A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCLENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, DECEMBER 1, 1877.	

THE PICTET ICE MACHINE. to 3 atmospheres. Whersure of from 2

in copper cylinders each holding about 200 lbs., and the	that at one stroke the gaseous oxide is aspirated through the
cost of the material delivered in New York is about 65 cents	tube, B, and on the return it is compressed through the tube,

The manner in which the system operates will be clearly the condenser, E. The oxide is introduced at the plug lock, F, and is drawn by the pump in the direction of the arrow into the copper tubular refrigerator, D, the liquid filling the space between the tubes. Here vaporization and consequent production of intense cold takes place, and the temperature of the non-congealable mixture of glycerin and water which surrounds the refrigerator is so far reduced that water placed in the metal boxes, H , immersed in the tank becomes rapidly frozen. The propeller wheel, shown on the right, determines a current of the glycerin solution through the tubes and thus hastens the refrigeration. The vapor of the oxide is drawn out of the refrigerator, as already noted, by the pump, carried through the latter, and forced into the space between the tubes of the condenser, E. Through tubes a cold stream of water is constaty pumped, which determines the condensation of the vapors, and the re-liquefied oxide passes into the admission pipe and once more enters into circulation as already described.
In the large illustration, Fig. 1, is represented the arrangement of machinecape in air it vaporizes rapidly, producing a decrease of temperature of 135° Fah., and if a teaspoonful understood from Fig. 2, which represents the disposition of |ry now in operation in this city. Here the freezing of the liquid be placed in a wine glass of boiling water, the a small apparatus, such as is illustrated in. Fig. 3. At A is tank, which is very large, is separate from the condenlatter instantly freezes solid. It is imported from $E l$ pe the compression pump, the valves of which are so arranged

THE PICTET ICE MACHINE,-Fig. 1.

Sirintifii emmericau.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
PUBLISHED WEELLY AT
NO. ${ }^{3} 7$ PARK ROW, NEW YORK.

O. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN

One copy, one year, postage included..
One copy, six months, postage included
Clubs.-One extra copy of The Scientific American will be il................ $\mathbf{1} 20$ Chibs.-One extra copy of THE SIENTIFIC AMERICAN will be supplied
gratis for every club of five subscribers at $\$ 3.20$ each; additional copies at

The Scientific American Supplement
is a distinct paper from the Scientific American. THE SUPPLEMENT is issued weekly; every number contains 16 octavo pages, with handsome cover, uniform in size with SCIENHFIC AMERICAN. Terms of subscription 10 cents. Sold by all news dealers throughout the country.
combined Rates. - The Scientiftc American and Supplement will be sent for one year, postage free, on receipt of seven dollars. Both papers to one address or different addresses, as desire Address MUNN \& CO., 37 Park Row, N. Y.
Subscriptions received and single copies of either paper sold by all
Publishers' Notice to Mail Subscribers
Mail subscribers will observe on the printed address of each paper the
time for which they have prepaid. Before the time indicated expires, to time for which they have prepaid. Before the time indicated expires, to insure a continuity of numbers, subscribers should remit for another year
For the convenience of the mail clerks, they will please also state whien their subscriptions expire.
New subscriptions will be entered from the time the order is received;
but the back numbers of either the ScIENTIFIC but the back numbers of either the SCIENTIFIC AMERICAN or the SCIEN.
TIFIC AMERICANSUPPLEMENT will be sent from January when desiredIn this case, the subscription will date from the commencement of the volume, and the latter will be complete for preservation or binding.

VOL. XXXVII., No. 22. [New Series.] Thirty-second Year.
NEW YORK, SATURDAY, DECEMBER 1, 1877.

Contents.(Illustrated articles are marked with an asterisk.)	
prov	Kangaroo leather................. 342
Alkalimetry indicator.............	Leade, explo
Atmosphere and geoiogy.......... ${ }^{336}$	Laundries
Blister-beetle, history of*... ... ${ }^{346}$	Lightning ro
case, folding*........ ${ }^{34}$	Manganese
rrstone	Meteor a brilliant
Capron bisulihiae	Narcotic plant....................: 842
China to drill	Nickel and cobalt 34 k
uito palm …............... ${ }^{346}$	Northern lights........... $\quad . . ._{346}^{337}$
	Plaster casts 343
Drainage of houses................. ${ }^{337}$	Prints, printing from 343
ery to coat with	Sed inkto m
ry, to coat win	Shellac
Engraving.to transfer 342	Silk, to dye brown
ine in India.	sieepl
Gas bags, repairing \%............... 344	Stable fly, lancets*
vanic battery (9).............. 347	Steambo
Green corn	am pi
	Stove \mathbf{c}
ntions, agricultural ${ }^{345}$	Tool rest for lathes ${ }_{34}^{44}$
	Wrayer supply for New Yorik..... ${ }^{337}$
de of starch	
Journalists, venerable	Zinc coating (25) 34i

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT INO. 1OO,

uabe and important paper.
II. LESSONS IN MECHANICAL DRAWING. By, Professor C. W. MAC-
CORD.
Cubject: ThA Screw Propeller. How to Plan, Lay Out, and

VII. MISCELLANEOUS:-Sonoma Timber.-Green for Wool with Picric

All the back numbers of the SUPPLEMENT, from the commencement, Jan-
uary 1,1876 , can be had. Price 10 cents each.
 five dollars for the two volumes stithe shand
cents handsomely bound in stift cove
Remit by postal order. Address

MUNN \& CO., 37 Park Row, New York.

THE CURE OF DIPHTHERIA.

Dr. E. N. Chapman, of Brooklyn, N. Y., has discovered an antidote to the poison of diphtheria, by which the per centage of deaths is reduced to less than one in fifty. Statistics show that the percentage of recoveries in cases treated under the usual practice is about thirteen, or eighty-seven out of a hundred sufferers succumb to the fell disease.
Diphtheria first appeared in this country in 1858. Dr Chapman, in 1859, lost several cases, and became distrustful of the regular methods. He had been using alcohol in the cure of ship-fever, and he determined, though contrary to all rules, to try it in diphtheria. To his surprise, several of his patients recovered. He then tried quinia, and found it acted well, but not so quickly. At last he settled on a combination of the two, alcohol and quinia, and with these remedies, he claims that diphtheria is more amenable to treatment than many common diseases. In an epidemic, such as diphtherin, all are affected by the morbific agent but a few only yield to it. Mature, vigorous persons have vitality enough to resist the disease. Children and weakly adults are its usual subjects. Dr. Chapman considers that there is, almost always, super-added a local and direct ex citing cause, such as defective exercise, improper diet, dark rooms, damp houses, imperfect ventilation, and poisonous emanations from decomposing filth in privies, cesspoo's, sewer pipes, etc. To such agencies the strongest constitution will soon succumb. The blood being deteriorated, its crasis is impaired and its vitality lowered; and then the sympathetic nerves, failing to receive due stimulus, waver in their efforts to carry on the animal functions.
"All local treatmentं," he says, "is worse than useless. It ex austs the nerve force and induces greater
"،Alood vessels, thus favoring the exudation.
Alcohol neutralizes the diphtheritic poison, sets free the nerves of animal life, subdues the fever and inflammation,
destroys the pabulum that sustains the membrane, destroys the pabulum that sustains the membrane, cuts
short the disease, conquers its sequelæ, and shields other short the disease, conquers its sequelæ, and shields other members of the family from an attack. Upon the subsidence of the fever, as is usually the case in from twentyfour to thirty-six hours, a purulent secretion begins to loosen the membrane, and soon, thereafter, to detach it in flaky, ragged fragments. This process may take place, and recovery be possible, even when the larynx and trachea are implicated. The membrane is seldom renewed, when this secre tion is maintained by a steady use of the remedy. Alcohol is as antagonistic to diphtheria as belladonna to opium, or quinia to malaria. Like any other antidote, it must be given promptly at the outset, or otherwise its potency will be lessened, perhaps lost altogether.
'Alcohol does not act as a stimulant, nor induce any of its ordinary effects. Enough may be given to cause profound intoxication in health, and yet there exists no signs of excitement or odor in the breath."
Quinia is an efficient alloy to alcohol. It energizes the ganglionic nervous system, and thus enables the organism to right itself and resume its function.
Dr. Chapman sustains his position by citing numerous cases in which this treatment was successful. He states that, in his long experience, he only knew of one case where a drunkard had diphtheria. He generally gives the alcohol in the form of whiskey.

THE GEOLOGICAL RELATIONS OF THE ATMOSPHERE
The gaseous envelope which surrounds our globe plays a very considerable part in the chemical changes ever going on in rock formations, whether actually at the surface-as in what is called the "weathering of rocks"-or in the less apparent, but perhaps more powerful, action carried on below the surface. In a late number of the Quarterly Journal of Science, Edward T. Hardman, F. C.S., has a very exhaustive paper on "The Atmosphere Considered in its Geological Relations," from which we extract the following in teresting facts:
Perfectly pure water has a very appreciable solvent effect on rocks, which is immensely augmented when it is chemically charged with carbonic acid, oxygen, nitric acid, and other matters derived directly or indirectly from the atmosphere. But while on the one hand the influence of the atmosphere disintegrates and destroys rock masses, on the other it is mighty in building them up. Without the small percentage of carbonic acid contained in the air there could be no vegetation, and there would be none of the coal beds which form such important members of our rock formations. The immense masses of limestone found everywhere, and the rectly to the carbonic acid of former atmospheres. A drop of rain water absorbs a trace of carbonic acid from the atmosphere, falls on a rock containing lime in some form, dissolves the iime as bicarbonate, carries it down to the ocean, and finally gives it up to become part of the skeleton of a coral or mollusc, which in its turn may form a portion of an immense mass of limestone rock.
The bulk of the atmosphere is made up of oxygen and nitrogen, but these do not take so active shares in geological matters as the almost infinitesimal trace of carbonic acid present. The amount ranges from 3 to 10 volumes in 10,000 volumes of air. The principal sources of increase are, volcanic and other subterranean exhalations; respi
nimals; combustion of fuel and vegetable decay
The series of rock-metamorphisms due to the simple absorption of carbonic acid by a plant is very interesting. The carbon is assimilated by the plant, and it dies and be comes thus a part of a coal bed or lies embedded in sedi-
ment of some kind. Decomposition sets in; and if there be a reducible compound near it, chemical changes result. If the strata contains sulphate of iron, it is reduced to sulphide, commonly known as iron pyrites or false gold. The reduc tion is effected by the carbon of the plant abstracting the oxygen from the sulphate. The resulting carbonic acid either is taken up by percolating water and penetrates farther into the heart of the rock, effecting new changes, or it finds its way to the surface through some crevice, or by aid of a mineral spring, and once more mingles with the the atmosphere, to be perhaps again absorbed by vegetation and pass through a similar round of changes afresh. In many cases the action of the carbonic acid changes a metallic ore from an insoluble to a soluble compound, thus reducing the ancient crystalline rocks. The metals carried away by streams were deposited along their beds, and valuable beds of ore were formed.
The atmosphere in the carboniferous age contained a much larger portion of carbonic acid. This has been gradually aksorbed into the earth, until the amount stored in the earth is estimated at 6,620 times as much as there is in the atmos. phere, although the latter contains $1,250,000,000,000$ tons of carbon. All animal carbon is derived from the atmosphere. Say a tiger dines of a cow, the carbon and nitrogen of her flesh have been obtained from vegetation, which in turn ex tracted them from the air; so that we have a kind of physio logical "House that Jack built," " This is the Tiger that ate the Cow that devoured the Grass that absorbed the Carbon," etc.
An

Any considerable difference in the volume of carbonic acid must result in diminution of animal life. Very little above the ordinary standard carbonic acid in air becomes a deadly poison to all warm-blooded animals. If diminished vegetable life would languish, graminivorous animals would die of starvation, and finally the carnivora, being obliged to prey upon each other, would of course become extinct. The result would be a completely barren and desolate planet, perhaps in some degree resembling the moon.
Oxygen is the next in importance as a geological agent. Percolating in rocks, dissolved in rain water, it quickly re acts on all oxidizable substances. Carbonates and protosalts are converted to peroxides; sulphides are changed into sulphates, and sometimes alums are formed
Carbon and oxygen are thus antagonistic in their action on rocks and minerals, and are thus keeping up a circulation between the earth and the air. The carbon always reduces the oxides, and the oxygen replaces the carbonic acid of carbonates with the same inveteracy.
The ammonia existing in the air is absorbed by plants, and by their decomposition forms nitrates. "And now," Mr. Hardman says in conclusion, "it will be seen what an all-powerful agent the atmosphere we breathe is. Without its aid we should know never a stratified formation, and would simply form a ball of truly primitive rock. We should have no coal, no metalliferous deposits, no rivers or seas, and no rain-consequently no denudation by rain and rivers-for the vapor of waters could not ascend into empty space. We should have-but, last and worst of all, there would be no "we." Life would be impossible, and the earth would finally degenerate into a pale-faced moon." That this is probably her mission cannot be denied; and probably before Saturn and Jupiter have cooled down to a habitable temperature, the senescent earth will roll through space-cold, void, and airless.

venerable journalists.

In the December issue of Godey's Lady's Book appear the valedictories of both the editor and the publisher of that magazine, which with the beginning of the new year is to pess into other hands. Much has been written and said about the exhaustive nature of the journalist's profession, and the general deduction has been made that as a rule literary people are neither long-lived nor are they able to withstand the mental labor incumbent upon them, over any very extended periods of years, comparison being had with members of other callings. No better examples demonstrating the contrary of the commonly accepted opinion could be found than in the careers of Mrs. Sarah Josepha Hale and Mr. L. A. Godey. Mirs. Hale states that she began the editing of the Ladies' Magazine, in 1827-fifty years ago-nıe years later that periodical was consolidated with the Lady's Book, of which Mrs. Hale assumed the editorship, the active duties of which she has subsequently continuously performed. A half century of steady journalistic labor is in itself phenomenal, more so when it be considered that a woman has accomplished the task and it becomes still more remarkable when we are told that it has been done not early, but late in life, Mrs. Hale now having attained the venerable age of 90 years. Certainly no one would imagine that the editor of the sprightly periodical before us, a jour nal which pre-eminently deals with fashion and art, and isaddressed especially to the young, is the same editor who wrote in the same brilliant way and made up the same interesting papers for our grandmothers, but the fact remains that she of late years has been writing for a third generation of readers. The same is true of Mr. Godey, although he is a mere youth as compared with Mrs. Hale, being but seventy three years of age. He began literary work when but fifteen years old, and hence his journalistic life has extenced over fifty-eight years, during all but the first ten of which he has uninterruptedly published the Lady's Book.

Both of these venerable members of the press-and with the exception of William Cullen Bryant, we can recall
none whose years of labor equal theirs-have long since
earned the public gratitude for their good works. To Mrs. Hale was largely due the successful completion of Bunker Hill Monument. She is the inventor of Thanksgiving day, for she first suggested the idea of an American national thanksgiving in 1846, and her efforts toward the advancement and education of women have been untiring and fruitful with beneficial results. Both herself and her associate may look back with justifiable pride over the 571 numbers of the Lady's Book, which they have prepared, in the consciousness that their labors have tended always toward the promotion of education, culture and refined taste.

WATER SUPPLY FOR NEW YORK CITY.

The last plan submitted to the Special Committee on Water Supply for New York city is by a Brooklyn engineer, who claims a cheaper mode of getting water than by going fifty or sixty miles for it. His plan is the construction of a close canal or conduit, on a low level, of sufficient width and depth, commencing at Harlem river, running through Westchester, following the lowlands and keeping the depth below the well level. This conduit, he states, would always be full of the purest water, supplied from the great underground water basin of Westchester, and would in its course intercept all the springs and streams. Having studied the water supply of Brooklyn he was led to make a proposal to furnish that city with a future supply at a much cheaper rate than could be obtained by building reservoirs, and he thinks the same plan would be applicable to New York although the soil is very different. The soil of Long Island is of such a nature that it readily absorbs all the rainfall. What streams there are come from springs fed from the higher grounds. The soil of Westchester is different from that of Long Island; it is harder and more compact, and much more of the rainfall runs off the surface; that which is absorbed remains longer in the soil. Hence a long drought would not affect the wells in Westchester as much as those on Long Island. The Brooklyn conduit, which carries the water to the pumping wells, was built as low as possible in order to collect tha water from the different springs yet built above the well level; and by extending it, sufficient elevation to the mile was given to impart the necessary current to send the water to the pumping wells, till now, in seventeen miles, it has risen above the springs and no more water can be obtained without building reservoirs, or adopting the plan he suggests. The conduit for New York was built high in order to get an elevation without pumping, and was carried back forty miles to, the high ground of the Croton, passing many streams and getting no advantage from the many valleys in its course, or from the great water
shed lying within thirty miles of New York-resources sufshed lying within thirty miles of New York-resources suf-
ficient, if improved, to give an abundant supply for all time. It is contemplated to build more reservoirs on these high elevations at a cost of $\$ 10,000,000$, and to build a new conduit between New York and Croton Dam at a cost of $\$ 10$,000,000 more. In regard to this, he says, to keep building expensive reservoirs on these high elevations is a waste of public money, and will naturally prove a failure as to a
future supply, for, as the line is extended, it must keep rising, although already it is above the springs. What water may be obtained in this way is from storm flows, collected during the time of freshets, and retained in their shallow basins, stagnant pools, exposed to the rays of the sun and infected by vegetable decomposition, with no circulation whatever until it is let off into the conduit, thus distributing the seeds of malaria. The best place for reservoirs is where you can get the purest water, and that is at the foot of the hills. Here not only the surface flow is got, but as much more pure spring water, filtered through the upper lands. The expense of pumping will not compare with that of building costly reservoirs on such high elevations; but, even if it did, the sanitary advantages would more than compensate. As the land naturally rises from Harlem river, a conduit could be built on a slight elevation to the mile, of sufficient width and depth to bring to the city as much water as would be needed for all future time. The water in the canal would be spring water and a running stream. The pumping engines could be placed at the Harlem river, and pump directly into the pipes, under pressure, giving the water sufficient force to carry it into the top story of the houses on Murray Hill, leavirg the old aqueduct, with its reservoirs, to supply the lower portion of the city.
In brief, the plan is to have one main conduit, commencing at a point west of King's Bridge or east of Central Bridge on the Westchester side of the Harlem river, extending up through Westchester, with lateral branches, running right or left as the nature of the ground may indicate; smaller ones to be built in each of the different valleys, and a cross tunnel made to intercept them all. By this means a large amount of water could be obtained, and the conduit could be extended according to the growth of the city. The main conduit at the commencement would not be less than twelve feet in diameter, or of sufficient capacity to deliver two hundred million gallons daily; it could be diminished as extended. The side walls of the conduit would be of heavy stone laid dry, backed up with small ones, the bottom paved with cobble stone, the top arched with brick laid in cement. The pumping wells and buildings could be erected on the New York side of the Harlem river: the river to be tunnelled with either an iron or a brick tunnel of the same dimensions as the conduit,the top to be twelve feet below low water mark. All the overflow would empty into Harlem river.

An approximate estimate of the cost of such works, with five compound steam pumping engines of the most approved hundred millio boilers, fixtures, and buildings to pump one clusive of the right of way, which would not cost much, as the conduit would be mostly underground. Much of the tunnelling could be done without disturbing the surface. The principal and only damage would be the surplus earth left in places. As the conduit would follow the low lands, their drainage would mitigate damages.

'THE GREEN CORN case.

