

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. X XXVIHI, No. ©.]	NEW YORK, MARCH 2, 1878.	

KINNEY'S HYDRO-PNEUMATIC ACCUMULATOR

W ill解 made the reservoir of power. The apparatus is especially adapted for use with the hydrostatic press, in which connection it affords important advantages in economy of power and saving of time. The principal features are the stand pipes, wherein air is confined and compressed by water columns, which water is conducted to the press cylinder and operates the ram. The pumps, which force in the water against the elastic air backing, work continuously until a given water pressure is attained, when, by suitable mechanism, valves are opened which prevent any further delivery, the pumps merely moving the water to and fro without pressure. It will be noticed that this arrangement enables power to be accumulated and stored until wanted, and at the same time obviates the use of the safety valve as a means of relief from over-pressure. The apparatus remains inactive until a portion of the power is expended. Then, when the pressure falls below the fixed point, the valves close and the pumps again operate. Of course the power can be taken from the accumulator as rapidly as may be desired, so that from the accumulator as rapidy as may be desired, so tal
there is no delay for the pump gradually to move the ram; there is no delay for the pump gradually to move the ram;
while the action of the pump takes place between the operwhile the action of the pump takes place between the oper-
ations of the press, its duty being simply to restore the water ations of the press, its duty being simply to restore the water
in the accumulators which has been used in forcing down in the accumulators which has been used in forcing down 1 into both A and C , until the pressure reaches the maximum the ram. The same water is used over and over again, cir- \mid required for working. During the last charge sufficient \mid
water is forced over the bent pipe, D , to fill both legs and
to serve as a seal for the valve in said pipe. The tube, A, to serve as a seal for the valve in said pipe. The tube, A,
then empties of water through valve, I; which is afterwards closed. The stop valves, E and F , are then opened, and the compressed air equalizes itself in the three tubes. The required volume to work the press is then pumped into the tubes, and the relief arrangement is set to prevent the pump forcing any more water until the pressure is reduced. The same method is followed in charging a number of tubes, as same method is followed in charging a number of tubes, In Fig. 2 is shown a section of the relief mechanism which automatically governs the pumping. Connected with which automatically governs the pumping. Connected with
the gauge pipe is a tube which leads to the small cylinder, K , in which is a plunger which supports a weighted lever By adjusting this weight the plunger may be set to lift at any desired pressure. As the lever is lifted the arm, L, act ing upon a projection on the end of a rod, operates the lat ter so as to open the valve, M. This opens communication between the pump cylinder, N , and tank, J , so that instead of the pump drawing water from the reservoir by the inlet at O, and forcing it to the tubes by an orifice opposite to said inlet, it merely causes a circulation from the tank to inlet, O, thence out at valve, M, and back to the tank. The pumps thus continue doing no work, and hence taking little or no power from the driving engine, until the pressure in or no power from the driving engine, until
[Continued on page 130.]

KINNEY'S HYDRO-PNEUMATIC ACCUMULATOR.

srientitic gmentan.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. pUblished weekly at
NO. 3 ' 7 PARK ROW, NEW YORK.
A. E. BEACH.

TERIIS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included...
One copy, six months, postage included
 same proportionate rate. Postage prepaid.
The Scientific American Supplement

 papers to one address or differentaddresses, as desired. CO., 37 Park Row, N. Y.

VOL. XXXVIII., No. 9. [New Series.] Thirty-third Yean
NEW YORK, SATURDAY, MARCH $2,1878$.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 113 ,
For the Week ending March 2, 1878.

opposition to patents natural

Hello, Pat! what are you doing there?" cried the driver of a horse car, the other day, to an Irishman at work in an excavation for the new Elevated Railway

Arrah, now!" was the prompt reply, "I'm digging the "Ave of a car driver!"
Ever since the march of improvement began every notable advance in material progress has been the occasion of much grave digging. Materially as well as morally, we rise on stepping stones of our dead selves to higher things. And
since vested interests are no more willing to step down and since vested interests are no more willing to step down and
out than are ancient habits or over-lived individuals, it is very natural that there should prevail, especially in circles interested in and dependent upon established conditions, a more or less pronounced objection to the frequent changes incident to rapid progress in material civilization.
When stage lines, with low fares, were first placed upon our streets the prosperity of many worthy people, whose business had been to furnish other means of transit, re ceived a severe check; and it was not surprising that they hould look upon the invading omnibuses as little better than public nuisances. But the larger part of the community were benefited by the change, and the improvement carried the day. The parties to the contest changed, but the principle did not, when the street car subsequently crowded out the omnibus.
Each adyance in rapid transit only paves the way for one still more rapid; and to-day the contest goes on between th interests vested in street car lines and the projectors of steam roads. What was but lately an innovation, a movement of radical progress, now becomes conservative, and its pro moters lustily protest that there ought to be some limit to the mania for speed. Progress was good so long as it was their progress; it ceases to be good the moment it builds up rivals and curtails their profits, the demands of the public to the contrary notwithstanding.
Only the other day a new era in the progress of humanity was begun by the invention of what seemed to be the great est possible improvement in the means of transmitting intelligence. The benefits of the electric telegraph were incalculable, and its cheapness seemed to be surpassed only by its celerity. The business of supplying and caring for tele graphic apparatus speedily became very great and remunerative. But one day a man comes along with a couple of small wooden boxes and a coil of wire; he talks into one box and his voice is heard miles away by whoever will place his ear at the mouth of the other box. Straightway the elaborate and costly machinery of the printing telegraph is, for many uses, antiquated, and the financial grave is dug for many interests vested in the means and methods of transmitting in telligence soon to be largely superseded. That the owners of the old should resent the change is natural; but cheapness and convenience win, and the stream of progress flows on individual protests being swallowed up and lost in the general acclamation of the community to whose immediate benefit every improvement accrues.
So it ever has been; so it ever must be to the end of time And the more rapid the progress of any age, the more numerous must be its graves. It is not surprising, therefore that at a time like the present, when inventors are so active and fertile, there should be a numerous and influential class which feels that after all so much progress may be the reverse of desirable. And since our national patent system has been to so great an extent the mainspring of the rapid changes of recent years, it is not surprising that it should be the subject of no little animosity. It is not surprising either that in so many cases the opposition to patent rights should come from those who have reaped the largest benefits from the privileges they confer. The moment an inventor ceases to invent and becomes a manufacturer and merchant, that moment his interest in patents is completely changed. So far as the patent system conserves his interests and protects him in the enjoyment of his temporary monopolies he can look upon it as a blessing; but it becomes obnoxious just when and so far as it helps to raise up against him a better furnished and more successful competitor. So likewise with manufacturers and special users of patented articles and processes. From their point of view the inventor is a public benefactor so long as they have the exclusive right to control his actions. They are willing that he should be encouraged -until he carries his grist to another mill; then they would suppress him as a nuisance, or curtail his right to the fruits of his own brain, at least so far as to prevent his keeping his inventions away from them.
But these two do not exhaust the parties to this controversy. The largest stake is held by the public at large. By the will of the people the patent system exists neither for the protection of manufacturers nor the rewarding of inven tors. It was established rather for the advantage of the whole to accrue from the encouragement of invention and the publication of its results. That this end has been attained by the system to a degree surpassing the most sanguine expectation of its founders is beyond question. That it will be even more beneficial in the future is all but certain, since progress is cumulative and its ratio of advancement geometrical. In the perpetual feud between new and old the nation can take no part. It is a feud which can end only by the cessation of all progress. Secure in the knowledge that the fittest will survive, the nation is therefore willing to let each day's conflict be settled by the inevitable and impartial laws of trade. The livelier the struggle the more rapid must be the progress and the greater the public benefit to accrue therefrom.

AMERICAN MANUFACTURES AND PRODUCE ABROAD
Mr. Moran, of the American legation at Lisbon, Portugal, writes that our trade with Portugal could be much increased with proper exertions. There is a rich market there for cheap bleached and unbleached cotton cloth for printing over $\$ 3.000,000$ worth being imported from England annu ally to be printed with designs suited to the national tastes. Portugal imports textile fabrics from England to the value of nearly $\$ 5,000,000$ annually, much the greater part being cotton groods. There is also a good field for American agr cultural machines, mill machinery, etc. Sewing machines e now largely sold there.
The American Consul at Rotterdam thinks there will be a arge increase of our trade with the Netherlands when the resent stagnation ends. The extreme cheapness of Dutch abor allows of the home production of many articles more cheaply than they can be offered by the United States even with the aid of machinery, yet there is already a fair trade in certain special productions of the United States, such as petroleum, tobacco, cotton, corn, rosin, turpentine, and toves. The imports of Indian corn are rapidly increasing and if the best modes of utilizing it were more fully known t would rise to a very important branch of commerce. Our cottons are now competing successfully with those of Eng land and France.
From Glasgow our Consul writes that there is a growing demand in Scotland for American machine made wooden ware of all kinds, such as tubs, furniture, brooms, doors, mouldings, casings, etc. He thinks that if our manufacturers were as enterprising in pushing the sale of their good abroad as they are at home, they could soon secure a practi eal monopoly of much of this class of manufactures. Ther is a ready and increasing sale for agricultural tools and build ers' hardware, especially locks and hinges. The market fo American butter and cheese has fallen off, owing to the in ferior quality of some of these goods lately arrived; the su perior qualities will always have a good demand. The im portation of fresh meats has become an important and per manent feature of trade.
Mr. King, American Consul at Bremen, writes that our manufactures are selling there quite largely. For year past two of the largest manufacturers of mowing and reap ng machines have had their European headquarters in that ity, and the number of machines sold by these and othe imilar houses in other German cities has been simply enor mous. Several agencies for small agricultural implement and tools have met with marked success; and hundreds of American windmills are replacing those of the ancient style. A significant sale by one American house was a complete outfit of locks for the new post office, where the American system of lock boxes is being introduced. The trade with us in German woolen and cotton goods is much decayed; many houses that had branches in America have been compelled to seek other markets. The Consul thinks that a great trade will eventually spring up for our manufactured articles, bu hese must be made so as to adapt them to German tastes.
The American Consul at Nuremberg thinks that our trade throughout Germany would be greatly increased if agencie were established for the introduction of our manufacture nd produce, which should be conducted by first class busiess men, and due care taken that the wares placed upon the market are fully up to what is claimed for them. The Con sul suggests that leading manufacturers combine and form an association for erecting in Hamburg or Frankfort-on-the Main an exposition building or American bazaar, as a per manent depot of supply for their staples. Or, if this wa found impracticable, smaller associations could be formed by a dozen or so of first-class manufacturers for the sale of staple articles of manufacture.
The report from our Consul at Bradford states that Ameri can watches are rapidly displacing the English and Swiss; our agricultural implements and mechanics' tools are of ac knowledged superiority; our roofing slates and lumber can be made to supplant those of Norway; the trade in pork and beef is fast growing in importance; that the sale of butte and cheese is astounding, the latter being sold as " Cheshire; petroleum is a necessary of life; importations of lard, tallow nd eggs are increasing; apples are largely imported, as ar also potatoesfand dried and preserved fruits. A market will be found in time for California and Pleasant Valley wines, which have an increasing reputation. The Consul think hat the effect of our duties on wool and dyestuffs has con siderable influence in preventing the free competition of our woolen goods in foreign markets, as A merican wool is luster less, and the manufacturer must import the raw material and pay duty on it, if he desires to compete in the foreign marke for luster goods.

The Consul at Basle writes that since the introduction int the Swiss market a year ago of American canned goods the trade in that article has acquired important proportions. During last November alone there entered Basle about 60,000 pounds of canned beef, ham, and tongue. These products njoy the highest reputation, and a large increase in their use is predicted.
The Oommercial Agent at Gaboon, in Africa, in reporting an expedition he had recently made up the Agowe river, say that the trade of the valley in India rubber, ivory, and ebony is mostly carried on by English and Germans, and states that as the interior of Africa is now rapidly opening and develop ing valuable resources, it is much to be regretted that Ameri can merchants are not taking a larger part of its profitable

The Commercial Agent at Belize, Honduras, reports that
for many years British Honduras has depended wholly upon us for its breadstuffs and provisions, and of late years fo most of the articles classed as " groceries." A merican boot and shoes, kerosene oil, axes, carpenters' tools, shovels, spades, hoes, etc., are much dealt in. The largest article however, in which there may be an extension of commerce is cotton cloth, which the Consul thinks could be much more largely sold if the pieces were put up in eighteen, twentyfour, and thirty-six yard pieces, and folded in even yards, in the English fashion, as they would be much more convenient for the retailers, who under the present arrangement prefer English goods.
Mr. Osborn, our Minister at Buenos Ayres, writes that the chief obstacle to enlarging our commerce with the Argentine Confederation lies in the absence of direct steam communication between the United States and the ports of the river Platte. No steamers run between the two countries, except an occasional vessel from Buenos Ayres to New York under the British flag, which returns to Buenos Ayres by way of Europe. There are, on the contrary, eleven steamer lines keeping up direct and rapid communication with Europe, of which five are British, four French, two German, and one Italian. As the result of these reliable means of communication the merchants and manufacturers of Europe get nearly all the trade.

THE RAIL PUZZLE.
We have received so large a number of answers to the We matical puzale to the phich we recently published, that we cannot find space even for the initials of the respondents. The problem was as follows:
A civil engineer working on a railroad in Illinois recently had occasion to weigh one of the iron rails. The rail was 30 feet long, and was supposed to weigh about 400 pounds. His only means of weighing was a pair of balance scales capable of weighing only 25 pounds. Query: How can he weigh the rail correctly with such scales?

Our correspondents' letters exhibit various methods by which it is proposed to solve the question, but the number of erroneous answers is remarkable. Out of nearly a hundred replies now on our desk, not half a dozen are exactly correct. Some writers neglect the conditions of the problem, and propose to weigh the rail bodily with apparatus made out of planks, or with divisible counter weights, which are manifestly excluded. Those who propose to weigh the preponderance of an unequally balanced rail, either fail to say where the scales are to be attached, an important matter where leverage is considered, or else apply the same wrongly. A large number assert that when a rail that is balanced on its center is moved 1 foot in either direction, the preponderance will be but 1 foot, whereas it is of course 2 feet. Many evidently have the right idea, but express themselves so obscurely as to leave us in the dark as to their exact meaning. Others preferto view the simple question as a grave mathematical problem, and send us elaborate formulæ, which, while doubtless correct enough, seem ingeniously contrived to befog the whole subject.
Our readers will excuse our failing to make individual refrence to their letters, and at the same time permit us to close the discussion with the publication of wo correct methods-one by the correspondent who sent us the problem, the other by an old and valued contributor to these columns.
J. T. C.'s answer: The engineer first accurately measured the length of the rail, found it to be precisely 30 feet, and then by measure ment found the middle, which he marked. He next laid the iron rail across the sharp edge of an oak fence rail, so that the middle mark rested exactly on the sharp edge. He found that the iron rail exactly balanced on the edge of the fence rail. See Fig. 1. This proved that the iron rail was of equal thickness and weight throughout its entire length. He then moved the iron rail 6 inches, say to the right, of the middle, so that from the edge of the fence rail to the left end of the iron rail would be $14 \frac{1}{2}$ feet, and to the right end $15 \frac{1}{2}$ feet. Then at 6 inches from the end of the long section of the iron rail, he tied around it a small strong cord. To this cord he attached the balance scales. See Fig. 2. This gave the exact weight of one foot in length of the rail, to wit, $13 \frac{1}{3}$ pounds, or 40 pounds to the yard in length, which it was contracted to weigh.
F. G. W.'s answer: Place the rail at right angles and horizontally across a delicate support, say the sharp corner of another rail, so that the long end shall weigh just 20 pounds, or some other definite weight within the range of the scales; then divide the whole length of the rail by the difference in the length of the two sections; then multiply the quotient by this weight; the product will be the weight of the rail.

PATENT OFFICE MODELS

We have before us an argument in favor of the abolition or modification of the patent office model system, prepared by Mr. H. Howson, of Philadelphia, to support a petition In that behalf, which has been signed and forwarded to Con-
gress by numerous patentees and others interested in pat ents. Mr. Howson is himself a patent solicitor of long ex perience. That he has carefully studied the question he dis cusses is evident from the exceedingly able and exhaustiv manner in which he marshals his statements, with whic probably a majority of our readers will fully concur.
The principal points of Mr. Howson's argument-to which we shall have further reference hereafter-are summed up in the following ten sentences:
First. That it has hitherto been the practice of the Commissioner of Patents, under the law, to demand a model with every application for a patent in which the character of the invention admits of one.
Second. That the making of these models is a serious tax on inventors, involves the premature exposure of inventions, and needless delay in making up applications for patents, and detracts from the revenue of the Patent Office, because the demand for models frequently deters inventors from making applications.
Third. That models are not as a rule necessary for attorneys in preparing applications for patents, or for Examiners of the Patent Office in the performance of their duties
Fourth. That with rare exceptions complete well executed drawings afford more ready means of determining the character of an invention, and should be, in any case admitting of them, sufficient for the interpretation of the specifications forming part of the patent.
Fifth. That owing to the furnishing of models, there is a
endency in the Patent Office to admit drawings which ar
tained upon the wall, M. The two little mirrors are fastened to two vibrating springs inclined 90° to each other, and each 45° from the vertical. These springs are secured to a firm support by means of screw clamps. Bỳ changing the position of the clamps, the rate of vibration of the two springs may be varied at will.
If the springs vibrate almost in unison, there will appear on the wall a magnificent ring composed of the colors of the spectrum, which will seem to rotate about its axis and about its diameters, assuming successively the forms of an ellipse, a circle, and of a right line.
If the springs vibrate as octaves, we shall have upon the wall, or screen, an oscillating variegated figure 8. If the ratio of their vibrations is less simple, we shall obtain a.great variety of complex curves resembling the intertwining of variegated ribbons; in a word, the beauty of the well known curves of Lissagous is here enhanced by the splendor of the rainbow colors.
If, instead of using the prism, we substitute a revolving disk, D (Fig. 2), containing little windows made of colored plass, the above curves are broken up into a series of elegant little disks of various colors, resembling necklaces of brighty colored gems 1 ntertwining with rapidity.
The same effect is produced by looking through this revolving disk at the colorless curves of Lissagous.

SCIENTIFIC JUGGLERY.

We have often thought that if professional conjurers would substitute for such time honored tricks as making omelettes in hats, and causing cards to appear and disappear, some of the wonder working performances of the electric current, they would succeed much better in mystifying, amusing, and perhaps instructing their audiences.
Mr. Heller, a clever magician now performing in this city, has a neat way of bringing the electric current to his aid where it would hardly be expected. For example, after borrowing a few watches he places them on a plate which he suspends by a bit of string to a little bar between two

THE RAIL PUZZLE.

wanting in fullness and perspicuity, and which would not be admitted in the absence of models, an evil resulting in the delivery of patents which cannot be easily understood without the aid of models
Sixth. That the models deposited in the Patent Office oc cupy a large amount of space which could be devoted to much more useful purposes.
Seventh. That the increase of models must eventually in volve the necessity of either disposing of many of them to make room for the rest, or of finding room for the rapidly growing collection in places outside of the Patent Office.
Eighth. That the models deposited in the Patent Office are rarely working models, but generally fragmentary, and in many cases distorted representations of the machines they are intended to represent, and are consequently unfit for an industrial museum.
Ninth. That an industrial museum worthy of the name can be best established by permitting patentees and manufacturers to deposit at their option and at their own cost properly proportioned and working models of patented
chines which have proved to be successful in practice.

