a WeEkly journal of practicil information, art, science, mechanics, chemistry, and manufactures.

Vol. $\underset{\text { [NEW SERIES.] }}{\operatorname{XXXIX} .- \text { No. 20.] }}$

THE TORPEDO VESSEL, DESTROYER.

Captain Ericsson's new torpedo boat, which is shown in the accompanying engraving, was recently launched from the wharf of the Delamater Iron Works into the Hudson. This boat has several novel and peculiar features. Its bow and stern are exactly alike, terminuting in very sharp wedges. The length is 130 feet, depth 11 feet, beam 12 feet, extreme. The rudder is wholly unconnected with the visible part of the stern, being attached to a vertical wrought iron post welded to a prolongation of the keel, just aft of the propeller. Its upper part is nearly four feet below water line. The tillers consist of thin plates of iron riveted on opposite sides of the rudder, a few inches from its bottom; they are operated by straight rods connected to the pistons of horizontal hydraulic cylinders of tive inches diameter attached to the sides of the keel. Accordingly the steering gear will be placed ten feet below water line, while the top of the rudder only reaches within four feet of the water line. This vessel is so far impregnable that in attacking bow on, it can defy the opponent's fire, offering absolute protection to the commander and helmsman, as well as protecting the base of the smoke pipe.
.The huli is provided with an intermediate curved deck extending from stem to stern, composed of plate iron strongly ribbed and perfectly water tight. This intermediate deck sustains a heavy solid armor plate placed transversely to the line of keel 33 feet from the bow, inclined at an angle of 45°, and supported on the aft side by a wood backing four feet six inches deep at the base. The steering wheel is applied behind this wood backing, a wire rope extending from its barrel to a four-way cock near the stern, by which water pressure is admitted alternately to the hydraulic cylinders at the stern, the mot'on of whose pistons actuates the rudder. The lower division of the vessel is supplied with air for supplying the boiler furnaces, by powerful blowers drawing in air from above.

NEW YORK, NOVEMBER 16, 1878.
immersed in the water as the monitors; but a deck house or cabin 70 feet long, composed of plate iron, is riveted watertight to the upper part of the hull. As this cabin, which has no opening in the sides, virtually forms part of the hull, it would be safe to run with the upper deck considerably below the water line. Owing to the peculiarity of construction, the builder says that the new torpedo vessel will live at sea in any weather, more particularly since its stiffness is most extraordinary, an advantage resulting from the circumstance that the body must be heavily ballasted in order to insure deep immersion, there being no other weight placed between the two decks than cork and inflated air bags.
Captain Ericsson declines furnishing for publication a description of the torpedo or the machinery of the boat, but we are promised a full account of these appliances at some future time, when they will be laid before our readers.

The Art of Prolonging Life

Persons living in marshy districts, says the Baltimore $U n$ derworiter, who are necessarily exposed to miasmatic exhala tions, will find that lime juice mixed with water and taken freely as a beverage, will prove an excellent preventive of malarial fevers. Those who are suffering from intermittents will find that the antiperiodics, which are cheaper than quinine, the great type of the class, will answer as good purpose if taken in the only proper way, that is, a full or even heroic dose one hour before the expected recurrence of the chill. When distributed throuchout the intermission in very small doses their effect is lost, and disappointment follows.
The medical gentlemen who so carefully prepared the tabulated reports of the mortuary experience of the Mutua Life, of New York, have shown in their admirable analysis of the causes of death, that the proportion of loss from consumption has been $19 \cdot 17$ per cent of the total mortality of sumption has been $19 \cdot 17$ per cent of the total mortality of
the company, and 19 per 10,000 annually. Such figures
show the immense importance of more effective methods of treatment, and we are glad to observe in the Medical Record the details of a treatment that, so far, has been very promising in its results.
The theory of cure is to clear the lungs by a mechanical effort, chiefly by manipulating the muscles of the throat so as to cause more forcible breathing; second, to establish perfect digestion; third, to promote a process of healing the tubercles, so that they shall become chalky or calcified masses; fourth, to compel the patients to take plenty of fresh air, sunlight, and out-door exercise. To secure perfect digestion, a special diet is ordered in each case, and the food is changed as the power of assimilating it improves.
To promote the calcifying of the tubercles, the salts of lime, which are found in most vegetable and animal food, must be supplied in a soluble condition; the theory is that tou much heat in ordinary cooking destroys the natural combination of these salts with albumen, and renders them insoluble to a weak digestion. Out-door exercise is regarded as so important that the patients are instructed to go out in rain, snow, dampness, or even night air or dew, the habit thus acquired neutralizing the danger of catching cold from such exposure. Only strong head winds and extreme hot weather need be guarded against. The patients sleep with the windows open, summer and winter.
A Minneapolis physician, whose cinchona recipe for the cure of drunkards recently attracted attention, recommends this highly carbonaceous mixture in the treatment of consumption: One half pound finely cut up beefsteak (fresh); one drachm pulverized charcoal; four ounces pulverized sugar; four ounces rye whisky; one pint boiling water. Mix all together, let it stand in a cool place over night, and give from one to two teaspoonfuls, liquid and meat, before each meal. The value of this method of supplying a suffciency of carbon in a form that may be readily appropriated is obvious.

grieutific elmerican.

HSTABLISHED 1845.
MUNN \& CO., Ediiors and Proprietors.

bublished weekly at

NO. 3 ' 7 PARK ROW, NEW YORK.

o. D. MINN

One copy, six months, postage included
Clubs.-One extra copy of The Scientifio American will be supplied
gratis for every club of five subscribers at $\$ 3.30$ each; additional copies at
Single copies of any desired number
diress on receipt of 10 cents.
MUNN \& CO ${ }^{37}$ Park Row, New York.
The Scientific American Supplement
rs a distinct paper from the Scientific American. The Supplement is issued weekly every number contains 16 octavo pages, with handsome
cover.uniform in sizewith Scientific American. Terms of subscription for SUPPLEMENT, $\$ 5.00$ a year, postage paid, to subscribers. Single copies 10 cents. Sold by all news dealers throughout the country. Combined Rates. - The Scievtific American and Supplemlent
will be sent for one year, postage free, on receipt of seven dolars. Both papers to one address or different adreesses, as desired.
The safest way to remit is by draft, postal order, or registered letter. Address MUNN \& CO., 3 T Park Row, N. Y

Scientific American Export Edition.

The Scientific Ambrican export Edition is a large and splendid periodical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated. embracing: (1.) Most of the large quarto pages, profusely illustrated. embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the ScIENTIFIC plates and pages of the four preceding weekly issues of the Scientific
American, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large, and handsom ely disp
nouncements published in this edition at a very moderate cost.
nouncements published in this edition at a very moderate cost.
The Scientific American Export Edition has a large guaranteed circuation in a conmorcial places throughout the world. Address MUNN \&
CO.. 37 l'ark Row, New York.

VOL. XXXIX., No. 20. [New Series.] Thirty-third Year.
NEW YORK, SATURDAY, NOVEMBER 16, 1878.

Contents. (Illustrated articles are marked with an asterisk.)	
Aluin in	Mashine
	Metal for foot lathe by h ind [11]. 315
Coñ-tition, An	Mo
Cotton worm, facts about the... 312	
Dam. French.........	Patent Connress,
Edication, practical, in Russia.. 311	
ctric lig	
and	Pump, Watson, the* \ldots.......... 309
En 3ne. tracion new	
	Roaches, to destroy [21] ${ }_{310}^{315}$
Fair, World's, in Australia........ 305	Rubbery. ba
French e	
regulat	ste
Gliss, spun [14] 315	
Holes, square, drilling**...... .. 311	obacco. plug, ingredients [ioj... 315
cu	
Inventions, new arricultural.... 309	

TABLE OF CONTENTS OF the scientific american supplement INO. 150.

For the Week ending November 16, 1878.

 Price 10 cents. For sale by all newsdealers1. CNGINEERING AND MECHIANICS,-Cleopatra's Neecle. Rrief and

 Acher.
cid on
Surfaces.

steam from petroleum

A recent article in one of our daily papers, entitled "Stea from Petroleum," evidently the production of an over-sanguine inventor or an imaginative reporter, has brought us a number of inquiries concerning the use of petroleum as fuel.
The theoretic calorific power of ordinary petroleum is about 16 , of anthracite coal 13 , of bituminous coal 15 ; that is to say, a pound of petroleum, with perfect combustion, will raise 16,000 lbs. of water 1° Fah., a pound of anthracite coal $13,000^{\circ} \mathrm{lbs}$. water 1°, etc., but the heating effects depend so largely upon the methods of combustion that, in ordinary practice, these theoretic values are but little considered, the estimation in which they are held as working agents being determined by the practical economies resulting from their use.
The extreme wastefulness of the methods of using coals has long exercised ingenious and scientific minds in en deavors to find some remedy; but the best results thus far obtained by the improved Siemens and Ponsard gas furnaces and the pulverized fuel process show a utilization of but 20 to 25 per cent of the total heat of the fuel-a great gain certainly over the 7 to 8 per cent utilization in the ordinary re verberatory furnace, but still far short of the object aimed at.
On the discovery of petroleum in America the attention of metallurgists was at once directed to it in the hope of find ing a fuel possessing important advantages over coal, and in every direction methods were devised for its application to metallurgic purposes; but its constitution and character were so little understood, so little known of the peculiar treatment demanded for the development of its powers as a fuel that most of the proposed methods proved worthless.
After the elimination of the majority of these, several remained which possessed, in a greater or less degree, certain points of value. It had been determined, for instance, that the oil should be reduced to a fine spray or atomized, as it is called; that a jet of steam impinging upon a drip of the oil and conveying it into the furnace was the most effectual agent for this purpose; and that an exceedingly large amount of air was required to combine with the gases to insure complete combustion.
These points were thought to cover all the requirements, and various styles of apparatus were designed to carry them into effect, and were experimented with in various places. The results of some of the most favorable workings, as reported by Buards of Naval Engincers, slowed economies of from 38 to 68 per cent over the use of anthracite coal in the generation of steam, and the further advantages of great reduction in weight and bulk of the fuel, in labor of firing, and in quick attainment of high temperatures
As might be expected, however, of these early attempts, the apparatus was, in all cases, imperfect, the conditions ne cessary to complete combustion not yet understood, nor the dangerous character of the fuel fully provided against; therefore, notwithstanding the economics shown, the incom plete combustion with its accompanying offense, the difficulty of controlling the temperatures, and the occasional explosions and fires which alarmed both owners and insurance companies, led, on all sides, to the temporary abandonmen
of the new fuel. of the new fuel.
Further investigations, however, here, as well as in Eng land and France, determined that the steam jet as used, though apparently indispensable for atomizing or scattering the oil into spray. greatly interfered with its combustion by abstracting heat from the flame, and that, to be effective, to permit perfect combustion, it should be superheated to so high a degree that it would vaporize the oil on contact. The amount of air required for smokeless combustion- 52 volumes to 1 of petroleum vapor-and the fact that they should be thoroughly mingled, were also ascertained.
Within the past few years so good an account has been made of this knowledge that all indications strongly point to the general substitution, in no very distant future, of petroleum for coal in the manufacture of glass, of iren, steel and other metals, and for the formation of steam.
Prolonged workings in puddling and heating furnaces have demonstrated that by its use double the number of heats, as compared with coal results, can readily be obtained in a given time and with an economy of full 50 per cent with coal at $\$ 5$ per ton and oil at $\$ 10$ per barrel. In crucible furnaces, wherein a higher temperature is required and less of the calorific value of coal is utilized than in any other metallurgic operations, the advantages of the new fuel, as demonstrated in Pittsburg in the manufacture of steel for the East River bridge, are still more decided.
Under boilers an average evaporation of 14.98 pounds of water from 212° Fah. has been obtained from 1 pound of the stance is had a theoretic efficiency of 17.5 ; and another in from 212° by a pound of oil, $17 \cdot 52$ theoretic value
The great disparity between the practical effects of oil and coal-so much in excess of the difference in their calorific powers-is explained by the wasteful consumption of the solid coal, as above noted; while the combustion of the oil is very nearly or quite perfect, and is completed within the furnace, thus securing for the work from 85 to 90 per cent of its total heat.
The intensity of the oil flame, too, is a most important factor in the economy, assuring a temperature of nearly $3,500^{\circ}$ Fah., in a properly-constructed furnace. This heat and the exceptional purity of the flame-there being no re-
sidual ashes or sulphurous gases-also insure purer iron in-
the puddling and melting, and better welding in the heating furnace, and the present unusual advantages to workers of glass.
The dangers ordinarily attending the use of this new fuel ave been overcome, in one instance at least, by an in genious and simple device that has been approved by those underwriters who have had it brought to their notice, thus removing an objection which has operated seriously against the earlicr adoption of the process.
Coal tar and the residuum of petroleum are also utilized in this manner by liquefying them by heat or mixture with the oil, so that they wil! flow readily, but the residuum of ashes from their combustion is objectionable in some cases. Coal oils also are capable of being used with good results by this method, but the supply of petroleum will not, for a long while at least, be likely to become so limited or its price so high that economy will require any of these substitutes.
It is not, by any means, to be supposed that science and ingenuity have been exhausted in bringing the petroleum fuel process to its present strong position; it is yet in its infancy, and, as attention is drawn to it, will be improved in many respects. Because of its youth and the little experience with it, and its former unsatisfactory performance, it has been slighted by manufacturers; and because it will revolu tionize the present methods of furnace-firing, it will for a considerable time be successfully opposed by the workmen, who like not to be forced out of their well-worn ruts, and who usually control such matters in the majority of iron works.
There are many rival inventors in this field striving to pass one another in the race, but most of them seem to be almost hopelessly out with their crude and unpractical appliances and ideas; and to this class, judging from inspection of the furnace, etc., at the Brooklyn Navy Yard, and from general observation, belongs, in our esteem, their designer.
Quite recently the inventor of perhaps the most perfect system for using this ruel has applied it to the manufacture of polished sheet iron, with results superior to any before attained in this country.
It would be difficult, we think, to name any process which, even at its present stage of development, is more worthy of he attention of all those manufacturers to whom cheaper fucl is a matter of any importance.

another new electric light

During the past week the Electro-Dynamic Light Company of New York have exhibited an electric light which s, to say the least, very promising. The apparatus employed was the Sawyer-Man electric lamp, the joint inven tion of William E. Sawyer, a well known and successful electrical inventor of this city, and Albon Man, of Brooklyn. As we hope soon to lay before our readers a complete description of the lamp, with illustrations of its mechanism, we will merely remark in this connection that the lamp is inclosed in a hermetically sealed globe of glass, filled witb nitrogen, and appears to differ from the common mode of exhibiting the electric light in non-supporters of combustion, mainly in the addition of a slender pencil of carbon, which completes the circuit between what would otherwise be the two carbon poles, and by its incandescence furnishes light, in the place of the ordinary voltaic arc. An essential feature of the invention is an ingenıous device for dividing the curreut, and for maintaining a constant uniform resistance in the circuit, whether the iamps are on or off. The light exhibited was steady and brilliant.

REMARRABLE BANE ROBBERY.-SCIENTIFIC SAFE

 GUARDS NEGLECTED.The robbery of the Manhattan Savings Institution, Sunday morning, October 27 , was one of the most daring and successful burglaries ever effected in this city. By some means unknown the burglars entered the bank building after the departure of the night watchman, at 6 o'clock, compelled the janitor to surrender the keys to the vault and secret of the combination of the lock, opened the vault, and spent nearly three hours of broad daylight in breaking open the inner safes and riflng them of their contents. They carried away something like three millıon dollars' worth of bouds, chiefly registered, and perhaps a hundred thousand dollars in negotable paper and cash.
The most remarkable feature of the affar was the cir cumstance that an institution having the reputation of being one of the soundest in the country should prove to have its treasures so poorly guarded. The fact that the combination of the outer lock of the vault was intrusted to a feeble old man living' in the same building is scarcelv less aston ishing than that the directors of the institution should have availed themselves of none of the well known electrical and mechanical appliances for defending their safes, not only from the assaults of burglars, but even the unauthorized entrance of those who had them in charge, except during banking hours. It is but another evidence of the amazing ndifference of most men not scientifically educated to the cientific aspects of modern life, and the means which science provides for extending the scope and security of life and property. Here were men of reputed culture and sagacity intrusted with the care of the savings of thousands, who must have known of the existence of chronometer locks, by means of which the vault would have been closed against ven the over trusted janitor who held the combination, dur ing all hours not devoted to regular business. They mus
not only the vault but the entire premises of the bank could \mid below, there must be a liability to blurring in that part of have been so securey guarded that no well informed burglar would venture to attack it; and if some blunderer did enter the police would be instantly warned, and the invader captured in the act, as has occurred in several instances where the electric alarm has been used.
Yet these reputedly intelligent and careful directors did not realize that they were neglecting to take " all reasonable precaution" to insure the safety of the property in their care. It is, we say, but an additional evidence that men not scientifically educated are very apt to lack an adequate comprehension of the reat conditions of modern life-what science has done and is daily doing to change the conditions to which life and property are subject. The incessant advances which science and invention are meking to bring even the occult powers of nature into subservience to man are, it is true, so multitudinous and rapid that it is hard for the most studious to keep pace with them. It is true also that the best trained minds are apt to lose their alertness with age, and settle down into grooves out of which it is hard to get. But that only makes it all the more necessary for those in positions of great trust, like bank directors, to have in their employ some one who makes it his business to inform himself some one whose scientific bias leads him to look for scientific aids, and whose scientific training intpels bim to run counter to tradition and that casygcing confidence in what once sufficed, which, in the case of the Manhattan Bank, led to its easy plunder. Burglars are quick to avair themselves of scientific appliances. They must be met and vanquished in the same ficld.
It may be observed in this connection that the application of the telephone to the list of electrical safeguards presents a very promising field for experiment and invention. Warehouses, vaults, even the interior of safes, might be secretly and securely connected out of business hours with police headquarters, in such a manner as to insure the certain de tection of any unwarranted entrance and the complete reporting of any burglar's movements,

A GRAND WORLD'S FAIR IN NEW YORK.

A numerously attended meeting was held in thiscity, Octo ber 31, for the purpose of initiating a movement for a world ${ }^{\circ}$ s fair to be held in New York in 1889. Λ s expressed by the call, which was signed by many prominent manufacturing and commercial firms the object of the meeting was in full, to consider the propricty of suggesting to the Mayor of New York that delegates from all the States be invited to assemble in this city on the 30th of April next, that beng the ninetieth anniversary of the inauguration of Washington as the first President of the United States, and the establishment of constitutional government, in order that the proposition to hold a great exhibition of the industry of all nations in the city of New York, in the centennial year of that event (1889), or sooner, might be maturely considered.
At the meeting it was unanimously resolved, "That there be appointed an executive committee of ten, with power to add to their number, who shall take into consideration the subject for which this mecting was called, to determine when a National World's Fair shall be held in the city of New York, and authorizing such committee to take such action in the matter as shall be decmed advisable

A Mexican Exhibition

The Mexican Minister of Public Works has just announced that the Government is about to nominate a commission to organize a special exhibition in that city at a conveniently early date. The exhibition is to be confined exclusively to American and Mexican productions, and to be under the direct auspices of the Mexican Government.
Mr. De Zamacona, who has the credit of suggesting this enterprise, is confident that it will be carried out. It certainly promises to furnish an admirable opportunity for our merchants and manufacturers to extend the export trade of the country. At any rate the friendly spirit shown by Mexico in thus limiting the exhibits to the productions of the United States and Mexico, ought at least to be met in a corresponding spirit; and the best way to show that would be by making a special effort to have our country, its resources and industries, adequately represented.

Australia to have a Worlds Fair.

The Department of State has been informed by the American Vice-Consul-General at Melbourne that it has been decided to hold an international exhibition in that city, commencing October, 1880. A public garden in the center of Melbourne has been secured for the exhibition, and Parliament has voted $\$ 300,000$ for the erection of the necessary buildings. This will be the greatest exhibition ever beld in the Southern Hemisphere. The Vice-Consul-General suggests that American inventgrs, for their own protection, should take out patents in each of the Australian colonies, each colony having a different patent law.

THE MOTION OF A WAGON WHEEL.

