a Weekly journal 0f practical information, art, science, mechanics, chemistry, and manufactures.

	NEW YORK, DECEMBER 8, 1877.	

IMPROVED FAUCET.

We illustrate herewith a new and simple form of faucet, the advantages claimed for which are that it is not liable to be injured by being screwed into or out of the cask, that it is not liable to leak, cannot be left open through carelessness or accident, and has its button protected from injury.
.The portion of the device. which enters the cask is tapered and screw threaded. Nearits outer end is an octagonal portion adapted to receive a wrench: Beyond this part, as shown in section in Fig. 2, is a screw-threaded projection which engages with the outer portion of the device. A is the valve seated on a shoulder, as shown. The stem passes up through the casing and terminates in a button which is surrounded by the cup-shaped top. In a chamber in the casing is a a spiral spring, B, which acts against a collar applied to the valve stem. It will be evident that, by pushing in upon the button, the valve, A, will be moved from its seat, the liquid will pass it and flow out at the nozzle. On the valve stem is a shoulder, C, which, when the valve is moved from its seat, closes the orifice through which the stem passes and prevents any ilquid entering the \mid M. Mayer, of the Stevens Institute, for the purpose of despring chamber. Should, however, any liquid enter this termining experimentally the coefficient expansion of meportion of the device it at once escapes, by the channel tals and alloys. Apart from the value of the contrivance as shown, into the nozzle. Patented through the Scientific applied to its specific purpose, which we shall explain furAmericau Patent Agency, September 18, 1877. For further ther on, we desire to draw especial attention to it here for particulars address the inventor, Mr. William S. Lempert, Fort Davis, Presidio county, Texas.

LEMPERTS IMPROVED FAUCET

PROFESSOR MAYER'S' NEW METHOD OF FINDING THE ries of articles "On the Minute Measurements of Modern COEFFICIENT OF EXPANSION OF METALS AND Science," written by Professor Mayer, and which now are AllOYs. \quad in course of publication in the Scientific American Sup In the accompanying engraving we illustrate a new and $\begin{aligned} & \text { inEmENT. No such series has ever been published, nor has } \\ & \text { PLen }\end{aligned}$
 has adopted, the refinements which now ex ist in the art of measuring. We need not point out of what value to every mechanic a thorough knowledge of this branch of science is. Perhaps the chief peculiarity of modern mechanism is its accuracy and perfection of fitting, and to these qualities the machine tools of to-day owe in large measure their re markable capabilities.
Our secoñd reason for asking especial notice for Professor Mayer's apparatus is that it is a capital instance exemplifying how a thoroughly scientific investigator goes to work. There is so much dore now-a-days that is called scientific investigation which far from merits the title, that we are almost ready to credit the idea that some recognized standard, showing how a typical investiga tion ought to be conducted, would be valua ble for comparative purposes. Such work involves the gathering together of every thread connected with the sub ject and not merely those that are plain and easy to follow, but those which the skill of the investigator is taxed to discover and take account of. Doubtless Professor Mayer would object quite strongly to our taking the present matwo reasons. First, because it will serve as an excellent
exemplification of the accuracy and importance of the se chine-which is only one bit of apparatus out of a long and-

PROFESSOR MAYER'G NEW INSTRUMENT FOR SHOWING THE ELONGATIONS OF METALS.
splendid series-as representative of his general mode of working; and, in fact, he himself- states that there are objections to it in its present form, to eliminate which he points out the way: but, nevertheless, the apparatus may stand as a model of ingenious contrivance, showing how fertile is the mind of the investigator in devising means, and how thorcugh and refined these last, when placed in tangible form.
The object of the apparatus, as already noted, is to obtain the co-efficient of expansion of metals and alloys. By coefficient is meant a factor, which serves as a multiplier; and the co-efficient of expansion of any metal is that fraction of its length which the metal elongates or shortens by the addition or subtraction of one degree of temperature. This fraction of the length of a given metal bar is expressed decimally, and hence to ascertain the absolute amount of the expansion of any given length of the metal, we multiply the given length by the co-efficient
In order to measure the minute differences in length of the bars, Professor Mayer desired to use Saxton's comparator, on account of various advantages which that device offered. A complete description of that instrument, as well as a very interesting biographical sketch of its inventor, Mr. Joseph Saxton, will be found in No. XI of Professor Mayers' series of articles above referred to, in the Supplement. It will suffice here to say that it consists essentially of a mirror, which reflects a beam of light over double the angle through which the mirror is revolved, and this beam acts as an index by being caused to sweep over a graduated scale, having for its center the center of the axis of the mirror. It will be obvious how measurements may be made by this arrangement.
We can do no more here than present a very brief account of how Professor Mayer solved the problem we have stated, as our readers will find all the details in No. XII of Professor Mayer's Supplement series, which will shortly be published. The bar, whose co-efficient of expansion is to be determined, is supported on standards in a brass tube, which is made about $\frac{1}{8}$ inch shorter than the bar. Against the ends of the bar are placed rubber washers, which are perforated so as to allow the ends of an abutting screw and a rod connecting with the moving mirror of the comparator to come in contact with the ends of the bar. Arrangements are provided which hold the washers perfectly water and steam tight against the ends, while the bar is perfectly free to expand or contract in the tube. Inside the tube are supporting springs, which relieve the standards in some degree from the weight of the bar.
In our engraving Fig. 1, T T^{\prime} is the tube, supported on V's, V V'. Its weight is relieved by the spring balances shown. At p and p^{\prime} are pins, to which springs (one of which is shown at S) are attached to pull the end of the bar against the abutting micrometer screw. A screw, E, serves to rotate the tube slowly in its V's, so that the bubble of the level, L, can be brought to the middle of the scale. Through the tube, D , water or steam is passed which, after circulating around the bar, escapes by the pipe, C. Thermometers may be introduced into the main tube through the tubulures, B $\mathrm{B}^{\prime} \mathrm{B}^{\prime \prime}$; and these last also serve as openings for the introduction of hot water to melt ice around the bar. Fig. 1 represents the machine complete, and Fig. 2 is a sectional view of the tube TT.
In beginning the experiment, ice is packed around the bar, and the tube adjusted in the balances. The head of the abutting screw is adjusted to a known reading, and the end of the bar is pulled against said screw. The tube, $\mathbf{T}^{\prime} \mathbf{T}^{\prime}$, is then made level. The mirror rod, $r r^{\prime}$, Fig. 1, attached to the mirror, M, is next allowed to abut against the bar, when the reading of the index beam on the scale is at once noted. This is repeated three times. The tube is now removed from its V's, and hot water poured in until all the ice is melted. Steam at known temperature is then passed through the tube for thirty minutes, and the same operation for measuring above described is repeated.
Subtracting the scale reading obtained from the bar when it was in the comparator surrounded by melting ice, from the scale reading obtained when the bar was enveloped with steam, we have for remainder the amount of scale deflection produced by the bar in expanding from the length it has at $0^{\circ} \mathrm{C}$. to that which it assumes at the temperature of the steam. This scale length, converted into linear motion of the mirror rod, gives the actual expansion of the bar in fractions of an inch or of a millimeter.

A Porcelain Fiddle.

Venice is considerably excited at present over a very unusual sort of a fiddle, the only one of its kind, probably, ever made. The manufacturer of this porcelain fiddle was formerly a workman in a Saxon porcelain manufactory. After his return, old and feeble, to his old home, he attempted to carry out a long cherished project for making a fiddle, the box of which should be of china. With the aid of a boy, it is stated, he has in fact succeeded in producing a fiddle of this kind, which has a tone of rare purity and astonishing richness, combined with charming harmony and extraordinary power. The box part, or resonator, is exceedingly light. and the strings are made of metallic wires, while the bow, departing from the usualform, is curved, making almost a semicircle. The success of this clever Venetian, who had enjoyed the advantages of the skill acquired in a German porcelain factory, may be the means of directing musicians to the advantages of the clear, ringing, but fragile china and glass, for various similar uses in acoustics.

Srientifir Smmeriran.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
NO. B' PARK ROW, NEW YORK.

O. D. MUNN.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included....

One copy, six months, postage included | $\mathbf{8 3} 20$ |
| :---: |
| 160 | gratis for every club of flve subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.

The Scientific American Supplement
is a distinct paper from the Scientific American. THE SUPPLEMENT is issued weekly; every number contains 16 octavo pages, with handsome
cover, uniform in size with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, 85.00 a year, postage paid, to subscribers. Single copies 0 cents. Sold by all news dealers throughout the country
will be sent for one year, postage free, on receipt of seven dollars. Both papers to one address or different addresses, as desired. The safest way to remit is by draft, postal
Address MUNN $\&$ CO., 37 Park Row, \mathbf{N}.

the news agents.

Publishers' Notice to Mail Subscribers.
Mail subscribers will observe on the printed address of each paper the time for which then have prepaid. Before the time indicated expires, to
insure a continuity of numbers, subscribers should remit for another year For the continuity of numbers, subscribers should remit for another year their subscriptions expire.
New subscriptions will be entered from the time the order is received;
but the back numbers of either the ScIENTIFIC AMERICAV or the ScIn but the back numbers of either the Scientific American or the Scien-
TFIC AMERICAN SUPPLEMENT will be sent from January when desired In this case, the subscription will date from the commencement of
volume, and the latter will be complete for preservation or binding.

VOL. XXXVII., No. 23. [New Series.] Thirty-second Year.
NEW YORK, SATURDAY, DECEMBER 8, 1877.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT INO: 101,

For the week ending December 8, 187%

VI. NATURAL GISTORI, GEOLOGY, ETC.-The Wonderful Fossil Beds
of Oregon.

Remit by postal order. Address
Sidingle copies of any desire
address on receipt of 10 cents.

IS THERE A LAW OF INVENTION?

Whether we are to conclude with Buckle that there are laws governing human action which exist unknown and which only future and wiser generations will ciscover; or whether we adopt the theory of epidemic thought and assume that there is a bond of unconscious ideation forming some subtle link between minds pursuing like objects, the fact remains that no one can study the progress of invention without becoming impressed with a definite notion that there is some extraneous cause which impels inventors to reach similar conclusions and make like discoveries at about the same time. Of course this cause must be dependent upon antecedents, and these last are the steps which go to make up scientific progress, with which all may by study render themselves familiar, and thus may as it were place themselves under like influences. The question for specula tion however is whether there even can be proved to exist a law which taking into account certain circumstances will enable us to recognize conditions when the production of a cer tain new and original conception is predicable.

Analogies in this regard are by no means wanting. In the case of artificial selection, horticulturists, agriculturists and stock breeders the world over are constantly engaged in experimenting under every imaginable combination of circumstances and conditions with the object of reaching new results which it is hoped may be superior to any hitherto obtained. The constant study of mankind has been to discover those circumstances under which the human race enjoys the highest point of mental and physical culture and with such success has this been attended that it is quite possible to conceive of an ideal man, the product of present attainable conditions, who in all his attributes, certainly phy sical and probably mental, would be a far superior being to modern men. There are many instances which can be cited showing that occurrences seemingly of the most fortuitou character are subject to definite fixed laws. The number of suicides, of murders, of marriages, of letters posted unstamped, and so on through almost every imaginable even in a large community, is nearly invariable; thegreat busi ness of life insurance rests upon the law of probabilities, and finds its stability in the hypothesis that out of a given num ber of policy holders the ratio of deaths may be definitely forecast. The eutire onward march of scientific investigation is toward the formulation of these laws. The highest effort of original investigation is the grand general deduc tion, the establishment of a theory on the basis of a multi tude of observed facts.
It may not therefore be unreasonable to suppose that, some day, laws governing invention will be revealed. No grea or striking invention, not even one moderately out of the common run, appears, but that others similar to it at once come to light, not as improvements on the first announced but as the outcome of independent thought. Take the tele phones as an instance. Bell's telephone is not an improve ment on Gray's, nor is Edison's on that of either of the othe inventors, yet all were produced, as is well known, within few months of each other. Note the number of entirely original inventions which followed rapidly upon each othe within a very few years and which together resulted in the sewing machine as now perfected. There are abundan records where in purely scientific investigations independen students find themselves pursuing exactly similar objects. The case of the magnificent discovery of Neptune by both Leverrier and Adams is a most striking example of an instance where two investigators each reached his aim in manner original with each yet common to both.
The recently invented phonograph is proving no exception to the general rule. A preliminary notice in these column of the Marey and Rusapelly phonograph lately devised in France elicited the announcement of Mr. Edison's re markable invention. Two inventors have written us since the publication of the latter device to the effect that they also have invented phonographs of substantially similar con struction, which antedate (they say) Mr. Edison's device by a considerable period. It will be interesting to watch the progress of the phonograph if only to note how many othe inventors have been simultaneously engaged in its investi gation or have independently discovered it in various forms. Statistics based on data of this kind and kept over a reasona ble period would probably lead to some remarkable conclu sions relative to the conditions of invention, and possibly, a we have intimated, to the discernment of some genera laws.

dNITED sTATES COINAGE AND THE GREAT PYRAMID

Some one who fails to see wherein the benefit of import ing obelisks from Egypt exists sarcastically proposed no long ago that Yankee ingenuity should astonish the world by floating, not an obelisk but a pyramid across the Atlan tic, and erecting the structure in some city park. The sa tirical proponent might have strengthened his scheme if he had added that while this nation has no bond of connection with obelisks, it actually has something in common with the Great Pyramid-and that we have a direct national interest in that mass of stone, inasmuch as a most curious analogy exists between its measurements and in the weights of our several coins. We are indebted to Dr. Watson F. Quimby for the following letter, wherein he ingeniously points out this re markable linkage, and suggests the very plausible idea that the weights of our coins owe their origin to no fortuitous cir cumstance, but rather to customs established at a period dating back beyond history. Dr. Watson says
"In the admirable work of Professor Piazzi Smith, entitled
"Our Inheritance in the Great Pyramid," it is shown that the Great Pyramid of Egypt contains in its interior standards of inch measure, while the exterior gives the same standards in the sacred cubit of 25 inches. One of the most important units of measure is the length of the so-called king's chamber, which is $412 \cdot 5$ English inches, and its breadth 206.2 inches. Now our silver coinage corresponds to these numbers, as the "dollar of the fathers" weighs $412 \cdot 5$ grs. the half dollar $206 \cdot 2 \mathrm{grs}$., and the quarter dollar 103.1 grs. which last is a very important pyramid number. On inquiring at the mint why the silver dollar was made of this weight, I was informed that it was the weight of a coin that would readily pass current in the Eastern Asiatic trade. It is therefore a traditional coin. by whatever name it may have been known, for thousands of years.
" But not only does the silver coinage correspond to the inch standard of the pyramid, but our gold coinage corresponds to the cubit measure. The height of the pyramid in sacred cubits is $232 \cdot 5$, and our gold eagle, the unit of gold coinage, weighs 232.2 grs., and the half eagle $116 \cdot 1$ grs.
"The relation of these numbers is such that 'the area of square having 103.03 on the side, is equal to the area of a circle having $116 \cdot 26$ for its diameter.' (Phillips.) Now as there are 360 degrees in the circumference of a circle, its diameter in terms of seconds is 412529, and its circumference is 1296000 . Then the number $412 \cdot 5$ is the thousandth part of the diameter of a circle in terms of seconds, and 1296, the number of square inches in an English square yard, is the thousandth part of the circumference of a circle in terms of seconds. This at once connects English
mid measure, and may indicate the origin of both
"From the standard square yard all the rest of our meas ures may be deduced. The old English gallon contains 231 cubic inches, which is a number intermediate between the height of the pyramid in cubits, $232 \cdot 5$, and the height of the king's chamber in inches, $230 \cdot 89$. The diameter of a circle is to the side of a square of equal area, as 9 to 8 very nearly. $9: 8:$: 116-023: 103-132.
"It thus appears that in the weights of the quarter dollar and the half eagle, we have had the squaring of the circle problem typified without knowing it.

NOTES OF PATENT OFFICE DECISIONS.

The Commissioner of Patents, in deciding the interference case of Martin vs. Bogle et al., awards priority of invention to Martin, who first perfected the operative device in inter ference, although Bogle was the first to apply it in series, in the manner designed for use. The reason for this is that, while the arrangement in series may be more satisfactory and permit nicer adjustment of subordinate mechanism, yet it proves itself.
The Commissioner also holds that the fact that in one in stance a claim is for a single device, and in another for a series of them, does not constitute difference of invention. The state of the art, and the Office latitude in allowing claims, may level the distinction. He also holds that the preliminary statement must be rigidly adhered to, where there is a substantial departure therefrom in the interference contestant's testimony.
The Acting Commissioner, in the interlocutory appeal in the matter of the application of Siemens for a re-issue of letters patent, decides that the applicant may include, on re-issue, matter which was neither described nor claimed, but which was actually contained in the original invention; and that the failure to describe such matter in the original patent is no bar to doing so in the re-issue application with in the limits of the invention.

SHOOTING STARS.

The enomena of shooting stars and of star showers system. On any clear evening, a watchful person may see on an average, two shooting stars every five minutes, and on certain nights of certain years, and on certain hours of the night, they appear in such vast numbers as to receive the name and deserve the title of star showers. Other meteor do not fall in showers emanating from certain constellations, but move in all directions, and from every part of the sky. Such metcors,though, as far as known, differing in no particular from those which come in showers, are called "spora-
dic." In their normal condition, that is, before visibility, dic." In their normal condition, that is, before visibility, self-luminous from excessive heat by friction and arrested motion in our atmosphere, are they called shooting stars or meteors. It is important that this distinction be borne in mind, for, if true, then can no meteoroids ever be seen from the earth. In their natural condition they are circum-solar bodies, obeying the laws of motion and gravitation as rigidly as do the planets, and must be treated as such, though more numerous than the leaves of summer. The velocity with which they plunge into our atmosphere is very great, probably about 48 miles per second. The length, in arc, of their visible path varies widely. Occasionally one flashes up, and, increasing in size and brilliancy, disappears, without seemingly having moved a particle. The motion of such a meteor was exactly towards the observer's eye, and conse
quently it ought not to have any apparent motion. Another observer 20 or 30 miles distant may have seen the same with a path several degrees in length. Their paths may be considered to vary from zero to 90°, or even more. The
length of their real paths, that is, in miles, also varies great length of their real paths, that is, in miles, also varies great-
ly, but the average is about 42 miles. Bv the time this dis-
tance is accomplished, unless the meteoroid is a large one, it is heated, melted, evaporated, and extinguished, all within the period of not over one second of time. The height at which they are heated to visibility is sometimes as great as 200 miles, but the average is about 75 miles, and at extinc tion, about 50 miles.
The above assumed rate of motion at which they enter ou atmosphere is the result of the sum of the orbital motions of both the earth and meteoroid, but, owing to the earth's attraction, this motion is really very much greater than 48 miles per second, especially for those which move retro grade.
We are now prepared to understand why they are burned up, and so quickly vaporized. The heat thus generated, though all produced where the atmosphere is inconceivably rare, is estimated to be equal to three million degrees Fah renheit. No known substance, unless of considerable size and density, like the meteoric stones which occasionally reach the earth, can long withstand such a degree of heat, unchanged in form and structure. Before the above facts were known the height of the earth's atmnsphere was usual y considered to be about 45 miles, but that it is, at least,five times, and probably ten times that distance, is clearly proved by the researches in meteoric astronomy.
When it is considered that, accordihg to Professor Newton, our hundred million shooting stars are daily burned up in our atmosphere (including those that are telescopic), it would and size from this cause, and such, no doubt, is the case in fact as well asin theory. Unfortunately the data for arriving at any very exact value as regards their size and weight rests on insufficient evidence. Professor Harkness, of the Naval on insufficient evidence. Professor Harkness, of the Naval cessible evidence bearing on the subject, has arrived at the astonishing conclusion that their average weight does not ex ceed one grain. If we assume that those which are wholly telescopic are not larger than sand grains, and probably they are not, those that are visible to the naked eye as con spicuous objects, and especially those that are seen over a ra dius of 150 miles and fill several cubic miles with smoke must contain several ounces, and perhaps pounds, of me teoric matter, whatever that may be. Suppose we base our calculation on the estimate of ten grains for each meteoroid this would equal $4,000,000,000$ grains, or 290 tons a day, or 106,000 tons a year, sufficient, if distributed equally over the
earth'ssurface, to form, in $4,000,000$ years, a stratum equaling in thickness the paper upon which this journal is printed The moon, as she revolves round both the earth and sun, must also meet with these all-pervading meteoroids, but, having no atmosphere to arrest their motion, they cannot be heated. They must strike on its surface and be instantly converted into the finest powder. This meteoric dust, from excessive attenuation, must be of a light color, perhaps a pure white, which may go far to explain the cause of her re flection of so much light, the which, when her size and dis ance are considered, seems out of all proportion.
While the writer was observing the memorable star showe
November. 1867 , he witnessed a phenomenon which will of November, 1867 , he witnessed a phenomenon which wil linger long in his memory. A brilliant meteor from Leo passed in a westerly direction, leaving a luminous train of some forty degrees in length. Its head seemed to increase in size and brilliancy as it progressed, when, as suddenly as though it had struck a target, it vanished from sight. Soon a cloud formed, assuming a variety of fantastic shapes, sev eral being perfect delineations of letters of the alphabet. Twice in its peregrinations was the letter N thus formed these changes occupying some fifteen minutes. Finally, gathering to itself its scattered particles, it kecame a round symmetrical disk, probably a sphere, which centrally occulted the nebulous cluster in called Cancer the Beehive. Fo almost two minutes it was, from this cause, lost to view. After the occultation it continued visible for ten minutes utes, it drifted about fifteen degrees to the north, confirming by observation the truth of the theory that the heated air of the tropics flows to the north through the upper regions of the atmosphere

adAM scott cameron.