PROFESSOR RICCO'S NEW OPTICAL EXPERIMENTS.
Tenth. That ample provision should be afforded to inventors and the public for the examination of drawings of patented inventions.

[For the Scientific American.]

TWO BEAUTIFUL OPTICAL EXPERIMENTS. A ray of sunlight entering a dark room
 through a little vertical slot, f (Fig. 1), passes through a converging lens, L, and then through a prism, \mathbf{P}, after which it falls upon a little mirror, S^{\prime}, whence it is reflected to a second mirror, $\mathbb{S}^{\prime \prime}$, which, in turn, throws it upon a white wall, M. The lens and the prism should be so adjusted that a solar spectrum not large but quite brilliant may be obcords from the ceiling. Suddenly flash comes
from the bar, the string is burned, and plate and watches fall with a crash. The broken plate and ruined watches are restored by shooting them out of a gun, against a framed black square, also suspended by cords from the ceiling, and here again the electric current actuates mechanism which causes the lightning-like disappearance of an interposing screen. The current again works the hammer of a glass bell apparently suspended by a mere thread, but which accurately counts the number of spots on chosen cards. In electromusic Mr. Heller is an adept. He has a dozen or more drums which he heaps up on a kind of barrow in the middle of his stage. Then seating himself at his piano, at some distance away, he plays a lively air, to which the mysterious drums at first beat time, and then play a deafening accompaniment. Of course, concealed hammers operated by electromagnets are at the bottom of the puzzle. The Heller or chestrion is a much more elaborate contrivance. It is a good sized parlor organ, provided with a supplemental keyboard, and surmounted with a bewildering mass of brass tubes and apparatus. An air played by the performer is suddenly accompanied by a chime of large bells at the further end of the hall, then by small bells near by, then another organ near the ceiling issues notes like a flute, a chorus of sleigh bells in still another part of the hall joins in; the music imitates a storm, and a huge iron plate in another quarter rattles itself, while from a box near the ceiling issues the sound of falling rain. Finally two sharp explosions from miniature guns near the roof are heard, the lights are turned down, and on the organ ap pear revolving Geissler tubes, flashing out green and blue light in the weirdest manner as the curtain shuts the magician and his in strument from view.
Healso shows a number of other ingenious illusions, some of which depend upon remark able automata and many upon electrical ac tion. Upon a simple trapeze suspended from a bar over his stage, he seats a doll dressed as a gymnast. The trapeze is set oscillating, and thereupon for some ten minutes the doll goes through a series of performances, the very variety of which baffles all theories as to how the figure is worked. The hands alone touch the trapeze bar, and the mechanism in the body is necessarily governed through the ropes and cross piece; but it is not so easy to explain how, in concluding, the figure lets go with its hands, throws a somersault, and catches on its toes, continuing the swinging in that position. Another automaton is a peacock, which cries, moves its head, eats, and spreads its tail at the order of the conjurer. Still an other is a doll which emerges from a box, seats itself on the edge, goes through many laughable antics, and ends by smoking a pipe, puffing forth the smoke in the most natural manner.

One portion of the Gilbert Elevated Railway, between Worth street and 42d street, New York city, 3 miles in length, is to be opened for traffic March 1. The rails are now laid and the stations are in progress.

BAILEY'S TESTING APPARATUS

The accompanying illustration is taken from a photograph of a set of testing, indicating, and recording apparatus recently constructed by Messrs. Bailey \& Co., Salford, Eng land. This apparatus covers a diversified field, as will be seen from our description, and yet there is a certain simi larity of principle which appropriately groups the severa members of the series together.
The reservoir recorder is one of a number made to indi cate the fluctuations of the water in the reservoirs of the Sheffield Water Works, and in connection with the other instruments has been described in the Engineer. The drum performs a revolution once a week, being driven by a small turret timepiece, strong enough for the purpose, and the clock beats seconds. A friction clip in connection with the set dial enables the drum to be set to the true time without difficulty. The diameter of the drum is 12 in ., and its length is 3 ft ., a fuctur giving a scale of 6 in . to a foot. This reduction of scale which the chain is fixed being double the circumference of which the chain is fixed being double the circumference of
the pulley which actuates the pencil, and which is guided by the two horizontal brass bars over the top of the drum, in order to prevent any possible error from backlash of the mechanism, or by wear and tear in the ordinary course of use. The float, it will be observed, is balanced by a small weight attached to a chain, which is fastened to the pencil block; this enables a very sensitive diagram to be taken. The illustration at the bottom of the engraving shows a diagram, which will scarcely require any further explanation. Somewhat similar in design is the recorder for indicating the blast of smelting furnaces, in the left hand corner of the engraving; the dimensions of the drum and of the timepiece are similar to the reservoir recorder, but the instrument has been constructed for a different purpose. The improved hot blast fire brick stoves now used for heating the air used for the blast furnaces are worked intermittently, and the results depend a very great deal-in fact, we may say alto-gether-upon the regularity of the performance and punctuality of the men who have charge of them. This will be understood by those engaged in blast furnace operations. In a very simple manner each blast furnace has its performance recorded upon the revolving diagram. In all, the performances of twenty-one engines areindicated and recorded upon the drum. Each engine has its own separate and independent pencil, which records its performance on the paper, and this is done in the following manner: A pipe leading from the blast pressure terminates at a cross bar opposite the drum, to which the pencil mechanism is fastened; when the blast comes on a small piston is caused to project forward forcing the pencil upon the paper; the joint is made airtight by means of an elastic diaphragm, about an inch in diameter. There are means of adjustment and other details which have required great care in their development, and to which it may not be necessary to refer. As the diagram makes a revolution once a week, it will be apparent from our description that the number of hours worked by each blast engine can be at once seen by the length of the stroke which its pencil has made upon the paper. By then comparing the number of strokes made per minute, or per hour, by each engine, important calculations may be made and statistics obtained which will bear upon economy of manufacture.

We also illustrate a set of machines made for the Imperial College of Physical Science, at Yokohama, Japan, for that
waterflows-placed attheend of a lever; this enables the tes to be applied in a very gradual and nearly imperceptible manner, without any vibration; in fact, the operator may sit down and watch the machine after the tap has been turned on until the fracture is effected. The height of the water in the cistern is indicated by means of a glass tube, similar to the water gauge glass of a steam boiler, the graduation being painted down the can or cistern. When the material is broken a small trigger closes the tap and prevents any fur ther supply of water
The instruments in the foreground consist of a Prony dynamometer for indicating the power exerted to drive smal machines; weights are placed upon a lever which acts upon a friction brake; the revolutions are counted by means of a small compact friction brake dynamometer. The larger one is the bevel wheel dynamometer, which will indicate the power exerted by machines up to four horse power.

KINNEY'S HYDRO-PNEUMATIC ACCUMULATOR.

[Continued from first page.]
the tubes falls below the regulated point. This is caused by the drawing off of water for use in the press by the pipe,

KINNEY'S HYDRO-PNEUMATIC ACCUMULATOR.
P ; and this water, after acting upon the ram, is led back to the tank, J.

It will be clear that the operation of pumping to replace the powerdrawn off takes place while the press is not in action, so that this interval is turned to useful account, the work of the pump supplementing, as it were, that of the press. The apparatus is excellently adapted for use in connection with cotton presses, owing to the economy of time effected. Any number of presses can be operated from suit able apparatus of this kind, the workman in charge of each managing his press independently of the others; or a press having a long stroke can be caused to work instantly at any speed and with safety
this city, and may be seen at 141 West Broadway. For fur ther information address the inventor, Mr. F. S. Kinney 141 West Broadway, New York city.

New Inventions.

An Antiseptic Powder, invented by M. Fabien Jourdes, of Paris, consists of equal parts of bisulphate of alumina and potash, or alum, pure sulphate of lime, and biborate of soda, or borax, to be used dry or in solution
An Awning for show windows has been invented by Mr Edward De Courcy, of San Francisco, Cal., by which the light may be admitted at the top and shut off wholly or in part, thus enabling goods to be shown in strong light, o protected from it. This a wning is hung and raised or low ered in the usual manner, but at some distance below. the top of the window, the space thus formed being opened or closed by an extension of the awning, which winds upon a roller suspended from the top and capable of being raised or lowered.
An improved Sewer Trap, designed to prevent the flooding of cellars by back water from sewers, has been patented by Messrs. W. Torney and C. N. Tillotson, of Detroit, Mich. In the trap is a hinged float valve, of hemispherica shape, the upper flat face of which is lined with rubber or other packing material. When this valve is lowered, or in open position, the water passes freely from the drain pipe through the trap and into the sewer pipe; but when backwater enters the trap the valve is raised, closing the drain pipe, and thus preventing the water from rising.

A Medicated Suppository, composed of slippery elm bark, sassafras, Dover's powder, and extract of valerian, has been invented by Mr. F. D. Owen, of Joplin, Mo.
Mr. Geo. W. Cummings, Jr., of Big Rapids, Mich., has invented an Oscillating Chair, in which the legs are station ary, and the seat is connected with them by curved springs, which pass from the rear legs to the forward part of the bottom of the seat, and from the front legs to the rear por tion. The springs cross each other, and are so secured by clamps to the legs and by screws to the seat as to prevent lateral motion.

Mr. H. M. Farnam, of St. Albans, Vt., has invented an improved Ventilator, consisting of a casing with a screened supply pipe and adjustable doors, and a curved exhaust pipe and damper above the supply pipe. The exhaust pipe is also provided with a compound cap, for preventing the en trance of rain or snow and for keeping up the draught.
A Process for Treating Paper Boards so as to render them waterproof and give them the appearance of wood has been patented by Mr. Chas. Hansen, of Ebeltoft, Denmark. The object is to make a paper panel to take the place of wood, and the process consists in impregnating the paper with oi having a small quantity of drier, and afterward compressing and drying the boards
An improvement in Corset Springs originates with Mr. Joseph Day, of Brooklyn, N. Y. It consists in a broad stay with fixed hooks, and an overlapping stay with hinged eyes made of one solid plate of metal, with an extension project ing beyond the point of the hook, so as to be readily taken hold of for opening or closing.

Mr. Joseph F. Rose, of Tiverton, R. I., has invented a Night Chimney, or cylindro-conical case containing a chim ney, which has an opening through its side and a slide door and is fitted to the lamp burner by a cylindrical collar. The top is removable, and supports for holding a vessel can be attached for use when it is desired to warm a fluid.

A Truss and Supporter, in vented by Mr. A. M. Dye, of Elkhart City IIl., has a pad, consisting of a number of spheroids of soft rub ber, strung on cords and con tained in a flexi ble bag, and the supporter is a U-shaped stem and cup, all be ing arranged in a novel manner
Mr. J. D. McLinden, of New York city, has patented a Ven tilating Flue Cap, which re volves with a vane, and has a shield on the windward side to prevent the air from entering on that side, while flanges at tached to the pipe deflect the air from othe parts, thus pre venting down ward currents.

THE RIDER PATENT COMPRESSION HOT AIR PUMPING ENGINE.

The construction and operation of this compression engine being un derstood, it will be readily seen how well adapted it is for pumping purposes This is illustrated in Fig 1, where 1, where an engine, drawn to a small scale, is shown attached to a deep well pump. Figs. 2 and 3 are sectional views represent ing the interior arrangement of the pump me chanism. In Fig. 2, A is a brass pump barrel, B pump case, D air barrel, E water pipe connecting pump to stuffing box pump to stuffing box, suction valve, b delivery valve. In Fig. 3, A i a brass pump barrel, C pump bucket, E E water pipe, F F connecting rod or plunger, G stuffing box attached to engine, H solid end of plunger attached to compression piston.
The operation of this pump is as follows: On the ascent of the bucke the water enters the strain er at the bottom, raising the suction valve, c, and fills the barrel, A, from below. On the downward stroke of the bucket and the consequent closing of the suction valve, c, the water in the barrel, A will be forced through the will be forced through the circle of holes in the lowe flange of the case, B , passing upward between th exterior of the barrel, \mathbf{A},
through the circle of holes cylinder and reacting on the compression piston, C , forces
the and the interior of the case, B , through the circle of holes the latter upward till it reaches nearly to the top of its
stroke, when, by the cooling of the charge of air, the pressure
and following the course of the bucket downwards so as to stroke, when, by the cooling of the charge of air, the pressure and following the course of the bucket downwards so as to compression again begins. In the meantime the heated air, quantity of water displaced by the descent of the bucket in passing through the regenerator, has left the greater por- can re-enter from above, owing to the space occupied by the tion of its heat in the regenerator plates, to be picked up and plunger, one half will flow up the discharge pipe, E , the reutilized on the return of the air towards the heater. paining half ascending on the up stroke of the bucket thus

Fig. 4.
 making the pump doubleacting above the bucket and single-acting below it. The advantage of keeping the long liquid column in continuous motion is thus fully gained; and the result is a mooth and economical operation. It will be observed that the bucket can readily be withdrawn, when neces ary to replace the cup leathy to the cup leath er, through the discharge pipe and stuffing box without removing either from the engine.
These deep well pumps are especially adapted for artesian or tubed wells, being made cylindrical for this purpose. They can be inserted n tubed wells of five and six ohes in diameter, and are cry valuable for irvigat ery valu. for imgating lands,draining marshy places, quarries,
ter, etc.
Whenever water is not over from 20 to 25 feet below the engine, a rolling valve pump is furnished. This is bolted to the side of the cooler and worked directly from the compression piston, and all the water is passed directly from the pump through the cooler on its way to the tank or outlet, making a very complete arrangement. Fig. 4 shows a sectional view of this pump bolted to its place on the cooler. It will be seen that the pump is made in two pieces. . The upper or main part, A, contains the delivery alves, $c d$ and also the bar el, C, which is a drawn brass tube securely fitted and expanded therein. The lower chamber, B, to
which the suction pipe is attached, contains the suction valves, $a b$, and is bolted, as shown, to the main part. The bucket, D, is provided with two reverse cup leathers. The rod, E, passing upward through the stuffing box, F, is con nected to an arm on the cold piston, as may be seen in en graving of engine, Fig. 5, page 131. The priming cock, G, is connected with the cooler by a small pipe, and is for the purpose of priming the pump by water from the cooler, and thus allowing any air to escape that may be trapped in the upper part of the passages. The pump is held to the cooler by two bolts, ef, which are long enough to go through and secure the bonnets over the valves.
The operation of this pump is as follows: Assuming the bucket, D, to be at the bottom of its stroke, on its ascent the water is drawn in through the suction pipe, raising the valve b, and filling the pump barrel, C, from below. On its de scent the bucket forces the water which is below it out of the barrel through the passage, g, raising the delivery valve, c, and through the discharge opening into the cooler, and a the same time fills the barrel from above by drawing the water through the passage, h, past the suction valve, a. This water is forced upward on the ascent of the bucket, raising the delivery valve, d, and passing through the discharge pening as before
The valves are simply cylindrical pieces of rubber, very urable, and easily accessible by removing the bonnets. This construction of valve obviates the necessity of bridges or grating in the valve seat, and allows the port to be one free opening,
e water.
Here, then, are two kinds of pumps operated by a simple, inexpensive, compact motor, automatic in its char acter, one adapted for supplying water to railroad stations
and public buildings, and another for pumping from deep, and public buildings, and another for pumping from deep,
artesian, or tubed wells. For instance, the engine may be placed at a distance from a country residence and draw its supply from a well. The water can be forced up to the house, probably a quarter of a mile distant, and up an ele vation of 100 feet or more. Or it can be applied to the irri gation of gardens or fields in dry and hilly countries; as for example, in the orange and lemon gardens of Spain France, Italy, etc.; or, again, to the operating of a punkah in bungalows and pumping water for baths. The Rider compression pumping engine, during the last summer, did good service in the Floating Hospital, St. John's Guild, New York. It is in operation on estates owned by some of the English nobility, and on several of the principal railroads in England and this country. Besides several other medals, a prize silver medal was awarded it at the meeting of the Royal Agricultural Society, at Birmingham, England, in 1876, and it received one of the highest awards at the Centennial Ex position in Philadelphia.
Silver medals were awarded by the Cornwall Polytechnic Society, the Worcestershire Agricultural Society, Kidder minster, England, and a diploma of honor was also awarded at the Antwerp Exhibition.
-: One of the best features about the Rider hot air com pression engine is that it can be cared for and tended by illiterate persons or by women and boys; putting in a little fuel occasionally, and oiling, being the principal duties to perform.
The engine can be seen in operation at the warerooms of Messrs. Cammeyer \& Sayer, 93 Liberty street, in this city who state that these engines and pumps are strictly Ameri can inventions, and that there are five hundred in operation in America, sixty in New York city alone, and two hundre in Europe and India.

Promoting Steam Engineering and Iron Ship Building

Mr. Shellabarger has introduced a bill into the House of Representatives designed to promote a knowledge of steam engineering and iron ship building among the young men of the United States. It provides that the President, upon the application of any established college or scientific school in the United States, may detail an officer from the engineer corps of the navy as professor in such school or college, provided that the number of officers so detailed shall not at any time exceed fifteen, and such details shall be governed by rules prescribed by the President; and provided further, that such details may be withdrawn or withheld wheneve the President thinks the public service shall so require. There is a similar law relating to details from the engineer corps of the army, which has been found to work well, and the present bill is approved by the professors of the Naval Academy. There is generally considerable unemployed tal ent in the naval engineer corps which could be detailed without additional cost to the government, to the great ad vantage of the young men of the country and to our mer chant marine.

Tests of Metals at the Navy Yards.

The Secretary of the Navy is making a careful test of some specimens of iron manufactured in the navy yard at Washington, and is investigating the question of the cost of fitting up the necessary'smelting apparatus there for the purpose of making iron both from scraps and ore. There is a vast accumulation of scrap iron yearly at all the navy yards which is said to be usually sold at about one tenth its value, and which might be readily utilized if the necessary furnaces were erected
The Secretary has also ordered tests to be made of a new
composition which the inventor claims will neither corrod nor change its color, and which is almost the hue of gold It is claimed that it can be substituted for sheathing coppe with great advantage, as it is many degrees lighter than cop per; that it can be utilized for a vast number of purposes on shipboard where other metals cannot be so well used, as the composition will always retain its bright, rich appear ance.
The inventor has submitted to the Secretary a number of manufactured articles of this material, and also metal in the rough, which has been sent to the navy yard for the purpos f seeing whether it will come up to what is claimed for as a valuable material for ship use. Its comparative cheap-
ness, in case it proves useful, will make it a desideratum in ness, in case it proves useful, will make it
the construction and sheathing of vessels.

Commamiatious.

Terrestrial Magnetism.