The instantaneous photographs of trotting horses, taken by Muybridge, of San Francisco, furnish the first visible demonstration of the much disputed fact that the top of a wagon wheel, when running along the ground. moves faster than the bottom. It is obvious that an instantaneous photograph of a wheel, revolving upon its axle in the air, would show all parts of the wheel with equal distinctness. But if the wheel have a progressive motion, and any one portion

bclow, there

These pictures are taken with so brief an exposure that the horse, though moving at a 2:24 gait, is sharply outlined. The wheels of the driver's sulky, however, have a different tale to tell. The lower third of each wheel is sharp and distinct as if absolutely at rest. Not so with the top, that part of the wheel showing a perceptible movement during the two-thousandth part of a second of the exposure of the plate. The upper ends of the spokes are blurred, and the rim likewise, thus giving a physical demonstration of the

THE PARIS INTERNATIONAL PATENT CONGRESS.
The mails bring us part of the papers read at the Inter national Congress on Industrial Property, held at Paris September 5th, and following days. The congress was authorized by a decision of the Minister of Agriculture and Commerce, under date of May 12, 1878, and the preparation was zealously undertaken by able men. An elaborate prospectus was prepared contaıning questions proposed for dis cussion, some of them rather metaphysical than practical as will be seen by the resolutions which were adopted. The question of preliminary examinations has been discussed with great heat, but we are not yet informed as to the result. The tendency seems to be toward the adoption by all European countries of a preliminary examination mod cled after our own, as a protection to the inventor himself. The committee of organizations consisted of M. Renouard Senator, Member of the Institute, etc., President; M. Bo zérian, Sentor; M. Tranchant, Member of the Council State, Vice-President; Count Maillard de Marafy, President of the Consulting Committee on Forcign Legislation of the Manufacturers' Union; MM. Pataille, Huard, Pouillet, Rendu, authors of works on industrial property; Tusca, Mem ber of the Institute, President of the Society of Civil Engineers; and many manufacturers.
About 300 persons, including members from nearly every state in Europe, were represented at the first session of the congress. From the United States were present Messrs. A. Pollock, of Washington, and Francis Forbes, of New York Pollock, of Washington, and Francis Forbes, of New York
city. Pollock was elected one of the Vice-Presidents. The congress met in both the morning and afternoon; in the monning, in three divisions, according to the subject, namely, patents, trade marks, or designs and models. In the afternoon the questions presented by the divisions were debated and passed on by the whole congress. The members were thus enabled to concentrate their attention on the division which particularly interested them.
The following resolutions had been veted on and agreed to up to the time of the close of our advices:

1. The right of inventors and authors in the domain of ndustry, over their works, or of manufacturers over their marks, is a property right; civil law does not create it; civi aw only regulates it.
2. Foreigners ought to be assimilated to citizens.
3. The stipulations of reciprocal guarantee of industrial property ought to be made the subject of special treaties independent of commercial treaties, as well as treaties for the reciprocal protection of literary and artistic property.
4. A special department for industrial property should be established in each country. 1 central depot for patents, trade marks, designs, and models ought to be added to it for the instruction of the public. Independently of all other publications, the department of industrial property should publish a periodical official journal.
5. A provisional protection ought to be granted to patentable inventions, designs, models, and trade marks shown official or officially authorized international expositions.
6. The time during which inventions, marks, models, and designs are shown at official international expositions ought to be deducted from the total duration of ordinary protec ion, and not be added to it.
7. The provisional protection granted to industrial in ventors and authors who take part in official international xhibitions ought to be extended to all the countries which are represented at these exbibitions.
8. The fact that an object is shown in an international exposition ought not to be an obstacle to the right of seizure of the article if it is an infringement.
9. Each of the branches of industrial property ought to be he subject of a special and complete law.
10. It is desirable that in the matters of industrial prop erty the same laws should govern a state and its colonies, as well as the different parts of a state. It is equally desir able that the treaties reciprocally-guarantceing industrial property concluded between two states should be applicable to their respective colonies.

PATENT RIGHTS, AND WHO OPPOSE THEM.
In a communication to the Industrial Property Congress ately held in Paris, Mr. Henry Bessemer, the inventor of the process of stee making known by his name, remarks
that dur food, our clothing, our light, our homes, with all their thousand luxuries, owe their present character to that indomitable spirit of research and improvement which is characteristic of the present age-a spirit powerfully fostered and deservedly encouraged by those laws which proclaim a personal property in inventions. Without this protection, not merely in the bare idea of some new force or unknown object, but in the development and creation of practical means, based on the new idea, whereby results never before
obtained are realized for the benefit and advancement of
mankind, Mr. Bessemer has no doubt that the rapid progress which the world has made, and is still making, in arts, sciences, and civilization, would receive a severe check, which would at once stop the avenues to wealth and fame, and would thus dam up the now overflowing stream of human intelligence, bar every road to improvement in the industrial arts, and send us back to those days of superstition and ignorance, from which the light of science has emanci pated us.
Yet there are men who oppose all laws securing property in inventions, and whose "retrograde notions" are now be ing pressed upon the world with unwonted force. Who are they? Mr. Bessemer auswers:
First. A class of manufacturers whose purely selfish view is to make the most of their present imperfect means of production. Such men, on principle, oppose all change, be ause it would personally inconvenience them.
Sccond. The unintelligent, in all positions of society, who have through life dragged their unimaginative existence long in the same rut, and believe in no other than the beaten path which only they are able to tread. Such people are opposed to all novel ideas.
Third. A too numerous class who, while able to appreciate an improvement in their trade, are not honest enough to pay an inventor for the bencfit he has conferred on them, and who either openly set him at defiance, or try to escape his just claims by some miserable evasion of the law; but having been convicted in so doing, have had to pay heavy damages to the persons they have wronged. It is this class of opponents who cry out•most loudly against the patent laws.
Doubtless, adds Mr. Bessemer, there are also some honest and honorable men who oppose patents conscientiously, and imply because they believe them to be injurious to the pubic interests; but this is a very small class, and is composed chicfly of persons having no real practical knowledge of the question, either in its scientific or commercial bearings.
It would be impossible to state more patly and compactly the composition of the anti-patent forces; and it would be well to test the motives of those who shall assail our patent system in Congress next winter by the fact noted under the hird classification.

A STEAM JURYMAN

The other day a summons, commanding Thatcher Magoin o present himself for service in the jury box, was returned o the Commissioner of Jurors with the information that it had been served upon the wrong party. The Commissioner said to the bearer
" That settles it as far as you are concerned, but Magoin must come here and show cause why he should not be a juror."
"He can't," was the reply, "he's too busy. If he did ome he would make things hot for you. Besides, you would have to send a derrick and a truck to bring him. He turns the scales at $5,000 \mathrm{lbs}$."
The Commissioner was incredulous; worse, he made remarks not complimentary to the speaker's condition with respect to sobriety. Then the summoned man explained.
"I am telling you facts, Mr. Commissioner," be said. Thatcher Magoin is a steam engine, and is located at the foot of Fletcher strect. I am Nicholas Morris, stevedore Years ago I was employed by a man named Thatcher Ma oin. I named my engine on pier 19, East River, after him When the Directory man came to the dock to get names he aw the name of Thatcher Magoin on the engine, and think ing that he was the boss, put it in the book. You'll see it on page 949."
This, we believe, is the first time that a steam engine has been called to do political duty. There appears to be no reason, however, why a well conducted or well constructed picce of machinery, with a phonographic metric attachment should not be able to hear and weigh evidence quite as efficiently as the a verage jury.

Cleopatra's Needle.

Northern climates are ill-adapted for the preservation of tone monuments, at the best; and when there is added to the inclemencies of the weather the action of a corrosive at mosphere, like that of London, the hardest stone stands small chance of preserving its integrity for any great length of years. The Egyntian column, Cleopatra's Needle, is carcely in position on the banks of the Thames when the question of its preservation engages the attention of the Metropolitan Board of Works. At a recent meeting, the engineer and consulting chemist of the board reported that the surface of the Needle was in a condition that made it liable to be rapidly disintegrated by the action of the London atmosphere and by frost. It was recommended that a trial be made of a "stone solution," to harden the surface and make it impervious to the weather; but, on the assertion by members of the board that the same solution had been used without success on the Houses of Parliament, the matter was referred to a committec for further inquiry.

Electrical Test for oils.

Professor Palmieri, of Naples, has recently constructed an apparatus which allows the purity of oils to be judged of by the resistance that they offer to the passage of electricity. Olive oil-a poorer conductor than any other-is taken as the standard of comparison. The apparatus may also serve to eveal the presence of cotton in silk fabrics; for a very small proportion of cotton in silk tissues greatly increase small proportion of cotton in
the conductivity of the latter.

a new gas regulator

The unavoidable fluctuation of gas pressure is the main if not the only objection to the use of gas as an illuminating agent. The sudden flaring up of the flame under increased pressure not only impairs the light and indicates a waste of gas, but it permits a quantity of unconsumed carbon to escape and vitiate the atmosphere of the room and endanger the health of the occupants.
The importance of avoiding the escape of unburnt carbon has not been fully recognized in this country. In Europe of the cities gas regulators are in general use.
We illustrate one of the most successful of these in struments, which, after the most thorough tests, has been adopted in several different departments of the United States Government, and it has been in successful use in many of the public buildings in Washington for several years.

The regulator, which is shown in perspective in Fig. 1 and in section in Fig. 2, has the usual casing composed o two hemispheres, A B, joined together by screws that pass through the flanges, between which the edges of the diaphragm, C, are tightly clamped. The lower hemi. sphere has an inlet, D , and an splet, E The , and a outlet, E. The diaphragm is composed of two thicknesses
of pliable leather, having their adjacent faces coated with plumbago or other gas resist ing medium. The coating being thus placed out of direct contact with the gas re mains unaffected.
A valve stem, F, is sus
lever bars from the foot plate. The distribution of weight would undoubtedly necessitate a considerable dismounting is very happily chosen, and the consequent tendency to up-l of many members which, in an ordinary engine of this class, set on uneven ground, with only three wheels, is entirely \mid would neither interfere nor be interfered with. We cannot obviated by the way in which almost the entire load is speak too highly of the workmanship, and from its performhrown on the driving wheels. The cylinders have a diam- ances as witnessed in the limited space within which its gyeter of seven inches and a stroke of ten inches, and the mo- rations are confined, the favorable impression derived from tion is communicated to the driving wheels by toothed gear its finish, compactness, and general appearance has been and an endless chain. The latter can be instantly discon- fully confirmed.

Now Mechanical Inventions.
An improvement in Vibrating Churns has been patented by Mr. Samuel Mellon, of Cameron, West Va. The object of this invention is to furnish a mechanism by which a churn may be easily operated, and to construct the operative parts in such a manner that they may be readily attached to and taiken off the churn.

An improvement in Vehi cle Springs has been patented by Mr. David G. Wyeth, of New Way, Ohio. This is an improvement upon the spring covered by letters patent No. 187.694, issued to the same inventor. The improved gearing has a less number of parts and also a greater compactness as a whole, so that it is lighter and cheaper than the other.
A Vehicle Wheel Hub has been patented by Mr. Daniel May, of Lumberton, N. C. which consists in a hub having mortises in the axle box for the spokes, which mortises are open at alternate sides, and collars having projec tions on their inner frojec tions on ther in the enter the mortises in the axle
box, so that the mortises are pended from the center of the diaphragm, and carries at its \mid gine for agricultural purposes. The diameter of the driving closed after the spokes are inserted. The collar at one side lower end a conical valve, G, which is capable of closing wheels is forty inches, and of the steering wheel thirty closes the openings on that side, and the openings at the op-
against the valve seat so as to entirely shut the inlet. The stem, F, rises above the diaphragm and passes through a hole in the top of the casing into a supplemental case, J. A lever arm, K , is pivoted in a standard at the top of the supplemental case, and is connected with a vertically sliding rod, L, which carries at its lower end a forked foot that embraces the valve stem, F, below the adjusting nut. The sliding rod, L, moves in a tube, and is pressed downward by a spiral spring. The lever arm, K, is connected by wire with the knob, shown in Fig. 3, either directly or through a system. of bell cranks or pulleys. By turning this knob, the regulator may be adjusted so that any desired pressure may be had in the distributing pipes; this pressure will thereafter be maintained with certainty and uniformity. Any increase in the gas pressure in the regulator raises the diaphragm, and by closing the valve diminishes the supply; a diminution of pressure produces the contrary effect.
This regulator was recently patented by Mr. Joseph Adams, through the Scientific American Patent Agency, who may be addressed for further particulars at Room 40, Corcoran Building, Washington, D. C.

COMBINED TRACTION ENgine and steam fire ENGINE.

A combined traction engine and steam fire engine, gine and steam fire engine,
constructed by M. A. Schmid, of Zurich, and exhibited at the Paris Exbibition, has as a test of its lability to travel, made the journey from Zu rich to Paris, a distance of about 450 miles, in eight

NEW TRACTION ENGINE. posite side are closed by the other collar.
An improvement in Trimmers for Wax-thread Sewing Machines has been patented by Messrs. Joseph I. Pellerin and Hector Pellerin, of Montreal, Quelec, Canada. The and Hector Pellerin, of Montreal, Quebec, Canada. The
object of this invention is to provide means for applying the object of this invention is to provide means for applying the
principle of cutting the leather simultaneously with the seaming thereof to the class of shoemakers' sewing machines ; which use a waxed thread.

An improved Waxing Device for Sewing Machines has been patented by Mr. Wm. S. Hadaway, of Chiltonville, Mass. This invention is intended to furnish for poweroperated sewing machines an improved thread-wuxing device that can be easily adjusted for differently sized threads, and that may be easily regulated for the quantity of wax to be used, so as to save a great portion of the wax hitherto wasted.
An improved Machine for Straightening Car Axles has recently been patented by Mr. Joseph A. Hodel, of Cumberland, Md. By a system of adjustable jacks and yoke with counter screw, the straightening strain is confined to the part that is al ready bent without affecting the other parts of the axle.
Mr. Eben Brown, of Milford, Mass., has patented an improvement in Machines for Turning Needle Blanks. This invention is to automatically regulate the action of the cutting tool upon the blank in turning machines, so that the blank will be cut to the standard gauge, and the tendency of the machine to enlarge the needle or other article produced from the blank is corrected by the act of forming such blank. days. The engine itself, in
service, weighs six tons, and brought with it a wagon weigh-
ing about five tons, containing coals sufficint water for fifteen miles. As coals sufficient for forty and water for fifteen miles. As there were in the road over
which it passed gradients of one in seven, there can be no doubt of its ability to surmount any ordinary difficulties. As will be seen from the illustration, for which we are indebted to the Engineer, the engine is supported on three has already undergone without any extraordinary removal of secures to the consignor the full normal weight, and the wheels, the leading wheel being worked by a crosshead and parts-the replacement of any damaged or worn member consumer the benefit of meat in a prime and healthy state.

VAN RENNES' CALORIC ENGINE AND PUMP.
As a motor of small size for use in the trades, a new construction of bot air engine and pump bas recently been brought out by Mr. D. W.Van Rennes, of Utrecht, Holland, which has quickly found favor, owing to its simplicity and low running expenses.
This motor is represented in our illustrations, in which Fig. 1 shows a motor of the smallest size, heated by a gas flame; Fig. 2, one for four horse power; and Fig. 3, a ver tical section of a motor connected with a so-called caloric pump.
On a solid bed frame of suitable size is supported a closed cylinder, T. At the maside of the cylinder is a large piston, \mathbf{X}, whose rod, e^{\prime}, passes through a stuffing box, e, to the outside. Between the piston, X , ana the walls of the cylinder, T, is left a small communicating space. The upper part of the cylinder, T , is surrounded by a funnel shaped jacket, t, which is partly filled with water for the purpose of cooling, whiie the lower end of the cylinder is heated up by a gas flame, and in larger engines by a coal or coke fire. The temperature of the air at the inside of the cylinder becomes by the heat of the fire higher at the lower than at the upper part of the same. The heated air ascends in the space around the piston to the upper part, and passes through a pipe projecting froin the cover and through a rubber tube to a small copper cylinder, p, which oscillates on a pillar, D , and is open at the bottom. The pressure of the air forces the piston, a^{\prime}, of the small cylinder, p, forw ard, and moves simultaneously the piston of the stationary cylinder downward. As the piston rod, ϵ^{\prime}, of the large piston is connected by a walking beam and crank rod with the crank shaft of a flywheel, and also the piston of the oscillating cylinder by a piston rod with a second crank of the flywhecl shaft, it is obvious that the two rectilinear motions of the pistons produce the rotary motion of the crank shaft. As soon as the pistons, X and a^{\prime}, have arrived at their terminal points, the cooling water jacket begins to exert its influence. The cooling off of the air above the pistons, X and a^{\prime}, produces a partial vacuum, which, in connection with the direct pressure of the atmosphere on the bottom of the piston, a^{\prime}, lifts the piston, a^{\prime}, and returns simultaneously the piston, X, into its former position. The alternate raising and lowering of the pis tons produced by the continuous heating up of the large cylinder, produce a continuous rotary motion, which may be utilized.
The caloric pump has in its working some similarity with the "Pulsometer," only that heated air effects here what steam accomplishes in the other. As in the caloric engine the cylinder, p, is connected with the main cylinder, so in the pump a cylindrical vessel is connected by a pipe, r, with the cylinder, T. A suction pipe leads therefrom into a water reservoir below, while a force pipe, C, runs from the top to the place to which the water is to be conducted. The mouths of both pipes are closed by valves, n and ρ, which open upwards. The heated air passes through the
thereon sufficient to force it up and out through valve, n. As soon as the pump is in motion, a continuous current of water, but no air, is forced through valve, n, so that by the action of the fire below the cylinder, T, the alternate heating and cooling of the inclosed air, and thereby the continuous raising of the water, are produced. One of these pumps is at work in a factory near Amsterdam, where it lifts per minute $281 / 2$ gallons of water to a height of 18 feet, and works to the great satisfaction of the owners.

Building in Steel.

In their final report the Committce of the British Associa-
In their final report the Committee of the British Associa-
tion on the use of steel for structural purposes, states "that

Fig. 3.-VERTICAL SECTION OF ENGINE AND PUMP.
interest of steel manufacturers as opposed to iron manufacturers, to secure to them advantages which would not naturally accrue to them, else we think a higher coefficient, a greater difference in strength and resisting force, as com pared with iron, would have been demanded of the steel.

New Inventions.

Mr. Martin Bock, of Hughesville (Drum's P. O.), Pa., has patented an improved Clock Case, in which a time movement, a striking movement, and an alarm movement are carried in and by a single frame, and inclosed in a case of neat appearance and of compact form and size; provision is made for operating and regulating the various parts from the exterior of the case; a cheap, substantial, and serviceable clock is produced, and several advantages are obtained.
An improved Annealing Furnace has been patented by Mr. Edwin H. Hill, of Worcester, Mass. This invention relates to an apparatus for annealing and spooling wire at one operation, while it is more particularly intended for wire used on reaping machines; it is also applicable to other descriptions of wire.

Mr. Ferdinana Diescher, of New York city, has patented an improved device for attachment to a bedstead to prevent children from falling out of bed. The invention consists in a number of strips of wood jointed together at their upper ends and having the lower ends spread out fan-like, and attached to the bedstead by means of a socket that receives the middle strip.
Mr. Philip Listeman, of Collinsville, Ill., has patented an improved Gate, which is so constructed that it may be conveniently opened and closed by a person on horseback or in a vehicle. It is simple in construction and easily operated.

An improved Post Hole Digger has been patented
the employment of steel in engineering structures should be authorized by the Board of Trade under the following conditions, namely : 1. That the steel employed should be cast steel, or steel made by some process of fusion, subsequently rolled or hammered, and that it should be of a quality possessing considerable toughness and ductility, and that a certificate to the effect that the steel is of this description and quality should be forwarded to the Board of Trade by the engineer responsible for the structure.
" 2 . That the greatest load which can be brought upon the bridge or structure, added to the weight of the superstructure, should not produce a greater strain in any part than $61 / 2$ tons per square inch. In conclusion, we have to remark that in recommending a coefficient of $61 / 2$ tons per square inch for the employment of steel in railway structures generally, we are aware that cases may and probably will arise when it will be proposed to use steel of special make and still greater tenacity, and when a higher coefficient might be permissible, but we think those cases must be left for consideration when they arise, and that a higher coefficient may then be allowed in those instances where the reasons given appear to the Board of Trade to justify it."
by Mr. Charlton Patterson, of Rock Island, Ill. This invenby Mr. Charlton Patterson, of Rock Island, Ill. This inven-
tion consists in the combination, with the digging bucket, of an annular piston and central piston rod, operated by a connecting rod and lever, the latter being pivoted to the hollow handle of the post hole digger.
Morris Jacobs, of Fort Clark, Texas, has patented an im. proved Padlock which cannot be unlocked by a key, in the ordinary manner, without a preliminary and peculiar manipulation in order to place the tumblers or locking bolt in the required position for contact with the bit of the key. The body of the padlock is made in two separate parts, the one being pivoted to the other, and capable of rotation (when released by spring catches) to change the position of the umbler and bolt with reference to the key bole.
Mr. Seth Kethledge, of Center Point, Iowa, has patented an improved Lumber Measure, in which the motion of the spur wheel or toothed disks is transmitted to an indicator which has a reciprocating rectilinear motion longitudinally of the carrying frame or case. No adjustment is required for the purpose of measuring boards of different widths. Instead of a circular dial there is a scale marked with figures arranged in columns extending longitudinally on the surface

Fig. 1.-SMALL CALORIC MOTOR.

