
a WeEkly Journal 0f Practical information, art, science, mechanics, chemistry, and manufactures.

THE IMPERIAL BRICK MACHINE.

The brick machine illustrated in the annexed engraving belongs to that class which comprises all those in which the clay is first mixed in a pugmill and therefrom pressed into moulds disposed on a rotating mould-carrying disk. In this class there are two varieties, first, machines in which the pugmill is vertical and the mould disk horizontal; second, those in which the above relative positions are reversed. A glance at the engraving will show that the present apparatus is of the last mentioned variety. It uses clay taken directly from the natural bed, over which, just before entering the machine, sufficient water is thrown to cause it to be properly tempered while being ground and mixed. Another important feature of the apparatus, as here illus trated, is that it is double-two machines in one-which produce a proportionately greater quantity of bricks.
The clay is thrown into the two hoppers, A, and descends into the horizontal mixing cylinders below. Of these there are two, and through both passes a $6 \frac{1}{2}$ inch wrought iron shaft, actuated by the gearing shown at B. In each cylinder and on the shaft are steel cutters, and also screws, the latter adjusted in relatively reverse directions, so that tre clay is thus forced out of the outer ends of both cylinders at once; and at the same time the thrust due to the resistance in working the clay is sustained wholly by the shaft, which becomes subjected simply to a compression. This last is an important advantage, as the thrust being removed from bearings or any other neighboring portions, durability is gained, friction diminished, and consequently less power is required to drive the machine.
The tempered clay on being forced outward by the screws enters the moulds, which are formed in the inner faces of the rotating mould carriers, C. As these revolve, a station ary knife at D removes any excess of material. Ten of material. Ten of these mouldsare contained in each
carrier or wheel, carrier or wheel,
and each mould has and each mould has a movable bottom with : roller that travels on an eccentric track beneath it. This, as the wheel turns, gives a series of pressures a series of pressures
to the brick. An to the brick. An
opening is left beopening is left before the last pressure to allow any surplus clay to escape, so that when the brick comes to the cam that pushes it out upon the endless belt, E , it is perfectly formed.
With the double machine two of machine two of these belts are of and a man stationed at each removes the bricks as fast as formed and places them on hacks, planks capable of holding five hundred bricks each. dred bricks each. Each belt is about 10 feet in length, and is capable of holding 11 bricks. The capacity of the double machine is claimed to be from fifty to sixty thousand bricks per ten hours-for the single machine, where gle machine, where but one mixing cylinder and mould carrier is employed, half that aggregate. In connection with the above described apparatus, a truck

GARD'S IMPERIAL BRICK MACHINE.

Properties of the Human Gastric Juice.

The Press and Circular says M. Charles Ricket has been experimenting upon the patient on whom Professor Verneuil recently performed the operation of gastrotomy. According to his researches the acidity of the gastric juice is equivalent to $1 \cdot 7$ grammes of hydrochloric acid to 1,000 grammes of fluid. This acidity increases a little at the end of digestion. Wine and alcohol also increases it, but cane sugar diminishes it. It tends to return to its normal acidity after the introduction of acid or alkaline matters. The mean duration of digestion is from three to four and a half hours, and the food does not pass gradually out of the stomach, but in masses. According to four analyses, after a modification of Schmidt's method; free hydrochloric acid exists in the rastric juice; and altogether this secretion appears to congastric juice; and altogether this secretion appears to consist of one part of lactic acid to nine parts of hydrochloric acid, the former of which is free in the gastric juice. The
nature, therefore, of the free acid in the stomach seems nature, therefore, of the free acid in the stomach seems
almost solved, and it may be said that in every 1,000 grammes of the juice there are 1.53 grains of hydrochloric acid and 0.43 of lactic acid.

Medical Uses of the Tupelo.

The root of the tupelo tree, indigenous to the United States, is being used with success, so says the Medical and Surgical Reporter, by various obstetricians, for dilating the os uteri. It is said to be superior for this purpose to seatangle, as its power of absorption is greater; it is as light as a cork, and its fibre is fine-grained, capable of being made very smooth, and therefore easily introduced.
The Compass Plant.
It is well known to botanists that the western plant growing on the open prairies, and known as Silphium laciniä tum, has the remark able property of turning many of its leaves nearly north and south, and hence the name "compass plant." It is also called ''rosin-weed," from its copious resinous juice. In order to determine to what extent this what extent this alleged polarity exists, C.E Bessey, of Ames, Iowa, has made a large number of accuraterobservations, which he reports in a late number of the American $N a$ turalist. Out of 93 observations, 54 93 observations, 54 were found which pointed more o less east of north, and 39 more or less west. Of the 54 which pointed eastwardly, 18 were within 5° of north; 8 more within 10° 7 more within 15° 5 more within 20°, and 3 more within and 3 . 25°; leaving only 14 leaves which di verged more than 25° from due north. Of the 39 which pointed to the west of north, 9 were within $5^{\circ}, 5$ more within $10^{\circ}, 3$ more within $15^{\circ}, 7$ more within 25°, and 7 more within 35° leaving only 8 which diverged more than 35° from due north. Its polarity is fully established.

Srientifir Smoxiran.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors
pUBLISHED WEEELY AT
NO. 3 Y PARK ROW, NEW YORK

0. D. MUNN.

A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year, postage included................................. $\$ 380$
One copy, six months, postage included 160
Clubs.-One extra copy of THE ScIENTIFIC AMERICAN will be supplied
gratis for every club of five subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.

The Scientific American Supplement
is a distinct paper from the SCIENTIFIC AmERICAN. THE SUPPLEMENT cover. uniform in size with Scientific American. Terms of subscription cover. uniform in size with SCIENTIFIC AMERICAN. Terms of subscription
for SUPPLEMENT, $\$ 5.00$ a year, postage paid, to subscribers. Single copies 10 cents. Sold by all news dealers throughout the country wombined Rates. - The Scientific American and Supplement will be sent for one yeart, postage free, on receipt of
papers to one address or different addresses, as desired.
papers to one address or different addresses, as desired.
The safest was to remit is by draft, postala order, or registered letter.
Address MUNN \& CO., 37 Park Row, N. Y.
Sue news agents.
Publishers' Notice to Mail Subscribers.
Mail subscribers will observe on the printed address of each paper the
time for which they have prepaid. Before the time indicated expires, to time for which they have prepaid. Before the time indicated expires, to
insure a continuity of numbers, subscribers should remit for another year For the convenience of the mail clerks, they will please also state when
New subscriptions will be entered from the time the order is received;
but the back numbers of either the ScIENTIFIC AMERIAN or the ScIEN-
TIFIC AMERICAY SrP TIFIC AMERICAN SUPPLEMENT will be sent from January when desired. In his case, the subscription will date from the commencement of
volume, and the latter will be complete for preservation or binding.

VOL. XXXYII., No. 19. [New Series.] Thirty-second Year. NEW YORK, SATURDAY, NOVEMBER $10,1877$.

TABLE OF CONTENTS OF INO. $\mathbf{9 7}$,

 For the Week ending November 10, $18 \% \%$.I. ENGINEERING AND MECHANICS.-Olmstead's Railroad Track Sweeper. 1.engraving.-New Narrow Gauge Locomotive for Festiniog
Railway. 1 engraving. - The Eddy Locomotive. 1 engraving. Railway. 1 engraving.-The Eddy Locomotive. 1 engraving.
On Water Ballast. By Benjamin Martex. Read before of Naval Architects. Complete description of Construction of Double Bottoms for carrying water Ballast. with 20 engravings.-The Sutro
Tunnel- -Rock-bring Machinery -Liverpol Tunnel.-Rock-boring Machinery.-Liverpool Engineering Society.
On Launching the Ironclads Kaiser, Deutschland, and other large ships. By D. A. Samuda, Institute of Naval Architects. Slip, inclina-
tion and ways. Bige Logs and Launch. Skoring up Inside the Ship.
Hydraulic Ram for Starting, etc. 6 engravings. Hydraulic Ram for Starting, etc. 6 engravings.
New Bridge over the Med way, Sir J. Bazalgette, Engineer. Founda-
tions, Coffer Dams, Cent gravings.-The Tay Bridge.-The Mana watu Gorge Bridge, New Zea gravings.-The Tay Bridge.-The Mana watu Gorge Bridge, New Zea-
land. 2 engravings. - Cast Steel Guns. By M. GAUTIER, C.E.-Elas-
ticity of Metals at Different Temperatures. By G. Pisati.-Glass Imticity of Metals at Different Temperatures. By G. Pisati.-Glass Im-
pervious to Gas. The Granulation of Wheat. By OSCAR Oexle, C.E. pervious to Gas. The Granulation of Wheat. By Oscar Oexle, C.E.
School of Fine Arts, Marseiles. 1 engraving -Anecdote of Sir Isaac Newton.-Relations of Labor to Education. By JAMES JoHonnot.
II. TECHNOLOGY.-Self-acting Print Washing Machine. By W.A. Nich-
olas. 1 engraving.-Simultaneous Exposure and Development. By olas. 1 engraving
ERNEST Boivin.
III. MEDICINE AND HYGIENE.-The Range of the Homœopathic Law in the Practice of Medicine. By W. B. A. S
Miscular Action.-Salt in the Animal Economy.
IV. NATURAL HISTORY, BIOLOGY, ETC.-The Life. A recent address by Yrofessor John TYNDALL. A most able and interesting paper, fn which the laws of energy and the continuity of motion as they are found in the material universe are pointed out
and their existence traced in the animal economy and the human system. The operation of the will, and the relations between the human mind and body are discussed in the clearest manner, from the stand point of the man of science.

V.-AGRICULTURE.-Cultivation of Peanuts.

VI. CHESS RECORD.- Biographical Sketch of J. H. Finlinson, Huddersfield, England, with Portrait and two of his Problems. Problem by
S. Loyd -Game between J. H. Fininsso and T: BAILE, with notes. - West Yorkshire Chess Association. - Notice to Correspondents. - Solutions to Problems.

arRested development.

The interest excited by Von Chauvin's recent observa tions upon the axolotl seems to be somewhat in excess of the actual novelty or importance of their results. The axo lotl is not the only creature whose development has been rapidly carried forward from a stage, permanently low in the natural state, to another and higher one, in consequence of human interference. Nor, as we noticed the other day were that lady's specimens of the axolotl the first to under-
go, under observation, the, to them, abnormal transforgo, under observation, the, to them, abnormal transfor
mation into fully developed amblystoma. Besides, we are strongly inclined to suspect that, so far from determining or compelling the evolution of the two which survived her treatment, the German lady's attention to her pets was the reverse of helpful. Had they been let alone, it is quite possible that the fatalities would have been fewer and the progressive development of the survivors not less remarkable.
For the benefit of those unfamiliar with the creatures in question, we will note here that the transformation alluded to corresponds to that of the water-breathing tadpole into the land inhabiting and air-breathing frog. Seventy years ago Cuvier suggested that all siredons (like the axolotl) might in reality be larval salamanders, that is, the tadpole stage of higher batrachians. The observations of Dumèril upon numerous specimens of axolotl, bred in the Natural Historical Museum at Paris, proved the old suspicion to be substantially true, at least in one instance. In its natural habitat-the Lake of Mexico, and neighboring mountain lakes-the axolotl is, so far as known, always an inhabitant
of the water. The specimens transported to Paris remained of the water. The specimens transported to Paris remained
unchanged; but some of their offspring passed on to a higher stage of development, developing lungs in place of branchia, and becoming perfect amblystoma, hitherto re-
garded as belonging to a distinct family. Why all did not garded as belonging to a distinct family. Why all did not
complete the same course of development was a mystery to Dumèril (whose observations were published in Comptes Rendus, 1865 and 1867); but a possible explanation was sug gested by observations made soon after by Professor Marsh and other American students, upon several allied species of siredons from the elevated lakes of the Far West. Professor Marsh's observations were published in the American Jour nal of Science for November, 1868.
That distinguished observer had seen Professor Dumèril's
account of the remarkable metamorphosis of the second account of the remarkable metamorphosis of the second
generation of the axolotl (siredon Mexicanus) in Paris; and during his next summer's excursion to the Rocky Moun tains, took pains to secure a number of specimens of siredon lichenoides, Baird, from Lake Como, Wyoming Territory At the same time a number were secured by Professor Eus tis, of Harvard.
together and here divided, part going to New Haven with Professor Marsh, the rest to Cambridge, to be observed by Professors Wyman and Eustis. Professor Marsh's speci mens made the passage to New Haven without apparent in convenience, either from the long journey or their transfer ence to fresh water, the water of Lake Como being brackish. They fed readily upon worms and insects, and occasionally came to the surface and inhaled air. More rarely an exhalation occurred, usually under water. On being removed from their native element they showed the same distress
fishes under similar circumstances, although in a much less degree.

The first indications of any change were observed in one of the smaller specimens; and the metamorphosis apparently began during the journey, which lasted about a week. The animal first became spotted and of a darker hue. Then the broad thin membrane along the back, and above and below the tail, was gradually absorbed; the external branchia followed more slowly; the dark spots increased in number; and the animal came more frequently to the surface for air. By the time the swimming and water-breathing appendages were absorbed, and the openings on the neck closed up, the head had undergone marked changes in shape; the eyes had become more convex and prominent; the body had largely
decreased in bulk; the thin external skin was shed, and the secretion of mucus from the surface sensibly dimin.shed. At the same time the animal showed an increasing desire to leave the water, often remainıng for some time with its nostrils above the surface, and occasionally made violent struggles to escape. Aided by a heavy rain at night it at last succeeded, and thus put an end to further observation, just at a time when it had lost the generic characters of siredon and become a true amblystoma
A few days later, several other specimens of various sizes began to show signs of transformation. Two were placed in a glass jar, and left in a strong light, and five others were left in a cooler place in the shade. At the end of three weeks the first two had completed the metamorphosis. The others changed less rapidly, or not at all, three completing the metamorphosis in about six weeks, while two showed little or no change, remaining typical siredons. In those that were transformed, a succession of warm days hastened the process remarkably, while it.was all but arrested by a series of cooler days. Of the specific changes which the specimens underwent in structure, dentition, habits, etc. in passing from the siredon to the amblystoma state, full in formation nay be found in Professor Marsh's paper.
At the time his specimens were under observation, the specimens taken to Cambridge were being studied by Professors Wyman and Eustis. Only one of the latter was transformed, and change occurred much less speedily than those in New Haven. Two, kept by Professor Eustis, es
caped during a rain storm, and six days afterione was found
still alive, though shrivelled up and the branchia partially gone. On being placed in water, it refused food and died. The lateness of the season probably prevented the transformation of the others.
In the next number of the American Journal of Science, Professor Silliman contributed a note describing a colony of amblystoma in the possession of a person at Cheyenne. The proprietor assured him that when they were received from Lake Como, a few weeks before, they were all in the "fish" state; that they began to change soon after, and in about three weeks were all completely developed into salamanders. That this change ever occurs in Lake Como, there is, so far as we are aware, no evidence. In this connection, Professor Marsh remarks that, in the elevated region where Lake Como is situated (7,000 feet above the sea), although the weather in summer is quite warm, the nights are always cool, and the changes of temperature often sudden and very great hence the metamorphosis, if it began, would probably pro ceed slowly and be liable to suspension during its variou tages. That the animal breeds in the siredon state, like the axolotl, he is quite ready to believe; and he remarks that it is probable that after reproduction the power of complet development would be lost. Here is, perhaps, the explana ion of the persistence in the siredon state of the majority of the specimens of axolotl observed by Dumèril and Von Chauvin.

A legitimate inference from all the facts would seem to be that the siredons of the elevated lakes of Mexico and the United States are amblystoma, whose complete development as been arrested by increasing elevation and consequen cimatic change, at a period relatively so recent that the have not.entirely lost their ancestral capacity for becoming fully developed under favorable conditions. The transfer rence of reproduction to the larval state is not an insuper able objection to this inference, since, as Professor Marsh observes, the near approximation in many batrachians of the periods of reproduction and metamorphosis, and the ef fects (especially upon the latter) of even slight differences of physical conditions, are known to produce remarkable varia ions in the same species, as well as other results, until re ently quite unexpected.
It is well known, for example, that our common large bullfrog (rana pipens) may remain in the larval or tadpole state, in the colder parts of New England, for many time the normal period; and Professor Wyman once kept the transformation of such tadpoles under arrest for a numbe of years, the experiment being thwarted at last by an accident, which emptied his tank and killed his specimens. This line of investigation is worth the attention of some of our younger naturalists. It is quite possible that, by a skill ful use of light and temperature, the tadpole stage in the bullfrog may be continued until after the reproductive fac ulty has been developed, and the natural history of siredon paralleled by art.

PROFESSOR TYNDALL ON THE PHENOMENA OF HUMAN LIFE.

