
a WeEkly Journal 0f PRactical information, art, science, mechanics, CHEMISTRy, and mandractures.

"SNYDER'S LITTLE GIANT" ENGINE.

We illustrate on this page a complete and compact small power steam engine and boiler, familiarly known as "Snyder's Little Giant."

The great variety of small industries to which motive power can be advantageously applied has produced a demand for small, convenient, and safe motors. To meet this demand with a reliable steam engine which would be complete in every detail and yet simple and safe in the hands of the inexperienced, Mr. Snyder has brought out the " Little Giant." It is a generally acknowledged fact that it is impossible to construct boilers with shells of large diameter which will be equally as safe as those of smaller diameter. For example, by doubling the diameter of a boiler, other things remaining the same, the area of its shell is doubled, and its power of resisting pressure is diminished one half. The shells used in the "Snyder". boiler are not only of small diameter, but they are made of the finest quality of wrought iron and lap welded. The almost universal practice of joining plates of boiler iron with rivets reduces the strength of the shell, so that in boilers whôse sheets are joined by a single row of rivets only 56 per cent of the strength of the iron is realized, and where the sheets are double riveted only 70 per cent of the strength of the iron is realized.
In the " Little Giant" boiler, the full strength of the iron is utilized, as no rivets are required, all of the joints being screwed together, and the joint in the shell being lap welded. The boiler is suspended over the fire, and the heat freely and uniformly circulates on all sides of it. There being no water legs or water spaces below the bottom head or cap, if through carelessness the water should be allowed to get entirely out of the boiler, the only result would be a possible damage to the lower head or cap. We are informed by Mr. Snyder that all the materials used in the construction of these boilers are tested by hy draulic pressure before it is put together, thus insuring its fitness for use before labor is expended on it.
These boilers are provided with fusible or safety plugs, which are arranged so that no sediment or scale can form on the alloy to prevent the fusion of the plug when the water becomes low.
The alloy or soft metal is contained in the pipe about half way up from the bottom of the boiler, and above it a continuation of the same pipe extends upward beyond the water level with a siphon shaped top, so that the water never comes in contact with the metal and there is no chance of scale forming over it. This boiler has a double or air jacketed casing, through which the air passes to the ash pit. This arrangement supplies the fire with hot air and adds greatly to the economy of greally while the los of he fuel, while the loss of heat by radiation is prevented.
The air supply is controlled by a damper band, shown in the engraving at top of boiler. The boiler has a novel sectional grate, safety valve, blow-off cock, and check valve. The steam check valve. The steam gauge, and glass water gauge, and three brass gauge cocks are secured to a water column which is attached to boiler with two unions and may be easily removed for shipping.
The engine is of the horizontal type. As a large majority of those who purchase small engines are not experienced or professional engineers, and the extent of their
business is not sufficient to warrant the employment of one who is, it has been the aim of the builder of the "Little Giant" to avoid all superfluous parts and fittings to adapt it to the use of those not especially skilled in machinery. These engines have an improved circular flat slide valve which is held in a ring or buckle in which it is perfectly free to revolve during its travel, thus guaranteeing uniform lubrication and wearing a perfect mat.
The pistons have double metallic packing rings and are self adjusting. The pump is of the locomotive pattern and is driven by an eccentric direct from the main shaft; the plunger is made of brass and works in a brass gland, thus preventing corrosion. The slides are V -shaped and fit into correspondingly shaped recesses in the cross head, which admits of taking up all wear. Both the cross head and crank ends of the connecting rod are provided with gibs and keys for taking up wear. An oil well is cast in the crank strap, which carries a full half day's supply of oil and only feeds it to the crank pin when the engine is in motion. Brass oil cups are furnished on all other bearings, and a nicely designed lubricating cup is placed on the steam chest
The pillow blocks are lined with anti-friction metal. Steel is used in all parts where it will increase the durability and efficiency of the engine. All working parts and the cylinder heads are polished. The cylinder is incased in black walnut and ash. The bolts and screw heads are highly polished and are of a standard size, so that should one be lost or broken it can be easily replaced.
The sides and top of base to which the engine is secured
are made of plank which are bolted to flanged iron ends.

SNYDER'S IITTLE GIANT ENGINE.

This foundation is painted to closely resemble brickwork. The feed water heater passes through and is supported by the foundation, and the exhaust steam from the cylinder is conveyed through the heater. The feed water before entering the boiler is forced by the engine pump through from 30 to 40 feet (according to size of engine) of steam pipe, which is contained in the heater chamber and is surrounded by the hot steam, thereby heating it to nearly the boiling point before it enters the boilers. It is stated that from 10 to 15 per cent of fuel is saved by the use of this heater.
The celebrated "Pickering Governors" are exclusively used on these engines, and are run by a $3 / 4$ " flat belt. Mr. Snyder, we are informed, has invariably made it a rule to putevery engine up at his works and test them under steam with a friction brake and indicator. All parts of the engine are made interchangeable, so that they may at any time be replaced. These engines and boilers are now made from one to six horse power, at very reasonable prices. For further particulars address Mr. Ward B. Snyder, the paten tee of this boiler and the proprietor of the " Little Giant" engine works, at 94 Fulton street, New York city.

New Mechanical Inventions.

An improved Actuating Mechanism for Calendar Clocks has been patented by William S. Shirk, of Anderson, Indiana, which consists in a novel arrangement, in the time movement of a calendarclock, of a system of levers, springs, pawls, and ratchets, whereby the accurate movements of the ndicating hands are effectually secured; and in certain de tails of construction which render the calendar more reliable in its operation.
its operation.

Oregon, has patented an im proved Turning Chisel, which has an arm extending from the front point of turning chisel over the timber being turned. It forms a rest for the chisel while being used, and, being bluntly rounded at the point, forms a guard against the chisel entering or gouging in the timber being turned.
Ephraim M. Kimball, of Toledo, Ohio, has patented an Appliance for Flat Filing, by which plain surfaces on small work may be quickly and economically produced. It consists in a plain flat plate, which is secured to the stationary jaw of a vise, and in an adjustable head or guide, which is secured to the end of the file.
James Brett and Bethune Perry, of Albion, Cal., have patented an improved Saw Mill Head Block, which consists in a combination of set wheels, provided with notch es for receiving a detent, and with ratchet wheels and levers for disengaging the detents and moving the set wheels. It also consists in an arrangement of gearing by means of which the screw of the head block may be moved independently of the set wheels.
John W. Cleland, of Nevada, Missouri, is the inventor of an improved Wind Engine, which consists in a vertical wheel having curved vanes or blades that are connected with a governor carried by the wheel shaft. The supply of wind to the wheel is controlled by hinged deflectors, and the wind on entering the wheel acts on the outer sur: face of the vanes on one side of the wheel and upon the inner surface of the vanes on the other side of the wheel. The force of the wind is thus twice utilized.

§rientifir mexican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
NO. 3 Y PARK ROW, NEW YORK.

O. D. NUN.

A. e. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included. $\begin{aligned} & \text { O. } \\ & \text { One copy, six months, postage included }\end{aligned}$

The Scientific American Supplement

VOL. XXXIX., No. 5. [New Series.] Thirty-third Year. NEW FORK, SATURDAY, AUGUST 3, 1878.

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT

 INO. 135,For the Week ending August 3, 1878.

H. ${ }^{\text {Tin }}$

 St

SMOKE AND SPARKS.

The recently published advertisement of the Metropolitan elevated railroad of New York city, for some device for preventing the escape of sparks from their locomotives, touches a matter interesting as welt to all railroads, and one whose successful solution would be of more value than any other improvement now sought by them. It is well known that the " spark tax" in the shape of damages for destroying fences, crops, buildings, bridges, snow sheds, etc., is no light burden to many of our roads, though it may not be as well understood that these sparks are the product of such imperfect combustion that thereby a large per age of the calorific value of the coal is lost.
It is surprising when one considers the importance of a remedy that its discovery has been so long delayed, and that it was left for a small city road to be the first to publicly advertise its necessity, notwithstanding the fact that there is scarcely a railroad in the country, or indeed any where, to which the remedy would not be of greater money value.
It can hardly be fear of direct pecuniary damage which may arise from escaping sparks that moves the Metropolt tan Company to an attempt to subdue them, for loss in this way would never be excessive in a city with such a come tent fire department as ours; it must be the force of concen rated public opinion alone-possible and efficient only in large communities-which, though it quietly endures time honored nuisances (a cause of congratulation to the Boards of Health and Police), is now aroused and excited by the deloment of a new one.
Deflecting arches in the fire boxes, spark arresters in and on the smoke stacks, designs for wetting down, and designs for returning the sparks to the fire box, and grates of vari ous kinds have all fallen short of the purpose in a greater or lesser degree, and still the search for something suitable goes on.
In his treatise on the steam engine Mr. Bourne, who has almost exhaustively studied, investigated, and experimented in the matter, says: "Nearly all the expedients hitherto inproduced for burning smoke. (this includes the fine cinders) in locomotives are adaptations of the devices heretofore in use for burning smoke in land engine furnaces. But the rapid combustion which a locomotive boiler requires renders the burning of smoke by any of these ancient devices a matter of very difficult achievement, and it seems to be india pensable that a method founded on a totally new principle should be introduced. It appears to us that the fuel and air must be fed in simultaneously, and the most feasible way of accomplishing this object seems to be in reducing the coal to dust and blowing it into a chamber lined with fire brick: so that the coal dust may be ignited by coming in contact with red hot surfaces after having been mingled with the quantity of air necessary for combustion. This, however, in common with other improvements upon the locomolive, requires to be worked out."
There is no question but the majority of the mechanical designs we have above enumerated are ingenious and useful, but they have not been evolved in recognition of the undoubtedly correct principle laid down by Bourne, and hen have failed to satisfy the conditions.
Doubtless the policy which many of the railroad corporatons have of late years pursued toward inventors has had much to do with the continuance of this costly nuisance, for it is notorious that inventors, who are rarely shrewd men of business, fare worse in the hands of these companies than they do with any others with whom they have dealings. The acknowledged necessity of the Metropolitan road will naturally bring many devices before the public, as well as to the notice of the company, with more or less well founded claims to investigation; and it is to be hoped that our natonal ingenuity will not be taxed in vain; that to our invent or will belong the credit of a final settlement of the question. Another objectionable feature, and the cause of well grounded complaint in addition to the smoke and flying inders, is the offensive sulphurous odor from the burning coal. Suggestive, at least, of the solutions of these difficulties, if not fully satisfying all the required conditions, are two articles which we have given in recent numbers of this jouranal, the one entitled "Our Iron Industry," and the other "Preparation of Iron Fuels;" in these we called attention, among other matters, to some of the advantages arising from the use of pulverized fuel, and to the economical preparatimon of coal in a manner that would prevent smoke and surphr fumes, and it seems highly probable that a combinatin of these devices, or some modification of them per haps, may meet the present exigencies, and that their economies would more than compensate for the expense of application.

COSTS OF SILVER AMALGAMATION

From several of the prominent Nevada silver mines we learn that the cost of the wear per ton of ordinary silver ore upon the amalgamating pans in general use varies from 60 to 65 cents, and that from 1 to $1 \frac{1}{4}$ pound of quicksilver per ton is lost in slimes and flouring, each pound carrying off with it about $\$ 1$ worth of silver. In some instances the pans are supplemented by inclined tables, covered with quicksilver-coated copper, which arrest a portion of the slimes.
It seems to us that something better than even this combenation could be devised, which should cost less and be more effective and economical in its working-something partaning of the nature of each. Let us imagine, for instance, two
or more copper lined troughs, set side by side and connect ing near the ends, each furnished with a copper bladed screw made to revolve therein close to the bottom; and that both the lining and blades be coated with mercury, a quantity of which shall also be placed in the bottom of the troughs. If the ore were reduced to a sufficient fineness and run into this amalgamator it would be pushed to and fro, throughout its length, again and again, until every particle had been repeatedly brought in contact with the revolving blades, the lining and the quicksilver lying in the bottom. No accumutation of slimes, no flouring could occur under these condi ions, we think; nor would the wear on the machine or the power required to run it approach that of the present amalgamator.
Perhaps for this the ore should be more finely powdered than for the pans, which of themselves do a great deal of grinding; but as finer pulverization is coming more in vogue, and in most instances much to the advantage of the innova tors, other styles of amalgamators to suit the new conditions must naturally make their appearance.

ADVERTISES FOR FOREIGN TRADE

'he course of trade of late years has pretty thoroughly established two things, namely, that American manufactures are well fitted to compete with those of other nations in the markets of the world, and that our future home prosperity must hinge very largely on our ability to extend our foreign trade. If we had today an assured foreign market for a large part of the products which our factories are capable of turning out, the home demand for the same goods would be straightway increased enormously. Many of our mills are idle not because they represent so much productive power beyond the national capacity to consume, but because a large proportion of our consumers are on short allowances, for lack of employment, or other reasons. The moment they are set to work their expenditures will increase; and many useful industries, now languishing for lack of a market, would revive and flourish on the increased home trade. It would appear, however, that the initiative must come from foreign orders. Accordingly it is at once a sound financial policy and a patriotic duty on the part of our great manafacturers to make their wares known in the widest manner possible. That many of them appreciate the policy is evi dent from the advertising pages of the numerous export trade journals that come to our table. That the same line of evidence is not overlooked abroad is plainly shown in the comments of the British Ironmonger on the vigor and determination with which our export trade journals have entered the fields of trade so long all but monopolized by the British. The Ironmonger notes also the well displayed and handsome advertisements by which our manufacturers make known their products. In the matter of engraved illustrations the American advertisements are immensely more attractive than those of the British, and already British agents abroad are sending home the complaint that better cuts and better printing must be employed by their superiors, or else it is useless to expect success in competition with American artisans and artists.
The American papers specially devoted to the advancemont of foreign trade are the New York Times, Spanish edition; Journal of Commerce, Spanish and Portuguese diion; Frank Leslie's Spanish and Portuguese edition; Philadelphic North American, Spanish edition; Boston Journal of Commerce, export edition; Iron Age, monthly; El Espejo, Spanish; the American Mail, the American Exporter, and, we may add, the Scientific American export edition.
To some this list may seem out of proportion to the amount of our foreign trade. We do not think so; it is certainly not out of proportion to the trade they will help to build up. The world is wide, and, as yet, comparatively few of its inhabitants have learned how many things Amerinca can supply to meet their various needs. As fast as the information is conveyed to them the demand for American products will increase, and trade will follow. That wide awake merchants and manufacturers appreciate these facts is clear from the promptness with which they avail themselves of the new opportunity to reach the outside world afforded in the Scientific American export edition. The second issue, published this week, carries out the advertisements of over one hundred of our leading houses. We may say also, without boasting, that no paper ever set out on a like errand so generously freighted with fresh, timely, and useful information.

Labor in France.

The Consul at Nice reports that the common labor of his district on roads, buildings, etc., is monopolized by the industrious and frugal Piedmontese, who earn from 30 to 38 cents a day. Agricultural laborers are few in number, and earn from 47 to 57 cents a day. The small farms are mostly tilled by the peasants, who own them or work them on shares. Mechanical labor is comparatively high. Plumbers, coopers, and upholsterers get from $\$ 1.20$ to $\$ 1.56$ a day ; carventers and smiths from 88 to 98 cents; journeyman tailors as high as $\$ 1.56$; compositors, shoemakers, and masons from 80 cents to $\$ 1$ per day. The cost of living to the ordinary laborer is from 30 to 38 cents daily. His food is Indian meal, bread, vegetables, and wine. Meat is seldom eaten. Meal costs 3 cents a pound, and wine 6 cents a bottle. Wages have not materially varied for skilled artisans in the last five years. The export trade of Nice is exclusively confined to oils, perfumery, fruit, and flowers, and is in a prosperous state, increasing rather than diminishing.

FRENCH PAVEMENTS

There are few things that more forcibly strike a stranger
in Paris than the general excellence of the paving of it is true, that the granite block paving, often called the "Belgian syscalled the "Belgian system," was abandoned to
a large extent in Paris because the blocks furnish ed a convenient material for the barricades with which the insurgent pop ulation of the city occa sionally amuse themselves and bother their rulers. There yet remains a large amount of block pave ment, and the -macadam ized road is still common So far as these are con cerned there is nothing particular to say except that they are kept in excellent condition by re pairing whenever a por tion begins to grow faulty and by sweeping regularly every night and watering every day when required and very often when there seems to be no necessity The sidewalks are swept very early, and the gutters are all thoroughly washed out and swept clean with

Fig. 1.-SYSTEM OF LAYING DOWN THE ASPIIALTE COMPRIME.
illustration shows a smaller gang of men, but I give the actual number observed, as the proportion is a part of the accuracy of description.
Carts brought the various materials from the river and dumped them alongside where they were needed, on the
while.
The bed of gravel found beneath the stone paving was con
reason for taking up half at a time is manifest, as the stree is a busy one and could not be entirely spared even for while. of the undis urbed half of the street. The water was obtained by turning on a hydrant and damming, flooding the gutter on the side of the street just mentioned.
The work now proceeds as follows: A man dumps wheelbarrow load of sand and another spreads t out to 4 feet diameter A bag of 3 pecks of lime is emptied on to it and spread evenly. On this 3 barrow oads of silicious gravel are mptied, and the heap is rued up into conical form by shoveling from the foot of the heap and throwing it on to the apex. The materials (in the case ob served) are damp, and the ime clings to the gravel where it touches. The heap is torn down and built up in a spot alongside, the ef ect being to mix the maerials of three different finenesses. The heap is presently flattened out to 6 feet diameter and a bucket of water distribut
These matters cannot be overlooked, but they involve to be described consisting merely of placing a layer of con- ed over it. As the middle is the wettest a cone is made at questions of taste, care, and the economic administration of crete upon it to form a bed for the asphalt. There are but the center, so that a second bucket of water reaches the outpublic funds, perhaps a more important question to us than three materials used and but three tools. The materials are: side ring of the material. The conical heap is again con most of the matters which occupy the time of Congress. It Gravel screenings or sand; a silicious gravel in pieces, say, structed, and about a quarter of a bucket of water splashed is not of them that I propose to write, but of the asphalt from $1 / 2$ inch to 3 inches in diameter; a gray hydraulic lime, by the hand upon the outside-the outlying portions of the pavements which are fast becoming the principal mode of paving in the city. The substitution of asphalt for blocks is going on all the time.
There are several companies of Paris which execute this work by contract, perhaps the largest being the "Compagnie Générale des Asphaltes de France," which claims to have the sole concession for this country of the products of the mines of Seyssel, and of the Val de Travers in Switzerland.
The asphalt paving is of two kinds: the asphalte comprimé, that is, beaten and compacted with hot rammers; and the asphalte coulé, in which the material is spread with trowels.