It is with regret that we announce the death of Mr. Adam Scott Cameron, of New York, who undoubtedly was person ally known to a great many of our readers. He passed away on the 14th ult., of an attack of acute pneumonia; his illness was sudden and painful, but of short duration.
As a manufacturing engineer and constructor of steam pumps he bad a wide and excellent reputation; and as a business man of sound principles, his loss will be felt in the many circles where he was prominent.
Mr. Cameron was a native of Scotland, but came to this country when eight years of age. During his youth he evinced a strong desire for acquiring knowledge and an apti tude for self-culture. He attended public day and evening schools, and soon became sufficiently proficient to keep books for a New York firm. He was observing, thoughtful, and industrious, entered into business with indomitable pluck, energy, and perseverance, and studied with assiduity the questions of capital, labor, and finance. The greater part of his life was spent in the construction of the well known Sewell and Cameron steam pumps. Before he was twenty-
one years of age he was taken into partnership with his one years of age he was taken into partnership with his brother, and to the time of his last illness applied himself to
business with great success. He was a friend and counsellor business with great success. He was a.friend and counsello
to the workmen in the employ of his frm (Cameron \& Co.
and a member of some excellent associations for the advance ment of mechanical science. At the commencement of small pamphlet issued to his employees in 1869, proposing the system of co-operation as a practical business movement the following sentence occurred: "To assist a person in improving his condition by his own efforts is to make a man of im." Other pamphlets on such subjects as "The Necessity of a Bureau of Mechanics," "The Eight Hour Question, An Address to the Intelligent Workmen of the United States," were written by him, and widely circulated.
During the spring of 1873 Mr . Cameron was elected pres ident of the Bull's Head Bank of the city of New York; and although the youngest president of any bank, at least in New York city, he displayed wonderful tact and sound judg ment in arranging the complicated affairs of the institution he had suits set aside, obtained subscriptions for new capital, re-opened the bank, and putitin a prosperous condition. This transaction was commented upon by the London Times as a notable one, from its having been the first of the kind and the setting of an example which has since been followed in several instances. The last and recent public utterance by Mr. Cameron closes with these significant words: "Until e return to the old-fashioned habits of honesty, industry and frugality, our sins will rest upon us. If our virtues will not, our necessities must bring us back to prosperity. Then we shall be envied among the nations of the earth." At the age of thirty-three Mr. Cameron closed a busy and useful life, in which integrity, generosity, and benevolence were always conspicuous.

the distances of the planets from the sun.

Sir George Airy, the British Astronomer Royal, has recently published a report on the telescopic observations of the transit of Venus of 1874, made by the English expediions. Pending the appearance of the deductions to be made from the complete measuring of the photographs, the esults reached must be regarded as provisional only. The mean solar parallax determined is $8.764^{\prime \prime}$,and this is one tenth of a second less than has been given by the most reliable previous investigations upon different principles. From Professor Newcomb's calculations, now adopted in most of our ephemerides and based on observations of Mars, the unar equation of the earth, the parallactic inequality of the moon, the transit of Venus of 1769, besides Foucault's experiments on light, it appears that the mean distance of he earth from the sun is $92,393,000$ miles. A ccording to Sir George Airy's determination this distance must now be onsidered as increased to $93,321,000$ miles
For purposes of comparison and also to correct some er ors which were present in our recent article on "how ou world looks from other worlds," which we translated from the French of M. Flammarion, the well known astronomer, we append the following statement of correctdistances of the planets from the sun. Mercury, average mean distance $35,392,000$ miles; Venus, $66,134,000$ miles ; Earth, $93,321,000$ miles; Mars, 139,311,000 miles; Jupiter, $475,692,000$ miles Saturn, $872,137.000$ miles; Uranus, $1,753,869,000$ miles; and Neptune, $2,745,998,000$. As regards the fixed stars, the dis ance of a Centauri, probably the nearest, is about twenty billions of miles, and light occupies about $3 \frac{1}{2}$ years in trav eling from that star to the earth.

The New Steamship "City of Washington."

If comparison is made between capacity and strength, this steamship, just placed on the New York, Havana, and Mexi can Mail Steamship Line, appears to be undoubtedly the strongest mercantile iron vessel ever built in this country. She was constructed by Messrs. John Roach \& Son, at Chester Pa., and is of superior model and plan. The plates of the hull are $\frac{11}{18}$ inch and upwards in thickness. There are three decks, the two upper ones being mostly of iron. The length of this vessel is 323 feet; beam, 38 feet; depth, 37 feet 6 inches: draught when loaded, from 21 to 22 feet; tonnage 2,618 tons. She can carry 10,000 boxes of sugar, besides light freight, and her outward passage capacity in bulk is 2,500 barrels. The saloons and staterooms are attractive for their comfortable appearance and elegant fittings. The engines are of the compound type, and have a high pressure cylinder 40 inches in diameter; low pressure cylinder 74 inches in di ameter, with a stroke of 6 feet. The pressure of steam car ried is 80 lbs. The condenser has 4,000 square feet of con densing surface. Diameter of propeller is 16 feet, with a mean pitch of 26 feet. The engines are constructed with steam valves on the Corliss principle, and are reversed quickly with little manual exertion. Steam is supplied by two vertical boilers having square bases. There are eight furnaces in each boiler, and altogether about 3,000 tubes, 2 inches outside diameter and 7 feet long. There 370 square feet of grate surface and 1,400 square feet of heating sur face. The engines are rated at over 2,000 horse power, and
with 63 revolutions per minute, an average speed of 14 knots with 63 revolutions
F. Alexandre \& Sons, the owners, state that the City of Washington will make the voyage between New York and Havana in less than four days.

Coffins from Norway, says the British Trade Journal epresent the latest phase of foreign competition, a cargo of several hundred having been landed, ex steamer Cambria, during the past month. In this lugubrious branch of home industry America is also competing, and in a warehouse al most within a stone's throw of our office may be inspected a stock of 2,000 American coffins and caskets.

THE ABANDONMENT OF THE CLEOPATRA AT SEA. We have already noted the particulars of the somewhat eventful voyage of the famons obelisk Cleopatra's needle, from Esypt to its destination in England, which last it does not seem likely to reach for time to 0 . In the an not seem likely to reach for some time to come. In the anment of the obelisk vessel at sea in the Bay of Biscay during a severe storm. A heavy sea struck the craft, broke some of her rail ballast adrift, and left her with a strong list to starboard. Fearing that another sea would swamp the vessel altogether, her captain signaled for assistance and a boats crew was sent to her, but the boat and all on board were lost. Further efforts were then made to take the Cleopatra's crew from their perilous position, which in the end proved successful, and the towing steamer Olga left the obelisk to its fate.
Within two days' time the Fitzmaurice, a vessel bound from Middlesborough for Valencia, sighted the wanderer in lat. $44^{\circ} 53^{\prime} \mathrm{N}$. , long. $7^{\circ} 52^{\prime}$ W., took her in tow and carried her to Ferrol, Spain, where the obelisk now is and will remain until the legal questions relative to the matter of salvage are settled.

Cigars are now being made at the Cape of Good Hope but only for local consumption

Glue for Polished Steel.

The Turks glue diamonds and other jewels to their metal ttings with a mixture made as follows: Dissolve five or six bits of gum mastic, each the size of a large pea, in as much spirits of wine as will suffice to render it liquid. In another vessel dissolve in brandy as much isinglass, previously softened in water, as will make a two ounce phial of strong glue, adding two small bits of gum ammoniac, which must be rubbed until dissolved. Then mix the whole with heat. Keep in a phial closely stopped. When it is to be used set the phial in boiling water. This cement perfectly resists moisture, and it is said to be able to unite effectively two surfaces of polished steel

Prevention of Fire Damp Explosions.

't'he London Lancet offers the following suggestion for the prevention of fire damp explosions in mines: "Let tubes of small calibre be so laid throughout the mine that the atmosphere of every part may be brought under observation in a laboratory at the pit's mouth. A small exhausting pump would draw a current of air through the tubes rising from the several parts of the mine. These continuous currents should, in their course, feed each a distinct chamber contain ing a flame, the behavior of which would instantly indicate the condition of thavior of which would instanty indiat
the mine with which it was connected. The flame, as is wel known, would change color, elongate, and finally become iffused in proportions as the air is charged with gas. The ifferent lamps could be exposed side by side in a frame so that a difference of color or form would be instantly detected. By means of electrical alarm bells, or by the telephone, the miners could be at once warned of the presence of danger. Even in the event of a sudden escape of gas there is generally time to escape if notice is at once given. One man watching the flames at the top of the mine would be sufficien to prevent all possibility of accident. This apparatus might at first seem too costly, but the value of life and ruin caused by explosion far outweighs any such considerations.

Bluing Iron and Steel by Boiling.-If iron or steel articles be boiled in the following mixture they will take a ine blue tint: Dissolve 4 ozs. hyposulphite of soda in 1 ints of water, and then add a solution of 1 oz . acetate of ead in 1 oz . of water.

SOME interesting researches on the specific heat-conduc tivity of several substances have recently been made by Herr. J. Stefan, of Vienna. Taking the heat-conducting ower of copper at 1,000 , that of iron is given by him as 0.17 , ice 0.0057 , water 0.0015 , hydrogen 0.00037 , hard india rubber 0.00026 , and air 0.000055 .

THE ABANDONMENT OF THE OBELISK AT SEA.

HOW TO PAINT MAGIC LANTERNS.

The colors used for painting magic lantern pictures on glass must be either transparent or semi-transparent. The former include Prussian blue, gamboge, carmine, verdigris, madder brown, indigo, crimson lake, and ivory black; the latter, raw sienna, burnt sienna, cappah brown and Van dyke .brown, are semi-transparent. By combinations of these almost any desired tint can be produced. No particu lar mixing of the colors is requisite, but if oil colors are used megilp is the best thinning material. Water colors for first washes should be laid on with a hot solution of trans	first washes should be laid on with a hot solution of trans	It is a really exceptional case to find a landlord of a hotel
parent gelatin. Camels' hair pencils are preferable to sable	who is a connoisseur in art and a lover of science, and who	for painting on glass, as their elasticity is less and the trouble of working out the brush marks, which must always be attended to, not so great. Dry colors may be meat. Dry colors may be mixed with varnish, in which

case the glass must be covered case the glass must be covered
with a coat of turpentine which must be allowed to dry. The simplest way of producing the picture on the glass is by using a series of stencils, as represented in our engravings. Fig. 1, for example, is the picture to be reproduced. The artist places over this a piece of oiled paover this a piece of oiled pa-
per, and on this he traces the per, and on this he traces the
outlines of all that portion of the picture which is to be tinted with yellow or in which yellow enters in the compound tints. This portion of the design is represented in Fig. 2. Next, on another piece of paper, the red portions are traced as in Fig. 3. tions are traced as in Fig. 3.
On a third piece are traced On a third piece are traced
the green parts; and lastly, on a fifth piece of paper, are drawn the blue parts. The colors on these bases to be used would be gamboge, carmine, verdigris, and Prussian blue. Next, with a sharp penknife, the portions of the several papers included in the various outlines are care the various outlines are care fully cut out, so that each piece of paper becomes a stencil. It only remains to apply the stencils, in the order already named, to the glass, and rub the color over them, in turn to produce the picture, the different colors being superposed, and consequently combining When quently combining. When the paint is dry it is coated with colorless varnish and
the edges of the glass are surrounded with strips of strong paper.

Real Antiquities

If one wishes to see the oldest parts of the world lat him go to Trenton Falls, and, after visiting the excavations made by the natural action of a mauntain torrent into the ancient rocks, go to the hotel and see the collection made by the landlord, at an expense of ten thousand dollars, of specimens which prove the record of a geologic age so remote that no imagination can grasp it Professor Agas iz declared that the land and the land reaching from Trenton Fall to Saratoga was the first that appeared above the sea on the creation. Here are the trilobites in great variety, all modeled in black marble, so perfectly preserved in form that the multitudinous lenses of their eyes are as apparent under the microscope as are those of a living fly. Millions of years before man walked the earth these crea tures lived their life, the limestone took on their forms, and here they are! What are scarabcei and ancient intaglii, or any other engraved or modeled semblance of the old life, compared to the trilobites?

These creatures not only lived, but had become everlasting stone millions of years before there was a living man to see them.
The old hotel keeper is enthusiastic over his treasures and proud of the distinguished visitors who have been attracted by what he has to show them. Dr. J. G. Holland reports in Scribner's Monthly that he said to him, with a touch of pardonable pride " I shall have Tyndall, Huxles, and or win here altogether in September, for they have written me that they are coming.
understands his business at the same time and is able to con duct.a hotel. Paintings, old and new, adorn the walls; here is a Durand, there a Bouteille, besides many paintings by Hicks. They are on all the walls of the first story of the arge house; while the collection referred to stands in the office, and is the admiration of all scientists and lovers of nature.-Nanufacturer and Builder.

The Origin of Petroleum.

It is needless to say that the origin of petroleum has been the subject of much speculation, but from the scantiness of $\left\lvert\, \begin{aligned} & \text { the subject of much speculation, but from.the scantiness of } \\ & \text { the facts hitherto collected nothing definite has been arrived }\end{aligned}\right.$ at. The most generally received hypothesis is that itis formed, under conditions un known to us, from vegetable matter; that it has, in fact, he same primary origin as coal. This theory is support ed by the fact that we can, by chemical means, extract from coal and other vegetable matter bodies very similar in com position and properties to real petroleum.
But, at the best, this is merely a hypothesis with very few facts to support it; and Mendeleef, the well known Russian chemist, has recently proposed a new theory of the rmation of petroleum. From he fact that in Pennsylvania the petroleum occurs in the Silurian and Devonian formations, he considers it very probable that the hydrocarburets re the result of the decom position of organic débris, beposition of organic debris, because organic life at the pe-
riod was very scanty. His riod was very scanty. His
theory, in conformizy with the hypothesis of Laplace on the formation of the globe, sup poses the existence of large masses of iron occurring with inorganic carbon in the heart of the earth. Water penetrating from the surface comes in contact with the iron in a tate of fusion, and is decom. posed, the oxygen combining with the iron, while the hydrogen, under the influence of the heat and pressure, combines with the carbon and produces the hydrocarbons of petroleum.
Every opinion of Mendeleef is worthy of the most respectful consideration ; but, at the same time, we have a right to treat it as we would that of any other man. As this is not a question of fact, but one of theory, we will proceed to examine it. Regarded simply from a chemical point of view, this theory is a possible one. But the author of lt starts with the assertion that organic life was not plentiful in the Silurian and Devonian periods of geology, and therefore that there was not sufficient organized material to provide for the formation of the vast quantities of petroeum which have been yielded and are still contained in the American deposits. It is true that we find but few fossilorganized remains in the deposis referred to: but any one conversant with modern sci entific thought on this subject will know that this fact is no regarder as any proof of the actual amount of organic life then existing. : It has been put almost beyond a doubt that only a very small portion of the living beings existing at any one period are pre served in a fossil state: and that by far the larger bulk undergo the ordinary process of decay, and entirely disappear. Professor Mendeleef therefore, unjustifiably assumes the position from which he endeavors to overthrow the older theory.

In the explanation of his own theory he makes another assumption, which we hardly think will be borne out. That is to say, "His theory supposes the existence of large masses of iron occurring with inorganic carbon in the heart of the earth, and this supposition is said to be "in conformity with the hypothesis of Laplace on the formation of the earth." Laplace's nebular theory, here referred to, amounts to this. At some period in the infinitely remote past the globe had no existence as such. The matter composing it existed in space, but at such a high temperature that it was not merely liquid but a gas. Everything of which the earth is now composed-iron, gold, granite, as well as water and airexisted only in the form of incandescent vapor.
In the course of ages this mass of gaseous matter gradu ally cooled, and the globe assumed first the form of a ball of melted matter surrounded by dense clouds; then it becam covered with a solid crust, the clouds gradually disappeared, and the earth assumed its present form. This theory, start ling at first, becomes more plausible as our knowledge in creases, and if not itself the final explanation of globe for mation, is at least a long stride toward accurate knowledge From the experience men have gained in the operations of smelting and other processes requiring intense heat. we are enabled to predict with great certainty what would be the state of things during the gradual condensation of the globe from a gas to a solid. And the knowledge thus gained leads us to the conclusion that itt 1 s extremely improbable that car bon could exist in the earth in a solid state. Every one knows what would be the effect of exposing white-hot carbon to the atmosphere. It would burn rapidly and disap pear. Metallurgists will understand further that if a limited amount of air were supplied to a number of combustible bodies, the carbon would burn first. Sulphur, phosphorus, white-hot iron, zinc, and many other substances, all burn, that is, they all use up the oxygen of the atmosphere. But it is well known that charcoal is used to smelt iron, that is to say, when heated iron and teated charcoal are placed in contact with a limited amount of oxygen, such as is contained in hæmatite and other good ores, the iron gives up its oxygen to the carbon, and we get as results metallic iron and carbonic acid gas. Carbonic acid gas is always formed when carbon is burnt in the air. It is the same with most other materials. The carbon would extract from them all the oxygen they contained, and would be transformed into gas. It may be said that carbon in the center of the earth would be protected from the atmosphere and would have no chance of burning. Our contention is, that it would never get into the center of the earth. Remember that the whole material of the earth is in a state of vapor. As this gradually cooled, carbon and iron among other things would separate as solid or liquid masses at more than a white heat. And it is impossible to suppose that the carbon would not immediately seize upon all the oxygen surrounding it and be instantly converted into the permanent gas, carbonic acid.