Professor Tyndall has recently delivered before the Mid land Institute at Birmingham, England, one of those charac teristic addresses of his which seems to us likely to excite discussion as widespread as that aroused by his famous prayer gauge proposal and the great Belfast speech. The dea that there is no necessity for invoking the supernatura to account for the ordinary phenomena of human life hias already been repeatedly foreshadowed in Professor Ty ndall' writings. Nor $h \approx s$ he been at all alone in that view, as it i virtually the same as is held by the majority of scientific reasoners of the present time. But in this late address, (which, owing to its length, we cannot publish in these col umns, and therefore refer the readers to the pages of the Scientific American Supplement, current issue, where it is printed in full) he crystallizes, so to speak, that opinion and the arguments on which it rests into a compact mass of logical reasoning. With all that clearness, precision, and beauty of language which have rendered him almost without peer as a public lecturer, he places before us a chain of rgument, or rather causes his hearers to forge the links themselves, he only acting as guide, and thus enables them to reach for themselves a logical conclusion.
Just as in the opening of a musical work, a suggestion is given of the themes afterwards to be wrought out, so in his introductory sentences, by which the audience is placed in good humor with themselves and the lecturer, Professor Tyndall manages to shadow forth an instance of absence of free will. Half humorously he deplores the hard fate of modern scientific men, who like himself are drawn from thei quiet laboratories and forced into publicity which is not con ducive to the exercise of their best powers. Unlike Joule and Darwin, who are not dragged from their seclusion and made presidents of associations, he himself is a special suf ferer, but social duties are paramount to his will. With this much preamble he launches into a splendid account of that great theory of modern science, the doctrine of the conserva tion of energy. "There is nothing gratuitous in physical nature," he says, "no expenditure without equivalent gain, no gain without equivalent expenditure. With inexorable constancy the one accompanies the other, leaving no nook or crevice between them for spontaneity to mingle with the pure and necessary play of natural force. Has this uniform ity of nature ever been broken? The reply is, 'Not to the knowledge of natural science.'" Then follows a wealth of illustration to show the universal application of the great law, and through this, step by step, the hearer is led to the
question of the energy of the human machne. Joule's state
ment is quoted, that unless we abandon the physiological ment is quoted, that unless we abandon the physiological axiom that "the animal body cannot create heat out of noth ing, we are driven to the conclusion that it is the total heat within and without that ought to be regarded as the real witliin and without that ought to be regarded as the real
calorific effect of the oxidation within the body." A man calorific effect of the oxidation within the body." A man
weighing 150 pounds consumes, we are told, in lifting his weighing 150 pounds consumes, we are told, in lifting his
own body to a height of 8 feet, the heat of a grain of carbon. own body to a height of 8 feet, the heat of a grain of carbon.
Jumping from this height, the heat is restored. The mus. Jumping from this height, the heat is restored. The mus.
cles of a laborer whose weight is 150 pounds weigh 64 pounds. When dried they are reduced to 15 pounds. Were the oxidation corresponding to a day laborer's ordinary work exerted on the muscles alone, they would be wholly consumed in 80 days. It is but a step further on to ask what enables the production of bodily motions, and to enquire whether it is the action of the will. The answer is that the will is mediate, not direct. The nerves controlled by the brain pull, as it were, the trigger, but the gunpowder which they ignite is stored up in the muscles. "We all know the effect produced on a nervous organization by a slight sound which causes affright. An aerial wave, the energy of which would not reach the minute fraction of that necessary to raise the thousandth of a grain through the thousandth of an inch, can throw the whole human frame into powerful mechanical spasm, followed by violent respiration and palpita tion."
Thus far-and we have given but the barest outline of the argument-nothing has been advanced which rises to any other level than that of plain scientific truths which no one can hesitate to accept. But now comes the question: What canses the nerves to act and liberate this gigantic power? Who or what is it that sends and receives massages through the bodily organism? The query is answered thus: " You picture the muscles as hearkening to the commands sent through the motor nerves; you picture the sensor nerves as the vehicles of incoming intelligence; are you not bound to supple ment this mechanism by the assumption of an entity which uses it? Are you not forced by your own exposition intc the hypothesis of a free human soul?" Henceforward the whole drift of the address changes-persuasion and abstract argument replace scientific deduction; but the speaker has proved us necessitarians by necessity, and then, lest the dilemma afflict us, goes on to show that the belief is by no means such a dreadful one.
Are the brain, and the moral and intellectual processes known to be associated with the brain, subject to the laws we
find paramount in physical nature? This is the final problem. Science has led us into the domain of metaphysics, and we have been prepared for the affirmative response. The phenomena of heredity, of how much we owe to the transmitted influences of the past, how closely we are bound up in a chain of events-evolution, whence we cannot escapeall are adduced to prove that we are not masters of the circumstances in which our motives and wishes originate,
and " if finally our motives and wishes determine our actions, and "if finally our motives and wishes determine our actions, free will?" "There is," says Professor Tyndall, in his closing sentences, " on all hands a growing repugnance to invoke the supernatural in accounting for the phenomena of human life; and thoughtful minds, finding no trace of evidence in favor of any other origin, are driven to seek in the interaction of social forces the genesis and development o man's moral nature. If they succeed in the search-and I
think they are sure to succeed-social duty would be raised to a higher level of significance, and the deepening sense of social duty would, it is to be hoped, lessen, if not obliterate, the strife and heart burnings which now beset and disguise our social life.

the american railway system.-maintenance of way.

In presenting some facts illustrative of the progress in railway management in this country, we take data from the Pennsylvania Company, that great organization, by virtue not only of the unparalleled extent of its lines, but by the rare administrative ability by which they are controlled, pre eminently deserving to take first rank as an example. In no other similar organization are the principles of engineering, construction, maintenance, and management carried to higher standards, and we doubt if any other road can show so thorough a system in all its departments. In each of these, for example, certain standards are decided upon as result of iong experience, and these become the inflexible and governing law, whether it be a mechanical measurement
or a matter of policy, and subordinates are rigidly held or a matter of policy, and subordinates are rigidy held thereto, no departure being permitted. A somerthat amus-
ing illustration of this occurred recently, when a friend, traing illustration of this occurred recently, when a friend, tra-
eling on their line on a pass issued to him as the company's guest, because of an informality therein, and having insufficient funds to buy a ticket, had presented to him by the conductor the alternative of getting off the train or depositing his watch as security. Being a sensible man he appreciated the situation, surrendered his time-piece, and continued his journey, receiving his property back in due time with a po lite explanation from the company's office. The conductor had no discretion in the matter, and courteously maintained the regulation for such case made and provided. This in flexibility might appear to defeat progress in certain departments, but to prevent this tendency, the company maintains a corps for the express purpose of conducting experiment, and any practical improvement reported by it, is put to the working test, and, if demonstrated to have real value, is adopted, but is not, prior to its adoption, allowed to affect any of
gree.
A recent article furnished some interesting facts relative the running of their trains under the block system, and it is proposed herein to explain the method by which their magnificent roadway is maintained in such superior condition. To begin with the: official organization of the company is such as to secure with a proper distribution of labor and responsibility the greatest possible efficiency.
The entire line is divided into three grand divisions, sev erally known as the New Jersey, the Pennsylvania, and the Philadelphia and Erie. Over the whole there presides, inde pendent of the Board of Direction, one general manager and two engineers, one of the latter having charge of bridges and buildings, the other of maintenance of way. Each division is under a general superintendent, and being divided into sections of about 100 miles each, called sub-divisions, for each of which there is a division superintendent. These subdivisions are again divided, say into three parts, over each of which is a supervisor. Under him are sub-division foremen, having $2 \frac{1}{2}$ miles of track each to work and keep in order. The number of men allowed to these foremen is determined by the peculiarities of the locality, more men be ing necessary for difficult sections, as in the mountain regions or wherever the trackway is exposed to exceptional danger.
The important relation of the condition of a road way to its carrying capacity, and the economical management of the traffic over it, was so evident that it was deter mined to develop the highest possible standard of excellence in this department. The various engineers, superintendents supervisors, and other practical men, met in consultation to decide what various items were essential to the production of a perfect road. Suggestions were made and discussed fully, after which short sections were ordered, constructed according to the plans agreed on, and when ready these were inspected and criticised by the same officers, some modifications suggested, and still further improvements developed. This sample track was as nearly ideal in every particular as it could be made, as to solidity, evenness, drainage, joints, ties, etc., while the surface was finished with all the care and accuracy of that of a drive in Central Park.
When completed to the satisfaction of all, the sub-division foremen and others were referred to it as the standard, and notified that it was expected that the entire line would be brought to a like condition. To encourage a healthful emulation among the subordinates, it was suggested (by Mr. Cassatt, Vice-President) that premiums should be offered for excellence of trackway, namely, $\$ 100$ to the supervisor whose section should rank highest, and $\$ 50$ to each foreman Whose section should rank highest, and $\$ 50$ to each foreman The method employed to determine these awards is both thorough and impartial. About the first of November the various engineers, superintendents, and others go over the entire line in a special car from east to west at a speed of forty-five miles an hour, to test severely the riding qualities of the road. Then the party make the return trip at ten miles an hour in a gondola car, as it is called, whicb is placed in front of the engine and has seats arranged in tiers, so that all have an unobstructed view of the track. Each person is provided with a printed table, the horizontal rul ings of which represent the different $2 \frac{1}{2}$ mile sections, with
the names of their respective foremen at the left side and the perpendicular rulings representing the different items, specified by name, which are to be examined and criticised. Under these latter rulings each inspector enters a number from 1 to 10 to express his estimate of the quality of each part of the work; 10 is the symbol of perfection, and is reached; in fact 8 is rarely used.
une
The total of each foreman's number is extended to the right, and his average optained by dividing the sum by 11 , that being the number of ratings on the table. Each mem ber of the inspecting party makes his own figures independently, and they are subsequently aggregated and a grand average struck to determine which of the men are entitled to the prizes. It should be remarked, however, that as not all the eleven items that go to make up the perfect road way are of equal importance, discrimination is made in favor of the foreman whose track is in the highest mechanical condition in the essential points, these features very properly out weighing mere superficial appearance.
When the awards are made, printed announcement is given, and the effect has proved most healthful. The prize money is of course in itself very acceptable, but the pres tige is still more valued, as the man is putin the line of promotion, and his work attracts much attention from his fel-
lows, who are guided by its excellence in the next competilows,
It is by this system that the Pennsylvania Railroad Company, having first constructed its roadway upon the most thorough principles, not only maintains its excellent condition but constantly improves it. No thoughtful traveler in passing over it can fall to be struck with its solidity and fine appearance, it being in fact a great macadamized way. If he is really observant he will see that its condition is an
explanation of the safety and comfort of the great travel over it. Those familiar with the freedom from dust, secured by the stone ballasting used on the entire line in Pennsylvania, will be pleased to learn that the road between New York and Philadelphia is to be finished in the same way, the work now being in progress.

notes of patent office decisions

In Gordon's case, just decided by the Acting Commissioner of Patents, the trade mark sought to be registered was described as a narrow strip of leaf tobacco placed as a wrapper around the mouth piece of a cigarette.
It was held by the Examiner of Trade Marks that the bove matter claimed, as a trade mark, was a functional part of the cigarette and was consumed with it; that, in fact, it entered into the mechanical structure of the article itself, and therefore was not an arbitrary symbol or a lawful trade mark.
It will do, however, to carry this doctrine to the extreme of saying that nothing can be regarded as a proper trade mark which is so intimately connected with an article as to be consumed with it; for if that were the rule, a mark upon cake of soap, a symbol in the sole of a shoe, and many other forms of devices which might be mentioned, and which are undoubtedly excellent trade marks, would lose heir character and value as such from the mere fact that he use or consumption of the article would also result in the destruction of the mark.
A distinction must be made in these cases, between the material, which is essential in the structure of the article, and unessential matter placed thereon or incorporated there in, for the mere purpose of distinguishing the origin or ownership of the article.
Thus the box, barrel, or wrapper containing merchandise, whatever its form, cannot, per se, be the trade mark; but a name, symbol, figure, letter, form, or device, cut, stamped, ast, impressed, or engraved thereon, or in some other man er attached thereto, or connected with the article itself may be a proper trade mark. The trade mark need not be inseparably connected with the package, as when blown nto glass, but it must have the independent and sole quality of distinguishing the goods as being of a particular manuacture, or as belonging to a particular party. There could be, therefore, no legitimate objection to the trade mark sought to be registered by Gordon, on the mere ground that it was connected so intimately with the article to which it was attached as to necessitate its consumption with that of the article itself.
But there was a serious objection to the registration on the round that it did not perform the sole office of a trade mark No one has a right to appropriate to his own use, as a trade mark, a device which, from the nature of the use to which it is put, others may adopt and employ for the same purpose. Now, in this case, the leaf of tobacco which was wrapped round the mouthpiece or end of the cigarette, answered a practical, and, perhaps, a very useful purpose. Being composed of tobacco, it was an addition to the material of the igarette, strengthened the wrapper, and was probably more greeable to the taste than the paper of a cigarette. The aseful properties of the article, therefore, seemed to be the predominant ones, while the function the wrapper per ormed as a trade mark was merely incidental. Perhaps a trade mark would have been granted had Gordon applied merely for a silk band attached to the cigarette, or a colored piece of paper, or similar device connected therewith, since, n such instance, the device would perform no mechanical unction, or answer any other purpose than that of a trade mark.
The intent of the trade mark law being to afford protec ion to symbols, and not to inventions or mechanicaldevices, he question whether Gordon had introduced an improve ment in the manufacture of cigarettes was immaterial. If he had introduced an improvement, and was entitled to pro tection thereon, it could be by a patent only. In the ab sence of any patent, other manufacturers of cigarettes could not be prevented from using the like useful device.
The Acting Commissioner of Patents, therefore, while overruling the decision of the Examiner of Trade Marks, that a trade mark, which is so intimately connected with an article as to be consumed with it, cannot be registered, yet ffirms the decision of the latter officer, that the strip of to bacco leaf served more a mechanical than a distinctive pur pose. He therefore denies it registration as a trade mark.

THE WOODEN PAVEMENTS OF CHICAGO.

The Engineering News severely criticises the presen wooden pavements of Chicago, and declares they are a tanding disgrace to everybody concerned in them. That the foundation of the paved strcets is not only filled with earth hauled from adjacent excavations, but with all the rubbish, bricks, stones, manure, and kitchen slops that can be obtained in the neighborhood. Nothing is excluded from the fillings. The material is carelessly dumped, and ther is no sufficient puddling, ramming or rolling. The solidifi cation of the accumulated mass is anything but uniform. Upon this foutdation, so unfavorable to permanence, the pavement is laid. As a consequence it soon shows settle ment in places, and solidity is the general exception. There are some hundreds of miles of wood pavement in Chicago, but the News declares that there is scarcely a dozen miles fit to travel on, and this pavement has been laid only from three to live years. A Committee of the City Council have the subject in hand, and are earnestly seeking to improve the condition of things and determine what kind of pavement can be best adopted to replace these defective paved streets.

The publication of the illustrated article on "Graphic Phonetics," to which reference was made last week, has been unavoidably deferred. It will appear at an early day.

THE WREN GAS WORKS.

We illustrate herewith an improved system of manufac turing illuminating gas from crude petroleum, which i cheaper and of higher candle power than ordinary coal gas, and in the production of which apparatus which is both simple and easily managed is employed. Tests made in our presence showed that a 6 foot burner, consuming Brooklyn city gas, gave less light than either a 1 -foot or $1 \frac{2}{10}$-foot burn er using the petroleum gas, pressures being the same in both instances.
.The common objection to oil gas is that it does not come to the consumer in the shape of permanent gas. That is, the hydrocarbon is not fully gasified, but is rather in a semi vaporous state; consequently the gas leaves a deposit in the pipes, and smokes when burned. In the present system this difficulty is claimed to be obviated by the construction of the retort used, which is divided by longitudinal partitions into chambers. The oil entering one of these is vaporized, and the vapor then passes through the retort from end to end four times in traversing the compartments. As a large sized retort enters six feet into the fire, it will be seen that the gas traverses 24 feet of heating surface, and in doing so it changes from vapor into a permanent gas.

The engravings given herewith exhibit plainly the arrangement of the apparatus. Fig. 1 shows the construction suitable for fixed works. Fig. 2 represents a portable ar rangement. The crude petroleum is held in the receptacle, A, Fig. 2, and thence passes, by the pipe shown, into the inverted siphon, B, which communicates with one of the chambers of the retort which is imbedded in the furnace It will be noticed that this construction effectually prevents any danger of explosion of the retort, because as soon as the stand pipe chokes, the pressure in the retort meets the entering oil and stops the inflow-the oil running over the funnel of the siphon. Consequently no more oil can get in and no more gas can be made until the excessive pressure is relieved. The stand pipe conducts the gas to an ordinary washing vat, C , and thence it goes to the receiver.
We are informed that such an apparatus as is exhibited in Fig. 1, the retort being 6 feet in the fire, 13 inches high and 17 inches wide outside, will produce as much as ten large 9 feet gas retorts, or 40,000 cubic feet of gas per day of 24 hours. A No. 2 retort and bench complete, size 5 feet, 6×4 feet, and height 6 feet; is claimed to make the equivalent of 25,000 feet of coal gas per day, or sufficient to supply a village of from six to eight thousand inhabitants, the works being run continuously day and night. If more gas is required two or more retorts can be placed in the same bench, the labor and fuel used being no greater. To produce petroleum gas the equivalent in illuminating power of 25,000 feet of gas, using the single retort, the manufacturer states that 300 lbs . of coal will be consumed in the 24 hours' continuous run. So that the cost of making the gas will stand as follows

$$
\begin{aligned}
& 50 \text { gallons of petroleum, at } 6 \text { cents } \ldots \ldots \ldots . \text {. } \$ 3.00 \\
& \frac{1}{4} \text { ton of coal at } \$ 8 \text { per ton...................... } 2.00 \\
& 4.00 \\
& \$ 9.00
\end{aligned}
$$

This averages 36 cents per 1,000 feet of 80 candle gas. Actual practice has shown that over 4,000 feet of gas of the above candle power can be made from one barrel of crude petroleum which, even at the high rate of 10 cents per galsays one user of the system, "' gives a better light than $\$ 70$ worth of coal gas at $\$ 3$ per 1,000 feet." We are further informed that the gas is unaffected by temperature, and that it retains all its properties over an indeflnite period. It has been stored in a cylinder for cylinder for four years, and at the end of that period it was foundto have left no deposit and not to be impaired in its illuminating - pronating properties. It is well adapted for enriching coal gas of 11 candle or other low power. One
part of petroleum gas to 5 parts coal gas makes a 17 candle light; 4 parts a $211 / 2$ candle light, and to 3 parts a 30 candle ight. It is also suitable for heating purposes, and especial ly so for iron and steel working, owing to its freedom from sulphur.
The system is in use in Ashtabula, Ohio, where it sup plies the town, the gas holder containing the equivalent of 50,000 feet of coal gas. Also in Shelbyville, Ind., Morris, Ill., and elsewhere, where its employment, we are informed, has proved uniformly successful.

Fig. 2.-THE WREN PORTABLE GAS WORKS.
For further information address Dr. W. C. Wren, Wren' Gas Works, corner of Jay and Water streets, Brooklyn N. Y.

Analysis of Petroleum.

Anything in relation to petroleum is presumed to be in teresting at the present time, and for this reason it may not be out of place to notice that the chemical constituents of解 form ten parts hydrogen, by weight. The proportion gen is light and volatile. Originally, they both existed as gases, and by their union they form protocarburet of hydrogen, which, being condensed, forms naphtha, or light vola tile oil; and after the escape of a portion of hydrogen, the product is petroleum. By a further escape of hydrogen, the product becomes moresolid, as bitumen, pitch, or asphaltum, the higher stages of condensation being cannel, bituminous and anthracite coal. The diamond is the purest state of solidified carbon, and is probably a crystalization of carbonic acid gas, unadulterated with hydrogen. Coal oil is artificially produced by converging coal into gas, adding a proper equivalent of hydrogen and theu condensing the gas. Iron, sulphuric acid, and water, when placed in contact, Iron, sulphuric acid, and water, when placed in contact,
give off hydrogen gas. Burning charcoal gives off carbonic
lon, brings the cost of the gas to $\$ 7$ for 4,000 feet. "This,"

Fig. 1.-THE WREN GAS WORKS. boilers, steam pipes, ice houses, and cisterns, as a protection
against fire, and as a filter for chemicals. Paving blocks
acid gas. Mix these gases in proper proportion, subject them to heat under confinement, then allow the heated gas to escape through water, and the condensation will produce carbon oil on the surface of the water, but it will cost about ten dollars a gallon, even if you get through without an ex-plosion.-Osceola Reveille.

Columbia Water Works.