The celebrated "Green Corn Case," which was argued last September in the Circuit Court at Baltimore, before Judges Bond and Giles, has recently been decided, and the bill for the injunction dismissed. This case was an application by John Winslow Jones for an injunction against Louis McMurray, of Baltimore, for an injunction to preven him infringing the re-issued patent No. 7,061 (original paten No. 35,274), covering a process of canning green corn, and re-issue No. 7,067 (original patent No. 34,928), for the pro-
duct of said patented process. The original patents were declared invalid by the Supreme Court of the United States. They were then surrendered and the re-issued patents ob tained, which formed the basis of this suit. The complainant avers that the decision of the Supreme Court was given against him because of his "defective specifications," which have been cured by the re issues obtained since the decision referred to. The circuit judges, however, in the present case, have a different opinion of the Supreme Court decision than that entertained by the plaintiff, and state that, "while we are of opinion that the decision of that court is much broader than the complainant admits, and that it goes to the whole invention then and now claimed by Jones in the patents we
are here considering, and that it determines that both the are here considering, and that it determines that both the process and product now claimed by Jones was the invenaf Appert, in France, and Durand, in England, more than sixty years ago, and held that Jones' patents were void for want of novelty, and not merely invalid for want of a proper specification and description of Jones' claims, never theless, since the Commissioner of Patents has issued the patents to Jones, we would give him the benefit of them could we discover in what respect they differed from the originals, which the Supreme Court has decided were void. There is no essential difference, however, between the pro-
cess described in the first patent and the re-issue. The first cess described in the first patent and the re-issue. The first recites that, after some difficulty found in preserving green the cob and boiled it, but that by this process the corn, be ing broken by removal from the cob, dissolved out the juices and made the corn insipid, and then he finally removed the corn from the cob, packed the kernels in cases, hermetically sealed them, and boiled them until the corn was cooked." The Supreme Court, in the case of Sewell vs.
Jones, says this is not new. Complainant, in his re-issue, states he pursues another plan, whereby he separates and retains the nutritious and edible parts of the corn, boiling them in a liquid of their own juices. No one ever cut green corn from a cob who did not do exactly what this claim describes, and no one under the process described in the patent, which requires the corn to be removed from the cob, could so remove it without breaking the kernels, and when he cooked it in a can, as the patent required, he would find necessarily more or less of the juices with it. The process described in the re-issue is substantially that of the original patent. But if we admit there is something new and patentable in the re-issued patent, which was not in the original,
the patent is void, because it is not for the same invention the patent is void, because it is not for the same invention
as the original. $* * * *$ It cannot, therefore be claimed that the re-issued patent contains anything which the original did not, and the original, says the Supreme Court, is void for want of novelty." The patents also described the use of a curved knife to remove the corn from the cob, but this does not appear to add any novelty or patentability to the alleged invention, for the knife differs nothing in principle and little in construction from some styles of spokeshaves or paring knives, and even if the validity of these patents could be admitted on reference to this point, the
court could find no evidence that the defendant, McMurray, court could find no evidence that the defendant, McMurray, has infringed them by using the knife of complainant, but, knife entirely. For these and other objections a the the com plainant's case, the bill for the injunction was dismissed. with costs. Numerous other suits have been entered by Jones against other parties in New York, Boston, Portland, Chicago, and other parts of the country, which will probably be influenced to a considerable extent by this decision.

HOW TO MARE HOMES HEALTHY.

Most cases of infectious diseases have, in addition to the common epidemic influence, a direct exciting cause. This will be found, when contagion is excluded, to be poisonous emanations of some kind in the house, or on the premises, or in the drinking water; in cities generally sewer gas. Dr. Chapman, of Brooklyn, to whom we refer in another ar-
ticle, after experiments, has settled on the following plan as a sure relief from sewer gas: The soil pipe running from the cellar passes through the house and opens
into the kitchen flue at the top story. The pipe should be four inches in diameter. It will be freely ventilated by the draft of the flue. Into this soil pipe or venti
lator, the waterclosets and basins on the different floors empty through traps. The water from the upper closet,
running past the opening of the lower closet, would be apt to suck its trap dry, and to prevent this a separate ventila ting pipe is run from the traps of the lower closets to a point in the ventilator above the upper closet. In this manner all foul gases at once pass upwards and empty at the top of the house. In several houses where malarial disease had been frequent, since the introduction of this plan the residents have been free from all disease due to blood poisoning.

breakage of a steamboat beam

The Harlem, a passenger steamboat plying between New York and Harlem, recently broke the working beam of he engine. The break took place between the eye of the main link and the main center of the beam. The beam is of the usual American type, having a cast iron skeleton frame bound round with a strap of wrought iron. - The fracture of the lower part of this strap shows that a flaw has existed for some time but was not perceptible, being covered by a vertical strap. The fracture of the cast iron skeleton frame and the upper part of the wrought iron strap showed a good quality of iron, the former being of a gray color and close grain, and the latter of a fibrous nature. The rectangular cross section of the strap, where the flaw is, and where the break first commenced, is in size 5 by $3 \frac{1}{4}$ inches. The length of the beam is 15 feet 6 inches by 8 feet wide.
The point of interest is the fracture of the wrought iron strap where the flaw is, and the iron shows crystallization. As the flaw was concealed from view it becomes a matter of speculation how long it has existed, and whether it resulted from inferioriron or from crystallization gradually taking place as the result of constant vibration. The excellent ap pearance of the iron in the upper part of the beam strap seems to indicate that the iron when first put round the skeleton was all of good quality, and that a change took place in the lower half or some portion of it.
The experience as to iron undergoing a gradual deterioration under certain circumstances is too universal to be discredited. The multitude of theories put forth to account for it bear witness to the fact, although an explanation of the phenomenon is still required. Mr. Roebling, the late distinguished engineer, assumed that the drawn out fiber of wrought iron is "composed of an aggregate of pure iron threads and leaves, enveloped in cinder. Wrought iron thus becomes brittle under long-continued vibration under ten sion, because the iron threads and laminæ become loosened in their cinder envelopes.

The Northern Lights.

The Finiand observations of northern lights in the years 1846-1855, numbering 1,100 , have recently been compared by M. Fritz, in the Wochenschrift für Astronomie, witl auror $a l$ phenomena of the same period in all other regions. This comparison leads to results which are interesting as bearing on the theory of the phenomenon. The table shows that of 2,035 days of the months August to April, on which northern lights were seen, 1,107 days were days of northern light for Finland. On 794 days northern lights were visible simultaneously in America, and mostly also in Europe; on 101 days only in Europe, and on 212 days only in Finland. They were on 958 days visible in Europe and America, and not visible in Finland. The conclusion is thus reached that a large portion of the polar lights have no very great extension, or that the causes producing them must often be of a very local nature, while in another portion of the phenomena the regions of simultaneous appearance are very considerable. The number of those phenomena which are limited to Finland is very small. With the increase of frequency of the phenomena, at the time of maximum, their number observed in Finland and America on the same day increases; while those observed in Finland and only in Europe, or those in Finland only, decrease. These relations correspond to the known law, that with the frequency the intensity and extent of the polar lights also increase.

Yellow Fever Infections.

Many medical men hold that yellow fever is not infectious. Mr. Jasper Cargill, of Jamaica, W. I., relates, in the Lancet, several instances which came under his notice in which there would be no doubt whatever that the disease came from infection. The sufferers were colored people fully acclimatized to the Jamaica climate, so that there was no pobability of the fever having bred in themselves; be sides the place of infection was very clearly ascertained.

Lead Explosions.

Many mechanics have had their patience sorely tried when pouring lead around a damp or wet joint, to find it explode, blow out, or scatter from the effects of steam generated by the heat of the lead. The whole trouble may be stopped by putting a piece of resin, the size of the end of a man's thumb into the ladle and allowing it to melt before pouring.

The famine in India has quadrupled the death rate in the city of Madras. The death rate in July was 1,150 weekly. During the week ending August 17th, 1,051,000 persons were receiving relief in the Madras presidency. In thirteen affected districts the annual death rate in the week was equal to 483 per 1,000, signifying that if this rate continued for a year scarcely more than half the population would survive.

To coat iron with emery, give the metal a good coat of il and white lead; when this gets dry and hard, apply a mixture of glue and emery.
［Continued from frst page．］ ser，and its refrigerator holds about $1,700 \mathrm{lbs}$ ．of oxide． The non－congealable liquid is a saturated solution of chloride of magnesium，which has given better results than the gly－ cerin and water mixture．The tension of the oxide vapor varies from 14.7 to 13 lbs ．about，and on the return stroke
 its temperature raised to $200^{\circ} \mathrm{Fah}$ ．The cold water current reduces this temperature to about 61° at the outlet，and then， under the pressure of from 3 to $3 \frac{1}{3}$ atmospheres，the gas re－ turns to liquid state．When the ice in the freezing boxes is formed，the workmen，by means of the craneshown in Fig． 1 ，which moves around an axis in the center of the large tank，lifts out the boxes one by one，and dips them in hot water，so that the block of ice within may bécome detached． The block is then removed and the box，replenished with fresh water，is replaced．The pressure water，is replaced．The pressure
in the condenser，we are in． in the condenser，we are in－
formed，does not exceed 35 to 37 formed，does not exceed 35 to 37
lbs．per square inch above atmo－ spheric pressure－the average absolute steam pressure in the engine cylinder is 30 lbs．maxi－ mum．No difficulty is expe－ rienced in keeping tight joints， and the loss of oxide per week does not exceed $\frac{1}{2} \mathrm{lb}$ ．The mag nesium chloride or glycerin solu－ tion rarely needs renewal and is always cheap．
It is claimed that 1 lb ．of acid by volatilization produces near－ ly 1 lb ．of ice．From the appa－ ratus illustrated．in Fig． 1 the following data have been ob－ tained：Average horse power of engine， 73 to 75 ，of which 23 horse power is used for the con－ densing pump，circulating pump， boiler feed pump，air pump，＇and boiler feed pump，air pump，and
acid pump．The quantity of ice acid pump．The quantity of ice
produced was 18 to 20 tons in produced was 18 to 20 tons in
twenty－four hours；coal burned， $2 \frac{1}{3}$ tons per day；the average pro－ duction of ice is claimed to be from 9 to 10 tons per ton of coal．The cakes of ice measure do not boil．Rub each fruit separately with pulverized 12 inches by 6 inches by 36 inches，and weigh 83 lbs．each．－ The following data show the inflammability and explosi bility of various substances used in ice－making．

Fig．3．－THE PICTET ARTIFICIAL ICE MACHINE．
fresh fruit through the winter：Mix rosin 2 lbs．，tallow

Also the advantage of the pressure of vapor of the oxide at conveyed to the rolls by a carrier worked from the mill，con－ 65° Fah．，namely， 52 lbs．，instead of the very low pressure sisting of chains on a series of wooden rollers． of chymogene， 12 to 17 lbs ．，which results constantly in the pumps using the latter working almost in a vacuum．The disadvantage on the other hand of the high pressure of am－ monia is obvious．
For further information address the Pictet Artificial Ice Company，room 51 Coal and Iron Exchange Building，cor－ ner Courtlandt and Church streets，New York city

Keeping Fruit Fresh．

The following is said to be a good process for keeping

vitality of Ant

Several interesting observations have been made by the Rev．H．C．McCook on the endurance of extremes of heat and cold by ants．This year a formicary of F．pennsylvanica was cut from an oak bough and exposed out of doors to the rigor of a mountain winter，and survived．A number were dropped separately upon ice，and were found alive after dropped separately upon ice，and were found alive after
forty－eight hours，each in a little depression．F．rufa was found active in its formicary at $34^{\circ} \mathrm{F}$ ．，sluggish at 30° ．The extreme of heat seemed also to be endured by F．pennsylvan－ all from the heat of stones wall－ ing in a camp fire，having been driven into this position out of a burning stump．A community of agricultural ants（ M molefac－ of agricultural ants（M．molefac－ iens）lived in a mound upon which some smiths in Texas made their fires for heating wa－
gon tires．Numbers of ants gon tires．Numbers of ants were seen at work by Dr．Lin－ cecum，cleaning out the entrance to their city，before the entire extinction of the fire just used for heating tires．They had learnt all about the fire，and knew how to work in and around the dying embers without inju－ ry．A quantity of mason ants （variety of F．mufa）observed by Mr．McCook were accidentally flooded under five inches of wa－ ter，and they appeared to be quite dead，and floated about in this condition for many hours．But subsequently most of them re－ covered full activity．In Texas Mr．Lincecum found that the agricultural ants are seen in great numbers in wells，forming a sort of floating mass as large as an orange，clinging together． In this condition they get drawn up in the bucket，and though they may have been in the water do not boil．Rub each fruit separately with pulverized a day or two，they are allfound alive．Yet individuals can解 to permit the coating to set，and pack away carefully in a cool place．

COMBINED ENGINE AND SUGAR CANE GRINDING MILL
－We select from Iron the accompanying cut of a com－ bined engine and sugar cane grinding mill，manufactured by Messrs．Robey \＆Co．，of Lincoln，England．
The mill is especially designed for small plantations．The rollers are three in number and are placed horizontally，one over the other two．These rollers are 20 inches in diame－ ter and 30 inches long，and are keyed on to their respective shafts．On one end of these shafts are pinions，which are driven by a train of strong gearing actuated by the horizon－ tal engine，which is of 8 horse power nominal，but capa－ ble of working more than that power．The whole is fixed on strong foundation plates，by which arrangement the fit－ ting up is much facilitated．For the sake of greater eas

Names of substancos used in ice－making

Chymogene，gasolene，and other
derivatives of petroleum＊．．． Methylic ette
Ammoniat．．

 not explosible．

$\left\|\begin{array}{c}30 \text { to } 50 \\ -6 \\ -30\end{array}\right\|$	12 to 1 90 120	$\|$0.6 $\left.\begin{array}{c}\text { 3．9 } \\ \\ 1.617 \\ 0.76 \\ 0.59\end{array} \right\rvert\,$	170 663 240 900 384 900 511
14	52	｜1449 $2 \cdot 25$	｜ 170 ｜ 39
\dagger Explosible．\ddagger Extinguishes combustion，			

\qquad maximum cos to produce 250 tons per day of 24 hours．Em ployees，$\$ 51.00$ ； oxide at 4 lb oxide，at 4 lbs． per week， 37 cents；oil，$\$ 2$ ； coal， $22 \frac{1}{2}$ tons a $\$ 4.25$ per ton \＄105．63．Equi valent to 63 cents per ton actual cost of manufacture． Estimating ca pital at $\$ 250,000$ pital at $\$ 200,000$ and adding ta es，office expen ses，wear and tear，insurance， etc．，the total cost comes to $\$ 1.05$ perton of ice．

Attention is called to the ad－ vantage of the low boiling point of sul－ point of sul－ phurous oxide， which is 14 Fah．as com－ pared with chy－ mogene，which is 30° to 50° ．

COMBINED ENGINE AND SUGAR CANE GRINDING MILL．
of the coral by the magilus at all．Mr．Charles worth，however， finds that magi－ lus not only drives through drives through coral in any di－ coral in any di－
rection with ap－ rection with ap－
parently the parently the
same facility same facility
that the bivalve that the bivalve
teredo tunnels masses of wood， but he finds that it even surpasses teredoin itspow er of suddenly er of suddenly
reflectin x its reflecting its shell and return ing to the point from which it commenced its advance ；and this bending back of the shell upon itself is not accomplished in such natural ca－ vities as ca－ vities as fre－ quently prevail in large corals， but in the solid coral．－Nature．

The Electric Light

A special division of the Paris International Exhibition will be devoted to electricity, so that all the systems of electric lighting may be tested comparatively. The electric light continues to create the greatest interest in Paris. The experiments which we mentioned some time ago have been conducted during forty consecutive days at the Lyons railway station. A force of about 40 horse power is sufficient to keep going twenty-eight electric lamps, each of which gives a light equal to eighty gas lamps, and works with regularity for ten and a half hours. The effect is splendid, the whole of the station, except the waiting room, being lighted à giorno. The question of economy, however, is not yet settled. It is not known whether the company will agree to pay a somewhat higher price in order to multiply the power of its illumination. These experiments have been tried on Lontain's system, a modification of Wilde's and Siemens' principle. M. Lontain has contrived to send the current generated by an ordinary Wilde's machine into an electromagnetic engine called a distributer. The central part being strongly magnetized by the current from a Wilde's machine, a number of electro-magnets are influenced by its rapid rotation, and in each of these an induction current is generated. These induction currents are powerful enough to feed three electric lamps; and as there are two series of twelve magnets, a single machine could, theoretically, feed seventy-two lamps. Actually, however, it feeds only twen-ty-eight. Lontain uses a new regulator, whịch works very well by the dilatation of a small silver wire. By its dilatation this part of the apparatus works a lever system, and brings the carbon electrodes into contact. The French Northern Railway has purchased a number of Gramme magneto-electric machines. They intend to use them at their goods terminus and stores.-Nature.

A New Indicator for Alkalimetry.

E. Luck proposes to employ, as indicator for volumetric estimation of acids and alkalies, phenolphtalein, a new dye stuff, prepared by Baeyer by heating together phenol (carbolic acid), anhydrous phtalic acid and sulphuric acid. In dilute aqueous or acidified liquids this dyestuff is colorless, but the addition of the slightest excess of alkali produces an intense purple red color, which is destroyed again by a trace of acid. For use, 1 part of phenolphtalein is dissolved in 30 parts alcohol, and 1 or two drops of this solution added to every 100 c . c. of liquid to be titered. If the liquid is acid it becomes opalescent at first, but clears on stirring. One drop of dilute soda lye or acid is more than sufficient to cause the change of color.

THE ROSS BURR STONE GRINDING MILL
The annexed illustrations represent the Ross burr stone grinding mill, which is adapted for the grinding of flour, corn meal, paints, spices, and other dry materials, besides printers' ink, chocolate, paste blacking, and other substances of similar consistence. It runs at high speed, is claimed to grind fine and fast, and to consume but little power. The chief feature in the construction is that the grinding is done at the circumference and nea the center of motion instead of by the flat face of the stone
Fig. 1 represents the millwith mixer attached by which the materials to be ground are thoroughly mingled before entering the mill. In grinding paint the addition of the mixer is con sidered advantageous, the paint is thus kept cool, owing to the tap of the mill being open so that the heat escapes instead of being absorbed by the paint. From the sectional view, Fig. 2, the internal arrangement of the machine will be clearly understood. The contents of the hopper are drawn down between the stones by the screw A. The moving stone, B, is in the shape of a conical frustrum, and is attached to a vertical haft which is rotated by the gearing shown. The outer stone is inclosed in the casing and is of a shape to receive the stone, B, in interna contact, adjustments of the latter being effected by the nut, C. As D is a small pipe to conduc the lubricating oil to the shaft bearing. The en tire construction is simple and strong. The ma nufacturers claim that the mill now grinds nine tenths of all the printers' ink made in the coun try, and submit to us records of numerous pre miums received (notably two gold, seven silver and two bronze metals from the American In stitute) besides many excellent testimonials from parties experienced in its use.
For further information address the manu facturer, Mr. Charles Ross, Jr., 81 and 83 First street, Williamsburgh, N. Y.

Restoring the Color of Lace may be restored to its original whiteness by first ironing it slightly, then folding it and sewing it into a clean linen bag, which is placed for twenty four hours in pure olive oil Afterwards the bag is to be boiled in a solution of soap water, and finally dipped into water containing a slight pro portion of starch. The lace is then to be taken from the bag and stretched on pins to dry.

Electricity for Sleeplessness
That galvanizatic of the head has an hypnotic effect has long been known: hitherto, however, it has not been used to counteract sleeplessness. Vigoureux asserts (Allg. Wie

THE BURR STONE GRINDING MILL.-Fig. 2.

