurous acid and thiosulphuric acid. This blue color was made by Bucholz in 1804, by heating sulphur in fuming sulphuric acid.
This adds another to the already long list of oxygen compounds of sulphur, to which Berthelot not long since (Comp . Rendus, 86, 20) added persulphuric acid $\mathrm{S}_{2} \mathrm{O}_{7}$, so that to all the oxides and acids of chromium there are corresponding oxides of sulphur, and it only remains to find more oxides and acids of chromium to correspond to those of sulphur.

Crystallized Javelle Water and Chlorozone.

This absurdly contradictory name, eau de Javelle cristallisée, is given to a commercial article made in France, which is intended to take the place of chloride of lime or bleaching powder for washing and bleaching cotton, linen, and paper stuff. The claims made for it are its perfect solubility in water, uniform and certain action upon the fiber without injury to it, saving of cost by lessening the number of operations in the bleaching process, and, finally, more convenient and cheaper to transport. We have no details as to what it really willdo, but it seems probable that if rightly made and used, it may, in many cases, surpass chloride of lime, provided its present high price be somewhat reduced. The well known Javelle water is merely a solution of hypochlorite of potash, and much used as a bleaching agent, as is also the corresponding salt of soda, eau de Labarraque. Neither of these are crystallizable, so that there can be no such thing in reality as crystallized Javelle water. The product under discussion has the following composition: 80 per cent crystallized carbonate of soda, 8.5 per cent chloride of sodium (salt), $11 \cdot 5$ per cent hypochlorite of soda. The best name for it is sal soda impregnated with hypochlorite of soda. The manufacturers claim for it the power of cleaning and bleaching in one operation, without previously having put the stuff through an alkaline lye for the purpose of cleaning it perfectly. The carbonate of soda, they claim, is the cleansing principle, and the hypochlorite destroys the coloring matter. The two act simultaneously, which of course saves time. We are not aware whether in practice this is true, but it is possible.
Particular emphasis is also put upon the assertion that the stuff to be bleached is not injured by this salt, as it is frequently enough when chloride of lime is used: first, because the action is slow and regular; next, the total absence of lime renders the formation of any injurious lime precipitation in the goods impossible; finally, the solution is not totally worthless after the bleaching is done, but can always, owing to the relatively high percentage of soda in it,
be employed for washing either immediately or after it has \mid two or three hours a week are not devoted to this subject. been rendered caustic by heating it with quicklime. The and even in private and preparatory schools it is taught by salt, as it is sent to market, is quite well crystallized, re- experiments and lectures, not as dry text-book catechism sembling sal soda. It possesses the characteristic odor of and the mind is at least incited to know something of this chloride of lime, dissolves perfectly in water to a clear solu- world about us.
tion, which should not be underrated for practical purposes, At a period when the value of natural and physical sciences as no decantation or letting it settle is necessary, and a as a source of mental discipline is beginning to be acknowsolution of any desired strength can be made at once. It

Fig. 6.-BODIN'S SACK-HOLDING TRUCK.
must be kept in a dry place, as it absorbs moisture readily and would soon become wet through. The manufacturers claim that it keeps well, which we doubt, for the analysis of a specimen kept in a closed glass gave only 1.33 per cent f active chlorine
Chlorozone is another new commercial article. It is made by saturating a cold solution of the caustic or carbonated alkali with a current of hypochlorous acid mixed with air. The hypochlorite indicates nearly 40° Baumé, and 100° to 120° chlorimetry. By the addition of calcined soda it forms

Fig. 7.-NORMAND's sACK-HOLDING TRUCR.
solid chlorozone, as a compact mass that can be broken up, but melts at 68° Fah. The price is not much above that of

Chemistry in Schools and Colleges.

It is scarce a century since chemistry began to exist as science, yet few sciences have contributed so much to the happiness and pleasure of mankind. The problems before her are infinite, but one after another are slowly being solved. So many are the fields for her labor and so varied her work, that we cannot wonder that many people have very strange, contradictory, and absurd notions of what chemistry is. One thinks it consists chiefly in concocting unpalatable potions, another in making awful stenches; some confound the chemist with the magician, others think he must be an apothecary or a physician. But chemistry

Hig: 8.-GMBERT's SACE HOLDER.
moves on in spite of opposition or ridicule, and even gains in public popularity. Although the grand fundamental laws of the science, the great underlying principles which are to explain all its phenomena-as Newton's law does those in as tronomy-bave not yet been discovered or evolved, and the accepted theories of to-day may be overturned to-morrow, yet chemistry is no longer what it once was-an accumulation of facts, of disconnected phenomena, with which the memory may be overloaded without profit. Its facts have been reduced to system, some of its laws are understood, and the harmony of its several parts are known. For this reason, as well as for its practical and conomical uses, it has taken its place in the list of subjects which constitute a liberal edu-
cation. Hence we find few schools for either sex where
ledged, and science itself to be respected and honored here as elsewhere, it is somewhat remarkable to see one of our oldest colleges abolish the study of chemistry in her regular course. Yet this is what Columbia College has really done. True, the name of chemistry still appears in her list of studies, but it is studied no longer. It is but an outward pretense, a sham, an empty name, a skeleton without flesh, a shell without contents.
One of her youngest classes assemble once a week to listen to lectures upon chemistry by one of her best and ablest pro fessors; but what can the greatest of chemists teach in 25 hours to a class who have had no preparation for his teaching? Chemistry is there made to precede physics, the larger fundamental scicnce of which it is itself one of the larger subdivisions. Hence the lecturer must either prepare the soil himself or have the seed fall upon hardground. To lecture upon the spectroscope to men who know nothing about light, or upon gases to men who know nothing of the laws of mechanics and pneumatics, is to waste half the labor. To assume that the students have learned, before they entered college, subjects too abstruse to be taught them while in col lege, is the height of absurdity, and yet strangely enough the Columbia Grammar School teaches more chemistry, and teaches it more thoroughly, than does the college. The senior class may, if they choose, attend a few lectures upon advanced chemistry along with students of the School of Mines who have devoted one or two years to this branch, and not having had any preparation at all sufficient, are again unprepared to profit by it. Let us ask why this change bas been made and the amount of chemistry reduced to one fourth of what was already too little. Columbia is about to erect new buildings and wants to save the expense of a chemcal lecture room. She also wants to economize on the sala ries of her professors in science to enable her to employ more instructors in law and in history. To this the welfare of her students and her own good reputation are subservient. Let her seek concealment as she may, truth must prevail.

Salicylic Acid with Boracic Actd.

Both of the above acids are extensively employed as antiseptics in foods, as neither of them alone imparts any unpleasant flavor, but if both are used together a decidedly bitter taste results. This fact was first noticed by Dr. Hager, who examined a milk with a bitter taste, but failed to find any particular bitter substance in it. On further examination it was found that borax had been added to protect it against the heat of summer, and afterward a little salicylic acid was added for its preservation during transportation.
Another case was where a mixture of 2 parts salicylic acid, 2 of borax, 30 of alcohol, and 200 of water had an excep tionally bitter taste. In both cases the bitter taste was produced by this combination of salicylic acid with borax. That it was due to the acid and not to the soda, was proved by the bitterness being imparted at once to a solution of salicylic acid on putting in some boracic acid.
Consequently the use of both antiseptics at once must be avoided, and only one employed at a time. To test the truth of Dr. Hager's assertion, our readers need only to dis solve a grain or two of boracic acid in alcohol on a watch glass and then add a crystal of salicylic acid; in a few sec onds the taste will be almost as bitter as that of sulphate of quinine. Perhaps salicylic acid can be employed as a quick and certain test for boracic acid in food, espe cially canned meats.

Methyl Aldehyd.

Aldehyd is a name given to the first substance produced by the slight oxidation of an alcohol. It contain less hydrogen than the alcohol from which it is made, hence its name. Methyl alcohol has the formula $\mathrm{CH}_{4} \mathrm{O}$ but the aldehyd is $\mathrm{CH}_{2} \mathrm{O}$. The difficulty in its preparation consists in its passing rapidly into another and more permanent form of oxidation, known as formic acid $\mathrm{CH}_{2} \mathrm{O}_{2}$. When a piece of hot platinum wire or foil is suspended above a vessel of alcohol it continues to glow, owing to the slow oxidation of the alcohol Professor 4. W. Hofmann has condensed the liquid given off in this form of glow-lamp, or lamp without flame, and finds it never contains more than 1 per cen of aldehyd.
The amount of aldehyd was determined quantitatively by converting it into the sulphur compound. The experiment was changed in many ways to obtain a more concentrated solution of the aldehyd. The most successful results were obtained by passing a suitable mixture of air and methylic alcohol vapor through a platinum tube, in which is a bundle of thin platinum wire, and gently heated. On condensing the escaping vapors it contains on the average not less than 5 per cent of alcohol. If suitably mounted such an appa ratus can be kept in operation without interruption for months.
If the undecomposed alcohol be removed by distillation (when some aldehyd escapes also) and the residue frozen several times to remove the water, the aldehyd can be con centrated to 10 per cent and upward.

Cerrrespondemce.

Saking Powders and Glucose Sirups.

by bobert peter, m.d.
(Professor of Chemistry, etc., in Kentucky Agricultur 1 and Mec
College; Chemist the State Geological Sarvey, etc., etc.) Scientific American on these subjects, the writer believe they are not yet exhausted of their interest. The possibilities connected with their bearing on health or disease and mortality deserve further discussion, for which I have no doubt you will freely give a few more columns in you highly useful periodical
The obvious fact is, as proved by the analyses of baking powders by others as well as by myself, that desiccated alum is substituted for cream of tartar in many of our popular "baking powders."
The United States Patent Office has sanctioned this use or abuse of alum by their letters patent, and alum is very much cheaper than cream of tartar; answers equally well to set free the carbonic acid which makes the bread light, and may also make a whiter loaf than that dearer article. The manufacturer can make more profit at a lower selling price, with alum powder; more especially if he mixes them with a large proportion of starch.
The chemical facts are as follows: By heating the am monia alum to a certain temperature it will be caused to part with its water of crystallization, and will lose part or all of its combined ammonia, according to the temperature and time of exposure to it, leaving simply aluminum sul phate, mixed with more or less free sulphuric acid and unde composed aluminum sulphate. This mixture when brought together with bicarbonate of soda, in the paste or dough, in the presence of the water will decompose the soda salt, es pecially when moderately heated, and the carbonic acid of that salt set free will inflate the pastry and make it light and spongy. At the same time the alumina of the alum is separated in the form of aluminum hydrate, and harmless sodium sulphate, or Glauber's salt, is produced.
The nature and results of the chemical decomposition are correctly stated by Professor Doremus, as well as by the patentees of these baking powders. There is no alum in the bread or other article prepared with these powders, but only the products of its decomposition, viz. : Glauber's salt, in too small quantity to be active, and precipitated aluminum hydrate.

But at this point a new question arises, and one of weighty import: Is it not probable that the continued ingestion of aluminum hydrate with our daily food, may, in the long run, induce disease and shorten life?
It is true that when alumina is in combination with silica, as it is in clays, it is not readily soluble or decomposable in weak acids; but alumina combined only with water, or even when the water has been separated by ignition, is much more soluble. The heat which suffices to bake bread will not separate the water from aluminum hydrate, and it hence exists in the bread in a condition readily to form salts with even weak acids. What, then, is the probable action of this aluminum hydrate in the processes of the digestion and assimilation of the food in which it exists as an ingredient? In the stomach, under the action of the acid gastric juice, it is likely to be dissolved, and to form aluminum chloride; but, because of the great affinity of alumina for albuminous and other organic matters as well as for phosphoric acid, it probably enters into combination with these, to a certain extent at least. If these compounds are insoluble in the stomach solution, no other harm will result but a waste of a certain quantity of the essential phosphates and albuminates of our food, which waste may be measurably supplemented by the introduction of some bone superphosphate into the baking powders.

But it is more probable that at least a portion of the alumi nous compound is retained in solution in the acid chyme and is absorbed into the blood vessels in the coats of the stomach to act locally in thickening or otherwise altering their delicate coats; or meeting with the slightly alkaline venous blood, rich in albuminous compounds, to induce a tendency to coagulation, which, however slight, may in the course of time cause obstructions in important glandular organs, es pecially in the kidneys and liver, interfering with their healthy functions, and in the end causing fatal disorder.
The portion of the albuminous compound which is not absorbed from the stomach will doubtless be decomposed in the duodenum, where it will be rendered insoluble by contact with the alkaline bile; but in the cæcum it will again be subjected to an acid solvent, and a second danger of absorption consequently occurs. These are probabilities of deep import. Aluminum chloride, like tin chloride, forms insoluble compounds with albuminous, gelatinous, and other organic matters, and when introduced into the blood in quantity cause sudden death, and doubtless when taken up in repeated minute quantities, will cause alterations of tissues and coagulations of the circulating fluids resulting in obstructions and disease.
The use of chloride of tin by reckless manufacturers of glucose sirups, etc., proved by numerous analyses by others as well as by myself, is especially to be reprehended, as these products, sold under various names, as "golden sirup," "'maple sirup," " sugar-house molasses," etc., or the glucose in the solid form mixed in the soft granular sugars, are in very general use, greatly to the detriment of the general health. The people everywhere should be put on their guard against this insidious slow poisoning and advised
against the use of any sirup, etc., which leaves a metallic taste in the mouth. Three pounds of good pure Louisiana brown sugar, boiled in a clean iron vessel with a pint of water will make a perfectly wholesome sirup far preferable to any of the tainted sirups of the present market
Aluminum and tin salts are both used as mordants by the dyer, because of the strong attraction of the oxides of these metals for organic compounds. Aluminum salts for the same reason are used in preparing white leather, and the observations of Orfila show that when given to animals they cause a thickening of the coats of the stomach and ${ }^{2}$ owels, and an appearance as though they had been tanned.
It is true that Orfila contended for the harmless nature of alum in small doses, and Wibmer and others experimented n themselves by taking it in small doses for some weeks ogether without any sensible evil results. Very probably the slight impairment of tissue was not sufficient to produce manifest disease. But had they continued their experiments for years at all their daily meals, $n o$ doubt the functions of the stomach would have become impaired by the thickening of ts coats and the alteration of its glandular tissue under the action of the dissolved aluminum salts, and dyspepsia or chronic inflammation would be the result in time.
That alumina is not friendly to organic life is shown by its almost general absence from the composition of vegetable and animals. In only a very few plants of the lowest order is it found as a regular constituent. The propriety of introducing it into our daily food is not properly to be ascer tained by costly and broadly hazardous experiments upon the people at large, or with the object of cheapening the production and increasing the profit on baking powders. Nor is therc any necessity for such heroic tampering with the public health. Why lay aside the time-honored yeas or ferment, which, whēn skillfully and carefully prepared and used, is without injurious influence? Or, if we must have "quick-rising," why not use the pure cream of tartar nd good bicarbonate of soda until something equally harm less is discovered?
The writer is informed that there occur many more case of Bright's disease and other forms of disease of the kidneys than formerly. Are we to attribute this to chloride of tin in glucose sirups and sugars, or to alum in baking pow ders, or are not both very liable to suspicion?
Even the cream tartar baking powders may come in for ome share of guilty responsibility because of the greate amount of alkaline salts determined to the kidneys by their
habitual use, and that most chemical of all baking powders, Horsford's, which, with the commendation of Liebig, might seem to be pathologically innocent, as it is chemically excel lent, may yet, by a possibility, give to the renal organs too much earthy phosphates to excrete in solution. "Give us," therefore, our "old-fashioned daily bread" until something better is discovered than is found in all the baking powders.