The Columbia, Ohio, water works, which are upon the Holly system, have now been in operation about seven years. Since they were built, the city has abandoned the use of their entire force of steam engines, and the losses by fire have been decreased from an average, previous to the introduction of the water supply, of $65-100$ of one per cent to $9-100$ of one per cent upon the total tax valuation, while since 1870 the valuation of taxable property has increased, in round numbers, from $\$ 16,000,000$ to $\$ 27,000,000$ in 1876. The average daily amount of water now being pumped is about $1,600,000$ gallons, the machinery with which the works are supplied being capable of furnishing $10,000,000$ gallons daily for domestic use or $7,000,000$ gallons under fire pressure. There are now in use in the city upwards of 600 improved water meters, from the Eagle Meter Co., of Brooklyn, L. I., which are recommended by the engineer in his report as giving better satisfaction than any meter yet tested. Since their introduction three years ago, the consumption has but slightly increased, notwithstanding the growth of the city. There are about 45 miles of cast iron pipe laid, in connection with the works, which was furnished by H. R. Smith \& Co., of Columbus, to the credit of which establishment it may be said that not a single length has thus far been obliged to be taken up from any faultiness of the pipe.

Fruit Bread.
Mr. Campbell Morfit, of Baltimore, Md., has recently patented a new method of preserving the juice of lemons, cur rants, oranges, and other fruits. He mixes the juice, with or without sugar, with any kind of cooked meal, makes the mass into cakes and bakes them. These cakes are afterwards ground up and used to make a very palatable fruit wards ground up and used to make a very palatable fruit
farina. The fruit juices are said to retain their original farina. The fruit juices are said to retain their original
flavor and character indefinitely, and thus the fruit bread may become a valuable and convenient addition to the daily ration of sailors, and soldiers in the field.

The Utilizations of Slag.

The principal utilizations of blast furnace slag, nearly all of which, with the exception of the employment of the ma terial as road metal, have come into use within the past four years, are summed up in a valuable paper recently read by Mr. Charles Wood before the Iron and Steel Institute.
Slag sand is employed for making concrete, building blocks, mortar, and cement. The cement is composed of slag sand with common lime and iron oxides, and its strength is said to be little inferior to that of Portland cement, while its price is not one fourth. Slag sand, with about 10 per cent of common slaked lime, makes a good mortar. Concrete is either made from slag sand or slag shingle. The latter is well suited for covering roads and foot paths. Slag wool, produced by the impact of a steam jet with a stream of molten slag, is used for covering steam jet with a stream of molten slag, is used for covering steam
boilers, steam pipes, ice houses, and cisterns, as a protection and building bricks are made by pul verizing the solid slag and then pressing the bricks in a press. A remark ble property of the bricks is that nails can be driven intothem withoutcausing their splitting. The en with age. Glass is produced of an impure qual ity by Mr. Bashley Britten's process, the molten slag being taken in a ladle from the blast furnace and poured and poured into a Siemens fur nace, where soda and silica are added the quality of the slag used.

NEW STANDARD GRINDING MILL.

The annexed engravings represent a new standard heavy $\left\lvert\, \begin{aligned} & \text { periority of our oid the chief advantages, often overlooked by even } \\ & \text { ry. One }\end{aligned}\right.$ 20 inch mill, manufactured by Mr. Edward Harrison, of our most sanguine oil prospectors, is in the proximity of our New Haven, Conn., with which is combined a pedestal and oil territory to the sea, and another is in the ease with which temporary dressing frame, on which the stones may be the refined oil can be placed on board vessels bound for fordressed. The mill is thus rendered complete, and despite its eign ports. A vessel at the end of the oil wharf, to be put high power is portable, requiring nothing to be built for it at the foot of California street, can be loaded with ease from to rest upon. It is claimed that the grinding surface of this mill, at 1,400 turns per minute, is equal to three quarters more than an old style 48 inch run at 175 revolutions per minute. The grinding capacity per hour is from 14 to 75 bushel and the weight 1,250 lbs. Fig. 2 shows the pedestal and case made in one casting, with a dressing frame bolted on and the burrs turned out upon it for dressing. The frame is made in two parts which are fastened one on eich side of the case by tap bolts, the opera tion requiring but a few minutes.
This mill, in common with others of different sizes, which we shall illustrate in subsequent issues, is constructed in accordance with the principles, the demonstration of which the manufacturer states to be the result of his fifty years' expe rience in mill building. Mr. Harri sen believes that no process of milling can be perfect without the use of burr stones, and that such furnish the only proper grinding sur face; that the stones should not be large and heavy, or horizontally superposed, or run at low velocity, but that on the contrary they should be light, hung vertically face to face, and driven at high speeds. In the former case there is mashing and over-grinding, in the latter there is neither, while high speed pro duces the necessary grinding surfaces.

In the present new machine, we are informed that the entire construction is of iron and steel excep the burrstones. The runner stone is

Fig. 1.-HARRISON'S NEW STANDARD GRINDING MILL
at the field. Undoubtedly, with extensiveand properly sup plied refineries, we could now ship oil to the foreign mark ets cheaper than it is done from New York and Philadelphia All the advantages are greatly in our favor, giving margins for profit in every direction.-Ventura (Cal.) Signal.

Lake Tahoe Lumber Operations.

A writer in Appleton's Journa says the lumber interest and the lumbermen sustain Glenbrook, Cal., and all the neighboring settlements. They are seen nearly everywhere in that beautiful region, which, once clothed from head to foot in pines, is being denuded to supply the Com stock mines with fuel for their hoist ing apparatus and supports for their excavations. Penetrating a pine forest to its heart we find an indus trious gang of vandals blasting tree out of beds upon which a tangle of roots seems to have fastened for eternity; and standing upon the foot hills we hear the sibilant grind of the sawmills, the crash of axes, and the dull reverberations of the blast. Following one of many devious wagon roads-one out of use for instance-a curious litter of chips and shavings represents a for est sacrificed; following another road still in use, we discover the lumbermen at work carrying the havoc further.
On one side of Lake Tahoe steam railway several miles long is used exclusively in the transporta tion of logs to the shore; the log are towed across the water in im mense rafts to Glenbrook, wher they pass through the sawmills; and thence another steam railway, als used exclusively in the lumber se vice, extends to the summit of th divide. Down the eastern slope of the mountains, leading to the Car son river, flumes 20 and 30 mile long are carried over valleys and ravines on high trestle work bridges, and the wood is floated through them over another stage of its jour
held as firmly to the spindle as a
lathe head. All the bearings in which it runs are unusually the refineries, which will extend from the wharf eastward to long, which render it impossible for the spindle to get out the corporate limits. Our pipe line will convey every gal of line. The faces of the burrs are protected from injury lon to the barrels in the holds of the vessels, thus saving al during the passage of hard or foreign substances through the mith-by means of a very heavy safety spring and step, against which the end of the spindle always rests. The mill may be used for any kind of grinding, from wheat to quartz, and either wet or dry It is hardly necessary to point out that for machines of this type a wide field of use out that for machines of this
fulness exists in this country. fulness exists in this country.
The heaviest tax paid by the conThe heaviest tax paid by the con-
sumer for cereals is that due sumer for cereals is that due
to transportation, and when grain is cheap and transporta tion high, enormous quantities of the former are wasted because it does not pay to send it ever long distances to be converted into flour and meal. The economy and portability of these mills renderssuch transportation practically unnecessary. Any farmer possessing a small farm steam engine-and no farmer working even a moderate sized farm should be without this most valuable adjunct-can with a Harrison mill grind his own grain and that of his neighbors, and thus secure a double profit. Horse power may be used to drive some of the smaller sized mills, which show a capacity equal to the old style 48 -in. mills. For further information ad dress the manufacturer, Mr. Ed ward Harrison, 135 Howard avenue, New Haven, Conn

Petroleum in California

It is now an established fact that we have oil in Ventura coun y in paying quantities. Out of the crude material a fluid can be made better than Pennsylva nia oil-because, while it produces as clear a light, it is a safer oil, the poorest of it being non explosive. It will pay to refin the light dark oil, and very wel to refine the light green. Our advantages are not alone in the su

Fig. 2,-GRINDING MILL WITH COMBINED PEDESTAL AND DRESSING FRAME.
" One morning as I was riding through Truckee cañon, a great wave and a cloud of spray leaped from the river into the air some distance in front of me. I went a few pace further, when, by the merest chance, my eye caught wha was intended to be a sign-the lid of a baking powder box tacked to a pine stump, and inscribed with dubious letters Look out for the logs!' In which direction the logs were to be looked for was not intimated, and I paused in uncer tainty as to whether security de pended on my standing still or advancing. Suddenly my mule bied round, and a tremendou pine log, 80 or 100 feet long, and bout five feet in diameter, sho lown the almost perpendicula wall of the cañon into the river raising another wave and an avalanche of spray.
" This was to me a new phase of the lumber industry. A wide, strong, V-shaped trough, bound with ribbons of iron which had been worn to silvery brightness by the friction, was laid down the precipice; and out of sight on the plateau above, some men were felling the trees, which they conveyed to the river in the expeditious manner aforesaid."

The English Channel
Tunnel.
Operations connected with the submarine tunnel have already been commenced on the othe side of the Channel, several pits haying been sunk to a depth of about 110 yards. At the same time the French and English committees have definitely drawn up the conditions of work ing for the route. The propert of the tunnel is to be divided in half by the length: that is to say, each company is to possess half of the line, reckoning the distance from coast to coast at low tide. Each company will cover the expenses of its por cover the expenses of its por-
tion. The general work of excavation will be done, on the one
hand, by the Great Northern of France, and on the other by the Chatham and South-Eastern companies, the two latter having each a direct route from London to Dover. All the materials of the French and English lines will pass through the tunnel in order to prevent unnecessary expenses and delay of transhipment, as in England and in France railway companies use each other's line, and goods can pass from one line to another without changing vans. It is understood that an arrangement will be established for a similar exchange of lines between all the English and continental rail way companies when the tunnel is completed. The tunnel will belong to its founders. At the expiration of thirty years the government will be able to take possession of the tunnel upon certain conditions.-Mining Journal.

THE MEETING OF THE ACADEMY OF SCIENCES.

The semi-annual meeting of the National Acedemy of Sciences was recently held at Columbia College in this city. Professor Joseph Henry presided. Abstracts of the papers read are given below.
Professor Stephen Alexander in a paper entitled
LAWS OF EXTREME DISTANCES IN THE SOLAR SYSTEM in which he showed the relations of various members of the solar system and the curious proportions existing between them, the whole indicating that in their organization they have obeyed the rule of law. The ratios of the planetary have obeyed the rule of law. The ratios of the planetary
distances for example he pointed out as follows: Neptune to distances for example he pointed out as follows: Neptune to
Uranus $\frac{2}{8}$; Uranus to Saturn $\frac{1}{2}$; Saturn to Jupiter $\frac{1}{2}$; Jupiter Uranus $\frac{2}{8} ;$ Uranus to Saturn $\frac{1}{2}$; Saturn to Jupiter $\frac{1}{2}$; Jupiter
to Asteroid $\frac{1}{2} ;$ Asteroid to Mars $\frac{2}{8} ;$ Mars to Earth $\frac{2}{8} ;$ Earth to Venus $\frac{2}{3}$; and Venus to Mercury $\frac{1}{2}$, and then he showed that the difference between the distances according to law and in fact were small, not exceeding in any of the preceding instances $\cdot 078$. Tables of relations for the systems of Jupiter and Uranus were given which also showed remarkぇble approximations of theory to fact.

velocity of vibrations in earth.

General H. L. Abbot gave an account of his series of experiments to test the rate at which tremors from explosions are transmitted through the earth. He stated that for one mile through drift formation, a severe shock gives a velocity of about 8,500 feet per second. The rate for the great Hal. lett's Point (Hell Gate) explosion was about 8,300 feet per second for the first eight miles and about 5,300 feet per second for the first thirteen miles. These estimates enormously exceed those reported by Mr. Mallet some years ago to the Royal Society, the highest velocities obtained by him being not over a third of the lowest and a fifth of the highest noted by General Abbot.
Professor O. N. Rood presented two essays on the study of color, in which he described a means of determining the effects of a given mixture of colors by means of superposed diagrams, and also a method of comparing the relative brightness of culors.
Professor Alexander propounded the ingenious theory that the inner satellite of Mars is an asteroid which has traveled so near to the orbit of the planet as to be drawn and held within the sphere of the latter's attraction. Investigations of the orbits of several of the asteroids apparently confirm this view.

Professor Elias Loomis read a paper on the

origin of storms

based upon data obtained by the United States Signal Service. He stated that our great storms begin in the neighborhood of the Rocky Mountains and that no example is found of any considerable storm arising on the Pacific Coast, south of Oregon. At the outset there is generally an area of several hundred miles diameter, through which the barometer stands at mean. On opposite sides of this area, generally east and west, at a distance of 1,000 miles apart, are areas of high barometer. The atmosphere in these side areas begins to move toward the central area. The currents thus established are deflected toward the right by the earth's rotation; and a diminished pressure results over the central area, when the inflow increases and comes from all sides. The area of low pressure assumes an oval form, but if the winds are very violent, it may be more nearly circular. With roation a centrifugal force is developed which increases the depression, and within the latter there is an upward movement of the atmosphere which carries large amounts of vapor, which on cooling condenses as rain. The heat liberated by condensation increases the rarefaction of the area; and thus rain increases the force of the storm, though never originating it. The upward motion within the storm area takes place chiefly on the east side, so that the depression at the center is constantly transferred toward the east, unless however there is a great precipitation of vapor on the west side of the
area, in which case the storm is held stationary or even moved westward.
Professor Joseph Henry summarized the results obtained by the Lighthouse Board to determine the utmost efficiency of

fog signals.

These are (1.) Loud sounds spread rapidly from the mouth of a trumpet, and fill the whole horizon at the distance of a few miles. A parabolic reflector only holds the sound in the direction of its axis for a mile or two; at three or four miles the sound is heard as well behind as in front of the re-
flector. (2.) Sound is heard further when moving with the wind near the surface than when moving against it; but there are exceptions to this rule, and before a change of wind the sound is heard further in opposition than in the same direction as the surface wind. The exceptions are re-
ferred to the effect of an upper wind prevailing in a contrary direction. (3.) It is established that neither fog, snow, nor rain interferes with the transmission of loud sounds. (4.) A sound may become inaudible over a certain space and be heard again beyond it. This occurs when the wind blows against the direction from which the sound is moving; and is referred to the tilting of the front of the sound wave so
that it passes over the head of the observer, and afterward that it passes over the head of the observer, and afterward
descends. It is not due to a special condition of the atmosphere in a circumscribed locality by which the sound is ab sorbed, since there is no such effect when the sound is trans mitted in an opposite direction-that is, with the wind. (5.) Independently of the wind, however, the air does not on all occasions transmit sound with equal facility. If interven ing air be heated above or cooled below the general temper ature, there will be refractions and reflections, which inter fere with the progress of sound. (6.) "Sound shadows" are sometimes produced by projecting portions of land, o other obstacles. In these shadows the sound is temporarily diminished, or lost to the observer. (7.) The phenomenon known as the -" ocean echo," is arreturn of sound from the horizon opposite the opening of the trumpet, and occurs during both clear and foggy weather, and with variou winds. Its explanation is difficult.
The remainder of Professor Henry's essay described a very interesting series of experiments tried in Penobscot Bay, at a locality where the sound of a loud fog signal suddenly became inaudible for a considerable space, and beyond that was heard again. The experiments were very satisfactory in proving many of the propositions above satisfactory in proving many of the propositions above
enunciated, especially that the interference with the sound was due to the opposition of the wind, since, when the signal was carried on the vessel going outward, there was n such interruption to hearing the sounds on the shore.
Professor Alexander Agassiz read a very important es say on
the development of the flounder,
which fish, in early youth, has one eye on each side of the head, like other bony fishes. After three or four months, both eyes are found on one side. Professor Agassiz reaches the curious con
The notion has been that this fish has its eyes both on one side, because its facilities for securing food are thereby increased. But why should not this process have, by natural selection, resulted in a fish that, when hatched, has both eyes on the same side? We do not find this peculiarity in fossil flounders, and no flounders have yet been found later than the tertiary formation. It is not true that all flounders are destitute of swimming bladders. There are other fishes as flat as a flounder, but with eyes on both sides of the frontal bone.
The sides of the flounder in the young are identical as to color. The color is due to the pigment cells, of which there are three kinds, red, black, and yellow. By contraction of these cells the different colors are produced. Now, if a flounder
is left in a vessel with a gray ground it becomes gray; if on a black ground, black; if on a red ground, red. This power of changing color is, however, lost on the side where the eye is absent. The inference is that the nervous system, being affected by a change of color through the eye, originates the change of color in the fish, by means of appropriate contraction of the pigment cells. But when light was continuously admitted to the under side of the vessel holding the young fish, before its eye had gone to the other side, the process of development and the removal of the eye to the other side went on just as before. There was a great deal yet to
be learned before this series of facts could be explained.
fore this series of facts could be
NEW ASTRONOMICAL THEORIES.
Professor Alexander brought forward a variety of evidence tending to indicate some envelope like an atmosphere for the moon, the hypothesis being based on the bright band seen around the moon during eclipses. This, the speaker thought, could best be accounted for by supposing an atmosphere to the moon, a thin remnant of ancient nebulosity, comparable to that which accompanies the earth and gives rise to the appearance of the aurora Professor Alexander also propounded a curious geometrical theory, showing that the
shadows thrown by celestial objects are retrograde, being left behind by the time which light takes to travel. The effect is that these shadows lean backward, and allowance has therefore to be made for a resulting difference between observations on occultations and on eciipses. Applying the calculations to observations on Jupiter's satellites the following is the result: There is a difference of ten seconds of actual time between all such observations made by means of occultations and those which have been made by means of eclipses.

A New Discovery of Potash Fields.
A deposit of potash salts has been discovered near Stassfurth, Germany, which is said to be so vast that it will yield for many years to come. The uses of potash salts in the arts are very numerous and important, and to obtain them recourse has been had to washing of sheep's wool, the liquor from which cane surar is crystalized, and to sea water. The entire bed, the immense size of which was determined by borings made with the diamond drill, lies within the triangle
formed by the three towns of Magdeburg, Halle, and Nordhausen, and is supposed to be due to the evaporation of an inland sea. The company, which is soon to begin working

Mechanical Stoking.