Mea. Ztg.) that he has daily obtained the finest results in this direction, and has failed only in exceptional cases, as, for instance, when sleep has been disturbed or prevented by severe dyspnœa. His method is to place the broad, flat electrodes (carbon covered with chamois leather) on both temples, and allow the current of from three, at the most

THE BURR STONE GRINDING MILL.-Fig. 1.

Aside from the question of establishing soup houses for the poor in largecities, the question of the minimum amount of food at the lowest cost which shall be sufficient not to maintain life merely, but health and strength. is a subject of frequent discussion at the present day, and in this connection some extracts from Professor Voigt's report to the Munich magistrates may prove of value. Professor Voigt's first problem was to determine the quantity of the chief constituents of food which a soup kitchen ought to give to each person for a noonday meal. He decided that a grown up laboring man required 59 grammes (910 grains) of albumen, 34 grammes (524 grains) fat, and 160 grammes (2,569 grains) or carbohydrates.
From the reports of several of these soup houses in various parts of Germany, and the bills of fare in them, he calculated the amount of each substance given by them, and found to his dismay that none reached the required standard, and some fell far below. We give his table of results:

	men	Fat.	Carbohydrat
Required amount.	59	34	160
Munich soup house.	14	3	32
Leipsic Volk's kitchen	24	8	71
Dresden "	37	10	100
Berlin "	35	19	178
Egestorff's "6 in Hanover	35	8	110
Eating Institute of Hamburg	41	5	133
Hamburg Volk's kitchen....	50	11	187
Cologne "، "	49		188
Carlsruhe eating house.	58	16	180

Here is evidently a shrewd exception, says Voigt. Even if people are contented with the volume of the meal and feel sated, still they have not necessarily taken sufficient nourishment for noon. Only a small portion of the volks kitchens furnish a sufficient quantity for an old and feeble beneficiary or pauper, namely, 40 grms. albumen, 30 grms. fat, and 85 of carbohydrates, and none sufficient for a working man. In most cases, to be sure, the carbohydrates are in sufficient quantity, but not the albumen. In most cases throughout the list the fat is lacking to a surprising extent, and it appears as if they were ignorant of its importance: and yet a good suet soup is craved by the common people.
In these institutions' it is evident that more attention has been paid to cheapnes than to the proper composition of the food; it is just impossible for most of them to afford the necessary quantity at such low prices. It was only in Carlsruhe that the dinner came tolerably near the scientific requirements. Such food was prepared there for 30 pfenpige (71 cents), and Professor Voigt's model recipe could be carried out with twenty changes, in Munich, for that price. Voigt also calls attention to the actual nutritive value of the so-called relishes or seasoning, which impart an agreeable flavor to the food, and also to the animal gelatin to be extracted from bones and sinews, which protects the albumen in the body from decomposition. The excessive use of bread and potatoes should be combated by the broad influence of these people's kitchens.
In an able-bodied working man, the waste which should be supplied amounts to 118 grammes albumen, and 265 grammes carbon, partially in fat and partially in the carbohydrates. Of the carbon not more than 209 grammes should be carbohydrates, or bread, potatoes, and farinaceous food generally, and 56 grammes as fat.
The report concludes with Voigt's model recipes for the requisite amount of nutriment, bat as these apply only to Munich, we will not reproduce them here.
The difficulty in prescribing any given regime, whether for health alone or for economy com bined with health, is the great diversity of tastes which exists among every class and makes true the saying that " what is one man's food is an other man's poison." It is seldom the case that the system is benefited by an article of food not demanded by the appetite, much less by food that provokes disgust or nausea, however per fect it may be from a scientific point of view.

Laundries Spreading Disease.

The London Lancet says that incidents confirming the belief that diseases are spread by laundries are constantly reported as occurring in England and on the continent. Clothing worn by diseased persons or persons who have died of infectious disease are washed together with other clothes. The germs thus sown soon propagate, until an epidemic is created, as has been several times the case. Too much care cannot he exercised in this respect. The clothing should either be burned or thoroughly disinfec ted and washed apart.

Cleaning Engravings

Put the engraving on a smooth board, cover it thinly with common salt finely powdered; squeeze emon juice upon the salt so as to dissolve a considerable portion of it; elevate one end of the board, so that it may form an angle of about 45 or 50 degrees with the horizon. Pour on the five, Trouvés elements to pass for a half or a whole minute. engravirg boiling water from a tea-kettle until the salt and When the application is made in the morning, the patient lemon juice be all washed off; the engraving will then be experiences a more or less pronounced inclination to sleep. perfectly clean and free footh surface, gradually. If dried after the first night, for a night or two. the board, or on some smooth surface, gradually. If dried by the fire or sun, it will be tinged with a yellow color.

\mathfrak{C} mmantations.

To the Editor of the Scientifc American:
Notwithstanding the delay of business and various embarrassments resulting from the late fire, the receipts of the Patent Office for the month of October from all sources amounted to the large sum of $\$ 55,134.03$, as against $\$ 53$, 147.82 received during the corresponding month of las year, an increase of $\$ 1,986.20$. With two exceptions only the receipts for the past month are larger than those for the same month of any year since the foundation of the Offioe. The grants of patents during the first ten months of the year do not, however, correspond with this, as the issues of all kinds fall over 1,500 short of those of the corresponding months of last year. The following shows the number granted during the year up to and including the last issue of October: Patents, 10,924; reissues, 481; designs, 604; trade marks, 1,042 ; labels, 291; total, 13,342, as against a total of 14,886 issued during the same period of last year.

patent matters in congress.

Some attempts are being made to shorten the life of patents, by the introduction of bills in Congress to accomplish this purpose. One was introduced by Mr. Pridmore, which enacts that " Every patent shall contain a short title or description of the invention or discovery, correctly indicating its nature and design, and a grant to the patentee, his heirs or assigns, for a term of seventeen years, unless the invention be upon an agricultural, horticultural, or mechanical implement or tool, in which case it shall only be for a term of eight years, of the exclusive right to make, use, and vend the invention or discovery throughout the United States, and the Territories thereof, referring to the specifications for the particulars thereof. A copy of the specifications and drawings shall be annexed to the patent, and be a part thereof. And no patent shall be reissued upon any article or improvement thereof to which the limit of eight years applies.'

Another bill, introduced by Mr. Oliver, provides that hereafter patents shall be granted for ten years only, but may be extended for a further term of ten years under the provisions of the law regarding extension of patents formerly in force in extension cases. The total duration of any patent

the court of claims

Senator Mitchell has introduced a bill extending the jurisdiction of the Court of Claims of the United States, which provides that, if the Secretary of War, Treasury, or Interior Departments, or the Postmaster General, or any other official of the United States, acting under authority from the head of any executive department or bureau, has used, or hereafter uses, in the public service, any invention upon which means of which the public service has been or is improved or benefited, the Court of Claims shall be vested with full or benefited, the Court of Claims shall be vested with full and exclusive jurisdiction in and over all such cases. It
further provides that either the complainant or defendant may appeal to the Supreme Court of the United States within ninety days after judgment or final decree shall have been made by said Court of Claims; such cases so ap pealed are to be preferred causes in the Supreme Court.

> THE FRENCH EXPOSITION.

The House Committee on Foreign Affairs are holding daily sessions on the matter of the bill for providing for American representation at the Paris Exposition. The Secretary of State has sent a communication to the Committee, recom mending an appropriation of $\$ 225,000$, and suggesting also that the bill should contain a provision for transporting intended exhibits from interior cities to the seabord. Representative Hewitt has appeared before the Committee by invitation, and made some additional statements in advocacy of the legislation proposed by his bill on the subject.
Messrs. Salmon and De Stuckle, of New York, who claimed to represent many intended exhibitors, have also appeared and laid before the Committee the plans and regulations of the Exposition, and explained the location and dimensions of the American department. They also suggested that the number of skilled commissioners should be enlarged from fifteen to eighteen, allowing one artizan and one scientific man to each of the nine groups; and that the exhibitors should be given a voice in the selections of Amer ican members of the international jury.

PRESERVATION OF FORESTS.

Every now and then Congress takes a step in the direction looking to the preservation of the forests of the country, which are disappearing altogether too fast, but for some reason or other the bill hardly ever gets any further than the committee rooms, or if it should succeed in passing one house, it always fails to reach the other in time for action. Now, however, simultaneous action in both houses is pro posed by the Forest Association of Chicago, which body presented memorials to both the House and Senate, setting forth the wisdom in appointing a commission to proceed to Europe to examine into țe forests of European countries,
with a view to make such adaptations of the Old World with a view to make such adaptations of the Old World
practices in regard to the preservation of forests and tree cultivation as may prove advantageous here. Some legislation, it is agreed by every one, is absolutely necessary to prevent the ruthless destruction of trees, and the Committee
on Agriculture, to which the subject has been referred, can
confer great advantage on the country by acting promptly, by reporting a bill of some kind, intended to further the objects of the association in the manner indicated in th memorials, or by some more direct legislation.

> JUDICIAL CONSTRUCTION OF PATENTS.

An opinion of the Supreme Court of the United States has recently been made public, which appears to be import ant in view of the decisions of some of the circuit court judges, who seem to think that the proper way to construe a patent is by what is shown or hinted at in the specification, rather than what is covered by the claim. The case referred to was an appeal from the decision of Judge McKernan of the Eastern District of Pennsylvania, made in a suit brought by the Keystone Bridge Company vs. Phœnix Iron Company, for an alleged infringement of the first claim of Surville \& Piper's patent of January 14, 1862, and the third claim of a patent issued to the same parties Octobe 31, 1865. The point in controversy was the construction of the claims, which on their face appeared to cover only chord bars made, by upsetting the ends, when the bodies of said bars were wide and thin. The defendants' chord bars were of cylindrical form, so far as related to the bodies, but their ends were substantially like the plaintiffs', and the latter took the ground that they were not limited to the wide and thin construction, but to any form of chord bars in which the ends were upset like theirs. Judge McKernan, however, construed their patent in the exac terms of their claim, and as the defendants' did not make "wide and
thin " bars, he held that they did not infringe; but waiving this ground, he further held that the claim of the patent be ing for "the use" in truss bridges, of chord bars construc ted in the manner described, the method of m ㅊking the same being disclaimed, and it appearing that the defendants had only made and sold chord bars, that they only did what they had a legal right to do, and did not thereby assume any responsibility for the wrongful acts of others. From this decision the plaintiffs' appealed to the Suprcme Court, who affirmed the decree, but with reference mainly to the point as to whether the plaintiffs' should be held to the strict terms of theirclaims or not. Justice Bradley, who delivered the opinion of the Court affirming the decree, said that When a claim is so explicit, the court cannot alter or en large it. If the patentees have not claimed the whole of error by a reissue. They cannot expect the court to wad through the history of the art and spell out what they might have claimed, but have not. Since the act of 1836, the patent laws require that an applicant for a patent shall not only, by a specification in writirg, fully explain his invention, but that he shall particularly specify and point out the part, improvement, or combination which he claims as his
own invention or discovery. This provision own invention or discovery. This provision was inserted in the law for the purpose of relieving the courts from the duty of ascertaining the exact invention of the patentee. ${ }^{* * * * *}$
This duty is now cast upon the Patent Office. There his claim is, or supposed to be, examined, scrutinized, limited, and made to conform to what he is entitled to. If the Office refused to allow him all he asks, he has an appeal. But the courts have no right to enlarge a patent beyond the scope of the claim, as allowed by the Patent Office, or the appellate tribunal, to which contested cases are referred. When the terms of a claim in a patent are clear and distinct (as they
always should be) the patentee is always bound by it. He can claim nothing beyond it." The construction thus put upon the patent obviated the necessity of the court expressing an opinion on the other point made by the court below,
namely, that the patents only covered the use of the chords in question in truss bridges, and not the making of such chords, which is all that the defendants are known to have done. The court therefore affirmed the decree of the court below, with costs.
The Supreme Court has also affirmed the decree of the Circuit Court for the District of New Jersey, in the case of Roemer vs. Simon et al. This was a suit for an alleged infringement of a patent to Roemer for an improvement in travelling bags, consisting in the application of two staples, or clamps, one at or near each end, to the frame of the bag so that when packed the ends will remain closed. The de fense was that the alleged invention was not original with the patentee, having been previously known to the public through a publication in London, from which it was alleged plaintiff had taken it and unjustly patented it in this coun-
try. The court below sustained the defense and dismissed the bill. It was contended in the appeal that the evidence should have been held sufficient to sustain the patent; that the patent itself is prima facie evidence that the invention
wasooriginal with the patentee, which, supported as it was by a former adjudication, much stronger evidence than was adduced should have been required to overthrow the presumption in favor of its validity. Justice Clifford delivered the opinion of the court affirming the decree of the Circuit Court, with costs.

CROPS ABROAD
The Commissioner of Agriculture has returns which indi cate that, owing to the poor crops in England, that country The English crop was unusually poor this weat this year. The English crop was unusually poor this year, but on the continent of Europe there has been a fair general crop. In Eastern Europe the supply will not greatly exceed the defrom Russia and Turkey. Egypt and India will have a larger surplus than usual, and will probably increase their
shipments to Europe. Our export amounts now to $55,000,-$

000 bushels, but the Commissioner thinks that this year we may be able to supply the entire British deficiency.
english manufactures.
The State Department is constantly receiving reports from our Consuls, respecting the manufactures, commerce, etc. of the people where they are located. The Consul at Leede England, reports that our high tariff and home manufac turing have almost closed our markets against woolens and linens, which are their principal wares, the only demand be ing for a small quantity of the very highest class of woolens to meet the demand of those people who will have foreign goods no matter what price they have to pay for them. The decline of their exports, and the means to be taken to regain their former supremacy in this regard, are now the leading topics among the thinking people. Our Consul thinks that no effectual remedy can be applied, but that British commercial interests must decline, and that American interests will be affected in the inverse ratio. This is mainly owing to the perfection of our machinery, the style and finish of our goods, the results of the inventive genius of our countrymen, together with the acknowledged fact that our arti zans will do a much larger amount of work in a given time than the English, which working together have not only shut out Bri'ish manufacturers from our markets, but have enabled us to become a formidable competitor with England or the trade of other countries. A somewhat similar report omes from our Consulate at Lyons, France, which notes a decrease in the exports to the United States for the year ending September 30, 1877, as compared with the preceding year, of $\$ 1,522,835$, which is a decrease of 15 per cent. The decrease in silk goods alone was more than 20 per cent of the whole export of these manufacturers. An increase in the export of raw silk to the United States of over half a million dollars (more than the entire export of the previous year) is noted as showing the large increase of our own manufactures. From our Minister to Holland we have a report containing some refreshing items in these days of bank and insurance failures, from which it appears that there has not been a bank failure in that country for forty years; that the paper money of the banks is equal to gold, and that, not withstanding the rate of insurance does not average mor than one half of one per cent, there is no such thing as a failure of a fire insurance company on record. First class railroad travel costs only a cent a mile, and yet the roads pay good dividends, as pilfering officials are scarcely ever heard of; and when they do shock the nation by turning up, they are severely punished and for ever disgraced. Dishonesty of any kind or failure in business means public dishonor, and utterly debars from any future public consider tion. Four millions of people live within an area of 20,000 square miles, and all appear to be happy, prosperous, and contented; the secret of which appears to lie in the fact tha all live within their income, and that industry and honesty are principles so firmly established that their violation is looked upon as an outrage on the national characteristics. From the Bahamas the consular report seems to show tha our high tariff on salt and pineapples has a depressing effect on our trade with that region, as these articles have been hitherto the main export to the United States. The Consul hinks that if our high duties on these productions were bolished, an immense impetus would be given to the trade and industries of these islands, which would result in large increase in our exports. Although it is not probable that under our present tariff any very great enlargement o the trade will be effected, yet even at present American manufactures are surely and steadily taking the ground of the British, and the islands rely upon us almost entirely for breadstuffs, salt provisions, tobacco, sugar, ropes, paints, oils, liquors, boots and shoes, and, latterly American cot tons are being exported. From our Consul at San Domingo we have a detailed account of the alleged discovery of the bones of Columbus in the Cathedral there, notwithstanding the fact that the bones of the great discoverer were believed to have been transferred to the Cathedral of Havana abou 90 years ago, where they were supposed to have reposed ever since. If these are the true bones, the church author ities were guilty of fraud in palming off the bones of some body else on the Spaniards for those of Columbus, and if not, they are trying to perpetrate one now. From Cape town, South Africa it is reported that an International Ex hibition is to be opened at that place next April, under th patronage of Governor Sir H. Bartle Frere, with an agricul tural department organized on a grand scale. Diplomas of honor, with gold, silver, and bronze medals, will be awarded and every facility will be given for the sale of articles ex hibited, as well as for taking orders in the building. The exhibition will be divided into classes, which include foods, drinks, chemicals, perfumery, furniture, fabrics, sewing machines, domestic appliances, watches, jewelry, hardware edge tools, cutlery, metals, agricultural implements, ma chinery, etc. Further information may be obtained by communicating with Edmund Johnson, delegate commis sioner, at No. 3 Castle St., Holborn. London.
The Lighthouse Board gives notice that an automatic sig nal buoy has been placed off Cape Hatteras in 12 fathoms of water. Cape Hatteras bearing northwest by north, about 12 miles distant. The buoy is painted black and white in per pendicular stripes, and occupies the pasition of the buoy which disappeared from its moorings early in October.
Washington, D. C.
To make hard tallow candles, use a mixture of mutton tal

New Inventions.