Fig. 2.-FOUR HORSE POWER CALORIC ENGINE.
opening, m, tato the cylindrical vessel, and into pipe, c,
closing the valve, o, and opening the valve closing the valve, o, and opening the valve, n. As soon as the air is cooled ort oy the cold water jacket, the atmospheric pressure closes the valve, n, while a partial vacuum is formed above valve, o. This in connection with the air in the suction pipe causes the opening of the valve, o, and, by the partial vacuum created in the suction pipe, the lifting of the water from the reservoir. The next supply of heated air cannot escape through the pipe, c, as the lower end of the same is closed by the water; it therefore exerts a pressure

This report has since been acted upon by the Board of Trade in the printed paper issued by them in reference to railway structures. "It will be observed." they say, "that b a coefficient of $61 / 2$ tons per square inch is assigned to steel, that of iron being 6 tons per square inch. This increase of the coefficient will effect important economy in structures, especially in bridges of large spans, and will also tend generally to increase the employment of steel for railway and hipbuilding purposes."
This measure seems to have been designed in the special
of the carrying frame or case, and a separate column is provided for each of the different standard lengths of lumber.
An improvement in Rotary Engines and Pumps has been patented by Messrs. Walter E. Bartrum and Henry C. Powell, of London, England. This invention relates to rotary apparatus that may be employed as an engine worked by steam or other fluid under pressure, or as a pump for raising or forcing fluids, or as a liquid or fluid meter.
Mr. Frederick K. Collins, of Butler, Ind., has devised av
improved attachment by which the person sleeping or resting on a bed or sofa will be fanned, thereby insuring a more comfortable rest in hot weather. The invention consists of a bed cover or cloth that is hung to hooks at the foot end of the bedstead, and attached to fulcrumed crank arms at the head end of the bedstead. The crank arms are operated by crank rod connection from a suitable clocktrain, so as to impart a fanning motion to the spread or cover
Mr. Floyd Heavener, of Larame City Wyoming Ter., has patented an improvement in Wind Wheels, designed to render the same self-governino by causing the area of resistance which the wheel presents to the wind to be automatically varied in inverse probortion to the force of the wind, to render the action of the wheel uniform.

The Deleterious Use of Alum in Bread and Baking Powders- Alum being Sulostituted for Gream of Fartar
by henry a. mott, JR. Ph.d., E.m.
Having been appointed Chemist by the United States Gov ernment for the Indian Department, it became my duty to submit to chemicat avalysis. among other articles, the various baking powders offered the Department, and as a result of my investigation I found that at least fifty per cent of the baking powders offered were grossly adulterated. After making this discovery I determined to submit to analysis every baking powder I could find on the market, and to expose such powders as were adulterated, so that the public may be warned from purchasing them in the future. The number of baking powders I have examined amount to forty-tioo-twenty-nine of them from various sections of the country having been offered to the Department, and thirteen obtained from various grocery stores throughout the city of New York.
Instead of the baking powders of commerce being composed alone of those constituents which have been demonstrated to be perfectly harmless and wholesome, the public have imposed upon them powders largely adulterated with most injurious and hurtful compounds, put up in cans neatly labeled "chemically pure," as if that fact (?) had anything to do with rendering the powders wholesome. Scheele's green (arsenite of copper) is often "chemically pure," but -t is always a deadly poison
It, therefore, becomes necessary for the bencfit of the public to examine into the powders on the market, and to denounce such of them as are composed of constituents detrimental to health.
The best powders are composed of bitartrate of potash (cream of tartar), tartaric acid, carbonate of ammonia, and bicarbonate of soda, held tosether to prevent decomposition by a little starch.
The injurious powders are composed of alum and bicarbonate of soda, and often contain terra alba (white carth), insoluble phosphate of lime, etc., etc. The effect of alum when taken internally has been shown by Wilmer and others to produce dyspepsia, constipation, vomiting, griping, and even inflammation of the gastro-enteric mucous membrane, as it is a powerful astringent acting chemically on the tissues. These serious effects will not of course be brought about immediately from the small quantity of alum used in one loaf of bread, but it is certain that persons continuing to eat bread containing alum will, in time, suffer from its evil effects, and the weaker the constitution the sooner will the effects be noticed.
Duma speaks to the same effect when he says: "It is to be feared that this salt exerts a deadly action by its daily introduction into the stomach, especially in persons of a weak constitution." And other great authorities, such as Carpenter, Dundas, Thompson, Gibbon and Normandy, all agree that the continued use of bread containing alum will bring about dyspepsia and other troubles, and such was the opinion of the late Baron Liebig. The celebrated Pereira considered " that whatever may have been the effect in the case of healthy persons, sick persons did really suffer in that way." In the La"cet is mentioned a case in whom dangerous gastroenteritis was apparently induced by a single dose containing between ten to twenty grains of burnt alum. Dr. Parkes, in his work on Hygiene, states that from eight to forty grains of alum, and probably more, have been found in a fourpound loaf of bread.
The effect of alum on bread is to tend to whiten it, and to prevent an excess of fermentation (when yeast is used) when the altering gluten or cercaline acts too much on the starch; but while it accomplishes this object, it lessens at the same time the nutritive value of the bread by rendering the phosphoric acid insoluble.
Sufficient proof, I think, has been shown that alum is a most dangerous element to introduce in baking powders, and it now becomes necessary for the bencfit of the public to expose such unwholesome and injurious powders as contain it. Having analyzed the Royal Baking Powder, I find it composed of only those elements which have been demonstrated to be perfectly wholesome and healthful, having for its active principle pure grape cream of tartar instead of the injurious alum used in the following powders. I do not mean by signalizing the Royal Baking Powder, that it is the only properly made powder on the market, as there
may be others equally as good. I simply introduce it as I had to select one, and thought the one I had used in my
kitchen for years, and which bad
would be the best illustration.
Out of the many baking powders I have examined, I have selected the more prominent ones that are adulterated, giving in each case a quantitative analysis of the same. The following analyses are of "Dooley's Standard Baking Powder"" Patapsco Baking Powder," "Charm Baking Powder," and the baking powder manufactured by C. E. Andrews \& Co., of Milwaukec. The analysis of the last three baking powders given in the first column was made by Proessor Robert W. Schedler.

No. 1.
dooley's standard baking powder.
Burnt alum
26.45 per cent.

Bicarbonate of soda
$\begin{array}{r}24 \cdot 17 \\ \hline\end{array}$
Sesquicarbonate of ammonia.... 2.31
Cream of tartar.
Starch. .
None
$\frac{47 \cdot 07}{100 \cdot 00}$
No. 2.
patapsco baking powder.
Smith, Hanway \& Co., Baltimore, Md.
Analysis by
Dr. Mott.
Burnt alum $19 \cdot 16$ per cent 20.03 per cent. Bicarbonate of soda.. 23.36 "، 22.80
Cream of tartar. . None
22.80
None

Cream of tartar.
$\frac{57.48}{100 \cdot 00}$ " ، $\frac{57.17}{100 \cdot 00}$
No. 3.
charm baking powder.
Rohrer, Christian \& Co., St. Louis, Mo.

Burnt alum........... $29 \cdot 60$ per cent
Bicarbonate of soda
Cream of tartar.
Starch.
$31 \cdot 1: 3$
None

No.
baking powder manufactuied by c. e. andrews \& co., Milwaukee, wis.
Burnt alum
...................... .22:53 per cent.
Bicarbonate of soda
2179
Cream of tartar None
Starch.

00.00

On reviewing the above analyses it will be seen that, in he " Patapsco Powder," about 20 per cent of burnt alum is used, over 22 per cent in Andrews', over 26 per cent in Dooley's, and about 30 per cent in the Charm. And the manufacturer of "Dooley's Powder" not only has the audacity to put on the market this injurious and unwholesome powder, but to put upon the labels the deceptive statement, " chemically pure."
Not one pound of these powders could be sold in England, as it is against the law to use alum for making bread. Why have we not such a law?
A case is reported in the English Law Reports of 1871-2 7th Queen's Bench, 13:). November 15, 1871, where a baker was convicted for using alum in making bread.
I could furnish, if it were necessary, analyses of many other alum powders, as at least 50 per cent of the baking powders contain alum; but the above serves to illustrate their nature, and to show the importance of discriminating with a great deal of care when purchasing baking powders. It is far better to select only "standard powders," as the "Royal Baking Powder," for example, than to risk purchasing the many adventurous compounds which are sure to be put on the market by persons who have no higher motive than dollars and cents.
What would become of the above-mentioned baking powders containing alum if they were introduced on the English market? The answer is simple-tbey would be swept out of existence. It is to be hoped, then, that the public, by refusing to purchase them, will bring to them all the same fate.
By exposing these injurious and unwholesome baking powders, the public must not be frightened from using baking powders when properly made-of which I have already stated there are a number on the market. In fact, baking powders are a great convenience, as the constituents are so combined that their use is always attended with success; and there is no danger of biscuits made with them having an alkaline taste, or being impregnated with yellow specks or streaks, as is often the case when ordinary cream of tartar and soda are used. This results from the fact that the ordinary cream of tartar found in market is adulterated from 10 to 90 per cent with foreign substances; consequently it becomes necessary to change the proportion to be used with every new lot, which can only be correctly arrived at by a chemical analysis of the cream of tartar.
The advantages of using "baking powder" in preference to yeast are, that with the former none of the nutritive parts of the flour are destroyed, a larger yield is obtained, and the result accomplished with a great saving of time, which would otherwise be required to promote the fermenThe when yeast is used.
o the ordinary
ket are not only that it is more economical, but the results are always attended with success, there being no fear, as stated, of producing an alkaline taste or yellow streaks in the product.

The Swedish Buckeye Machine.

To the Editor of the Scientific American:
In number 25 of the Scientific American for the 22 d of last June, Mr. E. H. Knight, in a letter from the International Exhibition in Paris, concerning the reaper and mower exhibits, says that " Westeras Mekaniska Werkstad" has illegally pirated the patented "Buckeye machine" of Adriance, Platt \& Co., of New York; and in a bold faced manner entered on a contest at the Exhibition. As these manner entered on a contest at the Exhibition. As these
statements have been published even in the Swedish newspapers, we respectfully request that you in your paper would copy the following explanations:
The Buckeye machine is not patented in Sweden. In con sequence whereof is anybody in this country justified in making a copy of the same.
Westeras Mekaniska Werkstad has never pretended to be the inventor of the machine, and which as well our advertisements from the commencement of the manufacture, as our catalogues plainly ascertain, when mentioning that " it is made from the Buckeye model," although that has not been inscribed on the machine, as such a thing has been deemed unnecessary.
We have certainly not thought there was anything cabalistic in the figures; we have simply let them remain (in order not to alter the model) and use them in our catalogues so as to give such countrymen of ours, who are in possession of American Buckeye machines, an opportunity of obtaining parts for reserve, which otherwise would have been almost mpossible.
The Swedes are not yet able to stand a contest with the Americans in the construction of harvesters, especially as they only for a few years past have been used in this country, and then of American make. The handiwork has formerly here been cheap, and harvesters therefore less necessary; but of late, on account of several reasons, the day's wages have been raised and the farmers compelled to, at a wages have been raised and the farmers compelled to, at a
very high price, buy American machines in want of any Swedish ones
Consequently, when we came to the conclusion of making reapers, we thought ourselves best serve the public at large by using a pattern which we considered the best; and we certainly believe that we have acted with perfect honesty as long as we never have claimed those copies to be our own invention; on the contrary, always told their origin, though invention; on the contrary, always one machine itself, as we have deemed that unneces sary, every machine being accompanied by a catalogue ex plaining that it is of the Buckeye construction, and the ap pearance so plainly shows the copied model, that no doubt re garding our position of manufacturers of the said machine ever ought to arise.

Westeras Mekaniska Werkstads Aktiebolag.
Westeras. September, 1878.

The Mound Builders' Unit of Measure.
Mr. J. W. McGill, who has been making a critical study of the artificial mounds of northeastern Iowa and contigu ous parts of Wisconsin and Minnesota, finds considerable evidence of the employment of a unit of measurement in their erection, the possession of which would prove the mound builders to be tolerably advanced toward civilization when they entered the country. In the American Journal Science and Arts, for October, Mr. McGill gives a large number of measurements made by him in one of the most extensive systems of mounds in northeastern Iowa, and arrives at the conviction that the lincar unit employed by the builders was simply, or had grown out of, the pace or yard The northern limit of the mounds of definite dimensions s not certainly known. Mr. McGill has sought vainly for evidence of the use of measurements in the most northerly of the mounds. His own examinations so far extend only to latitude $43^{\circ} 30^{\prime} \mathrm{N}$., and there the mounds are of constant or related dimensions. The most northerly of the measured mounds are undoubtedly within Minnesota.
In conclusion Mr. McGill observes that if we assume a slow southerly migration to have taken place in the mound builders, it will explain the evident increase in geometrical knowledge attested by the various works found in passing across the United States from north to south. In the Northwest we find measurements of simple lines, but not of angles or areas. In Ohio, angles were correctly measured, the squares being accurate squares and the circles perfect cir cles; and areas were measured, as attested by adjoining squares and circles being equal or very nearly equal in area, though there is no satisfactory evidence that the cardinal points were then known. In the lower Mississippi region the cardinal points were known. The gradual modification in the various arms and implements, and the striking improve ments in pottery, together with many other important con siderations, lend support to this view.
A Fulton, N. Y., man recently laid his finger on the table in front of a buzz saw to feel the momentum of the air. The saw was going so fast that the tecth were not to b seen. His tinger was taken off. While he was looking at it the foreman came up with the question: "How did you doit?" "Why, I put my finger down so," answered he, placing the other forefinger, as he thought, well away from the tecth. To his horror, the saw took off that one, too, at the second joint.

Parsnips.
The Journal d'Agriculture Pratique contains an article in favor of the parsnip as fodder for all kinds of domestic animals, and especially for milch cows. The author first notices some of the charges that have been made against the root as provoking certain diseases, and shows that they have but slight foundation. He then quotes Trehonnais, who ranks this as first among roots in respect to nutritive value.
In Bretagne 100 lbs . of parsnips are considered as equivalent to 300 of beets, and 16 to 18 lbs . of parsnips in the daily ration increase the flow of the milk and the richness of the milk in butter; several authorities are quoted as making similar statements, and among them so trust worthy a writer on these subjects as Magne. As to richness in nitrogen and proportionately in albuminoids, Corenwinder gives the following statement: Parsnip, $1 \cdot 38$ per cent; sugar beet, $0 \cdot 25$; red carrot, $0 \cdot 23$; ruta baga, $0 \cdot 23$; white turnip, $0 \cdot 16$. On good authority the albuminoids are regarded as the most valuable constituent of foader, and therefore according to this comparison between these several roots, the parsnip is by far the most valuable one for this purpose.

THE WATSON PUMP.

Philadelphia, at the present time, has a widespread and well carned fame for the production : f many varieties of tools and machines, from the smallest implement to the stately locomotive, and other gi, gantic engines. At many of the machine establishments specialties are made the prominent articles of production. The Novelty Machine Works of Mr. James Watson, No 1,6) South Front strect, Philadelphia, is onc of these, where are manufactured a number of specialties, among which is the force and lift pump, for artesian wells or other deep pumping, shown in our engraving. The piston rod, plunger, and lifting or deep well rod of this pump, being in direct line, inake the machine both simple and efficient. The bed plate is so constructed as to make a delivery water tank, from which the force pump takes water tank,
its supply.
ts supply.
One of
One of these pumps is now in operation in the artesian well at the Continental Hotel, in Philadelphia, where it raises water from a depth of one hundred and fifty fect into the tanks, which are placed upon the roof of the building one hundred feet above the pump room. The engineer in charge attests its perfect efficiency: it is so simple as to give no trouble should any repairs be required after long use. It lifts one gallon and a half of water to the stroke, or sixty gallons a minute; and it is very economical in the use of steam.
These pumps could be advantageously applied for purposes of irrigation in such sections as the arid lands of Colorado, and other districts that only require a supply of water to produce abundant vegetable growth, and thus greatly enhance the value of the land.
The machines are all of the best material and workmanship. We may also here state that the entire machinery of the Continental Hotel is driven by one of Watson's steam engines, which satisfactorily performs the work assigned to it. Mr. Watson has recently constructed some very superior machines for crushing bones, used in making fertilizers and manufactures; a patent gap lathe, and several very effective milling machines, and a variety of other labor-saving machines and implements. None but the best artisans are employed on the premises, and the whole work is superintended by the proprietor in person, who was practically brought up to person, who was practically brought up to
the business by a long apprenticeship in Eng the business by a long apprenticeship in England, and thus different operations being all performed by use of suitable is calculated to direct understandingly the mechanical operations, as well as to attend to the theorctical and designing departments. Mr. Watson has secured a high reputation, both as a manufacturer and a man of business, by his skill, promptness, and probity.

Albumen of the Serum and that of Egg, and on their Combinations.

The alkaline albuminates differ according to the degree of concentration of the alkali employed. Weak alkalies give rise to a combination which does not yield in solubility to paraglobulin. The acid albumens differ equally according to the energy and degree of concentration of the acid. M. Aronstein had alout the same time arrived at the following results: "That by dialysis, albumen can be obtained free results: "That by dialysis, albumen can be obtained free
from salts; that the albumen, both of blood and of eggs, from salts; that the albumen, both of blood and of eggs,
is soluble in water, and does not coagulate on boiling, even after the addition of an acid; that the coagulation of these two species of albumen under the influence of heat is due to the presence of foreign salts." The results are diametrically opposite to those of the author. He concludes that Aron stein and Schmidt regarded their dialyzed albuminous solutions as free from salts, because they incinerated too smail quantities of matter; that their solutions remained limpid on
heating, because they still contained alkali, and that they dia
not obtain coagulation after the addition of an acid, because such acid was used in excess. He finds that after the most complete dialysis, there is obtained a combination of albumen with phosphate of lime and magnesia, which is soluble in water, but a really neutral solution of which abandons albumen in a coagulated form at the boiling temperature; that it is not possible to obtain by dialysis albumen free from salts, and that we are not justified in pronouncing it a compound soluble in water.-A. Heynsius.

New Agricultural Inventions.

An improvement in Grain Binders has been patented by Mr. Ignatz Karel, of Blue Earth City, Minn. This invention relates to grain binders for binding grain by means of twine; and it consists in a device for bundling, which also carrics the twine to the knot-forming and twine-cutting me-
chanism. It nas a novel arrangengent for forming te chanism. It has a novel arrangement for forming the knot. An improved combination Digging Implement has been
patented by Mr. James P. McCann, of Wesson, Miss. This patented by Mr. James P. McCann, of Wesson, Miss. This
is a new digging tool in which different kinds of spades shovels, forks, hooks, hoes, etc., may be interchanged upon the same handle, the latter by itself bcing available for use as a tamping bar.
Mr. Robert Eason, of Springville, Ohio, has recently pat-

THE WATSON PUMP.

 cider mill may be operated by one attendant only, who controls the entire machine from one platform, accomplishing successively the grinding of the apples and pressing of the pomace, the removal of the pomace from the cribs, the filling of the cider into barrels, and the hoisting and conveying of the cider ining of the barrels.
Mr. John S. Lenox, of Gainesville, Texas, has devised an improved Fence, which may be constructed out of common materials, such as can be obtained by farmers, and in such a manner that it will be strong and effect a saving in expense and land. It consists in a rail fence having the rails laid up in a straight line and the bottom one resting upon a pin that is driven in the ground. Wire links are placed between the ends of the rails, and wire is used to hold the rails firmly in place, and also to secure the inclined stakes and riders.
Mr. Jacob Essig, of Milford, Minn., has patented an improved Machine for Thrashing Grain and cleaning it at one operation. This invention possesses novel features, which cannot be described without an engraving.
Messrs. William T. Hildrup and Albert Tschop, of Harrisburg, Pa., have patented a Feeding Device for Seeding Machines, in which the seed is delivered by a revolving feed roller. The peculiar construction insures a rapid, uniform, roller. The peculiar con
and even flow of seed.

Closing of the French Exhibition.