Choked Feed Pipes.

To the Editor of the Scientific American.
I send to you by mail a $3 / 4$ inch nipple that was taken from he feed pipe of a ten horse power portable thrashing en gine.
The engine was brought to the shop to have a new check valve put on, as the one that was on was badly worn. To remove the old one, we cut off this nippleclose to the boiler, and were surprised to find that the pipe where it entered the boiler had been reduced in area to about 0.01 of a squar nch, by deposits of lime.
The persons in charge of the engine said that they had had no trouble in keeping the boiler well supplied with water, and had used it several days this season, before bringing it to the shop, using the steam at 100 lbs . pressure

The pump plunger was attached to the cross head of the engine. Had the pump been driven by a belt they would have experienced much trouble in driving it.
Several months ago, a man owning a saw mill brought his force pump to be repaired. He said that he could not drive it with an eight inch belt, while it used to be driven easily with a four inch belt. After examining the pump, I tol him that it was all right, and could do nothing for it, that the pipes from the pump to the boiler might be filled with lime (as the water passed through a heater before it came to the pump), thereby obstructing the passage of the water. He did not think much of the idea, but went home with his pump The next day he returned with the pipes; some of them had become so filled with lime that the passage remaining was not more than one tenth of a square inch in area.

Yours respectfully,
Ira Carnes.
A Model New England Farm.
Mr. Burnett, the owner of the three hundred acres in Southboro, Mass., known as:Deerfoot farm, makes a specialty of breeding, raising, and fattening hogs, and converting
them into various articles of food, and of the products of
the dairy. The conversion of the carcasses into hams and bacon, and the manufacture of sausages and lard are carried on in the most systematic manner and on an extensive scale, extra pains being taken to produce for the private consumption of customers in Boston, New York, and Philadelphia, the choicest and most palatable articles. Mr. Burnett raises about 350 hogs annually, and purchases from the farmers of Vermont 1,500 fat Berkshires, which make the best pork. After being dressed the hogs are kept in a refrigerator for forty-eight hours, when they are cut up, the hams and bacon cured in the most approved manner, the lard dried out and canned free from adulteration, and the pork packed in kegs of 15 and 25 lbs . weight; the sausage meat chopped by machinery and seasoned with the best quality of sage and pepper that can be obtained, and then made into sausages. Mr. Burnett's bacon has taken the place of imported English bacon in the Boston market, and become so popular in Philadelphia that one dealer has offered to take the entire product of Deerfoot farm, which amounts to 300 sides a day, while 3,000 hams are cured annually. The product of sausages averages about $1,000 \mathrm{lbs}$. a day. Another specialty of Mr. Burnett is the canning of pigs' feet, which are sold largely in the season to yachting parties. The piggery at Deerfoot farm is an extensive affair, located at some distance from the main buildings, and consists of a building 80 by 40 feet, with a wing 60 by 20 fcet, containing pens, in which were seen about 250 swine of all ages, from the sucking pig to the hog ready for the scalding vat. The animals are fed twice a day, on a cooked mixture of two thirds corn meal and one third ground oats, which Mr. Burnett has demonstrated to be the most profitable food for fattening hogs. In the dairy the Devonshire process of producing clotted cream is used. New milk, scalded, is placed in long, large pans, which are placed under a refrigerator, where it is cooled rapidly, the temperature being reduced in three hours from 160° to 32°, and cream raised to the thickness of three fourths of an inch, which ordinarily required forty-eight hours. This cream will keep sweet several days, and is sold for 60 cents a quart to Boston families. Mr. Burnett also manufactures from 250 to 303 lbs. of butter a week from the milk of fifty cows, of which 25 are thoroughbred Jerseys. The butter sells readily at 75 cents a pound.-Boston Transcript.

Defeat of the Cochrane Ring.

It is our pleasing duty to record two defeats which the American Middlings Purifier Company has sustained. The first was in the injunction suit brought by the ring against Messrs. Vail \& Shotwell, of New York city. As our readers remember, this case was argued before Judge Blatchford last summer, and the supposed proofs of infringement were collected by the plaintiffs with the greatest care. Judge Blatchford has refused the injunction on the very sufficient grounds that infringement was not proved by the plaintiffs. In the course of the hearing Judge Blatchford made a very important and sensible ruling in regard to the former decisions of the United States Supreme Court. He held that the decision given by that court last winter, when the millers made their motion to restrain the Cochrane patents, virtually estroyed the previous decision of the court in the case of the American Middlings Purifier Company vs. Deener, Cissel \& Welch, so far as precedent was concerned, and that suits brought under the Cochrane patents must be tried as new cases in all respects.
The other victory is of equal importance. In May, 1877, their first flush of success, while the first decision of the United States Supreme Court in their favor was still fresh in the minds of millers, the ring brought suit against the HaxallCrenshaw Company, of Richmond, Va., proprietors of the famous "Haxall Mills." The claim of infringement was made and the damages claimed were placed at the modest sum of $\$ 100,000$. The hearing was before the United States District Court for the Eastern District of Virginia, and the case was dismissed by the court during the past month. In a let ter of recent date to the Hon. George Bain, of St. Louis, Mr Philip Haxall, Vice-President of the Haxall-Crenshaw Com pany, says: " We have intended to take the first opportunity to advise you that we have gotten the suit of the Cochran ring against us dismissed from court, and presume they will let us alone henceforth. It has been evident to us for some time that they did not wish it brought to trial, and we sup pose they will put off their suits against Western millers in he same way until they have collected all the money they an from small millers."
There can be no doubt that Mr. Haxall is correct in his surmises as to the future policy of the ring. The result in his case undoubtedly foreshadows the outcome of all the suits which are now pending against millers, but the ring will certainly try to make the most of their time by terrify ing millers whose means are limited into paying royalties rather than go to the expense of a legal trial. The Defense Association is to be congratulated on its victories, and we hope soon to chronicle the crushing defeat of the ring at St . Louis.
The final hearing of the cases at St. Louis is waiting solely upon the convenience of the judges, Judge Dillon's engage ments having prevented him from going to St. Louis to try the.cases. It is proposed to have both the St. Paul suit (American Middlings Purifier Company v8. J. A. Christian \& Co., of Minneapolis) and the St. Louis suits argued at th latter place, in which event Judge Nelson, the District Judge for Minnesota, would sit with Judges Dillon and Treat. American Miller.
ations in the temperature. The dish below being kept full \quad Mr. Floyd Heavener, of Laramie City, Wyoming Terri of water the evaporation produced from the y cools the bottom and sides and consequently the fettling. designed to wind up the clothes line when it is to be taken By the absence of inequalities and corners its shape does into the house, and to stretch the same taut when disposed away with the difficulties usually attending the working of for use.
a mechanical rabble, at the same time effecting a considera- Mr. Patrick H. Childress, of Waynesborough, Va., has ble saving in fettling.
The circular form of basin easily enables the rabbling to lates to an improvement upon the millstonedriver for which be worked by machinery, as there are no jambs that the rab- letters patent were granted the same inventor August 13, bles cannot reach in their courses from right to left and back again.

HOERR'S COOLING ATTACHMENT FOR BARRELS.
ends jointed together by forks formed upon the said inner ends of the driver section and an interposed ring which encircled the spindle.
Mr. Eugene Vicaire, of Paris, France, has invented an improved Device for Transmit ting Motion, which is designed to destroy the effect of the inertia of the moving parts. It consists in a peculiar form of compound beam or lever provided with a counter weight.
Mr. Henry Pollock, of Fredericton, New Brunswick, Canada, has patented an improved Thread Cutting Attachment for Sewing Machines, by which the thread may be cut quick y. The cutter may be instantly lowered be ow the table when not required for use
Mr. John F. Seymour, of New York city has devised a novel Machine for Drying Sheets of Postage Stamps and other gummed pape or material, which saves the time, labor, and space required when the gummed sheets are dried in the usual way.
An improved Automatic Car Coupling, tha may be coupled without going in between the cars, the coupling link being held in the exac position for entering the counecting draw

The pig-heating chamber, I, is fixed between the puddling basin and the chimney or boiler, and besides serving as a neck to the furnace, heats the pigs preparatory to their being passed over the bridge into the furnace.
When the iron is ready to ball the heating chamber, I, is charged a few pigsat a time; when all the balls are drawn out of the puddling basin, G, these pigs are passed over the bridge, and as soon as they are mclted, the rabbles, whic are so set that they cannot catch into each other in crossing are fixed to the machine and worked at a slow motion for about five minutes; the speed is then quickened until the iron boils, when the slower speed is put on till the irondrops. The heating chamber, I, is then charged. The rabbles are then removed, and the real work of the puddler begins by his balling up the iron in the usual manner. The balls, which are of the ordinary size, are drawn from each door and the cinder tapped. A few shovelfuls of hammer slag are thrown on the bed, and the pigs, which have meanwhile been supplied into the preparatory chamber, are again passed over. These generally melt on the bed in ten minutes or a quarter of an hour. The charges of about 13 cwt. usually take from an hour and twenty to an hour and thirty minutes.

New Mechanical Inventions.
Mr. John F. Cameron, of New York city, is the inventor of an improved Air Ship or vessel, which is claimed to be so constructed that it may be propelled and guided through the air horizontally, or at any desired angle up or down, while carrying passengers and freight.
head, and adapted to couple with draw heads
cars of different heights, has to couple with draw head W. Cornell, of Wauseon, Ohio.

Mr. Henry Staib, of Blossburg, Pa., has patented a Ma chine for Finishing or Rolling Leather, which will permi he operator to control the pressure and apply the most power when it is needed-that is, at the time of greates pressure. It will let off and free the leather from the operaing rollers instantaneously.
Mr. William H. G. Savage, of Kingston, Ontario, Canada has devised an improved Permutation Lock, in which the adaptability of the face plate in connection with the set screw furnishes a very simple means of setting the lock to any desired combination, and changing the combination to a new one whenever necessary.
Mr. Ephraim R. Dingley, of New York city, has devised an improved Railroad Track, in which the rail is provided with a concaved rubber bearing block, extending around and over one side of the head of the rail, to destroy the side ibration of the rail and the ringing sound of the car wheels. Mr. George W. Prescott, of Battle Creek, Mich., has in vented an improved Cone and Fastenings for Smokestacks of Locomotive and Portable Engines. It is so constructed as to break up the cinders and prevent them from cutting the netting and smokestack without impeding the exhaust. Mr. Asa E. Stratton, Jr., of Brazoria, Texas., has paten ted an improved Car Axle Bearing, which consists in a box having a chambered back for containing oil, and hav ing grooves along the straight edges of its bearing sur face for receiving a wick, the ends of which extend through holes in the box into the oil reser voir.
Mr. Edward Huloer of Marion, Ohio, has patented an improved Feed Water Heater which consists in the peculiar construction and arrangement of a circular jacket, at ranged about the smoke chamber of the boiler, having a supply pipe and a discharge pipe leading to the boiler, so that the water, in passing through said jacket to the boiler, is not only heated before being delivered into the boiler but also serves to pre vent the smoke cham ber from being burned out.
Mr. Thomas Whit field, of Chicago, IIl. Las patented an im proved Ayparatus for Filling and Capping Capsules, by which capsules may be readi ly filled with a gradu ated amount of powder and securely capped at the same time.

A THREE LEGGED WOODCOCK

It is rare that monstrosities in nature are ever able to hold their own in the struggle for existence. An exception appears, however, in the illustration herewith: a three legged woodcock, shot by Mr. Jules Reynal, near White Plains, New York, last September. The third leg was attached just below the vent, and dragged, as shown in the cut. It appears to have been in reality two legs in one, the double bones showing quite clearly, and the six toes being distinct and nearly perfect. The bird has been sent to Professor Baird, of the Smithsonian Institution, from whom we hope to receive an account of the in ternal anatomy of this curious freak of nature. The bird when shot was well grown and in good condition.

Experiment with Carnivorous Plants.