To the Editor of the Scientific American:
Allow me to offer you the details and results of some ex periments which I made recently, and which, so far as have been able to ascertain, are new.
By way of introductory remark, I may say that abou wenty years since, in a work entitled " Key to the Geology of the Globe," I endeavored to show that the trends and main mountain ranges of our continents bear a direct re ation to certain phases of the ecliptic, being usually second ries, or, in other words, at right angles to the sun's appar ent path at the solstices, thus forming angles respectively of bout 23° or thereby with the meridians. These trends therefore correspond in the main to the position assumed by the needle at its extreme secular east and west elongation, as far as we can judge from the magnetic observations made at Paris since 1580. The magnetic phenomena are now gen erally supposed to result from the effect of strong thermoelectric currents passing from east to west, between the tropics, along the apparent path of the sun.
As solar energy in some of its modifications appeared to me, by reaction from the earth's interior on its exterio crust, to have an intimate connection with dynamical geology, and hence possessed great interest for me, I have during the twenty years above alluded to, been devoting such time as I could spare from my collegiate duties to ter restrial magnetism in connection with physiographic and ynamical geology.
Just before the Buffalo meeting of the A. A. A. S., I had sent in the title of a paper which I had prepared, and inended to read, on this subject; but in consequence of a sun stroke I received I had to withdraw it. Since then, having recovered sufficiently to engage in some original experiment during my vacant hours, I gave some account of them in ix communications, to be followed probably by two more to the Indianapolis Daily Journal. Inasmuch, however, a that journal may probably fail to reach some scientific men who might feel an interest in these results, I offer you the following synopsis of the more recent experiments and results:
Using a delicate galvanometer, accurately adjusted, and the necessary amount of insulated fine copper wire for makng the attachments, and being kindly aided by Mr. Brown Wylie, of the physical department, we drove iron rods of 3 nch diameter six feet into the ground. On the upper end of these I had had good sized eyes formed at the black smith's shop, so that with a round wooden lever inserted in the eye, and a few blocks as a fulcrum, we could take the rods up, in order to drive them again elsewhere. Sometimes hese rods were driven due east and west of each other, a other times due north and south, at from 100 to 200 feet apart, while the insulated wires, firmly attached respectively o the two rods, were brought through the open windows of he museum, where, as that is under my charge, the galvan meter could be undisturbed. Being careful previously, by means of a battery, to ascertain which way the needle wa deflected by a known current (as for instance, from the car bon pole of the potassium bichromate battery) connected with a given binding screw, we could then be quite certain s to the direction of the so-called current transmitted from he iron rod or other material along either wire.
In this way we experimented at different hours of the day and during varying weather on different days; we also at ached one wire sometimes to an iron oil tank sunk six or eight feet under ground in the campus; at other times we formed wire connection with a water tank having a cast iron collar. We also sometimes connected one wire with the lightning rods or metallic gutters and spouts, and occasion ally brought one wire from the underground tank, while the other was attached to an iron column above ground in the museum. The results of these experiments may be thu ummed up:

1. Whenever both wires connected with underground objects north and south of each other, the current was invari ably from south to north and usually strong, making a de flection of the needle, after breaking and connecting a few times, of at least 90°
2. When the rods were east and west of each other the current was from the west, but comparatively weak, as high, however, sometimes as 45°.
3. When we experimented with a long cast iron fence, pen in center, placing the galvanometer and its wires in that central space (in which case the connection with the earth's crust was made only by the stone pillars to which
the iron pillars of the fence were riveted), then the result howed currents from the south
4. But when we brought one wire from an underground metallic source, and the other from a metal pillar, stove, fence, or the like above ground, then the current, as far as yet tried, was from the atmosphere to the earth.
The above experiments would seem to justify the conclusion that these electrical currents in the earth's crust are due to the thermal difference between countries southwest of us, such as Mexico and Central America, and our portion of ndiana, or regions northerly from us.
It would be interesting to repeat those experiments here, as I shall do if health permits, during the summer, these having all been made in January and February of this year. And, as we are here west of the agonic line, it would be interesting also to repeat them in some of our eastern cities which are situated east of said agonic line. If the currents then should be found to come from the southeast, occasioned probably by the great heat in northern South America, the variation or declination of the needle would then appear to cause said needle to assume a position parallel to the socalled currents. The magnetic needle does often undoubtedly assume that relation to a weak current transmitted along a single wire, although when the current is strong, as in the solenoid, the needle places itself at right angles to the current.
One more suggestive thought before I close: In statical electricity, the non-conducting glass of the Leyden jar enables that peculiar mode of motion to accumulate on the surface of the gold leaf within the jar when charged. A result somewhat similar amid the molecules of steel may, perhaps, explain the reason why pure iron easily receives and easily parts with that mode of motion, or form of energy termed magnetism, while steel, in which molecules of carbon, comparatively non-conductors, are interposed beween the molecules of iron, retains its magnetism.
In the case of the Leyden jar, if we connect the pent up motive molecules of gold leaf with the outside foil by a conductor, we have a rapid transference of motion; but if no conductor is presented, the motion remains bottled up, so to speak; just as with other modes of motion (first vital, then chemical action and heat) derived remotely from the sun, there is energy hoarded up in the stick of firewood or lump of cōal, to be converted, under certain circumstances, into he artificial heat necessary to maintain normal nervous energy (probably another form of motion) during periods of great climatic cold.
In the same way, perhaps, magnetism remains dammed up by the carbon, until, by the proximity or contact of a conductor, we render practicable the transference or propagation of the motion. Of course, besides the magnetism which we can induce by proximity of magnetized bodies, the earth's inductive action is always operative on all iron vessels, giving them, while they remain in certain fixed positions, the properties of a magnet; and if of steel they soon become permanently magnetic. By running a sewing needle through a short cork, and using the former as a pivot for a delicate magnetic needle, the above phenomena can be readily observed in all permanently placed stoves, hinges, locks, etc., or even in iron tinned cups piled on each other and subsequently detached, thus first forming a long magnet and then a number of smaller magnets. The magnetism, or polarity, is proved by applying your magnetic needle and finding the lower end of your stove, especially if it is of a round or cannon form, uniformly attract the south end of your needle, while the upper part of the stove, hinge, tin cup, etc., as invariably attracts the north or marked end of your needle. Should new facts present themselves, I may perhaps offer a statement of them in a future communication.

Very respectfully yours,
\qquad
Professor Natural Science.
Indiana State University, Bloomington, Ind., Feb. 8, 1878.
[We have since received a later communication from Proessor Owen, dated February 11, 1878, in which he states that he has been able to repeat these experiments a number of imes and in a variety of ways, during four additional days. The results were the same, except that the amount of deflection varied; being, however, usually from 18° to 26°. He also states-referring to the experiments of M. Bourbouze, of Paris, described in the Scientific American of February 16-that, although the results obtained by the French physicist, in his experiments with the galvanometer and water tank, were given to the public previous to his own, still he Prof. O.) began his observations over a year ago. Professor Owen believes himself to be the first to indicate the direction of the current in the earth's crust.]

Patent No. 200,000.

Among the patents leaving the Patent Office on a recent date, is one issued to Shea and Hamilton for a carbureter, which bears the number 200,000 . This, howver, is not the whole number of patents that have been issued, but only those granted since the reorganization of the office in 1836, as before that period the patents were not numbered. The whole number of patents issued from 1790 to the reorganization in 1836 numbered 11,348. By adding these to the No. 200,000 above referred to, we get 211,348 as the whole number of patents issued up to the granting of the patent of Shea and Hamilton. The average number of patents issued yearly, up to and including 1836, was 247 . The average since that time was 4,839 .

[For the Scientific American.] ECONOMY IN PATTERN WORK

It is often a source of considerable dissatisfaction that person cannot obtain a cheap casting without a costly pattern. Many shifts are made to avoid this expense and the attendant delay; for instance, if a casting breaks, the pieces are sometimes temporarily united and made to serve as a pattern. Sometimes what is termed a skeleton pattern is given to the moulder-a mere outline of the thing desired; or, perhaps, even only a portion of it. I do not wish to enter into details or offer examples of these shifts and contrivances, and only mention the practice to show that a want is felt for cheap patterns, especially when only a few castings are required. Let me now, therefore, call the reader's at tention to a contrivance which may satisfy that want to certain limited extent.
Let the iron or brass founder use one or more flasks of the kind shown in the engraving at A, B, and C. A is a plan of the flask; B and C are end views, showing the two parts, nowel and cope, placed together. This flask does not differ from that ordinarily used except in one particular, namely, the centers of the pins, P, in the nowel, B, and the centers of the holesin the cope, C, must be equidistant from the center lines, E F and G H. Let a strong board be made similar to that shown at \mathbf{D} in the engraving, battened on one side to keep it straight, the other side being planed true and free from curve or twist. Let four iron lugs, with holes in them similar to those usually screwed to the cope part of a common flask, be fixed in like manner to this board, and let the centers of the holes be at equal distances from the center lines, E F and GH, making those distances the same as those adopted for the flask. It is now evident that the board, D, may be so applied to the nowel, B, that the four pins in B shall fit into the four holes in D, and that it will be retained in position by them; in like manner the board may be applied to the cope, C , so that the four holes in the one shall exactly coincide with those of the other. When so applied it is only necessary to place two or more pins, such as shown at I in the engraving, in the holes, and the board will be retained in its position with reference to the cope.
Things being so arranged, we are prepared for business. Any article whose parts are symmetrically disposed about a center line (and there are hosts of such) may be made from half a pattern. Herein is the economy, for it is presumed that half a pattern costs less than a whole one. Let the half patterns of any such articles be placed upon the board, D, so that the center line drawn upon the pattern falls ex actly upon that drawn upon the board. Our engraving shows three different kinds of half patterns so placed, a bend, a wheel, which has perhaps a rim round or oval in section, and a hanging bracket, sufficient to fill the flask, and all to be moulded at the same time. The half patterns having been placed as required, they must be retained in their respective positions by pegs passing through from the back of the board and fitting easily into holes made a short distance into the patterns. Place the nowel, B, upon the board with its pins in the holes, and clamp it there; ram it with sand and turn the whole over; lift off the board and draw the patterns. Replace the patterns on the board and apply the cope, C , to it. passing at least two pins through the holes to hold the board and cope in position; ram the cope and make provision for ventilation and the admission of metal, continuing the process as before directed for the nowell. The cope and nowel, when placed together, will now form a perfect mould.
The author has seen this arrangement carried out for a piece of work where hundreds of pieces were required. It gave perfect satisfaction. The half patterns, once placed upon the board correctly and pegged, are good for any number of pieces, and all the rest goes easily. It is immaterial whether close or snap flasks are used; the arrangement holds good for all machine framing which is symmetrical, such as brackets, bends, elbows, tees, straight pipes, wheels with an even number of straight arms or without any, etc. We may even go a step farther, for if the piece is in its main parts symmetrical but has upon one side a hub or branch of some sort not required upon the other, then if such hubs or branches are attached by easily fitting pegs they may be re tained when ramming the nowel and removed when ram ming the cope, or vice versa.
Unlike the makeshifts for economy's sake alluded to, the arrangement here recommended throws no extra labor upon the moulder. There is simply the expense of a few flasksand let me ask the question, If four pins have to be attached why may they not be placed in a certain position? So that it only amounts to this, that every flask of the same size should have its pins or holes in the same place, so as to accommodate if necessary the same board. It is not, however, imperative to proceed to this extreme.

How to make Stearine Pictures.

This stearine relief process depends upon the property which bichromate of potash, mixed with gelatine, has of becoming insoluble by light. If a glass plate be covered with this mixture, and exposed in the ordinary way, in its after manipulation in water those parts not touched by the light will swell up, while those acted on by it, and consequently insoluble, remain flat; in fact, a relief is formed
taken. These stearine impressions are afterwards rubbed with silver powder, stuck on blue paper, and the effect is something charming. They are produced in the following manner.
When the impression has been taken, the relief must be finished on a flat, stiff surface-a glass plate, for instance. Consequently, no transfer can take place, on which account he half tones are in no way injured in washing. The exposure must be from behind, which, naturally, can only be done if the gelatine layer is spread on the negative itself, and his is no very great difficulty. The collodion used should be a good portrait collodion, if possible containing a little water; it is also improved by the addition of a little casto oil. Moreover, the use of crown glass may be recommended, and, before collodionizing, flood with a solution of albumen and let it dry.

PATTERN WORK

After the negative has, in the ordinary way, been exposed, developed, fixed, and well washed, it is then either place in rather hot water, or flooded with it for some minutes, the temperature about 25° to $30^{\circ} \mathrm{R}$. This preliminary warming is on account of the future pouring on of the chrome gelatine solutions, and is very important.
$\left\{\begin{array}{l}\text { Nelson's patent ge } \\ \text { Distilled water.. }\end{array}\right.$
gelatine. .
....... 75 grammes

and then-

$2\left\{\begin{array}{l}\text { Bichromate of potash } \\ \text { Distilled water }\end{array}\right.$ \qquad 100 grammes.

The commercial gelatine usually made from calves' feet is absolutely useless for employing in this proceeding, it no giving sufficient relief.
The gelatine of better quality, which I have mentioned bove, is produced by Nelson, and is prepared from algæ, or moss, and answers excellently for this process.
From mixture No. 2 add a small quantity in drops to the gelatine solution, keeping it continually stirring, estimating the mixing at about 3 drops to the 100 cb . m. (Of course,both solutions must undergo careful filterings.) From this warm mixture a small quantity should be poured on the now we and warm negative, carefully avoiding air bubbles, and spreading it equally in all parts. This is only preliminary and serves to produce an isolated layer between the origina and the relief, and prevents, in after washings, the dark parts of the negative relief layer, which are under, from being washed out.
After having treated the negative in the manner described, this gelatine solution, mixed with the bichromate of potash, is run off at a corner, and the plate then placed for a short ime in the light to dry, and any superfluity of the mixture emoved with gentle washing. Now the second-the rea elief producing liquid-can be employed.
Beforehand it is well to surround the plate glass (which it is advisable to have somewhat thick) with a margin of cardboard, which can be either stuck on or tied firmly ound it, so as to form an edge about five millimeters high. This edge serves to prevent an overflow of the gelatine solution. Into the dish thus formed is poured the gelatine so lution, which, by the addition of the bichromate of potash, has been rendered sensitive to the light, and the negative covered to a height of some three or five $\mathrm{m} . \mathrm{m}$. One mus nxiously avoid air bubbles. Afterwards thoroughly dry in a horizontal position in a warm room. Then it can be
exposed, taking it carefully, in such a way that the negaexposed, taking it carefully, in such a way that the nega-
tive (the gelatine side downwards) is placed on a board covered with black cloth, and for some hours exposed to the diversified rays of the daylight. By proper exposure, the gelatine layer assumes a yellow brown appearance.
The development of the picture is comparatively easy. Pour into a dish some thoroughly hot water, into which the plate should be once dipped. The temperature of the water employed varies according to the quality of the gelatine used. As a working rule, it may be observed that the higher the temperature of the water the greater the relie obtained, as it rises energetically. Bubbles are not to be feared if a good gelatine be employed.
As observed, nearly every quality of gelatine has its own
temperature at which it swells most readily. To find this
out is a matter for investigation-still, soon arrived at; in any case, it is preferable to use a gelatine that always give the same results. With Nelson's gelatine the tempera ure at about $50^{\circ} \mathrm{R}$. is the best.
On the application of the warm water the relief comes up quickly, those parts unaffected by the light swelling rapidly up, while those acted on should remain flat and solid. We can now perceive over the thick places of the negative a par tial solution of the gelatinespreading itself under the isolated ayer-in other words, a bas relief forming on the sensitized gelatine plate, in which the lights, and especially the light parts, lie deeper than the shadows.
On the contrary, if a diapositive be covered in the manner described, with the sensitized gelatine mixture, and after wards exposed, the light parts would let much light through by which the gelatine layer would be affected to a considera ble depth. By the manipulating in hot water afterwards the insoluble parts remain, and we obtai wards relief.
In most cases the production of the bas relief is to be preferred, which can be regulated according to the flooding.
The gelatine should be then prepared with a layer of a well concentrated solution of white shellac dissolved in alcohol; the stearine melted over gentle fire, and then poured, carefully avoiding air bubbles, over the gelatine. On its drying, turn up the plate, and a few taps on the back will remove the impression.
In conclusion, rub the impression over with silver bronze, and mount on a piece of blue paper or card. A great improvement on this process is to be ar rived at by carefully mixing marble or alabaste powder (such as can be obtained from sculptors studios) with the stearine. Melt the stearine over a gentle fire, and add in small quantities the powder carefully stirring and watching the mixing. In pouring into the mould, the powder sinks, so tha the top layer of the stearine impression present the appearance of finely sculptured marble.
In conclusion, it is well to remark that in producing reliefs of persons with light or golden hair, it is well to powder the same; otherwise; as in photography, the gold comes out black, and the hair in the stearine impression appears too sunken.-Photographisches Wochen-Blatt.

The Conditions of Invention.
The recent discovery of the liquefaction of the so-called permanent gases is only a practical application of principles ong known. Berthelot and Andrews long ago indicated the conditions under which this probably could be accom plished, and Dumas even calculated the density and othe characteristics of liquid oxygen. Moreover, that these gases were susceptible of liquefaction has always been a corollary of the modern thermo-dynamic theory; and to assert to the contrary has always been admitted as the expression of a paradox.
Substantially the same is true of the flying machine. The conditions of mechanical flight are all well settled. The first equirement is the condensation of the maximum of powe into the minimum of space, and the anatomy of the bir irtually tells the rest. That the correlation of gravity with the other natural forces will be discovered is probably only a question of time. Faraday announced his belief of the possibility, and cleared the way for the application of the principles which ultimately may lead to its detection. There are abundant opportunities for invention and discovery which involve simply the application of the elementary principles of physical science, which should form a part of every one's education.

The Nordenskold Expedition.

To aid the expedition of Professor Nordenskold in the Arctic regions, having for its object the demonstration of the practicability of navigation in the Polar Sea north of Asia, the Navy Department has collated much material in he shape of charts, etc., produced from the surveys of the United States North Pacific and Arctic exploring expeditions 1853-56) and reports of Rear Admiral John Rodgers, the commander of that expedition, who in the month of August, 1855, proceeded through Behring's Straits (which Professor Nordenskold expects to penetrate) into the Arctic Ocean as far north as latitude $72^{\circ} 2^{\prime}$ north, longitude $174^{\circ} 37 \prime$ west, and then westward as far as latitude $70^{\circ} 45^{\prime}$ north, longitude $176^{\circ} \cdot 47^{\prime}$ east of Greenwich, which will no doubt make his reports and charts very welcome to the Professor, as they contain many details of the atmospheric conditions during hat month, as well as of the depth of the water, magnetic variations, force and direction of the currents, etc., which cannot readily be obtained from any other source.

The Phylloxera and American Vines.