Further, Mendeleef assumes that water could penetrate soil Which was sufficiently hot to keep iron in a melted state. If the water could creep down a crevice to the melted iron, it is certain that steam could escape by the same passage, and the heat generated by the neighborhood of the masses of melted iron would certainly cause every particle of water to disappear long before it would come in contact with the iron itself.

If there was not sufficient organic life in the Silurian and Devonian periods to supply the materials for the formation of petroleum; if carhon and iron could exist in a melted state in the center of the carth and could reach that position before the carbon was completely oxidised and converted into gas; if water could penetrate the intensely heated soil without being transformed into vapor and restored to the atmosphere; if water could come in contact with heated iron or carbon, it is possible that petroleum might be formed through the combination of these materials. But it is evi dent that this involves too many suppositions to be worthy of great confidence, and until we have obtained more fact we must content ourselves either with the older theory or with the statement that we know nothing about the origin of this important commodity.-The Ironmonger.

Arrow Poison.

Lovers of the weird and ghastly will be gratified by the perusal of the account of the poisoned arrow manufactur as carried on by the Samoan islanders, and related to the Fellows of the Linnæan Society by the Rev. Thomas Powell. An old chief of Efat-one of the Sandwich Islands-thu reveals the mystery of the poison craft to his son Pomare The initiated, distinguished by wearing the os femoris of a pig inserted between the arm and armlet, watch for the death of a sufferer laid low by any acute disease which may be accompanied by delirium. They note the place of his burial, and six months afterwards open his grave by stealth From thence they carry the large bones of both extremities nd the parietal bones of the skull. Of these, by sundry sawing, polishing, and scraping, they make the points of sears and arrows. For a saw they use the spines of a large chinus, of which they need a goodly quantity, as the edge is soon worn out. Three plants are pressed into service for the poison-the toto, the putu, and the fanuamamala. The most virulent is the toto, a large tree. When cut, a white milk exudes, which causes blindness; its sap introduced ints the circulation causes death. A band of freebooter nce landed on the western end of Efat. Proceeding east ward, they came to a place called Mole, where the inhabit-
ants prepared for them an inhospitable reception. Ther was an enclosure of water on the beach, which, at low tide served both for drinking and for bathing. The people dried some toto leaves and strewed them in the water. No soone landed, the invaders rushed into the cooling lake. Immedi ately they were thrown into convulsive agonies. Those who only bathed in the impregnated water became blind, whilst those who drank, died. These three plants, the toto being chief, carefully picked and desiccated, were pounded in a mortar with a wooden pestle made of the ara. Next a spe cies of holothuria was taken from the lagoon, put into a lea of colocasia Indica, and placed in the shade till it became putrid liquid, to which the powder was added in sufficient quantity to form a thin paste. One last ingredient was n let, or wasp food, and the villanous concoction was worked up with the expressed juice of an old cocoa-nut, stirred for a month at intervals till the mass became a dark cloudy oil which, when bottled and preserved for twelve months, wa fit for use. Great precautions were employed in applying he poison to the tips of spears and arrows. Every trace of moisture was got rid of by careful drying in the smoke The poison, taken internally, was always fatal. When re eived into the system on the spear point, recovery migh be effected by making instantaneous free incisions in diffe nt parts of the body, to allow the escape of the poisoned blood. Whenever fatal the same symptoms followed-con ulsions, lock-jaw, death. Tetanus was one of the invariable results. Imagine the old Samoan noting the grave for which delirium had found an occupant, exhuming the feve corpse to barb his weapons with the poisoned bones; then ith a skill and patience which no modern pharmacist could surpass, mixing, evaporating, and perfecting his vile compound.-Chemist and Druggist.

How the French Workman Lives.

The French laborer probably ge more for his wage han any other. His food is cheaper and more nourishing. His bouillon is the liquid essence of beef at a penny pe bowl. His bread at the restaurant is thrown in without any charge, and is the best bread in the world. His hot coffee and milk is peddled about the streets in the morning at a sou per cup. It is coffee, not slops. His half bottle f claret is thrown in at a meal costing twelve cents. For few cents he may enjoy an evening's amusement at one of the many minor theaters, with his coffee free. Sixpenc pays for a nicely cushioned seat at the theater. No gallery ods, no peanuts, pipe, smoke, drunkenness, yelling or howling. The Jardin des Plantes, the vast galleries and museums of the Louvre, Hotel Cluny, palace of the Lux mbourg and Versailles, are free for him to enter. • Art and cience hold out to him their choicest treasures at smal cost, or no cost at all. French economy and frugality do ot mean that constant retrenchment and self-denial which would deprive life of everything which makes it worth iving for. Economy in France, more than in any othe country, means a utilization of what America throws away but it does not mean a pinching process of reducing life to barren existence of work and bread and water.

PRACTICAL MECHANISM

by Joshua rose, m.e.
New Series-No. XXXV.

CURVES FOR GEAR WHEEL TEETH

An epicy.cloid may be described or generated by a point in he circumference of a circle that rolls, without slip, upon he circumference of another circle. Hence to produce thi urve, take two pieces of wood, having circular edges, A and B in Fig. 243, and bore a parallel hole obliquely in A to re ceive the tightly fitting and hard piece of pencil shown at P in the Fig. 243, which is to serve as a tracing point. It should be made to protrude well through the wood, be filed even with the circular edge of the same, and brought to a point by filing from the back and on the two sides. By adopting this plan of sharpening the pencil point we ensure

that it shall stand even with the circle of the wood, which is of great importance; and, furthermore, we can let the point protrude well, enabling us to see distinctly the operation of Lay the radial face to any mark upon the base circle, B .
drawing paper and, while holding it in a fixed position, take he piece, A, and placing its perimeter in contact with that of B, and pressing the two together to avoid slip, revolve A around B . The point, P , will then mark upon the paper the picycloidal curve, C C. In this operation \mathbf{A} (the moved circle) is called the generating circle and B (the stationary circle) the base circle. It will readily be perceived that the hape of the curve thus traced will vary with the size of the enerating circle, but the properties of the curve will remain the same. If the diameter of the generating circle, A, be upposed to be infinite, than a portion of its circumferenc may be represented by a straight line, such as A in Fig. 244 and if this straight line b made to roll upon the cir cumference of a circle, a shown in Fig. 244, the the curve traced will be involute, P. In practice a piece of flat spring steel such as a piece of clock jpring, is used for tracing involutes. It may be of any length, but at one end it should be filed so as to leave a scribing point tha will come close to the base circle or line, and have short handle, as shown in Fig. 245, in which S repre sents the piece of spring having the point, P^{\prime}, and the handle, H. The opera tion is to bend the sprin round the circle, B , holding the point, P^{\prime}, in contact with the drawing paper, securing the other end of the piece of steel, so that it cannot slip upon B, and allowing the steel to unwind from the cylinder or circle,B. The point, P^{\prime}, will mark he involute curve, P . Another way to mark an involute is to use a piece of wine in place of the sring and a pencil intead of the tracing point; but this is not so accurate, unless, indeed, a piece of wood be laid on the drawng board and the pencil held firmly against it. In racing any of these curves a hard pencil is necessary to obtain a finc line, and it is best to go over the operation twice, nd if then the curve is a fine and not a double line, it is a proof of correct
 ness.
Returning now to a generating circle of finite dimensions, we will suppose the radius of the base circle to be infinitely extended. A portion of its circumference may then be represented by a straight line, and the curve traced by a point in the circumference of the generating circle as it rolls upon the base line is termed a cycloid. Thus in Fig. 246, B is a portion of a base circle of infinite diameter, \mathbf{A} is the generating circle, and C C is the cycloidal curve traced by the

Fig.246.

point, D, when A is rolled along B. If now we suppose the line, B, to represent a rack, it will be obvious that the part of the cycloid which meets B at one end is suitable for the face on one side of the tooth, and the part at the end is suitable for the other side of the tooth.

Let us now suppose that our base and generating circle have finite dimensions; the generating circle is rolled with
in instead of upon the circumference of the base circle, and
a point upon the periphery of the generating circle will then describe a curve called an hypocycloid. Thus, in Fig. 247, B represents a bore forming the base circle, and A a cylindrical piece of wood forming the generating circle. Then a point at the periphery of A would, upon rolling A within B, describe the hypocycloidal curve, C C. Now though in the four cases here given the curves produced by the prescribed mechanical means are called by different names, yet, as the conditions are the same, it is the same general curve throughout, and is known as the cycloid. If we consider the case of Fig. 243 as positive, then that of Fig. 244 is negative, that of Fig. 246 is neutral, and that of Fig. 247 infinite.
To demonstrate that, by the application of these curves, motion from one wheel to another may be communicated with as much uniformity as by frictional contact of the cir cumferential surfaces, let A B, in Fig 248, represent two plain disk wheels which are at-liberty to revolve about their

fixed centers, and let C C represent a margin of stiff white paper attached to B, so as to revolve with it. Now suppose that rotary motion to \mathbf{A} and \mathbf{B} commenced when the point, \mathbf{E} (where a tracing point or pencil is attached), in conjunction with the point, F, formed the point of contact of the two wheels, and continued until the points, E and F, had arrived at their respective positions, as shown in the figure. The pencil at \mathbf{E} will have described upon the margin of stiff paper the small portion of the epicycloid denoted by F E, and as this movement took place by the contact of the circumfer ences of the wheels it is evident that the arc, G F, must be

equal to the arc, G
E. The conclusion, therefore, is that the motion of the wheel, B, would be communicated uniformly to the wheel, A. Again, if we suppose a series of these small portions of epicycloids, as shown at E F in Fig. 249, to be ar ranged at equal distances around the wheel, B, and a series of points set up at equal and corresponding points around A, which we will call the pinion, then the wheel, B, in revolving in the direction from G to F, would impart a continuous and uniform motion to the pinion, A.
In Fig. 250 is shown a similar case applied to a rack and an internal wheel. The line, B, with the series of short curves, which are portions of cycloids struck with the gene-

rating circle, A , representing the rack, B^{\prime}, with its small portions of hypocycloids representing an internal wheel, or more strictly the elements of one. In our figure the generating circle, A, is drawn half the diameter of the base circle, B, and consequently the hypocycloids are straight radial lines, which will not be the case where these two proportions are different, although the practical construction would remain the same. It will be seen that, by the arrangement of curves and points shown in our two figures, rotary motion may be either trans.
mitted or converted into a plane motion, but it will be noted that this arrangement would transmit the motion in one direction only. To enable it to operate in both directions we in Fig. 251, and we shall have arrived at an elementary form of gearing, known as the wheel and lantern.
To renderthis device useful in practice all that remains is to increase the points to a suitable diameter, making them into rungs possessing the re-
 This will strength. This will necessitate a diminishing of the teeth (to afford space for the rungs to fall into) by the same amount we have added to the points, or, strictly speaking, by rather more, since it is neces sary to allow a little for irregularity in the workmanship and to permit of the free passage of the rungs. Fig. 252 re presents this process
 carried out. A B re presents the wheel, as before, C C the primi tive teeth, as in Fig. 251 ; and by setting the points of a pair of compasses to a trifle more than the radius of the rung, and marking off a number of points of that distance from the curves, C C, we are en abled to trace out the same curves; that is to say, teeth adapted to work correctly with and allow space for those rungs.
It is considered as established that the correct form to b given to the teeth of a wheel that is to drive or be driven by a lantern, trundle, or wallower (which are synonymous terms) must be epicycloidal with the curves generated by the rolling of a circle whose diameter is the same as that of the lantern, measured at the centers of the pins or rungs, which diameter represents, in this case, the pitch circle; the teeth being firs drawnout as if the rungs were points, and then diminished by curves drawn parallel to the first, but set back, as it were. so as to make room for the full size of the rung and allowing a small portion for clearance. It is obvious, however, that such method of communicating rotary motion is unsuited to the transmission of much power, because the pins in the pinion, A, would be considerably weaker than the teeth in the wheel, B, and the pins would soon wear away from the small mount of wearing surface they possess.
Let us now suppose that instead of points we have radial

lines, representing the surfaces of projecting radial ribs, ar ranged at equal distances around the plane of the disk, \mathbf{A}, as in Fig. 253. To determine the shape of the teeth of the wheel, B, to work with those lines, we take a circle, C, in the figure of half the diameter of A , and cause it to roll along in contact with the internal circumference of A, and a tracing point at its circumference will draw radial lines upon A, but the circumstances will not be altered if we suppose these three circles to be movable about their fixed centers and let the centers be in a straight line; and if under these latter circumstances we suppose motion to be imparted to these three circles, through frictional contact of their perimeters, a point on the circumference of C would trace epicycloids upon the revolving plane of \mathbf{B} and hypocycloids upon that of \mathbf{A}. The latter being a radial line, and therefore the proper curve for the teeth of these two primitive wheels, will be epicycloidal for \mathbf{B} and hypocycloids, or radial lines, for A , as shown in the figure. Now let us render these teeth, which are adapted to work with radial lines, capable of practical use, by allowing for the thickness of the ribs, of which the radial lines represented the surface: or, in other words, let us proportion the strength, which we do by increasing the width of the radial lines on \mathbf{A}, so. as to represent the thickness of the ribs, and striking the epicycloidal curves with the same generating circle, but those formed with \mathbf{C} rolling in one direction
nearer to the roots of those struck when it rolled in the other so as to reduce the thickness of the tooth to permit of the passage, between the teeth, of the radial arms, and we shall find that we have arrived at the form of teeth shown in Fig. 254.

Now although the formation of teeth that shall enable any two wheels in a set to work practically correctly together is a subject not as yet under consideration, yet it is proper to here point out that a wheel having teeth of the form of those upon A, in Fig. 14, can only work in gear with one having the form of those upon B, and vice versa, and that, although these two forms of teeth were struck with the same generat ing circle, yet neither two of the wheels B and two of A will work together. We may, however, by means of the employment of another generating circle, carry the process a step further forward and form teeth that will do so. Then we

have in Fig. 255 the same two wheels shown in Fig. 254, with he shape of the teeth in that figure shown at D D and D D. We now introduce a second generating circle, shown in Fig 255 at E E , and of half the diameter of B, and by rolling it utside of A a point on its circumference will mark or add o the teeth shown on A at D, the epicycloidal curves, G and H, G being marked with the circle, E , rolled in one diection, and H , with it rolling in the other direction, care being, of course, taken to let the tracing point start at each operation of tracing from the exact edge or corner line of the teeth or marks at D. So likewise, with the teeth upon

B, we place our generating circle in contact with the inside of the circle of B and bring the tracing point on its circumference exactly even with the face of the tooth at the pitch line, and then rolling the generating circle will trace a line representing the flank, as, for example, at J in the Fig. 255 then by going through the same operation, rolling the gene ratingcircle in the other direction, we mark lines on the other side of the tooth, as shown at K. Thus by the introduction of our last generating circle we have added epicycloidal faces to the teeth on A, shown at D, and hypocycloidal flanks to the teeth on B, shown at J K: giving us the form of tooth shown on the respective wheels at F, the circles forming A and B now representing the pitch lines of their respective wheels, the form of tooth thus arrived at being epicycloidal with hypocycloidal or radial flanks.

How Scorpions Sing.

At the September meeting of the London Entomological Society, Mr. J. Wood-Mason announced the discovery of singing organs in scorpions. He procured two large living scorpions; these, when fixed face to face and goaded into fury, at once commenced to beat the air with their palps and simultaneously to emit sounds which were most distinctly audible. It resembled the noise made by scraping a stiff tooth brush with one's fingernails. The singing apparatus is developed on each side of the body, the scraper upon the flat outer face of the basal joint of the palp-fingers, and the rasp on the equally flat and produced inner face of the corresponding joint of the first pair of legs. The former was thickly beset with stout, conical, sharp and curved spinules; the latter studded with minute tubercles shaped like the top of mushrooms. The sounds were produced by these parts being quickly rubbed together, friction in a dead specimen producing the same sound.

T'he American export of petroleum has increased wonder fully within the last four years, until, to-day, there is scarce ly a civilized spot on the face of the globe to which this cheapest of all illuminators is not shipped. The wells of Pennsylvania and West Virginia have yielded in all about $80,000,000$ barrels, which has a value of nearly four hundred million dollars at the seaboard.-British Trade Journal

Instead of the time-honored millstones, chilled iron rolls are beginning to be used in England for the purpose of reducing wheat and other kinds of grain.

SELF-WATERING FLOWER POTS.
We illustrate herewith a simple and novel device for moistening flowers and plants by means of the evaporation and condensation of water. Fig. 2 represents the parlor garden form. This is made of sheet metal, terra cotta, or other material, and can be made in any desired shape. The upper portion is pierced with openings after the manner of

a stove. In the bottom is a reservoir for water. The earthen flower pots seen in the figure are perforated with numeren flower pots seen in the figure are perforated with numer-
ous holes, and are provided with projecting collurs. They fit exactly into the openings of the cover, and the bottoms reach within one or two inches of the water beneath. The top of the pot is covered with segmental covers, provided with openings in the center, through which the stem of the plant protrudes. The natural heat of summer, or the arti ficial warmth of the room in winter, causes an evaporation of the water in the reservoir. As the exterior casings are watertight, the water condenses on the sides of the flower pot. The earth contained therein absorbs through the holes the needed moisture, and the rest drips back into the reser voir. The segmental covers prevent the moisture evaporating from above, and in case of too much dampness, one or more of these covers can be raised. The water constantly passes back and forth from the reservoir to the earth, and is thus kept pure and sweet, and very seldom needs renewing. Fig. 1 represents a more ornamental design, constructed on the same principle. Flowers once placed in one of these gardens will, we are informed, remain fresh and green all winter with very little care. For further information address the inventor, C. H. Cra ter, Owego, N. Y.