We may consider them in this order. This company has laid their asphalte comprimé in 158 of the streets and places of Paris, between 1855 and 1877. This shows the period within which the great change in the system of paving has been effected. Be

ginning under the Second Empire, it is still in progress.
The asphalte comprimé is especially employed around the churches, schools, theaters, concert halls, banks, and public buildings, on account of its freedom from noise; and generally for the additional reasons of cleanliness
in the places mentioned and also in the main streets of the city. In the fashionable drives macadam is preferred on account of its freedom from slipperiness, and on the quays and warehousing quarters of the city the block system yet remains a favorite.

In the preparation of a good concrete foundation for asphalt pavement, as practiced in Paris-and the lesson cannot be as well learned elsewhere-four things are necessary: 1. Materials of good quality. 2. Used in proper quantity. 3. Mixed energetically; and 4. Allowed proper time to consolidate.

Allowed proper time to consolidate. the second and fourth may not be inflexible, as a difference in the quality of articles procurable in different countries or cities may require special treatment in the working of it.
A general idea of the method adopted in Paris may be gained from an observation of the process as pursued in the Rue Scribe, where I observed them to be taking up one half of the granite block pavement, from the middle of the street to the spread mass as it lay previ ously upon the ground.

It rests thus a certain time, but a few minutes, and then is torn down, beginning at one side and throwing it, shovelful by shovelful, into a new location, a man with the three pronged rake, like a manure hook, working it energetically and unceasingly as each new shovelful arrives at the heap. This mixing is a very important matter, as it insures that every particle of silicious rock shall be covered with the lime, and the heap now is, instead of the yellow of the flint gravel, a uniform gray. The water is only suf ficient to cause the parts to adbere, and some little (without attempting to trace the chemical reactions) lost as such in the attack of the lime on the silex and in slaking.
The heap is ready in a few minutes to be removed in bar rows and dumped on the line of working, where it is spread with shovels and with a sec ond one of the three tined
Fig. 3.-LAYING DOWN THE ASPIALLE coUle. usually Portland cement. The tools are: Pointed shovels; \mid rakes. Here the eye of the master is called for, and he gives two rakes with long bent prongs two flat beaters, about 18 it the final shape, so far as the shovels are concerned, due inches square and with handles set in obliquely. To this regard being paid to the gauge pegs.
may be added six wheelbarrows, holding about a bushe
A man with the flat beater compacts and levels the surface by his blows, and the concrete is then surfaced with an inch
the gutter ston

Fig. 4.-SECTION OF SLDE WORK.-TROTTOIR a, curb; b, street; c, asphalt; d, mortar; e, béton.

a, asphalt: b, mortar; c, béton of Portland cement and gravel; d, curbstone.
thick coat of hydraulic lime mortar laid on with a trowel, and on this a coat of loose sand, Twenty men formed the gang under a foreman, who worked which roughens it and forms a bond for the asphalt, which diligently in giving the final shape to the surface of the con- is afterward laid hot upon it, rolled and beaten. Of this rete, preserving the proper camber of the street, gauge pegs presently. The sand appears to become partially imbedtops representing the future surface of the asphalt. The asphalt. If the final asphalt were laid upon too smooth
a surface it would be apt to fail in ad herence and to flake off. Its mer adhesive quallty is aided by a mechan ical bind to the particles of sand which are, so to speak, riveted in the mortar nd it in the concrete
I have been thus particular in stating the matter in order that persons dis posed to try the experiment may have some to data save them time in experi menting.
The result of the carefully executed work would repay any city or corpora tion which should be in need of smooth clean, and easily repaired ways.
After a few days, the foundation, having been carefully guarded from disturbance by travel, having become fully set, the asphalt compound is brought hot in carts, and being trans ferred to wheelbarrows, dumped upon the surface of the foundation concrete and spread by rakes to a thickness of about 4 inches. It is then lightly pounded by a very hot iron rammer with a circular face 10 inches broad. A fur nace is kept on the sidewalk for heating the rammer. A second ramming with ha rammer then takes place, condensing the asphalt to but little more than one half its thickness apparently, and causing its intricate union with the rough surface of the layer beneath.
The final smoothing is given by a hot iron block, which is

Fig. b.-Terrace of chatead de chambord
a, asphalt; b, mortar; c, joists; d, masonry filling.

Fig. 10.-COVERING FOR CASEmates
(Port de Tourneville, Hatvie.)

Fig. 11.-SILO FOR BEETS, PULP, OR GRALN

Fig. 7.-BRIDGE OVER THE SEINE AT ELBEUF.

(Bridge over the Loire near Tonfs.)
pushed and pulled over the surface and burnishes down the elevations and rough marks of the pounders.
The asphalte coule is laid with a trowel upon the concrete basis and is not pounded, as in the case of the asphalte comprimé. It is used for sidewalks, platforms, and waiting saloons of railways, prisons, skating rinks, baths, warehouses, breweries, and manufactories of all kinds.

To make a square meter of surface, 15 millimeters thick, it is necessary to use $11 / 2$ kilo. of bituminous minerals, 23 to
being poured into the joints and fashioned by the rule and jointing iron. The prices of these tiles are as follows:

Thickness, metric.	Weight per square meter, kilos.	Price per square meter, francs.
0.015	36	2.50
0.020	48	3.35.
0.030	772	5.00
0.040	96	6.70
0.045	108	7.50
0.050	120	8.35

The bridge over the Seine at Elbeuf has 1,200 square meters of asphalte com. prime surface laid upon concrete above the joists and iron arches. It affords another instance of the mode of application, the joists being supported upon the iron trusses.
The foundation of bitumen or asphalt when properly laid is proof against permeation by water or vermin, and is much used in the manner indicated.
The coating is of mastic mixed with sand and applied hot over a surface of mortar of silicious sand and hydraulic lime.
Cellars and caves (silos are much used in France for storing roots and grain. It is the old Eastern and Southern practice, and seems to have been adopted from abroad. At St. Ouen, near Paris, are immense subterranean storehouses for grain, where it may be kept undamaged for years.
Corn fodder (maize) is put away in large quantities, in silos as much as 60 feet long, being packed in the covered ways in the buildings, the transverse pasages, and the walks under the verandas are floored with this material marked off into squares so as to resemble tiles spring or marble slabs.
also wrought upinto the form of til id upon

Fig. 8.-JOISTS AND FLOOR UPON A FOUNDATION OF BITUMEN AND CONCRETE

Fig. 12.-WALL CONSTRUCTED IN THE WATER.

24 kilos. of Seyssel mastic, and 13 to 15 kilos. of washed, dried, and sifted gravel. $1,200,000$ square meters of asphalte coulé have been laid down in Paris by this firm.
A large portion of the floor area in the Exhibition building, Champ de Mars, is covered with this material. Many for the passage of loaded vehicles.
for the driveways of hotels and paving of courts serving
The two lighter descriptions are used for walks, stables of the smaller animals, thrashing floors, coach houses. The medium thicknesses for stable and cow houses. The thick
e uses to which asphalt is applied in France, and especally in Paris, and may be useful to some who read your valuable paper.
Paris, June 28, 1878.

Edward H. Knight.

EMERY GRINDING MACHINERY AT THE PARIS EXHIBITION.

EMERY GRINDING MACHINERY.

We take from Engineering the accompanying engravings of Handyside's pulley grinding machine, made by Messrs. Thomson, Sterne \& Co., of Glasgow.
This machine is capable of grinding pulleys with either straight or curved rims, and all the belt pulleys of Messrs. Thomson, Sterne \& Co.'s machines are finished by it. Re ferring to our engraving, it will be seen that the machine consists of a substantial frame on which are mounted two heads, the one carrying an emery wheel and the other a mandrel on which the pulley to be operated upon can be fixed. The first mentioned head can be shifted to and fro along its bed, so as to enable the emery wheel to be brought to bear upon pulleys of different sizes, and, as will be seen from our left hand view, the driving belt arrangements are such that the tension of the belt which gives motion to the emery wheel is not altered by the head being shifted on the bed.

The second frame or head which carries the pulley to be operated upon has more complicated movements. Thus in the first place the frame carrying the mandrel is adjustable toward or from the emery wheel, so as to bring the center line of the mandrel either directly over the center of the base, or at different distances from that center; secondly, the casting on which the mandrel frame immediately rests is capable of being moved to and fro at right angles to the plane in which the emery wheel revolves; and, thirdly, the base which carries this slide has cast on it a strong hollow vertical cylindrical center to which a reciprocating rotary motion can be communicated. Referring to the left hand view, it will be seen that the transverse movement of the pulley carrying frame is imparted by a connecting rod coupled to an adjustable crank pin in a disk crank at the upper end of a short vertical shaft, this shaft carrying a worm wheel into which a driving worm engages. By this arrangement the pulley to be ground can be slowly traversed to and fro across the emery wheel. At the lower end of the vertical shaft just mentioned is another disk crank with an adjustable pin which can be coupled by a suitable rod with an arm on the bottom of the vertical center with which, as we have already stated, the base of the pulley carrying frame is provided. By the use of this crank alone, or by its employment in conjunction with the other crank, combined with the power of adjustment afforded by the upper side of the pulley carrying frame, such a motion is given to the pulley as to impart to its rim any desired con vexity.
The right hand view shows clearly the manner in which the pulley under treatment is mounted on its mandrel, and also the arrangement of the gear by which a slow revolving movement is imparted to the latter so as to bring all parts
of the pulley rim successively under the action of the em ery wheel. The arrangement of the belt gear for maintaining a proper tension on the belt, while leaving the pulley carrying frame free to move, will be readily understood from an inspection of our engraving without special explanation. One of the great advantages of the machine is that it enables pulleys to be cast much lighter and more nearly to their finished size than would be possible if they had to be turned in a lathe, while when once set it is perfectly auto matic in its action.

NOTES OF PATENT OFFICE DECISIONS

LABELS AND TRADE MARKS.
Parker filed his application for the registration of a label, which he described as consisting of " the figure of a boy, and the words 'Scratch my back,' surrounded by a border of parallel lines, as shown, the figure and the words being formed of numerous squares, printed, and arranged as represented. This label is for use on cards, or sheets of abrasive paper or cloth, and as a pattern for sample work, to be wrought on the squares, in order to so finish the label when desirable. The cards thus labeled are intended for use in firing friction matches."
The question was, Was it a label, trade mark, or design, or should it be copyrighted? One definition given by Webster of a label is about what the Patent Office regards as being he proper matter to be registered as such: "A narrow strip of silk, paper, parchment, etc., affixed to anything, denoting its contents, ownership, and the like, as the label of a bottle or a package." So far as this definition includes fanciful and arbitrary matter, which may be used for the sole and independent purpose of a trade mark, to denote origin or ownership, it is not applicable to matters registered as labels.
Registrable labels or prints and trade marks are recognized by the terms of the law and the decisions of the courts as applicable only to some kind of merchandise; labels as giv ing the names of the manufacturers, place of manufacture, nature or quality of goods, directions for their use, and the like; and a trade mark as some arbitrary symbol to distinguish the same from those goods of a similar character made by other persons. The courts have always sustained trade marks and labels on precisely the same principles, and hey uniformly discuss these matters as having been affixed, in some way, to goods, as merchandise, and not as constituting the merchandise itself. Thus in Moorman vs. Hodge (2 Sawyer, 78) the learned judge, in passing upon an alleged trade mark, stated that he had examined with care a large number of cases involving infringement of trade marks, including all the recent cases which he had been able to find bearing upon the question, and that he had found no case in
which the use of an article or package containing it had been enjoined, unless there was some symbol, word, letter or form impressed or affixed to the article, and which, con sidered separately from the article or package, was used as the trade mark.
Now the matter which Parker sought to register was not a label, print, or a trade mark affixed to goods or merchandise, to denote ownership, or the character of the goods, and the like, but was the article itself-a fanciful pattern wrought, or to be wrought, into or upon the article-forming part of the article, and giving to it a certain value, by way of a new appearance, like a new pattern worked upon a slipper. It was not designed to be published as a work of fine art, and therefore was not the subject of copyright.
Summing up the case, therefore, so far as above discussed, it was apparent that the subject matter of Parker's application was not a label, print, or trade mark, or the subject of copyright.
The remaining question to consider was whether the deign act applied to the case. The law relating to design provides for the granting of patents to those who, among other things, have invented and produced " any new and original impression, ornament, pattern, print, or picture to be printed, painted, cast, or otherwise placed on, or worked nto, any article." The Supreme Court of the United States have held that the object of this act was to extend the protection of a patent to the ingenious producer of new and original appearances given to manufactured articles, whereby heir salable value was enhanced, and the demand for them enlarged. This appearance may be the result of the peculiarity of configuration or of ornament alone, or of both conjointly.
The Commissioner therefore held that in view of the fact that the subject matter of Parker's application was ornamental in character, and was to be incorporated into the structure of the article, to be a permanent part thereof, it came within the terms and meaning of the design act
In Hall vs. Atkinson, the testimony showed that about the ear 1840 Alexander Calhoun and David Atkinson were a firm engaged in the manufacture of plows; that they devised plow which met with great favor among the agricultural districts of the South, and this plow soon became known as the "Calhoun" plow. "Some time before 18058 Atkinson died, and his avidow took his place as a member of the firm. In 1858 Calhoun died, and his place was supplied by John Calhoun. This firm continued to supply the market with the plows in question until about the breaking out of the war in 1861, since which time Mrs. Atkinson had not been engaged either in the manufacture or sale of plows; but the firm of which she was a member leased the right to manu facture these plows, and to use the brand of "Calhoun \&

Atkinson" (the designation stamped upon the plows, although the same were commonly known as the "Calhoun plow "), to H. B. \& B., who were succeeded by the firms of B. B. \& Co., W. W. B. \& Co., and finally by C. \& P. From the time of giving up their lease in 1867, H. B. \& B., now the firm of James H. Hall \& Co., one of the parties to the interference, continued, without any special lease or permis sion, the manufacture and sale of the "Calhoun plow," and branded their plows in that manner without any opposition from Mrs. Atkinson or her lessees. The evidence further showed that not only this firm but several other business firms in various places had manufactured, without any substantial opposition, plows known by the same name, namely, the "Calhoun" plow. The said Hall \& Co. and also Mrs. Atkinson filed applications for the registration as a trade mark of the word "Calhoun" as applied to plows. Th acting Commissioner in refusing the registration held that the evidence on both sides clearly showed that the name had ceased todenote origin or ownership of any particular per son or firm, but was used extensively by firms to designate a particular plow of a peculiar shape, and known to the public as the "Calhoun" plow, and that hence, having lost its office of pointing out distinctively the origin or ownership of the article to which it was affixed, and having become a generic term in common use as such, it could not be re-adopted by the originalowners thereof, or monopolized by any one firm or person.

Iron Direct.

From the Bulletin du Musée de l'Industrie Belge we find an article on the Blair direct process of making steel and iron as improved by Mr. Blair and perfected (?) by Mr. Ireland. The main features of the process were the feeding of the broken ore and coal into an upright cylinder and applying heat externally, and äs the ore became reduced to metal-de oxidized-it was discharged continuously into an juron pro longation of the cylinder which was surrounded by water to insure rapid cooling. The improvements consist mainly in mixing a small percentage of broken carbonate of lime with the ore and coal in the cylinder, and passing oxide of carbon through and over the charge, thereby gaining about 50 per cent in operating time, and in dividing the iron prolongation feach cylinder into-several small ones for the sake of still quicker cooling, and thus lessening the chances of oxidation of the metallic sponge.
A Siemens, Ponsard, or other gas generator is used, and Mr. Ireland, it is said, has worked successfully when using as fuel a poor lignite containing a good deal of pyrites, and without contaminating the sponge, an experience which seems to contradict that of others who have worked in the same line.
Other economical modifications have been made, but the most prominent features-the fundamental principles of the process-are unchanged, and herein, we think, lies the mistake, for if our judgment of the causes of the many failures to attain the object sought by Messrs. Blair and Ireland is correct, the "direct process" can never be a practical mercantile success until by some plan the ore, coal, and reagents are powdered together, so that the reduction of the ore and its required carbonization may be equal and easily regulated throughout each particle, while further economies in time nd fuel are effected.

Cemmunitatious

Correcting Leading Screws

To the Editor of the Scientific American
Noticing in your issue of June 15, 1878, page 373, a method of correcting a leading screw, I was reminded of a plan which Iemployed some years ago in a similar case. I wished to cut a number of new leading screws having a pitch of 6 threads to the inch. The lathe which I was to use had a leading screw of the same nominal pitch, but on measuring 3 feet of the same I found it too short by $\frac{1}{32}$ of an inch in that length. To make the correction, I proposed to increase the speed of the screw sufficiently to compensate for its deficiency in length. Now ${ }_{3}^{12}$ of an inch in 3 feet would equal $\frac{1}{82} \times{ }_{3}{ }^{16}$ $={ }_{1152}^{1}$ of the whole length; that is, each thread was too short by $_{1152}^{1152}$ of itself. Consequently if the leading screw should make $1_{1152}^{15}=1153$ turns to one turn of the screw to be cut, the proper correction would be made.
In order to realize this small ratio with wheels of convenient size I used two pairs of wheels arranged differentially, so that the first pair should gain while the second lost, the former preponderating sufficiently to make the desired correction. The sizes of the wheels were found as follows: Finding $\sqrt{\sqrt{1152}}={ }_{34}^{1}$ nearly, I made two wheels of 34 teeth, one of 33 , and one of 35 . A 34 tooth wheel is put upon the lathe spindle or "stud," and the 35 tooth on the leading screw. A double "intermediate" is made by fastening the other 34 tooth and the 33 tooth together. Then the 34 on the spindle engages the 33 of the intermediate, and the 34 of the intermediate engages the 35 on the leading screw. The annexed diagram shows both the relative positions and number of teeth of the wheels:

34 lathe spindle or " stud."
 34 intermediate.

It will readily be seen that the first pair of wheels gain in the ratio ${ }_{88}^{84}$, and the second pair lose in the ratio $\frac{3}{35}$.