The English Mechanic gives the following summary of the various inventions for mechanical firing of furnaces, now in use in England.
It has been generally admitted that the theoretically correct manner of feeding fuel to the fire is to supply upwards through the bottom of the furnace from below. It is on this principle that the "Frisbie Feeder" and Mr. Holroyd Smith's "Helix" stoker are constructed; the latter giving a continuous supply of fuel, and therefore more correct in a continuous supply of fuel, and therefore more correct in
method than the former, whose supply is intermittent. This method than the former, whose supply is intermittent. This
arrangement causes the smoke and gases, when passing uparrangement causes the smoke and gases, when passing up-
wards through the incandescent coal, to be thoroughly consumed. Another method is to supply fuel from a hopper to the front of the bars, which rotate slowly backwards, and the desired combustion is the result. Such is the construction of Regan's stoker, which has been very successful as regards economy, both in the quantity and quality of the fuel used, only small coal being burnt.
Another contrivance, applicable principally to marine boilers, has recently been patented by Mr. Regan, and this is known as the "jogglebar furnace." It allows of the agitation of the bars by means of a lever, so as to be free them from clinkers, and to keep the space between the bars clea for the passage of air. The bars are placed transversely, and nothing is easier than their removal and replacement when necessary.
Another method is that of the Henderson stoker, which provides that, as the crushed coal falls from the hopper, it is caught on the vanes of horizontal or vertical fans, and thrown by them over the fire in such a manner that an even distribution can also be made, as mentioned above, by means f a peculiar motion imparted to the bars. The rocking or other motions are produced by means of gearing, eccentrics etc., driven either by shafting from the main engine or by small supplementary one. At the same time the bars are either rocked up and down, or from side to side, revolve over spindles, or rotate backwards from the front en masse by means of horizontal shafts. In Dillwyn Smith's stoker there are two grates placed crosswise in the same fire, and these are so arranged that the gases given off by the coal on the first grate are burnt, with perfect combustion, on the sec ond. It is unfortunately impossible to speak with any cer ainty on the comparative merits of the various stokers in use, as no competitive trial has been made. Some inventor assert that the saving effected by their stokers is as high as 30 per cent. Of course such may have been the case where they have been erected, but it only proves that where such an immense percentage is claimed there must previously have been a shameful waste of material. By the use of me chanical stokers hard labor is, of course, almost entirely dispensed with, the filling of the hopper and the raking out of the ashes constituting the only manual work. Sometimes, however, even the filling of the hopper is performed by mechanical means. Such is the case at the General Post Office, where four of Vickers' stokers are at work. They use only small coal, which is lifted by an automatic arrangement, driven by an engine of a small horse power. The coal is then delivered into a trough about twenty yards in length, in which works a helical screw. The fuel is thus forced forward and dropped in measured quantities into the hoppers. At the Royal Mint mechanical stoking on the Juckes' principle has been in active operation for many years. Mechanical stokers can be used with equal benefit on board ship, where an even fire can be kept up in spite of heavy ship, where an even fire can be kept up in spite of heavy
seas, with the additional advantage of a comparatively cool seas, with the additional advantage of a comparatively cool
temperature of stokehole. Thus far all the objections adtemperature of stokehole. Thus far all the objections ad-
vanced against hand stoking have been overcome by these useful labor-saving and money-saving machines; and though the price of some of them occasionally appears rather high, they invariably repay their cost in a short time.

Solar Radiation and Sun Spots.

In an essay on the above subject in Nature, Mr. S. A. Hill, of Allahabad, India, considers it to be possible that the excess of tropical and oceanic rainfall in maximum sun spot years may be cause? by precipitation near the place of evaporation, owing to the diminished force of the trade winds and anti-trades at those periods, and that if the winter rainfall of Europe and America were examined it might show an excess in minimum sun spot years, derived from vapor brought by an unusually strong upper current from region of great evaporation in the South Atlantic. The registers of nearly twenty years show that the winter rainfall of India, north of the tropic, is probably subject to such a periodic variation, and if this surmise be verfied in the future the author thinks, it may prove of the greatest economic importance

At a recent meeting of the French Academy of Sciences, M. Duplessis called attention to the infection of grain through the agency of floods in water courses. A case was noted of a field of rye which became partially infected with smut, owing to a river having overflowed its banks and covered a field further up stream, which was already infected. The flood had been the means of communicating the disease or fungus.

The bakers and pastry cooks of Paris have been forbidden to burn in their ovens wood which has been painted or im pregnated with any metallic salt, as it is believed that the articles of food may be rendered deleterious through the agency of the same.
[From a Correspondent of the Scientific American.]
SOME INVENTIONS FOR HUSRING CORN
The production of a machine to successfully husk corn has of late years engaged the attention of many mechanics. Numerous devices have been made and patented, but none of them has thus far been adopted by the corn raiser. Many of the earlier machines were intended to first strip the ears from the stalk and then strip the husk from the ears. It is the latter operation which has so far baffled the efforts of inventors.
The first method tried was that of providing two revolv ing inclined rollers, made of an iron rod covered with a rubber tube. The rolls were kept in contact by springs act ing upon the journal boxes, which were made to slide. The ears of corn were fed in at one end of the apparatus, and traversed by gravity along the two rollers, as shown in Fig. 1. The rollers, A B, are revolved by the gear wheels, C and D. E represents an ear of corn sliding down between them. The action of the rolls was designed to strip the husk, by friction, from the cob, the ears passing down the rollers and falling at the end. The husk was to be carried through the rollers and fall beneath. This simple devic
of the roller behind the row of slots strip the husk from the ear. These rollers were found to husk some corn well

Fig. 4.

enough, but they were not adapted to husk in sufficiently large quantities, nor to husk various sizes and kinds of corn. The next invention was to make the rollers with a spiral roove, as shown in Fig. 5. This was found to be an im provement upon large ears of corn, but was found deficien in husking when the husk was damp or not held close upon

Fig. 5.

the ear. The grooves were then changed in shape, the back edge being eased off, as shown in Fig. 6, in which A repre sents' an end view of the rollers of Fig. 5, and B an end view of the grooves as changed. By this change keener husking edges were obtained, but the liability to shell the corn from the cob was increased, the edges of the grooves being so
would husk dry corn fed into it in small quantities, say, one ear at a time, providing that the husk was dry and some what ragged or loose upon the ear. It would husk small sized ears much more readily and perfectly than the larger sized ones. Its defects were that the rubber rollers elongated, and the silk lapped around the ends.

Another inventor used the device shown in Fig. 2, in which A B are one pair and C D another pair of rollers. E E and F F are endless bands, made of sheets of rubber pass-

ing over their respective pairs of rollers, of which B and C were the ones driven. This is the representative of nume rous devices, the fault of which is that when several ears of corn fall upon the rollers together, the top ones are apt to ride without coming into contact with the rollers, and therefore pass out unhusked. This defect is incident to all machines of this class, in which gravity alone is depended upon to feed the unhusked corn through the rollers.
The next step was to give the corn a positive feed by means of an apron. This is shown in Fig. 3, in which A and B are two revolving drums around which passes a leather belt at each ond. Fastened to the two belts were strips or slats

Fig. 3.

of wood, C, every fourth one being higher than the others, being designed to take hold of the corn and carry it to the rollers. It was found that the short slats would press the ears of corn to the rollers and leave them there, the high slats carrying them off after the husks were removed. A difficulty was found, that to use such a feed, the corn requires to pass across and not along the rollers, and thus ne cessitating the use of at least three pairs of rollers, as shown at D, E, and F. Rubber rollers were first used, but being found deficient, eccentric rollers were substituted, the object being to induce friction upon the husk by reason of the eccentricity of the rollers. Next, rollers were made composed of small disks of wood, supposing that the end grain of the wood would afford a sufficient grip upon the husk without catching hold of the silk. These rollers were found defective In husking capacity, and a resort was made to iron rollers, the first of which were made with isolated cavities about half an inch wide by three quarters of an inch long, as shown in Fig. 4. The edges of these slots were intended to catch hold of the husk and carry it between the rollers. There were two rows of the slots in each roller, and the rollers were so geared together that the slots of each would simultaneously grip the husk on each side of the ear. After the slot edges had thus gripped the husk and carried it down between the rollers, it was intended to have the plain part

prominent as to shell a large proportion from some ears while other ears could be passed through the machine sev eral times in succession without ever being husked.
Another inventor conceived the idea further, and made more husking edge, but with the former style of groove. His first idea was to make iron rollers as represented in Fig. 5, but with right and left hand grooves, as shown in Fig. 7. The object being that the edges of the grooves would grip the husk simultaneously on opposite sides of the ear. This pian was abandoned because of its inadaptability to

Mig. 7.

husk ears of varying sizes. The amount of twist suitable for small ears being inadequate for large ones, . and vice versa.
Another inventor conceived the idea of giving a large and continuous amount of husking edge by roughing the surface of the rollers, but in that a new difficulty was encountered, as the silk and husk clung to and wound around the rollers, thus increasing their diameter in places and throwing them apart. To remedy this defect, plain spaces were left, and a scraping attachment was added as shown in Fig. 8, in which

Fig. 8.

A and B are the rollers, and C and D are the scrapers. It was found that the silk and damp husk, as cleaned from the plain spaces, would lap around and clog the roughened parts, and the device was abandoned.
During all these experiments it was found that ears of corn that would pass over rollers several successive times, without being husked, would be denuded very readily if the husk was jagged by some sharp instrument like a knife, even though the jagging were performed upon one small
tach to the slats of wood which formed the feed apron, a bown in Fig. 3, a series of sheet iron strips serrated at the edge similar to a saw, but it was found that these edges would sometimes take hold of the ears and drag them un husked through the machine.
Another inventor achieved considerable success by mak ing a roller with a deep spiral groove, and placing at the bottom of this groove a row of small cylindrical projections which were intended to loosen the husk so that the groove edge would remove it. Another effort was made with the rubber rollers, by giving to the surface of the rollers a se ries of raised rubber projections intended to firmly grasp the husk and drag it off, but this was found to not equal the expectations formed of it. One more effort is worthy of note. This was to pass the stalks of corn, butt ϵ nd first, through two pairs of rollers, such as shown in Fig. 9, in which there is shown at A a pair of rollers containing a se ries of grooves, each groove being provided with a series of husking edges of a form made in the same way as shown in Fig. 6, at B. Behind these rollers was another plain pair as shown in the end view of Fig. 9, at B, the idea being to pass the corn stalks, butt end first, through the revolving grooved rollers, which would carry the stalk through to the

Fig. 9.

rollers, B, which were made to revolve somewhat faster than those shown at A, so that when an ear of corn met the grooves, the two pairs of rollers, A and B, would pull it violently and firmly against the grooves, the edges of which would cut off just so much of the end of the ear as would detach the husk therefrom; but only a partial success, how ever, was by this method obtained.

A New Glacial Period in Progress.

A Swedish paper states that in the Bay of Komenok,near Koma, in Greenland, fossil and very characteristic remains of palm and other trees have been discovered lately, which tend to show that in these parts formerly a rich vegetation must have existed. But the ice period of geologists arrived, and, as a consequence of the decreasing temperature, this fine vegetation was covered with ice and snow. This sinking in the temperature, which moved in a southerly direc tion, as can be proved by geological data, that is, the dis covery of fossil plants of certain species, seems to be going on in our days also. During the last few years the ice has increased far towards the south; thus between Greenland and the Arctic Sea colossal masses of ice have been accumu lated. On European coasts we now frequently find ice in latitudes where it never existed before during the summer months, and the cold reigning upon the Scandinavian peninsula this summer results from the masses of ice which are floating in the region where the Gulf Stream bend towards the British coasts. This is a repetition, says $N a$ ture, of the observations made in the cold summer of 1865. The unaccustomed vicinity of these masses of ice has rendered the climate of Iceland so cold that corn no longer ripens there, and the Icelanders, in fear of a coming famine and icy climate, begin to find new homes in North America.

Petroleum for Removing Scale in Boiler

Petroleum has recently been successfully employed for the removal and prevention of scale in steam boilers, also for the removal of deposits from water pipes where the water contains large quantities of lime. It has the effect of penetrating and rotting the scale, causing it to become porous and disengage itself from the surface to which it is attached. It is a very simple remedy and can be used in small quantities without any difficulty whatever, say about a quart every week for a twenty-five horse power boiler, and in qưantities more or less, according to the size of the boilers. It may be introduced in the feed water or through the safety valve, or in any way most convenient for that purpose; but to be effective it must be pure. The heavy oil used for lubricating purposes in cold situations is the most efficient. as the refined oil of this description is of no use, as it is soon expelled by the heat.-Oil, Paint and Drug Reporter.

Progress of the Western Union Telegraph Company. On the first day of July, 1877, there was in operation 76,955 miles of line, 194,323 miles of wire. and 7,500 offices. There are in use on the lines of the company, 10,306 sets of instruments for reading by sound, 9 printing instruments, 1,639 recording instruments, 220 repeaters, 183 duplex instruments, 113 quadruplex instruments, 98,558 cups of main battery, and 21,996 cups of local battery. The number of messages transmitted during the year ending June 30, 1877, was $21,158,941$, being. an increase of $2,429,374$, or $12 \cdot 9$ per cent. This includes press reports sent, reduced to messages on the basis of 30 words to each message. The average tolls upon each message for the year were 43.6 cents, average cost 29.8 cents, and average profit 13.8 cents.

STREIT'S NEW BEVEL FLANGE LOOSE PULLEYS. The chief difficulty encountered in the use of tight and loose pulleys, is that of keeping the loose pulley properly lubricated when the machine is at rest, and, consequently, while the loose pulley is revolving upon its shaft. The combined influences of the pressure of the belt, produced by its tension, and the centrifugal force from the revolution of the pulley, tend to force out and throw off the lubricating substance, leaving the shaft and bearing of the pulley exposed to all the effects of friction, which is increased in ratio corresponding to an increased velocity of the pulley By a departure from the usual line of invention, it is now claimed that these objectionable features have been over come in a remarkable degree by the use of a loose pulley having a smaller radius than its accompanying tight puliey, the belt being conveyed from the loose pulley to the tigh pulley by means of an incline, which is shown in the accompanying illusfration.
The principle involved in this device consısts in relieving the loose pulley from the effects of the tension of the belt. The belt, when upon the tight pulley, has a tension requis ite for driving the machine, but when moved to the loose pulley, the lesser diameter of which reduces the distance be tween the outer peripheries of the driving pulley and loose pulley, practically lengthening the belt and reducing the friction on the bearing of the loose pulley to that resulting from the belt alone.

These pulleys, we are informed, were subjected to a thor oughly practical test at the recent Centennial Exposition a Philadelphia, where the results obtained were such as to in sure the success of the device, which has since been demonstrated in evidence received of their continuing to grow in favor with those having them in use.
A patent for this improvement-"The combination of a tight pulley, a loose pulley of lesser diameter, and a means, in the nature of an incline, for guiding the belt upward from the smaller to the larger pulley "-was granted to J. A. Fay \& Co., September 25, 1877; and they are placed upon all countershafts constructed by the above-named firm, and from whom any further desired information can be obtained by addressing J. A. Fay \& Co., Cincinnati, O.

How to Kill Entomological Specimens.

A correspondent says the method of killing entomological specimens, by putting them in a glass cylinder closed at one end, and then inserting a wad of tow saturated with ether on closing the other end of the cylinder, is very good, but when putting the insect, especially butterflies, in the tube, it flutters its wings, and so loosens some of the colors. A better way is to put a small drop of chloroform on the in sect's head as soon as it is caught, and the effect is that it instantaneously dies. Not even a relaxation of the muscles being perceptible.

JOHNSON'S IMPROVED BOILER PLATE SHEARS

The improved boiler plate shearing machine herewith il lustrated is claimed to be solidly constructed, not liable to become out of order, and to be carable of being expeditiously changed to give any desired bevel upon different thicknesses of plate. A is the stationary blade attached by bolts passing through lugs formed up on the side edges of the bed plate. It is held against outward pressure by a wedge, B, driven between its outer edge and a flange formed on that of the bed plate. The movable plate, \mathbf{C}, is bolted to a holder, D, which works in a guide socket, E, which is pivoted to the standard at F. Lugs having curved slots are formed upon said guide socket, and through these slots pass bolts, so that by adjusting the latter the sockets. may be placed to give any desired bevel to the cut. To the upper corners of the holder are pivoted bars, which in turn are pivoted to an other pair of bars, and these last to the end of the standard. At the point of meeting of the pairs of bars is pivoted a connecting bar, G, which passes back through the standard and is connected to the short arm of the bell crank lever, H , which is pivoted to the standard, as shown. To the long arm of this lever is adjustably connected a connecting rod, which communicates with the operating lever, I. At J is a guide, which can be adjusted by the hand nut shown, and which serves to keep the plate parallel with the blade while being cut.
Patented through the Scientific American Patent Agency, May 15, 187\%. For further
information address the inventors, Messrs, J. W. \& R Johnson, Ferrysburg, Ottawa county, Mich.

IMPROVED BURGLAR ALARM WINDOW FASTENING.
The annexed engraving represents an improved fastene and burglar alarm particularly applicable to securing win dows, shutters, and other similar devices, which is so con structed that in case of any one attempting to raise or lower the lower or upper sash without first releasing a bolt, a bell is sounded and an alarm given. Fig. 1 is a perspective and Fig. 2, a sectional view.
A represents the top bar of the lower sash, and B, the bot m bar of an upper sash, of a window.
To the bar, \mathbf{A}, is affixed the main framing of the device by means of screws. On the frame is a standard, which upports the bell shown.

C represents a bolt, which is supported in bearings in such manner that it is capable of a to-and-fro as well as a re volving motion. Upon the bolt, C , is mounted a semicircular disk, D , which is provided with a circumferential rim, and a series of serrations or projections, adapted to engage with and operate the arm of the gong hammer, said arm being formed on the end of a spring coil, which is mounted on a standard, forming part of the main framing, C.
The bolt, C, at one end is provided with a handle, and a ts opposite end with a semicircular locking piece, F , which, when the bolt is thrown, passes into a recess, in a plate, G, arried by the ijar, B.
A projection is formed on one side of the recess, the ob ject of which is that, in the event of either of the sashes of a window being attempted to be raised or lowered without the bolt being withdrawn, the projection will immediately come in contact with the semicircular locking piece and cause the same to make a partial revolution, and in so

JOHNSON'S BOILER PLATE SHEARS.
doing cause the disk, E, to also revolve, thereby operating the arm and ringing the gong each time a serration or pro jection passes said arm.
The bolt is kept forward in a locking position (when no otherwise held by the handle) by means of a spring, H Around this spring is also arranged a second spring, adapted to bring the bolt and disk back to their normal position when they have been revolved.
Patented August 21, 187\%. For further particulars relaive to purchase of patent rights address the inventor, Mr. George Saurbrey, 195 East Livingston avenue, Columbus, Ohio.

BORDEN'S IMPROVED GAUGE COCK.

The object of this invention is to provide a gauge cock that will not allow of the escape of hot water or steam if it should be broken off outside of the boiler shell. In the engraving, \mathbf{A} is the body of the gauge cock, which is bored longitudinally through its center, and threaded internally to receive the spindle, B , upon which a thread is cut that fits the internal threads of the body, A. The inner end of the body is concaved to receive the convex valve, C, which is attached to the end of the threaded portion of the spindle B. The outer end of the spindle, B, is provided with a hand wheel, and is surrounded by a stuffing box at the oute end of the body. A passage runs lengthwise through th body, A, the inner end of which terminates at the annula

groove cut in the valve seat, and is closed by the valve, C , and its outer end terminates in a nozzle. The body, A, is threaded externally and screwed into the boiler in the usual way. The internal thread of the body, A, and the thread of the spindle, B, extend from the valve and valve seat out ward beyond the boiler shell, so that if the gage cock should by accident become broken outside of the boiler shell th valive would be undisturbed, and the accidents that יurually follow the breaking of gage cocks entirely avoided. The valve of the cock is opened or closed by turning the screw by means of the hand wheel
This invention was patented through the Scientific Amer can Patent Agency, June 19, 1877, by Mr. Henry L. Bor den, of Elgin, Ill

Is There a Resisting Medium in Space?

