

A WEEKLY JOURNAL Ö PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, MARCH 9, 1878.	$\left[\begin{array}{l} \text { \$3.20 per Annum } \\ \text { [POSTAGE PREPAID. }] \end{array}\right.$

THE HAT CONFORMATOR AND ITS DIAGRAMS.
Every one who has purchased a stiff hat, whether of silk or felt, has undoubtedly observed that although there may be a dozen hats submitted to him, each bearing inside the number corresponding to the size which he generally wears, yet he may try on perhaps ten out of that dozen before he finds one which comfortably fits his head. If he seeks a reason, it will be shown him that hats are usually made of an average shape, and that the size number means the mean diameter of the figure bounded by the periphery of the opening; and further, that slight accidental variations from the typical shape often correspond to variations in individual heads. Where no hats in which the desired variation exists can be found in the stock of the seller, then the customer usually purchases the nearest approach to a fit that he can obtain, and departs with the conviction that there are several places around his head between which and the hat there is no contact, while elsewhere there is a pinching which augurs of future headaches. The first difficulty is usually overcome by wads of paper stuffed in under the hat lining, and the other is obviated in course of time by the stretching of the hat after it becomes softened by the warmth of the wearer's head.
From the period when stiff hats were invented up to 1843, people put in extra linings and converted their craniums into hat blocks-and they do so yet, wherever the very ingenious conformator, invented by M. Allie, of Paris, France, in the above named year, is not in use. All who have visited hat this apparatus with some curiosity. It resembles a hat, and in a mysterious manner it adapts itself to any one's head the
instant it is tried on. While the customer is experiencing he novel sensation of wearing a self-fitting hat, made of 610 separate pieces, he hears a click, and from somewhere in its crown the hatter removes a scrap of paper on which is pricked a diagram, and departs into an inner chamber with said slip, and also the particular hat which the customer fan cies, but which refuses to adjust itself to its would-be owner's cranial peculiarities. After a moment's delay he returns, he refractory hat, with some misgivings, is tried on again, and the customer, this time discovering that it fits like a mould, departs lost in speculation as to how it all was done This we propose to explain, and at the same time to examine briefly some curious facts which are adduced by the onformator's aid.
The apparatus itself is fully illustrated in Figs. 1 to 7, Fig. 1 showing it as adjusted on the head. It has the shape of hat brim and crown, and is formed with sixty small branch es of ebony, A, plated at the edge of the rim with mother-f-pearl. These are held by a brass spring wire, B, which keeps the branches close to the frame in which they slide. When not in use the inner arms of these branches together form an elliptical cavity, but when the conformator is placed on the head, every projection thereon pushes the branches more or less outward, the wire spring yielding as indicated in Fig. 4, and the cavity consequently assuming an irregular hape.
On top of the instrument there is a lid, E; Fig. 1, lined with cork. On this a small piece of paper, about three and a half inches long by three inches in diameter (Fig. 3) is placed and clamped by the ring, D. It will be observed from e sectional view (Fig. 2) that the upper inner arms of the
branches, A, do not meet in the center of the crown of the hat, but form an elliptical or otherwise shaped aperture, as shown in Figs. 4 and 5, corresponding of course exactly to that of the cavity which conforms itself to the shape of the head. At the inner end of each arm is a sharp steel point, and upon these sixty points the paper, when the lid, E , is closed, is pressed. It will be clear that the punctures made on the paper will register in reduced scale the size and exact conformation of the head
The hatter when he takes the paper to his workroom cuts it all around just outside of the punctures, and places it upon wo points in a small frame in the apparatus represented in perspective in Fig. 6 and section in Fig. 7. As the two potats hold the paper, or " conform," as it is technically termed, in position, a brow, equally made of branches, F, forty-six in number, after being expanded from the middle to allow the paper conform to be placed in the center, is put on the frame above mentioned; and then the branches are gently slid back o that they touch the edge of the paper all around. When this operation is done to a nicety, eight thumbscrews, G, are tightly screwed down so as to prevent any moving of the branches, and it is ready for use as a block giving the natural shape and size of the head. It only remains to warm the hat, force it down upon this block, and let it cool thereon, to cause it to become an exact fit. In other words there is thus accomplished in a few moments that which when done by he natural warmth of the wearer's head occupies a week or wo, and involves considerable discomfort. The conformaor is manufactured only by the inventor in France. At empts, we are informed, have been made to produce the in[Continued on page 146.]

THE HAT CONFORMATOR.

§rientifit gmoriran.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
NO. B'Y PARK ROW, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN One copy, one year, postage included..
One copy, six months, postage include
Clubs.-One extra copy of THE SCIENTIFII AMERICAN will be supplied gratis for every club of flve subscribers at $\$ 3$
same proportionate rate. Postage prepaid.

The Scientific American Supplement is a distinct paper from the Scientific American. THE SUPPLEMENT is issued weekly; every number contains 16 octavo pages, with handsome
cover. uniform in size with ScIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, $\$ 5.00$ a year, postage paid, to subscribers. 10 cents. Sold by all news dealers throughout the country
Combined Rates. - The Scientific American and SUpplement
will be sent for one year, postage free, on receipt of seven dollars. Both will be sent for one year, postage free, on receipt of
papers to one address or different addresses, as desired.
The safest way to remit is by draft, postala order, or registered letter.
Address MUNN \& CO., 37 Park Row, \mathbf{N}. \mathbf{Y}.
Subscriptions
The Postal Union.-Under the facilities of the Postal Union, the ScIENTHPIC AMERICAN is now sent by post direct from New York, with regu-
larity, to subscribers in Great Britain, India, Australia, and all other Britlarity, to subscribers in Great Britain, India, Australia, and all other Brit ish colonies; to France, Austria, Belgium, Germany, Russia, and al
other European States; Japan, Brazil, Mexico, and all States of Cen other European States ; Japan, Brazil, Mexico, and all States of Cen
tral and South America. Terms, when sent to foreign countries, Canada excepted, 84 gold, for SCIENTIFIO AMERICAN 1 year ; for both SCIENTIFIC AMERICAN and SUPPLEMENT, 99 gold for 1 year. This includes postage, Which we pay. Remit
Park Row, New York.

VOL. XXXVIII., No. 10. [New Series.] 'rhirty-third Year
NEW YORK, SATURDAY, MARCH 9, 1878.

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 114,

For the Week ending March 9, 1878. Price 10 cents. To be had at this office and of all newsdeal rs.

ding Kachines. Hyaraunc Forgng Macgines.-Culling Ralway Rails.

III. TEGCHNOLOGY- Improved Thrashing and Finishing Machine,3ilius

invention as a means of colture.

Next to a passion for personal freedom a zeal for material onquest has always been the dominant characteristic of finds its latest own composite people, the offspring, so to speak, of the most active and independent elements of Germanic life.
Within a century we have conquered a wilderness as large as that which our immediate ancestors had been two thousand years in subduing. And not less rapid and sweeping have been our conquests in the finer and more difficult domain of the forces of nature. We are a nation of investiga tors and inventors, not, as has been said, because we are possessed by an overwhelming greed of gain, but rather because we are

The American people are not remarkable for their ability to get or their desire to hold wealth as an end; we are noted rather for lavish expenditure and open-handed liberality. For the most part riches have come to our men of wealth in cidentally. The primary object has been the mastery of some department of commerce, some material conquest
some victory over the forces of nature, or the achievement some victory over the forces of nature, or the achievemen of some difficult end through successful invention.
With this exception we are thoroughly in sympathy with the views expressed in Professor Shaler's suggestive essay on the " Effect of Invention on National Culture," and the need of taking more account of nation 1 impulses in the work of education. It is unhappily true, as he points out, that our popular theory of education is framed on the needs of centuries gone by, when the only classes that could make use of education were those separated by occupation into the so-called professions. It is a theory that "has not the least adaptation to those conditions which business industry brings to life," and the practice of our educators is little better than their theory. With all the advances made of late years in our regular means of education, "but little is done to touch those great masses of men who are to live by their brains, but are to use their brains in the counting house, the shop, or the manufactory."
Meantime whence comes the high average intelligence, the broad and often high culture of the great army of Doers who have given our age and country so much of their character and fame? The schools have had very little to do with their development. The public press, particularly sci entific and industrial publications, have done far more to stimulate and instruct this new order of great men. Still more, we believe, has been accomplished by the encourage ments held out to investigators and inventors by our cheap and liberal patent system. Years ago we described our Pat ent Office as a great National University, whose diploma of merit for successful endeavor were infinitely more valu able and desirable than those of any college. It is this that has given to so large a portion of our people that " habit of continuous seeking in all sorts of ways for the untried possibilities of nature," which Professor Shaler finds so remarkable. It is this that has made inventors of so many thousands of our working men, and so developed in them those qualities of mental vigor, intensity, patience, and fertiity, which it is the chief aim of the highest education to give
To retain this spirit of experiment and investigation which To retain this spirit of experiment and investigation which
lies at the bottom of American inventiveness, Professor Shaler insists that, first of all, we must maintain the inducements that lead men into this sort of life, namely, itofmonetary prizes. Next, we must increase the efficiency and certainty of these prizes, by maintaining the present system of patents, with such improvements as may secure the greatest freedom from the frictions which now embarrass its operation. How the defects of our patent laws are to be remedied he does not attempt to show; he only asks that any changes that may be made shall not diminish the intensity of the attractions that now lead men into the paths of in ention.
Of the peculiar and excellent character of the education which a life of invention gives, Professor Shaler speaks largely from personal acquaintance with inventors. He says: "I have known several men of no other than the preliminary education of the common schools, who have extended the mental vigor, attained in this vigorous grapple with natural laws, over a wide field of information. . . . Such other inquiries as I have been able to make concerning inventors I have not personally known, and the histories of men of thi class in all ages, show that there can be little doubt that its pursuits are in some way necessarily connected with the highly desirable vigor of intelligence and capacity for labor which the world always greatly needs in all its avocations, and finds but seldom made to its hands." Further on he remarks that the well wisher of the State must feel that this educational influence of inventiveness is one of the most hopeful elements in the great tide of trade life which has swept into society. "As long as we can have this sort of training applied each year in larger and larger share to our trade life, we may feel the more hopeful of the educational influences at work in that part of society. We have therein something that gives in large part the character of results attained in scientific training of a high grade, as well as the general effects which are attained by all well directed train-ing-the habit of and desire for continuous absorbing mental labor."
This expression of opinion from an honored scientific teacher in one of the highest institutions of our land ought to be very encouraging to the young mechanics and others
who feel that in them the spirit of invention is thwarted and held back by lack of information and mental training. It is equivalent to saying: Go on inventing; study, think, try you are in the best of all schools; a grateful nation stands ready to certify and reward your successes; and even your failures will be valuable to you through the training the ffort involves and the widened knowledge they will give of the forces and mechanism of nature and art.

THE GENESIS OF THE TELEPHONE

It is a curious fact with relation to the telephone, and Pro fessor Dolbear in his little work on that instrument makes, we observe, especial note of it, that there is not a single prin ciple involved in its construction which was not known in 1840. That sound in air would cause vibration in a solid iron body, that this iron acting inductively upon a magnet would originate magneto-electric currents in a wire helix round that magnet, that these currents passing to another helix would react upon a magnet inclosed therein and in rease or decrease its strength, and that said magnet could be made to influence an iron body in front of it-all were sepa rately well understood. Professor Page three years before the date mentioned showed that a rod of soft iron temporarily magnetized elongates, and when deprived of its magnetism suddenly regains its original length, at the same time emit ting a sound. Here was the first transmission of sound by the electric current. It would not be difficult to go into more minute detail and dissect almost any other modern invention, and point out the fact that its principles have long been nown. But scientific investigators are not necessarily in ventors. They question nature and record her answers. As time advances this accumulated knowledge becomes di gested, subjects at first widely separated are brought together sometimes by chance, sometimes by keen minds seeking so lutions of problems which check their progress to some par ticular goal, and thus ultimately great adaptations of incal ulable value to humanity, but perhaps never dreamed of by those who contributed so directly to their existence are eached.
It is still more remarkable, however, that evidence is at hand showing that the telephone was invented many year go and forgotten. It is generally supposed that Reiss, in 1861, was the first to use vibrating membranes or thin plates. Professor Sigismund Beer sends us an account of a "new musical instrument," which he finds in the Berliner Musit Zeitung Echo, No. 33, Dingler's Journal, vol. 126, both fo he year 1852; and Böttger's Polytechnisches Notizblatt, for 1853. The inventor is M. Petrina, of Prague, who is stated o have constructed "' an instrument with keys which by a galvanic current sets a small iron plate into vibration as soon as the hand leaves the key. Each key p oduces a different tone, and the tuning and use are similar to that of a piano forte. A second instrument put at a considerable distanc is connected with the other in such a way that the music played on the one resounds from the other." This appear to be a musical telephone put in practical form long before any now known.

THE TREATMENT OF THE INSANE

Judge Brady's recent decision in the Dickie case in thi city has brought this subject into more than ordinary public prominence. For nearly seven years Miss Dickie had been confined in an asylum as an insane person. The officers of he institution held that the certificate of insanity under which she had been committed to their care was justly and properly given; and that the patient was still of unsound mind. The jury before whom the case was tried decided hat Miss Dickie, was not insane; and the opinion has been reely expressed in court and out of it that she has never been afflicted with that terrible malady. A sister of Miss Dickie (through counsel) raised a number of objections to the report of the Commissioners in the lunacy proceedings, overruling which Ju Brady took occasion to sa
It cannot be denied \square ming the finding of say:
Miss Dickie's case to be torrect, that her long imprisonment is a disgrace to our boasted civilization, intelligence, science and justice, and imposes upon us the duty of creating every possible preventive against a similar outrage and disgrace.
"The subtle thing called insanity may baffle even vigilant experience in the best directed efforts to discover its existence, and be present though it would seem not to be. In this case we may be deceived; but, applying the tests which human ingenuity has devised, the declaration is legally and properly made that Miss Dickie is neither insane nor imbe cile."
It m
It may be freely admitted that there is room for many and great improvements in our treatment of persons of unsound mind both before and after their subjection to restraint and medical treatment. But the current belief that it is an easy matter to secure the confinement of sane persons on the charge of insanity, or that many persons are wrongly committed through conspiracy or erroneous judgment, does ot seem to be well founded. Indeed where one person is unjustly confined as a lunatic, through error or conspiracy, here are probably scores, perhaps hundreds, who ought to be but are not under restraint and treatment for mental un soundness. And in our opinion the cause of humanity, not less than that of justice and public safety, requires an exten sion of sanitary supervision in such cases rather than its re striction. And this, too, not merely after the patient's com mitment, as Judge Brady suggests, but before it, with a view to making confinement unnecessary.

We do not mean that on the first indication of mental disorder the subject is to be haled before a court and put on trial for his liberty: that were quite as bad as the presen custom of allowing the disease to go on unchecked until it becomes chronic, perhaps incurable, before anything is done to protect the patient, his family, or the public, and then proceed at once to violent measures too often calculated only to aggravate the complaint. What is needed is rather
some legal means of bringing incipient insanity under proper some legal means of bringing incipient insanity under proper
treatment with the least possible interference with the treatment with the least possible interference with the access of insanity is slow, and if taken in time the disease yields readily to proper medical and moral treatment. The great sanitary problem is therefore to secure the earliest possible attention to the first signs of the coming maiady; if this could be done in every case, it is safe to predict that the over-crowding of our insane asylums would soon come to an end.
Perhaps the most that can be accomplished at pres ent is the dissemination of right views touching the causes and symptoms of insanity, and the vital necessity of immediate action when such symptoms begin to appear. There is a world of ignorant prejudice to be overcome on these points. Multitudes of otherwise intelligent people stil believe that insanity is a purely mental malady, independent of physical causation; that there is something peculiarly terrible or degrading in mental disorders, justifying conceal ment, even willful non-recognition, till the last moment; that insanity implies entire loss of reasoning power; that the insane are always violent or liable to fits of violence, and so on. As a natural consequence, most people, in the absence of maniacal demonstrations, refuse to admit a suspicion of insanity on the part of friends or relatives, until the case has gone beyond control.
So long as extreme measures for the restraint of the insane are the first and only ones taken, we may expect to see patients, in the majority of instances, too long left to themselves, particularly where property is involved and the instigators of legal interference are liable to suspicion of corrupt motives. When it comes to be generally recognized that the kindest interference in such cases is the speediest, and that any marked change in or exaggeration of the habits of thought, feeling, or conduct of an individual, in the absence of rational cause, is a sign of mental disturbance that may culminate in mental wreck, a long step will have been taken toward the general prevention and cure of this distressing disease.

The problem, how, and by whom, and to what extent, such preventive interference is to be made, is one of extreme delicacy. To neglect such timely interference is in most cases to suffer the patient to go on to mental and physical destruction, often to the bodily or other material harm of others. To undertake such duty unwisely or rudely is to open the way to gross injustice and exasperating interfer ences with personal freedom. But because the duty is difficult is no good reason for our neglecting it; and just as the community is justified in requiring the seclusion of persons afllicted with or exposed to infectious diseases, or in insist ing upon such preventive measures as vaccination, so we believe it would be justified in bringing under supervision incipient as well as violent or chronic insanity.
Managed discreetly, such supervision would be the surest of all safeguards against the possible seclusion of sane persons in public or private hospitals for the insane. For instance, suppose it should be made the duty of the family, family physician, or immediate friends to report at once to a properly constituted board of health the reasons for suspecting mental change in the direction of insanity in any individual. This without publicity; the first duty of the sanitary board being to have the case privately investigated by a committee of experts. Should this examination prove the suspicion well founded, the subsequent steps would be determined by the more or less critical state of the subject. In the majority of instances it would probably be sufficient to advise the patient of his need of medical treatment or a change in his mode of living through rest, recreation, lightened labor or the like. Should this fail to stay the progress of the disease, or should the disease have gone too far to be arrested by such means, compulsory treatment might be resorted to, still, if possible, without otherwise restraining the patient of his liberty of action. Should the case seem to justify immediate and forcible interference with the patient's freedom, the patient should be brought into open court and formally tried; or if the case be still more urgent, he might be committed to an asylum on the certificate of two or more physicians, as now, and the case regularly tried before a jury of physicians within a limited time thereafter. In some such way as this it might be possible to prevent absolutely the permanent commitment of a sane person; and at the same time it would in multitudes of cases prevent the
To prevent the continued imprisonment of patients have recovered their mental sanity, the periodic examina tion of all the inmates of public and private asylums should be undertaken by the sanitary board; the examining com mittees to be composed of experts not connected by kindred or social or business relationships with either the patient o the persons having him in charge.
Bearing in mind the concurrent testimony of all who have had to do with the insane, that the patients usually reach the asylums long after the disease has ceased to be readily amenable to treatment, we are persuaded that the cost of such sanitary boards as we have suggested would be saved
many times over in reducing the number of incurable in
mates of our asylums, let alone the greater saving of lif and health and usefulness which early treatment migh effect.