To test fairly and on a large scale the conclusions arrived at by both the venera ble Charles Darwin and his son Francis, with respect to the benefit derived by carnivorous plants from the insects they destroy. Mr. Peter Henderson, of Jersey City, has tried the following ex periment. He procured, in March, from Keenansville, North Carolina, a large number of Dioncea mucipula, which reached him in fine condition.
Selecting from the lot two hundred of the strongest plants, he thoroughly rinsed them in water, so that every particle of soil and all other matter foreign to the plants was removed. He then procured two boxes, three feet by three feet and three inches deep; these were filled with moss (sphagnum) and sand mixed, in about the proportion of four parts moss to one of sand, forming a soil somewhat similar to that which they had been grow ing in naturally; this compost had been also subjected to the rinsing process so as to clear it from impurities. One hundred of the fly-traps were planted in each box of the flants selected being as nearly alike as
 watered with pure water and placed in a cool and partially "fed," and the one hundred (under the wire netting) that caping the deadly waters, and when 50 miles west of Tortu-
shaded greenhouse. One box was covered with a wire net- had not been "fed." Both lots hadmade a splendidgrowth, gas, in 25 fathoms of water, lost its whole fare of fish in a ting, as fine as could be procured, so as to exclude insects; and were the admiration of scores of visitors. Mr. Hender- very short time. He describes the poisoned water to the the other was left uncovered. By about the middle of May, son never omitted an opportunity to ask professional horti- south and west of him as far as he could see." Fifty miles two months after planting, the plants had begun to grow culturists for their opinion, and the verdict invariably was west of the Tortugas would make the locality indicated 150 freely, and the "feeding" process was begun with the plants that both lots were identical, as near as could be. In this west of Cape Florida, and not very far from mid-gulf.

STUDIES FROM THE TANKS OF THE BRIGHTON AQUARIUM.

The Orange Trade in New York.

With the holidays come the oranges, and since the season promises to be an exceptional one, it is estimated that between now and New Year's $50,000,000$ oranges will be sold in this city. Already the fruit departments of Fulton and Washington markets are glutted, and by one steamer due in port to-day 300,000 oranges, by another 3,000 barrels, or $1,000,000$ oranges, and by another 350,000 in bulk are expected. The barrel stock, nearly all of which comes from the West Indies, and the case and box stock, mainly from Mediterranean ports. are consigned to shipping and commission houses, by whom they will be distributed among the trade. The stock in bulk, however, partly from the West Indies and partly from Florida, is sold in quantities from one barrel to 1,000 barrels at the docks, as potatoes and other home products are sold at the foot of V esey and West Thirty-fourth streets. One whose inferences with reference to the local orange trade are drawn from an inspection of the business exhibits which dealers put forth to tempt the small buyer has but a superficial and erroneous notion of the risks which encumber it. To say that the fruit is perishable, as the term is usually understood, is an inadequate expression of the extent of that risk. There is no product so perishable. Of about two hundred million oranges received here last season-from September until March-nearly eighty-thre millions perished, or 40 per cent of those received from the Mediterranean ports and 46 per cent of those received from the West Indies. The loss on a cargo of 200,000 oranges from Dominica was 159,600 , or 79 per cent; on eleven cargoes from Mayaguez, comprisin $2,654,590$ oranges, $1,495,120$, or 56 per cent, and on a cargo of 230,000 from Ocho Rios, 210,000, or 91 per cent. In many oases the amounts received from the sales of cargocs were insufficient to pay the charters of the vessels. Until within three or four years the trade was con ducted mainly by importers, but the soon learned the lesson which the figures just given convey, and many of them were ruined in the learning Of about fifty then engaged in the business in the city only three remain, nearly all the other having become commission mer chants only. No better opportunity to appreciate the trade, stripped of its glamour, could be had than by boarding to-day or to-morrow the sailing vessel which will be moored at some of the docks near Burling slip, with stock in bulk, the vesse having on the way from the Wes Indies encountered two tornadoes, which are especially disastrous to the preservation of the fruit. The stock, when sold, will be carried to store rooms or cellars, out of sight and there sorted after the approved fashion best known to the trade by a process so highly scientific that the best that is saved and the worst, after the usual polishing and drying, would never be recognized as having originally belonged to the same lot. Stock received in bulk is generally considered inferior in quality to that received in barrels, boxes, or cases, although it is no more perishable. At present, there is a furor over Florida fruit, which is rarely received in bulk. Ever ready to accommodate the public taste, small dealers have provided themselves abundantly with paper labels, and it is almost impossible for a re tail buyer to find any other kind of fruit. John Marsh, who sells for Darrell\& Co., importers of the Mandeville (Jamaica) stem cut oranges-a large, solid, bright colored fruit-and who has a large trade among the Fulton and Washington market dealers, says that the best imported fruit is labeled as coming from Florida to meet the popular demand. The receipts of this season have thus far been much larger than they were at this time last year, although the West India trade has suffered from violent storms, and is likely to fall short of the average yearly importation.
"I was offered a few days ago," said a large dealer yesterday, "the use of two of the best estates in Jamaica, where the fruit may be had in any quantities for the gather ing, but I wouldn't hear of the offer. By accepting it I could deliver the best oranges in the world in New York for less than $\$ 5$ a barrel. The best sell for $\$ 10$ a barrel-from 320 to 340 in a barrel. When I was younger in the business I thought I could make money in that way. I stood on the wharf for three months and lost $\$ 10,000$ on account of the waste by rot. That is why 1 didn't accept last week's offer - New York World.

BRONZE LATTICE OR FIRE GUARD.

The accompanying engraving represents an elegant bronze lattice or fire guard, designed by H. Claus, and manufactured by Messrs. D. Hollenbach \& Son, of Vienna.

The Lact Eruption of Mount Vesuvius.

A sketch of the crater of Mount Vesuvius, as it appeared during the recent eruption, has been sent to us by our es teemed correspondent, A. Ricco, Professor at the University of Naples, who visited the crater on the 10th of November last.
"The view on the crater," he says, "is extremely beauti ul and imposing. The crater has undergone considerable changes since the eruption of 1872 . It now presents the form of a large amphitheater of about 1,200 feet in diamete and 100 to 150 feet deep. The bottom is formed of lava which has only superficially hardened. In some places the crust is hard and thick enough to allow walking over it, at ther places it is yet quite soft. The surface is full of cracks and holes, from which dense masses of smoke are constantly issuing. The lava on the sides of the crater is soft and so plastic that it readily receives impressions from coins, etc. n the center of the crater rises a small cone, about fifty or sixty feet high; it is covered with incrustations containing many shells and different species of mosses. Looking through the cracks in the side of the cone and fioor the in candescent lava may be seen, the aspect resembling a laby inth of fiery paths. running over the bottom of the crater in all directions. At short intervals the mouth on the

BRONZE LATTICE OR FIRE GUARD.

Iron Wood Screws, etc.

No recovery can be reported as yet, says the Ironmonger, in this important and once flourishing branch, which coninues very quiet under the combined influences of over-production, American and French competition, and the depression of the building trades.
The introduction here in 1854 of patent self-acting machinery from the United States, continues the same English aper, has increased the local production probably fivefold, and it is not to be wondered at, therefore, that in times of dull trade like the present the industry should be in a some what suffering state. Westphalian wire, which is being imported by thousands of tons yearly, is fast superseding Enlish wire for screw making purposes.
The Birmingham Screw Company, who produce in ordiary times some 60 to 70 tons weekly, find the Westphalian wire, or English wire drawn from Westphalian rods, equal, f not superior, for screw making purposes, to any article in he market, and at considerably less cost than native iron. The great difficulty English screw makers have to contend with just now is the French and American competition. Messrs. Jappy Frères have now got a virtual monopoly of the French and Italian markets-thanks, in some measure, to protective tariffs; and as the German screw makers are
also very active, there is not much opening for English screws in the continental markets. The Americans, however, are at present our most formidable competitors, not only in Canada and the colonies. but in this country, where, there is some reason to believe, they are sellng under cost price.
Since the recent auction sales of screws, which were professedly intended to relieve stocks, but which were manipulated in such a way as to enhance the market value of those stocks by bogus purchasers at high prices, the American screw makers have altered their discounts so as to advance prices, on the net, about $121 / 2$ per cent, and as this advance gives them the required profit on their home sales, they can afford to send their surplus stocks into this and other markets at something under cost price. This is understond to be the policy of the American Screw Company, who make a specialty of the "taper" bodied screw, and manufacture some 4,000 varieties, and this will explain the ow prices at which American screws are being delivered now in Liverpool. A new variety of screw, now being offered to English manufacturers, has been newly adopted by Jappy Frères for France. Its peculiarity consists in this, that the bottom of the groove, or slit, in the head of the screw, instead of being traight and level, rises in the center to an apex nearly flush with the surface of the screw. This necessitates, of course, the employment of a spe cial form of driver with V-shaped edge to fit the bottom of the slit. The object is to strengthen the head of the screw, which is sometimes so much weakened by the slit as to summit of the cone sends forth a gigantic column of smoke break off under the pressure of the driver, but the proposed and fire, which is plainly visible from the city of Naples, miles distant. Near the base of the cone a second mouth has been formed, from which lava and smoke constantly issue.
"As the inclined position of the crater tends to send the ava and smoke constantly in one direction, the crater may at present be visited with comparatively little danger.'

Look to Your Fireplaces.

From what occurred the other day in Boston, according the Daily Advertiser, it is wise for residents of new houses hat they should keep close watch of the fireplaces during their first trial. The fire in the Roberts mansion on Beacon Hill, which was about three years in building, and had the immediate supervision of an architect, is an item of grave astonishment not only to the underwriters, but to the owner Two days previously a fire was started in one of the open grates for the first time, and not burning freely was dumped upon the hearth. From that moment there was a smell of moke in the apartment, when, as above noted, it was dis covered that the hearthstone rested upon a beam which ran directly across the fireplace. About three feet of this beam was burned off. Three other Boston fires from open grate are noted within a fortnight. A South End resident had an attractive soapstone fireplace, and, purchasing a pair of and irons, started an old-fashioned wood fire, to find that his fireplace was only a ventilation, and his blaze burning in behind the plastering up through his house. Another case similar was the Marlborough street-fire in October, where a single course of brick for a hearth resting upon the beams was no protection, and a marblé slab for a hearth lying upon the under floor being overheated'set the floor afire.
emedy is generally regarded her

Cost of the Yellow Fever.

Loss of life by yellow fever in the South last year is esti mated at about 15,000 persons, and of money and trade at rom $\$ 175,000,000$ to $\$ 200,000,000$-as great as the loss from the Chicago fire. But some good is likely to come out of his calamity. It is thought that henceforth quarantine regulations will be more thoroughly established than they have ever been. Apart from death and human suffering, negligence is the worst kind of political economy. Expenditure of one-twentieth part of what the fever has cost might have prevented it altogether.

The Catalpa

Professor Burrill, of the Illinois Industrial University, ays that from experiments performed at that institution, the catalpa is found to be one of the cheapest and eariicst trees to grow, and one of the most rapidly growing of our orest trees, native or introduced. Its growth has been sur passed only by the white willow and soft maple, among the various trees tested in the last eight years. It has outgrown he American elm, white ash, European larch, Osage orange and black walnut, on the same ground, and under the same reatment. It is not attacked by any insect. The young rees were set two feet by four, cut back and cultivated like corn for three years, and plowed one of the two succeed ing years. This was good management. The trees are now large enough for half to be thinned out. The average height is more than sixteen feet; they are straight and erect.

ELECTRIC ILLOMTNATION.

Y John trowrrdoe.

In the subject of electric illumination America is farbe hind Europe at present, unless there may be some great invention about to issue, with the seal of the Patent Office, which shall give her the lead. This inferiority is not alone in the number and variety of the lamps before the public, but also in the forms of dynamo-electric machines. On the continent of Europe we find several forms of the SiemensHalske machines; the Gramme machine and its different species, of which Schuckert's is a notable type; the new Gramme alternating machine, which is almost indispensable in the regular consumption of carbons used in electric lighting, and the Lontin machine. The horse power seems to be less per light with the use of the foreign machines than with the American, if we can judge from the measurements made public; and less velocity is required to run the machines, which is a great desideratum. America has not given to the world a regulator which is as efflcient as the Serrin lamp. The foreign carbons are better than those of American make, and the process of electroplating them with copper or other metals, in order to prevent their heating so far below the point of burning, has long been known in France. The Brush lamp and the Wallace lamp are the prominent lamps before the American public, and answer very well for purposes of general illumination. There are not more than a dozen establishments in America which are lighted by elcetricity, while there are hundreds on the continent. Lighting by incandescence has not hitherto been successful either by the use of carbons in receivers exhausted with air or filled with nitrogen. or with platinum or iridium wire, or platinized asbestos. The carbons disintegrate or crack after a time, and the metals fuse. Both of the above methods-that by carbons and that by incandescent wire-have been tried in Europe and have been proved to be more expensive than the use of gas.
The great attention that is being paid to the so-called di visibility of the electric light is evidenced by the number of new lamps that appear from time to time. Messrs. Siemens and Halske, the owners of the Siemens dynamo-electric machine, have patented eight forms of lamps; among the most noteworthy are the following:
Fig. 1 represents a form in which the carbons, C C, are separated by the rod, R, which is moved by means of the lower arm, A, which is set in action by the electro-magnet, E. When the current passes through the electro-magnet, E, and the carbons, C C, the rod, R, which is made of a refractory substance, thrusts the carbons apart. If the current should decrease in strength, the carbons fall together again, and the current is not broken by any similar lamp on the circuit failing to perform its function.
In Fig. 2 one carbon is set in oscillation or vibration by means of the lever arm, which is terminated by an iron cylin der which forms the movable core of the electro-magnet, E . This carbon has to vibrate merely 32 times a second to cause the appearance of a steady light at the point, P. This lamp also admits of many lights in the same circuit.
Fig. 3 represents another form of the same idea. The upper carbon falls gradually upon the lower one, which is set into vibration by means of the lever arm, A, which is set in action by the electro-magnet, E . The lower carbon moves ${ }^{\text {s }}$) quickly that the upper carbon, which is forced down merely by its own weight, cannot sympathize with it, and a small voltaic arc is therefore produced at P. The fluctuations of this arc are so rapid that they are said to produce no apparent alternation in the light. This lamp has also been invented in this country by Professor Thurston, of Philadelphia.
With the lamps above described a continuous circuit can be maintained even if one lamp should, from any cause, be extinguished, which is not the case when the Jablochkoff candle is used; for the poorly conducting medium employed in the latter prevents the re-establishment of the current when the light is extinguished. It does not appear, however, that these vibratory lamps have been put to practical tests.

A Substitute for Pens and Ink.