It has been discovered that several kinds of American vines withstand the ravages of the phylloxera, notably the "Clinton." A vineyard at Montpellier, France, is now argely planted with stocks of the Clinton grape, on which the French Aramon vine is grafted. The grafting is neces sary to obtain grapes whose wine has a satisfactory taste. A work recently published at Bordeaux describes the Amer can vines best suited for stocks, and specifies the French vines that can be grafted on them to advantage. For awhile it was hoped that German stocks would have answered the purpose, but they are found unable to resist the insect pest

LAW'S DOUBLE SHEARS AND ENGINE.
The form of lever shears shown in the accompanying ilustration is described in Iron as a compact and convenien tool for steel melters and for iron works in general. It is intended, as may be seen from the shortness of jaw, for cut ing rods, bars, and rails, or for ordinary smiths' purposes, rather than for plate work.
The driving engine is vertical, of the steam hammer class, with T-shaped framings, carrying the guide and swelling out at the bottom to allow the play of the crank. The speed is regulated by the usual Watt's governor and throttle valve. The engine drives a strong main crank shaft, carried by two plummer blocks upon the main framing. This shaft is fitted with a large and heavy fly wheel. A strong pinion flanged up to the pitch line is keyed upon this shaft, and gears into two strong spur wheels in a ratio of about one to three, or more if required, which are also flanged up to the pitch line. These spur wheels are each carried on countershafts by two bearings, each cast upon the main framing with the usua gun metal steps. Upon the outside extremity of these shafts overhanging the bearings, are two cast steel disk plates, with crank pin of small throw.
The crank pins work in two gun metal sliding blocks, cast hollow, to give the maximum bearing surface with moderate amount of material. The crank pins thus revolve in the sliding blocks, whilst the latter slide horizontally in a planed slot in the shearing levers. A reciprocating up and down motion is thus produced in the shearing levers. Th resistance of shearing is all met in the up stroke of the crank pin, and therefore the pins are arranged opposite to one an other in their throw, so that they work alternately and bal ance the total effect upon the engine. The weight of the lever arms themselves will bring them back to open the shear jaw, so that the working pressure is always on the upper face of the block, and will prevent any liability to knock in the slot, and, therefore, no adjustment of the blocks is required or provided. The gun metal sliding blocks have anges on the inside faces, so that when once inserted in place they cannot get out of place again.
Both faces of the slot in the punching levers are planed and upon the outside faces is a planed face arranged radially from the center pin. Bearing upon this radial face is an adjustment plate, so arranged that it can be pressed by a set screw upon the small end of the lever to bring the shears home to their work, and to prevent any jumping away from their work when cutting. The levers themselves are cast iron, faced with steel shear plates at the cutting end, and rocking on iron bearing pins, to which suitable lubricators are provided in the castings. The two levers are arranged for different sizes of jaws, and therefore for different pow ers. The shears are respectively 12 inches and 15 inches, and the gearing is about 1 to 3 and 1 to 4 respectively, so as to give suitable lengths of leverage to the different resist ances. The whole of the different bearings is cast in one solid box bed plate, which serves also as foundation plate for the vertical engine, a suitable gap being provided for the fly wheel.

Prairie Chickens introduced into California by

the Railway.
The absence of this choice bird among the feathered game of California is well known, and various efforts had been made by individual enterprise to introduce and acclimate it, but without success; and the possibility of this desirable re sult has long remained in doubt. But it seems that the bird is solving the problem for us. Starting from the prairies of Nebraska, it has followed the railroad westward, its appearance being noted from time to time in localities along the line, where it had never before been seen.
It has already extended its wanderings into Surprise valley in Northeastern California, and its diffusion over the whole state is now believed to be only a question of time, and reasonable forbearance on the part of gunners.

An expedition, having for its object the thorough exami nation of the natural resources of Russian Turkestan, is about to leave St. Petersburg. M. de Middendorf, the

IMHOF'S STOVE PIPE EXPANDER.
It is scarcely necessary to recall to any one who has ever put up a stove how annoying a task it is to fit together sec tions of pipe. No matter how nicely these were joined when ether after a summer's sojourn in the barn or cellar, and to attempt to force them usually ends in bruised fingers and split pipe, and ultimately in sending for the tinman. Mr Henry Imhof, of Lockport, N. Y.,. has devised an exceed ingly simple means of avoiding all this trouble, the utility of which is so obvious as probably to render it hereafter indispensable in all households where stoves exist. It is merely a hollow truncated cone (A in our engraving), of any suita ble dimensions, made of sheet metal or other material. Its use is plain from the illustration. The smaller end of the cone is inserted in the end of the stove pipe and forced int

stove pipe Expander.
he same. The pipe is thus expanded as required. To con ract the pipe the end is inserted in the larger opening of th one, which is forced down as before
Patented January 1, 1878. For further information ad ress the inventor, box 982 , Lockport, N. Y. State and county rights for sale.

Iridescent Glass.

Among the thousands of objects, both curious and artis tic, which fill the halls of the Metropolitan Museum of Art in Fourteenth street, there are none to which the eye of the visitor will be attracted with more interest and admiration than the specimens of glass ware which were exhumed by General di Cesnola from the tombs of Idalium, in the Island of Cyprus. This collection of Greek glass, the most exten sive known, comprises 1,700 articles of all kinds, shapes, and sizes, plain and colored, incrusted and iridescent. But the specimens to which the attention of the beholder will be
more especially drawn are those which have an opalescent pearly, or nacreous surface, lustrous as a rainbow, and beyon all description beautiful. Although at the time of their dis covery there was some discussion as to whether the exquisit effects which these objects exhibit were not the result of de sign on the part of the skillful old craftsmen who constructed them, it is now pretty well known that they are due to a sort of decomposition which the glass has undergone during the long lapse of time since they were first placed in the deposi tories where they have been found. Close examination has not thrown any light on the cause of iridescence in glass, but the theory is that when this substance is exposed to influen es which gradually decompose it, its surface becomes cov ered with delicatelaminæ, like those of mother-of-pearl, and that the rainbow colors are due to the phenomenon known in optics as interference of light. Similarly the luster of opa is due to refraction caused by the number of parallel plates of which it is composed. The iridescence of Labrador spar may be given as another example, although in this case the plates of which it is composed are much more solidly com pacted.
This peculiar alteration in glass has been observed to take place when it has long remained under water or in moist ground, or when it has been exposed to ammoniacal vapor (as in the windows of stables), or to the acid vapors thrown off by volcanic ashes, and especially in glass objects found in ancient burial places.
Not very long since two French chemists, MM. Fremy and Clemandot, after numerous experiments to discover a method by which glass might be permanently "iri dized," so as to give it the aspect of pearl or of nacre were rewarded by success. Their process consists in sub mere rewarded the glass, under the influence of heat and pressure,
mitt to the action of water containing fifteen per cent of hydro chloric acid. On the authority of Industrial Art, a continental firm of glass manufacturers succeeded, a few year ago, in mastering the secret by which glass during its process of manufacture at times became as many colored as a soap bubble. Their first consignment to England, exhibited under the name of '"Russian glass," did not attract as much attention as it deserved; but convinced that the work had in it intrinsic merits deserving of recognition on the part of the public from an art point of view, the exhibitors continued their investigations into the mode of its production; and se lecting the most appropriate designs for its display, in the form of the best models of classic art, have produced a mul titude of articles which are said to be exquisitely beautiful and in price so moderate that they will readily come within the reach even of the possessor of a slender purse.
The current number of Le Propagateur, in commenting on this new iridescent glass, makes the following remarks in re gard to its manufacture
"In Germany the glass to be iridized is heated and a me tallic oxide deposited on its surface by reduction. The oxide forms striæ on the surface, and these determine the phenom enon of iridescence. Bismuth seems to be much used in the principal glass works as the iridizing metal. In fact, \mathbf{M} Peligot, the eminent chemist, who has analyzed these irides cent glasses, found appreciable quantities of bismuth in them. Any metal whatever might, perhaps, produce the same result."
The same journal adds that these objets d'art in iridescent glass are having a large sale in England and Germany, and at present are "all the rage" in Paris among people of taste. As might be expected (for New York in matters of artistic taste is scarcely a whit the inferior of her sisters of the Old World), these handsome art products are also to be seen in our own city. Those curious in such matters may compare samples in the shop windows in New York with the ancien specimens in the Metropolitan Museum, and decide whethe Nature, working with unseen hands and unknown material through long ages, or Art, guided by the hands of skilled craftsmen, aided by the appliances of modern science, has produced the most beautiful results.

Handbuck für Erfinder.-Deutsche Erfinder machen

TEETH, CLAWS, TONGUE, AND WHISKERS

 We have grouped together in the accompanying engrav ings (from Wood's " Natural History") some of the characteristic features of the lion, the object being to show the wonderful mechanism with which Nature has so richly endowed that animal to enable it to carry out the instincts which are implanted in its nature. The lion belongs to the Felidee, or cat tribe, and the characteristics here noted are as true for the demure tabby which placidly purrs on the hearth, as for the fierce king of the African forest; while they are brought into play as actively and as completely in the capture and devouring of a mouse by the one as in the taking of an antelope by the other.It is not generally realized that the whiskers of the cat tribe are the means of almost another sense Each whisker hair is, in fact, an organ having an exquisite sense of touch, and is in connec quisite sense of touch, and is in connec tion with a set of large nerves which con vey to the brain a perception of the slight est impact. In Fig. 4 is given a magnified representation of a single hair bulb of one of the whiskers, together with the nerves by means of which the hair is converted into a tactile organ. If the extremity of the hair is touched a pressure is instantly made on the nerves at its root. By mean of these delicate feelers, the animals are able to guide themselves through the thick ets, and to escape the risk of alarming their prey by too rude a contact with the branches.
When a lion kills an eland, and does not happen to be very ravenously hungry, he feeds daintily on the heart and other vis cera, rarely touching the remainder of the flesh. In so doing he rips open the abdomen with his powerful claws, thus bring ing to play a second time the talons which are so curiously adapted for seizing and holding the victim. The mechanism of the cat's claw is shownin Fig. 2. When the animal is at rest, the upper tendons draw the claw backward, so that it is lifted entirely from the ground, and the weight of the body rests only on the soft pads which stud the under surface of the foot. But when the creature becomes excited, and thrusts out its paw for the purpose of striking a blow or clutching at its prey, the upper tendons become relaxed, while the lower tendons are tightened, and the claw is thrown forward, ready for use

Another curious structure common to all feline animals is found in the tongue. The finger passed over the tongue of a cat will show at once that it is dry and rough, and thus in strong contrast with the wet, smooth tongue of the dog, Examination of the surface with a magnifying glass will show, however, that the entire surface of the tongue is covered with innumerable conical projections, which are so curved that their pointslie towards the throat. On the cen tral line of the tongue these projections are longer than at the side. Their chief if not their only use is to aid the cat in stripping the flesh from the bones of the animal which it has killed, and so to prevent the least waste of nutriment, a curious example of Nature's economy. So strongly made are these projections that the constant licking of a cat's tongue will remove the lining tissues from a delicate skin, while the tongue of the lion, Fig. 3, can rapidly cause the outflow of blood.
The teeth of the exclusively carnivorous animals are always of a form which permits them to seize and tear their prey, but does not give them the power of masticating their food after the manner of the vegetable feeders. None of the teeth are furnished with the flat surfaces which are ne-
cessary for grinding the substances which may be placed between them; and this inability does not lie only in the teeth, but extends to the very framework of the jaws. As may be seen on reference to Fig. 1, the lower jaw is so largely developed at its base, and fits so deeply into its socket, that lateral motion is impossible. In order to give a more perfect view of the lower jawbone, the bone immediately above it has been removed and presents only its cut surface. This part of the structure is scientifically known as "malar," or cheek bone, and forms an arch, which has been termed the "zygomatic" arch. In the carnivorous, and more especially in the feline animals, this bone is extremely large in proportion, and is increased in strength by the very decided curve. The great size as well as the peculiar form of this bone are required for the purpose of affording protection to

THE LION'S DESTRUCTIVE APPARATUS.
oadway, with pathways for foot passengers on either side The engraving (which we copy from the London Graphic shows a curious blending of the architecture of the Ptolemies with the more practical, if less ornamental, system of con struction adopted by nineteenth century engineers.

Foreign Industrial Notes.

Tanned Fish Skins.-At the maritime exposition held at the Westminster Aquarium there were exhibited the tanned skins of various fishes, susceptible of a multitude of uses There were, especially, skins of eels prepared for harness, skins of flat fish for glove making, shark skins more than nine feet long by three wide, yielding a superb leather. The same exhibitor sent from Christiania bands of whale skin fifty-eight feet long, designed for making driving belts for

A New Barometer.-In the Bulletin Frangais, M. De Parville describes the mode of construction of a new form of barometer, which is not claimed as an instrument of precision, but to be cheap, simple, and tolerably accurate.
A medium sized bottle is tightly stopped with a cork traversed by a quill tube. This tube should be about one tenth of an inch in diameter and 19 or 20 inches long, and should extend into the bottle for two thirds of its length. The joints must be made thoroughly air-tight with wax. Then slightly warm the bottle to dilate the air, and dip the extremity of the tube under water while cooling. In this manner fill the bottle so that the surface of the wate just touches the inner end of the tube, then add a little more until it stands in the tube at some easily remembered level. This is the whole apparatus. When the weather threatens rain the surface of the column of water will sink, and vice versa. Varia tions in temperature also cause changes in the length of the column, but a little practice will enable the observer to allow for these, or if the instrument be kept in a cellar or in any other place of even temperature they will not occur.
New Process of Tanning.—An Italian chemist, M. Paesi, of Mortara, has discovered a new process of tanning, much more rapid than the old. It consists in letting the skins macerate in a bath of perchloride of iron and marine salt, in solution in water. The total operation lasts only from
the enormously powerful muscles, by means of which these animals are enabled to tear their food, and also for the attachment of certain jaw moving muscles. There is an upward as well as an outward curve in the malar bone, which gives strength precisely where it is most required.

A NILE BRIDGE.

The innovations which modern progress is making in Egypt could hardly be better illustrated than by the accompanying engraving of a projected bridge which is to cross signs of Signor Alfredo Cottran, a well known engineer of Naples and managing director of a large engineering establishment at Castellamare, which has erected more than one thousand metallic bridges in Italy, Spain, and Turkey. It is to be built partly of stone and partly of iron, and the construction will be a combination of the suspension principle with straight girders, a method frequently adopted in this country for large spaces. The two main piers are constructed of wrought iron, cast iron, and masonry, and the superstructure will be composed of two stages superimposed, the lower our to six months, of which only the half is for tanning pro per. Moreover, the perchloride of iron being a powerful disinfectant, the new method insures the wholesomeness of an industry which has hitherto been very nauseous. The French Journal d'Hygiène has called particular attention to this process, and the Conseil d'Hygiène of the Puy de Dôme has undertaken new experiments on the subject, with a view of remedying in certain quarters of Clermont and Ferrand the infection arising from the cause referred to.
Improved Process of Engraving on Glass.-The action of hydrofluoric acid on glass being very rapid, and its use being attended with great danger, the Jeweler recommends the following as a safer method of engraving:

A coat of engraving varnish is put on the glass with a pencil. The varnish, which goes by the name of "Florence," is one of the best. It is heated in a varnish pot, and linseed oil and mastic in drops are added in equal portions. Mix and pass through a cloth. Keep in closely stoppered bottles. The varnish is spread so as to leave the parts to be engraved uncovered, that the drawings may be traced with a metallic point. A paste of fluate of lime in powder and concentrated sulphuric acid is put on in a thin layer. This paste acts

PROPOSED IRON RAILWAY BRIDGE ACROSS THE NILE.
slowly on the glass wherever it is not protected by the varnish. It is left to stand for two or three hours. The glass is then cleaned first with water and afterward with alcohol.

Burning Cheap Fuel.-The Jarvis Furnace

The remarkable economy that has been realized by burning screenings, with little soft coal under boilers set with the Jarvis patent gas consuming furnace, without a blower, has excited a great amount of discussion among engineers, and considerable interest among manufacturers and steam users, who are reaping the benefit of using it by a reduction in the amount of their coal bills. Letters patent were granted for this improvement April 25, 1876; January 30, 1877, and April 24, 1877. The furnace is adapted to setting any kind of a steam boiler. The alterations and additions to be made when the ordinary setting is to be changed for the Jarvis set ting can be made in a few days. Hence several extensive manufacturers have availed themselves of the improvements, and express in no measured terms their high satisfaction at the results obtained in economy of fuel and the production of steam
The principal features in this furnace consist in the setting whereby air is admitted by small flues in the front and then conducted through a number of horizontal expanding ducts, in which it traverses backward and forward until it finally, and in a heated state, enters by the furnace bridge wall and other places, uniting with the products of combustion and causing consumption of the gases. The peculiar manner of setting allows the burning of screenings with a small portion of soft coal, without the use of a blower, by joining the hot air (oxygen) and gases. What is especially claimed is that cheap fuel, such as screenings, green wet peat, slack coal, sawdust, green wood, logwood chips, etc., can be used without auxiliary blast, that the gases are burned, that great economy is effected, and that three boilers with this description of setting will do the work of five boilers set in the old way. These claims are fully established. The company further claim an increase in evaporation of water over all old ways of setting of from 15 to 25 per cent, in using the best class of fuel.

The improvements, we have already said, consist in a peculiar way of setting the boiler in brickwork. Our own ob servations respecting boilers and boiler setting allow us to state that although for the past twenty-five years there have been very marked and notable improvements in the construction of boilers, too often has the setting of them been left to the judgment of a mason, who would do it in the cheapest manner and according to his own ideas. The results obtained by the Jarvis furnace prove how impoitant the proper setting of boilers is in the economy of fuel, and maintaining the durability of the boiler. The old way of setting a boiler has generally been to set the boiler from 18 to 20 inches above the grate, and to have all the air for feeding the fire pass into the ash pit, up through the grate.
In the Jarvis furnace this order of things is reversed. The boiler is placed from 24 to 30 inches above the grate, on the principle that what the fire needs in addition to air through the grate is pure hot oxygen on top of the fires to mix with the gases generated on the grate. Air is admitted through passages in the side walls of the furnace, that dis charge over the bridge wall; this is heated very hot in its passage, and when it comes out it immediately mixes with the gases and bursts into a blue flame. Air is also admitted from the back of the furnace through expanded passages laid at the bottom of the flame bed. This is also heated in its transit, and strikes underneath the body of gas and flame back of the bridge wall. The fire is a surface one, and the hot pure air, which doubles at 568° of heat, having sufficient room to expand, makes an immense flame. It makes its own draught, and of such force that coal dust and screenings are burned freely, without blowers or blast, and in some cases with the dampers only one quarter open; in other words, the heat is held, and it is perfectslow combustion.
We recently examined the Jarvis furnace at the works of
Messrs. P. Lorillard \& Co., Jersey city, N. J., and found it in very successful operation. Two boilers, built by Samuel Secor \& Co., are set in the manner described. One only was in operation, and this was furnishing steam to the buildings, and a horizontal steam engine having a cylinder $243 / 8$ inches in diameter and 48 inches stroke. This engine had a driving belt wheel, 16 feet 6 inches in diameter with 33 inches face, and was making 40 revolutions per minute. The description of the one we saw in operation will serve for both boilers. This is a plain horizontal tubular boiler, 150 horse power; diameter 7 feet, length of shell 18 feet, number of tubes 112, diameter of tubes 4 inches, thickness of boiler plates $\frac{7}{16}$ inch, thickness of heads $5 / 8$ inch. The fuel
being used was anthracite screenings, worth 80 cents per ton; soft coal, worth $\$ 4.25$ per ton, and pea coal worth $\$ 2$ per ton. The mixture being used was two parts of screenings to one of pea and one of soft coal. The grate has the Adams' grate bar with $3 / 8$ inch opening, and was 6 feet wide by 6 feet 6 inches long. The heating surface of the boiler is 2,250 square feet, and the average working pressure is 65 lbs . The consumption of fuel in 24 hours is $10,000 \mathrm{lbs}$., and will be less rather than more in future as requirements will be ascertained and the consumption of
fuel brought down to a minimum. fuel brought down to a minimum. The use of pea coal is optional with the company, and not a necessity. The damper was half closed, and yet the fuel burned with as much in-
tensity as if there was a moderate blast from a blower. The tensity as if there was a moderate blast from a blower. The
blue flames at the sides and back of the furnace showed that
consumption of the gases was taking place. The same de- the natural voice. The vowels are clear and distinct, both scription of furnaces is in operation at the Allen Print in whispering with the reed out and intoning with the ree Works, Providence, R. I., the Washington Mills, Lawrence, in the tube, showing that the vowels are the product o Mass., the Harmony Mills, Cohoes, N. Y., at the brewery of changes in the shape of the buccal cavity and are not formed Messrs. Gluick \& Scharamann in Brooklyn, L. I., and many other places. The setting is adapted to all kinds of furnace by alterations of the glottis. The patient progresses favor ably, although somewhat subject to colds.
set in brick work, including retorts, heating, and puddling furnaces. It is also applicable to the western river steam boats, where slack coal and green wood can be used, allow ing more steam to be made with a less number of boilers, and consequently effecting not only an economy in fuel, but giving more space for freight. Further information may be had from A. F. Upton, general agent for the Jarvi Patent Gas Consuming Furnace, No. 239 Congress St., Bos ton, Mass., or from R. H. Burns, No. 414 East 26th St., New York.