FISH TEETH SET ON HINGES.

It was discovered many years ago that the mouth of the angler (Lophius piscatorius) is furnished with hinged teeth capable of bending inward toward the throat when pressed upon, and springing back to an upright position when th pressure is removed. For a long time this feature was sup posed to be unique, but in 1866 Professor Owen showed that a similar arrangement existed also in two other fish, namely, Anableps and Pocilia. An English microscopist (Mr. Chas. S. Tomes) has lately discovered that several other predatory fish, notably the hake, and in a less degree others of the Gadidu, present a like condition of teeth, and still more re markably, the common pike.
In all these cases the hinged teeth have certain characters in common-they all yield to slight pressure, but in a single direction only, being rigidly immovable to force applied in any other direction. The mechanism by which this result is attained is, however, very different in the different species.
In the angler and the hake the teeth which are hinged form the inner and larger of two rows of teeth set upon the mar gin of the jaws; their mobility being useful in facilitating ihe ingress of the fish's prey, but opposing its escape. In the mouth of the pike, on the other hand, the marginal teet are rigidly anchylosed, and the hinged teeth are situated on the vomerine and palatine bones, and are useful only in mak ing easy the swallowing of the prey.
In the angler and the hake the elasticity of the teeth resides solely in the tissue of the hinge; in the pike the hinge is no at all elastic. It is purely a hinge, the power of movement coming from bundles of very elastic fibers which proceed from the interior of the dentine cap of the tooth, and run down to the bone on which the tooth rests. These filament and apparently again where they are blended with the bone but their intermediate portion remains soft. Mr. Tomes thinks it highly probable that other predatory fish will be thinks it highly probable that other predatory

A BRIEF HISTORY OF OUR PATENT SYSTEM.

The Constitution of the United States provides that Con gress shall have power to promote the progress of science and the useful arts by securing, for limited times, to authors and inventors the exclusive right to their respective writings and discoveries. Acting upon this authority Congress passed the first patent law, which secured to inventors the sole and exclusive right to make and sell their inventions for a term of fourteen years, upon complying with certain conditions. This law was approved April 10, 1790, and re mained in force three years, when it was repealed. During the first year of its operation, but three patents were granted the second year the number was increased to thirty-three; and the next year the number declined to eleven.
The second patent law, amended from time to time, re mained in force until 1836. One of the first patents granted under it was for Whitney's cotton gin, an invention which good authority has pronounced of more worth to the country than the whole cost of administering the patent law from the beginning till now, "including the expenses attending the litigation of patents." During the first ten years, the last decade of the eighteenth century, the number of patents granted was 266. In 1819 the infringement of patents was brought under the equity jurisdiction of the Circuit Courts of the United States. In 1832 provision was made for the reissue of patents which should be inoperative or invalid owing to any incompleteness or error in the description of the invention, made without fraudulent or deceptive in tention.
Previous to 1836, when all existing patent acts were resued and a new law was passed, the number of patents is ued amounted only to 10,020 ; since then the number ha
ncreased to over 200,000 . This third patent law with increased to over 200,000 . This third patent law, with cer
tain modifications, remained in force until 1870, when it wa revised, but not essentially altered. The term for which patents were issued was extended in 1861 to seventeen years. By the act of 1870, the Patent Office was created a a branch of the Department of State. It has since been at tached to the Department of the Interior.
The law was again modified, though not materially, in 1874; and still further changes, chiefly for the benefit of in ringers, are now pending the action of Congress.

the astounding famine in china.

The startling news is telegraphed, on apparently good authority, that no less than seventy millions of human beings are now starving and likely to perish in the famine stricken districts of northern China. The distress resulting from so widespread a calamity is almost incalculable, but some view of its enormity may be gained from the consideration of the act that the infliction directly reaches a sixth part of the vast population of China, and that the number of sufferers
exceeds by fifty per cent the entire population of the United States, and nearly equals the combined populations of all the nations of North and South America. Such news is indeed appalling, and seems to preclude the hope of effective relief. It is thought by some persons that the famine may add to the existing complications attending the immigration drive them from their own land; but it seems to us that a
oments consideration should lead to the opposite view both the number of emigrants as well as the means for emigration.

HAYFORD'S WOOD-PRESERVING PROCESS

The various processes for preserving wood have for thei object the prevention or arrest of fungoid growth. This is sought to be accomplished by two main systems; one o which consists in impregnating the wood with a solution of metallic salt, such as corrosive sublimate, chloride of zinc or sulphate of copper, and the other includes the severa creosote processes. The action of the salts named is purely chemical, and as they are introduced in watery solution, it is evident that subsequent exposure to moisture tends to re dissolve them and leave the wood unprotected. Creosoting while producing the same result chemically, also secure dryness, which alone is sufficient to prevent decay, provided that it can be maintained
In creosoting, it is essential that the wood should be thoroughly dried, in order to secure complete impregnation, and hence timber is usually seasoned for months before treat ment. This is a serıous objection, which inventors have at tempted to remedy by adding a preliminary desiccating operation. At extensive works at South Boston, Mass., under the charge of Mr. Edward R. Andrews, a process known as the Hayford is in use, which consists in drying th timber in vacuo, and then impregnating it with creosote oil under pressure. Green timber is fed by a rail track into an air-tight cylinder of boiler iron, 100 feet long and 6 feet in diameter. This cylinder has been tested by hydrostatic pressure of 200 lbs. to the square inch, and is capable of being hermetically closed. When the charge is in, steam is introduced, raising the temperature gradually, so as not to harden the outside of the wood and prevent the escape of moisture from the interior. Atmospheric air is also forced in at a pressure of from 30 to 40 lbs., to restrain the ten dency of the wood to crack. A temperature of 250° to 270° is found sufficient to evaporate the sap, and the whole steam ing process occupies from 4 hours for boards to 10 or 12 hours for heavy timber. When it is certain that the sap and vapor have been turned into steam, the direct steam is shut off, and air pumps set to work to free the cylinder from the steam, vaporized sap, and condensation. This stage is reached in about an hour. The cylinder being made tight again, and still heated by the coil, a vacuum pump is put in action. Then the creosote oil, previously heated to near the boiling point to render it limpid and penetrating, is introduced under a pressure of 60 lbs., which, added to the draw ing power of the vacuum, makes a total pressure of over 70 lbs. to the square inch. The hot oil soon impregnates the wood. If the timber is of very close fiber, the pressure is raised to a higher point. The process completed, the charge is withdrawn and another takes its place.

Wanted-A History of American Inventions.
In the printed histories of our country a thousand pages re devoted to political conflicts, civil and foreign wars, and other obstacles to national progress, where one page is given o the real springs of our phenomenal growth and prosperity -the achievements of our inventors. Great as has been the influence of some of our soldiers and statesmen, much as we are indebted to their wisdom and courage for the privi leges we enjoy, they have done comparatively little to make this country what it is. They fill the larger space in the annals of their time, but their real influence has been slight compared with that of inventors like Whitney and Fulton and Morse and scores of others, who get no mention, or but the briefest notice, in our current histories. Indeed the real the briefest notice, in our current histories. Indeed the real
history of the American people is yet to be written. And any young writer, who will bring to the investigation of American inventions, and their social, industrial, and politi cal effects, the patience, persistence, and enthusiasm which Parkman has devoted to the study of New France, or Motley to the records of the Dutch Republic, will find the field in finitely more fertile and interesting than any hitherto ex plored; and if he possesses the requisite qualifications he may be sure of an attentive hearing and an honorable fame.

Increase of Insanity in London

The experience of the London Metropolitan Asylums Board is that imbecility, idiocy, and insanity are largely on the increase in that city. The Board have purchased 100 acres of land at Darenth, Kent, where an asylum to accom modate 500 idiot boys is being erected. A Committee of the Board will consider a proposal to build another asylum on the same estate for the accommodation of 500 imbeciles. The City of London and other asylums for the insane exis in the same neighborhood, the space to be devoted for the accommodation of the mentally afflicted of London being as large as the area of the whole of that city. Drunkenness violent tempers, the worry and uncertainty of business, and other preventable causes of insanity are found to far out number the cases of hereditary predisposition.

Temperature of Flames.-F. Rosetti finds the temperaures of the flame of the Bunsen burner to be in the external envelope, $1,350^{\circ}$; in the violet portion, $1,250^{\circ}$; in the blue, 1,200 .

Better a dog that works
Than a lion that shirks.

[Continued from first page.]

strument here, but its multiplicity of parts renders it very expensive, while the demand for it is small. The present cost of the French instrument is about $\$ 100$.

Apart from its utility to hatters and their customers, the conformator is employed for scientific investigation in the study of anthropology, or rather of that branch of the science known as craniology. The object of the observer, says Virchow, "is to detect a definite connection between the shape of the cranium, the conformation of the face, and the structure of the brain." To this end large numbers of skull measurements are taken reaching down to the minutest details. Kopernicki has made no less than 139 such measurements. Unfortunately, however, there is much disagreement as to how the measurements should be regarded, or how many even in number they should be; so that while in the end them, at present there is not much to be deduced. Some curious facts are, however, obtainable by observing relative lengths and breadths of skulls, and for this purpose the conformator is excellently suited to assist the student. In these investigations the longitudinal diameter is rated as 100 , and the lateral diameter is expressed in a percentage of the units. This percentage itself is termed the "index of breadth." Completely circular skulls, Peschel says, of which the index of breadth amounts to 100 , and even more than 100, occur both in North America and among the Peruvians and the Chibcha of New Granada; they owe their form, however, to an artificial pressure of the skull, and are therefore excluded from comparison. Otherwise complete roundness is most nearly attained by a skull from Tartary, of which $97 \cdot 7$ is the index of breadth. With this Huxley contrasts a head from New Zealand of 62.9 as the narrowest of all known skulls. Bernard Davis has obtained, however, a so-called Celtic skull which has an index of 58 , so that these indices for extremes fluctuate between 58 and 98 , but the average is only between 67 and about 85 . In order to place before our readers clearly the great dif-
ference between the shapes of heads, as brought out by the diagrams made by the conformator, we have obtained from Messrs. Dunlap, Knox, Ernenwein, and other well known hatters of this city, the conforms of a number of abnormally shaped heads, and also those of several distinguished men in different walks of life-all of which are presented on the re duced scale indicated in Fig. 8. In enlarging our drawings by the scale given, the reader will obtain the dimensions of the conforms. Each large division of the scale represents one inch, and each inch division is subdivided in halves. To the measured longitudinal and transverse diameter of these last add $41 / 4$ inches, and the natural size of the head will be obtained.
Nos. 1 to 9 are remarkable for their oddity of shape. No. 1 is an instance of an exceedingly long head, the index of breadth of which is 66 , or only 3 in excess of the phenomenally narrow head noted by Huxley. The index of breadth of No. 2 is 93.3 , or 4.4 less than the widest known naturally formed skull. Both of these conforms were obtained from regular customers at the most fashionable store in this city. No. 3 is remarkable for its symmetry, a sub ject on which we shall remark further as we progress. The feature of No. 4 is the exceedingly square forehead. In all cases here given the forehead is toward the top of the page. No. 5 is a good example of the Anglo-Saxon type of head, which differs little in English and Americans, the latter hav ing somewhat the advantage in point of length. No. 6 is the type of French head, which, it will be seen, approaches pear shape. No. 7 is a rare example of an almost uniformly elliptical head, there being very little depression at the temples. No. 8 is an instance of a German head, possessing, as is the rule in all cases of that nationality, considerable breadth. No. 9, as compared with the others, seems reversed, the forehead being broader instead of following the regular rule of being narrower than the back. No. 45 is an exceedingly curious example, the rear of the head narrowing almost to a point.
We shall hardly venture to connect the characteristics of
the eminent gentlemen, the sbape of whose heads is given in he succeeding examples, with their cranial conformations. King Kalakaua seems to have a head curiously protuberan along the entire left side, and in marked contrast with that Mr. Manton Marble, whose conform shows protuberance on the rear and almost indentation forward on the same side The large heads of Messrs. E. W. Stoughton, Rev. Dr. Mc Vickar, and Mr. Seligman, the banker, are noticeably in ontrast with the small head of General Pleasonton of blue glass fame. Mr. Joseph Jefferson, the actor, possesses an exceedingly symmetrical skull, and Mr. Eliot C. Cowdin one n which the right side is almost flat. It will also be observed that in almost every example here given-and the same holds true in the great majority of all instances-the eft side is most protuberant. It may be surmised that there s some possible connection between this circumstance and he fact pointed out by Brown-Séquard, that the left lobe of the brain comes into greater use, in its control of the right de of the body than the right in side. Still, there can be no general rule safely laid down to ccount for lack of symmetry in the cranium, any more than one can be adduced to explain differences in physiog nomy. It is very probable, however, that outside influences acting upon the soft unclosed skull of the infant in some measure determine its shape, as, for example, a constant habit of resting the head while sleeping upon one or the other side.
As regards the variation in the shapes of the heads of dif erent nationalities, a large amount of statistics has been gathered. Even the average proportions of the skull vary within the limits of the individual races. Welcker has found among the Malays variations from 68 to 82 in index of breadth. In Swedes the average index of breadth is 75.2 Dutch, $75 \cdot 3$; English, 76; Danes and Icelanders, 76.1; Ger mans as high as $80 \cdot 1$; Croats and Czechs up to $82 \cdot 1$; German Austrians, 78.8; Ancient Greeks, 75; Ancient Romans, 74 ; but so wide are the variations that it is impossible to infe the racial derivation of a skull from its index of breadth.

HEADS, CURIOUS AND DISTINGUISHED.

IMPROVED FIRE ESCAPE

The annexed engraving represents a new apparatus for receiving without injury persons or goods falling from windows of burning buildings. The body of the car is supported on springs attached to the axles, and contains seats papable of accommodating several persons. At the corner of the body are vertical tubular posts in which springs are placed, and upon these springs rest standards which support a frame, to which an elastic air cushion is at tached. This cushion has a thick rounded edge and a central opening of sufficient size to admit the body of a person. When the apparatus is to be used, it is drawn beneath the window in the building from which es cape is to be made, and the person jumping from the window alights without injury upon from the window alights without injury central aperture to the car below

Patented through the Scientific American Patent Agency, September 11, 1877. For further particulars address the inventor, Mr. Geo. N. Shishmanian, care of Professor J. W. McGarvey, Lexington, Ky.

Mushrooms in Exchange for Eggs.

A latenumber of the Journal of Medical Sci ences, of Venice, gives the following account of a curious method in use in Germany for promoting the fecundity of hens:
"In Germany, and more especially in the principality of Nassau, a particular alimenta tion is adopted to render hens more fecund during winter and those periods when they ordinarily lay but few eggs. All the edible fungi are gathered, dried, and reduced to pow der; capsules of linseed are then ground, and one kilogramme of this mixed with two of rye or wheat flour and half a kilogramme of powdered acorns. To this a half kilogramme of the powdered mushroom is added, with sufficient wate to form a paste, which is made into small pellets the size of a pea and given to the hens to eat."

THE LIQUEFACTION OF THE GASES-M. PICTET'S APPARATUS.

The engravings hitherto presented, exhibiting the mean adopted by M. Raoul Pictet for liquefying oxygen and other gases, were designed simply to exhibit the principle of the apparatus used. We now are enabled to lay before our readers engravings of the exact arrangement of M. Pictet's machinery, for which illustrations we are indebted to La Nature. This apparatus is in reality much larger than the general view (from a photograph) given in Fig. 1 would indicate. Its relative dimensions can be approximately estimated, however, by remembering that the height of a man is about equal to that of the manometer, H, which the liquid carbonic acid is volatilized; F is a wooden box containing non-conducting material; D is the liquid carbonic acid reservoir, surrounded by a refrigerating envelope, in which liquid sulphurous acid is volatilized. At H is a non-conducting envelope, G the gasometer for gaseous carbonic acid, K the reservoir for liquid sulphurous acid, P one of the pumps, and A^{\prime} the cock which, when opened, allows of the escape of the lique fied gas in the direction of the arrows.
The process of liquefying oxygen is as follows: The receptacle, B, containing chlorate of potash, is placed over a gas furnace. The gas disengaged from the salt becomes compressed in the long curved iron tube which, as indicated in Fig. 1, is inclosed in the casing, F, and terminates in a manometer. It is surrounded with liquid carbonic acid, which, with liquid carbonic acid, which,
vaporizing under the influence vaporizing under the influence
of the exhausting pumps, proof the exhausting pumps, pro-
duces a degree of cold equivaduces a degree of cold equiva-
lent to -220° Fah. This carbonic acid is liquefied in a tube contained in the upper box; H , being drawn from the gasometer, G, by the pumps and com-
beautiful of microscopic objects. When present in chalk they may be obtained by scraping with a knife and examin ing the powder with a microscope.
There are, however, many limestones in which none of their remains are to be seen. Professor Williamson explains this by saying that such limestones bave become changed since their deposition by the action of water containing carbonic acid in solution, which dissolves and disintegrates the shells. As a proof that such action has taken place, he de scribes a slab of limestone in which a large chambered shell was found. The greate part of the slab contained traces of foramini feral shells, mostly disintegrated and hardly to be distinguished, but within the larger shel these were found in a state of good preserva tion, as though the remains of the anima which inhabited the larger shell had protected them from the action of the water.
A still more convincing proof of this action is found in the inner chambers of the large shell, which were found to contain clear crys tallized limestone. This was undoubtedly formed by the solution of the carbonate of lime in the water, which found its way into these chambers in a saturated condition and there deposited the crystals. Prof. W. adds
"If these explanations are correct, as I be lieve them to be, we have here the entire his tory of the origin of a limestone rock, from the first accumulation of the foraminiferou ooze, as seen in the interior of the first larg chamber of the nautilus, to the deposition, in an inorganic mineral form, of the crystal lized carbonate of lime within the closed chambers of the nautilus, all being illustrated
from the ground. The construction is shown very clear-| mains of microscopic organisms, chiefly the shells of the ly in the sectional view, Fig. 2. A A^{\prime} is the closed foraminifera. These foraminifera consist of a gelatinous wrought iron tube in which the gas is compressed; B is the looking body, protected by a shelly covering, which is somecast iron receptacle in which the chlorate of potash used times very complicated in form. Their shells form large for the production of oxygen is plaeed; C is a sleeve in deposits now on the sea bottom, and are among the most

Fig. 1.-PICTET'S APPARATUS.
subjecting the oxygen compressed by chemical decomposition in the tube in F to the intense cold produced by the vaporization of carbonic and sulphurous acids in the tubes in H .