A German named Schwanhäuser has invented a sort of pencil which he calls a " Universal Tintenstift," which possesses all the advantages of both ink and pencils, but is quite unlike the aniline marking pencils once introduced into New York. It is deep black without containing any graphite, can be copied by a press just as copying ink can, yet does
not fade in sunlight as aniline inks do. The method of preparing the mass is as follows:
Ten pounds of the best logwood is boiled repeatedly with 100 pounds of water, ${ }^{\text {, }}$ and the decoction evaporated down to 100 pounds. This liquid is heated to boiling in a porcelain dish, and nitrate of chromium added in small quantities until the bronze precipitate that forms at first dissolves again with a deep blue-black color. It is then evaporated on a water bath to the consistency of an extract, and finely elutriated fat clay mixed in, so that there is 1 part of clay to 3 or $3 \frac{1}{2}$ parts of extract. A little gum tragacanth may be added according to the hardness desired.
It is very necessary to observe the right proportion of chromium salt to logwood extract, for an excess makes it write badly, while too little changes the solubility of the black compound. No other salt of chromium is suited to the preparation of this mass, as they are all crystalline, and on drying the crystals make it brittle.
The nitrate of chromium is prepared as follows: Dissolve 20 pounds chrome alum in 20 pounds of boiling water, and add slowly to this solution enough carbonate of soda, also in solution, to precipitate all the chromium as hydrated sesquioxide. After this bluish-green precipitate has settled the liquid is poured off and the precipitate washed until it is free from sulphates of soda and potash, as found by testing the wash water with acidified chloride of barium solution. The precipitate is brought upon a filter, and pure hot nitric acid, diluted with an equal part of water, put on slowly, so that upon boiling a long time a small excess of the oxide still remains undissolved. In this way a perfectly saturated solution of nitrate of chromium is obtained free from excess of acid, which would be very injurious to the logwood exract, producing a dirty red color.
Another advantage of using the nitrate is that no basic salts are formed when excess of acid is present, as in the case of most other chromium salts. These basic salts would pre cipitate a greater part of the coloring matter from the logwood extract.
It is claimed that it dries quickly, so that blotting paper or sand are unnecessary.
The written ink is indifferent toward caustic alkalies; dilute nitric acid colors it reddish without diminishing its inensity. It is not affected by oxalic acid, which destroys ordinary iron inks. The pieces cut off in sharpening the pencil can be thrown into water and used as ink with a common pen.

New Inventions.

An improvement in Water Gauges for Steam Boilers has been patented by Mr. Erastus B. Kunkle, of Fort Wayne, Ind. This invention consists in scrapers or cleaners formed upon the valve stem of the water cock, to free the cock from scale. The valve has a vacuum chamber at the outer end of the water cock, to prevent the escape of hot water around the valve stem.
Mr. John D. William, of Rising Sun, Ind., has patented Burglar Alarm, which is an improvement upon that form of burglar and fire alarm in which a clock mechanism is set going and made to ring a bell from the movement of a tripping device, which is released when one of a number of cords running to the various parts of a house is burned by fire or disengaged by the entrance of a burglar.
Mr. Robert W. Tavener, of West Bay City, Mich., has patented an improved Lubricator or On Cup, designed to be attached to the steam chest of a locomotive, and depending

for its automatic feed or operation upon the intermittent injection of steam into it. The cup is provided with valves for admitting steam and permitting the exit of the oil, and also for facilitating the discharge of sediment.
Mr. Wilson E. Facer, of Cleveland, Ohio, has devised an mproved Electric Gas Lighting Apparatus, which, by the simple opening and closing of an electric current, turns on and lights the gas or shuts it off. It is designed principally for lighting street lamps, but is capable of application to other purposes.

The success of the experimental researches of Odlier, Pat erson, and others, in regard to the transplanting of various organic tissues, lately led to a remarkable experiment in practical surgery. The case is reported at length in a recent number of the Lancet. A marine engineer had broken both boues of the left forearm, a little above the wrist. The arm was kept in splints for some weeks, but the bones refused to unite. Eight months elapsed before the man reached land, and then he entered the Glasgow infirmary for treatment. Three separate operations of setting the bones were performed, and all failed to secure a union. A year and a half fter the accident the man returned to hospital to have an mputation performed, the hand and lower part of the arm being useless. Although amputation was unanimously recom mended by the surgeons, Dr. Patterson wasgranted permission o try any plan he chose to save the limb, and accordingly planned the fol-
owing
"The patient was, on the 14th f September laced under the nfluence of chloroform, while at the same time a reriever dog was eing anæsthezed. Cutting down upon the ends of the fractured bone, and removing the fibrous b and which alone formed the bond of union, the rounded points were removed by the saw, and
 hole drilled
through each squared end. This process was repeated on both sides of the arm, when it was found that an interspace of about $3 / 4$ of an inch existed between the two fragments. In the meantime, one of the senior students, and a very clever manipulator, had exposed the humerus of the quadruped completely denuded of every tissue except the periosteum. The length of the bone was accurately measured ($3 / 4$ of an inch), while from half an inch beyond the end of the necessary length the periosteal covering was rapidly but carefully dissected, the bone sawn through, a hole drilled in either end obliquely, as in the bone in the arm, where it was at once placed and fitted accurately. Wires having been passed through the holes, the bones were firmly tied together. The wound was stitched with silver wire, the bone sutures coming out at each end of the incision. The entire operation was conducted under the carbolic acid spray. The arm was put up in gauze, and held in two rectangular splints.
"After the operation there was a slight tendency to sickness, which was relieved by ice. On the 15th the wound was dressed, and one or two of the stitches removed, as there were signs of tension and a slight blush around the sutures. Tincture of opium (25 minims) was given to induce sleep.
"By the 3d of November a union had taken place, and the wires were removed on the 28th of the same month. The fracture then had all the appearance of being firmly united, and the patient was dismissed, with orders to return weekly for dressing and examination. On leaving the hospital boracic lint was used as dressing: One small wound remained open for twelve months, when the dog's bone, reduced to about half its size, came away, after which the wound healed completely. Shortly after this the patient resumed his former occupation, at which he is still engaged. He remains in perfect health, and retains a very useful arm."
Dr. Patterson says that he had some hope that the strange bone might have found a new home in the man's arm; failing that, he was sure it would secure perfect alignment of and steadiness in the ulnar fragments. Should a similar case occur he would adopt the same process, still hoping that the two bones might become one.

Effects of Food upon the Bone

Experiments made by Lehmann upon young animals showed that food containing an insufficient amount of phosphates not only affects the formation of the skeleton, but has an essential influence upon its separate parts. A young pig was fed 126 days upon potatnes alone, and it had, as a result of this insufficient food, rachitis (rickets, or softening of the bone). Other pigs, from the same litter, fed upon potatoes, leached-out meat, meal, and additional phosphates, for the same length of time, had a normal skeleton. Yet even in these animals there was a difference according to the kind of phosphate added. Two that were fed on phosphate of potash had porous bones, specifically lighter than the others, which were fed upon phosphate and carbonate of lime.

Good Sausages.-The following is a time-honored recipe of excellence which, at this season of the year, may be found useful: For 30 lbs ., of meat, chopped, add $1 / 2 \mathrm{lb}$. fine salt, $21 / 2$ ozs. of pepper, and 2 teacups of powdered sage, sifted.

TBE MANOFACTURE OF SOFT FELT HATS.
Before the general introduction of machinery into the trade, the various processes involved in making hats, from the forming of the bodies to the trimming and lining of the finished article, were performed exclusively by manual labor Then, the manufacture of a hat was a slow and
tedious operation, requiring a large amount of expensive, tedious operation, requiring a large amount of expensive,
skilled labor, thus making a good fur hat a luxury entirely skilled labor, thus making a good fur hat a luxury entirely out of the reach of the laboring classes. Now, by the use of efficient machinery, the process is short and the cost reduced to a small perce the handmade article.
The finest quality of felt is made from the fur of small soft haired animals, especially the Russian hare or cony, the fur of which is imported into this country in immense quantities. It is shaved close to the pelt in order that the hair may be as long as possible, and shipped to the hat formers in small bundles of a few pounds weight each.
The quality of felt desired being determined upon, various grades of fur are thrown together and passed through a " mixer" as it is technically called. The fur is fed into this machine by an attendant, and is brought in contact with a toothed cylinder, revolving rapidly, which tosses it into a large box covering the machine, and thoroughly, mixes the different qualities. It still contains, however, a great many impurities, bits of pelt, and matted fur, which are to be removed by "blowing." The "blowers" are contained in a long wooden case having a cover of fine wire netting, in order to allow the dust to escape. The mixed fur is fed between two rollers upon a cylindrical picker, which, making several thousand revolutions a minute, throws the heavy impurities down upon a screen and sends the light fur up in the cover, from which it falls upon a moving apron only to be delivered to another pair of rollers, when the operation is repeated. Each case contains several blowers, and when the fur finally emerges, it is perfectly uniform and exceedingly light and soft. It is now ready to be made into hat bodies, and is carefully separated by weighing into equal amounts, each of which is sufficient for one hat.
The forming machines consist of a large sheet copper cone, two feet long, with a hemispherical top, pierced full of small holes, and standing upon a slowly revolving circular table. This cone is covered by a hinged case of the same shape, but with an open top and of such size as to leave a space between it and the cone. The fur, falling through the opening, is sucked tightly down upon the cone by a powerful exhaust far under the revolving table. The case is thrown open, cloths wrapped around the felt body, and a tight fitting perforated tin case placed over the cone. The whole thing is now immersed for about two minutes in a tank of boiling water, which "felts" the fur sufficiently to allow the body to be stripped off and wrung out, after which it is folded and dried. At this stage the "form" is a long funnel shaped bag, thin and very slightly tenacious. These are delivered the hat manufacturers, who turn out the finished article.
The first process in these establishments is to felt the bodies by manipulation, which shrinks the felt one half, doubłes its thickness and makes it tough and resisting. Six men stand around a hexagonal table called a "battery," rolling and working the bodies until they have acquired the proper dimensions, frequently immersing them in a bath of boiling water set in the middle of the table. They are then placed in a vat of weak vitriol, which draws the fibers of hair together and makes the felt compact. After remaining some time in this bath, they are dried and the thin rough edges trimmed off.
That part which is to form the brim of the hat must now be stiffened. This is done by dipping it carefully into a solution of shellac and soda, afterward passing through a pair of wooden rollers which remove the superfluous liquid. While in this moist condition the body is machine blocked, which gives the general shape of the hat. The blocking machines consist of a frame holding a set of radial arms over a movable upright, which is capped by a circle of radiating pieces and worked by a treadle. The body being placed upon this block, is pressed into the upper mould, the operator changing its position until it is of the proper shape. Separate machines are used for blocking the crown and brim.

They are now colored by immersing for a short time in a vat of hot dye and then washed thoroughly in cold water. After being dried, each body is fitted tightly upon a felt covered block, which is then placed upon a slowly revolving spindle. The attendant fits a cone of fine sand paper upon a tapering plug, sets it in rapid revolution and presses the projecting ends and irregularities of the hair and gives the belt a smooth, even appearance. In this operation as in blocking the body and brim are " pounced" separately, the machines differing slightly in construction. The hats are now taken by the finishers, who block them and give the perfect shape and smoothness of felt by ironing and hard pouncing. The linings and trimmings are sewed on by girls, and the hats are ready for market.

England Taking a Hint.

The British Trade Journal thinks " the late Paris Exhibition has developed some startling proofs of the ability of Continental and American rivals to produce articles equal to and in some cases surpassing those produced by this country, notwithstanding even that such manufactures have been regarded as our own specialties, and have hitherto been
brought back with them the knowledge that we have no inigniticant rivals. Both master and workmen have been too prone to consider that 'a parcel of foreigners' could never turn out anything even approaching English goods; but ou eyes are being rapidly opened, and if the lesson is taken to heart the Paris Exhibition may partly be credited with hav

New Agricultural Inventions.

Messrs. Thomas J. Lindsay, David A. Lindsay, and Wil liam J. Miner, of Windfall, Indiana, have invented an improved combined Seed Drill and Corn Planter for drilling seed or planting corn in two or more rows at once. The machine may be used for drilling or for planting in hills at will, without changing the parts.
Mr. Curtis H. Warrington, of West Chester, Pa., has devised an improved Machine for Marking Land, which is so constructed that it may be readily adjusted to make the marks at any desired distance apart, which will allow the plows to be readily raised from the ground for convenienc in turning around and in passing from place to place.
Mr. David Englar, Jr., of Avondale, Md., has devised an mproved Guano Distributer, which consists in a cam-grooved cylinder, located and revolving in the hopper of the ma chine, and a clearer and discharge regulator, which project up through the bottom of the hopper, and are reciprocated horizontally as they follow the cam groove. The guano is removed from the cam groove by means of the clearer, and removed from the cam groove by means of the clearer, and
falls into the tube or spout, which conducts it into the furfalls into the tube or spout, whic
ow in rear of the hoe or shovel.
Mr. Washington H. Tucker, of Stone Fort, Ill., has de vised an improved Trough for Feeding Hogs with any de sired kind of feed, and which is so constructed as to preven the hogs from wasting their food, from getting into the trough with their feet, or interfering with each other while Mr
Mr. David F. Hacker, of Kempton, Ind., has patented an improved Horse Hay Rake, which is automatic in its action, the teeth being raised by the wheels through a movable ratchet sleeve placed on the axle.
An improvement in the class of Force-feed Seeders and
Planters having a gauge or regulator for increasing or diminishing the flow of seed at will, has been patented by Mr Alonzo Runyan, of Catawba, O. In this machine the regulator can be easily set to any desired amount of feed, and it always indicates the amount of seed the wheel is delivering. An improvement in Hay Elevators has been patented by Mr. Joseph W. Higgs, of Sharon, Pa. The object of this invention is to furnish a device for moving hay from the wagon to the mow in the barns. It is simple in construc tion, convenient and reliable.

Machinery.