Mr. C. B. Warring, of Croton-on-the-Hudson, has writte to the Tribune, suggesting that the rapid motion of one of themewly discovered moons of Mars may be explained with out impugning the nebular hypothesis, by the supposition that there is a resisting medium in space. If at the time this moon was left behind by the shrinking nebula of Mars, its distance from the center of that nebula was comparable with that of our moon from the earth, and it was afterwar drawn nearer to the planet because of the check occasioned by a resisting medium, its time of revolution would be shortened as it approached the planet. On the other hand the revolution of the planet itself would be little affected by the resisting medium; but to whatever degree it was affec ted, its speed of rotation would be decreased, and hence th difference between the times of the planet's rotation and th satellite's revolution would become greater. Mr. Warrin reards the discovery of the swift movin satellite as evidence in favor of the presence of a resisting medium in space. He sug gests as problems not less difficult of solu tion, the questions why the eighth satellite of Saturn is 12° or 14° out of the plane of th other satellites and the rings of the planet and why our moon is $18 \frac{1^{\circ}}{}{ }^{\circ}$ nearer the ecliptic than the plane of the earth's equator.

Substitute for Tea and Coffee

In an official report by Mr. O'Conor on the general condition and economic progress of Brazil, he states that the cultivation and pre paration of sterva-maté, which is largely ex ported from the province of Paranà to the neighboring countries of Uruguay, Paraguay and the Argentine Confederation, has not yet become an article of commerce for European markets, and this will be regretted by those who have experienced what a capital substi tute it is for either tea or coffee. In its na ture more fortifying and alimentary, and far more wholesome, it can be bought at a price so moderate that it would easily be within the means of the poorest inhabitants of Ire land or Scotland; and it is said there can be no doubt that if it were once known it would be extensively used in place of the far more expensive and sometimies adulterated bever ages of tea and coffee. A small sum has been appropriated by the Minister of Agriculture with a view to make this excellent plant
known in Europe, and it is sincerely hoped that the experi ment will be productive of beneficial results.-London Grocer.

What They Say About Us in India.

Campbell, the poet, in his poem on "The Last Man," has written verses which have attractions for most men, more or less. The Bible tells us the history of the first man, and unsatisfied curiosity peers forward, and wants to know the situation and position of the last man.
Almost numberless have been the speculations on this topic. The raciest of them which we have seen is that which we give elsewhere from the Scientific American, and to all of our readers who can enjoy genuine humor, based on good scientific knowledge, we commend the perusal of this very clever skit. En passant, we may say that for good sound scientific knowledge, clear cut and luminous engravings, combined with ability and liveliness in general conduct, the Scientific American has no peer. It is sui generis. There are English journals which give more scien tific matter, but there is none which has such decided characteristics as. those that make this publication peculiarly unique. One is sure to know from it the latest results of science put in the most attractive form, realizing, indeed, Tennyson's line:
"The fairy tales of science and the long results of time."
-Madras Times.

Ventilation of Soil Pipes.

At a recent meeting of the New York Board of Health it was resolved that soil pipes in tenement houses and vaults, when within twenty feet of any dwelling, should be care fully ventilated by pipes to be laid as the Board directs. After November 1, violations of this resolution will be prosecuted civilly and criminally.

ARCHER FISHES.

The chelmons are a species of fish indigenous to the fn , dian Ocean. They are divided by naturalists into two varieties, distinguished respectively by the short and long nose or snout, and by the disposition of the very beautiful colors which their bodies exhibit. The short-nosed chel, mon has a greenish hue over its body; the fins are green with blue reflections. A black spot surrounded by a pearly white circle appears on the dorsal fin, and on the body itself are bands of blue and mother-of-pearl. The long-nosed chelmon, which is represented in Fig. 1, is of a citron yellow color. There is a large black spot beside the forehead, the front of which is azure blue. The eye is of a bright rose tint; and on the anal fin is a circular spot of black bordered with white.
This fish has a singular way of obtaining its food, which has earned for it the name of archer fish or fish pump. It frequents the mouths of rivers, and especially shallow places, in search of the insects which exist on the marine plants, the stalks of which rise a little above the surface of the water. As soon as the fish spies its prey, it approaches cautiously as near as possible, and then, raising its snout above the surface, squirts out a fine stream of water with considerable force and unerring aim. The jet is often projected over a distance of 6 feet. The insect struck is stunned and falls into the water, and there is easily captured by the chelmon.

The representation of an other group of archer fishes, and to which this name is more specifically applied, is depicted in Fig. 2. The body is elongated, the line of the back being nearly straight, while the belly is strongly curved. The color is olive bruwn, or yellow, marked with large oblong spots or bands. Although the mouth of this fish is of entirely different formation from that of the chelmon, it takes its prey in precisely similar manner. The Chinese keep the fish in tanks in their dwellings, as pets, feeding them by pre senting the insect on the end of a straw, from which the fish knocks it off by ejecting his water jet.

Fig. 1.-THE LONG-NOSED CHELMON

Fig. 2.-THE ARCHER FISH
the spots smallest on the head and tail, and disappearing half way down the sides of the body. A few small spots on the under jaw and the legs. Beneath, spotless orange red. The eyes are prominent, with a golden yellow iris; dusky spot before and behind the pupil; pupil oval and black. The dark spots on the iris give it a linear appear ance. It varies in size; I have seen it from $3 \frac{1}{2}$ to 6 inches in length.
Although so bright and pretty during life, a few hours immersion in alcohol changes its bright vermilion color to a dirty white. It seems nonsensical to label a uniform soiled white, black-spotted animal, the s. ruber. Dr. Holbrook says " it is a land animal, and is found under rocks, fallen and decaying trees, etc." This is not the case with the red salamander in Pennsylvania and New Jersey, for I have never seen it captured out of the water. The finest specimen I ever saw was in a spring of cold water, and as th time was the middle of summer, it is not probable it had gone there only to deposit spawn. It can, however, remain out of water for a long time; specimens in our aquarium often remained upon floating objects for several successive hours. It is quite possible it could live in extremely moist situations for months at a time.
The food of the red salamander consists of insects and small earth-worms. In the aquarium it is showy and inter esting, but as it is an air-breathing animal, it should be fur nished with the means of quitting the water when it is so de sired.
Another animal belonging to the same genus as the pre ceding, and frequently met with in Pennsylvania, is the two lined salamander, Fig. 1, spelerpes bilineatus, Green. It is a terrestrial species, but frequents only moist places, and most generally in close proximity to a stream of water or spring.
Occasionally during the breeding season two barbels or cirri appear upon the upper jaw of the male, between the nostrils and the lip. Green's salamandra cirrigera appear to be a male of this species thus adorned (see Fig. 2) The use of these barbels is unknown, but they seem to be simply ornamentations, to show, perhaps, when the possessor pays his addresses to the females, that "the sign of man is now upon his chin!"
The young or larva of this, as with other species, are provided with gills, and breathe water only. When the gills disappear it becomes a perfect salamander, and respiration is performed with lunes. The young bilineatus resembles the adult in color, but the colors are less bright, and the lines less distinct. In matur animals the color is brown ish yellow above, with a black line on each side beginning behind the eye, extending along the flanks, and lost near the end of the tail. Beneath bright yellow. It is a smal species, rarely exceeding three inches in length. In activity, it far surpasses the red salamander, and you will learn, as I have, "you must be quick with your hand if you wish to catch a bilinea tus.'

Pheasants Poisoned by

 Shot.A short time ago the keep ers on Sir H Tufton's estate at Ashford, England, noticed a singular mortality among the pheasants. The cause wa not immediately discovered but it was eventually found out that the birds swallowed the splinters from spent bul lets lying about on the ground at the range of the local vol unteers, which was close a hand. The lead did not pro duce immediate death, but caused lead poisoning, to which the birds by slow de grees succumbed. Other even more remarkable instance than the above have occurred with pheasants and grouse swallowing shot picked up in the coverts that have bee shot, and among the heather in mistake either for seed or gravel.
Last year a considerable number of pheasants died in one gertleman's preserve alone in Lancashire from this cause, and there is every probability that many of both pheasants and grouse casu ally found dead from some unknown cause owe thei death to picking up pellets in this manner.

How Tomatoes are Canned

The large consumption of canned goods in this country, and the market which is opening for them in Europe, the great variety of farm products which the factories demand, and the near home market which they make for perishable fruits and vegetables, render this industry a matter of interest to all intelligent farmers. Besides meats and fish preserved by this method, nearly all the more common and perishable fruits and vegetables are canned and made available for food during the whole year. A canning factory is one of the most useful and economical institutions that can be established in an agricultural community. The process of preserving is now so well understood, and the work is so thoroughly done that the goods will keep for years, and can be sent on long sea voyages to all motest countries. There is hardly any limit to the goods, so that a factory will make a good home for these goods, so that a factory will make a good home
market for nearly all fruits and vegetables that cannot be market for nearly all fruits and vegetables that cannot be
disposed of in the fresh condition. It is a complete remedy for any glut in the local markets; for when the hucksters or middlemen cease to pay living prices, the factory takes the overplus. The packing companies are one important factor in the solution of the question of a cheap food supply for the million. An almost inconceivable amount of wholesome food is gathered and marketed at cheap rates that would otherwise be lost. In many ways this industry stimulates the production of fruits and vegetables in districts remote from large markets. It gathers up the fragments, so that nothing is lost.
Mr. W. Clift, of Mystic Bridge, Conn., writing to the Country Gentleman, says: Your readers will be interested in adescription of the canning process as carried on by the Dudley Packing Company at their factory, established in this place the present season. The capital called for in a factory that will use up a thousand bushels of tomatoes a day is about $\$ 15,000$. The company began with tomatoes, because the demand for them is very large, and they can be grown in quantity on short notice. Seeds were dis tributed during the winter and spring, and the farmer pledged themselves to cultivate at least 115 acres of toma
toes, and the price was fixed at 30 cents a bushel. It was toes, and the price was fixed at 30 cents a bushel. It was
regarded as an experiment, many of the farmers doubting regarded as an experiment, many of the farmers doubting
whether the crop would payat that price. The company engaged to take all that they would raise. Both parties have kept their engagements, and not only has the factory consumed all the tomatoes produced in this vicinity, but large quantities have been brought from New Jersey by steamer and rail for packing here. The yield on good land, well cultivated, has reached in some cases 400 bushels to the acre. which plays fairly for a rather bulky crop.
The com lany furnish crates, holding just a bushel, open at the top, and furnished with projecting posts at the cor ners, so that they can be packed one crate on the top of another without damaging the fruit. The payments are in cash on delivery of the goods. The first operation in the canning process is the scalding of the fruit to loosen the skin. The scalding tank is six feet long, three feet wide and two deep, and stands upon the platform, outside of the building, near the door. This tank is filled with water, and kept near the boiling point by steam. A sieve of iron wire fits into the top of the tank, and receives two bushels of tomatoes for a charge. A jet of steam is turned into the water, and the tomatoes remain in it a half minute, when they are raised by the sieve, which turns on a hinge, and are
dropped into two boxes at the lower end of the tank. Two men manage the scalding tank, and a boy distributes the fruit among the peelers within.
Thirty-six women and girls attend to this department They are arranged at the sides of troughs, elevated sufficiently for convenient handling, each workman having a pail and a box for the deposit of the skins and refuse; each tomato is peeled and cleaned of all decay and green around the stem. The price paid for this work is $3 \frac{1}{2}$ cents a pail, and the day's work is from 30 to 40 pails to each operative, according to her skill and activity. The pails are carried by boys to the steamer, which is upon an elevated platform, and discharges into the hopper for packing. The overseer of the steamer carefully examines each pailful, as it is spread out, for any neglect among the peelers, and removes the unripe portion if any is found. She also gives a check for each pailful, which the boy returns to the operative, and these checks are the certificates of the amount of labor performed.
From the steamer the tomatoes fall into a hopper, and then into the stuffer, which is a cylinder worked by a treadle The cans used here are quarts and gallons, of which a large stock is kept on hand in the loft above the packing room. The cans are passed down to the packer by a trough, which is kept constantly full. The filling is done through a hole about an inch and a half in diameter in the top of each can. This hole is placed over the end of the stuffer, and with a slight pressure of the foot upon the treadle, the packer fills his can, and nearly excludes all air and water. The next step in the process is regulating the cans for soldering Some of the cansare a little too full, and some do not con
tain quite enough. This work is done by two girls. A boy tain quite enough. This work is done by two girls. A boy
fits the caps over the holes, and puts seven cans upon a tray, and delivers them to the solderers. This is done by boys at the Gulden's patent capping machine, which is exceedingly ingenious, and saves a great deal of labor. The can to be capped is put upon the platform of the machine. The soldering iron, a semi-circular piece of iron, adjusted to the size of the cap, is immediately lowered upon the edge of the cap, which the workman turns with one hand, while he
holds the strip of solder in the other. A stream of gas made from naphtha is thrown from the burner upon the soldering iron, which melts the solder and seals the can as fast as it can be turned upon the platform. Two cans are sealed every minute, when everything is ready. A boy will seal from 700 to 1,000 cans in a day, and the pay is 7 cents per 100 . This work was formerly done by men at a cost of $\$ 7$ or $\$ 8$ a day, consuming twice as much solder, and this is goodillustration of labor-saving machinery
The cans pass immediately from the solder to the cooking apparatus. The cooking tank is six feet long, three wide and four deep, furnished with an elevator having a capacity of 112 gallon cans. The sealed cans are lowered into the tank, and cooked by steam for two hours. There are four of these cooking tanks. The cans are partially cooled after cooking, and vented by making a pinhole to let out any air within, and are immediately sealed again. They are then removed to the platform outside of the building, to complete the cooling. After this comes a thorough examination of every can, for any defect in the soldering which admits air. The smallest hole would spoil the contents of the can in a few days. Any leakage of air is indicated by the bulging of the head of the can. If it is perfectly tight, there is a slight depression of the head. The cleaning of the outside of the cans, and labeling, completes the work. The goods are then boxed and sent to Acker, Merrall \& Condit, and to Park \& Tilford, wholesale grocers of New York, who take all the tomatoes manufactured by this comp
They are mostly consumed in the city and its vicinity.
They are mostly consumed in the city and its vicinity.
The cases are made of half-inch pine, with inch heads,
The cases are made of half.inch pine, with inch heads,
and come in shooks from Michigan, and are put together and come in shooks from Michigan, and are put together
here. The cost of labor and material is about 15 cents a case.
Besides the canned goods, catsup is manufactured from the skins and the refuse that is rejected from the hopper. The whole mass first passes through a mill, which separates the pulp from the skins. From the vat of the mill the pulp is pumped upstairs into a reservoir. When a sufficient quantity has accumulated, it is drawn from the reservoir into the cooking tank, and cooked three hours. It is then drawn off into barrels, and allowed to ferment one week. The pulp settles at the bottom, freefrom impurities, and the water at the top is poured off, and the barrel filled again with the tomato pulp. It is then returned to the cooking tank and heated; the spices are added, and the catsup is barreled and sent to market, where it is bottled, labeled and sent to the retailrrs. Charles Gulden of New York takes all the catsup made by this company, at 15 cents a gallon.
Apples will follow tomatoes in due order, and have al ready begun to come in from the neighboring farms in limited quantity. These are packed in gallon cans, and are designed for pies and sauce in family use. There is a large demand for canned apples in the European markets, and it is not improbable that they will supersede the shipment of apples in barrels, which are greatly exposed to decay and
loss, both on the voyage and after arrival. The canned loss, both on the voyage and after arrival. The canned
goods are a safe article for shipment, and, if necessary, can wait a long time for market and consumption, without damage.
The large piles of apples in the store-house, the streets about the factory crowded with teams waiting to unload, the platforms filled with tomato crates, the busy crowd inside he factory, and the daily shipment of canned goods, look like the revival of business in this community.

Applications of Steam Power.

by Jamres binx.
It seems to me that something more might be profitably said during this season of extreme drought, when many are adding, and others are thinking of adding, steam engines to their plant of machinery. Many owners who partially rely upon steam power to run their mills, and who are not ad vantageously situated for fuel and freight, and who have not perhaps applied their steam power in as economical a man-
ner as possible, count the cost of so applying it, and solemnly shake their heads when anything is said upon their havin soon to apply it altogether. But for all that, I believe the day is near at hand when a steam mill, well located as to freights and fuel, will be a better investment than a water mill, unless the latter is situated on a never failing water power, with moderate water rent and freights.
A mill, to run wholly by steam, should be so designed from the foundation. Such a mill does not need rotary boilers. The boiling should be done in tubs with the ex haust steam from the main steam engine. The engine should be of ample size, economical in the use of steam, and one as little affected by back pressure as possible.
In boiling bleach tubs by exhaust steam there will be back pressure, and it will amount to from ten to eighteen pounds, according to the depth of the bleach tub. Many have fitted up mills without taking this into account, and have been grievously disappointed with the result.
Steam engines running under a boiler pressure of sixty pounds and losing fifteen pounds by back pressure lose twenty-five per cent of their effective power. A steam gauge placed in the exhaust pipe will always tell the tale.
While on this subject let me say that I have known of two instances in which paper makers, having heard of boiling taries. cellent reputation as a paper maker, but with a poor educa ion, who make this blunder. He owned a mill which was extremely short of water. He bought a large engine and
put it in. He had the exhaust piped to his rotary, and only found his mistake when back pressure shut his engine down. The same man, when the engine was put in, had her speeded en revolutions faster than the water wheel; and, of course, as the head of water went down (the revolutions of the wheel consequently falling off), the steam engine had all the work to do and carry the water wheel besides. This gentleman told me he was disappointed in his engine, and did not see but what he did just about as well without it, and will tell me to-day that it is not to be thought of as a motor for a paper mill.
Within the past year a Jersey firm concluded to utilize the xhaust from a steam engine they had put in to run the ma chine. Instead of using it for drying their paper, as they might have profitably done, they piped it to the rotary, and found out their mistake when the Connecticut man did-that is, when the engine stopped from back pressure. Comment is unnecessary. These men lacked knowledge. In the lat ter case they gained it, in the former I am afraid they never will.
I once ran a mill in which the machine was driven by a steam engine. There was no speed shaft on the machine, and the owners ran her on low grades of bleached papers, in weight anything from box lining to card middles. The en gine would not drive the machine over sixty feet, nor less than forty, and the engine had to be slowed down until she ran unsteadily to make the latter speed. We pretended to dry by exhaust steam; the driers were also piped for live steam. When on card middles the engine ran so slow she would not exhaust steam enough to dry, and we had to use some live stram. The engine ran so unsteadily we let her exhaust into the open air, thinking we could get a slower steady speed, and dried by live steam. We could not then make steam enough in the boiler to keep us running in tha manner, and the owners were obliged to do what I recom mended at first-put in a speed shaftfor the machine. When this was done the steam engine ran a regular speed, and we could run the machine anywhere from ten to one hundred feet. The exhaust would dry anything we made, and we had xhaust steam to spare, and did run our feed water, after leaving the exhaust pump, twelve feet in the exhaust pipe heating it so hot that the hand could not be borne on the feed water pipe between the engine and boiler, and our steam roubles vanished.
In a mill running wholly by steam, the boiling of stock and drying of paper can be done for but a trifle more of expense than if the engines exhausted into the open air, and if the owner attempts to substitute live steam he will immedi ately (if able to make steam enough) find the amount of his loss in his fuel account.
Mills running partially by steam and part by water, where he water wheel and engine are attached or drive the sam line of shaft, should have the wheel at or near one end of he shaft and the steam engine at the other end. The couplings on the shaft should be faced. Then, as the water in the steam fell off or gained, these couplings could be fastened or unfastened, adding rag engines to the steam engine, or detaching therefrom, as the capacity of the stream de manded. I know of some mills where steam has been added, that the water wheel cannot be detached from the main ine, and sometimes when there is not even water enough to drive the wheel, the wheel gates are shut, and the engine is bliged to carry it also
Steam engines coupled on to water wheels seldom work well together. A large machine shop and foundry in Anso nia, Conn., formerly had a 600 horse power engine, which they tried to run conjointly with a water wheel. After numerous breakages they gave up the attempt, and ran them separately. This concern has turned out some of the best mechanics in the country. If both motors were speeded alike, and the head of water constant, it seems to me the ought to work, but it is evidently a safer, suirer mode o working to have them separate. You then know what each doing.
The connecting pipes between the boiler and engine should be of ample size; it is better to err on the large side. Steam engines should be located as near the boiler as possible, for reasons obvious to any one.
There are many inventions that are urged on paper manufacturers and others as economizers of steam. I once worked for a wealthy manufacturer in the Western States. who was a great economist in his own estimation, and who bought everything that came along that promised to lessen unning expenses. He invested in a patent boiler settin hat was to save a certain per cent, a feed water heater and lime extractor ditto, a boiler and pipe composition covering ditto, super-heater ditto, water-trap ditto. Coming to figure them up one day he found to his astonishment that his economy had run ahead of his arithmetic. He was saving 133 per cent. There is no doubt that many of these are great helps, but the inventors' claims can usually be discounted fifty per cent without doing them injustice, and often more. It has been frequently demonstrated that the average gain of the best feed water heaters cannot be over ten per cent, and that for non-condensing engines. For condensing engines, which take therl feed water from the hot well, it cannot be over five per cent.-Paper Trade Journal.

