A WEEKLY JOURNAL 0F PRACTICAL INF0RMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, AUGUST 31, 1878.	

THE BALANCE DYNAMOMETER

Although many forms of dynamometers have been deAlthough many forms of dynamometers have been de-
vised, none of them are more simple or more reliable than the one invented more than thirty years ago by Mr. Samuel Batchelder, of Boston.

This instrument, which is of great value in practical mechanics, is exceedingly simple and is fully adapted to its object. It is made of suitable dimensions and strength for the degree of power to be measured, and when it is used it is placed in the line of communication between the motor and the machinery to be moved; the power exerted on the machinery may be exactly measured by means of the steel. yard and weight, which form a part of the machine. There is also connected with it an index to show the number of revolutions of the drum for a given time, which being observed, together with the weight, the data are obtained for computing the number of pounds which would be raised 1 foot high per minute by the power exerted at the time upon ly. It is evident that if this cross shaft is not retained in
having a boss, G, through which the main shaft passes free-

the dynamometer and transmitted through it to the work ing machinery.

Our large engraving represents the dynamometer in actual use in connection with dynamo-electric machines, while the cuts, Figs. 1 and 2, page 132, exhibit the details of construction. In these figures A A and B B are two pairs of belt pulleys, each pair consisting of a fast and loose pulley. The machine receives its power from the prime mover by a belt on the pulley, A , and the power is transmitted to the machine which is the subject of experiment by a belt from the pulley, B. The first pulley, A, and the by a belt from the pulley, B. The first pulley, A, and the
bevel wheel, D, are fast upon the shaft, C, which revolves in bearings, I. The bevel wheel, F, is connected with the pulley, B, by a sleeve, K, which is capable of turning on the shaft, C. The bevel wheels, D F, are geared together by the bevel wheels, $\mathbf{E} \mathbf{E}$, which run upon a cross shaft It is evident that if this cross shaft is not retained in
its place by some adequate force, the motion of the bevel wheel, D, will only cause the cross shaft to move round upon the shaft, C, and the wheels, E, will roll upon the wheel, F , without communicating motion to it or to the pulley, B; but if the wheels, E, and the cross shaft are held stationary, the motion of the pulley, A, will be communi cated to the pulley, B, through the bevel wheels, and the orce there applied to retain the shaft, \mathbf{G}, and wheels, \mathbf{E}, in place will indicate the power transmitted through the dyamometer. The amount of power is ascertained by means of a graduated scale beam, H J, connected with the shaft of he wheels, E, by straps, a.
The weight, M, fastened to the shorter arm of the graduated beam by a set screw, affords a means of balancing the beam when the machine is at rest, and the weight, W, like hat of a common balance, moved on the graduated arm of he lever, will indicate the strain upon the belt. The num[Continued on page 132.]

Srimtitic smminam.

ESTABLISHED 1815.
MUNN \& CO., Editors and Proprietors. published weekly at
NO. BY PARK ROW, NEW YORK.
O. D. MUNN
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.
 $\$ 320$
160 gratis for every club of flve subscribers at $\$ 3.20$ each ; additional copies at same proportionate rate. Postage prepaid.

Single copies of any desir address on receipt of 10 cents.

address on receipt of 10 cents.
MUNN \& CO., 37 Park Row. New York.
The Scientific American Supplement is a distinct paper from the Scientific american. Thie supplement cover, uniform in size with Sclentific American. Terms of subscription for SUPPLEMENT, 8500 a y ear, postage paid, to subscribers. Single copies 10 cents. Sold by all news dealers throughout the country. Combined Rntes. - The Scievtifle American and Stepplempat papers to one address or different adllesesses, as desired. The safest way to remit is by draft, postal
Address MUNN \& CO.. 37 Park Row, N.

Scientific American Export Edition.

The Scientific amprican Export Edition is a large and splendid periodical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weetly issues of the sciextific Commercial, trade, and manufacturing announcements of leading houses Terms for Expart Edition, 8.00 a year, sent prepaid to any part of the world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large, and handsomely dis nouncements published in this edition at a very moderate cost.
The Scientific Ambrican Export Edition has a large guarant lation in all commercial places throughout the world. Address MUNN CO.. 37 Park Row, New York.
VOL. XXXIX., No. 9. [New Series.] Thirty-third Year.
NEW YORK, SATURDAY, AUGUST 31, 1878.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT

INO. 139.

For the Week ending August 31, 1878.

THE RIGHTS OF INVESTIGATORS.

In the Scientific American Supplement for July 20, 1878, there was published an article entitled "How to Build a Working Phonograph," with working drawings for the construction of a cheap and practical instrument. In the Scientific American of August 24 we described and figured "a simple phonograph," in such a manner that any clever boy could make therefrom an instrument that would illustrate perfectly the essential mechanism and action of that wonderful invention.
In so doing we have only carried out the wish of the inventor, as expressed to us, in helping to give the widest publicity to his invention. The company which has purchased the right to make the phonograph for commercial protest that 1 is not taly inferent view of the matter, and courage infrugements, as they term it, but illegal on the part of our readers to follow the directions we have given for making phonographs for experimental purposes. In some instances, we are informed, such makers have been threatened with legal penaltes for doing what they have a perfect right to do; and possibly some may be deterred from pursuing their investigations in this direction, through fear of offending the patent law, and so involving themselves in legal difficultics.
-The law on this point is not obscure. Investigators have rights as woll as patentes; and among these is the right to make any patented article for the purpose of ascertaining its sufficiency to produce the described effect; in other words, for testing its practical utility. It is only when the machine or other article is made for use or sale, with the intent to
infringe the patent right and deprive the owner of his lawful reward, that the act becomes an offense against the law When a machine is made for the " mere purpose of experimenting on the sufficiency of the specification," or-as was held in Jones r s. Pierce, Webs. Pat. Cas., 125, Patteson, J.for the maker's "own amusement, or as a model," there is no infringement.
If this were not the case the progress of invention would be very seriously hindered: improvements would be next to impossible; and practical investigators and students-from whom most inventions come-would be grievously hampered at every stage of their progress. Unfortunately the purchasers of patents are too apt to construe their rights so as to make them cover pretty much the entire universe, and, if they could have their own way, would allow no one to move in any direction without their consent. This maly be a natural outcome of human selfishness; lut it is not at all in accordance with the spirit of the patent law.
As it appears to us, the parties controlling the phonograph, like the telegraph companies, have missed, or rather have refused to avail themselves of, a most profitable field of operation, in not mecting promptly the eager public demand for experimental instruments. Thousands of instruments could have been sold, at a price affording a large profit, though re:llly low, to persons who would have been glad to buy them as curiosities, or for the purpose of studying their singular properties and effects; this without interfering is the least with the use of more costly and perfect instruments for business purposes. By refusing to meet this proper demand, they have simply compelled investigators to make their own models; and they have no right now to complain.

the planet volcan.

After twenty years of dispute, complicated by many doubtful and conflicting observations, the intra-Mercurial planet discovered by the Parisian physician, Lescarbault, will probably now have to be admitted to full standing among the planets. The readers of the Scientific American will recall the numerous communications and articles with reference to this planet, printed in our issues for October, November and December, 1876, and the more recent article of May 25, 1878, when the belief was expressed that at the approaching eclipse the disputed planet would be found not far from the sun.
Ever since Le Verrier completed his demonstration of the and the of a disturbing body somewhere between Mercury that only a not a few astronomers have been convinced by sight the evidence of mathematics.
Among these was Professor Watson, whose confidence was so strong that he went to Colorado determined to make the search for Vulcan his chief business. IIe said to a townsman on his return. "I was satisfied that there was a planet within the orbit of Mercury, just as I am satisfied that there is one outside the orbit of Neptune. The perturbations of those planets, and some other phenomena, cannot be explained on any other hypothesis. So when I went there I fixed on my plan and stuck to it. I determined to sweep south of the sun, and to keep within a small space
We had but three and one half minutes, and the time We lad but three and one half minutes, and the time was
too short to try to get over too great a space I meant to search that much thoroughly, and so reduce the amount for future astronomers should I not succeed. It was on the fifth sweep that I saw the object."
In his report to Rear Admiral Rodgers, Superintendent of the United States Naval Observatory, Professor Watson says. "I have the honor to report that at the time of totality I observed a star of the four and a half magnitude in R. A. 8 b .26 m . dec. 18° north, which is, I feel convinced, an in-tra-Mercurial planet. I observed with a power of forty-five, and did not have time to change the power so as to enlarge the disk. There is no known star in the position observed,
and I did not see any elongation, such as ought to exist in the case of a comet very near the sun. I will hereafter report to you fully in regard to observations made. The appearance of the o bject observed was that of a ruddy star of the four and a half magnitude. The method which I adopted prevents the possibility of error from wrong circle readings; besides I had memorized the Washnggton chart of the region, and no such star was marked thereon. By comparison with the neighboring stars on Argelander's scale, the magnitude of the planet would be the fifth, although my direct estimate at the time of the observation was four and half, as stated."
Speaking of the discovery, the English astronomer, Mr. Lockyer, said that he did not look for Vulcan and did not see it, though he believed in Le Verrier's prophecy that it would be found at some time. He added " We may rely upon Professor Watson's statement that it is not a comet, and it is certainly not a star, therefore it must be a planet, and, from its position, an intra-Mercurial one."
Much to Professor Watson's delight his discovery was in a measure confirmed by that of Mr. Lewis Swift, of Rochester, who was at a neighboring station. Mr. Swift's observation seems to have been, in a sense, accidental, yet there is no reason to question its scientific value. In giving an account of his discovery to the Rochester Democrat, Mr. Swift says: " About one minute after totality two stars caught my cye about three degrees, by estimation, southwest of the sun. I saw them twice and attempted a third observation, but a small cloud obscured the locality. The stars were both of the fifth magnitude, and but one is on the chart of the heavens. This star I recognized as Theta in Cancer. The two stars were about eight minutes apart. There is no such configuration of stars in the constellation of Cancer. I have no doubt that the unknown star is an intra-Mercurial planet, and am also inclined to believe that there may be more than one such planct.'

AMMONIA IN THE AIR.

Dr. R. Angus Smith, who has done so much for the chemstry of the air, lately read before the Manchester Literary and Philosophical Society a paper on the distribution of ammonia, in which he described the simplest method yet proposed for determining the amount of ammonia in the air. And since such ammonia may be teken as an index of the amount of decayed matter in any locality, the hygienic importance of an easy test for it is not small. The availability of the proposed test arises from the circumstance that ammonia is deposited from the air on every object exposed thereto. "If you pick up a stone in a city, and wash off the matter on its surface, you will find the water to contain ammonia. If you wash a chair or a table or anything in a room, you will find ammonia in the washing. If you wash your hands you will find the same, and your paper, your pen, your table cloth, and clothes all show ammonia, and even the glass cover to an ornament has retained some on its surace." In short ammonia sticks to everything, and can be readily washed off with pure water. Hence Dr. Smith inferred that he might save himself much of the trouble he had been taking in laborious washings of air to determine the presence of ammonia, and gain the desired end by testing the superficial deposit of ammonia which gathers on clean substances during ordinary exposure. Accordingly he suspended small glass flasks in various parts of his laboratory and examined them daily, washing the outer surfaces with pure water, and testing at once for ammonia with the Nessler solution. Subsequently a great many observations were made by means of glasses exposed to air in door and out, where the air was sweet and where it was foul. By using glasses of definite size it was casy to determine whether the ammonia in the air was or was not in excess. In his laboratory experiments ammonia was observed when he glasses had been exposed an hour and a half.
Of the practical working of the test Dr. Smith remarks that it must not be forgotten that the ammonia may be pure or it may be connected with organic matter; and consequently this mode of inquiry is better suited as a negative test to show that ammonia is absent than to show what is present. When ammonia is absent we may be sure that the air is not polluted by decaying matter; when it is present there is need of caution. Dr. Smith adds that he hopes to make this a ready popular test for air, a test for sewer gases, for overcrowding, for cleanliness of habitations, and even of furniture, as well as for smoke and all the sources of ammonia. Of course it must be used with consideration and the conclusions must not be drawn by an ıgnorant person. The entire paper will be found in the Scientific American Suprlement , No. 139.

SOFT Vs. HARD IRON.

A series of most careful experiments recently undertaken by Mr. David Kirkaldy, to find out the relative merits of wrought iron plates manufactured by Krupp, of Essen, and those made in Yorkshire, demonstrated that, as regards the elastic limit, or the amount of load at which the elasticity becomes impaired, the result was in favor of the Yorkshire plates by 9.2 per cent, which is attributed to their greater hardness; but that the ultimate or breaking stress was in avor of the Essen plates by $5 \cdot 5$ per cent, the softness of the ron, as shown by the contraction at area of fracture, being also in favor of this latter.
To ascertain the reduction of tensile strength by drilled and punched holes, 42.5 per cent of the plates was removed by rivet holes made in their centers $21 / 2$ inches apart between
centers, and the actual mean loss of strength recorded on the Essen plates amounted to 38.05 per cent, and on the Yorkshire to $42 \cdot 95$ per cent; the difference showing unmistakably the value of the softer iron, and that the ultimate stress borne is much affected by this quality.
Disks 12 inches in dameter and $1 / 2$ inch thick were then subjected to a bulgng stress by being pressed into an aperture 10 inches in diameter by a bulger. The difference in favor of the Essen piates was 17.8 per cent. In resistance to a bending stress also the results showed favorably for Essen plates in both hot and cold bending tests. Some plates showed cracks when bent at angles of 50°, while many of the Essen specimens bent as much as 180° before cracking These results are of great importance to architects and engineers in determining the relative values of soft and hard irons for their purposes.

THE NEW DIVINITY.

It has been claimed that modern socialism, although professedly atheistic, is in reality the beginning of a new rcliglon. The testimony received by the Congressional Labor Committee seems, in the mann, to bear out the assertion.
However conflicting, in every other respect, might be the However conflicting, in every other respect, might be the views of the socialistic reformers that thronged the commit tee room. they all seemed to be in substantial accord on one point, namely, the source from which retief from all indus trial troubies was to come. Therr sublime confidence in the beneficent capacity and character of this new divinity would have been beautiful if it had not been so absurdly ri-diculous-ridiculous as every phase of fetich worship must be to those who have passed beyond it.
The troubles that afflict the poor are traced by socialists chicfly to the oppressions of capital made possible by the maladministration of government, itself corrupted by human selfishness and dishonesty. In the interest of hereditary wealth and position government does no end of wicked things. and neglects to do justice to the poor in almost everything. Indeed, in whatever governments may undertake to do, jobbery and favoritism on the part of those empowered to direct the work invariably result in a squandering of the means provided, and almost always in an increase of the burdens of the poor, with no compensating benefit. Down with the Government! Oust the rascals that in the name of justice plunder the public treasury, and share the spoils with the rich, who use their ill-goten gains for the oppression of their betters, the producers!
This is the socialistic cry, from Russia to San Francisco. Yet, like the poor savage of Ashantce who makes a god of the snake that bit him, the one unanimous demand of the
socialists before the Labor Committce was that government should undertake to do everything.
By what process of mental jugglery the idea of government is separated by them from human agency and made a god to do impossibilities-incorruptible and of unfailing wisdom-there is no means of telling; yet the fact remains
that these unfortunate victims of government, according to their own account, want nothing so much as more government. In the name of liberty they demand the most ab solute of despotisms. Denouncing the incompetence and rasc:llity of all men in power, they would turn over to govcrmment (and so, of course, to the control of officials) all the means of wealth, all the processes of production, all the distribution of this world's goods. In future years this feature of the socialistic movement will, we believe, be looked upon as one of the most curious and unaccountable of epilemic delusions.
With not a few of the objects of the socialistic reformers we are in hearty sympatly. To no small degree they are working at, if not working out, the true aims of American institutions, as they themselves will discover in time, when they come to know more about our institutions. When to their zeal they add kuowledge-practical knowledge, not
idle dreams and mischievous misapprehensions-they will idle dreams and mischievous misapprehensions-they will
see, as others a now, that they are largely fighting shadows of their own creation. And they will discover too that it is sheer madness to make a divinity of the popular will, as expressed by government-the necessarily rude adjustment of conflicting individual wishes and interests, executed by fallible individuals. A government of the people, for the
people, by the people, may be the very best government pospeople, by the people, may be the very best government pos-
sible for a free people; but to make a god of it, putting upon sible for a free people: but to make a god of it, putting upope
its shoulders all powers and all responsibilities, in the hope of ushering in the millennium thereby, as socialists threaten, is a scheme worthy only of the madhouse.

the west as a field for manupactures.