Setting up Music by Machinery is the subject of Mr Hannibal Goodwin's (of Newark, N. J.) late invention. The idea is to produce plates by which in connection with any of the well known photolithographic processes music can be rapidly and economically printed. The music is set up on a grooved board and then photographed. The photograp is used for the production of photolithographic plates.
A new adjustable Rowlock has been patented by Mr William B. Padgett of Batesville, Ark. The general arrange ment is such that the oar works in a universal joint. The advantages are that the oar may be moved with less friction, lengthened or shortened as desired, easily attached and de tached from the boat, and that it will not when left to itself catch on any obstruction.
An improved device for Measuring Beer and other liquors that foam when drawn has been patented by G. J. Cave and G. E. Nicholson of Elizabeth, N. J. In the bottom of an ordinary measure is a small box, in the top of which is a screw cap perforated with a small hole to allow the liquid to pass to the box. A short elbow is secured to the side of the measures and opens through a hole in the lower part into the box. A glass tube rests in the elbow, upon the upper end of which is placed a ring of rubber which is pressed down upon the glass tube by a plug. This plug has a hole formed through it, to allow the air contained in the tube to escape. The tube is surrounded by a case arranged with cross bars which serve as indices of the liquid within. If the tube is broken it can readily be replaced.
A useful as well as ornamental Cane patented by James Pool of Friendsville, Ill., is a curious combination of instruments. In the handle is a microscope, in the top a compass, in the center a spy glass, and on the outside a thermometer. All of these parts are readily detachable and fit snugly to gether.
A new Apparatus to Cleanse Feathers by steam has been patented by J. J. Van Alstine of Bristol, Wis. The feathers are placed in a double walled bottom chamber, having a series of perforations and containing perforated steam pipes and is provided with a double walled upper part. A reel agitates the feathers with a series of beater arms, which are held between flanged clamps on a prismatic shaft by means of transverse bolts.
An improved Counterfeit Coin Detector, patented by Mr W. H. Rice of New York city, furnishes a convenient, compact and reliable device for pocket use, cash tills, etc. It has guide tubes gauged in length and width for coins of dif ferent denominations, in connection with a fulcrumed and weighted trip lever gauged to the weight of the genuin coins. A spurious coin if too large cannot enter the
tubes, and if too light will fail to trip the trip-lever tubes, and if too light will fail to trip the trip-lever.
A new and useful Washing Machine patented by Louis
Rivers of Auburn, Oregon, keeps the clothea supplied with fresh suds while being washed and also allows the dirty water to run off freely when squeezed out. By an ingenious combination of rollers, chains of slats, spring, etc., the machine_washes the clothes, at a considerable saving of time and soap.
The forward end of an improved Last invented by J. R. Jacques of Hancock, Mich., is connected with the lower por tion by means of dowels. The rear end of the upper por tion is connected with a thumbscrew and the two parts are separated by wedges. This gives a simple yet strong con struction.
A new Drawing Pen patented by Bethune Perry of Albion, Cal., makes a broken line instead of a dotted one. Upon the lower end of the handle is attached a spindle, upon the inner part of which is placed a sleeve to which a disk is secured. The middle part of the sleeve is fitted with a second disk which is held in place by a nut screwed upon the outer end of the sleeve. The two disks are placed with their con cave sides opposite each other and are held apart by a rubber Their edges have radial notches. By tightening the nut so as to prevent the sleeve revolving a continuous line is made by loosening the nut, a broken line. A very useful imple ment for draughtsmen
In an improved Sewing Machine Shuttle patented by H . J. Nott of St. Mary's, Texas. the shuttle case is fitted with a cap having a hook and catch for securing it to the shuttle, and a projection that holds the bobbin in place. The inven tion simplifies the operation of shifting bobbins and of threading shuttles.
A simple Button Swivel for connecting a tetber with the ring of a head stall has been patented by Norman Brooks of Clifton, Kan. Upon the shank of the hook are two projecting arms forming a pivoted button. In using the device the button is turned lengthwise with the hook and passed through the ring of the headstall and the button turned side wise.
In many Copying Books, the oil employed in making the leaves transparent soaks into the index and the back of the book, and spoils them. A new device has been patented by
W . H. Ellis and W . McDonald of Brooklyn for obviating this. The body of the book consists of thin leaves, alter nate ones being oiled to render them partly transparent. A half cover of enameled cloth is attached to the back cover which has elastic loops for envelopes. The index has a half cover of oilproof material to protect it from oil.
An improved Barrel Holder and Skid has been patented by G. W. Brown of Damariscotta, Me., which greatly facilitates the moving of barrels. The skid is made of two sec tions jointed and hinged so that they can be folded together, and is composed of cross bars and longitudinal bars rigidly
connected together, so as to form an inclined plane. The
upper section is hinged and pivoted inside of the curved upper section is hinged and pivoted inside of the curved
side bars, forming a holding which receives and retains in place the barrel which has been rolled up.
An adjustable Switch for Ice Runs patented by H. F. Dernell of Athens N. Y., facilitates the handling of blocks of ice. Atsuitable points on both sides of the ice run flanges are omitted and lateral chutes constructed for conducting
the ice into different houses, and fitted with flanged sides the ice into different houses, and fitted with flanged sides
and grated bottom. The switches form a segment of a circle and are strongly braced.
A novel Top Prop for Carriages has been invented by Mr. Leonard Sawyer of Merrimac, Mass. The arrangement is such that the washers cannot turn on the bolt, and hence the nut and thimble will not be unscrewed by the action of the braces. The invention is an
parts very apt to work loose.
A simple and Automatic Wagon Brake is the invention of Messrs. W. L. Whitman and Ephraim Manes of Ringgold, Ga. The arrangement is such that the forward pressure of the wagon against the horses will apply the brake, while the wagon may be backed without the brake being thrown into
action. The brake also acts as a clog to prevent the horses action. The brake also acts as a clog to prevent the horses from starting.
Mr. Uel W. Armstrong of Evansville, Ind., has devised an ingenious Mosquito Net Canopy which consists of uprights to be attached to the bed which support a frame made in three pieces. The frame is easily folded into compact form, and the entire device may be quickly put up for use or taken down for storage. It has no detachable parts that re liable to get lost.
Mr. Henry Sutter of Baker City, Oregon, is the inventor of a new Breech-Loading Firearm in which one movement of the operating lever cocks the hammer, opens the breech block, and actuates the extractor, while the return movement on the lever closes the breech, locks the breech block, manently in the stock.
A novel Vehicle Device for Checking Horses has been patented by Mr. Geo. L. Kenyon of Lonsdale, R. I. When it is desired to fasten the horse the end of the line is attached to a ring on a disk connected with the hub of one of the wheels. Should the horse start, the line is wound on reel arms and the bit pulled upon. Should the horse back, a pawl and ratchet connection prevents injury. This inven tion is both new and ingenious.
In a new Refrigerator patented by Mr. William P. Bradley of Mobile, Ala., there is a main box and an interior box forming an intermediate cold air space and closed by a water joint. The inner box contains ice chamber and water cooler, and by suitable devices the melted ice way may be drawn off This refrigerator is claimed to reduce the consumption of ice to a minimum.
Mr. Frederick Dassori of New Yorik city proposes a new Ceiling for Grain Vessels so as to make them safer and to protect the grain from damage or loss. The ceiling is carried up in a curve from water line to deck near the sides of the main hatchway and a lining of cloth or similar material is provided to prevent the grain sifting through and choking the pumps.
Animproved Fire Escape that may be placed on the top or roof of a building and operated from below has been invented by Messrs. H. K. and Z. Warner of Lake City, Minn. On pulling a cord a catch is released, a platform drops, and a. spool rolls down the chute thus formed and falls to the ground. A cord attached to this spool is now pulled and a rope ladder is thus hauled down. The object of the ladder
is to furnish a convenient and readily adjusted means of is to furnish a convenient and readily adjusted me
A combined Sole and Toe protector for boots and shoes devised by Mr. Charles Nobs of Newark, N. J., consists of sheet metal plate which covers and is screwed to the sole and has at its front end a tip portion. The object
A thew Men Cupar usage
A berland, Pa., embodies numerous ingenious improvements. The knives are adjustable so that they can be set forward as they wear, the springs may be adjusted so as to regulate the force of the chopping blow, novel contrivances rotate the
meat box, and others turn the meat over to bring it into posimeat box, and others turn the meat over to bring it into posi tion to be operated upon by the knives.

Scientific Potato Culture。
A French agricultural journal, the Basse Cour, describes the result of some experiments in potato growing recently onducted by scientific men in Germany, in which it is de duce a er part, and the consequence is that those agriculturists who cut their potatoes in half before planting them are not well advised in cutting them vertically, but should always divide them horizontally, planting the upper half and using the other as food for cattle. But the best plan of all is to plan the tuber whole, cutting out, nevertheless, all the "eyes" except those in the top part.
Crystallized Boro-Manganese and the Action of Manganese in Blast Furnaces.
We find in Comptes Rendus a paper by Troost and Haute feuille upon manganese, from which we abstract a fe points, such as may prove interesting to our readers.
Manganese combines with boron more readily than iron does, for in making ferro-boron, or boride of iron, crystal lized boron must be employed, while in making the boride
of manganese it is only necessary to fuse boracic acid with tancetted manganese, $\mathrm{Mn}_{3} \mathrm{C}$, in order to obtain this sub-
 crystals showed them to be a definite compound of 1 equivalent boron and 1 of manganese; hence its formula is Mn Bo. The crystallized boro-manganese, if free from excess of manganese, dissolves in acid with the evolution of hydro gen gas. When heated to redness in hydrochloric acid gas it is but slightly attacked; it decomposes water only at 212 Fah. Alkaline solutions attack it at somewhat lower tem perature. In contact with moist mercuric chloride (corro sive sublimate), in a few minutes it yields manganous chlo ride, boracic acid, and hydrochloric acid. Mercury cyanide also attacks it in the presence of water.
In a previous paper the authors stated (Comp. Rend. LXXXI., 264) that their researches had established the fact hat carbon and silicon form with manganese definite chemical compounds, while these same non-metals unite with ron only at higher temperatures and form far less stable compounds. Hence it would be interesting to ascertain whether boron, which is generally placed in the same group with carbon and silicon, acts in the same manner toward iron and manganese. Experiments upon the amount of heat evolved by the decomposition of boro-manganese and ferroboron with mercuric chloride show that both of these substances are chemical compounds. Hence boron does not make such a distinction between iron and manganese as do carbon and silicon. (Here is an important distinction be ween boron and silicon, which also differ in quantivalence.) Experiments were made with two kinds of ferro-boron; the one which contained 11 per cent of boron was somewhat malleable, that with 23 per cent of boron was not malleable, but brittle and crystaline.
There are similar distinctions and analogies in the com pounds of sulphur and phosphorus combined with both of these metals. We know that small quantities of sulphur or phosphorus combined with iron do not destroy its metallic lustre, but alter its malleability and ductility considerably. The sulphuretted and phosphuretted iron, which canno be considered as sulphides aud phosphides, act quite differ ently when considered thermetrically. Two kinds of sul phuretted iron, one with 1.8 per cent of sulphur, the other ith $5 \cdot 4$ per cent, when treated with moist mercuric chloride evolved respectively 810 and 840 units of heat per gramme. The metal with 1.8 per cent of sulphur, which is quite considerable from a point of view, evolved the same quantity of heat as pure iron, while the other with 5.4 per cent sul phur evolves more heat than the latter. Iron containing phosphorus acts totally different. Two samples of iron, conaining respectively 5 and 10 per cent of phosphorus, when reated with mercuric chloride, evolved 790 and 480 equiva lents of heat per gramme. From this it is evident that the combination of iron with phosphorus takes place with reat evolution of heat. and that a permanent chemical com pound is formed. The sulphuretted iron is comparable to the silicuretted iron, which is formed without scarcely any evolution of heat. We know, too, that sulphur is far more easily eliminated from iron than phosphorus. The sulphur and phosphorus compounds of manganese, prepared from manganese that contains carbon, are attacked with difficulty by moist mercuric chloride, which is a sign that they are formed with a great evolution of heat, and are therefore more stable compounds than the corresponding iron compounds.
The results of these and previous experiments upon the hermic relations of iron and mangarese compounds leads to the conclusion that the manganese used in treating im pure iron forms with the foreign substances compound which are dissolved in and distributed through the mass of metal, and they render purification easier because they im part to the elements which are to be eliminated the oxidiza bility of the corresponding manganese compounds. At all events, this is frequently the case; but the manganese also plays another and simpler part, namely, it acts at the same ime as the reducer of the oxide of iron.* In different met allurgical operations the elimination of the sulphur and and phosphorus, if carried far enough, requires a long pro tracted oxidation, which produces an iron which contain oxide of iron. By adding ferro-manganese, which is always rich in carbon, the necessary amount of carbon is added to the iron, and at the same time the oxide of iron is reduced with an evolution of heat, both by the carbon and the manganese.* The oxide of manganese produced is distributed hrough the metal, but does not impart to it the injurious roperties that oxide of iron would, for it passes almost com letely into the slag and takes the impurities with it. Hence whether the manganese is already in the metal to be purified, r is added during the refining, its importance always con ists, first, in the formation of compounds, the formation of which is accompanied by more evolution of heat than the corresponding iron compounds, and second, in the ease with which these compounds go into the slag, because they oxidize with the evolution of more heat than those which contain an equal quantity of iron, especially when, as is always the case in metallurgy, they are mixed with a large amount of the metal in excess.

[^0]
IMPROVED TOOL POST FOR LATHES

We illustrate herewith a new tool post for engine lathes and similar tools in which the support is made in two parts, the upper part being screwed into the lower one and capable of being raised or depressed by turning said lowe portion. The lathe tool is clamped by a set screw in the post in the usual way. Fig. 1 is a perspective and Fig. 2 a sectional view of the device.
A is a portion of the tool carriage of a lathe which is pro vided with the usual T-shaped slot, and with a V-shaped grooves, B, at the sides of the slot. \mathbf{C} is a nut having a V-shaped flange to fit in said grooves, and turning therein. To the nut, C , an external sleeve, D , is fitted, which is flattened at its lower end and inserted in the T-shaped slot. It also has a flange at its upper end for supporting the tool. The post, E , has the usual mortise to receive the tool and set screw for binding the same. At its lower end a plate, F, is fitted and enters in the wider part of the T-shaped slot. By turning the nut, C, by means of a lever inserted in one of the holes made in the nut for the purpose. The sleeve, D , is raised or lowered as may be required, and the tool is clamped upon the top of the sleeve by the set screw in the post.
The device is of strong construction and the tool is rigidly held, while at the same time being easy of adjustment.
Patented through the Scientific American Patent Agency, October 2, 1877. For further particulars address the inventor, Mr. Robert Neasham, Mount Washington, Pittsburgh, Alleghany county, Pa.

To Transfer Engravings on Glass.

Metallic colors, prepared and mixed with fat oil, are applied to the stamp on the engraved brass or copper. Wipe with the hand in the manner of the printers of colored plates; take a proof on a sheet of silver paper, which is immediately transferred on the tablet of the glass destined to be painted, being careful to turn the colored side against the glass; it adheres to it, and so soon as the copy is dry take off the superflous paper by washing it with a sponge; there will remain only the color transferred to the glass, which will be fixed by passing the glass through the ovens

HILL'S FOLDING BOOK CASE.

The folding book case, of which we present two views, consists of a central section and two end sections hinged to the former at the rear edge. The upper portion of each section of the case is divided by a series of horizontal and vertical partitions, into small compartments, each intended to receive a book, and each numbered to correspond with the number of the book for which it is the recepta cle.
In front of these compart ments each section is glazed The books are arranged with in with their backs to the front, so that the titles can b discerned through the glass. In the lower portion of each section are large compart ments for books, papers, etc The library is used by plac ing the side sections at righ ing the side sections at righ angles to the central section. The librarian stands in th inclosed space, removes book from the back and passes them through the aperture indicated in Fig. 1, to the ap plicant. Fig. 2 shows the book case folded up when not in use. The books are there by protected from injury by dust, and the case itself is easily stored away, and being easily stored away, and being
provided with strong casters is readily moved.
The invention is especially intended for circulating an Sunday school libraries, but would also be a convenience in private houses. For further particulars apply to the inventor, Charles F. Hill, Hazleton, Pa .

On Bleaching Shellac.
 by josef maria eder.

The greater part of the colorless shellac which is used is bleached in the alcoholic solution, because these varnishes give a good polish, and warrant that the metallic articles covered with them will remain bright. There are, however, in the market considerable quantities of solid bleached shellac, and its practical preparation is not unimportant.
The method of bleaching with alcohol and chloride of lime, given by Field in the Polytechnisches Notizblatt (1852,
p. 23), and by Wittstein in Dingler's Journal (1857, cxLIII, 467), as well as those of Lunning and Elsner, with alcoho and animal charcoal, are not applicable to solid shellac owing to the high price of alcohol and the difficulty of its ecovery. Kressler's method is more practical, in which the bellac is dissolved in aqueous soda solution and bleached with hypochlorite of soda. Sauerwein modified Kressler's process by the addition of sulphite of soda to the above amed reagents.
According to my experiments, the following process is practically especially to be recommeuded, and can also be arried out on a large scale, according to my directions.
Ten parts of pulverized shellac is dissolved with four part

NEASHAM'S TOOL POST FOR LATHES.

of crystallized soda in 120 to 150 parts of hot water in a cop per kettle, and the violet solution, the color of which is due, according to Marquart and Nees Von Esenbeck, to a coloring substance similar to carmine, is filtered through linen into a wooden vat. Ten parts of chloride of lime (containing abou 30 per cent chlorine) is triturated with a solution of 10 to 20 parts of crystallized soda in 200 of water, and this bleaching solution filtered into the shellac solution. To the mixture when cold, dilute hydrochloric acid is added carefully until some shellac begins to separate in crumbs: in most cases only a very little acid is required. This little dodge. suggested by Sauerwein, in fact, hastens the bleaching in no

bleached shellac are obtained by using half the quantity of hloride of lime above prescribed.
The precipitated shellac is put into boiling water, when it comes soft, and can be moulded in any desired form. At rist it is porous and not transparent, but repeated warming nd strong kneading and pulling, impart to it a beautifu ilky gloss.
In spite of the greatest cleanliness, which is absolutely ne cessary, it is scarcely possible to prevent the surface becom ing yellowish; if the bleaching did not succeed perfectly the whole mass has a yellowish shade. To improve the ap pearance of the ware, the drawn and mouided sheilac is pu for some 24 hours \cdot n the acid chlorine liquid, from whic the precipitated shellac has been strained out. It is used before being diluted by the wash water; if necessary, some more chloride of lime is added. By this mean a chalk white surface is obtained. This white layer also possesses this advantage hat the shellac can be kept a long tim without changing its appearance; for it does not change, as all bleached shellac will, and that too throughout the whole mass. Finally, the silky lustre is greatly enhanced by brushing the surface. This silky appearance cannot be obtained by chemical means. According to Berzelius, by a short immersion in strong ammonia the surface swells, and when dry, has a strong rustre, but instead of being silky s resinous. The white color of product changes under this treatment to yellowish, and cannot be restored by the above mentioned process of after-bleaching.
The shellac thus prepared dissolves ra pidly in alcohol, and the solution is per fectly colorless. Previous swelling of the shellac in ether is superfluous. With fresh y bleached shellac, a milky turbid var nish is frequently obtained, which does not clear on standing a long time, as observed by Jacobsen and Peltz. The caus of this is the insolubility in alcohol of a esin which is contaminated in the crude shellac, as shown by Unverdゅrben(Pogg. Annalen, xiv,119) and by the wax in the shellac (Ann. Pharm., cxxxi, 286) The method proposed by Peltz, of extracting this substance with petroleum ether, I do not consider commendable, for the reason that such varnish dries brittle. Shaking the solu tion with pulverized chalk, or gypsum, accomplishes the clarification in a few hours, and the clear solution can readily be drawn off
Polish prepared with such bleached shellac is more brit le than if it is bleached with spodium, and hence the lat ter is to be preferred for fine cabinet work. On the other hand, if the shellac is only sufficiently washed there is ab solutely no rusting of metal varnished with it.-Dingler's Sournal.

A Brilliant Meteor.

lo the Editor of the Scientifio American:
Thinking it to be of inter st to you, I send you the following description of the fall of a meteor which I ob served last evening, Novem ber 11, 6.30 P.M. Direc tion N. N. E. Altitude at commencement of cours bout 30° Length of cours rom 10° to 12° Time rom 10 to 12 . Time of alling about 8 seconds. It ell towards the west, making an angle in falling to the earth of about 65° with the vertical passing through the body. During the latter three fourths of its course its length, including the lu minous trail, was about one half of a degree. The nucleus was very brilliant; its color at first a yellowish white, then a light green, and lastly a greenish yellow Could its color have been due to boron, thallium, etc.? I

hillis folding book caze.

small degree. After two or three days, whether the solution is kept in the dark or in the light, the bleaching is finished. trated hydrochloric precid.
If a comparatively pure natural shellac is to be bleached, this white crumbly precipitate is at once collected upon coarse linen, thoroughly washed with frequent stirring, and then melted together. Impure shellac is left standing for several hours in the liquid, after having been precipitated with hydrochloric acid. The liberated chlorine acts very energetically; yet it is preferable to allow the bleaching to proceed in the alkaline solution. The finely divided shellac, it remains very long in the acid chlorine solution, become brittle, and cannot be drawn out so well. Inferior grades of
ous analyses of meteoric ind no record, in any of the Robert C. Hindiey.
Racine College, Wisconsin, November 12, 1877.