The never-ending inventiou of mechanical and other contrivances for minimizing manual labor leads to the suppo sition that, by-and-by, the latter will be dispensed with alto gether, and that human existence will become a state of sinecurism. If this consummation were ever to be obtained, however, it is pretty certain that life would become unendu rable, and that mankind would soon cease to exist altogether We have no apprehensions, says an English writer in the Foreman Engineer and Draughtsman, as to the arrival of either of the contingencies in question. Machinery will ever be the handmaid of humanity, but never its destroyer, and every real improvement made therein being only a new
application of the forces of Nature, must be advantageous to the human family. No machine of any kind can possibly create power, and no combination of wheels, pinions, levers, belts, or cranks, however ingeniously arranged, will raise a single foot pound of power, or even one ounce. Suppose a watch be taken by way of illustration. In order to set it in action the spring must be bent and contracted by means of a key, and this imparts power from the muscles of the fingers. When the spring has given off the muscular force put into it the wheels and hands of the timekeeper come to a standstill. Again, in winding up an eight day clock you lift a weight of, say, 6 pounds, through 4 feet. In doing so you perform 24 foot pounds of muscular power. These 24 foot pounds will serve the clock eight days, and unless more power be applied the machinery will stop. The same principle applies to mecharical contrivances of every kind, whether im pelled by steam or by sentient bone and muscle. In fact all work is derived from sources of Nature, which in turn have
derived their present existence and form from the workings of Nature, or, to be more explicit and exact, from the heat of the sun, which has developed and is developing all the natural laws by which we are surrounded. There is no fear, then, of our getting beyond Nature, nor of machinery of any kind ever adding one iota to the stock of power, latent or active, in Nature's arcana. We may modify and adapt, but we can neither create nor destroy, and may rest assured,
therefore, that all discoveries in science and in mechanism will tend eventually to the good of mankind and the glory of the Creator of all things.

New Metals.

In a communication to the Paris Académie des Sciences read on the 14th of October, M. Delafontaine announced the discovery of the oxide of another new metal, to which he has given the name of Philippium (Pp), in honor of M. Philippe Plantamour, of Geneva, a friend and pupil of Berze-
lius. M. Delafontaine describes the new element as forming a lius. M. Detafontaine describes the new element as forming a
and assuming provisionally that the philippia obtained is in he state of protoxide, its equivalent would be 90 and 95. Its concentrated solution examined with the spectroscope showed a rather broad and very intense magnificent characteristic absorption band in the indigo.
On the 28th of the same month the same gentleman made known to the Academy another new metal, which he calls Decipium, found like yttrium and its cogeners in the samarskite and gadolinitefrom the United States. At present very ittle is known about decipium, but its oxide is white, while, as before remarked, that of philippium is yellow. In giving the chemical equivalents of some of these new metals of the same group, such as yttrium, terpium, philippium, and decipium, M. Dumas remarked that chemists find themselves in the presence of new bodies whose series offer some gaps, but if researches are continued we shall soon have gaps, but if researches are cont
more precise and complete data.

Is Science Benevolent?

Faraday had an idea, it is said, that it would be well if he secret of the decomposition of water were not discovered, as the power so gained might not be wisely used; and though the story may be nonsense, any power that, requiring skill and self-restraint for its use, was yet placed in the hands of all men would probably not be beneficial-would certainly not tend to that elevation in comfort which the popular mind permanently expects from science. Imagine he power of firing water discovered, made public from ex cellent motives, as in a patriotic war, and so becoming the property of a world in which one man in a thousand is probably a crypto-lunatic, anxious, above all things, for a supreme sensation. A discovery, quite possible, of the means of dissolving brick or stone within a definite area into pulp would materially interfere with the security of all property, as would for a time the realization of the Middle Age alchemists' dream. All these discoveries would, of course, to do mischief, require the aid of human malignity, in a consciously malignant state, but others are quite con-
eivable over which will would have no control. Suppose ceivable over which will would have no control. Suppose, for example, Sir G. Airey were to discover that a change had occurred in space, which within, say, a century or two would affect our universe, and inevitably draw the world ut of its orbit, thereby pulverizing it to atoms; the effec of that discovery, fatal as it would be to foresight, to pa riotism, to that long series of good impulses which have or their unconscious motor the belief that the human race will last, could be nothing but evil. Half the motives to energy and to self-restraint would disappear at once, while the temptation to use up the world, its forests, coal mines, and resources generally, would be enormously exaggerated. Humanity would realize its mortality, and make the besthat is, the worst-of its time. Not one of these suggestions, however, or many other much better ones which might be ffered, will come in the least home to the minds of men taught by a few years' experience that science is kind, that knowledge is beneficial, and that every victory over the forces of nature tends to the comfort of man. - The Spectator.

The Volatile 011 of Hops.

If steam is passed through hops it carries away a substance which, when condensed, forms an oil that swims on water and has been called hop oil. According to Kühnemann, this oil is not a simple hydrocarbon, but a mixture of a hydrocarbon with several other compounds of oxygen, hydroen, and carbon. If the so-called hop oil is treated with metallic sodium, the sodium dissolves in the oil without any great evolution of heat, and a substance is produced which is for the greater part soluble in absolute alcohol. If the oil is made from hops that have been treated with sulphur, a strong odor of sulphureted hydrogen is evolved upon the addition of phosphoric or other acids, and can be proved to be such by its reaction with lead test papers. By this reac ion sulphured hops can easily be detected. Further re searches have shown that this hop oil is a very complicated mixture of a hydrocarbon with oxygen oils. The specific gravity and boiling point of this hydrocarbon is still uncer tain, depending upon the purity. The oxygenized bodies separated by sodium have the properties both of alcohols and acids. The product obtained by distillation in vapor of water varies in mixture and composition according to the quality and age of the hops very greatly. Kühnemann is engaged in determining the boiling point, vapor density, and specific gravity of the oxygenized compounds, after which he will make an ultimate analysis to determine their for mulas.-Poly. Notizblatt.

Toad Poisoning.

The following singular account of the action of toad poisoning on the human body, is reported in the last num er of the London Chemist:
A child of six years old followed a large toad on a hot ummer's day, throwing stones at it. Suddenly he felt that the animal had spurted some moisture into his eye. There suddenly set in a slight pain and spasmodic twitching of the slightly injected eye, but two hours after coma, jumping sight, desire to bite, a dread of food and drink, constipation, abundant urine, great agitation manifested themselves, followed on the sixth day by sickness, apathy, and a kind of stupor, but with a regular pulse. Some days later, having become comparatively quiet, the boy left his bed; his eyes are injected, the skin dry, the pulse free from fever. He howls and behaves himself like a madman, sinks into imbe cility and speechlessness, from which condition he never rallies.

TO INVENTORS.

An experience of more than thirty years, and the preparation of not less than one hundred thousand applicaderstand the laws and practice on both continents, and oo possess unequaled faclilities for procuring patents
overywhere. In addition to our facilities for preparing everywhere. In adition to our faclities for preparing
drawings and specifications quickly, the applicant can rest assured that his case will be flled in the Patent office without delay Every application, in which the fees have been paid, is sent complete-including the model-
to the Patent 0 fflce the same day the papers are signed the Patent offlee the same dail so there is no delay in aling the case, a complaint we often hear from other sources. Another advantage to the inventor in securing Agency, it insures a special notice of the invention in the Scientific american, which publication often acture of the article. A synopsis of the patent laws in foreign countries may be found on another page, and persons contemplating the securing of patents abroad are invited to write to this office for prices, and our perfected facilities for conducting the business.
Address MUNN \& CO., offle ScIENTIFIC AM ERICAN.

承siness and ecrsonal.

The Chargefor Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Advertisements must be received at mublication office as early as Thursday morning to appear in next issue.

Jarvis Patent Boiler Setting, same principle as the Siemens process for making steel: burns screeninge
ithout blower, and all kinds of waste fuel. A. F Upton, Agent, 43 Congress St., Boston, Mass.
Valves and Hydrants, warranted to give perfect satis New York, December 25, 1878. To the patrons of Luricene: In wishing you the compliments of the season. we belleve the most acceptable offering we can make
will be lower prices for the coming year. The unpreceented success which has attended the introduction and sale of Lubricene, together with our increased facilities or manufacturing. warrants us in reducing the price, on the 1 st January. 1879 , to 37 c . per lb. on quantities over
100 lbs ., and 35 c . per lb. on less quantities. We shall also e prepared to furnish Machinery and Cylinder Oils, Gear Grease, etc., at lowest market prices. Thankful for favors of past years, and solicititing a continuance of
same, we remain, yours respectfully, R. J. Chard, 134 same, we rem
Maiden Lane.
Wanted.-Partner with $\$ 15,000$ to $\$ 25,000$, to take one ry and Engine Works located in Central Ohio. Tools patterns, buildings, and location first-class. A good opening for a good man. Address, with full name and
references, Ohio Manufacturer, Box 1059 , Mt. Vernon, \mathbf{O}. references, Ohio Manufacturer, Box 1059 , Mt. Vernon, 0 .
Wanted.-A Foreman for an Iron Foundry, experi-Wanted.-A Foreman for an Iron Foundry, experienced in fine machinery castings, with references as to Mass.
Nickel Plating.-A white deposit guaranteed by using
our material. Condit, Hanson \& Van Winkle, Newark, N.J. The Lambertville Iron Works Lambertville N. build superior Engines and Boilers at bottom prices.
Empire Gum Core Packing, Soap Stone Packing, Piston Packing ; all kinds. Greene, Tweed \& Co., 18 Park
$1,0002 \mathrm{~d}$ hand machines for sale. Send stamp for deBevins \& Co.'s Hydraulic Elevator Great power mplicity safety, economy,durability. 94 Liberty St.N.Y.
Hydraulic Elevators for private honses, hotels, and
public buildings. Burdon Iron Works, Brooklyn, N. Y. Galland \& Co.'s improved Hydraulic Elevators. Office 206 Broadway, N.Y., (Evening Post Building, room 22.) Iron, Brass, and Steel Wire. Needle pointed English
Steel Wire, for all purposes. W. Crabb, Newark, N. J. For Fire or Power Pumps, address the Gould's Manf. Co., Seneca Falls, N. Y., or 15 Park Pl., N. Y. city.
Brush Electric Light.- 20 lights from one machine. The Hancock Inspirator received a gold medal at the old Colony Railroad (who have twenty-three machines in constant use) have just given it their unquali-
fled indorsement, as the cheapest and most effective fled indorsement, as the cheapest and most effective
feeder ever used on their locomotives. Those interfeeder ever used on their locomotives. Those inter-
ested are referred to their letter of recommendation, which may be found in our advertising columns.
J. C. Hoadley, Consulting Engineer and Mechanical and Scientifc Expert, Lawrence, Mass.
The Lathes, Planers, Drills, and other Tools, new and second-hand, of the Wood $\&$ Light Machine Company
Worcester, are to be sold out very low by the George
Place Machinery Agency, 121 Chambers St., New York.
For the best advertising at lowest prices in Scientific, Mechanical, and other Newspapers, write to E. N. Fresh-
man \& Bros., Advertising Agents, 186 W.4th St., Cin., 0. H. Prentiss \& Co., 14 Dey St., N. Y., Manufs. Taps,

Presses, Dies, and Tools for working Sneet Metals, etc.
Fruit and other Can Tools. Bliss \& Williams, Brooklyn, Fruit and other Can Tools. Bliss
Rubber Hose, Suction Hose, Steam. Hose, and Linen Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel -other kinds imitations and inferior. Caution--Our name is stamped in fullo on all our best
standard Belting, Packing, and Hose. Buy that only standard Belting, Packing, and Hose. Buy that only.
The best is the cheapest. New York Belting and Pack The best is the cheapest. New York Be
ing Company, 37 and 38 Park Row. N. Y.
Nickel Plating.-Wenzel's Patent Perforated Carbon Box Anode for holding Grain Nickel. A. C. Wenzel, 114
Center St., New York City.

Bolt Forging Machine \&

Send for circulars. Forsaith \& Co., Manchester a specialty For Solid Wrought Iron Beams, etc.. see advertise-
ment. Address Union Iron Mills, Pittsburgh Pa ment. Address Union Iron Mills, Pittsburgh, Pa., for
lithograph, etc.
Manufacturers of Improved Goods who desire to build
up a lucrative foreign trade, will do well to insert a well displayed advertisement in the scientific Americay Export Edition. This paper has a very large foreigi
circulation.

Two fine Astronomical Telescopes, 3 in. and 7 in., bs
arst-class English maker, cheap. I. Ramsden, Phila.
Gold Chronòmeter Watch, by first-class English mar: cost 8260 , price 8135;' latest patented improvement
Rand Fire Chin Li,
Hand Fire Engines, Lift and Force Pumps, for fire and all other purposes. Address Rumsey \& Co.,
Falls, N.Y., and 73 Liberty St., N. Y. city, U S.A.
For Town and Village use, comb'd Hand Fire Engine
Hose Carriage, $\$ \$ 50$. Forsaith \& Co.. Manchester, N.
Women's Hospital 49th St and 4th Ave New Yob Women's Maiden Lane, New York. Sir:-The Hair Felt Covering with Asbestos Lining, which you put on the steam pipes
and boiler domes of the Women's Hospital, and the As and boiler domes of the Women's Hospital, and the A bestos Cement Felting on the three hot water boilers,
are giving great satisfaction, and the result is a grea are giving great satisfaction, and the result is a grea rooms is very much reduced, so much so, that in cold
weather we are rather cold. The saving of coal is 331 1-8 per cent by actual measurement. The Cement Covering is put on in a superior manner, and is the neatest boile
or pipe covering I have yet seen. Respectfully, Duncan McIntyre, Englineer.
Punching Presses, Drop Hammers, andDies for work ing Metals,
town, Conn.
Hydraulic Presses and Jacks, new and second hand E. Lyon \& Co., 470 Grand St., N. Y
24×48 in. Wright's Automatic Engine, with 16 foo band wheel, 30 in . face, for sale. Price low. Atla
Works, Indianapolis, Ind.
Inventor Mo
The Lawrence Engine is the best. See ad. page 29 .
Sheet Metal Presses, Ferracute Co., Bridgeton, N. J.
Special Planers for Jointing and Surfacing, Band and Scroll Saws, Universal Wood-workers, etc., manufac
tured by Bentel, Margedant \& Co., Hamilton, Ohio. Boston Blower Co., Boston, Mass. Blowers, Exhaus Fans, Hot Blast Apparatus. All parts interchangeable
material and workmanship warranted the best. Writ for particulars.
Diamond Tools. J. Dickinson, 64 Nassau St., N. Y. Elevators, Freight and Passenger, Shafting, Pulley Holly System of Water Supply and Fire Protection fo Cities and Villages. See advertisement in scientiflc

Diamond Self-clamp Paper Cutter and Bookbinder achinery. Howard Iron Works, Buffalo, N. Y.
Mellen,Williams \& Co., 57 Kilby St.,Boston,Mass. Wie-
zand Sectional Steam Boiler. Atna Rocking Grate Bar. Fine Tap and Dies for Jewelers, Dentists, and M inists, in cases. Pratt \& Whitney Co., Hartford, Conn Improved Steel Castings; stiff and durable; as sof and easily worked as wrought iron ; tensile strength not
less than $65,000 \mathrm{lbs}$. to sq. in. Circulars free. Pittsburg less than 65,000 lbs. to sq. in. Circulars
Steel Casting Company, Pittsburg, Pa.
Sir Henry Halford says Vanity Fair Smoking Tobacc Wh equal. Received highest award at Paris, 1878. Injector, worked by a single motion of a lever. For Shafts, Pulleys, or Hangers, call a

The Scientific American Export Edition is pub-
lished monthly, about the 15 th of each month. Every lished monthly, about the 15th of each month. Every
number comprises most of the plates of the four precednumber comprises most of the plates of the four preced
ing weekly numbers of the ScIENTIFIC AM ERICAN, with
other appropriate contents, business announcement other appropriate contents, business announcements,
etc. It forms a large and splendid periodical of nearly one hundred quarto pages, each number illustrated with about one hundred engravings. It is a complete recor
of American progress in the arts.