The product or resultant of these two ratios is $\frac{8}{83} \times \times \frac{84}{8}=\frac{115}{115}$ which is practically identical with $\frac{11}{115}$ g.
In the case of the Pratt\& Whitney lathe mentioned by Mr Rose, the error was ${ }_{8}^{1}{ }^{1}$ of an inch in 24 inches. Then ${ }_{8}^{1}{ }_{5}^{1} \times$ ${ }_{84}^{1}={ }_{80}^{1}{ }^{1} 0$, and $V_{80^{2} 40}={ }_{45}^{1}$ nearly; so the two pairs of wheels
 ${ }_{8}^{8} 041$, to six places of decimals.
As thus described, the device would be useful only for cutting screws of one pitch. To apply the same idea so as to use the ordinary change wheels for various threads, I would furnish the leading screw with a sleeve which slips over the blank end of the screw and rotates on the same. The outer end of the sleeve is fitted to receive the change wheels, while its inner end carries (in my case) a 34 tooth wheel. Close to this wheel, but fixed to the screw, is the 35 tooth. The double intermediate, $33-34$, revolves on a stud fixed to the lathe bed. The annexed diagram shows the re lative position and arrangement of the wheels and othe parts:

```
| Lathe spindle or "stud."
Sleeve-34 35-screw.
_-34 35-screw. 
```

This method seems to me simpler, both as to construction ad calculation, than the one before published.
D. L. F. Chase.

Boston, July, 1878.

Eclipse of the Sun.

To the Editor of the Scientific American:
As your paper is more in the hands of scientific people han any other, I beg to send the following for publication, trusting it may reach observers of the coming eclipse in ood time to be of service.
One phenomenon connected with total eclipses of the sun often escapes notice from the fact that, in order to its deection, the eye must have been rendered very sensitive by previous confinement to entire darkness. I refer to the pencils of light shooting off into space through the crevices n the moon's profile. In 1869 there were but three in our party, under Professor Abbe, at Sioux Falls, Dakota, who observed these rays of delicate light.

The drawing I inclose is designed to show the general effect of these rays, not their exact positions, for I made no sketch on the spot. It is always well in eclipse observations to have one or more of the party shut up in total darkness for 15 minutes at least until the instant of the sun's disappearance. I trust some may feel sufficient interest in the appearance here named to give special attention to making drawings of these threadlike rays shooting off into space, like the supporting rays of a spider's web; or rather like silver threads hanging in the heavens the marvelous brooch of a moon of jet set in a corona of purest silver.
A caution given to the writer by Professor Alexander will always be useful to those who are for the first time to observe a total eclipse of the sun-not to let the grandeur of the scene as a spectacle draw their attention from a strict performance of their duties. All who have witnessed such an eclipse will appreciate both the temptation and the necessity for guard g against it.
Philadelphia, July 16, 1878.

Microphone and Telephone.

To the Editor of the Scientiflc American:
Having put a microphone (one of Hughes' form) in cir cuit with telephone and battery, I found that when the mi crophone was submerged in a bucket of water, the ring ing of a bell in the water, or the dropping of a nail on the microphone, could be heard clearly and distinctly in the telephone; rubbing on the sides of the bucket, or a slight
commotion in the water, near the microphone, could also be heard in the telephone.
During a thunder storm recently, on putting my ear to the tephone (using earth connection), I could hear a peculiar sound, somewhat similar to small sounds transmitted through the microphone every time a current of electricity passed from the clouds to the earth, and vice versa; so that the moment the lightning indicated to the eye the passage of the urrent, the telephone indicated the same to the ear. Breaking and closing the circuit by means of a key, could be heard in the telephone, as when a battery is used, although one was connected with it. On bringing the microphone in circuit, it worked as though a battery was connected with it, but, as previously mentioned, none was used.
The latter phenomena continued throughout the following day, which was partially cloudy.

Wm. S. Aldrich.
Burlington, N. J., July 9, 1878.

The Sutro Tunnel.

The telegraph reports that on the night of July 8th, at 11 o'clock, connection was made between the Sutro Tunnel and the $\mathbf{1 , 6 5 0}$ foot level of the Savage mine; that a strong draught of air at once poured into the mine, and, heralded by this welcome breeze, Mr. Sutro himself entered from the tunnel, and a general jollification ensued. The recent agreement between the Sutro Tunnel Company and several leading Comstock mining companies, though it does not, as we understand it, include the mines now producing ore, is a very important and auspicious arrangement for all parties. Nothing is more certain, if we may judge of the future by the past, than that every mine on the Comstock will sooner or later be obliged to pass through another period of non-production and costly and difficult exploration. At the present depth and temperature of operations the Sutro Tunnel will be a necessity to every mine in that condition, and in most cases the companies will have to make terms with Mr. Sutro or abandon their work. From this time he commands the situation. We congratulate him on the triumph, which is so largely due to his individual energy and perseverance. .The only pity is that the great adit has been delayed and rendered more costly by discord among the parties who should have been most deeply interested in its success from the beginning. The mines should have controlled the tunnel. Now it looks a little as if the tunnel were destined to control the mines.
By the way, how would some of our friends among the Comstock superintendents like to peruseagain the testimony they gave on this subject, a few years ago, before the Committee on Mines and Mining of the House of Representatives? Are we dreaming, or did we not hear, on high practical authority, that the Sutro Tunnel would never be completed; that it would do no good if completed; that it would not be needed for drainage, because there was so little water in depth; that it would not assist ventilation; that ventilation was good enough, anyhow; that it could never transport ores, etc., etc.?
It is a long road still, and we will not say an easy one, to the fulfillment of all Mr. Sutro's hopes. Whether ores will be takeu through the tunnel, to be concentrated and reduced on the Carson, is a question involving many complicated interests, as well as technical difficulties. Of the latter, one of the most serious appears to be that if the tunnel proves greatly useful in ventilating the deep workings and reducing the temperature, it may not be thought advisable to impair its efficiency in this respect by choking it with trains of cars. It still remains to be determined in what way it can be made most useful, and how many functions it can successfully discharge at once. But there can be no doubt that, in one way or another, it will be the salvation of the deep workings on the Comstock lode.-Engineering and Mining Journal.

New Agricultural Inventions.

George Washington Grimes, of Bluffton, Indiana, has patented an improvement in the Combined Drill and Planter, for which letters patent No. 199,200 were granted to him January 15, 1878, which makes it more convenient, more effective, and better adapted for different kinds of planting. Hazen R. Underhill, of Derry, New Hampshire, has pat ented an improved Double Mould Board Side Hill Plow, which is so constructed as to be available in any ordinary plowing. It is easily adjusted to turn the furrow in either direction.
Charles Daniel, of Virginia, Missouri, has patented an im proved Plow Colter, that is adapted to reversible or hill side plows. It consists in a cutting wheel that is journaled in a swiveled support and attached to a sleeve on the plow beam, said sleeve being provided with a latch that engages a notched collar on the beam.
John A. Perry, of Carthage, Alabama, has patented an mproved Churning Apparatus, which may be used with ordinary churns without any change whatever in said churns. It is effective in operation, bringing the butter quickly, developing all the butter there may be in the milk, and gathering the butter so that it can be readily removed. An improved Field Roller has been patented by Thomas B. Rice, Jr., of Medora, Ill. The invention consists of a field roller made of one, two, or more independent sections, that turn by end gudgeonsin slotted holes of the supporting frame, and in chain supported center links.' Each roller section is connected by chains or belts with pulleys of the rame, so as to run lighter by the action of the chains.
Aaron Rosier, of Sussex. Wis., has patented an improved

Double Tree Clevis, which is so constructed that should one of the horses of a team get behind the other the clevises will adjust themselves automatically to give the rear horse an advantage of leverage to enable him to regain his place at the side of the other horse, when the draught again becomes equal.
Charles R. Polen, Sr., of Hazel Dell, 111., is the inventor of an improved Machine for Pulverizing the Soil to prepare it to receive seed, which is simple, convenient, and easily kept in repair. It leaves the soil level_and smooth, and in good condition to receive seed.
Ira O. Childs, of Shreve, Ohio, has patented an improved Hedge Fence, which is close and thick in its lower part, so as to prevent the passage of small animals, and which may be allowed to grow to any desired height, and may be trimmed in any shape.

NEW POWER PRESS.

We illustrate herewith a new inclined double eccentric press made by the Stiles and Parker Press Company, of Middletown, Conn. This press is designed especially for such work as the tops and bottoms of large square cans, such as are used for packing kerosene oil. Two tops o two bottoms are made at the same time, one at each side of the press. The workman puts in one piece with each hand, and, as the press is inclined, the finished articles drop out of their own gravity.
The transverse section, Fig. 2, is taken through the slide and guides, showing the manner of gibbing the slide to take up wear.
Owing to the inclination of the guides, the slide tends to wear on the rear or under side. To keep the slide always true with the bed the gibs are located on the lower side, and can be adjusted to compensate for wear by means of the set screws in the guides. The part of the slide, A, that is fitted to the ways, B, is beveled, and the triangular gib, C , is fitted to the ways and slide, and is adjusted by the set screws in the ways. This arrangement is said to work very satisfactorily.
Another important feature in this press is the device for simultaneously adjusting both pitmans.
The manufacturers state that all of the bearing surfaces are scraped to a fit, and that the workmanship and materials are of the best quality throughout. For further particulars address the manufacturers as above.

No Credit.

Thirty-seven firms, located in different parts of the oil country, and embracing all those engaged in the manufacture of oil well tools from the upper to the lower district, believing, from their vast experience and observation, that the credit system is alike disastrous to both the producer and manufacturer, announce that on and after to-day (June 10) they will sell their goods only for cash on delivery. Commenting upon this the Ti tusville Herald says: "There is no break in their ranks and no dissenting voice. The evils of the credit system are so widespread that this step had become necessary, and the cash system will work good not only to the trede, but to the producer as a class. The facility of giving and getting credit has stimulated production and offered a premium not only to financial looseness, but to actual dishonesty. The cash system will make all more conservative in their operations, and if dealers can avoid bad debts and doubtful credit, prices will in the end decline to a level consistent with legitimate business profit, and the whole country will be the gainer.'

Decline in the Price of Petroleum.

Great consternation has been caused in the oil regions of Pennsylvania by the recent decline in the price of petroleum to less than a dollar per barrel. It is generally admitted that these ruinots prices are a natural and unavoidable result of the immense overproduction, and in some quarters the belief is expre-sed that if there is no other way of curbing the desire to sink new oil wells more rapid ly than new markets can be found, a still further decline will in the end prove beneficial by warning all whom it may concern of the folly of glutting the market with excessive quantities of such a product as petroleum.-Railioay World.

New Inventions.

Silas S. Crocker and Albert Wilcox, of Clarence, Iowa have invented an improved Foot Bath for Horses, by means of which a horse's feet may be bathed while he isstanding in a stable, so as to prevent his feet from being injured by remaining too long dry.
Albert Ferguson, of Brooklyn (E. D.), N. Y., has patented an improved Sportsman's Lantern, which may be secured in a substantial manner to the hat of the sportsman, so that it will not restrict his movements, and will throw the light directly forward upon the game, leaving the sportsman in the shade.
Henry S. Cate, of Millerstown (Barnhart's Mills P. O.), Pa., has patented an improved Chair Seat and Back, which
consists in a piece of elastic rubber placed between the seat or back and the chair frame. The rubber is continuous, and gives a degree of spring that furnishes a comfortable yield ing support to the body, is more economical than springs or stuffing as usually employed, and is withal of sufficient strength to be very durable.
Abe O. Kaplan, of Cincinnati, O., is the inventor of an mproved Satchel Desk, having an interior casing that is subdivided and provided with a hinged and folding desk portion, and with sliding and swinging corner receptacles for inkstands and similar articles. The folding desk closes the casing, and is covered by the lid of the satchel, to the center bar of which the handle is applied, the lid being locked at both sides and strapped to the body of the casing by suitable ocking devices.
Williar; \therefore Bowen, of Ridgeway, Iowa, has devised an improved .i. . .ting Drum for attachment to stove pipes, which will also serve as a stove shelf. It consists in two conical end sections and a flat middle section connected with the end section by short pipes, leaving a space between the sections for articles to be heated
William M. Ryerson, of Newton, N. J., has patented an mproved Harness Saddletree, which prevents the saddle from injuring the horse's back or coming in contact with his back.

inclined double eccentric press.

bone, so that his back will not be made sore, and will be allowed to heal while he is in daily use, should it have been eviously injured.
Frederick Buehrig and Charles Buehrig, of Fort Madison, Iowa, have patented an improved Lamp Burner, that combines the advagntages of a common lamp burner with those of a night lamp, and furnishes either a flame of the usual size or a night light, admitting the changing of one light to the other in an instant without the use of a match or the other.

INCLINED DOUBLE ECCENTRIC PRESS.

protected by the chimney, so as not to be blown out when being carried about.
An improved Vapor Bath has been patented by Mrs. Carrie A. Munro, of Salt Lake City, Utah Ter. The invention consists in a box of peculiar form, having neck apertures for both the sitting and reclining postures, and containing a removable cot, a stool, and vaporizing apparatus, which cannot be clearly described without engravings.
An improvement in Chills for Hubs has been patented by Patrick H. Burns, of Indiana, Pa. This invention relates to chills for chilling the hubs of wheels, more particularly the ubs of car wheels, such as revolve on their axles; and it consists in a cylindrical chill having end pieces for chilling the cheeks of the hub, and having a portion at the middle reduced in diameter and grooved circumferentially to receive an annular core, which forms a chamber in the hub. The chill is provided with several transverse and longitudinal vent holes for the escape of gas generated in the core.
Martin Entenmann, of New York city, has patented an improved Game Apparatus, which consists in the combination of a stationary horizontal disk provided with series of numof a stationary horizontal disk provided with series of num-
bered perforations, and a concentric subjacent rotating wheel the bracket. slate. exterior pipe.
provided with a vertical rim, and having projections arranged to dislodge, by rotation, a number of balls resting in the holes of the said disk.
Francis P. Cummerford, of Wilmington, Del., has patented a Protecting Helmet for the use of firemen, shipwrecked and other persons. It is made of rubber, or other elastic material, that closes tightly to the neck, but fits loosely on the head, it being provided at the upper part with a ventilating device, and with a mouthpiece and closing device to admit of speaking.
Jonathan Hill, of New York city, has patented an improved Take-up for Twine Holders, which will raise the free end of the twine from the counter after it has been detached from the bundle being tied. It consists in a tube having at its upper end a ring, by which it is suspended, and having at its lower end a ring for supporting the twine basket or holder, and containing a sliding weight, which is provided with an eye that receives the twine, which passes through eyelets in he opposite sides of the upper end of the tube.
Edward L. Witte, of White Mills, Pa., has patented an improvement in Methods of Labeling Bottles, which consists in first burning the colors into the label and then melting the abel into the bottle.
Elida M. Capen, of Charlton Depot, Mass., has invented an improved Index Tag for Books. It consists in a metal tag which is split lengthwise, so as to form two clamping jaws, that are caused to gripe the edge of the leaf of a book by means of a prong or rivet.
Henry S. Wood, of Rob Roy, Ark:, has patented an improved Lap Ring, which consists of a lap ring made of two sections, which are open at one side, and provided with rooved center pieces at the opposite side, that fit into the openings, so as to firmly interlock when connected with each

David H. King, of New York city, has invented an improved Newspaper File for securing the parts of a paper or several papers together in such a way that they may be conveniently handled and read without getting out of place, and which at the same time may furnish a means for hanging them up, if desired.
An improved Horse Brake has been patented by Israel Spitz, of Chicago, Ill. The object of this inrention is to furnish an improved device for controlling or braking horses, so as to prevent them from running away, and bringing them instantly, in case of danger, within the power of the driver or rider.
Frederick G. Hunter, of Moncton, New Brunswick, Canada, has patented an improved Seal Lock for railroad cars, mail bags, and other purposes, which may be applied to the hasps quickly and conveniently, so as to lock the same securely, without any chance of being tampered with, the seal lock being readily used again after the tin seal is cut and the lock opened.
John Edgar, of New Bloomfield, Pa., is the inventor of an improved School Desk, which consists in a book box pivoted to slides and having means for adjusting and fastening it; having also a shelf or adjustable top, and levers and sectors and catches for holding the parts in position.

Frnest T. Gennert, of New York city, is the inventor of an improved Drying Kiln, which is designed especially for drying beets for sugar making, but which may be used with equal advantage for drying various other substances.
John Homrighous, of Royalton, Ohio, has patented an improved Burial Casket, which may be adjusted to any length, so as to enable the undertaker to keep on hand a full stock without being obliged to keep on hand as many caskets as are required by the present sizes.
Silas Robbins, of Monroeville, O., has patented a Bag Holder for holding grain and other bags to allow them to be conveniently filled. The device is in the nature of a bracket having such construction and provided with such devices as adapt it to be readily attached to and detached from a suitable support. The bag is held by friction with a hoop which is pivoted to

Moses M. Rice and Jesse Labar, of Slatington, Pa., have patented an improved Desk Slate Holder. It consists in a desk having a divided and hinged top, in which there is a recess containing a hinged frame, in which is pivoted the

William Haas, of Walla Walla, Washington Ter., has invented an improved Mop Wringer, for attachment to the side of a tub, pail, or bucket. It is constructed to enable the mop to be easily, quickly, añd thoroughly wrung out without its being necessary to wet or soil the hands by touching it.
Michael W. Scannell, of Williamsport, Pa., has invented an improved Kitchen Sink, that is arranged in suth a manner with a strainer and plug as to be used either as a sink or as a basin to hold water for washing dishes, etc. The strainer is so arranged as to be readily removed for cleaning, while the overflow is conducted off through suitable openings and

David C. Delinger, of Red Oak, O., has patented a Road Gate, adapted to swing horizontally, and operated by cords and levers, the latter being extended from the pivot post laterally or parallel to the roadway, so that the cords which are pendent therefrom may be seized by persons on horseback or in carriages, without dismounting. The improvement relates to the construction and arrangement of the de vices for operating the gate.