IMPROVED CONSTRUCTIO OF PORTABLE FRAM

 BUILDINGS.We illustrate herewith an improved method of erecting frame buildings by the use of planks of suitable length, and planks of suitable length, an ors, formed, so that the structur may be erected with much saving of timber and by skilled persons. It als may be taken down and packed in small compass for shipment from place to place The supporting posts, A are made of two or mor lanks according to the size planks according to the siz of the edine thed The planks are placed a some distance from each oth er, and are firmly bolted to the beams, B, Fig. 1, which are made of several planks interposed between the post planks, the whole forming a strong and rigid construc tion. The lateral posts con necting girders, \mathbf{C}, are passe through mortises of the plank

CONSTRUCTION OF FRAME BUILDINGS,
balance of the water and.the salt. Stir well three or fou times at intervals, and then let it stand until well settled and cold. Either dip or draw off the clear pickle into the cask or vat in which it is intended to preserve the eggs. When the cask or vatis filled to a depth of 15 inches or 18 inches begin to put in the eggs, and when they lie, say about 1 foot deep spread around over them some pickle that is a little milky in appearance, made so by stirring up some of the very ligh lime particles that settle last, and continue doing this as each lot of eggs is added. The object of this is to have the fine lime particles drawn into the pores of the shells, as they will be by a kind of inductive process,and thereby completely sea the eggs. Care should be taken not to get too much of the lime in-that is, not enough to settle and stick to the shells of the eggs, and render them difficult to clean when taken out. The chief cause of thin, watery whites in limed eggs is that they are not properly sealed in the manner described. Another cause is the putting into the pickle old stale eggs that

SELF WATERING FLOWER POT.
have thin, weak whites. When the eggs are within 4 inches of the top of the cask or vat, cover them with factory cloth, and spread on 2 inches or 3 inches of the lime that settles in making the pickle, and it is of the greatest importance that the pickle be kept continually up over this lime. A tin basin (holding about six to eight dozen eggs), punched quite full of inch holes, edge muffled with leather, and a suitable handle about 3 feet long attached, will be found convenient for putting the eggs into the pickle. Fill the basin with eggs, put both under the pickle and turn the cggs out; they will go to the botom without breaking.
When the time comes to market the eggs they must be taken out of the pickle, cleaned, dried, and packed. To clean them, secure half of a molasses hogshead, or something like it, filling the same about half full of water. Have a suf ficient number of crates of the right size (to hold 20 to 25 dozen eggs), made of laths or other slats, placed about three quarters of an inch apart. Sink one of these crates in the half hogshead, taking the basin used to put the eggs into the pickle, dip the eggs by raising it up and down in the water pickle, dip the eggs by raising it up and down in the water,
and if necessary to properly clean them, set the crate up and douse water over the eggs; then, if any eggs are found when packing that the lime has not been fully removed from, they should be laid out and all the lime cleaned off before pack ing. When the eggs are carefully washed, they can be set up or out in a suitable place to dry, in the crates. They should dry quickly, and be packed as soon as dry. In packing the same rules should be observed as in packing fresh eggs.

Vats built in a cellar around the walls, with about half theirdepth below the surface about 4 feet or 5 feet deep, feet long, and 4 feet wide, are usually considered the best for preserving eggs in, al though many use and prefe large tubs made of wood The place in which the vats are built, or the tubs kept should be clean and sweet free from all bad odors, and where a steady, low temper ature can be maintained-th lower the better-that is, down to any point abov freezing.

[^0]
THE CAROLINA MANTI

by c. few seiss.
One of the most peculiar of orthopterous insects found in the Southern and Western States is the mantis or "race horse" (mantis Carolina, Linnæus). It will easily be recognized among other insects by its large, spiny, raptorial fore legs or arms. With these it captures its prey, which fore legs or arms. With these it captures its prey, which holds it firmly between the tibiæ and tarsi of its fore legs, which are strongly toothed or spined on their lower or posterior surfaces When holding the insect to its mouth while eating, I have often thought it had a half hu man appearance, like a child devoid of table etiquette, with the end of a turkey's leg in each hand, tearing with its teeth the meat from the femur.

The mantis is savage in its habits, and they often have fierce combats among themselves They rush to the attack with their raptorial legs elevated and wings expanded; but when the most expert of the two combatants ha once firmly seized its adversary, they fold their wings and fight with tooth and claw I have on two instances witr.essed the victo rious mantis partially devour the vanquished adversary.

The mantis does not merely "suck the blood" of its prey, as stated by a popula entomologist, but it generally devours blood internal organs, and shell, especially if th object be a soft bodied insect. In ihe case of a caterpillar, if it should be a hairy species. the hair and skin are generally rejected.
In September the female attaches a cluste of eggs (Fig. 2) to the limb of a tree, or to the rail of a fence. Here they remain until the following summer, when the young mantes hatch out I take the following from my journal: April 9, 1877.-The eggs of the mantis Carolina, sent me from Baltimore in November last, hatched to-day. "The young mantes escape only from the upper, longitudinally, central portion of the convex sub-ovoid egg-cluster. They work themselves out by moving backward and forward and from side to side. Their legs are closely folded to the body when they emerge, giving them the appearance of a large gnat larva, and it requires several minutes before they fully extricate them selves, and are able to walk. In a short time they can run quite briskly, and will throw themselves in an attitude of defence when disturbed. When they quit the egg, they leave a small thin shell behind them, adhering to the egg case. The young mantes, when just hatched, are of a pale brown color; their legs and head pale green, the former with dull brown bands above the joints; their eyes are dark and prominent; their bodies linear; the abdomen but little-wider than the thorax; no vestiges of wings visible. They became much darker in color after several hours' exposure to the sun. Each little mantis was about five sixteenths of an inch in length. They drank greedily from drops of water which were sprinkled about the board upon which they were sunning themselves, throwing back their antennæ to prevent them becoming wet.
From sixty to seventy individuals came from each egg-cluster. As the egg packets were kept in a warm room during the winter, their hatching was accelerated, and consequently the coming forth of the young mantes was premature. Theylived only a few days, being killed by the coldness of the weather.
The specimens from which I made my drawing, and also the egg packet, were procured in Baltimore, Md., where it is common enough; but I have never met with it in the vicinity of Philadelphia

the Truncated pichiciago.

The "truncated pichiciago" is one of the smallest of four-footed animals. It is not more than two inches in length. The shield which covers the entire upper portion of its body is composed of a single piece, and consists of reguiar, uniform, and smooth scales neatly arranged like mosaic. This coat of mail is truncated vertically at its rear portion. The animal has a curious cut-off appearance owing to the apparent absence of a tail, but in reality due to the position of that member, which is short and closely pressed against the body. All the lower portions, the neck, stomach, sidest and legs are covered with long and fine hairs
The pichiciago is found chiefly in the Cordilleras mountains, in Chili, where it feeds on earth worms, snails, and insects. It uses its long, large, and sharp nails to make burrows, which are often very deep. In these it remains concealed during the greater part of the day, and rarely venures to wander to any great distance even by night. It can
not jump or run swiftly; hence wher attacked by an enemy it has no means of escape but by its subterranean gallery hence, when hard pressed, it seeks safety in digging a new hole, and very often succeeds in thus escaping; but when thi resource fails, the animal rolls its head and legs under its stomach, forming a ball like a hedgehog, and thus incased in armor defies the teeth or claws of its adversary. It is

THE CAROLINA MANTIS.
mole and other subterranean animals, the eyes are of minut dimensions, and are hidden under the soft and profuse fur of the face.

Tinted Paper

Tinted paper may be prepared in any desirable shade a ollows: 1 gm . of any aniline color is dissolved in 30 gms . f strong alcohol, 300 gms . of distilled water are added, and finally a solution of $1 \frac{1}{2} \mathrm{gms}$. of tannin in 15 gms . of alcohol. The tannin acts as a mordant. Moderately sized white paper is spread on a marble slab, or other smooth, hard surface, and the coloring liquid is applied in even hor

THE TRUNCATED PICHICIAGO.

Botany of the Rocky Mountains,

Sir Joseph Hooker, a distinguished botanist of London, accompanied Dr. Hayden in the survey of Colorado and Utah. He has given in Nature some notes on the botany f the Rocky Mountains, which we copy. The section which he thus visited contained representatives of three very distinct American floras, each characteristic of immens reas of the continent. There are two temperate and two cold or mountain floras, namely, (1) a prairi flora derived from the eastward; (2) a so called desert and saline flora derived from the west; (3) a sub-alpine, and (4) an alpin flora. Two of the principal American re gions are in a broad sense humid; one that of the Atlantic coast, and which extends wes to the Mississippi river, the other, that of the Pacific side, from the Sierra Nevada to the Western Ocean, and two inland, that of the northern part of the continent, extending to the polar regions, and that of the southern part, extending through New Mexico to the Cordillera of Mexico proper. The wgetation of the middle latitudes of the continent re solves itself into three principal meridiona floras, incomparably more diverse than those presented by any similar meridians in the Old World, being, in fact, as far as the trees, shrubs, and many genera of herbaceous plant are concerned, absolutely distinct. These ar the two humid and the dry intermediate re gions above indicated.
Each of these again is subdivisible into three, as follows: (1.) The Atlantic slope plus Mississippi region, subdivisible into an Atlantic, a Mississippi valley, and an inter posed mountain region with a temperate and sub-alpine flora. (2.) The Pacific slope, sub ivisible into a very humid cool forest-clad coast range; th great hot, drier Californian valley, formed by the San Juan great hot, drier Californian valley, formed by the San Juan
river flowing to the north and the Sacramento river flowing south, both into the Bay of San Francisco; and the Sierra Nevada flora, temperate, sub-alpine, and alpine. (3.) Th Rocky Mountain region, subdivisible into a prairie flora, desert or saline flora, a Rocky Mountain proper flora, tem perate, sub-alpine, and alpine
The difference between the floras of the first and second of these regions is absolute; not a pine or oak, maple, elm plane, or birch of Eastern America extends to Western, and the genera of thirty to fifty species are confined to each The Rocky Mountain region, though abun dantly distinct from both, has a few ele ments of the eastern region, and still more of the western.

Magnetic Nickel

The magnetic properties of pure nicke have been lately investigated by M. Wild of St. Petersburg, who procured a nicke magnet in the form of a flat pointed bar made by Wharton, in Philadelphia. The esults are as follows: 1. Pure nickel takes, as compared with the behavior of pure soft iron, a considerable quantity of per manent magnetism; but the maximum of his is only a half to a third of the perma nent magnetism which may be acquired by hard steel. 2. The magnetism remain ing in nickel after cessation of the magnetizing force is less permanent than in well hardened steel; the gradual loss of magnetism in course of time, both in warm ing and cooling, is in nickel greater than in hard steel, even when, by repeated heating and cooling it has, like steel, been brought to a certain state of permanence 3. The temperature co-efficient of nickel magnets in the latter state is less than tha of well hardened steel. 4. The temporary magnetism which pure nickel acquires is about double its permanent magnetic mo ment, half of the temporary magnetism which hard steel can acquire, and a fourth of that which soft iron can acquire. In it magnetic behavior, nickel is thus through out subordinate to steel and iron.

Dangers of Galvanizers, waste
Pollution of streams by manufacturers refuse has been assigned as the cause of more evils than can be fairly brought home to it. A new charge has been brought gainst it not only of serious pecuniar gaint but also of and pecuniar waste, but als danger to life and property. It appear that the galvanizers of the Wolverhamp
izontal lines by means of a small sponge. The paper is then hung up to dry, and may be covered after a few days with a concentrated solution of sodium silicate, to every 100 parts of which 10 parts of glycerin have been added, if it is desired to impart to it a gloss.

Dryer for Oil Colors and Varnishes.-Water, 100 parts; gum lac, 12 parts; borax, 4 parts
on district, England, are in the habit of discharging thei waste acid into the sewers. The damage caused by this practice is almost incredible; but it is clearly proved that the sewers themselves are being rapidly destroyed; the irrigation farms which dispose of the sewage are being ren dered unproductive; and, most serious of all, the boilers of the surrounding factories, which are fed from the neighbor ing canals, are rapidly corroded.-Ironmonger.

NEW TRAPLESS WATERCLOSET.

Noxious gases issuing from defective closets and sewer age connections are an intolerable nuisance, productive of disease, and always injurious to health.
The watercloset illustrated in the accompanying engraving is designed so as to prevent efflux of these dangerous gases. Fig. 1 represents a sectional view of it, by which its peculiar construction will be easily understood. R is a detachable ring, which holds a porcelain non-corrosive valve seat; O , the overflow; T, overflow trap; W is a socket that can be closed with a cap or used as a connection with a washbasin waste; V is a socket for ventilator.
'The feature of novelty in this closet is the absence of a trap between the basin and the soil pipe. It is, however,

doubly protected by the tight seating ball valve and the water seal left in the basin after flushing. The overflow is trapped, as shown in the cut, with a sufficient depth of seal to resist any ordinary pressure, and much more than ever takes place in properly ventilated pipes. The valve of this " trapless" closet is regulated by a foat, which makes it automatic and insures an abundant flush when the closet is in use. Cisterns and service boxes are unnecessary, but may bė used as safeguards against the possible danger of fouling the service pipe when, from any cause, the head might fall below the closet level. The seat of the solid conical plunger is protected from corrosion by a porcelain non-corrosive coating, and the vent, V, relieves the soil pipe and overflow trap from any pressure of gas or foul air. This should always be provided in waterclosets, in addition to the ventilation secured by the soil pipe. This is a feature that should enter into all good plumbing work. There is no complicated mechanism about this closet; it is strong, simple, and, we are informed, efficient and inexpensive. It is the invention of Mr. Jennings, the well known sanitary engineer, of England. Further information can be obtained at the Jennings' Sanitary Depot, conducted by Mr. A. G. Myers, 94 Beekman St., in this city.

ASTRONOMICAL NOTES.

Observatory of Vassar College
The computations of the following notes, which are merely approximate, have been made by students in the Astronomical Department of Vassar College.

Position of Planets for December, 18%. Mercury.
On December 1, Mercury rises at 8 h .9 m . A.M., and sets at 4 h . 53 m . P.M. On December 31, Mercury rises at 8 h . 37 m . A. M., and sets at 6 P.M.
Mercury can probably be seen during the last week of December, after the sun has set, a few degrees north of the sunset point.

Venus.

On December 1, Venus.rises at 10 h .45 m . A.M., and sets at 7 h . 43 m . P.M. On December 31, Venus rises at 10 A. M., and sets at 8 h .23 m . P.M.
Venus will be very brilliant all through the month; it will pass very near the moon, according to the Nautical Almanac, as seen at Wa
December 8 . Venus will he at its greatest eastern elongation on Dece
ber 11, but will be higher in altitude later in the month. Mars.
Mars is conspicuous all through the month, but is becoming smaller, and passes the meridian early in the evening. On December 1, Mars rises at 1 h .10 m . P.M., and sets at 0 h .53 m . of the next morning. On December 31, Mars rises at 0 h .20 m. P.M., and sets at 11 h .44 m. P.M.

Jupiter.
Jupiter sets early and is so nearly in range with the sun that its satellites cannot be seen with ordinary glasses. On December 1 Jupiter sets at 6 h .18 m ., and on the 31st at about 5 P.M.

Saturn.

Saturn, although it appears so pale and so small contrasted with the ruddiness of Mars and the brilliancy of Venus, is at present the planet of most interest to astronomers. The ring is so situated with regard to the sun and the earth that but little more than the edge is seen, but the numerous satellites which pass around Saturn, at different distances and at different inclinations, give great variety to the configurations. Some of these satellites pass along the edge of the ring, going around in a few days, and others are weeks in their circuit and depart long distances from the central body. Titan, the largest, can be well seen with an ordinary rlass. It is now (November 16) on the right of the planet
as seen inthe telescope; and in seven days it will be on the left, and around again in fifteen days at the right.
On December 1, Saturn comes to meridian at 6 h .20 m ., and sets at 11h. 50m. P.M. On December 31, Saturn come to the meridian at 4 h .28 m . P.M., and sets at 10 h . P.M.

Uranus.

On December 1, Uranus rises at 10h. 37 m . P.M., and sets at 0 h .7 m . P.M. of the next day. On December 31, Uranus rises at 8 h .37 m . P.M., and sets at 10 h .8 m . A.M., of the next day.

Neptune.

Neptune rises on December 1 at 2 h .48 m . P.M., comes to the meridian at 9 h .30 m ., and sets the next morning at 4 h . 12 m . On the 31st, Neptune rises at 0 h .49 m ., and sets at 2h. 11m. A. M. of the next day.

New Use for Beet Molasses Retuse.

A promising new mode of producing cold has lately been described to the French Academy by M. Vincent. A short time ago he found that, by distilling the residue of molasses of beet, he could prepare large quantities of chlorhydrate, bromhydrate, and iodhydrate of trimethylamine. He has now shown how it is easy to pass from this body to chloride of methyl, and he insists on the applications of which this latter compound is capable: At 33° below zero (C.) it liquefies, and nothing is easier than to keep it liquid in sealed tubes. If it then be caused to evaporate-e.g., by sending a tubes. If it then be caused to evaporate-e.g., by sending a
current of air through the mass-a cooling is obtained which goes down to - 55°. Mercury immediately congeals in such a medium. This method of producing a very low temperature is, moreover, a very cheap one.

DORR'S ADJUSTABLE HAT AND COAT RACK.

We illustrate herewith an improved adjustable hat and coat rack, which may be constructed of either wood or metal and in a variety of styles. The hooks, it will be no ted, slide upon parallel rods of polished metal, and can be placed either near together or far apart, as desired. The rods are secured in handsome brackets of either metal or wood. Fig. 1 represents the single rack; Fig. 2 is an orna

mental form of metal rack; and Fig. 3 has a wooden bracket in the fashionable Eastlake style. Earh rack may be easily taken to pieces for convenience in packing or shipping. The device is exceedingly strong and durable, and is a neat and handy substitute for the ordinary large and expensive stand.
For further particulars relative to agencies, rights, etc., address the Dorr Hat and Coat Rack Company, 542 Broadway, Albany, N. Y.

The New Tea Region.

The tea trade is generally considered as being the exclusive business of China and Japan, and tea from other countries is apt to be looked upon with suspicion as a spurious article. Seventeen years ago the first tea plattations were established in Assam, and the growth of tea in India was regarded merely as an experiment. The trade steadily increased until, from $1,300,000 \mathrm{lbs}$. of tea in 1861, the export from Calcutta advanced to $25,000,000$ lbs. in 1875 . The cause of the poor with a view of bringing the teas early to market. Smal
farmers grow from 50 to 500 lbs . of leaf, and carry it off to market. If they fail to sell it here they take it to others, and in the meantime the unfired leaf is spoiling fast by exposure to the air. In India the planting, picking, and firing are done more systematically, and consequently a better quality of tea is produced.

A Special Specific Gravity Apparatus.

by james taylor.
It is often desirable to ascertain approximately the specific gravity of a liquid in cases where the hydrometer and specific gravity bottle are not applicable, or would take up too much time. The following contrivance answers very well for this pnrpose, is very readily applied, even with tolerably small quantities of liquid, and easily gives results correct to the first decimal place.
Two straight pieces of glass tubing, 5 to $10 \mathrm{~m} . \mathrm{m}$. bore an d $250 \mathrm{~m} . \mathrm{m}$. long, are joined by caoutchouc tubing to two nds of a T-joint which have been bent so as to be parallel The third end of the T-joint has a piece of caoutchouc tubing of convenient length slipped on and this is stoppered by means of a bit of glass rod. Two mall beakers, a rule, and any convenient stand arranged so as to hold the long tubes vertically, complete the apparatus.
Its application is almost obvi
 us. On pouring a little distilled water into one beaker, and the liquid whose specific gravity is to be determined into the other, bringing the beakers under the two vertical tubes so as to immerse the ends of the latter in the respective liquids, and partially exh $\dot{\text { usting }}$ above, the liquids will rise to heights depending on their relative densities. The plug is now inserted, the lengths of the liquid columns are measured, and the specific gravity required, is obtained by dividing the length of the water column by that of the other.-Chemical News.

NEW INVENTIONS.