Hilder Muriss

(1) F. H. asks: 1. Does painting the trunk or stem of fruit or shade trees with coal tar harm seriously injure the tree. lt 18 a common practice, how ever, to bind the lower part of the trunk, from 10 to 12 inches below the surface of the ground to 3 or 4 feet
above, with well dried, tarred paper, to prevent the encroachments of mice and insects. 2. How, and on and which is the easiest and best, also the best tim thercfor? A. The grapevine may be grafted in the cleft marner if treated as follows: cut the scions during the winter or early spring, kecping them partially buried in a cool damp cellar till wanted. As soon as the leaves of the old vine or stock are fully expanded, and al danger of bleeding is past, cut it off smoothly below the
surface of the ground, and split the stock and insert one surface of the ground, and split the stock and insert one
or two scions in the usual manner, binding the cleft well or two scions in the usual manner, binding the cleft well
together if it does not close firmly. Draw the soil care fully over the whole, leaving two or three buds of the strong native grape, the graft will frequently grow 10 or 15 feet during the first season and yield a fair crop the second year. The vine may also be grafted with good but abore ground it should not be attempted, on ac count of bleeding, until the leaves are nearly expanded. 3. Is it permitted for any person in the United States to make for his own use (strictly), without paying taxe thereon, whisky, wine, or beer, in the same way that
make our own coffee or tea? A. Yes. 4. What is a good book, pamphlet, or paper, treating on insects? A. Insects Injurious to Vegetation," by T. W. Harris.
(2) J. R. C. writes: I want to rework stale butter on a large scale, to remove the bad odor and give it a desirable or natural color, if in so doing I will not
be under the necessity of using anything injurious to health. -A. The following mode of treating rancid butter bas been recommended: The butter is frrs well agistanding it soon separates from salt is extracted. On again agitated for some time with an equal volume of fresh hot water and a few onnces to the pound of fresh It is freed from charcoal by straining through a fine
cloth while still hot, and from the water by the differ-
ence in specific pravity. The butter when cold is well washed with fresh milk to which a little sulphite of lime has been added, and then reworked, salted, and colored
with a small quantity of annatto. As the latter is not infrequently adulterated with iron oxide and vermilion well to test it for these before using it in butter.
(3) C. D. asks: 1 . What is the significance of the picture, which appears in most almanacs, the zodiac, and lines drawn from the signs to different members of his bodys A. It has no significance now In the days of astrology the several parts of the human ody were thought to be influenced by or under the igns with which the members are connected. This with special reference to life, death, health, and disease acuum.
(4) D. V. writes: 1. I have a quantity of hemical writing fluid; have had it two years and it has the addition of small quantities of tannic acid or extract of nutyalls, and logwood extract. 2. I am in a counry place apart from machine shops. How can I draw
copper wire No. 22 finer and make my own tools? A. Take a well annealed piece of good tool steel $1 / 8$ inch hick, drill in it several holes of the size of the smallest wire to be drawn, make them all tapering, and enlarge with a reamer so that the holes will vary regularly from
the size of No. 22 wire down to that of the smallest wire to be drawn. Harden the plate, polish the holes, reduce the size of the end of the wire, and draw it through the several holes in succession, greasing it before each 3. I have made a pair of telephones, mouthpiece as per your engravings,diaphragm of very thin tin. My neighbor
wants me to put it up for wants me to put it up for his use between house and
store. Shall I do it,that is, am I infringing on any patent by so doing? A. See "Rights of Investigators" p. 128, 39, of the ScIE
(5) A. W. D. asks bow to lay out and cut
belt holes for a quarter turn belt, said belt to run from
one shaft throngh floor on to another shaft, at right one shaft throngh floor on to another shaft, at right
angles with the first, both supposed to be level. A. To angles with the first, both supposed to be level. A. To
make holes through the floors for the belts, lay out on

plumb line from each side of the center of face of upper pulley to the floor, and from the point, c, thus found, upper shaft, and from the point, a, in the distance, $c d$ parallel with the lower shaft. These points indicate he places where the holes should be cut
(6) W. C. H., Jr., asks: 1. How far will a telephone like that described in the Scientific Ameri can Supplement, No. 142, p. 2260, Fig. 4, carry? A.
With a good line, 20 miles. 2. What amount of No. 38 covered wire will give the bestresults? A. $3 / 4$ ounce. 3
How can I make a cheap and simple electric lamp, one How can I make a cheap and simple electric lamp, one
or two burners? A. See ScIENTIFIC American Surpie. or two burners
(7) J. A. C. writes: The following method of laying off the sweep for a pair of rolling mill rolls may be of interest to your readers, the object being to
give the proper proportion of shrinkage to each member give the proper proportion of shrinkage to each member
of the roll pattern. The exact configuration of the roll when finished is laid off on a piece of flat wood, and if the working part of the roll is 6 feet long, as in the
sketch, the shrinkage, being usually $1 /$ of an inch to footch, would amount to $3 / 4$ of an inch in all; this being the case, a pair of trams are set to 6 feet and $\% / 4$ of an inch, and oneleg placed at A, and the other at B, and the arc of a circle, B D, described. From the point where
this arc intersects a line drawn down from F to C,

ine is drawn to A, making the line, D A, which ana
represent the edge of the sweep to be made. Similarl to the roll are brought down until they intersect the to the roll are brought down until they intersect the
line, D A, and on this line are erected the various members of the roll. Now, it follows that if the distance $D A$, is the amount of the shrinkage longer than the true length of the finished roll, namely. 6 feet, then every intersection of the line, D A, will be proportionally wider apart on the sweep than on the roll itself; con sequently the roll swept up by such a template or sweep will, when cast, be the exact length from each distinctive point to the otber, as well as the exact length
over all.
(8) C. H. H. asks: 1. How shall I fix a hort length-1/2 inch-of platinum wire between the
ends of my battery wires? I wish to heat it. A. Wind it two or three times around each wire, or split the ends of the hattery wires, and after inserting the platinum, press the ends together. 2. How many $1 / 2$ pint bichromate of potash (bottle) batteries will be necessary to
heat such a piece of platinum wires A. If you use a Grenet battery, and a fine platinum, one cell will answer. 3. How can I insulate a brass ring, so that a curmagnet? A. Glase thealing wax rubber, ivory, and hard wood are good insulators. 4. Would it be possible to run a dynamo-electric machine for electric light, by bringing the current from the light back. to an engine like Edison's "Harmonic" engine? A. No.
(9) G. H. I. asks: Would heat or sound pass through a vacuum, that is, assuming a perfect pass through a vacuom, that is, assuming
vacuum? A. Heat would, sound would not.
(10) E. O. C.-For a definition of sound p. 347, vol. 39, reply to F. H. P.
(11) M. A. G. asks: 1. What is the mean ing of the word anthracite? A. Literally a burning coal
stone. 2. Is anthracite coal found in any other place stone. 2. Is anthracite coal found in any other place
but Pennsylvania? A. Anthracite is found in Pennsylvania, Rhode Island, and South Wales. It is used for vania, Rhode Island, and South Wales. It is used or and Wales. 3. Where was iron first made with anthracite coal, and who was patentee of the process? A. In
1838 and 1839 Thomas made the first experiment on 1838 and 1839 Thomas made the first exper
melting iron with anthracite in Pittsville, Pa.
Minerals, etc.-Specimens have been reeived from the following correspondents, and examined, with the results stated:
C. E. B. -It is a shale containing much iron sulphide and a little organic matter.-C. A. R.-No. 1 contains C. \& H.-It is a dolerite or trap rock, of little value. L. C.-It is an impure chrysocolla-a silicate of copper It contains about $9 \cdot 5$ per cent of copper-no silver gold.
Any numbers of the Scientific American SuppleMENT referred to in these columns may be had at this office. Price 10 cents each

COMMONICATIONS RECEIVED

The Editor of the Scientific American acknowledges with much pleasure the receipt of orignal
contributions on the following subjects:
On United States Postal Service. By H. A. S.
[OFFICIAL
INDEX OF INVENTIONS

Letters Patent o

 Granted in the Week Ending November 12, 1878, AND EACH BEARING THAT DATE. [Those marked (\mathbf{r}) are reissued patents.]A complete copy of any patent in the annexed list, including both the specifications and drawings, will be furnished from this office for one dollar. In ordering, and remit to Munn \& Co., 37 Park Row, New York city. Alarm register, T. Vosburg
nimal poke, F. C. Whiley
Auger bits, manufacture of, J. S..........
Ax wase, manufacturing wagn, T. Gras
${ }^{\text {Bag holder, J. B. Brown... }}$
Bale tie, cotton, G. A. Seaver (r)
Barrel stave, F, G.
Barrel stave, F. G. Atkinson...................
Barrel, etc., counter swinger, J. A. Westlake Bird cage, A. E. Mook (r).

Boiler, steam, T. C. Joy

Boiler, steam, L. Knight.
Boilers, gauge cock for steam, II. R. Morse
Boot and shoe sole trimmer and
Boot and shoe, pulling ofr, Peckham \& McKitrick
Boot and shoe heel stiffener former
Bottle stopper fastener, J. Bryan ..
Bracelet, spring, Young \& Keer
Bricks and
Bridle bit, w. S. Mitchell..
Brush block borer, A. Nawadny
Buckles to straps, securing, C.W. White (r)..
Cabinet, kitchen,
Car coupling. H. H. Potter.
Cars, heating, W. C. Baker.
Car platform, railway, P. Hien
Cartridge weigher, M. McBride.
Casting cranks, E. A.L. R.
Casting cranks, E. A.I. Roberts..
Casting stove leg attachments,
Cement, etc., for walls, etc., E. Meyer
Centriugal machine, D. M. Weston (r)
Charin
Chain machine, Fitzpatrick \& Schinneller (r)
Chair and treadle power,J. B. Underwood
Chair, rocking, A. A. Halladay
Churn, McBrayer \& Thamas..................
Churn and washing machine, G. B. Richards.
Cloaks, stand for showing, P. H. O'Har
Clock dial, H. J. \& W. D. Davies......
Clock dial, H. J. \& W. D. Davies.....
Clothes line stretcher, w. T. Keefer
Cothes lue stretcher, W. . K.
Cock, gauge, E. B. Kunkle
Coffe, cocoa, etc., drier. S. Beaven..
Coin holder, o. S. Harmon
Crocheter for making looped fabric
Curtain roller, Nesbitt \& Anderson.
Curtain cohor, E. Kimball........
Desk, schel,
Dish, fruit vend ers', G. O. Col
Dish, fruit venders', G. O. Cole
Drills, gearing for grain, c. Perrin.
Engine, steam, C. H. Burton
Engine, wind, J. Cook........
Engine, wind, D. C. Walling
Faucet hole bushing, S. R. Thompzon (r)
Fence, P. Lane
Filter, reversible, E. C. Houghton..
Filtering apparatu, L. A. Enzinger.
Firearm, breeh-loading, J. Rupertus.
FYre escape. A. Ochsner
Fire escape, D. Ottinger