NEW PORTABLE MILL

We present herewith an engraving of a patent portable mill, made by Messrs. Munson Brothers, of Utica, N. Y. In the engraving A is a cast iron frame, on the upper part of which there is a cylindrical shell, B, to receive the runne or understone. This shell is of larger di mensions than the stone, so as to leave a space all around and underneath the stone, as shown in Fig. 1. The shell, B, is cast in the same piece with the frame, A, and has its upper edge made perfectly smooth and even, so that all parts of its surface will be in the same plane.
In the lower part of the frame, A, there is a horizontal driving shaft to which is secured a bevel wheel, which gears into a bevel pinion on the spindle, C , the lower end of which is stepped in a socket, D, the upper end of which has a flange around it. This socket is fitted within an adjustable box, which rests upon a lever supported by a nut and screw, by which means the stones may be made to run at a greater or less distance from each other to vary the fineness of the flour.
The spinder, C, is provided with a collar I, Fig. 2, which is fitted within a box, J, at tached to the underside of the shell, B. The box, J, is of cylindrical form, concentric with the shell, and within it there are placed bearings, L, which are adjusted snugly against the collar, I, by keys, screws, or othe means. The collar, I, is hollow and opened at its lower end, having a space all around be tween it and the spindle. The box, J, is pro vided with a central vertical tube, K , around which the collar, I, works, the tube, K, pass ing up between the collar, I, and the body of the spindle. The upper part of the collar, I the spindle. The upper part of the collar, I is perforated with holes, which are just above the bearings and below the upper end of tube, K. $\quad M$ is a tube which extends along underneath the shell, B, and communicates with the upper part of the box, J. This tube forms a means of supplying the box, J, with oil. The collar, I, forms the bearing surface of the spindle.
The box, J, is covered by the cap, N, having a circular flanged aperture in its center to allow the spindle to pass through. A cap, \mathbf{O}, on the spindle, C , covers the flange of the cap, N. On the upper end of the spindle, C, there is placed a clearer, P. This clearer is formed of two arms attached to an eye, which is fitted on the spindle and secure thereto by a feather and groove. The arms of the clearer extend nearly to the side of the shell, B.
The driver, Q , is fitted on the upper part of the spindle, and like the clearer is secured to the spindle by a feather and groove. The driver rests on the eye of the clearer, and has two arms which fit in recesses in a shell, R which is secured concentrically within the understone or runner, and has a bearing which rests upon the apex of the spindle. The dansel, S , is attached to the upper surface of the shell, R.
The upper stone is secured in a cast meta cylindrical box, T, which is turned true at its lower part so that it may fit into the shell, B The upper stone has a central eye, and the box, T, is secured in proper position by means of screw rods and nuts; the rods are attached to the shell, B, and pass through eyes at the outer side of box, T. A hopper frame is placed on the box, T, for supporting the hopper and shoe, which may be arranged as usual. It will be seen from the above description that the runner will, in consequence of the arrangement of the driver relativel with the apex of the spindle, be allowed to adjust itself to the stone, so that the parallel ism of the faces of the two stones may be preserved as the stone rotates. This arrangement, to wit, the having of the apex of the spindle in line with the bearing surfaces of the arms of the driver, admits of a universa joint movement of the stone, an effect which cannot be attained in the ordinary arrange ment.
This invention also enables the spindle to be always kept properly lubricated, as oil may be poured into the box, J, at any time and the oil in the box is retained therein, in consequence of the perforations in the uppe part of the collar, I. These perforations cause the oil, which may have a tendency to rise in the space between the tube, K, and the col

THE AUSTRALIAN JABIRU.
supply of fuel), into a hot bath of salt and water, while the decomposition of the sall is effected and the chlorine liberated to attack the silver and copper by wetting down the sulphur fumes on their way up the stack and returning them to the bath. The method of recovering the metals is alike in each instance. This Spanish process is apparently but a modification of, not an improvement on these which we have mentioned, and we think it will be difficult, if not impossible, to evolve a chlorinating process better adapted to the requirements than these, either in theory or in practice.

THE AUSTRALIAN JABIRU.

The Jabirus rank among the giants of the feathered race. There are very few species known, and they all seem to have similar habits-hunting on the borders of lakes, marshy grounds, and banks of rivers, where they find abundance of fish and aquatic reptiles on which they feed.
The Australian Jabiru appears to be a very rare bird, and it is extremely wary and haunts wide expanses where but little cover can be found. It can with difficulty be approached. To shoot one is a difficult task. A good sportsman, who succeeded at last in killing a jabiru, followed it for several days before he could get within long range of the uspicious bird. Dr. Bennett in his " Gatherings of a Naturalist in Australia" gives an nteresting account of one of these birds which he tamed.
In its coloring the Australian jabiru is a very handsome bird, and its movements are quiet, majestic, easy, and graceful. The large head and neck are rich, shining green, changing to rainbow tints of violet and purple upon the back of the head, the feathers gleaming in the sun with light metallic radiance. The greater wing coverts, scapularies, lower part of the back, and tail are dark brown mixed with rich bluish green, which changes in the adult to a rich, glossy green tinged with a golden luster. The smaller wing coverts, lower part of the neck and back, and upper part of the breast are white, speckled with ashy brown, but become pure white in the adult; the lower part of the breast, thighs, and inner part of the wings white; eyes brilliant hazel in color. The legs are blackish with a dark tinge of red, becoming of a bright red color in the adult; and when the bird flies with the legs stretched out, the legs look like a long red tail. Dr. Bennett's specimen measured three feet and ten inches to the top of the head, but was not full grown; they are said to attain a height of four or five feet.

New Engineering Inventions.

John Tregoning, of Brooklyn, N. Y., has patented an improved Steam Valve for pumping engines, which consists in a circumferentially grooved piston rod, which acts as a valve, and in passages that lead from the ends of the valve chest to and across the cylinder heads, and to the exhaust receiver of the cylinder, the said passages being crossed between the valve chest and cylinder heads.
John Tregoning and MichaeJ Hastings, of Brooklyn, N. Y., have jointly patented an improved Pump Valve, which consists in a semicylindrical valve fitted to a suitable valve seat, and provided with recesses in each end for receiving a head formed on the rod of a small piston. A piston is connected with each end of the valve, and works in a chamber or cylinder formed at the end of the water way in the valve seat. Communications re lating to either of these two inventions should be addressed to Mr. John Farrell, No. 20 Water street, Brooklyn, or to Mr. John Tregoning, 38 Gold street, New York city.
James C. Thomson, of Barnhart's Mills, Pa., has patented animproved Vacuum Packer for oil wells, for shutting off communication between the upper strata of rock and the oil bearing rock, and it consists of three apertured metallic disks placed on the well tubing, and arranged to receive the vacuum tube, which, by its weight, compresses a rubber packing disk vertically, so as to expand it laterally to fill the bore of the well.
William Taylor, of Peekskill, N. Y., has patented an improved Gate for Patterns, which consists in a gate formed of easily fused metal, interlocked with a pattern having coupntersunk holes or dovetail slots, or both. Patterns attached in this manner are not easily broken from the gate in the operation of ramming the mould or rapping ,the pattern, as is the case with patterns made wholly from cast iron; and the patterns are attached at a trifling expense compared with the usual method of riveting them to wrought iron gates, besides giving the gate a better form for moulding and for detachment from the casting.

ZOOLOGICAL GARDEN AT FAIRMOUNT PARK,

 PHILADELPHIA.highly caustic. If we desire to obtain a cotton adhering more strongly to the plate, or opaline films, add to the caustic solution a little resin.

To cover a plate I collodionize in the ordinary manner,
Fairmount Park has attained a reputation which is second only to that of Central Park, New York. It contains nearly 000 acres being more than thres times as large as Central and when and when the coating is thoroughly dry I immerse the plate co
 ever, and under the man agement of a Board of Commissioners it is rapidly growing in beauty and interest.
Thirty-three acres of the park have been leased by the Zoölogical Society, of Philadelphia, which has been so successfully man aged that, although but a few years old, its collection is the finest in thi country.
The tract of land lease to the Society is that known as " Solitude," and on it stands the ancient house built by John Penn son of Thomas Penn, and grandson of William Penn, and owned by his descendants until pur chased by the Park Commissioners.
No expense has been spared to perfect the gar den in every particular and it is fitted in a man ner best suited for the maintenance and exhibi tion of birds and animals. The Society intends es tablishing here a zoölogi cal garden, second to none in the world, and is rapid ly carrying out its designs. It has agentsin every part of the globe from whom it receives frequent ship ments of rare and inter esting specimens of natu ral history.
We present herewith en gravings of the Girard Avenue Entrance, the Res taurant, and the Elephant House, which are all substantial buildings and fine specimens of architecture

Solubility of Cotton.

In my operations in car bon photography, and with dry collodion, in which films of normal col odion are employed, I have used, with some ad vantages, ordinary cotton in solution in ammonia at 22°, containing fifteen per cent of hydrated carbonate of copper.
In the rapid albumen dry process it is necessary, before applying the albumen to the plate, to cover t with collodion, which forms a kind of spongy felt, capable of retaining a greater quantity of aibumen and of equalizing the film.
The soluble cotton prepared by me, according to the directions of Major Turainne, has given me satisfactory results. It is not so easily used as the alcoholized ether collodion, but it costs much ess. I prepare it in the following manner: In am monia at 22°, containing fifteen per cent of hydra ted carbonate of copper, fter the reaction has ended I add to the liquid (in small quantities) ordinary cotton, free from greasy matter, such as is used for the preparation of pyroxlin; I agitate, and after solution I filter through sbestos, or I decant afte repose in a glass-stoppered bottle, as this product is

GIRARD AVENUE ENTRANCE,

THE RESTAURANT.

THE ELEPHANT HOUSE

The coating may also, after the final washing, be covered with iodo-bromide solution, allowed to dry or drained only, and then plunged into the silver bath. The plates thus prepared are very sensitive.
Seen under a magnifying glass, the tissue formed by ordinary cotton is precisely like that produced by emulsions. The ammoniacal solution of coppr has been known for long time as solvent of cotton, and I am surprised that this property has not been already utilzed in photography, as I believe it susceptible of many applications.--Ernest Boivin, Moniteur.

Phosphor Bronze.
The superior durability of phosphor bronze over other material for bearings, slide valves, and various other purposes where hardness and oughness are requisite is trikingly illustrated in an exhibit at the Paris Ex position, wherein are shown many bearings, tc., of the bronze side by ide with those of other metals with which they had been used in competitive tests. Bronze bearings used for finishing olls in a rail mill show very slight wear for eight months of constant work, while gun metal bearings on same rolls wore out in hree weeks.
Bronze bearings were used on one side and gun metal on the other of crushing rolls, making 120 revolutions a minute, with a pressure upon them of $21 / 2$ tons; the first showed scarcely a sign of wear, while the latter were com pletely worn out.
But the most remark able instance is that of ocomotive slide valves, which, though in use for twenty-two months, have required no attention in he repair shop and have worn but $\frac{1}{82}$ of an inch while the life of ordinary gun metal slides averages but eight months; and the cylinder faces on which he valves slide were not worn in the least. At this ate of wear the life of the bronze valves would be from seven to eight years.
It is evident that in the phosphor bronze we have an agent for very mateially reducing the "repair account" on our railoads and in our manu-actories-a most wexome matter in these times.

A Deep Gas Well.Operations on the Tarentum oil well, near Pittsburg, were lately stopped. The well is down some 2,300 feet, at which depth no oil was obtained, but a good supply of gas has been secured, sufficient to run any large manufactur. ing establishment

SHEET METAL WORKING PRESSES.

Our extract from Knight's " New Mechanical Diction ary "* contains several varieties of presses used in sheet metal working. In Fig. 1 a sheet of metal is inserted between the ring, o, and the fixed annular die, $f f^{\prime}$; the intaglio die, d, then advances, and its edge acting against $f f^{\prime}$ cuts

Fig. 1.--Machine for Forming Sheet-Metal Basins, etc.
out a blank, which is then struck into the die, d, by a forward movement of the cameo die, c; as d recedes the article is forced out by a follower, m.

In Fig. 2, the intaglio die, d^{\prime}, is attached to a yoke connected with the two rods,
 $c c$, through which it is depressed by the operation of a treadle and connecting devices; on arriving at its lowest position it is temporarily prevented from rising by a rod, Q , engaging over the treadle; when the rod is pushed aside springs restore the treadle to its normal position, and the die again rises. The dies are provided with lateral as well as vertical adjustment.
Fig. 3 is designed for stamping forks, spoons, and similar articles. One die, as B, is hollowed at the part which forms the bowl or prongs, and the other, A, at the part which forms the handle, the object being to form as small a burr as possible, and that at the angles instead of centrally. The lower die is vertically adjusted upon wedges operated by set screws. The die holder is used in connection with an ordinary fly or other press.

Machinery for making seamless articles from sheet metal by stamping was devised in France as early as 1840. The first attempts, which were partially successful, were made with the drop press. This, however, it was thought, did not allow sufficient time for the metal to assume the required form without tearing, and the screw press was substituted for it, giving better results. The cam press has also been generally used in France, which has long maintained a preeminence in wares of this kind.
Vessels are manufactured from sheet iron, the depth being given at several successive pressings, depending on the depth of the article. The metal is
 annealed after each

Fig. 3.-Machine for Stamping Forks, pressing, and is finally turned. Such articles are now manufactured in this country from tin plate, annealing being dispensed with, and the goods are prepared ready for market without re-dipping.
Fig. 4 illustrates a machine for forming pans or kettles from blanks. There are several moulds for each pan, the operation being a progressive one; deeper and deeper moulds being used successively so as to stretch the blank more and more, to avoid the tearing which would result from the attempt to stretch the thin sheet metal at a single impulse, even though very moderately and gradually performed. The hollow mould is placed on the flat table, shown in the view, and upon it is laid a blank of sheet metal, or a pile of blanks when several are to be stamped at once. The under side of the blank rests upon the flat upper surface of the hollow die, and the holder (shown with a round opening through it) is brought down upon the blank so firmly that, when the upper die descends, the metal has to expand into the hollow die, stretching out into a smooth seamless pan or kettle, without buckling or corrugating the margin. The * Published by Messrs. Hurd \& Houghton, New York city.
upper or salient die is fastened to the headed screw (which erted upon the metal effectually insures smoothness in the is shown above), and is operated when the crosshead de- completed article, and also enables a deeper dish or similar scends by means of the pitmen and cranks on the sides of 'piece of ware to be produced at a single operation. a is a the machine, forcing the blanks into the hollow die as far as casting with four cylinders, and e the top plate on which the ductility of the metal will permit. The holder is the receiving chests are placed.
clamped down upon the blanks by means of cams beneath The press (Fig. 6) for stamping hollow articles of sheet the table. Metallic cartridge cases are made in the same metal has a crosshead, a, reciprocated by connecting rods way.

Fig. 4.- Howart's stamping Press for sheet Metal Ware
Fig. 5 is a machine for shaping sheet metal. The plate o be shaped or stamped is placed upon the die, and the atendant depresses the treadle connected with the valve rod of the chest, c, whereupon, the water being admitted above he pistons of the four cylinders, the clamp, b is forced

Fig. 5.-Grimshaw's Machine for Shaping Sheet Metal.
downward, and fastens the circumferential portion of the plate between its own lower surface and the flat upper surface around the die. The other treadle is then depressed, and causes the central piston to descend and force the follower or stamp downward, so that the sheet metal is pressed

Fig. 6.-Stamping Press for Hollow Ware.
into the die and made to receive a corresponding form. As the sheet metal is thus forced into the die by the pressure of the follower or stamp, its circumferential portions are drawn from crank arms on a horizontal shaft rotated by gearing driven from the fast pulley, b. The crosshead receives a driven from the fast pulley, b. The crosshead receives a
convex die, c, which works into a counterpart concave die convex die, c, which works into a counterpart concave die
held by the table, d, which is suspended by a yoke and rod from a piston in the cylinder above. The latter has a cushion of air in its lower part, so as to give a certain degree of elasticity to the blow, the table and lower die receding slightly before the pressure of the upper die.
The sheet metal drawing press, shown in Fig. 7, consists of an upright frame with vertically reciprocating crosshead, a, carrying a blank holder, b, containing a reciprocating a, carrying a blank holder and plunger are independently operated by cams on shafts driven by a worm and wheel. By the action of the plunger the blank is forced into the die, c, which imparts the desired shape. The blank holder is adjustable to adapt the press for drawing different thicknesses of metal.
A sheet metal forming machine is shown in Fig. 8. The

Fig. 7.-Sheet Metal Drawing Press.
upper die, H , is hinged to the lower die, E , and is lifted to place a sheet of metal in place for stamping, and then thrown over, and the arm, G, is secured by a catch. The central part, F , of the lower die has hinged side and end formers, g, which, when the two dies are drawn downward, descend between guides, C D, which throw up the formers,

Fig. 8.-Sheet Metal Forming Machinc.
g, and bend the metal to the required shape against the up per die, H. Square pans are thus produced.

American Institute Exhibition.

Application for space should be forwarded at once to the General Superintendent, room 22, Cooper Union building, New York, and all details arranged through him with as little delay as possible. Persons familiar with the exhibitions annually given by this Institute are aware that one of the great troubles with which the exhibitor has to contend is that of insufficient space; as all applications which comply that of insufficient space; as all applications which comply
with the rules are considered in the order of their coming, it is therefore evident that better location is secured by the early than by the late applicant. The Exhibition will open on the 11th day of September.

A Blondinian Mouse.

A correspondent gives an interesting account of a mouse that crossed from one building to another on a fire telegraph wire, over a distance of some four or five rods. Although the buildings were among the highest in Chicago, the feat was performed with perfect ease and grace. When near the observers he was frightened, when he carefully turned about out from under the clamp, and the strain or tension thus ex- and returned to the roof from which he came.

RULES FOR ARTIFICIAL RESPIRATION IN THE TREATMENT OF THE DROWNED
Rule I. (Fig. 1.)-To Drain and Force Water from the Lungs and Stomach.-Instantly place patient face down ward, a hard roll of clothing being placed beneath the pit of the stomach, to raise it as much as possible above the level of the mouth. Put one wrist of the patient under his forehead to raise his mouth off the ground. With hands well spread upon the patient's back, above the roll of clothing, throw upon it your whole weight with a forward motion, and keep up the pressure about three seconds, so as to force all water from the stomach and lungs out of the mouth, ending the pressure with a push which will help to jerk you

Jack to your uparight position. Repeat this once or twice, and then quickly proceed with-
Rule II. (Fig. 2.)-To Make the Pationt Breathe.-Turn the patient face upward, the same hard roll of clothing being now beneath his back, the shoulders slightly drooping over it. Bend head backward and downward, putting throat on the stretch to the utmost. Place the hands of the patient on top of his head (one twist of a handkerchief or string around the crossed wrists will keep them there). Rip or strip all clothing from waist and neck. Now kneel astride the patient's hips. Grasp the front part of the chest on both sides of the pit of the stomach, your thumbs pointing to patient's chin, and your fingers fitting into the grooves between the short ribs. Fix your elbows firmly, making them one with your sides and hips, and then, firmly pressing the sides of the patient together, and using your knces as a pivot, throw yourself slowly forward for two or three seconds until your face almost touches the face of the patient, and your whole weight presses upon his chest. End this pressure with a short push which suddenly jerks you back again to the upright kneeling position.
Rest three seconds while the ribs spring back; then repeat this bellows-blowing movement as before, gradually increasing the rate from seven to ten times a minute; but take the utmost care, on the occurrence of a natural gasp, not to interrupt it; but, as the ribs fall, gently press them and deepen the gasp into a longer breath. Continue this until the natural breathing, which you are imitating, needs no further assistance. If all fails, keep on, because any moment within an hour's effort you may unexpectedly be rewarded with success.
Avoid impatient vertical pushes; the force must be upward and inward, increased gradually from zero to the maximum the age, sex, etc., may indicate.
If a second person be present and can do it, the tongue should be held out of one corner of the mouth by the thumb

and finger, armed with a piece of dry cotton or linen rag (Fig. 2, a).
We take our illustrations from the London Lancet.