The great Exposition Universelle at Paris has taken place, and is now rapidly approaching its dissolution. During the past summer it has been the leading attraction not only in and for Europe, but for the world at large, and has been visited by hundreds of thousands of persons of all nationaliies, ages, and ranks, and of both sexes. From England a constant stream of visitors has been kept up, not merely from London, but from every town of any consequence in the provinces. Persons in search of pleasure or recreation have this year put off their customary visit to the seaside or Scotland, and have gone over the channel in order to participate in the general gathering in the French metropolis. Business men of all trades and pursuits have traveled to Paris intent on the lessons to be learned there, and have, for the most part, returned home not sadder but certainly wiser men. They have thereby acquired a better and more thorough knowledge of the manufactures and producing capabilities of their Continental and American rivals, and. with the acquisition of that knowledge, have also imbibed a keener and plainer appreciation of the difficulties they have to encounter nowadays in maintaining their old control of the markets of the world. Many of the British visitors were scoffers at the mere mention of foreign competition, and scouted the very idea of the Germans, Belgians, or Americans being in a position to do us harm in any market. This was aforetime and prior to their walk around to the different sections of the Exhibition. They do not feel quite so confident about the matter since that promenade, and are certainly not disposed to underrate the progress made in recent years on the Continent and in he United States.
Ou: friends at home, continues the Ironnonger, have long been convinced of their ability to win in the industrial contest, but they have now begun to admit that it is urgently and vitally necessary for them to gird up their loins and put forth their utmost strength.
The same journal, in an article on agricultural machinery and implements at the Extural machinery and implements at the Ex-
hibition, thus expresses its inability to describe the multifarious articles in this department:
To write of the immense collection of agricultural machinery and implements in the different parts of the Exhibition with anything like justice, and with a due and fitting appreciation of the value and merits of each separate section, would be to produce a volume far excceding the whole of the space at our command; hence it is quite clear that what we have to say on the subject must be closely condensed, and from a general rather than from a detailed point of view.
The French, English, and American sections each have a large area devoted to these appliances, the two former being particulariy imposing, and the latter hardly less so. Other nations-Belgium, Sweden, Denmark, Norway, etc.-send samples of a rough-and-ready kind of what they can produce in these classes, but they are not of a nature to place their producers in the front rank, and certainly have no claim either to originality or to take any prominent position in any purely international comparison.
Beginning with our own set of exhibits, we may at once give it as our impression that we are at the top of the tree, nothing in the whole range of building being of that equable and high excellence which is, from beginning to end, characteristic of our productions.
Most of our leading agricultural implement makers are present, and they send fixed portable and traction engines, plows, harrows, drills, thrashers, corn dressers, mowers, reapers, hoes, scarifiers, ctc., got up with the most assiduous care, and with that close finish which has so long enabled us in this respect to hold the rest of the world at arm's length. In fact, some of the engines, plows, mowers, etc., are so exquisitely got up, polished, or nickel-plated, that they look fitter for a lady's boudoir than for actual work. In pleasing the eye, nevertheless, the manutacturers have in no single particular neglected utility and solidity, so that every article shown will do its work as well in the field as one taken from ordinary stock. Each exhibitor seems to have rivaled his neighbor, so that the general result is a higher tone than has ever previously been noticeable in the same class of goods.
In that portion of the United States space devoted to the same articles we find almost all their principal houscs "on the spot," not so much in machincry, as in implements and light contrivances. None of our readers need telling that in all kinds of implements the United States manufacturers are quite up to our own level. If they do not rival us in respect of solidity and finish, they are even with us on the scores of ingenuity, lightness, and the adaptability to special uses of particular articles. This is more observable in mowers, reapers, self-binders, hay and straw forks, and sundry small implements, than in anything else; and we shall merely repeat the record of an acknowledged fact when we say that in these matters our American cousins have done
full justice to their reputations. Alluding to the French exhibit of agricultural wachinery, the same writer says: It may be that we are able to find room for criticism here and there; that the portables are rather primitive in design and construction; that the reapers and mowers are somewhat clumsy; that bright brass drill tubes and boiler casings, and so forth, are not according to our ideas; but the broad fact still remains that the French are rapidly learning to manufacture all kinds of implements for their own use, and that they are quick to take advantage of all our improvements, as well as to note where we have failed. Under this great roof are all sorts of agricultural appliances from every part of France-from lost Lorraine to far Finisterre, from Rouen to Marseilles-some good, others indifferent, but all offering an increasing competition to us, and, consequently, placing more difficultics in our path.
The French manufacturers, it may be noted, appear to pay special attention, in the strength of cultivator tines, etc., to the great variety of soil in different parts of their country, and also discard all mere external ornaments for strength and selidity-especially in thrashers and the like large articles. In giving this measure of appreciation to our neighbors across the channel, we must not be understood to place them on a level with ourselves and the Americans, but simply do so to show that they are not asleep, but are actively and strenuously striving to supply themselves.
In the Swedish and Norwegian sections are a number of plows, chaff cutters, etc., which are more notable for their unusual strength than for any other quality. The plow beams and colters are uncommonly heavy, mostly of iron and the shares, breasts, etc are rough and uncouth The chaff cutters are bulky and heavy, and have uninclosed feed motions. Our notice of this important section would be incomplete without a brief mention of a singular combination, shown near the Canadian timber trophy. It is a model of a combined reaper and thrasher, as used in South Australia, and of Australian manufarture. The knife bar is let down by a rack motion, and is geared on a universal joint from the road wheels, which also actuate a spindle moving the thrashing beaters in the hinder portion of the machine, into which the cut corn is forced in a continuous stream, so to speak. The machine is useful as showing the requirements of a climate where it is being already largely used; but that it is not in all respects satisfactory would appear to be shown by the offer of a reward of $£ 4,000$ for a perfect machine of the kind, by one of the Australian governments.

Roads in Baden.

In the Grand Duchy of Baden, in Germany, the govern ment has built magnificent macadamized roads, as smooth as Central Park rides. These are lined on both sides by fruit trees-pears, apples, cherries, plums-and it is aserted that the fruit alone pays the full cost of repairs. All the droppings of the road are carefully and constantly
scraped around these trees. The rain water of the road beds the handle; a screw, F, passes through the other arm, and is led to them, and they bear most bountifully choice and is used to force the edge of the cutter into the pipe as the valuable fruit. The beauty of such roads, nicely shaded, tool passes over it. When the tool is used as a wreach the well kept, and in a picturesque country, is a thing never serrated jaw, G, is substituted for the cutter, and its engageforgotten.

PIPE WRENCH AND CUTTER.

A new and very simple pipe wrench with a pipc cutting attachment is represented in the accompanying engraving.

TRULAND'S PIPE WBENCH AND CUTTER.

Fig. 1 shows the tool arranged for cutting, and Fig. 2, which is partly in section, shows the tool arranged for turning or olding pipe or round rods.
The handle, A, is curved, forming the jaw, B, near which there is a slot in which the cutter, D, is pivoted One arm ment with the surface of the pipe is insured by the pressure of the spring, C , on one of its arms. The serrated jaw is disengaged from the pipe by the pressure of the thumb on the arm that extends downward nearly parallel with the handle.
This implement was recently patented by Mr. William L. Truland, of Lansingburg, N. Y., from whom further particulars may be obtained.

A Mirror Telegraph.

A party of gentlemen were standing on the Lake House porch recently watching the telegraphing between two parties of United States Signal Surveys. One party was stationed on the highest peak of the mountain range northeast of us, and the other on one of the peaks near Lake Tahoe. The telegraphing is done by an instrument known as the heliotrope, which concentrates the rays of the sun to a focus and casts them straight ahead, similar to a mirror, and by an agreed series of long and short flashes can communicate the temperature, etc., from point to point similar to telegraphing. This is in general use over the United States, and is of great value to the Weather Bureau. The party whose signals were noted is situated thirty-five miles from here, and yet the flashes were as bright as the sun.Reno (Nev.) Journal.

We understand that the fine steam engine now driving the machinery at the Mechanics' Exhibition in Boston has been purchased by Professor Edison, and will be placed in his laboratory at Menlo Park, N. J. The engine was built by C. H. Brown \& Co., of Fitchburg, Mass., and is remarkable for its efficiency and finish.

LOCOMOTIVE FOR THE METROPOLITAN ELEVATED

 RAILWAY.We publish on this page an engraving of one of the locomotives used on the Metropolitan Elevated Railway. The dimensions of these engines are as folluws: Cylinders, 10 inches in diameter by 16 inches stroke; driving wheels, 39 inches diameter; truck wheels, 28 inches diameter; total wheel base, 15 feet 6 inches. The boiler is made of steel and has 125 flues $11 / 2$ inch in diameter and 70 inches long. The fire box is 42 inches long by 27 inches wide; axles, $41 / 2$ inches diameter; capacity of the tank, 320 gallons; weight of the engine loaded, $32,500 \mathrm{lbs}$; weight on driving wheels, $27,500 \mathrm{lbs}$. These engines have now been working for sevcral months, and have done good service. They pass around curves of 90 feet radius, and the heaviest trains consist of three loaded cars. The engines last ordered have larger boilers, and the cab is made shorter, so as to expose the ! water tank and a part of the boiler to view.

LOCOMOTIVE FOR THE METROPOLITAN ELEVATED RAILWAY, NEW YORK CITY.

DRILLING SQUARE HOLES.

To drill a square hole with a rotary motion at one operation may seem to many a vovelty in mechanics, but Mr. J. Hall, of Chancery Lane, has obtained a patent for a method of accomplishing the feat. For this purpose he employs a three sided drill, either flat or fluted, which, in cross section, is of the form of an equilateral triangle. He makes the bottom or cutting edges of the drill perfectly flat, and three in number, each cutting edge extending from one of the outer corners to the center of the triangle. The proposed method of using such drills in an ordinary vertical drilling machine is as follows: \mathbf{A} special drill chuck, forming part of the invention, is provided, and attached to the lower end of the drilling spindle. The chuck is constructed in such manner as to admit of the drill traveling automatically in a horizontal plaue some little distance. This is ren

TOOL FOR DRILLING SQUARE HOLES.
dered necessary by the peculiar movement of the cutting edges of the drill, which does not operate or rotate on a fixed central point, but diverges somewhat in proportion to the size of the hole.
The drill chuck is constructed in the following manner: The upper part of the cavity of a metal cylinder is bored out circularly, so as to fit on to the drilling spindle, to which it is screwed by one or more screws. Below the circular bore a square recess is made, and below this latter, and coming well within the limits of the square recess, there is a circular hole passing through the end of the cylinder. The drill holder or socket is in a separate piece, the bottom portion of which is provided with a square or round recess for holding the shank or upper end of the drill, which is held firmly in its place by means of a set screw. The device is shown in the accompanying engraving, which we take from the English Mechanic. The upper part consists, first, of a screw, S, at the top, Fig. 1; secondly, of a square shoulder, \mathbf{B}; thirdly, of a circular shoulder, D; and, fourthly, of another but much larger circular shoulder, E. Through the circular hole at the bottom of the hollow cylinder the upper portion of the drill holder is inserted until the large circular shoulder meets the bottom of such cylinder. A loose square collar, A (Figs. 1 and 2), provided with an oblong rectangular slot, is then placed within the cylinder and over the square above mentioned, above and on to which is screwed down a nut, N , from the inside of the cylinder. The loose square is of such thickness that when the nut is tightened down on to the square shoulder the loose collar is left to work freely. When this is done the drill holder will readily travel in a horizontal plane such distance as the play between two of the sides of the loose collar, and two of the sides of the square recess, in one dircction, and in another direction the distance of the play between two of the sides of the small square shoulder of the drill holder and the ends of the rectangular slot in the loose collar. The horizontal travel or play is proportionate to the size of the hole to be drilled. Near to the lower end or cutting edges of the drill is fixed rigidly a metal guide bar or plate, F. The guide bar is provided with a square hole similar to the hole it is required to drill, the dimensions of the three sides of the drill being such that the distance from the base to the apex of the triangle, which such three sides form, is the same as of the sides of the square holes it is required to drill.
Mr. Hall prefers to make the guide bar of steel, which he hardens at that part where the guide hole is made. The method of operation is then as follows: The three sided drill being fixed in the self-adjusting chuck, the guide bar with the square guide hole therein rigidly fixed above the point where it is required to drill, the drilling spindle carrying the chuck drill is made to revolve, and is screwed or pressed
downwards, upon which the drill works downwards through the square guide hole, and drills holes similar in size and form to that in the guide. The triangular drill for drilling dead square holes may also be used without the self-adjusting drill chuck in any ordinary chuck, when the substance operated upon is not very heavy nor stationary; then, instead of the lateral movement of the drill, such lateral movement will be communicated to the drill by the substance operated upon
Although the patentee only cites the case of a vertical drilling machine in connection with this invention, he declares that the specified improvements are equally applicable to lathes, ordinary braces, ratchet braces, and all other descriptions of drilling apparatus. In making oblong dead square cornered holes, either the substance to be operated upon must be allowed to move in one direction more than another, or the hole in the guide plate must be made to the shape required, and the drill chuck made to give the drill greater play in one direction. Fig. 1 shows a vertical section of the improved chuck, in which A is the hollow cylin der, which may be attached to any ordinary drilling machine H is the drill holder; S is a screw; B is a square shoulder D is a circular shoulder; E is a circular shoulder of a larger dimension; N is a screw nut for tightening on to the square shoulder, B, and the loose square collar. Fig. 2 is a plan view of Fig. 1. Fig. 3 is an elevation of the improved chuck; C showing the three sided drill and the guide bar, F, complete. Fig. 4 is a plan of the guide bar, F, showing the three sided drill in cross section.

Indications of Progress.

While Paris has been reveling in excess of light, and, according to many, paying pretty heavily for it, we, says the Eectrician (London) in issue of October 16th, have been waiting the results of the experiments. However, amidst the confusion of cries, there seems to be a general consensus of opinion that electricity is the best method of lighting under certain circumstances. This being the case, efforts are being made to supply any demand that may arise. No less than three electric light companics have been registered within the last few days, with a total capital of over $£ 200,000$. The British Electric Light Comrany, promoted by Mr. E. J. Reed, takes up Rapieff's patent, and is patronized by the Times. The Electric Lighting Company, promoted by Mr. Hollingshead, is to work the Lontin system, and is patronized by the frequenters of the Gayety, and all who walk through the Strand during certain portions of the evening. These two have a nominal capital of $£ 100,000$ each. The Sun Electric Light Company is the third and last, with a capital of $£ 5,000$ only. Mr. Strickland is the promoter, and the company is formed for the development of the Harrison system, about which little has been publicly said, but which private report mentions in the highest terms The candles are said to surpass the Jablochkoff, and the di vision of the light seems to anticipate Mr. Edison. The public will soon be able to judge the value of these reports for themselves, as arrangements are being made to use the light on a very large scale.

RUSSIAN POTTERY.
We present engravings of two examples of unglazed Rus-

RUSSIAN POTTERY.
sian pottery of quaint design. It resembles in texture and material the old black Wedgwood ware so much admired by connoisseurs.

Practical Education in Russia.

In a letter from the Paris Exhibition, Col. Forney, of the Philadelphia Press, remarks that while American progress has astonisked Europe, yet "Germany, Switzerland, and France have methods and systems that deserve to be studied. Even Russia may be a model for all of us. Yesterday I saw some Russian machinery at the Exhibition; and my admira tion increased as I was told that much of this exquisite work was made by the youth, many of them sons of the best
families, sent into the machine shops to learn trades as a part of their education. There was no alternative; they were compelled to pass this ordeal. The government is the master, and young Russia must obey; and now obedience becomes a delight; and it is as much the fashion to finish a practical education in this way, as formerly it was the fashion to pass through a school, or an academy, or college, for the easy acquisition of superficial accomplishments."

NEW MORTISING MACHINE

A novel form of mortising machinc, the invention of Mr. Wm . W. Green, Jr., of Chicago, Ill., is shown in the accompanying engraving. In this machine the usual vertically reciprocating chisel is replaced by an endless chain consist-

GREEN'S MORTISING MACHINE.
ing of saw sections jointed together and running over two pulleys, the upper one of which is spurred, and acts as a driver. The lower pulley is journaled in the end of a vertical arm, which is of the same thickness as the endless chain saw.
The vertically sliding table whicb supports the work is of the usual description; but it is raised by very simple mec.ns. To the pedal is attached a strap, which passes under one puley and over another, and is attached to the table. A down ward pressure on the pedal raises the latter and carries the work up to the cutter. The width of the mortise may be varied by using pulleys of different diameters.

Recent Engineering Inventions.
Mr. William P. Barclay, of Virginia City, Nev., has pat ented an improvement in Hydraulic and Wire Rope Pumping Systems. In pumping machinery, such as is commonly employed in freeing mines from water, heavy rods of wood, jointed and bolted together by iron plates, are used. These rods, to have the requisite strength, become excessively heavy, requir ing counterbalancing, thus throwing into the pumping apparatus a quantity of heavy ma terial that requires to be oscillated at each stroke of the pumps, thereby consuming a great amount of power and rendering the action of the pump slow. By this improvement these difficulties are overcome and the pumping is effected economically. This in vention employs as many force pumps in the mine or shaft as may be required, placing them one above the other at suitable distances apart. These pumps are provided with the usual inlet and discharge valves placed one above the other.
Mr. Frederick Bowen, of Barnhart's Mills, Pa., has patented an improved Pump for Oil Wells. The object of this invention is to provide for withdrawing and replacing the packing of the pump plunger in oil or artesian wells without disturbing the tubing or valves. It consists in the arrangement of the upper valves in connection with the cell containing se stuffing box, and in the manner of securing and remov ing the packing ring of Babbitt metal.

Comstock Silver Lodes.

The survey of the silver mines situated on the Comstock ode was carried on in 1877 by Professor I. A. Church, of Lieut. Wheeler's party. The character of the vein was carefully mapped from one thousand to two thousand feet deep. The heat varied from $84^{\circ} \mathrm{Fah}$. in old drifts to 116° in freshly pened ones. The source of the heat is, it is believed by those in charge of the works, ascertained to be the decomposition of the rocks under the agency of atmospheric in position of the rocks under the agency of atmospheric in-
fluences. This was observed of the thick sheets of lava
lying upon the vein in the upper one thousand feet of rock. lowmen. My friends, I have lived to see great progress and State. Yet many interesting and important facts have alfeet further. At 2,400 feet it is nearly uniform, neither in- country, much of which may be primarily traced to the crease nor decrease being observed. The miners cut through singular bands of hot and cold rocks, a fact which seems to suggest that the origin of the local heat is the motion which is taking place in tangential and orthogonal directions in the earth's crust as the result of its slow contraction by cooling. It is thought the lode will continue hot, but not in creasingly so.

ASTRONOMICAL NOTES.

by beruin e. wriget.

Penn Yan, N. Y., Saturday, November 16, 1878. The following calculations are adapted to the latitude o New York city, and are expressed in true or clock time, being for the date given in the caption when not otherwise stated Venus rises
Mars rises.
Japiter sets.
 $\underset{\text { Mars rises }}{\text { Meter }}$

first magnitude stars, etc.