Fire extinguisher, automatic J. A. Miller, Jr ... 209,90, 200

Flour, manufacturing, s. M. Brua
Flower pot, J. A. Conway.
Furnace, tire heating, \mathbf{A}. Doll.....
Furnsee smoke consumer W. M. Kirby Game table, W. M. Lloyd Gas burnor, electric, \mathbf{C}. H. Hinds
Gate, water, Giovannini $\&$ Bennerscheld
Goblet or cup cover, H. H. С. Arnold.
Grain separator, Harvey \& Mitchell.
Graln shelter, Nisbet \& Vint.
rave shield and , Bennett , S . S. Smick.
Han, masaziner, G. A. Coulter.
Hams, preparing boned, A. Warner
Hand rest, G.C. Henning
Harrow, C. B. Tompkins
Harrow and cultivator, A. McCurley
Harvester rake, A. A. Miller
Hat, shade, etc., M. Affel
Hat sweat band. Corey \& Charmbury
Hat sweat leather, G. H. Dimond ..
Hat sweat leather, G. H. Dimond
Hoe, cotton, E. H. Round, D. s. Frenc..................
Hog cholera comporent
Hoisting cages, safety attachment, C. W. Lane Horse collar former, L. Long
Horse toe weiglit, Smith, Matson \& Martin..... Horseshoe nail maker, Whysall, Jr., \& Merr
Hose, attaching handles to, C. Callahan.... Hose pipe, textlie fabric, c. Callahan Hydrocarbons with air, mixing, F. C. Mensing
Ice cream measure and mould, W. Clewell Jelly glass, J. J. Johnston
Jewel box, E. H. Zoepfel.
Lamp reservoir air ven
satch, F. Kell..............
Leather stuffing composition, Dewees \& Green
Letter and number for signs, J. A. Bruce...
Life boats, etc., launching. J. A. Stockwell.
Lighting device, pocket, P. B. Tyler et al. (r)
iquid drawe
Log turner, S. W. \& M. L. Gat
shuttle box motion, L. J. Masterson. Mail crane clamp, A. V. Lunger Mill for reducing grain, roller, L. Nemelka
Mi, paint, W. R. Are
Nap or plush goods, T. Goodall
Nut lock, J. T. Parks
Ore washer, T. T. Allen.
ershoe, sandal, or boot, C. E. Town
Padking deep wells, Fowler \& Mor
Pheel, steering. C. Krebs
Palette for testing olls, H. Rouaix
Paper tube machine, A. G. Batchelder
Peg float, A. Whittemore..........
Pen, fountain, J. Ayers
Minororte pedal, A. A. Rheut
Picture frame. A. Komp.
Picture frame, H. Pattber
Pictures, producing transfer, Palm \& Fechtele
lanter, corn, J. H. Woodgate.
Plow, A. Goodyea
Plow, J. A. Smith
Plow attachment, M. \& D. Hain
ost hole digger and transplanter, WD. Printer and recorder, ticket, Moss, Smith \& Hill Printing press, ticket, T. B. Jefrery Rallway rall, L. Leypoldt . Raker and stacker, hay, R. B. Eubank, Jr

efrigerator A, 1 r coller, Holden \& Bym

Refrigerator, A. Axt.....
Rein attachment, check, G. B. Thomson
ein holder, J.
Roofing for buildings, J. Macarthy
Roofng, sheet metal maker, w. S. Bel
Roofng material, T. New...
Aesh pastener, W. Johnson.
Sash fastener. W. Winke
saw, C. W. Hubbard
Saw fling machine, D. K. Allingto crew cutting die, 0
Sewing machine, W. W. Well
sewing mashine saws, clamp for, J. G. Lettelie
Sewing machine shuttle race, Fair \& Hinze Sod cutter, Eddy \& Kasson
Speaking and signaling apparatus, C. Heisler Spinning mule automatic clearer, S. Mock Spring for vehicles, plat
Stamp, ore, s. Kendall.
tamp, perforating, H. H. Norring
Stamp, revolving pocket hand, W. H. Keeler. Steering apparatus, steam, S. G. Mart still, oll, \mathbf{o}. Tilton
tocking supporter and clasp, C. C. Shelby Stove. cooking, W. A. Greene
Stove handle, J. M. Harper.
Stove, heating, L. Fagin.....
Table, folding, J. B. Terry
Tag holder, McMurray \& Good
Tanks, etc., valve for water, H. H. Craigie Tanks, swing pipe for water, J. Cantelo. Tension indicator, C. Huston
Tether, R. Warlow.........
Thill supporter, W. Smith
Tobacco granulator, C. Du Brul
obacco, packing, J. P. Du Bru
Tool, combination, D. S. Dyson
oy, detonating, J. McConnell
Toy galloping horse and carriage, A. Q. Ross
Traveling bag, etc., handle, Rumpp \&
Traveling box, pocket, D. M. Somers.


```
Ventliating greenhouses, L. Brech
Wugon, dumping, H. Balles
Warps, machine for tying in
Water supplier and fllterer, H. c. Bull
Water closet, J. Demarest.
Weather strip, N. Smith
Wheel, vehicle, T. Brow
Windmill, J. Benson.
.......................................099,853
        TRADE MARKS.
Bottled brch or fermented beer, M. Bartley.
Bottled birch or fermented beer, M. Bartley....... 6,782
Clgars, C. Brewer & Sons ........
Clgars, olgarettes, etc., T. H Hall.
Cleaner and polishing prepara
Cotton sheetings and shirtings, B. B. & R K........
Drawing paper, Keuffel & Ess
Glassware, Corning Glass Work
Lamp wickings, Fletcher Munur. Company.
Olled clothtng, A. J. Tower
Smoking tobacco and cig
Soap, D. s. Brown & Co............
            DESIGNS.
Font of printing type, P. Grey...
Inkstand holders, A. Patitz
Oil cloth, C. T. & V. E. Meyer.............10,900 to 
Toy money banks, A. Seligsberg.
English Patents Iserg.
    From December }3\mathrm{ to December 10, inclusive
Bak fastener.-T. Cleary, N. Y. city.
Book binding machinery.-J. S. Lever, Philadelphia, Pa
Boots.-J. Bond, Jr., N. Y. city.
lectric light.-Weston Dynamo-Electric Machine Com-
pany, Newark, N. J.
Electro-plating.- E. Weston, Newark, N. J
Flower holder.-J. H. Plummer, Brooklyn, N. Y.
Iron, manufacture of.-E. Wheeler, Philadelphia, Pa
Pencll holders.-J. Reckendorfer, N. Y. city.
Ppe joints.-G. Matheson, McKeesport, Pa.
Pipe machinery.-G. Matheson, McKeesport, Pa
Rawway signal.-J.S. Williams, Riverton, N. J.
Spinning machinery.-J. Birkenhead, -, Mass.
Torpedoes.-J. H. MCLean et al., N. Y. city.
Tubing, metal.-W. McKenzie et al.,N Y. M. city.
Water meter.-C. C. Barton et al., Roehester, N. Y.
Mrovidence, R. I. 
    Ming siminific maviman
EXPORT EDITION.
роинввр мотпп\
```

The Soientific American Export Edition is a large and SPLENDID PERIODICAL, issued once a month, orming a complete and interesting Monthly Record out the World. Each number contains abts HUNDRED LARGE QUARTO PAGES, prof illuatrated, embracing:
(1.) Most of the plates and pages of the four prewith its SPLENDID ENGRAVINGS AND VALO(2.) Prices Curtion.
(2.) Prices Current, Commercial, Trade, and Man-
ufacturing Announcements of ufacturing Announcements of Leading Honses. In Principal Articles of American Manufacture are of the ited to the eye of the reader by means of SPLENDID ENGRAVINGS.
This is by far the most satisfactory and superior Export Joarnal ever brought before the public.
Terms for Export Edition, FTVE DOLLARS A YEAR,
sent prepaid to any part of the world. Single copies, 50 cents. For sale at this offlce. To be had at all

NOW READY.

THE SCIENTIFIC AMERICAN EXPORT EDITION FOR DECEMBER, 1878 WITH SIXTY ILLUSTRATIONS.

GENERAL TABLE OF CONTENTS

Of the Scientific American Export Edition for De-

 cember, 1878-INVENTIONS, DISCOVERIES AND PATENTS, The Sawyer-Man Electric
A Trade Mark Decision.
Simultaneous Inventors.
Simultaneous Inventors.
Description of Recent Most Important Mechanical In

Valions.

New Trunnion and Trimmer. Two engravings.
New Time Indicating Night Lamp. One engraving
New Time Indicating Night Lamp. One eng
An Improved Roontg
New Lamp Extinguisher. Two engravings.
Sebastina.
Vegetale Tallow.
An
An Improved Vise.
New shutter Fise
New s sutter Fastener. One engraving.
Improved Garden Sprinkler. One engraving,
New Foot Power. Three flgures,
The Reward of Invention. gigures.
The Werdermann Electric Light. Five flgures
Casson's Saw Bench. One engraving.
Casson's Saw Bench. One engraving.
A Bait for Inventors.
New Wire Clothing for Burring Cylinde
New Wire Clothing for Burring Cylinders. One figure.
Descripion of the Recent Most Important Agricul:
A New Water Elevator. One illustration.
The Now Otto Silent Gas Engine. One en The Diamond Self-Clamp Pavere. Cutter. One eng.
Description of the Recent Most Important Engine
Inguentions.
Novety in Cieaning Iron Scraps.
Corrections of Errors in Patente.

New Cating Nippera Two funee.
Nother Trad Martivo vilion ont one engraving

A Novelty in llluminated Dials.
The National Bolt cutter. One engraving.
A New Bottle Stopper. One engraving.
A New Bottle Stopper. One engraving.
New Car Heattng Apparatus.
Inc.ine Cutting, Drawing, and Stamping Power Press.
One engraing inde saw. Toth. Two engravings.
Iron Worcing Improvements.
I.-MEGHANICS AND ENGINEERING.

American Contributions to Modern Artillery.
Ventilation of Vessels.
Rentiliation of Vessels.
Raft Decked River steamers.
Heating Street Cars.
The Belgial Ship Canal. One illustration.
Warning to Locomotive Engineers.
Warning to Locomotive Engineers.
Preservation of Iron and Steel from Oxidation.
Rails and Railway Accidents.
Felling Trees by Electricity
Rails and Raiway Accidents.
Felling Trees by Electricity.
Amateur Mechanics. Three engravings of Lathes.
Machine Shop Economy.
Railway Notes.
Amateur Mechanics,-Drills and Drilling. Six engs.
The Tannel Under the British Channel.
Amateur Mechanics.-Drilis and D
The Tunnel Under the British Chan
Animal Mechanics. Five figures.
Accurate Tunneling.
Technical Education
Accurate Tunneling.
Technical Education and Mechanical Training
Driven Wells.
III.-mINING AND mEtallurgy.

A Silver Mill in the Clouds.
Quicklime as a Substitute for Blasting Powder.
PHYsics.
IV.- HEMISTRY AND PHYSICS.
The Wastage of Carbon in Electric Lamps
Alum in Baking Powders.
The Fusing of Carbon.

The Wastage of Carbon in Electric Lamps.
Alum in Baking Powders.
The Fusing of Carbon.
A Golden Metcorite.
American Microscopes.
Nickel Pyrites.
Spontaneous Combustion.
Astronomical Notes;
ting of the Planets for December.
Electrical and Telegraphic Inventions and Inventors
Formation of Iodotorm.
Formation of Iodoform.
The Progress of Science in Mexico.
Alum Hom Bread. A reply to Dr. Motts article on
"The Deleterious Use of Alum in Baking Powdere."
Sympathetic Inks.
Petroleum and Gold
Petroleum and Gold.
Reduction of Nitrate of Silver by Charcoal.
Naphtha and Benzine.
An Active Volcano in the Moon. Three figures
A Warning to Amateur Chemists.
C. E. Andrews A Co ${ }^{\text {B Baking Powders. }}$
The Purity of Refined Sugars. One figure.
The Purity of Refined Sugars.
Insulating by Guttapercha.
Daplexig the Atlantic
Dable.
V. - NATURAL HISTORY, NATURE, MAN, ETC.

A Marble boring sponge.
The Common Jacana. One illnstration.
The Cope Natural History Collection.

Cashmere Gootas in Nevada.

The Tarlest Tree in the World.
The Argonaut, or Paper Nautilus. One engraving.
The Trap door Spider of Jamaica. One engraving.
The Trap door Spider of Jamaica. One engraving.
The Elongation of Tree Trunks.
A Humane Dog.
A Hairy Water Tortoise from China. One engraving.
The Paddle Fish of the Mississippi. One illustration.

ACurious Mode of Commission
The Hog Cholera
Remarkable Salt Deposits.
The Basis of Matter.
Our National Surveys.
A Curious Experience.
A Curious Experience.
VI.-MEDICINE AND HYGIENE

Persistence of Images on the Retina.
Sanitary Science in the United States.
Effect of Quinine on the Hearing.
VII.-THE PARIS EXHIBITION, SCIENTIFIC
MEETINGS, ETC.

Fagade of Austria and Hungary, Paris Exhibition.
American Institute Fair
The International Dairy. Fair. Two articles,
Results of the Paris Exhibition.
The Great Hungarian Wine Cask. One illustration
VII.-INDUSTRY AND COMMFRRE.

The Utilization of Petroleum.
Utilizing Old Raw
Who shall Do It?
The shall Do Itt
Disabilitiee of Bristish in San Francisco Bay.
Car painting.
Unwarranted Alarm.
A New Coloring Matter.
The Secrets of a Bushel Measu
Canned Fraits.
Progress of Petroleum.
ridesent Glass.
Progress of Peerroleun
Iridescent Glass.
The Limit of Work.
Oil Notes.
A Silver Mill in the Clogds,
The Preservation of Eggs.
Characteristicise of Amers.
Amalgam for Dental Filling.
American Exports and Imports.
Pottery and Glassware. Two engravings.
The Trouble with English Cottons.
Plaster of Paris.
The Industrial Development of Cieveland, Ohio
Men and Machinery. ${ }^{\text {To }}$ To Remove Fusel Oil and Clarify Liquors.
I.-PRACTICAL RECIPES AND MISCELLA
NEOUS.

The Largest Cash Vault in the World.
About Advertising.
An Astonishing ofter.
Culinary Uses for Leav
Culinary Uses for Leaves.
The Mircophone Thief Catcher.
To make a hole in Glass.
To make a hole in Glass.
The Pomerania Disaster.
Short Hand.
Expiring subscriptions.
Some Reasons why every Manufactorer, Mechanic
Eventor, and Ar isan, should become Pater
Scientific American.
An Insoluble Cement.
The End or 1878 .
The Scleritific American as an Educator.
The Scleritific American as an Educator.
Protection 16 Banks.
Protection to Banks.
The New Vaut.
Concentrate our Effort.
Answers to Correspondents, embodying a large quantity of valuable information, practical recipes, and in-
Single numbers of the Scientifc American Export

Edition, 50 cents. To be had at this offlce, and at all
news stores. Subscriptions, Five Dollars a year; sent news stores. Subscriptions, Five Dollars a year; sent parts of the world.
MUNN \& CO.

muNn \& CO., Publushers,

To Advertisers: Manufacturers and others wh
To Advertisers: Manufacturers and others who desire to secure foreign trade may have large and hand-
somely displayed announcements published in this edition at a very moderate cost.
The Scientific American Export Edition has a large guaranteed circulation in all commercial places through.
out the world. Regular Files of the Export Edition out the world. Regular are also carried on ALL STEAMSHIPS, foreign and coastwise, leaving the port of New York Address

Scientific Amrican Supplement

Back Volumes and Back Numbers.

 or six months, viz.: January-June;
PRICES OF VOLUMES. mminemivivivil

 FORCE OF WIND. HOWT TO ESTMTMTE

ฐrientific Americam

FOR 1879.
The Most Popalar Scientific Paper in the World.