A MECHANICAL LARYNX.

A remarkable example of how mechanical ingenuity i called in to supplement surgical skill is furnished by th successful extirpation of a larynx by Dr. Foulis, of Glasgow and the substitution therefor of a metal contrivance, which supplies the place of the lost organ so perfectly that the patient is able to talk with as little difficulty as if the opera tion had not been performed. For the benefit of the reader not familiar with the functions of the larynx, we may recall the fact that the voice is produced therein by the vibration of the column of air passing through a narrow slit which forms the entrance to the trachea and lungs. The natura mechanism of the larynx is closely analogous to that of reed instrument, in which a column of air, passing forcibly through a narrow.slit bounded on one or both sides by

a mechanical larynx.
thin elastic plate of wood or metal, first causes the edge of the plate to vibrate with sufficient rapidity, and is thus itself thrown into sonorous vibration. In the larynx every varia tion between the two extremes of high and low notes is produced in similar manner by alterations in the width of the slit and the length and tension of its vibrating edges or vocal cords. When, therefore, a person is deprived of his larynx he becomes like an organ without pipes. The lungs, which correspond to the bellows, are there, and so is the articula ting apparatus, which answers to the keys, but there is no means of producing sound.
Dr. Foulis' voice tube, which is represented in our engrav ing, is exceedingly simple. It consists of two silver pipes, one of which, A, passes upward to the epiglottis, and the other, B, enters the open trachea, as shown. The lowe tube slips into the upper one, and holds the reed plate and button, C. The current of air from the lungs impinges upon the free end of the vibrating reed, as shown by the arrows The reed itself has been made of soft vulcanite; but the patient, who has considerable mechanical genius, and has become interested in the possibilities of his new larynx, has been making experiments on a large variety of substances, and has succeeded in providing himself with a perfect assortment of voices of different qualities, which he uses at pleas ure. An alloy of silver and brass gives him a fine, rich tone by changing his reed he can sing tenor or barytone at will, and render his tones soft or ringing, as he uses non-metallic or metallic substances. This, Dr. Foulis points out, proves the opinion already expressed, that the timbre of the human voice depends as much on the density, elasticity, and other qualities of the vocal cords as on the accentuation of par ticular sound waves in the buccal cavity

The articulation of the patient is said to be wonderful, and, saving its monotony, it cannot be distinguished from

or the Scientific American.
 Home Dentistry.

It is so clearly the best policy for all who suffer from dental complications to seek the aid of a skilled dentist that it may be almost superfluous to premise that the follow ing hints are written for those only who from want of fund or other causes are unable to obtain professional advice
Decayed teeth should at once be thoroughly stopped whether troublesome or not, because if the nerve is exposed a tooth will always be tender, unfit for use and liable to ache; while the food will lodge in the cavity and decompose, causing the breath to be offensive. To treat a decayed tooth proceed as follows: First clean out the cavity, picking out all the decomposed parts which can be reached, and dry the interior with cotton. For this and subsequent operations hin steel or iron instrument, sharpened at the point and sightly curved, will be found useful. Should the nerve be xposed, it should be killed. There are several ways of doing this. One method is to allow a drop of creosote to fall on a piece of cotton, when the latter is placed on the erve in the cavity, filling in with pure cotton. Oil of cloves may also be used; it is slower in its action, but is mor greeable. Both of these are poisons, if taken into the stomach in any considerable quantity. They are therefore to be used on the teeth with care, and only at the place needed. For the plug take a bit of common gutta percha and plunge it into boiling water, which will soften it and render it as easy to manipulate as putty. The cavity having been cleaned and wiped dry, allow a single drop of the oil of cloves to fall upon a very small bit of cotton and force the latter into the hollow of the tooth, pressing it well in. Pinch off a piece of the softened gutta percha of the size of the cav ity, dry it quickly on a cotton cloth, press it in with the in strument, and smooth the outside with the finger. If the cavity is in the crown of the tooth, close the jaws; the gutta percha will thus be moulded into the shape of the opposite tooth. In about ten minutes the gutta percha will harden and the tooth will be capable of use. If the nerve is not exposed and tender, the oil of cloves and cotton may be omit ted. In case the tooth has decayed so far that a mere shel is left, apply sufficient gutta percha to form a complete cover. When two or three teeth touching each other are badly decayed, they may be covered with a single piece of gutta percha. If at any time the tooth becomes troublesome again the filling may be removed by the pointed instrumen and a fresh one inserted.
It should be borne in mind that a toothache caused by an exposed nerve in a decayed tooth can be instantly cured by the application of the oil of cloves, which should be used with care, as above stated, so that it will not affect the sound teeth. When the nerve is destroyed future relief from pain is insured. Thus all who have broken or ragged teeth, and cannot obtain dentist's aid, may readily free themselves from pain and render the injured teeth serviceable.
A gocd wash for the mouth may be prepared as follows Dissolve a little permanganate of potash in water, rinsing the mouth with a portion of the solution. This will destroy the organic matter hanging about the teeth and render the breath inodorous.

The Microscopical Postal Club

The American Naturalist observes that this society has during the past year continued its operations with marked success and interest on the part of the members. Compara tively few slides have been broken, especially in those cir cuits where the new style of boxes has been used. The difficulty.of mailing the slides has been as yet but a small and exceptional evil. The law against mailing glass is plain enough-the slides are unquestionably glass. Where the slides have been properly packed and posted without ques tion or comment, there were few postmasters known to be so stupidly officious as to take any notice of an act so per fectly harmless in itself and so entirely within the spirit of the law. Those who desire to obtain information respect ing this society, should address the Rev. N. B. Hervey, of Troy, N. Y.

The Cornetto

Mr. J. F. Phillips, of 27 Chatham street, this city, calls attention in our advertising columns to the cornetto, a new musical instrument on which anybody can perform. It is only necessary to sing, or rather hum, into it, and the quality of the voice is entirely changed, so as to imitate the resonance of a wind instrument. The cornetto is neatly made of coiled reed, and can be carried in the pocket. The manufacture states that a number of good singers by its aid can easily produce the effect of a "full brass band.

English Turbot and Soles for America.

A consignment of living English soles and turbot was re cently sent from England under the charge of Mr. G. W Mather, to Professor Baird, of the United States Commission fishery. These will be turned adrift in the Bay of Mas sachusetts. We wish Professor Baird every success in hi sachusetts. We wish Professor Baird every success in his
endeavor to introduce in this country two of the finest fish that grace the table of the English epicure.

New Agricuitural Inventions.
Mr. John W. Mahoney, of Bishop Creek, Cal., has invented an improved Plow, so constructed that the parts less subject to wear may be made of cast iron, while those most exposed are made of steel. The standard and mouldboard are of cast iron, in one piece, and have a rear flange to which is bolted a cast iron landside bar. The share and point are of cast steel, also in one piece.
A Harrow has recently been patented in which the tooth bars of each section are arranged transversely and connected by longitudinal bars which also act as runners. The teeth are drawn to an acute angle on one edge and to an obtuse angle on the other, the former edge being rearwardly sloped and the latter perpendicular, for the purpose of cutting sods, weeds, etc., and clearing themselves of rubbish. Teeth of this shape, the inventor, Mr. M. M. Dobbin, of Sugar Grove, Ill., claims, will pass through the ground more easily and enter to a greater depth than ordinary square teeth.
Mr. George Sprague, of Rockford, Iowa, has invented an improved Rotary Churn, in which the dashers are bifurcated, having blades diverging from each other, and inclined to the central plane of the cream box.
A new Horse Hay Rake, the invention of Mr. J. C. Holton, of Oweusborough, Ky., is intended for operating on uneven ground with the same facility as upon a level. The novelty consists in the mode of combination of the rake, connecting rod, and lever with the axle and beam.
A Farm Gate invented by Mr. Wm. C. Hooker, of Abing. A Farm Gate invented by Mr. Wm. C. Hooker, of Abing-
don, Ill., is so constructed as to be opened or closed by a person on horseback or in a vehicle, by pulling a cord carried over the road at such a distance as to allow room for the horse or vehicle. The gate also locks itself when closed.
Mr. David L. Garver, of Hart, Mich., has invented an improved Harrow Tooth, which is hinged upon a beam and is pressed downward by a torsional spiral spring coiled upon the hinge bolt. In case the tooth should meet an obstruction the spring permits it to yield, and afterward the tooth resumes its normal position.
An improvement in Iron Beam Plows has been patented by Messrs. E. H. Babcock, J. C. Whiting, and O. H. Chamberlain, of Canandaigua, N. Y. The plow beam has a slotted plate, corresponding to a similar one on the standard. The plates, and consequently the beam and standard, are held together by a pivot bolt, clamping bolt, and eccentric pin.
Mr. Edward R. Carr, of Avon, Ill., has invented an improved Check Row Attachment for Corn Planters, for the purpose of marking the ground where the seed is planted, so that the planting may be done in regular check row.
Mr. Wm. E. Harwell, of Starrsville, Ga., has invented an improved Feeder for Thrashing Machines, constructed so as to carry the grain forward on an endless apron, cut the bands with revolving knives, spread the grain by means of toothed drums, and so deliver it to the thrasher in proper condition.
A Grain Binder invented by Mr. Frank E. McNall, of West Henrietta, N. Y., is designed for attachment to a harvester to bind the grain with twine, forming a hard knot, which is not liable to slip. The cord is led by a needle, then seized by jaws, made into a loop by a revolving tube, cut above the knot, and the loop brushed off the tube into position.

Mr. J. C. Slaughter, of Crumpton, Md., has patented an improved Fruit Drier, in which the draught is regulated and equalized by a peculiar arrangement of flues. The fruit is contained in frames having wire gauze bottoms. By means of hooks and a wịndlass the frames already in the drier are raised and held in place by a ratchet and pawl, so that the trays containing fresh fruit may be inserted at the bottom. As the operation progresses the series of trays thus move upward, and the fruit when perfectly dried is removed through doors at the top of the furnace.
A Combined Drill and Planter has been recently patented by Mr. G. W. Grimes, of Bluffton, Ind. It has a fixed perforated plate at the bottom of the hopper, and a revolving plate, also perforated, which is actuated by a shaft geared by intermeshing wheels to the drive wheel. This shaft can be thrown out of gear when desired by a lever at the handle. The drive wheel acts also as a roller for covering the seed after planting. The point of draught attachment may be raised or lowered, thus assisting in regulating the depth of the drill.
Mr. T. C. Histed, of Salina, Kan., has invented an improved Fanning Mill for Separating Grain, which has a combination with a fan and rotary riddle of curved deflectors arranged so as to direct the blast into the open end of the riddle. The vibratory shaft which carries the sifting screen may be inclined at various angles by an arrangement of slots and pins. The remainder of the apparatus is substantially as in other grain separators, although the details are varied to meet the new features.
Mr. Albert Tschop, of Harrisburg, Pa., has made certain improvements in Horse Hay Rakes, which consist mainly in means for strengthening the axle and axle arms, in the manner in which the rake teeth are secured to the frame, and in the arrangement for raising and lowering the rakes.

Poisonous Wall Paper.

The frequent warnings given to the public during the past few years against the use of green wall paper (the colors of which are usually arsenical) have produced the popular impression that in the selection of paper for interior decoration this color was the sole one to be feared. But in a lecture on "Poisonous Wall Paper," delivered a short time
since before the Manchester Chemists' and Druggists' Association, by Mr. Siebold, the lecturer stated that out of sixty or seventy papers of various colors-blue, red, brown, pink, etc.-analyzed by him, ten only were harmless, the rest containing arsenic. The result, therefore, of Mr. Siebold's investigations should have the effect of rendering heads of families suspicious of some of the most innocent looking colors.

aUtOMATIC GAS LIGHTING.

A new plan for lighting and extinguishing the street lamps by electricity has lately been tested by one of the London gas companies with results which point to a still more extensive trial. The system is one in which electric currents are made to turn the gas on, light it, and subsequently turn it off. Although three operations are thus involved the arrangement is remarkably simple. A single wire may be carried along a line of lamps and then connected with the earth, or the wire may be carried around through a circuit of lamps, so as to terminate at the station from which it started. At this
station there would be a magneto-electric apparatus for gen-

FOX'S GAS LIGHTER.

erating the required currents, and one operator at this point would be able to command a number of circuits, each comprising any number of lamps up to 300 or more.
The experiments alluded to were made on the premises of the company, and have been published by The Engineer. A single line of wire, about half a mile long, was conveyed by
a zigzag course along a series of twenty-three lamps. The wire was chiefly an aërial line, suspended to the lamp posts and attached to various intervening structures. It was insulated only at those points where it would otherwise come in contact with some conducting substance. The mechanism applied to each lamp, in addition to the wires, is contained in a small metallic box of circular form, so arranged as not to obstruct the light.
The accompanying engraving shows the mechanical arrangement. The socket, F, is screwed on the top of the gas pipe, and the frame, H, is made hollow for the purpose of allowing the gas to flow up to the nipple at the summit. The gas is turned on or off by means of a valve or stop cock, the lever of which is shown caught by one of the studs, \mathbf{A}. The two studs, $\mathbf{A} \mathbf{A}$, are borne on the upper part of the permanent horseshoe magnet, C , the latter being supported on the point of a fine pivot working in a cross piece in the frame, H. This permanent magnet is capable of a reciprocating motion horizontally, and supposing its position in the drawing to be reversed, the other stud, A, would carry the pin or lever back through a short space. This shifting of the lever one way or the other serves to turn the gas either on or off, as may be desired. The movement of the magnet is effected by a change in the polarity of an electro-magnet consisting of a soft iron wire in a coil at B. According as the current is sent forward or backward through the coil, so the polarity of the core is altered and the permanent magnet is turned on its pivot. The electric current is conveyed from the magneto-
electric machine at the station by the wire, D D, which con nects all the lamps. Supposing the current to be sent in such a direction as to turn the gas on, the next operation consists in transmitting along the wire, D D, a powerful discharge obtained from a condenser raised to an electro-motive power of several thousand volts or units by means of a Ruhmkorff coil. Around the primary coil at B is wound a secondary coil of fine wire and of much greater length. The discharge from the condenser has the effect of producing a secondary current along the wire, E E, thereby developing a small spark just over the burner. The discharge which passes along the primary wire has the same .effect simultaneously on the secondary wire in all the lamps of the circuit, so that the gas being previously turned on in the manner described, the whole of the lamps are lit. If the first and last lamps of the circuit are in sight of the station the continuity of the circuit will be proved by the lighting of these two lamps. When it is required to extinguish the lights a reverse current is sent through the primary wire, causing the permanent magnet to turn and the gas to be shut off, as described above.

Cotton Seed Hulls as a Non-Conductor.

Mr. Caleb G. Forshey of New Orleans, La., writes us as folows: Three years ago, I induced General Beauregard, who was President and Superintendent of the Carrollton Railroad Company, to try cotton seed hulls as a non-conductor of heat on one of his fireless engines. The tank or receiver of steam was covered about 2 inches or less with the material, confined to it with canvas. It answered the purpose so well that he applied it to the other dummies, coating them with canvas, sheet iron, or wood lagging. An examination recently made showed the hulls unimpaired as a nonconductor. They were colored brown for one third of an inch, but not materially charred, though they had been exposed for nearly three years to a temperature of 360 degrees. Practically they are indestructible at the temperature of Practically they
steam in boilers.
The experiments I have made upon asbestos, felting, and cotton seed hulls, and other materials, have been very numer ous, but they are comparative rather than absolute. They were chiefly upon the bare surface of boilers in use, of 360° external temperature, and subjecting all the materials used to the same test and same circumstances. These are a fair abstract:
Asbestos, 2 inches thick, 202°; hair felting, 2 inches thick, 120°; cotton seed hulls, 2 inches thick, with plaster of Paris, 110°; cotton seed hulls, simple, 2 inches, 103°; cotton seed hulls, simple, 3 inches, 100°.
Rate of radiation: Asbestos, temperature rose from 100°, 10° in 30^{\prime}; cotton seed hulls, from $100^{\circ}, 10^{\circ}$ in 360^{\prime}. Felting not fairly tested for rate of radiation.
On August 27 I tested all the dummies while in use. They gave outside the sheet iron or covering, $89^{\circ}, 89^{\circ}, 8 \frac{1}{2}^{\circ}, 90^{\circ}$, $90^{\circ}, 91^{\circ}, 91 \frac{1}{2}^{\circ}, 92^{\circ}, 92^{\circ}$. The atmospheric temperature at the same time was 87°.

Utilization of Sewage.-Native Guano
It may be within the recollection of many of our readers that to a public English company was accorded the privilege that to a public English company was accorded the privilege
of treating the sewage from the City of London, England, of treating the sewage from the City of London, England,
by a certain process by which the bulk was rendered inodorous, and in that condition run into the river Thames at certain seasons of the tide, and the balance remaining was preserved and converted into a valuable manure, or native guano, as it was styled.
It appeared at the end of the trial that the Chief Engineer of the London Metropolitan Board of Works reported unfavorably on the whole matter, on account of the expense unfavorably on the whole matter, on account of the expense
attending the process; in other words, it did not pay. It was, however, admitted that in a sanitary point of view a success had been attained.
Mr. C. Ramison, the manager of the said company, writes to an English paper that the previous objection as to expense does not now exist, as it has been reduced by two thirds, so that for one third of the original cost the same work can be done. This reduction consists both in the reduced price of the chemicals and in the drying arrangements. It is stated that the whole process is absolutely free from nuisance from beginning to end, while the crops grown with the native guano on the little farm surprised all who saw them by their luxuriousness and large yield.
Surely these results are worthy the attention of our American scientific engineers. They could doubtless devise some precipitating process by which the immense amount of valuable manure could be saved, and the sewage sent into the rivers in a bright innocuous condition.