${ }_{8}^{\text {H.M. }} 18 \mathrm{eve}$.	Procyon rises.
1029 eve.	Reguilus rises.
1116 eve.	Spica rises
d. 1156 eve.	Arcturus rises
048 mo .	Antares sets
${ }_{7}^{1} 27$ move	Vega sets.
753 eve 739 eve.	Altair sets
7 959 eve.	Deneb set

enterprise and labors of Massachusetts men. Suftice it to say, that, from the day when Governor Endicott planted his pear tree at Salem, which still lives; from the day that Perigrine White planted his apple tree at Marsbfield, Mass.; from the day when our society was formed it has stood prominently before the world as a leader and patron of agricultural and horticultural science. How marvelous the progress in our own day! How grand the march of horticulture since the establishment of our own society! It is scarcely fifty years since the Massachusetts Horticultural Society was formed. Then there were but few horticultural and agricultural societies in our land; now they are counted by thousands, and are scattered over the continent, all working harmoniously for the promotion of these arts. Then there was scarcely a nursery of any note west, and only a fcw east of the Hudson river; now they are planted from one f the信 sowed the sced of his strawberry and other fruits, which his extensive grounds and building his houses in Cambridge. Then I had not planted a seed of the camellia, the azalea, pear or grape, nor ceven attempted the hybridization of a plant; now our American fruits and plants enrich the garhad no such splendid villas as those of Hunneywell, Payson, Gray and others, with their broad lawns, extensive glass structures and magnificent plants, which are such an honor to our land. Then we had many old and fine homes and gardens, such as Governor Gore's, Mr. Lyman's, Mr. Preble's, Mr. Cushings's, the Perkinses and others; but very little in the way of landscape gardening or in new or rare plants or fruits. Then our exhibitions were confined to a few days of the year, and were for many years held in small rooms; now many of our exhibitions are the best given in any State in the Union. Then we had no building of our own; now we possess the most costly and magnificent temple of horticulture that the world can boast. Then the American Pomological Society, whose president, by the mercy of God, in his 28th year of service now stands before you, had never been dreamed of-a society that emanated primarily from the influence of the Massachusetts IIorticultural Society-a society that embraces not only our na tioual domain, but whose jurisdiction extends over our con-tinent-whose catalogue prescribes the appropriate fruit for fifty States, Territories, and districts, and at whose quartercentennial in this city, the far off State of Nebraska, with her governor at her head, carried off triumphantly the Wilder medal for the best collection of fruits. Then there were few exports of fruits; now we send 400,000 barrels of apples in good years to foreign lands. Then the grape was scarcely cultivated; now, in addition to all that are used for the table, we make $15,000,000$ gallons of wine, and wine, too that took the first prize at the World's Exhibition at Vienna in 1873. Then the statistics of our fruit crop were not thought worthy of record; now it amounts to $\$ 140,000,000$, or nearly the average annual value of our wheat crop. But I must bring these remarks to a close. I thank you for the kind references to me as a pioneer in rural affairs. You do me no more than justice, for I cannot, as I have told you before, remember the time when I was not fond of the cultivation of the soil. But, gentlemen, my labors are mostly over. Soon I shall be resting in the bosom of my mother earth; but if I can believe I have done anything to advance the great interests of our land, and which shall contribute to the happiness of my fellow men, I shall, so far as this world is concerned, die content, feeling that I have not lived n vain."
Mr. Wilder resumed his seat amid a storm of applause.
Notes from the South.-Facts about the Cotton Worm.
by professor c. v. riet.
The readers of the Scientific American may not be uninterested in a few notes of a trip recently made through the land of sub-tropical products-the land of cotton, of the long.leaved pine, the Tillandsia or hanging moss, the beautiful crape myrtle (Lagerstromia indica), the magnolia, the cypress, and the China berry (Melia azedarach)-the land where the cow pea comes to perfection, and where side by side with such products of the farther north as corn, whea and oats, may be seen growing the sugar cane and rice.
My mission south is the direction of the investigation now being carried on by the Commissioner of Agriculture into the insects injuriously affecting the cotton plant, and the best means of counteracting their ravages. The Commission of Inquiry was organized by the appointment of Prof. A. R. Grote, of Buffalo, N. Y., and Prof. J. II. Comstock, of Cornell University, as special assistants, and of Prof. J. E. Willet, of Macon, Ga., Prof. E. A. Smith, of Tuscaloosa Ala., Dr. E. H. Anderson, of Kirkwood, Miss., and Wm. J. Jones, of Virginia Point, Texas, as local agents and observers.
Two circumstances have somewhat interfered with the inquiry, namely, the yellow fever and the general freedom of the plant from the cotton worm, the serious injuries of this last being restricted to the "cane break" regions of Alabama and to the southwest counties of Georgia, espe cially the country between the forks of the Flint and Chat
among cotton planters (or rather among their superintendents, for the planters are mostly away from home at this season) on the most noticeable and important habits of the cotton worm is the more remarkable, considering the losses sustained by them from this insect in the past. I find that the opinions of the most observant are seldom founded on intelligent observation, and that such opinions are, consequently, of little value. This state of things is due to three evident causes: First, the general unhealthiness of the regions in which the insect does most damage, and the intense heat that prevails during the months when most of the observations must be made; second, the fact that the culture of the crop is turned over to uneducated and unobserving negroes; third, the failure to discriminate between the cotton worm (Aletia argillacea) and the boll worm (Heliothis armigera) in their later stages, and the natural difficulty that besets the solution of some of the questions, such as the winter habits of the Aletia.
It had often been a wonder to me that no true parasites had ever been found infesting this insect, since there scarcely exists a plant-feeding species that is not attacked by some parasite. Several such have been discovered on Aletia this summer. Again, I wondered what plants the moth naturally fed from, since it was known to be fond of sweets and had, to my knowledge, done considerable injury in Kansas by boring into peaches.

The cotton plant is peculiar for having a gland on from one to three of the larger ribs of the more mature leaves, and a still larger gland at the base of each of the three lobes of the involucre. As soon as I larned that these glands secreted a sweetened liquid I inferred that the plant would be found to furnish nourishment to the moth as well as to the larva, and drew attention to this belief in the Atlanta Constitution. It was with no small degree of pleasure that at Baconton subsequently, in company with Professors Comstock and Willet, I was able to prove my anticipation correct by studying the normal habits of the moth with a dark lantern at night. The moth is, therefore, attracted to the plant by the sweets which this last affords, and as these weets are first produced when the plant begins to flower and fruit, we have here a possible explanation of the well known fact that the worm is never noticed on the young plants, but first appears about the time of fruiting. We have also discovered that the moth feeds on the honey copiously secreted from glands occurring at the apex of the peduncle, just above the pods, of the cow pea (Dolichos), extensively grown through the South as a forage plant; also n the sweet exudation from the rachis of the flowers of Paspalum leve, a tolerably common grass.
It is by taking advantage of this love for sweets which the moth possesses, that we shall probably arrive at one of the most effectual ways of preventing the ravages of the worm for if we can allure the first moths of the season to certain death we nip the evil in the bud; and I am now having experiments made to test the effects of different poisons mixed with sweets to use as bait. These baits may be applied to the trunks of the dead pine trees that occur in so many cot ton plantations, or to the trunks of any other trees; or they may be used in pans, upon which perforated platforms of wood or tin are made to float.
I have also discovered that the worm affecting the cotton southwestern portion of the cotton belt, as in South rn Texas, is often another species (apparently Anomis xacta, Gn.), though belonging to the same genus as that which is already so well known. We shall most likely find a consequence, corresponding difference of habit.
The use of Paris green, cither in water or powder, which first recommended for the insect in 1873, is now the gen eral and, in reality, the only satisfactory mode of killing the worms, though some other preparations of arsenic are to a limited extent employed. We may yet discover something as effectual and less dangerous; but in any event there is a great deal to be learned in the more cconomical, safer, and more effectual use of the green poison. It is now either sprinkled in water through coarse sprinklers that waste the bulk of the liquid on the ground, or dusted from equally coarse and crude sieves. The carelessness with which it is generally used has, also, prejudiced the negroes against it for the powder settles on their persons and is carried by perspiration to the nether parts, causing swelling of the groins and other troubles. The cost averages $\$ 1$ per acre for a sin gle application, and this great cost naturally deters many from attempting to save the crop. Lastly, few planters begin to poison until the worms are nearly full grown and have fairly begun to strip the plant, by which time it is of ten too late to go over a large plantation successfully. I changed.
For some days after the worms hatch they feed on the underside of the leaf, confining themselves to the parenchyma without eating through. There they may be in large numbers without attracting attention, and there, before they have an opportunity to riddle and devour the foliage, they should be killed, and might be with the minimum expendi ture of poison, if this were applied from beneath instead of from above. We shall endeavor to perfect a machine for this purpose. By means of a force pump, to which an atomizer is attached, the liquid may also be sprayed on to several rows of the plants at once, thus greatly reducing the cost of labor and material, as has been proved in parts of

[^0]In traveling through the South one fiuds very many signs of coming prosperity, and they are more particularly noticeable in Georgia. I have met with few persons who are not satisfied that emancipation-whitever it may prove for the negro-was the very best thing that could have happened to the white population of the South. In slavery times, in proportion as a man's slaves increased, he had to increase the extent of his plantation; for Sambo was valued only according to his cotton-producing capacity. The natural tendency was an increasing negro population, and a decreasing white population with widening estates, to say uothing of the enervating and demoralizing effects of the institution. To-day the tendency is all the other way. The authorities recognize the value of intelligent white labor, and are making successful efforts to induce immigration. King Cotton has had bis day, and while he will ever raise a proud head in this latitude, diversified farming is the motto of the more intelligent and far-seeing. I had the pleasure of riding up from Albany with Senator Gordon, who is deservedly popular. He had just come from his large sheep farm, and interests himself largely in the improvement of stock in the State and in the general advancement of agriculture within her borders; and he is but one of many prominent men equally alive to its advancement.
The great strides made in fruit culture since the war can hardly be appreciated by one who has not been here. The best evidence of its rapid growth, and of the spread of esthetic taste, may perhaps be found in the constantly inereasing sales of the nurserymen, and especially of Mr. P. creasing sales of the nurserymen, and especially of Mr. P.
J. Berckman's, of Augusta, who is prominently identified with Georgia's advance in horticulture. The entrance to Mr. Berckman's "Fruitland Nurserics" is by a broad avenue of magnificent magnolias; and after spending a few hours among his greenhouses and his well kept stock of choice fruit and ornamental trees, many of them new to Northern eyes, the secret of his patronage is easy to discern. Exotic conifers are here made a specialty, and I bave never witnessed anything more beautiful, outside the grounds of Mes.srs. Ellwanger \& Barry, of Rochester, than his beautiful Cupressun. Kni:ghticu"u clejrens and the fine Cunninghamias that lift their heads forty or fifty feet high.

Washington, D. C., October 14, 18 \% 8.

SOME MODIFICATIONS OF THE MICROPHONE AND TELEPHONE.
 br geo. m. hopkins

The microphone now exists in many fnims, and is an exceedingly interesting instrument, although it has not, thus

microphone with graphite rods.
far, attained the usefulness of the telephone. The several forms of microphone are easily constructed, but all, so far as I know, are defective in some particular. An instrument of this sort that is sensitive enough to transmit the slightest sounds is too sensitive to transmit the heavier sounds properly. In the instruments shown in Figs. 1, 2, and 3, these defects are in a great measure remedied. These microphones are so simple and so easily made that I give a description of each, so that any one who wishes to experiment in this direction may be able to do so.
The instrument shown in Fig. 1 has a wooden diaphragm one eighth inch thick and four inches square, which is glued to a narrow frame supported by suitable legs. Two pieces of battery carbon, 1 B , are secured by means of sealing wax to the diaphragm about an inch apart and at equal distances from the center. They are both inclined downward at about the angle indicated in the engraving, say 30°. The carbon, A, is longer than the carbon, B, and has in its under surface three conical holes-made with a penknife point-which are large enough to receive the upper ends of the graphite pencils, C. The lower ends of the pencils rest in slight cavities in the lower carbon. The pencils, C, are simply pencil leads sharpened at each end and placed loosely between the carbons; they are inclined at different angles, so that the motion
of the diaphragm which would jar one of them would simply tery wie others so as to transmit the sound properly. Battached, one to the carbon, A, the other to the carbon, B. The diaphragm and its support in Figs. 2 and 3 is the same as that already described. The microphone shown in Fig. 2 has a piece of battery carbon, D. secured in an inciined position to the diaphragm near the middle, by metas: of

MICROPHONE WITH PENDANTS

saling wax. Three carbon pendants, E , of different sizes, are suspended by very fine wires, so that they rest upon the upper surface of the carbon, D. The three fine wires are all connected with one of the battery wires, and are fastened at suitable distances apart to the face of the diaphragm by a drop of sealing was. A fine copper wire is wound around the carbon, D, and connected with the battery.
The construction of the microphone shown in Fig. 3 is so obvious as to require little description. One of the battery wires terminates in a series of coils, F, and is attached to the diaphragm above the middle. The other wire is con nected with a strip of metal, G, which is secured to the dia phragm below the middle, and is curved and indented to re ceive the wires, H, which, by the way, must be quite fine say No. 30.
These instruments are used as transmitters; a Bell tele phone is used as a receiver. By using a number of rods, pencils, or pendants instead of a single pencil, as in the Hughes microphone, much if not all of the jarring is avoided, while it is capable of performing the feats usually exed, while it is capable of performing the feats usually ex-
pected from instruments of the name, such as the transmission of the sound of the ticking of a watch, the tramp of a fly or an ant, the crumpling of paper, whistling, instrumental and vocal music, and, under the proper conditions, articulate speech, whispering, etc.
The instrument shown in perspective in Fig. 4 and in section in Fig. 5 fulfills the requirements of both microphone and transmitting telephone, being capable of transmitting articulate speech as loudly and clearly as any of the well known forms of telephone. It is not necessary that one

Pian.

MICROPHONE WITHOUT CARBON.
should speak directly into the instrument; it may be in one part of the room and the speaker in another. It will transmit a whisper, or the conversation of two or three persons. * Full directions
and it is partial to violin and flute music or whistling. It seems almost incredible that an instrument of this construction should do these things, as everything is accomplished through the medium of a long lever actuated by the diaphragm; but this construction amplifies the vibrations of the diaphragm, and renders the instrument effective. The mouthpiece, which contains a ferrotype diaphragm, is mounted on a standard, and the diaphragm is damped as in the phonograph by means of short pieces of rubber tubing placed between it and the mouthpiece. A wooden spring is attached to the diaphragm support, and extends across the diaphragm downward toward the base of the standard. A small set screw passes through the spring and bears upon a thin metal plate that rests upon a soft rubber block, placed against the center of the diaphragm. The spring between the set screw and the fixed portion is reduced somewhat in thickness, and from the set screw to the lower end it is tapered to make it as light as possible. A small pencil of battery carbon is cemented to the extreme lower end of the spring, and a very fine copper wire is wound around it and spring, and a very fine copper wire is wound around it and
carried upward to the fixed portion of the spring, thence downward to the binding post at the left. A small metallic spring is secured to the standard near the base, and carries at its free end a block of battery carbon, which is brought into light contact with the carbon on the ead of the wooden spring by turning the adjusting screw that passes through the metal spring and bears against the standard. The metal spring is connected with the binding post at the right. This instrument, placed in an electrical circuit in which there is instrument, placed in an electrical circuit in which there is
a Bell telephone, will transmit speech with considerable a Bell telephone, will transmit speech with considerable
loudness. It requires no call or alarm, as a loud sound made directly into the mouthpiece will produce a noise in the receiving instrument which may be heard in any part of a room of ordinary size.

The French Dam below Pittsburg, Ohio.

Three years ago Congress appropriated $\$ 100,000$ for the construction of a Chamoin dam at Pittsburg, under the direction of the War Department. The construction was begun during the past summer. It is intended to form slack water to the two rivers which unite at Pittsburg and form the Ohio River to create a harbor six miles long for the commerce of the city
The peculiarity of the French ciam is that it is the dam of

low tides. That is, it is a dam which is set up against the stream when the stream is low, diverting the water into a lock, after the manner of a canal, and falling in ordinary times prone on the bottom of the river, allowing navigation to pass over it in its usual course. The dam is raised or lowered by means of a series of props which are handled by a simple process. The gate of the canal is opened and closed by hydraulic power operated from a gigantic tank at an elevation on the river bank. In detail, the French dam, which has received the name of Chamoin, after its inventor, is simply an extended series of wooden wickets from four to six ply an extended series of wooden widkets from four to six
from ten to fifteen in length, placed side by side on end on a stone platform, at an angle of cighty degrees (from the horizontal) across a river bed. Each wicket as it faces the stream has behind it a cast iron prop, whose lower end is adjusted when the dam is up in a hurter or catch, at the head of a slide on the platform of the structure, along which it can be lowered at pleasure, the wicket falling with its prop; the whole dam being let down by degrees according to the necessity made by the rising water. Such is the character of the dam which is everywhere employed for the improvement of the low tide rivers of France; which converts the Sanne, the Meuse, the Marne, the Yonne. and the Oise into navigable slack water, and the Seine from tis head waters to Rouen into a canal.

The dam to be constructed on this principle in the Ohio River at Pittsburg is one of the largest of its kind, the main dam being 1,200 feet in length and composed of 200 wickets. The lock will be the largest in the world. It will have a width of 110 feet, and will admit the passage in bulk of an entire coal flect. The engincers who have the work in charge announce their intention to pr
energy as to complete it within a year
energy as to complete it within a year
If, when the work is completed and
If, when the work is completed and tried, Congress de cides to adopt the system for the permanent improvement of the Ohio River, probably not less than $\$ 20,000,000$ will be required to convert through this means its whole length, at low tide, into navigable slack water. The enterprise receives its large present interest from the fact that it is a national one, and, at the same time, the introduction of a foreign engineering device for the improvement of one of the most important of American rivers.

The Mediterranean Trade.
The import trade of the cities on the shores of the Mediterranean Sea is estimated at $\$ 500,000,000$ a year. Of this not more than one fifth falls to the share of the United States, the greater part being monopolized by England. For a year or more efforts have been making in Philadelphia to win a larger share of this profitable trade, and already the Record reports that nearly thirty-five agencies for the sale of American goods have already been established along the Mediterranean. Many of these agencies are in the hands of influential mercantile houses who bave hitherto acted in the interests of the English. The wisdom of this method of bringing American goods directly in contact with those produced by our English competitors is demonstrated on the arrival of every foreign mail. Orders and inquiries are pouring in for various kinds of American products never before sent to Southern European ports. A few weeks since came a communication asking for estimates of the cost for equipping a hundred miles of railway with Bessemer steel rails. At the present moment negotiations are in progress for the shipment of over 70,000 feet of iron piping for a Mediterranean entrepot which has bitherto been supplied exclusively from Glasgow. A larg : order from Egypt has been received for canned goods. Inquiries have been made for samples and prices of our paper manufactures for purposes of comparison with those of English and German makes. All kinds of agricultural implements and machinery are in demand. Leathers also are being called for, the foreign consumers finding that American fine calfskins and carriage leathers will hold their own in competition with the Frecch product. Our oilcloths have been pronounced as being chaper, more durable, and less heavy than those of English manu acture, which are gradually being superseded. Boiler rivets, an entirely new article of export, have also grown into favor, and a preliminary order for five tons was recently shipped to Italy. American biscuits, also, are making headway against the British article in France and Cuba, while as an outgrowth of the same movement the importations of English biscuits into the United States bave been almost entirely stopped through the demand for the article of home manufacture.
Mr. George N. Torrence, the senior member of Torrence \& Co., the pioneers of the Mediterranean trade, says that all that is now wanted to obtain complete control of this trade is a line of Mediterranean steamships. That want will soon be supplied. Half of the required capital, about $\$ 2,000,000$, has already been subscribed, and the vessels will probably ber in course of construction before the close of the year. No subsidy will be asked for or expected. Meanwhile the establishment of agencies will continue until the whole Eu ropean Continent is honeycombed with sample depots of American productions.

American Competition in Great Britain

The Ironinonger (London) in its last issue mentions a number of articles in which the United States is entering into alarming competition with the English. It says: Curriers complain of American competition. In Australia more par ticularly the American skins and general prepared leather have got a strong footing, against which curriers in Walsall find it difficult to contend. The demand from home centers is also adversely affected by reason of the United States importations. It is, however, satisfactory that curriers here believe that the consumption of the foreign product in this country is declining consequent upon the quality being inferior to the English make. There is a certain rottennes about it which results from hasty curing. The prices of our transatlantic friends are such as to keep down those of English makers, and it is peculiar in this connection that the more finished the American leather is the more severe is the competition with us. The American leather really becomes cheaper in proportion to the labor that is expended upon it.
Plating by nickel, another American introduction, seems now to be taking root here, though in the opinion of many it is still in its infancy. It appears to flourish mostly in bar and restaurant fittings.
A correspondent in the same paper states: I have just had my attention called by Messrs. Selig, Sonnethal \& Co. to some new American articles in labor-saving machinery, a tool called a "lightning" tire shrinker being a noticeable one. This tool saves all cutting and welding of iron, is managed by one man with perfect ease, and is said to work as well on the lightest steel tire as on a wagon tire 3 inches wide; it only occupies about 2 feet of space on the floor. wide; it only occupies about 2 feet of space on the floor.
The " lightning" horseshoeing machine, probably the
production of the same brain, is a vise, with an arrange-
ment for fixing steel dies and saws. It has a small anvil ment for fixing steel dies and saws. It has a small anvil
attached to it and is worked by a treadle. The shoes are griped when the foot is placed upon the vise, and the latter falls open when the foot is removed. The work of shoeing with this machine is done rapidly and in good finished style. The wear of the hammer and anvil is saved, and no help is needed. If our moulders imagine that the fine iron castings from the States, that have been so much commented upon,
are due to superior material, they are very much mistaken, as it is through moulding machines that the superiority is attained. For a new one, called the "Pioneer," also shown to me by Messrs. Selig \& Co., it is claimed that a workman of ordinary ability can perform one third more work in a day with much less fatigue, and produce better castings than by hand ramming. The patent quick speed drill, making 1,500 to 2,000 revolutions per minute, and worked by the hand, is also a most meritorious production. I was further shown a "Universal Lathe Dog," which stands square with the work, and will hold any shaped pieces without "skew ing;" and a "Black Diamond Mill Pick," on a new principle, the "blades" being hardened by a patent process, in which quicksilver is a prominent operator, the steel becom ing wonderfully hard. I asked for the "Lester" saw, and was shown a machine worked by a treadle, having a scroll saw with tilting table, capable of various operations, and doing 1,000 strokes per minute; also a circular saw, $21, \frac{1}{2}$ in. diameter, with a drilling attachment, an emery wheel, and a turning lathe, capable of making 7,000 revolutions per minute. Some time since, in your " Notes on Novelties," you illustrated a new frame pulley by Messrs. Harper, of Willenhall, which, it was intimated, would compete with the lowest priced American ones in the market. But I find that the American firms have not found it necessary to reduce their prices to meet this competition.