A new Gasket, patented by Cyrus S.Stoy, of Butler, Ind., consists of two thin annular metallic plates, joined together at their inner edges, having a space between them for a coil of packing. In taking the joint apart, there being no part of the elastic packing in contact with the face of the joint, it may be readily removed without injury, and may be used many years without renewing.
A simple Wire Stretcher, the invention of D. A. Smith of Marak, K., consists of a forked casting having a squared upper end for receiving a wrench, and perforated ears for receiving a nail that prevents the wire from unwinding after being tightened.
An ingenious Automatic Toy Figure of a Man, invented by John Schwippl, of Brooklyn, N. Y., performs somersaults in an amusing manner. A spring inside the body works a geared shaft, imparting a rotary motion to the arms, which causes the body to roll over and over.
An Iron Fence Post, patented by S. S. Crocker and Albert Wilcox, of Clarence, Iowa, has notches on the front edges Wilcox, of Clarence, Iowa, has notches on the front edges
of the upper part to receive the fence wires. In the bends of the upper part to receive the fence wires. In the bends
and angles of the concave post are holes to receive the hook and angles of the concave post are holes to receive the hook
bolts by which the wires are locked together. By tightening the nut of the bolts the wires are drawn into the hollow of the posts, so that they cannot change their position. This invention will be of great service to farmers.
Cellar Bottoms are generally easily permeated by noxious gases exhaled from the earth, or crack from the pressure of gas beneath. To remedy this difficulty Tobias New, of New York city, has patented a vent for the gases. A narrow channel is constructed at the bottom of each cellar wall under the flooring, from which arises an escape pipe, and thence the flooring, from which arises an escape pipe, and thence
to the roof of the house. By means of this improvement celto the roof of the house. By means of this improvement
lars are freed from noxious gas and are rendered healthy.
A neat Basket, invented by J. J. Cole, of Hillsdale, N. J. consists of a single piece of veneer or similar material cut so that when folded together at the ends it may be fastened at a single point, where a handle is also affixed. It will prove very convenient for carrying berries or small groceries. *
Abraham Morris, of New York city, has invented an improved Sofa Bedstead. A swinging seat section ishinged to the lounge frame and a head section is swiveled centrally to the swinging section, and connected at the upper rear corner by a strap with the head section of the lounge frame. The head section has a supporting front foot that fits into recesses of the lounge frame. It is a convenient article to have in the house.
A new Water,Grain, and Earth Elevator, patented by Levi Gallaher, of Businessburg, O., has an endless chain of lifting buckets, which are connected together by open links, a lower drum having scoops affixed to it, and which supply the buckets of the chain with the material to be raised. The upper drum has chutes so arranged as to register with the buckets of the chain and guide the water to the receiver. It promises to be an invention of much advantage
A new Gas Burner Regulator, patented by Eugene Ginss, of New York city, consists of a hollow cylinder screwed on between the burner and gas fixture. Two conically bored nipples are screwed into the bottom of the cylinder and com municate with the interior of the socket. These nipples direct the head of gas against the side of the cylinder, thus
arresting the solid particles. The passage of gas through the nipples, and its expansion in the cylinder modify the pressure so that a uniform light is secured, blowing avoided, and gas economized.
In a new Process for Tanning and Dyeing Leather, invented by Gonzalio De Cordova and H. N. David, of Brooklyn, and Morris Wise, of New York city, an extract of the leaves of the pimente or allspice tree are used. The tanning is rapid and a rich brown color is produced.
Ira A. Paine. of New York city, the well known shooting expert, has patented a new glass ball for trap shooting. The ball is of the usual kind, but filled with feathers, so that when hit it will produce the same effect as when birds are struck by shot. It also enables a marksman to see the effect of his shot, the smoke having time to disappear before the feathers can possibly reach the ground.
The ordinary Billiard Bridge in common use is deficient in many respects. To obviate these difficulties F. E. Doughty, of New York city, has patented a bridge by which the cue may be supported in any desired position above the bridge by merely turning the handle of the bridge. The bridge has a central vertically sliding and guided cue rest, that is raised or lowered by a pinion connected to the end of the bridge handle, and intermeshing with an interior rack of the sliding rest.
Samuel H. Emanuel, of Gloucester, Mass., has invented an improvement on his Combined Overalls and Jumper. The material forming the front of the garment is entire and without transverse seams. The back is divided across the waist and a flap is formed in the overalls, which is supported by three elastic buttoned straps attached to the inner side of the jumper. A band sewed to the jumper over the waist gives it an appearance of a separate garment. This is a neat and desirable article of clothing for working men.
An improved Watch-case Spring has been invented by D. C. Voss, of New York city. It consists of an ordinary spring, but with the hook end turning on a fixed rivet or pivot of the spring, so that the hook end of the catch may be readily locked to or released from a recess of the watch case. Th spring lasts longer and is more easily repaired than the old style.

A Coffee Roaster, the invention of A. R. J. Langer, of Mount Olivet, Ky., consists of a sheet iron cylinder with a shaft extending axially through it, upon which arms or rings are arranged radially at different points. These arms extend nearly to the inner surface of the cylinder, and serve to thoroughly stir the kernels of coffee as the cylinder is rotated, so that the whole mass is equally acted upon by the heat.

A Detachable Cuff, invented by E. K. Betts, of Lansingburg, N. Y., furnishes an ornamental and strong article of wear. It consists of a continuous back part, sectional inter mediate layers, and front parts, and of a face strip that connects the intermediate and front sections. and is extended over the end of the cuff and down at the back to form stays for re-enforcing the button holes at the points of greatest strain.
Another Cuff,-patented by the same inventor, is made with the back cut narrower than the other parts, so that the cuff may be sewed on both sides, and all the fullness will be taken up by the edges and a superior bead formed on both sides. The back extension is turned inward and thus strengthens the button holes.
A Fence Post, the invention of G. W. Chandler and S. H Ceering, of Moingona, Iowa, fits into a bell-shaped base of hard clay and is bolted at the bottom. The base is filled with earth to make it secure. It is an inexpensive plan and makes a strong fence.
A Liquor Shaker and Strainer, invented by W. H. Trepus, of Chicago, Ill., will be a great convenience to bartenders. In the cover, with screws on the cup, is formed a strainer, covered with a close fitting cap. In the bottom of the cup are two small holes covered with a valve, the stem of which passes through a hole in the bottom, fitted with a spring and ends in a knob. When the ingredients are shaken up in the cup, the cap of the strainer is turned back, and by pressing the knob of the valve stem, air is admitted and the contents can be poured out.
A Nursing Apparatus, invented by G. F. White, of Middletown, is intended to prevent sore nipples. The mother's milk is drawn off by a simple device into a vacuum bulb, whence it is sucked by the infant while the milk is still warm.

A new Window Shutter has been invented by W. S. Everett, of Hyde Park, Mass., which provides for ventilation while a protection against the sun and storm. It can also be turned into an awning. It consists of an outer and inner shutter frame, the latter so hinged to the upper end of the former as to be thrown outward, while side wings close the the sides. The shutter slats have supplementary slats which are thrown up when the shutter is inclined, thus excluding the sun and admitting ventilation. It is a desirable improvement to a house.

A Broom Rack invented by S. W. Sheldon, of New York city, has three rod-connected disks, the upper having notches, the middle one holes, and the lowest disk a beveled edge. It is easy to use and answers the purpose well.
An Evaporator, patented by J. M. Randolph, of Somerset O., consists of an evaporating pan, extending around the top, sides, and bottom of a sliding firebox, whose main smokepipe passes the cleansing tub to heat up the liquid therein, preparatory to its being let into the pan. The firebox is open a the front through the evaporator. A second smokepipe reg-
isters with the fire through the evaporator. It used up all the In a new fuel and is thus economical.
In a new Hat Die, invented by R. L. Goddard, of Palmer, Mass., the shell is provided with holes in the top through which steam is admitted. A cross bar is secured detachably to its top by screws, the ends of which overlap. The die is kept from being drawn up too far by a flange formed around its lower edges and which fits into a rabbet in the lower side of the shell. It is anconvenient device.
A new Grain Tally has been patented by Phillip Thomas, of North Huron, N. Y. To the forward end of the operating lever of the hopper is pivoted the upper end of a connecting rod, the lower end of which is pivoted to the forward part of the bottom. To the forward edge of the hinged bottom is pivoted the middle part of a bar which passes through the guide keeper, attached to the upper part of the hopper. The measure cannot be removed without operating the register It is a simple and accurate device.
A Bung Extractor, the invention of W. A. Wiley, of Allegheny, Pa., consists of a spindle carrying at its lower end a a wood screw. To the stand which supports the spindle a
forked lever is attached which draws the bung. It is easily and quickly operated.
An improved Spring Seat for wagons has been invented by L. J. Bazzoni, of Newburgh, N. Y. It consists in suspending the bottom of the wagon body from the reach bars of the seat, the bars being supported at their ends upon strings. The bottom and seat are thus elastically connected, and the driver is saved from shocks.
A Wharf Lamp has been invented by L. L. Wilson and L S. Reagle, of Centre Point, Iowa. A horizontal bent tube with stop cock extends from the oil reservoir and is plugged, the sides being perforated for a short distance near the end. A wire gauze tube, containing an asbestos filling, surrounds this point. The asbestos wick is indestructible and is easily changed when dirty.
Mr. James F. Callaway, of Louisville, Ky, has devised an improved Apparatus for Heating all Classes of Railway Passenger Cars by Steam, derived from the locomotive boiler. A steam pipe leads from the dome of the locomotive and traverses the floor of the cars, the main pipe extending along the sides or middle of the vehicles, and branches leading
laterally beneath each seat. Ingenious valves are arranged for allowing escape of water of condensation and controlling admission of the steam

Tests for Vision.

Dr. B. Joy Jeffries, 15 Chestnut street, Boston, Mass., is desirous of ascertaining what proportion of people with normal eyes, that is, who do not wear glasses for distant objects, and also of those who have their focus perfectly corrected for distant objects by glasses, are gifted with a visual power above what is now considered good average vision, called vision one.
The following letters are selected as nearest in size to the test letters used by oculists all over the world. The letters should be hung up in a good light; and those of our readers who are able to see them distinctly, further off than

the number of feet marked against each (which would be normal vision), are kindly requested by Dr. Jeffries to send him as above this information on a postal card, simply stating which letters were read and at what distance. From this he hopes to compile and publish some important data.

German Coal.
Hamburg has been the scene of a rather novel exhibition, that of German coal, which we are told, has excited much interest among German patriots and commercial men.
The idea that Germany should endeavor to emancipate herself from the English market and produce her own coal has, it appears, acquired a powerful hold upon the national imagination, and hence the promotion and development of the German coal trade has come to be looked upon as a matter of patriotism. It is also alleged that Westphalian coal is superior in heating power to English, and Senato Godeffroy, in his address on the occasion of the opening of he exhibition, even made it appear that Germany is in possession of coal fields incomparably larger than any tha England can show. The Westphalian coal basin alone, said M. Godeffroy, is capable of producing for seven centuries to come the same quantity of best coal annually that all Eng land now yields, and beyond this, the basin is not yet fully xplored, and is probably capable of material extension With all these supposed advantages Germany has not yet been able to beat England out of the field on her own ground. The city of Hamburg imported in 1876 about $1,500,000$ tons of coal, of which about six sevenths were the produce of England, and only one seventh of home produc tion.

Wooden Money.

Advocates of inconvertible paper currency may perhaps derive some satisfaction and encouragement from the fact that from the reign of Henry I. down to the period of the es ablishment of the Bank of England the legal tender money of England was fabricated out of wood. This instrument was called an exchange tally, and by virtue of it the holder was entitled to receive from the Crown the value inscribed thereon. It really consisted of one half of a four sided rod or staff, on which, when in its entire state, the sum it pur ported to represent was carved in transverse notches, vary ing in width for thousands, hundreds, scores, pounds, shillings, and pence. These signs were for the unlearned; for the advantage of those who could read, the sum was written in ink on two opposite sides of the staff, and, finally, with a knife and mallet the staff itself was split in two longitudi nally. One half, called the tally or check, was given to the person for whose service it was intended; the other half called the counter tally, was laid up in safe keeping untilits corresponding tally should be brought in by the person who had last given value for it. Its intrinsic value was, of course, only that of the wood on which it was composed, but by re presentation it denoted large sums. It was a current token of real money, and served actually to distribute it from man to man by this exchange. From this primitive tally was derived the Exchequer Bill, first introduced in 1696 by Mr. Montague, the Chancellor of the Exchequer. The word "bill," too, was no doubt obtained from the Norman French word, bille, which means a staff. Bank post bills and bills of exchange in our own day came from the same wooden base, and soldiers are said at this hour to be "billeted," be cause formerly they tendered wooden "billes" or tallies to the victuallers upon whom they were quartered. In olden times officers of the army who were taken into the king's own pay were said to be put on the staff, that is, they were paid with exchequer tallies, or wooden money.

An Unknown Narcotic Plant.
I am tempted to notice a plant that grows here of such strong narcotic powers that, in the hands of a skillful prac titioner, it will produce coma of any intensity or duration or even death itself when so intended. The knowledge of this plant is confined to a few families, who transmit the secret as an heirloom from generation to generation, and the heritage is highly prized, confirming it is thought the power of miracle workers and priests. For the plant is in many ways used in aid of solemn imposture, superstition, and even crime. The power thus exercised is called "wanga," even crime. The power thus exercised is called "wanga," wanga priest can throw into a death-like coma, and knowing wanga priest can throw into a death-like coma, and knowing
the moment of returning consciousness, he will make a show of recalling to life. If a burglary is to be committed, he can, by means of his art, cast a deep sleep on all indoors; and one may understand how he can attain other forbidden ends in the same way. An experienced botanist could not fail to discover this plant, which, as an anæsthetic, would no doubt prove a valuable acquisition to medical science. Major R. Stuart, Port au Prince.

Bullet Making.

The manufacture of bullets is not so simple as it used to be. At Woolwich, England, the melted metal is poured into a receiver, and as soon as it solidifies, but before it is cold, it is forced by hydraulic pressure through cylindrical holes in the form of long strings. This process is to pre vent the formation of air bubbles in the bullet, which would cause it, when fired, to swerve from its course. The leaden strings are thence carried to the bullet moulding department, where they are cut into lengths and roughed; then shaped in one machine, and finished in another. They have now to be plugged. These plugs were formerly made of wood, but are now prepared from a special powder, which solidifies afterbeing pressed into form.-Ironmonger.
Ink stains in cotton or linen can be removed by washing in salt and water. This should be done before the fabric is washed with soap.

New Agricultural Inventions.

A new Butter Mould has been devised by Mr. Augustus W. Faris, of Red Sulphur Springs, West Va., which presses out the milk and water from the butter and forms it into neat packages of uniform size, so that it can readily be stowed in boxes for transportation, and for the retailer.
Mr. Philip Leitz, of Baton Rouge, La., has patented a Machine for Cutting Sugar Cane, or Corn, Cotton Stalks, and Stubble. As the apparatus is drawn forward, upper knives first meet the cane and cut off the tops, and then a lower set of knives cut off the bottoms. These knives may be adjusted to work higher or lower, with reference to the ground. The new features consist mainly in the mechanical construction.
A novel Ditching Machine, devised by Mr. Peter N. Fowler, of Smith's Mills, Ky., embodies seven new devices. In rear of tre machine is a large wheel having a wide smoothfaced rim. Around this passes an endless chain of buckets formed of sharp edged steel bars. As these begin to rise at the lower side of the wheel, the soil within them is separated from the ground by the edge of the plate, which retains the material in the buckets as they pass upward.
Mr. John J. Smith, of Unionville, Mo., has patented a new Sulky Harrow, which adapts itself to the surface of the ground, however uneven said surface may be. Its parts may be separately or simultaneously raised from the ground in passing from place to place or to clear obstructions.
A new Grain Separator for Thrashing Machines, invented by Mr. James M. H. F. Shepler,has an improved straw carrier by which all the grain that passes over or through the separator is saved and returned to the grain elevator of the thrasher. Another device prevents the choking of the riddle stacker.
Mr. John F. F. Porter, of Booneville, Miss., has patented a new Fastener for Colters and Plow Standards. It may be applied to any kind of a plow, is not liable to break or get out of order, and holds the colter or standard firmly in place. The colter may be raised or lowered as desired.
Mr. Royal W. Barnard, of Fayette, Iowa, has devised a new Butter Worker. It is made in the shape of a foot, one portion of which is made flat for packing, and the other portion has flanged edges to scrape down the butter from the sides of the tank, and also to prevent the grinding of the grain of the butter by not permitting washing or rubbing of the same.

New Mechanical Inventions.

Messrs. Nimrod Gooder and Bernard Lavin, of Kansas ville, Wis., have devised an improved Machine for Punching and Shearing, which enables cold punching, shearing, and similar work to be conveniently and efficiently performed. The new feature resides in the combination of a formed. The new feature resides in the combination of a
vertically guided and interchangeable tool with a pivoted vertically guided and interchangeable tool with a pivoted
actuating cam lever, and interchangeable equalizing plate acting on the top of the tool and with a pivoted spring engaging the Tower part of the tool. By retracting the spring the tool may be easily changed.
An Improved Rock Drill has been invented by Mr. W. W. Gaines, of AuSable Forks, N. Y. Ordinarily the serpentine groove which gives motion to the slide valve in these machines is formed of a single segment of a cylinder made of hardened steel. In the present instance it is made of two separate pieces of metal. This is claimed to obviate the danger of the segments cracking and admits of their easy removal from the piston head when they wear out

A new Car Coupling, devised by Mr. Christmas P. Byrd, of North Cambridge, Mass., has a releasing lever which ex tends down tol the drawhead and throws back, by the con cussion of the latter, trigger mechanism so as to release a sliding pin and drop the coupling pin into the drawhead and link for coupling. The coupling link is held in the re quired position for entering the opposite drawhead by a crank screw and head adjusted from below the drawhead

A curious and novel device is a new system of Buoyan Propeller Wheels for Vessels invented by Mr. Laurence
Brown, of Chatham, New Brunswick. A number of airtight Brown, of Chatham, New Brunswick. A number of airtight
polygonal drums are arranged to turn in bearings on a supporting frame, upon which frame the saloons, etc., are erec ted. By suitable machinery these drums are revolved and cause the propulsion of the entire structure, on the principle of an airtight float or box which, when upset or turned, will change position and move over to the side towards which it falls.

Mr. Ezekiel Delano, of Greenwich, Conn., has devised new Addressing Machine, wherein devices are embodied fo addressing papers and packages rapidly without the sticking of the label strip so as to clog the machine, and also for re
moving the papers or wrappers. The construction is very ingenious and well calculated to save time and labor.
Mr. Henry D. Rodgers, of New York city, is the invento of the latest machine for making car conductors honest. It is a Fare Register, shaped something like a large watch and containing a bell and a moving strip of paper, which last passes from one spool upon another. On the paper are marked numbers indicating the number of fares received, each number being greater than that preceding by the sum of one fare. When the conductor pushes down a follower,
the bell is sounded and the paper moved to the second spool At the same time one of the numbers marked on it is perforated by a needle. The last number found punctured represents the total of fares taken. The device is of exceptional ingenuity, and is well calculated to check the thieving
proclivities of even the !most conscienceless of conductors Those of our readers who may desire further information concerning any of the above described inventions, can ob tain the same by communicating with the inventors at the addresses named.

A New Dyestuff from Anthracene.