The Virginia Meteor.

It appears from the investigations of Professor J. L. Campbell, of Washington and Lee University, in respect to the great meteor which was seen in many parts of Virginia on the afternoon of November 20, 1877, that its height. estimated approximately, was about 100 miles. Its course was 8° or 10° west of north. It exploded over the southeast corner of Halifax county, about 15 or 20 miles a little south of west from Clarksville, 100 miles from Richmond, 80 from Lexington, and 55 from Raleigh. It was a meteor of unusual size and brilliancy, and detonated loudly when it exploded.

Germany makes one half of the phosphorus consumed in the world, or over 250 tons annually.

New Mechanical Inventions.

Mr. Geo Bisset, of Quebec, Canada, has invented a Col lapsible Core Barrel for casting water, gas, and other pipes. The shell of the core barrel is formed of four cylindrical segments, in pairs of unequal size, the edges of the larger pair overlapping those of the smaller. By a system of wedges and adjusting bolts, these segments are expanded wedges and adjusting bolts, these segments are expanded
and the loam applied. After the casting has had time to set and the loam applied. After the casting has had time to set the wedges are withdrawn and the segments of the shell con-
tract. The inventor claims that much less loam need be used in his apparatus than in the ordinary way.
Mr. J. W. Reed, of Kalamazoo, Mich., has invented an improved Lubricator, having a reservoir mounted upon a stop cock, arranged so that, on steam being let into the reservoir the water condensed displaces the oil and forces it may be shut off from the reservoir and the water allowed to run out when it is desired to fill the reservoir with oil; and by turning the stop cock dirt may be blown oft by steam. A Can-Sealing Apparatus, invented by Mr. Thos. Bown, of South Charleston, Ohio, has a rotating table, to which the can is secured by springs. a clamp for holding the cover in place, and a swinging vessel, in which the melted solder or wax are contained and from which they are poured.
A new Treadle Motion, for operating light machinery, has been patented by Messrs. T. F. Woodbridge and A. P, Gerlach, of Mendota, Ill. There are two pulleys connected with treadles by a single belt, in combination with ratcheted hubs, which act on the pulleys by means of spring pawls.

Mr. E. B. Beach, of West Meriden, Conn., has made improvements in the Bearings of Sheaves and Pulleys, which consist in the adoption of a center pin secured detachably to hanger or block, having a wooden sleeve, which is soaked in oil interposed between the pulley and pin. This arrange ment is especially adapted to such pulleys and sheaves as are much exposed to the weather, and is designed to make them last longer and to obviate creaking.
A Windwheel Governor, invented by Mr. James Phillips, of Jewell City, Kan., consists of an arrangement of levers for turning the wings to and from the wind, and actuated by a disk which, under the pressure of a strong wind, causes the wings to present less surface, and in lighter airs to expose the most effective space. Windmills to which
this governor is applied have also a vane to regulate the direction, as usual.
Mr. Royal Beal, of Orfordville, N. H., has invented an improved Lathe for Turning Round and Polygonal Bodies. It has a revolving sectional cutter and slowly revolving cylinder, to which a number of wooden blanks are secured equidistant from the center by chucks. The blanks are turned by ratchets and a spring pawl, so as to expose, after each revolution of the cylinder, a new side of the blanks to the action of the cutter, according to the number of teeth of the ratchets and number of sides to be produced. For turning round bodies the cylinder is thrown out of gear and locked into fixed position.
An improved Stamp Canceler, invented by Mr. H. A. Coats, of $=$ Wellsville, N. Y., in addition to the ordinary postmarking stamp, has a rotating canceling attachment which perforates or rubs off the printing of the stamp, so as to disfigure it. The head of the canceling attachment may be made of steel faced with emery, or provided with diamond
points. A combined Tire Bolt Holder and Clamping Tool, for the use of blacksmiths and carriage makers, has been patented by Messrs. F. Norris and C. E. Sweet, of Wappinger's Falls, N. Y. It has a solid frame having a fixed fork at one end, with a screw for adjusting a movable standard, worked by a hand wheel at the other end. The standard has a conical teat at the top for bearing on the tire bolt, a recess with clamp screw for holding the shaft, and a bottom rest piece for securing the clips to their connecting clip bars. The
tool is intended to hold tire bolts while their nuts are being tool is intended to hold tire bolts while their nuts are being
screwed on, to couple shafts into position on the axles, for screwed on, to couple shafts into position on the axles, for
putting on the clip bars of axle clips, and for clamping purposes generally.
Mr. J. J. Anthony, of Sharon Springs, N. Y., has invented an Automatic Car Coupling, having laterally hooked draw bars, which are pivoted to the frames of the car, and are the same for each end of a car. They are caused to engage by springs, and are uncoupled by a lever, which may be actuated by a rope from the engine cab. The hooked portions of the draw bars are made sufficiently deep to answer for freight cars of varying heights.
Mr. Chas. P. Kammerer, of Drums, Pa., has invented an improved Feed Regulator for Millstones, in which the hop-
per leads to an upright tube having a conical bottom, per leads to an upright tube having a conical bottom, with apertures at opposite sides of its lower end. A revolving shaft carries wings, which mix the grain and push out heads and straws. A movable sleeve, on the outside of the tube regulates the size of the discharge openings.
Mr. Frank B. Davis, of Johnstown, Pa., hạs invented a Nut Lock for securing the nuts and bolts used in fish plates or splice bars of rails. The bolt itself is kept from turning by being made to rest with one side of the head flush against a shoulder on the splice bar. The nut is locked in position by driving a wedge between its lower face and a shoulde upon the splice bar on that side, or upon a washer if preferred. This wedge works in a groove, preventing lateral motion, and is kept from sliding out by having its thin end turned up on the side of the nut.
Mr. John F. Taylor, of Charleston, S. C., has made an improvement in Steam and Hydraulic Presses, which con-
sists in adding as many upright parts as one set of horizontal cylinders will supply, each connected with pipes and having a suitable valve to maintain the pressure while the
power is applied to the other parts, by raising which valve the press will be lowered.
A new Machine for Cutting Down from Feathers has recently been patented by Mr. Chas. Ballinger, of White Mills, Pa . The apparatus consists of a revolving drum of wire gauze, with an interior reciprocating stirrer and exterior guide bands, through which the feathers are fed. By
agitation the stems of the feathers, being heavier fall through agitation the stems of the feathers, being heavier, fall through
the meshes at the bottom of the drum, when they are seized the meshes at the bottom of the drum, when they are seized by reciprocating grippers and drawn between revolving and fixed knives, which strip off the down from the stems.

Mr. Chas. G. Purdy, of New York city, has invented a Machine for Polishing Mouldings, which has a movable bed for carrying the mouldings, placed upon suitable ways and moved by the mechanical device known as " lazy tongs." The object is to secure the required stroke without complicated machinery, the power being applied by a short lever worked by hand or steam, the motion under the polisher being proportionate to the number of joints in the lazy tongs.
A new Lifting Jack, recently patented by Messrs. S., D., J. \& L. Barrow, of Windfall, Ind., is adapted to the gradual lowering of a load as well as lifting, and is so constructed as to be applicable to cider and other presses.
Mr. A. M. Buchanan, of Moberly, Mo., has invented a Lever Power Velocipede, in which the weight of the operator is the propelling power. By throwing the weight alternately upon the foot rests, levers are actuated, and these act upon the driving wheels by cog gearing. The velocipede is our-wheeled, and the steering is done by hand.
Mr. R. J. Parrett, of Albany, Ind., has invented an improved Carpet Stretcher, having a foot piece between two arms, the latter worked independently of each other by separate ratchets, pawls, and levers.
A Fuel Press, intended for compressing straw, corn stalks, and other material into a shape suitable for fuel, is the in vention of Mr. Nathan Aldrich, of Alden, Iowa. It has two concave rolls, a feeding funnel, and a discharge tube, in connection with a knife for cutting the material into suitable lengths after it emerges from the press.
Mr. Daniel Border, of Bedford, Pa., has recently patented an improved Lock and Key, the former having two oppo site tumblers, one above and the other below the bolt, and the key having a fixed and a movable blade, both of which are upon the same side of the shank when the key is introduced into the lock, but are afterward shifted so that they are op posite and may simultaneously engage the upper and lowe tumblers.

ASTRONOMICAL NOTES

Penn Yan, N. Y., Saturday, March 2, 1878.
The following calculations are adapted to the latitude of New York city, and are expressed in true or clock time, being for the date given in the caption when not otherwise stated.

planets.

REMARKS.
Venus rises 1 h .14 m . before the sun, and sets 16 m . before the ending of twilight. She can, nevertheless, be seen, as she has an altitude at sunrise of $13^{\circ} 15^{\prime}$. As she is only 10 day from inferior conjunction, she will appear as a large cres cent, only $\frac{1}{25}$ of her illuminated disk being visible.
Mars is in Aries, nearly in the sun's path, and southwest
of the Pleiades about 10°. Jupiter is also nearly in the of the Pleiades about 10°. Jupiter is also nearly in the
ecliptic, and is in the constellation Sagittarius, 5° almost directly south of the three stars in the horn of the goat. Sat urn sets 1 h .20 m . after the sun, just as twilight ceases, and $2^{\circ} 25^{\prime} 56^{\prime \prime}$ north of the sunset point. The southern and illumined surface of the rings is now presented to the earth, andin a few days we may expect to see them, as they appeared when we lastsaw them, as two small handles projecting from opposite limbs of his disk. He is fast approaching the sun being in conjunction March 13.
Algol is at minimum brilliancy March $3,9 \mathrm{~h} .26 \mathrm{~m}$. evening setting the following morning at $1 \mathrm{~h} .21 \mathrm{~m} .45 \mathrm{sec} ., 58^{\circ} 57$ $10^{\prime \prime}$ north of the west point of the horizon. As Algol is almost in the zenith at southing (14° south), and as it takes 9 h . 9 m . for it to pass from the meridian to the horizon, at the time of minimum the star will be about half way between the zenith and the horizon at the point where it will set. It commences to grow $\operatorname{dim} 1 \mathrm{~h} .46 \mathrm{~m}$. after its meridian passage or 6 h .4 m . evening, and regains its original brilliancy at 0 h 48 m . morning of the 4th. Twilight is shortest March 4 after which time it will increase.

Sir Thomas Biddulph, at the request of the Queen, has written to Professor A. Graham Bell, expressing the wish of Her Majesty to purchase the two instruments (telephones) used recently at Osborne. In reply, Professor Bell expressly for Her Majesty's use.

Fighting the Apple worm.

In the Scientific American of February 16, page 103, appeared an illustration of the codling moth and its larva, the apple worm (Carpocapsa pomonella), together with a method of destroying the latter, which consists, briefly, in cutting off the calyx of the fruit, where the moth deposits its eggs, as soon as the apple has attained the size of a hazel or walnut. Mr. P. H. Foster, of Babylon, L. I., writes us that he has tried this plan upon Bartlett pears, which are also infested with this plague, but prefers another mode, which he describes as follows
"After the worm has entered the fruit and accomplished its damage, the time arrives when it has to leave the fruit and hide itself in a quiet, secure position to undergo the ransition from the larva to the pupa state, which requires in the early part of the season, eight or ten days; after this time the miller is hatched and is again ready to besiege the fruit with its sting. The insect, being two-brooded in this climate at least, if not disturbed, has an aggregating force to do mischief the second time. The progeny for the succeed ing year have alone to depend on the security of this second eneration of larvæ. As they may often be found in bark of apple trees during winter, my plan of destruction is, about the first of July to take woolen rags large enough to wrap around the trees, and say 4 inches wide. Each week I look over the trees and destroy the worms secreted under the rags, and wherever I find them, until the fruit is off the trees. I have all the green fruit, of every kind, carefully picked up as soon as it falls, thereby destroying many of the curculio as well as the apple worms. In future I intend to curculio as well as the apple worms. In future I
poison the rags made use of to capture the insect."
Mr. Foster estimates that the ravages of this pest cause a oss to the fruit growers of the United States fully equal to 5 per cent interest on the national debt, a statement which shows the importance of an effective remedy.

If the Temperature of our Earth should b

 Changed.M. Dumas, before making known to the French Academy he important results obtained almost simultaneously by M. L. Cailletet and M. Raoul Pictet, on liquefaction of oxy gen, read the following extract from the works of Lavoisler " Recueil des Mémoires de Chimie de Lavoisier; Euvres de Lavoisier publiés par le Ministère de l'Instruction pubique," t. ii., p. 804). This passage shows how the immortal creator of modern chemistry foresaw the facts which have een subsequently realized by Faraday and his successors ' Let us reflect for a moment what would happen to the different substances composing the globe if its temperatur were suddenly changed. Suppose, for instance, that the arth were transported at once into a much hotter region of the solar system-into a region where the average temperature were much higher than that of boiling water-very soon the water, and all other liquids capable of evaporation at temperatures bordering upon that of boiling water, and even certain metallic substances, would expand, and become transformed into aëriform fluids, which would then become part of the atmosphere. On the contrary, if the earth were suddenly placed in very cold regions-for instance, in those of Jupiter or Saturn-the water which at present forms our of Jupiter or Saturn-the water which at present forms our
rivers and seas, and probably the greater number of the lirivers and seas, and probably the greater number of the limountains. On this supposition the air, or at least a part of the aëriform substances which compose it, would doubtless cease to exist in the state of an invisible fluid for want of a sufficient degree of heat; it would return to the state of liquidity, and this change would produce new liquids of which we have no idea."

Scientific American.

No publication comes to our table that is more highly prized than this old, substantial journal. Aside from keep ng the public fully posted respecting new inventions and cientific developments, it contains a vast amount of the practical and useful. The engravings are of remarkably high order, and matter accompanying them is so tersely put hat such subjects as might, under ordinary circumstances, be considered dry and heavy, are not only readable, bu highly enjoyable. It is the best conducted scientific journal in the United States, as well as being typographically the handsomest. As evidence of this it is only necessary to say ts circulation is double all the others combined. It is in its 77th volume. Subscription price $\$ 3.20$. Munn \& Co., 37 Park Row, New York.-In Door and Out.

Nitro-Glycerin.

MM. A. Sauer and E. Ader give in La Nature details of an nvestigation for the determination of the nitrogen in nitro glycerin. Their results show that the nitro-glycerin of com merce, such as is contained in dynamite, is not a mixture of mono, bi, and tri-nitro-glycerin as commonly supposed, but is formed exclusively of tri-nitro-glycerin; and second, that the method of decomposition by alcoholic potash does not ield niter alone, but ammonia also, and, therefore, that Dumas's method should be employed for determining the proportion of nitrogen in nitro-glycerin.

Detecting Glycerin in Reer.
The German Society for the Encouragement of Industry ffers a reward of $\$ 720$ for a means of determining (withi 55 per cent) the quantity of glycerin contained in beer. Gly cerin, it is found, is largely used to adulterate beer, and the brewers, considering that the fact injures their trade, are desirous of a simple and speedy method for its detection.

The Chargefor Insertion under this head is One Dollar

 a linefor each insertion.For the best and cheapest Steam Pump, address Alotet's Turbinp rece., 4 Cortlandt St., N. \mathbf{Y}.
Wanted.-Tools for Sewing Mechina Medal. Shanks, Baltimore, Md.

A 5 Horse Caloric Engine for sale on account of re | moval for 8400, eost |
| :--- |
| St., N. Y... up stairs. |

Wanted.-An economical Spring Motor from one man to one horse power. Inventors or m.
dress $W m . ~ P e t t e t, ~$
O Warren St.. N. Y .
Safety Linen Hose for factories, hotels, and stores, at For Sale at a bargain. - One 5 ft . 24 in. sq. Iron Planer; one Prouty Chuck $\begin{aligned} & \text { if } \\ & \text { Lewis, Cleveland, } 0 \text {. }\end{aligned}$
Experienced Superintendent in Hydraulics, Steam, Sugar, and General Machinery; educated, influential,
prompt, systematic ; wants position: any manufactur prompt, systematic; wants position: any manufactur
ing business, even as foreman. Address 35 B'way, N.Y ing busine
room 99 .
Wanted.-A party with some capital to conduct a irst-class Woolen Mill at Fre
Telephone.-Researches in Electric Telephony. Pro-
fusely illustrated ; 8vo., sewed; 60 cents, mail free. \mathbf{E}. F. N. Spon, 446 Broome St., N 60 cents, mail free. For Telephone Experiments, supplies of all kinds.
Electric Supply Co., P. O. Box 611 , Providence, R. I. Machine Shop for rent, Tools, etc. for sale-Engines, Boilers, LLthes, Planer, Small Tools, etc.-
Address 1,600 N. Front St., Philadelphia, Pa.
For Sale.-One new No. 3 Pearl Printing Press, 7×11 foot and power; cost \$
Walrath's Improved Portable Engines best in ma
to 8 H. P. Peter Walrath, Chittenango, N. Y.
Wanted.-A 2d hand Corliss Engine, 14 to 18 in. bore,
30 to 42 in. stroke. Address Brose \& Bro, Evansville, Ind.
For Solid Wrought Iron Beams, etc., see advertise ment. Address Union Iron Mills, Pittsburgh, Pa., fo

For book on Lubricants, R. J.Chard, 134 M.Lane,N.Y
2d Hand IronPlaner built by Smith of Salem. Plane 13 . 30 in. ; price Cornice Brakes. J. M. Robinson \& Co., Cincinnati, \mathbf{O}. John T. Noye \& Son, Buffalo, N. Y., are Manufacturrs of Burr Mill Stones and Flour Min Machinery of all sinds, and dealers in Dufour \& C
Power \& Foot Presses, Ferracute Co., Bridgeton, N. J. Solid Emery Vulcanite Wheels-The Solid Original mery Wheel - other kinds imitations and ferio Standard Belting, Packing, and Hose. Buy that only.
'The best is the cheapest. New York Belting and PackThe best is the cheapest. New York B
Ing Company, 37 and 38 Park Row, N. Y.
Steel Castings from one lb. to five thousand lbs. In valuable for strength and durability. Circu
Pittsburgh Steel Casting Co.. Pittsburgh, Pa.
For Best Presses, Dies, and Fruit Can Tools, Bliss \&
Williamis, cor. of Plymouth and Jay Sts,., Brooklyn, N.Y.
Hydraulic Presses and Jacks, new and second hand. tathes and Machiñery for Polishing and Buffing metals.
. Lyon \& Co., 470 Grand St., N. Y.
Best Turbine Water Wheel, Alcott's, Mt. Holly, N. J The Niles Tool Works, Hamilton, O., have se
Friction Clutches warranted to drive Circular Log Sawsdirect on the arbor; can be stopped instantly; also
Upright Mill Spindles, Safety Elevators, and Hoisting Machinery. D. Frisbie \& Co., New Haven, Conn
Wanted.-Second-hand Gun Stocking, and other Gun Machinery.
Haven, Conn.
Bound Volumes of the Scientific American.-I have can, which I will sell (singly or together) at $\$ 1$ each, be sent by express. See advertisement on page 142 . ohn Edwards,
A. L. Jones'Steam Trap most reliable one made. W Kelly \& Bro., 46 Cortlandt St., N. Y
Wanted.-A strictly reliable Manufacturing Company to take charge of manufacture and sale of Lempert chaser for Patent Rights. W. S. Lempert, Fort Davis.
Texas. chaser
Manufacturers should try the pure natural Lubricating
il. Produced and prepared by Geo. Allen, 13 th street, oil. Produced and prepared by Geo. Allen, 13th street Franklin, Pa. It does not gum or chill in cold weather,
and wears as well as lard oil. Price by the barrel 30 and wears
cents per
of $\$ 3.75$.
For the best Bone Mill and Mineral Crushing Ma-chines-five sizes, great v
Improved Wood-working Machinery made by Walke
ros., 73 and 75 Laurel St., Philadelphia, Pa.
More than twelve thousand crank shafts made by
Chester Steel Castings Co. now running; 8 years' constant Chester steel Castings Co. now running; 8 years' constant iron. See advertisement, page 142 .
Galvanized Iron Cornice Machines.-The most Improved, Straight and Circular. Prices reduced. Calvin
Carr, Cleveland, 0 ., and H.wes Machine Works, Newark,