Kangaroo Leather

Kangaroo hides have already become an important article of export from Australia. They make the most pliable leather that is known, admirably fitted for bootlegs, gloves, and riding whips. The skins are sent to Europe, some tanned, and some simply dried.-Fortsch. d. Zeit.

A GOOD waterproof cement may be made by mixing glue 5, rosin 4, red ocher 3 parts, with alittle water.

THE CAPERCAILZIE

The capercailzie, or cock of the woods (petrao urogallus), is one of the largest and finest members of the grouse family. In size it is nearly as large as the turkey. The color of the male bird is a rich chestnut brown covered with a number of black lines irregularly disposed; the breast is black with a gloss of green, and the abdomen is simply black, as are also the lengthened feathers of the throat and tail. The female is distinguished by bars of red and black, which tra verse the head and neck, and the reddish yellow barred with black of the under surface. The bird was once a common inhabitant of the highland districts of Great Britain, but in that locality it has become very rare, its habitat being restricted to the northern parts of the continent of Europe, Norway and Sweden.

The engraving of the capercailzie, given herewith, repre sents a male bird uttering the curious calls which it make during the pairing season. Stationing itself on the branch of some lofty tree, at sunrise or just after sunset, it droops its wings ruffles its feathers, and spreads its tail, like an angry turkey cock. The call is represented by the syllables "peller peller," and these are re peated at first at some little inter vals; they gradually become more rapid until at last, after the lapse of a minute or two, the bird makes sort of gulp in its throat, and fin ishes by a strong inhalation of the breath.

The nest of the capercailzie is made on the ground and usually contains from eight to ten eggs. When hatched, the young are fed upon insects, more especially ant and their pupæ. The adult birds feed mostly on vegetable substances, such as juniper, cranberries, and the leaves and buds of several trees.

Arsenic in Vulcanized Rubber Stoppers and Tubes.
It is well known that vulcanized rubber is unfit for several kinds of experiments, such as where it is required to determine the sulphur in gases and other substances, where the rubber may give up some of its sulphur to vitiate the results. Filhol has also found arsenic in rub ber stoppers, which makes them unfit for use in testing for this poi son. In Schneider's test the ar senic is converted into the volatile arsenious chloride by distilling the substances with a mixture of com mon salt and sulphuric acid. In making this test, in a flask closed with a perforated rubber stopper through which the gas delivery tube passed, he found sulphur in the dis tillate. He suspected that the ar senic was derived from the rubbe stopper, and therefore repeated the tast without the use of any rubber and found no arsenic. He also found that hydrochloric acid gas when passed through vulcanized rubber tubes, also took up percepti ble quantities of arsenic. The au thor does not state the color of the tube nor name of manufacturer which is of some importance, as the arsenic was probably an accidental and not intentional constitu ent of that particular rubbe:; and was contained in the sulphur.

Burning Iron Castings Together

The usual mode is by imbedding the castings in the sand, having a little space left vacant round about the joint where it is to be burned. Two gates must then be provided, one lying on a level with the lower side of this space and the other raised so that the metal; which must be very hot, is poured in at the higher one; it passes round, fills the space, aud runs off at the lower gate. A constant supply of metal is thus kept up, till the parts of the casting are supposed to be on the eve of melting. The lower gate is then closed. and the supply stopped. When cool, and the superfluous metal chipped off, it forms as strong a joint as if it had been original.

Printing Pictures from Prints.

The page or picture is first soaked in a solution of potash and then in one of tartaric acid. This produces a perfect diffusion of crystals of bitartrate of potash through the texture of the imprinted part of the paper. As this salt resists oil, the ink roller may now be passed over the surface, with out transferring any ink except to the printed part.

A LITTLE alum added to saffron in soft hot water makes a beautiful yellow ink.

THE CAPERCAILZIE.
illustration is had by stirring together a thick cream of plas ter with gelatin previously treated with chromic acid, and letting them harden. When soaked a while in water the plaster wholly disappears, is dissolved away, and leaves sponge-like substance of the insoluble gelatin. From these experiments it is seen that plaster casts, though saturated with stearin, should never be washed
A method hitherto much used is to paint the plaster with oil color; but, apart from changing the appearance, the paint fills up the cavities, and, especially when the cast is a relief, blurs and destroys all its delicacy and exact ness. On architectural plaster ornaments for interior decoration, capitals, cornices, etc., painting may be tolerated but on all reproductions of sculpture, even a. single coat of paint is inadmissible. Dr. Reissig, of Darmstadt, has, by two different processes, succeeded in transforming plaster of Paris into chemical combinations entirely insoluble, not only in water but in soft soapsuds. The first method, simplest and cheapest, is based on the fact that sulphate of lime (plaster of Paris) is changed by baryta water into sul phate of baryta, and a caustic lime gradually transformed by the action of the air into a carbonate of lime, as we know from the similar action in plaster and mortar. Baryta water is prepared by slacking together in a securely corked bottle, one part crystallized hydrate of baryta, with about twenty parts rain water, thus forming a saturated solution. Af ter it has cleared, it is sponged or is poured over the plaster as long as this continues to absorb it. If afte the cast has been dried by a mode rate heat, the plaster continues to accept the wash, the sponging may be repeated; but this is seldom the case. This treatment, besides hardening the cast, gives it a whiter and clearer appearance.

The second method consists in changing the sulphate of lime, by the use of a weak alkaline silicat of potash, into lime, an exceeding ly hard and durable substance. To obtain the potash silicate, water con taining about ten per cent of caustic potash (pure and free from iron) should be heated to the boiling point, when so much silicic acid is added as will dissolve itself therein In cooling, pipe clay and silicate of potash are generally precipitated in some degree. The liquid should be preserved in corked bottles until en tirely clarified. Immediately before its use a small piece of pure potash should be thrown into it; or in its place, one or two per cent of potash may be added. The silicification it self is effected by dipping the plaster for a moment into the bath thus prepared; or, if the cast is immova ble, by applying it with a sponge or an atomizer. When the surfaces to be covered are large, the liquid may be diluted with rain water. Afte the almost instantaneous chemical change has taken place, the super fluous solution should be carefully removed by washing with soapsuds. Some little experience is necessary to decide the exact time of exposure to the solution of this second me thod; but by practice it may soon bs judged by the smoother and firmer appearance of the plas tent that an induction coil, giving sparks half an inch long|ter, and by its hardness as felt by the finger nail. The in air, failed to produce the faintest luminosity, the fall-tube of the pump being only nine or ten inches long.

Restoring Burnt Cast Steel.

The following recipe has been well recommended: Borax 1 lbs., sal ammoniac $\frac{1}{2} \mathrm{lb}$., prussiate of potash $\frac{1}{4} \mathrm{lb}$., resin 1 oz . Pound these ingredients finely together, add a gill each of water and alcohol, and boil all to a stiff paste in an iron kettle. Do not boil too long or it will become hard when cool. The burnt steel is dipped while hot in the composition and slightly hammered.

Plaster Casts.

Not long the Prussian Ministry of Commerce and Manu factures offered prizes for the best and most simple methods of so treating ordinary plaster of Paris casts, by chemical or other means, as to render them capable of being washed, and at the same time to close the porous surface of the plaster, that dust might not penetrate its mass.

Plaster casts, even after having been thoroughly treated with stearin, are soluble in water to a very considerable degree. One need but tint the water with bluing or some similar color, and the gradual softening and solution of the plaster can be readily followed by the eye. A more striking
fresher the plaster, and the more porous the cast, the more quickly should the bath be employed. Casts made of old plaster cannot be silicified to advantage. After having been treated by either of these processes, plaster of Paris casts will not be in the least dissolved by washingwith water or soapsuds: but, though their surfaces are no longer sulphate of lime, yet they still retain their original porous nature and readily absorb dust and the dirty water of the first wash ing. To obviate this, they are finally coated with an alco holic solution of common soap, which, after the evapora tion of the alcohol, entirely stops up the pores, and much facilitates the washing. It may be prepared by dissolving one part of bar or Castile soap in ten or twelve parts of al cohol; or it may be had of apothecaries under the name spiritus saponatus. This latter, however, is generally pre pared with alcohol of a low grade. A little more expensive hut much better filling, is to be had by dissolving steatite of sodium in pure spirits of wine; this gives a really beautiful transparent tone to the plaster, and is highly to be recom mended. The application of both is the same, it being ne cessary, if possible, to warm the cast, that the solution may be well absorbed; a repetition of the process is desirable. With the evaporation of the alcohol the operation is comple ted; the cast is in effect vitrified without coating its surface.

the proboscis and lancets of the stable fly

 by J. michels.During one of the annual plagues of the house flies, I was much surprised to notice one of these little creatures escape from my hand, which had just received quite a sharp wound, such as would be delivered by some lancet-bearing dipterous insect
Being very familiar with the anatomy of the common house fly (musca domestica), and knowing it to be incapable of such an act, I determined to secure the next specimen that informed me of its presence in this emphatic manner.
The following day the opportunity came, and when my little visitor had recovered from the alarm caused by the rather sudden withdrawal of my hand, he soon returned when my wrist was courteously placed at his disposal, and he now, without interruption, leisurely regaled himself my expense.

I now made my observations and found that although the fly closely resembled and, to the casual observer, would probably be mistaken for one of those with which we are all but too familiar, and whose apparent hostility to the nervous, the irritable, and bald has furnished "Leech" and other caricaturists with a subject for many a sketch, still, on closer observation, the well known proboscis of the house fly, terminating with a lobe, was absent, and in it place a sharp pointed tube-like instrument wa seen.

Death by an overdose of chloroform. followed by a dissection of the parts that appeared novel, was soon accomplished, and the same, after proper preparation, permanently mounted in balsam in the usual manner
A microscopical examination, with a good 1 inch objective, at once revealed the formidable nature of the apparatus at the command of this innocent-looking fly.

As a good drawing saves a long description, I offer one made by "camera lucida," which faithfully represents the proboscis and lancets thus prepared, the object in the small circle showing its real size.
I would direct attention to the strong bayonet-looking lancets, and the powerful muscular levers that propel them at the will of the insect; these lancets, called "setoe," vary in number from 8 to 2. After dissecting many specimens of the fly in question, I never observed more than two. The proboscis is doubtless a powerful sucking apparatus, the ferocious-looking jaws with which it terminates being arranged to expand and fasten upon the wound made by the lancets.

The brush-like appendages, called " maxillary palpi," will also be noticed, one of which, in the drawing, is somewhat hid at the base of the proboscis.

I apprehend this fly is the stinging stable fly (stomoxys) which sometimes goads horses almost to madness by their severe and incessant punctures. They are clearly not parlicutar in their diet; and wandering into private dwellings and horse cars, attack the first they approach.

IMPROVED TRICYCLE

We select from the English Mechanic t sketch, with its details, of the Bradford tricycle. It is operated by both hands and feet. The feet rest upon cranks that drive a shaft placed in the lower portion of the framework, and as this shaft is rotated, it communicates motion by means of a chain band to the large 60 inch driving wheel. The shaft of this driving wheel hastwo cranks, which, being engaged by the hands of the rider, materially assist locomotion. A steering wheel 24 inches in diameter is placed in the rear, being attached to a vertical rod; its upper end being provided with a small gear wheel meshing into the geared arc of a lever, the opposite end of which, formed like a fork, partially encircles the body of the rider. By inclining the body to the right or left, this lever, turning on its pivot, produces a corresponding turning of the steering wheel.
By the arrangement of the tricycle, it may be propelled by either hands or feet, at the option of the rider, or the simulta neous action of both hands and feet may be employed.

Separation of Nickel and Cobalt.
The separation of nickel and cobalt has hitherto been a somewhat difficult operation, but by the new method, which I made known a short time ago, this is effected easily and rapidly. The following method of detecting and isolating minute quantities of nickel in commercial chloride of cobalt, supposed to be pure, will give an idea of its practical nature: A few grains of that salt are dissolved in water, and the whole of the cobalt precipitated, with the nickel, by xanthate of potash employed in slight excess. and previously dissolved in a litite distilled water. A few drops of ammonia are then added, just sufficient to render the liquid slightly alkaline, and the dark green xanthate of cobalt is collected on a filter. The

accompanying

whole of the nickel is in the filtrate, and the whole of the cobalt in the filter. The nickel in the filtrate is precipita ted by a few drops of sulphide of ammonium.
Character of xanthates.-Besides the yellow precipitate which the soluble xanthates give with salts of copper, all the insoluble xanthates, on dissolving in nitric acid, give rise to nitrous ether, which is readily recognized ky its odor -Dr.T. L. Phipson, in Chemical Neus.

Repairing Gas Bags.

When small leaks occur in bags used for gas to supply magic lantern, they can be closed with thick boiled glue mixed with glycerin, in the proportion of 1 part of glycerin to 4 of glue, applied warm to the bag while filled with air f too much glycerin is added the cement will be sticky which can be overcome by strewing powdered soapston over it; if too little glycerin is added, it is too hard. If th

THE PROBOSCIS AND LANCETS OF THE STABLE FLY.
holes or rents are large, the glue is made quite stiff and ap plied to strips of soft leather and this applied as a patch Glue is better for this purpose than caoutchouc or gum.

New Mechanical and Engineering Inventions.
An improved form of Tubular Bridge has been devised by Mr. George E. King, of Des Moines, Iowa. The posts, counter braces, and lateral braces, are connected to a tubu ar arch by pins passed through angle irons rigidly secured to the arch, and also to eyes formed on the posts and braces The advantage of this arrangement is that the tube is not weakened, nor so perforated that moisture can enter between the joints of the plates.
In the Manufacture of Twist Drills, it is required to clear them or reduce them in diameter from the cutting edge of the spiral. The drill is held in a spindle. A finger engage the spiral slot in the drill as the latter is moved downward so that it is always kept in proper relation with the cutter, the inclination of which may be varied as desired
Messrs. George and Samuel Isaacs, of New York city, propose a new Rail Cleaner for cars, which consists of impròved bushes, which are held down by levers, upon the track in front of the wheels. Arrangements are provided to prevent

THE BRADFORD TRICYCLE.
the brush head turning out of true, and the tufts are so fast ened in the heads that the bristles are prevented from be coming cut or broken. This device is well suited for use on treet cars.
An improved Hand Loom has been devised by Messrs. W. P. Clements and Jas. H. Cagle, of Davidson River, N. C The new features include a shuttle box and throwing appar atus, and a new heddle construction. When the batten plug, which enters the casing. The roller, by friction, hold strikes the cloth, the weight of the shuttle and clamp piece the sash as desired. from a frame attached to the car. Th bag entering the car slides inward and strikes a curtain, so that it is subjected to no injurious shock
Those of our readers who may desire further information concerning any of the above described inventions, can obtain the same by communicating with the inven tors at the addresses named.

New Building Inventions.

A novel Eaves Trough Machine, devised by Mr. William J. Barber, of Covington, Ind., forms the trough of metal by causing the sheet to pass through suitably shaped rollers, which give it the necessary turn and beadings. This is a very simple and ingeniously constructed machine.
A new Vault Cover and Railing has been invented by Mr. Clarence H. Straight, of Bryan, Ohio. It consists of racks, which may be turned downwards to rest upon the pavement or floor, and so to close the opening, or to turn upwards to serve as a railing for the same
For Holding Window Sashes in any de sired position, Mr. Zelotes Curtis arrange toothed eccentric cams, that are pivoted to the casing of the fastener and operated by bell crank levers, which turn on a com mon pin, and are acted upon by a spiral spring. This de ice retains the sash securely and is very easily operated Mr. Daniel T. Keeffe, of Glens Falls, N. Y., also has de vised an improved Sash Holder, which sustains the window vised an improved Sash Holder, which or weights. A roller
at any height without the use of cords or at any height without the use of cords or weights. A rolle
is provided with a flanged bearing frame that is acted upon by a helical spring. This is combined with a screw-threaded

A new Leather Rounding Machine has been devised by Mr. Thomas S. Reed, of Calais, Ver mont. The upper roll has one of.its journal supported in a pivoted and the other in a sliding
elieves all pressure from the shuttle, so as to facilitate the hrowing of the same, and the arrangements are such that when the operator has to stop, to tie a thread or for any ther cause, he can instantly go on with the work withou eing required to find the treadle in which he left off work An improved Pipe and Bar Cutter, which cuts off the pipe or bar very quickly and smoothly, has been patented by $\mathrm{Mr}^{\text {r }}$ Jesse Astall, of Galveston, Tex. By simply turning a hand nut the cutter is fed forward. There is a device for holding he pipe very securely as the piece is cut off.
A new Zinc Smelting Furnace has been devised by Mr Octavius Lumaghi, of Collinsville, Ill. The new featur consists in constructing the back wall of the furnace with holes through it. Removable plates are provided in combi ation with retorts through their butt ends, for allowing irculation in them when desired. In smelting all that can e rot in the form of s the zinc that remains in the retorts in the form of oxide is extracted
Mr. James Craik, of La Cross, Wisconsin, pro poses a new Bail and Driver for Millstones, which carries the stone with a positive motion and at the same time permits the stone to poise itself with the utmost freedom on the top of the spindle. The construction is both simple and ingenious.

A new Car Brake, devised by Mr. Jacob J Anthony, of Sharon Springs, N. Y., comprise a cylinder containing pistons, which are forced apart by steam, water, or air, under pressure By this means levers are moved so as to force th brakeshoes against all the wheels simultaneously and with an equal pressure on both sides of each wheel.解 through different grooves until it has attained the required diameter.
For moving cars about in car shopps, yards, etc., over shor distances, Mr. Andrew Lebus, of Flora, Ill., has contrived a simple and powerful Jack. A clamp is secured to the car sill, and a plate having a V-shaped notch is applied to the ail. A lever is then moved, throwing a rod forward, which propels the car. The lever is then moved backward, the plate takes a new hold, and the operation is repeated. This invention will doubtless prove of much utility
A new Ballast Distributing Car, for ballasting a railroad track with broken rock, gravel, sand, etc., has been devised Mr. Adam B. Dockstader, of Sherman, Tex. In the bot om of the car are a number of spouts, which are closed by series of pivoted boards, which may be moved simultane ously by a lever from the platform. With this construction the ballast can be discharged as desired while the train is in motion. This will doubtless materially facilitate labor
A novel Mail Bag Catch, for taking mail bags and deliver ing them from a car while the latter is in motion, has been patented by Mr. George F. Shaver, of Westfield, N. Y. A rod on the car seizes a bag suspended from the roadsid crane, while another rod on the latter, at the same time, takes a bag suspended

Those of our readers who may desire further information concerning any of the above described inventions, can ob tain the same by communicating. with the inventors at th addresses named.

SCIENTIFIC AND FRACTICAL INFORMATION.

m Mr. T. C. plelsey, of iquique, peru

R TANNING MATERIAL
The Liverpool Chamber of Commerce recently stated that the supply of material for tanning leather was falling short in England, and called for information as to where fresh sources of supply might be discovered. In the province of Baldivia, in Chili, there exists almost impenetrable forests of trees of considerable variety, among which there are not only such (as the "lorontilla" and the "ulma") as would make a splendid addition to the beauty of English-and other moist temperate climates-parks and gardens, but great numbers of a fine large tree, the "luigue," considered to be a species of oak, the bark of which is used for tanning leather at a German tannery of some importance, long established on the river bank opposite the city of Baldivia. It might be profitable to search in that locality for the required supply of tanning material, as there is a good prospect of success, and the certainty of finding other elements both of utility and ornamentation. Inducements are held out by the gov ernment for colonization, and labor at present is not dear.

PREPARATION OF BROMIDE OF AMMONIA.
Place in a good sized bowl containing some liquid ammonia a teacup containing bromine, covering all with a shee of glass. The bromine vapors first settle down, and are fol lowed by the more expansive ammonia; they become rapidly converted into the bromide, whose pure white crystals form round the edges of the bromine. The whole operation only occupies a few minutes.