Rapid Increase in French Woolen Industries.

The total wool industry of France has doubled since 1867 and trebled since 1860. According to the report of the Vice President of the Jurors appointed to decide upon worsted yarns and fabrics exhibited at Paris, Mr. Henry Mitchell (President of the Bradford, Eng., Chamber of Commerce), it appears that the worsted manufacture of France emplovs $2,648,000$ spindles, 27,557 power looms, and an enormous number of hand looms. Not many years ago the value of the silk manufacture of France was far in excess of that of worsted, but the ratter is now of more value than the tormer. The total value ot the worsted industry in France is 700,000000 francs, or about $\$ 140,000,000$, nearly half of which is for export. The wool industry of France is rapidly attaining great proportions. \mathbf{M} Legrand, one of the largest French manufacturers, informed Mr. Mitchell that in the district with which he is connected the number of spindles in 1860 was 140,000 , while at the present time there are 670,000 spindles. The value of the products is $150,000,000$ francs, or about $\$ 30,000,000$.

The Adelphi Explosion.

'The common verdict of juries called to investigate the causes of " accidents" resulting in loss of life through boiler explosions was strikingly varied in the case o^{f} the Adelphi disaster. Our readers may remember that the boiler of the steamer Adelphi exploded in Norwalk Harbor (Conn.), on the morning of September 28, 1878, killing several persons and wounding a large number.
The coroner's jury, instead of finding nobodv to blame, as usual, distributed the blame impartially among the steamboat owners, the officers of the boat, the Government Inspector, and the laws which govern their action. The verdict rendered contains the following strong language:
" We tind that the said steam boiler exploded because of
erwork and overpressure, legalızed by a United States overwork and overpressure, Iegalızed by a United States statute, increased after shiftless inspection, and persistently
used by the attendants in charge after sufficient evidence of used by the attenda
The rules of Supervising Inspectors of Steamboats require:
To ascertain the tensile strain of the plates (used in manufacturing marine boilers) the inspector shall cause two pieces to be taken from each sheet to be tested;
that piece showing the greater tensile strain shall be held to be
the tensile strength of the plate from which the test pieces were taken." This rule the jury deemed injudicious, as the whole plate is strong only as its weakest part is strong.

Furthermore, section 4,433, title li.i, United States Revised Statutes, provides: "The working steam pressure allowable on boilers constructed of plates inspected as required by this title, when single riveted, shall not produce a strain to exceed one sixth of the tensile strength of the iron or steel plates of which such boilers are constructed."
The jury pronounced this law unsafe in the extreme, and contrary to the best mechanical authorities both in this country and Great Britain.

Cognizance should be taken of the fact that the riveted joint is the weakest point of the whole structure, being only about 56-100 the strength of the solid plate, and we find that the best practice allows the strain not to exceed one sixth the strength of the riveted joint, instead of one sixth the
strength of the solid plate. Under this section, 4,433, we find the United States Inspectors allow about 75 per cent more pressure than is the practice of other reputable mehanical authorities."
The jury found also that while a pressure of $36 \frac{1}{1 \pi}$ lbs. was all
the law allows to a boiler of the size and construction of the
one exploded, the inspector bad allowed 37 lbs . in 1876, and subsequently increased the allowance to 40 lbs. fer square nch, contrary to law and reason; that the certificates of in spection falsely described the structure of the boiler; that the inspector's work had been very superficial and negligent in character; that the engineer had withheld from the inpector's knowledge certain known defects in the boiler, and had not regarded the requirements of the law in respect to making repairs; that in requiring the chief engineer of the steamboat company to perform the duties of captain, the owners had prevented him from maintaining a proper oversight of the machinery of their boat; that the company's gent had made to the Government Inspector false statements regarding repairs ordered by him; and that the rules and practices of the Steamboat Inspection Scrvice were in correct, loose, uncritical, and unworthy of respect
We have not heard that any of the parties responsil:le for he disaster-it cannot be called an accident-have been, or are likely to be, held to account therefor, further than is shown in the dismissal of the assistant inspector, who railed to discover the boiler's fatal weakness.

THE ROCKPORT GRANITE QUARRIES

At the extreme point of Cape Ann, on the Massachusetts coast, is the small town of Rockport, where are situated the xtensive granite quarries for which the region is noted.
Forty years ago quarrying for granite was begun here in a mall way by Mr. John Stimson, whose success led to the development of one of the most important granite quarries in the country. The quarries are now owned by the Rock port Granitc Company, who have shown great enterprise and engineering skill in the prosecution of the work. Roads have been made, bridges built, breakwaters and wharves constructed, houses and stores erected, and employment furnished for from one hundred to over three hundred men for whose convenience and accommodation neat cottages and well stocked stores have been provided by the company The Rockport granite is noted for its superior quality, be ng very hard, durable, and free from iron or other sub stances which injure and discolor granite. It is found in huge masses of great solidity, and of a remarkably uniform structure. The finer varieties are susceptible of a good polish, and when carved they retain their color and slarp edges admirably. The pressure required to crush this granite va ries from 300 to 1,200 tons per square foot.
The first granite paving stones used in the United States were furnished by these quarries, for Lafayette, near New Orleans. The first blocks were 7 inches deep, and nearly 12 nches square. Their length was afterwards doubled and heir depth increased to 10 inches. Thousands of tons of these ving blocks have been sent to Cuba
The Rockport quarries have furnished great quantities of ranite for the dock improvements of New York; for the reservoir on Beacon Hill, Boston; for Forts Warren, Win throp, and Independence, Boston Harbor; the sea wall at Lovell's Island, and the sea wall at Prewster, Mass. The Henry Clay monument, New Orleans, the Lincoln monu ment at Cincinnati, and many imposing monuments at Mt . Auburn, Forest Hills, and other cemeteries are of this granite For engineering purposes, mechanical and civil, Rockport ranite is in great demand. In this connection reference may be made to the foundation of the large engine at Glenham Mills, Dutchess county, N. Y. In the stones used for this purpose 115 feet of $3 \frac{1}{2}$ inch holes, made perfectly round, were cut in eighteen days-sufficient evidence that the com pany possess facilities for furnishing blocks of the largest size at short notice.
At the quarries may be seen blocks 25 feet in length, and upward; piles of paving stones, 100,000 and upward in number, ready for shipment; and blocks of all sizes and forms for special purposes. The quarries are well supplied with steam engines, pumps, derricks, and other appliances for keeping the works clear of water, and for lifting the blocks for transportation. The splitting of the granite is easily accomplished. With hand drills and hammers the workmen cut lines of holes an inch in diameter, from three to six inches deep, and from two to six inches apart, according to the size of the blcck. Into these holes are inserted half round slips of iron, a pair to cach hole. Then stecl wedges are driven between the irons so as to exert a uniform and steady pressure, which gradually increases until the great mass yields and splits apart. The blocks are shipped either in the rough or are first taken to dressing sheds, where they are cut to ordered sizes, hammered, and sheds,

A notable enterprise in connection with the quarries is the construction of a breakwater, which enables shipping to approach the quarrics at all stages of the tide and in all sorts of weather. Before it was built it was only in fair weather, when the sea was smooth, that vessels could come near. At present the breakwater rises 25 feet above low water, is 500 feet in width on the bottom, 75 feet deep, and 2,000 feet in length; yet this huge work is constantly being extended by the addition of tons upon tons of granite blocks.

The Key West (Fla.) Key says: "Our fishing smacks report a stream of fresh or poisonous water along our bay coast from two to ten fathoms out, that kills all the fish in its range. They report sailing for two hundred miles through dead fish, covering the sea as far as the eye could reach with all the varieties. Immediately on the shore the water is salt and natural, while less than a mile off it appears of a red and natural,

TO INVENTORS. An experience of more than thirty

paration of not less than one hundred thousand applications for patents at home and abroad, enable us to un-
derstand the lums and pracice on both continents, and to possess unequaded facilitiee ou for procuring patents
everwhere. In addition to our facilities fur prearing drawinss and specifitations quickly. the applicant can rest assured that his case will be filed in the Patent of-
fice without delay. Every application in which the fee have been paid is sent conyletr-including the modelto the Patent cffce the same day the papers are signed at our offce. or rececived by mail, so there is no delay in
flling the case, a complaint we often hear from other sources. Another advantage to the inventor ia securing Agency, it insures a special notice of the invention in
the ScIENTIFIC Am:Ricas. which publication often pens negotiations for the sale of the pater in foreign countries may be found on another page and persons contemplating the securing of patents
abroad are invited to write to this office for prices which have been reduced in accordance with the times and our perfected faciilities for conducting the business.
Address MUNN \& CO, office ScIENTIFIC AMERICAV.

tusiness and exsomal.

The Charge for Insertion under this hecta is one Dollar a line for each insertion; about eighl words to a line.
Advertsements must be rececived at mitlication office as early as Thursday morning to appear in next issuce. Vertical Engines, 10 to 15 II. P., thoroughly well made. John Hartrick \& Co., 47 Gold street, New York.
Magic Lanterns and Stereopticons of all prices. Views
illustrating every subject for public exhibitions. Proftable business for a man with a small capita terns for college and home amusement. 74 page cataMellen, Williams \& Co..,5r Kilby st., Bos'on, Mass. WieFor the best advertising at lowest prices in Scientific Mechanical, and other Newspapers, write to E N. Frific, man \& Bros., Advertising Agents, 186 W. 4th St., Cin.. O
Holly System of Water Supply and Fire Protection or Cities and Villages, is fully describea in Scievtific american supplement, No. 140.
Valuable Patent for Shooting Target for sale. Recently patented. Address Win. Kuehn, 499 Spring St.
Buffalo. N Y For Models, parts of Models, and Experimental Scroll Saw Designs. A. W. Morton, New York.
A valuable unimproved Water Power can be obtained Manuel Dengo, San Jose. Costa Rica, Central America, desires
$\$ 200,-4$ H. P. New York Safety Engine and Boiler. Lovegrove \& Co., Philadelphia, Pa.
Telegraph and Electrical Material of every descripHon. Jerome Redding \&Co..30 Hanover St.,Boston, Mass. Books for Engineers and Machinists. Catalogues
free. E. \& F N. Spon, 416 Broome St., N. Y.
Boston B ower Co., Boston, Mass. Blowers, Exhaust Boston B ower Co., Boston, Mass. Blowers, Exhaust
Fans, 1 Iot Blast Apparatus. All parts interchangeable; Fans, 1 ot Blast Apparatus. All parts int che man. Write for particulars.
A Manufacturing Co. will furnish on favorable terms oom, power, and some capital, to kood party having suc
cessful business, which can be proftably extende. No xperiments tried. Address Hardware, Box 3918, N. Y.
Northrop's Sheet Iron Ronfing makes most durable freproof roof. Used on all kinds of buildings. Send for Engines, $1 / 2$ to 5 H. P. Gco. F. Shedd, Waltham, Engines, $1 / 2$ to 5 H. P. Geo. F. Shedd, Waltham, Mass. H. Prentiss \& Co., 14 Dey St., N. Y., Manufs. Taps,
Dies, Screw Plates. Reamers, etc. Send for list. es, Screw Plates. Reamers, etc. Send for list
The Lawrence Engine is the best. See ad. page 317. For the most substantial Wood-Working Tools, ad
dress E. \& F. Gleason, 5% Canal St., Philadelphia, Pa.
Sheet Metal Presses, Ferracute Co., Bridgeton, N. J.
Oak Tanned Leather Belting, Rubber Belting, Cotton Belting, Round Leather Belting. Greene, Tweed \& Co.,
18 Park Place, New York. Nark Place, New York
Nickel Plating.-A white deposit guaranteed by using
ur matertal. Condit, Hanson \& Van Winkle our matertal. Condit,Hanson \& Van Winkle, New
English Agency, 18 Caroline St., Birmingham.
Punching Presses, D:op Hammers. and Dies for work-
ing Metals, etc. The Stiles \& Parker Press Co., Middleown, Conn.
Hydraulic Presses and Jacks, new and second hand. Lathes and Machinery for Polishing and Butfing Metals. . Lyon \& Co
Wanted.-Articles to manuf. D J.Miller, Mohawk,N.Y. Fine Gray Iron Castings a specialty, also Wire Workers' Pickets and Rosetts in stock.
Foundry, 16 De Witt St., Albany, N. Y.
Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel - other kinds imitations and inferior. Caution.-Our name is stamped in full on all our best
Standard Belting, Packing, and Hose. Buy that only. The best is the cheapest. New York Belting and Packgh Company, 37 and 38 Park Row, N. Y
For Solid Wrought Iron Beams, etc.. see advertisement. Address Union Iron Mills, Pittsburgh, Pa., for thograph, etc.
Fruit and other Can Tools for working Sheet Mctals, etc. Fruit and other Can Tools. Bliss
N. Y., and l'aris Exposition, 1888 .
North's Lathe Dog. 347 N. 4th St., Philadelphia, Pa. The Cameron Steam Pump mounted in Phosphor Wheel Press, Cotton Press, Pipe Line, and Test Mercury Gauges. T. Shaw, 915 Ridge Ave., Philadelphia, Pa. For Telephones, Amateur Photo. Apparatus, etc., ad-
dress E. Sackmann \& Co., 278 Peari St. N. Y. For Sale Cheap.-One 50 lb . Hotchkiss Air Spring
Hammer, nearly new. D. Frisbie \& Co., New Haven, Ct. Special Planers for Jointing and Surfacing, Band and
Scroll Saws, Universal Wood-workers, etc., manu facScroll Saws, Universal Wood-workers, etc., manufacred by Bentel, Margedant \& Co., Hamilton. Ohio. We make stool casiings from 14 to 10,000 lbs. weight,
timpe os strong as cast iron. 12.000 Crank Shafts of this 3 tmpa $\%$ strong as cast iron. 12.000 Crank Shafts of this
oteon now running and proved superior to wrought iron. pteo now running and proved superior to wrought iron.
Circulars and price list free. Address Chester Steel
Castings Co., Evelina St.. Philadelphia, Pa.

Diamond Saws. J. Dickinson, 64 Nassau St., N. Y.
Machine Cut Brass Gear Wheels for Models, etc. (new ist). Models, experimental work, and machine work Enerally. D.Gilbert \& son, 212 Chester St., Phila.. Pa. Elevators, Freight and Passenger, Shafting, Pulleys,
and Hangers. L. S. Graves \& son, Rochester, N. Y. End Hangers. L. S. Graves \& Son, Rochester, N. Y. Enery in bbls. and cans, all numbers. Polishing Sup lies. Greene, Tweed \& Co... 18 Park Place, New York.
Howard's Bench Vise and Schleuter's Bolt Cutters. Howard Iron Works.
Fine Taps and Dies for Jewelers. Dentists, and Machinists, in cases. Pratt \& Whitney Co., Hartford, Conn. Hydraulic Cylinders, Wheels, and Pinions, Machinery Castings; all kinds; strong and durable; and easily
worked. Tensile strength not less than 65,000 lbs. to worked. Tensile strength not less than $65,000 \mathrm{lbs}$. to
suare in. Pittsburgh steel Casting Co., Pittsburgh, Pa quare in. ${ }^{\text {I'ttssburgh Steel Casting Co., Pittsburgh, Pa. }}$
The Turbine Wheel made by Risdon \& Co, Mt. Holly, .J., gave the best results at Centennial test.
For Shafts, Pulleys, or Hangers, call and see stock Wm Liberty St . Wm . Sellers \& Co
Wm. Sellers \& Co., Phila., have introduced a new Dead Pulleys, that stop the running of Loose Pulleys Dead Pulleys, that stop the running of Loose Pulleys For Sale Cheap.-One Horizontal Engine, 18 in. $\times 36$ n.; one plant Hoisting Engines, four drums; and two
25 H. P. Vertical Engines. Apply to Wm. Taylor \&

(1) W. M. J. asks; 1. Are the white fume seen coming from a locomotive, steam? A. Steam par
tially condensed. 2 . Is there any kind of steam visible? Is there any kind of steam invisible? A. Dry steam is visible.
(2) F. N. Y. asks: 1. Can I get sufficient epth by the bichromate and gelatin process to make a mould for making pictures similar to lamp shades made porcelain? A. Yes.
(3) J. N. B. writes : I have some small castings (iron), and there are some blowholes in them. Can you inform me how I can fill them, and what with A.
It would be best to drill out the holes and plug them with iron; howevcr, you may plug them with an amalgam of tin, zinc, and mercury, or with fusible metal.
(4) J. P. W. asks how to make harness soap. want to use soap and put in scmething to make it leather. I have experimented some with black, but the lye in the soap has a bad effect on it and turns it out more of a brown color. A. Resin soap, 2 lbs.; sperm
oil, $3 / 4 \mathrm{lb}$. Digest the soap with a quantity of boiling water just sufficient to thoroughly soften it, when it may be triturated with the warm oil and a sufficient quantity of fine boneblack until a uniform paste is ob-
tained.
(5) E. V. asks: 1. Is stenography a good business for these times? A. Stenography is never a
good business except to a few who are by nature specially fitted for it. 2. What is the largest number of
cords that has been written in a minuteq A. 200 words words that has been written in a minute? A. 200 words 3. At what rate does a common speaker talk? A. From 50 to 250 words.
In answer to your last query we advise you to consult
(6) P. C. M. asks how a schoolroom can be armed comfortably. A. Cause the fresh air supply to enter under the stoves; close all openings for the escape of hot air from the upper part of the room; ventilate by means of openings in the floor, the escape pipes up draught.
(7) C. F. L. asks why the heating of an iron sphere to nearly the melting point (as noted in your a disk. A. It is only by the gradation of light and shade that we can tell solids from plane surfaces. The highly heated sphere shows no such gradations.
(8) J. G. S. writes : I have some wine that is too sour for wine and not sour enough for vinegar.
What shall 1 do to it to make it sour? A. The souring of wine is due to the conversion of the alcohol into acetic acid. This is very common, and may result from
too small a proportion of alcohol, too high a temperature of the cellars, or exposure to the atmosphere. The wink, if too far soured, is fit only for making vinegar;
but slight cases can be remedied by an addition of but slight cases can be remedied by an addition of
sugar. To convert your wine into vinegar the wine sugar. To convert your wine into vinegar the wine
sbould not contain more than 10 , nor less than 3 per cent of alcohol. The temperature should not be abov
$36^{\circ} \mathrm{C}$. nor below $10^{\circ} \mathrm{C}$. A plentiful supply of air to 36°. nor below $10^{\circ} \mathbf{C}$. A plentiful supply of air to the
wine and an intimate contact between the two. The ad dition of a small amount of vinegar, or still better some of the so-called vinegar plant (mother) Mycoder $m a$ aceti. This method is very generally employed for making wine vinegar. Generally a "souring" vessel or "mother" vessel, mude of oak wood, is employed; this
vat is first, when newly made, thoroughly scalded with boiling water, and when thereby the extractive matter ing ho wood is exhansted, the vensel is filled wh boll ing hot vinegar; when the wood is soaked with vinega after eight days again 2 gallons of wine are added and this operation continued weekly until the vessel is two thirds filled. About fourteen days after the last ad dition of the wine the whole of the contents will have become converted into rinegar. Half this quantity is withdrawn from the souring vessel and carried to the store; to the remainder more wine is added, and
(9) F. D. W. asks for a preparation that will leach feathers and horsehair without injuring them. A. You may try exposing them to the vap
sulphur in a barrel or other tight vessel.
(10) J. G. E. asks: What ingredients do they use in pressing plugs of smoking and chewing to-
bacco to make the leaves adhere together, and also to
flavor it A. Molasses, licorice paste, glycerin, salt,
and anise are frequently employed What sized cylinder and what sized boiler would be required to drive a screw 16 inches diameter, with a pressure of steam at 100 lbs . to the square inch, and
the speed she would be likely to run at? A. Cylinde $21 / 2 \times 4$, boiler 20 inches diameter, 3 feet high, revol $21 / 2 \times 4$, boiler 22.
tions 300 to 400 .
(11) Constant Reader: What is the most suitable metal for working upon a foot lathe by hand? 1
wish something which can be turned and bored with ease. Can you tell me of an alloy which will meltata moderately low temperature, but would be tough enoug to be turned down without clogging on a small foot
lathes Would this alloy be hard enough to be used for making the cylinder and side valves of a small engine the cylinder being about 2×4 inches. If not, for what parts could it be used? Could you give me the composition of several alloys of different degrees of harlness?
What should be the size of boiler, and what pressur should be used to ottain $1 / 4$ horse power, with an engine the cylinder of which is of the size above named? What is the pitch of a propeller? In what proportion is it to the diameter? Is there any rule by which to calculate the length,width, and draught of the boat a propeller Is there any by which the proper depth of a small steam launch can be calculated, the length and width being given? A.Brass would be the best alloy for the purpose Yigh, and carry a steam pressure of 30 lbs . per squar inch. The pitch ol oropeller can be from $11 / 4$ to $11 / 2$
times the diameter. The other rules you desire could times the diameter. The other rules you desire could
not be given inthis limited space, but you can propor not be given in this limited space, but you can propor-
tion small screws and hulls from samples of larger ones, many of which have been described in our col-
(12) N. E. S.-The washing compound conists chiefly of sal soda, lime, and resin soap.
(13) J. B. F. writes: At our factory we are using soft iron for all the castings we make, but find we will haveto use some very much harder than we have been able to produce by adding a small quantity to what is in the furnace after ordinary work is poured. I have thought we might accomplish what we wish by
hardening the iron in the ladle. Is there any way in which this can be done? A. We know of nothing that will produce the desired result in the manner suggested (14) W. P. K. asks: 1. Is spun glass flexiblef A. Yes. 2. How fine can it be madee A. The
thrcads are often drawn as fine as a single hair. 3. What are its constituents? A. Of a soft glass variously colored by metallic oxides. The glass without the color ash 5 , soda 10 , lime 10 .
(15) D. M. P. asks if there are not fire en-