Polishing Supplies of all kinds. Walrus Leather Diamond Drills, J. Dickinson, 64 Nassau St., N. Y. Machine CutBrass GearWheels for Models, etc. (Ne ForPower\&Economy,Alcott's Turbine,Mt.Holly,N.J ForPower\&Economy,Alcott's Turbine,Mt. Holly,N.J.
Lansdell \& Leng's Lever and Cam Gate Valves. Cheapest and best. Leng \& Ogden, 212 Pearl St., N. Y
Best Machinists' Tools. Pratt \& Whitney,Hartford,Ct
Skinner Portable Engine Improved, 2 1-2 to $10 \mathrm{H} . \mathrm{P}$

NEW BOOKS AND PUBLICATIONS.
Heating by Steam. By John H. Mills.
Published by the Mills Steam Heating Trust Association, Boston, Mass.
This volume, besides containing a number of useful
tables and much valuable data relative to its subject tables and much valuable data relative to its subject,
explains the advantages of improved systems of steam and water piping for buildings devised by its author is well illustrated.
The American Newspaper Directory January, 1878. Geo. P. Rowell \& Co. city. Price 50 cents. $\$ 1.50$ per year. Instead of publishing their valuable newspaper di rectory yearly, as a single high priced book, Messi
Rowell \& CJ. propose hereafter to issue it in quarterly numbers and in cheaper form. The useful informa tion hitherto found in the work will be in no respec lessened or decreased in value, the necessary retrench-
ments being effected through the use of smaller type nd less expensive mounting; while through the more requent issue the contents will be cons the usual tat plete lists of papers arranged in accordance with loca tion, circulation, etc., and the book is excellently adapted to fulfill its purpose
able guide for the advertiser.
An American Almanac and Treasury of Facts for the Year 1878. Edited by
Ainsworth R. Spofford, Librarian of Ainsworth R. Spofford, Librarian of Congress. Published by the A
News Company, New York city.
Mr. Spofford has collected in this manual an immense mount of just such statistical, financial, and political for easy reference. The book is capitally well edited, nd in the full discussions which it contains on the mortant questions of the day, notably on strikes, exceedingly valuable as a guide to a clear comprehension of the considerations involved. Beginning with an almanac for the year, it contains a full list of Amer ican libraries, interest tables, record of the Centennial
Exhibition, history of the income tax, electoral votes xhibition, history of the income tax, electoral votes ceipts and expenditures, imports and exports, the Constitution, lists of public officials, statistics of populaetc., besides a large amount of valuable miscellaneous Money and its Laws. By Henry V. Poor.
Published by H. V. and H. W. Poor, 68 Broadway, New York city.
An exhaustive and elaborate exposition of the laws of money, treated as coming within the range of the exac main as a standard with those who agree with its opin ons. It is divided into three sections. Under the first the laws of money proper are considered, and the
reader is supplied with a clear foundation of general reader is supplied with a clear foundation of general theorywhich will enable him intelligently to compare elucidated with much care in the ensuing division of writer examines in turn those of Locke, Aristote, the dam Smith, Dugald Stewart, and concludes with such modern writers as Professor Francis Bowen, W. G.
Sumner, Bonamy Price, A. R. Perry, and D. A. Wells, sumner, Bonamy Price, A. R. Perry, and D. A. Well,
from the views of all of whom he vigorously dissent The remainder of the work is devoted to a history of rrency and banking in the United Stat
We have received from Messrs. Scribner, Armstrong \& Co. Part II. of "Upland Game Birds and Wate
Fowl of the United States," which contains two fine reproductions in water color of sketches of the mallard uck and woodcock, besides interesting descriptiv scription only, at $\$ 2.50$ per part. Each part (there are ten in all) contains two colored plates, reproduced a perfectly and as elegantly as the art of printing will alpoography, is taken from the works of Wilson, Aud on, Coues, and other standard ornithological author bon,
ties.

G. C. P. should state whether it is soft iro or other metal which he requires.-T. S. will find th equired information on p. 272 of the SoIENTIFIC AMERwer to G. E. S., p. 268, of Scientific American, Oct er 27, 1877.-J. S. F.'s questions are too irdefinite. S. M. L. may obtain a hint from pumps of the kind a
ready in the market, but his questions are rather ma ers of experiment than of rule.-A., J. \& W. are re erred to a discussion published in vol. 30 of the Pro ceedings of the Institution of Civil Engineers. The
points are still in controversy.-J. W.-A good way to points are still in controversy.-J. W.-A good way to
discover where the stoppage occurs is to drill smal oles in the pipe at intervals. Probably there is som point where air is confined, or some other obstruction,
The data furnished by J. W. A. are too incomplete -The book which C. H. requires is yet to be written, W. M. K. should explain what he means by "force of momentum.
(1) C. H. has a lot of tobacco which is too is a cheap and to smoke in a pipe, and wishes to know if there none. The proper way to utilize it would be to adopt the method practiced by dealers-mix it intimately with tobacco which is extremely mild
(2) L. P. C. wants to know " from the consideration of what principle we derive the notion
of the existence of an absolute zero in the thermome of the existence of an absolute zero in the thermome
ter, and how it is found." A. The zero of a thermo ter, and how it is found." A. The zero of a thermo-
metric scale has no relation to the real zero of heat, or metric scale has no relation to the real zero of heat, or
the point at which bodies are entirely deprived of heat. of this point we know nothing, and there is no reas.
ating thermometers, the bulb is plunged into melting snow or ice, and the point at which the mercury remains fation point marked on the tube with a 1 le, ano xed pointis obtained by immersing the bulb in boiling vided off into equal parts. In the Réaumur and the centigrade thermometer the freezing point is made zero, the former being divided into 80 parts and the latter into 100. Fahrenheit's thermometer commences
counting, very singularly, not at the freezing point, but counting, ver
$3 .{ }^{\circ}$ below it.
(3) A. P. M. asks: What will remove the stains, caused by wire around flowers, from glass vases? The wire rusting in the water discolors the glass. What will remove the discoloration? A. Nitric acid of the from either glass or earthenware. It may be applied by means of a rag tied on the end of a stick, great care
being taken that the acid does not touch the skin or being tak
clothing.
(4) C. H. I. asks: What is the least length and weight of (insulated) wire that can be used in a coil phone we tephone? A. The smallest working teleFig. 1, p. 207, of the ScIENTIFIC American, No. 14, vol 37 , and the magnet wire occupied about the space
(5) E. C. N. writes: 1. I have a lot of ca bon taken from gas retorts. Can it be used for gal spark generator? A. See answer to G way to mak p. 251, of Scientific American, Öctober 20, 1877. 3 How many gravity cells are required to
gas lamps? A. About 4 one-gallon cells.
(6) W. H. C. asks: 1. Is it advisable to mix plumbage with the oil or tallow for use in the cylinder and steam chest of slide valve engines, and on Journals, bearings, etc.? Does it not cause greater wear generally considered advantageous to mix plumbago with other lubricants for working parts of iron or steel . Should it be used in oil to decrease friction and wear there is a difference of opinion, but plumbago is rarely used. 3. What should be the proportion to oil? A The quantity is variable, some using as much as the oil will take up without losing its fluidity.
(7) I. A. T. writes: 1. I intend putting up half a mile of telegraph wire. Will No. 18 common iron wire do? A. Yes. 2. I have one line of No. 18
wire up now, but it will not work. What is the difficulty, and will a return wire prevent it? A. The fault may be that your earth connection is insufficient; use your neighbortood there are no pipes laid in the earth then it wculd be better for you to use a return wire
(8) D. H. T. asks: If two pieces of sheet inch apart, the backs and edges of a card, be placed inch apart, the backs and edges covered with wax electro-deposition? A No one but a thorough exper could do this, and even then the copper deposit would very likely be porous and granular.
(9) L. S. M. asks: What is the composition of emery wheels? A. Those now in use are composed nd glue; 3 , shellac, linseed oil, and litharge; 4, glue linseed oil, and litharge; 5 , silicate of soda and chlorid of calcium; 6 , celluloid; 7 , oxychloride of magnesia; usoria; 9, glue. No., 5, and 7 are tamped or ramme (10) J. H. asks: 1. At what cost per lb can copper be electro-deposited on iron? A. That will, large scale, using magueto-electric machines instead of galvanic batteries, then the expense of depositing ould be reduced to about 75 cents per 1 lb . 2. Can cop per be deposited to a thickness of $1 / 4$ or $1 / 2$ inch, an by repeatedly burnishing the copper deposit as it b omes thicker
(11) W. N. P. asks how to find the pitch of bevel gears. A. The pitch line is at the junction of of curve for
of the tooth.
(12) R. C. writes: 1. I think of making a galvanic battery of glass, 5 inches by 8 , and 4 inche deep, by cementing the bottom and end joints with
putty and covering with shellac, placing it in a wooden ox for protection; then placing two copper pates, one on each side, with two zinc plates in the same direc tion, about the longitudinal center, connecting the copther. Would this arrangement Yes. 2. Would it require insulated wire? A. No. ides of the glass box? A. No. 4. Would it produc an appreciable shock? A. No. 5. What quantity of
sulphate of copper would be required? A. About b. 6. Could it be arranged in a better way? A. Yes See answ
27,1877 .
(13) H. G. G. writes: 1. I am making a ize insulated wire shall I use in the coil to and what ron bar a strong narg lo tro col? make the ib. No. 30 insulated wire for each instrument. 2. How arge should the bar be? A. The core should be about $\frac{3}{1}$ inch round iron. 3. What battery and how many
cells will be needed? A. Three one-gallon cells of a cells will be need
(14) H. K. S. T. writes: Is there any way by which the attractive power of a permanent magnet can be temporarily withdrawn, so that its armature may be removed without the application of a powe by placing another armature on the magnet, a. Onl hen the attractive power of the magnet should be con dered as ifit were divided between the two armatures (15) R. S. N. asks: 1. How are friction pulleys made to do the best work? A. It depends
upon the nature of the work. 2. Can as much power
be transmitted by a bevel friction pulley running on a bevel friction pulley of larger size, or a bevel iron pulley, smooth on face, as by the same size cog pinion
running in a bevel cog wheel of the same size as ine ron pulley? A. No. 3. If not, how can I determine the size and width of face of bevel friction pulleys to transmit a given power? A. It depends upon the kind of friction gear employed.
"cushionting meant by the "lead" of a slide valve, and "cushioning" of valves, pistons. etc., with steam? A. The lead of a slide valve is the amount the steam port is open when the piston is at the end of its stroke.
Cushioning is shutting in a portion of the steam on the exhaust side of the piston. 2. Is it necessary that a cylinder in a horizontal engine should wear larger at the middle than at either end \& A. It is usually the case.
(16) J. M. C. asks: 1. Is anything to be gained by wetting Scranton coal for stove use, before burning? A. Ordinarily, no. 2.
benefit to soil? A. We think not.
(17) T. D. asks: Are rymer, reamer, rimmer, and rimer, one and the same tool? A. Yes. (18) F. A. asks; What distinguishes a brass from a box or bearing? A. The terms brass or brasses rod or lever. A box or bearing remains stationary . (19) L. A. asks : What determines the apwrist pin, and crank pin? A. There is no ruile governing the employment of these terms, but in practice spindle is usually applied to a shaft of small diameter; gudgeon to a short shaft having a journal supported on each side; crank pin is a pin in a crank having journal bearing to connect a rod or lever to. The term priss, and ping like crank pins but not held in cranks (20) A. W. C. asks how to make the double cyanide of mercury and potassium. A. Dismercuric sulphate in 15 parts of water; boil for 15 minutes, filter hot, and, after the solution has cooled, gather and dry the crystals deposited. Dissolve 25 parts (by weight) of these in water, and add 5 parts of
potassium cyanide. The solution may be evaporated to dryness.
(21) P. S. asks how to prevent shoes from reaking. A. Soapstone between the soles is a good
(22) Z. W. asks: How can linen be made ninflammable? A. Steep the cloth for an hour in soof hon of 1 oz . of common sodium tungstate in a pint with 4 parts of water to fix the tungstic acid. If not intended to be washed, the acid treatment may be dispensed with. Or, use a strong aqueous solution of ammonium sulphate and alum, and dry without wash-
(23) W. K. L. asks: How is the rubber cement, used to fasten rubber to leather soles, made? A. ber cement is made by digesting for several days, with occasional stirring, 2 ozs. of gum caoutchouc in a pint of naphtha. It may be concentrated by evaporation over a hot water bath, or diluted by adding more naphtha. The solution is more quickly accomplished if the naphtha is warmed-by hor,in a
(24) A. C. P. writes: 1. In the manufacture of transparent soaps it is directed to ase 40 per
cent alcohol. What is meant by this-40 per cent by seciflc gravity, or that 100 ozs . of a misture of alcohol nd water at 60° Fah. contain 60 parts of water and 40 per cent (by weight) absolute alcohol in 100 parts-alcohol 40 , water 60 . The strength of spirit is ascertained me specific gravity of 40 per cent spirit should be $0 \cdot 9: 96$. 2. Is methyl alcohol a solvent for transparent soaps? A. Try it. 3. It is made 95 per cent; how much dilution with water will made 95 per cent; how much 37.5 parts.
(25) J. K. S. asks: How can wire traps be tinned smoothly? A. If of brass or copper, boil with strong aqueous solution of potassic stannate mixed
with turnings of tin. Or boil with tin filings and solution of cream of tartar or caustic soda. If of iron, pickle for a short time in dilute oil of vitriol, wash by immersion in a large quantity of water, dry in sawdust,
and pass through a bath of molten tin covered with immersiss
and pass.
tallow.
(26) D. W. C.-The paper you send is a hand-made, Japanese paper. It is made from the inner
bark of the paper mulherry (Broussonetia papurifera). bark of the paper mulberry (Broussonetia papyrifera).
The bark is treated with strong lye to weaken the The bark is treated with strong lye to weaken the
fibers, then thoroughly washed to remove the alkali, fibers, then thoroughly washed to remove the alkall,
and beaten with heavy sticks on a wooden slab till it a pulpy state. It is then mixed with rice past nd, on being diffused through water, is ready for the process of paper making. The apparatus for this pur parallel to each other and bound together by silken fibers, and the whole surrounded by a narrow rim. This mat is dipped into the liquid pulp, withdrawn, and shaken backwards and forwards with short jerks. This.
insures the even distribution of the puip and arranges the fibers across the sheet at right angles to the splints. The superfluous water flows away through the inte tices of the bamboo. When the paper has reached the desired thickness, by alternate dippings and dry ings, it is removed from the mat and laid out to dry Each sheet is afterward spread out on a smooth board, with a soft flat brush, and dried in the sun. The pape as stripped from the boas is
(2 7i) $^{\text {) Speaking of the effect of nickel plat }}$ ing upon the quality of brass musical instruments, pre iously discussed in these columns, M. s. O. writes that quality was improved by nickel plating; that judges pronounce the tone actually better than before being plated.