PYROXYLIN
Finding, after taking every precaution to rid my gun cotton of acid, that the sensitizers employed with the collodion I made with it underwent slow decomposition, I resolved to boil it, when I found that after the acid flavor disappeared an intense bitter principle became extracted by the operation. Washing well then, between each boiling, I continued the latter until the bitterness gradually diminished, and after some twenty odd boilings disappeared. The collodion made with this was always stable, it did not discolor, even by exposure to the light, and worked well to the last drop, even after being kept for years. Pyroxylin made with mixed acids only, I presume, would not require this treatment. made mine with a mixture of sulphuric acid and nitrate of potash, and am persuaded that the source of the annoyance was the resulting sulphate of potash which formed in the fiber of the cotton. The cotton thus prepared has the ad vantage of so high a degree of solubility that it is possible to make and sensitize collodion and take a good negative with it within an hour.

QUICK CAMERA PRINTING

Photōgraphs for subsequent painting on in oil may be prepared by floating the prepared and sensitized surfaces with a pyrogallic and acetic acid developer before exposure. The operator is thus enabled to see his pictures coming out, and stop them at the right stage for fixing. This has been attended with the most satisfactory results. It is only necessary to have a lighted candle in the room, stationed behind the canvas, and, covering up the mouth of the camera, approach it occasionally to note progress. Life-sized pictures, or thereabouts, from $\frac{1}{4}$ plate negatives, require about 30 sec onds to print suitably.
dURABLE AND STEADY QUICKSTUFF FOR DAGUERREOTYPING.
Slake quicklime with water until it is so completely hy drated as to remain quite damp-as far, in fact, as possible, just to avoid actual coherence between the particles-and saturate with bromine charged with a sixteenth part of pure iodine, when it will be found to coat, after iodizing the sil ver plate to a light rose, in from ten to twenty seconds in the mild temperature required in a daguerreotype gallery; work with great steadiness, in spite of considerable varia tions in temperature and frequency of drafts during the day upon the vapor; give beautiful, delicate, bright, clear, vigor ous impressions, allowing of a fullstrength solution of hypo sulphite of gold to fix; and work equally well for months without the necessity of renovation. The plates thus pre pared require about one fourth the time over the iodine bath for the second as compared with that occupied by the first coating. This method admits of considerable latitude to the operator, so as to modify, without prejudice to success, the character of the results obtained, the proportion of the iodine to that of the bromine, may be varied, or chloride of iodine even used instead, for mixture with the bromine (though with the latter I was not quite as well satisfied); but the hydrate of lime must be as stated in order to obtain the full benefit of the process.

an ice monopoly.

The high degree of temperature experienced throughout a great portion of the year in Chili and Peru would seem to point them out as good fields for the exportation of such machines. It is well, therefore, they should be advised that such restrictions are placed on the trade in ice or frozen snow, which have been made the subjects of a monopoly by the municipalities that no one is permitted to supply the articles except with the consent of these bodies, and after paying very heavy demands, according to the importance of the lo cality, for the privilege.

SOFTENING STONE.

I have seen some ingenious laborers on the Orega railway, who had made a contract for excavation in very hard ground, make a good thing of it by digging a narrow trench and lead ing water on to it. There are certain kinds of metallic ores
which, from their hardness or toughness, are tedious and which, from their hardness or toughness, are tedious and troublesome to pulverize, yet which, from the fact of their containing saline or other more or less soluble or easily softened constituents, might be advantageously treated by immersion for a time in water, previous to grinding. known that the stones in the old palace of the Incas in Cuzco fit so closely together, without any binding material, as not to admit a knife edge between them; and it has been supposed that they were possessed of the secret of softening the surface of stone preparatory to working it. A circumstance which has come to my knowledge gives a coloring to this supposition. A friend of mine, travelling a long way into the interior to the north of Peru, came across an Indian who was engaged in making a preparation for the purpose of softening some silver ores he was working. It consisted of urine, the juices of the leaves and stalks of three kinds of plants, and those extracted from the roots of two others. The leaves of one of the plants were about a foot long, and esembled those of the common dock leaf. This was all he was able to ascertain, as the Indian was chary of communi cation, and took pains to conceal the elements of his prepa ration.

THE IQUIQUE EARTHQUAKE.

Iquique was not "destroyed" by the earthquake of May th last, and succession of tidal waves which occurred, com mencing about a quarter of an hour or twenty minues after wards, and continuing until late in the day on the 10th. At about half past five P.M. of the 9th, or three hours before the earthquake, the pivoted reflector employed in the office of the Submarine Telegraph Company in this city turned suddenly round, and persisted in such a manner in maintainng this reverse position that the operator at work at the ime had to reverse it (by turning the little hollow metallic plug it is swung in on its center) to be able to continue his communications.
The highest of the waves here did not exceed twenty feet its mark having been left at about that height above the evel of the water in a salt water well close to the beach; but t is said to have reached the height of sixty feet at Pabellon de Pica, and also, I believe, the port of Megillones, in Bolivia I do not, however, place perfect reliance on these reports.

ew Agricultural Devices

An improved Baling Press for baling cotton, hay, and similar articles, devised by Mr. Solomon S. Laird, of San Obispo Cal., embodies a powerful mechanical arrangement. Upper and lower pawls actuated by levers alternately engage ratchet bars and cause a follower to move forward. Then, when the bale is sufficiently compressed, it is tied and forced out at the end of the press by continuing the movement of the levers.
A new Farm Gate, by Mr. Malcom J. McPherson, of West Campbell, Mich., may be raised vertically before being turned on its hinges, to clear it from snow or other obstructions. It also may be raised and fastened without turn ing, so as to allow small animals to pass under it, while the cape of large cattle is prevented. Useful for pasture lots.
A Roof and Stock Pen for Platform Scales, by Mr. Adam E. Karsner, of Florida, Ohio, includes a structure which covers the platform scales and protects it from the weather. The pen may be arranged to receive stock when being weighed, and it may be turned back when loads of hay, etc., are put upon the scales.
A new Cotton Harvester has been invented by Mr. William J. Powell, of Marshfield, Mass. As the machine is drawn forward over a row of cotton plants, aprons are rotated and wire teeth thereon remove the ripe cotton and deliver it to boxes. One set of aprons work on the sides, another on the top of the plants, and they may be adjusted as desired There is great demand for machines of this description, and the present device will, we think, be found well worthy of xamination and trial by planters.
Mr. Mastin C. Randol, of Huntington, Tenn., has invented a novel Corn Planter, which may be adjusted to plant the seeds at any desired distance apart, and any desired amount in a hill. It opens the furrow, drops the seed, cultivates the soil on both sides of the furrow, covers the seed, and rolls the ground.
For Stretching Wire Fence, Mr. Hubert Schülgen, of New York city, attaches a U-shaped clamp to each wire. In con nection with this there is a winding up roller, turned by a key and locked by recesses in the clamp binding on an in clined projecting tooth of the roller. This is a simple and effective contrivance for extending wires of trellises for vines.
A very convenient form of Butter Package, which may be commended to the notice of dairymen, has been devised by Mr. George Kater, of Northville, Mich. It consists of a cylindrical wrapper of wood with overlapping edges, which is prevented from opening by detachable top and bottom covers. Within is a loose partition wall for separating the prints.
A new Harness for Breaking Horses, which is so con structed as to enable the operator completely to control the horse without being liable to injury himself, is the invention of Mr. Charles H. Bowin, of Rocheport, Mo. Ropes are connected with the fore and hind legs, and so arranged that the animal may be easily thrown upon his belly. The harness
prevents the horse from running, rearing, or kicking, and admits of his easy control.
The new feature in an ingenious Corn Planter devised by Mr. Alfred F. Hammond, of Berlın (Loramies P. O.), Ohio, is an arrangement whereby the same devices that press down and flatten the loose earth above the seed also act upon buffing and friction wheels that are pivoted to rods, by which the said slides are vibrated. Said rods are connected with the seed slide levers. The marking devices, transporting wheels, and hoppers are arranged in line.
Mr. Wiliiam H. Mellon, of Fern Valley, Iowa, has devised new Rotary Cutter for plows, which is so constructed that the sand cannot get into or wear its journal. An ingenious device is added for bending down weeds, grass, etc., so that they will be turned under and fully covered by the furrow slice.
Mr. Joseph P. Terry, of Lake City, Florida, has devised a new Plow and Cultivator, the novel features in which are as follows: The shanks of the curved iron standards are bent upward and laterally at right angles, and also provided with lateral flange to adapt them to be secured to the beams. The beams are three in number, and one of them is hinged to adapt it to be set at an angle to the others.
Those of our readers who may desire further information concerning any of the above described inventions, can obtain the same by communicating with the inventors at the addresses named.

Manganese Bronze.

Manganese bronze, the new alloy, has been found to greatly exceed in tensile strength both Muntz or yellow metal and gun metal. At recent experiments made at the Royal Gun Factories, England, a cold rolled rod was found to have remark able strength, sustaining a strain of 34 tons before stretching, with an ultimate strength of nearly 40 tons per square inch, and an elongation of 11.6 per cent, of its length places it on a level, and, in respect of its elastic limit. above the best steel used for constructive purposes. The weakest quality is 50 per cent stronger than Muntz metal, and at the same time sufficiently ductile to be rivetted cold. It has been suc cessfully converted into sheets and plates, wire and tubes, n all of which forms it possesses a great superiority over brass, being twice as hard and twice as strong. The Enginee says that the greatest heat it is likely to be subjected to in a locomotive, or other high pressure boiler, does not in the least reduce either its strength, toughness, or hardness, so that it would appear particularly suitable for boiler and condenser tubes.

Damages of Illuminating by Gas,
Professor A. H. Church states, in the Chemical News, that the injurious influence of the products of combustion of coal as upon the leather bindings of books is only too well known. Vellum seems unaffected; morocco suffers least; calf is much injured, and Russia still more so. The disintegration is most rapid with books on the upper shelves of a library, whithe the heated products of combustion ascend, and where they re absorbed and condensed. By comparing specimens of old leather with specimens of new it is quite clear that the destructive influence of gas is due mainly to its sulphur. True there are traces of sulphates in the dye and size of new leather bindings, but the quantity is insignificant, and there is practically no free sulphuric acid. That leather may be destroyed by the oil of vitriol produced by the burning of gas in a library is proved by the following observations and nalysis:
The librarian of one of our public libraries forwarded to me the backs of severai volumes which had been "shed" by the books on the upper shelves in an apartment lighted by gas. The leather of one of these backs (a volume of the "Archæologia") was carefully scraped off so as to avoid removing any paper or size from beneath. This task of scraping was easy enough, for the leather was reduced to the consistence of Scotch snuff. On analysis of the watery extract of this leather the following figures were obtained: Free ulphuric acid in decayed leather, 6.21 p. c.; combined sul phuric acid in decayed leather, $2 \cdot 21$ p. c.; total, $8 \cdot 42$ p. c.

Iodide of Starch.

The iodide of starch is a definite compound, its composi ion being represented by the formula $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{10}\right)_{3} \mathrm{I}$. It is decomposed, with regener tion of the original starch, by all sources of nascent hydrogen, and is again produced by the limited action of oxidizing agents in the cold, even by the mere action of the atmosphere. Except when present in excess, iodine is not eliminated by its solvents, such as potassium iodide, benzol, carbon bisulphide, etc., except alcohol, whilst these solvents separate it from the red compound which it forms with dextrin a. If kept suspended in water for a year it is slightly decomposed; a portion becomes soluble in water, which then contains dextrin a, colored red by iodine, and hydriodic acid, but no glucose. The insoluble portion retains the same composition.-M. Bondonneau.

Solidification of Carbon Bisulphide.

M. Mercier finds that if bisulphide of carbon be added to mixture of a drying oil and protochloride of sulphur at the moment of mixing, it is entangled in the jelly formed by the oil and protochloride. With boiled linseed oil and ten per cent of the protochloride a transparentelastic mixture can be obtained containing 70 per cent of bisulphide of carbon. The substance ignites only with difficulty, and loses the contained bisulphide but slowly.

THE CURIOUS LIFE-HISTORY OF OUR BLISTER BEETLES

FRONAMO. V. RILE

Along with the honey bee, the silkworm, and the cochi neal, the Spanish fly, or cantharis, ranks among the insect most useful to man. Everyone is familiar with this last in sect, as it is found in ourdrug stores, and with its blistering properties; but the fact is not so well known that we have in this conntry several allied species which have the same valuable vesicatory property. Their curious habits in the preparatory stages formed the subject of a recent commu nication of mine to the St. Louis Academy of Science, the substance of which I propose to lay before the readers of the Scientific American in two papers, first narrating what has been made public of the habits of the family, and afterwards what has been recently discovered by myself.
The larval habits of the European cantharis of commerce as also those of its congeners in our own country and other parts of the world, have remained a mystery, notwithstanding the frequency with which the beetles occur, their great abundance at times, and their commercial value and inter est. The same remark holds true of all the blister beetles in this country. Some of these species are very common in the United States, and quite injurious to vegetation, swarming at times on potato vines, beans, clematis, and other plants. Their great numbers and destructive habits make it all the more remarkable that so little has hitherto been discovered of their early life. Harris, who evidently had hatched the first larva of the ash-gray blister beetle (macrobasis unicolor, Kirby), says: "The larvæ are slender, some what flattened grubs, of a yellowish color, banded with black, with a small reddish head, and six legs. These grubs are very active in their motions, and appear to live upon fine roots in the ground; but I have not been able to keep
them till they arrived at maturity, and therefore know them till they arrived at matu
Latreille states that the larvæ live beneath the ground, feeding on the roots of vegetables, but the statement is evidently founded on conjecture. Ratzeburg, who well describes the method of oviposition of the European cantharis vesicatoria, and roughly figures the first larva, believed that it was a plant feeder in the immature state. Audouin, who studied the cantharides profoundly, making them the subject of his thesis in his medical examination, was obliged to confess that absolutely nothing was known of their larval history; and Mr. Wm. Saunders, of London, Ont., in a paper on the same subject, read at the 1876 meeting of the American Pharmaceutical Society, could add nothing more definite. Among the older writers, the opinion was general that, like their parents, the blister beetle larvæ were vegetable feeders. M. J. Lichtenstein, of Montpellier, France, has endeavored to discover the larval habits of the European species, and in 1875 he succeeded, after many fruitless attempts, in causing the first larva to feed on honey kept in glass tubes, and to undergo one molt. He afterwards kept two other specimens in the same way until they were nearly full grown.
These facts, as well as analogy, point to a parasitic life and partly carnivorous, partly mellivorous diet for our own common species, since the life-history of genera in the fam ily, namely, metoe, Linn., and sitarıs, Latr., has been fully traced. Indeed, the young of all the insects belonging to the meloide, which includes the blister beetles, so far as anything has yet been known of them, develop in the cells of honey-making bees, first devouring the egg of the bee and then appropriating the honey or bee-bread stored up by the same. They are all remarkable, in individual development, for passing through seven distinct stages, namely, (1) the egg; (2) the first larva or triungulin; (3) the second larva; (4) the pseudo-pupa or coarctate larva; (5) the third larva; (6) the true pupa; and (7) the imago.
history of meloe
The history of meloe, popularly known as the oil beetle, may be briefly summed up as follows; The newly hatched or first larva (now generally called triungulin from its char acteristic three claws to the tarsus), was first mentioned in

Sitaris:- a, triungulin or first larva; g, anal clasps and spinnerets of same; b, second larva; e, coarctate larva; f,
male beetle-hair lines showing natural size.
1700 by the Holland entomologist Gœdart, who hatched it from the egg. Frisch and Réaumur both mistook it for a louse peculiar to bees and flies. De Geer, who also obtained it from the egg, mentions it in 1775 as a parasite of hymenoptera. Linnæus called what is evidently the same thing, pediculus apis. Kirby, in 1802, described it as pediculus melittce, and Dufour, in 1828, named it triongulinus andrenetar-
um. Newport, in 1845, first rightly concluded that it was carried into the nests of bees, and described in addition the full grown larva from exuvial characters, and the coarctate larva and pupa which he found in the cells of a mason bee (anthophora retusa). He failed, however, to fill the gap be tween the first and the full grown larva, and this Fabre firs did, inferentially, in 1858, by tracing the analogous stage in sitaris.
The female meloe is very prolific. She lays at three or four different intervals, in loose, irregular masses in th grouna, and may produce from three to four thousand eggs. These are soft, whitish, cylindrical, and rounded at each end. They give birth to the triungulius which, in a few days after hatching-the number depending on the tempera ture-run actively about and climb on to Composite, Ranunculaceous and other flowers, from which they attach themselves to bees and flies that visit the flowers. Fasten ing alike to many hairy Diptera and to Hymenoptera which can be of no service to them, many are doomed to perish and only the few fortunate ones are carried to the prope cells of some Anthophora. Once in the cell, the triongulin falls upon the bee egg, which it soon exbausts. A molt then takes place and the second larva is produced. Clumsy and with locomotive power reduced to a minimum, this second larva devours the thickened honey stored up for the bee larva. It then changes to the pseudo-pupa, with the skin of the second larva only partially shed; then to a third larva within the partially rent pseudo-pupal skin; and finally to the true pupa and imago. These different changes of form are known by the name of Hypermetamorphoses, the term firs given them by Fabre to distinguish them from the normal changes from larva to pupa and imago, experienced by in sects generally.

HISTORY OF SITARIS.

The history of Sitaris is also well known, and agrees very closely with that of Meloe. The complete life history of the genus was first given by Fabre in 1857, who studied the S. humeralis, Fabr., while that of S. colletis, V-M, has been more recently given by Valery-Mayet of Montpellier, France.
 Meloz:- a, triungulin or first larva-hair-line showing natural size
b, its claws; $; c$, antenna; a, e, palpi; f, mandible; g, lower border of an i, हntenna of male.
The first larva, or triungulin (Fig. 2, a), agrees very much in the head, tarsal and general characters with that of Meloe, but differs in several important particulars, and especially in having a pair of pre-anal spinnerets, from which is secreted a serous, sticky fluid which aids the animal in hold ing firmly to the bee that is to carry it into the nest. The hy permetamorphoses are very similar to those of Meloe. The The triungulin, after absorbing the contents of the bee egg, molts, and thereafter floats upon and devours the honey; the the pseudo-pupa, third larva, and true pupa all forming in due time with the second larval skin. The female does not feed, and on account of her heavy abdomen, travels but a short distance from the bee burrows where she developed.

Test on the Covering of Steam Pipes.