The Origin of Limestone.

Professor W. C. Williamson has recently contributed paper to the Manchester Philosophical and Literary Society, in which he describes some interesting observations on this subject. It has long been the opinion of scientists that the

Fig. 2.-PICTEI'S APPARATUS. thin the area of a slab of limestone little more than oot in diameter."

Insect-Eating Plants.

Mr. Francis Darwin has recently added some important facts to our knowledge of these plants. It has long been surmised that those plants which catch and kill insects in various ways depend upon such food for their healthy growth but direct proof of this has heretofore been wanting.
Mr. Darwin instituted a series of experiments to decide the question, as follows: 200 plants of Drosera rotundifoli were cultivated in soup plate filled with moss; each plate was divided into two parts by a low wooden partition and covered with gauze to exclude insects. On one side of each plate th plants were fed with small piece of roasted meat, placed upon the leaves, every few days, while those on the other side were not allowed any such food. In the course of a month the effect of the meat diet was evident in the brighter color of the leaves, and when the experiment was ended it was found that the plants had received much nourishment from the animal food. Whil there was a decided gain in every way, the greatest advan tage was found by comparing the seeds produced by the different plants. The ratio between the weight of the seeds
from those without animal food and those with it was as 100 to $379 \cdot 7$. Any of our reader can arrange to carry out experiments like this which could not fail to be of interest and value.

The Study of Nature
M. Eugène Viollet-le-Duc, in his recent book, "Mont Blanc," describes the characteristics of his volume thus:
"Our globe is, in fact, only a great edifice, all whose parts are capable of rational explanation its surface assumes forms dic tated by imperious laws, follow ing a logical order.
"To analyze carefully a group of mountains, the manner in which they were formed, and the causes of their ruin; to discover the order in which the phenome na of upheavaloccurred, the con ditions in virtue of which they have resisted or endured the ac tion of atmospheric agents; to note the chronology of their his tory-is to devote one's self to a work of methodical analysis which is, on a grander scale, an alogous to that which the prac tical architect and the archæol ogist applies himself when draw ing conclusions from the study of buildings."

Commuitationd.

Color Blindness in Railroad Engineers.

To the Editor of the Scientific American:
In reading your article on the subject as named above, I am reminded that there is a difficulty in some persons in distinguishing colors, arising from the distance of objects. To all persons not absolutely incapable of distinguishing color, distance makes all objects blue. However brilliant may be the green upon a distant mountain, it appears blue to the ob server. But how far distant must an object be in order to lose its appropriate color, as we should find it when near at hand, and is that distance the same for all persons? I have reason to believe that it varies with all persons according to their length of sight, so that a lamp on an engine at night that would show red or green to some would appear blue to others, and that engineers should be tested not alone for power of discriminating colors ten feet or ten yards off, but at a half a mile, a mile, or two miles distant also. E. B.

A Question for Locomotive Experts.

To the Editor of the Scientific American
It is suggested that our locomotives might be made more efficient and serviceable, especially for freight work, by giv ing them just half their present piston area and doubling the length of their stroke, inasmuch as it would impose but half the strain and friction upon the working parts, while the power would be slightly increased under the same expenditure of steam.
The importance of the subject induces me t send you an outline sketch of a modern locomo tive illustrative of the question, and to ask for the opinion of such of your intelligent readers as are posted upon the subject.
The dotted lines indicate the alteration which would be necessary to make the change. It will be seen that the modification would require sim ply to extend the cylinders forward enough to give the extra length of stroke and to connect with the rear drivers instead of the forward ones this would give to the connecting rods about the same working angle upon the twenty-four inch cranks as they now have upon the twelve inch ones. The cylinders would, of course, have to be placed a little further apart because the connection must now be made outside instead of inside of the parallel rods.
F. G. Woodward.

A Brilliant Meteor

To the Editor of the Scientific American:
A meteor was observed by the undersigned last Sunday about 7:53 P.M., more brilliant than Venus, moving slowly from the direction of Andromeda southeasterly and passing but a few degrees below Mars towards Canopus. The color of the light was white, and its brilliancy for the space of about 30 degrees observed remained uniform, traversing through that arc in about 3 seconds of time. No visible tail remained, though the sky was very clear and dark, but sparks apparently followed the meteor only for about a de gree or two. The sparks denoted an apparently spiral move ment.

New York, February 5, 1878.
The Correlation between Magnetic Electricity and Gravitation.

To the Editor of the Neiontiflo American

In the Scientific American of February 9, 1878, is given an account of an experiment by which some close connection between electricity and gravitation can be shown. The evidence bearing upon this relation, if not the identity, of these forces is much greater than is generally known. There are many scientific theories supported by fewer and less reliable facts than those which go to prove the identity of gravitation and magnetic electricity. And, besides, gravitation-as this term is understood-is not sufficient to explain all the phenomena dependent upon the relation existing between the heavenly bodies. If gravitation is made to mean something allied to magnetism, some poorly explained phenomena become easily understood. But what are the.circumstances affording proof of the identity of these forces? First, gravitation acts upon all kinds of matter; Faraday proved the same of magnetism. Second, gravitation is attractive; so is magnetism. Third, gravitation is proportional to the mass; the force of magnets also depends upon the mass. Fourth, gravitation acts in an inverse ratio to the square of the distance; so does magnetism. Fifth, gravitation does not manifest polarity; magnetism is known not to do so. Sixth, gravitation acts independently of bodies affording a resistance to light and heat; so does magnetism.
But there is positive proof of a magnetic connection between the sun and earth. First: The magnetic needle has a period of the same length as the maximum of the sun spots. Second: The auroras and currents of terrestrial electricity have the same period as the sun spots. Third: The isoclinal, isodynamic (of the magnetic), and isothermal lines run parallel. There is evidence also that magnetic electricity extends to all solar bodies and is the cause of the least understood of their phenomena
First: Will not the supposition that the sun is a huge magnet account for the production by that body of light, heat, etc.? Second: Admitting this hypothesis, will it not explain why the light of the sun increases as a heavenly
body approaches it? Third: Will any other theory explain this satisfactorily? Fourth: No known force except mag netism can produce all the phenomena of comets. It is sufficient to produce the most wonderful and least understood features of these bodies, namely, the dual appearance of Biela's comet the multiplication and relative position of the tails, and the coruscations of the latter.
The very best of reasons can be given in support of every position taken or implied in the above statements or ques
Circleville, 0.
P. M. C.

Teasel Parasols.

An entirely new commercial article has quite recently ar rived in England from France, in the shape of a curiously twisted stem. This stem, which is flattened and spirally twisted, and marked with deep corrugations or channels, proves to be that of the fuller's teasel (Dipsacus fullonum), a plant very much cultivated in Southern France and Austria for the sake of its prickly flower heads, which are so extensively imported into this country for carding or raising the nap on cloth. Hitherto, the only application to which the stems have been put has been for fuel, or for manuring the ground after they have been allowed to rot. Their presest use is for the handles of ladies' sun shades, and when manipulated they have a very grotesque and striking appearance. Several thousands of these fasciated teasel stems are now in England, and are in the hands of Messrs. Marshall \& Snelgrove, the well known West End silk mercers, from

PROPOSED CHANGE OF STROKE.
whose establishment they will issue as a novelty during the coming season. At a recent meeting of the Linnæan Society, some of these fasciations were shown as imported, as well as a finished parasol with a teasel handle, sent by the firm who intend bringing them out. At one time these fasciated stems were supposed to be very rare, but from the fact of so many being now introduced they would seem to be of com mon occurrence.-Journal of the Society of Arts.

New Mechanical Inventions.

A Metal Punch invented by Mr. S. H. Jenkins, of Nashville, Tenn., is a tool of two diameters, in which the punch proper, being the smaller part, drives its piece out of the plate; but just previous to its beingdriven through, the cut ting edges of two spirals following the punch take hold, and with a shearing cut remove the ragged edges of the hole, leaving it, the inventor claims, as smooth as though drilled Mr. Henry Hubel, of New York city, has invented a Ma chine for Crimping Seamless Foxings for boots and shoes, which consists of a fixed crimping block in connection with movable side and front retaining devices and reciprocating adjustable jaws, between which the foxing is held, to be stretched over the crimping block.
Mr. J. K. Miller, of Pleasant Hill, Mo., has patented a Rack which may be adjusted for use as a clothes-horse, a swing, a cot, and various other uses.
An improved Railway Horse Power Chain has been in vented by Mr. Martin Williams, of St. Johnsville, N. Y. the novelties of which consist in the arrangement of the rods upon which the track rolls turn, in a connecting link of pe culiar construction, and in the mode of fastening the tread planks to the links of the chain.

Mr. J. B. Greenhalgh, of Uxbridge, Mass., has invented an improved Stop Motion for Warping Machines, produced by arranging between the reel and spools a series of gravitating wires, through eyes formed on which the threads pass, in combination with a vibrating bar and tripping devices which actuate a belt shifter and stop the machine should a thread break.

An improved Rotary Steam Engine invented by Mr. J. S. Hewitt, of Wheatland, Mo., is claimed by the inventor to be unusually compact and economical in the use of steam. The arrangement of the ports, piston disk, buckets, and other details is original.
Mr. J. P. La Grange, of Ashtabula, O., has invented a Rotary Clothes Washer, arranged inside a reservoir, and having water spaces which are covered on the inside of the cylinder by flanges.
Mr. F. J. Hoyt, of New York city, has invented a Lock for Freight Cars, intended to keep them securely locked in transit, and allow them to be readily opened by authorized persons. The lock closes automatically, and may be so arranged that it will resist all attempts to disengage it by hand, requiring a chain to be hooked on the adjacent car, the cars uncoupled and drawn apart by the locomotive. There are other original features.
A Door Lock invented by M. Hjalmar Bergman, of Stockholm, Sweden, consists of a novel device by which the door is tightly held against the jamb, and a segmental bolt for holding the locking device in position. Egyptian air. Alexandria.

Mr. James F. Fields, of Greenville, Tenn., has invented an improvement upon that form of Saw Set in which two notched disks are arranged in a framework to gear with each other, so that when the saw blade is passed between them a set is given in opposite directions to the alternate teeth, one disk being adjusted toward the other by means of a movable journal and a set screw. The improvements consist in the means for holding the detachable disks to the frame so that they may be readily removed and replaced by others; in the means for assisting the set screw in holding the disks to their adjustment; and in the application of a file between the disks to level the teeth simultaneously with the setting.
Mr. R. N. Harrison, of Faribault, Minn., has invented an improvement in the class of wire Egg Beaters having the general outline of a tablespoon. The improvement re lates to the construction of the bowl of wire, whose ends are bent in such manner as to adapt them to enter the end of the handle, which is formed of a plate of tin of semi ubular shape.
Herr Gottfried Klotz, of Böhmisch-Kamnitz, Austria, has invented a Skate having the runner pivoted at the heel. The ressure of the foot upon the forward part of the sole plat utilizes the runner as a lever for operating the clamps which secure the skate to the boot or shoe.
A Feather Renovator, lately patented, has a series of radial tubes for heating and drying, and a set of steaming ubes inclosing the heating tubes, and serving the double purpose of distributing the steam and of preventing th feathers from coming in contact with the heat ing tubes during the process of drying. Th whole is inclosed in a revolving zinc cylinde having wooden ends. This apparatus is the in vention of Mr. Wm. A. Stewart, of Big Rapids, Mich.

A Punch for Cutting Letters, etc., out of pa per, leather, and other material has been in vented by Mr. J. A. Hitter, Jr., of St. Martins ville, La. The cutting face is detachable, and acts upon an elastic cushion, the whole tool being of scissors shape.
Mr. Thos. J. Soden, of Brooklyn, N. Y., has invented an Ice Cream Freezer, in which th cylinder containing the cream is revolved, while shaftand blades are stationary. The new feature is a sliding bar hav ing grooved ends, which pass on and off bars attached to the op of the pail. This bar carries the operating mechanism and is readily secured or detached.

Effect of Heat on Boiler Plate

Mr. Charles Huston has recently made some interesting ex periments on the variation in tensile strength of iron and stee atdifferent temperatures, with the view of throwing light upon the estimation of the value of boiler plate. To measure the temperature of the test piece and maintain it, the followng plan was adopted: The breaking point in each sample was made by taking a piece of the plate planed with parallel ides, about one inch wide, and in the middle drilling a hole ${ }^{2}{ }^{2} 0$ of an inch in diameter. This hole was then filled with a plug of amalgam of known melting point. Having thu prepared the sample, it was fixed in the testing machine, and a large blow pipe flame applied, covering the whole width of the piece. As soon as the amalgam became semi-solid on the side opposite to that on which the flame was directed, the temperature was kept uniform until the strain was car ried to the point of rupture
A series of experiments gave the following average A series of experiments gave the following average
results: Charcoal beiler plate, made from the pile results: Charcoal beiler plate, made from the pile the
the ordinary way, was first tested cold; at $300^{\circ} \mathrm{C}$. (572° Fah.) it showed a percentage of gain in tensile strength of 13.93 ; at $500^{\circ} \mathrm{C}$. (932° Fah.), a gain of 18.02 pe cent. An exceptionally soft piece of Siemens-Martin steel gained 21.03 per cent at $300^{\circ} \mathrm{C}$., and only 17.86 per cent a 500° C. An ordinarily soft crucible steel, such as is used for boilers, gained 8.23 per cent at $300^{\circ} \mathrm{C}$. and $7 \cdot 18$ per cent at $500^{\circ} \mathrm{C}$. A rather harder specimen of crucible steel, but not quite hard enough to temper, showed a loss of 1.4 per cent at the higher temperature, and a small gain ($5 \cdot 62$ per cent) at the $300^{\circ} \mathrm{C}$. test. The results thus obtained show an increase in tensile strength in all the samples tested at 300° C., a continued increase at $500^{\circ} \mathrm{C}$. in the charcoal piled iron, but a falling off in the Siemens-Martin and crucible steel in proportion to the probable amount of carbon.

Cleopatra's Needle.

A German doctor has made observations on the Luxor obelisk, at Paris, and has come to the conclusion that the monoliths of Egypt decay with rapidity in European climates. The Luxor obelisk shows that within the last twentyeight years it has suffered a gradual change, due to the atmosphere of Paris. Gradually the red color of the syenite has become duller and lighter: now the obelisk bears a white film of kaolin, the last product of the decay of granite. In thirty-six years the stone has received more damage from the atmosphere of Paris than duringas many centuries in
The injury which the moist climate of England will inflict upon Cleopatra's Needle is likely to be still more rapid; but there is at least the consolation that its incidental injury in London fogs will not be much worse for the stone than the bad treatment it was receiving in its neglected state at

PRACTICAL MECHANISM.

by Joshua rose, m.e.

new Series

TEETH OF GEAR WHEEL

In selecting which of the curves previously described shall be applied in the formation of a wheel or wheels the con structor is governed by the purpose for which the wheel or wheels are to be used, because the conditions will not always admit of the employment of the theoretically most desirable form of tooth. It is perhaps the better plan to first explain the mode of construction of the various forms of teeth, and to subsequently explain the conditions which determine the selection of either form. First, then, for a pair of wheelsin tended to work together, and not designed to work in gear with any other wheels of a different diameter, teeth having epicycloidal faces and radial flanks are usually conceded to be the most desirable. If, however, wheels require to op erate with others having a different number of teeth they are termed interchangeable wheels, and require to have hypo cycloidal instead of radial flanks, the faces remaining epicy cloidal as before. Both of these forms of teeth are termed epi cycloidal, as contradistinguished from involute teeth. Epi cycloidal teeth are employed when the distance between the centers of the wheels in gear is permanently fixed, but when this distance is required to vary involute teeth are preferred for reasons which will appear in due time.
On account, however, of the difficulty of constructing epicycloidal teeth for pitches less than about $3 / 4$ inch it is the usual practice to apply the involute curve to all pitches of that and less pitch. Small cut gears, both involute and epicycloidal, have indeed been made of late a special manufac ture, and from the refinement of construction attending their production under these circumstances they are obtainable in far more perfect form than it would be practicable to make them in the ordinary course of workshop manipulation. Fine pitch gear construction, both as regards the involute and epicycloidal forms of teeth, isindeed so entirely a branch by itself that it must receive separate treatment.
Let us now proceed with the construction of a pair of wheels to work together and not to gear with any other wheels. The distance between the wheel centers being permanent, we select, according to custom, epicycloidal teeth with radial flanks. If then we are given the diameter of the wheel at the pitch circle, and the pitch and number of teeth, we may proceed at once with the practical construction; but it is obvious that the circumference of the pitch circle must be such as will be divisible, without leaving a remainder, by the given pitch, otherwise there would be at one part of the wheel a fraction of a tooth-a construction which is impracticable; so that if the circumstances of the case require a definite circumference of pitch circle, the pitch of the teeth must be made such as will divide into that cir cumference without leaving a remainder; but if the circum stances compel a definite pitch we must make the pitch circle of a circumference divisible by the pitch without leaving a remainder. If one of two wheels is to be twice as large as the other, one will contain twice as many teeth as the other, hence it is much more simple to gauge the size of the wheel by the number of teeth it contains, and to avoid calculations in the workshop. Most workmen have a printed table containing columns of figures under the following headings, " Number of teeth," "P Pitch 1"," "Pitch 2"," etc., "Diam eter of wheel," etc., so that a ready selection of pitches or diameters suitable to any given circumstances may be made or, finding none to exactly suit the requirements, we may select the nearest, varying either the pitch or diameter as may be most suitable. It will generally be found that the pitch diameters of wheels for certain pitches and numbers of teeth run to two or three places of decimals, and that these decimals are not convertible into such fractions of an inch as are marked on ordinary measuring rules. This, where accuracy is required (and accuracy is invaluable in gear work) has been a serious drawback in the practical operations of the workshop. The special steel gear rules of Brown \& Sharpe are therefore a boon to careful workmen. These rules are marked in fine clean lines to various fractions of an inch, compasses to correct radius as well as their ready adjustmen to chord pitch.