Plantain Leaves in Toothache.

A homeopathic physician states that he has found in the large leaved plantain (Plantago major) a sure remedy for toothache. This plant, which is so common in every door yard as to prove a nuisance, was highly esteemed by the ancients, who employed it in hemorrhages (particularly from the lungs), consumption, dysentery, and other complaints. In modern times it has been sometimes used for similar purposes, but is now generally believed to possess very feeble properties. The leaves are saline, bitterish and austere to the taste; the root saline and sweetish.
For toothache our authority gathers the plant when the flowering spike has grown to full perfection. The leaves are chopped up finely, closely packed in a bottle, and covered
with strong alcohol for a week. At the end of this time the bright green color of the tincture has changed to brown, and it is fit for use. In using it a piece of cotton wool is saturated with the tincture and inserted in the cavity of the tooth, and four drops of the same put in half a tumbler of water, and a teaspoonful taken for a dose. By rubbing the tincture on the gums, it was found to lessen the pain of infants in the process of tecthing; when inserted in the ear it is said to be equally efficacious in earache. As there are undoubtedly many plants of whose medicinal virtues we are perfectly ignorant, and as toothache is one of those torments which often baffle all attempts on the part of the physician to cure it, it may, remarks the Medical Press and Circular, be worth while to give this reputed remedy a further triala trial which need not be delayed in the case of such a common complaint as that of the toothache.
It will be observed that this tincture of plantain leaves is It will be observed that this tincture of plantain leaves is
directed to be made with strong alcohol; from the known effects of liquors like brandy and whisky (which are no stronger than dilute alcohol) in relieving the pain of toothache, when held in the mouth for a short time, we are inclined to believe that this "tincture" of plantain would prove equally efficacious with the plantain leaves left out!

A CAMERA IMPROVEMENT

I forward you a rough sketch of a contrivance I have adopted in all my cameras. It is a certain guard against fog from a bad sliding camera, and I find the pictures sharp-

er and better defined, as the light from the lens is carried evenly on the sensitive plate. There are no shadows from the corners of the camera, nor harbor for dust.
I make the funnel with quarter inch seasoned mahogany to fit inside the sliding body of the camera, and fasten to the front of the camera inside, by four screws. A B is the funnel, just the length of the camera when closed; C is the lens; D shows the funnel looking from the ground glass when focusing with the round hole the size of the lens; the dotted lines show the piece of wood (the funnel is fastened); the four black dots the screw holes to fasten to the end of the camera. E is the funnel (bottom up), showing the piece on the end to screw to the end of the camera; F F must be the exact size of the inside sliding part of the camera; G is the funnel ready to screw he Photographic News.

Antiseptic Properties of Borax.

According to the Lancet, at a recent meeting of the Academy of Sciences of Lombardy, G. Polli reported the results of numerous experiments in which beer, meat, eggs, blood, and urine were treated with boracic acid and borax for thirty days during the summer time, and were found still to retain their freshness, and to present no traces of fermentation having taken place in them. In experiments, on the other hand, without the addition of the salt, but in some cases with the addition of sulphate of soda, the fluids passed into a state of complete decomposition in the course of fifteen days. The energetic disinfecting power possessed by boracic acid and borax, and the facility with which these substances can be absorbed into the economy, led Polli to recommend their use in diseases in regard to the infectious nature of which no doubt exists, or in which septic conditions readily arise. He adduces several examples in which the febrile conditions of tuberculosis underwent diminution. No benefit was obtained by Professor Visconti from experi ments made with these remedies in malaria, though other observers have arrived at a different conclusion. In chronic cystitis, the muco-purulent discharge quickly diminished, and even altogether disappeared in the course of a few days, and rapid improvement occurred in cases of bad suppurating wounds when they were applied externally. The dose rec ommended by Polli is 75 grains of boracic acid and 150 grains of borax per diem.

Improved Railway speed.

The regular time tables of the Central of New Jersey and the Pennsylvania Railway show that improvements of their roadbeds have been gradually completed, until now they daily send passenger trains through from Jersey City, opposite New York, to Philadelphia, distance 88 and 89 miles, in one hour an fifty minutes running time, including stops; being 48 miles per hour average speed. If the same speed could be maintained between New York and Wash ington, the time of transit would be four hours and thirty minutes. It seems to us that the purblic intorests require

SAFETY OXYGEN APPARATUS.

The chief features in this apparatus are portability, dispensing with the use of gas bags, pressure boards, weights, etc. . for lime-light effects and perfect safety.
In the first place, the principle consists in generating oxy gen in small quantities at the time of consumption (whereby a continuous supply is maintained) from charges of chlorate of notash and oxide of manganese made into solid cakes of about three inches diameter and five eighths of an inch thick. which are quite easy to produce, clean to handle, and about as hard as a piece of coal. The principle of the retort or generator will be clearly seen from the accompanying en-
graving, Fig. 1. It consists of two pieces, a flat plate and a bell-shaped cap, supported by a stand, in which is fixed a Bunsen burner of improved construction. The cap has an aperture at the top, in which is screwed a pipe, etc., for conveying away the oxygen when made. In other respects the retort proper consists of two sim ple iron castings turned and ground to a gas-tight fit. The fastening consists of a bow, clearly shown

Fig. 1.
 in the engraving, at the extremities of which are
small spiral springs, so adjusted as to maintain a pressure equal to one and a half pound per square inch, which pressequal io one and a half pound per square inch, which press-
ure is far in excess of what is necessary for ordinary limeure is far in excess
light arrangements.
Now it is obvious that, should the passage from the retort be closed (although in this apparatus there is little likelihood of such an occurrence), the pressure in the retort would rise until it had arrived at one and a half pound per square inch, when the gas would escape; and as soon as the passage was clear again the gas would take its right course, relieving the pressure inside the retort, and in virtue of the springs the top would close, resuming its original position. When exhibiting the apparatus at several scientific societies to illustrate its safety qualities, as the gas was coming off rapidly, the outlet pipe was closed (by a tap purposely introduced), and the oxygen, still being generated, escaped through the joint, as intended, with perfect safety. To open the retort for recharging, etc., pull over the wood handle fixed to the top of the bow, and the cap may then be removed by the wood handle fixed thereto; and to close the apparatus reverse these operations. The handles being made of wood prevent the possibility of burning the fingers when in use.
The method of making the cake is as follows: To four parts of chlorate of potash and one part of manganese add sufficient water to moisten, not to wet; after mixing well, fill the mould, using little pressure, smooth off the surplus with the assistance of a dinner knife or spatula, turn over, and the cakes will leave the mould entire. After sufficient cakes are thus made, they are set to dry, either by gentle heat or spontaneously; when dry, the bottoms are coated by dipping into a mixture of manganese and water, about the consistency of cream, when they are ready for use. This coating of the bottom with plain manganese is to prevent the spent cake sticking to the retort, being the only part in contact with it.
The gas holder is very similar (but with a little modification) to one invented and introduced by Mr. Samuel Highley, in Mr.
1862.
By
By a displacement chamber introduced in the outside casing, the water for luting is reduced to a minmum, about one ordinary bucketful being sufficient. The displacement chamber, which is always dry, is used for packing apparatus, such as lanterns, slides, screen, etc., and is of sufficient capacity to hold all required for a magic lantern exhibition. The chamber is provided with a lid and suitable lock-up attachments. When in use, the pressure is applied by placing water in a reservoir provided for that purpose, maintaining one uniform pressure throughout, and can be egulated from a small to a great pressure, according to the quantity of water used. If more convenient, any other substance than water can be used for weighting.
Fig. 2 shows the apparatus used as a stand for the lanterns, in the present case a sciopticon, admirably arranged for the lime light, being adapted.-W. J. Chadwick in En. glish Mechanic.

ASTRONOMICAL NOTES
 by berlin h. wriget.

Penn Yan, N. Y., Saturday, August 3, 1878.
The following calculations are adapted to the latitude of New York city, and are expressed in true or clock time, being for the date given in the caption when not otherwise stated.

Mercury sets.
Venus rises.
.

\section*{planets.}

FIRST MAGNITUDE STARS.

FIRST MAGNITUDE STARS.			
	${ }_{7}^{\text {. }}$		
Algol (var.) ris	901	Spica in merid	
${ }_{7 \text { stars }}$ (Pleiades)	.. 1121 eve.	Arcturus in meridia	521 eve.
Aldebaran rises	044 mo .	Antares in meridia	
Capella rises..	. 1008 eve.	Vega in merid	
Rigel rises.	251 mo .	Altair in meridian	155 eve.
Betelgeuse rise	235 mo .	Deneb in meri	
Procyon rises. 426 mo .	Fomalhaut rises.	001 eve.

REMARKS.
Mercury, though near greatest eastern elongation, cannot be seen, as he sets only 1 h .2 m . after the sun, and 47 m . before the ending of twilight. Venus, with Procyon and Betelgeuse, nearly forms an equilateral triangle, Venus being the most northern, and a line from Capella to Procyon will pass through her, as will also a line drawn from Rigel to Betelgeuse and produced about 21°. Mars will soon be in conjunction with the sun, and is now too near the sun to be seen. Jupiter is upon the boundary line between the constellations Sagittarius and Capricornus, and is retrograding. Algol will be at minimum August 7, 4h. 29 m . A.M. There will be a partial eclipse of the moon August 12, of which we will give the particulars and illustrations next week.

Astronomical Notes.
Observatory of Vassar College.
The computations in the following notes are by students of Vassar College. Although merely approximate, they are sufficiently accurate to enable the observer to find the planets.

Positions of Planets for August, 1878

 Mercury.On August 1 Mercury rises at 7 h .5 m . A.M., and sets at 8h. 19m. P.M. On August 31 Mercury rises at 7h. 3m. A.M., and sets at 6 h .49 m . P.M.

Mercury is in its best position about the middle of the month, and should be looked for after sunset almost exactly in the west.

Venus is far off and small, but very brilliant and beautiful in the early morning hours.
On August 1 Venus rises at 2 h .26 m . A.M., and sets at 5 h . 18 m . P.M. On August 31 Venus rises at 3 h .22 m . A.M., and sets at 5 h. 31m. P.M.

Mars.

Mars passes the meridian between 1 h .10 m . P.M. and noon all through the month, and cannot be well seen.
On August 1 Mars rises at 6 h .17 m . A.M., and sets at 8 h . 2 m . P.M. On the 31st, Mars rises at 5h. 58m. A.M., and sets at 6h. 50m. P.M.

Jupiter.

On August 1 Jupiter rises at 6h. 50m. P.M., and sets at 4h. 14m. A.M. of the next day. On August 31 Jupiter rises at 4 h .42 m . P.M., and sets at 2 A.M. of the next day.
A small telescope will show the four moons of Jupiter, but they are sometimes invisible from their position relatively to the planet. If we take the hour between 9 and 10 P.M. as that of our observation, we shall not see the 1st satellite, or that nearest to Jupiter, on August 1, 8, and 31, that satellite being in transit across the face of Jupiter.

The same satellite is invisible at the same hour on August 16 and 23, because it is behind the planet or is occulted by Jupiter.
Taking the same hour of the evening, Jupiter is seen without the 2d or smallest satellite on August 3 and 10, because the satellite is in transit, and on the 26th because the satellite is behind the planet.
On August 23 the 3d or largest satellite is in transit when Jupiter is first seen, and it does not pass off the planet until near 11 P.M., and as the 1st satellite is hidden behind Jupiter, the planet is seen between 9 and 10 P.M. with only two moons.
On August 15 the planet is seen without its 4th or most distant satellite, as that moon is behind Jupiter early in the evening. The satellite comes out from behind Jupiter after 11 in the evening, and is seen for a few minutes, when it disappears by going into the shadow of Jupiter, and is eclipsed.

Saturn.

In August Saturn becomes conspicuous to evening observ. ers. This planet rises on the 1 st at 9 h .34 m. P.M., and sets at 9 h .26 m . A.M. of the next day. On August 31 Saturn rises at 7 h .33 m . P.M., and sets at 7 h .20 m . A.M. of the next day.

Uranus.
Uranus keeps very nearly the diurnal course of the sun, and of course is very unfavorably situated for observation.
On August 1 Uranus rises at 6 h .37 m . A.M., and sets at 8h. 9m. P.M. On August 31 Uranus rises at 4h. 48 m . A.M., and sets at 6 h . 15 m . P.M.

Neptune.
Neptune can be seen only by means of a very good glass. It rises on the 1st at 11 P.M., and on the 31st at about 9 h . P.M.

Variations in Birds' Nests.-The Science Gossip says: This year we have noticed three curious instances of a departure from the usual habits of birds in building their nests, which seem worth recording. The song thrush lines her nest with cow dung and clay; and it is usually considered by ornithologists that, as she builds very early in the spring and frequently in exposed situations, the mud lining protects the eggs and the young brood from the fierce March winds. Early in March we found a thrush's nest in our garden, containing four eggs; but the nest had not a vestige of the usual mud lining. Unfortunately we found the nest destroyed one morning before the bird had time to hatch, so it was impossible to note whether the inclement weather had any effect on the eggs. We have at this moment a blackbird sitting upon six eggs, four of which are her own and the other two those of the song thrush. When first the nest was found it contained two of each kind, a thrush having laid in the blackbird's nest. Although sparrows will sometimes appropriate swallows' nests to build in, and though several birds will build a new nest on an old foundation, it is, I think, very unusual for one species-the cuckoo, of course, exceptedto make use of a nest built by another species. The third curiosity of nest building is the nest of a chaffinch, placed in the fork of an elder bush near our house. Usually the chaffinch assimilates the color of her nest to the situation in which she places it; if she builds in a hedge she generally covers it with green moss; but if she builds, as she often does, on the bare branch of an old apple tree, she uses the gray lichens, which are usually near at hand, and covers her nest with them so skillfully that though quite open and exposed it becomes hidden by its resemblance to a knob or excrescence of the tree itself. In this case, however, though the bird has recognized the necessity of covering her nest with something, she has rendered it most conspicuous by sticking little bits of white decayed wood all over it. The wood is so white that the nest looks almost like a snowball in the branches. Possibly this bird may be color blind, or she may be just a little bit " wanting" in her instinctive faculties, as human beings are occasionally in their reasoning powers. Why not? Distribution of Spiders by Winds.-The Rev. H. C. McCook states that a large laterigrade spider (Sarotes venatorius), of the ballooning kind, occurs, according to specimens in his collection, from Santa Cruz, Virgin Isles, to Cuba, Florida and Yucatan, Central America, Mexico and California, Sandwich Islands, Loochoo Islands and Japan, and thence across Asia and Africa to Liberia, and suggests, in view of these facts and other localities on record, that the trade winds have promoted this distribution. Among the other localities are the Society Islands, Feejees, Friendly Islands, New Caledonia, Eastern Australia, Mauritius, Madagascar, and several parts of South America. He refers to a fact stated by Darwin, that at a distance of sixty miles from land, while the Beagle was sailing before a steady light breeze, the rigging was covered with vast numbers of small spiders with their webs; each, when first coming in contact with the rigging, seated upon a single filament of spider web, and so slenderly in some cases that a single breath of air was found to bear them out of sight. Mr. McCook states that the specimens examined by him show no variations which may not be accounted for by differences in age, or which may not come within those ordinary natural differences which all animals more or less exhibit.

Variations in Bulbs of Lilies.-Mr. H. J. Elwes, F.L.S. in his magnificent monograph on the lily genus, notices as a curious fact "that all the American lilies, though varying remarkably among themselves, differ entirely in their bulb structure from those of Europe and Asia, and the same peculiarity is noticeable among the American species of Fritilaria (crown imperials), which, as far as we know them, have bulbs of small white and granular scales, loosely attached to a solid central axis from which the stem springs. Of all the Old World lilies and fritillaries, only two (Lilium arenaceum and Fritillaria kamschatkensis) resemble their American congeners in the formation of their bulbs, and both of these are restricted in their geographical limits to the shores of northeastern Asia, which have many affinities, both botanical and zoölogical, with the Pacific coast of North America."
Depth to which Roots Penetrate.-Mr. Foote, in Massachusetts, has traced the tap root of a common red clover plant downward to the perpendicular depth of nearly five feet. The Hon. J. Stanton Gould followed out the roots of Indian corn to the depth of seven feet, and states that onions sometimes extend their roots downward to the depth of threefeet; lucerne, fifteen feet. Hon. Geo. Geddes sent to the Museum of the New York State Society a clover plant that had a root four feet two inches in length. Louis Walkhoff traced the roots of a beet plant downward four feet, where they entered a drain pipe. Professor Schubart found the roots of rye, beans, and garden peas to extend about four feet downward; of winter wheat, seven feet in a light subsoil, and forty-seven days after planting. The roots of clover one year old were three and a half feet long; those of two year old plants, four inches longer.

The Coloring Matter of Birds' Eggs. -The brilliant and remarkably permanent color of the eggs of many birds has led Liebermann to investigate its cause. He finds that however widely different these colors are from each other, they are due essentially to but two coloring matters, one a blue or green substance, probably a biliary coloring matter, the other
characterized by a remarkable absorption spectrum. Thes coloring matters are contained in the superficial layer of the shell, of ten in several thicknesses. When the shell is treated
with hydrochloric acid the coloring separates in flocks, and by treatment with alcohol a strong solution may be obtained. With the eggs of gulls and plovers an unsuccessful attempt was made to obtain the coloring matter pure.
The Seed Crop of Some Weeds.-Professor Prentiss, of Cornell University, has estimated the annual crop of seed produced by single plants of some of our common weeds. He finds that the dandelion produces 2,000; the ox-eye daisy, 13,000 ; dock, 13,000 ; burdock, 24,000 ; mayweed, 40,000 ; red poppy, 50,000 .
Some time ago, according to the Journal of Pharmacy, Mr. Theo. G. Davis chose a plant of thorn apple (Datura) with the intention of collecting its leaves and seeds. The plant, however, was destroyed by a storm in September, at which time it had produced 125 flowers and capsules; and as each capsule contained between 700 and 735 seeds, the total yield of the plant was over 90,000 seeds.
Upon reading such figures the only wonder is that weeds can be kept down at all. The fact is, however, that great numbers of the seed fail to plantthemselves, and many remain in the ground several years, only to spring up as weeds when the ground is stirred. In evidence of the latter fact Professor Prentiss refers to a tobacco field where the seed had been allowed one year to ripen and fall. For ten years afterward tobacco plants appeared in that field from this seedling.

