Oj

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

$\text { Vol. } \operatorname{XXXXIX}_{[\mathrm{NEW}} \text { SERERE. }- \text { No. 2.] }$	NEW YORK, JULY 13, 1878.	$\left[\begin{array}{c}\text { [3.2n per Annumm. } \\ \text { [Postage PREPADD.] }\end{array}\right.$

THE ADAMS GAS PROCESS

Professor Henry W. Adams, A. M., M. D., of Astoria, N. Y.. has recently erected a full bench of retorts, with the necessary apparatus for the manufacture of coal gas by a new process, whereby he claims to have obtained remarka ble results in point of economy, rapidity of working, and superiority of product. So far as our inspection has extended, the advantages hereafter detailed seem to be realized; but of this gas engineers and other experts can best judge after consideration of the ingenious system which Professor Adams has devised, and after a visit to the model works which he has erected in Astoria for the purpose of demonsirating the success of his invention. In these works he has a bench containing four full sized clay retorts. These are connected in pairs, each pair being a unit, so to speak, for the purposes of the process, the rationale of which is as follows: Retort No. 1 is charged with gas coal in the ordi nary way and heated. Two hours afterward retort No. 2 of the pair is also charged, and the products of the fresh charge, tar, aqueous vapor, etc., which are given off before the temperature reaches the point when good illuminating gas is evolved, are led directly into the now highly heated first retort. On the way they are mixed with superheated steam and petroleum vapor. The mingled gases combine with those in retort No. 1 for two hours. Then the charge in that retort is drawn, a fresh charge put in, and the first products of distillation are led into retort No. 2, reversing
the former operation. In this way the alternation con tinues. Professor Adams' trial bench makes, he informs us, 50,000 feet of gas per 24 hours, or over three times the amount which coal alone is capable of producing in the same number of retorts of similar size.
The result of this process is that no tar or ammoniacal water is produced, all the bitumen being converted, or rath er decomposed, into gas. Instead of the ordinary average yield of four and a half cubic feet per pound of coal, eight cubic feet of gas, the inventor states, are here produced. As compared with the common process, he furthermore informs us that only one third the number of retorts and one third the labor are needed to make a given quantity of gas in a given time. According to his investigations it also appears that the three gases, namely, from petroleum, from water and from coal, unite in the retort to form a fixed gas of ex ellent quality and fine illuminating properties. The general arrangement of Professor Adams' experimental bench is represented in Fig. 1. From the sectional views, Figs. 2 and 3 (page 18), the construction of his apparatus will readily be understood. Referring to Fig. 2, A and B constitute the upper pair and C and D the lower pair of retorts. As the process is the same in each couple, we shall refer, for convenience, chiefly to the upper pair. These in front of the bench are connected by the horizontal pipe, E , in which the mixing of gases is effected. At F are the steam nozzles, mixich, as shown in Fig. 3, connect by suitable pipes with
whe
the superheaters, G, Fig. 3. These are simply clay retorts or pipes placed in the lower flues of the furnace, and into which the saturated steam from a boiler is discharged. It will be seen from Fig. 2 that the products of distillation rom retort A, freshly charged, are passing over into retort B, which has been in operation for two hours. The steam jet is seen in operation on the left, and it will also be noticed hat the valve, H, which shuts off communication in the pipe, E , between the retorts, is open. In the pipe between the lower retorts it is represented closed. The object of this valve, H , is to shut off connection between the retorts when barging one so as not to lose the gas from the other.
At I, Fig. 3, is the reservoir for oil, which escapes in a ine stream, easily regulated, at the nozzle, J, falling into he retort and upon an inclined apron or gutter, K, Fig. 3. This last is placed in the mouth of each retort, when the atter is charged with coal, for the purpose of causing the iquid to flow back into the hotter portion of the retort, and so conducted to the hottest part of the coal therein.
At L are the four standpipes which are connected to the rear ends of the retorts. The object of this arrangement is to compel the gas tar and aqueous vapors formed in the ront ends of the charges to pass through the red hot ends of he retorts and escape from red hot standpipes, being conerted into gas during their progress. In order to prevent ccumulations of carbon in the mouths of the pipes a tubu-
[Continued on page 18.]

Srientifir Smmricam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
NO. BY PARK ROW, NEW YORK.
o. D. MUNN.
A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included.

alr Single copies of any desire
The Sclentific American Supplement Is a distinct paper from the SciENTIFIC AARERCAN. THE SUPPLE ENT
Is ssued weekly; every number contains 16 octavo pages, with handsome corer, uniform in size with ScirwTric Ambrican. Terms of subseription for SUPPLEMENT, 55.00 a yearr, postage pald, to subseribers. Single coples ${ }^{10}$ cents. Sold by all news dealers throughout the country. Combined Rates. - The Sciextific American and SUPPLEMENP papers to one address or different addresses, as destrea. The safest way to remit is by draft, postal
Address $M U N N \& C O . .37$ Park Row. Y .

Scientific American Export Edition.
The Scientific American Export Edition is a large and splendid periodical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the SCIENTIFIC AMERICAN, with its splendid engravings and valuable information; (2.)
Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, 85.00 a year, sent prepaid to any part of the world. Single copies 50 cents. Marufacturers and others who desire to secure foreign trade. may have large and handsomely displayed an nouncements published in this edition at a very moderate cost.
The Scientific American ex en Co., 37 Park Row. New York.

VOL. XXXIX., No. 2. [New Series.] Thirty-third Year.
NEW YORE, SATURDAY, JULY 13, 1878.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SOPPLEMENT NO. 132.
For the Week ending July 13, 1878

THE INVENTION OF THE MICROPHONE.

In our issue of June 22 last we gave the substance of a communication to us from Mr. Edison, wherein he claimed the origination of the principle of the carbon telephone and
the discovery of the variability of the conducting power of the discovery of the variability of the conducting power of
many substances under pressure; these facts being those which underlie the construction of the microphone, which is alleged by Professor D. E. Hughes, of London, to be an original invention of his own. Mr. Edison also commented Wpon an apparent breach of confidence on the part of Mr^{W} partment, to which gentleman Mr. Edison states he communicated the results of his investigations during their pro gress, including those relating to the adaptation of the new principle to the measurement of minute degrees of heat.
Mr. Preece has cabled a reply, in which he gives "the most absolute and unqualified denial" to Mr. Edison'sstate ments, and further says that "Hughes has not brought ou any thermopile. His microphone is quite a different instru ment from Edison's telephone." Mr. Preece denies being a coadjutor of Hughes, and adds that he knew nothing of the invention until Hughes communicated it to hím.. In a postscript Professor Hughes "emphatically indorses" all hat Mr. Preece asserts.
It is to be presumed that the very positive expressions of Mr. Preece's answer will be modified by the more detailed defense which he will probably publish, and therefore it is scarcely yet just to express any opinion on the merits of the controversy. It may be pointed out, however, that it is difficult to reconcile the statements that Professor Hughes has brought out no thermopile, with the fact that the Engineer for May 17, 1878, published an engraving of such an instru ment made by that gentleman from a quill tube filled with metallic powder, and the writer describes experiments which he saw Professor Hughes conduct with it. Mr. Preece also may possess some special knowledge warranting his asser tion that the microphone is different from Edison's tele phone, but save in a very unimportant modification in form that difference to most people will be imperceptible. The principle underlying the inventions is the same, although it may have been independently discovered by both inventors. To the personal charges made by Mr. Edison against Mr. Preece, the latter gentleman will doubtless give a more spe cific reply. He might not, as he says, have been a coadjutor of Professor Hughes, but that he rendered material aid is probable from the fact that Hughes in the first paper read before the Royal Society tenders him his "warmest thanks for his kind counsel and aid in the preparation of this paper."
Since the above was written Mr. Edison has replied to Mr. Preece at length, giving many citations, etc., in support of his statements, the main points, however, being those which we have noted.

pREPARATION OF IRON FOELS.

It is well known that the preparation of coal for smelting purposes by coking is attended with only partial success, so far as the elimination of sulphur and phosphorus is concerned, while at the same time it involves the loss of the hydrocarbons with their high thermal values. Many other
methods have been tried, some of which are now in limited methods have been tried, some of which are now in limited
practice, having for their ultimate object the purification of practice, having for
Those acquainted with inventors and their fortunes know that many valuable discoveries are long withheld, or not earnestly pressed upon public notice, because the times do not seem propitious or because of the difficulties and disappointments encountered in the attempt, and in not a few in stances the patents for these discoveries are permitted to ex pire unexploited and the invention to become public property. Of this character is one of which we propose to give a brief description for the advantage especially of those who produce iron from the blast furnace, melt it in the cupola, or work it in the forge, though it is not unlikely that the matter may over much more extended and other fields.
A suggestion that coal might be desulphurized, and obser vation of the fact that a handful of common salt thrown into a heated stove liquefied and removed the clinkers, led to a long
series of experiments, eighteen or twenty years a series of experiments, eighteen or twenty years ago, which from coal as suggested, but that the coal could be so treated that not only would its impurities be rendered harmless, but that it could also be made to operate as a detergent upon the impurities contained in iron and its ores.
The experiments proved that at certain moderate pressures steam would take up and convey the alkaline salts according to their measures of solubility; that steam thus saturated and conveyed into closed bins or like receptacles containing coal would penetrate to the center of the hardest anthracite a well as of the softest bituminous, the coal becoming expanded by the heat of the steam, and condensing therein would deposit the conveyed chemicals throughout the innumerable interstices; that not more than from six to eight hours of this steaming was required to charge the coal with such fluxes as common salt, potash, lime, etc., in the proper degree and proportions for the purposes intended; and that the operation did not make it more friable or in any way change its appearance.
Thus prepared the coal contained within itself all the nec essary elements for neutralizing by chemical action during the process of combustion its own sulphur and phosphorus, as well as for removing these impurities from the ore and ron in contact with it.
Anthracite coal so prepared and used in a blast furnace
which was quite foul, first scoured off the clinkers, and afterward, through successive weeks of use, produced an iron, we are told, bearing a tensile strain about twenty per cent higher than any former production of the furnace, while in a cupola furnace it was reported, through many months of trial, as having carried a one third larger charge of iron, and as having run it out in a much hotter and consequently more liquid condition and with an increased tensile strength of bout 30 per cent.
Used in many blacksmith forges, bituminous coal so prepared imparted a welding heat more quickly, corrected the cold or red shortness of the iron, and caused perfect welding, while file cutters and tinsmiths successfully substituted it for charcoal in their work. Even the Broad Top coal of Pennsylvania treated by this process and used in locomotives burned with intense heat, without smoke and without forming clinkers on the grates.
It was natural that prominent chemists even should be found to assert not only that a mass of anthracite could not be penetrated by steam, but also that steam could not take up and carry the alkaline salts, and that indifference, opposition, and dishonesty should be encountered at every step, for such is part of the history of every discovery of importance. Nor is it surprising that an inexperienced inventor should withdraw in disgust from such encounters, and, applying himself to other subjects which he might hope would meet with more favorable reception, let the whole matter, as it were, drop out of his life. And yet it is strange that a discovery of such importance as this should have lain unnoticed for so many years, for not only does it enable the manufacturer and worker of iron to greatly improve its quality at a cost of, say, 8 to 10 cents per ton of coal used, but the process may, we doubt not, be applied with great advantage to the treatment of vegetable fiber used in the manufacture of paper, linen, etc.
In our issue of June 29th we spoke of the neglected flax and linen industry of America, and of the general complaint that the American fiber is less skillfully cared for than the foreign and carelessly cured and prepared, and it may be found that in this process there exists a remedy for these conditions, for the same chemicals (and others besides) that are used in the manufacture of paper pulp from straw may be applied to flax, ramie, and the like, and, we should think, without entanglement of the fiber, by suspending the stalks in strong iron tanks and subjecting them to the action of the chemical steam under pressure for a sufficient time for the removal of the silicious and albuminous coating, as well as for the required degree of bleaching, while pure steam might then be introduced for rinsing or cleansing.
Not only in our Southern and Southwestern States is there great necessity for improved machinery and processes for treating vegetable fibers, but the need is not confined to us, as our readers must be aware, for several months since we published the offer made to inventors by the government of India, by which it appears that fifty thousand rupees (about $\$ 2,300$) are offered to the inventor of the best process or machine which will separate the bark and fiber from the stem, and the fiber from the bark of the ramie.
The best machines hitherto tried for this purpose have failed to meet all the requirements. May not this "chemical steam" process be substituted for or at least satisfactorily supplement them?
298 Macon street, Brooklyn.

millstones.

In the proceedings of the Fiflh Annual Convention of the Millers' National Association, held in Indianapolis in May last, there appears a valuable report on mill machinery, prepared by Mr. Joseph F. Gent, of Indiana. Among the practical suggestions given are several relating to millstones. In selecting a stone, Mr. Gent counsels preference for a medium stone in every particular, not too porous or open, and neither extremely hard nor soft. If a close stone is desired, one should be selected that has every block close alike; if an open stone is preferred the same rule should govern, but in no case should a stone be chosen in which the openings or porous parts exceed one tenth of the whole face.
As regards dress, one in which every furrow runs to the eye is preferred for high grinding, and in no case is a dress advisable which makes less than every other furrow a leading furrow. For most kinds of wheat grown in the Northwest, furrows should be $\frac{8}{16}$ inch deep at the eye, and $\frac{1}{16}$ to $\frac{3}{38}$ deep at the skirt. They should be wide enough to insure perfectly cool grinding, and to discharge the chop free and round. With stones grinding on winter wheat, the furrows required are equal to very nearly two thirds of the entire surface of the stone. Draught can only be decided upon when the dress to be put in, the amount of grain to be ground per hour, and the speed and diameter of burrs and quality of stone are considered. Mr. Gent states that with a medium close stone, 4 feet in diameter, at a speed of 130 revolutions per minute, to grind $51 / 2$ to 6 bushels per hour, every furrow leading to $\quad, 31 / \frac{1}{2}$ inches would give probably a satisfactory result.
If the old-fashioned stone with small eye is used, the eye blocks should be kept a little below the face of the stone; or in other words, after applying the redstaff, it should touch the whole face of the stone, but show heaviest at the skirt, not in spots, but all the way around. If a stone, while grinding the proper amount of wheat, runs hot and glazes, the trouble is not enough furrow. The stone should there-
fore be taken up and the furrow widened until the proper amount is ground cool.

AN HOUR WITH EDISON.

Professor Edison's laboratory, in size and external appearance, resembles a country church. The interior, however, is not so cinurch-like. The first apartment is a reception room, on the right of which is the private office, containing a large library of scientific works. Beyond these there is a large room containing materials and a number of glass cases filled with expensive physical and chemical apparatus. The machine shop at the rear is furnished with the best of machinery and tools, and is kept constantly in operation in carrying out the plans of Mr. Edison. On the second floor there is a single spacious room, which is the laboratory proper. Here, upon the walls, are shelves which are thickly studded with bottles, jars, and boxes, containing all known substances, both common and rare. It is a chronic habit of Mr. Edison to purchase every newly discovered substance, so that it will be at hand shouldit be required. The Professor states that no substance can be named that is not included in his collection.
In the middle of the floor there is a stand containing a great number of batteries, from which wires run in all directions. Beyond is a table upon which, among other pieces of apparatus, there is a large induction coil, capable of yielding a spark 12 or 14 inches in length. Here also is the carbon relay, the progenitor of all existing carbon telephones, "
on the changeable conductivity of carbon under a varying pressure.
No one can pass by the phonograph, and the Professor hinnself does not tire in experimenting with this wonderful machine.

One phonographically cultivated can no longer be satisfied with "Mary had a little lamb" and selections from Mother Gocse, for now the phonograph can sing, and not only a simple melody, but a duet, and even furnish you with an accompaniment and applause at the same time.
The phonograph which Mr. Edison uses in his laboratory has a double mouth-piece, and the machine will faithfull reproduce a duet sung in it; but the most interesting performance is to hear the Professor sing a duet alone. Singing first the air of "John Brown's body," etc., and afterward the bass over the same matrix while listening to the air as reproduced by the instrument, he produces a matrix which will sing both treble and bass. Not satisfied with this, he whistles Yankee Doodle, and finally, over the same matrix, talks in a loud voice, so that when the whole is reproduced we have a first-class street cor ner bawl, which is like this: Two fellows singing John Brown, another whistling Yankee Doodle, and a perturbed citizen crying from an upper window, " O shut up! Go away! If you can't sing better than that the police will arrest you! Police! police!"

In the extreme rear end of the labora tory, among a host of funnels, jars, acoustic and pneumatic apparatus, there are telephone wires, with which are connected a carbon transmitting telephone and a re ceiving instrument. Standing some 8 or 10 feet from the transmitter, Mr. Edison said, in an ordinary tone of voice,
the other end of the line. "I do." Q. "What do you pay for it?" A. "Three dollars and twenty cents a year." Q. "What is your opinion of it?" A. "It is the best of its kind." Q. (while crumpling a paper) "What am I doing now?" A. "Crumpling a paper." Then followed music from a music box of the smallest size, and other tests, showing the wonderful perfection and power of the instrument.
The thermo-telephone, explained by the Professor, although at present without special practical value, is certainly a novelty. It consists of a thermopile having placed in its collecting funnel a hard rub ber disk, as shown in the first engraving. A sound made in front of this disk is heard in a receiving telephone connected with the thermopile.
The rationale of this is at once appar ent when a strip of hard rubber is placed against the lips and bent, as shown in the second engraving, so that the strip will be alternately concave and convex. The dif ference in temperature is very perceptible, the convex surface being cold and the concave surface warm, and, however rapid the vibrations which render the surfaces alternately convex and concave, the result is the same.
We witnessed an experiment illustrative of the principle of Mr. Edison's elec-tro-motograph, a telegraphic instrument in which the sounder is operated without magnets. In this experiment, which is illustrated in Fig. 3, a strip of chemically prepared paper is laid upon a metallic surface, which is connected with one of the battery wires, and a platinum faced spring which is attached to the other battery wire is taken in the hand and pressed firmly on the paper strip; at the same time force is applied in the direction of
the length of the strip. A telegraph key is placed in the electric circuit, and when the current passes through the that it acts as a lubricant permitting the spring to slid easily on the paper while the current passes, but imme diately the current is broken the friction is sufficient to stop the spring.

THERMO-TELEPIIONE
The best solution for saturating the paper is made by dissolving 1 lb . of sulph. soda in 1 gallon of water. Any of the sodium salts will answer.
Electricity as a motive power, until now, has been a comparative failure, as 90 per cent of the battery has been wasted. Professor Edison has devised a novel electrical machine which he calls the Harmonic Engine, in which 90 per cent of the power is realized. With two small electro magnets and three or four small battery cells, sufficient power is gencrated to drive a sewing machine or pump water for household purposes.

ELECTRO-MOTOGRAPH.

 part of is secured suitable foundation, and to each arm of the fork each arm is placed a very small electro-magnet. These magnets are connected with each other, and with a commu ator that is operated by one of the arms.
The arms make 35 vibrations per second, the amplitude of
cover still more rapid combustion, until
other light machinery. The power must be taken from the
fork arms so as not to affect the synchronism of their vi brations, otherwise the engine will not operate.

Suspension Bridge Accident

A serious accident, resulting in the death of two men, re cently occurred on the New York anchorage of the East River Bridge, through the breaking of one of the parts of the wire rope which formed the tackle by which a strand of the cable was being lowered into place between the eye bars. The rope measured $11 / 4$ inch in diameter, and to all appearances was perfectly sound. The strain upon it, some 75 tons, was below that which the tackle should withstand, and it is supposed that jamming against the edge of the sheave, or some other indefinitely known accidental cause, determined its rupture. The strand fortunately swung over the previously finished part of the cable, and thus was pre vented from damaging the buildings below as it fiew through the air between anchorage and pier. The part crossing the river at once sagged down to the bottom. The strand has since been cut and taken down, and a new one is being made. The two men killed were struck by the fiying ropes, one being killed instantly and the other mortally injured by being thrown from the anchorageto the ground. The acci dent will delay progress on the bridge for a few weeks. microphones," and other instruments dependent

Mill Explosion Science

Mr. J. D. Hayes, of Detroit, Mich., took occasion at the recent Convention of the National Millers' Association to remark in opposition to the view that mill dust is explosive as follows: "We know that machinery running with a belt or wire is likely to produce a certain amount of electricity, and the dust may become charged with electricity. You may take gunpowder into the street packed in a box and it would be explosive, and so would also nitro-glycerine. But nobody ever heard of a case of blasting a rock with mill dust." (Applause.)
While we would not for a moment seek to impair Mr. Hayes' own good opinions of his bad ones, we would state, for the benefit of those who may accept what is said at the Convention and hence widely published as authoritative, that mill dust owes its explosiveness to its finely comminuted state and free admixture with air, in which condition its oxidation occurs with great rapidity. Mr. Hayes' supposition seems to be that some one has asserted that mill dust is inherently explosive under all circumstances, because of an unstable chemical nature, as in the case of gunpowder or nitro-glycerine. The simple experiment of trying to explode a barrel of flour with a percussion cap will demonstrate to him how untrue this must be; but, on the other hand, when Mr. Hayes lights a stove next winter, he may remark that the little sticks of wood burn quicker than the big ones, and the smaller quicker than the big ones, and the smaller they are the faster they burn. And if he will carry the process of comminution of
the sticks downward by the aid of a penmodnefrtiekerimen mentally discern the fact that when mill dust) become infinitesimally minute they may burn so quickly in the air as to produce an explosion.

Learn Something.

A young man stepped into the office of the Indianapolis
Rolling Mill not long since and asked for work. "What can you do?" asked the president. "I don't know," said the young man. " Have you a trade?" "No, sir." "Where did you come from?" "From Pennsylvania." "Are you a German?" "No, sir; I am an American." "If you were a German, or an Irishman, or a Frenchman, I could set you to work, because you would know how to do something, but Americans don't know anything about practical business."
This reply may not apply to all Americans, but it is lamentably true to a great extent. In Germany the boy is brought up where he sees something done, and has some idea of doing it. Very few Irishmen or Germans but know how to turn over a few rods of ground and raise something upon it. Most of them have some idea of mechanical operations, the production and uses of material and of tools.
It is those born in America who are ignorant and idle. It is the false notion that a man does not need to labor, or that he can get his. living by his wits, that causes a large part of our idleness and distress. Begin at once to learn something; no matter your age, learn some practical

Experiments recently made with an electric light in this city showed that by its aid ordinary print could be read at night half a mile away.

EDISON'S HARMONIC ENGINE

which is $1 / 8$ inch. Snall arms extend from the fork arms into a box containing a miniature pump having two pistons, one piston being attached to each arm. Each stroke of the pump raises a very small quantity of water, but this is compensated for by the rapidity of the strokes. Mr. Edison proposes to compress air with the harmonic engine, and use it as a motive agent for propelling sewing machines and pursuit at once.

THE ADAMS GAS PROCESS.

[Continued from first page.]
lar cutter shown at M is employed. At N are the saddle pipes, provided with steam pipes, O, for conducting steam through them to cleanse them.
In order to remove the fine particles of carbon which the gas contains, it is caused to bubble through the liquid which seals the dip pipes, P , in the hydraulic main. To this end a ring of holes is made near the end of the dip pipe, and the main is filled with water and gelatin or other gummy substance until the fluid level is above the holes. The gas forces down throughthis liquid and escapes in jets from the orifices. By means of buckets arranged under the ends of the pipes, as shown at Q, Fig. 3 , the holes may be closed. and the gas generated in one retort may be turned into another.
Professor Adams has provided exceedingly ingenious arrangements for washing his gas which we have not space to describe, but which may be seen in operation at the model works above referred to. It will be observed that a large number of new and different devices are here embodied, so that the entire process is novel and interesting apart from its economical advantages.

The invention has been patented through the Scientitic American Patent Agency in the United States and all the principal foreign countries. For further information address the inventor as above. He invites all gas companies and gas engincers to visit his works, and see a full demonstration of the rapidity and economy of his system of gas making, by which he unites the gases from coal, petroleum, and water into a fixed gas of dazzling whiteness and brilliancy.

UNSINKABLE STEAM VESSELS.

We take from the London Graphic the annexed engraving of a new steel vessel devised by Mr. Edmund Thompson, and claimed to be "' unsinkable." This he proposes to accomplish by constructing a cellular frame of thin flanged steel plates, so arranged as to form a series of cells not exceeding 6 feet in dimensions, forming, in fact, a " honeycomb" side, which, when plated over on the inner and outer face, and properly strengthened by longitudinal ties or braces, will afford the greatest strength, with the least possible weight of material, greatest strength, with the least possible weight of material,
and, in addition, from the inclosed air spaces surrounding the vessel's hull, will give such an enormous lifting power that armor plate of greatly increased thickness may be safely carried, if placed, as proposed by the inventor, within the inner frame, and not, as at present, external to the vessel's side. The advantage of this plan is equally applicable to merchant vessels, as the cargo will be kept free of the sides of the vessel, whereby the tendency to roll or capsize will in both cases be reduced to a minimum. The trunking up of the hatchways, and carrying the transverse bulkheads up to the upper deck, are also proposed, and therefore the effect of an accident either from fire or water would be localized to the compartment affected.
Mr. Thompson's plans of building are applicable either to double or to single ships, or to a modification proposed by him of having a single forward hull, but the after-end tunneled so as to form a double body, between which the screw could be placed about one fourth the ship's length from the
stern, completelysecuring it from injury from shot or wreckage, as well as obviating "slip" and "racing" of the propeller.
Our illustration shows a raft, supported on two pontoons, built on the "cellular" principle, carrying a heavy battery (three feet in thickness where requisite) and an armament, consisting of one 100 ton gun and two 38 ton guns, propelled by two or four screws working between the pontoons, which will only draw six feet of water, the dimensions of the vessel being 400 feet in length by 80 feet in breadth. By reversing either the forward or after screws, the vessel would turn on her own " center"
" all round fire"
condition; but with a botched screw, and boilers in the same condition as the Alaska's, she will probably be a "lame duck" all her cruise.'

Leaves and their Functions

A recent lecture at the Royal Institution, by Mr. W. T. Thiselton-Dyer, was devoted to leaves, well illustrated by remarkable plants. Leaves are an outgrowth of soft cellular tissue, originating near the growing point of the stem. The tissue arches over and forms the buds, from which leaves and flowers are developed, with much variety of structure, form, and position, and great diversity of function. The leaf consists of a delicate skin or epidermis (abounding in breathing pores, stomates) and layers of closely packed cells, filled with green chlorophyl granules (green protoplasm), with air spaces be tween them. The leaves afford a large surface to the influence of light and air. It is supposed that chlorophyl, un der the influence of sunlight separates the carbon from the carbonic acid in the air, gives back the oxygen, and, by com bining with oxygen and hydrogen, the component parts of water, forms starch, from which sugar, oils, and fats re derived by chemical changes. The gaseous food of plants is taken in by the leaves; the liquid food, containing nitrogen (an impor tant element in protoplasm) and many mineral substances, is absorbed by the roots. From these albuminoids and alkaloids are derived. Many plants are nourished by de caying animal and vegetabl matters; some, such as the Nepenthes or pitcher plant, are provided with suitable digestive organs. When raw meat, for instance, is laid $\begin{aligned} & \text { meat }\end{aligned}$ The other vessel shown in our illustration is a torpedo on the digesting surface, a fluid is secreted by whicl boat, with cellular sides, and the screw placed in a tunnel, as the food is dissolved and absorbed; and an increased before described. This boat would be fitted with noiseless number of seeds are produced by plants so nourished. By engines, and, by filling the air tubes of the cellular sides with the hairs on the leaves of Venus' fly-trap the insect is water, could be submerged almost to the water line, to enable her to approach an enemy with slight risk of detection

Our Naval Tubs.

The Army and Navy Journal says: "Of our Asiatic fleet, a correspondent writes as follows: ' Reports from our ships in Japan and Chinese waters are not encouraging. The Tennessee left for home in March. Under favorable cir cumstances she can steam eight knots an hour, but her consumption of coal to maintain that speed is as great, if not greater, than the ordinary simple engines would require The Ranger, one of the additions to the navy under the Eight Sloop Bill, is a failure so far as the compound engines are concerned. She can steam, under favorable circumstances, seven knots per hour, and on her cruise to Formosa, against a very moderate monsoon, she made fifty miles one day and one hundred the next. The Alert, another of the eight sloops, hardly equals the Ranger in speed, although the contract required these vessels to go ten knots an hour. The Monongahela hardly reached the station before her boilers were found to need very extensive repairs. The onl efficient ships on the station seem to be the double enders vessels have performed more cruising within the last year than all the rest together. It is hoped the Richmond, after
being almost rebuilt, will reach the station in a seaworthy
caught, and afterward dissolved and assimilated. The transpiration of the water taken in by the roots is an im portant function of leaves. By this evaporation it is said that a sunflower gives off, through the stomates, a quart of water in twenty-four hours. The circulation is slow in the cells of the plant, but rapid along the walls of wood cells which have no protoplasm. The erect position of plants is attributed to the turgescence of the cells when filled with water; their drooping condition, to deficiency of the liquid. In conclusion, the lecturer alluded to the phenomena of the irritability of plants, as shown in the sensitive plant, Mimosa pudica; and to what is termed the sleep of plants-shown in two plants, brought under cover from Kew that day. One remained with its leaves closed, the other was awakened by being placed in sunlight. The cause is mysterious, but probably arises from the action of a stimulus creating movements in the molecules in the protoplasm of the cells.

A screech-owl took possession of a box at Lancaster, Pa., the other day, in which a pair of martins were building their nest, and when they returned would not let them enter. The birds soon flew away and returned with a whole army of companions, each bringing in his beak a piece of mud with which they hermetically sealed the entrance of the box. When the box was opened a few days later, the owl box. When the box
was found to be dead.

LEVER AND CAM VALVE

The mechanism of the valve represented by Figs. 1 and 2 differs materially from that in more general use for the pur pose of regulating the flow of steam, water, oil, and gas. The ordinary globe valve and common tap are familiar to all; in the former, five or six complete turns of the hand wheel are necessary to fully open or close the circular seated valve; in the latter the plug must be turned half a revolution for a full opening or closing. In the valve here shown the opening and closing are effected by one quarter turn of the lever handle or wheel, whichever may be used. Fig. 1 is a perspective view of the exterior, and Fig. 2 an interior view, showing the valve and the valve chamber. The operation is as follows: The gate, A, moves on guides, B B, which are arranged to prevent friction by keeping the gate when moving from contact with the seat and wall of the

Fig. 1.-LEVER AND CAM VALVE.

valve chamber. The gate is opened and closed by means of the lever arm, C, attached to the rock shaft, D, and working in the slot, E . When the gate is nearly down, the cam, F , forces it forward and down to its seat. The advantages claimed for this mode of construction are that by the removal of the large cap every part of the valve is visible and can be examined, dirt and chips can be easily removed, and there is nothing in the valve itself to get out of order. There is a straight open passage the full size of the pipe. It is compact, as it only occupies one half the space of ordinary valves, and is so made that all the pressure bears on the back of the gate, and is therefore utilized in keeping the valve tight. There is freedom from friction. As soon as the gate leaves the seat it is entirely free. The wear of the packing in the stuffing box is very much reduced. The position of the handle shows at all times the position of the gate. In many positions in which valves have to be placed out of easy reach the lever movement may be readily operated by a rod or chain; and although the movement is quick, from the fact that it begins to shut off the flow of the fluid at once, but does not completely do so until the gate is fully closed, all water hammering or violent concussion is avoided.
Valves of this description are at present constructed from half inch to four inches in diameter, and are applicable for steam, water, oil, gas, etc. Special valves are also made for use on the Swift Connecting Fire Stand Pipes. They are made by John S. Leng, No. 4 Fletcher street, New York city, who may be addressed for further information.

an ingenious toy

An ingenious mechanical contrivance, which may be used

as a toy for children, or, by simple modification, as an at tractive sign for dealers in sporting goods, is represented in the annexed engraving. It represents a deer chased by a
hound, and to both animals a rapid life-like motion is given by means of the arrangement of gearing shown in Fig. 2. The revolution of the wheels when the toy is dragged along by the handle sets the pulleys in motion, or when the device is used for a sign the wheels might be rotated by a miniature engine. The invention is attractive and amusing, and should be popular among the children

For further information address the inventor, Mr. J. R. King, 182 Robert St., St. Paul, Minn.

MILK AS A SUBSTITUTE FOR BLOOD TRANSFUSION. Notwithstanding the fact that the possibility of preserving ife by means of the introduction of the blood of a healthy individual into the circulation of one suffering either from great loss or impoverishment of the vital fluid has been known from the remotest antiquity, and that the operation of "transfusion" has been practiced with more or less frequency from those periods up to the present time, and often with good results, and despite the fact that nearly every physician readily admits the great advantages to be derived from the operation in many cases, it must be admitted that we hear of remarkably few instances where it is resorted to even by its most strenuous indorsers. Even in a large city like New York many of our boldest and most skillful surgeons have never ventured to perform the operation, preferring to take other chances of saving the patient's life rather than risk the dangers and difficulties attending the transfusion of blood. The great tendency of blood to coagulate, and the known fact that a particle of serum or of a small quantity of atmospheric air entering the circulation during the process is sufficient to cause death, seems to deter the boldest from hazarding the experiment except in desperate cases. Could another vital fluid be found free from the disadvantages that attend the use of blood, while possessing all the life-giving properties of the latter, it is manifest that it would prove a great acquisition to the practice of surgery, and tend to make a procedure now little used much more popular, with results prolific in good Dr. T. Gaillard Thomas has communicated to the New York Medical Journal a paper to prove "that in the milk of the cow, and probably also in that of other mammals, we possess just such a fluid." Dr. Thomas' paper is given up chiefly to the presentation of cases in which the injection of milk into the venous blood as it goes to the heart, has been tried by him upon the human being with marked success. But before describing these successful experiments he proceeds to silence the prejudice that would naturally arise to such a proceeding, by pointing out the fact that while chemically inferior to blood, which is identical with the fluid to be augmented and improved, milk is more allied to chyle (the material of which nature makes blood) than any other fluid with which we are acquainted; and in injecting milk into the veins we are imitating nature very closely in one of her most simple physiological processes.
Twelve cases are now on record in which milk has been injected into the general circulation in place of blood, 3 by Hodder, 2 by Howe, 7 by Thomas. In one instance only did evil results insue (one of Howe's cases), and this should hardly be considered, since decomposed milk was employed; and this, like decomposed blood in "transfusion," would almost surely be followed by fatal consequences.
Basing his conclusions, then, upon his experience, and in no degree whatever upon theory, Dr. Thomas sums up as follows:

1. The injection of milk into the circulation, in place of blood, is a perfectly feasible, safe, and legitimate procedure, enabling us to avoid the dangers and difficulties of the latter operation.
2. None but milk removed from a healthy cow within few minutes of the operation should be employed. Decom posed milk, like coagulated blood, is poisonous, and should not be used.
3. A glass funnel, with a rubber tube attached to it, end ing in a small canula, is better, safer, and more attainable than a more elaborate apparatus, which is apt, in spite of all precautions, to admit air to the circulation.
4. The intra-venous injection of milk is infinitely easier than the transfusion of blood. Any one at all familiar with surgical operations may practice it without fear of great difficulty or of failure.
5. The injection of milk, like that of blood, is commonly followed by a chill, and rapid and marked rise of temperature; then all subsides, and great improvement shows itself in the patient's condition.
6. Lacteal injections need not be limited to cases prostrated by hemorrhage, but may be employed in disorders which greatly depreciate blood, as Asiatic cholera, pernicious anæmia, typhoid fever, etc., and as a substitute for diseased blood in certain affections which immediately call for the free use of the lancet, as puerperal convulsions, etc.
7. Not more than eight ounces of milk should be injected at one operation.
In conclusion, Dr. Thomas states that after lengthy con sideration and considerable experience he would be false to his own convictions if he did not predict for "intra-venous lacteal injection" a brilliant and useful future.

Dr. Brown-Sequard.

The eminent physiologist, Dr. Brown-Séquard, has been selected as the successor of Claude Bernard in the professorship of the College of France. The qualifications of Dr. Brown-Séquard for the vacant office are beyond question,
of scientific work not yet adequately appreciated. Perhap few individual investigators have done more to elucidate the obscure features of brain and nerve organization than Brown-Séquard; certainly scarcely any physician has con tributed so largely to the understanding and rational treat ment of morbid conditions. The profession in England and we believe on the continent, will be gratified by the choice which has been made; and science will look with confidence for the completion of investigations which Dr Brown-Séquard has still on hand.-Lancet.

Odd Uses of Paraffin.

The cheap chocolate cream drops sold by peddlers on the streets are treated with paraffin to give them gloss. Chewing gum is made of paraffin, and one manufacturer thus consumes $70,000 \mathrm{lbs}$. of the material yearly. Paraffin is

Fig. 2.-LEVER AND CAM VALVE.
also used for impregnating match sticks, sizing various fab rics, coating the interior of wine and bcer barrels, preserving fresco paintings, and waterproofing silk. For the last purpose it is dissolved in naphtha, and it is said that ice cream may be spilled on rose or violet colored silk so prepared without injury to the fabric. In the south of France paraf fin is now largely used to replace lard in retaining the odo of flowers, by being fused with the petals.

American Institute Exhibition.

The forty-seventh exhibition of this Institute will open September 11, in this city. Parties having novelties which they intend to bring to public notice should at once address the General Superintendent for blanks and information The medals, it is said, have been increased, and specia awards will be made upon a number of articles.

Solidification of Petroleum

A most curious effect on even the lightest petroleum oils is produced by the addition of powdered Saponaria (a herba ceous plant belonging to the family of Caryophyllus). On digesting the powder in water and mixing it with the oil the latter forms a very thick mucilage, so that the flask in which the experiment is made may be inverted without its contents flowing. It is still more singular that if a few drops of car bolic acid be added and the mucilage agitated it becomes in a few minutes perfectly limpid.

A SIMPLE FIRE ESCAPE.

The annexed engraving represents a simple fire escape of English invention, its object being to catch persons who ar compelled to precipitate themselves from the upper storie of burning buildings. It consists simply of a net sustained on poles, which are held up by persons on the ground. Con-

trivances of this kind kept at police stations ready for in stant use on an alarm of fire, might be the means of saving many lives.

Cセummuniations.

Mr. Edison on the Microphone

To the Editor of the Scientific American:
In reply to the communication of Messrs. Pitt and Dopp, which appeared in your issue of June 29th, under the head ing of " The Microphone," I wish to say that had the above named gentlemen read carefully what I have said in regard to the variation in the electric conductivity of carbon and other semi-conductors when subjected to pressure, they would have saved themselves the trouble of writing you. I stated, and proved, nearly two yearsago, that conductors of electricity when finely divided and moulded in the form of buttons varied their resistance by pressure, and subsequently hat the whole effect was due to surface contact, and not to inter-molecular action. Mr. M. Richards, of the Colt s Arms Co., also came to the same conclusion over a year ago. The explanation offered by Professor Hughes, which your correspondents referred to, is capable of being shown as absurd, and only tends to prove that he did not gain his information by experimental research, but simply by piracy.
T. A. Edison.

Menlo Park, N. J., June 24, 1878.

Driving Piles in Sand.
 To the Editor of the Scientific American

Your correspondent states in your issue of the 22d of June that he drove a large number of piles through sand in Pensacola, and intimates that the failure of others was due to the puny attempts with too light hammers. When the navy yard, Brooklyn, was constructed by Mr. W. McAlpine and many thousand piles driven, there were used a steam hammer giving rapid short strokes, and hammers weighing two tons and, I believe, two and a half. Very frequently a pile could not be driven beyond a certain depth, but if after some hours' rest the pile driving was again renewed it could gen erally be driven several feet further. The impact of the pile had pressed out the water from the sand at the foot of the pile, the angular particles of sand interlocked and formed a series of arches that effectually resisted the blow on the pile until sufficient time had been allowed for the water to per colate in and loosen the aggregated particles. Sometimes a pile after being driven would come spontaneously clean out of the ground.
The jet of water to put down piles was first used, I believe, by me in 1852, in making the foundation of a lighthouse in water in Pungateague Bay, in the Chesapeake, under Major Hartman Bache. The piles were 18 feet long, hollow, 7 inches in diameter, with a trumpet-shaped base flaring out to 3 feet diameter. A 1 inch pipe was passed down through the pile to the sand, and a hand force pump sunk the pile 11 feet in about $21 / 4$ hours. At the commencement the pile would sink through the upper stratum of sand without any external agitation; on reaching the subjacent blue clay it would remain stationary for some time, until the permeated clay would ascend the shaft and overflow at the top. Four teen piles forming the foundation were sunk in two days. Some years subsequent a patent for this process was taken
Charles Pontez. out by somebody in England
Omaha, Neb., June 19th, 1878.

Is our Globe Hollow?

To the Editor of the Scientific American:
I see an article on a subject on which I wrote you more than a year ago, in the current number of the Scientific American, namely, "Is our Globe Hollow?" I would say yes, and here is my reason, given in the article which I sent you May 8, 1877:

In or about the year 1826, Sir Richard Phillips propounded the theory that what is called gravitation is the result of the annual and diurnal motions of our globe. He says: ' If a progressive motion acted alone on a mass, it would form a train of the rarer parts, and disperse them. If a rotative motion acted alone, it would direct the parts in tangents, and disperse them. Their combination directs the parts to the center, and the two become a force of aggregaion, centripetal force, gravity, or weight.'

Admitting the correctness of this theory, it follows that if the two forces were equal, they would neutralize each other at the center, and our globe would be solid. If they were unequal they would be neutralized some distance from the center, and the globe would be hollow. As the annual motion is much greater than the diurnal, it seems reasonable to suppose that the dispersing force is also greater. If the dispersing force of the annual motion be represented by 12 and the diurnal by 8 , a hollow of 8 would be the result. Not having seen a single argument in support of the hollow globe theory, this is sent for the consideration of your readers, as the only theory imaginable.-A. R."
Washington, Texas, June 19, 1878. John Alexander.

The Best Pen Wiper
 To the Editor of the Scientific American

Take a few sheets of the softest tissue paper you can get, and fold and roll them all together into a bundle about eight inches long. Put an india rubber band around the middle of the roll, and then cut off the tops so as to allow insertion of pen for wiping, making the packet into hour glass shape. The advantages I find are that it cleans the pen better than anything I ever saw or imagined.
C. F. S.

the etiology of asiatic cholera.-a new THEORY.

All the way from Madras comes a neat pamphlet bearing he above title. The author, although intrenching himself behind the title page motto, "Honi soit qui mal y pense," nevertheless invites criticism; such as we have to bestow may be expressed in a few words.
After carefully clearing Mr. Bellerophon's "theory" from its investiture of very bad orthography, etymology, and syntax, we have at length succeeded in laying barehis idea, and of this our limited space permits us to exhibit the skeleton only.
It seems that Mr. Bellerophon, after a course of personal years (alths and reflections, extending over a perod of four write his essay), has been led to believe that visitations of cholera follow in the train of great battles, or in that of a sudden and widespread mortality among cattle. The corpses, having undergone putrefaction, are at length reduced to an ultimate poisonous, pulpy mass, "teeming with infusoria and animalcules in every stage of development, deposited constantly in such numbers that myriads of them may be attached to a single grain of dust." This matter, which then sinks into the underlying soil, he calls a "binomial poison $(A+B)$;" furthermore, for the sake of distinction, he gives it a name, " Necrophagine." The soil saturated with the " necrophagine " having become dry, is afterwards wafted on the wings of the wind to the uttermost parts of the earth and falls almost anywhere, totally regardless of consequences. Should part of it, however, get wet during its flight, then a remarkable phenomenon takes place, and its "binomial" nature exhibits itself; for while the dry portions may be producing an epidemic of cholera in one portion of the globe, the damp portion, deprived of its "ichorous" matter, undergoes a change, and the germs of which it is composed develop into a secondary form of existence-entomozooids capable of engendering foot and mouth diseases in cattle that feed on food in the vicinity where it fell.
" At the same time the sceptic (sic) portion (that is, the A in the binomial quantity) has been diluted and partially decomposed, and being swept down streams it percolates into wells and reservoirs and causes an epidemic typhoid." A portion of the B in the binomial quantity undergoes a development likewise and produces an abundance of flies, mosquitoes, and other insects from the germs which were deposited contemporaneously with the necrophagine (!). This horrible cholera poison may be taken into the system by means of drinking water, and even "the rinsing of the mouth or of a glass in which wine or any other drink is given, cleansing the teeth with a brush dipped in water containing it, or bathing in that water, may possibly leave a particle on the gums or teeth or lips which by subsequent salivation can be taken into the system." So it becomes "possible for people who have never drunk any water all their lives (!) long to take the poison that is in the water, nevertheless, and die of it." It becomes at once evident, then, that water is a beverage that
should be regarded with suspicion, and its use prohibited on sanitary grounds! The author remarks that " the two most inexplicable pathognomic symptoms of cholera are: First, the denudation of epithelium, and second, the flowery (sic) or pasty coating found in the duodenum or in the lowerparts of the smaller intestines.
The modus operandi of the "necrophagine" to produce these results is thus stated: " The binomial poison becoming diluted, the infusorial germs begin, under human heat, to show signs of vitality in the stomach; meantime a portion of the diluted sceptic (sic) fluid would by endosmose enter the system, and if it does not cause symptoms similar to those of the disease cellulitis venenata, an incipient malaria would be the result. The poison passing lower down the intestinal canal, more of it would enter the circulation, while the animalcules play upon the epithelium, causing a double irritation.

The action of the ichorous matter would be to sepaward coagulate. The serum would be discharged into the stomach and intestines-the lacteals would at the same time discharge a part of the chyle they had taken up, a portion of which in a curdled state would mix with the serum and present a rice-water-like appearance in the evacuations. Then the irritation by the animalcules (which would burrow like a species of Hippa), combined with the efforts of the system to rid itself by abrasion (that is, the stomach and intestines working in the same way inwardly as a man might rub or chafe, or scratch himself outwardly through an itching, by working his arm against his bare body) would result in what has been termed the denudation of epithelium" (!).
Such, to be as brief as possible, is the gist of this "New Theory." Criticism on this work is hardly necessary, but a few words of kind advice to the author may not be out of place. We would recommend him, then, before he elaborates the " necrophagine theory" any further, to obtain a few textbooks and make himself familiar with some of the most elementary principles of physiology and natural history, of which he now appears to be ignorant. This done, he may possibly by hard study and close observation give to the scientific world, in the course of time, some ideas on the disputed causes of the Asiatic cholera which shall prove truly worthy of attention. And that he has peculiar facilities for making such observations lies in the fact that he resides in a region where (to use his own words) "cholera hovers perpet ually like an incumbent nightmare."

Diagnosis.
That we may form a diagnosis it is essential that we possess a theoretical knowledge of disease. We must find out what the patient suffers from if we want to relieve him by rational well directed treatment. If it were true that every disease has its specific remedy-an exploded notionit would still be necessary to find out the disease in order to meet it by its appropriate remedy. And if we could not discover the disease, we might still, on the good old em pirical plan, make a shot at it by firing into it a volley of remedies, counting that perchance one among them would hit the doubtful mark. "Every bullet has its billet"should be the maxim of the empirical practitioner. Since, however we are not always able to realize the first rational indication to detect the disease, we may for a time fall back upon the plan of observing how the whole system labors, and how any particular function is in difficulty. This will furnish a provisional indication in treatment. Medication on this principle is usually safe, and ought to be safe. Two or three rules of practice will carry you a long way. Thus, when in doubt, give salines. There is hardly any disease in which salines will not do good at the beginning. There is hardly any disease in which they will do harm. By giving salines you gain time for observation, for finding out the more precise indications for treatment. The next rulc-it ought perhaps to be the first-is, enjoin rest. The Pharmacopœia contains no remedy of so much value, of such universal application. In addition to its other advantages, it has the merit of giving time for leisurely observation. The third rule might be to relieve any organ suffering from difficulty in the performance of its function But this rule requires to be followed with great discretion For example, it is not always wise to purge because the bowels are not relieved. On the contrary, opium may be indicated, as in intussusception. And you may often greatly relieve one disabled organ by inducing other organs to do at least a portion of its work. If you observe these three precepts, you will fulfill the fourth great maxim-the maxim, great in its positive good because great in its negation of harm, laid down by Hippocrates. If you do not see your way clearly to do your patient good, take care at least that you do him no harm.
Your first interview with your patient is your opportunity A mistake made at this critical moment may damage your self as well as him; and he may give you no opportunity of retrieval. Later on you may make a mistake, and the con sequences, to yourself at least, may be less difficult to ge over. Take care, then, of your first step. Start quietly proceed warily. Do not put your faith in intuition. Dis trust those who " see through a disease at a glance." They are shallow people, and are easily seen through themselves. The motto of the true physician is "Thorough."
Now we may proceed to diagnosis. Guided by the prin ciple that when a part of the body is diseased the whole suffers, we must examine the condition of the body in its parts and as a whole. This makes it necessary to examin with method. What is the best method? I do not think myself competent to say. But I can point out ene which will fairly answer in practice. The history, diathesis, in herited or acquired, and the antecedent diseases stand on the threshold of the inquiry. These disposed of, examin the functions and organs in a certain regular order: (1) Aspect, plumpness, color and state of the skin generally (2) the circulation, pulse, respiration, and temperature; (3) nutrition, the tongue, appetite, digestion, stomach, intestines defecation, and bile; (4) the urinary organs, the kidneys and bladder, as to pain, as to retention or other characters, as well as the characters of the urine itself; (5) the nervous system, sleep, motor power, general languor or exaltation, excito-motory system, mental state, delirium, pain, and its seat and kind; (6) in women, the sexual organs, the men strual function, child bearing, and the secretions.
All these phenomena should be, as far as possible, ex plored by the aid of manipulation and the appropriate in struments of exploration. It is a dangerous thing to form subjective diagnosis; it is a dangerous thing to accept your diagnosis from the patient. Until recent times, however all diagnosis of uterine disease was subjective. The result was hopeless ignorance, causing disastrous errors. And so it was to a great extent in nearly all diseases before the steth oscope, thermometer, sphygmograph, test tube, and micro scope came into practical use.
The advantages of pursuing some such method as that which I have just pointed out to you are-1. You are not so
ikely to overlook what you are in search of. 2. You will ikely to overlook what you are in search of. 2. You will not seldom detect complications, that is, associated diseases in addition to that, the most obvious and apparently urgent one, which, as the French say, "saute aux yeux." 3. You avoid the serious mistake of going over the ground two or three times-of beating about the bush. It gives a bad impression to your patient if you ask him the same question two or three times, when he has already answered it. H will be apt to conclude that you are talking at random, and have no clear idea of what you are about.
You may ask, Why have I, who am specially called upon o aid you in studying gynæcology, touched upon all this? Simply because there is, in truth, nothing more special in gynæcology than there is in the study of heart disease, lung disease, or any other disease. All disease must be studied on the same principle and after similar methods. A long process, you will say. But practice enables one to go through much of this long inquiry quickly, and in the cours of other inquiries.-Dr. Robert Barnes.

PROPOSED PROCESS FOR THE FIXATION OF ATMOSPHERIC NITROGEN.

by john blair.
The first part of this process consists in freeing the air of its oxygen, and this is accomplished in the following manner: The furnace, a, Fig. 1, is filled with coke, and is then ignited through the door, d. Air is then blown through the tweers, T T, which passes up and causes the combustion of the coke. The oxygen of the air is now converted into carbonic oxide; and the latter gas, together with the nitrogen, passes up through tube, B, and into the filter, Fig. 2. The interposing layers of broken stone which are placed in the filter prevent any of the carbon dust from entering the conduit, c. The gases now pass into the furnace, E, Fig. 3; this furnace is filled with iron ore, which is heated by an outer furnace, D D, to a temperature of about $1,200^{\circ}$ Fah. The carbonic oxide passing up through the heated ore reduces the latter to the spongy metallic state, and is itself converted into carbonic acid. We have now, at this stage of the process, a mixture of nitrogen and carbonic acid gas, which passes onward through tube, g, into the tank, Fig 4. This last tank contains lime water, which is kept circulating through it, in order to keep it cool as well as to renew the lime solution, so that the carbonic acid may be more readily acted upon when it is brought in contact with a fresh supply.
The nitrogen gas is withdrawn through tube, k, by the pump, Fig. 5; an upward stroke of the piston opens the inside valve, L, and admits the gas into the cylinder, as shown by the arrow; and the downward stroke expels it through tube, m. This tube conducts the gas to the gas holder, where it is stored for use. (This part of the apparatus is not shown.) In the second part of this process the collected nitrogen is fixed to a metallic base. The nitrogen passes from the gas holder, through the conduit, n, into the furnace, P, Fig. 6. This furnace contains a mixture of potash and charcoal, which is kept in a sta of fusion by the outer blast furnace, oo. The potash and carbon having now attained a high temperature, the potash gives up its oxygen to the carbon, and passes off as carbonic oxide. The nitrogen then combines with its equivalent of gaseous carbon, and passes to the state of cyanogen. The latter gas then absorbs its equivalent of potassium, and the cyanide of potassium is produced. The volatilized salt now passes up through the pipe, R, into the chamber, Fig. 7, where it is permitted to condense. The gases generated in the reaction pass out through the conduit, s, into the vessel, Fig. 8. This vessel contains an acid solution of iron, and should any of the uncondensed cyanide pass out through the conduit, s, into the iron solution it is immediately absorbed and forms prussian blue. The uncondensed gas now escapes through the expansion valve at v, and the process is complete

Hallucinations.

In a recent lecture, Dr. H. Maudsley says that one striking feature observed by medical men who have had cases of hallucinations under their charge is that the patients cannot be convinced that the objects they see, the sounds they hear, and the smells they perceive, have no real existence, and that the sensations they receive are the result of their excited nerves. It frequently happens that a person who suffers from hallucination in respect of one sense has the other unaffected, and is on all other matters perfectly sane. Hearing is most fre quently affected, and sight next. Several interesting cases were referred to: one of a gentleman actively engaged in business, who believed his body continually gave an unpleasant odor, and consequently kept away from every body as much as he could, and when he was assured that people did not per ceive it, always replied that they were too polite. Hallucination may arise either from an idea on which the mind has dwelt, appearing as some thing exterior, or from excitement of the sensory ganglia It is said that Newton, Hunter, and others could, at will picture forms to themselves till they appeared to be realities. A successor of Sir J. Reynolds, Dr. Wigan records, had the power of painting portraits after seeing his sitters but for a short time at one visit only, and was able at will to reproduce them to himself as exterior realities. As years advanced, he found he could not dismiss these forms as he could recall them, and he began to fancy himself haunted, and was for many years in an asylum.

The honorary degree of Doctor of Philosophy has been conferred on Mr. Edison by Union College.

The actuary of a life insurance company has prepared table of statistics full of matter, deep and dangerous, regard ing the mortality and casualties resulting from too assiduous attention to mastering the national game. His figures show that during the ball season in this country the monthly death rate from ball playing is 0.04 ; the number of cases of concussion of the brain is $4 \cdot 7$; incipient heart disease, $5 \cdot 103$; dislocation of the hip, 0.01 ; fracture of the shoulder-blade $1 \cdot 01$; compound fracture of the sternum, $0 \cdot 0002$; broken ribs, $25 \cdot 012$; dislocation of the spinal column resulting in permanent disability, 0.00001 ; fracture of the arm, including fore arm and above the elbow, $19 \cdot 3$; dislocation of the elbow, $7 \cdot 05$ sprained wrist, 47.07 ; broken fingers, 352.02 ; fracture of th hip, $0 \cdot 03$; dislocation of the knee, 1.006 ; sprained ankle, 15.03 injuries to the foot and toes, necessitating surgical aid, but not causing permanent injury, 225.09 . In addition to the above rather suggestive array which recounts injuries result

BLAIR'S NITROGEN APPARATUS.
ing in death or the fracture of bones, including disloca tion, he demonstrates that there are $197 \cdot 01$ noses broken and 473.05 teeth knocked out.-Utica Herald.

Music Boxes.

Musical boxes are made either in Sainte-Croix or Geneva xcepting a few unimportant factories elsewhere. The greater part of those made in Sainte-Croix are sold under the name of Geneva boxes, trusting to the name to give greater prestige, as Sainte-Croix is seldom visited by travel ers, although fully equaling Geneva in the manufacture. Sainte-Croix is also noted for the manufacture of fine gold and silver watches, and many of them are sold in Geneva under the name of Geneva watches. An erroneous impression exists that Geneva musical boxes are superior to all oth ers; the truth is that both good and bad are made in Ge neva, and the same may be said of Sainte-Croix; but a fact in favor of the latter place is that the cost of living being less than in Geneva, wages in Sainte-Croix are less in pro portion, and equally excellent instruments can be manufac ured there at less cost
The most important factory at Sainte-Croix is that of C. Paillard \& Co., who make as many boxes as all the other manu facturers combind and of the parts. originall
instruments throughout the entire world, their greatest markets ranking in the following order: England, the Uni ted States, France, Germany, Russia. The instruments play the favorite airs of each country to which they are sent.
A musical box consists of a brass roller with projecting points; a steel comb, the teeth of which give the sounds; a spring, to give the revolving motion to the cylinder; and a fywheel or fan, to regulate the revolving motion. The rough parts, including the bed plate, the blank roller, the mainspring, the comb (tempered but not tuned), the running gear, etc., are made in large machine shops and furnished to all the box manufacturers. The music has first to be ar anged for the box by thorough musical artists. The cylinder is then given to a person (generally a woman) who, with the aid of the music and a very ingenious machine, marks the places on the cylinder where the points are to be inserted. Another person then drills all the little holes, and till another inserts the points. The cylinder is then filled with molten cement, placed on a lathe, and revolved very quickly. The cement adheres to the inside surface, holding the points, and is then allowed to cool, leaving a hole in the center for the axis. On another machine the points are filed down, so as to be of equal length.
During this time the comb is given out to be tuned, the tuner having first to file the teeth, to give the proper flexibility. The tone is lowered by filing near the base, and sharpened by filing near the point. The cylinder is then set on the bed plate, and, opposite, the comb must be screwed to the bed plate. This last operation demands great accuracy, so that the points of the cylinder and the teeth of the comb will exactly meet. The instru ment is now placed on another machine, which divides the bars in the same way as the original machine for marking, and a peron (usually a woman) will then, according to the music, bend the points of the cylinder slightly forward, in order to secure more strength, but more especially to make the chords drop simultancously, and cause the runs or roulades to be played evenly. All the parts are then polished, and the box is finally given to a man who regulates the dampers and revises all

There are also some fifteen to twenty minor parts, which would require too much technicality to explain to the generl reader. Size increases both volume and richness of tone. A cylinder 10 inches long can be made to play $6,8,10$, or 12 airs well, but, of course, will play 6 or 8 airs better, and with more sweetness and harmony, than a greater number. The eason of this is that more points on a cylinder and more eeth on a comb can be used for fewer airs. If a box plays 12 airs, the teeth in the comb will be twice as far apart as if t plays only 6 airs. The space between the teeth increases with the number of airs. If the diameter of the cylinder be increased, the airs will, of course, be prolonged. The manufacture of large and small musical boxes does not dif fer very materially in method.
At the beginning of the present century the best boxes played only one or two airs, and boxes which then sold for 25 now sell for $\$ 5$. The bells, drums, and castanets have been made for musical boxes for the past forty years, but hey are now placed in
ight, and produce a very pleasing effect. The celestial voices, which require bellows and reeds, were first placed in the musical boxes about 18 years ago. The earlier specimens of this kind were thought very remark able, but they were very inferior to the improved boxes of the present time Originally, musical boxes were made with only one ylinder but about twelve years ago it was first thought possible to make them with extra cylinders, hus increasing the variety of tunes. These cylin ders can easily be changed by any one, and such boxes
there are now employed about 800 expert artisans, aided by all modern improvements in special tools and machinery. Were it not for the advantages they derive from a divisio of labor-the firm employing a separate set of workmen ex clusively in the production of each part of the mechanism -it would be impossible to have these instruments made so perfectly at prices so moderate; for the prices cannot justly be termed high when the immense amount of carefully ex ecuted and intricate work is taken into consideration.
One great expense in this business is the changing of air in the boxes, discarding such as have become tiresome, and substituting the latest and most popular as fast as they ap pear. However, the standard airs, which are always popu ar, such as " Home, Sweet Home," "The Last Rose of lar, such as ", etc., are always retained. They now send these

BLAIR'S NITROGEN APPARATUS.
are now in great demand. The number of cylinders is unlimited, but to be enabled to use them a different constructon of the works is required. The harp-zither attachment was introduced about five years ago; it consists of paper rolled and forced to rest upon the teeth of the comb.

Electric Light Photography.

AN architectural photograph of a large building has been taken in Dundee by means of the light from a Gramme dy-namo-electric machine of a power equal to 800 candles. The view was taken by fifteen minutes' exposure in a crowded thoroughfare, during a drenching rain, and within an hour of midnight. The photograph could not have been taken so well by daylight, for the falling rain would have obscured it.

IMPROVED BEEHIVE.

We illustrate herewith an improved beehive, in which the honey boxes are easily accessible for examination or removal. Among other new features are removable shades for excluding rain and sun, and a feeding trough, so constructed that it may be supplied by an attendant without risk of his being stung. Three forms of the hive are here illustrated.
In that marked 3, there is a central box, on each side of and above which are grouped the honey boxes. The bees have access to the latter through openings in the hive, said openings having swinging covers. The hive may be a box, or it may consist of frames composed of slats suitably arranged and held together by clamping bars. The exterior walls of the hive are connected at the angles by hooks. This allows either end, or the front, back, or all sides, to be removed without disturbing the other parts of the hive or honey boxes, so as to inspect, remove, adjust, or replace the latter
Hive 3, in our engraving, has honey boxes on top and on both sides; hive 2 has them on top and on one side; and hive 1 on top only. Surmounting the hive is a peakedroof, which is lifted off before removing the detachable sides. At A is a screen, consisting of a light frame covered with muslin or paper, which serves to protect the hive from the heat of the sun. The shield, B, protects the entrance from rain or moisture. At C is the feeding trough. The construction is strong, simple, and convenient, and the device generally is one likely to find favor with all apiculturists.
Patented April 9, 1878. For further particulars address the inventor, Mr. Charles R. Macy, Lamington, Somerset county, N. J.

A Good Act.

By the act of Congress approved June 6, 1878, ' 'all works of art, collections in illustration of the progress of the arts, science, or manufactures, photographs, works in terra cotta, Parian, pottery, or porcelain, and artistic copies of antiques in metal or other material, hereafter imported in good faith for permanent exhibition at a fixed place by any society or institution established for the encouragement of the arts or science, and not intended for sale, nor for any other purpose than is hereinbefore expressed, and all such articles, imported as aforesaid, now in bond, and all like articles imported in good faith by any society or association for the purpose of erecting a public monument and not for sale, shall be admitted free of duty under such regulations as the Secretary of the Treasury may pre scribe."

CROSS' IMPROVED GAS CONDENSER.

We illustrate herewith a new condenser for illuminating gas, the operation of which is as follows: The gas from the retort house is introduced into the bottom of the condenser through the inlet pipe, and by the arrangement of the partitions and apertures is compelled, in its ascent, to pass in succession through all of the chambers, and over and in conact with all of the partitions, which present an extended area of cooling surface. In this way the condensation of the gas and the consequent separation of the tar and ammo niacal liquor therefrom are ac celerated. The gas finally es capes from the upper cham ber through an outlet pipe, by which it is conducted to the purifier. The condensed mat ter separated from the gas during this process falls upo we upper surface of upo in lined partitions, and thence uns down into grooves or gutters, one of which is lo cated at the lower edge of each partition. From these gutters the tar, etc., is drawn off through suitable pipes, one on each side of the con denser, the outlets of whic pipes are sealed to preven he escape of gas. By thus providing each partition with separate gutter and dis charge outlet the impuritie deposited in one chamber are quickly carried off and pre vented from dropping into he next one below, and con sequently the gas in its up ward passage is not com pelled to pass over large ac cumulations of the product of condensation, which would
retard the purifying process. The wedge form of the chambers causes the stream of gas to be contracted, so hat when it passes through the apertures the particles of ar held in suspension are brought close together. On the gas rising into the chambers above, it suddenly expands, the lighter portion rising quickly and leaving the heavy particles upon the surfaces of the partitions, which thus facilitate the separation of the impurities.
Each of the chambers is provided at its under end with a perforated pipe, each extremity of which is connected with perforated pipe, each extremity of which is connected with
a vertical pipe outside the receptacle. Said pipe is connected
back pressure is produced. For further information address the inventor, Mr. Robert A. Cross, 9 Bow street, Charles town, Boston, Mass.

American Crop Prospects

Mr. E. Perkins, of London, now in this country, in a re don Times
"'The question naturally asked by Englishmen, when ther great advance in provision Russia, is this: Will there be ly obtained from Russia come from? As an extensive ler in the United States-for 1 suppose I have traveled for at least 75,000 miles on rail roads running through the wheat and corn fields of the States within the last 100 daysI will answer this question, and from a disin terested standpoint.
" The winter wheat crop in the United States has never, in the history of the coun try, looked as well as it does now. It is saf to say that the winter wheat crop will be at least one half greater than ever before pro duced in America. In traveling over 75,000 miles I have failed to see a single bad piece of wheat. By the time this letter reaches En gland much of the wheat-that is, all of the crop south of the line of Charleston, Cincin nati, and St. Louis-will be harvested; and by June 20 the remainder of the winter wheat crop will be harvested.
(The winter wheat crop will embrace about 75 per cent of the wheat raised. The other 25 per cent will consist of spring wheat, which will be mostly raised in Wisconsin, Minne sota, Dakota, and the Canadas. Spring whea will be harvested about the middle of July. It is now all sown. The acreage of spring wheat, on account of rumors of a war in Eu rope, has also been increased at least 50 per cent.
" What will wheat be worth in Chicago in August?
" The best wheat experts agree that wheat will drop to 75 cents per bushel in Chicago in the autumn; that it will fall to less than a dollar in New York; and that any quantity the English nation may call for can be deliv ered in Liverpool at from $\$ 1$ to $\$ 1.10$ per bushel by September 1

So you see there can be no bread famine in England if the Crimean wheat should be
liquor, which thus enters the pipes under pressure, and is discharged through the perforations in the form of spray into the chambers, in such a manner that the gas, in its upward passage, is compelled to pass through the same. By this means it is claimed that the gas is thoroughly washed and the cooling process materially assisted. The pipes are each provided with a stopcock, by which the spray can be cut off at will from any particular chamber desired. A number of the chambers have perforated partitions extending vertically across them, and through perforations in these the gas passes. The gas is thus divided into ine streams, in which state it can be more rapidly and perfectly cooled; and as the combined area of the perforations of each partition is greater than that of the inlet pipe, no
entirely cut off. The crop of wheat now
rowing in the United States, if properly distributed, would supply all Europe
"In regard to other provisions, beef, pork, and lard, they always follow wheat and corn. They are unprecedentedly low in the United States now, and must continue to be stil lower.
"I write this that you may know where England will get her supplies in case of a war, and that your people may have no cause for alarm if the wheat supply from the Crimean country cease altogether."
[75,000 miles in 100 days is quite complimentary to the speed of American railways, to say nothing of the endur ance of the writer. It means a little more than 30 miles an hour, kept up night and day for about three months.]

The Launch of the Nipsic.
The United States steamer Nipsic, which has been on the stocks in course of construction at intervals for nearly five years, was recently launched at the Washington Navy Yard, in the presence of the President and Mrs. Hayes, the Secretaries of the Navy and Treasury, and a large number of other distinguished and undistinguished spectators.
The Nipsic was built io take the place of the old war ship of that name, and was designed by Naval Constructor Hanscom. Her extreme length is 201 fect; length between perpendiculars, 185 feet; extreme beam, 35 feet 5 inches; beam moulded 34 feet; depth of hold from throat of floors to gun deck, 16 feet 2 inches; timber and room, 2 feet 6 inches; siding of frames, 10 inches; moulding size of frame at throat, 1 foot 2 inches; moulding size of frame at head, 6 inches; thickness of planking, 4 inches. She will be barkrigged, of 615 tons burden, 1,375 by displacement. The
length of main-mast will be 62 feet above deck; length of bees of reaching the nectary of flowers. That humble bee main-top-mast, 44 feet; main-top-gallant-mast, 23 feet; main frequently pierce the corolla of flowers, near its base, with royal-mast, 15 feet 4 inches; gaff, 27 feet; length of fore - their proboscis, which they then insert into the opening thus mast above deck, 57 feet 2 inches; length of main.top-mast, made, has long been known, and frequently mentioned. In 41 feet; top-gallant-mast, 21 feet 4 inches; royal-mast, 14 deed it is the usual way taken by these bees to reach the feet 3 inches; gaff, 27 feet; length of mizzen-mast above deck. nectary when the corolla is too long for the tongue to reac 55 feet; length of mizzen-top-mast, 31 feet; mizzen top-gal : the nectary from the mouth of the corolla, unless, indeed, the lant-mast, 15 feet; gaff, 32 feet; length of bowsprit, 25 feet flower is a very large one-large enough for the bee to enter 6 inches; jibboom, 21 feet; flying-jibboom, 17 feet. The its mouth and reach the nectary in that way. Mr. ChamNipsic will be classed as a third-rate, and will carry four nine- bers remarks that if the same practice obtains with hive inch broadsides, one eleven-inch pivot, and one 160 pounder; bees, he does not remember having seen the fact stated, and inct, should it be thought necessary, four additional guns can so records the following observation.
be mounted. She will be propelled by compound engines, driving a Hirch's four blade screw, of fourteen feet diameter.
the swiss house at the paris exposition
Our engraving, which we take from the London Graphic represents the facade of the Swiss house on International street, in the Paris Exposition The building itself is thoroughly Swiss in its construction, being of wood tastefully colored and ornamented with the arms of the various cantons. The front is composed of three arches, that in the center serving as the entrance, and those at the sides being filled with stained glass. Above the center arch is a clock, above which stand two figures of men in armor, who strike the hours, half hours, and quarters. The illustration shows the usual large crowd which gathers whenever the clock strikes, to witness the movements of the automata.

The Ingenuity of Bees.

 publication of a journal of its proceedings; and, in the first without going further than just within the opening. 0 number, just issued, we find the following interesting note, by Mr. V. T. Chambers, on the method adopted by someA large bush of Wergelia rosea was literally covered with flowers in all stages, from the unopened buds to those that were withered and ready to fall; and great numbers of bees warmed over them-humble bees, hive bees, mason bees and sweat bees (Andrenide). The older flowers were each pierced near the base by a longitudinal slit, made by hive or bumble bees, which had previously visited them; and, when ever one of these bees alighted on one of these flowers, it mmediately went, without attempting to enter the corolla to the base of the flower and inserted its proboscis into the slit already made; or, if the flower was a fresh one, having no slit, it proceeded immediately to make one. By the humble bees this was instantly effected without trouble, but the hive bees it seemed to be more difficult-probably be cause the blades of the maxillæ, which are used to make the slit, are weaker or more flexible than in humble bees.
Of the numerous hive bees observed, only a single one at
empted to enter the mouth of the corolla, and it came out without going further than just within the opening. On instance straight into the mouth of the flower, and never at
tempted either to make a slit or to use one that was already made. Yet one of these mason bees (Megachile) was fully as large as the hive bees.

ASTRONOMICAL NOTES
 by berdin h water

Penn Yan, N. Y., Saturday, July 13, 1878.
The following calculations are adapted to the latitude of ew York city, and are expressed in true or clock time, being for the date given in the caption when not otherwise stated. Planets.

 lupiter rises | 810 eve. |
| :---: |
| $\cdots 101$ mo. | turn rises FIRST MAGNITUDE STARS.

Alpheratz rises. Algol (var.) rises 7 star (Pleiades)rises. Aldebaran rises Capella rises Rigel rises. Betelgeuse rises

${ }_{44}^{\text {M. eve. }}$	Re
1024 eve.	Spica in mer
047 mo .	Arcturus in meridian
206 mo .	Antares in meridian.
.. 1130 eve .	Vega in meridian
	Altair in meridian
	Deneb in meridian
invisible.	Fomalhaut rises.

REMARKS
Jupiter and the moon are in conjunction July 15, 3 h .58 m . morning. This will be an occultation on this continent between $16^{\circ}+$ and 62° - lat., and here will be a very near approach, Jupiter being a trifle north of the moon. Saturn becomes stationary July 15 , after which date it will retrograde, moving westward in the constellation Pisces. A line onnecting the two eastern stars in the Square of Pegasus Alpheratz and Algenib) and produced southward 16°, eaches Saturn, situated in a starless region. Algol at inimum July 16, 5 h .59 m . morning, and 18, 2 h .48 m . morning.

THE ST. BENOIT TWINS.

One of the most astonishing freaks of nature which has ever been brought to public notice is now on exhibition at the New York Aquarium in the so called St. Benoit twins Two children, perfect in every respect above the lowest rib at that point literally fuse into one. The perfect lower body of one child belongs to the perfect upper bodies of two, an arrangement, so to speak, readily comprehensible from the engraving given herewith We lay especial stress on the word ' perfect," because the most phenomenal feature of the children is that with the exception of their wonderful coa lescence there are no exterior signs of anything abnormal. To classify them as a monster is to do violence to one' feelings They are a pair of exceedingly pretty, healthy wide awake babies, remarkably well developed for their age and to all appearances possessing as good a chance for contınued existence as any single infantile member of the hu man family In a word, nature has seemingly taken a se lection of parts of the bodies of two children and neatly joined them in this odd form.
The t wins were born in January last in the parish of St Benoit. about 40 miles north of Montreal, Canada. Thei parents, Drouin by name, are French habitans, and stout, healthy people. Their former child, a girl, now two years of age, exhivits no abnormal peculiarities, nor have such appeared in any previous generation of the family. The twins, which are female, weighed at birth 13 pounds. They have been more than usually free from the ailments common to early infancy, and at the present time weigh 22 pounds. In individuality they are perfectly distinct, no nervous connection being traceable. One sleeps tranquilly while the other may be fretting, or one may be hungry while the other is not. Each controls the leg nearest it, and aperients administered to one do not affect the other. The latter result shows that there are distinct digestive systems, which are relieved, however, by a common passage into which both open. The kidneys and bladders are probably separate, but the generative organs are, it is believed, single and perfectly normal. The union of the bodies occurs, as stated, just below the lower rib, the fork being smooth, and the navel situated on the median line common to both. As they lie on the nurse's lap, dressed, the twins appear to be simply two babies placed side by side, heads and feet in opposite directions, or rather the appearance is as if the upper portions of the two bodies had been squarely joined, a single pair of legs protruding at one side.
The science of teratology, under which is classed these strange inter-uterine phenomena, has been the object of much careful investigation, and M. Geoffroy Saint-Hilaire, some forty-five years ago, reduced it to concrete form. He classifies monsters into two grand divisions, first, those which have the elements of only a single individual, and second, those which have the parts complete or incomplete of two or more individuals. These classes he subdivides into or ders, tribes, families, and genera, on the Linnæan plan.
The St. Benoit twins belong to the second division and to the so-called autositaires, in which the two individuals present the same degree of development, each having an equal share of life common to both; neither lives at the expense of the other. The tribes of autositaires include the most cele; brated double twins. The negresses Millie-Christine which have been exhibited lately in Europe, and which we believe are still living, now aged 27 years, belong to the first tribe, being united only at a single region at the lower part of the backs. There are, however, two pairs of legs and united intestines. Their individuality is separate, but on the other hand there is a mingling of the sensory nerves at the lower part of the spine, so that they are not such distinct beings as are the St. Benoit twins. Their members are besides in some respects deformed, while in the St. Benoit twins there is no deformity whatever, but rather a tendency to fine development. The Siamese twins belonged to a subdivision of the same tribe. They were united at the xiphoid region of the sternum, and had but a single umblicus in the center of a moderate sized connecting process. It will be remembered that these twinshad perfect bodies but that post mortem examination showed that their livers were on adjacen sides of the two bodies and wereconnected by the ligament, in which last there was a region of common sensibility. The second tribe of autositaires include those connected above the umbilical region, and in the third must be classed the St. Benoit twins, inasmuch as the trunks are united in a single body. We know of no parallel instance where children have lived under these last conditions, and hence it is hardly necessary to point out the high scientific im
portance of thorough investigation of the present case In other respects many of the usual circumstances sur rounding the existence of monstrosities are here discernible It is not abnormal that the mother should have been in good health and previously have borne perfect children. The female sex is that which predominates in phenomena of this kind. The immediate cause is evidently absence of formation coupled with union of parts, but how engendered cannot be told. The period of gestation was normal and the presentation at birth such as to render delivery simple The investigations which we recently published showing how monstrosities in chickens may easily be produced by the action of slight external causes go to indicate that to exterior influences on the mother are probably attributable the formation of unnatural embryos, but what these in fluences were in the case we have presented and what thei course of action is a subject for future discovery.

Improved Method of milling.

In the report of the Committee on Improved Methods of Milling, at the Fifth Annual Convention of the Millers

Professor A. H. Church, Professor of Chemistry in the gricultural College, Cirencester, Eng., has published a use ful little treatise, calculated to be of great public service. The author speaks in the first place of water as forming part of the human body, as well as in piants and animals generally, and explains its physioloǵcal functions. He then turns to the proportion of water present in certain articles of daily food, which he illustrates by a diagram. An examination of our water supply next follows. Mr. Church explains the dangers of river water if used for domestic purposes, and the still greater risk attending the consump. ion of a supply from shallow wells. He gives a sectional diagram of a well sunk in a gravelly soil down to the clay, rock, or other more impermeable substratum, and in friendly proximity to the cesspool, an interchange of liquid taking place between the two according to its temporary height in each. As an instance in point, he mentions that a well which supplied several cottages with water suddenly failed. On examination the reason was soon discovered: the owner of an adjoining house had cut off the supply from a water closet, and substituted an earth closet. In all this account of shallow wells and their feed ers there is nothing in the least sensational or exaggerated. In country places we have repeatedly observed the well serving for a row of cottages separated from the cesspool merely by three or four yards of gravel or chalk, sufficient indeed to remove visible impurities and confer a delusive appearance of brightness, but utterly unable to remove dissolved impurities or those minute organisms which are supposed to convey cholera and typhoid fever.
The remainder of the work is devoted to a description of the means of testing waters, and of purifying such as are more or less charged with foreign matter. As he is addressing himself not to professional men but to the public at large, he does not, of course, enter into quantitative methods, but recomtive methods, but recom-
mends the application of a mends the application of a
few simple qualitative tests, few simple qualitative tests,
such as nitrate of silver, molybdate of ammonia, permanganate, Nessler's liquid, along with a careful observa-
mproved system of gradual reduction and thorough purifi cation as follows: First, free your wheat of all impurities by means of separators, cockle machines, etc., then gently brushing or polishing it, thus completing the first step in purification. For reduction use stone, 4 feet in diameter, faced and furrowed with an emery wheel, and made as straight, true and smooth as skill can make them. They should have a much greater furrow surface than face, be as perfectly balanced and as well trimmed as can be done, using the best driving irons that can be obtained, sparing no pains whatever to make your stone as near perfect as possible. You are now ready for gradual reduction-run the stones slow, grind high, bolt well, and you have completed the first step in gradual reduction. Thoroughly purify your middlings, using good purifiers and plenty of them, re grind your purified middlings, bolt out the flour thus obtained, repurify the remainder, then regrind and repurify until you have reduced the middlings to flour and feed. Having used smooth stone and ground high, you cannot complete the thorough purification of your middlings without the use of rolls, iron or porcelain. I prefer iron rolls. After having carried the purification as £ar as you can do so with purifiers, you pass the large middlings intermixed with the germ through a set of rolls, reducing the middlings and fattening the germ, thus enabling you to complete the separation and purification. Next purify the bran and grind it, bolt out the flour, which will be a low grade, and you have the system of gradual reduction and thorough purification, and, as a result, you have a high grade of wheat flour, a high grade of middlings flour, and as high a grade of bran four as can be made by cleaning the bran, and you have the grades all separate and can then make any mixture of the grades you desire. The wheat flour and the middlings flour mixed make the genuine straight new process flour.

A Remarkable Meteoric Phenomenon.

Mr. R. H. Earle, of St. Johns, Newfoundland, sends us sketches of a remarkable meteoric phenomenon visible in that city on the evening of April 30th last. It seems to have appeared as a serpentine tail of light having a brilliant nucleus or head. It then assumed a double form, with two nuclei, one of which apparently turned rearward and then resumed its forward motion, the whole streak meanwhile moving northward. The subsequent positions are exceedingly curious. In the course of an hour the light gradually faded away. No explanation has been sent us of the phenomenon, which seems to be of auroral nature.

Chemical News.

Where to Observe the Solar Eclipse of July 29th.
General Myer, the Chief Signal Officer of the Army, has done an excellent piece of work in preparing a table for the benefit of intending observers of the solar eclipse of July 29th, which exhibits the chances of weather conditions favorable for observation at the United States stations and posts within or very near the path of totality. The total number of such points within the path is 36 , and in the vicinity of the same, 31. The predictions are based on data collected by the Signal Service Department. The table shows the name of the place, whether it is a government or volunteer station of observation, its latitude, longitude, and altitude, besides other useful data which contribute to the determination of the percentage of chances of favorable conditions. There is one station, Fort Keogh, or cantonment on Tongue River, Montana, where the percentage is 100°, and where consequently a good observation is considered a certainty. The following stations show a percentage above 90: Walla Walla, Washington Ter.; Camp Warner and Fort Klamath, Oregon; Boisé City and Fort Boisé, Idaho; Corinne and Mount Carmel, Utah; Fort Laramie, Wyoming; Castroville, Jacksboro Fort Duncan, Fort McIntosh, and Fort Davis, Texas.

Explorations and Surveys

Major Powell's surveys during the coming summer will be more exclusively confined to the limits of Northern Arizona and Southern Utah. The new region lies mostly south of the Grand Cañon of the Colorado river and includes the plateau country on which are situated the famous Moqui towns. The plans of the Hayden and Wheeler surveys are not fully completed, but the field of the former expedition will be in Idaho and Montana, west of the 111th meridian. Captain Howgate's Polar colonization scheme goes over until next session of Congress, the bill authorizing the appropriation of $\$ 50,000$ to carry it out having failed to pass. This unfortunately compels the return of the preliminary expedition sent out last season under command of Captain Tyson.
As a means of partially crushing grain before grinding, Mr. J. F. Gent, of Indiana, a well known mill expert, considers rolls superior to any process now in use. They are especially adapted for crushing those parts of the middlings which contain bran or germ. Chilled iron rolls are considered the best.

Tests for Good Burning Oil.

Professor J. Lawrence Smith, in his report as Centennial judge, says that good petroleum should have the following characteristics: 1. The color should be white or light yellow, with blue reflection; clear yellow indicates imperfect purifi cation or adulteration with inferior oil. 2. The odor should be faint and not disagreeable. The specific gravity at 60° Fah. ought not to be below $0 \cdot 795$, nor above $0 \cdot 84$. 3. When mixed with an equal volume of sulphuric acid, of the dens ity of 1.53 , the color ought not to become darker, but, on the contrary, lighter. A petroleum that satisfies all these conditions and possesses the proper flashing point may be set down as a pure and safe article. Too much care cannot be exercised in examining this oil for household use.

CURIOUS HEDGE FIGURES.

It was the fashion, a century ago, to trim hedges and close-leaved trees into fantastic forms, resembling animals, buildings, etc. In many old gardens in France this custom is still maintained, and the visitor may walk through alleys on either side of which are high walls of dense verdure cut perfectly square, and occasionally arching overhead. At corners these fantastic figures in living green are often encountered, they being the product of the gardener's skill in training and clipping. Our engraving represents three quite large objects made in box, and exhib ted growing in the Dutch Garden at the Paris Exposition.

Food Supply of Paris.

There are 26 millers in the environs of Paris, St. Denis, and Sceaux, who employ 234 men. There are, in the departments of the Seine, 1,694 bakers, who employ 7,264 hands, 2,251 being females. Besides these there are 1,062 pastry cooks, who employ 3,156 men and 555 women. In the mills the men get, on an average, 7s. per day; the bakers about 5 s . 6 d . for men in the town, and 3 s . for women; in the suburbs the men 3 s .6 d ., and the women 2s. 3d. The pastry cooks in Paris get 6 s . for men and 5 s . for women; in the suburb men, and 2s. for women.

THE LEONA GOAT SUCKER.

The curious feature about this bird is the long and very elastic feather shafts which rise from the middle of the wing coverts and extend to a length of twenty-eight inches. They are totally destitute of barbs except at the extremity, where they suddenly give out a broad web of four or five inches in length. The object of these odd appendages is not known. They are found only on the male bird, and evi dently bear an analogy to the train of the peacock and the long tail feathers of the pheasant among the birds, as well s to the beards, horns, tusks, manes, and similar masculine appendages of male quadrupeds
The plumage of the Leona goat sucker is very prettily marked with spots and bars of rusty red and black upon the usual brown ground. Every primary feather possesses nine rusty red spots and as many of a black hue, and there are many other spots and bars scattered over the body and wings. The bird is not a long one, measuring only eight or ten inches in total length. It is a native of Western Africa. We take our illustration from Wood's "Natural History."

oatmeal.

Liebig has chemically demonstrated that oatmeal is almost as nutritious as the very best English beef, and that it is richer than wheaten bread in the elements that go to form bone and muscle. Professor Forbes, of Edinburgh, dur ing some twenty years, measured the breadth and height, and also tested the strength of both the arms and loins, of the students in the university-a very numerous class, and of various nationalities, drawn to Edinburgh by the fame of his teaching. He found that in height, breadth of chest and shoulders, and strength of arms and loins, the Belgians were at the bottom of the list; a little above them the French; very much higher, the English; and highst of all, the Scotch and ScotchIrish from Ulster, who, like the natives of Scotland, are fed now to deal, for we must look upon his discovery as being in their early years with at least one meal a day of good as yet in its infancy. oatmeal porridge.

Salt in Beer.

The presence of a small percentage of salt in malt liquors may be unobjectionable, or even nccessary to bring out the flavor of the principal ingredients; but it is impossible to vail the fact that, whether a very saline water is selected for brewing purposes or salt be introduced in any considerable
quantity during the manufacture of beer, the expedient is a device to create thirst and increase the demand for drink. It is, therefore, a matter of public interest to see that the adulteration of malt liquors with salt is prevented by the enforcement of the law. If the brewers take the hint given to them by Mr. Sclater-Booth recently, and carry a representative case to the Court of Appeal, those who are anxious to minimize that excess in drinking which constitutes a ceaseless cause of loss and injury to the working classes of this country, should see that the true nature of the adulteration is exposed. We can easily understand that beer containing an "insufficient" quantity of salt will not be protitable. It may well find its way back to the brewers, because, the thirst producing element being absent, the publican would find the article lie on his hands. The mysteries of the trade in intoxicating beverages are many and bewildering, but we venture to hope the legislature and the public are too deeply impressed with the importance of encouraging temperance to be greatly moved by compassion for the

CURIOUS HEDGE FIGURES.
ard case of the makers and sellers of beer which cannot be sold in quantities satisfactory to its producers unless they are allowed to drug it with enough salt to render their cus tomers inordinately thirsty!-Lancet.

Dr. Morfit's Method of Preserving Animal and Vegetable Food.

We have received a number of biscuits and other prepar ions containing preserved solid and liauid food, both ani mal and vegetable, which are the practical results of a new process lately patented by Dr. Campbell Morfit. They in clude substances of the most diverse nature, such as milk, cream, cheese, beef, garden rhubarb, cabbage, tomato, pork sausage, and a variety of other alimentary products, all of which are perfectly savory and toothsome, in spite of their being more than a year old. It is, however, more with Dr. Morfit's process than with its present results that we hav

f temperature and moisture consequent on their having been kept for more than a year in the store room of an ordinary dwelling house-are still perfectly good and sweet, their natural characteristic flavors being well preserved. Some lime fruit juice biscuits, for instance, which are more than a year old, have preserved, in a very perfect manner, the peculiar flavor by which the juice of the lime can always be distinguished from that of the lemon.
The primary principle of Dr. Morfit's process is the get ting rid of nearly the whole of the natural water contained in the substance to be preserved, by submitting it to a certain degree of heat, the place of the water being supplied by gelatin. The compound is then dried, and in this state it may be kept for any length of time, or else it may be made up into biscuits by incorporating it with biscuit powder.
Let us take Dr. Morfit's method of preserving beef as an example. The beef must be as free from fat and bone as possible, and should be first stewed in its own liquor, or with the least possible quantity of water, and seasoned or not according to taste. The whole is then reduced by any available mechanical means, to a stat of smooth and fine pulp, and triturated with a solution of gelatin in water. One pound of gelatin is enough for 15 pounds of meat fowl, or fish, the gelatin being dissolved eithe in a sufficiency of water or in the natural juice of the substance itself. In the case of fruit-such as gooseberries, currants, or plums -they are stoned or skinned when necessary and cooked or not, as the case may be. They are then made into a pulp and mixed with gela tin dissolved in water or their own juice heated so as to insure a thorough mixture of the ingredients, and then poured into coolers. In certain cases the gelatin may be replaced by mucilage of Irish moss, but the result, al though cheaper, is not so good.

Dr. Morfit's method of condensing milk without the use of sugar is of great interest seeing that the Swiss and other descriptions o condensed milk, which are now so largely sold, cannot be taken by delicate infants or by persons of weak digestion, owing to th large amount of sugar contained in them. One pound of gelatin is dissolved in one gallon of fresh milk temperature of from 130° to 140° Fah., the whole be ing allowed to set into a jelly, which is dried. The dried jelly is then dissolved in another gallon of fresh milk and allowed to set and dry as before, the operation being re peated with fresh milk until the original pound of gelatin has taken up eight gallons of milk or more. Consommé of meat may in like manner be condensed until one pound solid shall represent thirty times its weight of fresh beef. As may be readily guessed, the process may be carried on withou any of the expensive plant and troublesome manipulation in volved in the usual modes of condensing milk and making Liebig's extract, besides which, in the latter case, the whole of the nitrogenous parts of the meat is preserved intact.
From a hygienic point of view, the limefruit juice biscuit ought to be admirably suited for use in the navy. Without entering into the question as to whether it is the citric acid, or the phosphatic salts, or the potash con tained in the lime juice that is the real anti-scorbutic agent, it is suf ficient to say that the 40 per cent of Montserrat lime fruit juice pre served by Dr. Morfit's process, and incorporated with the biscuits, ha preserved all its properties withou any change for more than a year and, a priori, there is no reason to supposethat it would not keep good for ten or twenty times that period It may be mentioned, in conclusion, that the different jellies may be dried into hard tablets or flakes a a uniform temperature of from 38° to $40^{\circ} \mathrm{C}$., and sent into the marke in this convenient form, as well as under the more bulky guise of bis cuits. A few cases of lime frui juice tablets, prepared according to Dr. Morfit's method, would pro bably have saved the lives of seve ral brave men during the late expe dition to the Polar regions.
Speaking from a purely scientific point of view, and judging by the results we have already described, the principle of Dr. Morfit's inven tion seems to be theoretically a sound one. These results we must regard at present as tentative, and it only remains to the in ventor of the process to confer a large benefit on the commu nity by extending its application, thercby notably increasin our not too abundant stock of hygienic and alimentary pro-ducts.-Chemical Nenss.
M. Garrigou has lately discovered that the salts dissolved in. Garrigou has lately discovered that the salts dissolved chemical reactions different from those of the same salt under ordinary conditions.

The Ring of Fire, and the Volcanic Peaks of the

West Coast of the United States.

The Pacific Ocean is not alone remarkable in being the largest body of water on the globe, but also on account of those volcanic phenomena which manifest themselves throughout the whole extent of its boundaries.
Beginning in the southern waters of this great ocean, we find the first noteworthy evidences of volcanic activity in the smoking cones of New Zealand, Tongariro, and White Islands. North we have the Feejee Islands group, with its numerous craters and its thermal springs. Crossing the South Sea at this point, in an oblique direction from the islands of Juan Fernandez, a branch unites with the principal chain passing round the coasts of Australia and New Guinea. Next come in succession the volcanoes of the New Hebrides, the Archipelago of Santa Cruz, and the Solomon Isles, connecting the Feejee group with the region of the Sunda Islands. From Papua to Sumatra, every large island, including Timor, Flores, Bali, Lombok, Sumbawa, and Java; then to the east, Borneo, Celebes, Amboina, Ceram, Gilolo, Mindanao, and Luzon, has one or more volcanic outlets in a state of full activity. This region is the great focus of lava outflow of the globe.

Northward of Luzon the volcanic belt curves, and follows a line parallel with the coast of Asia, and embraces the island of Formosa, the Loo-Choo Archipelago, the islands of Japan, and the Kuriles. To the east of the peninsula of Kamschatka, which possesses no less than fourteen volcanoes in a state of activity, the range of craters describes a graceful curve across the Pacific to the peninsula of Alaska, embracing in its extent thirty-four smoking cones. With a direction first eastward, then south, the volcanic belt extends along the whole western seacoast of North America. In Guatemala and the republics of South America, thirty vol canoes, much more active and terrible than those of Mexico, rise in two chains-one parallel to the coast, and the other crossing the isthmus of Nicaragua obliquely. Some of these mountains of fire have become famous for the appalling disasters which have followed their eruptions.
Still further south the depressions of the isthmus interrupt the volcanic chain, which reappears with the peak of Tolima, 17,716 feet high, in Colombia. South of this and the plateau of Pasto (where there exists a crater) stands the magnificent group of sixteen volcanoes, some extinct, some smoking, over which towers the celebrated Chimborazo. This group occupies an elliptical space, the longer axis of which is only 112 miles long, and includes the well
known volcanoes Tunguragua, Carahuiago, Cotopaxi, Antiknown volcanoes Tunguragua, Carahuiago, Cotopaxi, Anti-
sana, Pichincha, Imbabura, and Sangay. South of Sangay, which is said to be the most destructive volcano on the earth, the chain of the Cordilleras offers no volcanoes for a distance of about 930 miles. The series commences again distance of about 930 miles. The series commences again
in Peru, where outlets of eruption, among extinct volcanoes, are here and there seen still in action. The smoking peaks of the mountains Antuco, Osorno, and Villarica, in Chili, terminate the series of the great American volcanoes, but volcanic activity is manifested in less elevated craters, al South Shetland Islands, in the Southern Ocean, in a line with North America, are also volcanic in their character. From these, if a circle be swept round through the polar regions, the line will come out along the coasts of Victoria Land, on which are situated the towering peaks of the volcanoes Erebus and Mt. Terror. From this region northward, the line, extending over various small islands of the Antarc tic, again touches New Zealand, from whence we started; and thus is completed the great volcanic circle which girdles the Pacific, and which has very aptly been termed the " Ring of pim

Although the volcanoes of the greater portion of this circle of 22,000 miles are actually active, those of the United States which are embraced in its limits are at present extinct; and to these, rendered more interesting to us from the light shed on the subject by government explorations, we will now direct our attention. The principal outflows of volcanic rocks, properly so-called, which have taken place within the limits of our country, occurred in the Tertiary period, or that epoch in the world's history which immediately preceded the advent of man on earth. These rocks are mainly confined to the western portion, included in the great elevated region of the Rocky Mountains, and cover a great propor tion of the Territories bordering the western coast.
The region embraced in the scene of these volcanic phenomena represents an extent of coast line, north and south, of about 900 miles, and includes the greater part of California and Nevada, all of Oregon and Washington Territories, and a small strip of Idaho.
The western border of the great elevated region included in the Rocky Mountain system is formed by the Sierra Ne vada and Cascade ranges, which run in a direction parallel to the coast. The Sierra Nevada rises for a distance of fifty miles, in long gentle slopes, from the plains of California on the west; and on the east presents an abrupt wall overlooking the desert valleys of the interior or Nevada basin. Its high est points are in the region of Mt. Whitney, which reach an clevation of nearly 15,000 feet. From here its crest diminishes slightly to the north; and, where it is crossed by the railroad, its peaks are about 9,000 feet above the sea. In the northern part of California its continuity is broken, and from Lassen's Peak, for nearly 100 miles north, it is broken into ridges and isolated volcanic peaks, which stand regularly interspaced, and rise above the snow line. In Northern Oregon and Washington Territory, the Cascade range occu
pies a topographical position corresponding with that of the Sierra Nevada.
The Cascade Mountains, however, are of a more recent reological formation, and rise to heights of only 4,000 to ,000 feet above the sea level. Along the crests of these mountains extends the line of snow-capped volcanic cones. The more prominent of these are Lassen's Peak and Mt. Shasta, in Northern California; Mt. Pitt, the Three Sisters, Mt. Jefferson, and Mt. Hood, in Oregon; and Mts. St. Helen's, Adams, Rainier, and Baker, in Washington Territory. Lassen's Peak is the most southern of the volcanic peaks, and forms the northern extremity of the Sierra Nevada crest. To the geologist this is especially interesting, and it was through its study that Von Richthofen gathered the facts which led to his classification of the relative ages of volcanic rocks-facts which were embodied in a paper published under the auspices of the California Academy of Sciences in 1868. Here are found remnants of ancient craters made and destroyed ages ago, and abundant traces of long continued activity. The last outflows from these craters were basalt, which has covered an immense extent of country north and east.
Proof of still remaining internal heat is found in its numerous solfataras and hot springs; these are concentrated in the basin of an old crater, called, in the vernacular of the West, "Bummers' Hell." Here are also found the so-called mud volcanoes. Mt. Shasta, one of the grandest and most accessible of our volcanic peaks, stands comparatively isolated. Its summit, carefully measured by the barometer, reaches a height of 14,440 feet above the sea level. On the west of the summit is a beautiful crater, almost perfectly circular in form, nearly a mile in diameter, and with a rim 2,000 feet lower than the main summit. Its interior, about
a thousand feet deep, contains a central cone, formed, like the rim, of broken masses of lava. The rim of the crater is a mere knife edge of rock, so narrow that when the parties attached to the government survey visited it and remained over night, they found it necessary to break away the rock with their hammers to make a. place wide enough to sleep upon. On the highest point of this rim the lava masses are perforated curiously with holes similar to those made by worms, and these are lined with a green glass, the result of a melting of the rock by lightning, for which this place seems to present great attraction. The main summit is separated into two peaks by a little gorge about 100 feet deep, at the bottom of which is a hot spring. One of the attractions of this peak are the still active glaciers found on its northern slopes. Along the western slope are the remains of hundreds of little volcanic cones. A larger one to the southwest, called Little Shasta, is a miniature reproduction of the larger one, although it is nearly equal in height to Vesuvius. Mt. Pitt, a volcanic peak of beautifully regular outline, is about 60 miles north of Shasta, in Oregon. It is less than 10,000 feet high, yet its summit is crowned with snow most of the year. It likewise shows traces of a crater
structure, which is broken down on the northeast side. Throughout the region to the northeast of Shasta, in Eastern Oregon and Northwestern Nevada, immense tracts of country are covered by flows of basaltic rock, popularly known as "Lava Beds." These are cut through in all directions by a network of gorges and ravines, with perpendicular sides, and abound in natural fortresses and caves, and are usually traversed by streams. It was in such hiding places that a handful of Indians, during the late Modoc war, were able to keep at bay all the military force that could be brought against them.
East of Mt. Pitt are numerous lakes, fed largely by springs issuing from volcanic rocks. Most interesting of these is Crater Lake, which fills an ancient crater, eight miles in diameter. The showers of ashes which once issued from this crater can easily be traced, in the peculiar character
of the soil, for a distance of about 28 miles east and 10 west of the soil, for a distance of about 28 miles east and 10 west
of the lake. The volcanic peaks of the Three Sisters and Mt. Jefferson, north of Mt. Pitt, are little known and of small importance, though they form a beautiful feature in the scenery of Oregon.

Mt. Hood, with an outline far more graceful than that of any of the other volcanic peaks, rises out of the very crest of the Cascade Mountains to a height of 11,225 feet, and is considered one of the most beautiful peaks in the world. What was once its crater has long since disappeared, and its summit at present consists of a single block of lava a few perpendicularly for thousands of feet. From the fact that clouds frequently collect (even on a cloudless day) around the mouth of what was once a crater, on the north side, frequent reports are made of an eruption on this peak; but an examination has shown to a certainty that no eruption has
taken place within the memory of man. Twenty-five miles north of Mt. Hood we find the Columbia river. The region hereabout presents some of the grandest and most picturesque scenery of the United States. Here may be seen, under peculiarly favorable circumstances, volcanic phenomena both of massive eruptions and of crater cones, which attain in this locality an enormous development. This river, which
drains an area of 200,000 square miles, has cut its channel transversely through the Cascade Mountains, almost down to the level of the sea, and thus gives us the means of determining the geological age of the period immediately precedwas the Miocene Tertiary-a time when a tropical climate prevailed over our whole continent, and even far up into the Arctic regions.

North of the Columbia river, in Washington Territory, rise two other volcanic peaks. Of these, Mt. Adams, to the east of the summit of the Cascade Mountains, presents a broad, flat summit; and, if it has a crater, it must be of small size. Mt. St. Helen's, to the west, is remarkable for its regular conical shape. It is stated, on pretty good authority, that this cone was in active eruption in the winter of 1841-2. Neither this nor the preceding peak has ever of 1841-2. Neither this nor the preceding peak has ever
yet been explored or measured, though their altitude has been estimated at 10,000 feet.
Mt. Rainier (the "Techoma," or "Great Snow," of the Indians) is the grandest single peak in the United States, and for grandeur is probably surpassed by very few mountains in the world. Its height is 14,444 feet. Its peak has three summits, of which the central one is a small crater, while the other two are remnants of the walls of a former immense crater, which, if restored, would nearly double the present size of the mountain
An immense system of glaciers, presenting all the peculiar phenomena of the glaciers of the Alps, flow down from the steep northeastern slopes of this peak, and unite to form the White riyer, one of the largest streams which flows into Puget Sound.
Mt. Baker, in the extreme northern part of Washington Territory, although but little over 10,000 feet high, is extremely imposing in appearance. It is much nearer the sea than Mt. Rainier, and from its more northerly position has a proportionately greater snow mass. It has been ascended by an Englishman named Coleman, who published an account of his trip in Harper's Magazine.
This completes the list of the volcanic peaks of the Cascade Mountains. Going back now to the Sierra Nevada proper, which was elevated above the sea long before the Tertiary period, we find that volcanic activity has been confined rather locally to a few small volcanic vents along its eastern base, and to flows of basaltic rock on its western slopes, covering, in many cases, the gold-bearing gravels of the Ter-

Mono Lake, a beautiful sheet of water, 14 miles long, lies at the eastern foot of the Sierras, opposite the Yosemite Valley. The mountains form a precipitous granite wall 8,000 or 9,000 feet high on its western shores, while to the east extend the flat deserts characteristic of the great basin of Nevada. In the midst of the lake is a small island, which contains a crater, and which abounds in hot springs. To the south of the lake extends a line of volcanic craters, forming a low ridge, which are very unimportant as compared with the lofty peaks of the Sierras, since their highest point rises only 2,700 feet above the neighboring valleys. They are extremely remarkable for the black glass-like rock of which they are formed, and which is known to mineralogists as obsidian. The craters are usually surrounded by a "cinder cone," or circular ridge of loose scoriæ and volcanic ashes, and within this are piled up irregular masses of gray glass and white frothy pumice, the latter so light that it
Mr. S. F. Emmons (of Clarence King's Geological Survey), to whom we are indebted for the facts in regard to the volcanoes of the Pacific coast of the United States, remarks that this whole region " must have been the scene of terrific exhibitions of volcanic phenomena, in comparison with which the catastrophes of modern times would sink into insignificance. In the upper basin of the Columbia and Snake rivers, tens of thousands of square miles were covered with continuous sheets of volcanic rock, often many hundreds of feet in thickness. As the massive eruptions of volcanic material gradually ceased, and the gaping fissures in the earth's surface were covered over, we may imagine along the western coast of that time a line of volcanic vents, like beacon fires, lighting up the rocky headlands, and from which issued continuous clouds of steam and sulphurous gases, accompanied by frequent showers of rock and ash, and outflows of hot lava, which gradually built up around the orifices immense mountain masses. At what time these eruptions ceased we have now no means of definitely determining. In the cold, white peaks of to-day, however, scored and carved by glaciers, so that in many cases only traces of their former structure are left, the casual observer would scarcely suspect that he was looking on these ancient fiery mountains. And yet even now there slumbers within their mass a spark of the ancient fire, which may some day break forth into a conflagration."

To Imitate Ground Glass.

Put a piece of putty in muslin, twist the fabric tight, and tie it into the shape of a pad; well clean the glass first, and then apply the putty by dabbing it equally all over the glass. The putty will exude sufficiently through the muslin to render it opaque. Let it dry hard and then varnish. If a pattern is required, cut it out on paper as a stencil plate, and fix it on the glass before applying the putty, then proceed as above; remove the stencil when finished. If there should be any objection to the existence of the clear spaces, cover with slightly opaque varnish.

Railroad Birds.-A water wagtail has built her nest for two years beneath the roof of a third class carriage on the London and Southwestern Railway. The carriage is in constant use, but the bird does not appear to be in the least disturbed by the noise or jolting of travel, but complacently accompanies her brood. The cock bird is philosophic, and when his spouse departs on a trip quietly awaits her return.

Business and texgomal

The Chargefor Insertion under this head is One Dollar

 a linefor each insertion; about eight words to a lin Advertisements must be received at publication office as early as Thursday morning to appearin next issue.Church Pipe Organs, new and second-hand, ready for delivery. Send for particulars. Henry Erben \& Co For best Cylinder Oil, R. J. Chard, New York. Emery in Bbls. and Cans, all numbers, at
Greene, Tweed \& Co., 18 Park Place, N. Y.
Kreider, Campbell \& Co., 1030 Germantown Ave.,
Phila., Pa., contractors for mills for all kinds of grinding. Phila., Pa., contractors for mills for all kinds of grinding The only Engine in the market attached to boiler ineers, Boiler Makers and tors. Send for book with valuable information. Th use of coal with economy; horse power of engines and
boilers; safe pressure; grate and heating surface; boilers; safe pressure; grate and heating surface; coa
and water r equired per horse power. Price 25 cents. and water r equired per horse pow.
Machine Cut Brass Gear Wheels for Models, etc. (new
list). Models, experimental work, and machine wor list). Models, experimental work, and machine wor
generally. D. Gilbert \& Son, 212 Chester St., Phila., Pa. The Chemical Laboratory of Rutgers College will be open from July 5 to September 5, for special courses in
analytical chemistry, mineralogy, and experimenta P. T. Austen, Ph.D., F.C.S., Lock Box 2 , New Bruns wick, N. J.
For Telegraph Instruments, Electric Bells, all parts of
the Telephone, etc., send to Milton F.Jones, Natick, Mass. If Mr. Z. K. S., of Query No. 12, page 410, date June 29, will send his name and address to Wm . S. Dean, Box
600 , Hornellsville, N. Y., he can learn something ver much to his advantage
Publishers of Scientific, Mechanical, or Trade Jour nals in any portion of the world, will serve their inter ests by sending sample copies with advertising rates to
Chas. K. Hammitt's Advertising Agency, 206 Broadway,
New York., U. S. A. For first rate Hand, Foot, or Steam Band S \$35.00, address G. W. Baker, Wilmington, Del. Blake's Belt Studs. The best fastening for Leathe M Bolt Forging Machine \& Power Hammers a specialty
Send for circulars. Forsaith \& Co., Manchester, N. H. Pulverizing Mills for all hard substance and grinding Best Steam Pipe \& Boiler Covering. P.Carey, Dayton, O Machine Diamonds, J. Dickinson, 64 Nassau St., N. Y Sperm Oil, Pure. Wm. F. Nye, New Bedford, Mass. Power \& Foot Presses, Ferracute Co., Bridgeton, N. J Painters' Metal Graining Plates. J.J.Callow,Clevel'd,O. Foot Lathes, Fret Saws, 6 c ., 90 pp. E.Brown, Lowell,Ms For Solid Wrought Iron Beams, Otc. For Solid Wrought Iron Beams, etc.. see advertise
ment. Address Union Iron Mills, Pittsburgh, Pa., fo
lithograph, etc. For Heavy Punches, Shears, Boiler Shop Rolls, Radia
Drills, etc., send to Hilles \& Jones, Wilmington, Del. 2d hand Planers, $7^{\prime} \times 30^{\prime \prime}, \$ 300 ; 6^{\prime} \times 24^{\prime}, \$ 225 ; 5^{\prime}$ $244 \prime, \$ 200$; sc. cutt. b'k g'd Lathe, $9^{\prime} \times 288^{\prime \prime}, \$ 200$; A.C.Steb-
bins, Worcester, Mass. Valuable Invention to users of Steam Boilers. See
advt., page 318, May 18, 78. Address U. S. Automatic advt., page 318, May 18, 78 . Address U. S. Automatic
Stoker Co., No. 2 Chestnut St., Philadelphia, Pa. Solid Emery Vulcanite Wheels-The Solid Origina
Emery Wheel - other kinds imitations and inferior Emery Wheel - other kinds imitations and inferior
Caution.-Our name is stamped in full on all our bes Caution.-Our name is stamped in full on all our bes
Standard Belting, Packing, and Hose. Buy that only The best is the cheapest. New York Belting and Pack
Ing Company, 37 and 38 Park Row, N. Y. Hydraulic Presses and Jalu,
Hydraulic Presses and Jacks, new and second hand E. Lyon \& Co., 470 Grand St., N. Y. For Town and Village use, comb'd Hand Fire Engine Nickel Plating.-A white deposit guaranteed by Nickel Plating.-A white deposit guaranteed by using
our material. Condit,Hanson \& Van Winkle,Newark,N.J. Cheap but Good. The "Roberts Engine," see cut in this paper, June 1st, 1878 . Alse horizontal and
vertical engines and boilers. E. E. Roberts, 107 Lib-
erty St., N. Y. erty St., N. Y
The Cameron Steam Pump mounted in Phosphor
Bronze is an indestructible mechine Bronze is an indestructible machine. See ad. back page.
Bound Volumes of the Scientific American.-I have on hand bound volumes of the scientiffc American,which I will sell (singly or together) at $\$ 1$ each, to be sent by
express. See advertisement on page 30. John Edwards
P. O. Box 786, N. Y.
Friction Clutches for heavy work. Can be run at high
speeds,and start gradual. Safety Elevators and Hoisting speeds,and start gradual. S Safety Elevators and Hoisting
Machinery a specialty. D. Frisbie \& Co., New Haven, Ct. $1,0002 \mathrm{~d}$ hand machines for sale Send stamp for descriptive price list. Forsaith \& Co., Manchester, N. H.
Improved Steel Castings; stiff and durable; as soft and easilyworked as wrought iron ; tensile strength no less than 65,000 Ibs. to sq. in: Circulars
Presses, Dies, and Tools for working Sheet Metals, etc Fruit and other Can Tools. Bliss \& Williams, Brooklyn,
N. Y., and Paris Exposition, 1878. Best Wood Cutting Machinery, of the latest improved kinds, eminently superior, manufactured by Be
Margedant \& Co., Hamilton, Ohio, at lowest prices. We make steel castings from $1 / 4$ to 10,000 lbs. weight 3 times as strong as cast iron. 12.000 Crank Shafts of this
steel now running and proved superior to wrought iron Circulars and price list free. Address Chester Stee Circulars and price list free. Address Ch
Castings Co., Evelina St., Philadelphia, Pa.
For Shafts, Pulleys, or Hangers, call and see stock
sept at 79 Liberty St. Wm. Sellers \&Co The Turbine Wheel made by Risdon \& Co., Mt. Holly, Hand Fire Engines, Lift and Force Pumps for fire and all other purposes. Address Rumsey \& Co., Senec Wm. Sellers \& Co., Phila., have introduced a new
Injector, worked by a single motion of a lever.

NEW BOOKS AND PUBLICATIONS Physical Technics. Translated from the
German of Dr. J. Frick by John D Easter, Ph.D. J. B. Lippincott \& Co. Publishers, Philadelphia, Pa.
This is a second edition of a work which for many years has been recognized as a valuable guide for the student of physics. Its aim is to instruct how to per-
form the experimental part of the science with the simform the experimental part of the science with the sim-
plest materials and at the least cost, and the information given is of the directly practical order, which is req uisite in a handbook designed for ready and constant
reference. The chapters of the opening part relate to reference. The chapters of the opening part relate to
the arrangement of the laboratory and the necessary manipulations of glass, metals, etc., in the preparation of apparatus. Then follow chapters describing experiments on the equilibrium of forces, on motion or acoustics, on light, on magnetism, on electricity, and on heat, presented by about eight hundred engravings. The dded. The work is an excellent one, and to all en aged in teaching the science will be of especial utility.
he Speaking Telephone, Talking PhoNograph, and other Novelties. By
George B.
Prescott. Published by D.
Appleton \& Co., 549 and 551 Broadway, New York.
This is the first extended publication in book form which has appeared giving a complete and connected
account of the recent remarkable inventions above account of the recent remarkable inventions above
noted, together with the history of their inception. For his reason, and because also the book is prepared exmend it to our readers, and especially to the large number who constantly send us inquiries as to the mode of construction of the telephone. Mr. Prescott opens with a general review of the various kinds of telephones, then
gives a complete account of Bell's researches, telephonic nvestigations abroad, the production of galvanic music, and the labors of Gray, Edison, Dolbear, Channing, Blake, and others. There is a capital chapter on the
phonograph, a concise exposition of the quadruplex pystem of telegraphy, and two valuable discussions on ectric light , and the latest ind interesting, and lectric light. The work is
a Manual of the Carbon Process. Trans-
lated from the German (6th) edition of
The Scovill Manufacturing Co., New York, Publishers.
This is a complete practical handbook, giving all the ography. The different subjects are very elaborately reated, the descriptions are clear and are supplemented by good illustrations. Directions are given for preparing the various chemicals and papers, how to
make, transfer, and color prints, how to multiply and enlarge negatives, and there is an excellent chapter on fe failures which a tyro in the art is likely to meet with

Madicer Munties

(1) L. A. H. asks for a good work on perspective drawing. I have a slight knowledge of isometrical perspective, but wish to become thoroughly
competent to draw plans of machinery, etc., in perspeccompetent to draw plans of machinery, etc., in perspec-
tive. A. See lessons on pp. 229 and 1019, Scientific American Supplement. Consult Churche's "Descripive Geometry" and Warren's "Higher Linear Per-
(2) A. H. C. writes: Having a controversy with a gentleman about the moon's having a great ef-
fect on the weather, and he saying that the U. S. Signal Service took the moon for one basis, we refer it to at this office when we take our observations of the weather. The distance of the moon from the meridian hatuences the height of the barometer, but so slightly osticating the weather.-J. T. C., U. S. Signal Office, ew York city
(3) C. H. W. asks: Is there any work pub-
lished which treats of the construction and working of the microscope? I want to make an instrumet magnifying from two to three hundred and fifty diameters. . Consult "The Microscope," Hogg; "The Micro with the Microscone" Beale; "Text Book of the Mi with the Microscope," Beale;
croscope," Griffith and Henfrey.
(4) H. W. K. writes: While listening in a telephone there is a continual crackling noise, which is
reatly increased in a foggy or rainy day. Is not this greatly increased in a foggy or rainy day. Is not this
caused by currents of electricity in the ground (thetelephone has a return circuit through the ground), and why are they more intense in dampweather than in dry?
A. The crackling may be produced by earth currents A. The crackling may be produced by earth currents.
it may also proceed from currents induced in the teleIt may also proceed from currents ind
phone line by parallel telegraph wires.
How many cells Callaud battery will it take to melt a No. 40 copper wire? A. About 40.
(5) H. R. asks: 1. Can you inform me how strong horseshoe or other magnets can be made? A.
a. By placing on each end of a hardened steel bara soft ron cylinder, and surrounding the whole with a helix whichis connected with the poles of a powerful bat-
tery. b. By placing the hardened steel bar against the tery. o. By placing the hardened steel bar against the
$\begin{array}{ll}\text { face of a strong electro-magnet. } & \text { 2. Is there such a }\end{array}$ thing as an electric engine? A. Yes. See any work on physics. 3. What kind of lime is used for making the lime-light? A. A good clear piece of common unslaked lime will answer. It is sometimes prepared by calcining marble.
(6) E. D. S. asks: 1. How is the signal bell on the telephone worked without a battery? A. With a
small magneto-electric machine. something of the kind, or to answer the purpose? A.
An alarm cannot be easily made. See answer to L. o.
B. on this page. 3. What is the size of the inclosed
wire, and will it answer to construct a telephone line a half mile long? A. The wire is No. 16. It will answer, but larger would be better.
(7) W. J. P. writes: I want to drive a machine shop 1,200 feet from a boiler and engine. Which
is the best and cheapest was to transmit my power? A. is the best and cheapest wa
(8) J. B. writes: I have a telephone line 1 mile long, with Bell's telephones at each end. Now when I speak at one end how does the sound reproduce
itself at the other end? A. When a sound is made in itself at the other end? A. When a sound is made in
the mouthpiece of the transmitting instrument, the dithe mouthpiece of the transmitting instrument, the di-
aphragm of the instrument vibrates in unison with the aphragm of the instrument vibrates in unison with the
sound, and by approaching and receding from the magsound, and by approaching and receding from the mag
net disturbs its normal magnetic condition and thus generates electric currents in the surrounding helis. ceive currents are transmitted to the helix of the re condition of thent, where they change the magnetic diaphragm of the receiving instrument vibrates in ex-
actly the same manner as that of the transmitting inactly the sa
strument.
(9) L. O. B. asks for a description of the machine for generating electricity, without the use of a battery, such as is used in connection with tele-
phones to strike bells and call attention. A. We in tend to publish in the Scientific American Supple ment, at an early date, a full description of a small
(10) S. L. asks for a recipe for turpentine varnish, and for " Worcestershire sauce." A. Mastic
in tears, 12 ozs.; pounded glass, 5 ozs.; camphor, $1 / 2$ oz.; oil of turpentine, 1 quart; digest with agitation until dissolved; then add Venice turpentine $11 / 2$ ozs. next day decant. The recipe for Lea \& Perrin's Worces ershire sauce is not published.
(11) A subscriber inquires how peach brandy is made. A. Bruise the peaches, steep them in
twice their weight of brandy, and express the liguor or bitter almonds (bruised), 2 ozs.; proof spirit, 10 gallons; water, 3 gallons; sugar, 6 lbs.; orange flower water, $1 / 2$
pint; macerate together for two weeks. Is there any handy book published showing, by its aid, how to make cheese? A. We know of no work
devoted entirely to cheese making; Willard's "Practical Dairy Husbandry " may be of some service. See
also pp. 178-182 Cooley's "Cyclopedial also pp. 1 .
ceipts."
(12) A. A. R. asks: How can I cut a scale I design using for a rain and snow gauge? A. You mesign using for a rain and snow gauge? A. Yo may do it with a ine file wet with turpentine, or with
thin copper disk revolved in a lathe and wet with water charged with No. 1 emery.
(13) B. A. asks how pepsin is prepared. castric juice, and as a viscid matter in existing in the and on the walls of the stomachs of animals. The mucous membrane of the stomach (of the hog, sheep, or calf, killed fasting) is scraped, and macerated in cold water for twelve hours; the pepsin in the strained liquid
is then precipitated by acetate of lead, the deposit washed once or twice by decantation, sulphureted hy drogen passed through the mixture of the deposit with a little water to remove the whole of the lead, and the filtered liquid evaporated to dryness at a temperature
not exceeding 105° Fah. As met with in pharmacy the strength of pepsin varies greatly. It is often prepared by simply mixing with starch the thick liquid obtained on macerating the scraped stomach with water, and evaporating to dryness. The composition of pepsin is
(14) P. L. O. asks: How do you use emery powder to clean rusted tools? A. Apply
a piece of leather, cork, or thick cloth.
(15) F. M. C. asks: Is there any mixture that will cause iron to break by eating it away? A. Ni-
tric, hydrochloric, or sulphuric acids, or a moistened mixture of 14 parts acid potassium sulphate, 4 parts ammonium chloride, and 7 parts potassium nitrate powdered and intimately mixed.
(16) S. W. asks: What is meant by foot When we say that 100 foot pounds of work are per formed, we mean that an effort has been exerted equivalent to raising 100 pounds 1 foot high, 1 pound 100
feet high, 2 pounds 50 feet high, or any number of pounds raised to such a height that the product of the power and weight is 100 .
(17) O. L. asks: How can I make chlorine gas? A. Pour strong hydrochloric acid over black oxde of manganese in coarse powder, and apply a gentle
heat; chlorine is given off abundantly. Or pour over a mixture of equal measures of black oxide of manganese nd common salt a small quantity of sulphuric acid diluted with an equal volume of water.
What acids will affect platinum
mixture of 3 parts strong hydrochloric and 1 part nitric
(18) F. M. H. asks: Is there any process of photography that is simple, easily understood (without
much practice), and at the same time cheap, in a compact form, and practical? A. Some one of the dry plate processes may possibly come within the prescribed limits. See articles on pp. 304and 231, Scientific Ameri-
CAN, vol. 36, and 161, 765, 809, 1004, 1017, Scientific american Supplement
We have had great difficulty in making paint stay any length of time on our boats where they come in ontact with the water of the canal which is an outle
for Chicago river impurities (sewerage, etc.). What is the cause, and how can we remedy it? A. From such data we cannot judge; test the water with a little lit mus; if the reaction is notably alkaline, you have the secret. It may also be partially due to the abrasion of much suspended mineral matter. In the former case
you may apply some protective varnish, such as that you may apply some protective varnish, such as that
described on pp. 149 and 159 , "Science Record," 1874 .
(19) J. G. H. asks: 1. What can I put into burnishing ink, such as is used in shoe manufactories, to produce a black gloss? A. Shellac, 4 ozs.; borax, add a few drops of strong ammonia water. A small amount of soap is sometimes also introduced; add a sufficient quantity of this to the ink used to obtain the desired result. Instead of the above, soap is often used
alone or with a trace of glycerin, ammonia, or gum alone or with a trace of glycerin, ammonia, or gum
arabic. 2. What causes the ink to scale, after being bur rabic. 2 . What causes the ink to scale, after being bur (20) A. W. G. asks how to make soiled wringer rolls look like new. A. Try a little dilute hydrochloric acid or strong aqueous solution of zinc chloHow is rubber melted to make rubber hand stamps? o. 83 - p 1326, Scientific American Supplement, (21) C. W. M. asks: 1 . Will you give me a recipe to prevent fishing lines from rotting? A. Digest
them for 12 hours in a solution of 1 lb. of white soap in them for 12 hours in a solution of 1 lb . of white soap in
10 gallons of water; then for six hours in solution of alum, or, better, acetate of alumina in 20 parts of hot opular superstition that fish bite better when the moon fulls A. No.
(22) E. D. A. asks if a railroad train is not more liable to run off the track in making a short curve at a high rate of speed than slow. Also scientific reasons therefor. A. Yes; because the force tending to
(23) L. C. B. asks: What material is best o use to harden plaster of Paris casts after the castings are made. so as to imitate white or gray marble?
A. You may try strongsolution of silicate of soda, alone r with concentrated aqueous solution of alum or magnesium sulphate; then wash in lime water or lead ace-
tate.
(24) J. H. McF. asks: What kind of covering or coating will render the plastered walls of a
bieach house impervious to the fumes of burning sulbeach house impervious to the fumes of burning sul-
phur and not be affected thereby? A. You may apply phur and not be affected thereby? A. You may apply
to the dry walls a strong benzole solution of paraffin or wax. The former is preferable.
(25) J. B. asks for a recipe to make mush oom catsup. A. Sprinkle the trimmed tops with salt, outthe juice; add to each gallon of this $1 / 0 \mathrm{oz}$, each of out the juice; add to each gallon of this $1 / 2$ oz. each of
bruised mustard seed and cloves, and 1 oz. each bruised allspice, black pepper, and gently sim mer for an hour in a porcelain lined iron vessel; cool, strain, and bottle. (26) C. M. F. writes: I would like to learn the machinist's trade so as to be a good engineer aftergo tole 19 years ord est experience in the shortest time in a repair shop. (27) M. says: We use a copper boiler for yeing wool and homespun black with bichromate of with camwood, sulphuric acid, and copperas. 1. Would an iron boiler do just as well? A. No. 2. At present
we use two open boilers of about 120 gallons capacity we use two open boilers of about 120 gallons capacity
each, heated from beneath. Would steam from a shell ach, heated fom bens 30 . Would steam from a shel boiler, 6 feet long and 30 inches diameter, keep the wa
er in the above mentioned boilers, or vats of like capacty, up to the boiling point while used for dyeing purposes? A. As we understand you, not unless the steam
(28) W. H. P. asks for a strong waterproof nd flexible cement for joining sheets of manila paper and flexible cement for joining sheets of manila paper
to form a board. A. Good pitch and gutta percha his are added 3 parts of boiled oil and one to 9 parts of litharge; continue the heat with stirring until thorough union of the ingredients is effected. This is applied hot or cooled somewhat, and thinned with a small quantity
(29) H. B. F. asks for a recipe for mixture of a whitewash for wooden or brick outdoor purposes,
such as used by the government. A. Slake half a bushel good lime in boiling water in a covered vessel, and strain it through a fine sieve; add a peck of salt dissolved in a small quantity of hot water, 3 lbs . of rice boiled with water to a thin paste, 1 lb. of Spanish whiting, 1 lb . glue softened y soakingin water and er. Agitate, cover from dath, and 5 gallons of hot waeral days. Apply hot. Slaked lime or hydraulic cement mixed with skimmed milk makes a cheap and durable
(30) D. H. asks: What kind of varnish or gum would be suitable to make waterproof and put together sheets of paper to make a paper canoe, and Sheets of stout manila passed through a hot bath of aqueous solution of zinc chloride (at 75 5° B.) pressed strongly together and then soaked in dilute aqueous soda solution containing a small amount of glycerin
cohere to form a strong, stiff, waterproof board admirably adapted to the construction of small boats. Single sheets of paper passed quickly through the zinc chloride bath, pressed and washed and dried, are waterproof, and may be otherwise joined to form waterproof boards by any suitable cement. See answer to W. H. P., this
page; also p. 10, vol. 38, Scientific American. (31) T. R. W. asks (1) for a good recipe for an indelible ink for marking on linen, either with or without previous preparation. A. (1) Add caustic alkali til no further precipitate forms; allow the precipitate to settle, draw off the supernatant liquid with a siphon, and dissolve the hydrated copper oxide in the smallest
possible quantity of ammonia. It may be mixed with about six per cent of gum dextrin for use. Before washing pass a hot iron over the writing. (2) Asphaltum, 1 part; oil of turpentine, 4 parts; dissolve and temper with printer's ink. Best used with a stamp. See other recipes on this page. 2. Also please inform me what solution will be durable and best suited for marking on zinc tags, exposed to the weather. A.
Tie latter (2) may be used on zinc tags. Tie latter (2) may be used on zinc tags.
(32) J. H. K. and others-Mix two or three drachms of white arsenic (arsenious acid) with an equal quantity of sodium carbonate and dissolve the mixture in a pint of boiling water, to which add also an ounce
ormore of honey. This may be projected, in limited or more of honey. This may be projected, in limited
quantity, by means of a small syringe, well into all open cracks in the walls and floors of rooms infested open crack
with the insects. The latter will soon discover the honey, and die. The only precaution necessary in the use of this misture is that it should not be deposited or kept within the reach of children or domestic animals, or with medicines, etc., for which it is liable under any circumstances to be mistaken. It is better to make the
(33) D. W. B. asks: Does the injector send steady stream of water into the boiler, or is it in the orm of spray? A. A steady stream.
Are most of the transatlontic
Are most of the transatlantic steamships made in $\underset{\text { What is the proportion between the }}{\text { America }}$
What is the proportion between the length and width from 4 to 12 oreven more.
(34) D. P. writes: We have tried concentrated lye as a preventive to the formation of scale in njury to the boiler, or any other objection to its coninued use? A. If you blow off and clean the boiler regularly every two or three weeks, we see no objec-
${ }^{\text {tion. }} \mathbf{(3 5)}$ H. B. C. asks: 1. Does a permanent magnet lose or gain by being in constant use? A. A
gradual diminution of power occurs when the keeper r armature is not in contact with the poles. 2. Which is the stronger, a compound or solid magnet of equal
weight? A. A compound. See p. 227 , "Science Record" for 1874. 3. Will an electro-magnetic machine produce magne
(36) H. K. A. asks: 1. How do scientists ascertain the average rainfall? A. Take a quart bottle of aniform diameter and graduate its liquid contents by a
scale of tenths of an inch accurately engraved on the side; fit into the neck of the bottle a 40° funnel, the dimeter (in inches) at the rim or widest part of which has been accurately ascertained; then diameter square $\times 7854=$ area in inches of the base of the inverted cone. Suspend the rain gauge in an upright and exected in the bottle \div time of exposure $=$ average rainfall in inches. The gauge should of course be out of the reach of spattering water from surrounding objects, and in order to avoid great error through the spattering of the water from the funnel, the angle of the sides of
the latter should not be greater than 40°. The neck of the latter should not be greater than 40°. The neck of the funnel should be narrow and due allowance must be
made for evaporation. Readings should be taken if possible before as well as after a rain. all. The indicafor all ordinary purposes. 2. Would a tin pail set out during a shower where the water could not blow from any other object into it, and set high enough from the ground so that water could not spatter into it, register
the rainfall for that particularsection (the pail being the the rainfall for that particular section (the pail being the
same size from bottom to top) by measuring the water same size from bottom to top) by measuring the water
in the pail? In other words, would the depth of water in the pail? In other words, would the
in the pail be the rainfall? A. Yes.
(37) W. C. R. asks for a recipe for a glue to asten paper on glass; it must be colorless. A. (1.) Soak isinglass in water until it is soft, then dissolve it in the sentle heat; in 2 ozs. of this mixture dissolve 10 grains f gum ammoniacum, and while still liquid add half a drachm of mastic dissolved in 3 dracbms of rectified spirit. It is liquefied for use by standing the bottle containing it in hot water for a moment. (2.) Good starch aste is often used.
(38) G. F. S. asks: 1. Can you silver plate on lead or pewter? A. Yes, though with dificulty. It cequires an intense current and a strong solution to plating. A. Dissolve sulphate of copper in 4 parts of
(39) F. B. M. asks: 1. What is the best way of making a good paste blacking? Please give cormula. A. See recipe on page 27.
pou make the best of liquid blacking? A. How would
A. Soft water, you make the best of liquid blackings
1 gallon; extract of logwood, 6 ozs.; dissolve: soft 1 gallon; extract of logwood, 6 ozs.; dissolve: soft
water, 1 gallon; borax, 6 ozs.; shellac, $11 / 2$ oz.; boil until lissolved: potassium bichromate, $3 / 8$ oz.; water, $1 / 2$ pint; solve, and add all togethe
(40) A. F. asks: How can I keep a workwith a quantity of hot pipe clay over night; or apply a ittle benzine and use the clay cold.
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
C. W. C.-Slate containing pyrites.-J. A. P.-The
deposit consists mainly of clay, silica, lime sulphate, deposit consists mainly of clay, silica, lime sulphate,
tron oxide, and a little organic matter. It may be used tron oxide, and a little organic matter. It may be used It does not contain phosphates.-J. J. - No. 1 is red jas-per-an impure quartz, the coloring matter of which is iron sesquioxide. No. 2 is dolerite containing iron py by eddies of water.-E. D. M.-They are nodular py-rites-iron sulphide.-M. F.-Specimens of banded
agate, rose and amethystine quartz.-Will Canadian agate, rose and amethystine quartz.-Will Canadian
correspondent who sent sample of talc please send his correspondent who sent sample of talc please send his
address?-W. T. J.- Nodular pyrites-iron sulphide.. A. A.- The chalk is foramniferous; use a $\frac{1}{10}$ objec-
tive. - D. L. The sample is a clay-silicate of aluminacontaining much salt, a little iron oxide, lime and mag. nesia sulphate, and silica. It is not of much value.

English Patents Issued to Americans. From May 10 to May 30 , 1878 , inclusive. Advertising apparatus.-E. Bostock et al., N. Y.
Artifleial leather.-E E. Floyd, Boston, Mass. Boat lowering apparatus.-M. Bourke et al., Youngstown. O.
Boiler pressure regulator.-H. G. Ashton, Boston, Mass
Book holder.-A. Mason, N. Y. city

Bottle stopper.-C. O. Hammer, Pittsburg, Pa.
Ditching machine.-T. Fitz-Randolph. Morristown, N.J. Ditching machine.-T. Fitz-Randolph. Mo
Drain trap. - H. Palmer, Rochester, $\mathbf{N} . \mathbf{Y}$.
Electric battery.-C. Brush, Cleveland, Electro-motor.-D. Ward et al., Berkshire, N. Y. Gas manufacture.-W. W. Adams, Philadelphia, Pa Gas manufacture.-W. Harkness, N. Y. city
Governor.-C. C. Jenkins, Philadelphia, Pa Grain drier.-E. H. Gratiot, Platteville, Wis. Grinding machine.-G. G. Lobdell, Wilmington, Del.
Iron manufacture-D. Thomas St Iron manufacture.-D. Thomas, St. Louis, Mo
Ladder and hose elevator.-G. Juengst, N. Y. city. Life boat -M. Bourke et al, Youngstown, O Life saving apparatus.-E. S. Hunt, Weymouth, Mass. Lubricator.-C. Harris, N. Y. city.
Machine gun.-D. W. C. Farrington, Lowell, Mass. Milwaukee, Wis.
Nail machine.-H. B. Sheridan, Cleveland, \mathbf{o} Non-conducting covering.-B.F.Smith, New Orleans, La
Printer's quoins.-H. A. Hempel et al., Buffalo, N. Y. Printer's quoins.-H. A. Hempe
Propeller.-J. Baird, N. Y. city.
Propeller.-J. Baird, N. Y. city.
Railway truck.-G. Vincent, San Francisco, Cal.
Reffning metals.-N. Railway truck.-G. Vincent, san Francisco, Cal.
Refning metals.-N. S. Keith, Brooklyn, N. Y.
Rolling mills.-W. R. . Jenkins, Jr., Bellefonte, Pa Rolling mills.-W. R. Jenkins, Jr., Bellefo
Rubber cutter.-C. Ford et al., N. Y. city. Screw cutting machine.-H. E. Russell, New Britain, C Telephone.-E. Gray, Chicago, III .
Water me instruments.-D. Hoffman, Philadelphia, Pa

index of inventions

Letters Patent of the United States wer

 Granted in the Week EndingApril 30, 1878,

AND EACH BEARING THAT DATE

[Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list furnished from this office for one dollar. In ordering please state the number and date of the patent desired
and remit to Munn \& Co.. 37 Park Row. New York city.

Advertising apparatus, N. T. Scott
Anchor, T. A. Swinburne
Animal trap, J. P. Boyers
Animal trap, H. T. Wigginton.........
Apple corer and slicer, C. B. Veronee.
Augers, manufacture of, II. L. Shaler.
Awning, blind, C. P. Dearborn
Axle box, car, D. A. Hopkins.
Axle box, car, D. A. Hopkins.
Bale band, wire, L. T. Newell
Bale band, wire, L. T.
Bale tie, C. . . Chase.
Bale tie, W. S. McKin
Bale tie, J. W. Roop.
Barrel cover, A. Mc.............
Barrel for packing fruit, A.
Bed bottom, H. D. Fitch.
Bedstead, sofa, H. J. Grimme \& Diehlman Beverage holder for table use, w. Parkin Beverage, table, S. S. Putna
Billiard table, J. E. Boyle...

Blacking, shoe, J. H. Gordon. Blasting rocks, T. J. Wheatley Bluing package, laundry, C. H. Fischer Bobok rack, A. A. R. Sherman. Book support, F. W. Pearson. Boots and shoes, lasting, Newha
Bosom board, J. B. Sweetland . Bosom board, J. B. Sweetland.
Box and drawer, shoe Box and drawer, shoe, S. M. Closser
Bracket fastening, scaffold, Coole \& Wins Brake, automatic wagon, L. L. Travis.. Breastpin, W. MCKnight. Brick and tile machine, P. H. Kelle
Brick machine, W. O. Nightengale Brick machine, W.O.
Bridle bit, E. N. Crane
Bridle bits, manufacture of, F. Crane...
Brush and broom holder, D. M. Spaldin Brush, shoe, F. H. Kean
Buckets, ear for well, B. F. Felix Bug exterminator, S. Ru
Bung fastener, E. Cole
Butter tub fastening, Gilberds \& Jackso
Button, A. S. Fernald Button, A. S. Fernal
Cable, making hollow wire, O. Preston
Calculating machine, w. W. Hopkins.. Can labeling machine, S. L. Salomon et
Cans, applying flux to, G. H. Perkins.
Cannon, breech-loading Cannon, breech-loading, A. H. Emery Car coupling, A. H. Clark.
Car coupling, w. Dorr..... Car coopr, J. G. \& G. M. Brili...
Car door, grain, C. R. Watson
Car shutter, J. G. \&G. M. Bril
Car window, C. T. Deblois
Cars, running-gear for street, Hunter \& Everding
Carpet fastener, D. F. Stambaugh
Carpet stretcher, J. H. Lucas
Carpet stretcher, J. H. Lucas ...
Carriage step, F. A. Sawyer, 2d.
Carriage, etc., door check for, C. West ...
Chair, baby's safety, Christman \& Cald well
Churn, M. A. Howe
Churn, w. Magee..
Churn, J. Rehbein
Churn, A. B. Simpson
Churn dasher, G. W. Gilber
Cigarette package, F. S. Kiney
Clasp, F. B. Brown...............
Cock or valve, stop, c. c. Bliss
Coffee mill, A. Shepard....
Coffee pot, G. W. Goodwyn
Coffee, tea, etc., making, J. Miller
Copy holder. J. W. McGa
Corn sheller, W. H. Hall.
Corn sheller, W. H. Hall..
Corpse cooler, J. Flaherty
Corset fastening, F. B. Brown.....
Cotton cleaner, seed, J. w. Clarke
Cotton gin, J. W. Bu
Crate
crate, A. M. Smith ...
Cultivator, o. S. Gundy
Cultivator, M. Johnson
Cut-off, H. Wadsworth.
Cut-offfor plane valve engines, E. R. Dingley.............................
Desk, school, R. K. Curtis.... Desk, school, R. K. Curtis...
Dessert maker, W. H. Silver

Ditch opening machine, H. W Hill.
Door, R. W. Semple Door, R. W. Semple
Door, sliding, G. R. Kidder
Drill tooth, seed, H. Springer..........
Dyestuff or coloring matter, L. Graf
Egg beater, J. R. Hughes.............................
Electro-deposition, articles made by,J.W.Tufts. Embalming apparatus, A. H. Hatch...

Embroidering machine, I. Grobli et al...

Embroidering machine, I. Grobli et al..
Embroidering machine, H. Rieter et al....
Engine, marine, A. Demo...
Envelope, M. J. Taylor.
Envelope, letter-sheet. C. Foster (r)................
Extract receivers, floating cover for Extract receivers, floating cover for, J. Miller
Fabrics, compound for, Hebdon \& Mather Fan, O. Brueck (r)

Feed water heater Fence, J. N. Kerr

Fiber, separating, J. Wilkikns.................203,230, File cutting machine, Mudge \& Whittaker
Filter, rain water, Thomas \&Carter............... Fire escape, J. S. Shaw..
Fish, catching, S. N. \& E. A. Robertson Flour, testing, E. Pekar
Fluting iron, F. H. Stumpf...
Food, preserving, E. P. Bates
Food from beans, articles of, S. R.
Foot coverings, felt, A. A. \& R. B. Hawley Foot coverings, felt, A. A. \&
Foot warmer, M. E. Beasle
 Fuel, hydrocarbon compound fo
Furnace, boiler, S. H. Bevins..
Furnaces, feeding air to, J. Jenks (r)
Furnaces, grate for steam boiler, J. E. Wootten. Galley, P. Bresnan
Game counter, P. Orth

Gas burner, H. A. Jerauld
Gate, G. W. Rodebaugh....
Gate, farm, T. M. Wilson.
Grain binder, S. D. Locke.
Grain drier, H. Cutle
Grasses, exterminatin
Grasses, exterminating noxious, L. Martin
Harrow and cultivator, combined, A. Lee........ Harvester cutter bar, J. McCor
Hat and cap, J. Van Gelder
Headstalls, check piece for, J. W. W. Weed
Heating apparatus, E. B. Butterworth. Heating apparatus, E. B. Butterworth..........
Heating water and other fluids, J. Atkinson. Hinge, L. Patterson....
Hinge, gate, G. E. Good win........
Hog cholera compound, H. C. Colier
 Horse tail tie, B. Blackstone.........
Horses' feet, pad for, G. A. Kastne Horseshoes, spring for, J.
Ice creeper, O. A. Childs Jewel casket. H. Berry
Key, extension, H. Wadsworth. Ladder, free escape, Clark \& B.A. \& S. Bowman Lamp, self-lighting,
Latch, A. E. Dietz
Lath machine, metal, W. M. Par
Lint room, Baughn \& Harrison
Liquid measure, A. Bernstein.
Liquids, storing and discharging, s. H. Rhoades
Lock, permutation, W. G. Van Buskirk.
Lock, seal, W. Dunn........... Lockets, settings for, H. H
Loom, circular, H. Morris .
Loom picker, A. A. Gordon..............
Loom shuttles, bobbin for, J. P. Buzzell
Match machine, C. J. Donnelly.............. Mattress, H. Teats...............
Meat cutting machine, C. Schille
Meattenderer, L. L. Treman...........................
Mechanical movement, P. Broadbooks203,11

 Music teaching dice,
Nut lock, W. W. Lunger .
Odometer, L. C. Perkins
Odometer, L. C. Perkins ..

Ore separator, J. Collom.
Organ reed, H. K. White.
Overshoe or gaiter, C. Hought
Packing, or well, H. S. Cate....
Packing, oil well, L. W. Hoadley
Packing, oil well, L. W. Hoadley
Pan, patty, Frost \& Smith....

Paper baskets, seamless, R. B. Crane
Paper cutting machine, E. R. \& T. W. Sheridan ($)$ Peach cutter, J. H. Smith
Pipe and tobacco case, E. S. May..
Pipe coupling, G. H. Griggs.
Pistols, etc. extension stock

Plane, carpenter's, L. Bailey
Planter, corn, H. E. Foster
Planter, corn and pumpkin, P. B. Still .
Planter, seed, S. B. Dav
Plow, G. \& P. Reese....
Plow, Wilson \& Morrow........
Plow and marker, corn, c. M. Burns
Plow stock, S. Carnes
Plows, riding attachment to, H. M. Freeman
Press, hay, H. R. Smith
Pressure regulator, w. D. Dickey
rinting press, H . A. Manley....
Pumping apparatus for oil wells, C. Snyder
Rail, curved street, w. W. Humhres.
Railway switch, C. F. Gessert........
Rasp machine, Mudge \& Whittaker
Rivers, removing bars of, H. F. Knapp (r) . Roofing tile, H. E. Merrill.
Rand from water, separatin
Sash holder, H. Worthington ...
Sawinglogs, spirally, S. T. Mofet

Scale and coin detecter, postal, H. Maranville
Scow, dumping, P. L. Murphy.... Scale and coin detecter, postal,
Scow, dumping, P. L. Murphy...

Inside Page, each insertion - - 75 cents a line.
Back Page, eachi insertion-
(About eight words to a line. Engravings may head advertisements at the same rate
per line, by measurement, as the letter press. Adver. tisements must be received at publication office as early
as Thursday morning to appear in next issue.

"DEFIANCE"

METALLIC PLANES.

The cutter seat is milled from the solid iron of the
stock, which
workequally well onts hall chattering or soft or wood jumphe. cuther
are mite Work equally well on hard or soft wood The cutters
are made from Firths first quality English Steel (every
one warranted) and the one warranted, and the screw adjustments work slower
and with less sack-lash than those of any other planes
will be sent toan addes, charges prepaid, on receipt
of price send for circular to BAILEY WRINGING MACHINE CO.,
CIGAR BOX LUMBER,
Patented Processes.

$100_{\text {bymail. Samples }}^{6 \text { Gin. }}$ free. The Local, Silver Creek,N.Y POSITIVE MOTION LOOMS

 ${ }_{2}^{2}$, St, New York.
A CENTS WANTED.- A new, popular, ilustrated TAMENT, in 8 convenient (octavo) volumes, by Rev.
LYMAN AbBott, D.D. Send for Descriptive Circular. Sells at sight to Sunday-school scholars, teachers, super
intendents, Bible students, clergymen, etc., of intendents, Bible students, clergymen, etc., of all de
nominations.
A. S. barnes \& Co., Publishers, New York.

SECOND-HAND ENGINES,

CORLISS ENGINES.
Machine Tools, Sugar Machinery.
Facilities for Constructing Heavy Ma
Send for Circular.
PASSAIC MACHINE WORKS
PASSAIC MACHINE WORKS,
WATTS, CAMPBELL \& CO., Proprietrs,
Newark,'

Telephones.

Genuine Electrical Speaking Telephones, through which
conversation is distinctly audible up to 30 miles. distance
from the person speaking. All the parts for complet

ARTIFICIAL LICHT
We have just introduced this important facility, which enables us to prosecute our work

L. SMITH HOBART, President.

JOHN C. MOSS, Superintendent. RELIEF PLATES
For Newspaper, Book, and Catalogue Illustrations. Engraved in Type-Metal, by a new Photo-Chemical Method, from all kinds of Prints, Pen Drawings, Original Designs, Photographs, etc., much cheaper than wood cuts. These plates have a perfectly smooth printing surface, and the lines are as leep, as even, and as sharp as they could possibly be cut by hand. We guarantee that they will print satisfactorily, on wet or dry made from them in the usual way. Dur plates are now used by the principal publishers and manuface

THE TRIBUNE

UNEXAMPLED PREMIUM

CET THE BEST.

Webster's Great Unabridged Quarto Dictionary. THE LATEST AND BEST (\$12) ENT TONANY ONE
emitting, prior to September 1st, 1878
$\$ 16$ for Eight One-Year Subscripti
316 for Eight One-Year Subscriptions to THE WEEKLY; or
\$30 for Ten One-Year Subscriptions to THE SEMI-WEEKLY; or
$\$ 10$ for a Single Five-Years' Subscription, in advance, to TIIX WEE
$\$ 15$ for a Single Five-Years' Subscription, in advance, to THE SEMI-WEEKIT
The Popular Approval of this
THE TRIBUNE is now delivering the
NINTH THOUSA.ND
of these GREAT QUARTO DICTIONARIES and gratitude.

FORCE OF WIND. HOW TO ESTIMATE the Necessary Strenth of Roofs, Towers, Tall Chimpeys,
eete., to withstand the Wind. The Solution of ald Prob-
lems of the kind, with numierous Formula. Contained

PATENTS SOLD.
For terms, address EUROPEAN and UNITED STATES
PATENT EXCHANGE, 200 Broadway, N. Y. Box 2801.

AƯCTITÔN.
THE DRIVEN WELL.

WM. D. ANDREWS \& BRO.,

MINTON'S TILES.

Norsine
Lathes, Planers, Shapers

EAGLE FOOT LATHES,

The George Place Machinery Agency Machinery of Every Description.
Chambers and 103 Reade Streets, New York Regular Monthly Sales the frrst week of each month by George W. Keeler, Auctioneer, at his salesrooms,
53 and 55 Liberty Street, N. Y. For terms, etc., address The New York Patent Exchange, 53 Liberty St., N. Y.
$\$ 250$.

.

PATENT MINERAL WOOL

 Entirely Fireproof, undecaying, and the best non-conductor of heat, cold, or sooual Cheaper than hair-felt. P. o. Box4461. A. D.
SPARE THE CROTON AND SAVE THE COST. Driven or Tube Wells

DUC'S ELEVATOR BUCKET,

T. F. ROWLAND, Sole Manufacturer, Brooklyn, N. Y.

WALTHAM WATCHES.

Improved in Quality, but no higher in price.

Ater this atate, we shall sell none but New Model Waltham Watches, partieulars of which will be
Cound in our Xeew Price List Mound in our \urcorner New Price Lisist. re superior to all others genu vithin the reach of all.
 wress o any part of the eountry,
without any risk to the purchaser. Price List sent tree and postopaid.
Aadres HOWARD \& CO.,
No. 264 Fifth Ave, New York.

!!New and Improved!! Engraving Process!!!! Perfect subsittute for Wood.cuts.

ACENTS WANTED. ONLY 50 CENTS CAPITA1. REQUIRED. ATNA HEA'TER.

 CAREY'S PATENTED
COMBINATION NEEDLE.

Can I Obtain a Patent?
This is the first inquiry that naturally occurs to every quickest and best way to obtain a eatisfactory answer, without expense, is to write to us (Munn \& Co.), describing the invention, with a small sketch. All we need is to get the idea. Do not use pale ink. Be brief. Send stamps for postage. We will immediately answer
and inform you whether or not your improvement is probably patentable; and if so, give you the necessary instructions for further procedure. Our long experience enables us to decide quickly. For this advice we make no charge. All persons who desire to consult us in re-
gard to obtaining patents are cordially invited to do so. We sha'l be happy to sce them in person at our office, or to advise them by letter. In all cases, they
may expect from us a careful consideration of their may expect from us a careful consideration of their plans, an honest opinion, and a prompt reply.
Mant \&ecurity Have I that my communication
o 0 . will be faithfully guarded and remain onfidentral?
Answer.
egrity in this rave none except our well-known in practice of thirty years' standing. Our clients are numbered by hundreds of thousands. They are to be ound in every town and city in the Union. Please to make inquiry about us. Such a thing as the betrayal of a client's interests, when committed to our profes-
sional care, never has occurred, and is not likely to oconal care, never has occurred, and is not likely to oc-
cur. All business and communications intrusted to us Address MUNN \& CO.,

Address MUNN \& CO., 37 Park Row, New York.
B. W. Payne \& Sons, Corining N. Y.
 Eureka Safety Power.

chavertisemputy．

The Army of the Republic：

THE CHRISTIANSUNION，
 His Own

JOSEPH C．TODD，

 power，$\$ 225$ ；two and a half horse－po
horse－power，\＄275．Manufactured exclu
J．C．TODD，

Mill Stones and Corn Mills．

1
Patent Portable Chuck Jaws．

CAMERON Steam Pumps

For Mines，Blast Furnaces，Rolling Feeders，\＆c．

Portland Cement，

HOW TO SPEND THE SUMMER：
Where to Go：How to Gr：How to Save Moner．
 Sent postpaid onrece 25 Cents．

THE CHRISTIAN UNION， 27 Park Place，New \mathbf{Y}

Diamonds Carbor

 Shaped or Crude，furnished and set for Boring Rocks enea Steel，Calender Rol Iers，and for Sawing，Turningor Working Stone and other hard substances；also
Glaziers＇Diamonds．J．DICKINSON， 44 Nassau St．，N．Y．

S1200 ＝1 BONE MILLS．
The best in the world． 5 sizes，adapted perfectly for
Crushing and Grinding Minerals，and all hard substances．
Grinding surfaces quickly and cheaply renewed．Send BAUGH \＆SONS PHILADELPHIA，PA：

MMRNMEN SAFES COUNTER PLATFORM WAGON $\operatorname{TRA} A C K$ GCALES
 MARVIN SAFE \＆SCALE CO． 265 BPDADWAY．N．Y．＇

 S PECTACLES AT REDNCED RRICESS
 Working Models

 WOOD－WORKING MACHINERY

MACHINISTS＇TOOLS．

Pyrometers．For shamins haot ort

Bound Volumes

 Scientific Amarian．At present，I have on hand the following bound
Volumes of the SCIENTIIT Alvichich，which
at \＄1．00 each，either singly or by the quantity．

The books will be sent by express on receipt of price．

warranted the best． H．P．Boiler \＆Engine，\＄150 Tested to P oplus．steam．

 PUNCHING DRop HANGRR AND DIEs，FOR PRESSES． ICEAT $\$ 1.00$ PER TON． The PICTET ARTIFICIAL ICE CO． Room 51，Coal and Iron Excchange，P．O．Box 308 ，N． Y ．

＂OLD RELIABLE．＂TO KNOW ALL

HA TO ADVERTISERSIFまれま

LAP WELDED CHARCOAL IRON

Wood－Working Machinery，

IMPORTANT FOR ALL Corporations ant

 SENO For Samples．＂Lusirate pamplet Ano price List．
H．W．JOHNS M＇F＇G Co．， 87 MAIDEN LANE，N．Y．

EVERY DESCRIPTION OF STEEL，IRON
 for suburban residences．Pumps 2,000 to 200,000 gallons
water per day．
CAMMEYER \＆SA YER， MANUFACTURE OF BESSEMER STEEL

WOOD－WORKING MACHINERY

WALKER BROS
and 75 Laurel St．，Phila
PERFECT
NEWSPAPER FILE

MUNN \＆CO．，

THE TANITE CO．， STROUDSBURG，PA．
EMERY WHEELS AND GRINDERS．

ROCK DRILLING MACHINES AIR COMPRESSORS
 Manufactured by BurlechrockDrill Co． SENd for pamphlet．．FITCHBURGMASS．

SIMAMI PUMPS．
HENRY R．WORTHINGTON，
ter Worthington Dupiex Pumping engines fo
 steam Pumps－Duplex and Single Cylinder，

BELT PULLEY

HARTFORD

STEAM BOILER

Inspection \＆Insurance COMPANY
W．B．Pranklin V．Pres＇t．J．M．ALLEN，Pres＇t． J．B．PIERCE，Sec＇J．

FMHATENTS
 CAVEATS，COPYRIGHIES，TRRADE

 MARKS，ETC．Messrs．Munn \＆Co．，in connection with the publica－ tion of the Scientific American，continue to examine Inventors．
In this line of business they have had over thirty years＇experience，and now have unequaled facilities or the preparation of Patent Drawings，Specifications， Und the Prosecution of Applications for Patents in the Munn \＆Co．also attend to the preparation of Caveats， Trade Mark Regulations，Copyrights for Books，Labels， Reissues，Assignments，and Reports on Infringements Reiss
of Patents．All business intrusted to them is done
with special care and promptness，on very moderate with s．
We send free of charge，on application，a pamphlet
containing further information about Patenis and how containing further information about Patents and how to procure them；directions concerning＇Trade Marks， fringements，Assignments，Rejected Cases，Hints on the Sale of Patents，etc． Foreign Patents．－We also send，free of charge，a
Sy Synopsis of Foreign Patent Laws，showing the cost and
method of securing patents in all the principal coun－ tries of the world．American inventors should bear in mind that，as a general rule，any invention that is valu－
able to the patentee in this country is worth able to the patentee in this country is worth equally as
much in England and some other foreign countries much in England and some other foreign countries．
Five patents－embracing Canadian，English，German， French，and Belgian－will secure to an inventor the ex－ French，and Belgian－win secure to an inventor the ex－
clusive monopoly to his discovery among about oNe hundred and fifty milions of the most intelligent
people in the world．The facilities of business and steam communication are such that patents can be ob－ tained abroad by our citizens almost as easily as at
home．The expense to apply for an English patent is \＄75；German，\＄100；French，\＄100；Belgian，$\$ 100$ ；Cana－ dian，$\$ 50$ ．
Copies of Patents．－Persons desiring any patent with official copies at reasonable cost，the price de－ pending upon the extent of drawings and length of specifications．
Any patent issued since November 27,1867 ，at which time the Patent Office commenced printing the draw－ ings and specifications，may be had by remitting to
will be furnished for $\$ 1$ ． When ordering copies，please to remit for the same as above，and state name of patentee，title of inven－
A pamphlet，containing full directions for obtaining United States patents sent free．A handsomely bound
Reference Book，gilt edges，contains 140 pages and many engravings and tables important to every pat－ entee and mechanic，and is a useful hand book of
ence for everybody．Price 25 cents，mailed free．

Address MONN \＆CO．，
Publishers SCIENTIFIC AMERICAN， BRANCH OFFICE－Corner of F and 7 th Streets，
Washington，D．C．