The rapid progress of manufactures westward during re cent years has been noticed in this paper frequently. Alreayy the Western markets are to a great extent commanded
by Western industry; and the tendency is to make that part by Western industry; and the tendency is to make that part
of the Union each year more and more independent of the factories of the East and of Europe. Thus far in the competitive struggle two factors have told strongly in favor of the Western manufacturer-nearness to market, and a closer knowledge of and sympathy with the special wants of his customers. There is another factor which promises to help still more the development of the manufacturing industries of the West, a factor which Eastern men have been slow to appreciate; and that is the superior natural facilities of that
region, especially the Northwest, arising from the abundance region, especially the Northwest,arising from the abundance
and permanence of its availabla water power and the even greater abundance of coal. In the Scientific Americaf
article from the Chicago Journal of Commerce, with relation rich in rivers affording large and uniform currents and abounding in valuable mill sites. Wisconsin, Minnesota, and Iowa have a score of such rivers furnishing available power equal to that of the most prominent power furnishing rivers of the East. In any of these States can be found river like the Des Moines of Iowa, or the Fox of Wisconsin, able to run all the machinery in New England and New York. The force available at Minneapolis alone is estimated at 120,000 horse power. In the three States mentioned, the Journal counts fifty rivers from 150 to 600 miles in length, which possess every requisite as first class mill rivers; and each of these has numerous tributaries a hundred miles or
less in length, abounding in valuable mill sites; rivers fed by lakes and other natural reservoirs, which supply a stron and almost unvarying current the year round. Besides, owing to the natural advantages of the bed rock of Western mill sites, the average cost of dams and other structures for commanding water power in the West has been only abou
two thirds that of similar constructions in Eastern States.
The extent to which the water power of the Northwest already utilized is but imperfectly appreciated even in the West. "In the single industry of the flouring trade," says the.Journal, "we find its rivers turning the wheels of two thousand of the twenty-five hundred flour and grist mills. A thousand manufactories of agricultural implements and machine shops are already established, and the wagon and furniture factorics are legion. Woolen and cotton mills, tack and nail factories, and in fact all the higher grades of manufactories have already discovered the advantages which our rivers offer for their location." The Mississippi valley must ultimately furnish homes for ten times as many people as the whole of the United States now contains. As tha time approaches these splendid facilities for manufacturing enterprise will make the Northwest the busiest and wealthies region in the world. With every new manufactory the need of sending corn and wheat and becf and pork half way round the world to find a market will be lessened, to the farmer's gain and the general advantage of the common wealth. Indeed the combined advantages of the Northwest, in possessing a fertile soil, abundant mincral wealth, a plenitude of available water poyer, a healthy climate, and a vig. orous and thrifty population, make it, it seems to us, a ficld for manufacturing and other industrial enterprises second to
none in the Union. And the recent emigration to that region of thousands of thrifty mechinics and artisans from the East indicates very plainly that its industrial future is being rapidly determinel in the right way.

pNEUMATIC ENGINES FOR STREET CARS.

The substitution of compressed air motors for horse powe in street car traffic has for some time been under considera tion by the Second Avenue Street Railway Company of this
city, and it is now claimed that the prospects of a successcity, and it is now claimed that the prospects of a success-
ful issue are most satisfactory. An experimental car was run over the Harlem portion of the road, August 3d, and behaved so well that the company propose to dispense entirely with horse power on that part of their road as soon as a sufficient number of engines can be constructed. Ulti mately they hope, it is said, to extend the improveme Externally the from Harlem River to Peck Slip
Externally the new self-propelling car resembles the ordi nary street car, the compressed air reservoirs and other mal chinery being under the floor and out of sight. In the trial trips a speed of from sixteen to eighteen miles an hour was obtained. The movement of the car is conirolled by a brace of levers on the front platform, and involves nothing, it is said, beyond the skill of an ordinary car driver. The capacity of the two reservoirs is sufficient to drive the car from Harlem River to Peck Slip and return. A seventy-five horse power steam engine at Harlem is used to charge the reservoirs, five minutes being safficient to do the charging.
The inventors of this method of propelling street cars are Messrs. Robert Hardie and J. James, of Glasgow, Scotland. Another compressed air motor for strcet cars, the inven tion of Mr. Henry Bushnell, of New Haven, Conn., was suc cessfully tested a few days since in that city. Mr. Bushnell's air receivers are tubes, the largest of which are twenty fect long and only eight inches in diameter (those of the Hardie \& James car being two feet in diameter). There are four of these, two on each side of the car above the axles and next
the whecls. Between them at the end of the car are four the whecls. Between them at the end of the car are four
other tubes, each six feet long and six inches in diameter inside measurement. The double cylinder engine which drives the wheels does not differ materially from a steam engine, except in the smallness of the cylinders, which are only 234 inches in diameter. By an ingenious device the cylin ders are kept warm by a small air compressor attached to
the running gear of the car. Great advantage is claimed by Mr. Bushnell for the long and slender receivers; a pres sure of $2,000 \mathrm{lbs}$. per square inch giving in them a pressure of only 50 tons on the head of each tube, while the two-foot receivers of the Sccond Avenue car, he says, would have to stand a pressure of 180 tons with the pressure of 800 lbs . to the square inch claimed by the inventor. A gentleman
who was present at a trial trip reports that the motion was easy and at times about twice as rapid as that of a horse car. The new vehicle obeyed the enginecr promptly in starting and stopping. The distance traveled in going and returning was a little over a mile. At the start the gauge registered $1,800 \mathrm{lbs}$. At the return the pressure indicated was
urned cock the roar was frightful and was as irritating to the ear as escaping steam. In running, however, very little noise is heard from the escape pipe, because the escaping air is made to pass through a mass of ordinary curled hair, This device Mr. Bushnell esteems one of the most important of his inventions. He has no doubt that it would prove equally efficacious in deadening the sound of escaping steam. In running the distance of four miles the pressure was re duced from 1,950 lbs. to 750 lbs .
Whether either of these motors will stand the test of winter use, with snowy or frosty rails, remains to be seen.

A FALSE ALARM

The New York Herald of August 15th set off its regular Washington correspondence with the startling head lines 'Important Decision of the Attorney General. Thotsands of Patents Invalidated." The text of the letter was quite as alarming as its title-to those who did not recognize its absurdity. Fortunately, however, few inventors or patentees are so ignorant of the practical working of the patent system as to be misled by such wild tallk about the nvalidation of "between forty and fifty thousand live pat ents." According to the Herall writer, the Attorney Gen ral's decision is in effect that "letters patent issuing to two or more persons, when but one of them is the real inventor, are void, and cannot be made valid by any act of the parties concerned or by the Patent Office.
The decision is in reality nothing of the sort, the unintenional misstatement of its effect arising from the omission
of the words as joint inventors after "persons."
The occasion of the decision was this: In $18 \% 1$ Joseph Barsaloux invented a device for stiffening boot and shoe heels. Before applying for a patent he sold to James \& Lyon two-thirds of his right. In 1872 a patent was applied or, and in the application the three men were-" by the misadvice of their attorney and their own ignorance of the aw"-described as joint inventors, instcad of following the regular practice in such cases of naming the first as inventor and the others as assignees. The patent was issucd in ac cordance with the terms of the application. Subsequently in 1875, James \& Lyon discovered their error and applied or a reissuc to Barsaloux alone. In the opinion of the Commissioner of Patents the new patent asked for could not be legally granted, the original patent being void through no fault of the department, and the invention having been in public use for more than two years. His opinion was referred to the Attorney General for an authoritative decision, and the position taken by the Commissioner was sustained in the following terms:
" The error here presented consists of a false suggestion in he original application that the invention was joint. This, whether done through ignorance or by mistake, does not, in my opinion, afford any ground for the action prayed for. The patent issued upon that application must be deemed to be void, as a joint patent cannot be sustained upon a sole in vention of one of the patentees (see 1 Mason's C. C. Ref. 473), and the department cannot by means of alterations or corrections confirm or impart validity to a patent which was originally void."
As will be readily seen, this decision imports no new principle or practice into the working of the patent system, and will have no such effect as the Herald writer describes. Un less the partners of an inventor have deliberately sworn to a falsehood, claiming to be joint inventors when in truth they were not, they need have no fear of the validity of their patent; and no competent patent attorney would allow such mistake to occur through inadvertence.

THE WALIINGFORD TORNADO.

On the evening of Friday, August 9, a tornado swept over a portion of the village of Wallingford, Conn., killing outight between twenty and thirty persons, and wounding many more, some of whom have since died. Forty dwelling house were demolished, besides a church, a school house, a facto ry, and fifty barns. Nearly all the dead were crushed by
falling timbers. The tornado appears to have been confined falling timbers. The tornado appears to have been confined to a belt of territory less than half a mile wide and two miles long, the whole damage and loss of life occurring on a strip of sand plains of small extent. Severe thunderstorms, in some cases attended with much hail, were general throughout New England that day.
Measured by the loss of life this is by far the most destructive tornado that has been experienced in the East; it was not, however, of unique severity. Some forty years ago the same region, almost the same locality, was swept by whirlwind of even greater force, though fortunately it did not encounter any human habitations. Still earlier, in 1787, a more fatal and possibly in other respects more detructive tornado struck the country between New Britain and Weathersficld (directly north of Wallingford), and passed on to Eastbury, doing great damage; and it was noticed in the Hartford Courant of that time that a previous hurricane had swept substantially the same track, the cen ters of the two being only 33 yards apart. All these storms occurred in August.
There is a prevalent opinion that violent tornadoes are rare in the East, and that the unobstructed sweep of an open prairie country is needed for their full development. They are more common in the West, it is true; but it is probably due not so much to the more favorable conditions prevailing there as to the fact that the West is very large compared with the East. If equal areas be compared, the Eastern States will probably be found to suffer from whirlwinds as frequently as the West.

CAPTIVE BALLOON OF 1878.

The 'captive" balloon now inflated in the Place du Car-
Petit-Bourg, 30 kilometers (19 miles) from Paris, when atrousel of the Tuileries is an object of wonder to Paris at \quad Its size is something extraordinary, and we shall merely the present time. Viewed from the Arc de Triomphe or any give the figures, omitting the glowing description of the appart of the main drive of the Champs Elysee, half of its full pearance of this remarkable city, which shows better than height shows above the western fagade of the Tuileries, and most others at a bird's-eye view, owing to the size of its main we observed it plainly in view a day or two since when at streets, the large buildings and parks, the green avenues, caoutchouc, the outer fabric being varnished and painted

GIFFARD'S CAPTIVE BALLOON OF 1878.
with zinc white; 4,000 meters of material which is 110 the whole enterprise a little over $\$ 100,000$. The height of as meter wide are used for each layer, the excess of 0.10 meter cension is 600 meters (1,968 feet), and the charge for each being overlap for sewing the silk or uniting the gum goods, person 20 francs. The car is annular, being 6 meters in dsas the case may be. Ekach meter of surface costs 14 francs. \quad ameter, forming a circular gallery 1 meter wide, with partiThe cord netting is 11 millimeters in diameter and weighs 6,600 pounds. ersons at a centrai aperture of 4 meters. It carries 50 persons at a trip, estimated at an average of 60 kilos each; total living burden. 3.000 kilos. (6.600 pounds).

The cable traverses an underground tunnel in its passage from the winding engine to the balioon. The inflation takes a week of time, at a cost of 62,000 francs, the gas being hydrogen, obtained by the chemical reaction of 100,000 kilos. of ron, 200,000 kilos. of acid, and 500,000 liters of water. The gas traverses a series of purifiers, and is collected in a large reservoir and thence passes to the balloon.

THE INFLATION OF THE BALLOON.

APPARATUS FOR MANUFACTURING GAS FOR INFLATING THE BALLOON.

THE WINDING MACHINERY.

The winding engines for the cable are each 30 horse power, and wind in at a rate of 30 turns per minute, the average length of a turn on the barrel being nearly 20 feet. The cable weighs 4,400 pounds, and has a proved strength of 200,000 pounds.
The captive balloon (" Geant") of Mr. Henry Giffard in 1867 had a capacity of 5,000 cubic meters, and its ascent was 300 meters (984 feet). She carried up 12 persons at a trip The size of the present one may be repeated for the sake of comparison, the cubic capacity being 25,000 cubic meters, its load 50 persons, and its elevation double that of the former.
The first question that naturally presents itself to the mind of every one who contemplates making an ascension is. "What would happen should the cable break?" Such an accident is scarcely within the range of possibility. Still, everything should be foreseen; supposing it should break Well, the aerial voyager would have a more extended excursion, that is all The double bottom of the car is provided with bags of ballasting, grappling irons, and guide ropes, and the acronauts chosen by M. Giffard as Captains are MM. Eugene and Jules Godard and Camille Dartois. The names of these aeronauts are as popular as their ability is proverbial. In case of an accident their knowledge and coolness may be relied upon. But no accident will happen; this is very certain.
As a further provision against such a barely possible event, however, the captive balloon is provided with certain pieces of apparatus that are found in ordinary balloons, but in this case in a greatly improved form.
Balloons are furnished at their upper part with a wooden valve, formed of two flaps which open from the exterior to the interior by means of a cord which is under the control of the aeronaut; these close automatically underthe action of rubber straps which extend over their upper part. The hermetical closing of these flaps is rudely effected by means of a mixture of tallow and flaxseed, which is applied to the grooves and joints of the valve. Aeronauts give this mixture the barbarous name of "cataplasm.." M. Giffard has modified all these parts of the aerostatic valves. The one situated at the upper part of the balloon is formed of a large metallic disk 22 inches in diameter, furnished on its upper side with a circular metalic projection which, resting against a crown of India rubber, produces a hermetical sealing. The disk of the valve is made to press against the rubber crown by means of spiral springs. The valye may be opened by the aeronauts by means of a cord which hangs down as far as the cirr. The valve is mounted in the center of a circle of very thick stuff, which, with the material of the balloon, is clamped bet ween two circles of wood held together by bolts. The whole apparatus is protected from the elements by a sheltering tent made of a solid framework of wood, mounted on springs, and covered with canvas. The lower valve is formed of a large metallic disk 32 inches in diameter, held in place by very delicate springs. This disk opens automatically, under a very weak pressure, to allow the escape of the excess of gas due to dilatation. This valve, like the upper one, is mounted in a collar of thick material which supports, in addition: (1) the tube through which the balloon is inflated; (2) a metallic piece through which the cord of the upper valve passes; (3) a glass " bull's-eye" through which the interior of the balloon may be examined; (4) a manometer. Around the large circle of the valve has been fixed a series of layers of India rubber to prevent the balloon from "bagging" under the action of the wind, and to keep it always distended. The spring balance which unites the balloon to the cable is suspended in the center of the annular space surrounded by the gallery of the car. This balance is formed of two steel cylinders united by light iron springs. Four vertical dials indicate, by means of hands, the amount of traction in kilogrammes to which this species of dynamometer is submitted. The aeronauts and voyagers in the car may always know during the ascension the excess of ascensional power of the balloon and the force with which the wind is acting on the cable.

A Source of Hard Times.

Speaking of the vast-and to a great extent avoidabledestruction of property by fire in this country, the Fireman says that fires are increasing, both in numbers and destructiveness, far more rapidly than the increase of wealth and production. It is computed that from an annual loss by fire in 1868 of $\$ 35,000,000$, the annual loss, exclusive of exceptional fires such as Boston and Chicago (if they may be called "exceptional"), has increased to $\$ 100,000,000$. The full significance of this statement cannot be realized unless analyzed. This loss is the irremediable loss of human product and industry. It is the conversion of human blood, brawn and niascle, necessary to create $\$ 100,000.000$ of value, into ashes and smoke. Assuming the labor that produced this value to be worth $\$ 3$ per day, this loss is the loss of more than the combined labor of 100,000 men for one entire year.

Then, too, it must be remembered that this is surplus production. It has been accumulated by producers after earning livelihoods for themselves and families, and paying their share of the cost of government and their proportion of the burdens of society. It would require, then, the labor of $100,000 \mathrm{men}$ for 20 years to replace by surplus production this annual loss. It is not only so much wealth subtracted from the resources of the country. but it is the loss of the productive power of so much capital.

THE BALANCE DYNAMOMETER.

[Continued from first page.]
ber of pounds thus indicatcd multiplied by the number of feet through which the belt moves per minute will give the number of pounds raised one foot high per minute. The product divided by 33,000 gives the horse power expended indriving the machinery.
A worm, Y , on the end of the shaft, C , is made to move n index which shows the number of feet through which he belt or surface of the pulley moves in a given time.
In graduating the arm of the balance, \mathbf{J}, the division marked 0 is the same distance from the center of the shaft as the periphery of the pulleys. The balance arm is divided into spaces equal in length to the semi-diameter of the pulieys, and they are marked $0,10,20,30$, and so on. The weight, W, will be double that of the strain on the belts. The plunger- attached to the steel-yard and operating in the

BATCHELDER'S BALANCE DYNAMOMETER.
water box, as shown on the first page, was applied by Mr. James B. Francis, of Lowell, for preventing sudden vibration when the instrument is used in connection with machinery, when the strain is variable.
This dynamometer has recently been used by Mr. Samuel Webber, of Manchester, N. H., for weighing the power of spinning and other machinery. A report relating to these tests is contained in his Manual of Ponoer. The instrument is also used in connection with dynamo-electric machines by Professor John Trowbridge, of Cambridge.

A Veteran Inventor.

Mr. Samuel Batchelder, the inventor of the dynamometer described in this number, is a resident of Cambridge, Mass., and is now nincty-four years old. He has been engaged in the cotton manufacture for seventy years, having been owner, in part, at New Ipswich, New Hampshire, of the second cotton mill that was built in that State, about 1808 . This was previous to the use of power looms at Waltham, yarns only being made, which were woven into cloth upon hand looms, in faim houses; shirting, gingham, checks and ticking being thus manufactured. Pillow cases were also made without seam, the selvages being closed and the bottom woven in, forming a bag of the same kind as those now in extensive use for grain.
The Hamilton Mills, at Lowell, were built under the direction of Mr. Batchelder from 1825 to 1830 for the manufacture of twilled goods (jeans and drillings), which had not previously been made on power looms; he also built and managed the York Mills at Saco, Maine, from 1831 to 1846. the York, and the Everett Mills, the latter having been estab-
lished by himat Lawrence, Mass., in 1860, and he continued in active business, making frequent visits from Boston to the mills, until he was eighty-six years of age.
He has made many improvements in the practical operaions and machinery of the cotton manufacture, one of which was the "drawing frame stop motion," which was patented in England, and is now in general use in all cotton mills; also the use of steam for drying the sizing of the warps in dressing frames; the dyeing of cotton in the lap for mixed goods. In 1863 he published a volume upon the " Early Progress of the Cotton Manufacture of the United States." His contributions to the newspapers in relation to the tariff, labor, manufactures and various other sulbjects of general interest re very numerous, and have been continued to the present time.

New Agricultural Inventions.