Abstract

(28) L. G. asks: 1. How can small steel bars be magnetized? A. A simple way is to place eack magnet, so that one bar to be magnetized will act as an magnet, so that he bar to be magnetized wis act as an d described in answer No. 16, p. 299, Scientific American, November 10, 1877. If sufficient battery power be used, the latter method produces the strongest magnets. 2. What should be the temper of bars to be magnetized? A. If the ba

(29) B. P. L. writes: I have a leaky sky light which carpenters and painters have tried in vain make watertight. Can you advise me how to remequal to an angle of 45°. The glass should be bedded in putty as well as stopped with it on the outside-th ff. Iron to stay when
(30) A. B. C. asks: What is the method of casting brass plates for rolling into sheets, and how are he moulds dressed to make the plates clean and smooth? A. The metal ingot, or plate, is cast under pressure in metallic moulds, the surfaces of which are me
(31) L. S. K. writes: I wish to construct telephone, and have procured photographic plates fo it. 1. How can I remove the enamel? A. By heat. 2. I No. 3. Will I infringe on thel should be removed?. A No. 3. Will I infringe on the Bell patent if \mathbf{I} alter th
(32) H. W. B. asks: 1. Are horseshoe mag. nets charged oy an electro-magnets A. Yes. 2. How
large should the electro-magnet bes A. As powerful as large should the electro-magnet ber A. As powerful as
can be obtained. 3. How can I tell which is the positive pole of a horseshoe magnet? A. By a compass; if the magnet, then that pole is south, because " unlik poles attract."
of water, attracted to the sides of the vessel? A. The are drawn by the influence of a power called attraction the same which manifests thelf in capillary action, a k of a lamp.
(33) H. F. writes: Our roof was coated with tar, which has been partly scraped off, and now the ordinary paint will not answer well, as the remain ing tar is too thick in some places. With what shall I
paint the roofs A. Yellow ocher is a finer paint than the ordinary metallic paint. Perhaps a little shellac varnish mixed with it will make it stick to the tar.
(34) J. O. asks how to make a concrete flooring for stables and farmyards. A. To make a per lay in the largest stone you can procure, 1 foot deep.
Fill in upon this bed enough small stones of egg size to level it very smooth, carefully filling all the interstices between the large stones. Now procure a quantity of coarse gravel, entirely free from loam, and fill in up to within 6 inches of the surface. Let this remain in thi
condition until it has undergone a thorough settling and packing by being subjected to a heavy rain. You will now have a solid, substantial bed for your concrete which may be made as follows: To 3 lbs. of clear sharp
sand add 1 barrel of good cement, dry. Thoroughly ncorporate, then sprinkle enough water upon the mix ture to make a paste, stirring it well. To this paste add 2 barrels of stone chips and 2 barrels of coarse grave Mix thoroughly and deposit it immediately on the bed letting it fall from the barrow, and leveling it off to it proper height. The whole floor should be covered with as little delay as possible, and when laid should be compressed by a rammer such as is used by street pavers. Finish with a thin coat of pure cement mortar, to bring the surface to complete evenness, and do not let it dr all the water it will absorb.
(35) C. E. C. asks: Who is supposed, by the latest standard authorities, to have built the pyra
mid of Cheops? A. The pyramids are attributed to the three kings of the fourth dynasty-Cheops, Cephren and Mycerinus.
(36) C. C. P. writes: We have planned to construct a large factory building as follows: The side down and spiked together, the outside and inside of the walls to be finished with two good coats of water lime, and sand, keyed on by driving broadheaded nails into the walls. Will the wood thus incased be liable to rot? A. Girders and beams in floors, incased in similar manner, have been subject to "dry rot."
(37) L. S. writes: I wish to bring water to my house from a spring distant nearly half a mile would bored pine logs be beiter? The latter, with 11 ach bore, can be delivered at 5 cents a foot. Would ine made of them be durable? A. Ahe lower end of would force the joints of the stoneware pipe. The ine logs would answer, if placed low enough in th round to be always more or less saturated with wate ave his condition the 7 are less likely to decay. We at of a cellar excavation near the river, which we apparently as sound as they were the day they were put in-which, by the record, was 68 years before. These,
however, were constantly immersed in the water, which rose in the ground to within 5 feet of the surface. B putting a niron ferrule on the sleeve end of the log pipe ou may drive in the small end sufficiently tight to pre ent leaking.
(38) G. D. B. writes: We have in our town new hall which has an echo. The hallis nd 21 feet high. What will stop the echo? A. Se
ol. 22, p. 356 ; vol. 30 , pp. 202, 324; also vol. 32 , p. 186 Perhaps ohanging the position of the speaker's des
(39) C. G, asks: 1. Should plate glass be
done. 2. How is the bedding made? A. Bed with (40) R. S. N. writes: I wish to build a flat bottomed boat to carry 100 bales of cotton, and not to make 4 or 5 miles an hour Please advise me as to the best plan, whether it is better to have one engine of the necessary power or two engines attached to the wheel with cranks at right angles, and what is the best ind of wheel for shallow water? A. A flat-bottomed oat can be made to draw less water than any othe han it would if made with finer lines. We think that stern wheel driven by two engines will be preferable e accounts.
Minerals, etc.-Specimens have been re eived from the following correspondents, and xamined, with the results stated
Z.W.-It is an impure clay, containing much fine silica nd pure carbonate. thight be used for some polishquartz sand; the coloring matters are principaly ir nd manganese oxides.-C. D.-It is itacolumite o lexible sandstone-flexible in thin laminæ. It contains, besides the quartz sand, some talc. It has been use by the marble polisher, and the fine sand obtained b rushing the stone as a flux in certain metallurgical op rations (copper smelting, etc.); for the manufacture o purposes; as material for crucibles and flrebozes; in the manufacture of cheap glass, ind for scouring purposes. The fine sand works well with the sand blast. It ma be used as an absorbent in drying substances, such a starch, for retaining corrosive liquids in desiccators,
and for the storage of explosive compounds, such a and for the stor
nitro-glycerin.

HINTS TO CORRESPONDENTS We renew our request that correspondents, in referriu ame the date of the paper and the page, or the numb of the question
Correspondents whose inquiries fail to appear should epeat them. If not then published, they may conclud atat, for good reasons, the Editor declines them. The Inquiries relating to pala always be given. Inquiries relating to patents, or to the patentabilit ere. All such questions, when initials only are give re thrown into the waste basket, as it would fill half o our paper to print them all; but we generally take pleas
ure in answering briefly by mail, if the writer's address given.

OFFICIAL

INDEX OF INVENTIONS

OR WHIC

cetters Patent of the United States

January 22, 1878

ND EACH BEARING THAT DATE

[Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list cring both the specifications and drawings; will be eas in from this offce for one dilar. In ordering, nd remit to Munn \& C 0.37 Park Row, New York city

rbor for gardens, I. Clar

Ax blanks, making. W. Acheson.
Axle boxes, gasket for. G. S. Winslow.....
Back and shoulder brace, J. W, Partridge Bag holder, A. Brubaker
Bee hive. M. A. \& N. J. Carrike
Binder for letters. H. H. \& J. R. Edwards Book binding, I. Reynolds
Boot and shoe stiffener. W. H. Richardson Boot cleaner, G. F. Blauvel
Boot jack, J. B. Lauffer Boot jack, J. B. Lauffer...
Brake, A. K. Hadley
Brake, car. J. and J. G. Hardy
Brick machine, H. C. Sergean
Broom binder, J. W. Cliff.....
Buckle, E. S. Smith
Burial cases, S. Benton........
Butter, artificial, W. E. Andre
Can soldering apparatus, T. Bo
Car coupling, HI. M. Grover.
Carpet stretcher, 1.. Parrett
Carriage, child's, R. G. Britton Carrtiages, capping implement. T. M. W. Spauldi
Chain, J. L. Heeley................... Chimneys, A. Barn
Churn dasher G Sprag
Clam baker, J. L. Stroub.
Clothes washer, N. H. Long
Coffee percolator, J. C. Jensen..........
ooker, feed, A. Stewart
Cooler, milk, O. S. Bliss
Corn husker, G. Meader
Corn shelling machine, W. M. Blair

orset, L. T. Smith

Cotton sweep, W. W. spe
Culinary vessel, O. S. Bliss....................
Cultivating implement, W. H. Thomas
Cultivator B. F \& L. W, Needham
Cuspadore, E. A. Heath
Dental engines, J. W. Gilbert
Dental engines, J. Re Qua
ental engines, \mathbf{E}. T. Starr
Door stop and holder, H. Knowl
Drill. rock, E s . Winchester
Drill rock, E. S. Winchester....
Drilling machine, D McMurtrie
Drilling machine, D McMurtrie....
Engine regulator, N. G. Herreshoff
Feather renovator, W. A. Stewart

Fence, barbed, J. Hallner File, letter, W. A. A mberg... Ba Files, sharpening. M. A. Richardson Filter for houses, air, E. N. Dickerson Filter water, J. Crawford
Fire arm. W. H. Baker (r)
Fire escape, W. J. Nunn.
Fire escape F A. Presko
Fish hatching apparatus, T. B. Ferguson
Flue cap, J D. McLinden.............
Fluting machine. G. E. King (r)
Fork, horse hay. L. W. Noyes...
Furnace, W. F. Flagg
Furnace and range, J. P. Beck
Furnace, metallurgic gas. W. S. Gillen
Furniture structure,
urniture structure, c. Kilburn
Gas purifying apparatus, T. N. Kirkham et al
Gas scrubber and washer, J. Balmore........
Gasket. W. Wallace \& J. King
Gate, O L. Taylor
Gear wheels, moulds for, J. H. Felthousen. Glove fastener, J. Fe. Fieling, etc...
Governor. wind wheel, J. Phillips
rain separator, H. S. Stone
Grate, shaking, O. P. Jackson
Hammer, lasting, P. F. Peter
Harness. J. C. McCollum
Harrow. M. M. Dobbin
Harrow tooth, D. L. Garver
Harvester cutter bar. R. W. Iliff ..
Heating air and gases, T. Whitwel Heating apparatus. D. Needham Hides, apparatus for handling, J. T. Gorsline Hides, unhairing, scouring. etc., J. A. Talpey Hoe, weeding. W. Luckhurst

Horseshoe, J. L. Dodge
Horsesshoe, nail machine. Wheeler \& Loring Hose coupling, W. A. Caswe Hose, carbol C H attachment, J. S. Halsey Hose to couplings. attaching. W. A. Caswell
ce cream freezer, T. J. Soden indicator for boilers. A. W. Vas
Ingot mould stripper, T. James. njector, S. Fowden
Japanning, M. Bray
Jewelry, W. Riker
Kyife scourer, W. Johnson
adder. A.R. W. Knight.
Ladder, G. Carlton..
Lamp, W. H. Garlio
Lamp, C. Robinson
Land roller, R. W. Bunting.
Land roller, \mathbf{W}. Gutenberger
Lapping machine, H. N. Rang
Lathe, gauge. E. Silver Lock for valises, chain, J.
Lock, time, M. A. Dalton.
Lock, time, M. A. Dalton......
Mail bag catcher, J. A. Boalst...
Marble, ornamenting, G. Hubmann
Kashing, G. Ellenberger (r).....
Metals, separating molten, F
Middlings, preparing and treating, F. Wegmann
Millstones, C. P. Kemmerer.
Millstones, W. Steele.........
Mortar, black, C. A. Didden
Mosquito net frame, H. Nyv
Motor, spring, J. Schreiber........
Nut blanks, machine for, G. B. Hil
Ore jigger, s. Bradley....
Paper, folding and counting, N. S. Clement Paper machine, J. Dunbar
Paper panels, C. Hansen
Paper pulp from salt water olants, W.................. Pen, marking, J. Schneid Pencil sharpener, w. H. Keys Photographic plate holder, B. F. Baltzley Piano hammer, A. O. Hall,
Picture frames, clamping, M. Rose Pin, safety, W. A. Butler........ Pins, planing blanks for clot
Planter, E. L. Bergstresser
Planter, J. W. Fawkes (r) Planter, E. R. Carr ..
Planter, J. L. Wright Plow, E. H. Babcock
Plow, F. A. Barrows Plow, L. J Lowe Plow, c. L. Jackson Press, baling, W. H. Burgess....
Press, cotton and hay, G. Ertel Press, fuel. N. Aldrich Propeller, E. J. Hulbert Pump. J. J. Stuart.............. ump, lubricating, E. G. Felthouse Railway signal, A. R. Swift... Railway signal, F. L. Pope (r)
Railway switch, D. Pollock.... Rake, horse hay. W. Adrianc
Rake, horse hay. W. Aldrich Rake, horse hay. J. C. Holton Rawhides, boarding or breaking, W. Coupe Rivet-setting machine, M. Bray
Rolling metal bars, S. Trethewe Rolling metals. D. Jones
Rolling mill, C. H Morgan Rowing machine, G Goldie \& Lothrop (r) Safe, D. o Paige. Satchel handle, G. Havell (r)
Ssw-fling machine, O. W. Le Ma Saw mill head block B. D. Whitne Scales, platform, W. B. Daniels. creen, window, C. Matheny. crew-cutting die holder, J. F. Brinckmann

Stare and otam	
frine	
Stome	
ata	
elocipede, J. A. Crandall	
Natas.	
, motara,	
Nater	
copy of any of the above patents may be ha tting one dollar to MUNN \& Co., 37 Park Row, tting on	

тн
 §nientifit Ammericar.

The Most Popular Scientific Paper in the World THIRTY-THIRD YEAR.

Only $\$ 3.20$ a Year including Postage. Weekly.

This widely circulated and splendidly illustrated paper is published weekly. Every number contains sixeen pages of useful information, and a large number of representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Arch1All Classes of Peaders find in The Scievtipic AMERICAN a popular resume of the best scientific in-
formation of the day; and it is the aim of the publishers o present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive this journal affords a constant supply of instructive
reading. It is promotive of knowledge and progress in every community where it circulates.
Terms of Subscription.-One copy of The ScIENTIFIC AMERICAN will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States or Canada, on receint of three dollars and twenty
cents by the publishers; six months, $\$ 1.60$; three months, $\$ 1.00$.
Clubs.-One extra copy of The Scientific Ameri-
CAN will be supplied gratis for everyclub offivesubile AN will be supplied gratis for everyclub of five esubscribers
at $\$ 3.20$ each; additional copies at same proportionate at $\$ 3.20$ each; additional
rate. Postage prepaid.
One copy of The ScIevtific American and one copy
of The Scientific American Supplement will be sent for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dollars by United States or
the publishers.
The safest way to remit is by Postal Order, Draft, or Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes
astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to
MUNN \& CO.

MUNN \& CO.,
Park Row, New York.
The Postal Union.-Under the facilities of the
Postal Union, the ScIENTIFIC AMERICAN is now sent by post-direct from New York, with regularity, to subscribers in Great Britain, India, Australia, and all other
British colonies; to France, Austria, Belgium, Germany, Russia, and all other European States; Japan, Brazil,
Mexico, and all States of Central and South america. Terms, when sent to foreign countries, Canada excepted,
$\$ 4$, gold, , for SCIENTIFIC AMERICAN, 1 year ; 89, gold, for \$4, gol S CIENTIFIC AMERICAN and SUPPLEMENT for 1
year. This includes postage, which we pay. Remit by postalorder or draft to order of Munn \& Co., 37 Park
Row, New York.

BLAKE'S STONE AND ORE BREAKER AND CRUSHER.

 g, and
Nhere
CrUS

BLAKE

WORK FOR ALL Pond's Tools,

FOR PRACTICAL MEN.

 HENRY CAREY BAIRD \& CO.,

LOFTESTO ITH, WITH STEAM POWER.

 200 Lewis St., Foot 5 thi $\&$ © 6 th Sts., E. R.

$\frac{8}{8}$Finexa Band 2 int.

 FRANK \& CO., BREAD FOR WORKING MEN "The Labor Hopodimi in in the Une United States,"

THE DINGEE \& CONARD CO'S Roses BWWH2
 Cotto Picker INVENTED A A SUCCCESSFUL
 FORCE OF WIND. HOW TO ESTIMATE

" Little Ciant

GOLD
THE DRIVEN WELL.
 WM. D. ANDREWS \& BRO.

The George Place Machinery Agency
Brainerd MIILING MACHINES, and stives

PATENTS SOLD.

The great fanlel which has taken place in the prices of

S1200 $=$
Lathes, Planers, Shapers

 HEEAP HOUSEHOLD ORXANETTS

B. WESTERMANN \& CO., New York,

SCIENTIFIC CATALOCUE,
German, Fronch, English \& American Eooks
 36 Pages Octave,

\qquad GOLD PEATED WATCHES. Cheapest U3 Jitens. EAGLE FOOT LATHES,

 for Amateurs or Artisans.
wM. L. . CHASE $\&$.
$95 \& 97$ Liberty St., New York.

 LEFFEL WATER WHEELS.

$\$ 2500$

MINE ACCIDENTS MECHANICAT AP

W00d-Working Machinery,

REW UNITED STATES GOVVERNMENT

THE SCIENCE Of LIFE,

Harrison's System of Grinding!

 Millers and filtew coio For All.

Steel NameStamns

 25 NET YEAR CARDS,

$E D W^{\text {For }} / N^{\text {nata }} A$
 TUNNELS AND ROCK-BORING MA

Drake's Corner for Cofins and Caskets

Jarvis Gas Consuming Furnace.
 Steel Castings,

CAVEATS, COPVRIGHTS, TRADE MARKS, ETC.

Messrs. Munn \& Co., in connection with the publicaImprovements, and to act as Solicitors of Patents for Inventors.
Inthis line of business they have had over thirty TEARs: Experienoe, and now have unequaled facilities for the preparation of Patent Drawings, Specifications,
and the Prosecution of Applications for Patents in the United States, Canadu, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, Trade Mark Regulations, Copyrights for Books, La bels,
Reissues, Assignments, and Reports on Infringements Reissues, Assignments, and Reports on Infringements
of Patents. All business intrusted to them is done with special care and promptness, on very moderate Werms.
We
contaning further information about Patents and how to procure them; directions concerning Trade Marks, Copyrights, Designs, Patents, Appeals, Reissues, In ringements, Assigaments, Rejected Cases, Hints o he Sale of Patents, etc.
Foreign Patents.-We also send, free of charge, a Synopsis of Foreign Patent Laws, showing the cost and method of securing patents in all the principal coun-
tries of the wo ld. American inventors should bear in tries of the wo ld. American inventors should bear in
mind that, as a general rule, any invention that is valuable to the patentee in this country is worth equally as much in England and some other foreign countries Five patents-embracing Canadian, English, German, Flusive monopoly to his discovery among about on UNDRED AND FIFTY MILLIONS of the most intellige team communication are such that patents can be ob tained abroad by our citizens almost as easily as a ome. The expense to apply for an English patent dian, $\$ 50$.
Copies of Patents.-Persons desiring any patent issued from 1836 to November 26,1867 , can be supplie with official copies at reasonable cost, the price de pending upon the extent of drawing and lengh pecifications.
time the Patent Office commenced printing the draw ngs and specifications, may be had by remitting to this office $\$ 1$.
A copy of the claims of any patent issued since 1838 will be furnished for $\$ 1$.
When ordering copies, please to remit for the same as above, and state na
A pamphlet, containing full directions for obtaining United States patents. sent free. A handsomely bound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every pat entee and mechanic, and is a useful hand book of refer nce for everybody. Price 25 cents,

Adress MUNN \& CO.
Publishers SCIENTIFIC A MERICAN,

AUCTION.

BGARDUS' PATENT UNIVERSAL ECCEN

Patent Atmospheric Gas Burner,

JOSEPH C. TODD

Pyrometers, $\begin{gathered}\text { For shoming heat of of } \\ \text { Orent }\end{gathered}$

 isheofree of charge. The leading Newspapers Beptor

ICE AT \$1.00 PER TON.
The PICTET ARTIFICIAL ICE CO

Mill Stones and Corn Mills. We make Burr Millstones, Portable Mills, Smut Ma-
chines Packers Mill Pliks, Water Wheels, Pulleys and
Gearing, asecially adapted to Flour Milis. Send for
catalog, spectill J. T. NOYE \& Son, Buffalo, N. Y.

MACHINISTS' TOOLS.
Lathes, Planers, Drills, \&o.
NEW HAVEN Mandipacturing co,

HARTFORD

STEAM BOILER
Inspection \& Insurance COMPANY
W. B. PRANKLIN, V. Pres't. J. ML. ALLEN, Pres't. J. B. PIERCE, Sec's.

MECANICL DRANTNG-BY PRFF.

 P.BIAISDBII \& CO.,
P.BLAISDEMAS,

Manuf cturers of the Blaisdell Patent Upright Drills -

Regular Monthly Sales the first week of each month
he George W. Keeler, Auctioneer, at his salesrooms,
by Liberty street, N. Y. For terms, etc., address The 53 Liberty Street, N. Y. For terms, etc.., address The
New York Patent Exchange, Room 11, 55 Liberty Street

W on ort surface planers, 8125 . Planers

Bound Volumes

 Scientific Amorican. anm
HTVE

 B. C. MACHINERY CO. Battle Creek, Mich.

NEWSPAPER FILE

MUNN \& CO.,

THE TANITE CO.. STROUDSBURG, PA. EMERY WHEELLS AND CRINDERS.

Model Engines.

 C ASTTIN G S
 THE RAILROADER, To LEDO, O., AHANDSMME

1874, 1875,

SCIENCE RECORD.

 GEOGRAPHY MINERALOGY,
GEOTRONOMY, MINERAM

MUNN $\underset{37}{\&}$ Co... Pubik Row, New Yor

Oofnint for Tin Roots, Iron Work; \&c.

H. W. JOHNS MANUFACTURING COMPANY,

RAILWAY \& MACHINISTS' SUPPLIES,

D.

PATENT SCROLL AND BAND SAW MACHINES A
Speciality. CORDESMAN, EGAN $\&$ CO., Cincinnati, 0 .