A mixture of glycerin and concentrated sulphuric acid re acts upon the dyestuffs derived from anthracene and produces new compounds, which likewise possess coloring properties. As yet only alizarine and mono-nitro-alizarine have been tested in this respect. By heating a mixture of 1 part of alizarine paste, 2 parts of white glycerin, and 2 parts sulphuric acid of $66^{\circ} \mathrm{B}$., the liquid becomes rapidly dark brown, and a large quantity of gas is evolved containing sulphurous acid and acroleine. The temperature is kept for some time at $200^{\circ} \mathrm{C}$. ($392^{\circ} \mathrm{Fah}$.), in order to accomplish a perfect con version of all the alizarine. It is then allowed to cool, the product poured in a large quantity of water and filtered. The dark yellow, insoluble residue is washed several times with hot water, then taken up cold by a mixture of equal parts alcohol and water, in which the new dyestuffs dissolve. The shades of red and pink which they yield in dyeing are more yellowish than those of alizarine, the violets are more bluish, and the browns more reddish, while the blacks are also finer than with alizarine. With ammonia and carbonate of soda it yields an orange-red solution, while alizarine with alkali dyes purple. If alcohol is added to these solutions they become dicroitic, namely, in transmitted light red and by reflected light green. It reacts toward alum the same as alizarine, and also resembles it in its other physical proper ties, such as its reaction toward soap, acid liquids, chlorine etc. With like treatment the mono-nitro-alizarine produces peculiar results. On treating the washing water with caus tic soda, a dark indigo blue precipitate is thrown down which is reduced by tin salt and caustic soda solution to pink liquid, which becomes covered with a greenish blue lustre. The precipitate collected upon the filter consists of two different substances, which may be easily separated by a cold mixture of alcohol and water. The substance, easily soluble in this, dyes violet with alum mordants, bluish-black with strong iron mordant and a mixture of iron and alumina and bluish grey with weak iron mordant. The other and less soluble substance dyes quite a fine black, a grey violet and instead of red a pink, and for brown a catechu brown without any red admixture. Both dyes resist soap well chlorine not so well, and are destroyed ly strong acids.
Dyestuffs of the anthracene series are known already which produce a violet with alum mordant. One of these is obtained by the action of ammonia upon anthrapurpurine in closed vessels, and has been found by Perkin in crude alizarine. It seems to be identical with the purpuramid of Stenhouse. The other was put into the market about a year ago by Gauhe \& Co., of Barmen, under the name of " anthra violet," but possesses no special interest from an industrial point of view. According to N. Potier's investigations (Soc Ind."de Rouen, Sept. and Oct., 1876), this anthraviolet dyes uneven and with difficulty, and the colors produced do not withstand either soap or chlorine
A dyestuff which yields a series of colors similar to those given by Campeachy wood, and which can replace them specially by the very fugitive steam dyes, would be of spec ial interest. Both of the dyes obtained from nitro-alizarine by the author seem to satisfy these conditions. As regards the constitution of these substances, the author thinks that in their production the molecule of glycerin takes part in the reaction, and therefore they may perhaps be regarded as glycerides. He reserves to himself the right to subject the other dyestuffs of the anthracene series, such as purpurine isopurpurine, etc., as well as the non-dyeing members of the series, anthrachinone and nitro-anthrachinone, to the same treatment.-Bulletin Sociêté Chimique.

Poison in the Oven.

Sixty-six persons living in the neighborhood of the Parc Monceau, Paris, were almost simultaneously seized with symptoms of lead poisoning. The attention of a sanitary association was directed to the epidemic and a long investi gation was then undertaken as to the cause of so many disasters. The water, wine, and groceries used by the suf ferers were found to be unimpeachable. It was discovered however that, with two exceptions, all the patients ha bought their bread from the same baker, and as to the two exceptions they had unwittingly consumed bread in an eating house which was supplied by this baker. The baker himself and his assistants were more severely poisoned than the majority of their customers. This led to an examination
of the stove, and the places that would come in contact with of the stove, and the places that would come in contact with
the outside of the bread, and it was then finally revealed that the baker burnt wood brought from old houses recently destroyed. It had constituted the wainscoating of the house and was covered with several layers of paint, which the heat converted into pulverized oxide of lead, and which naturally adhered to the moist surface of the loaves. In onsequence of this discovery a regulation has be by the Prefecture of Police forbidding bak
ovens with wood derived from old houses.

Roumanian Amber.

One of the natural products of the Danubian Principaliies is amber, which, however, differs totally from the Ger man product found on the shores of the Baltic Sea. Both are the fossil resins of antediluvian trees, and agree in
chemical composition, but differ in color. German amber is found only of light colors-yellow, white, and pinkwhile Roumanian amber is red, pink, brown, blue, green, and black. These colors are frequently found mixed in single piece, and we also have lumps with silver colored veins and gold specks. On account of this variety of colors the Roumanian amber is highly esteemed, and darker and more beautiful pieces are more costly than yellow amber, especially as they are more rare.

The Flight of Partridges.

To the Editor of the Scientific American:
Why is it that a covey of partridges cannot fly across the Mississippi river? At this point the river, during low water is 1,200 yards wide, and $50 \frac{1}{2}$ feet above tide water. I have seen whole coveys go down into the water at 600 yards; though in hunting I have seen single birds go nearly as far to windward, until they rose to the height of 40 feet, and then follow the wind to cover. A covey started from immediately below Natchez, Miss. (an altitude of 260 feet) to fly diately below Natchez, Miss. (an altitude of 260 feet) to fly
across the river (at that point the river is 1,000 yards wide). across the river (at that point the river is 1,000 yards wide).
They came " like shot," almost describing a " bee line" from the altitude to the bed. They were unable to perch, and what were not killed by striking the houses, were picked up exhausted (October, 1871). They hatch here during May. Frequently the nests are broken up in April; they then con tinue to lay and hatch and bring their broods out during August. In the case cited at Natchez, Miss., they were old birds, or rather of the May brood. I have seen coveys, during the first quarter, fly from drift pile to drift pile, and ac complish their migrations in that manner. Drift does not generally run in the Mississippi river, only from November to June. Their migrations are always westward.
Bartlett's Bayou, La.
C. F. S.

Testing Wool by Entomological Knowledge

A practical example of the value of a knowledge of ento mology in connection with commercial transactions is afford ed by M. Viret's suggestion in the Journal de l' Agriculture, of a simple method of detecting the admixture of inferior foreign wools with fleeces purporting ta be of superior qual ity. In certain cases the identification of wool is easy, Rus sian and Buenos Ayres wool, for example, being readily distinguished from all others by the presence in the fleece of wild oats in the one instance and a peculiar variety of small thistle in the other. But in German, Spanish, Australian and Morocco wools no such test is applicable. To distinguish between these, M. Viret recommerds us to have recourse to entomology. The fleeces from each of these countries will be found to contain coleopterous insects peculiar to it, and by an examination of these the real source of a wool in fleece may be indisputably determined by whatever name a dis honest stapler may have placed it on the market.

Black Finish for Brass.-Optical and philosophical instruments made in France often have all their brass sur faces of a fine dead black color, very permanent and difficult to imitate. The following, obtained from a foreign source, is the process used by the French artisans: Make a strong solution of nitrate of silver in one dish and of nitrate of copper in another. Mix the two together and plunge the brass into it. Remove and heat the brass evenly until the required degree of dead blackness is obtained.
"Is THIS a foreign country?" asks an American journal. " Russian leather is made in Connecticut, Bordeaux wine is manufactured in California, French lace is woven in New York, Italian marble is dug in Kentucky, Marseilles linen is produced in Massachusetts, English cassimere is made in New Hampshire, Parian art work comes from a shop in Boston, Spanish mackerel are caught on the New Jersey coast, and Havana cigars are rolled out by the million in Chicago."

A mode of producing tissues printed in relief, imitating rold, silver, and silk embroidery, has been patented by \mathbf{M} Coffin, in France. The pattern is printed on satin by means ongraved plates and with gilders' fatty mordant, and, af terwards, the fine parts of the design are printed with th same vehicle with the addition of gold or silver in powder

The quantity of herrings caught this year on the Danish coasts is said to be enormous, and it is hoped that these fish, which suddenly deserted the Danish waters about three hundred years ago, after having for centuries represented the chief source of revenue to the country, may now again direct their migrations to the Danish coast.

The Atlantic Monthly does honor to one of its old con tributors by issuing a life-size likeness of the Quaker poet John Greenleaf Whittier, in commemoration of the anni versary of the poet's seventieth birthday. The lithograph was executed by Mr. J. E. Baker and is in the highes style of the art. It can be obtained from the publishers, H . O. Houghton \& Co., Boston, on remitting the price, $\$ 1.00$

The depositors in the savings banks of New York city re mostly poor working people, who are allowed five pe cent interest; but they are required to deliver up a little more than half of their interest money in the shape of per sonal taxes to the extravagant Tammany Ring who run the city government, and have run up the annual personal tax on savings bank deposits, to 2.65 per cent.

Butimes and extomal

 The Charge for Insertion under this head is One Dollar a line for each insertion.Magic Lanterns and Stereopticons of all prices. Views
Hustrating every subiect for public exhibitions. Profl illustrating every subbect of orpunbicic exhibitions. Prow
table business for a man with a small capital. Also lan-

For Sale.-The Patent of a new Water Elevator. Address P.O. Box 470, N. Y. .eity.
Who sells Hardy's Reclining Chair? Address A German gentleman, o
A German gentleman, of large experience, speaking the modern languages fluently, wishes 'to represent one
or two west American frms at the Paris Exhibition. Ad-
dress L. B. 1,000 , dress L. B. 1,000 , Youngstown, 0
"Our Pet" Scroll Saw, Lathe, Anvil,Vise, Drill, and
Grinder, $\$ 10$; with tools Grinder, $\$ 10$; with tool
East Brookfleld, Mass.
Lansdell \& Leng'siLever and Cam GateValves. Cheap-
est and best. Leng \& Ogden, 212 Pearl St., N. Y. Applicable as are the Varnishes and Japans of Hyatt he artisan and manufacturer in coach, car, carriage, furniture, sewing
machines, organs, and general machinery, in wood, iron and tin, their use is recommended by them fy their col-
or, with purity and durability. Send for Grand St., N. Y.
For Sale, Exchange, or To Let.-Large Factory, w
engine complete. Address P.O.Box 470 , N. Root Blowers, No. 1, 2, and 4; also a No. 5 Sturte Blower-all suitable for cupola or forges-and a No. 6
Hot Blast Heater, in perfect order, at very low prices. Address Hill, Clarke \& Co., Boston, Mass.
Bishop Stave-Sawing Machine for light work, Novelty
Iron Works, Dubuque, Iron Works, Dubuque, Iowa, sole manufacturers. It
makes the best stave, uses less timber, cuts with the makes the best stave, uses less timber, cuts with the
grain, and makes 6,000 to 9,000 per day. We also build
Barrel Machinery for "Slack Work," Gauge Lathes, etc. Barrel Machinery for "Slack Works
Send us your address for circulars.
Manufacturers of Lock Nuts will please send price
and description to Box 23, West Troy, N.Y. Wanted.-Light Second-hand T iron to lay $11 / 4$ miles track. Send prices to Potsdam (N.Y.) Lumber Co.
The $\$ 5$ Rifle advertised in this issue by Messrs. Turner \& Ross, weil known and reliable dealers, is really a great
bargain, and it is sold for a great deal less than its actual cost. They fill orders promptly.
Wanted-Blowing Engine, large air, small steam cylin-Noise-Quieting Nozzles for Locomotives, Steamboats, Organ Blowing Hydraulic Engines; best and cheapest. Roosevelt, 40 W. 18 th St., N. Y.
For New Illustrated Catalogue of Foot Lathes, Scroll Saws, Small Steam Engines and Amateur's
Shaw's Mercury Gauges, U. S. Standard of Pressure.
Sho Stoves Crawford \&
Shop Stoves. Crawford \& McCrimmon, Brazil, Ind, Bolt Forging Mach. \& Power Hammers a specialty.
send for circulars. Forsaith \& Co., Manchester, N. H. For Town \& Village use, Comb'dHand Fire Engine \& Hose Carriage, \$350. Forsaith \& Ca Manchester, N. H. Best and Cheapest Wagon Tire Upsetter, only \$12.
Circular free. H. W. Seaman \& Co., Millport, N. ₹. John T. Noye \& Son, Buffalo, N. Y., are Manufactur-
ers of Burr Mill Stones and Flour Mill Machinery of all kinds, and dealers in Dufour \& Co.'s Bolting Cloth. end for large illustrated catalogue.
Power \& Foot Presses, Ferracute Co., Bridgeton, N.J.
Solid Emery Vulcanite Wheels-The Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel - other kinds imitations and inferior.
Caution.-Our name is stamped in full on all our best
Standard Belting, Packing, and Hose. Buy that only. Standard Belting, Packing, and Hose. Buy that only.
The best is the cheapest. New York Belting and Packng Company, 37 and 38 Park Row, N. Y.
Steel Castings from one lb. to five thousand lbs. Invaluable for strength and durability. Circula
Pittsburgh Steel Casting Co.. Pittsburgh, Pa.
For Best Presses, Dies, and Fruit Can Tooks, Bliss \& Hydraulic Presses and Jacks, new and second hand Hydraulic Presses and Jacks, new and second hand.
E. Lyos and Machinery for Po., 470 Grand Stishing and Buffing metals. N. Y. For the best Gate Valves of all kinds, apply to D. ennedy \& Co., 88 John St., N. Y
Boulter's Superior Muffes, Assayers and Cupellers
Portable'Furnaces, Slides, Tile, Fire Brick and Fire Clay Portable Furnaces, Slides, Tiile Fire Brick
for sale. 1,609 North St., Philadelphia, Pa.
"Little All Right," the smallest and most perfect Re-
olver in the world olver in the world. Radically new both in principle and peration. Send for cir
Lawrence, Mass., U.S.A
For Solid Wrought Iron Beams, etc., see advertise-
ment. Address Union Iron Mills, Pittsburgh, Pa., for ment. Adaress
Felt of every description for Manufacturers' purposes, especially adapted for Polishing, can be furnished in any
thickness, size, or shape. Tingue, House \& Co Manuthickness, size, or shape. Tingue, House \& Co., Manu-
facturers. Salesroom, 69 Duane St., N. Y. Factory at Glenville, Conn.
To Millwrights and Parties in want of Engines, Boilers
Shafting, Gearing, Pulleys, etc., upon receipt of speciflShafting, Gearing, Pulleys, etc., upon receipt of specifcations we will giveyou promptlybo
B. W. Payne \& Sons, Corning, N. Y.
Extraordinary Offers in New and Second-hand Pipe Kreider, Campbell \& Co, 1030 Germanto Philadelphia, Pa., Machinists and Steam Engine Builders, Millstone Manufacturers, Contractors for [Mills for all kinds of Grinding. Estimates furnished.
Improved Wood-working Machinery made by Walker
Bros., 73 and 75 Laurel St., Philadelphia, Bros., 73 and 75 Laurel St., Philadelphia, Pa. Skinner Portable Engine Improved, 21-2 to 10 H. P.
Skinner \& Wood, Erie, Pa. Tin Ta
Fine Taps and Dies for Jeweler's, Dentist's, and MaTo Clean Boiler Tubes - Whitney, Hartford, Ct To Clean Boiler Tubes-Use National Steel Tube
Cleaner; tempered and strong. Chalmers Spence $\mathbf{C o}$ Blake's Belt Studs. The most durable fastening for
rubber and leather belts. Greene, Tweed \& Co., N. Y.

More than twelve thousand crank shafts made by Chester Steel Castings Co. now running; 8 years constant
use prove them stronger and more durablethan wrought iron. See advertisement, page 366 .
Diamond Planers. J. Dickinson, 64 Nassau St., N. Y. Safety Linen Hose for factories, hotels, and stores, a
owest rates. Greene, Tweed \& Co., 18 Park Place, N.Y.

(9)

(1) J. H. asks: Can you give us a rule to neasure the height of a tree or other standing object mirror in a level position on the ground, at a little distance from the tree, and then step backward until you see the top of the tree reflected in the center of the Your height tree=
$\frac{\text { Your height } \times \text { distance of tree from mirror. }}{\text { Your distance from mirror. }}$
(2) F. C. H. says: 1. I have a boiler that has 22 square feet of heating surface, contains 20 galons water up to water gauge, will evaporate 20 gallons of water per hour, with ordinary firing. What horse
power is it? A. As we have frequently explained, there power is it? A. As we have frequently explained, there
is no standard for measuring the power of the boiler, in a foundry pass their finger through the melted iron as it ran from the cupola without receiving any buipn whatever. Can you explain the phllosophy of this experiment? A. The moisture on the skin is converted
into vapor, which forms a protective covering. 3. How into vapor, which forms a protective covering.
can the ordinary bars of cast iron (pig iron) be broken so as to be melted in a crucible or small cupola? How are very heavy masses of cast iron broken, snch as
cannons, heavy machinery, etc., to be remelted? A cannons, heavy machinery, etc.. to be remelted? A.
Cast iron can be brokenwith blows from a heavy ham mer. Dynamite has sometmes been used for large
(3) J. A. M. asks: What is the method of setting the valves of the Corliss engine, and regulating
the cut-off? A. Advance the eccentric until the valve the cut-off? A. Advance the eccentric until the valve
has the proper lead, and then adjust the tripping arangement by trial.
(4) A. W. asks: What is the best thing for making a person grow? A. Good food and good
habits.
(5) L. M. C. asks: 1. What is steam pack ing? How is it constructed and used in the pistons of ings, which are set out by the pressure of steam. What course would you advise a young man twenty years of age to pursue in order to learn to be a compe-
tent steam engineer? A. He should pursue a course of instruction such as is given in our best technical
(6) J. W. S. asks: 1. How much advantage has the best automatic governor cut-off engines over the best throttling engines? A. You will find
some notes on the subject on p. 321, vol. 30, of the Scientirig Anerican. 2. Is a valve which cuts off and
admits the steam better than two valves for doing the admits the steam better than two valves for doing the
same, one riding on the back of the other? A. Genersame, one riding on the back of the other? A. Gener-
ally the clearance will be somewhat less in the case of the former arrangement, and there will be less mech ism and fewerwearing parts.
(7) P. G. asks: Is there any tool giving the exact length of \& circle, in drawing that circle? Would such a tool be of any practicai use? A. We do not
know of any such instrument. It would be of some use if simple and cheap.
(8) T. J. R. asks: 1. Would it not be a better plan if, in reducing the area of grate bars in burning sides of the furnace to reduce the center over the grate bars? A. This idea is practically carried out in the dead plates or coking plates that ars usually fitted. 2.
What is the rule for finding the flow of stea:a through What is the rule for finding the flow of stea a through
a pipe into the atmosphere? A. You will find rules in he Scientific American, p. 113, vol. 29.
(9) A. G. says: I have a 5 horse power engine and a horizontal boiler about $41 / 2$ feet long. The
boiler does not make steam fast enough. I want to burn coal dust to save fuel. Please tell me what is best to increase the draught, a blower, or shall I turn the exhaust in the firebox above the flues? Also what is
best to keep the boiler from rusting? ing into the stack. Paint your boiler to prevent rusting. There is a black varnish made from mineral oil hat is largely used.
(10) F. C. J. says: I have a boat 16 feet long and 4 feet beam with an engine which has a 4 inch
stroke and 2 inch bore. What sized boiler will I require and how many tubes? What is the greatest rate of speed I can make? A. Boiler 2 feet in diame-
ter, 3 feet high, with from 50 to 60 square feet of heating surface. Probable speed, 5 miles an hour in smooth water.
(11)
(11) R. C. says: 1 have a 5 foot wheel that thick; it runs a belt over a 10 inch pulley. I run the large wheel by hand. Can I gain speed and save labor
by putting a small cogwheel on the shaft with a larger by putting a small cogwheel on the shaft with a larger
one over it with a crank to run it? What will be the think the preels that I will have to to bore of fective than the one proposed. If you wish to have greater speed change the pulleys.
(12) E. I. O. Co. says: We have a 11 inch high pressure engine with about 2 feet stroke. In win-
ter time we have great trouble in separating the sand being so mixed up with the frost. If we could get warm water in our hutches it would be a great benefft
to us? Can we condense the steam of the engine in to us? Can we condense the steam of the engine in
our hutches and will it interfere with the power of the engine, and to what extent? A. By carrying the exhaust pipe into the water, and letting the steam escape water without producing back pressure, that is, if there
is constant circulation. You can put the pipe as far down as
cated.
(13) R. R. R. asks: How is the Atlantic cable repaired when broken in mid ocean, and how do
they fnd the place where the break occurs? A. The calculation is based on the principle that a current o divide itself; and the current on each course will be in exact proportion to the resistance of that course a
compared with the others. When the cable is laid, th resistance of the entire length is measured, and from this is calzulated the average resistance per mile. Now if a break occurs, the current will escape through the
water, and the resistance of the cable will be again water, and the resistance of the cable will be again
measured and compared with its previous resistance; this gives the figures of a proportion from which the distance, in miles, is calculated; this calculation is made at Newfoundland, and at "Heart's Content,"
and a mean of the two results is taken. Two vessel and a mean of the two results is taken. Two vessels
furnished with grapples sail over the place indicated furnished with grapples sail over the place indicated
until the two ends are found, when they are drawn up and well spliced.
(14) S. H. K. says: I have found a vege table color for the hair which makes a very natural brown or black. As I have it, it is not a fast color.
When applied to the hair it can be washed off, but will not rub off. What can be combined with it to make it a fast color, or what could be applied to the hair, afte setit? A. This can only be deter ide of tin, tannin, sumac decoction, acetate of iron, and alumina, cream of tartar, etc., applied before or
(15) W. J. C. says: I have a telegraph line $\frac{1}{2}$ mile long,stovepipe wire,with ground plates 30 x 36 inches; one in a well and the other buried in moist earth with its upper eadge flush with the surface. How many cells gravity, $41 / \mathrm{x} \times 41 / 2$ inches, will give a fair sound,
using two common office sounders? A. Your ground connection is not sufficient, and will require about ten cup cells, unless the magnet wire on your sounders is very fine. Connect you
gas or water pipes.
(16) L. H. McF. says: I have seen bottles of oil and phosphorus prepared in such a way that when the cork is removed, admitting air, the contents
of the bottle become luminous. Please inform me what kind of oil and phosphorus, and how to incorporate them to use? A. Heat the oil (oiive oil) to about the temperature of boiling water (212° Fah.) and drop
in the phosphorus in small pellets. Ordinary stick phos phorus is used-it dissolves in the hot oil.
(17) M. R. asks: What fulminating mate rial is used in small cartridges? A. The fulminate of mercury is generally used. To prepare it, 1 oz. of mer
cury is dissolved by a gentle heat in $81 /$ measured ozs. of nitric acid (of specific gravity $1 \cdot 4$), and the solution is poured into 10 measured ozs. of alcohol (specific gravity 830); action soon ensues with the evolution of copious white fumes, and the fulminate is deposited in
white crystalline grains, which are washed with cold white crystalline grains, which are washed with cold
water, and dried at a gentle heat. It explodes at a temperature of 390° Fah. by friction, percussion, and by contact with strong acids. For percussion caps and niter, is added to the fulminate.
(18) I. F. D. asks: What metal will heat and cool the quickest? A. Pur
have the lowest specific heats.
Will ammonia act corrosivel
On copper, yes; on iron, no.
Will a fluid continue to increase in pre fined in a vessel and kept at a degree or two above the boiiing point? A. Tie pressure will remain constan
(19) J. R. S. says: In order to remove phurous acid from an aqueous solution of gum, I find nothing available but carb. baryta, whic' is expensive.
What is the cheapest method of remcving the sulphur ous acid from the solution? A. Use marble dust, as