Mr. George W. Fawks. of Prairic Hill, Mo., has patented an improved Portable Hay Ricker for raising hay upon icks. It is simple in construction, and is so constructed that it may be readily drawn from place to place, as required.
Mr. William H. Hall, of Tiffin, Ohio, has invented an improved wire toothed Hay Rake, which is lighter, stronger, more convenient, and less liable to break and get out of order than rakes constructed in the usual way.
An improved Grain Steamer and Drier has been patented by Mr. Fredrick A. Hoffmann, of Baldwin City, Kan. The object of this invention is to furnish, for the steaming and drying of grain and middlings, an improved apparatus by which the burrs may be supplied continuously with properly steamed and dried grain, without removing the apparatus, and without any choking of the same by the grains or middlings in their passage to the burrs. By using the apparatus, flour of a greater degree of whiteness and with a lighter bran is obtained, with less waste in the sweepings
Mr. Charles E. Adamson, of Humboldt, Neb., has patented an improved Wagon Rack, which is so constructed that it may be readily adjusted to adapt the wagon for use for carrying wood, stone, lumber, corn in the car or shelled, all kinds of grain, thrashed or unthrashed, small stock, hay, stalks, etc.
Mr. Leonard A. Cooper, of Winthrop, Mo., has patented an improved Corn Planter, Marker, and Cultivator, of simple construction, by which, in connection with the seed dropping devices, the rows are marked and the ground cleared of weeds.
An improved Stock Pump has been patented by Mr. Summit R. King, of Mason, Mich. The object of this invention is to furnish a mechanism which will enable the stock to pump water for themselves, thus rendering the use of a windmill or an attendant unnecessary.

New Article of Commerce.
A new and valuable member of the group of elastic gums is found in the sap of the bully tree, which flourishes on the banks of the Orinoco and the Amazon. It is called balata, and ranks between caoutchouc and gutta percha in useful qualities. It resembles gutta percha so closely in its general properties that much of it is shipped from Guiana and sold yearly for gutta perchaalthough it has many points of superiority. It is tasteless, gives an agreeable odor on being warmed, may be cut like gutta percha, is tough and leathery, is remarkably flexible, and far more elastic than gutta percha. It becomes soft, and may be joined piece to piece, like gutta percha, at about 120° Fah., but requires 270° Fah. before melting. It is completely soluble in benzole and carbon disulphide in the cold. Turpentine dissolves it with the application of heat, while it is only partially soluble in anhydrous alcohol and ether. It becomes strongly electrified by friction, and is a better insulator of heat and electricity than gutta percha. Caustic alkalies and concentrated hydrochloric acid do not attack it; but concentrated sulphuric and nitric acids attack it as they do gutta percha.

The Restoration of the Patent office.

The committee of experts appointed by Secretary Schurz to select from the fifteen plans submitted for the remodeling of the portion of the Patent Office destroyed by fire has adopted the plan of Mr. Vrydagh, of Terre Haute, Indiana. The plan embraces the addition of an attic story. The upper portion of the building, which has been used as a museum for exhibition of models and curiosities, will be remodeled and made into office rooms, as more are necessary, and the new attic story will be used for a model room.

A Practical Resumption of Specie Payments.

To the Editor of the Scientific American:

It may interest your "hard money" readers to know that this Company, on its regular pay day, August 15, paid all its employees in gold coin.

Yale lock Manufacturing Company.
Stamford, Conn.

astronomical notes

Penn Yan, N. Y., Saturday, August 31, 1878. The following calculations are adapted to the latitude of New York city, and are expressed in true or clock time, being for the date given in the caption when not otherwise stated. Planets.
Venus rises.....
Jupiter in merid
S.

."\%
first magnitude stars, etc.

remarks.
Saturn is rapidly increasing in brilliancy, and throughout the month of September will be the most brilliant and at tractive body in the evening sky. A good $21 \underset{2}{2}$ or 3 inch tele scope is necessary to exhibit well the charming and awe inspiring features of the Saturnian system. Such an instru ment will show the three rings, the division between the outer and middle ones, the belts, four or five of the larger satellites, and the umbra and penumbra of the planet upon the rings. These last should be looked for only at or about the time of quadrature, and when the plane of the rings is most inclined to the earth's path. To observe the shadow of the rings upon the planet is far more difficult, but is most easily done when the planet is at or near quadrature, and the plane of the rings is not excessively inclined to the earth's.path. With favorable atmospheric conditions during the latter part of September we think that the sixth and cighth satellites, Titan and Japetus, may be seen with a good opera glass. The middle ring is considerably brighter than the planet itself, while the interior one (Bond's dusky ring) is so transparent that the outline of the planet can be traced through it. The outer ring is of a grayish hue.

stronomical Notes.

Observatory of Vassar College.
The computations in the following notes are by students of Vassar College. Although merely approximate, they are sufficiently accurate to enable the observer to find the planets.
M.
78.

Mercury.

On September 1 Mercury rises at 6 h .57 m . Λ. M., and sets at 6 h .43 m . P.M. On September 30 Mercury rises at 4 h . 33 m . A.M., and sets at 5 h .10 m . P.M.
Mercury may be seen in the morning in the latter half of the month; it rises before the sun and at a point north of the sunrise point. On the 25 th Mercury is very near Venus.

venus.

On September 1 Venus rises at 3 h .24 m . A. M., and sets at 5h. 31m. P.M. On September 30 Venus rises at 4h. 33m. A.M., and sets at 5 h 9 m . P.M. the next day.

Venus will be small but brilliant all through the month.

Mars.

Mars is very distant, and its diurnal path lies very nearly with the sun; it will not be seen.
On September 1 Mars rises at 5 h .57 m . A.M., and sets at and sets at 5 h . 34 m . P.M.

Jupiter.
Jupiter is the most intercsting planet at present. On September 1 Jupiter rises at 4 h .38 m . P.M., and sets at 1 h .5 .5 m . A.M. of the next day. On September 30 Jupiter rises at 2 h .42 m . P.M., and sets at 11 h .58 m . P.M.

If we take the hour between 9 and 10 in the evening for observing Jupiter and its satellites, we shall find that the 1st satellite is invisible by being in Jupiter's shadow on the 1st and 24th of September; the same satellite is invisible at that hour, on the 8th and 15th, because it is behind Jupiter, and on the $18 \mathrm{th}, 23 \mathrm{~d}$, and 30 th , because it is in transit across Jupiter's disk.
Taking the same hour for observing, the 2d or smallest satellite cannot be seen on September 2 because it is behind the planet, on the 11th because it is in transit across the planet, and on the 20 th it may be seen coming out of the planet's shadow.
The 3d or largest satellite is invisible at this hour on the 10th, being in the shaclow of Jupiter; it is invisible on the 17 th because it is hidden by the body of the planet.
On September 9 the 4th satellite will not be seen during the evening; it is making its slow passage across the planet's face; a good telescope will show it like a white spot upon the planet.

Saturn.

On September 1 Saturn rises at 7 h .30 m . P.M., and sets at 7 h .16 m . A.M. of the next day. On September 30 Saturn rises at 5 h .31 m . P.M., and sets at 5 h .11 m . A.M. of the next day.

Saturn comes into its best position for observation in September; it rises so nearly in the east and is so steady in its light that it can be readily found. On September 12 Saturn is directly beneath the moon, and 7° distant, at midnight.

Uranus.
On September 1 Uranus rises at 4h. 45 m . A.M., and sets at 6 h. 12m. P.M. On September 30 Uranus rises at 3 A.M. at 6 h .12 m . P.M. On Sep
and sets at 4 h .22 m . P.M.

Messrs. John H. Carricr, Barton R. Baker, and William McCarty, of London, Ky., have patented an improved Washing Machine, in which a revolving tub and reciprocating pounder are both operated simultaneously by belt and pulley mechanism.
Mr. José R. Villasana, of New York city, has patented an improved Cigarette Holder, by which the unrolling of the cigarette and the dropping of the same are prevented, and by which the cigarette may be placed on a table or desk without burning any part thereof, and it may be smoked while the hands may be used for other purposes.
An improved Sap Bucket has been patented by Mr. Albert E. Ware, of Hancock, N. H. The object of this invention is to so shape the corner pieces of sap bucket covers that they will serve the twofold purpose of a clasp and an emptying spout.
Mr. Ivy J. Hart, of Chandler, Ind., has patented an improved Wagon Jack, which consists in a novel construction, arrangement, and combination of a standard, a slide, and a lever, and certain details in connection therewith, whereby a jack is produced which is cheap, simple, strong, easily ad justed and operated, and occupies but a small space when justed and use.
Mr. George Blatchford, of Mitchell, Ontario, Canada, has patènted an improved Resonant Chamber for Organs. It will produce a more distinct and perfect vibration of the cham ber, also a more solid and distinct volume of sound, and a more perfect control of the sound is secured, so as to produce a crescendo or diminuendo at will, and with less effor than in resonant chambers of ordinary construction.
Mr. Edward Row, of Indiana, Pa., has patented an im proved Fire Escape, having rings or footholds, which may be made elongated, elliptical, triangular, or rectangular. The links for connecting the rings may be made of hoop ron or of round iron flattened at the ends.
Mr. Robert F. Roche, U.S.A., stationed at Fort Foote, Md., has patented an improved Adding Stick. The inven tion consists of a stick or ruler made in the shape of a polygon or cylinder in cross section, on the periphery of which numbers from zero upward are written consecutively in two spirals, whereby from certain movements of the thumb thereon in accordance with a known key, a column of figures may be accurately added without mental effort, and without damer of forgetting the agrsegate amount of a portion of a column if attention should be called from the ork.
Mr. Robert W. Tavener, of West Bay City, Mich., has patented an improved Measuring Faucet. This invention relates to an improved self-closing and liquid measuring faucet. The device consists of two parts, a transparent grad uated measuring vessel, and a faucet proper, the two being so connected that liquid is received into said vessel through the faucet direct from the source of supply; and, the quantity being thus ascertained, it is discharged from the vessel back into the faucet, from which it escapes into any receptacle provided for it. The induction and exit orifice of the measuring vessel are one and the same. The faucet has two valves, which are so arranged that the orifice or passage through which the liquid enters and escapes from the meas uring vessel is closed simultaneously with the opening of the discharge orifice in the faucet, and vice verse.
Mr. Charles II. White, of Danbury, Conn., has devised an improved Form for use in giving Shape to the Brims of Hats when the side parts of the said brims are turned or rolled, to enable the hats to be removed from the form without bending or warping their brims or changing their shape, so that the hats will set or stiffen with their brims in the exact shape given them by the form.
Mr. Nathan Scarritt. of Kansas City, Mo., is the inventor of an improved Horse or Rack for Airing Clothes after they have been ironed, and for drying clothes, which, when extended, will furnish a large amount of drying surface, which may be folded into small space for storage and ransportation.
Mr. John Corlin, of New IIarmony, Ind., is the inventor of a Machine for Drying Grain, Flour, Meal, Malt, Sugar, and similar articles by the use of steam. The invention consists of a revolving hollow center shaft having steam supply and exhaust pipes, in connection with a fixed hollow ring and hollow radial arms at one end of the shaft, and with a loose adjustable hollow ring applied by hollow arms and a sliding hub to the shaft. The loose ring is connected by flexible pipes with the center shaft, and the rings and arms are longitudinally connected by steam pipes jointed hereto, and finally inclosed by an outer cylindrical drum or jacket.
An improved Candlestick has been patented by Mr. Wilram Young, of Easton, Pa. The object of this invention is to furnish a candlestick of simple and substantial construction, adapted to a chimney which will shield the candle from gusts of wind and prevent the flying off of sparks.
An improved Vehicle Spring Brace has been patented by Mr. Edwin R. Wheeler, of Merrimac, Mass. This invention relates to an improved device for hanging the body of cariages having a so-called "cut-under" or wheel house, such as a common rockaway, extension-top phaeton, coupé-rockaway, etc., so that one or more elliptic springs may be used, and the ordinary perch or platform gearings be dispensed with.
Mr. WalterF. Cranston, of West Middleburg, O., has pat$\left\lvert\, \begin{aligned} & \text { ented an improved Coffee and Peanut Roaster for the use of } \\ & \text { dealers, farmers, and others, for roasting coffee and peanuts }\end{aligned}\right.$
for retail or for private use, which will enable the coffee and peanuts to be roasted evenly and quickly, and prevent the smoke and odor from escaping into the room.
Mr. Joel Northrup, of Otisville, N. Y., has patented an improved Boot and Shoe. This invention consists in a tongue made of leather, elastic fabric, or other suitable material applied to a shoe or gaiter of any ordinary description, whereby provision is made for fastening the shoe in lieu of lacing it, for covering and protecting the joint where the edges of the shoe upper mect, and for allowing the shoe to yield and accommodate itself to the motion of the foot, so as to afford comfort to the wearer.
Mr. August Moll, of Brooklyn, N. Y., has patented an improved Star Braid. This invention relates to improvements in that kind of trimming braid known in the market as "star" braid, being mainly intended to simplify, facilitate, and cheapen the manufacture of star braid, so that it can more successfully compete with the imported article.
Messrs. Albert Whiting and Joseph A. Smith, of Rocheser, N. Y., have patented an improved Machine for Raising Leather from Tan Vats. By means of this device the leather may be casily and quickly removed from the vats. It consists in the rack or false bottom, made in two parts or sections, hinged to each other at the center, to adapt it to be raised at the center into an angular position to raise and support the hides.

Horse Biscuits.

The Prussian military administration, after the close of the Franco German war, established at great expense an experimental station at Nancy for the army of occupation, designed for making trials, technically and scientifically, in regard to foods which may be used by troops in a general way or under particularly difficult circumstances. The direction of the factory created with this intention was confided to M. Gustave Warnecke, of Frankfort-on-Main.

In the different manufactures and experiments that were made there, special attention was paid to the alimentation of horses, since these animals had been of such decisive importance in the different periods of the war of 1870-71.
After long and laborious gropings in the dark, Warnecke's biscuits for horses" were finally produced. These, after very severe trial on a large proportion of the horses belonging to the army of occupation, are admitted to be a great uccess. The " biscuit for horses," or, as it has been also called, the " oat comfit,"' consists of 30 parts of oat flour, 30 parts of "dextrinated" pea meal, 30 parts of rye flour, and 10 parts linseed meal; or, 40 parts of oat flour, 40 parts of dextrinated pea meal, and 20 parts of linseed meal; or, 20 parts of pea meal, 20 parts of wheat flcur, 20 parts of corn meal, 20 parts of rye flour, 10 parts of grated bread, and 10 parts of linseed meal; or, tinally, other analogous mixtures As the result of minute experiments it is stated that 4 pounds of these mixtures, well cooked, possess a nutritive value equal to that of a large ration of oats of about three times the weight. So the Prussian administration of the army of occupation, taking the results observed by the cavalry officers and the veterinary surgeons as a basis, admits that $31 / 2$ pounds of "oat comfits" are worth 12 pounds of ats. Experiments also demonstrated that horses fed on 12 pounds of oats did not support the fatigue to which they vere submitted so well as those that received the $31 / 2$ pound of comfits.
A re ult so brilliant, and one so favorable to the rapid movements of cavalry, could not remain ignored by other great military powers. The inventor, called to St. Petersburg, manufactured in that city, according to the above formulas, ten thousand rations of horse biscuits, which were submitted, in the cavalry and the Cossacks of the Guard, to ex periments still more minute than those of the Prussian army The horses were fed on the biscuits during twenty-six days (in Prussia ten days only); and every day notes were made of the state, plumpness, and weight of the horses, and their strength tested with the dynamometer. The superiority of the comfits over oats (a third of which are undigested and lost in the dung heap) was so marked that they were adopted, not onlyin imitation of Prussia, as an exceptional recourse for times of war, but also as a steady food in time of peace. The best recommendation that the new invention possesses s that the troops eat more of the biscuits than the horses To put an end to this practice the Prussian administration was obliged to order five per cent of lupin flour to be mixed with the materials of the biscuit.
A ration is, as has already been stated, about $31 / 2$ pounds; it comprises from 25 to 30 biscuits of from 4 to 5 inches in diameter by four tenths of an inch in thickness. These biscuits, strung on wire, can be suspended to the saddle without danger of breakage, and a horse can thus easily carry nourishment enough to last him four or five days. They are given, either dry or wet (after having been broken up), at the rate of 7 in the morning, 12 at noon, and 7 in the evening.

American Institute Exhibition.

The interest evinced in the coming exhibition of the ln stitute is practically proven by the demand for space, and by the improved character of the exhibits offering. The managers state that the promise of a fine display never was better, and that although business is generally dull and the manufacturing industries are generally depressed, nevertheless the outlook is hopeful and encouraging. For all details address the General Superintendent, room 22, Cooper Union address the General Su

NEW oscillating valve.

Our engraving represents a new form of oscillating valve for steam engines, the invention of Mr. Leenard Mangold, of Chattanooga, Tenn. The valve is shown in perspective in Fig. 1, in section in Fig. 2, and a detail of the valve packing is shown in Fig. 3.
The valve casing, A, which is made in cylindrical form, contains a cylindrical valve, B, and has steam supply ports, \mathbf{C}, and an exhaust port, D, between the two ports, C. A steam inlet, E , runs up one end of the case and enters the same at the top. The valve, B, has a steam inlet at the top, and at the bottom it has two outlet ports, one at each side of the triangular partition, F. This partition extends the entire length of the valve and upward above its center, and in its lower side there is a recess which forms a passage for the exhaust steam to the exhaust port, D.
Around the steam inlet port, in the top of the valve, there is a groove of suitable depth to receive a metal frame, \mathbf{E}^{\prime}, which is curved to correspond with the curvature of the valve, and is forced outward by means of two springs placed under it in the groove. This frame forms a packing for the valve, and as it surrounds the inlet port it prevents the escape of steam in any direction
The steam that enters the valve through the inlet port strikes the apex of the triangular partition, and is divided so that it will pass through either of the ports, C , with the same force, when the valve is turned so that one or the other of the ports, C, coincides with one of the outlet ports of the valve casing
This valve is quite simple in its construction, and is said to be effective and not liable to get out of order.
For further information address the in ventor as above.