ines in New York propelled by steam which visit fires

 hithout the aid of horses? If so, who was the inventor thereof, and when did they first come in vogue; moreover, are they in use at the present time? A. There are, we believe, at present four self-propelling steam fire en gines in use in this city. They were built by the Amos keag Manufacturing Company, but the principal deails of the self-propelling apparatus hav
ased in connection with traction engines.
(16) R. W. S. asks: 1. Has frost any effect upon spiral springsthat are in constant use out of doors:
A. Tuey sometimes become more brittle. 2. What is A. Tuey sometimes become more brittle. 2. What is
the best material for springs for hard usage? A. Steel. the best material for springs for hard usage? A. Steel.
3. Which is thebest spring to use where the diameter is small, and the power required is great, a single spring
of large wire wound small or a double spring of smaller wire, and which is apt to set the most? A. There is not a great deal of difference if proper proportions are bserved in the two cases.
(17) V. E. C. writes: Can you tell me what metal and at what heat it will melt that will allow ment is often performed with mercury, and with Rose's fusible metal-lead 3 parts, tin 2 parts, bismuth 5 parts melts at 196° Fah.
(18) J. C. C. asks: Is there a process to restore the stee1 fire sheets of oil stills after crystalliza-
tion by overheating in the presence of carbon? A. We tink not.
(19) E. M. asks where he can learn the process of casting rubber type and stereotype, and if it re-
quires much apparatus. A. See p. 1326, ScIENTIFIC american Supplement.
(20) C. A. P. asks: I have a meerschaum pipe, and by accident the stem broke off close to the A. Slake pure caustic lime with a little boiling water, and mix the dry powder with the white of an egg to form a thin paste. This should be used in small quanitty, immediately, as it soon set
(21) A. M.: What is the easiest and most efficacious way to destroy roaches (Blatta)? I have tried arsenic, poke root, and borax to no effect. A. A little alum or borax solution in hot water, applied with
a clo:h to the woodwork, and injected into the cracks a clo:h to the woodwork, and injected into the cracks
(22) H. S. asks: Can a body be petrificd by
laying the same in a solution of silicate of soda? Or
can it be successfully injected into a dead body so as
to entirely petrify the whole body? A. We believe experiment
cessful.
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
J. B. W.-Green trap containing marcasite-iron sul-
hide-W. M.-An indurated clay containing much sand, iron oxide, and lime.-T. F.-It is magnetitemagnetic oxide of iron, loadstone.-W. S - Not infusorial earth. Consists of lime, carbonate silica, and much organic matter. The sample contains a little potash and traces of phosphoric acid. The material may
clay containing much iron sulphide. Is not necessarily
ndicative of the proximity of metallic ores or coal.

COMMUNICATIONS RECEIVED.

 The Editur mileasure the receipt of original papers and ntributions on the following subjecte:The Consumption of
Jupiter. By R D. S.

[OFFICIAL. 1

INDEX OF INVENTIONS

Letters Patent of the United States were

 Granted in the Week Ending September 17, 1878,
and each bearing that date.

 [Those marked (r) are reissued patents.]A complete copy of any patent in the annexed list, Including both the specifications and drawings, will be
furnished from this office for one dollar. In ordering, lease state the number and date of the patent desired, and remit to Munn \& Co., 37 Park Row, New York city.
Arithmetical results, obtaining. J. Sawser 208,0037
Auger, W. Haney 20,087
xle skein, vehicle. Axle skein, ve
Band cutter, wire, w. E. S. .e........er
Bed bottom, spring, M. R. Davis
Bed bottom, spring, M. R. Davis
Belting. wire, G. A. lickhardt
Binder, temporary, N. s. Ot
Bit stock, C. L. Griswold...
Boilers heater and feeder for, G..............
Book support, M. L. Schech....
Boot and shoe insole, M. Maye
Boot and shoe insole, M. Mayer.
Boot and shoe laster, G. W. Copeland et al
oot and shoe lasting mechanism,H.G.Thompo.. 28.156 Boot and shoe soles, beater, etc., for, S. Ross (r).
Boots and mittens, drying moist. B. F. Buxton Boring machine, T. G. Morse. Bosom boards, M. Price
Bottle stopper, H . Bell.

Bottle stopper, H. Bell......

Bottle stopper fastener, T. H. Sha han 205 Bowles, etc., connection for, W. E. Sherrifis. Brake, car, IW. W. Patterson.

rick, dovetailed c. Heinen...................
Bridge truss, G. w. Cooley
Burial ar alarm, J. K. Johns
Burial casket, J. Maxwell.
Can for liguids, G. W. Peck.
Can for oil and other liqui
Can, tin, S. H. Bradford..
Cap and stopper fastener,
Car coupling, J. Forman
Car coupling, J. G Naris
Car heater, F. E. Ensign.
Car roof, II. Aldridge
Car starter. H. Schreiner
Carriage, chid's,
Carriage curtain window, F. A. Neider...........
Cattle, gangway transferrer, E. L. \& E. Forma
Chair, H. Clark
Churn, B. Gue............
Clevis, C. F. Search...
Coal, treating, M. B. Eaton
Coffee roasting apparatus, A. McDonald
Cooler, beer, A. Roos (r)
Corset, M. P. Bray
Corset, M. P. S. Sray ...
Strauss
Corsets, manufacture of, A
Cotton condenser, T. Camp
Crane, hydraulic, S. т. Wellman
Crane, hydraulic, S. T. Well
Cultivator. F. M. Cropp.....
Cultivator. F. M. Cropp......
Cultivator, cotton,W. W. Harvey
cultivator, cotton,W. W. Harvey.......
Curtain roller and bracket, H. L. Wern
Curtain roller and bracket,
Door securer, w. A. Ingalls
Dredge bottle, w. Sellers.
Dredge bottle, W. Sellers....................
Electric alarms, etc., switch for, P. Ernwein.
E.
Elevator, M. V. B. Wright
Engine, dummy, J. F. Thomas
Eyeleting machine, Woodward \& Goodson
Felting machine, w. Keenan.......
Fence barb, wire, Baker \& Bestor
Fence barb, wire, Baker \& Bestor
Fence, portable, w. McLaughlin.

Firearm, breech-loading. C. E. \& R. Green. Firearm, magazine, F. W. Tiesing.
Fire extinguisher, car stove, P. P.
Floor cloth, manufacture of. J. R.
Food preserving compound, R. S. Dashiel
Fruit picker, I. Gothard..
Fruit picker, G. C. Hawkins.
Furnace, gas retort, G Siegel
Furnace, gas retort, hot air, J. W. Crary (r)
Furnace, steam boiler, C. D. Smith
Gas regulator, J. Adams
Gas retorts, J. Slade (r).
Gas retorts, J. Slade (r)
Governor for engines, B. Brazelle.
Governor, steam engine, B. Br
Grain binder. J. F. Appleby. .
Grain separator, A. J. Humphreys.

Grate, hot air, A. H. Buck hou
Grate, shaking, A. McDonald.
Gun. machine, F. E. Schultze.
Gun. machine, F. E. Schultze....
Harness breast collar, R. Pattin..
Harness pad, M. V. Lonk
Harrow. E. Vandawater
Harvester guard finger. Ballew \& Fulle
Hat pouncing
Hat pouncing machine. W. Keenan
Heater, portable water, E. Hersey
Hinge, lock, C. B. Clark
Hoe, trap, W. Huston...
Horse collar, A. D. Marti n......
Hose nozzle. Raymond \& Perkins
Husking and shelling implement, L. F. Johnsto
Hydrant, c. Carr..................
Ice, apparatus for making,

㥅
28,0115
8,415
2088129
208,141

8

Index. H. Beach.

Indicator, office, E. H. Gli.........
Indicator., station, W. H. H. Day
Irrigating apparatus. P. Dickson
Jelly, fruit. J. Millen
Journal bearing, anti-friction, s. Hill.
Ladder, extension, L. Hauerwas
Ladder, extension, L. Hauerwas.....
Lantern and lamp, Morgan \& Walton Lighting device, automatic. Iseminger \& Faloon. Lock, recording, J. R. Pershall.. Locks, flexible key for, L. J. Roberts umber measure, S. Kethledge Maynetic metal separator, B. Fitts Malt to mash, wetting, M. schmah Manure, carriage for spreading, A. Mekenney
Match cutting machine, ©. Pernet-Joufroy teat smoking apparatus, Lew is \& Crumb Medicament for catarrh, J. Wr. Blosser Moulding machine, et
Mop, I. L. Franklin
Motion transmitting and converting, J. Titus Net, unloadung, O. Marsh
Overcoat, J. F. Carter
Pan and cover. bating, B. F. Henry
Paper dish, II. A. House.
Pencils, holder for le:1d, o. Clevolane Pipe fastener. adjustable, G. Burkhard Pipe, soap bubble, s. B. Bliss Pitcher. double walled, H. B.
Planter, corn, A. Heckman.
Planter, corn, A. Heckman..............
Planters, attachment for corn, A. H. Law
Plow, w. Strait
Plow, ditching, L. M. Koehler Plow, harrow, a nd seed planter, N. M. Fowler Plow sulky, J. E. Alexander Potato digger, S. L. Allen...
Power, device for transmitting, w. C. Baker. Press, baling, Z. Phillips ...
Printing press, W. A. Lavalette
Printing press, W. A. Lavalette
Propeller, screw, s. T. Swasey
Pump, A. H. Ashrey.
Pump, bucket, J. M. Fate...
Pump, force, \mathbf{O}. K McIntire
Railway switch, A. E. McDonard
Rezor strop, G. W. Brown.
Refrigerating machines, Siddeley \& Mackay
Refrigerator, A. Bet1 ridge
Ropeclamp, J. C. Covert
Rope clamp, J. C. Co
Sash fastener, S. Root

Scarf, M. Henschel

Screen, window, D. H. Metcale Seeders,device forthe teeth of,Gal
Sewing machine shuttle, R. Leavitt
Shawl strap, N. R. Streeter
Ships'logs, rotator for, J. \& G. H. Bliss.

Shirt bosom and collar D. McFarland

 hoe laces, clasp forSoap dish for iron sinks. W. C. Higgins panner or wrench. W. R. Lee
square and rule, graziers's, J,M. Kurtz.....
Stampingmachine, etc., metal, J. T. Bedf Steamer, feed, W. H. Allara
Stereotype plates, holding, A. N. Kellogg
Stirrup planing machine, W. W. Krutsch
Stove, fre place, N. McNamara
Stove, oil. P. Martin..
Stove ovens, turn table for, $\mathrm{T} . \mathrm{v}$. Curtis
Syringe, Bliss ot Davol..
Tent pole, H. C. Cushing
Thrasher and hufler, clover, L. V. Southworth
Tobacco package receptacle, H. N. Mann.
Tooth powder box. H, Bell
Toy, A. M. Knapp.
Toy building block, D. E. Stone
Truck, car, A. Berry ..
Truck, car, G. Vincent
Truck, hand, C. A. Harper.....
Truss, abdominal, J. v. Epple
Valve, stop, R. J. Thomas
Vehicles, spring side bar for, J. Tilton (r)
Ventilating cars, H. H. Wolfe.
Victorine,, I. Pick
Violin
Violin, P. M. Jacobus.
Wagons, spring seat for, J. B. Gorrell
Washing machine, M. Puckett
Washing machine, Randall \& Foster.
Water trap for waste pipes, W. P. Austin
Weeder, K. P. Grant..
Windmill, E. S. Smith
Windmill, E. S. Smith
Wrench, A. Beck...
Wrench, J. S. Birch
Wrench, J. S. Birch
Yoke coupling, neck, C. Eckes
TRADE MARKS.
Alcohol, C. H. Graves
Canned edibles, The Hannibal Meat Co
Car springs, Miller, Metcalf \& Parkin. Cartridges and percussion caps, Eley Brothers 6,581 Cigars, Krohn, Feiss
Cigars, I. Teichmau
Cigars, cigarettes, etc, P. Whitlock...
Cigars, cigarettes, etc., s. Jacoby $\&$ Co.
Cod liver oil, Ansar, Harford \& Co ..
Corsets and bustles
Corsets and bustles, L. Schiele \& Co
Elastic iron paint, A. O. Brummel
Hair tonic, W. E. Jervey.
Medicine for dropsy, etc., W. \mathbf{E} Clarke
Medicine for liver complaint, \mathbf{W}. Condell
Medicinal preparation, A. E. Mintie
Piano fortes, A. Weber
Plug chewing tobacco, P. II. Mayo \& Brother Plug chewing tobacco, Musselman $\&$ Co Preparation for removing grease, J. W. Cole \& Co. Proprietary medicines, II. C. Stewar
Spices, Sherman Brothers \& Co.... Spices, Sherman Brothers \& Co....
Toys and toy vehicles, C. W. F. Dare.

DESIGNS.
Buttons, etc.. J. W. Miller \& 1. M. Miller...10,830 to 10,833
Carpets, C. W. Swapp..................0,835 to 10,838 Carpet, T. J. Stearns.
Coffin screws, J. W. Rogers

 .. 208,160
.. 22030088
.. 208,111

203,126
$.208,123$
204,991
.. 203,091
-. 281,101
.. 208163
208.163
208,338
208,029 .208

He ... 2010

\section*{| 208,1 |
| :--- |
| ... 228,0 |
| ... 28,0 |}

...... 2
.... 200,
.... 208,
20,

\mathcal{Z}_{2}^{8}
\vdots
\vdots
\vdots

.... 200,
$\cdots \cdots .208$,
... 208,
.... 208,11
.... 2080
... 208,00

…. 208,033
…. 208,12
$\cdots 208.02$
s.

208,015 T

English Patents Issued to America Yrom (Cetober 8 to 0 october 15 , inclusive. Fron October 8 to October Axles.-I. B. Boyce, Legun, Mass. Cigarette.-C. G. Emery, Brooklyn, Cigarette package.-C. G. Emery, Brooklyn, N. Y. Cleaning wool. $-\mathbf{F}$. G. Sargeant, Granit eville, Mass Cloth napping machinery.-C. Woelfel et all.. Chester, Compressing machinery. - E. G. Wheeler, N. Y. city. Dovetailing machinery.-W. H. Doane, Cincinnati, O. Dovetailing machinery--W. H. Doane, Cincinnati, \mathbf{l} Electrical apparatus.-S. F. Van Choate, N. Y. city. Furnace for stean boilers.- W. W. Fisher, Cincinnati. 0 Galvanic Gaslight extinguisher.-W. W. Gibbs, Boston, Mass. Horseshoe nail machinery.-T. H. Fuller, Boston, Mass. Injector.-J. H. Irwin, Philadelphia, Pa. Moulding machinery.-W. H. Doane, Cincinnati, O. Movable intrenchments.-M. J.Wellman, N. Y. city. Planing machinery.-W. H. Doane, C Cncinnati, O. Pianoforte.-Geo. Caddick, Allegheny, Pa. Saw setting machinery - W. I. Doane, Cinc Saw setting machinery.-W. H. Doane, Cincinnati, O. Sleeping berth. -D. Huston, Boston, Mass Sleeping berth. - D. Huston, Boston, Mass. Wrench.-J. W. Hyat, Newark, N. J.
 The Scientific Americian
 EXPORT EDITION.

PUBLISHED MONTHLY.
Tie Scientific Anerican Export Edition is a large and SPLENDID PERIODICAL, issued once a month, of all Progress in Science and the Useful Arts throughont the World. Each number contains about ONE HUNDRED LARGE QUARTO PAGES, profus ly illustrated, embracing:
(1.) Most of the plates and pages of the four preceding weekly issues of the Scientific American.
with its SPLENDID ENGRAVINGS AND VALUwith its SPLENDID EN.
ABLE INFORMATION.
ABLE INFORMATION.
(2.) Prices Current, Commercial, Trade, and Ma:(2.) Prices Current, Commercial, Trade, and Ma:-
ufacturing Announcements of Leading Houses. In ufacturing Announcements of Leading Houses. In
connection with these Announcements many of the Principal Articles of American Manufacture are exhib)ited to the eye of the reader by means of SPLENDID ENGRAVINGS.
This is by far the most satisfactory and superior Export Journal ever brought before the public. Terms for Export Edition, FIVE DOLLLARS A YEAR,
sent prepaid to any part of the world Single sent prepaid to any part of the world. Single copies,
50 cents. For sale at this office. To be had at all News and Book Stores throughout the country.

NOW READY.

THE SCIENTIFIC AMERICAN EXPORT EDITION FOR OCTOBER, 1878, WITH
general table of contents Of the Scientific American Export Edition for October, 1878.
I.-INVENTIONS, DISCOVERIES AND PATENTS.

The Pneumatic Clock. One engraving.
A Promising Field for Invention.
Conference of Swiss Jurists at Geneva.
Conforence of swiss Jurrists at Geneva.
An Inventor's Difficulties in England.
An Inventor's Difficulties in England.
Description of the Recent Most Important Engincer-
ing Inventions.
Description of the Recent Most Important MiscellaDescription of the Recent Most Important Mechanial Inventions.
The Stylographic Pen. One engraving.
Description of the Recent Most Importa ural Inventions.
Hasties Water Engine. Six figures.
A New Nut Lock. TWo engravings. A New Nut Lock. Two engravings.
New Breech-loading Rifle. Four figure
Improved Hair Pin. One figure.
Pateve
Improved Hair Pin. One figure.
Patents aud Trade Marks Eng.
Decision of the Courts relating to Barrel Machinery.
Iistory of our
Decision of the Courts relating to Barrel Ma
History of our Mining Laws in Brief.
New Guard for Shtep Shears. Two figures.
New Guard for Sheep Shears. Two figure
New Measuring Stopper One ffure.
The Incoming Commissioner of Patents. The Incoming Commissioner of Patents
A South Australian offer for an Improv
Lyman's Trigonometer. One figure. A South Austrailian ofter for an Inum
Lymans Trigonomete. One figur
New Protracor. Three figures.
A New Bechive.
ח.-MECHANICS AND ENGINEERING.
Steam on the Common Roads.
The Whitehead Torpedo in Battle.
How to test a Lathe. One figure.
How to test a Lathe. One figure.
An Accident on the Mt. Washington Railway.
Artesian Wells in England. Artesian Wells in England.
Journal Boxes for Steamers.
Rails.
Relation between the Grate Surface and the Heating
Surface of Boilers. Novel Applications of Dynamite.
Heating by Hot Water. Workmanship and Material. A Queer Boat.
Dust Explosions.
A Horses Motion Scientifically Determined. With
Pocket Life. Bnove.
A Wrinkle in Filing. Two figures.
A Wrink e lin
Impinated
Improved Steam Fire
Two figures
C Engick.
Large Driving Belts.
The Manufacture of the Chickering Piano. With six
illustrations.
Flow of Water through Pipes.
Flow of Water through Pipes.
The Modulus of Elasticity.
The Noise of Rapid Transit-a Chance for Invention.
Remarkable Gas Wells in Ohio.
lighting Sea Beacons from the Shore.
Tools for Yonng People
Tools for Young People.
U. S. Surveys of Sunth Am Rivers.
The Want of a Sewing Machine Motor.
 III.-MINING AND METALLURGY. III-MINING AND METALLURGY.
Working of Copper Ores.
Progress of Western Mining Operations
Progrees of Western Mining Operations.
Bauer's Steel Restoring and Refining Compound.
One engraving.
Safety in Mines.
Hardening of Copper and its Alloys.
Pneumatic Appliances for Mines.
TV. - CHEMISTRY AND PHYSICS.
Astronomical Notes for October, giving the Rising
The Recent Eclipse of the Sun. One engraring.
Filtration of Sea Water through Sandstone.
Filtration of Sea Water through Sandst
Remarkable Echoes.
A Detonating Voltameter. One figure.
A Detonating Voltameter
Gnoscopine
A New White Pigment.
Niello.
Gnoscopine
ANew White Pigment.
Neillo.
New Electrical Diapason.
A

${ }^{\text {Arsenic }}$ A

- NATURAL HISTORY. NATURE, MAN, ETC.