The building committee having in charge the erection of the several structures on the Trinity College site, at Hart fcrd, Conn., recently instituted on the premises some experi ments with materials at present extensively used for cover ing of steam pipes, whereby radiation of heat is prevented and condensation and freezing prevented. As there are about 8,000 lineal feet of pipe, varying in diameter from two to six inches, in the buildings, the question regarding the best and most suitable non-conducting material for this purpose became an important one. After the reception of tenders by competing firms for the covering of the pipes, it was deemed best to make an exhaustive test upon a portion of the pipe. Accordingly samples of pipe covering were put on by the following companies: The H. W. Johns' Manufacturing Company, the Asbestos Felting Company, the United States and Foreign Salamander Felting Company, and the Chalmers-Spence Company, all of New York.
The samples were placed around a six inch pipe to the satisfaction of the respective parties. A wooden box was constructed with an open bottom and two of the sides cut in a semicircle to fit closely to the covering. A light of glass was fitted in one side of the box, through which a thermom eter could be seen suspended from the top until it hung within an inch of the pipe covering. This done, all cracks or openings were securely fastened up so that the box was perfectly airtight. The H. W. Johns Company's covering consisted of one and a half inches of asbestos mixed with other ingredients, upon a lining of heavy felt paper laid next the pipe. During thirty minutes in which this test was made the thermometer rose from 97° to 103°. The Asbestos Felting Company's covering, two inches in thickness, was next tried, and in ten minutes the thermometer rose from 97° to 102°
and in half an hour from 97° to 105°. The patented "Air space" covering of the Chalmers-Spence Company was nex tested. This, as the name indicates, is a method of covering by which a dead air chamber is formed between the cover ing and the surface covered. This air space is formed in the following ingenious manner: Heavy wire cloth is used, to which is fastened every four or six inches a stud one inch or more in length. The wire cloth is then placed over the surface to be covered, the studs keeping it at the proper dis tance. Plastic covering is then applied to the thickness of half an inch, and this partly penetrates the meshes of the wire cloth and keys itself, thus giving a strong durable hold. The second coat of plastic is then applied and finished smoothly. At this test the thermometer did not rise above 94°, the time allowed being thirty minutes. A test was also made of the "plain" covering made by the same firm. This consisted of one and a half inches of the composition used in the first method, without the air space. During thirty minutes when it was tested the thermometer rose from 97° to 102°. On the application to the Salamander covering, consisting of one and a half inche of cement, the thermometer rose from 97° to 102°. All the the above tests were made under a pressure of ten pounds of steam. A synopsis of these trials, as communicated to us, is as follows:

Covering.		
Test commenced when		
thermometer reached	Rose in 30	
minutes to		

During the test the method employed was to watch the thermometer inside the box until it indicated a temperature of 97°, when, after leaving it in for thirty minutes, the temperature was again noted. But in testing the "air space" covering the temperature was so much less than the others, that after waiting until the thermometer indicated 90° it was found that it would not reach over 94°, although left in ove one hour.
It was thus demonstrated that the "air space" covering showed the best results, and the contract was accordingly awarded to the Chalmers-Spence Company.

On the Manufacture of Plaster Casts.

by J. J. mertins.

There are two little points which require special care in casting plaster of Paris: one is greasing the article to be moulded, and the other is stirring up the gypsum with water. For the first purpose it does not require a penetrating fat, but one that remains on the surface and covers it. In making the paste, water must not be poured upon the plaster of Paris, but the latter must be strewn in as loose condition as possible upon the water until the plaster reaches the surface of the water, and then quickly stirred together. The substance employed to oil the moulds is prepared by adding some fatty oil, generally lamp oil, to a solution of soap in water; this is called "smear."
If, for example, a rosette 12 inches in diameter is to be cast on a 4 inch high rim, the following method is employed. The pattern made by the artist in gypsum must be repeatedly coated with shellac solution, to prevent, as much as possible, the oil from penetrating and make it easier to separate the casting from the model.
The wedge-shape pieces that are to form the vertical part of the rosette are cast first and are three in number, a strip of clay being used to form three sides of the first one, two sides of the second (for a side of No. 1 forms one side of No. 2), and one side of the third, for this is bounded on two two sides by Nos. 1 and 2.
Each part of the mould must be varnished and greased or oiled before a second part is cast in contact with it, to insure separation when dry. The surface of the model is again carefully oiled and a cast made of the whole model without taking away the side pieces, but making a fresh wall of clay close about the model. To preserve the necessary sharpness and avoid bubbles, and bare places, the first layer of plaste poured upon the model should be as thin as possible, and a soft pencil be employed to remove bubbles and bring it into contact with the edges and cavities. Thick plaster is next poured upon this and finally the thick sediment can be scraped out upon the cast and smoothed off. In a shor time it can be removed from the model, the side pieces taken apart, and all carefully dried. Before making a cast from this mould the separate parts are placed together, after oiling, backed up and adjusted with clay walls, etc.

The Coquito Palm.

In Chili a sweet syrup, called miel de palm, or palm honey is prepared by boiling the sap of the juboea spectabilis to the consistence of treacle, and it forms a considerable article of trade, being much esteemed for domestic use as sugar. The sap is obtained by the very wasteful method of felling the trees, and cutting off the crown of leaves, when it immedi ately begins to flow, and continues to do so for several months, until the tree is exhausted, providing a thin slice is shaved off the top every morning, each tree yielding about 90 gallons. The small nuts, which resemble miniature cocoanuts, are used by the Chilian confectioners in the preparation of sweetmeats, and by the boys as marbles.-Journal of Applied Science.

To remove rust from steel, cover the metal with sweet oil well rubbed in; 48 hours after rub with finely pulverized unslaked lime.

The Charge for Insertion u.
aline for each insertion.
Magic Lanterns and Stereopticons of all prices. View llustrating every subject for public exhibitions. Prof table business for a man with a small capital. Also lan
terns for college and home amusement. 74 page cata terns for college and home amusement. 74 page cat
logue free. McAllister Mf. Optician, 49 Nassau St, N.
Wanted-Electro-Magnetic Engines. Address John Cretors, Leavenworth, Kansas.
Wanted-Control of the Manufacture and Sale of cheap and useful Household Article, pa
Noise-Quieting Nozzles for Locomotives, Stea
etc. T.Shaw, 915 Ridge Ave., Philadelphia, Pa.
Best Pulleys and Couplings made; secured to shaf ithout keys, set-screws, bolts, or pins. Send for cat
Organ Blowing Hydraulic Engines; best and cheap
est. Roosevelt, 40 W .18 th St., N. Y.
Wanted-Screw Lathe, not less th
Wanted-Screw Lathe, not less than $30 \mathrm{in}$. swing,
ft. bed. Give full description. Robbins, Gamwell $\&$ Co te. bed. Give fus
Pittsfield, Mass.
Wanted-Second-hand Iron Boiler Tubes, from $11 /$ to
in. diameter. Address P. O. Box 3,396, Boston, Mass.
For New Illustrated Catalogue of Foot Lathes, Scro Saws, Small Steam Engines and Amateur's
stamp to Chase \& Woodman, Newark, N. J.
tamp to Chase \& Woodman, Newark, N.J.
Foundrymen, letter your patterns with M
Foundrymen, letter your patterns with Met
ters made by H.W.Knight, Seneca Falls, N. Y.
Extraordinary Offers in New and Second-hand Pi Shaw' Mercury Coures U. S. Standord of Pret Shaw's Mercury Gauges, U. S. S.
915Ridge Ave., Philadelphia, Pa.
Shop Stoves. Crawford \& McCrimmon, Brazil, Ind.
Wind Engines, for general use, where economy and regulate power is required. Estimates given and print
ed instructions furnished. Territory wanted. Applg t
S.W. Kenned, 516 Fairmount Ave., Philadelphia, Pa.
.W. Kennedy, 516 Fairmount Ave., Philadelphia, Pa.
Baxter's Adjustable Wrenches fit peculiar corner
Manuf. by Greene, Tweed \& Co., 18 Park Place, N. Y.
Hand Fire Engines, Lift and Force Pumps for fire
and all other purpos
Bolt Forging Mach. \& Power Hammers a specialty For Town \& Village use, Comb'd Hand Fire Engine \&
Hose Carriage, $\$ 350$. Forsaith \& Co., Manchester, N. H. Best and Cheap Best and Cheapest Wagon Tire Upsetter, only $\$ 12$
ircular free. H. W. Seaman \& Co.; Millport, N. \mathbf{Y}. C. C. Phillips, 4,048 Girard Ave., West Phila., man factures Vertical and other Burr Mills adapated kinds of grinding; also Portable Flouring ane Manufactu
John T. Noye \& Son, Baffalo, N. Y., are Mat ers of Burr Mill Stones and Flour Mill Machinery of all
kinds, and dealers in Dufour \& Co.'s Bolting Cloth. Send for large illustrated catalogue.
Power \& Foot Presses, Ferracute Co., Bridgeton, N. J.
Solid Emery Vulcanite Wheels-The Solid Original Solid Emery Vulcanite Wheels-The solid Origna
Emery Wheel -other kinds imitations and inferior
Caution.-Our name is stamped in full on all our best Caution.-Our name is stamped in full on all our best The best is the cheapest. New York Be
ng Company, 37 and 38 Park Row, N. Y.
Steel Castings from one lb. to five thousand lbs. I valuable for strength and durability. Circul
Pittsburgh Steel Casting Co.. Pittsburgh, Pa.
For Best Presses, Dies, and Fruit Can Tooks, Bliss \& Hydraulic Presses and Jacks, new and second hand Lathes and Machinery for Polishing and Buffing metals. For the best Gate Valves of all kinds, apply to D. Kennedy \& Co., 88 John St., N. Y
Arbors or Mandrels hardened, ground perfectly true and durable. For machinists, jewelers, and others use
Send for circular. A. A. Pool \& Co., Newark, N. J. The Varnishes and Japans of Hyatt \& Co., established
1872 (" The London Manuf. Co."), made from scientiflic ormula by a practical maker of materials, free of dele terious substances, are, in the success met with, noted them meritorious pre-eminence. Try them. Send for iirculars an
Silver Solder and small Tubing. John Holland, Cin nnati, Manufacturer of Gold Polishing Supplies for all kind
weed \& Co., 18 Park Place, N. Y.
The Celebrated Farm Grist Mill; the grinding parts are steel. It is unsurpassed. Send stamp for descri
circular. Wm. I . Boyer \& Bro., Philadelphia, Pa.
Boulter's Superior Muffles, Assayers and Cupellers Portable Furnaces, Slides, Tiie, Firre Brick and Fire Clay
for sale. 1,609 North St., Philadelphia, Pa.
Diamond Drills, J. Dickinson, 64 Nassau St.,
Patent Scroll and Band Saws. Bestand cheapest in use. Cordesman, Egan \& Co., Cincinnati, o.
For Boult's Paneling, Moulding, and Dovetailing Ma
chine, and other wood-working machinery, address B.C. chine, and other wood-working mac
Machinery Co., Battle Creek, Mich.
Chester Steel Castings Co. make castings for heav gearing, and Hydraulic Cylinders where great
is required. See their advertisement, page 350
Plumbers-Address Bailey, Farrell \& Co., Pittsburgh
Pa., for the best and cheapest iron case street hydrants.
"Little All Right," the smallest and most perfect Reoperation. Send for circular. All Right Firearm's Co a wrence, Mass., U.S.A.
For Solid Wrought Iron Beams, etc., see advertisement. Address Union Iron Mills, Pittsburgh, Pa., for
lithograph, etc.
Felt of every description for Manufacturers' purposes especially adapted for Polishing, can be furnished in any
thickness, size, or shape. Tingue, House \& Co., Manufacturers. Sale
Glenville, Conn.
Models made to order. H. B. Morris, Ithaca, N. Y.
Reliable information given on all subjects relating to Mechanics, Hydraulics, Pneumatics, Steam Engi
Boilers, by A. F. Nagle, M.E., Providence. R.I.

(1) J. L. L. asks for rules for constructing length, to be a microscope, to be 10 or 11 inches in and make is concerned) with so-called student's mis roscopes, and to be used with any objectives? A There are no standard rules for the diameter of the ody of the microscope, bnt the makers generally
dopt a tube about 1 inch to $11 / 2$ inches in diameter dopt a tube about 1 inch to $11 / 2$ inches in diamete steel mandrel, or cast and finished in the lathe. The best plan isfirst to procure the eyepiece, and then make the body to allow the eyepiece to fit the upper end of it.
At the lower end of the body have a collar with a screw At the lower end of the body have a collar with a screw
for the object glass. The mountings of all first class for the object glass. The mountings of all first class
English and American object glasses are now made with the screw of a standard size, which originated as the society screw.
(2) B. K. D. says: If I take a tank and fill it partly with water, then force air up and through the same proportion of oxygen as the air naturally held in water? Or will it still have the same, 1 part oxygen to 4 of nitrogen, as before entering the water? A. No.
Oxygen is more soluble in water than nitrogen, and onsequently air forced through recently boiled (but old) water will be found less rich in oxygen tha which the solubility of is aerated under pressure (b) pressure is relieved, the air escaping from the water will be rich in oxygen. By repeated solution
way nearly all of the nitrogen may be removed.
(3) D. H. S. says: Will you please giveme recipe for something (besides lime, protosulphate of trouble to free the gas from tarry matters, which pass through the scrubber to the purifier. A. From what you say we judge that the trouble is not so much with
your purifiers as with the washer and scrubbers. Waer, good slaked lime, and hydrated ferric oxide are about the only purifiers in use. A larger main, bette washing and greater su
(4) J. F. E. asks how he can keep the water in an aquarium Pree from dirt? A. The only reme
(5) C. P. advises C. H. C., who asks how to remove lime from cistern water, to try the additio of hard spring water. The lime is
from poor cement used in the lining.
(6) In reply to E. H.-The paint will an wer very well for some purposes, but does not com not be improved much by heat.
(7) J. E. F. says: I have been using ar fificial teeth for about 3 years. The plates are made o he materialcommonly used, a gutta percha composiyear ago the plates commenced to grow dark. What the cause of the discoloring, and please give me a re cipe for cleaning them? A. The plates are usuall made of vulcanized rubber colored with vermilion. The hange of color mayhave been due to sulphurcompound rought frequently in contact with it, in medicines therwise. Try fine emery powder, applied with
splinter of soft wood. If this fails, make a strong solution of iodide of potassium in water, add to it a few drops of hydrochloric acid, and apply, with care not to soil the teeth; then rinse with a littlealcohol and wash in plenty of water.
(8) F. W. W. asks for a recipe for washing powder? A. Take sal soda, 12 parts; good quicklime
parts; powder, mix, and keep in covered stoneware ars, or in bottles for use.
(9) C. B. asks (1) for a good cement for ining the inside of a galvanic battery trough, made o
wood. The fluid used will be diluted sulphuric acid part acid to 10 parts water, also bichromate of potash sulphuric acid, and water in the carbon compartment A. Melt together equal parts of gutta percha and pitch pply this hot. Or use a solution of caontchouc in car on disulphide mixed with 6 per cent of absolute alco hol; give several coats. 2 . What would be the resist auge) be? A. If of good copper, about 40 ohms unde rdinary circumstances-less in cold and more in warm water. 3. In electrical measurement, what is the dif ference between 1 volt and 1 ohm? A. The ohm is the anit of electrical resistance, and is equal to the resistance of a prism of pure mercurs, one square millimeter
$(=0.001549$ square inch) section and 1.0486 meters ($=$ $=0^{\circ} \cdot 001549$ square inch) section and 1.0486 meters (
41.2818091 inches) long, at 32° Fah. The volt is the nit of electromotive force, which varies little from th
(10) Electric subscriber asks: What solution and quantities thereof is best for generating electricity with carbon or zinc in the same jar or cell withou
using the porous cup, and if sufficient strength to dwing the porous cup, and if sufficient strength to run gallon each? A. Amalgamate the zinc, and use water mixed with about 5 per cent of sulphuric acid. Six
cells should be amply sufficient. The Leclanché cell is ow generally pref for an
(11) H. H. finds cracks in his stove and asks if there is any cement which can be used to fill them? A. Yes, make and apply a paste of finely pulverized iron (obtained at the druggist's) and water glass.
The botter the fire, the more the cement melts and combines, and the more completely the crack becomes osed
(12) A. G. says that small metal fancy ar icles, which are in show cases, become rusted easily and lose their polish. Is there any way of protecting
them? A. See that the cases are moderately tight, an
(13) J. S. asks how to drill a hole in china plate? A. Use a copper drill and emery moistened with spirits of turpentine.
(14) G. A. asks how to cut batt
. Use a hand saw moistened in water.
(15) W. B. asks whether paraffin candles an be dyed with aniline colors? A. Yes.
different sides of the same tree? \mathbf{A}. It is said that the strongest side of the tree is that which in its natural position faces the north
How can I keep my fish net from rotting? A. Steep
melted paraffn, or boil in decoction of oak bark.
(16) F. H. B. asks what plaster moulders wise to cover the insides of moulds? A.
mixcerin is also said to be good.
(17) A. P. C. inquires how to find the peed of a belt in feet per minute? A. Multiply the nameter of either pulley in feet by 3.1416 time
number of revolutions that it makes per minute.
(18) E. T. asks: What mordants are comnonly employed in dyeing with sumac? A. Either tin, acetate of iron or sulphate of zinc. The first gives
yellow, the second gray or black, according to the trength, and the third greenish yellow.
(19) J. N. B. asks (1) if sumac leaves are bstituted for bark in tanning leather? A. Yes; for leaves are thoroughly dried, and ground to a fine pcw-
der 3. Where can a market be found: A. The chief arket is New York city.
(20) W. B. P. asks: What can I do for my ps to make them tough so they will not chap? A. A ly twice a day a lotion of borax, 2 scruples: glyceri Wh.; water, 71/2 ozs.
What will restore the ivory mouthpiece of my fute to its former whiteness? A. Brush over with pumiceston
and water and expose to the sun under glass unt
leached.
(21) J. E. W. asks for a recipe for clean ing marble that has become rusty or mossy by exposure the weather, and which will not injure the stone9 Mix up aquantity of the strongest soap lees with quick ime to the consistence of milk, and lay it on the stone
or 24 hours; clean it afterwards, and it will appear as new.
(22) S. W. L. asks: 1. What size wire would be required to convey an electric shock sufficient ber of small wires, aggregating the same size, be pr Shable to a single large wire? A. No. 16 Brown an harpe's gauge. Yes, if it is likely to be bent or twist
ed. 2. What size battery would be required to produce the shock, and would it matter if the jars were covered so as to prevent spilling if upturned? A. It would require about 800 square feet of Leyden jar surface, or a
very powerful induction coil, and battery. No. very powerful induction coil, and battery. No.