Value of a Waste Product.
For the past ten years the ammoniacal For the past ten years the ammoniacal
liquor produced at the gas works of Bradford, England, has been sold under conbid $\$ 40,000$ a year for a renewal of the contract, but failed the successful competitor bidding $\$ 51,795$. The discover in the liquor of a substance useful in manufacturing anilinc dyes was the cause of its enhanced value.

NEW REIN HOLDER.

This useful little device, which is shown so clearly in thet engraving as to require little description, is the invention of Messrs. J. M. Taylor and J. Mackay, of Fredericton, N. B. This rein holder consists of two double hooks, one of

taylor \& mackay's rein holder.
which is attached to each of the hip straps. These hooks are placed about ten inches apart, and are equally distant from the back strap. The upper part of each hook is made quite open, so that the reins will readily drop into them when they are relaxed, and thus prevent them from becoming entangled with other portions of the harness, or getting
brushed down by the horse's tail. The opening of the lower brushed down by the horse's tail. The opening of the lower
hook is smaller than that of the upper hook, so that when
the reins are placed in the lower hooks by a dexterous move ment of the hand, they will be retained securely. The reins are removed from the lower hooks by drawing them taut and at the same time moving them upward and outward. This invention was recently patented in the United States and Canada. For further particulars address the inventor as above.

Iridescent Lace Work.
At the June meeting of the Society for Encouraging National Industry, of France, M. Hélouis exhibited samples of metallic threads and ribbons irisated by means of binoxide of lead, and also samples of lace work ornamented with hem.
Nobili was the first to obtain such deposits as these on

MANGOLD'S NEW OSCILLATING VALVE.
different metals, by electroochemical means. He immersed a metallic plate, placed in communication with the positive
pole of a battery, in a solution of acetate of lead, for ex ample. The negative pole was fastened to a platinum wire surrounded, except at the ends, by a glass tube; this tube dipping into the liquid in such a way that the free metallic and was placed at a distance of from 1 to 2 millimeters nnd was placed at a distance of from 1 to 2 millimeters
from the plate, the current was passed through it. It was observed that around the wire there were formed concentric rings, produced by delicate films of binoxide of lead, and characterized by varied and extremely brilliant colors, like those exhibited by soap bubbles. Becquerel made an exhaustive study of this phenomenon in 1843. By substituting for acetate of lead a solution of oxide of lead in potassa, or soda, he obtained iridescences that were much more solid, and by taking a certain number of wires as negative poles he was enabled to give objects of small dimensions uniform colorations of such tints as he wished. For certain kinds of objects his process is still in use at the pres ent day.
But "irisation" has never before been attempted on ribbons or wires of such delicacy as to measure on an average 32,800 feet in length to the pound. M. Hélouis has succeeded in giving these delicate threads and bands uniform tints throughout their whole length, and in producing at will any color that he desires. With these irisated wires he ornaments laces, tissues, fringes, etc., which have a very beautiful effect, and the lace making industry is now making extensive use of them.

Pokeweed Paper.

Les Mondes says that Dr. Eugene Robert, of Segaune, France, has suggested that an advantageous utilization might be made of the common poke or pigeon berry ($P h y$ tolacca decaudra) in the manufacture of paper. This common weed grows almost everywhere, is very hardy, and according to Dr. Robert yields an abundance of ligneous fiber extremely suitable for paper making. As the material is one that is so readily procured, it would be well for our manufacturers to try it.

A Tomato Disease

M. Garcin has called the attention of the French Academy to a disease which has, during this year, attacked the tomatoes in the Maritime Alps. The malady made its appearance in the form of a whitish efflorescence on the surface of the fruit. Suspecting it to be due to the presence of a parasitic fungus, M. Garcin examined some of the matter with a high power of the microscope. It was seen to be composed of a mycelium of white, septate threads, finely granular at certain points; and the terminal joint of each of the ramifications was swollen and: filled with spores. Free spores mingled with the mycelium; and the presence of zoospores of still larger dimensions showed the fungus to be in full fruit. M. Garcin believes, therefore, that he is corpecio tion to the fact that this season, for the first time in attenyears, the muscardine has made its appearance in many silk
worm nurseries of the department. Now the muscardine is due solely to the development of botrytis bassiana in the body of the silk worm. Is there not, he asks, more than a fortuitous coincidence between this appearance of the muscardine and the epidemic development of the tomato disease? It is possible, he suggests, that sulphur applied in time, or sulphurous fumigations, would succeed in arresting the disease, since such means have always been successful in disease, since such means have always been successfur in analog
etc.

THE NEEDHAM MUSICAL CABINET.

The accompanying engraving represents a musical invention which is perhaps one of the greatest novelties in this age of mechanical surprises. It is nothing less than a par lor organ on which any one can play the most difficult music, no matter whether he has a knowledge of music or not. All that is necessary is to put the music one desires to play inside the organ, and blow the bellows with the feet, when the music will be correctly executed; consequently any one, even a child, who has the ability of working the pedals of a sewing machine can produce all kindsof music as correctly as the most skilled professional performer, and it is done to such a degree of perfection that we may consider this instrument as a musical educator that may teach people in out-of-the-way localities the style in which various kinds of music have to be performed, whether vocal or instrumental, sacred or secular, operatic or classical.
The instrument always plays in correct time, and the most difficult passages are rendered as fluently as the more easy strains. The retardations and accelerations in time intended by the composer, and which are so beautifully observed by superior performers, are perfectly rendered on this instrument, entirely independent of the person working the pedals, who has only to keep in rotation a small fly wheel. From the above it will be seen that to play this organ the use of the hands is dispensed with, and that the player may not have a musical ear; he may even be absolutely deaf and still execute the music perfectly.
All mechanical organs that have been built heretofore have been very complicated and expensive contrivances, on which only the pieces could be played for which the cylinders were arranged, while the length of the piece was limited. In the Needham musical cabinet, having the special sheets of music, any piece may be performed. And the way in which this is accomplished is beautiful for its simplicity.
The organ has neither keyboard nor valves, but consists of a set of bellows worked by the pedals, a set of reeds, to which the bellows furnish the wind, and a simple arrangement of mechanism which carries the music paper over the reeds. This music paper is the most essential feature of the

the needham musical cabinet.
instrument, and constitutes the artistic part of the same. The notes are holes punched in the paper, the length of the holes corresponding with the length of the notes, and when holes of the proper length are punched at proper distances, the paper, while passing over the reeds, will shut the wind ff from some of the reeds while it permits uthers to sound. The pedals perform the double duty of blowing the bellows and carrying the music paper over the reeds.
The sheets of music paper, which are very strong, are 18 inches wide, and from 40 to 100 feet in length. Music sheets of this kind do not cost much more than ordinary sheet music, the perforations being made rapidly by means
of special machinery. During the performance the music way. By a preconcerted signal I was most happily assured paper is unrolled from one cylinder and rolled upon another, that at least three fourths of the sentences uttered in the and as music does not sound well when played backward, mouthpiece and reproduced by the flame were understood. the mechanism is arranged so that while one piece is being played another is re-rolled.
Few persons are aware of the great number of notes in a musical composition; the number of holes in the music for this organ gives a striking illustration of this; for example, the music for the overture of "William Tell" contains 6,000 notes or holes. This is one of the 400 pieces con tained in the present catalogue of Messrs. Needham \& Son and the number of pieces is being daily augmented.

THE SPEAKNNG FLAME
 by geo. m. hopins.

During some of my recent experiments in acoustics, having occasion to unvestigate the characteristics of sonorous waves, I constructed a manometric flame apparatus after the plan of König, which, although it worked admirably and gave in the revolving mirror those well known and striking effects, did not possess the requisite qualities, although a very delicate diaphragm was employed; I therefore devised a peculiar form of annular burner, similar to those sometimes used in producing the oxyhydrogen light, but provided with an adjustable tip on the end of the outer tube, as shown in Fig. 2.

the speaking flame.
After connecting a mouthpiece with the outer tube, by means of a piece of rubber tubing, and connecting the inner lube with a gas burner in the same way, by making sound in the mouthpiece I succeeded in producing in the rotating mirror the clear, sharp-cut flames shown in Fig. 5, which were entirely satisfactory, and which will be treated further on.
In testing this apparatus I observed that the burner emitted low tones, like those made in the mouthpiece. By carefully adjusting the cap to the outer tube of the burner I succeeded, without a great deal of trouble, in getting the flame to reproduce distinctly any tone made in the mouthpiece. These tones were evidently produced by the minute and rapid explosions of the gas as it was relit after being ex-

To determine whether the articulation was wholly due to the flame, the gas was turned off, but no sounds from the

MANOMETRIC FLAME APPARATUS.

mouthpiece could be heard at the orifice of the burner. On relighting the gas, sounds were produced as before. The flame has a peculiar appearance when singing or talking; its ghastly blue and its weird sounds are suggestive of the supernatural.
Since discovering the sound-producing capabilities of the flame, I have observed many peculiarities, and some difficulties to be surmounted. All of the breath used in producing the sounds must enter the mouthpiece and be propelled through the tube and burner. An explosive sound at first extinguished the flame entirely; but a short slit cut in the rubber tube near the mouthpiece afforded an escape for the overpressure, so that a word beginning with an aspirate or consonant could be pronounced without extinguishing the flame. Much depends on the direction of the wind as it escapes from the annular orifice. It should pass from all sides diagonally across the tip of the inner tube or gas burner.
When this burner is employed in producing manometric flames, the ordinary two-sided revolving mirror, shown in Fig. 3, is used. When it is revolved behind the burner, as shown in the engraving, it may be made to exhibit all of the phenomena of König's apparatus, and in addition to this some effects may be produced which are peculiar to this ap paratus. Defects in the vocal organs show themselves in the character of the flame. While a clear voice or a musical instrument will produce the clear-cut flames shown in Fig. 5, a hoarse voice will produce a small extra flame be

supposed M. Rameaux has found this arrangement in all cases more sensitive and sure than a carefully constructed gold leaf electroscope which he used for comparison. This system also recommends itself in several ways; for instance: 1. It is so simple that every one can construct and use it. 2. It costs nothing, no special support being necessary. The threads can be fixed to any projecting piece, as the edge of a table, the only condition being that they may hang freely. 3. It can be set up in a moment, and consequently is at once ready for any unexpected requirement; whereas a gold leaf electroscope long unused requires to be dried for hours. 4. It works perfectly, whatever the hygrometric state of the atmosphere. 5 . It can be employed to show electric phenomena to a numerous auditory. With long thin fibers and highly electrified bodies the experiments are thin fibers and
very telling.

Effect of Glycerine on Fermentation.
It is well for those who manufacture articles liable to de-

Fig. 8.-WAVES.
composition to know that glycerine has the power of arresting fermentation to a remarkable degree. It is stated in the Chemical Journal that glycerine retards both lactic and alcoholic fermentations. One fifth of glycerine added to milk at a temperature of 15° to $20^{\circ} \mathrm{C}$. prevents it from turning sour for eight or ten days. One half or one third of glycerine, at the same temperature, retarded the fermentation of milk for six or seven weeks.
At higher temperatures larger quantities are needed to produce the same results. The formation of hydrocyanic acid from amygdalin and emulsin is also retarded by glycerine. It becomes thus very serviceable in preventing the spoiling of various lotions. For this reason it is not unusual to add a small quantity to the preparation known as milk of roses, and also to almond paste. With regard to cosmetics generally, the use of glycerine in small quantities may be recommended.

New Decorative Processes.

Electrotyping.-La Nature states that some specimens of metal work now on exhibition in the halls of the Academy are being greatly admired, and are mistaken by every one been obtained by M. Gaiffe in depositing a coating of cobalt on red copper by means of a battery It would seem as if this new conquest of clectroplating might be applied to en graving; and to show that it may be, the author sends two proofs, one taken from an ordinary copper plate, and the other from the same plate "cobalted." The advantage of this process lies, first, in the durability of the cobalt, which allows of a great number of impressions, and, secondly, in the fact that the plate being exhausted, nothing is easier than to remove the cobalt without harming the copper, and then to cover it again with a new coating. Nickel, which is so readily applied to metals, will not admit of such a manipulation

Decoration of Zinc.-Dr. L. Stille has recently described a chemical process for covering zinc with colored coatings. The articles of zinc are first brightened by scouring with quartz sand, moistening with dilute muriatic acid, putting them quickly in water, and then wiping them dry most carefully with white blotting paper. To insure success, however, it is necessary to employ zinc as free as possible from lead, and to have it bright like a mirror. When these conditions are fulfilled the metal may be coated with a variety of beautiful colors by immersion in a solution of alkaline tartrate of copper for a shorter or longer time, depending on the color desired.

Coloration of Metals.-The Industrie Progressive is responsible for the following statement: Metals may be rapidly colored by covering their surfaces with a thin layer of sulphuric acid. According to the thickness of the layer and the duration of its action, there may be obtained tints of gold, copper, carmine, chestnut brown, clear aniline blue, and reddish white. These tints are all brilliant, and if care be taken to scour the metallic objects before treating them with the acid, the coloring will suffer nothing from the polishing. On making a solution of 640 grains of lead acetate in 3,450 grains of water, and warming the mixture to 88° or 90°, it decomposes and gives a precipitate of sulphuret of lead in black flakes. If a metallic object be immersed in the bath, the precipitate is deposited upon it, and the color produced will depend on the thickness of the deposit. Care must be taken to warm the objects to be treated gradually, so that the coloration may be uniform. Iron treated in this way has the aspect of bluish stecl; zinc, on the contrary, becomes brown. On using an equal quantity of sulphuric acid, instead of the lead acetate, and warming a little more than in the first case, common bronze may be colored of a magnificent red or green, which is very durable. Very beautiful imitations of marble may be obtained by covering the bronze objects, warmed up to 100°, with a solution of lead thickened with gum tragacanth, and afterward submitting them to the action of the precipitate spoken of above.
Gas Cloth.-" Gastuch," or gas cloth, is a name given by Dr. Hirzel, of Leipsic, to a gas and water tight stuff ing a large smooth piece of so-called gutta-percha paper between two pieces of some not too coarse and dense material -e.g., shirting (undressed)-and then passing the arrangement between heated rollers. The outer pieces of the shirting combine in the most intimate way with the inclosed gutta-percha to form : material which is impenetrable by gas and water. It may be made still denser and more resistant by being coated on both sides with copal lac, for instance. The material is said to be well adapted to form gastight membranes for regulators of pressure, of compressed gas bags, or sacks for dry gas meters, as also dry gas reservoirs.
Iridescent Glass.-This beautiful product, which has been so successful, and the demand for which is still increasing, is now made, according to the Revue Industrielle, by burning chloride of tin in the furnace. There are thus produced fumes for which warm glass has great affinity, and which immediately produce an iridescent surface upon it. To heighten the tints a small quantity of the nitrates of baryta and strontia may be used. The irisation is completed during the working of the piece-cither the blowing or moulding. Those pieces which it is desired to preserve in the perfection of iridescence are never placed in the furnace a second time.

Application of Galvano-plastie to Glass Decoration, by M. Alexandre (in Moniteur de la Céramique).-The process rests on the application of electro-metallurgy to the decoration of glassware, mirrors, ctc., either for the exterior or interior decoration of houses, furniture, etc. The substance which serves for tracing the design on the glass is a metallic paste of good conducting power, mixed with a solvent and thinned with an essential oil. The design once executed on the glass, the latter is submitted to the action of fire in either a muffle or a furnace, and is not withdrawn until perfectly cold.
The glass is then immersed in a metallic bath and a galvanic current passed over it; by this means the metal in susis withdrawn as soon as the coating becomes as thick as required. Finally, if necessary, the metallic design is finished up by chiseling or other means, and is left thus; or, indeed, another layer of a like or different metal may be deposited on it.

Recent Contributions the Germ Chery or Disease
Among the important facts, says Les Mondes, that have been brought to notice in the medical world within the last three months, one of the most remarkable, without doubt, is the communication made to the Academy of Medicine by M. Pasteur, at the session of April 23. At this date, M. Pasteur made known to the Academy that there is a vibrio capable of producing septicæmia, just as bacteria produces carbuncle. He made known at the same time the conditions under which this vibrio exists, as well as the cause of its death.
The vibrio of septicæmia is killed by oxygen and pure air, but develops and multiplies in a medium of carbonic acid. Since air and oxygen kill the vibrio of septicæmia, it would seem that it ought never to follow in the train of wounds, for all wounds are always more or less in contact with the air, which is a deleterious element for these little organisms. But by dint of ingenious investigations, M. Pasteur has discovered that under certain determined conditions the vibrio can live and multiply in spite of its apparent contact with the air. Besides the vibrio of septicæmia, M. Pasteur announces that he has detected two others-one presenting nothing of interest to medicine, seeing that it is incapable of supporting the mean temperature of living man; the other, which accommodates itself very well to the temperature of the human body, is that which gives rise to purulent infection.
So, then, carbuncle, septicæmia, and purulent infection would be due to germs having characters perfectly distinct; and according as these germs are mixed in such or such proportion, we would obtain such or such infection. These views are not merely theoretical, but are confirmed by ex periments which appear pretty convincing; for, according as he inoculates the germ of such or such a one of these maladies, M. Pastcur produces at will carbuncle, putrid infection, or purulent infection; and in mixing these different germs together he obtains an affection a little different from the three others, but which comes nearest to that which has furnished the most infecting germs.
This important communication from M. Pasteur was followed at the succeeding session of the Academy by a re markable paper from M. Alphonse Guérin, on the different theories of purulent infection, and the means of remedying them. Space does not allow us to enter into the details of this able paper, but we can merely say that for M. Guérin, as for M. Pasteur, purulent infection is the product of germs. In aid of this opinion, M. Guérin cited the results of a long practice in the treatment of wounds-results which, gained by a method of treatment of his own, were extremely suc cessful, and added another strong argument in favor of the theory of production of purulent infection by microscopic germs.

Theoretical Reformers.