An Electric Manometer

La Chronique Industrielle describes a new manometer of a sensitiveness which is said to be almost absolute. This instrument is the result of a combination of two apparatus already known-Bell's telephone and the batoreometer of Professor Giordano of Naples.
The latter instrument is designed for measuring thicknesses, or the minutest variations of thickness. Thus, after having measured the thickness of a pane of glass at an ordinary temperature, the batoreometer will show the increase of thickness which results from expansion due to the warmth of the hand which holds the pane.
A vertical tripod is traversed by a very fine micrometer crew, and surmounted by a dial, the border of which is marked off into divisions according to a certain scale.
The object is laid upon the table, and the micrometer crew caused to approach it. As soon as contact takes place an electric current, shown by a galvanometer, passes between the point of the screw and the table. If the object to be measured is a poor conductor, it is coated with goldleaf.
Let us now suppose that a current of air, whose intensity we wish to measure, is exercising a pressure on the flexible membrane of a Bell's telephone; the membrane will bend under the influence of an extremely small quantity, but this quantity can never be so minute as to be inappreciable by the electric current of a batoreometer.
The new instrument is extremely sensitive to movements of the air, and detects and records even the waves produced by ordinary noises. It is both a manometer and anemometer of great accuracy.

Color Blindness.

Prosecuting their researches on color blindness, Professors Cohn and Magnus, of Breslau, have recently examined more than 5,000 children. Of 2,761 boys there were 76 who suffered from this blindness, or $2 \cdot 7$ per cent. Of 2,318 young girls, there was only 1 incapable of distinguishing colors. Further, a curious fact was established. Among 1,947 Christian boys, 42 were unable to make this distinction, or $2 \cdot 1$ per cent; among 814 Jewish boys, 34 , or 4.1 per cent; and among 836 Jewish girls, not one. These results seem to prove that in the case of girls color blindness hardly exists at all, and that among Jewish boys it is about twice as com mon as among Christian boys (though local influences might possibly affect the results). In this connection we note that M. Favre has lately been studying Daltonism in France, and he finds there are in that country more than $3,000,000$ persons thus affected. The number of females affected is to that of males as $1: 10$. He says that nine cases of Daltonism out of ten may be easily cured in young subjects, the best mode of treatment being methodical exercise upon colored objects. Mothers should be careful to develop the chromatic sense in their children. Examinations and exercises in colors should be conducted in all schools, etc.

A New stimulant.

The British Medical Journal gives a long account of a new stimulant, which has lately been described by the papers of Australia. It is called pitcherine by the natives, and is used by them as we use tobacco, both for smoking and chewing. Its effect is that of a pleasant exhilaration; when long continued, intense and continuous excitement follows. It is used, when on long foot journeys, to invigorate and keep up the strength or excite them to courage in battle; large doses are said to infuriate all the passions. Some of the natives make a plaster of the plant and place it back of the ears, believing they are influenced by it.

A writer in the London Times, remarking upon the slipping of horses on the London pavements, recommends that horses go unshod, and says that for twenty-five years he has employed many (often 200 at a time) on all kinds of roads and in all kinds of work, without having one of them shod and without injury to their feet, being careful only not to put a newly unshod horse at once upon a bad road. Has there been any such experience here? Why do we shoe our horses?

The Chargefor Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Advertisements must be received at publication office anty Thursaay morning to appear in next issue.

Portable and Stationary Engines; Boilers of all kinds; Lubricene.-A Lubricating Material in the form of Grease. One pound equal gallons of Situation Wanted by a Machinist and Engineer, e perienced as foreman. Address Draughtsman, 547 Lafay
ette Ave, Brooklyn. ette Ave., Brooklyn, N. Y.
Best Turbine Water Wheel, Alcott's, Mt. Holly, N. J. Best Steam Pipe \& Boiler Covering. P.Carey, Dayton, 0 . Foot Lathes, Fret Saws, 6 c., 90 pp. E.Brown, Lowell,Ms Sperm Oil, Pure. Wm. F. Nye, New Bedford, Mass. Power \& Foot Presses, Ferracute Co., Bridgeton, N. J.
North's Lathe Dog. 347 N. 4th St., Philadelphia, Pa. Kreider, Campbell \& Co., 1030 Germantown Ave Diamond Planers. J. Dickinson, 64 Nassau St., N. Y
Boilers \& Engines cheap. Lovegrove \& Co., Phila.,Pa. Punching Presses, Drop Hammers, and Dies for working Metals, etc. The Stiles \& Parker Press Co., Middle
Wanted-A Combined Power Punch and Shears for ght work. 209 West 33d street, N. Y.
Do your own Nickel and Silver Plating. Outits, with Batteries and Solutions complete,
Silver Plating Co., Princeton, Ill.
Wanted-Articles to Manufacture in the Hardware or Machinery line,
Mohawk, N. Y.
All kinds of Saws will cut Smooth and True by fling them with our New Machine, price $\$ 2.50$. Illu
Circular free. E. Roth \& Bro., New Oxford, Pa.
Hydraulic Cylinders, Wheels, and Pinions, Machinery Castings; all kinds; strong and durable; and easily
worked. Tensile strength not less than 65,000 lbs. to square in. Pittsburgh Steel Casting Co., Pittsburgh, Pa
Expectant Advertisers will serve their interests by consulting C. K. Hammitt's Advertising Agency, 206
Sets of Steel Stamp Figures, $\frac{7}{\frac{1}{1}}$ in. to $\frac{1}{\frac{2}{6} \text { in., } \$ 1.00 \text {; }}$
Alphabets, $\$ 3.00$; warranted.
6. M. York, Cleveland, 0 . For Sale.-Root Safety Boiler, 17 Horse; good order; Extra Fine Taps and Dies for Jewelers, Dentists, an Machinists; in cases. Pratt \& Whitney Co., Manufac Machinists; in cases.
turers, Hartford, C 6 .
If Mr. T. R. S., of Query No. 12 , page 410, date June 29, will send his name and address to Wm. S. Dean, Box
600, Hornellsville, N. Y., he can learn something very
much to his advantag
"The Best Mill in the World," for White Lead, Dry, Paste, or Mixed Paint, Printing Ink, Chocolate, Paris
White, Shoe Blacking, etc., Flour, Meal, Feed, Drugs, Warranted best and cheapest Planers, Jointers, Uni-
versal Woodworkers, Band and Scroll Saws, etc. manuversal Woodworkers, Band and Scroll Saws, etc.. manu-
factured by Bentel, Margedant \& Co., Hamilton, Ohio. Patent Wood-working Machinery, Band Saws, Scroll
Saws, Friezers, etc. Cordesman, Egan \& Co., Cincin't1, O. The only genuine Gtiser Self-regulating Grain Separator. Address the Geiser Manuf. Co., Waynesboro'
Franklin Co., Pa.

Manufacturers of Improved Goods who desire to build
up a lucrative foreign trade, will do well to insert a well up a lucrative foreign trade, will do well to insert a well displayed advertisement in the SCIENTIFIC AMERICA,
Export Edition. This paper has a very large foreign
circulation.
circulation.
Safety Linen Hose and Rubber Hose, all sizes, at re
duced rates. Greene, Tweed \& Co., 18 Park Place, N. Y Hydraulic Presses and Jacks, new and second hand. E. Lyon \& Co., 470 Grand St., N. Y

Alcott's Turbine received the Centennial Medal. Nickel Plating.-A white deposit guaranteed by using Cheap but Good. The "Roberts Engine," see cut
in this paper, June 1st, 1878 . Alse horizontal and in this paper, June 1st, 1888. Alse horizontal and
vertical engines and boilers. E. E. Roberts, 107 Lib-
erty St., N. Y.
The Cameron Steam Pump mounted in Phosphor Empire Gum Core Packing, Soap Stone Packing, in quantities to suit. Greene, Tweed \& Co 18 Park Place

Presses, Dies, and Tools for working Sheet Metals, etc.

 Fruit and other Can Tools. Bliss \& Williams, Brooklyn,N. Y., and Paris Exposition, 1878
The Scientific American Export Edition is published monthly, about the 15 th of each month. Every number comprises most of the plates of the four preced-
ing weekly numbers of the ScIENTIFIC AM ERICAN, with other appropriate contents, business announcements
etc. It forms a large and splendid periodical of nearly one hundred quarto pages, each number illustrated with about one hundred engravings. It is a complete record of American progress in the arts.
Diamond Self-clamp Paper Cutter and Bookbinders
Machinery. Howard Iron Works, Buffalo, N. Machinery. Howard Iron Works, Buffalo, N. Y
For Sale-One Large Circular Saw Mill; will saw logs
75 feet long. Very Heavy Iron Frame. Sell Cheap
 Bound Volumes of the Scientific
sell bound volumes $4,10,11,12,13,16,28$, and $\$ 22$. 1 will sell bound volumes 4, 10, 11, 12, 13, 16, 28, and 32, New Se
ries, for $\$ 1$ each, to be sent by express. Address John
Edwards, P. O. Box 773 , New York. Edwards, P. O. Box 773, New York.
ForPower\&Economy,Alcott's Turbine,Mt.Holly,N.J. Dildine's Self-setting Catchaline Traps. Best out for
Catching Mice, Rats. Rabbits, etc. Sample Trap by Mail. 81. Agents Wanted. John Dildine, Milton, Pa.

Wanted-A Steam Road Locomotive. Manufacturers
send circulars to Derastus Spencer, Jr., Corinne, Utah.

Improved Wood-working Machinery mad
Bros., 73 and 75 Laurel St. . Philadelphia, Pa
For Solid Wrought Iron Beams, etc... see advertise ment. Address Union Iron Mills, Pittsburgh, Pa., fo For Heavy Pu
For Heavy Punches, Shears, Boiler Shop Rolls, Radia
Drills, etc., send to Hilles \& Jones, Wilmingto Dead Pulleys, that stop the running of Loose Pulleys and Belts, taking the strain from Line Shaft when Ma
chine is not in use. Taper Sleeve Pulley Works, Erie, Pa Pulverizing Mills for all hard substance and grindin purposes. Walker Bros. \& Co., 23d and Wood St., Phila
 $24^{\prime \prime}, \$ 2000$; sc. cutt. b'k g
bins, Worcester, Mass.
J. C. Hoadley, Consulting Engineer and Mechanica and Scientific Expert, Lawrence, Mass.
Solid Emery Vulcanite Wheels-The Solid Origina Emery Wheel - other kinds imitations and inferior Caution. Our name is stamped in full on all our best The bestis the cheapest. New York Belting and Packing Company, 37 and 38 Park Row, N. Y.

NEW BOORS AND PUBLICATIONS.

The Railway Builder. A handbook fo estimating the probable cost of Ameri can railway construction and equipment. Baird \& Co Publishers, 810 Walnut st Baird \& Co., Publishers, 810 Walnu
Philadelphia. Price, postpaid, $\$ 2$.
A handy little work in pocket book form, containing author's experience and from various standard authorities. Clearly and concisely written, well illustrated andin general a useful guide to the railway engineer.

 (1) D. writes: In these times of base ball

 matches, will you please give your readers the rationale of the "curved ball", about which we hear so much?A. See Scientifio American, No. 20 , vol. 37 , November
17. 1877 . (2)
(2) W. Y. asks: If I were to take two copper plates, each 6 inchessquare, and place each pair In a separate earthen vessel containing diluted sulphuric acid, and connect the zinc of one pair with the copper of the other, would the battery thus made be strong
enough to plate metals and make electrotypes? A.
(3) M. H. W. wishes to know if there is nything to keep animal liquid from stinking. A. Car (4) W F
(4) W. F. asks: Can you tell me what will dissolve zinc without evolution of gas? A. You may
try a strong aqueous solution of ferric chloride or soluion of potassium bichromate or permanganate mixed with strong solution of ammonium chloride (preferably
hotidified with a few drops of nitric acid. Cupric chloride solution deposits copper in place of a portion of the zinc dissolved. Also by making the zinc plate (first supericially amalgamated with mercury) the an-
ode of a couple in dilute sulphuric acid or strong aqueode of a couple in dilute sulphuric acid or strong aque-
ous solution of ammonium chloride, using a moderately ous solution of ammonium chloride, using a moderately exposing the plate (in either of the liquids mentioned) xposing the plate (in either of the liquids men
is one of the positive plates of such a battery.
(5) S. E. asks: Can a fresh egg be preserved by coating it with any substance which will ex-
clude the air? A. Yes, for a time. Gum arabic, shellac, and paraffin are used. The Germans apply linseed Supplement No. 65, p. 1030.
(6) O. W. S. asks: 1 . What are the properties of the metalaluminum? Is it a rigid or stiff metal? Will it resist strain tending to bend it? A. Yes. It has, strength of copper. 2. Is it brittle? A. It is not brittle 3. Will it run freely when melted? A. It melts at about $1,300^{\circ}$ Fah., rather slowly when pure, but flows easily and may be cast. 4. Is it solid, not porous, when cast?
A. See pp. 798,1213 , 1337, and 1635 , Scientific American A. See pp. 798, 1213, 1337, and 1635, Scientific American
Supplement.
(7) C. T. R. asks: Is the carbon in the caron telephone graphite, or some other form of carbon? A. It is lampblack collected from burning kerosene or
other light hydrocarbon. It is compressed into a butother light hydrocarbon.
ton under great pressure
(8) J. H. asks (1) for a recipe for making birdlime. A. Boil the middle bark of the holly 7 or 8 hours in water, drain it, and lay it in heaps in the
ground, covered with stones, for 2 or 3 weeks, till reround, covered with stones, for 2 or 3 weeks, till re uced to a mucilage. Beat this in a mortar, wash it in ters. Put it into earthen pots, and in 4 or 5 days it will be fit for use. An inferior kind is made by boiling linseed oil for some hours until it becomes a viscid paste. . Give length of time it will remain fit for use when exposed to heat of sun. A. We do not know.
(9) R. C. B. asks for a recipe for exterminuantity ants. A. Dissolve some camphor in a small of water, and project a little of the suspended camphor into their haunts. A very small quantity of carbolic acid used in a similar manner will answer as well or
better-especially if the solution contains glycerin. better-especially if the solution contains glycerin.
Tobaccowater and powdered borax are also said to be ffectual.
(10) W. D. H. writes: I unfortunately spilt solution of iodine (in alcohol) over the page of a val-
uable book. The paper composing the book is not glazed, but. The paper coarse. How am I to remove the iodine without injury to the book? A. Apply solution of pure sodium hyposulphite, and then strong ammonia puter, by means of blotting paper; remove excess by pressing between sheets of bibulous paper moistened
with water, and dry between clean warm (dry) blotting with water, and dry between clean warm (dry) blotting
(11) D. F. writes : In drying white shirts in the drying room of a laundry we use the waste heat from the furnaces on which the ironers heat their
smoothing irons, the furnaces being located on the floor below the dry room, and the hot air passes constantly from the furnaces through heat flues to the floor above. But there go up with the hot air minute particles of dast and ashes which oil the shirts. Can suggest
any way toovercome this difficulty? A. Place on your furnaces heating drums having a great number of air flues which are in communication with the external air and also with the drying room. Allow the products of combustion to pass around the air flues.
(12) S. R. S. asks: How long does it take benzine to be saturated with fat, and must it be heated to become so? Must it be distilled to be separated from the fat, or must the mitture be pressed? I have tried
distillation, which resulted in the cork being expelled distillation, which resulted in the cork being expelled from the bottle, and as I had the bottle in a water bath
no harm resulted. I am anxious to make the experino harm resulted. I am anxious to make the experi-
ment, yet have no desire to risk an explosion with ment, yet have no desire to risk an explosion with
such a dangerous substance as benzine. A. Heat your such a dangerous substance as benzine. A. Heat your
heawr oil over a water or sand bath for some time, and heavv oil over a water or sand bath for some the and
you will doubtless recover the fatty matters. We would not advise you to risk the "distillation" of benzine in
corked bottle. For information respecting the construction of apparatus for distilling, etc., consult any elementary work on chemistry. Your druggist will perhaps loan you books. A strong solution of thedry fatty matters in benzine may be made at ordinary temperaures in ten minutes, foren agtag together.
(13) J. H. M. asks: What kind of oil is used to thin printer's ink, so as to work on the stencils
made by the electric pen? A. A little nut oil or a "varnish" prepared by igniting the boiling $0^{\prime \prime}$, and allowing constantly stired for time
(14) H. S. T. asks: 1. Are anodes now made of pure nickel? A. The nickel plates sold as pure
nickel contain small quantities of carbon, presumably nickel contain small quantities of carbon, presumably
as carbide of the metal. 2. In forming sulphate of as carbide of the metal. 2. In forming sulphate of
nickel, wwill it do to use metal instead of oxide of nickel? nickel, will it do to use metal instead of oxide of nickel?
A. Yes, but not very well; it would require the applicaoxid heat; the oxide is much cheaper. 3. How is nickel. The monoxide (NiO) is prepared by heating the nitrate to redness or by precipitating a soluble nickel salt with caustic alkali, and washing, drying,
and igniting the apple green hydrated oxide. The sesquioxide $\left(\mathrm{Ni}_{2} \mathrm{O}_{3}\right)$ is prepared by passing chlorin through water holding the hydrated monoxide in suspension. It is also produced by mixing a soluble salt of
nickel with solution of bleaching powder (calcium pochlorite). The former oxide is of most importance
(15) D. R. writes: Will you please tell me of any compound that could be moulded to make an im-
itation of rubber (hard) or coral? A. Vulcanized fiber or celluloid has been used successfully. See p. 10, vol. 38, and pp. 147 and 204 (73), vol. 37, Scientific Ameri-
(16) J. W. McM.-Telescopic specula are parabolic and not elliptical. We do not know that disks speculum metal are copper 66.6 parts, tin 33.4 paris For optical works, write to an industrial publisher.
(17) C. W. writes: Will you inform me as to the proportions of bisulphuret of carbon and chlo-
ride of sulphur used in vulcanizing rubber, by what is ride of sulphur used in vulcanizing rubber, by what is
known as the cold process, and the manner of applying known as the cold process, and the manner of applying
and time required? A . The caoutchouc is simply im mersed for a short time in a mixture of 40 parts of car bon disulphide and one of sulphur chloride; then transferred to a room heated to 70° Fah. until the sulphide
has evaporated, when it is boiled in a solution of 1 lb . of caustic soda and 2 gallons of water, and then thor oughly washed. Benzolene, the lighter product of th distillation of
bon sulphide.
(18) C. H. M. writes:1. We are taught in ou workson physics that when an electrical current passes
through a direct or right hand helix, which incloses a magnet, if the current flows from right to left it deter mines the poles of the magnet in a flxed direction relative to the flow of the current. If the current be reversed the poles will also be reversed. If a permanent
magnet be surrounded by an insulated wire, and a cu rent of electricity be passed through the wire in a direction contrary to the harmony of magnetic polarity and electrical currents, the effect is first to demagnetize the bar and then reverse its poles by remagnetizing it by induction, in a contrary direction to that which it pos-
sessed before the current began to flow. How can these sacts be reconciled with the use of permanent magnets in the Bell telephone? A. The current induced in the helices is so slight that it is doubtful if this alone would affect the power of the magnet. The Bell telephone as now constructed has a soft iron core projecting from
the end of a compound bar magnet for receiving the the end of a compound bar magnet for receiving the
helix. This core serves as anarmature to the magnet, and as a preventive of demagnetization. 2. How is gas carbon prepared to mould into different shapes, o made into pencils or sticks for use in galvanic batter
ies? A. They are made by calcining in an iron mould an intimate mixture of coke and bituminous coal, finely powdered and strongly compressed.
(19) E. M. B. asks for the name of any work in which he can find "spontaneous combustiou" Joseph Williams, Scientific American Supplement No. 32.
(20) W. A. writes: I am running 18 inch saws, and do what I will the boxes will heat. Until minute. I slowed them down to 2,050 , and still they seem to heat just as bad. I was using a poor class of Babbitt and thought that was it. I bought some of the bestI could buy, and still they heat. A. Either your boxes are out of line or the mandrel is sprung or out of round, or the boxes are too short. We would recommend truing the mandrel in a lathe, and the
longer boxes, which must be rigidly mounted.
(21) F. S. asks: Can you tell me how the
bronzing shoos? A. It is made by dissolving aniline red in thin alcoholic shellac varnish. Add the anilin (22) get the bronze effect.
(22) C. B. T. writes: Can you say anyhing about potato fiour in your "Notes and Queries" A. The potato flour used by confectioners and Hebrews is simply fine potato starch reduced to flour in a mil (23) " Nails" asks how to copper iron arti cles, such as nails, etc. A. Clean the iron by pickling
t in dilute oil of vitriol and tumbling in a barrel, with it in dilute oil of vitriol and tumbling in a barrel, with
sand if necessary; then bring theminto contact with a sand if necessary; then bring them into con
strong aqueous solution of copper sulphate.
(24) A. M. H. asks: Do you know any good recipe for making fly paper that fastens them to
the paper? Boiled linseed oil and sugar are the materithe paper? Boiled li
als used, we believe.
(25) Y. O. asks: What kinds of paper and what process are used to manufacture changeable paper lowers, which change their color according to the at mosphere: A. Saturate the paper with a moderately
concentrated solution of cobalt chloride in rain wa
.
(26) M. A. D. writes: I am troubled with sperfluous hair and I want to get rid of it. How can by weight, pure crystallized sodium sulphydrate, and parts of flue purified chalk; rub well togethere, and with water, and apply a layer the thickness of a knife blade. It should be allowed to remain in contact with he flesh not more than two or three minutes to avoid injury to the skin. Depilatories of this kind destroy
the vitality of the hair. We do not recommend their use. If the materials are impure the skin may be (a7)
(27) C. M. B. asks: How can I construct a small pressure blower, suitable for a sand blast? A.
Make two wooden side pieces of the form shown in the side elevation. Cut a groove in each to receive the sheet iron strip which forms the curved sides. Turn a Booden shaft. Insert metal bearing pieces in its ends fans attached. Support the shaft on pointed screwsin serted in the cross pieces attached to the side pieces Clamp the side pieces to the edges of the sheet iron by
means of small bolts. We give dimensions below:- Di-