carbonat

(20) F. C. says: I have a pump in my well with lead pipe 16 feet long. Sometimes the water has a
sweet metallic taste. How can I test the water in the well as to whether the lead is poisoning it? Will eistern water drawn through lead pipe be affected by the pipe? A. The water is very probably contaminated.
To test this pass sulphuretted hydrogen gas through a sample of the recently drawn water for some time,and observe if a black precipitate is formed; if so, lead is
present, and the water should not be used for drinking or cooking purposes. To make the sulphuretted hydrogen, place in a large bottle a few small pieces of protosulphide of iron, and cover them with sulphuric acid
previously diluted with two parts of water. Perforate previously diluted with two parts of water. Perforate
the stopper with a bent glass tube to conduct the gas as it is formed. Lead pipe is not suitable for the con duits of well or cistern water-tubes of wood or enam-
eled iron pipes may be used instead.
(21) W. B. S. asks how to clean iron rust off window glass? A. Mix muriatic acid with an equal
quantity of water, and apply this with a small cloth cushion to the spots.
(22) C. F. P. asks how to make and apply a black japan to small iron castings that will dry soon Apply a ground of asphaltum, 3 ozs.: boiled oil, quarts; burnt umber, 3 ozs. Mix by heat and when cooling thin with turpentine. Lay on three coats, and
between each dry the article in an oven heated from between each dry the article in an oven heated from
250° to 300°. Lay on several coats of varnish, drying in an oven between each, then polish with powdered pumice and rub with oll.
How many and what numbers of Scientific AmeridaN SUPPLEMENT contain the lessons on mechanical drawing? A. Professor MacCord's lessons on mechanical drawing are now published in collected book form.
Price $\$ 2.50$ in paper covers. Sent postpaid by Munn \&
(23) H. K. O. asks: What is the varnish
its tarnishing? A. Mix equal quantities of Canada balsam with very clear spirits of turpentine until the
whole is of the consistence of ordinary varnish. Apply in the usual way.
(24) W. G. asks for (1) a recipe for gilding brass by dipping in acids? A. The gold bath is com posed of distilled water, 17 pints; pyrophosphate o an oz.; crystallized perchloride of gold, $\frac{3}{3} \mathrm{oz}$. The py rophspphate is dissolved in 16 pints of water, heated, filtered, and cooled. The filtered solution of the gold chloride is added, and then the hydrocyanic acid, when the whole is raised nearly to the boiling point for use Before entering the bath the articles should be passed
through a solution of water $2 \frac{1}{2}$ gallons; nitrate of bithrough a solution of water $2 \frac{2}{3}$ gallons; nitrate of bi
noxide of mercury, $\frac{1}{3}$ oz; ; sulphuric acid, $\frac{2}{3}$ oz. 2. And noxide of mercury, $\frac{3}{3}$ oz.; sulphuric acid, $\frac{2}{3}$ oz. 2 . And
for the best lye in which to soak brass articles before dipping? A. Caustic potash dissolved in 10 times its weight of water.
(25) M. V. asks for a process of nicke plating without a battery? A. Into the plating vesse place a concentrated solution of zinc chloride. Dilute it with from 1 to 2 volumes of water and heat to boil
ing. Redissolve any precipitate with a few drops of hydrochloric acid. As much powdered a zew as an can be taken on the point of a knife is then thrown in. Add nickel salt (chloride or sulphate) until the liquid is dis
tinctly green. Then put in the articles previously well cleaned with some zinc fragments. Boil for 15 minutes when the nickel coating is finished.
(26) J. B. U. asks for a rule for calculating wall? A bricks that it will take to construct wall A. Allickns
inches of thickness of wall. Thus a 14 inch thick wall will require 2614 bricks per square foot.
(27) P. S. asks for the proper composition of fusible plugs, attached to crown sheets of steam Equal parts of antimony, tin, and blsmuth, melted and well mixed, make a very good safety plug. The melt ing point of this proportion is about 300° Fah., and this is about the temperature of steam at 70 lbs. per square inch. If you wish to
crease the proportion of tin
(28) J. T. asks for a durable black ink to e made with nutgalls and copperas? A. Bruise 12 lbs. Aleppo nutgalls, boil in 6 gallons of soft water for 1 hour, adding water to replace that evaporated. Strain strain and boil with $21 /$ gallons more water. Strain and mix the liquors. Add 41/ lbs, coarsely powdered copperas and 4 lbs. gum arabic in small pieces. Agicopperas and 4los. gum arabic in small pieces. Agi-
tate until dissolved and filter through hair sieve. This will give about 12 gallons of fine durable ink.
(29) J. R. M., Jr., asks how gold and silver bronze powders are made? A. Gold bronze pow-
der is made by melting tcgether in a crucible over clear fire equal parts of sulphur and white oxide of tin. Stir until they become a yellow flaky powder. Silver bronze powder is made by melting together 2 lbs. each
of tin and bismuth, and adding 1 lb. of quicksilyer. of tin and bismuth, and adding
Pound all together into a powder.
(30) C. W. P. asks how to granulate copper in fine grain? A. Ladle the refined copper from the er in ine grain? A. La
(31) M. G. L. asks: How can I harden a wooden pulley? A. Boil for about 8 minutes in olive
oiland allow it to dry.
(32) E. G. asks (1) for a silver bronze pow der? A. Melt together 1 oz . each of bismuth and tin,
then add 1 oz quicksilver, cool and powder. 2. How can I make blue bronze on copper polish, and cover the surface with a fiuio obtained by which some caustic potash has been added.
(33) F. T. C. asks: What is the so-called "flash" used for coloring spirits? A. It cousists of cum extract or essence of cayenne to give the liquor a fiery taste. It is commonly used in fiavoring vile
(34) M. T. L. asks for a recipe for liquid̉ glue? A. Dis solve (with heat) 2 lbs. of glue in 1 quart
of water, add 7 ozs. of nitric acid, and when cold, of water, add 7 ozs. of nitric acid, and when cold,
bottle. This is an excellent preparation to sell.
(35) E. P. asks for a varnish to smooth moulding patterns? A. Alcohol, 1 gallon; shellac, 1 lb . mp or ivory black sufficient to color it
(36) F. G. inquires how to make japanner's gold size? A. Melt 1 lb . of gum ammoniac, add 8 ozs. of boiled oil, and then 12 ozs, spirits of turpentine.
(37) .P. T. asks for a good sizing for linen? Crystallized carbonate of soda, 1 part; white wax,
to 6 parts; stearine, 4 to 6 parts; pure white soap, 4 to 4 to 6 parts; stearine, 4 to 6 parts; pure white soap, 4 to
6 parts; Paris white, 20 parts; potato starch, 40 parts wheat starch, 160 parts. Boil with sufficient water to form 1,600 parts altogether, adding if desired some ul
(38) J. A. B. asks: 1. What kind of a pre paration do watch repairers use to give that fine polished appearance to the brass movements of a watch? A. For brass, Spanish whiting is mixed with clear rain
water in the proportion of 21 ks . to the gallon. Stir water in the proportion of 2 llss . to the gallon. Stir
and let stand for a few minutes to allow the grity porand let stand for a few minutes to allow the gritty por and again allow it to stand. The settlings in the second vessel are mixed with jeweller's ronge and used fo vessel are mixed with jewelter's rouge and used for
polishing. 2. What kind to the steel portions? A Take a flat burnishing file, warm it and coat it lightly with beeswax. When cold wipe off as much of the wax as can readily be removed, and with the file polish
the metal. This is said to be equal to the finest buff polish.
(39) C. J. A. asks for a recipe for a lacquer for polished or burnished copper, that will prevent it from tarnishing when handled? A. 1 gallon methylated
spirits of wine, 5 ozs. of shellac, 4 ozs, of gum sanda spirits of wine, 5 ozs . of shellac, 4 ozs. of gum sanda-
rac, and 1 oz. of gum elemi. Mix in a tin flask and ex-
and add $1 / 1 /$ gallon of the spirit to the sediment and
treat as berore.
(40) J. S. M. says: I wish to paint on por-
(40) J. S. M. says: I wish to paint on porcelain or earthenware. Shall I use water colors or oil?
Also by what method is the finish obtained that causes it to withstand washing, etc.? A. The colors used are enamels mixed with turpentine. The china is glazed
first and the enamel is burnt in, in a muffle. Prepared first and the enamel is burnt in, in a muffle. Prepared colors for painting on china can be purchased of large
paint dealers. The burning in must be done by an es perienced potter.
(41) J. H. M. asks how to make a gold so lution for battery gilding, such as is used by carriage platers? A. You had better gild in the hot bath. The bisulphite of soova, $31 /$ ozs.; pure cyanide of potassium oz.; pure gold, transformed into chloride, $\frac{3}{2}$ oz.: distilled water, $2^{\frac{1}{2}}$ gallons. This is good for silver, bronze and copper alloys. For wrought iron and steel the bath
 soda, 171/2 ozs.; bisulphate of soda, 41/2 ozs.; pure cyan-
ide of potassium, $\frac{1}{6}$ oz.; gold (chloride) $\frac{1}{3}$ oz. It is not de of potassium, $\frac{1}{6}$ oz.; gold (chloride) $\frac{1}{3} \mathrm{oz}$. It is not the proper amount of gold is dissolved in aqua reng
(42) S. B. H. asks: 1. Are north, south, east, and west relative or absolute terms? A. Relative 2. State the greatest distance that could be traveled in any direction، A. You might go around the world an ndefnite number of thmes, always tra
(43) J. E. S. asks how bright crimson writing fluid is made! A. Powdered cochineal, 1 oz.; hot monia 1 oz., diluted with 3 or 4 ozs. of water. Mace ate for a few days and decant when clear.
(44) G. M. W. asks how to make a good $11 / 2 \mathrm{lbs}$ yesin 56 sap? A. Tan lime 28 soda of each zzs.; soft water, 28 gallons. Put soda lime and water into a kettle and boil, stirring well; then let it settle and pour off the lye. In another kettle melt the tallow, oosin, and palm oil, having it hot, the lye being also boiling hot. Mix altogether, stirring well, and the
(45) K. H. R. asks what laundrymen use use besides starch to give a smooth glossy appearance
to starched goods? A. One tablespoonful of strong o starched goods? A. One tablespoonf
(46) C. S. R. says: 1. If I bore a piece of 2 inch round bar iron 7 inches long, lengthways plag the ends of bore, what internal pressure will the tube resist? A. About 30,000 lbs. per square inch. 2. If I fill the tube with water before closing the ends, to
what degree of temperature can it safely be heated without exploding? A. A very slight rise of tempera ture only would be required. 3. How can the odor of petroleum and kerosene be destroyed? A. There are
several patented processes, one of which consists in the use of superheated steam.
(47) C. B. L. says: I have two flywheels, minute; one is 10 feet in diameter and the other is 20 feet in diameter. Which would exert the most controlling influence on an engine, and why? A. The larger wheel would be the most effective, because its actualenergy depends on the angular velocity and moment of inertia, both of which increase w
us is increased, other things being equal.
(48) E. C. H. says: 1. Of two engines less than 2 horse power,running at 300 revolutions, and steam pressure 80 lbs ., one engine having stroke the same as wice the diameter of cylinder, which uses steam most economicaily, both engines cutting off at $3 / 4$ stroke f there is a difference, please explain. A. The long of the two, on account of the higher piston speed and the less percentage of clearance in general. 2. What should be the size of engine ports of a 4×4 engine unning 300 revolutions, steam pressure 80 lbs ., cutting ff at $\frac{3}{}$ stroke? A. Port area $1 / 2$ square inch at least.
(49) J. D. W. asks: What is the heating urface of a boiler 28 feet long, 42 inches in diameter with five 8 inch flues? A. If the tubes are the whole length of the boiler, the heating surface is about 297
(50) I. L. L. asks: What sized boat would be required for an engine 2 inch bore, 6 inch stroke,
with an upright boiler 4 feet high and 2 feet in dia neter and what siaed screw? A. Boat 18 to 20 feet long, 5 feet beam. Propeller, 18 to 20 inches diameter, 3 feet

(51) E. A. B. asks: 1. What are ocea

 steam boilers made of A. Wrought iron. 2. Are they upright and tubular? A. Horizontal tubular. 3. Arethe driving engines horizontal or upright? A. Vertical he driving engines horizontal or upright? A. Vertical
(52) F. H. R. asks: Is the pressure of steam gauge diminished if it be located 20 feet from the boiler, the boiler being three
Ordinarily, no, if properly located.
(53) F. H. says: 1. Can you give me a rule to find out how much packing is necessary to cove a pipe 105 feet long, diameter of pipe 3 inches, with a overing inches thick, the material weighing 4 ibs. to $\mathrm{D}=$ diameter of packing outside, in feet: $\mathrm{L}=$ length of pipe in feet. $W=$ weight of packing per square Total weight required $=3.1416 \times \frac{d+D}{2} \times \mathbf{L} \times W$. What is meant by cold short iron? A. Iron that i
brittle when cold.
(54) H. A. P. asks: 1. How can I ascertain he horse power of a punching machine, to which steam ransmitting dynamer the purpose? A. Some form of is the relative toughness of cast steel and the best of "charcoal" iron castings? A. If you refer to tensile
strength, the steel is to cast iron about as 5 to 1 . 3. What
ings? A. Cast iron toughened by the admixture of
wrought iron scrap. rought iron scrap.
(55) J. C. wants to know how to drive sevepeeds? Each hammer must be independent of the thers, and the speed easily and immediately to suit the heat being worked. Hammer heads are about $41 / 2$ cwt. weight, so any suitable arrangement must be of a substantial character. Also what are the best kinds of bits and anvils, the present ones of chilled metal get soft in a very short time? A. Friction wheels or clutches will en able you to vary the speed at pleasure. The same thing can be accomplished by facings may be used for your anvils.
(56) W. T. B. asks: Are there any schools teaching mechanical engineering, and if so, where is many schools of this character that we do not feel incined to make a comparison. We give a partial list: Lehigh University, University of Pennsylvania, Rensselaer Polytechnic Institute, Massachusetts Institate of Technology, Yale College, Harvard University, Worcester Institute, Stevens Institute of Technology, Uni-
versity of Illinois.
(57) N. W. H. ask3: Which of the two engines below noted will develop the greatest power? One
is 8 inch cylinder, 12 inch stroke, 100 revolutions with 30 lbs b boiler pressure. The other is 4 inch cylinder, 6 inch stroke, 175 revolutions, with 60 lbs. boiler presscut off at $\frac{3}{3}$ stroke. A. Probably the first would deelop about twice as much power as the second.
(58) A. C. asks: What power can be got from a current wheel? The channel is 50 feet wide and 24 inches deep, with a fall of 24 inches in forty rods.
I think of making a wheel 10 feet in diameter and 20 feet long, with 16 paddles. A. With a well designed Wheel you may realize about 40 per cent of the effect of water passing the wheel fer libs. per second=[lbs. of water passing the wheel pe
in feet per second $\left.)^{2}\right] \div 64 \cdot 4$.
(59) W. F. S. asks if moonshine has the same effect on fish to spoil them as sunshine? A. The
influence of the moon is restricted to lovers, dogs, and

he tides.

In our last week's issue the answer to No. of the inquiry column, 3,300 should be 33,000 .
Minerals, etc.-Specimens have been reeived from the following correspondents, and examined, with the results stated:
M. S.-It is zinc blende, and of good quality. Judging from the sample, this ore should yield 40 per cent tance fe finely ground and weathered for some time, it ma beswer be deme of the purposes of whiting. This cbuld No. 1 is principally carbonate of lead. No. 2 contain much more mineral impurities than No. 1; but both contain enough lead to poison the sugar if, as we unerstand you, they remain together. This should be

COMMUNICATIONS RECEIVED.