Speaking of the swarm of confident but ill-informed theorizers who presumed to represent the workingmen of the country before the Congressional Committee for investigating the "labor question," in session in this city, the Tribune sarcastically, yet not unjustifiably, remarks that "it is a curious circumstance that the men who do not own a dollar of capital, and never, except upon compulsion, do a day's work at any kind of labor, are the ones who understand better than anybody else the relations of capital and labor, and are the most competent to adjust each to the other and to the State. Curiously enough, too, the men who own capital and the men who live by labor are so ignorant of the whole subject that they cannot be permitted to arrange their own business. The capitalist cannot negotiate with the workingman for the labor which makes capital productive, nor the workingman treat with the capitalist for the exchange of his labor for pecuniary reward, without the interference of other men who not only do not labor nor employ labor, but who have never studied this or any other question, and have hardly reflected soberly upon its most superficial aspects. And these latter are the ones who speak with authority.'
It is a pity that so many political newspapers and politicians mistake the vaporings of such idle theorizers for the views of workingmen. Our sober-minded and practical artisans and mechanics-and they constitute numerically as well as industrially the real working class-are not given to such crack-brained schemes for inaugurating the millennium by government proclamation.

Printing in Japan.

The advantages possessed by the art of printing with movable types are incontestable. For Europeans, whose alphabet is composed of a small number of letters only, nothing is more easy than to form words. But it is a different thing entirely in countries which, like China and Japan, have a cording to the correspondent of a journal from which we borrow these details, the complete collection of Japanese types comprises 5,000 characters, of which 3,000 are in constant use, and 2,000 are employed occasionally. These types are arranged in a Japanese composing room on shelves like the books in a library; the compositor is thus obliged to be continually on the go while collecting his types. The great number of their characters for printing bas thus far prevented the Chinese and Japanese from corresponding by electricity; the telegraph, that instrument of civilization, having remained in thehands of foreigners. It is no wonder then that the telephone has been received in Japan with the
greatest favor.-Le Monde de la Science.

According to the Denver (Col.) Neoos, Professor Snow, of the Kansas University Scientific Expedition, has lately made a most interesting " find," in Gove county, about three hundred miles east of Denver.
This discovery consisted of a giant reptilc, or Saurian, so perfectly preserved as to exhibit a portion of the outer covering. Previously geologists had found hundreds of specimens of these Saurians with the bones alone remaining, so that this discovery of the outer skin is something entirely new to science. The Saurian in question was about thirty feet in length, and it might have been supposed that the external plates or scales would be of large size, as is the case with the living crocodiles and alligators. But, on the con trary, the Saurian scales are very small for an animal of such imposing dimensions, being no larger than those of an ordinary garter snake. The rock in which this fossil was found was of the cretaceous formation, unusually compact in texture, which probably accounts for the preservation of so perishable a portion. In order to reach the specimen it was necessary to remove about six feet of overlying rock, which required three days' labor of the Professor and his two assistants. In other respects the expedition has been very successful, having already shipped to Lawrence, for the university cabinets, upward of one hundred fossil fishes and many Saurian skeletons, besides six or seven thousand specimens of the living birds, plants, and insects characteristic of the plains.

New Mechanical Inventions.

Mr. Hulbert N. McConoughey, of Grant, Iowa, has pat ented an improved Attachment for any ordinary Seed Planter, for planting the seed in accurate check row by means of a smooth rope.
Mr Arthur R. Steel, of Letts, Iowa, has patented an improved Motor for running light machinery, such as churns, sewing machines, lathes, etc. It may be run by weight or ever at any desired speed, and conveniently rewound.
An improved Knife for Cutter Heads has been patented by Mr. Patrick C. McGrath, of Plattsburg, N. Y. The object of this invention is to furnish an improved manner of making planer knives and of securing them in place upon the cutter heads, which will enable the knives to be held firmly and securely in place, and readily set in or out, as desired, and which, at the same time, will enable the knives, when worn or broken, to be replaced at a comparatively small expense.
Mr. William T. Elliott, of Orange, Mass., has patented an improved Sewing Machine Shuttle, which is so constructed that the bobbin may be readily put in and taken out, and it will hold the bobbin securely, and will enable any desired tension to be given to the thread.

Chemical Analysis of the Sundew.

The sundew (Drosera rotundifolia), which has been made conspicuous, among the insectivorous plants, by the minute study bestowed on it by Darwin and other observers, has recently been analyzed by G. Lugan. The fresh plant was treated by the process know as dietheralysis. The author states (Journal de Pharm. et de Chim.)'that the aqueous liquid obtained thereby contained glucose, various salts, and a crystallizable organic acid apparently peculiar to this plant; this was also obtained from the ethereal liquid by evaporat ing it and treating the residue with chloroform, which leaves it undissolved, along with wax and yellow coloring matter. On evaporating the chloroform, a greenish-brown resin was left, which had a strong and characteristic odor, was exceedingly acrid, and produced a burning sensation when applied to the skin. The author found the viscid exudation of the glandular hairs to be destitute of acid reac tion, and was unable to obtain formic acid, which has been stated to be the principle by means of which the leaves convert albuminoid matters into peptones.

Poisoning by Peach Stones.

A fatal case of poisoning by peach stones, which is noted in the French papers as having recently occurred in Paris, should serve as a warning to families in which children are allowed to look after themselves for hours at a time. Probably very few adults themselves know how poisonous peach stones are. The victim of the recent accident in Paris secre ted the stones of a number of peaches, and, obtaining a hammer, when left alone broke them open industriously and ate them; the result being that he was fatally poisoned by hydrocyanic (prussic) acid. Since the peach season is now upon us, it is as well to explain what quantity of poison the peach stone possesses. Writers on toxicology state that one ounce of the kernels contain about one grain of pure prussic acid, and this quantity, it is well known, is sufficient to kill any adult person. Even two thirds of a grain has very often proved fatal, and indeed may well be regarded as a fatal dose for any child.

The Population of the Earth.

The fifth publication of Behm and Wagner's well known "Population of the Earth," makes the number of the earth' human inhabitants for the current year $1,439,145,300$, an in crease of fifteen millions over the estimate of last year. The increase is attributed partly to natural growth, partly to exacter knowledge due to recent censuses. The distribu tion of the population among the grand geographical divisions is as follows: Europe, 312,398,480; Asia, 831,000,000; Africa, 205,219,500; Australia and Polynesia, 4,411,300;
America, 86,116,000.

THE MESQUITE.

An industry that promises, perhaps, to be of considerable importance has recently sprung up in the West. The mesquite, a common tree of the deserts, and closely allied, botanically, to the acacia, yiclds, like the latter, a gum which closely resembles and in fact is almost identical with gum acacia (the gum arabic of commerce). This gum was brought to notice as long ago as 1854, by Dr. Shumard, of the United States army. It has for some time been kept in the drug stores of the Mexican cities, and considerable quantities have been sent to San Francisco from the Mexican ports of the Pacific. During the past year it has become an article of export, some $12,600 \mathrm{lbs}$. having been gathered in Bexar county, Texas, and as much more between that and the coast.
The mesquite (or, as it is sometimes called, mosqueit) is the Mexican name for a leguminous tree belonging, like the gum arabic producing acacia, to the suborder Mimosa. It is a tree growing from 30 to 40 fect in height, with a rounded head It bears, in its general aspect, a great resemblance to the common boncy locust (Gleditschia); its leaves are twicepinnate, and the leaflets narrow, somewhat curved, and an inch or more in length; the flowers are small, greenish-yellow, and crowded in dense axillary spikes; the pod or bean is from 6 to 9 inches in length, curved or straight, flattened, and constricted between the seeds.
There are several species of mesquite, but the one under consideration (Prosopis glandulosa of botanists) has the widest range, being found as far north as the Canada river, and extending south into Mexico; it appears in Texas not far from the coast, and is the most abundant tree as far west as the Colorado and Gulf of California. Were it not for the presence of the mesquite, immense tracts in Arizona and Northern Mexico would present greater difficulties to travelers than they do, since this tree affords the sole fuel and forage of the country. As fuel, the wood has no superior; it makes a fire almost as intense as one of an thracite. The pods or beans, which ripen in June, contain a sugary June, contain a sugary
pulp having an agreepulp having an agree-
able blending of sweetable blending of sweet-
ness and acidity, somewhat like the harvest apple. They are very nutritious, and while their importance to the civilized traveler lies in their value as food for horses in districts destitute of grass, they are of still greater im portance as articles of food to the Indians liv ing within its reach. To whites the taste of the fruit is somewhat mawkish and unpleas ant, but it is greatly relished by the Mexi cans and Indians. The latter, when the pods are in a fresh ripe state, put them into a wooden or stone mortar and bruise them, then mix bruise them, then with water and empty them into an earthen di-h, where after standing a few hours, there results a sort of cold porridge or mush. All present then collect around the newly prepared mess, and, sitting on the ground near the dish, scoop the food out with their hands without any ceremony, and without regard to distinction of rank, age, or scx. The nearly naked bodies of the Indians soon become smeared with the food from head to foot, and the shaggy appearance of their hair adds nothing to their aspect of cleanliness. The meal finished, their faces assume a complaisant look, while their tumid abdomens give abundant evidence of the quantity of food consumed.
The pods, as they ripen, are gathered for winter use; and after being thoroughly dried, are stowed in cylindricalshaped baskets, made of twigs, and covered with mud and grass to keep out rain. In this shape they can be preserved for a long time. They are among the great luxuries of the Apaches, Pimas, Yumas. Maricopas, Mohaves, Hualipais, Cocopahs, and Moquis, of Arizona, besides of many tribes in New Mexico, Utah, Nevada, and the southern portion of California. The squaws pound the dried pods until reduced to a fine powder, which, being mixed with a little water, is pressed into large thick cakes weighing several pounds, and these being dried in the sun are afterward used as circumstances require. The pods are also often kept in the powdered state in bags; but if the beans are not pulverized as fine as the pulp they soon become a living mass, since from every bean will issue a weevil, a species of bruchus. To the Indians, however, this is a matter of indifference; and they never trouble themselves to pick the insects out, but allow them to become an ingredient of the bread. If reduced to a fine flour the insect larva becomes a part, forming a homogencous mass of animal and vegetable substance. The flour being very sweet, forms, when mixed with water, an agree-
able drink; boiled in water and fermented, there results a! safely, is five dollars. A similar "special license" as pilot pleasant and nutritious beverage, held in great esteem by for this vessel will be granted to any person of like good the natives. The bark of the tree is utilized by the Indian character who is familiar with the navigation in which she
women for making skirts, and it is also twisted into ropes or twine, and even woven into baskets.
The gum which exudes spontaneously from the bark of the tree is described as very similar in its properties to gum arabic, and an analysis by Dr. Morfit has shown that in composition and chemical properties it very closely resembles the latter. As it oozes from the bark it concretes into tears and lumps of various sizes, which vary in color from pale yellow to dark amber. It is very brittle, easy to pulverize, and its fractured surfaces are brilliant.
The natural exudations from a single tree vary from an ounce to three pounds, but doubtless much more would be yielded were incisions made in the bark. The branches are said to furnish a purer quality than the trunk. The gum, when perforated by insects, is often eaten by the Indians. All the tribes of Arizona mix this exudation with mud, which is then daubed over the head, thus serving two purposeskilling parasites, and rendering the hair dark and glossy. As the mesquite trees abound upon the plains over regions thousands of miles in extent, and flourish luxuriantly in dry and clevated situations, the gum must, in course of time, become an important commercial article when the facilities for gathering it become more perfect.

The Law in Respect to Small Steamboats.
In view of the large number of small steamboats and launches now in use throughout the country, the following information respecting the requirements of the law concerning their construction, enginecring, etc., will doubtless prove useful. This information has been furnished by the Supervising Inspector General of Steamboats of the Treasury Department, Washington, and is from a decision made by the Department. July 3, 1875

the mesquite.
Under section 4,426, Revised Statutes, the hull and boiler of every yacht, or other small craft of like character propelled by steam, must be inspected-the boiler being subjected to the hydrostatic test required by law. The pilot and engineer must also be licensed; and such other provisions of the law complied with as may be applicable to the particular vessel under examination.
Sections 4,428 and 4,431 require that the iron or steel plates of which the boiler is constructed must be stamped with the name of the manufacturer, the place where manufactured, and the number of pounds tensile strain it will bear to the sectional square inch.
The boiler must be provided with such appurtenances as are necessary to its safe management, namely: Feed pump and check valve, steam pressure gauge, safety valve, gauge cocks, a water gauge (showing the height of the water in the boiler), and blow off valve; and, if it is found applicable to the kind of boiler employed, a tin plug, so inserted that it will fuse by the heat of the fire when the water in the boiler falls below the prescribed limit.
There must be on board the means of applying the required hydrostatic test
For so small a vessel as you describe (26 feet long), four buckets kept on board will be sufficient means for the extinguishment of fire.
There must be provided for each person on board a life preserver containing at leastsix pounds of good block cork, adjustable to the body in the manner of a belt or jacket, with shoulder straps.
The fee for license as "special engineer" for this yacht, which will be granted to any person of good character. who
is to be employed, understands the pilot rules, and has had sufficient experience in handling this or other similar vessels.
The master of a vessel of this class does not require icense.
A steam whistle of suitable dimensions must be provided, with which the pilot will make the signals as required by the pilot rules above referred to.
When the equipment is completed and the vessel is ready for inspection, it is required that application shall be made in writing by the master or owner to the local inspectors within whose district the vessel is owned or employed.

New Engineering Inventious.

Mr. George W. Dixon, of Spring Lake, Mich., is the inventor of an improved Valve Movement for Direct-acting Steam Pumps, by which the noisy tappets and the expense for the same are dispensed with, and a smooth, positive, and reliable motion is given to the valve. The valve will al ways move with perfect accuracy, and dispense with an auxiliary valve.
An improved Packing for Oil Well Casings has been patented by Mr. John Q. Miller, of Emlenton, Pa. This is a packing for the casing of oil wells at that point where the oil well is continued downwardly at a less diameter than in the upper part of the well hole, the packing being so arranged that the weight of the casing produces the tight closing of the well hole at that point, so as to positively exclude the water and be not affected by the concussion of torpedoes, or by the jarring of the tools while drilling inside of the casing. The packing also admits of the casy pulling up of the cas ing without producing the turning of the packing.
Mr. John H. Gable, of Shamokin, Pa., is the inventor of an improved Condens er for Stcam Engincs of all kinds, in which a current of water is em ployed to condense the exhaust steam, and create thereby a vacu um that facilitates the running of the steam engine or pump, and gives it a greater percentage of power.
Mr. Sanford Hazen, of Ripon, Wis., has patented an improved Wind Engine, in which the vane is placed in such position to the wheel and tower that the mill may not be wrecked by the reaction of the wind, and in which the speed of the wheel may be regulated automatically or to any desired degree the wheel being so constructed that any wing of the same may be readily removed and replaced with great facility for repairing or other purposes.
An improved Balanced Slide Valve has been patented by Mr.
Walter R. Gluyas, of Cerro Gordo, Ill. This invention relates to the class of engine slide valves known as balanced valves; and it consists in the construction and arrangement of the parts of the valve and ports and passages in the valve chest and cylinder, whereby the valve is relieved from pressure and friction, so that little power is required to move it.
Mr. Joscph S. Badia, of Philadelphia, Pa., has patented an improved Automatic Feed water Regulator for steam boilers that accomplishes three different objects at the same time, namely, to indicate the height of the water level inthe boiler, to give a whistle alarm when the water levelis cither
too high or too low, and, finally, to act as an extractor of too high or too low, and, finally, to a
the air accumulating in the feed pump.
Mr. William Y. Rohrbach, of Kribb's Farm, Pa., has patented a Cover for Casing Heads of Oil Wells, in which the guide hole for the tubing is made with an outward taper or lare toward the upper and lower edges of the hole; and it consists, secondly, in a cover with two top lugs for preventing the clamps or elevators from spreading.
Mr. William Irelan, of Oak Springs, Iowa, has devised an improved Truss Bridge, that is made of a number of connected sections, the braces of which are so attached to cach other as to be readily removed individually and repaired. when required, without the use of a trestle below the bridge. An improved Compound Steam Engine has been patented by Mr. Albion Vile, of Southampton, England. This invention relates to improvements in compound engines of that kind in which the piston of the high pressure cylinder is made to act as the valve to open and close the ports leading from the high pressure to the low pressure cylinder or cylinders for controlling the passage of the steam from the
one to the other. The steam, after it has acted on the piston reduced to a minimum. The character of the coal used chiefly of the high pressure cylinder, is passed directly into the low determines the proper length for the arch; very fat bitumi pressure cylinder or cylinders without the intervention of any slide valve between the cylinders, and without exhaust ing into jackets or receivers of any kind.