The diameter at the pitch circle and the pitch and number of teeth being determined, we have to find the proper addition to make to the radius of the pitch circle for the points of the teeth, and this addition is termed the addendum or "depth beyond the pitch line," as marked in the wheel scale. The proportions in that scale are those given by Professor Willis, which proportions are now almost universally accepted, except it be in so far as regards the question of clearance, which we will leave for future consideration. Referring to that scale, then, we add to the diameter of our pitch circle an amount equal to twice the "depth beyond pitch line" given, for the selected pitch, on the scale, and we have the total or extreme diameter to which the wheel must be turned, and while the wheel is in the lathe we must strike a fine circle, of correct diameter, to serve as the pitch circle Our next duty is to divide off the wheel at the pitch circle into as many divisions as there are to be teeth in the wheel, and in the case of the larger wheels this is no easy task, be cause the pitch given so far is the arc pitch, and we have to convert it into chord pitch. This we may do by the construction given in Fig. 258; but even by that construction it is impracticable to set the compasses to the exact proper distance,
because an error of half the thickness of a line will be multiplied on going around the wheel by as many times as the pitch is contained in the circumference of the pitch circle, so that in a hundred teeth the error would amount to the thickness of fifty lines, and as all this error would fall upon the last tooth it would be too great to be admissible. By the construction shown in that figure we may set the compasses so near as to save spacing over the wheel two orthree times,
and this is a great assistance; and since it is impracticable to set the compasses so finely as to space off the wheel to positive mathematical accuracy, we can only adopt a method that will be practically correct and that will divide whateve

error there may be between a number of teeth, and this may be done as follows: Commencing (for a wheel having an even number of teeth) at any point, A, upon the circle, Fig. 260, we mark off on the left and outside of the circle as many divi-
sions as equal in number one half of the required number of sions as equal in number one half of the required number of teeth, the last division so made being denoted in the figure by B. Commencing again at A, we mark off the same num ber of divisions on the other outside of the circle, arriving at C , and midway between B and C on the circle we mark a point, D ; and no matter whether the compasses were set correctly or not, D will be exactly diametrically opposite to A . It may occur to the reader that D may be more readily obtained by a straight edge intersecting A and B and carried across to D ; but the process as here carried out shows us that the compasses are set too close together to an amount equal
to the one eighteenth part of the distance between C and D to the one eighteenth part of the distance between C and D at the pitch circle, hence we may oilstone the compasses with slip of ston
Meantime the wheel having an even number of teeth, A and \mathbf{D} are two correctly marked divisions. With our compasses corrected to the best of our judgment we proceed to btain two more correct divisions as follows: Starting at D we mark within the circle the lines $1,2,3,4$, and then start ing from A we mark the lines $5,6,7,8$, and 9 , and the center between the lines 4 and 9 is another correct division, and if the lines exactly meet at the circle the compasses are

correctly set; but if not, we may oilstone the points again. Here it is to be noted that in the divisions marked to obtain our first point, D , the marks were all made outside the circle, and all short and of about equal length, while the divi sions to obtain our second point, E, were marked within the circle;'the object of this is to keep the lines distinctand thus insure greater accuracy. On small wheels it is sometimes advisable to step the points of the compasses around to set them approximately correct without drawing any lines, the object being to avoid having a confusion of lines. Starting
again from D, we mark the linesfrom 10 to 13 inclusive, and again from D, we mark the linesfrom 10 to 13 inclusive, and
starting from A we mark those from 14 to 18 inclusive, obstarting from A we mark those from 14 to 18 inclusive, ob-
taining the point F correctly. Continuing this process be tween \mathbf{A} and E, E and D, D and F, and F and A, we may step or divide off the wheel more accurately than is pos
whatever it may be, will be too fine in itself and too widely distributed to be found by any ordinary workshop measure ment. If, however, the number of teeth in the wheel is an odd instead of an even one the process requires to be slightly varied, as follows: Setting the compasses as near as possible by the method shown in Fig. 258, we start from any point 1, Fig. 261, and step off the divisions from 2 to 9 , and then commencing again at 1 the divisions from 10 to 17 , and the rror of the set of the compasses will be shown in the differ ence between the distance between 17 and 9 and the set of the compasses, and since there are 17 divisions in the circle the compasses require altering to the one seventeent part of the difference. This being done as nearly as the judgment can determine, we find the center between 9 and 17, which must be done with another pair of compasses, because it is impracticable to reset the pair first used as true as the construction has enabled us to do. We then draw straight line, L, Fig. $261 a$, and with the first pair of com passes, with one point resting on the line and used as a cen ter, we mark a section of circle, M. Then resting the othe compass point upon the intersection of \mathbf{M} and \mathbf{L}, we draw th section of circle, N, and from \mathbf{M} to N will be the length of each division. Taking the second pair of compasses, we find on the line L the center becond point O. Adjusting these compasses so that, one point rest ing upon O, the other exactly coincides with M and N re spectively, we, with these compasses, rest one point in the center, A, and mark on the inside of the circle the lines B and C, and the distance between C and B will be that of the first and adjusted pair of compasses. Then starting from B we mark on the inside of the circle the divisions, the lines D E, F, and G, and then commencing at the point 1 we mark also inside the circle the divisions $\mathrm{H}, \mathrm{I}, \mathrm{J}, \mathrm{K}$, and equidistan between K and G on the circle we obtain another of our per manent and correct points of divisions. This process we carry out on the other side of the circle, beginning first at and then at 1 , producing another permanent division equi distant between P and Q at the circle. We have thus ob tained five accurate points of division, represented by the points $1, \mathrm{C}, \mathrm{B}, \mathrm{K} \mathrm{G}$, and P Q , on the pitch circle, and con inuing the process from those points we may obtain all th thers, and thus obtain an accuracy that would be unobtain able by stepping entirely around the circle.

Useful Notes for Watchmakers.

We find the following in a recent number of the Watch maker:
Main Springs.-When a main spring is cleaned most inex perienced workmen will take hold of one end and pull the spring about half its length straight out, to save time. Thi practice will break springs when nothing else will; and spring reated thus generally break after the watch has been deliv ered to the customer only a few days. Breaking into many pieces is owing to the acid in the oil which is used. We will suppose the main spring is a fine one, and has been evenly tempered and properly cleaned; if, now, old oil is used, or hat of an inferior quality if fresh, the acid it contains will eat into the spring, and will finally destroy its texture. The coil nearest the center breaks first, and as it recoils it breaks every coil in the barrel, and sometimes each coil is broken twice. The spring has become so impregnated with acid that. it has no life left.
To Purify Oil.-To make the oil pure, take a good size bullet or other piece of lead which has a thick coating of lead rust, cut it up fine, put it into the oil, and let it stand for two weeks. This causes the acid to settle, and it the resembles milk at the bottom. Now pour off the top, and your oil is pure. Common clock oil can be treated in this manner and made better than some watch oil.
To Restore Luster.-If not too much darkened it may be restored by dipping the wheel in pure muriatic acid. Test your acid by dipping a piece of polished steel in it; if it de stroys the polish, reduce the acid with rain water until it wil not. Rinse the wheels well in water. This will also restore the polish to steel that has been blued by heat.
Grinding Glasses.-Provide two pieces of cork, one con cave and one convex (which may be cut to shape after fitting to lathe). Take a copper cent or other suitable article and soft solder a screw to fit the lathe and then wax it to the cork; then get a twenty-five cent emery wheel, such as is used on sewing machines, and you have a complete outfit for cutting your watch glasses. Polish the edge on the zinc collar of the emery wheel, or use a piece of zinc to do it. The other cork should be waxed to a penny and centered. The spectacle lenses may be cut on the same emery wheel, if the wheel is attached to the lathe so as to revolve.
Another method is to take a common piece of window glass (green glass is the best) and make a grindstone of that, using the flat surface to grind on. Cement it on a large chuck the glass being from 2 to $2 \cdot 5$ inches in.diameter.
Any one not familiar with this method would be surprised to see how fast the glass is cut away, for either spectacles or watches. In grinding watch glasses put them flat on the chuck glass-not on the edge.
Some watchmakers are excusable for not keeping a ful supply of watch glasses on hand all the time, when it is re membered that there are over four thousand different sizes.

The price of nickel made a remarkable series of drop during the year lately finished, and is now below its old figure before the German Government upset the market by selecting it for its token coinage. In January, 1877, it wa worth $\$ 2.64$ per lb., and in January, 1878, only 96 cents.

TALLEY'S HYDRAULIC ENGINE.

The annexed engravings represent a new water motor, the smaller sizes of which are adapted for running light elevators. lathes, printing presses, blowers, sewing machines, organs, coffee roasters, spinning mills, sausage mills, etc., or for use in hotels, laundries, forges, in any locality where eitherhigh or low pressure water power is had. The device is used either as an overshot or turbine wheel, as may be desired. The larger sizes are fully adapted to all purposes where heavier power is required. The construction, which is quite simple, embodies the casing in which the wheel works, the wheel, wave line chutes, and the gauge. The casing is made of any desired metal, and requires no finishing except where the two sides are joined. The wheel is made of brass or iron cast in halves, and bolted. The shaft runs in bearings in one part of the casing, and on a steel center screw in a bearing in the other part. The chutes are of brass, and are constructed in halves so that they may be opened and cleaned as desired. They have a fine polish so as to give an even sheet or perfect wave of water. On one half of the wave line piece is the valve, which is simply a small tube, in which, on one side, is the inlet, and on the opposite side the three discharge holes leading to the wave line chutes. The upper end is provided with a piston, which opens or closes the tubes as desired for one, two, three, or more ducts entering the wave line chute. In the five-inch iron wheel which we illustrate, there are three distinct ducts, which are opened by the gauge or regulating valve described, either singly, in pairs, or together, as greater. or less speed and power are required.
Referring to the illustration, it will be observed that the wheel, A, has peripheral flanges, between which are placed the buckets. The latter are set sloping at an angle of about 30° with the radial lines of the wheel, and between each pair the flanges are scalloped out as shown, being scalloped to afford proper outlet when running as turbine. On the face of the wheel are formed annular flanges, B, which bear against the inner faces of the casing, preventing side play of the water. The wheel is placed eccentrically in the casing so as to touch or nearly touch the latter on the inlet side and to leave a large water way on the outlet side. The induction pipe, C , terminates on the inner face of the casing in a wave line chute, D, shown separately in Figs. 2 and 3 . The width of this aperture is greatest at E , where the stream is first discharged upon the wheel, and from that point it gradually diminishes as shown, having greatest weight of water at E , at the other (on the blow pipe principle) the greatest force. The distance over which this diminution takes place may be varied so as to deliver the water upon one or more buckets of the wheel. Preferably the entire length of the chute will coincide with about one third of the periphery of th wheel. By forming the out let apertures as described the water will be better distrib uted aver the width of the wheel, and by prolonging it length as noted the water wil be made to impinge upon the entire working side of the wheel, or a large portion of it and no dead water carried up or offering any obstruction so that the power and weight of the fluid are caused to act together and the entire force utilized. Two outlets ar provided for the escape of the spent water. The first of these, at F, is used to dis charge the water from the casing at the bottom when the machine is used in a ver ical position The other tical position. The other ormed on the side which be comes the bottom when th machine is placed horizontal ly or in turbine position. A screw cap, G, is placed upon either outlet when not in use. A slide or gate, H , is ar ranged in the casing so as to close the orifice, F , when not in use. This is operated by a rack and pinion, the latter turned by the screw shown and does not present any ob struction to the smooth flow of water past that point when the machine is used with the other outlet or as a tur bine.
By the wave line chute the water is given in one con tinuous sheet and not by periodical jets. The working side of the wheel thus become
a lever, and there is no waste until the outlet is reached. A tapering duct, I , is formed on the side piece, and gradually widens to a point diametrically opposite that where the width of said duct is about equal to the diameter of the orifice, G. From the large end of this duct there is a pas-
sage to the discharge outlet, which passage is so formed as to relieve the wheel from back pressure of spent water. The inventor states that he has not sacrificed power to speed, and evidences and claims that this 5 -inch engine from which we make our illustration, with 70 lbs. pressure of water and

THE RANSOM SIPHON CONDENSER.
less than $\frac{8}{16}$ inch inlet, has driven a one half horse power 1 inch Fitchburg (Mass.) lathe for metal turning and boring Engines can be seen in operation at the machine works of C. Maedel \& Co, Kansas City, Mo, to whom all orde

THE RANSOM SIPHON CONDENSER

Until within a few years the air pump has been the only instrument capable of forming a vacuum of high range in a steam condenser, and while almost numberless attempts to improve it have been made, it practically remains as it left the hands of Watt a century ago. Among the notable at tempts to supersede its use is the condenser and apparatus il lustrated herewith, which was invented and perfected by Doctor Frank Ransom, of Buffalo, Erie county, New York, after a study and labor extending over a period of twenty five years. We are informed that this condenser is now in successful use, maintaining a vacuum of high range on nearly one hundred steam engines, vacuum pans, etc. Th Ransom siphon condenser, as its name indicates, is operated by the use of a siphon, by which the water for condensation is elevated to such a height as that, having been discharged into the condenser in contact with steam, it will flow from it; and while maintaining vacuum of high range, will over balance the atmospheric pressure upon the surface of th water in the hot well, and flow out as fas received. It well known that all siphons operated continuously will col lect air at their crown or highest point, which accumulation of air, from the water as it passes, will finally cut off and stop the flow of the current. Dr. Ransom discovered that by a proper disposition of his delivery or outflow pipes, this defect in the natural operation of a siphon could be overcome by so arranging his pipes that water would mingle with the air, and abstract it from the crown of the siphon He also found that he could enlarge the crown of th siphon, divide the current of water, and yet maintain it flow; and, finally, that he could condense steam from an en gine or vacuum pan, and eliminate the air brought in by leaks in the apparatus by the outflowing current. If it wer practicable to make work of this description absolutely tight so that no air could enter, a siphon with 2 or 3 feet head would operate; but as that cannot be done, a head or differ ence in the two legs of the siphon of 10 to 15 feet is used, and where no head or fall is available, a common water pump is required. Referring to the engravings it will be seen that this condenser is simple in construction, that there are no valves or moving parts to be refitted or to get out of order, and that the apparatus is an assemblage of pipes forming a siphon with an enlarged crown. Its durability is also evi dent, and it can be placed in any position outside of the mill, wherever most convenient. It requires no especial skill o knowledge to operate it, as there are no injection cocks to attend to, and in fact it is claimed to add nothing to the ordinary care of a high pressure engine. The amount of power required is stated to be only that necessary to keep the siphon running. Thus, at starting, the pump wil have to lift the water the ful height of the condenser, but as the vacuum increases, th labor on the pump diminish es. Thus, if the condenser is 34 feet above the hot well and vacuum at 26 inches mer cury (the usual range), th siphon would lift the wate 29 feet nearly, reducing the labor on the pump to a lift o 5 feet. When a head or fal of water of 15 feet can be had no pump is required, and the vacuum can be maintained indefinitely. Should a steam pump be used, it can ex haust also in the condenser and acts as an independen motor, leaving the total valu of the vacuum net to the en gine. In this case the vacuum may be formed before the main engine is started, which is often of great value on large engines. Extensive use a the West has demonstrated the application of this con denser in gritty water, where an air pump could no be used. Speed of the engine attached to condenser is no objection, as under proper construction, we are in formed, the vacuum will b steady at any speed, and heat ing of condenser cannot oc cur, as the water must pas through constantly. It has been adapted successfully to lake and river steamers, to vacuum pans for sugar, dye stuff, etc., and is applicable to all purposes where a vacu um can be used.
In the annexed engravings A is the exhaust from engin or pan; B is the condenser for engines of any size, from 2 inch upward, should be ad \mid d, the water injection pipe attached to an ordinary water dressed. Patented October 16, 1877: For further information as to price, rights to manufacture in other States than Missouri, etc., address the inventor, Mr. James Talley, Jr., Kansas City, Mo.

Fig. 2

TALLEY'S HYDRAULIC ENGINE.
 pump or to water works, or other head of water; D is the overlow and hot well, from which the feed water may be taken on its passage to feed water heate and boiler, At E are small delivery pipes contained with
in the large delivery, F, and running from inside condenser to the hot well. These small pipes take water at or near the floor of the condenser through horizontal pipes tapped into the delivery pipe (see Fig. 3, arrows, page 150), and take air at their upper ends. They discharge air and water mingled at bottom of delivery pipe in hot well. In operation the exhaust steam passes through pipe, A, into condenser, and expands under the spray plate, when it comes into contact with a spray of water from the pump or other source of supply through C. As the steam is condensed, its water and the water of injection, heated to about 100°, fall to the floor and accumulate to the height of the mouth of the small pipes, thus filling them with water; as this water rushes downward it creates a vacuum, which causes the air to pass down the small pipes, and thus the air is drawn from the condenser. As the water overflows the top of the large delivery pipe, it passes out and prevents any further accumulation of water. Thus the large delivery operates as a safeguard against flooding. These delivery pipes all carry out water mingled with air, and it has been found that the vacuum will be maintained by the outflow of the water necessary for the condensation f the steam used.
The object of a vacuum as applied to engines is to take away the atmospheric pressure or resistance from the exhaust pipe at its discharge, and through it from the moving piston. If we have 26 inches vacuum with this condenser we can safely count 24 inches or 12 lbs . per square inch as net gain to the engine. This has been found to amount to a gain of from 25 to 40 per cent, which can be utilized either in so much additional work done, or by saving that amount of fuel as compared to the engine when running without condenser. It has also been found that lower steam can be used to do the same work, 50 lbs . steam on the boiler and condenser doing as much work as 75 lbs. without it. The invention is secured by several letters patent, now the property of the Ransom Siphon Condenser Company, J. L. Alberger, Treas., Buffalo, N. Y., to whom, or to T. Sault, General Agent, New Haven, Conn., communications may be addressed.