Zinc Whitewash.-Mix oxide of zinc with common size and apply to the ceiling with a brush. Then apply a wash of chloride of zinc, which will form a smooth, shining

In 1873 Professor Rein, of Marburg, was sent by the Prus sian Minister of Finance and Commerce to Japan, to study those branches of industry in which that people excel, and thoroughly examine processes of manufacture. Upon his return he gave a course of instruction in varnishing, or japanning, to an employee of Messre. Beuttenmueller \& Co. from whose report to the Baden Minister of Commerce we abstract the following :
The course of lessons given by Dr. Rein lasted 9 hours a day for 6 days. Dr. Rein filled up the intervals, while waiting for the work to dry, with theoretical instructions about the plants from which the varnishes are prepared, the me thod of preparing the different qualities, etc.

Japanese varnish is obtained from a tree, rhus vernicifera. This varnish tree, which is called urishi naki by the Japanese, reaches a height of 33 feet; and at the age of 40 years, the trunk is 40 inches in circumference, grows very slowly, about 13 inches per year in height. The wood is strong and heavy, has few branches, consequently very little foliage, and the tree is not very pleasing to the eye. The fruit rese:nbles grapes, and grows in thick spikes on the branches. In October the fruit is ripe, and is collected in November to obtain from it a vegetable wax, known as Japanese wax. The tree is best propagated from the root shoots. It reache its greatest perfection at its 18th year, and then produces the largest yield of lac or varnish. This is obtained by slit-
ting the bark in a horizontal direction, and may be performed at any time between April and October; later in the year the lac is very thick and viscid, so that its collection is attended with much greater difficulty. The lac tapper carries his own peculiar bow-shaped knife, made for this purpose, with which he cuts a 2 millimeter ($\frac{8}{10} 0 \mathrm{inch}$) cut in the trunk of the tree in a horizontal direction, and then draws the point of the knife through the cut again, to remove any chips formed by the first cut. This cut is made low down; on the opposite side of the trunk 15 or 20 cm . (6 or 8 inches) farther up, a second cut is made, then on this side again, and so on until the trunk has 6 or 10 such cuts. After he has cut 10 or 15 trees, he returns to the first tree and collects the sap oozing from the cuts, which sap is light gray, and thick; but by exposure to the air, it at once turns dark brown and afterwards quite black. The crude lac is called $k i$-urushi.
The tree is hacked in this way for 60 to 80 days, until it dies; it is then cut down, the wood chopped up and put in hot water, which extracts the last remnant of the sup. From the tree when cut down, $\frac{1}{4}$ liter at most of sap is obtained, and this forms the poorest k
lac trees is about $\$ 30$ to $\$ 40$
The lac is purified in the following manner: It is first filtered through cotton stuff, ground on a paint stone like ordinary paints, mixed with water, and the water evaporated again by warming. The finer sorts are bleached in shal low dishes in the sun. The best kind is called nashyi-urushi, the perrer kind henki-urushi, the unbleached jeshime-urushi. The black varnish, roiro-urushi, is made from the crude lac, $k i$-urushi. There are about 20 different kinds in market, of which the above named are most used. The cost in per lb. ; roiro-urushi, $\$ 3.70$ per lb. The Japanese varnishes per lb. ; roiro-urushi, $\$ 3.70$ per lb. The Japanese varnishes
are as often adulterated in trade as wine in Germany (or are as often a
milk with us)?
The operation of varnishing is conducted totally different from what it is in Europe. The Japanese apply their var nishes mostly to woodwork, less frequently to copper and unglazed stoneware and porcelain. When applied directly to tinware, the japan does not stick. The varnishes, when applied, are generally brilliant black, dark colored, impure vermilion, or impure dark green, or dark gray. Pure !ight colors and white cannot be produced with Japan varnish.
The Japanese varnishers prepare their woodenware with the utmost care, the surfaces are smoothed and the chinks filled with cement. The ground coat is a mixture of jeshime-urushi with paste; upon this is laid Japanese paper, rubbed smooth with a brush, and dried. Afterwards several very thin coats of the same varnish, now and then well dried, and, after every coat, polished with Japanese carbon. The drying is performed in a moist atmosphere. For this purpose they take a box that will shut tightly, put the articles to be dried in it, close the box and wet it on all sides with water. After 24 hours one coat is dried. If the arti cles are to be black, it is now given a coat of black varnish, roiro-urushi, but if it is to be gray or gray-brown, jeshime urushi is used instead, and if it is to be red, the latter var nish is mixed with vermilion. The appearances of gold and pearl are obtained by mixing real gold dust, or mother of pearl dust, with the varnish, whereby a beautiful effect is produced. It is then dried, rubbed down, and polished; and if there are gold, tortoiseshell, or mother of pearl decorations, another coat of azure varnish, nashyi-urushi, is applied. Dr. Rein communicated other methods of japanning, the introduction, of which, in this place, would lead us too far.
In applying their varnishes, the. Japanese use broad brushes, the bristles of which are very stiff, and inserted in wood, just as the graphite is in our lead pencils. After long use the bristles get worn short, and the wood is cut away as in sharpening a pencil, exposing more of the bristles. A very fine piece of work receives 18 coats; these never fade with time but rather improve, bear a high heat, and are to tally unaffected by acids, spirits, and the like.
Th, Japanese method is not likely to be introduced into

Europe or this country, because of the want of the natural material, which, when imported from there, becomes ex tremely costly; and the process is indirect and tedious,
with the high price of wages, would be impracticable.

The Great Wall of China.

The Great Wall of China was measured in many places by Mr. Unthank, an American engineer, lately engaged on survey for a Chinese railway. His measurements give the height at eighteen feet, and a width on top of fifteen feet.
Every few hundred yards there is a tower twenty-four feet Every few hundred yards there is a tower twenty-four feet square, and from twenty to twenty-five feet high. The foundation of the wall is of solid granite. Mr. Unthank brought with him a brick from the wall, which is supposed to have been made two hundred years before the time of Christ. In building this immense stone fence to keep out the Tartars, the builders never attempted to avoid mountains or chasms to save expense. For 1,300 miles the wall goes over plain and mountain, and every foot of the founda tion is in solid granite, and the rest of the structure solid masonry. In some places the wall is built smooth up agains the bank, or canons, or precipices, where there is a sheer de scent of 1,000 feet. Small streams are arched over, but on the larger streams the wall runs to the water's edge, and a tower is built on each side. On the top of the wall there are breastworks, or defences, facing in and out, so the defending forces can pass from one tower to another withou being exposed to any enemy from either side. To calculate being exposed to any enemy from either side. To calculate
the time of building, or cost of this wall, is beyond human the time of building, or cost of this wall, is beyond human
skill. So far as the magnitude of the work is concerned, it skill. So far as the magnitude of the work is concerned, it
surpasses everything in ancient or modern times of which there is any trace. The Pyramids of Egypt are nothing compared to it.-London Newos.

2ecent smevian and foreign eatents.

Notice to Patentees.
Inventors who are desirous of disposing of their patents would find it greatly to their advantage to have them illustrated in the Scientific Amer-
CAN. We are prepared to get up first-class wood enaravings of invenions of merit, and publish them in the Scientific Americas on very We shall terms.
We shall be pleased to make estimates as to cost of engravings on receipt
of photographs, sketches, or copies of patents. After publication, the of photographs, sketches, or copies of patents. After publication, the
cuts become the property of the person ordering them, and will be found of value for circulars and for publication in other papers.

NEW MECHANICAL AND ENGINEERING INVENTIONS.

Improved miller's paint staff.
Jacob Austine, Huntsville, 0 .-This is an improved form of miller's paint staff, or device for applying a color in a true plane to the face of a millstone to detect and locate the high places whenthestone is " in wind,"
or has uneven places, and then permit the same to be trued up. It consists in a staff made in the form of an equilateral triangle, the advantages be ing partly in the facility and accuracy of construction (the same measure ment of bar serving for all three sides), but more especially in the correc tions of its results, the equilateral triangle being best adapted to the circular area of a millstone.

IMPROVED CAR WHEEL.

William Y. Cruikshank, Shamokin, Pa., assignor to John Cruikshank, of same place.-This invention consists of an oil chamber arranged in the
hub of the car wheel, and connected by radial holes to an annular recessin bore of wheel or groove of axle. Ribs or elevations of the oil chambe arrest the oil, and feed it to the supply holes to lubricate the bearings, and
pass the surplus back again to the oil chamber. The centrifugal force dis pass the surplus back again to the oil chamber. The centrifugal force dis
tributes the oil during the running or revolving of the wheel by the aid of tributes the oil during the running or revolving of the wheel by the aid of
the outer elevations around the outer surface of the oil chamber, while the side elevations conduct the oil and cause it to flow through the holes to the axles. When the wheel ceases to revolve the oil above the axle is guided along the ribs to the holes, and along or around the axle or shaf
in the recess or groove back to the holes below the axle, and thence into in the recess or groove back to the holes below the axle, and thence into
the oil chamber again, saving thus all the oil which is not used actually in the oil chamber again, saving thus all the oil which is not used actually in
lubricating the axle or shaft. Sufficient oil adheres to the axle to run the lubricating the axle or shaft. Sufficient oil adheres t
wheel in either direction and lubricate the bearings.

IMPROVED DRY WOOD GRINDER FOR PAPER-PULP
Isaac W. Bowers and David A. Curtis, Petersburg, Mich.-This inven-
tion relates to an improved machine for making dry pulp from dry wood tion relates to an improved machine for making dry pulp from dry wood in a cheap and simple manner, which pulp has the advantage of being
readily shipped, not llable to freeze, and being converted with less labor readily shipped, not liable to freeze, and being converted with less labor
into paper. The invention consists of a machine for grinding up the wood into paper. The invention consists of a machine for grinding up the wood
by exposing it to the action of a cylinder covered with a grinding surface of glue, ground flint, quartz, and emery, and conveying the pulp by a hopper and an endless revolving belt to a reciprocating screen. The wood pulp produced by a dry process with this machine is, in many respects superior to that obtained by the wet processes hitherto in use, as it does
not mold or freeze, and may be more conveniently shipped. The machine not mold or freeze, and may be more conveniently shipped. The machin
is cheaper ard simpler in construction than those used in wet processes is cheaper ard simpler in construction than those used in wet processes,
and may be run without skilled workmen. A number of machines may and may be run without skilled workmen. A number of machines may
be arranged side by side, according to the quantities of pulp to be manube arrange
factured.

IMPROVED AUTOMATIC CYLINDER COCK.
Joseph M. Graham, Bloomfield, assignor to himself and George Elliott Bedford, Ind.-This invention relates to cocks for discharging the wate
of condensation from engine cylinders, and it consists in the arrangemen at each end of the cylinder, of cups of sufficient capacity to contain wate accumulating during one stroke, and in small valves placed in the said cups that open upward and are connected with a lever which is held by a spring, so that the valves are both open when the pressure is removed, but admits of the valves being alternately closed by the steam pressure as it
acts in the cylinder. As steam is admitted to the cylinder it closes one of acts in the cylinder. As steam is admitted to the cylinder it closes one of
the valves while the other remains open, and when steam is admitted to the opposite end of the cylinder, the valve which before was open is closed by steam pressure, and by virtue of the connection of the two valves with the lever, the valve which was closed is now opened, permitting the escape of the water from the cavity. The valves are automatic in theiraction, and
the water escapes when the pressure is removed, so that the noise of es the water escapes when the pressure is removed, so that the noise of es
caping steam common to other devices for relieving engine cylinders of water is by this improven water is
tention.

IMPROVED TREADLE MOTION.
Henry B. Barbe: and Clark J. Barber, Scott, N. Y.-The object of this
invention is to furnish an invention is to furnish an improved treade motion for sewing machines,
faciitated ard produced with less effort of the foot; and the inventio onsists of the combination of the swinging treadle with a pitman of in ing rod of the same, and at the apex or upper end of the crank rod of the flywheel. The elbow formed between the pitman and crank transmits the power in more effective manner to the flywheel, requiring less effort to fatiguing and trying.

improved freight chute.

William C. Crompton, New York city, James Nicol, Newark, and Rich id Hawley, Jr., Jersey City, N.J.-The object of this invention is to fur warehouses, and in other places, in such a way that it will not besinjured and which shall be simple in construction and convenient and reliable in use. To the sides of the chute are attached guide bars which project in ward and incline downward. The guide bars are made elastic, or have piral or other springs placed between them and the sides of the chute, EO hat they may yield to allow the articles to pass, while at the same tim hey offer sufficient resistance to eaid articles to check or retard their de improved accommodating pulley for cables used i propelling cars, etc
Orlando H. Jadwin, Brooklyn, N. Y.-The object of this invention is to provide on effective means for the prcpulsion of cars, boats, or other bod es, and it consists, first, in the manner of connecting and disconnecting ing car from the trabelling cable; and, second, in the manner of support ing the cable on accommodating pulleys which allow a knot, swivel, o
other bulky obstruction to ride over with ease. The connection between the car and traveling cable is so made that the cable is not pinched, but imply has its tension increased, so that neither car nor cable receives any sudden jar, as the motion of the cable slipping throughimparts the motio radually until the car has attained nearly the same speed as the cable, a wich time the tension is made sufficiently tight to prevent slipping be een the friction and tension roller.

improved apparatus for operating pumps.

 John A. Hurley and Daniel J. Hurley, Oil City, Pa.-This invention re consists of a rock nected by ball joints with the ends of a cable or rope, passing over guid pulleys, and being attached by an adjusting device on the pump rod. The rock beam is connected at the lower end with the pitman of a steam or other engine, by which oscillating motion is imparted to the rock beam the pump rod, so as to work the well by a simple and reliable apparatus.
NEW MISCELLANEOUS INVENTIONS.

MPROVED PANTOGRAPH

Elijah Ware, Omaha, Neb.-The object of this invention is to provide simple and inexpensive pantograph which may be adapted to large or smanular form, as may be required; and it consists of a pantograph of rect angular form, made of four bars, so placed as to assume a parallelogram
To one end of this parallelogram are pivoted, or attached by means of screws, three supplementary bars, two of which continue the parallelo gram form of the instrument, while the third bar makes the end piece These last named bars are used for copying, enlarging, or reducing larg work. The size of the copy is varied by shifting the last named end ba so as to change the position of the pencil or tracing point moving the ba strument is used for smaller work the bars are disconnected, and it is used as a common pantograph.
improved pocket rifle.
Marcus L. McCord, Nashville, Ill.-The object of this invention is to furconstructed that it may be readily extended to fhe rearward to shall be so range to the sight and greater accuracy of aim. To the rear end of the barrel, or to a projection or support attached to the barrel, is hinged the end of a bar in such a way that the bar may be turned back into a positio parallel with its former position. This bar, when turned back, rests upon in support attached to the stock, and which enters a guide socket formed the barrel its forward end may abuta secured in place by a spring catch attached to the bar, and which engage with the recessed rear side of the said sight. Therear sight, when the ba has been turned down upon the barrel, enters a transverse groove in the barrel. The bar may bee pivoted to the rear end of the barrel, so that it may be swung around from one position to the other; or it may be slid to a dovetail groove in the upper side of the barre
IMPROVED COMPOSITION FOR DRESSING COTTON YARNS
William H. Perkins, Fall River, Mass.-The dressing consists of un slacked lime, sal soda, soap, and water, and is prepared in the following manner and proportions: Two and one half pounds of unslacked lime, two and one half pounds of sal soda, one ounce of common soap, and one gal lon of boiling water, which are thoroughly stirred together until the parts
are mixed. Five gallons of salt water are then added, and the whole left standing for twenty-four hours, when the compound is ready for use. is applied in the same manner as other dressing, but is considerably cheaper. It imparts a bright and glossyfinish to the fabrics dressed there with, and stands unchangeable in any weather or atmosphere.
improved hose coupling.
Frederick Stewart, St. Louis, Mo., assigno to himself and Oscar F. scudder, of same place.-This invention relates to an improved hose coup ling that is tightly connected with the hose ends, so as to resist a considconnect the hose the coupling parts with less liability to blow out or disdrawn tighter thegreater the pressure exerted thereon. The interior sleeve of the coupling is made with a slight taper. The hose end is placed in po sition on the same, and rigidly secured thereon by a diagonally split and tapering band, having a screw thread con on interior screw thread. Th screwing up of the outer sleeve on the split band closes the latter, and clamps the same and the hose tightly on the inner sleeve. The clamping or wedge connection of the inner sleeve, split band, and outer sleeve with the intermediate hose end produces a tight fastening of the hose, that get tighter the greater the pressure, so as to remove any liability to blow out
by the pressure of the water on the coupling.

improved bed pan

Clark S. Merriman, New York city.-In this invention the ordinary bed pan is used, to one side of which an air cushion is attached. The air space in the annular part is separate from that in the cushion. When the device is used it is placed under the body. and one or both parts are inflated, a may be required. The cover is then placed in position with the pocket in
the cavity of the bed pan. After use the cover may be removed and cleansed and replaced; or two may be used in alternation. The advant ages claimed for this improvement are that the b:dy is supported in an elevated position, so that the excrements, when ejected, will not flow dow the back. It is more comfortable to use, and is easily cleaned.
improved combined cane and umbrella. Thomas F. Darcy, New York city.-This invention consists in a com
the runner, and the tubes and cap, constructed and arranged to operate in
connnection with each other. When the umbrella is extended, and it is connnection with each other. When the umbrella is extended, and it is desired to adjust it for use as a cane, the handle is drawn down through
the tube until the collar reaches, and is secured to, the lower end of the the tube until the collar reaches, and is secured to, the lower end of the
tube. As the handle is being drawn it slides down through the runner until the stationary ferrule strikes the said runner. The stretchers are then pressed upward by the end of the tube, which closes or folds the umbrella upward, and the whole umbrella passes downinto said tube. Another tube is then drawn upward and lockea, and the cap is end, and the device is ready for use as a cane.