A Smoke Consuming Furnace

The plans proposed and tried for consuming all smoke under boilers are as countless almost as are the boilers in use, for every engineer and every fireman of a few years' experience has his pet theory and practice on the subject, and yet boiler smoke stacks continue to pour out volumes of smoke, to the annoyance and discomfort of their neighborhoods.
It is well and widely known that fuels are consumed with the greatest possible economy when all of their combustible products enter into combination with enough and no more atmospheric air than is needful to supply the combining oxygen; and as a product of this knowledge we have the various practices of introducing air into the fireplace, and at other points along the combustion flue, to mingle with and consume the smoke and gases. Excepting in very rare instances these methods fall far short of effecting the purpose for which they were designed, for the reason principally that the cooling effect of the air has not been sufficiently considered. In the most successful cases the air is made to circulate through the heated walls of the boiler furnace before it is introduced into the combustion flue to mix with the unconsumed gases and smoke, and to the recognition of this fact we owe a recent invention, which designs to place a fire at each end of the boiler, and to alternately pass the smoke and gases from the one fire, as it receives a fresh charge of coal, over the other, which is in a state of full combustion.
According to another plan of some merit, several bridges, alternating with narrow arches thrown up nearly in contact with the under surface of the boiler, are arranged along the combustion flue, with the effect of producing a more intimate mingling of the air and gases by frequent deflections and disturbances of the current, and of increasing the heat radiating surfaces.
But all the conditions requisite for complete combustion are not secured simply by a mingling of the smoke, unburned gases, and atmospheric air, no matter how thoroughly this may be done; for it must be borne in mind that all of the boiler surface exposed to the flame is constantly absorbing the heat thereof to an extent that rapidly cools the burning gases to a point at which their combustion ceases, and unburned carbon or smoke is deposited or produced, and that this is the chief cause of trouble even when the firing is most skillfully done.
The question then seems to be, Can economical and complete combustion be secured before the gases are brouglt in contact with the heat absorbing surface of the boiler?
Every one has observed that highly heated furnaces in rolling mills give forth no smoke unless it be for an instant, when fresh coal is thrown on the fire; and the reasons for this are that an abundance of air is always given to the fuel which lies thickly on the grate, and that the temperature is maintained by the heat radiating interior surfaces of the furnace at the combustion point of the gases.
We readily admit that it would not be possible or economical to supply all boilers with a furnace attachment simply for the purpose of securing perfect combustion, but the correctness of the principle of supplying additional heat radiating surfaces to boilers cannot be questioned, and it has, to our knowledge, been applied in more than one instance in a very simple manner and with complete success.
In these instances the grate surface has been slightly narrowed by building up on each side of the fireplace thin walls of firc-brick extending three or four feet back from the feed door, and from these walls a rather flat fire-brick arch has been thrown over the whole grate surface-the crown of the arch reaching to within an inch of the crown sheet of the boiler-thus practically forming, within the combustion flue or flame space of the boiler, a reverberatory furnace, which an hour's firing raises to a white heat.
Each fresh supply of coal required is thrown just within the fire door, which is then quickly closed, and pushed forward and leveled with a light tool introduced through a register in the door; in this way any great access of cold air
to the combustion chamber is avoided, while a gradual presto the combustion chamber is avoided, while
The radiation from the fire surface and heated side walls and arch forms a focus of intense heat which insures a proper temperature to the admitted air and complete combustion of the smoke and gases before they come in contact with the boiler; and consequently there is no escaping smoke, while there is nearly perfect utilization of all the products of combustion.
At first thought it might be objected that as the crown sheet of a boiler is the most effective heat absorbing surface, it being ordinarily exposed to the direct heat of the fire, whatever interferes with this action must be false practice;
but further consideration will convince that the heat radiating arch secures a more even temperature about the whole boiler, and at the same time protects the crown sheet from the usual excessive wear or deterioration, thereby prolonging the life of the boiler, and that all of the heat excepting what is utilized for the draught must do the work for which it is intended.
It will be evident that by this thorough combustion, a very considerable saving in coal must be effected, and that, in many instances, a cheaper quality can be used, while the
deposit of non-conducting matter in flues and tubes will be
nous coals requiring an arch of from four to six feet, while a length of from three to four feet will, in most cases, be sufficient to secure the desired result.
Undoubtedly correct in principle-substituting heat radiating for heat absorbing surfaces at the fire end of the boilerthis plan should meet with general acceptance and relegate to the past the long endured smoke nuisance.

Natural History Notes.

Influence of Electricity on Plants.-Some interesting experiments as to the influence of atmospheric electricity on the nutrition of plants have lately been made by M. Grandean, and communicated by him to the Academy of Sciences, of Paris. He placed two plants of the same species (tobacco, maize, wheat) under the same conditions as to soil, aeration, isolation, etc., \cdot but the one withdrawn from the action of atmospheric electricity by means of a Faraday's cage. The plants thus withdrawn claborated, in equal times, 50 or 60 per cent less of living matters than the others. Plants of small elevation above the ground are also affected by atmospheric electricity. The centesimal amount of proteic matter formed appears not to depend sensibly on this action it is proportional to the yield. The proportion of ash is higher in plants removed from the electricity, and the proportion of water is less. The French scientist, however, does not explain why it is that two plants of the same species, growing in a field side by side, and under the same conditions, do not always attain the same development nor elaborate the same amount of material from the soil.

Tropical Butterfies.-Mr. Wallace, in his recent volume " Tropical Nature "), destroys some of the illusions of those who have never traveled in the tropics, as, for example, that the flora of these latitudes presents a dazzling brilliancy of color. On the contrary, foliation is the most prominent feature, and a conspicuous mass of blossoms, when occasionally met with, forms merely " an oasis of color in a desert of verdure." The next most general characteristic of a tropical forest is the apparent absence of animal life; for although an immense variety of forms is actually present, they are so widely scattered and shy as to require careful search to detect them. This, too, was the experience of our American explorer of the Amazons, the late Professor Or-
ton. A striking exception to this rule, however, is presentton. A striking exception to this rule, however, is present-
ed in the case of the butterflies, which are not only numerous, but extremely conspicuous from their size and gorgeous coloring. Of these the author says: "Their aspect is altogether different from that presented by the butterflies of Europe and most temperate countries. A considerable proportion of the species are very large, six to eight inches across the wings being not uncommon among the Papilion$i d \not e$ and Morphidae, while several species are even larger. This great expanse of wing is accompanied by a slow flight; and, as they keep near the ground and often rest, sometimes with closed and sometimes with expanded wings, these noble insects really look larger and are much more conspicuous objects than the majority of our native birds. The first sight of the great blue Morphos flopping along in the forest roads near Para, of the large white-and-black semi-transpa-
rent Ideas floating airily about in the woods near Malacca, and of the golden-green Ornithopteras sailing on bird-like wings over the flowering shrubs which adorn the beach of the Ké and Aru Islands, can never be forgotten by any one who has a feeling of admiration for the new and beautiful in nature."
The "Poison Upas" Tree.-Among the numerous fictions regarding the animal and plant world that still go to form the staple of "popular science" compilations for the village library, that regarding the pestiferous exhalations from
the "poison upas" is prominent. The erroneous and exaggerated statements respecting the upas tree (Antiaris toxicaria) are due to a Dutch surgeon, Dr. Foersch, who circulated them about the close of the last century. The tree was described as "growing in a desert tract, with no other plant near it for the distance of ten or twelve miles. Criminals condemned to die were offered the chance of life if they would go to the upas tree and collect some of the poison.
They were furnished with proper directions, and armed with due precaution, but not two out of every twenty ever returned." Dr. Foersch states that he obtained his information from some of the survivors who had been lucky enough to escape, although the ground was strewn with the skeletons of their predecessors; and such was the virulence of
the poison that there are no fish in the waters, nor has any rat, mouse, or other vermin been seen there; and when any birds fly near the tree, so that the effluvia reach them, they fall dead, a sacrifice to the poison. These statement, aving been quoted by Dr. Darwin in his "
The upas is a tree often attaining a he
The upas is a tree often attaining a height of over 100 feet, and found native in the islands of the Indian Archipel-
ago. The stamens and pistils are found on separate flowers ago. The stamens and pistils are found on separate flowers
on the same tree, or, botanically nocious. The tree belongs to the natural family Artocar pa cece, the plants of which almost all abound in juices that are deleterious to a high degree; although it includes many that are extremely useful to man in many ways, among these, for instance, the famous cow tree, which yields a rich and wholesome milk; the Ficus Indica, which produces gum shellac;
Ficus Carica, producing figs; Morus, or mulberry tree, etc. Ficus Carica, producing figs; Morus, or mulberry tree, etc.
The upas tree, when pierced, exudes a milky juice which contains an acrid virulent poison, called antiarin. This,
when dried, forms a poison in which the natives dip their arrows. As specimens of the tree have long been cultivated in botanic gardens, the reports regarding its venomous exhalations are known to be as erroneous as those will be some day that at present ascribe to Eucalyptus the power of emitting febrifuge exhalations.
The mistaken notion that long connected this noxious property with the upas arose from the fact that the tree occasionally grows in certain low valleys, in Java, rendered unwholesome by an escape of carbonic acid gas from crevices in the ground, and emitted in such a quantity as to be fatal to animals that approach too closely. These poisonous valleys are connected with the numerous volcanoes of the island. According to Reinwardt, sulphurous vapors are given off in such abundance from the craters of some of these volcanoes as to cause the death of a great number of tigers, birds, and insects; while, in some cases, the rivers and lakes are so charged with sulphuric acid that no fish can exist in then. The upas tree, therefore, although there is no doubt as to its inherent poisonous nature, has had to bear the reproach really due to volcanoes and their products.
Fecundity of the Queen Bee.-Baron Berlepsch, in several different experiments made to find out how many eggs are daily deposited by the queen bee, discovered that she laid 1,604 eggs in twenty-four hours, as the result of the first. In the second, she deposited on an average 1,913 daily, for the space of twenty days. In the third one, an average of fourth, she was found for the same length of time. In the seen by him to deposit 6 eggs in one minute. A writer in the National Live stock Journal states that a gentleman told him, at the Illinois State Fair, that he had known a queen to deposit an average of 3,800 eggs daily for several days. As to his own experience, he had known 1,500 eggs to be deposited within the short space of four hours.
The Ascent of Sap. - A theory as to the rapid ascent of sap in the tissues of plants has recently been brought forward by M. J. Boehm. It is based upon the clasticity of cells. He states that " when the surface cells of a plant have lost a portion of their water through evaporation they are somewhat compressed by the air-pressure. Like elastic bladders, however, they tend to resume their original form, which is only possible by their taking in air and water from without. Since moist membranes are little penetrable by air, the outer cells draw from the cells which are further in a portion of their liquid contents. These, in turn, borrow from their neighbors further down, which contain more water, and so on, either to the extreme root cells or to those parts of the stem which are supplied with water from below through oot pressure."
The Migrations of a Parasitic Worm.-Among the hosts of animal forms that live as parasites on or in other animals, there are certain worms which are free when young, and become parasites only at a later period of their evolution. For example the Guinea worm (Filaria medinensis) is the terror of travelers who visit the coast of Guinea; it is not only common on the west coast of Africa, but has recently been found in Turkistan and South Carolina. This
worm undergoes its final development in the subcutancous and intermuscular cellular tissue of man, and attains a length of 12 feet. It has been ascertained that the parasite, as a microscopic embryo, is transmitted by means of the cyclops, a little fresh water crustacean. In 1824, Deslongchamps discovered in the fatty matter of the common cockroach a great number of small lenticular bodies visible to the naked eye, to which he gave the name of Filaria rytipleurites. This encysted worm represents simply the asexual state of a nematoid whose migrations up to the present time have been unknown. Les Mondes gives place to a note from M. Osman Galer, who has traced the history of the parasite. He states that he made use of rats, which he fed on cockroaches infested with the parasites. At the end of eight days, having killed the three rats put to the experiment, he found in the mucous membrane of their stomachs the nematoids in ques tion, living, and free from their envelopes. In one of the rats he found three females and a male, all of which had acquired their reproductive organs. Thus is accomplished the last stage of their evolution. Impregnation takes place in the digestive tube of the rat, and soon after the eggs which are laid pass out with the fecal matters. These eggs are swallowed by the cockroach; the embryos hatch out then in the digestive tube of the insects, pierce its walls, and encyst themselves in the fatty matters to wait till the cockroach is in its turn eaten by the rat, in which it is to finish the cycle of evolution.
The Sago Palm (Sagus rumphii) often forms great forests upon the islands of the Indian Ocean and Moluccas, and is there easily propagated by suckers. The white inner part of the stem, thickly permeated by bundles of fibers, abounds in a marrowy substance, which, when baked into bread, fur nishes a daily food to the inhabitants of most of the south ern and southeastern parts of Asia. This, in the form of flour and granules, is widely distributed in commerce under the name of "s sago." One trunk of the age of fifteen years will sometimes furnish 600 lbs. of sago. A similar use is made in the same countries of the mealy sago palm (Sagus farinifera). In this connection, too, we may mention the Mauritius palm (Mauritia flexuosa), which, on account of its pithy stem, containing a sago-like meal before flowering, is also called the sago palm of South America. It grows from the mouth of the Orinoko to the Amazons, and also in Central America; and the mealy pith serves the Indians of these countries as a chief article of food.

まusimess and eersual．

The Chargefor Insertion under this head is One Dollar a line for each insertion；about sight words to a line． Advertisements must be received at mublication office as early as Thursday morning to appear in next issue

Best Turbine Water Wheel，Alcott＇s，Mt．Holly，N．J． Assays of Ores，Analyses of Minerals，Waters，Com－ mercial Articles，etc．Technical formulæ and proce
Laboratory， 33 Park Row，N．Y．Fuller \＆Stillman．
Wanted－Party to furnish Capital for Foreign Pa ents on a valuable invention，for
Address R． \mathbf{W} ．Smalley，Salem，Mass
Howard＇s Bench Vise and Schleuter＇s Bolt Cutters， Howard Iron Works．
Band Saws a specialty，F．H．Clement，Rochester，N．Y Magneto Call Bells for Pelephone Lines．The Best． Write to E \＆F Gleason， 56 Canal street，Philade phia，for standard wood tools，
Foot Lathes，Fret Saws，6c．， 90 pp．E．Brown，Lowell，Ms Sperm Oil，Pure．Wm．F．Nye，New Bedford，Mass． Power \＆Foot Presses，Ferracute Co．，Bridgeton．N．J． Boilers \＆Engines cheap．Lovegrove \＆Co．，Phila．， Pa North＇s Lathe Dog． 347 N．4th St．，Philadelphia，Pa． Telephones．－J．H．Bunnell， 112 Liberty St．，New York． Sheep＇s Gut Belting．－Makers will please address Wilson \＆Hendrie，Montague，Mich．
Bolt Forging Machine \＆Power Hammers a specialty． Catalogue of Scientific Books．Mailed free on applica－ Cion．E．\＆F．N．Spon， 446 Broome St．，New York．
Pulvertzing Mills for all hard substance and grinding
purposes．Walker Bros．\＆Co．，23d and Wood St．，Phila． Wheels and Pinions，heavy and light，remarkably strong and durable．Especially suited for sugar mills
and similar work．Pittsburgh Steel Casting Company and similar wor
Pittsburgh，Pa．
For the most durable and economical Paint for cars， roofs，bridges，iron，brick and wooden buildings，addre
Pittsburg Iron Paint Company，Pittsburg，Pa
J．C．Hoadley，Consulting Engineer and Mechanical
For Town and Village use，comb＇d Hand Fire Engine Hose Carriage， 8350 Forsaith \＆Co．，Manchester，N．H． Boilers ready for shipment，new and 2 d hand．For a
Punching Presses，Drop Hammers，and Dies for work ing Metals，etc．The Stiles \＆Parker Press Co．，Middle All kinds of Saws will cut Smooth and True by filing them with our New Machine，price $\$ 2.50$ ．Illustrated
Circular free．E．Roth \＆Bro．，New Oxford，Pa． Hydraulic Presses and Jacks，new and second hand． Lathes and Machinery for Polishing and Buffing Metals．
E．Lyon \＆Co．， E．Lyon \＆Co．， $4 \pi ̃ 0$ Grand St．，N．Y．
Nickel Plating．－A white deposit guaranteed by using
our material．Condit，Hanson \＆Van Winkle，Newark，N．J．
Cheap but Good．The＂Roberts Engine，＂see cut Cheap but Good．The＂Roberts Engine，＂see cut vertical engines and boilers．E．E．Roberts， 107 Lib－

The Cameron Stcam Pump mounted in Phosphor
Bronze is an indestructible machine．See ad．back page． Bronze is an indestructible machine．See ad．back page
$1,0002 \mathrm{~d}$ hand machines for sale．Send stamp for de scriptive price list．Forsaith \＆Co．，Manchester，N．H．
Presses，Dies，and Toolsfor working Sheet Metals，etc． Fruit and other Can Tools．Bliss \＆Williams，Brooklyn，
ForPower\＆Economy，Alcott＇s Turbine，Mt．Holly，N．J．
Manufacturers of Improved Goods who desire to build displayed advertisement in the Scientific Americas Export Edition．This paper has a very large foreign

Improved Wood－working Machinery made by Walker
Bros．， 73 and 75 Laurel St．，Philadelphia，Pa
Bound Volumes of the Scientific American．－I will
sell bound volumes $4,10,11,12,13,16,28$ ，and 32 ，New Se－ sell bound volumes 4， $10,11,12,13,16,28$ ，and 32, New Se
ries，for $\$ 1$ each，to be sent by express．Address John
Edwards，p o Bor Expectant Advertisers will serve their interests by
consulting C．K．Hammitt＇s Advertising Agency， 206

Extra Fine Taps and Dies for Jewelers，Dentists，and Machinists；in cases．
turers，Hartford， Ct ．
For Solid Wrought Iron Beams，etc．．see advertise ment．Address Union Iron Mills，Pittsburgh，Pa．，for
lithograph，etc．

Warranted best and cheapest Planers，Jointers，Un versal Woodworkers．Band and Scroll Saws．etc．．manu
factured by Bentel，Margedant $\&$ Co Patent Wood－working Machinery，Band Saws，Scroll Saws，Friezers，etc．Cordesman，Egan \＆Co．，Cincin＇ti，O．
Machine Diamonds．J．Dickinson， 64 Nassau St．，N．Y
The Scientific American Export Edition is pub lished monthly，about the 15 th of each month．Every
number comprises most nf the plates of the four preced number comprises most nf the plates of the four preced other appropriate contents，business announcements，
etc．It forms a large and splendid periodical of nearly etc．It forms a large and splendid periodical of nearly
one hundred quarto pages，each number illustrated with
about one hundred engravings．It is a complete record about one hundred engravings．
of American progress in the arts．
The only Engine in the market attached to boiler Solid Emery Vulcanite Wheels－The Solid Original
Emery Wheel－other kinds imitations and inferior Caution．－Our name is stamped in full on all our best Standard Belting，Packing，and Hose．Buy that only．
The best is the cheapest．New York Belting and Pack－
Alcott＇s Turbine received the Centennial Medal．