2,000 Miles in $\mathbf{1 , 0 0 0}$ Hours.

The unprecedented feat of walking 2,000 miles in 1,000 onsecutive hours was brought to a successful conclusion in Dublin, Ireland, February 5th, by W. H. Smythe, the "American postman." For forty-two days and nights Smythe had walked continuously, making one mile at least every hour. The last mile was walked in 8.5 minutes, and sixty-five miles were made during the last twenty-four hours. Gale's Lilliebridge performance of 1,500 miles in 1,000 hours was the greatest previously recorded. At the completion of his task Smythe's physical condition was reported by his
medical attendants to be as good as when he began it. Such exhibitions of physical endurance have in themselves very little to commend them; still they are not without scientific value as evidence of human capacity and as proofs that the race is not deteriorating to any alarming extent.

THE CEREUS CANDICANS

The name cereus is given to several species of cactus, the largest and most remarkable of which is the Cereus giganteus

THE CEREUS CANDICANS.
of New Mexico, while the night blooming cereus (Cactus grandiftorus) is a familiar and beautiful example. The Cereus candicans, shown in our illustration, is also a prominent member of the family. Its growth is vigorous, the stem when five feet high attaining a girth of three feet, and f
as the angles are large and shallow, the plant has an ex tremely solid and substantial appearance. The spines, which are in sets of from twelve to twenty, are from two to four inches long and very acute. The flowers are pure white and but sparingly produced. The Cereus candicans may be increased from offshoots, which it throws out freely at the base, and adapts itself to a great variety of soils.

BLACK COCK AND PTARMIGAN.

The black cock or black grouse is a highly prized game bird, indigenous to the northern parts of Europe and es pecially to the wild and wooded districts of Scotland. The plumage is of a steel blue color, the breasts and sides being brownish black. The weight of the male often reaches fou pounds; that of the female is about two. The favorite abode of the bird is in the highlands and glens, among the hills clothed with a luxuriant growth of birch, hazel, willow and alder, with an undergrowth of deep fern. Their food consists of tender twigs, berries, heaths, and occasionally seeds from the stubble fields. Their flight is heavy, straight of moderate velocity, and capable of being protracted. The black cocks are polygamous and fight desperately for the females during April. The eggs are from six to ten in number, of a dirty white color, with rusty spots, and are laid in a very rude nest on the ground.
The ptarmigan, which is represented both in summer and winnter plumage on the right of our engraving, is also \& mem ber of the grouse family, but differs from the ordinary grouse in having the legs feathered to the claws, giving somewhat the appearance of a hare's foot (whence the generic name from the Greek); in the truncated tail, about two thirds as long as the wings and of sixteen to eighteen feathers; in most of the species becoming white in winter, and in the nasal groove being densely clothed with feathers. There are six or eight species described, inhabiting the northern and snow covered regions of both hemispheres, being one of the few genera characteristic of the Arctic fauna; they are as much at home in snow as are the web footed birds in water, and their plumed feet enable them to run over its surface with out sinking. The species represented in the illustration is the common European ptarmigan. The bill is black, short and robust; the summer plumage is ashy brown mottled with darker spots, and barred with orange yellow and dark brown on the sides of the neck and back, and the tail with the exception of the two middle feathers is grayish white with a narrow terminal white band. The bird i fond of lofty and northern regions, going as far as Greenland, and coming down to the highlands of Scotland. When pursued, it is apt to dive under the soft snow. It metimes does this for protection from the cold, and in face.

BLACK COCK AND PTARMIGAN.

Microscopical Notes.

The American Journal of Microscopy for February contains several articles treating from distinct points of view the expediency of increasing the power of object glasses beyond the limit usually assigned to them.
One method of obtaining this result is the employment of deep eye pieces, and as Professor R. Hitchcock recently condemned their use, the question has been taken up by one who holds a contrary opinion. The observation that has drawn attention to the subject was made by Professor Hitchcock in a letter to Professor J. E. Smith on the question of "Low versus High Power Objectives."
The remark was as follows: "I fail to see the advantage of working a glass up to its fullest capacity with deep eye pieces. It is trying to any glass, and it is questionable if it is an advantage to use an inch objective to see 30,000 lines to an inch with deep eye piece. . I dare say few workers will be induced to follow this plan; in fact, few one inch objectives would stand it.'
Professor George E. Blackham, of Dunkirk, writes to the Journal, objecting to this statement.
He says: "I believe in using first-class wide angled lenses, of comparatively low amplifying power, and getting the increase of power by the use of deep eye pieces, rather than using only low eye pieces and obtaining gradations of power by the use of low priced narrow angled penetrating objec tives. 1st. Because I get better results. 2d. Because it is a more simple and therefore more rapid and convenient way to work. 3d. Because it is more economical.
An illustration of this is given: "Lieutenant Carpenter made an admirable dissection of a frog poisoned with curare and exhibited the circulation of the blood in the capillaries of the mesentery. For the exhibition of this interesting ob ject (which is certainly physiological, histological, and pathological enough to placate the most rabid anti-diatomaniac that ever worked with a French commercial triplet), I se lected my Tolles one inch objective of 30° aperture, and ob tained amplification of 100,200 , and 400 diameters by simply changing the eye piece. Now even with the $1 / 4$ inch solid eye piece, giving an amplification of 400 diameters, the view of the object was satisfactory, and I had a clear working dis tance of 317 of an inch.'
In regard to this matter it appears that there is much prac tical usefulness in both of the systems here advocated, and that the chief evil will be found in carrying either practice to extremes.
Much depends on the nature of the work in hand, and it is upon these technicalities of manipulation that the skill and judgment of a good microscopist are shown. In fact, both these methods are usually employed in conjunction. A mi croscopist failing to observe something with a $1 / 4$ inch objec tive and an A eye piece, will probably change his eye piece for a B or C, and having observed the structure he is in search of, he will return his low eye piece and use an objec tive of a higher power, so as to obtain an improved light and better definition.
The next method noticed is the use of "an amplifier." Attention is directed to this piece of accessory apparatus by Dr. Gustavus Devron, of New Orleans, who writes to the same journal describing an amplifier made by Tolles.

Here is a system of increasing the power of the object glass by placing a lens between the object glass and the eye piece.

This apparently simple plan of increasing the power of object glasses entails many difficulties, which opticians have for years endeavored to overcome; if Mr. Tolles has suc ceeded he has conferred a great boon on microscopists.
Dr. Devron writes a very fervid appeal in favor of this amplitier of Mr. Tolles, and states its merit to be as follows "Its cost is but little more than that of an ordinary eye piece, and as it may be used with every eye piece, its possession is equal to having twice as many such glasses, and the possessor of a good modern objective of moderate power can accomplish with it almost anything that would require an objective of the same grade and of double magnifying power; thus a $\frac{1}{12}$ th with an amplifier will do the same work that a $\frac{1}{24}$ th would without the amplifier."
This is indeed tempting, and the news appears to be too good to be true. Dr. Devron says every microscopist should have a " Tolles" amplifier. Let the foregoing description be confirmed, and doubtless every microscopist will purchase one, butthe same piece of accessory apparatus has hitherto failed, which would make a prudent reserve pardonable on this occasion.
Any subscriber who can confirm Dr. Devron's views is in vited to forward his experience of the new amplifier. Lastly, Dr. Francis Gerry Fairfield, Professor of Microscopy and Micro-Chemistry, New York College of Veterinary Sur geons, writes to the Medical Record a letter describing with out intelligible details a means of increasing the power of an objective from 1,500 diameters to 7,500 diameters. He says, with this modification, an investigator with a good $1 / 8$ inch objective can obtain the same results as with a $\frac{1}{40}$ inch. The means employed are barely hinted at, and cannot therefore be here furnished. The Journal of Microscopy repro duces this letter under the heading of "Humorous," and th lines,
"A little nonsense now and then
Is relighed by the wisent men,"
thus, as it were, placing the Doctor in the "pillory" of ridicule. As no particulars are given it is not easy to perceive how any opinion can be formed, unless the Doctor's critics believe that the assertion that an enlargement of 7,500 diam-
eters was obtained with a $\frac{1}{10}$ objective indicated mental derangement.

It is to be regretted that the great aim of microscopy is sometimes overlooked, and that the indefinite enlargement of the image, rather than the perfect definition of the object, should be accepted as indicating successful work.

Bearing Reins.

The ligamentum nuchæ of a quadruped, as is well known, supports the head, and in health relieves muscular tension in maintaining the weight; but that is surely no reason, says the Lancet, why a rein connecting the mouth by a bit with the collar which bears on the cervical vertebræ, near the vertebral prominences, should be imposed on the animal to supplement the provision made by nature. Under the best of circumstances, casting out of account the pain and injury inflicted on the mouth of the animal, the effect of this rein must be to throw the weight of the head upon the muscles instead of the ligaments. If from weakness the horse allows its head to drop, the aim should be to restore the vital strength of the natural support, not to place the burden on a part of the organism which the ligament was intended to relieve.

THE "ACME" DOUBLE ACTING STEAM PUMP.

We illustrate herewith a simple and compact steam pump, strongly constructed, and the cost of which, it is claimed, is reduced to the minimum amount consistent with efficiency and good workmanship. A simple D valve is used in the steam chest, which is a cylinder cast in the bend of the frame, and at its weakest point, thus making the frame perfectly rigid under the heaviest pressures required. The crank shaft runs in Babbitt lined boxes, which have a simple ar-

THE " ACME" PUMP.
rangement for taking up the wear. Other arrangements are provided for taking up all the wear in every part of the pump. The manufacturers, who are also the manufacturer of the Wright Bucket Plunger Steam Pumps, state that one of these pumps has been successfully running since March, 1876, under difficult conditions and with uniform uccess. For further particulars address Valley Machin Company, Easthampton, Mass.

New Agricultural Inventions.

An improved Churn, the invention of Mr. W. W. Primm, of Murphysborough, Ill., has a dasher made of a hollow center staff and a perforated dash plate extending spirally around the staff. There is a hinged radial gate at the upper edge of the spiral dasher. which opens during the upward motion of the dasher and closes as the latter descends, thus forcing the cream through the perforations.
A Butter Shaper, patented by Méssrs. W. H. \& Theo. Du aney, of Peterstown, W. Va., consists of a circular band with overlupping ends, which is set in a ring-shaped former When the butter is filled in, the band is secured in position by a galvanized iron wire. The band' ables the butter to retain its shape dúring transportation.
Mr. Matthew Moore, of Whippany, N. J., has invented an mproved Powder Duster for Destroying Insects, consisting of a rod having a metal shank or standard at its lower end, arranged at such an angle that when the rod is supported in an inclined position by means of a strap passing around the shoulder, the standard is vertical; in combination with a horizontally oscillating receptacle having a perforated bot tom, an agitator within, and a lever and connecting rod for parting motion.
An fmproved Harvester Cut-off has been recently patented by Messrs. A. L. \& E. C. Long, of Big Rock, Ill. It is an attachment applicable to the Marsh and similar harvesters,
and consists of the combination, with a harvester elevator, of an inclined board, curved spring wires, a cord and treadle, with the seat board of the harvester, for cutting off or separating the grain while a gavel is being removed from the trough, thus preventing the grain from being scattered, and enabling the binders to form neat and compact bundles. A new Bale Tie, patented by Messrs. T. A. Andrews and A. G. Edwards, of Gainesville, Texas, is made with a buckle frame having a wedge-shaped catch on the end bar, which eatch is secured in slots made at intervals in the bale band. Mr. E. C. Budd, of Prairie Green, Ill., has invented a Sulky Plow, so constructed that one wheel will run in the furrow and the other on the unplowed land. By means of hand levers the driver is enabled to raise or depress either side of the frame of the machine, making it level under varying circumstances. The draught is direct from the plow beam.
Mr. Louis Anthoine, of Epworth, Iowa, has invented a Cultivator, in which the points covered by letters patent are the combination, with the cross bar of the frame, of a plow beam, connected to it by a U bar, lug pivot, and offsetted bar. The plow beam is raised and lowered by a lever and ratchet. The machine is adapted for use with a driver, or as a walking cultivator, being provided with handles for use in the latter case.
A Plow, invented by Mr. Asa Newsom, of Valdosta, Ga. is set to any required pitch by means of a screw and two pairs of nuts, one end of the screw being fixed in the plow standard, and the other working through parts secured to he beam.
Mr. John Burkholder, of Centerburg, Ohio, has invented Wheat Steaming Apparatus, which consists in a double conical-ended cylinder, which contains an interior slitted and perforated vessel. The grain is fed through a valve at the top, and passes between the outer and inner shells, being steamed in its progress downward. As the perforations of the interior vessel do not extend to the bottom, the lower part of the apparatus is kept dry by removing the condensed steam, and the grain is delivered from the lower exit in condition for grinding.
A new Cultivating Implement, patented by Mr. W. H. Thomas, of Way Cross, Ga., combines the advantages of a common hoe, finger hoe, rake, driller, etc. It has interchangeable parts, attachable to the same handle, one of which has cultivator teeth and a drilling tooth, and also a rake and hoe.
Mr. Wm. R. Fowler, of Baltimore, Md., has invented an Attachment for Plows which is in the nature of combined rake and scraper, or leveler for the upturned furrow slice. The device consists, generally stated, of a curved arm or bar hinged to the plow beam by detachable and adjustable clamps, and carrying a rake and scraper. The rake tears the furrow slice, and the scraper smooths or levels it.
An improved Planter and Drill, invented by Messrs. S. J. \& C. Weickel, of Laclede, Mo., has a seed covering shovel following in the rear of each hinged drill tooth, the shovel being attached to the tooth by means of a rod which is bolted to the tooth. The shovel is concave on the edge, to cause it to cover the grain and leave a narrow ditch on each side for the water to run off in. The drill spouts have side flanges and slide in guides under the drill box.
A patent recently issued to Mr. James Tripp, of Coldwa ter, Mich, covers a number of improvements upon that form of Cotton Picker in which a set of pendent pickers, composed of bars surrounded by upwardly pointing teeth, is arposed of bars surrounded by upwardly pointing teeth, is ar-
ranged to revolve, and in the revolution to descend into the ranged to revolve, and in the revolution to descend into the
cotton bush and seize the fiber, and then, with a motion to cotton bush and seize the fiber, and then, with a motion to
the rear to compensate for the progressive movement of the device, to ascend and deliver the fiber to a set of strippers. The invention consists chiefly in the construction of pickers, and the arrangement of the sets of the same upon revolving reel arms for a continuous and better action.

Recent Analyses of Furnace Gases.

M. Cailletet has published in a recent number of Comptes Rendus an interesting article detailing the results obtained by him from analyzing the gases circulating in the hottest parts of the furnaces in which iron is worked. These differ from those previously obtained by Ebelman, who being unacquainted with the phenomena of dissociation did not take into consideration the influence towards recombination preented by the cooling of the gases.
M. Cailletet's analysis is as follows:

Oxygen.	$13 \cdot 15$
Carbonic oxide.	$3 \cdot 31$
Carbonic acid.	1.04
Nitrogen (by difference)	82.50
	100.00

After cooling, by traversing a long flue in contact with the walls of boilers, the gas presented the following composi tion:

Oxygen.	$7 \cdot 65$
Carbonic oxide.	$3 \cdot 1$
Carbonic acid.	$7 \cdot 42$
Nitrogen (by difference)	81.72

The author explains that the large increase of carbonic anhydride, shown in the latter analysis, is due to the further combustion of a quantity of finely divided carbon which is present in the atmosphere of the hearth furnace. M. Cailletet believes that it will be possible to utilize the large quantity of combustible material which ordinarily leaves the chimney with the cooled gases.

Physical Education for Girls.

In these days, when so many women are engaging in in tellectual pursuits of a high character, and even are desirous of competing with men in the cares and anxieties of profes sional life, the question of their physical training ought to receive more attention than it has hitherto done. In this respect girls stand at a great disadvantage as compared with boys. Up to a certain age, say eight or nine, a girl mixes often on equalterms with her brother in his sports, indeed not infrequently excels him both in skill and spirit; but after that age healthy exercise is sacrificed to the bondage of genteel deportment. The growing child is confined with stays, and her feet crippled with tight boots. Anything like vigorous muscular movements are thus rendered im possible, and the sole exercise is the torpid regulation walk. Owing to this want of functional activity of the muscular system the muscles waste and dwindle, and the nutrition of the body becomes impaired. Many of the troubles women suffer from in later life are undoubtedly due to impaired muscular vigor, and much suffering would be spared if proper attention were paid in early life to their physical development by a course of systematic training. We do not mean that our daughters should emulate their brothers in the cricket field, or that female athleticism should be come the vogue. But we would point out to parents and managers of schools the danger entailed by the present neglect of exercise, and indicate the games that could be most easily adopted. Thus fives, rackets, and lawn tennis are games for which no great space is required; the latter game might be taught systematically, just as cricket is to boys at public schools. To play these games with safety, however stays and tight boots must be altogether discarded. Swimming, too, ought to be taught at all girls' schools, not merely because of the protection it affords, but also from its being in itself an admirable exercise, bringing into play all the muscles of the body.-Laincet.