IMPROVED REMOVABLE TOP FOR SHOWCASES, Thomas H. B. Parks, Arkadelphia, Ark.-This invention is a detachable example, when a grocer receives a box of crackers, raisins, or other arti cles whose contents he wishes to display, and at the same time to protect
them from dust, also from thieves, and yet render them accessible for the them from dust, also from thieves, and yet render them accessible for the purpose of removal of a portion to supply customers, the top of the box In such case the box may be turned on it $i d e$ so as to better display the In such case the of this improvement the dealer avoids the necessity of placing the goods in separate boxes for the purpose of exposing yet pro tecting the goods. In practice the dealer will keep on hand a number of the detachable box fronts or covers, and will transfer them from one se of boxes to another as occasion requires,

IMPROVED MEDICINAL COMPOUND.
Mary Catharine Peden, Caverna, Ky.-The object of this invention is to furnish an improved medical compoundfor purifying the blood and effect ually curing scrofulous diseases. The inventor says: In preparing this compound I take burdock root, one and a half ounces; poke root, one and ounce. To these ingredients I add proof whisky, one pint, and allow it to stand twelve hours. I then add such a quantity of water that there will
be one pint of the mixture when drawn off. The compound is then allowed to stand in a cool place for one week, when it is drawn off and botlled, and is ready for use and market.

MPROVED STOPPER FASTENER
John L. Stewart, Ellicott City, Md.-This is an improved form of bottle stopper, more particularly designed for bottles for holding aerated liquids, to that class of stoppers in which a yoke made of bent wire is screwed about the neck of the bottle to receive a swinging bail, which ball carrie a rubber stopper that is forcibly pressed against or into the mouth of the
bottle. The improvement consists of a tilting cam provided with a thumb bottle. The improvement consists of a tilting cam provided with a thumb piece and combined with the bail, the rubber stopper, and the support to which said cam is pivoted, whereby the fastening is made more secure,
and the manipulation of the stopper is facilitated by permitting the same to be removed or applied with ease and rapidity.

IMPROVED STAKE HOLDER FOR PLATFORM CARS. Owen Miner Avery, Pensacola, Fla.-This invention relates to an im proved socket and stanchion for railway platform cars. The object of the
invention is to obviate the difficulty usually encountered in removing the stanchion from the sockets when the car is to be unloaded. As ordinarily constructed, the stanchiozs have to be lifted vertically from their sockets and when the car is loaded with lumber or other similar freight the latera pressure exerted by the same against the stanchion jams the latter in the
socket so that they can De removed only with dificulty. This inventio consists in pivoting the stanchions in such a manner that they may be quickly turned laterally to a horizontal position and then down, or entirely detached if desi
improved combined coffee roaster and cooler. Joseph B. Underwood, Fayetteville, N. C.-This is an improved device for carrying out the method of roasting coffee for which letters patent were
granted the same inventor May 16,1876 , by which method the volatile pro granted the same inventor May 16,1876 , by which method the volatile pro-
ducts that arise from the coffee being roasted are utilized by being conveyed toa closed communicating chamber for cooling the coffee, wher said flavoring and aromatic exhalations, which are being given off from
the roasting coffee, and restored to the hot roasted coffee as it is cooled, the method serving to preserve the roasted coffee and render it less susceptible to the managing influences of the atmosphere, and at the same time preserving the full strength of the flavor and obviating loss in weight. The means consist generally in a revolving roasting cylinder arranged in combination with a revolving cooiing and condensing cylinder, and so connected as to admit of the transfer of the generated volatile products of the first to the latter without condensation in transit, and finally of the to the cooling chamber. The improvement also consists in other details of secondary importance

improved animal trap.

John Crawford, Vanlue, O.-This invention coverscertain improvements in animal traps of that form in which a cage or box is allowed to drop consists in a central axially-turning rod having notches formed in the same which are adapted to support a cage or box moving upon vertica guides until said central rod is turned axially by the animal in removing the bait from an arm attached to the same, when the notches will be re
moved from the catch on the cage and the latter aliowed to drop bodily moved from the catch on the ca
upon its guides over the animal.
improved ventilating bárrel for shipping fruits, VEGETABLES, ETC.
William Crowell, Dennis, Mass.-The object of this invention is to provide, for the packing and shipment of fruits, vegetables, and other articles of perishable nature, an improved barrel or other package that is suf
ficiently ventilated at the center to prevent the decaying of the articles and the invention consists of a barrel, box, or other package having grooved center piece or partition for admitting air, and a sectional removing on the threaded end of the center piece. As the decay of the article commences generally in the center of the barrel, on account of the lack of air, this objectionable feature of the packing of fruits, vegetables, and other articles is prevented by the use of this ventilating center piece, post,
or partition. By unscrewing the nut the head sections may be readily deor partition. By unscrewing the nut the head sections may be
tached, and the contents of the barrel removed, and vice versa.

IMPROVED HORSESHOE ATTACHMENT.

George W. Price, Lakeland, assignor to himself and William H. Sanford, Hauppauge, N. Y.-The object of this invention is to provide calks fo horseshoes that may be attached and detached at pleasure, and also to
provide a device for preventing balling. An ordinary horseshoeis attached to the horse's hoof in the usual way. The calks, that are fitted to the horse shoe just in front of the usual heel calks, are each provided with an in wardly projecting arm, at the end of which a nut is formed. They are of the attachment, being longer and sharper than the calks of an ordinary horseshoe, prevent slipping, and by means of a plate balling is entirely prevented.
IMPROVED WEIGHING ATTACHMENT FOK HAND TRUCKS. Daniel A. Beam, Newark, N. J.-This invention consists in the combi truck having an axle fitted in slotted bearings of the truck frame, so as to enable the latter to have a vertical motion relatively to the axle when
weight is applied. The invention is mainly designed for use where an a
proximation to the weight of several packages is required, when it woul proximation to the weight of several packages is required, when it w
be impossible to weigh each package accurately upon regular scales.

NEW AGRICULTURAL INVENTIONS.

mproved milk pail.
William Heuermann, Sedalia, Mo.-This invention has relation to strain ers for buckets, and the nature of the invention consists. in combining with the pouring spout of a bucket, a removable strainer, a hinged retain ing cap, and a hinged cover. From the hood of the pail springs a pouring This strainer is preferably composed of gauze wire, suitably secured to ring, and when it is adjusted on its seat is retained in position by means of a shoulder formed on a hinged cap. This cap forms the nozzle of the pouring spout, and its reduced end has a cover hinged to it, which cove will automatically open when the bucket is tilted, and close when it is set upright. The strainer can be quickly

IMPROVED FENCE.

Nelson B. Gunn and Timothy Gunn, Elwood, Ind.-This invention relates to rail or worm fences, and the object is to afford greater strength
and security to the fence at the angles thereof by rigidly tying the crossed and security to the fence at the angles thereof by rigidly tying the crossed
ends of the rails together with wire or its equivalent, held under strong tension by means of a wedge. Instead of using posts or stakes at the points of the crossing of the ends of the rails, the rails of each section are pass all of the rails or only a few of them. A single band or loop will in all ordinary cases be found sufficient, although two loops may
arranged closed to the points where the rails cross each other.

IMPROVED STUMP PULLER.
Henry M. Stitzer, Cochranton, Pa.-This invention relates to an improvective manner by making use of another stump or fixed body, close the one to be pulled; and it consists of a single or double beam, attached at one end by a chain to a stump or other object, and of a draft link, con-
nected by a chain to another stump and pivoted to a hand lever, combined nected by a chain to another stump and pivoted to a hand lever, combined
with pivoted pawls and wedge links, of peculiar construction, that work with pivoted pawls and wedge links, of peculiar construction, that wor the link forward on the beam by the rocking of the lever. These links
being loosely arranged, also, they turn upon their recessed seats in the pawls in thesely arranged, also, they turn upon their recessed seats in the nately along the bar to take a new hold they slip freely over the same; bu when strained in the opposite direction, in exercising the draft, they turn and cramp again
the draft strain
improved cattle-watering device.
William H. Haye3, Salisbury, Mo.-This invention has reference to a mproved device for watering stock in stock cars or yards, in a superior vention consists of a bucket hung to a fulcrumed and weighted lever, with urved end, that is pressed by the weight of the water in the bucket agains the hose, connecting tank, and bucket, so as to cut off the water supply
and re-establish the same when the bucket is getting empty. The raising the bucket takes off the overcomes again the balance weight and cuts off the supply. In this man ner a continuous and automatic water supply for stock in cars and yard is obtained.

IMPROVED SULKY AND GANG PLOW
John H. Goodwin and David Woodard, Lamar Station, Mo.-This in vention relates to improvements in gang plows, and consists mainly of a axle with swinging plow beams that are raised or lowered by a pulley
frame, chains, and lever to the required depth. The pulleyframe is jointed. to admit the raising of the plow beams into upright position after work, The plow beams are retained in position by curved metalic brace pieces,
that are hinged to the axle in front of and above the turning points of the plow beams, and seated in notches of the same, according to the higher or ow which then of the beams. The pullesered, at suitable inclination to he axle, while the upper section is pivoted, by its fork-shaped ends, thereto, in such a manner as to rest on a supporting extension or bearing of the lower part when the plows are dropped for work. After use, the pows are raised and thrown, with the upper section of the pulley frame, anto nearly vertical position on the axis, so that the gang plow may b carried to and from the field with great facility. The shape of the plow of the same a gangplow of convenient construction and use. The plow
on may also be used as a sulky plow by using one plow only, taking off th
others, the plow being thus a gang or sulky plow, as desired. others, the plow being thus a gang or sulky plow, as desired.
IMPROVED GATE.

John W. Harvey, Farley, Towa.-This invention relates to gates which,
when opened, will close by their own gravity; and the nature of the inhen opened, will close by their own gravity; and the nature of the in
ention consists mainly in a foot plate for a swinging gate post having a convex bottom and crossed slots through it, in combination with studs on post driven into the ground, which studs enter the said slots and keep the gate in proper position. A lever is pivoted to the post and connected
to the gate by a pin and slot, so that a person can raise the gate bodily oo the gate by a pin and slot, so that a person can raise the gate bodily
with very little exertion. This allows the gate to be opened and shut ove with very litt
snow drifts.

IMPROVED BEEHIVE.

Isham B. Burroughs, Tuscaloosa, Ala.-The object of this invention furnish improved beehives, which shall be simple in construction an bees to be easily and conveniently performed, and thoroughly protecting the bees from moth. A drawer in the lower part of this hive is divided nto compartments, in which are formed holes to allow the millers to pas hrough. With this construction the moths enter a forward dark compart ment of the drawer, see a little light entering through the holes in the par ition, and pass through said holes into the inner compartment of said rawer, where they lay the sge, and from which they cannot find the

IMPROVED WHEEL PLOW

Stephen M. Harris, Forest Grove, Oregon.-The object of this invention to furnish an improved plow, which shall be so constructed that eith Wheel may be raised and lowered, as required; which will turn under an may be readily thrown out of the ground when desired. Upon the outer arms of the crank axles revolve the wheels, which are unequal in size, the s to engage with the teeth of ratchet wheels, and thus hold the wheels se arely in any position into which chey may be adjusted. The plowed lan bolt which passes through the slot of a bar, so that the said it, to receive a clined forward or rearward, to adjust the cutter to take or leave land, as may be required. To the furrow end of the roller is attached a flange which projects over the edge of the furrow, so as to bend down the projecting weeds
fully covered.
improved centrifugal machine for creaming milk. Wilhelm C. L. Lefeldt and Carl G. O. Lentsch, Schoeningen, Germany

- This invention consists of a revolving cylinder or drum, provided with
a fixed or detachable top flange or ring and with radial detachable part tions. The drum is inclosed by a guard casing or jacket, and revolved at
uniform speed, being slowly started and stopped by means of a weighted idler bearing on the driving belt. The spindle revolves in a cushioned is separated from the milk by centrifugal force, and drawn off after the drum has been slowly brought to rest by taking off the idler from the driv ing belt. The apparatus is operated as follows: The milk is placed, in resh state, in the drum, and the drum then gradually set in motion by pressing the idler first lightly against the driving belt until the maximum elocity is obtained. The milk is allowed to revolve with the drum fo
bout twenty minutes, during which time the separation of the cream from the blue milk is obtained by the greater specific gravity of the latter, which is thrown up along the wall and against the top flange, while the lighte ream collects nearer to the center. The success of the operation depend now on the stopping of the machine in such a manner that this separation of. The milk is accomp is kept up, so that they may be separately draw off. This is accomplished by stopping the drum slowly without jerks, which is obtained by raising the weighted arm of the elbow lever, so tha the revolving the drum and spindle by their own vis viva, and the caradual decrease of the speed of the same until they assume a state of rest. Afte few minutes of rest the cream may be skimmed off, the partition wall being first carefully taken out for facilitating taking out ofothe cream. The cream may be churned sweet or sour. The extraction of cream from he milk is best done just after milking, and excepting the want of th riscernaler, say the inv iscerned from fresh milk.
mproved horse hay rake
Adolphus W. Stevenson, Xenia, O.-The teeth of this rake are curved in the usual way, the points being bent upward, so that they will slide along bat win not scratch or catchupon theground. The boakes of the teeth are attened a little just below they reach the axle to give them greater ela city and render them less liable to break should their points strike a bar attached to the axle, so as, when the teeth are in working position, to engage with a notch, shoulder, or catch formed in the said bar to prevent the teeth from rising and passing over any of the hay. When a sufficien quantity of hay has been collected the driver presses the upper end of the ever forward with his foot. The first effect of this movement is to draw he spring latch back from the bar to allow the teeth to rise. The nex wheel to canse the said wheel to turn the axle and raise the teeth leavin he hay in a windrow.

NEW WOODWORKING AND HOUSE AND CARRIAGE

 BUILDING INVENTIONS.
improved thill coupling.

John W. Anderson, New York city.-This invention relates to certai made in thats in thill couplings of that class in which the thill iron made in the form of a hook, and is fastened to the pivot pin by being
hooked over the same in a certain position and afterwards turned to the working position in which the parts cannot be separated. The improve ments consist mainly in constructing the hooked or open slotted thill iro with a notch upon its rear side, and combining the same with a rubbe lock and a detent held between the ears of the clip, whereby the device re prevented from being accidentally detached if the position of the thil on should be changed from the falling of the horse or from other cause nd outside of the edge of the ears, for the purpose of retaining and hold ng the rubber block and locking detent in place. The improvement als further consists in combining the hooked thill iron with an oblong tumb ler located upon an eccentric pin or rivet, whereby the thill iron is made o bind against the spring and rubber blockwhen in the working position, and thus increase the tensicn to prevent rattling, the

IMPROVED SHUTTER FASTENER.

George M. Mudgett, Edgartown, Mass. - This invention relates to fastenirs for shutters, doors, etc., and it consists of a button upon the opposite ith a pin in the window stool when the shutter is closed, or with an I haped hook projecting from the wall when the shutter is open, there be ng also a sector-shaped portion. The operation is as follows: As the nib over the said pin. When the shutter is open the nib is made to engage with a hook that projects from the side of the building in a similar wa The plate not only moves the button, but it also limits its motion as it trikes the sides of the screw.

INEW HOUSEHOLD INVENTIONS.

IMPROVED BED BOTTOM.
William M. Ward, Eureka, Ill.-This invention relates to that class of he posts and end rail the bed bottom is connected with and on the side rails, and take off all strain from the same. The bed fastening are provided with hooks, cast therewith, on which are hung by end eyes
longitudinal rods, which are lengthened or shortened, to be exactly adjusted to the bedstead by a swivel connection, that turns on the flanged head of one rod section and the threaded end of the other. By shortening the rods the bedstead is braced and made firmer. In this manner a three springs at the ends oft the cross namely, in the rods, in the slats, and in the make the bed easy to rest on, and settle all alike whatever weight is place thereon. No strain is thereby thrown on the side rails of the bedstead, The bed bettom may be readily tranger and better fitted to bear the same. when in position, a connecting part of the same, being cheap, durable, and trong, and readily applied to old and new bedsteads with little additional expense.

IMPROVED WATERPROOF CELLAR BOTTOM.
James R. Anthony, Cedar Rapids, Iowa. - This bottom is designed for wet or any springy ground and for quicksana. In constructing the bottom, me timbers are first laid and upon them tapering boards are placed, a and upon the laths a layer of waterproof mortar or cement is loiding, which the bricks are embedded. The spaces between the boards lead to the water that rises while the bottom is in process of construction escapes to the well, and may be removed in any convenient man. ner. The wall should be continued upward above high water line, and it may with advantage be carried to the same height as the outer wall.

mproved washing machine.

Oscar Jurden, Ackley, Iowa.-This invention consists in the arrangement, in a suitable frame, of two vertically reciprocating pounders and the tub and operating the same. The clothes to be washed are placed in of a crank attached to its shaft. The tub containing the cloths is turned, as occasion may require, either by hand or foot. If there should be a reater quantity of clothes in one side of the tub than in the other, the rubber springs yied
juring the clothes.

Busimess and eqtanal.

The Charge for Insertion a line for each insertion.