NEW BOOKS AND PUBLICATIONS． Heusinger，＂Muster－Constructio
Eisenbainibat und Betrieb．＂
We acknowledge the receipt of two parts of a new
work，issued by the Helwing Publishing House of Han over，Germany，and edited by E．Heusinger von Wal degg，a well known German railroad engineer and edi－ tor of a technical journal for railroad construction．The
work is of a serial character，and called by the editor ways and Rolling Stock．＂The parts contain a number of specially selected and approved constructions，one series being devoted specially to the building of the roedway，depots，switches，signaling devices，etc．，
while the other series contains designs for locomotives， while the other series contains designs for locomotives，
roiling stock，and accessories．The work is intended for the use of railroad engineers，to assist them in their labors and furnish them wit thapproved references．It
is also of advantage to beginners，as it supplies them is also of advantage to beginners，as it supplies then
with designs of practically tested constructions．The
work，however，does not mbrace brid as these have heretofore been separately collected by Klein，Heinzerling，and others．Of interesting and in genious constructions relating to the roadway，we may mention a wire drawgate for road crossings（system Tronchon）and a station signaling apparatus，adopted
by the Hungarian state railways．In the other class a by the Hungarian state railways．In the other class a tender locomotive，built by the＂Winterthur Locomo live Works＂for the Toss Valley Railroad，may be men－
tioned．The lithograbhic plates of each ， tioned．in an exceedingly clear and creditable manner nd form with the descriptive text（in German）a live work for railroad engineers and technical libraries．
The Works of Shakespeare．New York：
T．Y．Crowell．$\quad 1$ vol． 12 mo．pp． 1097.
T．Y．Crow
Too often cheap editions of voluminous writers are badly made，illegible，and of uncertain text．This edition
of Shakespeare appears to be a notable exception．The text is that of Clark and Wright，following generally that of their＂Cambridge Shakespeare．＂The paper is fine and clear：the type，though necessarily seanall，is sunf
ficiently distinct；and the book is well printed．There ficiently distinct；and the book is well printed．There is added a copious glossary，an index to familiar pas－
sages，and an index to the characters in each play．Al－ together the publisher seems to have been successful in his design to furnish an edition of Shakespeare com－
bining the advantages of a reliable text，convenient bining the advantages of a reliable
size，clear type，and a moderate price．

（2）（A）

（1）C．M．asks：1．Can any more heat be communicated to the air of a small room．so as to be in－
dicated by the thermometer，by the burning of gas or dicated by the thermometer，by the burning of gas or
kerosene oil in Ω stove or other radiator than can bc produced by burning the same amount of gas or oil in any other way，provided that the combustion is equally
perfect in each case？A．You would get the greatest perfect in each case？A．You would get the greatest
effect by using a radiator．
2．Is there any other ad－ vantage of the stovesas heat producers than having a tolerably good conductor in a convenient place？A．
Yes．It renders combustion controllable，and makes it more perfect than it would be in an open freplace．
（2）E．D．P．writes：In Scientific Amer－ CAN of July 27，page 59，G．S．H．wants to know how
to transplant large trees successully．He can do it as follows：Dig a hole this fall large enough and deep enough to receive it．Then after the ground freezes this wintor as far down as the roots are，dig around the tree until you get below the frost，then under tree，and spring fill in to suit．In this way yon do not disturb the roots in the least as the ground is frozen tight und them．
（3）A．S．M．asks for a good compound Por taking the scale off and to prevent lime settling in
steam boilers．I would like to know of something cheap and practicable．A．If the boiler is not a very small one，you may add once a week about one pound of soda （sodium carbonate）for every 50 gallons of the boiler＇s contents，taking care to blow out（through the bottom blow－out tap）this charge with the accumulated sludge
before adding more，and meanwhile do not let the wa－ ter run low in the boiler．The common practice is to use the blow－out while at work；butit is better to wai ntil after the boiler has been for a time quiet and the
suspended matter has nearly settled． （4）H．writes：I am building a bicycle with round rubber tire one inch in diameter．The ordi－ nary rubber cement is not strong enough to hold the
joint of tire．What shall I use，and how apply it？A， You may try the following：Melt together in a suitable iron vessel gutta percha and pitch，in about equal pro－ portions，over a gentle fire，sti
mass is obtained．Use warm．
（5）H．S．asks for a recipe for embalming bodies so that they will keep some tite in this hot clim inside，with full instructions how to apply it．A．See
pp． 271 and 103，ScIENTIFIC AmERICAN，vol． 37 ，and p ． pp． $2 \pi 1$ and 103，Scientific Amp
136，＂Science Record＂for 1874.
（6）W．L．A．asks：Will you please tell me what polishing ink is used
Scientific American，vol． 38.
（7）M．D．L．asks for a recipe for making a gum same as lased on postage stamps，in order to
use it to fasten labels on microscopic slides．A．Dis－ solve 2 ozs．of dextrin in 5 ozs ．of hot water，and 1 oz ． of acetic acid，and 1 oz ．of spirits of wine．
（8）P．J．F．asks：What is the difference between benzine and gas naphtha？A．Pure benzine
$\mathrm{C}_{6} \mathrm{H}_{6}$ ）is obtained in the fractional distillation of coal oil．The same name is given to several of the lighter distillates of petroleum（between 176° and 194° ）．The name naphtha is used to designate a mixture of several of the lighter distillates of petroleum．It is also ap－
plied to several of the distillates of coal oil after ben－
zine．The least volatile portions of these contain hydrocarbon xylene $\left(\mathrm{C}_{8} \mathrm{H}_{10}\right)$ ．
（9）A．J．W．writes：When the double glasses of an opera glass get clouded between them， how can they be got apart to clean them？A．Soak
them in turpentine．When separated clean thoroughly and cement together with a fine quality of balsam of
（10）P．L．asks：Can electricity harm a bird hat might be sitting on a telegraph wire？A．No．
（11）A．J．C．asks if there would be any difference in two thermometers hung up，one in the raught of the wind and the other where there is no
draught．A．The one in the draught would probably draught．A．The one in the
indicate a lower temperature．
（12）W．J．B．asks：How is galvanizing on cast iron generally done？If by a battery，how is it made？If they are dipped in melted zinc（zinc galvan－ izing is what I refer to）how are the castings prepared？
How is the superfluous zinc removed after they are dipped？A．Clean the work thoroughly by pickling it in dilute sulphuric acid，and scouring，if necessary pass through a strong bath of aqueous zinc chloride so－ lution slightly acidified with hydrochloric acid，and then throug
（13）G．R．B．asks：1．How many ohms re－ sistance should the magnets of a relay be to operate on
line 2 miles long？A．Make the resistance of the re－ lays equal to the resistance of the rest of the circuit， including batteries．2．Which would give the best re－ sults on said line－to operate two bells，to use a relay，or
$\begin{aligned} & \text { operate the bells directly？}\end{aligned}$ A．Better use a relay．3． operate the bellis directly？A．Better use a relay．3．
Are there any tables by which the resistance of any given length of copper wire may be known？A．You will find such tables in works on telegraphy．
（14）G．E．A．asks（1）if fruit，vegetables， or meats will keep in their natural state if placed in a vessel and the air exhausted．A．For a limited time，
yes．Efforts in this direction have not been very suc cessful．2．Also，is it necessary that the vessel should be placed in such a position that the air is taken from the lowest extremity？A．No．
（15）A．M．S．writes：I have tried to make n electro－magnet，but failed．I made the staple of horseshoe iron， 3 inches long， $3 /$ inch diameter，wrapped
with iron wire known as broom wire，insulated with black paint．The wire was wound up and down four times，making the wire 4 thicknesses，connecting it to a good strong battery．A．Use silk or cotton covered
copper wire．
（16）G．V．B．asks：How can I polish a glass lens which has been scratched badly by carrying
in the pocket with other articles？A．If the scratches in the pocket with other articles？A．If the scratches
are not deep stretch a piece of silk over the face of the lens，and appiy to it a ball of sealing wax that is warm enough to take the form of the lens when it is pressed on the silk．When the wax is cool remove it and the
silk together from the lens and coat the silk with a paste of putty powder．Rub the face of the lens with the instrument thus made，giving it a gyratory motion． Keep the putty powder moist．
（17）C．H．H．\＆Co．write：We have a large quantity of silver dissolved in diluted nitric acid；we wish to use it for casting silver ornaments．How can we recover it in proper form to use9 A．Add muriatic
acid to the solution until all the silver is precipitated as chloride，and after settling decant the supernatant liq－ uid，cover the precipitate with a little dilute oil of vit
riol，add a few fragments of clean zinc，and allow to riol，add a few fragments of clean zinc，and allow to
stand for an hour．Soluble zincchloride and sulphate is produced，and finely divided silver remains，which，after washing and separating from any undissolved zinc may be fused in a crucible with alittle sodium carbon．
（18）J．E．L．asks：Please give me the names and amounts of the various ingredients which compose the composition used in re
ture to or near the freezing point．

Mixtures．by	Parts weight	Reduction of temperature
Sodium sulphate	$\begin{aligned} & 81 \\ & 5 \end{aligned}$	$48 \cdot 6{ }^{\circ} \mathrm{F}$ ．
Pounded ice	${ }_{2}$	
Common salt	1 ）	$50 \cdot 4^{\circ}$
Sodium sulphate	${ }^{3}$ ）	$52.2{ }^{\circ}$
Dilute nitric acid	2	522°
Sodium sulphate	6	
Ammonium nitrate	5	64.8
Dilute nitric acid	4	
Dilute nitric acid	4	70：20
Ammonium chloride	4	
Potassium nitrate	${ }_{8}^{4}$	40°
Water	8	
Ammonium nitrate	1 1	46°
Water Ammonium nitrate	${ }^{1}$	
Ammonium nitrate	${ }_{9}^{6}$	71^{\bullet}
Diluted nitric acid	4 4	

Diluted nitric acid
（19）G．W．W asks：What is the best way spray on to an article to freeze it？A．See recipes for freezing mixtures above．For ice machines，see pp． 159 and 387，vol．38，and 95，168，and 335，vol．37，SCIEN－
（20）C．W．L．asks：Is there any easy and onvenient method by which salicylic acid could be used to keep meat and fruit in a private family，where no ap－
paratus would be desirable that would have to be pro－ vided on purpose，or is there any treatise on the subject？ 66.
（21）E．N．H．asks if there is any prepa revent its further growth，yet can be used with safet A．See p． 1 （1）growth，yet can be used with safety （22）M．S．C．asks：Does the water in a oiler，under ordinary circumstances，roll or stand still
nd level at a pressure of 60 lbs ．or higher？Why is it that when the saw is started through a log at a saw mill，the water in the glass tubes，sometimes affixed to steamboilers，rises，while the steam gauge shows no drawn rapidly from a boiler，a quick circulation takes
place，and the water rises or pulsates．In boilers with
small steam spaces this is especially noticeable，as small steam spaces this is especially noticeab
the steam raises the water with it in its flow．
（23）L．S．C．writes：The steam launch Un－ dine of this place，Willimantic，Conn．，has run one mile in $5^{\prime} 6^{\prime \prime}$ ．She is 20 feet long， $4^{\prime \prime}$ stroke，screw 2 beam，engine $4 x^{\prime \prime}$ pitch．Has this time been beaten by a boat of her size？ A．We think not．Would be pleased to hear from our
（24）H．M．K．，F．L．W．，T．McT．，and others．－A modified form of Bansen＇s battery is shown in the engraving，in which A is an element complete，B is the jar，which should hold about a quart，C is the zinc， which may be made from sheet or cast metal．It
should be amalgamated before use．To do this，first re－ should be amalgamated before use．To do this，first re－
move any grease or dirt，then dip it in sulphuric acid di－ move any grease or dirt，then dip it in sulphuric acid di－
luted with 9 parts of water，place it on a platter，pou uted with 9 parts of water，place it on a platter，pour
nercury over it，rub it until it attaches itself to every

洞

白俍ilpart of
the su the surplus mercury runs off．The porous cell，D，
should fit loosely in the zinc and reach $3 / 4$ inch above it should fit loosely in the zinc and reach $3 / 4$ inch above
（a amall porous fiower pot will do for a cell）．The carbon， E，half fills the porous cell and is about twice as high． It is best to buy the carbons，but that which comes from gas retorts may be used，or finely pulverized coke and caking coal may be mixed together and pressed strong y into an iron mould，and calcined at a low red heat． To set up the battery half fill the jar with a saturated so lution of common salt，put in the zinc，place the porou cell in the zinc and the carbon in the porous cell．Fil the cell with a solution made as follows：Dissolve 1 lb
of bichromate of potash in 10 lbs ．of hot water；when of bichromate of potash in 10 lbs ．of hot water；when vessel that will resist acids and will not crack by heat． Clamp a wire to the carbon and attach a wire to the zinc．To make a powerful battery for occasional use make zinc and carbon plates of equal size，and dip them，when a current is required，in a solution consist ing of 2 parts of bichromate of potash， 20 parts of wa er，and 1 part of sulphuric acid．The bichromate soll
（25）T．J．H．writes：I want a small fumi－ gating apparatus for fumigating articles placed in a box or barrel，and that would burn，say， 1 lb ．of sulphur at a
time．Is there any such contrivance for sale，or can I make one cheaply A All that is requisite，if we understand you，is a shallow earthenware dish large enough to hold the amount of sulphur it is desired to burn．It is best to fuse the sulphur before igniting it． （26）Amateur writes：I purchased from a ceived mated white powder，and small vial of acid；a small quantity of reddish powder was first put on an old plate，a little of the white sprinkled on it，and then a drop or two of
the acid was dropped on，when it immediately blazed the acid was dropped on，when it immediately blazed up with a brilliant red fire．Can you tell me what they consist of，what kind of acid，and what the white and acid came in contact with the white powders T The yel low reddish powder also ignites with a match，but the dealer said that the latest way was with the acid，and there could be no danger．A．1．Powdered resin and strontium nitrate．2．Powdered potassium chlorate and ry sugar．3．Strong sulphuric acid．
（27）F．F．O．asks：What will remove lead pencil marks from calcimined walls？A．Mechanical erasure only is possible；try a piece
alone or supplied with a little whiting
（28）H．W．H．asks how to combine India ubber and white beeswax，making the wax more tough and fexible for moulded articles．Would the rubber first be dissolved in naphtha or other solvent，and
united with the meited wax，or can the union be made united with the meited wax，or can the union be made
more direct？A．It will probably be more satisfactory more direct？A．It will probably be more satisfactory to soften a little both the substances with benzole or
benzolene，and knead them thoroughly together while warm．
（29）F．R．M．asks how to test diamonds， that is，how to tell the genuine from glass．A．The
specific gravity of the diamond is 3.52 （silicious pebbles $=2 \cdot 5$ to $2 \cdot 8$ ）；readily scratches quartz topas dum－not scratched by either．Refracts and disperse light powerfully（index of refraction $2 \cdot 439$ ），and，after exposure to sunlight，is phosphorescent in the dark
Not affected by hydrofluoric acid．Crystalline form
nncut) regular octohedron, usually with curved faces.
（30）E．M．F．asks for a good recipe for shoe blacking；must mix close and dry hard without crack ng．If not too much trouble，I would like to know the order in which the ingredients are combined and the
proportion of one to another．A．See pp． 27 （17）and proportion of one to another．A．S
300 （45），vol．38，ScIENTIFIC AMERICAN．
（31）A．M．Y．writes：Having two cubes or pheres of equal dimensions outside，one to be solid of a light material，the other a shell of a heavier material，
that they may be of equal weight，would their buoying that they may be of equal we
qualities be equal？A．Yes．
（32）C．P．T．asks：What kind of salts are best adapted to the neutralization of the sulphur and gases arising from bituminous coal during combustion？
A．The hydrates of the alkali and earth metals－soda， A．The hydrates
potash，lime，etc．
potash，lime，etc．
How can I mak
How can I make the strongest and most lasting solu ron in a warmmixture of 1 part nitric and 5 parts hy－ drochloric acid，evaporate the solution to dryness，and
dissolve the residue in water slightly acidified with hy－ dissolve the resid
（33）＂Bronze＂asks：Is there a recipe known to you for a preparation for bronzing old gas frtures，one that could be put on as paint is（with brush）without heating the fixtures A．There is a var nish in market which is made expressly for this pur－
pose．

Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
J. B. B.-Feldspar and hornblende rock.-J. N. B.It is phlorophite-magnesia, alumina, potash silicatea variety of mica.-I. H. P.-Sandstone with a little 1 and 2 , black jasper; 3, decomposed orthoclase; 4, chert-an impure variety of quartz; 5 and 6 , fine quartz conglomerate containing much iron sulphide.-S. R. T.
-Principally aluminum and magnesium silicates colored by ferrov: oxide.

COMMUNICATIONS RECEIVED.

 The Editor of the Scientific American acknowledges with much pleasure the receipt of original papers andcontributions on the following subjects: Physical Characteristics of Ether. By W.D. Physical Characteristics of Ether.
Patent Litigation. By D. V.E. N.

HINTS TO CORRESPONDENTS. We renew our request that correspondents, in referring to former answers or articles, will be kind enough to name the date of the paper and the page, or the number
of the question. cannot properly be answered in these columns. Such inquiries, if signed by initials only, are liable to be cast into the waste basket.
Persons desiring special information which is purely of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and la
obtain such information without remuneration.

[OFFICIAL.]

INDEX OF INVENTIONS

Letters Patent of the United States were

 Granted in the Week Ending Juñe 18, 1878,AND EACH BEARING THAT DATE. [Those marked (r) are reissued patents.]