The Palace Stock Car Company

The Palace Stock Car Company, or a corporation spoken of by that name, which is said to have bought up all the patents (62 in number) for stock cars which provide for feeding and watering the animals en route, has one of the most beautiful plans for making a fortune by act of Congress that the heart of man ever conceived. It has caused a bill to be introduced into Congress, providing that unless cattle are carried in its "palace stock cars," they shall be unloaded and fed every 24 hours-a considerably shorter period than is now required and practiced, and for which all the arrangements of the railroads-the costly stockyards, etc.are designed. This was an ingenious plan, for it made an appeal to humanity, which is apt to be listened to without taking pains to ascertain whether it would be really humane to grant what is asked in the name of humanity; and cattle shippers are not likely to be credited with any tenderness for their dumb property, while railroad corporations, having no souls, of course cannot have hearts. If the value of cattle for meat was improved by a course of starvation and exhaustion, there might be some necessity of interference by the government; but it has always been held out by the owners of "palace stock cars," that many times the cost of using them is saved by the better condition and heavier weight of the animals on arriving at market. And there is no doubt that hunger and thirst and prolonged weariness do reduce the weight of animals and injure the quality of their meat, and (which is a fact that the hardesihearted cattle dealers can feel to the very bottoms of their pockets) reduce their market price. For this reason the men who own the cattle which they are transporting are interested more than any one else can possibly be in their humane treatment. And yet, strange to say, they could not be induced to adopt the "palace stock cars," though for years they have been urged to do so. Indeed, they assert that to use them would be inhuman; that the animals suffer more from confinement and exhaustion in a run of 80 or 100 hours in a "palace" stock car, where they are offered food and drink, than in a run of 30 or 40 hours in an ordinary car, with rest and refreshment on the solid earth thereafter; that food and drink do the cattle little good in their excited condition when running; and that, as the business is actually conducted, the suffering of the animals is not great, as the very small number of deaths en route indicates.
A large number of prominent railroad men have been in Washington to appear before the House Committee (on Agriculture, we believe) in opposition to this bill, and they are convinced that this committee will report against it. Railroad Gazette.

The annual lumber product of the country is placed a $10,000,000,000$ feet, a considerable portion of which is in tended to replace timber cut only a few years previously, which has decayed. It is said that the renewal of telegraph poles alone requires $43,620,000$ feet, a quantity nearly equal to the product of Maine.

OXY-CARBON SUBMARINE LAMP.
Two modes of overcoming these difficulties are shown in the accompanying engravings. In one apparatus, that of Messrs. Heinke \& Davis, the problem is solved by the aid of electricity. This light will burn below water without any air whatever; and it is stated by Iron that when the parts of the lamp are screwed together no further attention is required. The upper illustration on this page shows the construction of this apparatus. The strength of the electric bull's eye lens and reflector, and thus a uniformly diffused
light is produced. The cylinder is fitted to a segmenta ring, and can be removed by turning it to the extent of one eighth of the circumference. The lamp is made of polished brass, the top and bottom portions being connected togethe by strong brass rods. A plate of lead at the bottom give the necessary weight to balance displacement, and also causes the lamp to sink and remain steady when placed on the bottom. The lamp may be burnt continuously or inter mittently, as required by the nature of the work; the car bons are usually arranged so as to last about four hour without renewal. Electricity is supplied by a battery of from twenty to forty Bunsen's elements, according to th intensity of light required. The bottom of the lamp is fitted with stuffing boxes, by means of which the wires connecting the lamp with the battery may be connected or disconnected at will, without the necessity of severing the wires. Th total weight of this lamp, which gives a light equal to 20,000 normal candles, is about 60 lbs. It may be used inde pendently of surface connection
Another plan is that of Messrs. Barnett \& Foster, wh use the system represented in the lower engraving. The light consists simply of the flame of a spirit lamp, urged by a jet of pure oxygen, compressed in a wrought iron bottle to about thirty atmospheres; and when one remembers what brilliant coruscations are produced by incandescent charcoa plunged in oxygen, it will readily be conceived that such a light is exceedingly powerful. This arrangement possesse the advantage of being entirely self-contained, dispensing with all pipes and connections from the surface. Exit valves are provided for the gaseous products of combustion and the oxygen receiver is fitted with a rope, by which diver can sling it on his back and walk about with it easily. The ordinary supply of materials will furnish a brilliant light for four hours.

New Inventions.

Mr. Jonas Hobbs, of Nineveh, N. Y., has invented an improved Wagon Standard, the object of which is to preven jarring and jolting. The standards are inclosed by coiled prings, which support the wagon body, and have curved baces suitably secured
An improved Fountain Pen for Marking has been invented by Mr. Joseph Schneider, of La Fayette, Ind. A detach able shank on the handle carries a stationary plate for one half of the pen, and a hinged blade for the other, the two blades being lined with cloth and curved downward toward each other, so as to form a fountain for the ink, as in draw ing pens. The space betwieen the points is regulated by a screw and counteracting spring.
A new Paper File, the invention of Mr. J. H. Van Pelt, of New York city, has two clamping strips, which are drawn together so as to hold the papers by pivot levers worked by screw nuts, which latter are turned by a longitudinal screw rod and key
A novel Spacing T-Square for draughtsmen has been in vented by Mr. Joshua D. Day, of New York city, which ha a head in two parts, one fixed and the other movable, and an adjusting screw for limiting the motion of the movable part, together with a graduated scale for in dicating the distance between the lines to be ruled. The parts may be so secured as to act as a common T-square, or the blade may be locked at any angle with the head, the angle being indicated by an index and gradu ated arc; or the blade and the part of the head to which it is attached may be moved over egular intervals, gauged by the milled nu and sliding scale, for ruling, shading, o spacing in a parallel direction at any angle The working faces of the head are lined with chamois leather or rubber, to prevent the square from sticking to the board and at the same time produce the necessary adhesion. D. T. Ames, 205 Broadway, New York, will give further information
Mr. John Krapp, of Brooklyn, N. Y., ha invented an improved Spring Rocking Chair in which the chair itself is separate from th base, and its rockers act upon stationar rounded and grooved bars on the base. The springs are two wire loops, having coils to give greater elasticity, and are clamped to the base and secured to the chair by hooks An arrangement of pins and stop hooks lim its the longitudinal motion, and lugs upon th rockers fitting into notches in the stationary bars prevent lateral motion.
A Support for Hose Nozzles, so constructed as to permit the stream to be directed at an desired angle, is the invention of Mr. Chas H. Rodig, of Cleveland, Ohio. It has, on a standard, a ball and socket joint, to which the nozzle is clamped, and arrangements for ecuring the joint in a flxed position
Mr. J. S. Halsey, of Lebanon, Ohio, has patented a Car bonic Acid Generating Apparatus applicable to the hose of fire engines, which injects the gas into the stream of water in its passage from the engine to the fire, the apparatus be ing designed to fill the place of a chemical fire engine.
Mr. J. H. R. Prall, of Elmira, N. Y., has patented a De vice for Adjusting Transoms. The inventor employs a con ecting rod, sliding in a slotted guide tube, and operating by a pivot arm, the fixed arm of the sash or transom.

An improved Sash Stop, invented by Mr. Wm. T. Doremus, of New York city, prevents windows from being opened without being previously unfastened, and fastens the sashes automatically as they are lowered, thus guarding against the possibility of closing the window and leaving it unfastened.
A liquid Size for Calcimining has been patented by Mr. Wm. S. Welch, of Westfield, N. J., intended to take the place of the liquid glue in use. It consists of a solution of a vegetable gum and glue in boiling water, mixed with spirits of turpentine
Mr. Henry Knowlton, of Flint, Mich., has invented a Door Stop and Holder, for retaining a door, when opened, in an easy manner and preventing jar. A cup-shaped rubber socket, attached to the door, receives a conical stop, which is screwed to the floor or base-board.
Mr. J. D. Tatem, of Ayer Junction, Mass., has invented a Folding Desk, having a leaf hinged to a frame, with eyes by which it may be hung from hooks projecting from the wall, the leaf being supported when in use by a hinged brace, which may be folded inward, so as to permit the leaf to drop when not in use.
Mr. Isaac Scheuer, of New York city, has patented an improved Traveling Bag, in which the flap of the outside pocket is kept in place and shape by metallic straps, and the flap itself is secured by a novel fastening.
An improved Harness Pad has recesses at the back for receiving the nuts by which the terrets are fastened to the tree, and countersunk holes for receiving tufted screws for fastening the pad to the tree. The pad is made of rubber, and is the invention of Mr. H. R. Ridgley, of Ashland, Ohio.
An improvement in Photographic Vignetting Devices has been patented by Messrs. F. H. Price, of Irvington, N. J., and A. S. Campbell, of Elizabeth, N. J. The patent covers an adjustable vignette shield, in combination with a box for shading it.
Mr. J. L. Dodge, of Greene, R. I., has invented an improved Horseshoe, so constructed as not to ball with snow and to permit the calks being easily removed when the horse is in stable, or for replacing worn calks with new ones. The shoe is made in two parts, the lower one, corresponding to the common horseshoe, being secured to the upper by studs and a screw.
A Time Signal, invented by Mr. J. A. de Macedo, of Leeds, Eng., is a sand glass mounted on a horizontal axis in such a manner as to overbalance when the sand, or any• fixed portion of it, has run from the upper bulb to the lower. On the upper part of the glass is a hammer, which when the glass overturns strikes a bell hung beneath.
A Ventilator for Windows, invented by Mr. L. D. Harvey, of Sheboygan, Wis., has a curved metallic deflector, with cloth side pieces, and is provided with a hinged cover which may be adjusted in any desired position.
Mr. H. W. Hammersmith, of South Bend, Ohio, has in vented an improved Rail Joint, or vise for connecting broken rails. It consists of a jaw, bearing upon the fish plate at one side of the joint of the rails, and extending in the shape of a bolt below the base to a second jaw, which is secured by a screw nut on the end of the bolt, so as to bear tightly on the opposite fish plate.

Progress of Atlantic Steam Navigation. Liverpool Engineering Societt.-This Society held its usual fortnightly meeting at the Royal Institution on January 30. Mr. Arthur J. Maginnis read a paper on "At lantic Lines and Steamships." The author briefly sketched the development of the now enormous Atlantic trade of Liverpool from its commencement, in 1840, when Sir Samuel Cunard dispatched the Britannia from Liverpool to New York, to the end of 1877, when there were 152 British steam ers, with an aggregate tonnage of 377,905 tons, engaged in this trade. After enumerating the different companies which have been formed from time to time, and giving a short history of each, Mr. Maginnis proceeded to give some interesting statistics of the engine performances of the more famous vessels. We find that, owing to the improvement in modern vessels and engines, a ton of cargo can now be delivered in New York with the consumption of 4.5 cwt . of coal on the voyage against 48.5 cwt . in the earlier class of steamers; and the consumption of coal per indicated horse power of the engines has decreased from 4.7 to 1.9 cwt ., while the average speed per hour has been almost doubled.

Attention was called to the compound inverted engines introduced in the vessels of the White Star line, each engine having a high and a low pressure cylinder as a precaution against a break down. The author endeavored to allay the prevalent anxiety where a vessel disabled her machinery, for, having sailed over 800 miles in a disabled steamer, he could testify to the good sailing qualities of most of our oceangoing steamers.

The African Musket.

The gun known in the Birmingham trade by this name has changed neither its quality nor pattern for many years past. These guns are sent to the West Coast of Africa, where they are interchanged for palm oil and other produce. But a few years back no ship's cargo trading with that coast was com plete without a supply of them. The taste of the African is fickle in the matter of beads; a shade of color which is in demand one season may be unsalable the next; but it is not so with guns, wherein he rejects all improvements, and
rigidly adheres to the old flint musket, with its bright bar rigidly adheres to the old flint musket, with its bright bar-
rel, which his father and his grandfather used before him.

There are various patterns of these African guns, as each district has its own peculiar taste. The barrels vary consid erably in length, and are variously stained, some black, others a brown-red, and others again a bright vermilion Probably 100,000 to 150,000 of these guns made in Birming ham are annually exported.

ASTRONOMICAL NOTES.

Penn Yan, N. Y., Saturday, March 9, 1878.
The following calculations are adapted to the latitude of New York city, and are expressed in true or clock time being for the date given in the caption when not otherwise stated.

Antares rises Snica rises Altair rises Vega rises Algol (var.) sets Aldebaran sets 7 Stars (cluster) sets Rigel sets. Sirius in meridian Procyon in meridian Capellarus in meridian Betelgeuse in meridian.

REMARES.
Fomalhaut is omitted in the above table owing to the fact that he rises after and sets before the sun. Venus is stationary March 13. Mars is in conjunction with the moon at 9 h . 8 m . evening, being $4^{\circ} 16^{\prime}$ south of the moon. Professor Hall has named the newly discovered moons Deimus and Phobus. Saturn will continue to be " evening star" until March 13, when he is in conjunction with the sun, and after that date will be "morning star" until June 23. Algol is that date will be "morning star" until June 23. Algol is
at minimum brilliancy March 6, 6 h .25 m . evening. "Amplitude " is the distance north or south of the east or west points of the horizon at which a body rises or sets. It is much easier to find particular stars if we know their ampli tudes, and as this does not vary perceptibly for short periods, those who are observing would do well to copy the amplitudes given in this number, in order to have them con venient for reference, as they will be inserted but once.

Astronomical Notes.

Observatory of Vassar College.
The computations of the following notes, which are mere y approximate, have been made by students in the Astro nomical Department of Vassar College.

Position of Planets for March, 1878. Mercury.
On March 1 Mercury rises at 6 h . 11 m . A.M., and sets at 4 h .19 m . P.M. On the 31st Mercury rises at 6 h . 12 m . A.M. and sets at $7 \mathrm{~h} .15 \mathrm{~m} . \mathrm{P} . \mathrm{M}$
Mercury is at superior conjunction with the sun on March 20 , is of course far from the earth, and passing the meridian at the same time with the sun.

Venus.

Venus, which in the evenings of the first part of February was a beautiful threadlike crescent, has passed west of the un and can in March be seen in the morning
On March 1 Venus rises at 5 h .26 m . A.M., and sets at 4 h . 55 m . P.M. On March 31 Venus rises at 3 h . 57 m . A.M., and sets at 2 h .59 m . P.M. Venus is at greatest brilliancy on March 28; at that time it comes to the meridian at 9 h .31 m . A.M.

Mars.

Mars is so distant that it has become much less marked than when at opposition in September. But its path in March is so nearly that of some of the bright stars of the Pleiades as to make it again noticeable. It passes near Al yone on the 15th
Mars rises on March 1 at 9 h .17 m . A.M., and sets at 11 h 35m. P.M. On March 31, Mars rises at 8h. 18m. A.M., and sets at 11h. 14m. P.M.

Jupiter.

Jupiter can be seen in the morning. On March 1 Jupiter rises at 4h. 41m. A.M., and sets at 2h. 1m. P.M. On March 31 Jupiter rises at 3 h .0 m . A.M., and sets at 0 h .30 m . P.M. Jupiter is far south in declination and rises so short a time before the sun that few observations can be made in this lat itude.
Saturn is in March so nearly in range with the sun that it is useless to attempt observations upon it. Since September the large telescope of Vassar College has been turned, nearly every fine evening, to this planet. Drawings of Saturn, its ring and its many satellites, have been made on forty-four evenings. At first the ring was a narrow ellipse, narrowing from night to night, then a mere line of light across the planet and projecting beyond it, and on February ${ }^{7}$, whe last seen, it was as broken points of light.
In the autumn six of the satellites were sometimes seen, he largest Titan and Japetus, and the smaller ones Rhea, Dione, Tethys, and Enkeladus. As Saturn became more distant the smaller ones, Enkeladus and Tethys, ceased to be seen, and on February 7th Titan, Japetus, and Rhea only were visible.
The ring of Saturn reappears in March, the southern side
being presented to view in the morning hour. But its rising is so nearly that of the sun that it cannot be seen before April.
On March 1 Saturn rises at 7 h .13 m . A.M., and sets at 6 h . 36m. P.M. On March 31 Saturn rises at 5h. 23m. A.M., and sets at 4 h .57 m . P.M.

Uranus.

The only planet which is well situated for observation in March is Uranus. On March 1 Uranus rises at 4h. 29m. P.M., and sets at 6 h .7 m . of the next morning. On the 31 s Uranus rises at 2 h . 26 m . P.M., and sets at 4 h .6 m . of the ext morning.
Uranus is still near Regulus, but has moved toward the west and is in higher northern declination. A small telescope of two or three inches object glass will show the disk of Uranus; Regulus and the planet will probably come into the field together, if a low power is used. Little can be seen of Uranus even with a large telescope. Its disk is of a dull greenish white color, and its moons are mere points of light difficult to follow.

Neptune.

Neptune is very distant and keeps nearly the diurnal path of the sun; it is useless to attempt to find it.

Chemical Notes.

Formic acid has recently been found to possess powerfu preservative properties, exceeding, when added to acid solu tions, even carbolic acid; and to be particularly suitable for adding to fruit juices. From $1 / 4$ to $1 / 2$ per cent is the quantity requisite to preserve vinegar, fruit juices, glue, ink, etc.
Thymol appears to be attracting considerable notice, and the demand for it is steadily increasing. For offensive wounds a strong alcoholic solution is recommended. The saturated aqueous solution is capable of arresting lactic fermentation, and arrests excessive secretion by mucous mem branes.
Polyporic acid, with the formula $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$, is the recent discovery of Stahlschmidt from the analysis of several species f toadstools belonging to the genus polyporus. The new acid is insoluble in water, and giveswell defined compounds with the alkalies, forming purple colored solutions.
Bolivite is a name given by Domeyko to an oxysulphide of bismuth which he has found in Bolivia; it is composed of the sulphide $\mathrm{Bi}_{2} \mathrm{~S}_{2}$ and the oxide $\mathrm{Bi}_{2} \mathrm{O}_{3}$.
He has also found taznite, a chlorarsenate and chlorantimoniate of bismuth, in Bolivia.
Bichromate of potash as an antiseptic.-M. Laujorrois lately presented a note to the French Academy on the antiseptic properties of bichromate of potash. Experiments had shown him that the addition of one hundredth part of the bichromate in ordinary water prevents the putrefaction of all sorts of organic matter, such as meat, urine, etc. A thousandth part of bichromate prevents beer from turning sour. After three months' immersion in a solution, meat was hardened and dry.

Iodous acid has been obtained by Ogier by placing iodine in contact with ozone at a temperature of 44° to 50°. It is a pale yellow, light powder, decomposable by water with the deposition of iodine. On the other hand, iodic acid is apparently obtained when ozonized oxygen acts upon iodine vapor or when a mixture of iodine vapor and oxygen is exposed to the silent electrical discharge. This iodic acid is a colorless the silent electrical discharge. This iodic acid is a colorles
body, soluble in water without decomposition. It was ac body, soluble in water without decomposition. It was ac-
companied by what appeared to be hypoiodic acid, a body less soluble in water and with characters reminding one of the hypoiodic acid described by Millon.
The Analysis of Sugar.-In a paper on this subject, read before the Chemical Society, the author, G. Jones, proposes to estimate sucrose volumetrically by adding a 0.1 per cent solution to a decinormal solution of permanganate, acidula ted with sulphuric acid, until the dirty brown hydrated per oxide of manganese, which is at first formed, is reduced and dissolved. The solution, contained in a porcelain dish, is boiled after each addition of the saccharine liquor. The author states that in every case he obtained results which fully justify him in calling attention to the process. The coloring matter in sugar does not seem to affect the value of the estimations. Mr. Waring drew attention to the fact that this use of permanganate must be limited to cases in which the sugar was tolerably pure, and that it would be useless for the determinations of the sugar present in the juice of the beet root, etc.
Solubility of Sugar in Water.-Courtonne finds that at $12 \cdot 5^{\circ}, 100$ grammes of water dissolves 98.547 grammes of sugar, and at $45^{\circ}, 245$ grammes; in other words, a satu rated solution of 12° holds 66.5 , and one of $45^{\circ} 71$ per cent of sugar.
Inventions Patented in England by Americans. From January 11, 1878, to January 14, 1878, inclusive Aero-Steam Evgine.-E. M. Strange et al., New York city.
Boot and Shoe Machine.-J. W. Brooks, Boston, Mass. Coot and Shoe Machine.-J. W. Brooks, Boston, Mass.
Car axle.-N. Jones, Syracuse. N. Y. Centrifugali Machine.-W. H. Tolh Electric Lamp. - W. Wallace, Ausonia. Conn. FENCE--Empire Wringer Company, Auburn, N. Y. File-Cutting Machine.-A. J. Dobson et al., New York cits
Governor.-H. T. Farnsworth, Bellefonte, Pa. Governor--H. T. Farnsworth, Bellefonte, Pa. Madle For Metal Founding.-W. Fawcett, Omaha, Neb. Paper Pulp Grinding Cylinder.-C. J. Bradbury, Lawrence, Mas eat, Preparing for Use.-W. e. Wright, Rome, N. y.
Oostal Card.-F. W. Brooks, New York city Pastal Catio-F. W. Brooks, New York city
Rativg Macitne.-A. J. Dobson et al STEAM Boiller.-J. Baird, New York city.
SUPEREEATING STEA. SUperieating Steam.-T. S. C. Lowe et al., N Tellurion.-C. M. de Per G. Conn et al., Elkhart

Gusines wat exsonal.

The Charge for Insertion a line for each insertion.

 Portable and Stationary Engines; Boilers of all kinds;made at the Erie City Iron Works, 45 Cortlandt St., N. \mathbf{F} Assays of Ores, Analyses of Minerals, Waters, Commercial Articles, etc. Technical formulæ and proc
Telephone Magnets. Electric Supply Co., Box 611, rovidence, R. I.
Wanted.-A first-class business man with $\$ 10,000$ to nvest, and capable of assuming the general manage eent of a Machine Shop and Foundry in Western Can ada. Shop now in operation; connections frst-class; an
security unquestionable. F. W. Glen, Oshawa, Ontario
Wanted.-Address of Makers of Pipe Fittings. Aiki
Drummond, Louisville, Ky
Circular Saws for light work and Shingles that will
cut as smooth as a circular plane can be obtained of \mathbf{C} Wilson, Macon, Ga
Concave Moulding Cutters for Reversible Moulding or Shaping Machines. Manufactured only by Morris L.
Orum, suceessor to Mellor \& Orum, 448 North Twelfth treet, Philadelphia, Pa. Novelties in wood cuttin

Wanted.-Parties to Manufacture an Improved Pip
oupling on Royalty. Illustrated in Sci. Am. Jan. 26, 1878 For Sale.-Hewes' Machine Works. A complete ma hine shop, tools, arge and small, good will of busines nd right to manufacture several valuable Patents, a Water stops, etc. Good reasons given for selling. Ad-
dress the above, cor. Nassau \& Sheffeld Sts., Newark,N.J.
For Best Insulated Telegraph Wire, Telephone Wire and Flexible Cordage, Eugene F. Phillips, 67 Stewart St Providence, R.I.
Improved Wood-working Machinery made by Walke
,
Walrath's Improved Portable Engines best in market,
to 8 H. P. Peter Walrath, Chittenango, Wanted.-A 2d hand Corliss Engine, 14 to 18 in. bore
Blake's Belt Studs are stronger, cheaper, and mor Belts. Baxter's Adjustable ers. Manuf.by Greene, Tweed \&Co., 18 Park Place, N. $\overline{\text { I }}$ For Solid Wrought Iron Beams, etc., see advertise
nent. Address Union Iron Mills, Pittsburgh, Pa., fo ment. Adare
For book on Lubricants, R. J.Chard, 134 M.Lane,N.Y 2 d Hand Iron Planer built by Smith of Salem. Plane 13 Cornice Brakes. J. M. Robinso , T. rs of Burr Mill Stones and Flour Mill Machinery of a sinds, and dealers in Dufour \& Co.'s Bolting Cloth

Solid Emery Vubses, Ferracute Co., Bridgeton, N. J. Solid Emery Vulcanite Wheels-The Solid Origina Emery Wheel - other kinds imitations and inferio
Caution.-Our name is stamped in full on all our bes Standard Belting, Packing, and Hose. Buy that only.
The best is the cheapest. New York Belting and PackThe best is the cheapest. New York. B
ng Company, 37 and 38 Park Row, N. Y.
Steel Castings from one lb . to five thousand lbs. In Filtabburg for strength and durability. Circ
For Best Presses, Dies, and Fruit Can Tools, Bliss \&
Williams, cor. of Plymouth and Jay Sts., Brooklyn, N.Y
Hydraulic Presses and Jacks, new and second han Lathes and Machinery for Polishing and Buffing metals.
. Lyon \& Co., 470 Grand St., N. Y.
The Niles Tool Works, Hamilton, O., have second rie
Friction Clutches warranted to drive Circular Log jpright Mill Spindles, Safety Elevators, and Hoistin Machinery. D. Frisbie \& Co., New Haven, Conn.
Wanted.-Second-hand Gun Stocking, and other Gun
Machinery. Address V. A. King, Lock Box 81, New Mavinery.
Bound Volumes of the Scientific American.-I have on hand about 200 bound volumes of the Scientiffc Amere sent by express. See advertisement on page 1 ohn Edwards, P. O. Box 773, N.
Wanted.-A strictly reliahle Manufacturing Company to take charge of manufacture and sale of Lempert's
Faucet-see Scientific American of Dec. 8,1877 -or pur Faucet-see Scientifc American of Dec. 8, 1877-or pur
chaser for Patent Rights. W. s. Lempert, Fort Davis chaser
For Boult's Paneling, Moulding, and Dovetailing M chine, and other wood-working mac
Chester Steel Castings Co. make castings for heav gearing, and Hydraulic Cylinders where great strengt is required. See their advertisement, page 158.
Patent Scroll and Band Saws. Best and
Diamond Planers. J. Dickinson, 64 Nassau St., N.
Lansdell's Steam Siphon pumps sandy and gritty waSilver Solder and small Tubing. John Holland, Cin Self-Feeding Upright Drilling Machine of onstruction; drills holes from $1 / 8$ to 3 inch in diam construction; drills holes from $1 / 2$ to 2 inch in did
eter. Pratt \& Whitney Company, Hartford, Conn.
The Turbine Wheel made by Risdon \& Co., Mt. Holl
Vertical Scientific Grain Mills. A.W.Straub \& Co.,Phila Vertical \& Yacht Engines. N.W.Twiss,New Haven,Ct Corliss Engine Builders, with Wetherill's improvements, Engineers, Machinists, Iron Founders,
Makers. Robt. Wetherill \& Co., Chester, Pa.
Blake's Belt Studs. The most durable fastening fo
Hand Fire Engines, Lift and Force Pumps for fir and all other purposes.
Falls, N.X., U.S.A.
Polishing Supplies of all kinds. Walrus Leathe

Hander Maturies
(1) T. C. asks: 1. Is the Trouvé moist bat ery to be used on a closed circuit like the blueston batteries, or an open one? A. It may be used with al most equal advantage for either. 2. Does it requir enewing? A. It has of course to be renewed at pe called a constant battery to distinguish it from batte ies which require more attention
(2) A. B. C. asks: Is there anything manu factured or patented to prevent cellars or basement
rom being flooded with water? A. There are man devices. The inclined heavy brass gate valve may an wer your purpose. Several patents relating to this subject have recently been issued.
(3) J. D. B. wishes to know how to mak dry pit for his elevator. He has used a plank box without success. A. Pump out the box as dry cloth saturated with lead paint. If this should no ucceed, construct the pit of brick, line it with severa coats of asphaltic cement, and then lay a course or
(4) C. H. M. asks: 1. What is the adva (4) ombining the two increase the inductive powerp A No; both helices or spools are wound in the same direction. Two sizes of wire are seldom used in con tructing an ordinary helix or coil, such as is used on mple electro-magnet. The induction coil, such as sed for giving shocks by electro-magnetism, consist coil, which is connected with the battery, and the othe of fine wire, each end of which is connected with hand of the person for the purpose of giving shocks of
lectricity, produced in it by induction from the prilectricity, produced in it by induction from the primary coil and its iron core. 2. What is the formula or proportional law between the size and character of the helix as compared with the magnet upon which it is For instance, suppose a cylindrical magnet 6 inches ong and 1 inch diameter, what should be the diameter of the helix to obtain the maximum induction? A. In he case you suppose, the diameter ofthe helix or spool hould be about 3 inches; that is, the diameter of the core should be about $\frac{13}{3}$ of the diameter of the spool, nd, conversely, the diameter of the spool should b
(5) W. M. L. writes: 1. How can I proper charge a large permanent magnet of horsesho shape? I made one 2 feet 6 inches long, of three hicknesses of $1 / 2$ inch steel, $21 / 2$ inches wide. I tem pered the ends hard, and wound it with covered copper tery any more than if I had simply rubbed it on an ther magnet. A. To properly charge a magnet of the size you describe would require the use of a very powerful battery and electro-magnet, on the poles of which he steel to be magnetized would have to be laid in such a manner that the magnetic circuit would be com $\begin{array}{ll}\text { pleted through it. } & \text { 2. How many parts should a magnet } \\ \text { of this size have? } & \text { A. It should be built of layers of }\end{array}$ of this size have? A. It
(6) J. J. T. asks: Will an iron ball rol Yes.
Whi
Mown
Which is the better plunger pump, a horizontal or rical one? A. The vertical pump is generally pro question of preference is based almost entirely on the circumstances under which the pump is to be used.
(7) C. W. W. asks: How can I make a permanent magnet with a horseshoe magnet? A. If you ne end several times in ane direction, over one pole he horseshoe magnet, and draw the other end of the bar in a similar manner over the other pole of the horse
shoe magnet. or those brass or wood slide blocks which are set in a or those brass or wood slide blocks which are set in
crosshead and work on guides? A. They are generall rosshead and work on guides? A .
indicated by the name you mention.
What is meant by "wire drawing?", A. Reducing
he diameter of wire by "drawing" or pulling it hrougheter of wire by "drawing" or pulling it (9) F. S. T. asks: What will be the simples mode of constructing a short telephone line, of 50 rod Class is the how should the wire be insulated? A. ose. You can insulate your main line by supportin it on the ordinary glass insulators which are in use on nost telegraph lines, or you may improvise an insulato ooden pins, driven into the poles or trees, and securing the main line to each bottle neck in succession, by neans of a short piece of wire twisted tightly around
(10) A. J. H.-The eggs you send are those us common bark louse of the apple tree (Aspidid us conchiformis. The female is shaped like an oyst entral appendage, but without the usual candal fla ments. The puparium has a double shield. The in ects do great injury to the trees. Consult Hill "Insects Injurious to Vegetat.
(11) C. J. W. asks: Is there any substance which, applied to silk or paper, will form a nearly pe fect non-conductor of magnetism when placed betwe
(12) W. S. D. asks: 1. Will the telephone work on a telegraph wire having 2 sounders on, with ferent sized magnets? A. Yes. 2. How many cells ers on a telegraph line 300 feet longs A. About 3 cells.
A. Will a lightning rod
A. That will depend on the size and condnctivity its earth connection. 4. Does it require more battery hms? A. Yes.
(13) L. H. M. asks: Will it be practicable to make an electrophorus by pouring ordinary sealing
wax into a 12 inch tin plate with raised margin, and using a tin disk with insulating handle for the movable plate? A. Yes, but the diameter of the tin disk must be less than the diameter of the other plate.
(14) D. F. H. asks: Can I, by running wires from my house to the shop, a distance of about 125 eet, light the fire under the boiler at the shop by elecblasting? A. Yes, although some combustible subtance would have to be used in connection with the fuse, as the fiash p roduced by it would be perhaps too sudden to light the shavings or paper used in kindling he fire. A mixture of phosphorus and sulphur wo accidents.
(15) H. C. B. writes: 1. I am informed that, herea battery is used on a Bell telephone line, conecting the wrong pole of the battery with the con hone will weaken and eventually destroy the power of he line even where the telephone is only let into he line when in actual nse. If this is so, what is the hrough the "voz" telephones A Connect the bat tery so that the passage of its current through the pool of the telephone magnet will tend to increase its nagnetism, as may be seen by the variation of a mag
needle placed in its vicinity.
2. For an ordinary elegraph line, 1 to 5 miles in length (ground circuit) containing from two to six 5 inch electrical bells, wha would be the proper resistance for the bell magneta A. About 12 ohms each. 3. About how much Calla attery would be required to work the bells well f ignaling by single stroke? A. About 30 cups. Could they be worke properly in a Not properly, as it would be expensive to use such a large main battery would then be required.
(16) J. E. M. writes: 1. I have seen the escription of a condenser (for induction coils) in the No. 22 AIIIO AMERICAN for November 25, 1876, vol. 35 heets of foil 12inches $x 8$ inches would be a good pro portion? My coil is made with 2 lbs . of No. 32 cotto overed wire well insulated for secondary. The coil works very wellnow, but 1 suppose a condenser would
mprove it. A. Yes. 2. Will you please tell me how the condenser is to be connected in the circuit with coil? A. Connect one terminal of the condenser with he commutator post of the coil, and the other terminal of the condenser with the post that supports the vibraing armature.
(17) L. D. asks: 1. How is a Smee batter madeq A. It consists essentially of two plates of ama each other corming the netal clamp, so as to face nd a plate of platinum or silver, supported by an in sulation, placed between the zinc plates forms the posi tive pole. The exciting fluid consists of about 10 or 1 any change made in the battery when plating with gold, silver, nickel, etc. 9 A. Not anless the plating is one on a very large scale. 3. Is it necessary to use pure metals for plating? A. It is best to have them pure in order to produce a given result. 4. Are the
(18) A. C. N. says: Will the Scientific merican rangement,simple and inexpensive, whereby the peculia zercise afforded by horse back riding may be obtained ithin doors? A. Perhaps some of our readers ca
(19) L. A. G. asks: 1. How can I make a tel
 ro-magnet, of which the core consists of a bar, or U shaped permanent magnet, lay a small disk or sheet of very thin iron or common tin. Inclose the whole in placed in the the small end of whil is open, and convey the vibrations of the thin sheet of iron or tin which faces it, to the drum of the ear. This completes one telephone, for one end of the line, and the other elephone, for the other end of the line, should be made just like it; and the wire which forms the electro-mag et should be of the same diameter and length in on astrument as it is in the other. 2. How can rattach olephone to a telegraph wire on miles rom read what goes over theline? A. By top ing the main line; conuect one end of a short piec of wire with the main line, and connect the other end of the short piece of wire with one binding post of the elephone, then connect the other binding post of the telephonewith the ground. 3. Can we use 2 telephone o converse with over 3 miles of railroad telegraph line
(20) J. L. S. asks: What tool shall I use to int No. 10 wire to $\frac{1}{1}$ inch, with a taper of $11 / 4$ inches? A properiy shaped torngg tool usedin a slide r
(21) A. J. asks: 1. Can anything be added anphate of copper solution, which will cause the copper coating deposited on iron to retain its color ored like copper? A. Reduce 3 ozs. of copper sulpate to powder and dissolve itin a quart copper sul Pickle the articles in dilute oil of vitriol or acid zinc chloride. 3. Please give me a recipe for bronzing iron . For an ordinary bronze, give the article a good coat acid very nearly neutralized with ammonium carbona
(22) D. E. B. asks: Can the ordinary Bel elephone be used on a telegraph line without interfer ing with, or being interrupted by, the regular telegraphis he proximity of other telegraph lines running paralle
not, except in some cases, be regarded as a radical in-
terference. Your question may refer to terference. Your question may refer to tapping the
main line (see answer to L. A. G). In that case our main line (see answer to L. A. G). In that case, our
answer is, no; but the greater the resistance of the wire on each telephone magnet, the less will be the inerference with the Morse signals which are being transmitted over the line which is thus tapped.
(23) J. B. W. asks: Is there any process by ch sandy soil may be cemented into a cheap fence? A. Hydraulic cement, good lime, tar, pitch, or resinous matters may be used, as in the preparation of artificial
tone. The economy of a fence made in this way will ance matation of the word
(24) H. S. asks: How can I remove ink tains or blots from paper? A. If the paper is no peatedly on cloan bloting (chemically pure) appled ittle fine, dry pipe clay. If otherwise, you had bette not attempt remove traces of acid.
(25) N. W. M. asks: 1 . What is the best method of tempering cast steel bars? A. Heat them to red heat and quench them until cold in water at
about 60° Fah.; then polish a small part of the surface and reheat until the required temper color appears. 2.
How are steel trap springs tempered? A. They are heated to a cherry red heat and cooled in water; then reeated in a mixture of oil and tallow in equal quantitie hen this substance blazes freely on the springs they be welded to cast steel? A. We think not
(26) S. W. F. writes: I see it stated that the temperature for hatching hens' eggs should be
140° Fah. Is that correct? A. Probably 104° is

In winding an electro-magnet with uncovered copper wire, if cotton twine of the same size as the wire be wound with it at each turn, and a piece of silk be placed between the layers so as to keep the several sufficient? A. By winding the wire in the manner described, it would be well insulated, but the magnetic effect would not be so good, as you would not be able o wind as much wire in a given space as you could if the wire was covered with silk or cotton.
(27) A. J. W. writes, in answer to J. A.O. (48), February 16: I run my cotton press with a pair of
friction wheels. The driver on the main counter is 4 friction wheels. The driver on the main counter is 4
feet, the one on pressshaft 3 feet, both 8 inch face, the latter covered with a gum belt and thrown in contact with driver by alever moving a sliding timber on which the press shaft box is fixed. It works well.
guiry as to the removal of soot from the H. \& T.'s in arched over with brick, makes the following suggesions: Let in a small steam pipe at the rear end of the boilers; put on a globe valve; attach a piece of steam hose and nozzle; fit a wooden lever to turn on the
team. By this arrangement the soot under the arches team. By this arrangement the soot under the arches

Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
A. G. P. - No. 1 is a rich silver-lead ore-argentiferous galena. No. 2 contains iron sulphide, galena, and
antimony sulphide.-J. C. W.-Impure fire clay, containing much organic matter. Worth about $\$ 1$ per ton in this city.-F. M. H.-It is hornstone.-A. J.-The sample contains a notable quantity of argillaceous eties of glass. It could probably be improved by washing.-S. R. R.-No. 1 is a very fine variety of silicious sand, of some value for common glass making as a flux in certain metallurgical operations, for artificial stone, etc. The clay (No. 2) contains too much sili-
cious matter to be of especial value.-F. G. P.-It is cious matter to be of especial value.-F. G. P.-It is partially decomposed marcarite in ferruginous clay.veins represented by Nos. 1 and 3 should be examined. HINTS TO CORRESPONDENTS
We renew our request that correspondents, in referring to former answers or articles, will be kind enough to of the question.
Correspondents whose inquiries fail to appear should epeat them. If not then published; they may conclude ddress of the writes, the Editor declines them. The Inquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, when initials only are given, our paper to print them all; but we ure in answering briefly by mail, if the writer's address is given.
official.
index of inventions
Letters Patent of the United States were Granted in the Week Ending January 29, 1878,
AND EACH BEARING THAT DATE. [Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list, furnished from this office for one dollar. In ordering please state the number and date of the patent desired Air, compressing, J. P. Frizell
Amalgamator, Le Clerc
Anchor, A. A. Stimson
Animal-feeding der
Anchor, A. A. Stimson...............
Animal-feeding device, E. Sterzing
Anmal trap, A. H. Barber..
Axle box, J. Blakeley......
Baa holder, A. L. Hatiel
Bag holder, A. L. Hatalid....
Bale-band tightener, Bull \&
Bale tie, Andrews. \& Ed wards.
Bale-band tightener, Bull
Bale tie, Andrews.\& Ed wa
Bale tie, s. J. Chapman..


```
Lamp chimney, H. S. F4fleld... .
Latch, J. L. Moesta
Lavatory apparatus, D. Welli gton
Lock for freight cars, F.J.Hopt...........
Locomotives, alarm for, Simpson & Kimb
Lubricator,S. Reic
Mangle H. Albers
edicinal agent, putting up, W. E. Heeren
Medicinal agents, pad for, E. H. Flagg
Millstone dressing device, R. Lytle..
Millstone dressing machine, R. L
Mosquito bar, portable, A. A. Cowing
Nail machine, cut, J. W.Che
Oil cloth, machine for rubbing, A. E. Snow
Ointment, C. J. Beattie .........
Organ stop action, W. H. C.
painting barrels, M. L.
Paper dish, H. L. R. Wolf ..
Paper pillowsham,, L. A. Weed
Pen, fountain, A. T. Cross
Pianoforte, E. Gabler.
Pianoforte action, J.: Brinsmead
ipe and hose coupling, S. A. Brumbaugh
Planter, corn Brown & Houston
Plow, D. P. Ferguson
Plow, A. News
Plow, A. Sipe .....
Plow, E. C. Budd . 
Plow wheel attachment,.............
Pocket book frame, c. Blust..........
Powey, P. Medart.
Pump, A. Noteman ........................
Punch for cutting letters, J. A. S
Radiator, W. F. Cunningham..
Raker and loader, W. W.Dea
Ribbon block, T. Hagerty ...
Saccharine matters from air, E.K. Richards
Sails, T. Petersen
Saw, J. F: Milligan...............................................
Sawing machine, R. McChesney
Scale platform, F.
Scraper, J.Stubbs
scruw cutting de, e. A. &. Stockley
Seed dropper, J. T. Wright.
Sewer valve, J.Dikeman.
Sewing machine, A. Beck (r)...............
Sewing machine, boot a
kate, G. Klotz ...........
kat,
Spool box, G. Haurington 
spool rack, rope, Felix & Scharnweber
Spring, carriage, J. W. & W
Spring, door, A. W. Pierce. .........
spings, rubber cushion for vehicle, W. B. West
prinkler, H. G. Fiske
Square and bevel, I. J. Robinson (r)..
Steam condensing apparatus, E. Burgi
Steain generator, T. L. Jones
stirrup suspender, L. F. Johnston
Stove and rangegrate, S. Smyth
Stove, .. R. Walls.............
Stove, coal oil. A. H. U.
Stove, W. Smith...
Stove leg, F. S. Berr
Stove pipe adjuster, W. P. Cook..
Straw cutter, W. V. &D.J. 
Syringe, M. Mattson .........
Telegraph, duplex, G. Smith
Thill coupling, T. H. Pate...
Tile machine, Horrocks & Ste
Tire tightener, E. S. Gibbs .................
Tobacco pall, J.T. Emerick
M
Troy, Pattberg & Gaertner ...
Tumbling barre, Coonley & Graham
Umbrella runner, A.Good
Valve, faucet, O. Collier
Valve, plston, W. C. Ross
Valve, stop, J. F. Fiffeld............
Varnishing machine, T. B. Dooley.
Vinegar generator, J. B. Netscher
Wagon coupling, W. R. Porter.a
Wagon runninggear, A. J. Beach
Wagons, netting for unloading, T. Powe l
Washing machtne, botler, J. P. LeGrange
Watch case spring, J. Laurent.
Watch crown, Milne & Jourdain
Water closet bowl, J. L. Hutchinso
Water closet slop safe, J. Demarest
Water wheel, turbine, R. M. Stewart 
Wells, poHsh rod adjuster for oll, A.M.
Wheat steamIng apparatus, J. Burkholder
Wheel, car,G. W. Eddy
Wheel, sand guard, stewart & Parke
Wheelbarrow,W. Eckert
Windows, device for operating, J. Kelly
```

[A copy. of any of the above patents may be had
Zork city.]

PORTABLE QUARTVZ MILL.
(Hammond's Patent Cam.) GOLD AND SILVER MILL

HOLLOW SPINDLE LATHE. Two sizes : 15 in... $11 / 8$ in. hole; 18 in.,11/ in. hole. Besides
the most approved features of modern New Enland

GPANISH CEDAR
CIGAR-BOX TTMBER! Finished Ready, for Use.
First Quality at 334c. Second Quality at 234c.
POPLAR-1st Quality at $\$ 15$ per MI. Feet; 2 d . BUNDLING AND CARTAGE ADDITIONAL. GEO. W. RS BAD
GEO. W. READ \& CO.

National Fret-Sawing Association.

A FOUNDRY, MACHINE SHOP, AND
 GEERGEE RHEA, Camp Point, Ilinois.

NILES ENGINE
COTTON GINS, CORN MILLS, FARMS \& PLANTATIONS, PRINTING OFFICES,
And for any purpose requiring an
engine from 2 to 12 horse-power. ADORESS NILES TOOL WORKS,
Hamilton, Oh
"OLD RELIABLE." TO KNOW ALL about the Best Pump for Paper Makers, Tanners, Con-
tractors, and for 1rrigation, send for illstrated pamph.
let, 78 pages. HEALD, siScoa\& CO., Baldwinsville, N.Y.

 BAUGH \& SONS,

PHILADELPHIA, PA.

Steel Name Stamps.
成

Zicutific Ammricau.

The Most Popular Seientific Paper in the World. thirty-third year.
Only $\$ 3.20 \mathrm{a}$ Year including Postage. Weekly.
This widely circulated and splendidly illustrated
paper is published weekly. Every number contains sixteen pages of useful information, and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity, Telegraphy, Photography, ArchiChemistry, Hecctricity, Teregraphy, Photugraphy, Arch-
tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in The Scientific
American a popular resume of the best scient fic inAMErican a popular resume of the best scient fic in-
formation of the day; and it is the aim of the publisher formation of the day; and it in the and antractive form, avoiding as much as possible abstruse terms. To every inteligent mind
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in
Terms of Subscription.-One copy of The Scienmpitage prepaid, to any subscriber in the United States or Cafiada, on receipt of three dollars and twenty
cents by the publishers; six months, \$1.60; three months, $\$ 1.0$
Clubs.--One extra copy of Thescientific Ameriat $\$ 3.20$ each ; additional copies at same proportionate rate. Postage prepaid.
One copy of The Scientific American and one copy of Thi Scientific American SUPplement will be sent for one year, postage prepaid, to any subscriber in the
United States or Canada, on recetpt of seven dollars by the publishers.
The safest way to remitis by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes
astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

37 Park Row, New York.
The Postal Union.-Under the facilities of the
Postal Union, the Scientific American is now sent by post direct from New York, with regularity, to subscribers In Great Britain, India, Australia, and all other British colonies; to France, Austria, Belgium, Germany,
Russia, and all other European States; Japan, Brazil. Russia, and all other European States ; Japan, Brazil.
Mexicoo, and all States of Central and South America $\$ 4$, gold, for ScIENTIFIC AMERICAN, 1 year; $\$ 9$, gold, for ear. This includes postage, which we pay. Remit by
postal order or draft to order of Munn $\&$ Co., 37 Park
Row, New York Row, New York.

Allen's Useful Companion ARTIFICER'S ASSISTANT.

 MINE ACCIDENTS. MECHANLCAL AP:
 teen illustrations of the most approved apparatus for
quicily discharging water from mones, promptry restor-
ing Ventilition

THE SCIENCE of LIFE,

 Smith's Manual of Telearaphy, 1888,

THE UNION IRON MILLS, Pittsburgh, Pa,., Manu-

 cost of Insurance avoided,and the serions losses and in-
terruption to usiness caused by iftethere and like con-
sideration fully jusify any additonal frst coste It is
believed, that, were owners fully aware of the small

 The George Place Machinery Agency 121 Chambers and 103 Reade Streets, New York.

WORK FOR ALL Pond's Tools,
 C- $1 \begin{aligned} & \text { WATCH and CHAIN ONY } \$ 20 \\ & \text { Cheapest in the }\end{aligned}$

Engine Lathes, Planerk, Drills, \&e.
Send for Catalogne. DAVID W. POND, Suce
UCIUSor to

THE STEINAU
JEWELRY CO.'S
I

OUR IMPERIAL

STEINAU JEWELRY COMPANY, No. 5 Arcade, CINCINNATI, O.

OUITDD PARRISOI, BEST
STEAM PUMP
 Lathes, Planers, Shapers
 BIG

HENDERSON'S EVERYTHING
GARDEN

 PETER MENDERSON \& CO.
35 Cortlandt Street, New York.

AIR COMPRESSORS A SPECIATTY of HEAVY PRESSURES. THE NORWALK IRON WORES CO: CONT,

To Engineers, Builders, Contractors, Architects, Measuress, Artisans, etc.

Engineering Specifications and Contracts.
By L. M. HAUPT. Prof of Civili Engineering, Universty
An Octavo Volume of 320 pages; cloth; $\mathbf{\$ 3}$

EPILEPSY
 or FITS CURED!

TO EXPORTERS.

 Driven or Tube Wells

 TheJ.C.HOADEY GO. LAWRENCE, MASS.

PATENT MINERAL WOOL.

description see ScIENTIFIC AMERICAN. of Jonnuast 12the
A. D. ELBERS,
 NEW ILLUSTRATED CATALOGUE, 140

S1200

\pm FIRST \& PRYIBIL, MACHINISTS, Wood Working Machinery,

 PERFECT

NEWSPAPER FILE

 eeidione who wishes to preserve the paper. MUNN \& CO.,
publishers Scientipio amerioan.

Inside i＇aze，each insertion－－ 75 cents a line． Back Page，each insertion－－－\＄1．00 a line．
Engravings may head advertisements at the same rate per une，by measurement，as the letter press．Adver－ tisements must be received at publication office as early as Firaay morning to appear in next issue．

MRaruins SAFES cow SGALIES MARVIN SAFE SSCALECO．

Pyrometers，For shopinc heat of
 Jarvis Gas Consuming Furnace．

Peck＇sP Patent DropPress Newspaper Directing Machines，\＆c．
Special attention given to the making of all －Nawn． mamex
Steel Castings，

Harrison＇s System of Grinding ！

Milis Soones and Corr Mills．
 J．T．NOYE \＆SON，Buffalo，N．Y．

SAVES ROOM，LABOR，AND COAL，AND LASTS TEN TIMES LONGER THAN BELLOWS．
P．H．\＆F．M．ROOTS，Manuf＇rs，CONNERSVILLE，IND． S．S．TOWNSEND，Gen＇l Ag＇t， 6 Cortlandt St，NEW YORK．
 Send for illustrated circular． Weissport，

MACHINISTS＇TOOLS．
 New haven mancracturng con PUNCHING Drop Hammerg and Dies．Ro 耳ork PRNAING $\begin{aligned} & \text { pro } \\ & \text { ith } \\ & \text { PRESSES．} \\ & \text { Comn }\end{aligned}$
BOILER COVERINGS
BOILER COVERINGS

HARTFORD
STEAM BOILER
Inspection \＆Insurance COMPANY．
W．B．PRANKLIN，V．Pres＇t．J．M．ALLEN，Pres＇t． J．B．PIERCE，Sec＇y．
\％MEATENTS

ADIERTISERS

 Improvements，and to act as Solicitors of Patents for Inventors．
解 Years＇experience，and now have unequaled facilitues and the Prosecution of Applications for Patents in the nited States，Canada，and Foreign Countries．Messrs Munn \＆Co also attend to the preparation of Caveats， Trade Mark Regulations，Copyrights for Books，Labels， of Patents．All business intrusted to them is done
erms． We send free of charge，on application，a pamphet
We send free of charge，on application，a pamphlet to procure them；directions concerning Trade Marks， Copyrights，Designs，Patents，Appeals，Reissues，In－ fringements，Assignments，Rejected Cases，Hints on
the Sale of Patents，et
Foreigh Patents．－We also send，free of charge，a
Synopsis of Foreign Patent Laws synopsis of Foreign Patent Laws，showing the cost and tries of the world．American inventors should coun－ tries of the world．American inventors should bear in
mind that，as a general rule，any invention that is valu－ able to the patentee in this country is worth equally as Five in England and some other foreign countries． French，and－embracing Canadian，English，German， clusive monopoly to his discovery an inventor the ex－ lusive monopoly to his discovery among about one people in the world．The facilities of business and steam communication are such that patents can be ob－ tained abroad by our citizens almost as easily as at The expense to apply for an English patent is $\$ 75$ ；German，$\$ 100$ ；French，$\$ 100$ ；Belgian，$\$ 100$ ；Cana－ dian，$\$ 50$ ．
Copies of Patents．－Persons desiring any patent istued from 1836 to November 26，1867，can be supplied dingupe copies at reasonable cost，the price de specifications．
Any patent issued since November 27,1867 ，at which time the Patent Office commenced printing the draw－ this office $\$ 1$ ．
will be furnished for
When ordished for $\$ 1$ ． above and state naies，please to remit for the same tion，and date of patent
A pamphlet，containing full directions for obtaining United States patents，sent free．A handsomely bound Reference Book，gilt edges，contains 140 pages and many engravings and tables important to every pat－ antee and mechanic，and is a useful hand book of refer Address MUNN \＆CO．

$$
\begin{aligned}
& \text { MUNN } \\
& \text { Publishers SCIENTIFIC AMERICAN, }
\end{aligned}
$$ 3Y Park Row，N．Y．

WRANCH
Washington，D．C ．

友 We have just added a new feature to our establishment in the shape of ARTITEICIATMJTGEMF．

C．SMITH HOBART，Presiden
> m

RELIEP PLATES

（Illustrations，Engraved in Type－metal，by a new Photo－Chemica han W，fram all kinds of Prints，Pen Drawings，Original Designs，Photographs，\＆c．，much cheaper and as sharp as they could possibly be cut by hand．We guarantee that they will print satisfactorily on wet in the usual way．
Our Plates are now used by the principal publishers and manufacturers in every State in the Union． SEND STAMP FOR ILLUSTRATED CIRCULAR．

 WinE ROPE

DUC＇S ELEVATOR BUCKET，
 T．F．ROWLAND，Sole Manufacturer，Brooklyn，N．Y．

THE TANITE CO．， EMERY WHEELS AND GRINDERS． EMERY WHELS AND CRINDERS

Liquid paints－all s．anase fnest th the world

 H．W．JOHNS MANUFACTURING COMPANY，

JOSEPH C．TODD，

 ar and price．Aadress． \mathbf{C} ．TODD，
 B．Westeriann \＆co．，New York， SCIENTIFIC CATALOCUE， German French，Finglish \＆American Books

PATENTS SOLD．

 Sixth and Chestnut Sts．，Philadelphia，Pa A GENTS HANTED．Faterago of Goods fre to
 H．R R WORTMENGTON，

TO INVENTORS AND MANUFACTURERS

FOLLOWS \＆BATE，Manchester，England，Hardware

Bound Volumes

 Scientific American． ansmin Ma 4
Seind of the of

 Working Madels