1. What effect have air and water on rubber when it is exposed to their combined action? A. It destroys its
easticity. 2 . In what thicknesses is elasticity. 2. In what thicknesses is good elastic rub ber impervious to air? A. $\frac{1}{16}$ of an inch. 3 . How can tiply the number of square inches of piston surface y 15, and by the number of feet it travels in a min te; divide this product by 3,300 ; the result will be the orse power required; to which one fifth should b
(23) G. A. F. asks; What is chymogene used for ice making, and how is it used? A. Chymo
 passes with rigoline as the first product of petroleum
distillation. See article on ice machine in this issue.
(24) J. T. W. asks: If the back motion ec entric rod of a locomotive is a little too short or a little o long (say $3 / 8$ inch) what effect will it have on th
(25) A. F. W. asks how to zinc coat o alvanize malleable castings? A. Clean in sulphuric cid and water, wash, scour with cocoanut husk. Dip in melted zinc
in cold water.
(26) S. R. H. asks: What can I clean brass hells with, such as are used in breechlo ading guns ic in powder acid, 6 ozs. rottenstone, $1 / 2 \mathrm{oz}$. gum ar make paste. Apply and rub dry with flannel.
(27) D. T. S. says: I have some silk covred copper wire which is bare in places; how shall
nsulate it? A. Apply gutta percha dissolved in be zole or bisulphide.
(28) A. P. asks for a recipe for red printing nk, vermilion red? A. It consists usually simply of uarts of boiled oil add 6 lbs . of rosin, and when this dissolved add $13 / 4 \mathrm{lbs}$ of dry brown soap of best qualit
(29) F S asks how bronze is dyed
(29) F. S. asks how bronze is dyed on leather with anilines? A. Disso
water and brush over the leather.
(30) E. B. R. asks how to clean plate glass

Try a strongsolution of carbonate of potash.
(31) 'T. P. J. says \cdot Will you please inform on concerning the modus operandi of the Mt . Washing ition of a central rail, upon which a cog wheel on the ngine works? A. The construction of the railroad is as you suppose. Very efficient means of stopping are
povided, consisting of a pawl and ratchet, in addition provided, consisting of a pawl and ratchet, in addition
to air brakes, and when descending, air is admitted into air brakes, and when descending, air is admitted in
to the cylinder of the locomotive, and the exhaust is to the cylinder of the locomotive, and the exhaust is
controlled by the engineer, so that the train is regulated in this manner also. You will find a detailed ac can Society of Civil Engineers, vol. 3, p. 12.
(32) K. L. D. asks for a cement which will
withstand the effects of hot water; the cement will
ased for uniting pieces of a porcelain vessel. A. Quick
ime mixed to a cream with white of egg.
(33) A. D. B. E. asks how a room 40 by 14 without the agency of steam heating, in the most econmical way can be made into apartments for Turkish baths, so as to answer the purpose? A. A water heater,
such as is used on many railroad cars, will answer the such as is
purpose.
(34) T. L. C. asks how to make a soap that will remove grease, etc., from silk or woolen goods soft water 1 quart saltpeter 1 teaspoonful, shaving soap in shavings 1 oz . Mix.
(35) C. M. S. says: Will you inform me would take to construct a machune capable of or wire it electric light; the machine to be run by an engine and to be similar to Gramme's? A. About 25 lbs . of No. 32 wire, but this size, being so fine, would require an especial winding to adjust the necessary relative resistance of the armature and magnet. It would be better
and less expensive to use 17 lbs . of No. 20 for the magnet, and 8 lbs . of 32 for armature.
(36) H. W. B. says: In a discussion relatng to the safety of lightnlng rods, it was claimed that tract the thunderbolt from its course, even if it did fall within the space equal to that of a circle described with the height of the rod as radius, and that the rod might possibly save the house if the bolt happened to strike the rod; it was claimed that if the bolt was "headed" toward a certain point it would go there, regardless of all rods, conductor, etc., even if the said
point was within $1 / 4$ inch from a rod. I claimed that the point was within $1 / 4$ inch from a rod. I claimed that the of the rod as radius, and that if a bolt was coming towards any point within this circle it would be changed from its course and conducted down the rod. A. It is generally estimated that a properly constructed lightning rod protects an area whose radius is double the height of the rod extending above the structure. This rule is not now, however, considered very reliable, by
reason of the extensive use of gas and water pipes in dwellings. When electricity finds several paths it will prefer the best, it is true; but some portion will also pass along the poorer conductors. It is a good plan to connectall pipes and metal work of any extent in the building with the rod. The rod offers most efficient protection to buildings by discharging silently the accumulated electricity at the earth's surface, thus, in
great measure, preventing the possibility of a disrupdischarge from the cloud
(37) G.M.asks for a good method of dyeing silk seal brown? A. For 10 yards-Boil fustic 1 lib , ,logter and winch for 20 minutes, air out, repeat: sadden to pattern with 4 ozs. copperas; wash and dry.
(38) A. S. says: Please tell me the differnce in the pressure of water in an upright tube 33 feet high and inch in diameter, and inches in diameter? A. If you mean the pressure per
square inch on the base, it will be in direct proportion to the height of column, and you can estimate thateach nch of height corresponas to a pressure of about 0.036
(39) I. N. D. says: 1. What kind of water wheel should I use for a water power of 3 feet head and 4,000 cubic feet per minute, having reference more to economy in building than extreme economy in the use
of water? A. A breast wheel will answer. 2. How can convey such power to a distance of 80 feet at an angle of $30^{\circ} \mathrm{up}$, having in view economy of construction as nuch as saving of power? A. You can use two univerwould be the proper diameter, and length and size of buckets, and what percentage of the power due to such head and quantity of water, under such conditions, he following data in his "Treatise on the Steam Enyine, and other Prime Movers," which you may con sultfor further particulars. Effliency of breast wheels, 70 to 80 per cent. Ordinary velocity for outer surface
of wheels $=6$ feet per second. $Q=$ cubic feet of water of wheels $s=6$ feet per second. $\mathrm{Q}=$ cubic feet of water
discharged per second. $w=$ surface velocity of wheels in feet per second. $r=$ radius of wheel in feet. $b=$ depth of bucket, from 1 to $3 / 4$ feet; length of buckets
30

$w b\left(1-\frac{b}{2 r}\right)$

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American acknowledges Tith much pleasure, the receipt of original papers an On the History of Coal. By R. P. S.
On Curious Blood Disks. By J. M.
On Our Thrushes. By E. I.
On the Torpedo Balloon. By F.

HINTS TO CORRESPONDENTS

We renew our request that correspondents, in referring to former answers or articles, will be kind enough to name the date of
of the question.
Correspondents whose inquuries fail to appear should epeat them. If not then published, they may conclud that, for good reasons, the Editor declines them. Th Idress of the writer should always be given.
of inventions, assignments, etc., will not be publish ere. All such questions, when initials only are are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleas
ure in answering briefly by mail, if the writer's address

WANTS AND BUSINESS INQUIRIES
Almost any desired information, and that of a business nature especially, can be expeditiously obtained
y advertising in the column of "Business and Per siness and Per We charge mentioned at its head.
We have received this week the following inquiries, ted from the writers by the insertion of a small adve

tisement in the column specified, by parties able to sup ply the wants: Where can. obtain English steel stamps with two Whe factures dynamite? Who makes engines for propelling steam plows? Where can felt cloth be obtained, suitable for rubbing crayon marks from blackboards?		shavetixmputy. Inside Papes each ingertion:-:75 ceents Aline Engravings may head advertisements at the same rate per line, by measurement, as the letter press. Adveras Friday morning to appear in next issue.			
			DON'T SUBSCRIBE for mayz paper 		
		ghrongiz endorsed by tee scientific americana, 10,000 COPIES SOLD II Allen's Useful Companion			
			A WELL-KNOWN FIRM IN THE IRON 		
	Ke				
		ARTIFICER'S ASSISTANT. 			
			JOONTHOLTAND'S		
			ived the Centennial Medal from the Judges on Avards		
		"compiler has covered very extensive ground, "and the recipes and instructions arecarried "down to the latest ante.			
		PARIS, NEW YORK, BALTMMORE, BOSTON.Send for circular of recent patented improvements.Prices Reduced. NORWALK IRON WOKS CO.,South Norwalk, Conn			
		cts for sal	Superior Wood-Working Machinery 207 particulars, Address amithrile B , sMITH, Smithvilie, Burlington Co.,		
	cele				
		SCROLL SAW PATTERNS.			
coides		(e)			
	Pictures upon fabrics, producing, W. Winter. 196,510Pipe and bar cutter, J. Astall 196,324				
19630					
196,					
			WALKER BROS., 73 and 75 Laurel St., Ph		
$\xrightarrow{1909465}$					
		JENNINGS' WATER CLOSETS ${ }^{\text {Pricices }}$			
$\xrightarrow[\substack{19,375 \\ 106,41 \\ \text { 121 }}]{ }$					
${ }^{196,511}$					
$\xrightarrow{196,43}$ (1964			Srinutific สnmericau. The Most Popular Scientific Paper in the World. THIRTY-SECOND YEAR. Only $\$ 3.20$ a Year including Postage. Weekly. 52 Nr mbers a Year.		
$\xrightarrow{\text { 10,30, }}$					
		per square inch. 2-Horse Power $\$ 150,3$ to 4 H. P., \$250. Also Stationary Engines and boilers, and Spark Arresting Portable Engines for plantation use. Sendfor our circular. Discount to the trade. B. W. PAYNE \& SONS, Corning, N. Y			
	Telegraph, printing, G. M. Phelps. 196,476Thrashing machine, J. K. Burk.................... 196,28i		This widely cirec :ated and splendiduly illustrated		
cine		B. W. PAYNE \& SONS, Corning, N. Y.			
			representing Engineering Works, Steam Machinery.New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Archi-tecture, Agriculture, Horticulture, Natural History, etc,		
190,332					
			All Classes of Readers find in THE SCIENTIFIC American a popular resume of the best scientific in-formation of the day; and it is the aim of the publishers		
		LLITGSHITABM	ant		
			Terus of Subseription.-One copy of THis		
			or Canada, on receipt of three dollars and twen cents by the publishers; six months, $\$ 1.60$; th		
	Wire-barking machine, D. C. StoverWire rods, rolling, W. W. McCallip.		os		
			CAN will be supplied gratis for every club of five s at $\$ 3.20$ each; additionalrate. Postage prepaid.		
(19,3,					
	10,281.-Picture Frame.-Ulysses Racine, New York,N. Y.				
			astray but is at the sender's risk. Address all letters,		
	10,283.-HAND WHEELS FOR VALVE - Albert H.Jarecki, Erie, Pa.		MUNN \& CO., 37 Park Row New York.		

P15ime IT Paysto ell our Rubber Hand printing stamgs:

Wright's Automatic Cut-off Engine
 punchivg PRESSES.
 COMPRESSED AR PNEUMATIC DIS-

Driven or Tube Wells
 $\$ 66$ A week in ingur own town. Terms and \&5 antat

JOSEPH C. TODD,

 and price Address. C. TODD,

- MEATENTS

CAVEATS, COPYRIGHTS, TRADE Messrs. Munn \& Co., in connection with the publication of the ScIENTIFII AMERICAN, continue to examine
Improvements, and to act as Solicitors of Patents for Improvements, and to act as Solicitors of Patents for
inventors.
In
 for the preparation of Patent Drawings, Specifications, and the Prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs.
Munn \& Co. also attend to the preparation of Caveats, Munn \& Co. also attend to the preparation of Caveats,
Trade Mark Regulations, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements
of Patents. All business intrusted to them is done with special care and promptness, on very moderate terms.

We send free of charge, on application, a pamphlet containing further information about Patents and how

 to procure them; directions concerning Trade Marks,Copyrights, Designs, Patents, Appeals, Reissues, Infringements, Assignments, Rejected Cases, Hints on he Sale of Patents, etc
Foreign Patents.-We also send, free of charge, a
Synopsis of Foreign Patent Laws, showing the cost and ynnopsis of Foreign Patent Laws, showing the cost and
method of securing patents in all the principal counmethod of securing patents in all the principal coun-
tries of the world. American inventors should bear in mind that, as a general rule, any invention that is valuable to the patentee in this country is worth equally as much in England and some other foreign countries.
Five patents-embracing Canadian, English, German, Five patents-embracing Canadian, English, German, French, and Belgian-will secure to an inventor the exHUNDRED AND FIFTY MILLIONS of the most intelligent people in the world. The facllities of business and steam communication are such that patents can be ob. home. The expense to apply for an English patent \&if; German, $\$ 100$; French, $\$ 100$; Belgıan, $\$ 100$; Canadian, $\$ 50$.
Copies of Patents, - Persons desiring any patent
issued from 1836 to November 26,1867 , issued from 1836 to November 26.1867 , can be supplied
with official copies at reasonable cost, the price dewith official copies at reasonable cost, the price de-
pending upon the extent of drawings and length of pending upon
Any patent issued since November 27,1867 , at which time the Patent office commenced printing the drawings and specifications, may be had by remitting to this office $\$ 1$.
A copy of the claims of any patent issued since 1836 will be furnished for $\$ 1$.
When ordering copies, please to remit for the same
as above, and state name of patentee, title of invention, and date of patent.
A pamphlet, containing full directions for obtaining United States patents, sent free. A handsomely bound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every patentee and mecbanic, and is a useful had book or

Address MONN \& CO.,
Publishers SCIENTIFIC AMERICAN. BRANCH OFFICE-Corner of F^{3} and rith Streeto,
Washington, D. C.

NOTICE TO IN VENTORS.

Ar

WORK FOR ALL

 12 a day at home Agents wanted. Outht an

THE DRIVEN WELL.

 wn. D. andorews a supions.
The Gerrge Place Machinery Agency $\frac{\text { Machnery of Every Stscrs, New York. }}{121 \text { Chambers and } 103 \text { Reade streets, }}$

MPORTANT FOR ALL CORPORATIONS AND man's 'Time Detector, capable of accurately con-

> RELIEFPLATES
\qquad
\qquad Method, from all kinds of Prints, Pen Drawings, Original Designs, Photographs, \&c., much cheaper
than Wood-cuts. These plates have a perfectly smooth printing surface, and the lines are as deep, nd as sharp as they could possibly be cut by hand. We guarantee that they will print satisfactorily on wet
or dry paper, and on any press where type or wood-cuts can be so printed. Electrotypes may be made from the

Our Plates are now used by the principal publishers and manufacturers in every state in the Union

Lathes, Planers, Shapers

No Suwillst! No Panilig!

 moter cat. or woos avao.

NiTMOM

$E D W I N A^{\text {For }}$

EUREKA LATHES, $\$ 9.00$ and \$11.00.
Send for cricular of Lathes Air Pistols, Revolvers, and
Air Her
JOHN P. LOVELL $\&$ sons.

 A Superior Quality of
 SCREW BOLTS,

SAMUEL HALL'S SON,
Established $1839 . \quad 229$ W. 10th Street, N. Y.

Laundry Machinery and the Nonpareil Wash-
 The National Petrolenm lias Co

 $\$ 5$ to $\$ 20 \begin{aligned} & \text { per dayat home. } \\ & \text { free. Stinson \& Co.. Portland. Me. }\end{aligned}$

KNIGHT'S AMERICAN MECHANICAL DICYIONARY

 H. R. WORTHINGTON, 239 BROADWAY

JOHAN KOOPMANS \& CO, OF AMSTER-

Second-Hand Microscopes.
 Glass slips and thin glass covers for
at reduced price. Sena tor the ist.

MEN Mivas y yarly

Pond's Tools,

 ENGC." Ninth Edition.--American Reprint.

mailea gratis to applicants.
J. M. STODDART \& CO., Publishers,
723 Chestnut Street, Philadelphia
H. H. KEY, Publisher

REPORT

 of the state of new york,

on thr

GEAMMINATMON of the

 ÓF NEW YORK CITY.Ingurance Depırtment, Albany, October 24th, 1877. The Superintendent having personally, and through the services of the Deputy Superintendent, aided by the
the LIFE INsURANGE CompAYY of the City of New York, it affords him unqualififed pleasure at being able to announce
and make poulic the gratifying fact that the result of this examination is most satisfactory, and that, from the the
data in possession of the Department, the solvency of this, or other companies undergoing a similar test, can be data in possession of the Department, the solvency of this, or other companies undergoing a similar test, can be
readily ascertained, at little expense, for many years to come.
 has necessarily been expended to bring the mater to a canding, and experience, have been procured, who have
The services of forty-one gentlemen of character stand
valued and appraised the property situated in forty counties in this State and in the State of New Jersey, covered valued and appraised the property situated in forty counties in this state and in the state of New Jersey, covered
by 2,62 mortgages amounting to $\$ 17,34,847$, and and forty-nine pieces of property owned by the Company
amounting in value to the sum of $\$ 2,541,576.46$, which services have been intelligently and efficiently performed. The abstracts of title to each and every piece of these large amounts of property have been closeony examined and
reported on to the satisfaction of the Superintendent. All other investments, amounting to $\$ 10,311,045.67$, have reported on to to the satisfaction of the Superintendent. All other investments, amounting to $\$ 10,311,045.67$, have
been carefully looked into, and evidence or payment by the Company, either by check or otherwise, for such
investments, demanded and given, although many of these payments were made twenty years ago. The cash investments, demanded and diven, although many of these payments were made twenty years ago. The cash
securities of the Company, the cost of which on the books amounts to $\$ 9,730,529,91$, are of the most unexception securities of the Company, the cost of which on the book
able character, and are worth $\$ 580,515.76$ more than cost.
The Superintendent personally examined these secuusities, taking the letter, number, and denomination of
each security, and preserving the record of the same in the Department. In every instance where securities had each security, and preserving the record of the same in the Department. In every instance where securities had
depreciated in value, such depreciation had been promptly charged to profit and loss aecount and all items of
doubtful character had been s ricken off by the Company from tis assets, and omitted from its reports. CComplete dopreciated in value, such depreciation had been promptly charged to pront and loss aecount, anorts. Complete
doubtin characer had been s ricken off by the Company from tita assets, and omitted from its reports
seriatim lis oof policies, premium loans, and uncollected and deferred premiums have been made, and are on seriatim lis F of policies,
file in the Department.

LIABILITIES.

MISCELLANEOUS.

The different Departments-Medical. Actuarial and Agency-have been reviewed, with the most satisfactory
esults-gentlemen entirely competent and assiduous having been found in charge of each branch, to whose conduct and perrormance of their duties much is due.
Being rentired at he line larger of the company at driferent points are held to a rigid accountability, remittances
delayed while at the smallest points settlements are not allowed to be delayed longer than a week. Bonds are required where the sums handled are sufficient to justify the same. the checkss of one division on another being so complete, that no wrong can be oone to policy-holders by false
entries of any kind short of widespread collusion among many employes, all of whom were found to
be exceedingly courteous, and, acting under instructions from the principal ofticers of the Company, were be exceedingly courteous, and, act-ing under instruction
prompt in furrishing full information as to every detail.
Junged by the hardest test that could be applied under the law, and with every doubtful item eliminated
from their sources, the net surplus, as shown by the detailed statement of this Company, which follows, amounts to $\$ 5,962,878.79$. This exhibit clearly establishes the fact that where a Life Insurance Company is honestly, ably, and
prudently managed, there is no occasion to force a showing of solvency by including in its assets prospective value of real eetate, and excesses of premium payments to be received.
For the reasons above given, the Superintendent has no hesitation in
entitled to public confidence and its omcers to his warmest commendation. ASSETS

$\overline{8657,72,255}$
$\xrightarrow{111,541,51}$
$\$ 446,178.04$ \$36,154.19
$\$ 36,154.19$
$149,688.96$
19.600
$\$ 254,248,15$

Total Labilities. \qquad policy-holders, on the basis of admitted desèts as àtermined by this $\$ 26,98 \overline{2}, 742.51$

Unemployed Engineers \& Machinists

Harrison's System of Grinding!

GUARDIOLA'S
coffee \& sugar machinery

HARTFORD

STEAM BOILER
Inspection \& Insurance COMPANY.
W.B. Pranvinc, V. Prest. J. M. ALLEN, Prest J. B. PIERCE Sect

Pyrometers, For , moning hat oet

HOOPES \& TOWNSEND,

Cara, Britige, Plow, IIncline Bollis. Snare anid Hexagur Nits Chain Links.

Imak and Conoper's RIVEIS, Wood Scepws, Kefs, Wasiers, Rals $\&$ Billis por butidnas.

"Keystone" Boiler Rivets.

Prices Low, and Quality Guaranteed.

ENGINEERS WANTED

BOILER COVERINGS
 THE CHALAERS SPENCE CO., Foot East 9th St, New York.

Working Models

ROCK DRILLING MACHINES
AIR COMPRESSORS,
Manufactured by BurleichRock Drill Co.
send for pamphlet. FITCHBURGMASS.
Mill Stones and Corn Mills.

FOUNDRY AND MACHINE SHOP FOR

MACHINISTS' TOOLS.
 NEW HAVEN MANUFACURING CO:
T Thi "scientific American" is pritite with cinss:

[^0]: * Not only have manganese and carbon the power of reducing the oxide
 of iron in molten iron, but silicon likewise will perform this function, and but for the danger of introducing an excess of silicon, which would then remain unoxidized to the detriment of the iron, this element could be substituted for manganese in the Bessemer process, by making use of use of silicon in metallurgy cannot be considered settled yet, and offers an interesting field for investigation. considered settled yet, and offer