VOLUME XL,-NEW SERIES.

The publishers of the SCIENTIFIC AMERICAN beg
to announce that on the Fourth day of January, 1899, a new volume will be commenced. It will continue to be
the aim of the publishers to render the contents the aim of the publishers to render the contents of the
new volume as, or more, attractive and useful than any Only 83.20 a Year including Pontrage. Weekly.

This widely circulated and splendidly illustrated paper is pubished weekly. Every number contains sir-
teen pages of useful information, and a large number of teen pages of usefus of nem inventions and discoverles,
original engravings of new representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc All Classes of Readers find in The Scientific formation of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as possible abstruse terms. To every intelingent mind,
this journal afrords a constant supply of instructive reading. It is promotive of knowledge and progress in every community where it circulates.
Terms of Subscription.-One copy of The seien-
tifio American will be sent for one year- 52 numberspostage prepaid, to any subscriber in the Untted States
or Canada, on receipt of three dollars and twent or Canada, on receipt of three doliars and twenty
cents by the publishers; six months, 81.00; three months, 91.00 .
Clubs.-One extra copy of THE Scientific Ameri-
OAN will be supplied gratis for everv club of five subscribers at $\$ 3.20$ each; additional coples at same proprionate rate. Postage prepaid.
One copy of The Scientifio American and one copy
of Tife Scientifio Amprican Supplement will be sent for one year, postage prepaid, to any subscriber in the United States or Oanada, on receipt of seven donars by the pubishers.
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed imside or ent Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters astray, but is at the sender's risk. Adaress
and make all orders, drafts, etc., payable to

MUNN \& CO.,
37 Park Row, New York.
To Foreign Subscribers.- Under the factiltes of
the Postal Union, the ScIENTIFIC American is now sent the Postal Union, the SCIENTIFIC AMERHC AN is now sent
by post direct from New York, with regularity, to suberibers in Great Britain
British Russia, and all other European States; Japan, Branll, Mexico, and all States of Central and South America.
Terms, when sent toforeign countries, Canada excepted 84, gold, for SCIENTIPIC AMERICAN, 1 year; 89, gold, for both Scientific American and Suppiement for 1 year. This inoludes postage, which we paan. Remik br
postal order or draft to order of Monn \& Co postal order or draft to order of Monn \& CO., 87 Park

saduertisemants.

Inside Paze. each insertion :-: 75 cents a line.
Back Page; ench insertion-:-81.00 a line.
 sisem ints must be reccived at at pubtication office as early
as T murstay morning to appear in next iserce.

C2

 THE NEW OTTO SILEAT GAS ENGINE
 WANTED-Partner to pay cost of patent in
 ICE-HOUSE AND REFRIGERATOR

RIVAI STEEP PU JOHNH. MCGOWAN \&CO 235 \& UFFARE

BELL TELEPHONES.

Parties wishing to buy them complete at \&4 per pair, sen
address to JOHN M. FIELD, Boston, Mass.
EDMUND DRA PER, EDMUND DRAPER,
Mannfactarer of irst-p SSEAGIneers' Instruments
Established in 1830. $2 \cdot 26$ Pear St., Phila., Pa. Automatic Fire and Water Alarms.思蛙
 WATER SUPPLY FOR TOWNS AND Vulages.- By Clarence Delafeld, C.E. A conotse and

Wike prawnemimichiner
TELEPHONE ENex. pible

MILLS

 WALKER BROS. \& CO.
23rd and wood Streets, Philadelphia. ICE-HOUSE AND COLD ROOM.-BY R. Retail -2 Esta 1843 .
 and Fnot or oreak
Case Steel.
Warranted of
hempard
hend
emper, end
English make, and only one
that is fully
! WrARRATNTMD! sizes, from 1-2 lb to 800 Soes turnished on applicatio

The New SCROTT SATT $\begin{gathered}\text { is the most } \\ \text { perfect }\end{gathered}$ combinution made for the money, Stato where you saw
this and addresa H. L. BEACH, 39 Dey St., NeF York.

1Patent Portable Chuck Jaws.

NOW READY.-NEW REVISED EDI

DUC'S ELEVATOR BUCKET,

T. P. ROW SAND, Sole Manufacturer, Brooklyn, N. Y.
 Adaress BAXTER \& Co... Bankerr, 17 Waht st. N.Y HOW TO SELL PATENTS! WHIL

 ICE AND ICE-HOUSES-HOW TO MAKE

Machinery Warerooms
 THE DRIVEN WELL.

 WM. D. ANDREWS $\underset{\text { NEW }}{\&}$ RRO.

Fine Pamphlets printed 75c. a Page
 PERFUMERY.-BY W. A. SAUNDERS

D. II. FERRY \& CO. Detroit Mioh.

 ICE-BOAT WHIFF. FULL WORKING
 PERRY \& CO.'s STEEL PENS,

STHAM PUMPE;
HENRY R. WORTHINGTON,
39 Broadwav, N. Y. 83 Water St., Boston

 Prices Largely Reduced.
HOW TO MAKE A PHONOGRAPH.

R SAutizut

European Salicylic Medicione Co. OF PARIS AND LEIPZIG

WASHBURNE \& CO.,

 Drills, Bolt and Gear Cutters, Milling Machines. Special
Machinery. E GOULD EHBERHARDT, Newari, N.J. 65 MIXED CARDS with name, 10 c. and stamp
 T fe onion IRON MILLS. Pittsbargh, Pa... Manu.

 PATMNTS at aUCTION.

Y SRABESTANOCHEAPEST

DYSPEPS1A. BY Dr. C. F. KUNZE

CHROME STEEL.
WAREHOUSE, 98 WILLIAM ST., NEW YORK. Unequaled for strenincy, Manager.

macler Tubir Co,

BoiILRR PLUES of of il the Regular Sizae, Co ORDERS PROMPTLI EXECOTED. No Payment
Can I Obtain a Patent?
This is the first inquiry that naturally occurs to every quickest and best way to obtain a satisfactory answer, without expense, is to write to us (Munn \& Co.), describing the invention, with a small sketch. All we need is to get the idea. Do not use pale ink. Be brief.
Send stamps for postage. We will immeditely Send stamps for postage. We will immediately answer
and inform you whether or not your improvement is and inform you whether or not your improvement is
probably patentable; and if so, give you the necessary probably patentable; and if so, give you the necessary
instructions for further procedure. Our long experience enables us to decide quickly. For this advice we make no charge. All persons who desire to censult us in regard to obtaining patents are cordially invited to do
so. We ehal be happy to sce them in person at our so. We eha l be happy to sce them in person at our
oflece, or to advise them by letter. In all cases, they may expect from us a careful consideration of their plans, an honest opinion, and a prompt reply.
Munn \& Co. will be faithfolly guarded and remain conflential? Answer.- You have none except our well-known integrity in this respect, based upon a most extensive
practice of thirty years' standing. Our clients are practice of thirty years standing. Our clients are
numbered by hundreds of thousands. They are to be found in every town and city in the Union. Please to make inquiry about us. Snch a thing as the betrayal of a client's interests, when committed to our profesonal care, never has occurred, and is not likely to occar. All business and communications intrusted to us

Address MUNM
Adiress MUNN \& CO.,
37 Park Row, New York

 FOR SALE-A HALEFTERESTMN THE

 FOR SALE

 Portable Steam Engines
 Armington \& Sims A. \& \&. werelately with
THE J. c. HOADLEY COMP. NEW ROAD LOCOMOTIVES, B Y

Well and Favorably Known the World Over as the BEST Religious Weekly Newspaper. It retains all its most desirable features and adds new ones.

 COOK'S LECTURES.
 EX-PRES'T THEDDORE D. WOOLSEY,

PREMIUMS

Marsixisioun MU THESTAMARD.

WOROESTER'S UNABRIDGED Pictorial Quarto Dictionary.
RETAIL PRICE, \&10.00.

We have made a special contract with the great pub-

 Tha great Unabridged Dictionary will be delivered at
our offee or in Philadelphia, free, or be sent by express
or otherwise or otherwise as as magad be ordia, frea, or be sent by express
the ex expense of the subscriber. Snbseription Price $\$ 3$ per annnm in Advance, including any one of the following Premiums:
Any one
Dickens. Works, bound Howsenth Emodtion of Chares each hy Sol Eytinge.
Mody and Sankey's Gopel Hymns and Sacred Sonas, Uncoln and his Cabinet; or First Reading of the Emanci-
pation Froclamation. Fine large steel Engraving
By Ritchie. Size $2 \mathbf{x}$. Authorsof the United States. Fine large Steel Engraving

 lished
Sabseription Price \$3 per annam in Advasce. EfF Specimen coples sent free ind EPENDENT,
P.-0. Box 278\%,
New Yort City

ghavertisements.

 Engravings may head auvertisements at the same rate
per line oy meosurement, as the letter prees. Adver.
tisements must be received at publication qutce as early
as Thursday morning to appear in next issue.

Steel Castings, ywawwaw

ROOTS' PATENT PORTABLE FORGE.
 the
 ADAPTED TO EVERY VARIETY OF WORK.

THE ONLY FORGE WITH FORGE BLAST BLOWER.

THE ONLY EFFECTIVE FORGE MADE.

P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND. S. S. TOWNSEND, Gen'l Ag't, 6 Cortlandt St., NEW YORK.

WOOD ENGRAVING

Working Models

Woodward Steam Pnimps and Fine Eugines.

MACHINLTSE: You aro ning vile compounde

LIVE GAME WANTED

WIRE ROPE

Address JOHN A. ROERIINGS sons. Manufactur ers, Trenton, N.J., or 117 Liberty street, New York
Wheels and Rope for convering power long distances.
Send for circular.

CAMERON STEAM PUMP,

Also known as the "SPECIAL" PUMP, is the standard of CAMERON PUMP WORKS, Foot East 23d Street, New York.

J. C. TODD,

Mill Stones and Corn Mills.

NEWSPAPER FILE

Cigar Box Lumber, mantrictired by on New patent process. SPANISHE The in the World. SPANISH CEDAR,

MAHOGANY,

GEO. W. READ \& COM

The only Machines glying a s lid core showing exac

ICEAT 81.00 PER TON. The PICTET ARTIFICIALICE CO.

MUNN \& CO

WARRANTED THE BEST. H. 2 H. P., $\$ 175.3$ H. P., $\$ 200$. 152 LOVEGROVE \& CO., But N. 3d St.. Philadelphin, Pa.,
Builders of Engines and Bollers, ito 100
porse power. Send for circulars and

MACHINIST GOODS

free ${ }_{\text {A. W }}$ WILKINSON \& CO., Boston, Mass.

ALCOHOLISM . AN INTERESTING Suar ceo

 Send for Catalogne of the SAFETY STEAM BOILER, For burning smoke and anil ases cros
coal and ail kinds of fuel.
Requires no Clening of Soot J. G. \& F. FIRMENICH,

Machinists' tools.
Laihes, Planers, Drills, \&c. His 0wn
Printer: aceisior merrien. con

Wood-Working Machinery,
 proved Tenon Machines, Mortising, Moulding, and
Re-Siw Machines, and Wood-Working Machinery gene-
rally. Manufactured by

Mowry Car \& Wheel Works,

MEAENTS

CAVEATS, COPYRIGHTS, TRADE MARKS,
Messrs. Mann \& Co., in connection with the publicaion of the Scientific American, continue to examine
mprovements, and to act as Solicitors of Improvements, and to act as Solicitors of Patents for
Inventors. In this' experience, and now have unequaled facilities or the preparation of Patent Drawings, Specifications, and the Prosecution of Applieations for Patents in the inited States, Canadu, and ForeignCountries. Messrs. Munn \& Co. also attend to the preparation of Caveats,
Trade Mark Regulations, Copyrights for Books, Labels, Reissues, Assignments, a nd Reports on Infringements with special care and promptness, on very moderate terms.
We send free of charge, on application, a pamphlet containing further information a bout Patents and how Copyrights, Designs, Patents, Appeals, Reissues, Inrringements, Assignments, Rejected Cases, Hints on Foreign Patents.-We also send, free of charge, a Synopsis of Foreign I'atent Laws, showing the cost and
method of securing patents in all the principal counmethod of securing patents in all the principal coun-
tries of the world. American inventors should bear in mind that, as a general rule, any invention that is valuable to the patentee in this country is worth equally as
much in England and some other foreign countries much in England and some other foreign countries.
Five patents-embracinr Canadian, English, German, Five patents-embracing Canadian, English, German,
French, and Belgian-will secure to an inventor the exFrench, and Belgian-will secure to an inventor the ex-
clusive monopoly to his discovery among about one aUNDRED AND FIFTY MLLIONs of the most intelligent
pcople in the world. The facilities of business and stean communication are such that patents can be obtained abroad by our citizens almost as easily as at \$75; German, $\$ 100$; French, $\$ 100$; Belgian, $\$ 100$; Canadian, $\$ 50$.
Copies of Patents.-Persons desiring any patent iesued from 1836 to November 26,1867 , can be supplied with omcial copies at reasonable cost, the price depending upon the extent of drawings and length of
specifications. Any patent issued commenced printing the drawings and speciffcations, may be had by remitting to this office \$1.
A copy of the claims of any patent issued since 1836 will be furnished for $\$ 1$.
When ordering copies, please to remit for the same tion, and date tate nam
A pamphlet, containing full directions for obtaining United States patents qent free. A handsomely bound Reference Book, gilt edges, contains 140 pages and
many engravings and tables important to every patentee and mechanic, and is a useful hand book of refer-
ander

Address MONN \& $\mathbf{C O}$
Publishers SCIENTIFIC AMERICAN,
BRANCH OFFICE-Corner of F and 7 th Streets,
THE "Scientific American" is printed with CBAS.
ENEUJOHNSON \& CO.'s INK. Tenth and Lom-
bard Sts., Philadelphia, and 59 Goid St., New York.