Feed water heater, W. Dawson Fence, post, B. Calkins... Fence post, W. McMillan
Fence wire, T. V. Allis...
Fence wire, T. V. Allis..................
Fences barb for wire, H. B. csutt.. Fibers, sep.animal from veget.,G.M.Jr Fire arm, magazine, E. F. Edgecomb..............
Fire in oil tanks, exting., J. H. \& T. E. Connelly Flut, curing, S. W. Griffin. Forks, manufacture of, \mathbf{T}. Shaw. Freezing apparatus, E. Fixary Fruit huller. A. S. Bunker.
Furnace, Austin \& Hosford Furnace for heating soldering irons, J.
Furnaces, device for feeding air to, J. A. Warden Furnaces, device por w. Pratt...
Gas controlling Gas controlling,etc., apparatus...................
Gas lighting apparatus, F. V. Sanford. Gatc, A. Lee...
Globe and refle
Governor, Thompsor burners, L. Costa Govcrnor, engine, R. Hooper
Grain binder, L. Erpelding...
Grain binder, A. G. McIntosh
Grain drier, R. H. TMiernan.....
Grain separator, W. N. Esselsty
Grain separator, S. Stone...
Grain separator, I. Turman.
Graining tool, E. H. Huftman
Grate extension, O. G. Parr
Gun, magazine. A. Burgess (r).
Hame fastener, G. M. Marks..
Harvester, C. Colahan (r)..
Harvester cutting apparatu
Harvester cutting apparatus, C. F. Howes
Hat fastener, F. L. Tripp..................
Hat finishing machine, S. PPron....
Hat pouncing machine, E. B. Tayl
Hat pouncing machine, Whiting \& Daum Hats and caps from straw braid, C. O. Pa
Head elevator and chin raiser, J. Heintz Heater, steam water. A. W. Tregent. Heddle frames,screw heddle eye
Hens' nest house, J. W. Nichols.
Iens' nest house, J. W. Nichols....
Hinge for awning blinds, C. L. Hasbrouck
Hinge, lock, N. H. Camp.
Hinge, lock, B. Lent II og cholera compound, J. Senn.. Hoof moistener holder, G. P. Merriam Hopple, W. S. Mead.
Horseboot, G. W. We
Horse boot, G. W. Wemp
Horse power, A. Hall...
Horses, stopping runaway, T. B. Hand Hub, vehicle wheel, J.
Hydrocarbons, burning, S. Hydrotherapic apparatus, E. E. G. Bozeria Indicator for freight cars, J. Tatham Knife sharpener, D. Jr. \& A. Gundelfinger. Knob attachment, A. Dickerman
Knob attachment, E. St. John ...
Knob attachment, E. St. John
Ladder, fire escape, D. E. Gibbons ..
Lade burner, argand, H. Preise...
Lamp, electric, Sawyer \& Man
Lamp, electric, Sawyer
Lap link, M. Howard...
Latch, F. W. Brocksieper
Lifting jack, V. H. Felt.
Lock, saash, w. M. Griscon
Log sllde. J. Paul
Lubricating compound, G. G. Munge
ualricator, H. Alton.
Mask, \mathbf{G}.
W. Howland
Mattress flling, preparing, w. G. Benedict
Motion, device for converting, C. Cole........
Musical instrument, mechanical. J. H. Chase
Musical instruments, key board for, c. Brown
Musical instruments, key board for, C. Brow
Musical transposing board, L. Anderson.....
Mustard pot and spoon, Ho J. White....
Nipping and clinching
Nozzle, C. E. Clark....
Nut lock, G. H. Coffee
Ore jigger, W. H. H. Plumb
Organs, blow pedal for, J. H. White
Packing, piston, W. P. Woodruff...
Packing, piston, W. P. Woodruff.......................
Painting wire cloth, apparatus for, M. Kenned
Painting wire cloth, appar
Paper bag, N. J. Alexander
Photor brap machine, F. .. Porter.......
Photographic printing frame, E. M. S.
Piano stringing device, S. Mennig.... Piano stringing device, S.
Pin, clothes, M. Warren....
Pin, safety, J. Q. A. Tresize
Pipe coupling, T. T. Farnsworth. Pipe coupling, G. Westing hou
Planter, seed, Tyler \& Baskin
Planter, seed, J. C. Barlow
Planter, corn, , L. Laude....
Planter, seed, A. J. West.
Plow, J. Lane............................ Plow, sulky, F. M. Foster ..
Plow, sulky, G. w. Wright Plow, vineyard, M. Ross.... Potato slicer, A. Harrington.
Press, baling, H. D. Coleman Press, butter, N. S. Long........ Press, water from starch, etc., HI. W. . scholiler
Press, hay and cotton, P. K. Dederick (r)
Press, hay and cotton, P. K. Dederick (r)
Press, wool, w. Tipton Press, wool, W. Tipton
Printing presses, inker
Propeller, screw, M. Chase
Propenler, screw, M. Chase.....
Pulley, belt shifting, J. J. Whit
Pulverizer, soil, S. McColm
Pulverizer, soil, S. McColm
Pulverizing apparatus, H
Pulverizing apparatus, H. Bolthoff...
Pump, double acting, B. J. Humphrey
Pump, double action, C. A. Carr...
Pump, submerged, B. J. C. Howe
Ramp, submerged, B. J. J.
H. North

Rattan worker, Overin \& Coldwell

Reservoir and stove shelf, water, J. W.

Ronflng, saturated sheathing fo

| | |
| :--- | :--- |$|$

TRADE MARKS

Axes, Kloman, Park \& Co.........
Baking powder, Bennett
Baking powder, Bennett \& Sloan... ...
Biscuits, crackers, etc., R. Ovens \&
Boots and shoes, C. W. Mundell
Boots and shoes, W. F. Mayo....
Carbonate of soda, C. R. Burrage.
Cigars, cigarettes, etc., McCoy \& Co igars, cigarettes, etc., McCoy \& Co
Cigars and cigaretes, L. Ash \& Bro
Claret wines, J. B. Clerc
Coal oill, J. E. Miles
Combs, Howard, Sanger \& Co....
Condition powders, M. S. Teller Condition powders, M. S. Teller...
Contectionery, A. Slauson \& Co.
Cooking stoves, S. S. Jewett \& C 0 Cotton piece goods, Langdon Manu $.6,268,66,258$, cotton goods, F. Sweetser \& Son....
Cotton goods, Lock wood Company. Cream of tartar, C. R. Burrage.. Fravoring extracts, C.
Gin, H . Bohlen \& Co
Hammocks, Thomas Tresilian
Hay rakes, A. W. Miner \&
Hogs' lard, W. I. Popham
Horse collars, Dayton Leather and Collar Co....................
Lager beer, Feigenspan \& Co
Locks, etc., Mallory, Wheeler \& Co..
Medicinal compound, C. R. Burrage.
Medicinal preparation for headache, c. De Cordova 6
Mustard, J. H. Brand \& Co

Roofing slate, H. G. Hughes....
Snuff, C. De Rojer...............
Snuff, C. De Rojer...................
Smoking tobacco, Allen \& Dunning
Smoking and chewing tobacco, etc., J.M. Gardiner.
Stoves and ranges, w. C. Davis \& Co
Umbrellas and parasols, Amasa Lyon.
DESIGNS.
gar box, Stockhausen \& Becklin
lassware, J. E. Miller
lass and lava ware, F. S. Shirley
oves, A. J. Redway..................................... 10,72
bacco bags, W J.Cussen.............. $10,725,10,26$
English Patents Issued to Americans.
From July 19 to July 23 , inclusive.
From July 19 to July 23, inclusive.
tording or breaking hides.-W. Coupe et al., South A tleborough, Mass.
Mass.
rset.-A. Kelley, N. P. city.
our reels.-T. D. Jones, Syracuse, N. Y.
usic scales, transposition of.-E. K. Milliken, Portland, Me .
opellers. -B

10,730
10,727

Directions and Dimensions for construction with on

§rimutific Imprican.

THIRTY-THILD YEAR.

This widely circulated and splendidly illustrated
paper is published weekly. Every number contains sixteen pages of useful information, and a large number of original engravings of new inventions and discoverie
representing Engineering works, Steam Machincr New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Archi tecture, Agricult ure. Horticulture, Natural History, etc American a popular resume of the best scientific in formation of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind this journal affords a constant supply of instructive
reading. It is promotive of knowledge and progress in every community where it circulates.
Terms of Subseripion.-Onc copy of The Scies-
tifio AmbicaN will be sent for one year- 52 numbersTIFIC Ambiricav will be sent for one year- 5 numbers-
postage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty cents by the publishers; six months, $\$ 1.60$; three
months $\$ 1.00$. Clubs.-One extra copy of The Scientific AmeriCAN will be supplied gratis for erery club of five subscribers
at $\$ 3.20$ each ; additional copies at same proportionate rate. Postage prepaid.
One copy of Tife Scientific American and one copy of The Scientific American Supplement will be sen for one year, postage prepaid, to any subscriber in the the publishers.
The safest way
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes, Express. Money carefuly placed inside of envelopes,
securely sealed, and correct ${ }^{\text {a }}$ addressed, seldom quoes
astray, but is at the sender s risk. Address all letters and make all orders, drafts, etc., payable to

MUNN \& CO.,
Park Row, New York.
To Foreign Subscribers.-Under the facilities of
the PQgtal Union, the ScIENTIFIC American is now sent with re ers in Great Britain. India, Austra, Ba, and alothe Russia, and all other European States ; Japan, Brazil,
Mexico, and all States of Central and South America Mexico, and all States of Central and South America
Terms, when sent to foreign countries, Canada excepted $\$ 4$, gold, for ScIENTIFIC AMERICAN, 1 year: $\$ 9$, gold, for
both SIENTIFIC AMERICAN and SUPPIEEENT for both ScIENTIFIC AMERICAN and SUPPLEMENT for
year. This includes postage, which we pay. Remit by
postal order or draft to order of Munn \& Co, postal order or draft to order of Munn \& Co., 37 Park
Row, New York.

ALLEN'S
 ARTIFICER'S ASSISTANT

BLAKE'S
Heg
H.STONE AND OR

blake crusher co., New Haven, Comn.

Wood-Working Machinery,

Driven or Tube Wells furnished to large oconsumers of croton and nidgewoor

STHMAMI PUMPG. HENRY R. WORTHINGTON,

Stean Pumps-Duplex and Sing WATER METERS. OL Meters.

Baker Rotary Pressure Blowel

WILBRAHAM BROS

PROPOSALS FOR IRON BEAMS

 3 The inches.
The beams must be straight. out of wind, cut square
at the ends, free from flaws, blisters, and ragged edges, and contain, freeod Iron, and, the bid shond shoul be be acompan,
anied by the manufacturer's published tables or formula
ne nied by the manufacturer's published tables or formula
giving the guaranteed strength and stifness of Beams.
Nearly añ the beams will be required in lengths of Nearly all the beams wil be required in lengths of
from 16 to 20 feet, and two-thirdsof them in such exact
lengths that they must be cut cold.
Bids must be addressed to the undersigned, endorsed Bids must be addressed to the undersigned, endorsed
on the outside ". Proposall to furnish Beames.; Thesuc-
cessful bidder will be required to enter into contract, and to give good and suquicient bonds for the faithful
performance of the contract.
About one-fifth of the beams must be delivered within

The United States reserves the right to reject all bids
which are not deemed satisfactory
D. W. FLAGLER, Major of Ordnance.

MPORTANT FOR ALL CORPORATIONS AND

 CIVIL and MECHANICAL FNGINEERING At the Rensselaer Polytechnic Institute, Troy. N. I I
Next term beemins Sept. 12.2 The Annual Register for
contains a list of the graduates for the past 52 years, with

Lathes, Planers, Shapers
 The George Place Machinery Agency

THE DRIVEN WELL.
 WM. D. ANDREWS $\underset{\text { EEW }}{\&}$ BRO.

Pond's Tools,

Barnes, Foot Powner Machinery.

BUCKEYE

Automatic Cut-off ENGINE.
87 Liberty St., Nem York

OUHVERSAL YOOD WORKERS:
SBAND SAWS Scrout siws
LANING \& MATCHING MACHINES

HAMILTON,OHIO.

Contractors

WHO WISH TO MAKE MONEY ENGINEERIING NEWS, 153 Washington Street, Chicago, Ill

Miil Lumber ani Venieris.

Ceo. W. Read \& Co., 186 to 200 LeWIS ST. N. r .
 Shafts, Pulleys, Hangefs, Eitc.

勆 TVBBINE WATER WHEELS.

Can I Obtain a Patent?

 This is the first inquiry that naturally occurs to every without expense, is to write to us (Munn \& Co.), decribing the invention, with a small sketch. All weneed is to get the ilen. Do not use pale ink. Be briff. and inform you whether or not your improvement is probably patentable; and if so, give you the necessary enables us to decide quickly. For this advice we make nocharge. All persons who desire to cunsult us in re-
gard to obtaining patents are cordially invited to do so. We shall be happy to sce them in person at our
office, or to advi.se them by letter. In all cases, they may expect from us a carcful consideration of their plans, an honest opinion, and a prompt reply.
 confidentral?
 ractice of respect, based upon a most extensive numbered by解d every town and city in the Union. Ilease to make inquiry about us. Such a thing as the betrayal
of a client's interests, when committed to our professional care, never has occurred. and is not likely to oc-
cur. An business and communications intrusted to us Address MUNN \& CO.,
Blishers of the Scientific Americ 37 Park Row New Yor

[^0]
 NEW PATREMT LAM

Spain, Cuba, Porto Rico, etc.
 States may
conditions.
The Spanish Patent covers SPAIN, and all the Spanish Colonies, including CUBA, Puerto Rico, etc. Total cost
of obtaining the Patent, $\$ 100$. Duration of the Patent 20 years.
in obtaining Spanite the transaction of our busines special agency at No. 4 Soldado, Madrld.
Further particulars, with Synopsis of

MIUNTIN de CO

UPRIGHT DRILLS Siximit

H.BICKFORD Cincinnctie

MillStones and Corn Mills.
 WOOD-WORIING MACHINERY

Mannfacturers, Read This! Read This!! Adjustable Safety Stilts. A A Govelchty for thence to Make Money.
 Send stamp for iliustrated circular.

ITift
dinn nampapiptrit th U United states an

 Scienific maniexan Smplenean Back Volumes and Back Numbers.

 Handsomely Pound

[^1]

Asbestos Liquid Paints, Coatings, Cements, Boiler Coverings, \&c.
H. W.JOHNS M'F'G CO., 87 Maiden Lane, New York

Pyrometers. For shann heat of PORTLAND CEMENT,

Steam Enines Boilers ANE Cifcutan siw Milits

 LAP WELDED CHARCOAL IRON
 READIVG MRON WORES, Phila. ICE ATT 1.00 PER TON.
The PICTET ARTIFICIAL ICE CO.
Room 51, Coal and Iron Exchenange, P. o. Box sos3. N. y J. LLOYD HAIGH,

\qquad
Holly's Improved Water Works.

 MACHINISTS' TOOLS.Lathes, Planers, Drills, \&c.

Steel Castings,

From \% to 10.000 bes weipht true to pattern, osud an
solid, of unequaled strength tou ghness and duralilit

> FRIEDMANN'S PATENT

INJENTORS and FJECTORS BOILER FEEDERS And Water Conveyors WA मीनी NEW YORK
Also Patent Oilers and Lubricators

\qquad

\qquad

CAMERON Steam Pumps For Mines, Blast Furnaces, Rolling

POINTS OF A GOOD HORSE. BEING

 etc. An Sc
tained in sit
ne3, price 10
newsealers.

CONDIT,HANSON \& VAN WINKLE Sole Agents NBZ

BOSTON ELASTIC FABRIC CO.,
inda Rubber goods.

Woodward Steam Pumps and Fire Engines.

NEWSPERFECT FILE

 MUNN \& $\mathbf{C O}$.

THE TANITE CO., EMERY WHEELS AND CRIADERS.

JOSEPH C. TODD,

 J. C. $\cdot \mathbf{T O D D}$
"The 1876 Injector."

 94 fallonti, New ion

MARYLAND INSTITUTE

 MARKS, ETC.
Messrs. Munn \& Co., in connection with the publicaion of the Scientific American, continue to examine Improvements, and to act as Solicitors of Patents for
Inventors.
In this line of business they have had over thirty for the preparation of Patent Drawings, Specifications, or the preparation of Patent Drawings, Specifications,
and the Prosecution of Applications for Patents in the Cited States, Canadu, and Foreign Countries. Messrs. Trade Mark Regulations, Copyrights for Books. Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to them is done We esend free of charge, on application, a pamphlet containing further information about Patents :nd how Copyrights, Designs, Patents, Appeals, Reissues, In
fringements, Assignments, Rejected Cases, Hints on
Fhe Sale of Patents, etc.
Foreign Paterts.-We also send, free of charge, a Synopsis of Foreign l'atent Laws, showing the cost and
method of securing patents in all the principal counmethod of securing patents in all the principal coun
tries of the world. American inventors should bear in mind that, as a general rule, any invention that is valu
able to the patentee in this country is worth equally as much in England and some other foreign countries. French, and Belgian-will secure to an inventor the exUUNDRED AND FIFTY MLLIONS of the most intelligent people in the world. The facilities of business and team communication are such that patents can be ob-
tained abroad by our citizens almost as easily as at home. The expense to apply for an English patent is
T\%; German, $\$ 100$; French, $\$ 100$; Belgian, $\$ 100$; Cana dian, $\$.50$. issued from 1836 to November 26. 1sfic. can be supplied with official copies at reasonable cost, the price depending upon
specifications.
Any patent issued since November 27,1867 , at which ings and specifications, may be had by remitting to his office $\$ 1$.

mo any patent issued since 1836

When ordering copies, please to remit for the same ion, and dat state name of patentee, title of invenA pamphlet, containing full directions for obtaining United States patents sent free. A handsomely bound many engravings and tables important to every pat-
entee and mechanic, and is a useful hand book of reference for everybody. Price 25 cents, mailed free.

MUNN \& CO.,
Publishers SCIENTIFIC AMERICA.

[^0]:
 JENNINGS' WATER CLOSETS

[^1]:

