

a Weekly journal 0f practical inforiation, art, science, Mechanics, Chemistry; and manufactures.

NEW YORK, MARCH 16, 1878.

THE HOLDEN ICE MACHINE.

In our issue of August 18, 1877, we illustrated and de scribed in detail the above named invention, showing its application to refrigerating purposes in breweries. The machine has recently been adapted to ice making, and has achieved, we are informed, very notable success. In using it for this purpose the manufacturers have added some valuable improvements which have materially increased its efficiency, and to these, more especially, it is our object now to direct the reader's attention
The machine is adapted to the use of any volatile liquid, such as common ether, methylic ether, chymogene, sulphurous oxide, etc., the vapor of which is used to lower the temperature of a non-congealable liquid, and this last freezes the water contained in suitable vessels and immersed in it. The action of the apparatus, as shown on the left of Fig. 1, is briefly as follows: A is the engine; B B are circulating pumps, which force the non-congealable liquid through a rotating coil in the cylinder, C , thence into the freezing tank, D. From the further extremities of the latter the liquid is conducted by the pipe, E, back to the pumps, and so passes again to the cylinder. At the bottom of the cylinder the ether or chymogene is placed so that the coil through which the water passes as it revolves dips in the volatile material, and the thin film of this which re-
mains on the core is rapidly evaporated through the action \mid entry, and therefore the ice is removed by the crane from of the pumps, F , which communicate with the cylinder by that extremity, and transported over the tank to a bath at the pipe, G. In this way the temperature of the non-con- J, into which the cans are dipped for a moment to loosen gealable liquid passing through the tubes is lowered. The their contents, and the ice is then turned out on an inclined vapor carried off by the pumps is by them driven into the plane.
condenser, H , and here it is cooled by water, liquefied and Meanwhile the attendant revolves the wheel, K , which, collected in the reservoir, I, whence it once more passes to by a pinion, operates a rack which pushes the carriers the bottom of the cylinder, C. It will be noticed that there bodily to the further end of the tank, so as to close up the are two circulations, one of the non-congeatable liquid, space left by the carrier removed, and to afford a place on through cylinder, C, pumps, B, and tank, D, and another of the right for the insertion of the same carrier, the cans of the volatile material, or its vapor, through cylinder, \mathbf{C}, which are at once refilled with water. The crane then pumps, F , condenser, H , and reservoir, I.
The new portions of the apparatus can now be clearly nderstood; and these are found in the tank, D , and its ap prtenances. The water to be cooled is placed in deep cans, hirteen of which are set in a carrier, as shown in Fig. 2. When the cans are immersed in the tank, this carrier exends across the same, and the rollers at its extremities rest n ways made on the sides, as shown in the transverse sec ion Fig. 3, page 162. The tank is capable of holding twen y-six of these carriers placed side by side. That is, this number would be inserted at the beginning of operations.
Above the tank is a traveiing crane, which is used for fing the carriers with their cans out of or into the freezing liquid. Obviously the latter is coldest at its point of
moves forward again and takes out the endmost carrier, and thus the operation continues, carriers newly filled being in serted at one extremity, while those the contents of the cans of which are frozen are removed from the other.
The economy of this arrangement will be obvious when the varying temperature of the liquid in the tank is re membered. The newly filled cans enter liquid of a temper ature of, say, 32°, a film of ice at once forms, and as they grad ually move forward they are subjected to greater degrees of cold as the ice film thickens, until finally they reach the coldest point, when the warmth of the remaining uncon gealed water has to be extracted through the greatest thick ness of ice. The cold, to use a very unphilosophical but [Continued on page 162.]

THE HOLDEN ICE MACHINE.

Srimtific Amexitam.

ESTABLISHED 1845.
MUNN \& CO., Edionrs and Proprietors. published weekly at
NO. BY PARK ROW, NEW YORK.

o. D. MUNN.

A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year, postage included..One copy, six months, postage included
Clubs.-One extra copy of The Scientific American will be supplied gratis for every club of five subscribers at

The Scientific American Supplement
is a distinct paper from the Scientific American. THE SUPPLEMENT issed weekly; every number contains 16 octavo pages, with handsome
cover. uniform in size with ScIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, $\$ 5.00$ a year, postage paid, to subscribers. Single copies sealers throughout the country.
will be sent for one year, postage free, on receipt of seven dolars. Bot papers to one address or different addresses, as desired
The safest way to remit is by draft, posstal order, or registered letter
Address MUNN \& CO., 37 Park Row, N. Y.
Address MUNN \& CO., 37 Park Row, N. Y.

the news agents.

The Postal Union.-Under the facilities of the Postal Union, the se NTIFIC AMERICAN is now sent by post direct from New York, with regu arity, to subscribers in Great Britain, India, Australia, and all other Brit sh colonies; to France, Aastria, Belgium, Germany, Russia, and all
other European States ; Japan, Brazil, Mexico, and all States of Cenother European
tral and South America. Terms, when sent to foreign countries, Canada
excented excepted, $\$ 1 \mathrm{~g}$ ghd, for Scientific anirican 1 year; for both Scientific which we pay. Remit by postal order or draft to order of Munn \& Co., 37 which we pay. Remit
Park Row, New York

VOL. XXXVIII., No. 11. [New Series.] Thirty-third Year NEW YORK, SATURDAY, MARCH 16, 1878.

TABLE OF CONTENTS OF
the scientific american supplement INO. 115,

For the Week ending March 16, 18 \%8.

Price 10 cents. To be had at this office and of a'l newsdealers.
I. ENGINEERING AND MECHANICS.-John Bourne, C.E. Biographical Invention of the Marine Governor, Marine Tubular Boiler, Expansion Invention of the Marine Governor, Marine Tubular Boiler, Expansion
Valve, etc. His High Speed Engine. His Contributions to Engineer-
ing Literature.
The Non-Piston Age of the Steam Engine. An examination of the
Claims of some so-called Inventors of the Steam Engine, with 6 illustrations. De Caus's, Marquis of Worcester's, and Savery's Steam Pump. Pontifex's Water-Raising Engine. The American Pulsometer.-An drade's Stea

engravings. The Biller

The Billerica and Bedford, Mass., Two-Feet Gauge Railway. The
Route, Grades, Cuts, Curves, etc. The Ties, Ballastlng, Culverts, and Route, Grades, Cuts, Curves, etc. The Ties, Ballast1ng, Culverts, and The Freight, E
4 illustrations.
illustrations.
The Brace Pr
II. TECHNOLOGY -J. Iilustration.-Metalic Packing. 3 Illustrations dionized Tissue.
The Art Manufactures of Japan. By Christopher Dresser. paper read before the Society of Arts. JapanesePotteries. The Japan-
ese Potter at Work. Curious Mode of Making Scarfs. How the Japanese Print on Cloth. Japanese Process for Silk Ornamentation. Japan-
ese Weaving. How Fine Japanese Fans are Made. Japanese Method f Preparing Moulds for Ornamental Castings for Vessels, Bronzes, et apanese La
uer Work.
Sandalwood.-Laying down Raspberries.- New Genus of Lumbriculida Solders.-Etching Fluid.
III. ELECTRICITY, LIGHT, HEAT, ETC.-On the Law of the Absorption Spectrum Analysis. By M. G. Govi.-Electrical and Telegraphit Notes. New Electrical Law. Telephone-iana.-Chloride of Silver Cell, illustration.-Measurement of the Resistance of a Battery, 1 illustra-tion.-Gun-Cotton Spec
Speaking Phonograph.
IV. MEDICINE AND HYGIENE.-Medical Notes in Siam, China, and Japan. By C. W. Vrooman, M.D., Brooklyn, N. Y. Read before the
Kings County, N. Y., Medical Society. Kings Countr, N. Y., Medical Society.
Extirpation of the Larynx. By David Foulis, M.D. An instructive account of the substitution of an artificial for the natural Larynx,
and the patient's success in articulation, 3 illustrations.-Distended and the patient's success in articulation, 3 illu
Bladder.-University College Hospital, London.
. CHESS RECORD.-Biographical Sketch of P. T. Duffy, of London, with Portrait.-The Lincolnshire Chess Association.-Two Problems
by J. Berger.-Scotch Gambit, Lincoln County Chess Association Tourney.-Chess in New York.-Match Game between Thorold and Miss M. Rudge.-The Contrast.-Solutions to Problems.

MUNN \& CO., 37 Park Row, New York.

WANTED: A LEGAL PROCESS FOR CONFISCATING INVENTIONS

Seriously, a legal process for the confiscation of certain kinds of property is just now urgently called for. It is very much needed-by a few rattle-brained extremists of the commuch needed-by a few rat
munistic sort, do you say?
We do not mean them. They are neither numerous enough nor influential enough to be taken account of here. The parties now begging for legal power to seize and convert to their own uses such property as they desire and do wholesome respect for tangible property. They are clearheaded business men, and rank among the most honored and onorable in the land.
Impossible? Paradoxical rather, yet absolutely true. The parties interested in this iniquitous scheme are great among the financial and political powers; and they mean to get what they want. Already a bill drawn in their interest is before Congress, and there is no small danger of its becom-
ing a law. The property they ing a law. The property they covet is, to be sure, intellectual property; but that does not change in the least the principles involved. Nor does it lessen in the least the wrong of the proposed robbery to describe the property to be seized upon as "abandoned and worthless."
The logic of the would be confiscators' plea runs somewhat like this. Certain persons have taken out patents which have no real or practical value. The inventions pat ented have never been put into successful use, either becaus of imperfection or because the owners of them have not had the means to develop them. Be that as it may, the pat ents lie undeveloped or abandoned, consequently worthless. But these worthless patents are a serious hinderance to the complainants, who want to use the principles or devices they involve in the conduct of their affairs. To be restrained from so using them by the unexpired life of the patents, is be subjected to inconvenience and serious loss. Conse changed that they may freely use these "worthless" yet de changed that they may freely use these "worthless" yet de-
sirable devices without being called upon to account therefor to the inventors.
Speaking in behalf of railway corporations, the Chicago Railway Review puts this plea very plainly; and argues it with amusing unconsciousness of the circumstance that the desire of the railway companies to confiscate and contro such patents puts the reality of their value in the plaines possible light. If they were worthless, as alleged, nobody would want them. After describing the disadvantages the railways labor under in consequence of the vitality of un used inventions, the Review says:

- The railroads, therefore, demand nothing but simple justice when they ask that some modification of the law be made which will put an end to claims made under these abandoned patents. We will not attempt, at this time, to suggest the exact modification which would secure this end We only insist that the principle should be embodied in the patent law in some practical form. Possibly a provision limiting a recovery, in a suit for infringement, to damages accruing during such periods only while the invention wa in successful public use, under direct license or authority from the patentee or his assigns, and to such an extent as to give general notice to all of its successful operation, would be sufficient to accomplish the purpose."
No doubt it would: certainly in case, as the Review in ists: "This provision should be so worded that the court would construe the term 'successful use' so as to mean more than a mere provisional experiment, or one especially arranged to comply with the requirements of this act. It should be successful, not merely in the sense that a machine could be constructed under the patent which could be made to do the work for which it was designed, but that, as mat ter of fact, its manner of doing this work had so commend ed itself to the public, that it had passed into such profitable and sufficiently extended use as to entitle it to be termed uccess in the ordinary acceptation of that term."
The Review suavely remarks that "much more stringent provisions could be framed;" but it considerately rests with the above, against which it can see no " just objection." Perhaps not: perhaps, on the other hand, inventors might. Let us see howit would work.
Mr. A. makes and patents an invention designed to increase the cheapness, safety, or simplicity of some appliance or process of importance in railroading. The more valuable the invention the more the railroads will have to pay for the use of it; we might add also, the more it will contribute to their prosperity, but that is beside the question. The pregbant fact in this connection is that the railroads will have to pay for the invention if they use it; and naturally they will prefer to use it without paying.
Now the inventor cannot build railroads for the sole purpose of applying his invention. To prove it successful 'in the ordinary acceptation of that term," as the Review has it, the invention must be used continuously and profitably on some existing road. The interest of the railways lies in proving it not a success, and the proof rests entirely with them. The invention is tried, but for obvious reasons its use tops with "a mere provisional experiment." The railway officials declare it a failure, and prove it such, in the eye of the law, by declining to use it.
Subsequently the proper person in one of the railway shops makes the required "improvement," whereby the invention becomes just the thing. The "improved" device
is put upon the roads, and the companies reap their reward. Meantime the real inventor is out in the cold. He may
whistle for his pay, since the law debars his recovering anything for the "worthless and abandoned" prior invention, which never passed beyond a mere preliminary trial.
Candidly, the communists' demand for a "fair divide" is manly and honest compared with such a roundabout legal confiscation of all an inventor's rights.
We do not charge the advocates of the proposed amend ment of the patent law with any intentional robbery: they have merely made their demand a little too strong. It rests with Congress to say whether progress in the sciences and the practical arts is to be "encouraged" by devices so transparently unfair to inventors.

GEOGRAPHICAL PROGRESS.

The annual address of the President of the American Geographical Society furnishes as usual an interesting review of the past year's work in geographical exploration. The grandeur of Stanley's achievement dwarfs all the rest to relative insignificance; nevertheless enough else was done in other parts of the world to make the year a notable one for geography even with Stanley's work left out.
In our own western territories and in certain portions of South America an unusual number of expeditions for geographical exploration have been sent out; and considerable good work has been done also in Central and Eastern Asia, the Indian Archipelago, and Australia. In Asia many ex plorers have been at work in Palestine, Persia, Turkestan, Thibet. China, India, and Japan. In South America Rivira and Werthemere have explored the mountains of Peru; Weiner has been at work in Bolivia, and Moreno in Patagonia.
At home the explorations of the United States corps of engineers have been, as our readers already know, both extensive and notably successful. The same may be said of the surveys under the direction of Professor Hayden. Of more immediate interest to ourselves has been the resurvey of the eastern portion of our own State. The triangulation has been carried through the eastern central part of the State, covering an area of 3,000 square miles between the Hudson river and the sources of the Mohawk, as far west as Utica, and embracing parts of eleven counties. During the coming season the triangulation will be carried across the entire State. The work is of the highest order of accuracy, every important point being located with absolute precision. Thus far the survey has not found a single town where it was represented to be on the old maps, many of them being a mile out of the way.
In Central America the reconnoissance of Lieutenant Wyse of the French navy has exploded the reports which the French have held to (in spite of the abundant testimony of American explorers to the contrary) that a ship canal without locks was possible across the Isthmus of Darien. His conclusion is that no navigable channel is possible between Tuyra and the Otrato without locks or tunneling. The researches of Dr. Le Plongeon among the ruins of Chichen Itza, Uxmal, and Aké in Yucatan, and on the once famous islands of Azumel and Mujeres, are mentioned with commendation; and the doctor's claims to the discovery of written and other evidence of communication between the people of Yucatan and the ancient people of the west coast of Africa are favorably noticed.
No real work was done in Arctic regions; considerable attention, however, is given to Barry's reports with regard to the finding of relics of Sir John Franklin's ill-fated expedition, near the Gulf of Boothia, north of Hudson's Bay. Sir Leopold McClintock has intimated to the British Admiralty that Barry's story is not worth much; Justice Daly, on the other hand, is convinced that Barry not only means to tell the truth, but has a sufficient acquaintance with Esquimaux speech to make his report of Esquimaux stories trustworthy. He believes, further, that the information Barry gives is sufficient to justify the sending of an expedition to examine the spot where the Netchelli say the white men died, and where their cairn is containing books and papers.
Stanley's conquest of the Congo is next reviewed at great length, and his course in fighting his way, when opposed, is unreservedly justified. Summing up the whole of Stanley's work in Africa, the speaker said, "It may truthfully be said that no man has ever, in explorations upon the land, done so much for the acquisition of geographical information," and with respect to the Congo and the Nile, "He has solved an enigma that has attracted the attention of the world for ages, and has fixed his name in the foremost rank of geographers, explorers, and travelers."

A CONGRESSIONAL SCIENTIFIC EXPEDITION.

The Senate Committee on Commerce has reported favorably a bill to authorize the granting of an American register. to a foreign built ship for the purposes of the Woodruff Scientific Expedition. The bill has already passed the House of Representatives; and it operates to enable the projectors of the above named scheme to purchase a vessel abroad and sail her wherever they choose under the naional protection. The measure also virtually gives naional recognition to the project as of superior scientific importance.
In view of the foregoing, the New York Tribune has made a careful investigation of all the circumstances attend ing the inception and progress of the scheme, and publishes a long and detailed account thereof.
A couple of bankrupt adventurers who had failed disastrously in one of the real estate schemes common in the
growing cities of the West, revamped the old idea of a trav- flag of a given color out of three of different hues; another eling expedition, called it "scientific" to commend it to the intelligent, and came to New York city to set it in operation. College professors were interviewed, and their support obtained through the magnificent prospectus set forth, and a show of substantial backing was thus secured. The preliminaries to chartering a vessel were begun, and then the mails were flooded with pamphlets replete with glowing descriptions, combined with gross inconsistencies and misrepresentations. The subscribers, however, who were expected to come forward and pay $\$ 5,000$ each for the privilege of accompanying the expedition, failed to appear, and he contract for the vessel expired by limitation.
The next step was to cut down prices, begin preliminaries again for a cheaper vessel, and send out a fresh batch of advertisements, in which misrepresentations were even more frequent than before. This also met with no success, and the projectors, finding that financial ingenuity and unlimited assurance were not as attractive as they imagined, sought in the person of Mr. John Roach, the well known shipbuilder, an indorser who would build them a ship, and by so doing commend their wild cat enterprise to public favor. But Mr Roach was not to be so easily captured. He liked the idea of a scientific expedition, and was willing to help it by building a fine vessel on very liberal terms; but the projectors he evidently did not fancy, as he insisted on their placing the management in the hands of a well known banking house of this city, and in those of a committee of parents of sub-scribers-when the latter should appear. The adventurous couple, however, calmly disregarded this promise, and the result was another batch of advertisements asserting positively that Mr. Roach guaranteed the scheme, etc., which tively that Mr. Roach guaranteed promptly suppressed.
Mr. Roach promptly suppressed.
Thus, after three trials, the Woodruff Scientific Expedition consisted of only its two originators, for the naval offi cers and professors who had been induced to lend their names by specious promises had long since backed out. But the genius of the pair was still fertile. They remembered the hundreds of old steamers retired from service, now rotting in English docks. One of these can be obtained almost on any terms, and the grant of an American register would probably obviate the necessity of any payments, and allow them to get the ship "on tick." Accordingly, with unblushing audacity, which bears its falsity on its face, the couple coolly inform Congress that there are at present no ships under our flag suitable for their purpose, and demand register for a foreign hulk.
The whole business is a miserable catch-p.enny deception, based on nothing but speculation. To stamp it as represen tative of American science would be shamefully unjust to all who have the real scientific advancement of the country at heart, and discreditable to the nation generally. Congress should promptly throw out the bill and leave this pair of speculators to invent a scheme which will not make the country a participant in their jobbery.

EDUCATED BRUTES AT THE NEW YORK AQUARIUM.
There is now on exhibition at the New York Aquarium a collection of trained animals, the performances of which in dicate a degree of intelligence which is very remarkable. There are ten Broncho horses, a number of dogs, and a pair of Rocky Mountain goats, all of which possess accomplishments sufficient to fill up a long and interesting programme. It is stated that the horses were wild upon the plains three years ago, and consequently that during this brief period their education has been effected. In beginning the perform ances the whole ten are first introduced, and at the word of command they perform various military evolutions, such as marching in line abreast, in columns of fours by the flanks, etc., both at common and quick time. A handkerchief given to one is passed to the next and so on from mouth to mouth of the ten; any one horse called by name steps forward, and finally the act is closed by one of the number, who goes to each of his comrades in turn, and, crowding him out of the line, pushes him with his nose as a signal for exit.
Each horse is then introduced in turn to exhibit his special accomplishments. One walks up and to the middle of a batanced board, and there by moving his fore feet oscil lates the plank, accommodating every muscle of his body to the movement. Finally he retires to one end of the board, bearing that extremity down and leaving the other high in the air. A second horse now called in puts his nose over the elevated end of the plank, forces it down until he can plant his fore hoofs on it, and then mounts thereon. The curious sight is then presented of two horses at the respec
tive ends of the "teeter" gravely swinging each other up and down. The difficulty of teaching all this to an animal so careful as to stepping on insecure supports as the horse is can well be imagined. Perhaps the most remarkable feat accomplished on the board, which is quite narrow, are the turning around of a horse (who stands directly over the fulcrum, and is compelled while turning to balance himself with great care), and the rolling of a barrel over the whole length of the plank. Trainers find that it is an exceedingly trouble some undertaking to get a horse to do anything with his front hoofs which involves raising them to any height, bu here the animal plants both hoofs on a barrel and rolls it up one side of the balanced board. Then as the latter swings over the horse catches the barrel with the rear side of his hoofs, and walks down the steep incline holding the barrel back. There are several tricks commonly performed by rained horses in circuses which these animals execute with remarkable readiness and accuracy. One of them selects a unties a handkerchief knotted around his hind leg, or around
that of another horse; a third jumps over a gate, then turns that of another horse; a third jumps over a gate, then turns
and pulls a string which fires a pistol attached to its surcingle; a fourth waltze in fires a pistol attached to its surcin a magnificent cream colored animal, accomplishes an astonishing leap over a six foot gate and four horses placed side by side against it.
The exhibition of the horses is followed by that of a troupe of dogs, one of which exhibits considerable skill as a rider on a pad saddle. It leaps over banners and through paper hoops, and finally springs upon a platform under which the horse passes. Then as the horse returns at a gallop around the ring the dog springs from the platform back upon the saddle. The eagerness of the dog in watching for the return
of the horse, and its prompt retrial in case of failure, seem of the horse, and its prompt retrial in case of failure, se
to show that it takes actual pleasure in its performances.
The troupe of trained dogs appear to belong to no particu
lar breed-a fact somewhat extraordinary, as trainers usually prefer to teach the intelligent French poodle. The performance opens with roll call, each dog answering to its name by a sharp bark. One animal then dances, two dance on their hind legs and seat themselves human fashion in small chairs and others jump the rope. The most curious trick is one in which all participate. At the word of the trainer one of the animals takes off its collarwith its fore paws. As the collar falls upon the ground a little dog runs forward, seizes it, and scampers away. Another animal pursues him, regains the collar, and puts it on. The trainer then asks, "What ought to be done to a dog that steals?" No sooner are these words uttered than two dogs jump upon chairs, to which uprights having large hooks at their upper extremities are se cured. A third dog picks up a cross bar in his mouth, caries it to the two on the chairs, and these lift it up and insert it on the hooks. The trainer meanwhile slips a noose over the small thief's head, and another dog grasps the end of the rope and drags the culprit to the gallows. The problem then is how to get the rope over the cross bar, but this is quickly settled by the executioner jumping over the bar with the rope in his mouth. The hangman then pulls the cord, and lifts the struggling victim into the air, keeps him up for a few moments, and lowers him apparently dead. A wagon is now brought in and the hanged dog placed in front. Immediately one large dog places himself between the shafts, two more seat themselves upright on the seats, and another two push the vehicle from behind, and with the exit of the latter this little melodrama, which is played through without a word from the trainer or any other help than the affixing of the noose, terminates
The accomplishments of the Rocky Mountain goats-large white animals with enormous horns-are the more curious, when the stupid, phlegmatic nature of the brute is remembered. Yet they leap upon the backs of horses, ride around the ring at full gallop, and are not displaced even when the horses take flying leaps over high fences. One of the goats emulates the dog in leaping upon and from a platform; but the solemn manner in which this is done, and the pertinacity with which the goat refuses to jump down until the horse i placed in what he considers exactly the proper position be neath him, are very ludicrous. A remarkable act performed by both goats is circling from one horse to another while at full gallop. The horses run side by side, and the goat on one places his fore feet on one pad and hind feet on the other; the other goat does the same. Then they follow each ther in a circle, passing from horse to horse and back again The Aquarium is rapidly accumulating a collection of really wonderful specimens of the brute creation. A large cage now contains a dozen or so flying foxes-the nearest living link between bird and brute-which eke out their in verted lives hanging from the top bars of their prison. The monkey-faced hen we described in a recent number con-
tantly attracts a curious crowd. A huge rattlesnake has re cently been added, and divides popular interest with the baby hippopotamus and the giraffes. The latest addition was a pair of young chimpanzees, captured in the northern part of Africa, one of which has since died. The young male had the look of an old man, and the resem blance was ludicrously enhanced by the grave manner i which he sat and regarded visitors, while placidly pulling the uft of white whisker under his chin. Thefemale is covered with long black straight hair, especially about the head. She is the least ugly of the two in face. We shall probably pre sent a picture of this interesting pair before long, as they are the first of their species ever brought over to this country.
It is hardly necessary to add that with the splendid collection of rare fishes, in addition to the above named attractions, the Aquarium just now is an exceedingly interesting place to visit.

Profossor C. V. Riley.

We understand that the present entomologist of the Department of Agriculture is about to retire, and that the Commissioner contemplates calling Professor C. V. Riley to that post. Professor Riley is well known as the Chief of the United States Entomological Commission charged with the study of the insect pests which have devastated portions of the West, as State Entomologist of Missouri, and as an exceedingly able writer on all entomological subjects. His labors in this field have been long, arduous, and fruitful, with many contributions to knowledge. The Commissione could hardly find a scientist more thoroughly suited to th position above mentioned.

"HEAT IS LIFE-COLD IS DEATH."

There is no greater fallacy than the opinion held by many, particularly the young and strong and vigorous, that winter - especially a sharp, frosty one, with plenty of snow-is the most healthy season of the year. Very few persons seem to realize the fact that cold is the condition of death, and that, in both warm and cold climates, it is our unconscious effort to maintain our bodily heat at a temperature of 98° that wears us out. To this temperature, called " blood heat," every cubic inch of oxygen that serves to vitalize our blood must be raised by our own bodily heat, or life ceases. Since in cold weather the maintenance of a sufficiently elevated bodily temperature becomes very often a difficulty too great for our strength, the advent of a severe winter is really more to be dreaded than the visitation of a pestilence.

The saying, "Heat is life-cold is death," has a striking Inustration and confirmation in the reports now regularly submitted by Dr. Russell to the Glasgow Sanitary Committee. The death rate rises and falls with the regularity of the thermometer. So many degrees less heat, so many more deaths, and vice versa. In a recent fortnightly report Dr. Russell says: "The death rate in the first week of the fortnight was wenty-one, in the second week twenty-five. The mean temperature in the former week was 40.8° Fah., in the latter 39.5°." He attributes the low rate of the first week to the high mean temperature of the preceding fortnight, which was $47 \cdot 3^{\circ}$, and adds: "This is a good illustration of a law which we frequently observe in these reports of temperatures nd death rates-that a week of low temperature produces a rise in mortality the week following.'
In our climate it would probably be difficult to find a more requent cause of serious ailments than taking cold. Whatever weak place we have, whatever constitutional disorder we be subject to, cold will surely discover. We take cold because our vitality is too low to ward off the effects of the reduced temperature around us. As a matter of the firstimportance, then, to resist cold and the various derangements of the system consequent, it is necessary by proper nutrition to maintain our natural animal heat; second, to retain this heat by a sufficient quantity of clothing; third, to regulate with care the temperature of the air we breathe Contrary o the opinion current among lovers of cold weather, a fire in a bedroom in the winter is cheaper and better than a doctor's bill; for, owing to our inactive condition during leep, the circulation of the vitalizing blood is both slow and imperfect, and hence the danger of taking cold by breathing cold air is greatly increased.
A cold is the beginning of everything that is bad. If any ne conscious of having caught one feels cold chills creeping up the back, let him apply a mustard plaster to the bottom of the spine and lower part of the back at once; and by so doing he may avert a dangerous illness before it is too late and medical advice can be procured. It should never be forgotten that "Heat is life-cold is death."

THE LESSON OF THE CHINESE FAMINE

In the northern province of China seventy millions of people are starving. Famine is no infrequent visitor in those parts, but never before has abject want been so widespread or severe.
For centuries the sterilizing influences, which have converted the once densely populated regions of central Asia nto a vast desert, have been reaching eastward. During he past two hundred years the desert has been encroaching upon northern China, the regions now afflicted undergoing in that time a climatic change almost without parallel in the istory of civilized countries
The fertilizing water courses have disappeared; massive bridges now span river beds whose floods have wasted; and everywhere the traveler finds evidence of a former population rivaling in density that of the still fertile regions of South China. Repeated local famines and civil disturbances resulting therefrom have greatly thinned the population; yet in the afflicted region there still remain probably twice as many people as there are in all the United States. And these are not only starving, but are almost hopelessly beyond the reach of relief from without. Formerly the deficiencies of northern China were supplied from the south by way of the great canal, extending 650 miles from Soochow to Tientsin, on the Peiho, near Pekin. For a thousand years this was the greatest artery of commerce in the world; but it lost its feeders, and became for the most part unnavigable, when the Yang-tse-Kiang shifted its channel and found a new outlet three hundred miles to the north of its old one. Thus cut off from its only source of relief in case of failing crops, with scanty means of internal communication, and subject to a government that has not the energy to combat so dire an evil, even if it had the power, the stricken region must bear its affiction as best it may. Millions must die, while the rest of the world looks on appalled by the magnitude of the disaster, yet impotent to relieve its victims.
To the world it is but another illustration of the pitiless equence of material cause and effect, against which the prayers of $70,000,000$ human beings have no more influence than the cries of as many insects. Will it be anything more to China? The experience of civilization has been that the surest means of averting famines are found in good and abundant roads. No failure of crops, however complete, could create a famine along a line of railway, nor in a country well supplied with such means of quick communication. In tearing up the first and only line of railway in China, the government has but lately shown its hostility to this instrument and safeguard of civilization.

[Continued from first page.]

convenient term, is thus economized to the extent that, in stead of the entire contents of the tank being reduced to, say, zero, the temperature of only a portion of the same is thus lowered, with equally as good results.
The manufacturers have recently constructed one of these machines for the Virginia and Gold Hill Water Company of Virginia City, Nevada. From the report of the superin tendent submitted, we learn that, although the contract requirement was 15 tons of ice in 24 hours on actual trim, the results exceeded 20 tons, with indications that even this yield could be surpassed, the apparatus working at only two thirds of its capacity. For brewers' purposes the Holden machine is already favorably known through its successful use in the brewery of Messrs. Bergner \& Engel, in Philadelphia.
For further particulars address the manufacturers, Messrs D. L. Holden \& Bros., Penn Iron Works, corner Beach and Palmer Sts., or P. O. Box 1808, Philadelphia, Pa.

the national steam pump.

Among the numerous steam pumps now constructed for manufacturing, mining, and other purposes, the one repre sented here has received much attention for its simplicity, strength, and efficiency. The improvements that have been introduced from time to time, in order to render it valuable for general as well as specific requirements, are protected by numerous letters patent, and these improvements have been recognized by competent judges and experts who have care fully and critically examined its distinguishing features. It was awarded one of the highest medals at the Centennia Exposition, a silver medal and diploma at the Fair of the American Institute in 1876, and also a silver medal at the New Jersey State Fair held during the same year.
The engraving is a perspective view of this pump in complete working order, and from this the exterior form and the general disposition of its mechanism will be readily comprehended.
The pump is one of the direct-acting kind. The centers of the steam cylinder and pump cylinder are in the same horizontal line, and the steam piston and pump plunger are connected by the same rod. The steam and pump cylinders are each secured to the foundation by a strongly-ribbed support, the base of which is well spread to allow the insertion of strong bolts, and both cylinders are connected together by three horizontal wrought iron brace rods, which keep the strain between the two in a direct and central line. The steam piston and pump plunger have packing rings, actuated by the pressure within their respective cylinders. One of the most important features is the mechanism of the valve gear, which consists of an auxiliary motor that operates the valve of the main engine when it is in an inoperative statethat is, when the main engine is at the point of reversing and comprises the usual number of elements, namely, an auxiliary steam cylinder with its piston and valve. The main steam valve is the well known piston valve, performing with its opposite ends or faces the function of the auxiliary piston, and the main valve stem the function of auxiliary valve in combination with the main valve chest, which also performs the office of an auxiliary cylinder.
This pump has no dead centers where it will stop. It will start from any part of the stroke without the use of any starting bar or hand work to get it over the center; and one of the especial points of excellence which it possesses is, that it will work its steam valve with water, and will start even if the steam pipe is filled with the water of condensation, as is very often the case in factories where the pump is not in continual use. In most pumps, where the main valve is operated by steam admitted by a small auxiliary valve when moving at a high speed, the steam will not work the main valve quick enough, and consequently the piston strikes the head of the cylinder. This objection is entirely overcome in this pump. When running slowly, the steam operates the main valve; but if, in running rapidly, the steam should not operate the valve quickly enough then the momentum of the main piston rod, which is connected direct with the valve rod, by means of a tappet will reverse the valve, and thus chang the direction of the piston before it can strike the cylinder head, so that at an speed there will invariably be a ful port of steam for the return stroke be fore the piston reaches the end of the stroke.
The water passages are very large and ample, and in consequence of the valves being in the cylinder heads it is possible to do away with all crooked and complicated water passages, thus reducing the loss of power caused by the friction of the water in turning shor corners in crooked passages, and making the pump work with ,
In the water cylinder the" yalyes and valve seats are placed in the cylinder heads, and are easily removed or replaced
without disturbing the air chamber, suction, or discharge pipe.
All parts are made interchangeable, so that in case of wear itcidental breakage duplicate parts can be supplied and sending it to the manufactory
The best materials are used in the construction of these

Fiy. 2

holden ice machine.

pumps. The piston rods, valves, valve seats, and the linings in the water cylinder, are of the best composition metal. Pumps of this description are constructed at the Nationa ron Works, New Brunswick, N. J. Wm. E. Kelly and Brother are the general agents for these pumps at 46 Cort landt street, New York city, where an extensive stock is on hand and where all further information can be obtained.

Color Vision.

From a series of experiments with regard to the varying capacity of the eye to distinguish colors in different parts, Dobrowotsky finds that if the same illumination be given to disks of different colors, white, and coincidently blue re first perceived in all parts of the retina, then green, and finally red. Another observer, Woinow, finds in regard to colors three zones of perceptivity around the macula lutea. In the first zone, immediately surrounding the spot, all colors appear less saturated than in the center, some of them

THE NATIONAL STEAM PUMP

the rods, having for their function the perception of ligh alone; and four kinds of cones, each adapted to perceive undamental tint, red, yellow, green, or blue, but having very different distribution. In and near the center all are present, though even in this zone the red are most numerou about the center. In the second zone, in addition to the rods, only yellow and blue percipient cones are present. In the third zone the rods, or light perceiving elements, alone re main. The red and green perceiving elements appear to be very tender and delicate, and are first to fail in function whe the eye is injured; the yellow and blue are more resistant. Klug makes a fourth zone within Woinow's red zone, in which only orange and violet are clearly perceptible.

What is Really wanted.

It is not the stimulus of more money that is wanted to awaken once more the torpid and paralyzed energies of the nation.
This is a truism which it seems impossible any man of sense and reflection can deny
Mere money is absolutely plenty everywhere. It can now be hired for four per cent per annum every day in the year If a carload of greenbacks was run into the center of any town in the country, and proclamation made that they could be had in any quantities to suit, by anybody and everybody who wanted to borrow, and who could give good security for their repayment, in what way would the present situa tion be improved? Would the proposition bring out a single tion be improved? Would the proposition bring out a single in motion? We know it would be of no more utility in reestablishing trade and prosperity in that town than the inroduction of a carload of sawdust.
But if a solitary individual should come into one of our towns in the East or in the West, and offer to buy a hundred thousand dollars' worth of its products, whether corn, pork iron, or calico, and have not one dollar in money, but only the note or bill of some good commercial house payable in six months, we all know a sudden spring would be given to the activity of the town, and idleness would be supplanted suddenly by occupation.
What is wanted, then, to start the wheels of trade is not more of cheap money, but purchasers and consumers. I Congress can do anything toward creating them, they wil do something toward reviving business, employing the idle, nd feeding the hungry.
But this can only be done by restoring confidence and es tablishing trade and finance on a fixed and unchanyeable basis; and, above all, by being honest about it. This threat ening to swindle and threatening to cheat, which we have heard of since Congress assembled in December, has a ten dency to unsettle everything, and acts directly to the preju dice of every industry in the country. It operates as a con stant oppression upon the producer, and upon the working man.-N. Y. Sun.

A Paper Exposition in Berlin.
An International Exposition of paper and paper making is to be held in Berlin, Germany, from July 16 to August 31 next. It will cover the whole field of paper making, involving machinery as well as finished product, and will extend to all branch es of the stationery trade. The classification is in eight groups, respectively as follows: (1.) Fibers, chemicals, etc (2.) Machinery for making and work ing paper and paper board. (3.) Paper and paper boards. (4.) Colored, em bossed, and printed papers. (5.) Man ufacture of paper and pasteboard. (6.) Paper for technical and mechanical purposes. (7.) Writing, drawing, and other papers for educational, commer cial, and art purposes. (8.) History and literature of the paper industry.
Probably groups 5 and 6 will be ex ceedingly interesting, as an opportuni ty is here offered for making a com plete collection of all the many ob jects to the manufacture of which pa per is now devoted. It will include paper for roofing and sheathing, paper wheels, paper barrels, paper clothing, paper collars, and the many differen wares of paper pulp. Exhibitors must give notice of their intention to participate before April 1, to the agent in this country, Mr. Howard Lockwood, pub lisher of the Paper Trade Journal, this city. A fee of $\$ 3.50$ is required. Steam power is furnished free.

A Curious Explosion.

One of the most inexplicable explo
being apparently bluish or yellowish. In the second zone nly yellow and blue are distinguished, while mixed colors appear pure yellow if (when seen with the fovea centralis) they seem to contain much yellow or pure blue. In the third or outermost zone perception of light remains, but no colo an be recognized.
From these observations Woinow is led to admit the exis tence of five different elements in the human retina-one
sions took place recently, at the Pine ron Works, in Montgomery county, Pa., when a team ter tipped a cart load of hot cinders into a snow bank. This pparently innocent action produced an explosion which is described as "fearful." Houses a hundred yards away were shaken, and persons near by burned and cut by flying cinders

A DOG-FISH weighing $2,500 \mathrm{lbs}$. was recently captured on the coast of France.

THE HELIOSCOPE.
 by dr. l. HILLe.

Sun spots and solar protuberances were formerly observed with instruments called sun glasses, which were made of double glasses, the intermediate space being filled with lightabsorbing liquids. Good sun glasses, however, were seldom to be had, because in too many cases the expansion of the liquid, on being heated by the solar rays, would break the glasses. There were also other difficulties. Herr Merz, of Munich, has constructed a helioscope which is free from these drawbacks, and which is based on the law of polarization of light. If a ray of light strikes at an angle of $35^{\circ} 25^{\prime}$ on a mirror which is mounted so that it may be turned on its axis, and the reflected ray is thrown on a second mirror placed at right angles to the first, the light is polarized. The polarized ray is per fectly bright if the two mirrors are parallel but it becomes more and more faint when the upper mirror is turned, until at a right angle it disappears altogether, so that the field of vision in the second mirror is perfectly dark.

THE HELIOSCOPE.

B, which can be done without removing the eye from the ocular lens.
To prevent the air in the apparatus from becoming heated too much, the upper side of the case, A, is pro vided with a couple of holes for ventilation. The instrument has been found by practical use to be of great merit
diameter. The bars from which the fish plates are made are brought to the machine in a red hot state, and the fish plates are completely finished by the machine, nothing urther being required than to dress off the burr left by the punching. Each side finishes ten fish plates per minute. The machine, shown in the illustration (which we copy from Engineering), is placed directly in front of the rolls, the bars leaving the finishing grooves of the latter passing over guide ishing grooves of the latter passing over guide
rollers to the machine. The first operation perrollers to the machine. The first operation per-
formed by the latter is the cutting off of the uneven end of the bar. The attendant then presses his foot on the lever, A, thereby bringing the bar against the stop, B , and fixing the length of the fish plate; the shears, E , then cut the plate to length, and the four or six punches, C, punch the bolt holes. At the same time the block, D, descends and straightens the fish plate. When the punches and shears perform their upward stroke, the finished fish plate remains on the machine until the foot lerer, A, is released when the stop, B, is moved out of the way, and the bar being thrust forward, the finished fish
In the two cases, A and B , of the apparatus are mounted and easy of manipulation, and it is therefore expected that four heavy mirror glasses, a, b, c, and d. The case, A, is it will soon be one of the implements of every observatory screwed to the telescope through which the sun is to be ob- and scientific academy. served. The light falls on the first mirror at an angle of $35^{\circ} 25^{\prime}$, and is reflected to the second, from whence, by means of the mirrors, c and d in the case, B, it reaches the oye of the observer at C .
To effect the necessary diminution of the sun's light, the case, B , is arranged so that it may be turned around the axis of the apparatus by the ring, f, y. When the mirrors in case, B, are parallel to those in A, the image of the sun appears perfectly white, but the light can easily be
diminished to any desired degree by simply turning the case,

PUNCHING AND SHEARING MACHINE

A very substantial double shearing, punching, and straightening machine has been constructed by Messrs. Wagner \& Company, Werkzeugmaschinen Fabrik, Dortmund, Germany, for the Union Company's Iron and Steel Works, at Dortmund. The machine, which weighs about 15 tons, was constructed for shearing, punching, and straightening steel fish plates of any desired length, and of a thickness up to 0.9 inch, and with holes up to 1.18 inch ing

The combination of the three operations of punching, shearing, and straightening has the advantage of substituting one machine for two and dispensing with two men, only three being employed instead of five as usual. The machine also turns out its work very quickly, and it is of good and strong design

In 1874 , M. Paulet enumerated no less than 173 different processes and apparatus for preserving wood, which had been patented or described in scientific works since 1700 . During the past three years the list has been largely augmented.

Commuitations.

To the Editor of the Scientific American:
It has been reported around this city and telegraphed to other places that another appropriation had been asked for by the Commissioner of Patents to complete the restoration of the burnt models. Information from headquarters, however, contradicts this, and it is stated that, so far from a new appropriation being required, it is believed that the present one will be sufficient to restore all the models that are really worth the trouble.
It may be interesting to your readers to know the means adopted in restoring the models, as there are no doubt tens of thousands of them who have models in the office. Most of this work of restoring models is done in the North Hall, one that was formerly considered the finest of the four halls forming the model museum. It was the last wing of the Patent Office finished, and probably furnished a resting place to many of your soldier readers, for it was used as a hospital during the war, and just before it was fitted up to receive the models it was used for the Inauguration Ball at Lincoln's second inauguration, so that it has seen gay times as well as sad ones. At the present.time it presents the appearance of a huge machine shop, except that comparatively little machinery is employed, which consists mostly of small lathes run by foot power, and two or three portable forges. The models are first picked out of what appears to be heaps of which they belong, the location in which they are found being in many cases the only clew to the class. The examin ers in each class them compare the models with the draw ings which accompanied them when originally filed, and affix a card to each giving the name of the inventor, the date of the patent, and the name of the invention. The model is then entered in a book, with a description of its appearance and condition, and is then passed to the laborers for cleaning. The first operation is to pickle it in a solution of sulphuric acid to eat out the rust and dirt, and then wash it in a bath
of lime water to counteract the acid left on its removal from of lime water to counteract the acid left on its removal from the pickling tank, after which it is dried with sawdust. Then, if needed, the model is put to soak in a bath of kero sene oil to loosen the screws and such other adhering parts as could not otherwise be readily started, and after draining it is passed to a machinist, who now cleans, refits, and repairs it as far as possible or allowable. In many cases the mode has simply been bent out of shape by the heat, and it is then taken to pieces and the bent parts straightened by the aid of the portable forges. If any part is missing search is made for it among the miscellaneous mass of pieces, and when found it is replaced in proper position. In many cases small parts are made and added to the model to make it complete, which parts, however, are always made to correspond ex actly with the drawing. The model is then taken back to the bookkeeper, who enters it upon his register the second time, with a description of the part that has been added, and West Hall, looking in many cases better than it did when West Hall, look
originally filed.

atent matters before CONGRES

A bill has been introduced into the Senate by Mr. Johnston enacting that in all cases where patents have been passed and allowed since July 8, 1870, but have been and are still withheld by having been declared forfeited under section 4885 of the Revised Statutes, because of the non-payment of the final fee within the time prescribed, the Commissione of Patents, upon payment of such final fee within six months after the passage of the Act, shall issue the said patents as if the final fee had been paid within the time heretofore prescribed by law; but no person is to be held responsible for infringement for having used or made any articles previous to the issuing of such patents for which any patent may issue under the Act.
Mr. Pridemore, of Virginia, who some weeks since intro duced a bill to amend (?) the patent laws, so that patents upon agricultural,horticultural, and mechanical implementsshould only run for eight years and not be extended beyond that term, has had a hearing before the House Committee on Patents, in which he held forth in favor of the eight years limit to patents, but it is not believed that there is any probability of such bill passing.
A bill has been introduced by Mr. Dwight, allowing the Commissioner of Patents to extend the patent of Edgar Huson, for wagon gearing, dated February 17, 1857, which has already been once extended.

torpedoes.

Mr. McPherson has introduced a bill into the Senate appropriating $\$ 250,000$ for experiments with and for the purchase of an improved movable torpedo, after competitive trials under the direction of a board, to be designated by the President, of two officers of the Ordnance Corps, two of the Corps of Engineers, and one of the Board of Supervising Inspectors of steam vessels.

MEMPHIS BRIDGE.
A bill has been introduced by Mr. Money, into the House, authorizing the Arkansas and Tennessee Bridge Company and the Tennessee Construction and Contracting Company, to erect a bridge over the Mississippi river from Memphi to Hopefield, Ark., having one unbroken or continuous span of not less than 500 feet from pier to pier over the main
channel, and to be so built as not to interfere with the free
navigation of the river. If preferred, however, the com panies are to have the privilege of constructing a tubular
bridge through the waters of the river, or a tunnel there bridge through the waters of the river, or a tunnel there-
under, provided that the same does not interfere with the navigation of the river.

canal through the rocky mountains.

Mr. Grover has introduced into the Senate a bill author izing the survey of a water route from the Atlantic to the Pacific, which provides that the Secretary of War shall appoint two commissions, each to consist of three officers of the Engineer Corps of the Army, and three Civil Engi he Mio shall survey a route and mer by the construction解 Missouri with the Columbia river, by the constructio wo rivers. A second section authorizes the President to nter into a negotiation with the government of Great Britain and British America, for the free navigation of the Saskatchewan and such portions of the Columbia river as may un within British territory. By a third section an appro priation of $\$ 50,000$ is made for the expenses of the commi sions.

cotton worms and grasshoppers.

The House Committee on Agriculture has agreed to reworm favably, with some amendments, Mr. Shelley's cotto Commissio, which provides for the appointment, by the ommissioner of Agriculture, of a commission to inquir suggest a remedy.
The same committee has under consideration an application from the people of Taos County, New Mexico, for as sistance on account of their sufferings from the grasshopper plague.
In connection with this subject it may be stated that an elaborate and carefully prepared report has been submitted to the Secretary of the Interior by the Entomological Commission, containing a mass of facts respecting the migration nd habits of grasshoppers, whose ravages have for several years caused so much loss to the western farmer. It would appear from the report that it is not beyond the scope of uman ingenuity to restrict the ravages of this pest, and tha their absolute destruction may possibly be accomplished.
The area subject to the devastations of the grasshoppers is The area subject to the devastations of the grasshoppers is
estimated at upwards of $1,500,000$ square miles west of the estimated at upwards of $1,500,000$ square miles west of the
Mississippi, and extending northwesterly into British America. There has been some correspondence with the Dominion Government looking to coöperation with us in the continuation of these investigations, but nothing definite will be done by that government until it is known whether Congress will appropriate sufficient funds to continue the Commission. The Commission also suggests an extension of heir labors into the field of operations of the cotton worm, which, it is said, causes the loss of not less than $\$ 20,000,000$ nnually. If the Commission is continued it expects to be able to render valuable aid to the country by its researches into the nativity and habits of, and its suggestions as to the best modes of fighting, the insect pests of both south and west

the paris exposition.

Every month or so a report is started in this city that on account of war complications the Paris Exposition will be postponed, and the report is telegraphed all over the country This has just occurred again for the fourth or fifth time, and he report, as usual, on due inquiry at headquarters, is found to be without foundation. In the meantime preparations are rapidly going on at the Agricultural Department for as ull a representation of our products, etc., as possible with the limited time and money at the disposal of the Commis sioner. He has issued a circular stating that he is collecting and preparing suitable specimens of the agricultural pro ductions of the several States and Territories of the Union for exhibition at Paris, and he therefore solicits from any source specimens of native fertilizing materials, vegetable products f every description, and of materials manufactured from uch products.
Encouraging responses have been received from many of the States, and specimens of their productions are now being eceived, and other contributions are in preparation.
The Department has prepared from material on hand a collection of sections of the woods of our forest trees that have an established commercial valuation, a series of models in plaster of typical specimens of fruit and vegetables, and cases of insects injurious to the principal crops. In additio o this a collection of native wools is to be formed, and series of working models of machinery and apparatus em ployed in the growing and utilizing of agricultural pro ducts, plans for illustrating our methods of farming, fruit growing, irrigation, etc., are to form part of the exhibit.

flour by mail.

The following clipping from the National Union of this city, besides giving a pretty accurate view of the state of affairs connected with sending flour by mail, shows the effect and value of a notice in the Scientific American
"The announcement in the last issue of the Scientific American that the Post Office Department had under consideration the matter of permitting 'flour' being sent in the mails at third-class rates, provided any device could be in vented by which that and kindred material could be so inclosed as to admit of examination without danger of leakage as waked up inventors in all parts of the country, and they re sending specimens to the Department in such quantity as actually to prevent acknowledgment of their receipt. Most of these inventions are neither new, practicable, nor desirable,
and but few of them are deemed worthy to be tested. The principal idea is to make a box or package in which flou can be inclosed in such a way that the postmaster where is deposited for transmission may be able to ascertain what is contained therein without breaking it open or otherwise disturbing the contents, whereby they would be sifted out in the mail pouches, to the injury of the mails; and few have yet come within hailing distance of an acceptable arrange ment to that end. In the meantime, the Post Office Depart ment languishes under the accumulated weight and number f the contrivances presented, the most practical of all which is a little wooden box, with a mica tag fastened in with putty, which in the corner of a heavy mail pouch would last about half a moment under the rough handling to which the mails are subjected."

raking iron at the navy fard.

As previously announced, experiments have been mak ing as to the probability of successfully and economi cally manufacturing iron at the Navy Yard, in this city It is now announced as the result of these experiment that it has been demonstrated that the Government can economically manufacture its own iron here, from whence it can be shipped to the various navy yards as wanted. It has been ascertained, it is said, that the necessary adaptations for the purpose can be made in our Navy Yard for abou $\$ 10,000$, and that Government can save that sum in one yea by manufacturing its own iron from the accumulated scrap. It is thought that if this work is once started it would ex end so as to embrace the making of iron from the ore, a we have direct and cheap water communication with coal and iron localities in Maryland and Virginia.
Washington, D. C.
Occasional

Tea Culture

To the Editor of the Scientific American
In looking over a file of American papers the other day, came across an article headed "American Tea," taken from the Philadelphia Press. The article went on to state that "cultivation of tea will speedily be proceeded with in the New World, and the Pacific section of America is prob ably destined to be the great tea producing country of the future, and thus solve the vexed question of Chinese labo n the Pacific coast."
I need not say with what deep interest I read the above eing a tea planter myself, and interested in a movemen just started for introducing Indian teas to the American public. But why should not America grow her own tea? And in answer to that question I beg leave to make the following remarks on the suitableness of America as a tea growing country:
In fixing on any district to plant tea in four things hav to be considered, namely, soil, climate, labor, and means of transportation. Tea, especially the China variety, will grow in very varying climates and soils; but it will not flourish in all of them, and if it does not flourish, and flourish well, it will certainly not pay.
The climate required for tea is a hot, damp one. The rain all should not be less than 70 to 90 inches per annum, and the more of this that falls in the early part of the year the better; any climate suffering from drought in the early part f the year is not so good as one where the rain is mor qually diffused. All tea districts would yield better with more rain in February, March, and April, and therefore where fogs prevail in the mornings at the early part of the year ar so far benefited.
The less cold weather experienced where tea is, the better or the plant. It can stand and will grow in great cold but I do not think it will ever be grown to a profit on such ites. The climate cannot be too hot for tea if the heat is accompanied with moisture.
Tea grown in temperate climates, such as moderate eleva tions in the Himalayas, is quite different to the tea of hot moist climates, such as Eastern Bengal. It is much weake and of very little use for mixing purposes. On the othe and, the Indian teas of hot, moist climates have grea value for strength and pungency. Another important point in fixing on a climate for tea is the fact that apart from the trength the yield is doubled in hot, moist climates to what is in comparatively dry and temperate ones.
Sloping land is objectionable. It cannot be highly cultivated, and high cultivation means large outturn. Of flat lands there are two kinds suitable for tea, table and val ley land; the former is very rare in the tea districts of India The best valleys are those with a gentle slope both ways, on toward the lowest line of the valley, the other toward the mouth, thus making a natural drainage during the rainy season. Flat lands can be highly cultivated; steep slope cannot. Tea pays best with high cultivation; ergo, flat lands re preferable.
That there are portions of America suitable for the culti vation of tea I have not the slightest doubt, and, provided labor could be had at moderate rates, America would in a very few years compete favorably with China and Japan in supplying the markets of the world with tea. Before ma chinery was introduced into the districts of Assam and Cachar it required about two adults per acre to work gardens successfully; but now, thanks to machinery (and none of the best), we can do with half that number. Machinery is ye in its infancy out here, and in this respect America would have greatly the advantage over China and India; her re sources being unlimited as regards intelligence, means of transport, and mechanical appliances. And these are what w
lack out here-machinery none of the best, and worked with the greatest difficulty, transportation of the most primitive kind and very slow, and, however noted the Hindoo may be for mildness of disposition, he cannot plead guilty to a very large share of intelligence.
Supposing that a suitable climate was found in America for the cultivation of the tea plant, easy access to the European markets, cheap and rapid means of transportation, unlimited mechanical appliances, would enable the planter to offer the public a better and cheaper article than they now receive from China and Japan, and as an enterprise would offer a safe and profitable investment for the money.
Varieties of the tea plant are many, but they all arise from two species, the China plant, the common tea plant of China, and the indigenous plant first discovered some forty years ago in Assam.
These are quite different species of the same plant, and how produced, by climate, by soil, or in what way, no one knows. But they do differ in every respect. The indigenous tea grows quicker than the China if it has not been overpruned or overplucked. In other words, it flushes quickly, for flushing is growing. The indigenous does not run as much to wood as the China. The indigenous tea has a leaf of nine inches long; the leaf of the China bush never exceeds four inches. The indigenous leaf is a bright pale green, the China leaf a dull dark green color. The indigenous "flushes," that is, produces new leaf, much more copiously than the China, and this in two ways: first, the leaves themselves are larger, and thus if only even in number exceed in bulk what the China has given; and secondly, it flushes oftener.
The infusion of tea made from the indigenous species is far more "rasping" and "pungent" than what the China plant can give, and the tea commands a much higher price in the English market.
I have now, I think, pointed out the leading characteris tics of the two original varieties of the tea plant, and it stands to reason no one would grow China who could get indigenous. But the truth is, a pure specimen of either is rare. The planis between indigenous and China are called "hybrids." They were in the first place produced by the inoculution when close together of the pollen of one kind into the flower of the other, and the result was a "hybrid," partaking equally of indigenous and China characteristics, and has proved itself and is acknowledged by all planters to be the best class of plant for gardens.
It is evident, then, that the value of a garden depends much on the class of its plants, and that a wise man will only propagate the best. Only the seed from good varieties should be selected, and when this shall have been systematically done the yield per acre will far exceed anything yet realized or even thought of.
The American government should follow the example of the English government by establishing an experimental plantation in the most favorable locality, and under the management of ant experienced planter who would insure the best possible results. Who can tell what great results a few years might bring about?
The following is about what it costs to put out 200 acres in this district, and the estimate leaves a wide margin to go on:

Total expenditure,"،"	$\begin{aligned} & \text { first year } \ldots \ldots . . . \$ 18,000 \\ & \text { second year. } 12,000 \end{aligned}$
	third year........ 9,000
Outturn the 2 d and 3 d year. 170 lbs . per	
Balance	\$25,400
Working expenses f	for 4th year........ 12,000
e,	
W	$\$ 12,800$ 10,000
	\$22,800
Outturn the 5th year, 400 lbs per acre, $80,000 \mathrm{lbs}$., at 40 c . per lb. 32,800	

At the end of the fifth year all invested capital is paid up, $\$ 9,200$ profit, and the possession of tea property worth at least $\$ 80,000$.
The above is a very fair estimate of the working of a garden in Cachar, and I believe it could be done for less in America, providing the climate was suitable.
Trusting you will pardon me for trespassing on your val uable space, yours faithfully,

James L. Forbes.
Burtall Tea Garden, Luckiepore, Cachar, Eastern Bengal, East India, January 10, 1878.

Origin of the Potato Disease.

To the Editor of the Scientific American:
By recent discoveries of some English scientists so commonplace a subject as the potato disease has been brought into prominence as an element of scientific importance, and would seem to be a genuine bête noir in the discussion of the question of "spontaneous generation," now so sharply dividing the ablest of our scientific investigators and writers.
When the potato disease first made its appearance in Ireland, and occasioned a famine by its rapid destruction of this favorite esculent, it was the popular belief that the plant, by long and forced cultivation, had exhausted its vitality, and a
fresh start would have to be made with seed fromthe region
where the plant is known to beindigenous. The belief that the plant had run its course, or completed the cycle of its life, was strengthened by the failure of the crop from the same cause in countries remote from the region first infected. The mystery, however, which enveloped the nature and cause of the disease waseventually dispelled by the researches
of distinguished scientists, who discovered and described the ungus, Peronospora infestans, which is the germ of the disease. The rapid spread of the disease over the country where it seems to have originated, its following the channels of commerce, and almost simultaneous appearance in every civilized country of the world, are also satisfactorily accounted for in the well understood vitality and subtle diffusion of the zoöspores thrown off into the atmosphere by this de
structive fungus. The discovery of the fungus proved structive fungus. The discovery of the fungus proved the fallacy of the popular theory, and destroyed the hope of re suscitating the plant from its original source of production, leaving science to cope with the disease itself.
But the origin of the disease is still vailed in mystery, and is a question open to much debate; especially when the exisence of this fungus is made the basis of an argument in elucidating the doctrine of evolution of animals and plants, to prove that the forces which brought created matter into existence countless ages ago are still acting and forming new existence
From this point of view the question of the true origin of the fungus becomes one of great speculative interest, and when associated with the doctrine of "spontaneous generation," of vital importance in the great modern antagonism of science and the Scriptures.
A late number of Hardwicke's Science Gossip, an English journal deservedly in favor with students and lovers of nature on this side of the Atlantic, contains the gist of a paper recently read before a learned society by Mr. Worthington Smith, in which he describes a remarkable fossil fun gus belonging to the genus.Peronos pora, discovered by him, ramifying through the vascular structure of a Lepidodendron, one of the huge club-mosses of the Carboniferous epoch. This fossil fungus Mr. Smith names Peronosporites antiquar and regards it as perhaps the oldest fungus on record.
The paper is illustrated with microscopical views, enlarged to four hundred diameters, and showing with remarkable clearness the organization of the fossil oögonia (or zoösporan gia), with the differentiation of the protoplasm into zoöspores as distinctly defined as in any living specimens of the present time; "and," says the writer, " the wonderful fact becomes manifest that the bladder is exactly the same in size and char acter with the average oögonia of the present day, especially with the same organisms belonging to Peronospora infestans when measured to the ten thousandth part of an inch. The average number of zoöspores in each oögonium is also the same. The organisms are apparently identical."
From the close alliance of the peronosporæ to the algæ, Mr. Smith infers the extreme antiquity of the Peronosporites antiquarius, and is inclined to place it among the primeval plants from which fungi and all other cellular cryptogams have branched.

The countless ages which have passed since this primordial fungus was mummified in the Carboniferous rocks, and the sudden appearance of the fungusin this age of the world, selecting for its habitat a plant that for three centuries has been under the constant surveillance of mankind, with all the logical inferences to be derived from this wonderful demonstration of nature, would seem to dwarf into absolute insignificance the recent experiments of Professor Tyndall, which lack the necessary element of time and the "environments" favoring a natural selection, which are concomitants of this greater experiment of Nature herself. Unless the wide gulf which separates our times from a geological period so remote that the "century" seems inadequate as a unit of measure, can be so bridged over as to show a reasonable possibility of regular descent, the burthen of the argument from which Professor Tyndall's neat and beautiful experiments were complacently supposed to have relieved the opponents of the doctrine of " spontaneous generation" still remains with them, and the conclusion of Mr. Worthington Smith stands unrefuted, "that the law which called the peronosporites into existence countless ages ago is in force now, and that this law produces the same results now as then."
J. W. Page.

Power Required to Run a Velocipede.

To the Editor of the Scientific American:
In your issue of February 9th G. O. A. asks: " Is there a practical bicycle made at present-that is, one which would enable a man of ordinary muscular development to travel a with less fatigue than he could do it on foot?"
with less fatigue than he could do it on foot?
For some years past it has been necessary for me to use a velocipede as my only means of locomotion, and under the conditions asked by the above inquirer. I therefore do not hesitate to say that, on the strength of my practical experi ence, it is impossible to run a velocipede over a given distance in a given time with less expenditure of power than it would be to walk the distance in a given time.
In fact, under the most favorable circumstances, it is impossible to run a velocipede through a given distance with the same expen
Wen distance.
Who is it that would fail to see the absurdity of a person fashion) to a velocipede, with the vain idea that by draving
the vehicle after him he could more easily accomplish hi journey? Certainly in the above instance he would have a better mechanical advantage than if he sat upon the machine and propelled himself, because the weight of his person would increase the friction of its moving parts.
Persons who perform great feats on velocipedes must prac tice continually, in order to keep their muscular powers trained up to the proper degree, as the force necessary to this end is greater than that required by the ordinary pedes trian.

Jno. B.

Antoine Cæsar Becquerel.

M. Antoine Cæsar Becquerel, the distinguished French hysicist, recently died at the advanced age of ninety years The cause of the electric currents which originate in the voltaic battery was unknown until Becquerel, by a series of brilliant researches, revealed the reason. He demonstrated that in the contact of the two metals there was no electricity disengaged, except in proportion to chemical action, friction, or difference in temperature; and on the other hand, he showed that electricity was produced in all chemical reactions, and especially in the action of acid on metal, the positive current passing on the metal and the negative in the acid. By investigating the chemical effects produced by the action of electric currents, even the weakest, M. Bec querel connected under the name of electro-chemistry a series of new phenomena, and showed the action of these in causing substances to be decomposed, combined, transported, crystallized, or made to produce brilliant colors used industrially.

During his study of thermo-electric phenomena, M. Becquerel invented the electric thermometer. By this instru ment it is possible to determine at a distance the temper ature of the interior parts of animals and vegetables, of the earth, or of the higher regions of the atmosphere. He also invented the differential galvanometer and the electromagnetic balance. His more recent investigations relate to meteorological subjects and to certain curious electric phe nomena, little understood, which occur in capillary spaces.

Henri Victor Regnault.

M. Henri Victor Regnault died in Paris, France, on January 19 last, at the age of sixty-seven years. M. Jamin sketches his life work, and pays a tribute to his memory in the following terms: "Regnault," he says, "collected all the fruits of the improvements he introduced into experimental art. Dulong before him had only perceived great general laws, and had not carried approximation far enough to discover their perturbations. Gases are not equally com pressible; they do not dilate in equal ratios. Each has its individuality, and while all approach an ideal type expressed by Mariotte's law, none follow it absolutely. Regnault predicted that insufficiency of pressure was the sole obstacle to the liquefaction of oxygen and nitrogen, and that hydrogen itself, if it were cooled, would be capable of great compression and would liquefy. As Regnault advanced in his studies upon heat, difficulties multiplied. His researches in specific heat extend to all chemical bodies, simple and compound, solid, liquid, or gaseous, and Dulong's law came out pound, solid, liquid, or gaseous, and Dulong's law came out victorious after the long test. The question of specific heat,
already vast and difficult in its relation to solids and liquids, becomes still more complicated in relation to gases. The latter may be heated without change of pressure or volume, and in each case admit a different specific heat. Moreover, the relation of these heats is connected with the velocity of sound. Hence the utility may be conceived of measuring at once both these specific heats and the velocity of sound. It was necessary to do this for all gases, an immense work which Regnault did not hesitate to undertake, despite a severe accident which rendered the task the more difficult. He accomplished his undertaking, but wall with enfeebled mind-paying the penalty of overworked genius, as Newton and Pascal had done before.
" Regnault took little part in the advancement of the modern thermo-dynamical theory, for his labors rarely proceeded beyond the limit of experiment. Nevertheless, through his work the great theory has obtained many of its strongest arguments. It is the crowning of the edifice, and it appears that in that, scientific progress has been directed by a providential logic which first collected and classified facts, the causes of which were afterwards sought for. This classification was Regnault's life work.'

Father Secchi

Father Pietro Angelo Secchi, one of the most noted and uccessful of European astronomers, died in Rome on February 26. Father Secchi was born in 1818, and in 1850 became director of the Observatory of the Roman College. Here he invented a plan of meteorological observations, completed a survey of the Papal States, and conducted a water supply into Rome. He was the author of numerous valuable astronomical works, and was specially distinguished for his discoveries in spectroscopic analysis and in solar and stellar physics.

Claude Bernard.

M. Claude Bernard, who died on February 10, was one of the most famous of modern physiologists. He was the first who fully demonstrated the processes of digestion, and proved that the pancreatic juice is the agent which digests fatty substances; and that the blood on entering the liver possesses no sugar, but has an abundance on leaving it, a discovery since turned to great account in the treatment of diabetes. He died at the age of sixty-five years.

A NEW BOAT PROPELLING DEVICE

In the accompanying engraving is illustrated a new device for propelling boats, patented through the Scientific American Patent Agency, January 8, 1878, by Mr. Thomas Fether ston, of Orange, N. J. It consists of a double crank shaft supported in suitable bearings near the stern, and operating by a large bevel wheel, a bevel pinion at the end of a jointed propeller shaft. Crank disks at the ends of the double crank shafts are connected by lever rods, with pivoted hand levers, which are worked by the occupants of the boat, who sit as shown facing the bow. Oars are of course dispensed with, and the simplicity of the de vice enables one person, if need be, both to propel and steer the boat.

Curious Insect Instinct.

Dr. Dewitz, a German naturalist, has recently described a very remarkable case of insect instinct peculiar to a butterfly of the genus Aidos, indigenous to Venezuela. The chrysalis on casual examination seems to be perfectly empty, while its surface is punctured with numerous holes. Closer scrutiny shows that, in reality, there is a double envelope the outer layer alone of which is per forated, while on the inner covering are deep pits cor responding with the apertures. The caterpillar, after making the outer cocoon, perforates it, and then makes a strong inner one in which it takes refuge, the object of the holes being obviously to cause the cocoon to appea untenanted.

PHILLIPS' IMPROVED BUCKBOARD WAGON.

We illustrate herewith a new thorough brace or spring buckboard and light road wagon, for which it is claimed that it possesses all the advantages of a thorough brace and spring buckboard, owing to the springs front and rear. I is of light draught; there is less friction on wheels, axles, king bolts, and shaft shackles; it is noiseless, moves with less jar over rough roads, has shorter gearing for the length of platform or buckboard the latter may be adjusted by variable leather or metal shackles and the general construction is inexpensive and durable.
Just above the forward axle is the bolster A, which is connected by the side bars, B with the rear axle. The point of attachment with the latter is strengthened by braces, C, and at a short distance back of the bolster the side bars are still" further stiffened by the cross bar, D, from the center of which the cross bar, D, from the center of which
a secondary reach connects it with the center a secondary reach connects it with the center
of the crosshead. Depending from the lower side of this short reach is the metal brace, E , which passes beneath the axle. Above the bolster, A , is the long C -shaped spring, F through the center of which passes the king bolt. At the rear, half C -springs, G , are mounted on the side bars over the rear axle. From the upper ends of both springs are hung by shackles the cross bars, to which as bed pieces, are secured the boards form ing the platform of the vehicle. The rear support of this platform may be (by means of straps) thorough braces passing over the outside of springs, G, and looped down from their upper extremities around the outer ends of the back cross bar; or the said bar may be suspended from the ends of the thorough-brace by metal shackles. Patented August 7, 1877. For further information address the mventor, Mr. James L. Phillips, Low ville, Lewis county, N. Y.

MILLINGTON'S HYDRAULIC RAM

Our engraving represents a new hydraulic ram of simple construction, which needs no de tailed explanation. The advantages claimed are as follows: The water flows into the machine, and strikes both the impetus valves in a smooth unbroken plane horizontally, thereby avoiding the friction and reaction of the perpendicular ram. The two cylinders enable one source to furnish water at two place to furnish water at two places
simultaneously by pipes from simultaneously by pipes from
each cylinder. each cylinder. There are no
brass or iron faces to wear. There are but two working parts, each faced with a leather covering which can be quickly replaced whenever necessary. A regulating thumbscrew is provided whereby the amount of water used or wasted can be regulated, and a speed of from 30 to 120 and a speed of from 30 to 120
strokes per minute obtained at will. The parts of the machine are keyed together, so that screws and bolts are thus dispensed with, renderng their setting up an easy matter.

The ram can be used, we are informed, on any fall of water, from sixteen inches upwards, and is guaranteed to convey one fifth of the water passing into it, a dis tance of one hundred rods, and to discharge it at an élevation twelve times higher than that existing between source and machine. Or a greater percentage of water can be raised to a less height. The apparatus is in successful use in many localities, and is especially adapted for use on farms, or in cities for elevating water to the top of on farms, or in
high buildings.

NEW BOAT-PROPELLING DEVICE

Patented January 22, 1878. For further particulars a rueauff, agent, Columbia, Lancaster county, Pa

A Kangaroo Invasion.
The Melbourne Argus reports a remarkable invasion of kangaroos in Queensland, Australia. It appears that the drought of last summer, and the decreased food supply in consequence thereof, has driven the animals from the unsettled bush and caused them to descend in thousands upon the inhabited regions, devouring the crops and stripping the country of vegetation, so that the colonists have had to re-

PHILLIPS' IMPROVED BUCKBOARD WAGON.

New Process of Labeling plugs of Tobacco About three years ago letters patent were granted for processes of labeling plugs of tobacco, by the use of labels made of tin or like hard substance, and attached to the plugs of tobacco by means of pressure applied to the label thus pressing the label on to or into the plugs of tobacco.
Large quantities of plug tobacco, so labeled, have been sold, and such a demand has been created for labeled plugs that the trade and consumers call for tobacco with metal labels attached to the plugs, as we are informed, to the ex clusion of nearly all plugs of tobacco which are not, in some way, labeled. Until recent ly, there seemed to be no way for attaching labels to plugs of tobacco, unless the label was made of some hard substance and applied by means of pressure.
By letters patent granted Hiram W. Hunt February 5, 1878, a new departure has been made in the art of labeling plugs of tobacco During the process of manufacture, or after the plugs are made, depressions or cavities may be produced in the plugs in numerous ways, by means of dies or suitable devices suitably applied to the lumps or plugs. A label, which may be made of hard or soft metal, or any other suitable material, and of form and size adapted to fill the depression, is then placed in each of the cavities or depressions so formed. After the labels are thus placed in the cavities or depressions, and the packing boxes filled and closed, the elastic, spongy character of freshly made plugs of tobacco causes the character of freshly made plugs of tobacco causes the
depressions or cavities to contract, fill, and partially close in and upon the sides and edges of the labels, so tha when the boxes are opened the labels are found to be se curely attached to and held in the cavities or depressions in the plugs. It is claimed that the distinguishing features which make this invention radically different from othe processes of labeling plugs of tobacco are It overcomes all necessity for pressing the labels on to or into the plugs; the application of pressure to or upon the label is thus over come, as well as the necessity for using labels made of hard substances. Thus it seems that a novel, easy, practical, and inexpensive way has been found to label plugs of tobacco

Smoking while at Work

The only advantage that can be alleged in favor of smoking at any time is that it pro duces a mild narcotism which is soothing to some people, and perhaps adds to the sense of relaxation during a period of rest. Most of its disadvantages we have often recapitulated. Besides its intrinsic harmfulness, the habit is open to special objection whten practiced dur ing working hours, and to this point both em ployers and employed would do well to give more consideration than appears commonly to be accorded. There are three good reason why workmen should not smoke while at work, namely, it reduces the physical energy by the very sense of relaxation which it im parts; it often causes the smoker to stop work altogether until his pipe is out; and it is sort to dry leaves as fodder for their cattle. The settlers dangerous. We do not believe that any man can properly have organized large expeditions to meet the invasion, and within four days it is said that upwards of 4,000 kangaroos were killed. The flesh, which is excellent eating, is being packed in tins and shipped to England.

To clean greasy beakers and photographic glass plates, Dr. Walz suggests the use of an aqueous solution of permanganate of potash, to which a few drops of hydrochloric acid are added. The solution may be saved and used re peatedly, until its oxidizing power is exhausted. ee what he is about with a cloud of hot smoke and ga rising into his eyes, neither can he bestow his full attention on what he has to do, when the pipe must be kept going at the same time. It may be said that even if he stops for a few puffs no harm will be done. Perhaps not so far as one man is concerned, but if all the men in a large concern stop for puffs, the aggregate sum of the stoppages will amount to considerable time lost. A correspondent writes us to say that he recently timed the smokes taken in a day by twelve journeymen painters, who were engaged on a job requiring especial haste. The total num

MILLINGTON'S HYDRAULIC RAM. ber of minutes footed up over a quarter of a day's work, and the employer soon discovered that he could not afford any such loss, and promptly forbade the practice. Not long ago we saw carpenters smoking in an unfinished house while putting in the woodwork. The floors were woodwork. The floors were
littered with shavings, and large littered with shavings, and large
quantities of other combustible quantities of other combustible
matter were lying about. The matter were lying about. The
accidental dropping of a few sparks from one of the pipe might easily have determined a serious conflagration. If smoking must be practiced, it is much better to confine the indulgence to off-work hours.

Aroma of Butter.-A Sile sian farmer suspends in his empty churn a bag filled with fragrant herbs, keeping the churn carefully closed. When churning he attaches similar bags to the dashers.

SERPENTS AT DINNER

by c. few seiss.
I extract the following notes from my journal entry of September 28, 1877: " The first living frog we dropped into our snake house to-day had scarcely touched the floor when it was darted upon by a male garter snake (Eutcenia sirtalis, Linn.) and seized by the knee of the right hind limb. Nearly at the same instant a half-grown water snake (Tropidonotus
sipedon, Linn.), although too small to swallow the frog, sipedon, Linn.), although to
grasped it by the snout, and endeavored to drag it from the jaws of the other snake Theconfusion caused by this struggle for a dinner aroused a large female eutcenia, which hastened to the scene, and im mediately seized the frog by the foot of the same leg which was in the jaws of the first snake. The commotion which followed was, for few minutes, great; the writh ing of the serpents while they tugged at the frog, and the vehement struggling and kicking of the frog itself caused the pebbles to fly and caused the pebbles to fly and rattle about quite violently But the female eutconia be-
gan immediately to swallow gan immediately to swallow
the foot and leg of the frog she had seized, and continued to do so until her jaws came in contact with those of the male eutconia. The latter was unable to make any progres in swallowing as he had grasped the frog the kio grasped the frog at the knee, flex the leg,oor draw the tibia up toward the femur, so that he might swallow them to gether, or side by side. The for greediness being contrary to my wishes, I took a smooth ivory paper folder and worked it carefully under her upper jaw, thus unhooking the teeth from the other snake, and so ending the swallowing operation. A moment later, the male drew his head from its distasteful position, and almale drew his head from its distasteful position, and alfusely, he still retained his hold on the frog, and instantly began swallowing it, which he finished in two minutes, we having forced the water snake to unhook its teeth from the frog's snout The second frog we put in was soon captured and devoured by the disap pointed eutcenia. We then gave the water snake something which might have been a frog, but was-a tadpole.' I have never observed an instance of cannibalism among any species of American serpents known to me. We have no ophiophagi or snake-eating snakes in this country. The partia swallowing of the eutionia mentioned was, I think, unintentional on the part of the swallower, and of course on that of the swallowed.

GATHERING TODDY

The borassus tribe (Borassinece) of palms consists of trees with fan-shaped or pinnate leaves, a woody fibrous or net-like spathe, and the fruit a drupe. The principal genus is the magnificent Palmyra palm, represented in our engraving. Of this the most important products are palm wine (toddy) and sugar. When the flower spike makes its appearance the operator ascends the tree by the aid of a vine or rope passed loosely around his own body and the trunk. He ties the spathe securely so that it cannot expand, and beats the base of the spike with a short stick. This beating, which is supposed to determine a flow of sap toward the wounded part, is repeated for several successive mornings, when a thin slice is removed from the end of the spathe. At about the eighth day the sap begins to flow at the rate of two pints daily, and continues to exude for four or five months, a slice of the spathe being re moved every morning. This juice readi y ferments, and is then palm wine or toddy. When distilled it yields the spirit known as arrack, or if allowed to pass to acetous fermentation it become vinegar.
aparently took no notice of the jaws she had tachment is estimated by the weight of water caused to them variously: weak solutions of carbolic acid and of qui thus met on her road to dinner, but swallowed them, the escape from the cylindrical vase containing the areometer nine arrested their movements, weak solutions of potash remainder of the head, and the neck also! This unlooked before contact is broken. The precise instant of contact and of sulphuric acid stimulated them. The number of

THE PALMYRA PALM
that the force of detachment depends simply on a specific coefficient variable with the nature of the steel and with it thickness.

Moving Bodies observed in the Blood during Eife

This was noticed in the case of a little girl, aged four and a half years, under the charge of Dr. Sansom, London The child was admitted into the Northeastern Hospital the disease having commenced a fortnight before with a pain in her left cheek. Great prostra tion occurred and increased until admission. Sloughing rapidly took place, the cheek bone became perforated, and the inferior maxillary bon necrosed. Copious hemor rhage ensued on the thir day after admission, and on the same day broncho-pneu monia set in. The childdied eight days after admission.
The post mortem examina tion revealed very extensiv necrosis of the tissues sur rounding the left cheek and left side of the tongue, and necrosis of both superior an inferior maxilla. The base of both lungs were consoli dated.
On the third day after ad mission the first micros copical examination of the blood during life was made The white elements were in excess, and many existed in ragmentary condition. Ex amined by a high power arge number of small, high ly refractile bodies, resem bling minute colles, resem bling minute colorless crys als, were seen in active move ment. Reagents acted upo and of detachment is indicated by an electric signal. M. Duter has thus demonstrated experimentally that the quantities of opposite magnetisms (N and S) were equal in two opposite parts of the same plate. His present investigations now tend to the determination of the conditions existing in motile bodies varied greatly at different times. After hemorrhage and fall of temperature they were greatly re duced in number; again, when the temperature had risen to 103° Fah., they were in great abundance. When numer ous, they tended to form groups resembling zoöglœa. In size
they were one twentieth part of an ordinary red blood corpuscle. Shortly before death ordinary bacteria were observed in addition to the translucent bodies. These latter bodies were found in the urine examined immediately after being voided, and in large number in the fæces. The discharges from the wound also mani fested them in abundance.
Investigations respecting the infec tive character of the blood and secre tions were commenced on the second day after the child's death, the fluid preserved for inoculation having been kept in sealed capillary tubes. A healthy mouse inoculated with blood from the right auricle died on the day following, and on examination showed evidence of peritonitis, the exudations containing a large number of motile bodies exactly resembling those pres ent in the blood of the child. A guinea pig treated in the same way died five days after the operation; its blood contained a vast number of the special translucentbodies. Inoculation of the fuids from the seat of the noma was practiced upon a mouse and a cat. Both animals died, and there was a complete absence of the motile translucent bodies from their blood.
It would appear, therefore, that while inoculation of the fluids derived from the diseased tissue produced peritonitis without discoverable altera tion of the blood, inoculation of the diseased blood induced septicæmia, with the manifestation of the characteristic motile particles observed in the original disease. The organisms resembled amœbæ rather than bacteria.

Bacteria.

Dr. Arthur Downes and Mr. T. P. Blunt presented to the Royal Society the result of most interesting observa tions on the effect of light upon bacteria and other organisms. The experiments were carried out in great detail, and their record is too lengthy to be given in full. The deductions to be drawn may be summed up as follows:

1. Light is inimical to the development of bacteria, and the microscopic fungi associated with putrefaction and de-
cay, its action on the latter organism being apparently less rapid than upon the former.
2. Under favorable conditions it wholly prevents that de velopment, but under less favorable it may only retard.
3. The preservative quality of light, as might be expected is most powerful in the direct solar rays, but can be demon is most powerful in the direct solar rays, but
strated to exist in ordinary diffused daylight.
4. So far as the investigation has gone, it would appea that it is chiefly, but perhaps not entirely, associated with the actinic rays of the spectrum.
5. The fitness of a cultivation liquid to act as a nidus is not impaired by insolation.
6. The germs originally present in such a liquid may be wholly destroyed, and a putrescible fluid perfectly preserved by the unaided action of light.
We observe with some surprise that these gentlemen, in making the delicate experiments, adopted a plan of first thoroughly cleansing the tubes with strong sulphuric acid, and finally, before use, rinsed them with tap water, the the "Pasteur's solution" was introduced. As tap water in London contains bacteria and numerous other forms of life it appears an improper fluid to be used for such a purpose In the course of the investigations it was observed that when bacteria appeared early and in large numbers in the solutions used, the mycelium of penicillium, or other microscopic fungus, was rarely seen, the bacteria apparently pre occupying the ground; when, however, the development of the bacteria was, from some cause, retarded or prevented, tufts of delicate mycelium were frequent ly found in the solutions after they had been incased or removed into diffused light. No mycelium, however appeared during the period of exposure of a solution ex cept under certain conditions, nor indeed afterwards, if this was sufficiently prolonged. They infer accordingly that light may retard or altogether prevent the appearance of mycelial fungi, but that its influence in this respect is slower and less powerful than upon the schizomycetes. They suggest also that this may explain, in part at least, the sparing distribution of bacteria in ordinary air, as compared with the prevalence of the spores of penicillium, etc., a fact with the prevalence of the spores of penicil.
observed by Burdon Sanderson and others.

Glue and its Manufacture.

Glue is an important commercial animal product, and its manufacture is carried on upon a large scale. Many refuse products are used in its composition; animal skin in every form, uncombined with tannin, may be made into glue. The substances most largely and generally employed are the parings of hides and skins from the tanneries and slauglterhouses, known as glue pieces, fleshings, pelts from furriers, the hoofs and ears of horses, calves, and sheep. The parings of ox and other thick hides make the strongest, and af ford about forty-five per cent of glue. Dried sinews, the core or bony support inside horns, fish bones, with mem brane and other offal, are also the raw materials used for making glue and size.
The process of manufacturing glue is as follows: The clippings and refuse materials are first placed in a lime pit, and when sufficiently steeped they are immersed in water, well washed, rinsed, and placed on hurdles to dry. After wards they are boiled to the consistency of thick jelly which is passed, while hot, through osier baskets, or bags and nets made of rope, to separate the grosser particles of dirt or bones from it, and allowed to stand some time to pu rify further. When the remaining impurities have settled to the bottom it is melted and boiled a second time, and when thick enough it is drawn off into a vessel and maintained at a temperature which will keep it liquid. This gives further time for the deposition of solid impurities, and for clarification, by the addition of such chemicals as the manufacturers may prefer.
The glue is then run off into wooden coolers, about six feet long, one foot broad, and two feet deep. Here it becomes a firm jelly, which is cut out by a spade into square cakes, each cake being deposited in a sort of wooden box, open in several slits or divisions to the back. The glue is
cut into slices by passing a brass wire, attached to a kind of bow, along the slits. These slices are placed upon nets, the marks of which are seen on the dry glue, and stretched in wooden frames, removed to the open air, placed in piles, with proper intervals for the admission of air, each pile being roofed in, as a protection from the weather. When the glue is about three quarters drẏ it is removed into lofts, where in the course of some weeks the hardening is com
pleted. The cakes are finally dried off in a stove room at pleted. The cakes are finally dried off in a stove room at
an elevated temperature, which when they are once solid an elevated temperature, which when they are
only serves to harden and improve their quality.
Good glue should contain no specks, but be transparent and clear when held up to the light. The best glue swells without melting when immersed in cold water, and resumes its former size on drying. Shreds or parings of vellum and parchment make an almost colorless glue; old gloves, rabbit skins, and the like are frequently employed in this manufacture. The method of softening glue for use is to break it into small pieces, soak for twelve to twenty hours in cold water, then set it over a fire, and gradually raise its temperature until it is all dissolved, taking care to stir it frequent ly while melting. Prepared in this way it cools down into a stiff jelly, which requires only a little warming to fit-it for use. Amber colored glue is that most esteemed by cabinet makers. Glue must not be used in a freezing temperature.

Fresh glue dries much more readily than that which has been once or twice melted. Dry glue steeped in cold water absorbs different quantities of water according to the quality of the glue, while the proportion of water so absorbed may be used as a test of the quality of the glue. From careful experiments with dry glue immersed for twentyfour hours in water, at the temperature of 60° Fah., and thereby transformed into a jelly, it was found that the finest ordinary glue, or that made from white bones, absorbs twelve times its weight of water in twenty-four hours; from dark bones, the glue absorbs nine times its weight of water,
while the ordinary glue made from animal refuse absorbs while the ordinary glue made from animal refuse absorbs
but three to five times its own weight of water.- Boston Cultivator.

COLMER'S DOSIMETER.

We illustrate herewith a dose measurer, or dosimeter,' the invention of Dr. George Colmer, of Springfield, La There has always been an uncertainty in measuring fluids by drops, and this little instrument is designed to enable an apothecary or nurse to determine with certainty the precise dose desired. The dosimeter which Pro fessor R. H. Thurston uses consists of a steel wire tapered smoothly to an extremely fine point. The first drops flowing from this instrument vary in weight, but after a time the most accurate chemical scales fail to deect any variation. But these drops are of course very minute. Dr. Colmer's invention consists in a graduated transparent tube with
tapered end, and graduated for indicating tapered end, and graduated for indicating drops, minims, or other measures. In the top is fixed a syringe, which has a rod, A, adjustable endwise, so that by dirntance into
may be introduced any desired distan the tube of the syringe, and will thus stop the upward stroke of the piston at any de sired point. It is thus possible to positively regulate the quantity of liquid drawn or
forced up into the graduated transparent tube. Not a drop will escape until pressure is applied to the piston.
It was patented through the Scientific American Patent Agency on November 13 1877.

We are indebted to our ingenious brothers

 at the other side of the Atlantic for a vast riety of "Yankee notions," in the shape of inventions. They have supplied us with machines for sewing, washing, knife cleaning, egg beating, cinder sifting, apple paring, window cleaning, and many others, from nut crackers to quartz crushers. These we have utilized and appreciated But it is not only in patented inventions that our Americancousins have befriended us. A new trade has lately grown cousins have befriended us. A new trade has lately grown
up between Europe and America, which must, sooner o later, be felt in an important branch of native industry. I is not generally known, but such is the fact, that American upholsterers are now exporting to Great Britain and the continent large quantities of ready made furniture, from kitchen chairs and tables to the most elegant accessories of the drawing room. The facility with which these object America are easy to work, and susceptible of a fine polish. The wood applicable to the better class furniture is so abun dant that it is wholly superfluous to use veneers. The consequence is, that the objects are manufactured solid, and bear much more wear and tear than articles of a similar class made in England. The prices are also much more reasonable, because skilled labor is, to a great extent, dis pensed with, and cheap machinery is substituted for manual dexterity. But it is not only in the matter of household fur niture that competition is to be dreaded. The Americans are now sending us window sashes, doors, skirting boards, panel work, wainscots, and all descriptions of joinery. With this assistance, the builder may regard with more composure strikes among the carpenters. But our transatlantic friends do not limit their interest to the living only. Their far-seeing benevolence takes notice of us even in
death; for American coffins (vastly superior to the homedeath; for American coffins (vastly superior to the home more than half of those charged by native undertakers.Dublin Farmers' Gazette.

Gunpowder and Nitroglycerin.

According to the Revue Industrielle a volume of gunpowder produces at the ordinary temperature 190 volumes of gas. Owing to the heat produced, this gas occupies about four times the above mentioned volumes, or about 760 volumes of gas are produced immediately after the explosion.
A volume of nitroglycerin produces 1,300 volumes of gas at the ordinary temperature, and admitting that the heat produced by the explosion is two and a half times that produced by gunpowder, this volume would be increased to 13,000 volumes.

In building the Tay bridge (the longest railway bridge in the world), at Dundee, Scotland, work was carried on at
night by the light of two Gramme machines and two Serrin lamps of 1,000 -candle power.

Recent investigations have disclosed the fact that oxygen nder high pressure rapidly destroys all living beings and ganic compounds.
All the varied phenomena of fermentation, in which the chemical action depends upon the presence of living organisms, are, says the Journal of Chemistry, completely arrested by the action of compressed oxygen, even if exerted only for a brief time; while fermentations due to dissolved matter, like diastase, perfectly resist its influence. M Bert,to whom this curious discovery is due, has found a prac tical application of it in the field of physiological research The ripening of fruits is arrested by exposure to com pressed oxygen, and hence it must arise from cellular evoIution. The poison of the scorpion, on the other hand whether liquid or redissolved in water, entirely resists the action of the compressed gas.
Such poisons evidently owe their power to chemical com pounds akin to the vegetable alkaloids. Fresh vaccine matter subjected for more than a week to oxygen under a pressure equal to 50 atmospheres retained its virtue, from which it would appear that the active principle in vaccin matter is not certain living organisms or cells, as some have supposer.
The virus of glanders, after similar treatment, quickly in fected norses inoculated with it; and carbuncular blood, though freed from bacteria, was found to retain its danger ous properties. These must therefore be put in the same class with vaccine matter.
If these results are confirmed by further investigations, the discovery will lead to the settlement of many disputed questions in physiological chemistry.

the life of a million people.

The supplement of the "Thirty-fifth Annual Report" o he Register General (England) presents some valuable and interesting statistics. The report singles out, in imagina tion, a generation of one million persons, and traces its eventful journey from the moment of birth to the end of life. Of these, taking the whole of England, more than one fourth die before they reach five years of age, and most of the survivors have been attacked once or oftener by dis ease. During the next five years the tenure of life becomes more sure, and between five and ten years of age the num ber of deaths is less than a seventh part of that of the firs quinquenniad.
Between ten and fifteen the verage mortality is lower than at any other period. From fifteen to twenty the number of deaths increases again, especially among women, many of whom fall a prey to consumption and child-birth. At this period the effect of dangerous occupations begins to affect he death rate. Fully eight times as many men as women die of violent deaths. The number of violent deaths con tinues to rise from twenty to twenty-five, and keeps high fo t least twenty years, that is, until the age of forty-five is reached. Consumption is prevalent and fatal from twenty to forty-five, and is responsible for nearly half the deaths. From thirty-five to forty-five the effect of wear and tea begins to reveal itself, and many persons succumb to dis eases of the important viscera. By fifty-five the imagined million has dwindled down to less than one half, or 421,115 After this the death rate increases more rapidly, and al though the number of lives grows less, the number of deaths in each of the twenty-five years after fifty-five increases; the higher rate is sustained for ten years longer, until by degrees all disappear.
It is somewhat surprising to find that at seventy-five 161,124 remain on an average; at eighty-five, 38,565, of whom Dr. Farr calculates that only 202 reach the age of one hun dred years. At fifty-three the number of men and women surviving is about equal, but from fifty-fiveand onwards the women exceed the men. Of 100 women living at the age of fifty-five and upwards 11 are spinsters, 43 widows, and 46 wives; of 100 men, 9 are bachelors, 24 widowers, and 67 husbands.
As regards occupation it is interesting to note that while the clergy generally have an average good health, members of the medical profession are subject to a high rate of mor tality, which up to the age of forty-five is, we are told, much about the average. Chemists and druggists, commercial clerks, mercers, and drapers also seem to be less healthy than the average. Persons who work in wood, as coachmakers, wheelwrights, carpenters, joiners, and sawyers, have healthier lives than most men. Publicans, butchers, and fishmongers have not, as a rule, good lives. Carvers and gilders, plumbers and glaziers, suffer much from the metallic poisons to which they are exposed, while the mortality of those engaged in earthenware manufacture approaches, after the age of thirty-five, double the average. Tailors and shoemakers are also unhealthy as a class. As might be expected farmers and agricultural laborers are at the present time among the healthiest classes, but the young farmer, for some undiscovered reason, appears to have a less healthy life than the laborer of the same age; from the age of thirty-five and upward, however, the farmer is the healthier of the two.
As to the social condition of the people of England, it may be noted that at the present day, and for the last thirty years, women marry at an earlier age than formerly, one fourth marrying before the age of 21 years.
Among unmarried men the mortality is above the average, but it does not appear whether this arises from the want of domestic comfort, or is due to the fact that the weakly men do not marry

It is also satisfactory to learn that although the birth rate has continued at much the same average, the number of chil dren born in wedlock has progressively increased. The mor tality from preventable causes is still much too high.
Notwithstanding all that has already been accomplished much remains to be done to secure a removal of dangerous substances in the air of factories, mills, and shops, such as flour, cotton, vegetable, and mineral dust. A larger and continuous supply of purer water, better and less crowded dwellings, are urgently needed, especially for the laboring classes. Intemperance and excesses of all kinds are known to have a very marked influence in raising the death rate. Speaking of the high mortality among publicans, Dr. Farr says: "There can be little doubt that the deaths will be found due to delirium tremens, and the many diseases noticed are aggravated by excessive drinking. The habit of indulgence is slow poison. The dangerous trades are made doubly so by excesses."

M. PLANTE'S NEW RHEOSTATIC MACHINE.

M. Gaston Planté, a well known French electrician, has recently studied the static effects of voltaic electricity by means of a secondary battery of 800 couples. After having observed how easy it was to charge rapidly with this battery an insulated plate condenser, the plate being thin mica, gutta percha, paraffin, etc., M. Planté connected a certain numta percha, paraffin, etc., M. Plante connected a certain num-
ber of these condensers, composed of mica covered with tin ber of these condensers, composed of mica covered with tin
plates. These he disposed like the couples of the secondary battery itself, so as to enable him to charge them in quanti ty and discharge them in tension.
All the parts of the apparatus were carefully insulated. The commutator was composed of a long cylinder of hard
rubber, having longitudinal metallic bands which united the rubber, having longitudinal metallic bands which united the condenser surface and were traversed by copper wires bent sers in tension. Metallic wires made spring-shaped were connected with the two armatures of each condenser, and fixed on an ebonite plate at each end of the cylinder, which fixed on an ebonite plate at each end of the cylinder, which
last may be rotated. "If now the end-conducting wires of the last may be rotated. "If now the end-conducting
apparatus be brought into communication with the 800 -couple secondary battery," says M. Planté, "even several days after the latter has been charged by two Bunsen elements, and if the commutator be rotated, there is obtained, between the arms at which the armatures of the extreme condensers end, a series of sparks quite similar to those given by electrical machines having condensers. By using an apparatus having but 30 condensers, each of 765 square inches of surface, condensers, each of 765 square inches of surface,
I have obtained sparks 1.6 inch in length. By I have obtained sparks $1 \cdot 6$ inch in length. By
using a battery of 200 couples I have produced sparks 0.32 inch in length. The discharges of static electricity thus obtained are not alternately positive and negative, but are always in the same direction. Hence the loss of force resulting from transformation should be less than in induction apparatus, for, the voltaic circuit not being closed for an instant, there is no conversion of a part of the current into calorific effect. The machine may be kept in revolution for some time and a considerable number of discharges obtained without apparent enfeeblement of the secondary battery."

Race of Pariahs.

Since the middle ages the name of cagots has bcen given to a proscribed race of people dwelling chiefly on the northern slope of the Pyrenees. For centuries they have been objects of aversion to other inhabitants of the region. Possessing, it is said, bodily deformities of a repulsive nature, popular opinion among the peasantry once imputed to them the grossest crimes, compelled them to dwell in isolated localities, and to wear a distinguishing badge, denied them entrance to churches except by a special door, and forbade their participation in religious rites, or even their employ ment in factories or reception in religious refuges. They could not bear arms, walk barefoot, or drink from public fountains; their testimony in court was always doubted, and they were compelled to marry only among themselves. In this last particular they have always differed from leprous colonies, where propagation of the race is interdicted, and hence, although through the progress of civilization public prejudice against these unfortunates has become greatly modified and they have been accorded many rights, still this anomalous people yet exists and constitutes an exceedingly curious study to the anthropologist.
The theories which have been advanced to account for their proscription are very numerous. One tradition ascribes their descent to the Visigoths conquered by Clovis at the battle of Vouillé, and derives their name from the French words chiens Goths (Gothic dogs); another makes them the descendants of crusaders who had returned from the Holy Land, infected with leprosy; another describes them as derived from a community excommunicated by Pope Innocent III. The fact, however, that all traditions agree in ascribing to personal repulsiveness a prominent reason for the isolation of these people, and that the treatment to which by long custom they are subjected is similar in many respects to that applied to lepers, indicates the possibility of some form of leprosy rarely seen at present being the true cause of their proscription.
A careful physiological study recently made by M. de Rochas, of all the settlements of cagots now existing in Europe, exhibits their condition at the present time and sheds

M. PLANTE'S NEW RHEOSTATIC MACHINE

color of the eyes and hair, up to a horribly repulsive malady Albinos caused by white leprosy, he states, have white hair and beards, blue eyes, and not red ones as phenomenal albinos possess, muddy skin, and epidermis more or less rough. and the an excessive predominance of the lymphatic system, doubt appears but that this was the disease which affected the cagots of Europe, and which caused them at first to be confounded with the true lepers. The distinction was afterwards made, but the proscription of the former con tinued, despite the fact that their descendants gradually lost all traces of the infection.

New Agricultural Inventions.

A Moth Protector for Beehives, invented by Mr. J. P Stroope, of Arkadelphia, Ark., is an attachment for preof the hive oblong aperture, and below it is an inclined plate. The space between the bottom and plate is of sufficient width to permit a miller to pass, while it is insufficient to admit of the passage of a bee. Theaperture to the hive is of suff cient size to admit the bees. The miller follows the plate,
and being smaller than the bees passes between it and the bottom of the hive; while the bees, finding it impossible to follow this passage, enter the hive through the aperture mentioned.
Mr. Lyman Norton, of Hartford, N. Y., has invented an improved Harrow. It is square, having a jointed frame, provided with teeth, the draught being from one corner, as usual. In addition there is a toothed cross bar, braced by longitudinal keyed rods and supporting fingers.
A new Cultivator, invented by Mr. J. M. Graves, of Blossom Prairie, Tex., is so adjustable in its parts that the beams and plows may be fixed at any desired distance apart, and is capable of passing over tall plants without injuring them. Mr. Wm. Smith, of Carmi, Ill., has invented certain improvements in that class of Ditching Machines which have a vertically adjustable plow or cutter, and an endless chain levator connected therewith, for removing from the ditch ments produce a comparatively light and simple machine stated.

A Reversible Plow, the invention of Mr. Peter Bouchet, of New York city, consists of a duplex share and mouldboard, made in one piece symmetrically to the center joint, swiveled centrally to an adjustable arm, and locked by perforations at both points to a fixed hook at the point of the landside The colter is adjusted to either side of the point of the landThe colter is adjusted to either side of the point of the land-
side by a forked lever at the top of the beam, to correspond side by a forked lever at the top of the beam, to correspond
to the position of the duplex share and mouldboard at the right or left of the landside. The object is to furnish a sidehill plow by which the furrow slice may be turned to either ide, as desired, so that the plow may be used while travel ing in both directions.

New Mechanical Inventions.

An Apparatus for Hardening and Tempering Saws has been invented by Mr. S. E. Farmer, of Dayton, O. It consists, first, in combining, with a vertically movable anvil or press bed, a vertical follower and automatically releasing supports, by which a saw will be dropped into the bath at the proper time during the descending stroke of the follower and centered upon the press bed; secondly, in seating the press bed upon posts in the tub containing the bath, for the purpose of allowing the scales to fall free from the press bed without destroying its tension with respect to the follower.
An improved Machine for Cutting Horn into Sheets has been patented by Mr. M. M. Goldsmith et al., of New York city. It consists of a grooved table with a fixed cutting knife, adjustable gauge plate, and a toothed or fluted feed roller above the gauge plate. The object is to furnish a machine which will cut the horn without injuring its sur face.
An improved Cloth Shearing Machine, invented by Mr. A. A. Forbes, of Valleyfield, Canada, consists of a laterally reciprocating concaved or grooved board, covered partly with a whalebone brush and partly with emery, and arranged above the guide roller over which the cloth runs before it passes to the setting-up brush.
Mr. W. S. Burgess, of Norristown, Pa., has invented an improved Air Pump, designed for running light machinery and for other purposes. A hand lever operates a piston rod carrying two pistons in a horizontal cylinder. Suitable inlet valves admit the air, and egress valves allow it to pass, when compressed, to the point where it is to be used.
Pinchers, designed for applying and securing barbs to fence wires, are the subject of a patent recently issued to Mr. J. W. Edwards, of Oswego, Ill. The handles of the tool are arranged to give a powerful leverage for bending the wires and barbs, and the jaws are provided with suitable grooves and projections.
In a Steam Engine, invented by Mr. Joseph Holub, of New York city, the arrangement of the valve mechanism is such that by turning off steam at any part of the stroke, the engine will always stop with the piston at the center of the stroke, thus avoiding the dead point.
Messrs. A. J. McCollum and Thomas Seely, of Indianapolis, Ind., have invented a Saw Mill Carriage Attachment, by which logs, after being quartered, can be cut up for barrel heads and staves the full length of the logs, the boards being then cut with but-ting-sawis into pieces of the proper length.
Mr. Frank X. Osburg, of Cincinnati, O., has a. Hand Press designed especially for compressing cigars, tobacco, and other articles, for packing them in boxes. It has a vertically movable follower, operated by a fulcrumed lever with curved ends, which engage the slotted arms of upright runners. The uppermost position of the follower is adjusted to the height of the box into which the articles are to be pasted, so that the press cannot crush or injure the box, but only sack it tightly.

ASTRONOMICAL NOTES

by berlin h. wright.
Penn Yan, N. Y., Saturday, March 16, 1878. The following calculations are adapted to the latitude of New York city, and are expressed in true or clock time, being for the date given in the caption when not otherwise

REmARKs.

The sun enters the sign Aries and the constellation Pisces March 20, 0 h .46 m . evening, at which time Spring begins Mercury is at superior conjunction March 20 . Venus will soon be very brilliant. Mars is situated between the Pleiades and Hyades and nearest the former. There will be an eclipse of Jupiter's fourth satellite March 18. The disap pearance takes place at 5 h .28 m . morning, at twice the ap parent diameter of Jupiter west, and somewhat south of its primary. The duration of the eclipse is 3 h .40 m ., hence the emersion is not visible. For an inverting telescope the above directions would be reversed.

EVOLUTION.

Professor J. S. Newberry, of Columbia College, lately delivered a lecture before the New York Academy of Science on the subject of "Evolution."
The lecturer took the opportunity of presenting to his audience a careful résumé of the various shades of opinion of those who are arrayed in antagonism on this much discussed question. These were arranged under four groups. The first, that represented by Mr. Darwin, who claim that all the complex and symmetrical forms of the fauna and flora, the animal and plant life of the present day, are and flora, the animal and plant life of the present day, are
derived from simple initial organic points, with the doctrine of the survival of the fittest.
Secondly, those who follow the leadership of Dr. Charles Bastian, who go a step further back, and claim that the initial point of life developed according to the Darwinian hypothesis is a life germ produced from inorganic substances. Of this class are the materialists or Abiogenesists; while Huxley, Darwin, and the most distinguished of modern biologists are Biogenesists; that is, they disclaim any knowledge or comprehension of life, except as the pro geny of pre-existent life.
Thirdly, the group of thinkers of which Professor Asa Gray is a type, who accept the theory of evolution as an ex planation of the method by which an inscrutable power has produced all the phenomena of creation. Its adherents see in the theory nothing inconsistent with the existence of a supreme Deity or with revelation.
And lastly, the class of which Professor Dawson, of Montreal, is the champion, who reject all forms of evolution as inconsistent with revelation and true science.

Professor Newberry next expressed his intention of stating some of the facts which geology offers to the sincere inquirer after light on this subject, rather than to advocate either one theory or another. In commencing this branch of the subject he observed that in past ages a series of rock formations has been made which inclose relics of animals and plants that lived in former times.
These series of rocks contain a more or less history of the changes which took place on the earth's surface through millions of years anterior to the advent of man.
The fossils of the Paleozoic and Mesozoic ages are about all extinct. It is only when we come to the Tertiary or Neozoic age that we meet with the remains of living forms.

What we call our terra firma is really a type of instability, for under the constantly acting process of contraction, the crust of the earth is constantly being moved and folded, and that somewhat irregularly, so that in all ages some portions of the land have been going up, other portions down, and wherever the surface passed below the sea level the water would flow in and deposit upon it one or another of the kinds of sediment which we find in the series of rocks.
Sediments are still forming from the shells and skeletons of animals which inhabit the sea, and which in death sink to the bottom.
In each age there has been a subsidence of the land, which has permitted the sea to flow over and deposit over the submerged surface sediments which contain in greater or less numbers the remains of the animals and plants then living. This rock history is incomplete, because not all the forms of life which existed would be preserved, partly because many were perishable, and chiefly those that inhabited the
seas or drifted into them would not leave any relics behind seas or drifted into them would not leave any relics behind first supposed possible, is confessedly defective, and has been but partially read. Great areas of the earth's surface have yet been unstudied by geologists.
While the subject is to be greatly illuminated by future discovery, there is very little probability that the general conclusions of paleontology will experience any important modification.
In tracing the appearance of the various forms of life upon the earth, Professor Newberry commenced with the mammals, which began their existence, so far as we know, in the Trias, but throughout the Mesozoic ages held an altogether subordinate and insignificant position.
The reptiles occupied the sea, the land, and the air, for they were swimmers, walkers, and fliers, the sea reptiles resembling the whales as we know them, and the sea serpents as we imagine them to exist at present.
The Professor next referred to the first bird so far as is known, the Archeopteryx, and described its form and those of the flying dragons or pterodactyls of the Jurassic and cretaceous periods
In the Tertiary, the vegetation was apparently more luxuriant and beautiful than that of the present day, for the grandest and most interesting of our living forest trees, the great Sequoias of California, the redwood and the mammoth
trees, our tulip trees, magnolias, sycamores, and cypresses, trees, our tulip trees, magnolias, sycamores, and cypresses,
are the lingering remnants of the magnificent forests which are the lingering remnants of the magnificent
covered our continent even to the Arctic sea.
The Tertiary has been well named the age of mammals. Brute force then ruled the world; for man, its present master, had not yet appeared on the stage.
During the ice period the climate of Greenland was brought as far south as New York, and broken sheets of ice held all nature in the embrace of death for thousands of years. Whole races of animals and plants perished, but those forms northward with the amelioration of the climate, and moved northward with the amelioration of the climate, and
were attended by a new element in the history of the worldwere attended by
primitive man.
primitive man.
Taking the ge
Taking the geological record so far as it goes, Professor

Newberry pronounced it authentic and credible, containing no personal equations, but automatic and necessarily ing no personal equations, but automatic and necessarily
true. The progress of life upon the globe bore evidence, in his opinion, that it was the expression of a law; in other words, that it is the operation of forces as distinctively determinative as those which produce and guide the motions of the heavenly bodies. The parallelism of the progress of life through the geological ages with that of the growth of an individual from a germ is so close that most students of paleontology are inspired with the conviction that the life forms of the different ages are links in a connected chain; in other words, that the later forms are derivations from those which preceded them.
This is evolution, and therefore most geologists are evolutionists, and they believe that evolution is not only exemplified in the progress of life, but that it is a law of nature.
"We now come," said Professor Newberry, " to the question of questions-What is the cause that has produced the progress of life? One group of geologists, with Mr. Darwin, believes that external influences have alone produced the diversity of animals and plants. Another group believe that the influence emanated from within the organism, and has been an essential feature in its life and growth. External circumstances have a most potent influence, as Mr. Darwin has shown; but we may well question the adequacy of the agencies he invokes to produce all the effects he claims for them. There are many facts which it is impossible with our present lights to reconcile with his theory."
Professor Newberry next indicated some of the difficulties which up to the present time have prevented him from accepting, in all its lengths and breadths, Darwinism as the theory of the Universe, and have compelled him to hold the law of evolution, not as a creed, but as a conviction.
There are the breaks in the chain of life, which, till they are filled, forbid the cautious scientist to accept as demonstrated the derivation of the later forms in all cases from the earlier.
Professor Huxley explains the persistent types of life by saying that if the spontaneous variations of a species do
not give it an advantageous form or structure, that variety not give it an advantageous form or structure, that variety been hit upon. Upon this Professor Newberry remarked:
" To my mind this explanation is inadequate, because I cannot conceive that a highly organized animal with a complicated structure like the nautilus should pass through the revolutions of the globe without being more affected than it
has been by external circumstances, unless the life that inspired it was more potent than all surroundings and gave it independence of circumstances. That external circumstances alone could produce such a symmetrical and continuous
development of organic forms, is something that with development of organic forms, is something that with our present knowledge seems to me highly improbable. Geolorigin of man. The theory that we are descended from apes is a speculation indulged in, based on anatomical resemblances in the living animals. No ape-like man has been found fossil, nor any man-like ape. Remains of monkeys and of savage types of men have been found; but even the Neanderthal skull was of average capacity, and, as Huxley says, might have contained the brain of a philosopher.
No geologist professes to have proved anything like a No geologist professes to have proved anything like a
connecting link between man and apes, and until such shall be discovered geology must be silent on the subject."
We fear that our readers on looking over this abstract of Professor Newberry's lecture will have a feeling of regret, that one so eminently capable of taking the highest views of this most important subject, should have almost confined his remarks to rudimentary observations and the antiquities f the subject.
The history of evolution and the geological record are now known to every schoolboy, and it would appear that Professor Newberry must have had but a moderate opinion of the
members of the New York Academy of Science, if he members of the New York Academy of Science, if he
thought that a rehearsal of some of the first elements of geology, and an outline of the Darwinian theory, would be news to the scientific academicians.
If those holding leading positions in the scientific world shirk the responsibility of clearly pronouncing their personal views upon subjects they voluntarily discuss before
learned bodies, it gives a color to the meretricious statements of those who are now loudly proclaiming that scienments of those who are now loud
tists speak with a suppressio veri.

New Inventions.

Mr. Jacob Leutzinger, of Hillsborough, Mo., has invented an improved Brake Block Holder for wagons, which consists of an arrangement of flanged plates, having interior projections for preventing the brake block from slipping, which are clamped together by bolts, and secured to the brake bar by a recess or lug.
A Device for Calculating Percentage, intended for lessening the labor involved in computing taxes and similar fixed percentages, consists of a table formed in radial columns, over which a pivoted indicator is moved, the arrangement being such as to show at once the amount of tax upon any given sum. This device is the invention of Mr. J. L. Knight,
In a new Animal Trap, invented by Mr. David McGuire of New Garden, Mo., the cage slides upon a central upright rod, is detached and falls when the trigger, holding the bait, is actuated, and is kept from being lifted from the bot-
tom of the trap by a spring catch.

An Ointment for use in skin diseases has been patented by C. J. Beattie, of Pueblo, Col.
Mr. S. A. Brumbaugh, of Harrisburg, Pa., has invented Coupling for soft metal pipes and hose, which consists of a short tube, with ratchet threaded conical ends, which fit into the ends of the pipes to be coupled. A central collar has apertures to receive a spanner.
A Stirrup Supporter, the invention of Mr. L. F. Johnston, of Pocahontas, Ark., has a spiral spring, contained in a slotted rectangular case, so arranged that the stirrup straps pass over a sliding plate at the upper and movable end of the spring.
In a new form of Wheelbarrow, invented by Mr. Wm. Eckert, of Jersey City, N. J., each side bar is made of a continuous piece of angle iron twisted about one fourth of a turn at its forward end, in such a manner as to present one of its flanges for the reception of the bearings of the wheel, and the other for the support of the box of the barrow. Wooden handles are attached to the rear ends of the side Wood
bars.
Mr.
Mr. Isidor Kann, of New York city, has invented a Hair Crimper, in which the bent wire or hair pin has a notch or oop formed in its bend to receive the eye of the binding wire and prevent it from slipping.
Messrs. A. Milne and A. Jourdain, of Newark, N. J., have invented a Watch Crown which dispenses with the usual brass core. It has an inner shell or section of suitable thickness, to which a steel socket is attached, and an outer covering shell.
In a new Shutter, invented by Mr. Asher Bijur, of New York city, the slats are adjusted at any inclination and reained in position without any visible slat rod. The mechanism is arranged on the inside of one stile of the shutter frame, and is thus protected from corrosion. The slats swing in end journals in a detachable frame, and motion is communicated by short crank arms connected by a rod and counterbalanced.
A Reversible Latch, consisting of a sliding bolt acted upon by a spring, and operated by a cam of the spindle ville, N. Y.
Mr. August Hoen, of Baltimore, Md., proposes to provide street lamps with Reflectors, which may be adjusted at various angles for deflecting and thereby utilizing the rays of light which would otherwise escape upward in an oblique direction.
Mr. Daniel Hayes, of New Orleans, La., has invented an improved Mode of Stowing Cotton Bales in the holds of vessels. The inventor proposes connecting the two opposite upper and lower surfaces of two adjacent bales by hooks and an adjustable chain, while under the pressure of the jack screw.
A Chest Protector, invented by Mr. G. F. Jackson, of Minneapolis, Minn., consists of a chamois pad, formed by the combination of a front and a back pad, to be used singly or in connection with an under vest of suitable material.
A Marking Device, intended to take the place of stenciling and brush marking, has been invented by Mr. W. T. Morgans, of Liberty, N. Y. The invention consists of a stock having a groove in its curved face for receiving types, together with suitable clamping devices for retaining the latter in place.
Mr. Martianus Ross, of Abilene, Kansas, has patented an improved Bootjack, the essential features of which are the addition of a rigid heel piece at the rear end, to prevent the foot which holds the jack in position from slipping, and a rounded-off bow or toe piece, which bears on the toe of the boot to be removed.
A Window Blind Stop, invented by Mr. W. B. Surdam, of Fort Dodge, Iowa, consists in the combination, with the blind slats and their connecting bars, of pivoted levers arranged on the blind frame, and operating levers passing through the casing, in such manner as to furnish a secure locking device.
Patent No. 200,000, of the United States Patent Office, covers the claims of Messrs. Mortimer Shea and J. McC. Hamilton, of Nashville, Tenn., relating to an improved Carbureting Apparatus for enriching illuminating gas, mixing and thus diluting it with air in suitable proportions, carbureting air, and thus making gas from gasoline or other volaile hydrocarbons, and for other purposes.
Mr. T. P. Magruder, of Rushville, Ill., has invented an improved Gate Latch, which is semicircular in form and provided with a lug through which passes a screw whose arrangement with reference to the latch guard, or other fixed abutment, adjusts the latch so that it will always strike on the bevel of the keeper, and thus enable the gate to latch easily when swung shut.
A new Temporary Binder, or file for letters, receipts, and other papers, has been invented by Messrs. J. W. Shoemaker and Samuel Dodsworth, of Leavenworth, Kansas. It has a combination of fixed vertical tubes, which hold the papers, and needles having transversely apertured heads, whose shoulders rest on the top of the tubes, while the shanks of the needles extend down into the tubes; these are arranged on a plate of suitable material, one edge of which is turned up at right angles to form a gauge for evening the papers.
Mr. C. C. Schwaner, of Winterset, Iowa, has invented an improved Trace Carrier, which is claimed to prevent the eyes of the traces from being detached, and to be so arranged that the lines or tail cannot catch upon it, while the races may be readily taken out of the carrier when they are to be applied to the whiffletrees.

Chief Justice Chase says: "Mount Union i among the best, cheapest, and most progressive of Amer-
ican Colleges, rendering a thorough education in any Department accessible to all." Great improvements lately
made, new Buildings under way. The College year of Spring, Summer, and Fall Terms, beginninglast Tuesday dents of either sex to earn expenses by teaching Winters, without losing time. Different students last year,
852 ; in 31 years, 13,648 ; property worth $\$ 537,869$, benefitng students. For new catalogue, address Pres. Harts

fusimes and exrsmal.

 The Charge for Insertion under this head is One Dollar a line for each insertion.Portable and Stationary Engines; Boilers of all kind 5 Cortlandt St., N. Y. Erie City Iron Works, Erie, Pa. Wanted.-Ice Machine, 1 .
T. Reagan, Carthage, Mo.
A Solid Steel Nickel Plated Barber Brace, with ratchet attachment to be used where there is not room to revolve the sweep, will be delivered free to any address in the
United States on receipt of $\$ 2.75$. Best Steel Bracket Saw Blades 10c. doz. post paid. A. D. Brodie, 283 Sirt
Supplies for Telephone and other Electrical Experiments at manufacturers' prices. Address. with stam
Jerome Redding \& Co., 30 Hanover St., Boston, Mass. For Sale.-A Vertical Tubular Boiler, but little used,
42 in. diameter, 7 ft high, 852 in. flues, cheapfor cash, or ill exchange fo cuse, N. Y.
Alcott's T Experienced Superintendent in Hydraulics, Steam, prompt, systematic ; wants position; any manufacturing business, even as foreman; furnish plans; high cer-
tificates. Address 35 Broad
An American gentleman, established over 18 years in
Paris, wishes to develop in Europe some American patParis, wishes to develop in Europe some Americanpat-
ent or special industry. Best references given and reWanted, 1 d Wanted.-A 2d hand No. 1 Keystone Jeweler's Forge
with Hood. Address Kendrick, Davis \& Co.,Lebanon,N.H. Friction Clutches warranted to drive Circular Log
Saws direct on the arbor; Upright Mill Spindles, which an be stopped instantly; Safety Elevators, and Hoistin Then
Telephone Supplies.-All the parts but the diaphragm of a pair of Telephones, with instructions for complet
ing it, sent on receipt of $\$ 5$. C. E. Jones \& Bro.. Cin., 0. Sperm Oil, Pure. Wm. F. Nye, New Bedford, Mass. Whented.-To Correspond with parties building
Whegulators. O. J. Bollinger, York, Pa
Blake's Belt Studs. The most durable fastening fo Telephone Magnets. Electric Supply Co., Prov., R.I Wanted.-Parties to Manufacture an Improved Pipe
Coupling on Royalty. Illustrated in Sci. Am. Jan. 26,1878 . Improved Wood-workingMachinery made by Walker Bros., 73 and 75 Laurel St., Philadelphia, Pa
Walrath's Improved Portable Engines best in market; to 8 H. P. Peter Warrath. Chittenango, N. Y.
For Solid Wrought Iron Beams, etc., see advertise-
ment. Address Union Iron Mills, Pittsburgh, Pa., for ment. Adares
lithograph, etc.
For book on Lubricants, R. J.Chard, 134 M.Lane,N.Y.
2d Hand Iron Planer built by Smith of Salem. Plane 13 t. 30 in.; price $\$ 300$. A.C.Stebbins, Worcester, Mas
Cornice Brakes. J. M. Robinson \& Co

Best Turbine Water Wheel, Alcott's, Mt. Holly, N. J. John T. Noye \& Son, Buffalo, N. Y., are Manufacturkinds, and dealers in Dufour \& Co.'s Bolting Cloth. end for largeillustrated catalogue.
Power \& Foot Presses, Ferracute Co., Bridgeton, N.J Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel - other kinds imitations and inferior.
Caution.- Our name is stamped in full on all our best tandard Belting, Packing, and Hose. Buy that only
The best is the cheapest. New York Belting and Pack The best is the cheapest. New York
ng Company, 37 and 38 Park Row, N. Y.
Steel Castings from one lb. to five thousand lbs. In-
valuable for strength and durability. Circulars free ittsburgh Steel Casting Co.., Pittsburgh,
For Best Presses, Dies, and Fruit Can Tools, Bliss \& Hydraulic Presses and Jacks, new and second hand. E. Lyon \& Co., 470 Grand St., N. Y

The Niles Tool Works, Hamilton, $\begin{aligned} & 0 . \text {, have } \\ & \text { and Machine Tools in first class order for sale }\end{aligned}$
Wanted.-Second-hand Gun Stocking, and other Gun
Machinery. Address V. A. King, Lock Box 81, New
Haven, Con
For the best Bone Mill and Mineral Crushing Ma-chines-five sizes. great var
\& Sons, Philadelphia, Pa.
Machine Cut Brass Gear Wheels for Models, etc. (New
List.). D. Gilbert \& Son., 212 Chester St., Phila., Pa.
Corliss Engine Builders, with Wetherill's improve ments, Engineers, Machinists, Iron Founders, and Boiler Makers. Robt. Wetheril \& Co., Chester, Pa.
Polishing Supplies of all kinds. Walrus Leather Wanted.-A party with some capital to conduct a arst-class Woolen Mill at Fr
L. s. White, Baltimore, Md
Skinner Portable Engine I
oved, 21-2 to 10 H. P Fine Taps and Dies for Jewelers', Dentists', and Ma-
Weldless Cold-drawn Steel Boiler and Hydrauli
ubes. Leng \& Ogden. 212 Pearl St., N. Y.
Diamond Saws. J. Dickinson, 64 Nassau St., N. Y.
Galvanized Iron Cornice Machines.-The most Improved, Straight and Circular. Prices reduced. Calvin arr, Clevelana, C., Hewes Machine Wks.,Newark,N.J.
For Power\&Economy,Alcott's Turbine,Mt.Holly,N.J. More than twelve thousand crank shafts made by hester Steel Castings Co. now running; 8 years' ${ }^{\text {'onstan }}$ ron. See advertisement, page 174.

E. L. C. is referred to p. 396, Scientific merican, December 22, 1877.-C. L. P.-As we under tand you, it does not appear to necessarily make muc January 7, 1866, pp. 22, 23. Septem ientific American 96; October 6, 1877, pp. 207, 212.-J. S. D.-See Scien TIFIC AmERICAN, January 30, 1875, pp. 64, 65.-D., F. \&
Co.-We do not recommend special manufactures in Co.-We do not recommend special manufactures in
"Notes and Queries."-J. G. P.-See Scientific AmERICAN, January 19, 1878 , under head of minerals.-W
H. C., P. M.Co., and others.-We H. C., P. M.Co., and others.-We do not give addresse in this column.-T. J. S.-See Scientific American,
February 2,1878, pp. 64, 65, 71.-C. B. M.-Write to the Secretary of the Navy and to the Congressman from
your district.-F. I. should consult some standard your district.-F. I. should consult some standard
reatise on the subject. The explanation would re quire more space than we can give it in these columns There are tables in print complete enough for mos
purposes.-J. M. L., and others.-Insert a notice in Busposines.-J. M. L., and others.-Insert a notice in th be perfectly safe, if the old boiler is in good condition. -F. L. can obtain explanations from the publishers.If youhave a chimney high enough to give a good draught, we think you will find the proposed mode of
setting satisfactory.-H. V.-From your account it looks as if there were a leak either in the pump pack ing or in the connections. A check valve, it seems to nformation in any good modern geography.-A doe not furnish sufficient data, but it appears safer to use
wrought iron for any pressure.-W. F. B. - You might wrought iron for any pressure.-W. F. B.- - You might
(1) W. G. W. wishes to know how to get rid of cockroaches. A. A mixture of red lead, Indian
meal, and molasses will be eageriy eaten by them and meal, and molasses will be eageriy eaten by them and or arsenic extermonate them. Paris green, phosphoron Borax, to which cockroaches have a great antipathy will drive them away
(2) J. R. B. asks: What is the method of tons are usually leaves of ferns, etc.? A. These skel tons are usually prepared by soaking the leaves in
blood-warm water until the thin membranous parts have become sufficiently softened by putrefaction to be easily washed out. Dip the remaining portion in a di-
lute aqueous solution of sodium sulphite, and dry slowpiece of bibulous paper in the
(3) H. B. writes: In a recent article in the Sientific American concerning the Barclay stree ire, it is stated that a considerable quantity of chlorate of potash was stored in the building, and it occurs to found in the fact that a mixture of this salt with loa ugar becomes explosive when it is acted upon by third substance that has the property of liberating the
oxygen contained in the chlorate, as, for instance, sulhuric acid. The finer che particles, the more perfect he union and more rapid the explosion. An invest ation into the articles commonly in use by confectioncapable of producing this effect. As two of these sub tances were present in the building this theory seem ully as plausible as those that have been presented, if not more so. A. True; but the third substance-a conas that involving undue friction in compounding the chlorate lozenges, was, we believe,
disposed of in the investigation.
(4) B. W. asks: How can human skin be anned? A. Either by the ordinary tannic acid bath or by the alum process. 1. Roll the clean skin up with a thick layer of ground hemlock bark between each
convolution, cover it with water in a suitable vessel, and allow it to remain thus until the gelatinous tissues have become converted throughout. 2. Soak the skin in water, scrape off the epidermis, pass through and then
digest for 10 minutes in a boiling bath composed of 1 digest for 10 minutes in a boiling bath composed of
b. salt, 5.2 lbs. alum, and 6 gallons of water; then ad b. salt, 52 l lbs. alum, and 6 gallons of water; then ad
67 lbs . wheat flour and the yolks of 21 eggs to the arm alum bath, and digest with the skins for a day o be dried on stretching frames in the air, moistened wit water, rubbed, and after a few hours ironed.
I inclose a n illustration of a fountain in which (with-
out any apparent pressure) the water rises above it out any apparent pressure) the water rises above its
own level. Will you explain the reason? A. The prin-
 pends on the transmission of the pressure sustained by a body of water in one vessel to
means of the elasticity of the air.
(5) C. T. H. writes: I intend building a ry room to dry animal scraps. Would it be better to
ave plenty o- ventilation, and so arranged as to have good circulation of fresh air passing through the room, or should I have just enough ventilation to carry off
the damp vapors? A. Plenty of ventilation is best. (6) C. H. S. asks: In what part of th drying room of a laundry shculd the ventilators for paced? A. At the bottom near the floor.
(7) J. W. asks: 1. Which is the stronger and will stand the weather better, a pressed brick or tronger, and will stand the weather better than the ommon brick, when equally well burnt. 2. Can a man lay as many pressed brick a day as he can han
(8) G. P. H. asks: Is it practicable to irrigate a tract of land lying about 100 feet above the
level of a river? The land very gradually recedes from an elevated point, 200 feet from the river, where a reuse toirrigate about 25 or 50 acres of this land m a is practicable to do so, but before the kind of pump
and size can be determined, it will be necessary to
have some further data, as, first, the kind of soil; sec
ond, the amount of rainfall; and third ond, the amount of rai
the crops to be raised.
(9) A. S. writes: My dwelling house is situated on the most elevated point of my farm, the ground sloping gently therefrom on all sides; at a dis-
tance of about 900 feet from my house a small creek flows through the farm, which is mostly fed by three never-failing springs close together at this point. pond, of about 80×200 feet, and from $21 / 2$ to 6 feet in depth, constructed in such a manner that all the spring will flow directly into the pond, while the rain water of
the creek will flow past. In the attic of the house are wo tanks holding about 20 bbls . each ing the house with hot and cold water according to modern improvements; this tank is in turn supplie with water from the cisterns by a force hand pump, and works very satisfactorily, and with but little labor. The top of the two large tanks is about 38 feet above the fround above the house, ander in the is and also about constructing a small fountain in front of my house which I intend to supply with water from these tanks. What is the best, the cheapest, and the most satisfactory mode of filling the tanks with water from the pond, so as to keep the fountain playing at
least during the spring, summer, and fall months? will further add, in case a ram should be suggested hat a fall of 3 feet can be obtained for a distance of 10 feet in distance; but I doubt very much whethe that would be sufficient fall for the work required, and besides in very dry seasons, although the springs never fail, yet they get very low, and will probably not yield ram in a pit in the ground, the requisite descent for the supply pipe can be obtained, provided a low poin ram will then throw the water to the required distance and elevation, if you provide pipes of a sufficiently
arge diameter for the purpose. Let the orifice in the ram be enlarged to 2 inches in diameter, and the pipes be of the same size. Sometimes two rams are set one may be repaired without stopping the supply of (10)
(10) S. S. asks: What is the largest gun evermade? A. The 100 ton guns made in England for
the Italian navy are the heaviest thus far, but still he Italian navy are the
larger ones are projected.
(11) J. W. M. asks: Can a locomotive, on straight and level track, pulla a train attached to it by connection 100 yards long as easily as by the ordinary ant 100 feet, as easily as if the latter were only 10 feet rom it? That is, docs distance add resistance? A As we understand your question, neglecting the weigh and rigidity of the lengthened connection, there will
(12) A. A. G. asks: What is the most suc ng method of preventing wrought iron from rus ing, when laid in the ground? A. Galvanizing, we
(13) J. F. asks: What will be the effect on boiler of water containing 19 grains of sulphate of gallon? A. Scale will be formed, unless you purify the water.
(14) C. A. S. writes: Suppose a cannon ball were fired out of a cannon in a vertical position;
when it attained the height reached by the force of gunpowder, would it return to the earth at the sam
(15) E. P. C. writes: The water in a boiler of a high pressure tugboat was blown off the other
ay, washed and filled up the next day, and just as the freman started the wood in one furnace and was go ing to start the other, he heard a report as if something gated the matter he found a crack in one of the side sheets about 14 inches long, taking in three socke bolts. The boiler is only two years old. Can you throw any light on the subject? A. We judge, from
your account, that the mischief was done when the boiler was blown down, by allowing it to cool too rap
dly, and was developed as soon as the iron was re idly, and
heated.
(16) M. M. C. writes: 1. Is there not some thing wrong about the following formula for flywheels,
$w=\frac{m g \Delta \mathrm{E}}{v^{\prime 2}} ?$ If $v^{\prime 2}$ is taken to mean the square of
the velocity of the rim in feet per minute, it gives an answer absuralysmaly in the case. A. The velocity in the formula referred to is in feet per second, and th formula, we think, gives correct results when rightly
applied. 2. Does Rankine's " Manual of Applied Meapplied. 2. Does Rankine's "Manual of Applied Me his formulas to the coustruction and designing of ma chinery? A. Rankine's "Applied Mechanics " simply las. The applications are "Machinery a
(17) F. S. M. asks: Has common gun o n any other direction? A. We icy to throw up tha is to throw in any direction in which the resistance to
(18) I. H. P. writes: I am desirous of constructing a counter fountain, to play beside my soda ppeal to you for instruction. I see an automatic counwith sufficient force. I want a jet to play under a bell glass with such force that it will cause that peculiar ringing noise which makes such fountains so attractive A. By using a reservoir of compressed air, you can ob
(19) W. E. writes: Please inform me of a practical method of mixing plumbago with molten cop-
per, tin, or lead. I am sure that it can be done, but I do not know what is put in with it to fasten it. I have the metal at all. A. Heavy pressure mambago affect more efficacious than high temperature.
(20) W. H. W. asks: How can I remove a thick deposit of scale and mud from the tubes of my boiler (locomotive type)? A. Some forms of scale can remain in the boiler, after the fire is hauled, untilit is quite cool, and then running it out. Other kinds of cale are so hard that the only practical means of re-
(21) E. J. M. asks: How can I construct a barometer? Must I use alcohol, and what other sub-
stance must I use in conjunction with it that will rise and fall in the glass as the changes in the atmosphere occur? A. Mercury is the liquid ordinarily used in barometer tabes, since the column of liquid is sustained by high if alcohol was employed. You can purchase accurate mercurial or aneroid barometers of a dealer in the Scientific Ambric mi of March 2, 1878, p. 135.
(22) H. L. writes: Two tanks stand side by side and connect through a short pipe. A pipe desends from each 12 feet, and each pipe enters an iron box in the stove. The tanks are filled with cold water, nater is established. When box a complete circuit of water in the box is heated and hot water passes up one of the pipes to the tank. What gives the hot water a tendency to one pipe rather than the other? One philosopher answers the question by saying that one pipe enters the box at a higher level than the other. That
does not quite satisfy me. A. We think it probable loes not quite satisfy me. A. We think it probable that the philosopher's vie
(23) H. C. M. recommends that B. P. L. (p. 140, current volume) try the following, to stop the
leaks in his skylight: 20 parts white sand, 2 parts lithseed 1 part lime; mixed dry and then with will set very quickly and make a hard cement.
(24) W. H. C. writes: I have a Selden steam pump; diameter of cylinder 8 inches, stroke 8
inches, bore of water cylinder 3 inches, $3 /$ inch live nches, bore of water cylinder 3 inches, $3 / 4$ inch live
steam pipe, 1 inch exhaust, $11 / 2$ inch suction pipe, 15 eet long; it discharges through 112 inch pipe about 70 feet, with about 40 feet rise above the level of the pump. The friction in the discharge pipe consists of
10 ells, 4 unions, 1 T , and $211 /$ inch Globe valves The pump does not work very satisfactorily. I think that he pump will do its work better if fed through a 1 inch steam pipe, with $11 / 4$ exhaust. The person who put it would be of no advantage to connect ncrease in the size now using 20 lbs. steam. A. A. ably be more beneficial.
(25) W. E. L. writes: We force water from well 70 feet up to a tank by means of a Hooker pump.
It discharges into the tank from the top. If the pip ad entered from the bottom about 50 feet of pipe could have been saved, but it was thought by a friend that the pressure from the water in the tank would be too
great for the pump. I claimed it would be no greater reat for the pump. I claimed it would be no greater from its entering the bottom, in fact not so great, un-
less the tank was kept full. In putting in the pump, he original suction was $21 / 2$ inch nches, but he changed it and made the would be bette if the suction was $1 / 2$ inch smaller than the discharge. This I claim was wrong, and that the suction should be
larger than the discharge. A. As you state the cases
(26) M. J. C. writes: Please explain the interior construction of the American steam gauge, o ow the steam acts on the interior so as to indicate th pressure on the dial? A. The pressure acts in a coile hiptical tube, tending to .
(27) P. R. writes: 1. I have an old electric fattery. I wish to use it for giving shocks, sparks, and for heating small wires. Please tell me how to connect nd charge it. The battery consists of a rectangular
box (of vulcanized rubber) 12 inches long and 7 inches wide by 9 inches deep; divided into four compartment wo zinc and one carbon plate (6×8 inches) for each division, hanging on an insulated brass rod, with knobs of the same metal on each end, resting in bearings at
and of the box. A. You can charge your batter vith a solution of bichromate of potash in water acid ated with about one thirtieth of its weight of sulphuri cid. Connect the two zincs of one compartment with the carbon plate of the next compartment, so that on nd the oth the battery will consist of two zinc platis onnected with the two zinc plates is called a negativ ole, and a similar wire connected with the carbon plate is called the positive pole or terminal of the bat onnections well made a very fine shred of and the placed between the poles 90 as to be in circuit will b come white hot. To give shocks you will need an induction coil (see p. 251, Scientific American of October 20, 1877), having its primary coil in connection with the poles of your battery. 2. What kind of cement
shall I use to repair the box? There are some cracks shall I use to repair the box? There are some cracks
in the bottom of it. A. Have the box thoroughly dry in the bottom of it. A. Have the box thoroughly dry
and clean, and fill the cracks with a mixture of rubber ment and pulverized sulphur.
(28) H. D. I. asks: What is the diamete of the disks in M. Trouvé's moist battery, described in may be made about 6 inches in diameter.
(29) C. H. B. asks for instructions in pre paring paper for taking leaf photographs. A. Pass th of hot water, and use a strong solution of potassium bichromate; or the gelatin and bichromate may be used
together. Wash with hot water. A strong blue back-
ground may be produced as follows: Dissolve in 2 ozs. ground may be produced as follows: Dissolve in 2 ozs. of pure water 120 grains of red prussiate of potash
(potassium ferrocyanide), and separately 140 grains float the paper for a few minutes on the filtrate; print from the dried paper a before, and wash thoroughly in water. By adding a little phosphoric acid to the bichromate solution and exposing the print before washing to the vapor of a
hot solution of aniline in alcohol, a blackish-green or hot solution of aniline in alcohol, a blackish-green or
red positive is obtained. Or, prepare the paper with sored positive is obtained. Or, prepare the paper wite sex
lution of iron sesqui-chloride, and develop after exposure with a very dilute solution of silver nitrate. Use plain photographic paper.
(30) J. B. N. asks: What is the method of proportioning pulleys of different sizes, so that the Draw vertical lines parallel to each other and an equa distance apart; these will represent the center lines of the width of the steps upon the cone. Draw at a right
angle to these lines and passing through about the cenangle to these lines and passing through about the center of their lengths a horizontal line, representing the
axis of the cone pulley. Set the compasses to the radius of the largest step of the cone, and from the intersection of the end vertical line and the horizontal line used as a center, place on that vertical line a mark above and below the horizontal one. These two lines
will represent the diameter of the largest step. Set the compasses to the radius of the smallest step required on the cone, and mark off in a similar manner the diameter of the smallest step required on the cone. Take sections of the vertical lines at each end with the lines marked by the compasses, and then draw a line intersecting the intermediate vertical lines, and the intersecthe vertical lines will show the required diameter for each step of the cone
(31) C. W. writes: A lubricant which I have been using, when it comes in contact with brass, turns it green. What is the cause? A. Probably the presence of a certain amount of moisture
cating oil, causing the brass to oxidize.
cating oil, causing the brass to oxidize.
How can I make a conductor to draw off frictional electricity? A. Brush some gum water over the outside of a base ball. When this is almost dry, roll the ball on gold leaf so that the ball will be covered with a smooth layer of gold; then mount the ball on a stick of seal-
ing wax, setin a little wooden disk or base. Then on ing wax, set in a little wooden disk or base. Then on
one side of the equator of the ball insert five or six cambric sewing needles, so that they will be about $1 / 8$ electricity to the gold leaf on the ball, from which the electric sparks may be drawn. In some establishments where leather belts are run at a very high speed, elec-
tricity is produced on the belts. If the conductor that we have just described be placed with its row of needles near to, but not touching, one of these belts, the elecfest itself in the form of the bright blue sparks, several inches in length, that pass from the conductor to the knuckle of the hand that is presented toit.
(32) D. J. K. asks: With what shall I oil ablack walnut case? A. Raw linseed oil. Sometimes
little turpentine is added, in the proportion of 1 gill to 1 quart of the oil.
(33) L. H. wishes to know what to line protect them from acid. A. Use paraffin wax, applied
(34) F. C. S. asks: What is the rule for calculating the change wheels for a compound screw cut-
Ing lathe? A. Divide the pitch of the thread to be cut by the pitch of the lathe feed screw, and the product will be a proportional number. Then multiply the number of teeth in the lathe mandrel gear by the
number of teeth on the smallest gear of the comnumber of teeth on the smallest gear of the com-
pounded pair, and the product by the proportional pounded pair, and the product by the propormber of eeth in the largest wheel of the phe the wheel to be placed on the feed screw. Or, if the sizes of two wheels are to be found, divide the number of threads you wish to cut by the pitch of the feed screw, and
multiply the quotient by the number of teeth on one of the driving wheels, and the product by the number of teeth on the other of the driving wheels; then any divisor that win leave no remainder to the last product is he product is the number of teeth for the other wheel
(35) M. D. V. asks: What is the best method of calculating the speed of pulleys, from large to mall, and from small to large? A. The speeds of two ameters. To find the sizes of wheels for a required peed, multiply the speed of the driving wheel by its diameter and divide by the speed required by the driven
wheel. The answer is the diameter of the driven wheel. The answer is the diameter of the driven
wheel. If two pairs of wheels are concerned, divide the speed you require the wheel to run by the speed (in revolutions) of the driving shaft, and the quotient will be the proportion between the revolutions of the driving shaft and the revolutions required. Then take any two numbers that will when multiplied together form a sum equal to that proportion, and one of such numbers he other of such numbers will form the relative sizes for the other pair of pulleys.
(36) F. K. R. asks: What is the composition used for melting brass to make it retain the size iron mould, and if it should shrink I could not get it out. A. We know of no composition in use for such a purpose.
(37) C. E. C. asks: What metal or combisheet lead tank to be used for storing oil of vitriol (66°)? A. Use a solder of 1 part lead and 2 parts tin.
(38) R. H. writes: I wish to make a small have constructed. I propose to make it 10 inches high
and $61 / 2$ inches diameter, and containing 5 one inch flues; it is to be made of cast iron, flues and all. Metal is to be
$1 / 4$ inch thick. Do you think such a boiler would swer my purpose? I wish to such a boiler would an lamp, and I have been thinking that the metal is too thick to do so. Can you tell me of a better way to build a boilerf A. We are not favorably impressed with your plan, and think it would be better for you to
build the boiler of wrought iron or copper. You could not conveniently use a lamp for generating steam in the propos
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
A. E. A.-It is a zinc blende; silver is present in small quantities.-Package marked Santa Fé contains The quartz looks well and may be metalliferous; the sample is not notably so. No. 2.-The powder consists rides, sulphates, carbonates and silica. It contains aloorganic matter, ammonia salts, phosphates, iron, and a trace of fluorides. It is not of much value. It is probably the residue from the evaporation of spring water - mineral water.-F. C. B. - The marked sample is an amorphous sand-principally silicic acid. The other is impure clay-silicate of alumina.

COMMUNICATIONS RECEIVED.
The Editor of the Scientific American acknowledges contributions on the following subjects:
Cuca or Coca. By C.H. E.
The Use of Petroleum as Fuel. By H. B. Centering for Arches. By P. I. O.
A New Vehicle. By R. B. F.
A New Vehicle. By R. B. F.
The Use of Fuei for Steam Boilers. By W. S. C. The Use of Fuei for Steam Boilers.
The Electric Light. By W. E. S.

HINTS TO CORRESPONDENTS.
We renew our request that correspondents, in referring
to former answers or articles, will be kind enough to to former answers or articles, will be kind enough to name the date of the paper and the page, or the number
of the question. Correspondents whose inquiries fail to appear should that, for good reasons, the Editor declines them. The address of the writer should always be given. Inquiries relating to patents, or to the patentability or inventions, assignments, etc., will not be published here. All such questions, when initials only are given,
are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail, if the writer's address is given.

official

INDEX OF INVENTIONS
ers Patent of the United States we Granted in the Week Ending February 5, 1878, AND EACH EBEARING THATT DATE. A complete copy of any patent in the annexed list, ncluaing both the specifcations and drawings, will be
furnished from this office for one dollar. In ordering, furnished from this office for one dollar. In ordering,
pease state the number and date of the patent desired, nd remit to Munn \& Co.. ${ }^{37}$ Park Row. New York cit

Advertiser, clock, J. F. W Album, J. C. Koch, Jr.....

Apple paring machine. Gooochil
Bale tying machine, F. S. Heath
Bale tying machine, F. S. Heath
Bed clothes clamp, C. M. Bryson
Bee hive, J. Palmer....
Binder, Shoemaker \& Dodsw
Binder, E. H. Thompson (r)
Blind slats, J. G. Wiisson .
Blind stop, W. B. Surdam
Blind stop, W. B. Surdam
Book binding, J. S. Lever
Boot jack, M. Ross.
Boring or broaching apparatus, J. J. J. Love.
Bottle stopper, w. H. Kelley.
Brake coupling, F. W. Eames.
rake, wagon, S. Gorr........
Buildings, facing for, G. B. Field
Builings, steam apparatus for, J. w. Faxon
Burglar alarm, S. D. Lauffer.
Button fastening, C. E. Bate

Caddy, measuring, J. C. Reed
Can, metallic, C. P. Maxfeld Car registering apparatus, , R. McCully.
.200,072 Cars, safety guard for, Hardin Carbureting apparatus, M. D. Nelon. arriage, canopy top, C. E Fosburgh (r) Celluloid, etc., J. W. Hyat Chair, folding, E. G. Stanley Chimney cowl, C. E. Soelkey Cigar machine, F. Haehnel.. Cigar wrapper cutter, F. Haehn Cloth shearing machine, A. A. Forbes Clothes drier, L. C. Cattell Clothes pounder, F. A. Sumne
Clothes pounder, H. Trumbull Clothes pounder, G. W. Wood
 Coin, detecting counterfeit, J.

Compass, A. P. Freshman
Condenser, mercury, C. E Livermore 200, 20,1
Copper, tinning and finishing sheet, R
Cotton, stowing D. McNett
Cotton, stowing, D. Hayes
Culinary utensil, J. W. Steele
Cultivator, J. M. Graves....
Cultivator, D. R. Raymond.
Curtain fixture, E. G. Stanle
Curtain fixture, E. G. Stanley
Cut-off for flexible pipes, C. Wee
Door, sliding, s. Smith.
Cut-or sor fexishe pipes,
Door, sliding, s. Smith...
Drains, trap for, J. Sargen
Drains, trap for, J. Sargent .
Eninine, rotary, G. Evens....

Engine, steam, J. Holub.....................
Engines, bed plate for. A. A. Simonds
Exercising mat Exercising machine, J. Preis.
Fence, barbed, w. Warden..
Fence barbs.
Fence, barbed, w. Warden............
Fence barbs. applying, J. W. Ed ward
Fence post, w. H. H. Youngs
Fence post, W. H. H. Young
Fence post, H. L. Gockley..
Fence, wire, W. Warden...........
Fence wire, barbed, M. P. Mighell
Fence wires, tool Fire alarm, G. S. Shute
Fire alarm, R. F. .
Fire arm, breech-loading, w. Field.
Fire arm, breech-loading, w. Field...
Fire arm, breech-loading, w. R. Finch
Fire escape, C. Richards.......
Fire extinguisher, F. C. Zapfe
Fish catching device, J. A. Mitchell.
Flask for cooling liquids Klow Fruit, drying, J. Hyder
Furnace, C. Bennett.
Furnace, C. Bennett.
Gas, manufacture of, E. J. Jerzmanows
Gate and door fastener, C. T. Sweet
Glove fastening, G. Havell.
Governor, meter, W. N. Milste
Grate, basket, H. T. Simons
Griddle greaser and holder, M. Nichols
Gun, machine, E. A. Lel
Harrow, L. Norton.
Harrow, D. Rhodes
Harrow, G. M. Titus...............................
Harrow and clod crusher, J. W. Haggard
Harrow and clod crusher, J. W. Hagg
Harvester cutter, A. J. Bigelow
Harvester cutter bar, E. R. Whitney Hatblocking and banding machine, R. Eickemeye
Hat pouncing machine Hat pouncing machine, G. Yule.
Hatchet, J. C. Chapman
Heater and steamer, meal, Curtis \& Andrews .
Hides, etc., machine for scouring Hides, etc., machine for scouring, J.W. McDona
Hoistways, J. B. Waring......................
Horn cutting machine, M. M. Goldsmith et Horn cutting machine, M. M. Goldsmith et al...... 200,050
Hubattaching device, S. Kepner Hub, M. D. Golder.
Hydrantand stre
Hydrantand street washer, J. B. Fish
Ironing machine, T. S. Wiles
Key for locks, G. Finley.
Knife cleaner and sharpener, C. A. Heegaard
Knitting machines, H. M. Mellor
Ladder, step, M. Medar
Ladder, , wire rope, A. Elton
Lamp bracket, J. J. Nolan...
Lamp burner, L. J. Atwood
Lamp burner, L. J. Atwoo
Lamp wick, Ẅ. D. Smith .
Last, T. Dann...........
Latch, M. Davenport
Lathe chuck for turning stone, E. Rogers
Level, S. Gissinger
Lifting jack, F. S. Yinger
Liquid measure, S. 3d \& C. F. Rigby
Locks, tumble for permer
Locks, tumbler for permutation, J.
Loom temple, R. P. Pearson.........
Lubricating compound, C. Johnston.
Lubricator, steam engine, Guild $\&$ Cla
Mandrel, forging. J. H. Alker
Mill, grinding, s. C. Schofeld
Millstone pick, H.
Mower, G. S. Peck
Musical instruments, mouth piece for, J.G.Tru
Neck tie, J. H. Fleisch
Observatory, aerial, N. C. Lom bard..
Oils, storing, etc., T.J. MeGarry (t
Ozone generator, A. W. Sangste
Pan, frying, Edgar \& Bardell..
Pan, frying, Edgar \& Bardell.
Paper box, J. W. sprowles...
Paper pulp, wood, W. R. Patrick
Pavement W. H. \& H. M. Stow
Pen holder, Hoffman \& Boman
Piston, W. Sprague
Plane, J. B. Boyce..
Planter, W. M. Carrik
Planter, J. V. Cloyd
Planter, J. V.. Coyd
Planter, J. D. Pope
Plotting instrument, D. F. Hitt
Plow attachment, w. . . Fowler
Plow, P. Bouchet...
Plow, S. T. Ferguson
Plow, W. H. Parlin
Pow, weep for vehicles, J. I.....
Postal card, M. Lee
Press for compressing cigars, F. X. Osburg.
Pressure
Pressure gauge, o. W. Bayley..........
Projectile for heavy guns, R. Hadfield
Projectie for heavy guns,
Propeller, steering, T. F.
Pulley apparatus, A. Box.
Pulley apparatus, A. Box
Pump, air, W. S. Burgess
Pump, steam, J. Evans.............
Punch, conductor's, R. McCully.
Railway cattle guard, J. W. Street
Railway rail joint, J. B. Allen.....
Railway switches, signaling, S.C.Hendricks
Railway tube, wire rope, W. Eppelsheimer..
Railways, tube for wire rope, w. Eppelsheimer
Rake, horse hay, W. Reno...
Ram, hydraulic, I B. Millingt
Refrigerator, G. E. Acklom....
Refrigerator, J. D. Rasey....
Refrigerator, J. D. Rasey.....
Rock-boring machine, A. Brandt.
Rule for making lines, w. v. Marshall
Sash farstener, A. W. Lozier.
Sash fastener, M. McComb.
Sash fastener, M. McC
Saw, circular, J. K. Lo
Saw set, J. F. Fields
Saw teeth, swage for, N. W. Spaulding......
Saws, hardening and tempering, S. E. Farmer Saws, hardening and tempe
Screw, wood, H. C. Stone..
Seed dropper, A. Vannorman
Sewing machine attachments
ewing machine attachments, G. Re
Sewing machine caster, B. F. Ryder
Sewing machine, straw, Blackburn \& Moeskein.
Sewing machine, wax thread, J. H. Walker..
Sewing machine, wax thread, J. H. Walker....
Sewing machine waxing device, M. H. Pearson
Sewing machine waxing device, M. H.
Shears, E. Van Noorden..............
Shingle-packing machine, W. A. Bennett.
Shingle-sawing machine, W. J. Sherburne
Shirt and drawers,
Shoe, W. H. Land
 Sinks, grease arreste
Skate, S. Horsford..
Sat
Slate, frame, J. W. Hyatt.
Sled, boys', J. Y. Chapma
Sled, boys', J. Y. Chapma
Spice box, T. W. Burger.
Spice box, T. W. Burger.............
Spinning machinery, H. M. Williams
Spring, door, L. Threlfall.
Spring, spiral, R. Vose...
Spring, spiral, R. Vose.......
Spring, vehicle, W. McCord.
Steaming table, Shaw \& Menz
199,978
 [A copy of any of the above patents may be had by
remitting one dollar to MUNN \& Co., 37 Park Row, New
York city.]

English Patents Issued to Americans. Boot and shoe heel.-G. B. Massey et al., N. Y. city.
Boot and shoe last.-W. Y. Edwards, Brooklyn, N. Y. Dieand plate press.-E. Hewitt, New York city. Fieand pate press.-E. Hewitt, New York city.
Frge, portable.-C. Hammelmann, Buffalo, N. Y.
Friction clutch.-G. R. Clarke, Brooklyn, N. Y. Friction clutch.-G. R. Clarke, Brooklyn, N. Y.
Gas manufacture.-G. Ramsdell, Oswego, , Y. Y. Grain elevator.-W. Stoll, Brooklyn, N. Pantaloons.-J. W. Davis, San Francisco, Cal.
Propelin Propelling vessels.-J. Curtis et al., Middletown, Mo. Pump, compressing an
ton, Mass. Sewing machine attachment.-E. Wh
Shutter.-A. Bijur, New York city.
Sieve.-G. W. Ketchum, Newark, N.
Slate-dressing machine.-A. Auld, Jr., Cleveland, o. Stove, oil.-J. Dobinson, New York city. Water filter.-R. S. Jennings $e t$ al., New York city.
Wood, preserving.-W. Thilmany, Cleveland, o.

HeATENTS
 , COPYRIGHTS
 Messrs. Munn \& Co., in connection with the publica-

 tion of the Scientific American, continue to examine ImprovemIn this line of business they have had over thirty YEARS' EXPERIENCE, and now have unequaled facilities for the preparation of Patent Drawings, Specifications, and the Prosecution of Applications for Patents in the
United States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, Trade Mark Regulations, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements
of Patents. All business intrusted to them is done of Patents. All business intrusted to them is done terms.
We
We send free of charge, on application, a pamphlet to procure them; directions concerning Trade Marks, Copyrights, Designs, Patents, Appeals, Reissues, In-
fringements, Assignments, Rejected Cases, Hints on fringements, Assignmen
the Sale of Patents, etc.
Foreign Patents.-We also send, free of charge, a
Synopsis of Foreign Patent Laws, showing the cost and Synopsis of Foreign Patent Laws, showing the cost and
method of securing patents in all the principal counmethod of securing patents in all the principal barn-
tries of the world. American inventors should bear in mind that, as a general rule, any invention that is valumuch in England and some other foreign countries. Five patents-embracing Canadian, English, German, French; and Belgian-will secure to an inventor the ex-
clusive monopoly to his discovery among about oxe clusive monopoly to his discovery among about one
HUNDRED AND FeTY MILIIONs of the most intelligent people in the world. The facilities of business and tained abroad by our citizens almost as easily as at home. The expense to apply for an English patent is $\$ 75$; German, $\$ 100$; French, $\$ 100$; Belgian, $\$ 100$; Canadian, $\$ 50$.
Copies of Patents.-Persons desiring any patent
issued from 1836 to November 26, 1867, can be supplied with rom 1836 to November 26, 1867, can be supplied pending upon the extent of drawings and length of pending upon
specifications.
Ane patent issued since November 27, 1867, at which ings and specifications, may be had by remitting to this office $\$ 1$.
A copy of the claims of any patent issued since 1836 will be furnished for $\$ 1$.
When ordering copies, please to remit for the same as above, and state name of patentee, title of inven-
tion, and date of patent. United States patents, sent free A handsomely bound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every patentee and mechanic, and is a useful hand book of reference for everybody. Price 25 cents, mailed free.

MONN \& CO.,
Publishers SCIENTIFIC AMERICAN,

FOR PRACTICAL MEN.
 $\underset{\substack{\text { ingrithemos } \\ \text { can press }}}{ }$

 HENT CARETY BAIRD \& CO lianees for use in case of Explosions, etc. By CHAs

Photugraphy Made Easy The American Ontical Co:'s Pocket Cameras, NEWTON'S EMULSION for DRY PLATES.
 scovill mantfacturing co., Publishers,
 Judson's Patenter,
Model makers, jevelers,

 POINTS OF A GOOD HORSE. BEING

ENGLISH TRADE.

SECOND-HAND ENGINES. PARIS EXPOSITION.

Patent Wood-working Machinery, Band Saws. Scrol
Saws, Friezers, etc. Cordesman, Eagan \& Co.,Cincin'ti, 0

TUNNELS AND ROCK-BORING MA
 Various Machines, Amount, of Hater, Compressed Air
Vtc., raunired and nine illustrations. The Altenber
zinc Mines, Aix-la-Chapelle; Perseberg Mines, Swede

 AMERIICAN SUPP, CEsLE, etc. Contained in Scien 109. Price 10 cents. To
be had at this officeand of ail newsdealers.
MUSIC.
end to BOOSEY'S, 32 Eas
14th Street, New York, fo
atalogue of their music

STONE AND ORE BREAKER AND CRUSNHER:

BLAKE CRUSHER CO., New Haven, Comn.
WORK FOR ALL Pond's Tools,

 WM. D. ANDREWS
\& BRO.,
$\$ 100$

The George Place Machinery Agency

 man's 'Time Detector. capable of accurately con-
trolling the motion of a watchman or parolman yt the
different stations of his beat. Send for circular.

Lathes, Planers, Shapers

$\$ 2500$

THE SCIENCE Of LIFE,

PATENT MINERAL WOOL.
 P. o. Box 4461 .

CURED!

TO EXPPORTERSS

man market. Any information geserally for the Ame
return mail free of charged
$\mathbf{1 9}$ Great st., Helene

spare the croton and save the cost.
Driven or Tube Wells

THE DINGEE \& CONARD CO'S ROSES

號

 To Engineers, Builders, Contractors, Architects, Engineering ${ }^{\text {The ont }}$ Specifications and Contracts.

 A FOUNDRY, MACHINE SHOP , AND

Steel Name Stamins

Wood-Working Machinery,

 WANTED Men in ean Etate for the Reteotive

 Warranted superior to any | WILBRAHARM |
| :--- |
| 2318 Frankord Ares. | INTERNATIONAL EXHIBITION FOR

Yarn and Cotton Goods Dyers，Calico Printers，

 P．B工ATSDM工工 \＆CO．， Manufacturers of the Blaisdell Patent Upright Drills

JENNINGS＇WATER CLOSETS Prioes Reduced Send for Girgular
94 Beekman Street New York 1874，1875， SCIENCE RECORD．

Harrison＇s System of Grinding：

MACHINISTS＇TOOLS．
 new haven manupactiving con：
 B．WESTERMANN \＆C0．，New York，
 Germanl French，English \＆Americall Books Natural Sciences，Physics Chemistry，Phot otoraphy，Phar－
macy
mathematics，Astron Civil Engineering Architecture，ITechnology， 63 Pages Octavo．Price 15 cents，refunded on

H．RR．WRORTEHENGTON，

 25 EXTRA NEW iVEAR CARDS，with name
TO ADVERTISERS！ AYER\＆SON S S MANUAL

AƯCTCTIƠN．

FRIEDMANN＇S PATENTINJEUTORS

 Also Patent Oilers and Lubricators．

Are You Awake？

No Sawdidst No planinol 50 PER CENT．OF WOOD SAVED．

ROCK DRILLING MACHINES
AIR COMPR＇ESSORS
SEND FOR PAMPHLET．FITCHBURGGASS． Mill Stones and Corn Mills
 Catalogue．J．T．NoYe \＆SON，Buffalo，N．Y． HARTFORD

STEAM BOILER

 Inspection \＆Insurance COMPANYW．B．PRANKLIN，V．Pres＇t．J．M．ALLEN，Pres＇t． J．B．PIERCE，Sec＇y．
ADVERTISERS
 IV BM STREET，CINCINNATI， 0 ． PORTABLE QUARTZ MILL． MILL，HORSE－POWER，AND PAN COMPLETE GOLD AND SILVER MILL

JOSEPH C．TODD，

 PATENTTS SOLD．

Regular Monthly Sales the first week of each month
by George W．Keeler，Auctioneer，at his salesrooms by George W．Keeler，Auctioneer，at his salesrooms，
53 Liberty Street，N．Y．For terms，etc．，address The
New York Patent Exchange，Room 11，55Liberty Street．

IRONWORKS，

OTIS＇
safett hoisting Machinery．

RISDON＇S IMPROVED
TURBINE WATER WHEEL Yielded at the test of Turbines at Centen－
nial Fx abosition the best results at all stages T．H．RISDON \＆CO．，
Manufacturers of MILL MACHINERY．
NEWSPAPER FILE
The Roch patant Filit for rreserying nerpgapers
magainines and
and

MUNN \＆CO．，

THE TANITE CO．． EMETROUDSBURG，PA． EMERY WHEELS AND GRINDERS．

 Roor Paint for Ti，Rerofs，iron whark；\＆c． Roor Coating，for restoring anco poanes，ing old roofs．

 H．W．JOHNS MANUFACTURING COMPANY， PMaiden Lane，New York．

Bound Volumes

 Scientific Amorican．

Address all communications to to till ins on receipt of price． JOHNED．E．WARDS，

§rientific Americau．

The Most Popular Seientific Paper in the Word．

 thirty－third year．Only $\$ 3.20$ a Year including Postage．Weekily．
This widely circulated and splendidy illustrated paper is published weekly．Every number contains six－
teen pages of useful information，and a arge number teen pages of wains of new inventions and discoveries
original engravis and representing Engineering works，steam Machinery， New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electricity，Telegraphy，Photography，Archi－
tecture，Agriculture，Horticulture，Natural History，etc All Classes of Readers find in TaE Scievruro All Classes of Readers find in tre scientirio
American a popular resume of the best scientific in－ formation of the day；and it is the eaim of the publishers
to present it in an attractive form，avoiding as much as possibsent a itstrus an attractive form， ，toroiding as moch as his journal affords a constant supply of instructive
reading．It is promotive of fnowleage and progress in Terms of Subscription．－One copy of THE ScIEN－ postage prepaid，to any subscriber in the United States cents by，on reeeipt of three doliars and twenty
conths，\＄1．00．
mublishers ；six months，\＄1．60；three
Clubs．－One extra copy of Triscrinntifichmerr－
CA w will be supplied gratis foreveryclub of fuve subseribers at 93.20 each；addititional conies at same proportionote rate．Postage prepaid．
One copy of ThE SCIENTIFIC AMERICAN and one copy
of THE SCIENTIITC AMERICAN SUPPLEMENT will be sent Tor one year，postage prepaid，to any subscriber in the the publishers．
The safest way to remit is by Postal Order，Draft，or Express．Money carefully placed inside of envelopes，
securely sealed，and correctly addressed seldom astray，but is at the sender＇s risk．Asdress all letters
and make all orders，drafts，etc －MUNN

$$
\begin{aligned}
& \text { MUNN \& CO., } \\
& \text { Park Row, New Y }
\end{aligned}
$$

The Postal Union，－Under the faciities of the
Postal Mnon，the SCIENTIFIC AMERICAN is now sent by
post direct from New York，with regularity，to suberib－
 Russia，and all other European States；Japan，Brazil， Mexico，and all States of Central and South A A merica．
Terms，when sent to foreign countries，Canada excented
 year．Thisincludes sostage，which we pay．Remit by
postal order or draft to order of Munn \＆Co．，
Row，New Yark