The Editor of the SCIENTIFIO AMERICAN acknowledges contributions upon the following subjects: On the Tides. By U. H.
On Petroleum. By W. S. R.
On a New Galvanic Battery. By E. G. A. On Matter. By W. B.
On Mica Bronze. By R. S.V.
HINTS TO CORRESPONDENTS. We renew our request that correspondents, in referring name the date of the paper and the page, or the number of the question.
Correspondents whose inquries fail to appear should epeatthem. If not then published, they may conclude that, for good reasons, the Editor declines them. The address of the writer should always be given,
Inquiries relating to patents, Inquiries relating to patents, or to te patentability here. All such questions, when initials only are give are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleas ure in answering briefly by mail, if the writer's address

WANTS AND BUSINESS INQUIRIES.

 ess nature especially, can be expeditiously obtaine by advertising in the column of "Business and Per sonal," which is set apart for tharge mentioned at its head he charge mentioned at its headWe have received this week the
articulars, etc., regarding which following inquiries, ted from the writers by the insertion of a small adver tisement in the column specified, by parties able to sup ply the wants:
Who makes
Who makes Hyatt's patent sidewalk tiling?
Who sells grape sugar?
Who makes tile machin
official.
INDEX OF INVENTIONS
Letters Patent of the United States we

Granted in the Week Ending

 October 30, 1877,AND EACH BEARING THAT DATEE.
[Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list including both the speciffcations and drawings, will be
furnished from this office for one dollar. In ordering urnished from this offce for one dollar. In ordering, please state the number and date of the patent desired,
and remit to Munn \& Co., 37 Park Row, New York city.
Advertising device, A. H. Dean
Animal trap. J. C. Ambrose.................
Artinciation, automatict time tabeching, R. W. Kavanaugh.

Baby-walker, J. P. Wisk
Bale tie, J. W. Petty.... Barrel hoop, L. Reed (r)
Bed bottom, Read \& H. Bed bottom, spring, J. P. Allis Billiard bridge, F. E. Doughty Boot and shoe seam, G. Stribley
Bottle stopper, T. H. Brady.... Bottle stopper, fastener, w. H. Hicks.
Broom rack, S . W. Seldon Bunk, Guenther \& Hoeppner Bung extractor, W. A. Wiley Burglar alarm, J. J. Bradley. Butter and lard packages, J. P. Perkins.
Butter mould, A. W. Faris Cages, cup for animal, \mathbf{O}. Linden
Canal lock gate, w. L. Marshall Cane and umbrella, combined, A. Mungle Car coupling, L. T. Beave Car coupling, J. R. Mateer
Car coupling, R. G. Rankin. Cartridge-loading machine, Smoot \& Hamilton.
Casterfor trunks, w. B. Gould
 Chimney, sectional, I. D. Pee
Cigar, Babcock \& Upton...... Cigar machine, W. B. \& R. Barton Clipping device, G. W. Tallman . Clock pendulum, A. B. Richmond Coffee pot. J. C. Grove Coking coal, L. Stevens.... Corset, T. F. Hamilton...
Corset, J. M. Van Orden. Cuff, E. K. Betts Curtain cord holder, A. . .. Door sill, S. M. Stewart ...
Drawer pull, G. W. Tucker Dredging apparatus, J. B. Fad Dredging machine, E. F. Denntson Dress elev, tor, G. Havell
Earth auger, B. G. Fields
Educational appliance. C. E. .
Evaporator, J. M. Randolph.
Excavating machine, McMurphy \& Chapman
Faucet, registering, Japy \& Daillier
Feed cooker, C. S. Burns.....
Fence, portable, E. S. Hothan
Fence post, Chandler \& Deering.
Fences, iron post, S. Miller
Ferryboat, J. G. Densmore
File, letter, T. H. Brown, Jr.....
Fire escape, J. W. Tutewiler....
Fire extinguisher,. . E. Connell
Fire extinguisher, J. Dillon (r).
Fire extinguisher, J. H. Connelly
Fire-extinguisking apparatus, J. H. Connelly
Fire kindler, L. M. Reed
Fish hook, B. Edgar.............
Fuel, artificial, A. . Gotham..
Fur, separating, H. N. Fanton
Fur, separating,
Gate. I. Yost............
Grain binder, H. H. Bridenthal, Jr. Grain drill, J. P. Fulghum
Grain tally, P. Thomas.
Grate, W. M. Shanks...
Grinding machine, butt, ,.... P. Summers.
Hame eye, E. G. Latta.
Harness, check rein support for, A. . . Tr. Tracy
Harrow and cultivator, sulky, P. F. Fleming
Harrow and cultivator. su.
Harvester, s. \& M. Dyer...
Hats, die for shaping, R. I. God
Heating furnace, W. S. McKenna.
Horse collar, S. A. Stedman......
Horse detacher, J. T. Bimmeger
Horseshoe, D. W. Copelan
Horseshoe, J. N. Schuldt.
Horseshoe nail machine, W. Keys..
Hydrant valve, J. W. Rohn...........
Ice surfaces, producing, J. Gamgee.
Iron and steel, M. A. Sutherlan
Kitchen cabinet, G. P. Ziegler..
Kitchen cabinet, G.P. Zie
Ladder and step, J. Lane
Ladder, step, A. Larkin .
Lamp, fishing and wharf, Wilson \& Keagle
Lamp fount, E. W. Andree
Lantern, L. G. Huntington
Lantern, L. G. Huntington
Latch, gate, R. E. Stephens.
Lathe for turning paper mill rolls, C. Parent
Lathes, cutter for, J. Du Bois
Leather, sample, of, J. Kent.
Leather, sample, of, J. Kent
Lighting device, I. M. Rose .
Liguor shaker and strainer, W. H. Trepus
Loom, E. Oldfeld....
Loom heddle, J. M. Flagg............
Loom stop motion, J. H. Mortimer
Lubricator, G. H. Fowler.
Match safe, Wright \& Eill.
Meat--autting device, C. Keis
Milking stool, o. G. Scriven
Mosquito bar and clothes drier, C. Sundquist
Musical instrument, H. B. Horto
Napkin holder, A. Barion....
Napkin ring and holder, J. Heberling
Napkin ring and holder, J. Hebe
Necktie retaniner, F. W. Koch
Nursing
Nursing shield. J. W. Patch
Oil wells, bailer for, D. C. Brawl
il wells, machine for drilling, J. Stengel. Ordnance, compound, w. Palliser.
Ore washer, Frue \& McDermott
Overalls, D. Neus
Overalls, D. Neustadter
Veralls and jumper, S. H. Emanuel.........
Packing for blower cylinders, T. H. Bourke
Paint mixer, J. W. Masury
Paper lining and packing, o.
Paper machine, M. I . Cornel
Paper machine, M. H. Cornel
Paper, machine
Paper, manufacture of thishing printed, J. Morri
Scrygeour
Paper pulp, manufacturing, D. Hickox.
Pattern chart dress, J. Wuerfel............
Pencil holder and sharpener, E. B. Lake.
Photigraphic camera, J. . . . Moss
Piano,hammer, G. C. Smith..
Planter, corn, A. O. Abbott....
Planter, corn, L. Defenbaugh
. 196,939
$.196,69$
7,332

DESIGNS PATENTED.

10,286 and 10,287.-CAsssmeres.-A. Carmichel, Wes erly

 Heckmann, Plainville, Mass. Wrentham, Mass.
[A copy of any of the above patents may be had by

remitting one dollart to MVN $\&$ Co., 37 Park Row, New | remitting |
| :---: |
| ork city. |

§itutific Ammericam.

The Most Popular Scientific Paper in the World.

 THIRTY-SECOND YEAR.
Only \$3.20 a Year including Postage. Weekly.

 52 Numbers a Year.This widely circulated and splendidly illustrated teen pages of useful information, and a large number of original engravings of new inventions and discoveries, representing Engineering Works, steam Machinery. New Inventions, Novelties in Mechanies, Manufactures,
Chemistry, Electricity, Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc, All Classes of Readers find in The SCIENTIFIC
AMERICAN a popular resume of the best scientific information of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as possible abstrase
this journal affords a constant supply of instructive
reading. It is promotive of knowledge and progress in reading. It is promotive of knowledge and progress in every community where it circulates.
Terms of Subscription.-One copy of The ScIEN-
TIFIO AMERICAN will be sent for one year- 52 numbersTIFIo American will be sent for one year- 52 numberspostage prepaid, to any of three dollars and twenty
or Canada, on recint
cents by the publishers; six months, $\$ 1.60$; three cents by the publishers; six months, $\$ 1.60$; three
months, $\$ 1.00$. Clubs.-One extra copy of The Scientiricameri-
OAN will be supplied gratis for every club of fuve subseribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.
One copy of The ScIENTIFIC AMERICAN and one copy
of THE SCIENTIFIC AMERICAN SUPPLEMENT will be sent of THE SCCENTFIC AMERICAN SU any subscriber in the for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven voilars by the publishers.
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes
estray but is at the sender's risk. Address all letters, and make all orders, drafts, etc., payable to

MUNN \& CO.,
37 Park Row, Now York.

HENRY CAREY RAIRD \& CO.
Industrian Publishers Bookseliers, and Importers,
Sid Wallut Street, Philadelphia.
5100
Q
"OLD RELIABLE." TO KNOW ALI
 MINERAL SPECIMENS for CABINETS.

 BIG PAY made by Agents selling our Rubber Printing
 MACHINISTS' SUPPLIES.

 Cups, Lubricators, steam and Gas Fittings
Rulos Dividers, antipers, also Machinists
Tools in variety, and Taps and Dies. WIRE-DRAWING MACHINERY Sompete, from rods to No. 40 wire, is manufactured
Send for prices, etc. HEALD
SON Sarre, Mass. Brainerd MILLING MACHINES, all styiles

 AT NEW STOCK EXCHANGE.

BRAN NEW BREECH LOADING RIFLE FOR
Whe biggest bargain
we ever offered," BRAN NEW, PERFECT, GOOD SHOOTERS,

 finely rifled.

 TARGET SHOOTING HUNTING,

NOTICE TO INVENTORS.

WORK FOR ALL Waw wivewita 65 M, Mex. .and

AU'CTITOTN.

the driven well.
 WM. D. ANDREWS \& \& BRO., The George Place Madhinery Agency

 5asavew

BLAKE'S STONE AND ORE BREAKER AND CRUSHER 4 A NEW SIZE FOR PROSPECTING AND LABORATORY USE. Now on Exhibition

THE UNION IRON MLLLS, Pittsburgh, Pa., Manu

Diven or Tube Wen

FARM GRIST MILL.
 Grinding parts are of STEEL.
Grinds ill kind of grain rapldi
Is simple, urable end cheop.
Is adapted to all kinds of horse Wena for Desesriptive Circular. 2101 Germantown Ave.,
Philadelphia, \mathbf{P}
Wright's Automatic Cut-off Engine

 BIAAKE CRUSHER CO., New Haven, Conn.

STEAM FURNACE BLOWER,
THOMAS J. Brickey, Rondout, \mathbf{N}. \mathbf{x}.
JENNINGS' WATER CLOSETS $\begin{gathered}\text { Prices } \\ \text { Reduced. }\end{gathered}$

A WELL-KNOWN FIRM IN TḢE IRON and Machinery Trade at Berlin (Germany), having the

MADE TO ORDFR

Golden

SALES WANTEP ONO A YEASLY SSLARY MEN \$125:

Regular Monthly Sales the first week of each mont by George W. Keeler, Auctioneer, at his salesroom

 by George W. Keeler, Auctioneer, at his salesrooms,53 Liberty Street, N. Y. For terms, etc., address The
New York Patent Exchange, Room 11, 55 Liberty Street.

EAGLE FOOT LATHES

MPORTANT FOR ALL CORPORATIONS AND man's Time Detector, capable of accurately contraniug the motion of a watchman or pariolman at the
different station of hxty beat. Send for circular.
J. E. B UERE, K.

PATENT MINERAL WOOL.

Lathes, Planers, Shapers

ADVERTISESS
 174 ELM STREET, CINCINNATI, O.

INEX PLATES FOR GEAR-CUTTING MA

AIR COMPRESSORS

ENGINEERS, MACHIMISTS, IRON FOUNDERS BOLLERMAKIRS. O

A Superior Quality of SCREW BOLTS, Lay Screws, Tap Boltss
Bolt Ends,
, Turn Bucles,
\&c. SAMUEL HALL'S SON, Established $1839 . \quad 229$ W. 10th Street, N. Y. Baker Rotary Pressure Blower.

 Or Launarries furisisheal. Correep
The National Petrolenm Gas Co. Hrave the only process that will produce pure fired Gas
from pettoleum. Uniform and roliable as the best Coal
Gas. and much more brilliant, at halt cost. Will furish

Patent Atmospheric Gas Burner,

$\$ 5$ to $\$ 20 \begin{aligned} & \text { per day at home. } \\ & \text { free. STINson } \& \text { Co.. }\end{aligned} \begin{aligned} & \text { Samples worth } \$ \$ 5\end{aligned}$ KNIGHT'S AMERICAN MECHANICAL DICTIONARY

 H. R. WORTHINGTON,

 DAM (Netherlands), beg toinform the publicin penera,
and American manafactureri in particular. that they
have established a wholesale business for American
 otheir advantage to adaress them with catalogues and
price current.giving them full information about their
ooods. Reference, I. Agostini. 20 Beaver St., N. Y.

Second-Hand Microscopes.

 AGENTS WANTED Wiadira

Pond's Tools,

Engine Lathes, Planters, Drins, dc.
Send for Catalogue. DAVID W. POND, Successor to
UCIUS W. POND. WO orcester, Mass.

BIG PAY

I. B. DAVIS, Hartford, Ct., Sole Proprietor and Manufacturer.
 cles, Telescopes, Thermometers. Send for
Illustrated Catalogue. R. © J. BECK,
g21 Thestnut St, Philadeliphia. CTRANGER PAUSE! © © A A copy of the
 It will please you.
in writing us

CHATLNG GUN. Far the Smallest and Most Perfect POCKETARM in the Worid.

 py far the most rapid repeating arm ever manufac quent with other FIRR ARYS. Adapted to the usual perfect convenience. Sold by the trade generally. Un-ussual inducements to responsible agents in all sections. All Right Fire Arms Co, Lawrence, Mass.

CAVEATS, COPYRIGHTS, TRADE

 MARKS, ETC.tion of the Scientific American, continue to examin mprovem
In this line of business they have aad over thirty YEARS ond the Preparation of Patent Draions for Patents in the United States, Canada, and Foreign Countries. Messrs. unn \& Co. also attend to the preparation of Caveats, rade Mark Regulations, Copyrights for Boors, Lement of Patents. All business intrusted to them is done with special care and promptred, ver is derate terms.
We send free of charge, on application, a pamphle to procure them; directions concerning Trade Marks, Copyrights, Designs, Patents, Appeals, Reissues, In fringements, Assignments, Rejected Cases, Hints on he Sale of Patents, etc.
Foreign Patents.-We also send, free of charge,
ynopsis of Foreign Patent Laws, showing the cost and method of securing patents in all the principal counries of the world. American inventors should bear in
mind that, as a general rule, any invention that is valuble to the patentee in this country is worth equally as Five patents-embracing Canadian, English, German French, and Belgian-will secure to an inventor the ex clusive monopoly to his discovery among about ons people in the world. The facilities of business and tuined abroad by our citizens almost as easily as at The expense to apply for an English patent dian, $\$ 50$.
Copies of Patents.--Persons desiring any patent issued from 1836 to November 26.1867 , can be supplied ending upon the extent of drawings and length of pecifications.
Any patent issued since November 27,1867 , at which ngs and specifications, may be had by remitting to this office $\$ 1$.
A copy of the claims
will be furnished for $\$ 1$
When ordering copies, please to remit for the same above, and state na
, and date of patent.
United States porents full directions for obtaining Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every pat entee and mechanic, and is a useful hand book of refe nce for everybody. Price 25 cents, mailed free.

Address MONN \& CO,
Publishers SCIENTIFIC AMERICAN. BRANCH OFFICE-Corner of F and $\%$ th Streets
Washington, D. C.

Harrison's System of Grinding NEW Illustrated Catalogue Now Read.
 millers a NEW Copy For All. Milers and Editors please adress
ED. 135 Howard Ave. HARMISON, New Haven, Conn.

GOARDIOIA'S
COFFEE \& SUGAR MACHINERY Coffee, Malt, Corn, Cocoa, and Grain-
Drying Machine, Coffee-Huling and
Poishing Machines. Cofeewashing Machine. Helixsugar Evaporator.
 Street, New York, are Mr. Guardiola's Agents, and they
will tive prompt artention to all orders for any of the
above machines.

JOSEPH C. TODD,

 10 Barclay St. J. C. TOD D
"Indispensable to the Library, Clergyman,
Lauyer Physician, Editor, Teacher, Student and all' of any calling in life who desire knowl HNCVCLOP APTA BRTMANNEGA: Ninth Edition.-American Reprint.
 inal thinkers and writers of the present and of the
pasthis
hundred is ine she Ninth revision in a space of over one
 ever offered to the American people.
The articles are writen in an most atractive style
and the quantity of matter in each volume is one
hird greater per volumet than in iany other Cyco sold at the samer rates
na woun than in any other Cyclopædia
and wood and ins printed from ontirely new type made

 Sold onty by subscription.
All nate Pamphlet giving specimens of pages, cuts,
ulll page iliustrations, list of contributors, etc., will be J. M. STODDART \& CO., Publishers,
\qquad
H. H. KEY, Publisher,

Mill Stones and Corn Mills. We make Bur, Millstones, Portable Mills, Smut Ma-
chines, Packers, Mill Itcks, Water Wheels. Pulleys and
Gearing, speciall adapted to Flour Mills. Send for
 $\$ 3$ PRINTING PRESS

DAINBURY DRHLI OHUCKS

 OTIS' Machinery \int Model Engines.

 Shepard's Celebrated万0 Serew Cutting Foot Lathe

THE TANITE OO., STROUDSBURG, PA. EMERY WHEELS AND CRINDERS.

Steel Castings,

From y to 10,000 ibs. weight, true to pattern. An invalu-
able substitite for forghs, or for onalleabe iron cast
ings reuiring
 TORPEDO VESSELS. By Mr. DONALD

liquit Piints-an shades. fnest in the worl

 h. W. johns manufacturing company,

 FOUNDRY A ND MACHINE SHOP FOR

NEWSPAPER FILE

 MUNN \& CO.
Bonli's Patent R Reverse Motion
 Battle Creek, Mich.
 1872, 1874, 1875,
SCIENCE RECORD.

 MUNN \& Co., Publishers,

MACHINISTS' TOOLS.

[^1]
[^0]: Condensed forage is supplied to the Russian commis sariat on the Danube by three Russian manufacturers, one of whom at St. Petersburgh turns out $30,000 \mathrm{lbs}$. per diem. The forage is composed of small biscuits of oatmeal pea flour, rye meal, and ground linseed, and twent eight biscuits form a sing ration for a horse, containing as much nutriment as 12 lbs of oats, whilst only one fifth the bulk.

[^1]:
 Lathes, Planers, Drills, \&c. NEW HAVEN MANGFACTGRENG Con
 Tem "cienifis Americal", is prited with odAs