Depth to which Roots Penetrate
The Order of Mental Progress Scienceward.
Brain Capacity.
London Lichens
Zoolonical Garden at Fairmount Park, Philadelphia.
Lhree illustrations.
Three illustrations.
Elks in Harnes.
One Whay to Kill Moths.
New Theory as to the Effects of Phyllozera.
The Porcupine Ant Eaters recently discovered in New
Guinea. Seven figures.
Hair Eels.
Hair Eecl.
The Narpot Bretle. Four figures.
A Remarkable Wasps N Nest.
Remarkable Earth Convulion
Remarkable Earth Convulsion.
The Bearded saki. One iilustration.
The Red Bird of Paradise. One illustration.
The Torrey Botanical Club.
How a Spider Captured a Potato Beetle.
Wax-producin Plants.
How a Spider Captured a Potato Bee
Waxeproducing Plants.
The Teeth of the Mound Builders.
Improved Educatio
Bedibug Spiders.
Hairy Prehensile-ta
Beabug Spiders.
Gairy Prethensile-tailed Porcupine. One engraving.
Golden Bird of Paradise. Onc engraving.
A Destructive American White Ant.
A Destructive An
Castor Oil Plant.
Cat-tail Down
Cat-tail Down.
A Modern. ${ }^{\text {Prehistoric }}{ }^{\prime}$ ' Instrument.
Natural History Notes.
A Probable Cure for the Cotton Worm.
VI.- MEDICINE AND HYGIENE.

Suggestions for Fat People.
Scag Sickness and its Treatment.
(ilycerin as an Anti-ferment.
Cilycerin as an Anti-ferment.
Extraction of Steel and Iron from the Eye by the Mag

New Stethoscopic Microphone. One figure.
Poisonous Hath, Gloves, stockings and Clothing.
Public Sanitarium.
Public Sanitarium.
Phosphorus a Core for sciatica.
Autumn Sugugestions
Ausumn Suggestions.
The Transplantation of Tissues
The Transplantation of Tissues.
The Absorption and Excretion of water.
Influence of Gasight on the Eyes.
VII- THE PARIS EXHIBITION, SCIENTIFIC
ings. American Prizes at Paris.
Exhibition of the Massachusetts
Association,
The American Institute Fair.
American Cotton at Paris.
American Cotton at Paris.
Mechanical Exhbition at Boston.
American Agricultural Exhibits at Paris.
A Mustard Congress.
VII-INDUSTRY AND COMMERCE.
(uba as a Field for Enterprise.
American Dexterity
More Beer and LLess Whisky.
Paper Fiber from Woods and Plants.
A Promising Western Town.
Where Our Hardware Go
Bow Calicoes are Made.
Direct Positive Process.
Direct Positive Process.
Cobalt in Electro-metalurgy.
Wages in Englend.
Wages in Englend.
Labor in Belgiun.
Lac.
Thephack. Grand Canal of China.
Artificial Diamonds.
Coal-gas Doos Not Injure Book-bindings.
Manưacture of White Lead.
Inprovements in Sugar Maaking Wantect.
Labor--aving Farm Machinery.
Effect of Gas on Cotton Goors.
Chrysoline on Cotton.
Two Crops of Solkt a \& Year.
American Goods in Brazil.
Curosities of the American
Gas Light.
Compressed Tea and Coffee.
Manufacture of Smyrna and Persian Carpets.
Proofs of Progress.
Proofs of Progress.
What the Reaphing Machine Has Done.
American Electro-plate in England.
American ELectro-patate in
Labor in Massachusets.
Labor and Trade in Italy
American Jute
IX.-PRACTICAL RECIPES, AND MISCELLA
NEOUS.

People whio can't be Helped.
The "True Thread."
The Study of Common Things.
Miss Hoomer's Improved Sculptor's Model.
Wages and the Cost of Living.
Wages and the Cost of Living.
The Boston Whittling Schools.
Our September Export Edition.
Our September Export Edition.
The Restoration of Cuba.
The Restoration of Cub
Co-operative Homes.
Keep your Cement in the Dark.
Improvementin Rifle Shooting.
Diamonds in China.
Diamonds in China.
Cement for Sealing, Bottles, etc.
A second Matthew Vassar.
A Second Matthew V assar.
The Puper Tribe.
Dr. August H. Petermann.
Heathen Japan.
Some Beneftiso the Hard Times.
A Cockney Plan to Banish Smoke.
Emigration from Canada.
Marking Ink without Nitrate of Silver.
American Science.
American Science.
Mr. Fowler Crossing the Channel. One engraving.
Mr. Fowler Crossing the Channel. One en
Preservation of Friut.
Statue of Captain Cook. One illustration.
Answers to Correspondents, embodying a large quantity of valuable information, practical recipes, and instructions in various arts.
Single numbers of the Scientific American Export
Edition, 50 cents. To be had at this office, and at all Edition, 50 cents. To be had at this office, and at all
news stores. Subscriptions, Five Dollars a year; ness stores. Subscriptions, Five
postpaid to all parts of the world.

MUNN \& Co., Publishers,
37 Pare Row, New York.
To Advertisers: Manufacturers and others who desire to secure foreign trade may have large and hand-
somely displayed announcements published in this edition at a very moderate cost.
The Scientific American Export Edition has a large
The Scientific American Export Edition has a large
guaranteed circulation in all commercial places throughguaranteed circulation in all commercial places through-
out the worid. Regular Files of the Export Edition are also carried on ALL STEAMSHIPS, foreign and
coastwise, leaving the port of New York. Address

NEW PATENT LAW

Spain, Cuba, Portro Rico, etc.
By the terms of the sew Patent Loiw of Spain, which
has lately gone into operation, the citizens of the United
States may obtain Spanish Patents on very favorable States may
conditions.
The Spanish Patent covers SPAIN, and all the Spanish
Colonies, including CUBA, Puerto Rico, the Philippine Colonies, including CUBA, Puerto Rico, the Philippine
Islands, etc. Total cost of obtilining the Patent, $\$.00$. Duration of the Patent, 20 years, 10 years, and 5 years, as follows :
The Spanis
The Spanish Patent, if applied for by the original in-
ventor before his American patent is actually issued will run for 20 years. Total cost of the patent, \$100. It covers spain, Cuba, etc. 'The Spanish Patent, if applied forby the original inventor not more than two years after the American patent has becn issued, will run for
10 years. Total cost of patent, $\$ 100$. Covers Cubas etc. betaken by any person, whether inventor or merely introducer. Cost of such patent, 1100 . Covers Spain, Cuba, and all the Spanish dominions. in obtaining Spanish Patents, we have established a special agency at No. 4 :oldado, Madrid.
Further particulars, with Synopsis of Foreign Patents,

MIUININ de CO.,

 Solicitors of American and Foreign Patents,Proprietors of the Scieviric Aviricins,

EXPLOSIVE DUST. A COMPREHEN-

 THE TECHNOLOGY OF THE PAPER

 MARKS, E'TC.
Messrs. Munn \& Co., in connection with the publica(ion of the Scientific American: continue to examine Improvements, and to act as Solicitors of Patents for
Inventors.
In this line of business they have had over thirtr
rears' Experience, and now have
 for th" preparation of Patent Drawings. Specifications,
and the Prosecution of Applications for Patents in the Tnited States, Canada, and Foreign (ountries. Messre. Munn \& Co. also attend to the preparation of Caveats, Trade Mark Regulations, t'opyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements
of Patents. All business intrusted to them is done of Patents. All business intrusted to them is done
with special care and promptness, on very moderate with s
terms.
We send free of charge, on application, a pamphlet
containing further information about lin containing further information about I'atents ind how
to procure them; directions concerning 'r rade Marks. Copyrights, Designs. Patents. Appeals, Reis-ues, Infringements. Assignments, Rejected Caves, Hints on the Sale of l'atents. etc.
Foreign P'uteruts.-We also send, free of charge, a
Synopsis of Foreign l'atent Laws. showing the cost and method of securing patents in all the principal countries of the world. A merican inventors should bear in mind that, as a general rule, any invention that is valu-
able to the patentee in this country is worth equally as much in England and some other foreign countries. Five patents-embracin: Canadian. English. German. French. and Belgi n - will stcure to an inventor the exclusive monopoly to his discovery among about one hundred and fifty millions of the most intelligent
people in the word. The facilities of business and people in the word. The facilities of bu-iness and
s:eam communcat on are such that patents can be obsained abroad by our citizens almost as easily as at §75; Gerıa an, \$100; F'rench. $\$ 100$; Belgian, $\$ 100$; Canasin; Geriran,
dian, $\$$.
is coped fro of Patents.-Persons desiring any patent is-ued from 1836 to November 26,1867 , can be supplied with offlcial copies at reasonable cost, the price de-
pending upon the estent of drawings and length of specifications.
Any patent issued since November 27, 1867, at which time the latent Office commenced printing the drawthis office \$1.
A copy of the claims of any patent issued since 1836 will be furnished for $\$ 1$
When ordering copies, please to remit for the same as above, and state name of patentee, title of inven-

Sivertisempati.

 (About elght words to a line.)
Enaravings may head advertisements at the per iine by measurement, adseme the letter press. Ad Aver-
tisements must be received at publication office as early
os Thurgay mone

"DEFIANCE" PRICR \$1.00.

Spolse Shaves, No. 10 .

 bailey wringing machine co. 99 Chambers St., New York.
50 Perfumd Coro im and

IMPORTANT FOR ASL CoRporATIONS AND

 Mivin: MCHIEEY F

SURE CURE FOR SPLINT

 The Gendinin Baxiter steam Engines,

The George Place Machinery Agency

Lathes, Planers, Shapers
 William Cullen Bryant's Musellag al others ommined, Richl Hingtrated
 with or without business experience.
FORDS, HOWARD \& HULBERT, New Fork.

Fonoto kingravinger - 67TarkPlace Ver Vort

. smith hobart, President.

JOHN C. MOSS, Superintendent.

TYPE-METAL RELIEF PLATES.

A SUPERIOR SUBSTITUTE FOR WOOD-CUTS

AT MUCH LOWER PRICES.

Persons desiring illustrations for Books, Newspapers, Catalogues, Advertisements, any other purposes, can have their work done by us promptly and in the best style.
ype-high ready for use on any ordinary press, and will wear longer than the common
They have a perfectly smooth printing surface, and the lines are as deep, as ccen, and as
Tharp
harp as they could possibly be cut by hand.
Electrotypes may be made from them. in the same manner as from wood.cuts.
Copy. The engraving is done either from prints or pen-drawings. Almost all kinds
and stipple, and on wolite or only slightly tinted paper.
tipple, and on whicte or only slightly tinted paper.
Pen drawings, suitable for engraving by us, must be made with thoroughly black ink, on smooth, white paper. They should usually be made twice the length and twice the width of the plates desirired.
When such drawings cannot be furnished us, we can produce them from photographs, pencil sketches, or designs of any kind accompanied with proper instructions. Photograph aken in the usual way, and of any convenient size, we can use.

Change on dimensions, while others will admit of very little ray often be reduced to none at all.

Most lithographic and steel-plate prints will admit of no reduction.
Very fine prints of any kind may be enlaryed moderately without detriment.
Any prints which cannot be satisfactorily reduced or enlarged may be redravon and us brought to any desired size.
In all cases of reduction and enlargement, the relative proportions remain unchanged. us, for approval or correction, before engraving a printed proof is furnisled with by us, for approval or correction, before engraving. A printed proof is furnished with
Time.-We cannot usually engage to fill an order
Estimates will be promptly furnished when desired. That these may be definite and correct, the copy to be used-whether print, photograph, sketch, or drawing-should always be submitted for our examination, together with a distinct statement of the size of plate wanted, and of any other details to be observed.
Terms.-To insure attention, all orders must be accompanied by an advance of half
he price charged, the balance to be paid on delivery.
xcellent facilities for making electrotypes, and also three power presses specially fitted for
printing plates of all sizes in the finest manner.
Arificial Light.-We have just introduced this most important facility, which enables us to prosecute our work in cloudy weather, and to push forward hurried orders in Re night. by most of the leading houses in every State in the Union.

GTHAM PUMPS:

 HENRY R. WORTHINGTON, 239 Broadwav, R. Y. 83 water st, Boston.
 Water Meters. Oil Meters.

Prices Larsely Reduced.

BIBB's Celebated orighan Batumore
Fing Inacolipaldis Mantelis and Regisers Beat orilimore IMadotices

THE DRIVEN WELL.
Town and County privileges for making Driven
Wells and selling Licenses under th? estabished
American Driven well Patent, leased by the year WM. D. ANDREWS $\underset{\text { NEWROMK. }}{\text { \& BRK. }}$.
B. W. Payne \& Sons, Corning, N. Y.

Eureka Safety Power.

GOLD MEDAL

J. \& P. COATS,

for their best Six-Cord Spool Cotton, congoods at ane the World, peaced upon their
that at London, 1862, to the Centennial Exposition of 1876, Where they took a
diploma for ${ }^{\text {SUUPERIOR }}$ STRENGTH The Second Prize of a \&ilver Medal was
taken by the Willimantic Linen Company, taken claims to be the special championy, American Industry, and which has exten-
sively advertised a Grand Prize at Paris. GRAND PRIZES were awarded
for Spool Cotton at PARIS.
Messrg. J. \&
P. Coats have established
Pawtucket, R. I., the largest Spool Cotin Pawtucket, R. I., the largest Spool Cot-
ton Mills in the United States. Every pro-
cess of Manufacture, from the rave cotton cess of Manufacture, from the rave cotton Their American-made Spool Cotton took The award at the Centennial, and while they have never claimed special merit for
their American-made spool Cotion over
that manufactured in their Scotch Mills ve have the satisfaction of announcing
that they have so identified themselves
with this country, thet AMERICA, as represented by J. \& P. COATS, is still AHEAD IN SPOOL COTTON. Auchincloss Brothers, Sole Agents in New York for

A MERICAN NOUEELTIES
BRITANNIA COMPANY, Colchester, England.
Fine Pamphlets rinted 75 C . a Page entimate and samples for stamp. FOR THE BEST UPRIGHT HAY - RNIFE THE LAWRENCE ENGINE.

THE BEST FARM ENGINE THE WORLD.
 ngines for all purposes wittom Price to Purchasers! ARMINGTON \& SIMS lamrence
\qquad

cadvertisements.

 Enuravings may head aavertssements at the same rate
per ane, by measurement, as the letter press. Adver per ane, by measu rement, as the letter press. Adver
tisements must be receved at publution ofoe as early
as Thursday mornung to appear in next issuue.

MARVINXS SAFES

 COUNTER PLATFORM WAGON \& SCALESMARVIN SAFE \& SCALE CO. - 265 BROADWAY.
Send for Catalogue of the
FIRMIENICH SAFETY STEAM BOILER, For burning smoke and all gases from
coal and all kinds of fuel
Requires no Gleaning of Soot Requires no Ashesing of soot
J. G. \& F. FIRMENICH,
Mill Stones and Corn Mills. We make Burr Millstones, Portable Mills, Smut, Ma-
chines, lackers, Mill Hicks, Water Wheels Pulless, and
Goarin, speciall adapted to Flour Milis. Send for
catalogue.

THE AMERICAN DIAMOND ROCK BORING CO
SEND FOR PAMPHLET.
TO INVENTORS.

 LIRUID PAITTs, ROOFIMQ, BOILER COVERIMGs,

 H.W.SHALE VERTICALIMIL
 and qua qualit
aro quit
or in the super
or

 PARENTS, GIVH YOUR CHILDRENA TRADE. The FOR SALE-A VALUABLE PATENT

ghingrsoil
 ROCKDRILLCO
 $1 \frac{1}{2}$ PARK PLACE N.Y.

SECOND-HAND ENGINES,

EBEST FAND CHEAPEST SCREW CUTERNG ENGINE MATHES
 GODOR HOWSTRATED CATALOCUE
GOODIGHTMAN 76 WASHINGTOW ST BOSTON MASS.

AUCTION.
 Working Models And Expermental M, Machinerve Meal or Wood mad.

ROOTS' FORCE BLAST BLOWER

FIRST PREMIUM
AWARDED
AT
PARIS AND VIENNA.

SPEED ONLT 100 TO 250 REV. PER M. SÁVES HALFTHE POWER REDUREDFORFAM.

P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND. S. S. TOWNSEND, Gen'l Ag't, 6 Cortlandt St., NEW YORK.
J. LLOYD HAIGH,

Portland Cement

 His Own Printer! wetision

Pond's Tools,

Eneilie Lathes, Planers, prilis, sc.
DAVID W. POND, Worcester, Mass.
 made to order at low pricer. send fcr new catalogue.
L F. Standish \& co., 26 Artizan st.. New Haven, Conn.
WOOD. INGRANTNG At Photo-Engraving Process Rates, by
T. P. DonALDSON, 33 Park Row, N. Y.
FIRE ON THE HEARTH
$\left.\begin{array}{l}\text { Stoves and Heaters. Three things in one-Fireplace, } \\ \text { stove. Furnace. }\end{array}\right)$

ar purpose, we isgue bemi-Annual editions or
AYER \& SON'S MANUAL

!!WARRANTMD!!
50 sizes, from 1 ti ll. co 800 N.
B|G PA Y.-With Stencil Outits. What costs 4 ets
American standard Gange and Tool Works

[^1]
Machinists' TOOLs.

NEW HAVEN MANEFAGGUHING CO.

ICE AT 81.00 PER TON.
The PICTET ARTIFICIAL ICE CO. Room 51, Coal and Iron Exchange, P. o. Box 3083 , N. r. Pyrometers, For shoming heat of

Wood-Working Machinery,
 froved Menon Machines, Mortising Moudding, and
ralis. Mantines, and wood-Working Machinery, kene

KREEDER, CAM
LAP WELDED CHARCOAL IRON
 "orka dive lron works
Renth Fourth si.,

Telephones.

Screw Cut'ing Machinery For Sale.

CAMERON

Steam Pumpe
or Mines, Blast Furnaces. Rolling Mills, 011 Reflneries, Boiler

WIREROPE

THE BIGELOW

Steam Engine.
both portible and stationary. The CHEAPEST AND BEST in the marke
H. B. BIGELOW \& CO., New Haven, Conn. PERRY \& CO.'s STEEL PENS.

 Pap Mip riud Mild rid

LHE' 'IANIJ'H CU.. STROUIDSBURG, PA. EMERY WHEELS AND CRINDERS. ROCK DRIILING MACHINES AIR COMPRESSORS

JOSEPH C. TODD, Exiyski and Mccivisr Fiax Hemp, Sute Rope

 J. C. 'I ODD,

10 Barclay St., New York, or Patersnn, N. J.

1Pitent Portable Chuck Jaws.

 Woodward Steam Pamps and Fire Engines.

drivene cboton and safe the cont.
 I pays Agents to sello our fubber Printing tampe
Cigar Box Lumber, MANUFACTLIRED by oar NEW PATENT PROCESS. The Best in the world
GPANISH CHDAR,
POPLAR.

GEO.W. READ \& \& COM COM, N. Y.

Diamonds Carbor

Shaped or Crude, furnished and set for Boring Rocks, ened steel, Calend er Roliers, and tor sawing, Turning,
or Working stone and other hard subsances; also
Glaziers Dlamonds. J. DICKiNson, 64 Nassau St., N.Y. PARIS EXHIBITION PRIZES. FULL

TAOTM JTOM O_{m} 614 to 626 W. 24th St., New York。 BOILER FLUES of all the Regalar Sizes, Of Best Material and Warranted No Payment Required till Tubes are Fully Tested and
No No Payment
Satisfactory.
FIRST-CLASS CHUCKS PRICE LIST:

STEAM AND HYDRAULIC
Passenger and Freight Elevators, STEAM ENGINES AND BOILERS, Hu Demestic Smi.Portable Frgine,

The Peerless Porte ble Steam Engine for Agricultural and other purposes,
from 6 to 10 horse power.
 F. F. \& A. B. LANDIS, MrPrs,

THE PROPERTIEG OF IRON AND

[^0]: Alabama.

[^1]: TTIIIIII $+{ }^{+3}$ J WROUGHT BEAMS \& GIRDERS T HE ONION IRON MILLS. Pittsburgh. Pa.. Mann-