meter of case, 6 inches; thickness of case inside, $21 / 2$ 112×2 size of opening in sides, 2% inches, $1 / 2 \times 2$ inches; discharge opening, $11 / 2 \times 21 / 2$. The size
and proportions may be varied. A fan of this sort will answer for the sand blast or for a small forge, but if it
is to be used continuously the shaft should be iron or is to be used continuously the shaft should be
steel and it should be runin well made boxes.
(28) P.B., W.B.P., and others.-A cheap and effective acoustic or thread telephone may be made by turning from wood a mouthpiece, A, and attaching to it a disk, B, of ferrotype plate. The mouthpiece should
be $21 / 4$ inches in its largest diameter, and should have an annular surface $1 / 4$ inch wide for receiving the disk, B, which is attached by means of sealing wax. The wax is first applied to the wood, and the disk is warmed and pressed against the mouthpiece. The disk is $23 / 4$

nches in diameter. The portion left free to vibrate is $13 / 4$ nch in diameter. The larger internal diameter of the mouthpiece is $13 / 4 \mathrm{inch}$, the smaller $1 / 2 \mathrm{inch}$. There is a
small hole in the center of the diaphragm for receiving the thread, which also passes through a small piece of thread, which also passes through a small piece
of rubber and is knotted. The telephone thread must be supported on small elastic bands which must be put under tension. The string must also be taut. By means of this arrangement sound may be conducted at any desired angle, the elastic rubber supports being rranged as shown at the corners of the engraving Whispers and even breathing may be distinctly heard over a long distance. When talking loud the receiving
instrument should be removed 2 inches from the ear.
(29) H. W. A. writes: In your issue of July , Mr. Edison describes the arrangement of a " free lever resting on the receiving diaphragm, which anwers very well for calling purposes at telephone sta-
tions where there is comparatively but little noise " Can where there he aplied to the Bell tele. phone? A. Something similar has been applied to the
Bell teiephone.
(30) E. I. asks: 1. What metal is used as a ositive electrode in coating copper with iron? A. rom steel plate engravings for electrotyping? A. Gutta percha, wex fusible metal, or plaster of Paris. Gutta percha, wax, fusible metal, probably the best.

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American acknowledges ith much pleasure the receipt of original papers and Motors. By D. E. P.
Motors. By D. E. P.
Steam Yacht. By G. F. S.
Steam Yacht. By G. F. S.
Potato Disease, etc. By T. C
An Invention Wanted. By W. G.S
The Use of Mechanism. By J. B. and T. B. McC.
Quantitative Psychology. By J. M. M.
Quantitative Psychology. By J. M. M.
What is the Sun composed of? By T. B. McC.

Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined, with the results stated: E. W. D.-Consists principally of orthoclase, quartz, not a quartz pseudomorph after wood, as supposed. No. 20 is anhydrite. No. 3 a limestone somewhat resembling that used for lithographic purposes. No. 89 is calcite. No. 300. The fossil shell was too mutilated for classification. No. 11 is an impure limestone. No.
173 is orthoclase containing seams of muscovite. No. 173 is orthoclase containing seams of muscovite. No.
214 is calcite colored with iron. No. 194. These fossils will be referred to hereafter No. 83 is a pecimen of an extinct genus of the family Malleacea, of which the genera Avicula, Perna and meleagrina are representa-tives.-W.P. E. and J. E. H.-It is the pollen of the common white pine (Pinus strobus).-S. S.--It is princi-
pally ferrous sulphate and alum.-A. M. K.-It is iron pally ferrous sulphate and alum.-A.M. K.-It is iron
sulphide and arsenide-mispickel.-G.M.H.-It is nodusulphide and arsenide-mispickel.-G.M.H.-It is nodu-
lar iron pyrites.-L. S. S.-No. 1 is hornblende and quartz. No. 2 is hornblende schist, containing ferrois chalcedony-a variety of quartz.-G. H. M. -It contains iron sulphide and copper sulphide-chalcopyrite. The ore may be of some value

HINTS TO CORRESPONDENTS. We renew our request thatcorrespondents, in referring to former answers or articles, will be kind enough to name the date
Correspondents whose inquiries fail to appear should repeat them. If not then published, they may conclude
that, for good reasons, the Editor declines them. The address of the writer should always be given.
Inquiries relating to patents, or to the patentability of inventions, assignments, etc.. will not be published
here. All such questions, when initials only are given, our paper to print them all; but we generally take pleasure in answering briefly by mail, if the writer's address is given.

[OFFICIAL.]

INDEX OF INVENTIONS
Letters Patent of the United States were Granted in the Week Ending

May 21, 1878,
AND EACH BEAIRING THAT DATE.
[Those marked (r) are reissuled patents.]
A complete cony of any patent in the annexed list, furnished from this office for one dollar. In ordering, please state the.number and date of the patent desired
and remit to Munn \& Co.. 37 Park Row, New York city.

Amalgamator, Hobart \& Stwara
Animal tran, S. Snell...
Auger, well. J. T. Glass
Awning, J. Koenig.
Bag holder, J. L. Conway
Balance, compensation, C. v. Woerd.
Barrel, L L.

Bedstead, invalid, J. Goodwi
Beehive, O. Colvin
Beenive, I. Parke
Beehive, G. S. Walton
Belt, endless carrying, T. M. Healey..
Belt, electro-galvanic, H. E. Jacobsen
Belting rubber, H. R. Barber..........................
Bending machine, sheet metal, W. T. Holland Bending plumbers' traps, E. A. Leland Bird cage, E. Weissenborn
Blackboard, H. W. Eastman Blanks, arranging, Delke
Blower, fan, R. Waskey.
Boiler covering compound, G. C. Fowler
Boiler, steam, B. T. Babbitt.... 203,98 Bolt and nut, B. A. Harvey.. Boot and shoe burnishing machine, C. J. Addy (r) Bottle stopper, D. E. Stevens. Box fastener, O. Geie

Brake for elevators, C. H. Mitch
Bridle and halter, J. McKibben
Bronzing machine, J. O. Kurtzmann
Bung stave lock, J. Kirby
Button, D. B. Waite......
Can, jacket, F. C. Wilson.
Can or vessel for liquids, J. P. Adams
Canister, E. Norton (r).
Car coupling, A. Elliott.
Car coupling, J. H. Hills
Car coupling, J. H. Hills.......................
car coupling, link guide for, A. M. Miller
Car heater, W. M. Jackson,..............
Car, railway, R. L. \&C. W. Dabney, Jr.
Car transfer apparatus, R. II. Ramsey
Cars, motor for street, J. F. Kelley
Carpet cleaning machine, J. Rae
Carpet cleaning machine, J. Rae
Cartridge loading device, H. Watkeys.
Cartridge package J. W. Frazier
Cartridge package, J. W. Frazier...................
Cement, making hydraulic, C. F. Dunderdale (r)
Chair attachment, rocking, J. Zangerle
Chair, barber and dental, G. W. Archer
Checking apparatus, J. Casey
Cheese vat, Smith, Freman \& Burrell
Cheroot machine, A. \& J. Marengo.
Churn, L. Cutshawl.......
hurn motor, W. A. Morga
Cigar box, S. H. Hewlett ..
Cigar tip cutter, G. Ohmer
Cigars, apparatus for bundling, W.................
Cigarette for medical purposes, D. Wark
Clothes pounder, G. M. Smith
Coffee. etc., making extracts of, B. Schmitz
Coffee roaster, J. Miller
Column, flre proof, P. B. Wight
Condensing vessel, E.D B. Bangs
Copperas, red colors from, W. Pet
Copperas, red colors from, W. Peterson
orn shellers, cob elevator for, H. H. Eby
Curstain roller and bracket, Buckley \& Sawyer

Cutiery, table, E. Cady..........Dental gold filling, E.	
ental tool, E. T.	
Derrick, wagon, J. D. D.es........	
Dough, preparin	
Drawer support, J. W. Dane	
Drying machine, G. N. Bliss..Earth closet, R. W. Riddle....	
Educational appliance, C. A. Bailey .	
Egg tester, C.Electrical conductors, tip for.J. A. Nic	
	Elevator boot, Caldwell \& Wa
Elevator, grain, O. D. Spalding...	
	End gate, wagon, S. W. Perkins.
Engine, steam, J. Baird....	
	Engine, wind, L. Brayman
Engine, wind, J. Hollingsworth.	
Exercising machine, W. H. Willco	
	Fare register, J. Bluemel
Fence post, Canedy \& Leach	
	Fence wire. W. C. Payne
Filter, drive wel point, M. J. Eich	
	Fire escape, J. M. Lescale.
Flower vase, F. Ratcliff.	
	Fly trap, D. S. Kidder
Fork, horse hay, J. H. Harter.	
Fountain, drinking, J. Reid..... Fruit basket, A. P. Gibson	
Fruit box, A. P. Gibson	
Funnel, self tapping can, A. W. P. Ladd. Furnace for desulphuriz ing ore. C. Olsted	
Furnace, heating. D. L. Jaques...	

Gas apparatus, H. D. Fitch Gas apparatus, J. Hanlon enting, Cochum \& Herr Glove, corn husking, C. M. Townsend
Glucose, manufacturing, N. Pigeon. Grain drier, P. Provost.
Grain masher, L. A. Dé Lime
Grain separator, C. Wood.
Graining machine, G. Pelstring.
Halter, Puller \& Warren Harness attachment, T. B. Hand Hay tedder, S. Perry
Heel and sole trimming machine, J. H. Busell (r) Hinge, J. A. House.
Hinge, W. S. Mains.
Hoop machine, G. B. Selden
Hop picking machine, H. H. Hatheway.
Horse collar, metallic, J. C. Smith
Hot air, utilizing, S. C. Salisbury
Hot air, utilizing, S. C. Salisbury
Hub attaching device, J. C. Hendry. Hydrocarbon generator, etc., C. Holland........
Hydrocarbon generator and lighter, C. Hollan Hydrocarbon vapor generator, etc., c. Holland..
$203,826,203,827,203,829,203,830$, Hydrocarbons, extracting, w. Adamson....
Indicator for steam engines. pressure, J. R
Indicator, station, S. W. Colton.
Inkstand, \mathbf{F}. Klingspor, Jr
Iron, etc., melting and treating, G. W. W. Swett.
Ironing table A. .
Ironing table, A. T. Gale.
Knapsack, H. C. Merriam
Knife, hay, D. L Garver.........
Knife, paring, J. H. Wilhelm..
Labels, etc., machine for counting
Ladder, fire escape, J. . Lucas...
Lamp, D. Whiteford.
Lamp, D. Whiteford......................
Last blocks, trimming, J. C. Kingston..
Lathe for turning masts, etc., H. Kean
Lathe for turning masts, etc., H.
Lead cutter, Phillippo \& Owen....
Leaf turner, Vincent \& McMillan
Learturner, Vincent \& McMillan..............
Leather, etc., coloring and sizing,
Letter sheet and envelope, C. L. Riker........

Lock, J. Klinzing

Lock for doors, extension...............
Lock, sash, G. B. Sarchet..............
Lock, seal, E. J. Brooks
Loom, H.D. Davis
Lubricant, C. Johnston..........................
Lubricator, vehicle axre, L. Espenschied..
Lumber-drying apparatus, R. P. Johnson (
Lumber-drying apparatus, R. P. Johns
Medical compound, c. C. Wainwright.
Milk, vessel for setting, J. W. Powers
Mill, grinding, J. Mills
Mill, grinding, A. N. Wo

Millstones, device for Moccasin, J. G. Pitts.

Moccasin, J. G. Pitts............
Mouldings, machine for veneer
Needle wrapper, B. M. Thomas
Needle wrapper, B. M. Thomas................
Netting, machine for making, W. J. squire..
Newspaper wrapping, etc., machine

Oils, extracting, Adams
Ore washer, C. O. Bagley....
Organ stop action, G. R. Ellis
Organs, tremolo attachment for, J. H. Potter.
Overshoes, attachment to rubber, J. w. Bake Overshoes, attachment to rubber, J. W. Bat
Painting canvas, mach!ne for, w. Levin
Paper and other fabrics, pasting, J. Caller. Paper and other fabrics,
Paper box, G. A. Dunn.. Paper cutting machines, drum for, w. E. Paper or cloth, flnishing surfaces of, C. E. Sawyer
Paper pulp from wood, manufacture, W.R.Patrick Paper pulp, preparing wood fiber for,J.C.McIn
Paper weight and copy holder D. Pen holder, J Hoffman
Pen hower, J Hofrman..........
Pen, writing, L. B. Bertram (r)
Piano forte, C. F. T. Steinway.
Piano iorte actinn, C. F. T. Steinway
Piano forte agraffe. C. F. T. Piano forte agraffe. C.F. T. Steinway
Piano forte, grand, F. F. T. Steinway.
Piano fortes Piano forte, grand, C. F. T. Steinway.............
Piano fortes, capodastro frame, C. F. T. Steinway
Piano fortes, sounding board, C. F. T. Steinway Piano fortes, sounding b
Pin, brooch, J Jenkins.
Pipe, cement and asphaltum, M. Allen
Plipe joint, water, F. P. Hallberk.
Planing machine, J. B. D. Leavitt
Planter, corn, G. W. Brown
Planter, corn, G. W. Brown....
Planter, corn, D. \& D. F. Luse
Planter, corn, A. \& M. Runstetler
Planter, cotton, w
Planter, cotton, w. C. Smith
Planter, seed, W. C. Smith
Plow stock, I. . Saunders.
Plow, sulky, J. B. Fisher...
Plow, sulky, w. C. Rogers.
Press, baling, J. . Blossom
Press, shingle, R. A. Stahn.
Press, shingle, R. A. Stahn.
Propellers, bearing for screw, J. Baird

| Pump, J. S. . Beal. . |
| :--- | :--- |
| Pump, T. Dowling |

| 102 | Pump for oil wells, steam, H. W. Faucett |
| :--- | :--- | Railway crossing, , s. H. Sparkes....

Railway, portable, N. W. Condict, J Railway track, portab
Rake, hay. A. Rigby. Refrigerating milk wagons, P. .T. We.......
Rice hulling machine, w. C. Howard... Rice hulling mac
Rivet, M. Bray... Rivets, machine for inserting, T. Boardman Rudder for canal boats, J. Supple...
Saddle, harness, Standish \& Bailey..
Saddle, harness, Standish \&
Salve, J. G. Muller..........
Sash fastener, J. M. Keech..
Sash fastener, J. M. Keech.
Sash, window, I. T. Dyer..
Saw, grinding machine, S. Bevan.
Saw mill carriage, H. Groves.....
Scales, weighing, F.
Scoop, A. Button.
Screw cutting die, Grant, Sawyer \& Gardner..
Screw machine, metal, C. D. Rogers...............
Screw threads, die for cutting, M. C. Johnson
Sewing machine, J. L. Follett, 203
Sewing machine tuck creaser, i. M. Rose (r). Sewing machine tuck creaser, I. M.
Shafts, bearing for rubroll, D. Hyde
Ships, construction of, J. Rees....... Shirt, P. B. Pickens...
Shoe tip.J W. Hyatt
Shoe tip. J W. Hyatt....
Shovel, fire A. Bardell..
slate cleaner, reservoir, A. W. Overbaugh (r)
Soa, A. H. West
Sower, fertilizer, C
Speed recorders, mechanism for, W. W. W. Wythe
Spinning machinery bearings, F. J. Rabbeth
Spinning machinery bearings, F. J.
Spring, wagon, W. L. Williams....
Square, dressmakers'. J. F. Wingate
Stamp, hand, B. B. Hill
Stamp, hand canceling, B. F. Hill.
Stamp, hand canceling, B. F. Hill
Stamp, rubber pocket, S. W. Garr
Stencil plate, A. C Barnes, Jr.
Stone polishing machine, Pitkin
Stove, camp, C. P Vollbrecht..
Stove, cooking, \mathbf{D}. Stuart.......
Stove or lamp, oil, E Blackman.
Stove shelf. G. W. Robertson. .
trainer, milk, H. More.
treet sweeping machine, H. W. Richardson
Stud, shirt or sleeve, Salmon \& Delavier
Suspensory bandage, S. E. G. Rawson...
Syringe. flexible, M. Mattson (r)..........
Tabiets, cover for holding, H. Willson..
Tanks, man hole cover for oil, w. H. Brock.....
Tanks. man hole cove
Tassel, w. Offner....
Tea case, J. A. Anderson..
elephone, speaking, w. Gille
Telephone, speaking, E. Gray.
elephone, speaking, J. J. McTighe (r)
empering \& lubricating, composition for, J. Park 204,076 Tiles, machine for making, etc., A. H. Austin ... 203,811
Time detecter, watchman's, J. C. Marvil........ 204,063 Tobaceco, device for marking plug, H. C. Holbrook 204,0
Tobacoo germer, J. Woods.................. 203,
Tongue and thill support for vehicles, O. P. Tripp 204,113
Toy bank, D. J. MacLean
Track clearer, W. T. Gruntler .
Track clearer, G. Royal. ...
Trading pit, R. S. Jennings
Trading pit, R. S. Jennings
Tree protector,
T. Doak.......
Tree protector, 1 Doak......
Trunk fixture, C. A. Taylor.
Trunk, sectional, F. Van
Truss, M. M. Macdonald...
Twine holder, J. Hill.
Twine holder, J. Hill.
Valve for hydrants, etc., …................
alve, steam, J. Saunders ...
Vegetable cutter, J. II. Boyle
Wagons, netting for unloading, J. D. Winters.
Wash bench, C. Barlow
Wash boiler, J. J. Hall
Wash boiler, J. J. Hall...
Washing machine, c. \& A. W. Guyer.
Washing machine, Iless \& Newton....
Washing machine, Hes
Waste trap, D. Healy.
Watch, D. A. A. Buck.
Watch escapement, D. A. A. Buck
Watch plate, D. A. A. Buck.......
atergate or stop valve, A. C. Austin
Water meter, oscillating, A. C. Austin
Water meter, piston, H. L. Arnold..
Watermeter, piston, J. Barnes.
Water wheel gate, J. S. Ladow.
Water wheel gate, J. S. Ladow............
Wheel and axle, car, D. M. Cummings..
Whip socket and rein holder, H. W. Neal
Windlass. wire cable, J. P. Manton.
Wire coiling machine, C. E. Green.
Wool washing machine, W. Ir. Bradley Wrench, pipe, D. Fisher.............
Wringing machine,I. Copeland....
Zinc, treating ores of, E. A. Parnel
TRǍDE MARKS.
Burnishing ink, J. Henry Dwyer.................117, 6,118
Cigars, C. Claudius....................................0.0. $6,099,6,100,6,101$
Cigars, J. D. Loomis....
Cigars, cigarettes, etc., McCoy \& Co.................. 6,102
Chemical preparations, New York Chemical Works
Chewing and smoking tobacco,Frishmuth Bro.\& Co. 6,119
Clocks, H. J. Davies.................................116
Coloring butter, Wells, Richardson \& Co
Drugs and chemicals, W. S. Powell.
Dry goods, The Eddystone Manufacturing Co.
Edge tools, The Collins Company...
Gunpowder, Miami Powder Company Hams, Troth Brothers....
Lubricating oil or componand, G. Binns.........
Medicinal preparation, Caswell, Hazard $\&$ Co Medicinal preparation, Caswell, Hazard \& Co
Medicinal preparation, H. H. de Petferren Medicinal preparation, Relief Manufacturing Co. Medicinal preparation, Atkins, Hertel \& Medicinal preparation, T. S. Bradfield..
Medicinal preparations, w. H. Whitney Medicinal tonic, R. Van Buskirk ..
Mustard, spices, etc., w. J. Fell .. ustard, spices, etc., w. J. Fell091, Nursing bottles, Hagerty Brothers \& Co....
Plug chewing tobacco, P. McNamara \& Co. lug chewing tobacco, Wilson \& McCallay Roasted and ground coffee, etc., Burns \& Byram. Sarsaparilla extracts, R. F. George....
Watches, Lake Shore Watch Company Watches, Lake Shore watch Company.

204,015

Scicutifir Americaur.

The Most Popnlar Scientific Paper in the World. chirty-third Year

Only \$3.20 a Year inciuding Postage. Weekly

This widely circulated and splendidly illustrated paper is published weekly. Every number contains sixteen pages of useful information, and a large number of
original engravings of new inventions and discoveries representing Engineering W Wrks, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures Chemistry, Electricity, Telegraphy, Photography, Arch tecture, Agriculture. Horticulture, Natural History, etc All Classes of Readers find in The Scientific AMERICAN a popular resume of the best scientific in-
formation of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in Te of shates.
tific American will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty
cents by the publishers; six months, $\$ 1.60$; three months, $\$ 1.00$.
Clubs.-One extra copy of The ScIENTIFIC AMERIat $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.
of The Scientific Anfrific American and one copy for one year, postage prepaid, to any subscriber in the United States or Canada, on receipt of seven dollars by
the publishers. the publishers.
The safest way
Emoress. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes securely sealed, and correctly addressed, seldom goes
astray, but is at the sender's risk. Address all letters and make all orders

MUN \& Ros.

To Eoreign Subs ribers.-Under New York.
To Eoreign Subs ribers.- Under the facilities of
the Postal Union, the ScIENTIFIC AMERICAN is now sent by post direct fromNew York, with regularity, to subscribers in Great Britain, India, Australia, and all other
British colonies; to France,Austria, Belgium, Germany, Russia, and all other European States; Japan, Brazil,
Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted,
$\$ 4$, gold, for SCIENTIFIC AMERICAN, 1 year: $\$ 9$, gold, for \$4, gold, for SCIENTIFIC AMERICAN, 1 year; \$9, gold, for
both SCIMNTLPIT AMERICAN and SUPIEMENT for 1
year. This includes postage, which we pay. Remit by year. ordincr or draft to order of Munn \& Co., 37 Park
postal ord New York.
Row,

CAUTION TO THE PUBLIC. To avoid imposition purchasers of Waltham watches
will observe that every renuine watch, whether good
or silver, bears our trade-mark on both case and or silver,
movement.
Goldeneases are stamped "A. W. Co.,", and guarantee
certifcates accompany them. Silver cases are stamped "Am. Watch Co.., Waltham, Mass., Stering Siverr,"
 R. E. Robbins. Treasurer. The uane "Nail
plainy engraved upon all movements, irrespective of
other other distinguishing marks.
Our movements are frequently taken out of their
cases and placed in spurious ones, and our cases put cases and placed in spurioup ones, and our cases put
upon worthless movements of other makers, thus vitiating our guarantee, which only covers our complete
watches. We have demonstrated by frequent assays that
 "Eighteen carat." gold, such as the Waltham cases are made of, is as nearly pure gold as can be made and
be durable. It contains $750-1000$ of pure gold, and 2500-1000 of alloy. $925-1000$ of pure silver, and $75-1000$ of allos , tham Watches will always be found up to the standard represented.
For $A M E R I C$ ROBBINS \& APPLETON, New York.

BURNHAM'S

 N.F.BURINHAM.YORK.PA. A FIRM IN CHICAGO, OF SOME YEARS'
 RUPTURE Relieved and cured. with out the injory trusses infict,
by Dr. A. A. Sherman's method of support and curative
 CIVIL and MECHA NICAL ENGINEERING

 Wilbraham Rotary Piston Pump
 ALL SIZES
Prom 25 gallons per minute
to $40,000,000$ gallons 2320 Frankiford Road,

THE DRIVEN WELL.
 WM. D. ANDREWS \& BRO., HOW TO MAKE A PHONOGRAPH-

Fipu PIdCu Tifatong

ROBERTS' ENGINE GOVERNOR. Compact simple cheap. More sensitive than any one
Hoverne
Hist.

PATENTS SOLD.

For terms, address EUROPEAN and UNTTED STATES
PATENT EXCHANGE, 200 Broadway, N. Y. Box 2001.

BLAKE'S STONE AND ORE BREAKER AND CRUSHER

 Ms, "The 1876 Injector.

 TIIT+1 WROUGHT
BEAMS \& GIRDERS T THE ONION IRON MILLS, Pittsburgh, Pa, Manu-

Pond's Tools,
Enoine Lathes, Planers, Drills, \&c.,

EAGLEFOOT LATHES,

!!New and Improved!! $\underset{\substack{\text { Engraving Process ! ! ! ! } \\ \text { pertet }}}{ }$
 Whin) hat (wnat PATENT MINERAL WOOL.

The Army of the Republic TTM sefvige arn pertiri An Oration at the Re-unton of the Army of the Poto-
mac, , atpringefid, Mass., June th, comprising Christian
Union Extra No. 12. THE CHRISTIAN UNION,

The George Place Machinery Agency

HOW TO SPEND THE SUMMER Where to Go: How to G1: How to Save Monev.
 and ontice e5 Cents.

THE CHRISTIAN UNION,

OTIS safety hoisting
Machinery

Driven or Tube Wells

 " LNYDER'S

and examine, or send for free
Indrated
Catatoteea and
Descriptive

Lathes, Planers, Shapers Drills Bolt and Gear Cutters MIlling Machines, Spectal
Machinery.
E.GOULD $\& E B E R H A R D T, ~ X a w a r k, ~ N . J . ~$

THE BUCKEYE AUTOMATC CUP-OP
 Wood-Working Machinery,

HTELEPHONES

Miil Lumber anil veriedis:
Mahogany, Walnut, Holly, Ash, Cherry, Oak, Poplar, can be found elsewhere, most of them being cut and dried on our new Patent Machines and Presses.
Also a full and complete assortment of all kinds and

Geo. W. Read \& Co.,

and Shaped Diamond Carbon Points, indispensable for
Truing Fmory Wheels, Grindstones, Hardened theel

EXPLOSIVE DUST A COMPREHEN sive description of the Dangers from Dust in various
Manufactures and the Cause of many Fires. How com. bustible substances can explode. Spontaneous Combus.
tion of Iron, Charcoal, and Lampblack in Air. Flour
Dust and Brewery Dust Explosions. Explosions of Cal
Dust in Mines. Contained in Scientiric AM

Can I Obtain a Patent?
This is the first inquiry that naturally occurs to every
author or di-coverer of a new idea or improvement. The quickest and best way to obtain a satisfactory answer without expense, is to write to us (Munn \& Co.), de-
scribing the invention, with a small sketch. All we need is to get the idea. Do not use pale ink. Be brief Send stamps for postage. We will immediately answer and inform you whether or not your improvement is probably patentable; and if so, give you the necessary instructions for further procedure. Our long experience enables us to decide quickly. For this advice we make no charge. All persons who desire to consult us in re-
gard to obtaining patents are cordially invited to so. We shal be happy to see them in person at our offce, or to advise them by letter. In aration of their plans, an honest opinion, and a prompt reply.
to Munn \& Co. will be faithfully guarded and remain confidential?
tegrity in-You have none except our well-known inpractice of thirty y, based upon a mort extensive numbered by hundreds of stand ng. Our clients are found i:l every town and city in the Union. I'lease to make inquiry about us. Such a thing as the betrayal sional care, never has occurred, and is not likely to oc are kept $s \in c$ int and con fidential

Address MUNN \& CO.,
37 Park Row, New Your
Q

Cluntinementy. Engravings may head advertisements at the same rate per line, by measurement, as the letter press. Adver- tisements must be received at publication office as is Thursday morning to appear in next issue. ON THE PRESERRATION OF WOOD Mill Stones and Corn Mills.

JOSEPH C. TODD, Evgiver and MAchinist. Flat, Hemp, Jute, Rope,
Oakum and Bagging Machinery, Steam Engines, Boilers
etc.
 10 Ber. J. 'TODD, NARROW GAUGE SWEDISH LOCOMO-
 THE HUGHES TELEPHONE. SIX FIGures. Sound converted into Undulatory Electrical Cur
rents by Unomogeneous Conduating
Circuit. The Simstance in
The Simplest Treephone and the most sensitiv

CAMERON Steam Pumps

For Mines, Blast Furnaces, Rolling Mills, Oil Refineries, Boiler For Illustrated Catalogue and Reduced Price List send t
Works, Foot East 23d St., New York. NOMENCLATURE OF BUILDING 2mantion

(1) 1

ON THE CARE OF HORSES. BY PROF.

THE FLOW OF METALS. BY DAVID TowNSEND. Valuable experiments, with ten engrav
inss, ompunching through thick plates. Evidences of
a Flow op Metal. Effect of Flow on dimensions, Density

Steel Castings,

 EMERY AND CORUNDUM WHEELS,

Cuncurassiodive
Asbestos Liquid Paints, Coatings, Cements, Boiler Coverings, \&c. H. W. JOHNS M'F'G CO., 87 Maiden Lane, New York

Pyrometers.

ICE AT 81.00 PER TON
The PICTET ARTIFICIAL ICE CO, room 51, Coal and Iron Exchanse, P. O. Box 3083, N. Y. LAP WELDED CHARCOAL IRON

His Own ce

Nshepards celebrated

 catalague
critisns.
H.
.
.

PORTLAND CEMENT

MACHINISTS' TOOLS.

 Lathes, Planers, Drills, \&c.
BOILER COVERINGS.

SAVE 10 TO 20 PER CENT.

UPRIGHT DRILLS sfow H.BICKFORD Cincinnatia

 FRIEDMANN'S PATENT INJECTORS and EJECTORS AOILER FEEDERS And Water Conveyors NATHAN V NRYUS, NEW YORK Also Patent Oilers and Lubricators.Send for Catalogne.

 nan's Time Detector, capable of accurately con-
rolling the motion of a watchman or parrolman it the

BURR
MILLS.
 C. C. PHILLIPS, 4048 Girard Avenue, PHILADELPHIA.
POINTS-OF A GOOD HORSE. BEING

Holly's Improved Water Works.

J. LLOYD HAIGH,

NEWSPAPER FILE

THE TANITE CO. STROUDSBBURG, PA.
EMERY WHEELS AND CRINDERS. EMERY WHEELS AND CRINDERS.

STHEMM PUMPS;

HENRY R. WORTHINGTON,

 Water meters. Oil Meters.

> Prices Largely Reduced.

相

HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.
W. B. FRANELIN V. Pres't. J. M. ALLEN, Pres't. J. B. PIERCE, Sec'

TMATENTS

CAVEATS, COPYRIGFITS, TRADE MARKS, ETC.
Messrs. Min a co., mprovements, and to act as Solicitors of Patents for nventors.
In this line of business they have had oVER thirty or the pxperience, and now have unequaled facilities nd the Prosecution Patent Drawings, Specifications, inited States, Canads, and Foreign Countries. Messrs. unn \& Co. also attend to the preparation of Caveats, Trade Mark Regulations, Copyrights for Books, Labels, of Patents, All bents, and Reports on them is done with special care and promptness, on very moderate

We send free of charge, on application, a pamphlet containing further information about Patents and how to procure them; directions concerning Trade Marks, Copyrights, Designs, Patents, Appeals, Reissues, Inringements, Assignments, Rejected Cases, Hints on the Sale of Patents, etc
Synopsis of Foreign Patent Laws, showing the cost and method of securing patents in all the principal countries of the world. American inventors should bear in mind that, as a general role, any invention that is valuable to the patentee in this country is worth equally as
mach in England and some other foreign countries.
 French, and Belgan-wifi secare to an inventor the exUUNDRED AND FIFTY Mulions of the most intelligent people in the world. The facilities of business and steam communication are such that patents can be obome. The expense to apply for an English patent is \$5; German, $\$ 100$; French, $\$ 100$; Belgian, $\$ 100$; Canadian, 850.
Copies of Patents.-Persons desiring any patent
asued from 1836 to November 28,1867 can be spper with official copies at reasonable cost, the price depending upon the extent of drawings and length of specifications.
Any patent issued since November 27, 1867, at which time the Patent Office commenced printing the drawIngs and specifications, may be had by remitting to this office $\$ 1$.
A copy of the claims of any patent issued since 1836 Whll be furnished for $\$ 1$.
When ordering copies, please to remit for the rame ion, and date of patent. A pamphlet, containing full directions for obtaining United States patents sent free. A handsomely bound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every patentee and mechanic, and is a aseful hand book of reference for everybody. Price 25 cents, mailed free. MONN \& CO.,
Publishers SCIENTIFIC AMERICAN, BRANCH OFFICE-Corner of F and 7 th Streets,

TEE "Scientific American" is printed with CHAS.
ENEU JOHNSON CO. INK tenth And Lom-
bard Sts., Philadelphia, and 69 Gold St., New York.