Why skould you suffer with hot dry air in winter, when, by attaching to your registers and stoves Col-
burn's Porous Evaporator, you can so thoroughly moisten the air in your apartments as to render it pleasant and summer-like? Call on or address Granvil
Felt of every description for Manufacturers' purposes, specially adapt hickness, size or shape Tingue be facturerrs. Salesroom, 69 Duane St., N. Y. Factory at
Glenville, Conn.
The Varnishes and Japans of Hyatt \& Co., merit their success from the satisfaction they give in purity, color,
and durability, with cheapness. Try them. Send for ircular and price list. Office 246 Grand St., New York. Morton's Clipper Fret Saw. Price $\$ 2.50$.
for circular. J. D. Foot, 22 Platt St., N. Y.
Gray \& Wood Planer; Ball's Planer and Matcher; Gray $\&$ Wood Planer; Balls Planer and Matcher;
Smith's Mortiser; Universal Woodworker; Tenoning
and Moulding Machines; in good order, and cheap for and Moulding Machines; in good order, and cheap for
cash. Address D.W. W. Smith, 135 N. 3 d St., Philadelhia, Pa
Models made to order. H. B. Morris, Ithaca, N. Y. Notice.-Wanted the address of every Wagonmaker, Carpenter, and Hardware Dealer in th
Address H. H. Perkins, Kewanee, III.
Wanted.-A place to Manufacture Patent Improved Spring Fish Hook. Addr
Corners, Oneida Co., N. \mathbf{Y}.
Bolt Forging Machines and Power Hammers a spe-
cialty. Send for circulars. S. C. Forsaith \& Co., Mancialty. Send for circulars. S. C. Forsaith \& Co., Man-
chester, N. H.
For Sale cheap.-One 24 in. Planer and Matcher, made For Sale cheap.-One 24 in. Planer and Matcher, made
by Putnam Machine Co.; one 8 in. 4 sided Huntington Mon 12 inch 4 sided Moulder, C. B. Regers $\&$ Co.'s make;
one schenck's, No. 5 , 24 in. Planer and Matcher; ; one Schenck's, No. 5, 24 in. Planer and Matcher; two
Eureka Scroll Saws; one No. 3 Sturtevant Exhaust Fan. Eureka Scroll Saws; one No. 3 Sturtevant Exhaust Fan.
Address S. A. Woods Machine Co. Machinery depot 91
For Town and village use, Combined Hand Fire En$\underset{\text { ter, N. H }}{\substack{\text { gine and } \\ \hline}}$
For Sale.-Brown \& Sharpe U. Milling Machine; one $5 \mathrm{ft}$. Iron Planer and Twist Lathe. W.E. Lewis, Cleve-
land, Ohio. 5 ft . Iron P.
land, ohio.
Brown \& Sharp Screw Machine, No. 3, with chasing
bar and die holder, entirely new; cost $\& 468$, will sell at 8350 . Another machine, same as above, without chasing bar and slightly used, for $\$ 2250$.
t2ilbert St., Philadelphia, Pa.
For Sale-The Patent of a Foot Power Circular Saw. Best in America for Carpenters. New motion. Send for
circular. W. D. Westman, Toronto, Ont. 40 Horse Second-hand Upright Engin
ood order. J. Leffel \& Co., springfield, o
Small Fine Gray Iron Castings a specialty. Soft and
rue to patterns. A. Winterburn, 16 De Witt street, Al true to patte
bany, \mathbf{N}.
Y.
Tin Foil.-J. J. Crooke, 163 Mulberry St., N. Y. For the best Gate Valves of all kinds, apply to D
Plumbers-Address Bailey, Farrell \& Co., Pittsburgh, MagicLanterns and Stereopticons of all prices. Views illustrating every subject for public exhibitions. Proi-
table business for a man with a small capital. Also lan terns for college and home amusement. 74 pare cata-
logue free. McAllister Mf. Optician, 49 Nassau St., N. Y.
"Little All Right," the smallest and most perfect Reoperation. Send for circular. All Right Firearm's Co. peration. Send for cir
Lawrence, Mass., U.S.A.
For Solid Wrought Iron Beams, etc., see advertise-
ment. Address Union Iron Mills, Pittsburgh, Pa., for ithograph, ete.
Shaw's Noise-Quieting Nozzles for Escape Pipes of Locomotives, Steamboats, etc. Quiets all the noise of
high pressure escaping steam without any detriment
whatever. T. Shaw, 915 Ridge Ave., Philadelphia, Pa.
John T. Noye \& Son, Baffalo, N. Y.,
ers of Burr Mill Stones and Flour Mill Machinery of all
kinds, and dealers in Dufour \& Co.'s Bolting Cloth. kinds, and dealers in Dufour \& C
Send for large illustrated catalogue.
Power \& Foot Presses, Ferracute Co., Bridgeton, N. J. Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel - other kinds imitations and inferior
Caution.-Our name is stamped in full on all our best Standard Belting, Packing, and Hose. Buy that only.
The best is the cheapest. New York Belting and PackThe best is the cheapest. New York Belting and Pack-
ing Company, 37 and 38 Park Row, N. Y. Steel Castings from one lb. to five thousand lbs. Invaluable for strength and durability. Circu
Pittsburgh Steel Casting Co.. Pittsburgh, Pa.
For Best Presses, Dies, and Fruit Can Tools, Bliss Hydraulic Prend
Lathes and Machinery for Polishing and Buffing metals.
E. Loyon \& Co., 470 Grand St., N. Y.
Wanted-A first-class Planer, with table 5 ft., to plan
30 in. square. Edward Harrison, New Haven, Conn.
To Manufacturers of and Dealers in Toys-L icen to be had for new and pleasing toys. Partners wante
Address S. E. B., 801 Asylum Ave, Hartford, Conn. Improved Wood-working Machinery made by Walker
Bros., 73 and 75 Laurel St., Philadelphia,
Skinner Portable Engine Improved, 2 1-2 to 10 H. P.
Skinner \& Wood, Erie, Pa. Fine Taps and Dies for Jeweler's, Dentist's, and Ma
chinist's use, in cases. Pratt \& Whitney, Hartford, Ct Diamond Tools. J. Dickinson, 64 Nassau St., N.Y. To Clean Boiler Tubes-Use National Steel Tube More than twelve thousand crank shafts made by
Chester Steel Castings Co. now running; 8 years constan Chester Steel Castings Co. now running; 8 years constant
use prove them stronger and more durable than wrought use prove them stronger and more
iron. See advertisement, page 302
Emer'̇ं Grinders, Emery Wheels, Best and Cheapest; Hardened surfaces planed or turned to order. A warded
Medal and Diploma by Centennial Commission. Address

radicse turuis

(1) J. V. asks: 1. How to color brass or a battery? chains, etc. red or copper colored, withou a battery? A. Steep in warm dilute of of vitriol for
short time. 2. In making chloride of gold, is it best heat to drynesss A. It should be carried as nearly to
dryness as possible, but a very moderate heat only dryness as possible, but a very moderate heat only
should be applied, so as not to cause the decomposition should be ap

1. Would you advise sulphurizing a fertilizer before or after drying, to fix free ammonia? A. The fixation
should be before drying, or otherwise the ammonia will be lost. 2. Would not sulphur fumes do? A. No.
(2) Mrs. J. M. D. asks for some simple nethod of pras A. Dry the leaves perfectly immerse them for a short time in a solution of clear gum arabic in 20 parts of water, and dry. The colors cannot be so fixed
that long exposure to light will not alter them. If prothat long exposure to light will not alter them. If proaffer little alteration.
(3) W. H. H. asks for a recipe for making yeast or baking powders? A. Baking powders are usu-
ally composed of bicarbonate of soda,mixed with cream ally composed of bicarbonate of soda,mixed with cream
of tartar, tartaric or citric acids, or a mixture of these. Dry at a moderate temperature, grind separately to finest powder, and then mix thoroughly 20 parts bicarbobicarbonate of sode 50 parts cream of tartar; or 20 parts parts of tartaric acid. As the cream of tartar of commerce is often of variable character, it may be neces-
sary to use it slightly in excess of the above proportions.
(4) K. X. says: I have a half lb. of phosphorus in a bottle which by exposure to heat has melted
and formed a solid cake. How can I reduce it again to sticks, or to any shape convenient to use in small quan-位位: A. Unstopper the bottle and immerse it care water bath until the phosphorus is liquified; then draw it into tapering glass tubes (previously moistened and warmed) of suitable size, close the upper end of the tube, quickly invert it under water and transfer to a vessel of cold water. When cold the phosphorus may
easily be shaken or forced out of the tabe (under wa-
(5) A. J. G. asks: 1. Is a heavy driving wheel, say of 150lbs., an advantage on a common lathe
not back geared, or would a lighter one, 75 or 80 lbs., be better for all purposes? A. For common light work a wheel of 80 lbs . is sufficiently heavy. For heavy work one of 150 lbs . might be at times preferable. One disadvantage of the heavy wheel is in starting and stopping.
2. Should the wheel be counterbalanced, so as not to 2. Should the wheel be counterbalanced, so as not to
stopon dead centers, or would the lathe run steadier stop on dead centers, or would the lathe run steadier
without? A. It is well to counterbalance the wheel for convenience in starting, but the lathe will not run any
(6) Mrs. M. A. C. asks: What compound would be the most durable as a paint for gravestones,
that would stand all kinds of weather? pentine solution of pure asphaltum mixed with a suff cient quantity of willow charcoal ground to impalpable
(7) C. J. H. asks: 1. How can I best stiffen the ends of sewing silk or thread, so as to readily pass through a fine capillary tube without bending? I want
the end ε bout tas stiff as shoemaker's bristles and impervious to water. I have tried dipping in shellac and
solution of rubber. A. Try the foliowing: Fuse together equal parts of gutta percha and resin. This may be dissolved in carbon disulphide.
3. Is the "piume miraculeuse" made of aniline color? press? A. Yes. Slightly dampen the tissue in usual manner, place in contact with the writing between sheets of unglazed paper and pass, with moderate pressure, a suitable rubber-covered roller over the whole. What is the best fluid gold for illuminating on parc ment and paper? A. Rub up fine gold leaf with a little
honey, dissolve out the honey with warm water, and mix the fine gold dust remaining with sufficient gum water and a few drops of oil of cloves.
(8) K. M. R. asks for the preparation that ance? A. Starch, 1 oz .; paraflin, about 3 drachms white sugar, tablespoonful; table salt, tablespoonful; water, q. s. Rub up the starch with soft water into a
thick smooth paste. Add nearly or quite a pint of thick smooth paste. Add nearly or quite a pint of
boiling water, with the salt and sugar dissolved in it, boiling water, with the salt and sugar dissolved in it,
and, having dropped in the parafin, boil for at least half an hour, stirring to prevent burning. Strain the added to the water, previous to the boiling, to overcome the yellowish cast of the starch, if necessary. Sperma-
ceti may be used in place of paraffin. Starched line can only be properly finished by hard pressure applied
(9) J. H. P. asks how to take the bitter taste from crabapple vinegar? A. Warm a sample of the
vinegar and agitate it with a little egg albumeu. If this oes not improve it, distillatio (10) A. G. asks how the hair can be permanently removed from a person's forehead, on which it
grows very low, without injury to the person? A. Preparations called depilatories are used for this purpose of arsenic's Poudre Subtile consists of orpiment (sulphice 1 pinely powdered starch and quicklime each, 11 parts. These are mixed together, made into a paste with warm water, and applied to the part closely shaven. As soon as it becomes dryit is washed off with water. Ryder's depilatory consists of lime, 1 oz ; carbonate of potassa, 2 ozs.; charcoal powder, 1 drachm; less pernicious, and those containing arions are more or less pernicious, and those containing arsenic, when im
properly applied, are dangerous. They speedily destro the vitality of the capillary bulbs, but, if allowed to re main too long in contact with the flesh, are apt to disorganize it.
(11) D. E. H. says: Please give me infor mation as to method and cost of preparing farina from
potatoes for market, cost of machinery, etc.? A. Pota potatoes for market, cost of machinery, etc.? A. Pota-
to flour is simply fine potato starch ground to powder Suitable mills mation the process $\$ 200$ to $\$ 1,000$. For a concise description of the process should consult Wagner's "Chemical Technology."
(12) P. B. C. asks for a recipe to make mock silver, to resemble that metal in color and ring? A. Copper,
$11 / 4$ ozs.; cobalt . oxide, , $13 / 4$ ozs.; tin, $21 / 2$ ozs. First fuse the zinc with 12 parts of the copper; then fuse the nickel with its own weight of the zinc alloy in a good
blacklead crucible, and and the iron, the remainder of blacklead crucible, and and the iron, the remainder of
the copper, and the oxide of cobalt mixed with charthe copper, and the oxide of cobalt mixed with char-
coal. Cover the mass with charcoal, lute, and expose to a high heat. When properly fused, allow the heat to whenthe temperature is just sufficient to fuse it. Remove the crucible from the fire and stir its contents well with a hazel stick. Wrap the tin in several thicknesses of dry paper, drop it into the alloy, stir for a mo-
ment, and run into the moulds. When cold, it is ready ment, and ran into the moulds. When cold, it is ready
to be wrought like silver, which it resembles in every to be wrought like silver, which it resembles in every
respect. The zinc is nearly all volatilized during the process of fusion.
(13) J. E. asks (1.) how hydrargyrum bisulphide (bisulphide of mercury) is manufactured? A. It is made by treating mercury, or its oxide, with sul-
phuris acid. 2. Also, which is the best solution for carbon batteries used for electric bells? I have used A. The Leclanché or Prudhomme battery is best for this purpose. Use one twentieth of sulphuric acid with your bichromate solution, but the bichromate battery will require cleaning more than once a year.
(14) S. H. M. asks: 1. Can the Grenet battery be used for silverplating? A. Yes; but it is not
good for this purpose as it is accumulative; it is better to use a sulphate of copper, or Smee's battery. 2. If so, how many cells of No. 1 will it require? A. That
depen ds on the amount of surface; one cell will answer to plate an article, such as a teaspoon. 3. How shall I connect the wires of the battery with the silver and the article to be plated? A. Connect the zinc of the battery with the article to be plated; and the copper to the sil-
ver anode. 4. Also how to give the articles plated a ver anode. 4. Also how to give the articles p
fine polish? A. Polish with pulverized chalk.
(15) R. K. T. and C. E. F. ask: 1. Of what gauge and length should the fine silk-covered wire
be as used in the Bell telephone? A. The wire used is No. 40 silk covered. 2. Should the poles of the magnet be the same on each instrument, or should one be north
and one south? A. The poles are the same in each instrument. 3. Of what strength should the magnet be? should the iron disk be? A. About one hundredth of an inch.
(16) A. B. writes: I have five jars of a Lockwood battery. I wish to make a permanent magnent magnet; will you please give me directions?
Wind a spool of 800 feet of No. 19 copper wire, " magnet insulation," on a half inch round rod of hard wood,
covered with two layers of note paper; have the spool covered with two layers of note paper; have the spool about eight inches long, and give the outside a coat of
glue, to keep it from unwinding. When dry slip it off he rod. This is called the helix or spool; any piece of poles of the battery are connected with the terminals removing the steel, it will be found permanently magnetic.
(17) C. C. McC. says that he uses brass noulds to cast arms for chandelier work, but the molds
do not fill. The castings are imperfect. A. Use zinc for the castings. Warm the moulds preparatory to using them. Pay attention to the ventilation. Con-
fined airmay cause the imperfect castings. Pour the metal slowly so as to allow the heated air to escape metal enters and fills the moulds.
(18) J. T. asks for a good steel pen ink? A. Digest in an open vessel 10 ozs. coarsely powdered
nutgals, 4 ozs . gum senegal, 4 ozs . sulphate of iron (free from copper), $3 / 4$ drachm of ammonia, 6 ors. al-
cohol, $41 /$ quarts distilled or rain water cohol, 41/2 quarts distilled or rain water. Continue the
digestion until the fluid has attained a deep black digestio
color.
(19)
(19) D. T. S. asks: How is the filling made that is used in filling the pores of black walnut wood?
A. Whiting, 6 ozs.: japan, $1 / 2$ pint; boiled linseed oil, $1 / 2$ pint; turpentine, $1 / 2 /$ pint; corn starch, 1 oz.; a small
(20) A. S. asks for a recipe for making whitewash for wood work that will not peel off? A.
Alum is one of the best additions to make whitewash of lime which will not rub off. When whiting is used, thin glue water is good,
work, exposed to rain.
(21) W. C. asks for a grease for boots that will turn water, and also make them soft? A. Bees wax, 2 ozs.; beef suet, 4 ozs.; resin, 1 oz.; neat's foot
oil, 2 ozs.; lampblack 1 oz. Melt and mix well together.
(22) J. W. asks how to produce a regular shade on mixed cotton and woolen rags? A. For drabs, and 4 ozs . tartar; lift and drain; then work for half an hour in 4 ozs. logwood and 1 oz. bichromate of pot-
ash; wash out and dry. By varying the quantity of log. wood, and by introducing a little fustic in combination with the logwood, a great variety of drabs, slates o
(23) W. W. asks how to color woolen goods black? A. For an amount of goods equal to a lady dress, if of a dark color or brown, take 34 OZ . of bichro mate of potash in 3 gallons of water. Boil the goods in
this 40 minutes; then wash in cold water. gallons water, add 9 ozs logwood, 3 ozs, 3 drops of oil ofvitriol: boil the goods 40 minutes and wash in cold water. All colored goods with cotton warps
should be previously steeped one hour in sumach liquor,
and then soaked for 30 minutes in 3 gallons of clean win and then soaked for 30 minutes in 3 gallons of cleaz wa ter, with a small teacupful of nitrate of iron; it must
be then thoroughly washed and then dyed as for woolen goods.
(24) A correspondent says: I have a fire alarm, the wires of which come in at the top of a third
story window, go to the floor, thence along behind a bed, and down through the floor and to the indicator in the second storyroom. Is there any danger from lightning to an occupant of the second story room, or an oc-
cupant of the bed in the third story? cupant of the bed in the third story? A. There is a slight danger, but it may be obviated by the use of a
lightning arrester. The parties who furnished the indilightning arrester.
(25) W. B. asks how to destroy bedbugs? . Take ogg. Beat the egg to a froth and add the wuick silver. Brush iat lo egg to a fres and silver. Brush upon the places where the insects fre-
quent. Make the amount of the ingredients according
(26) D. A. says: I am very much troubled by the tarnish and rust on brass and steel jewelry. A. The only method to remove the tarnish and rust is to re-polish orre-finish the articles, as when first made. Care in handling is the best preventative.
(27) F. M. E. asks for the number of vibraof the representing the tones of the two middle octaves of the standard scale-natural? A. C has 264 vibrations,
D $296, \mathrm{E} 333, \mathrm{~F} 352, \mathrm{G} 395, \mathrm{~A} 444$, B 498, middle C 528, D 594, E 660, F 704, G 792, A 880, B 990 .
(28) H. H. E. asks how to cut stencils on copper by the use of acids, and the method of doing
so? A. Cover the copper with a thin coat of wax: with sharp cutting tools remer a thin coat of wax, tions of the metal where the cutting is to be done. If recessary surround the plate with a ledge of wax. Pour
aquafortis over the plate and it will soon eat through the metal where unprotected by the coating of wax,
(29) J. S. asks how to melt or work over pure rubber, so as to make it into articles of use? A.
Pure gum rubber is softened by immersion in boiling water so thatit may be kneaded or forced into moulds -on cooling it contracts and hardens. It is completely dissolved by a mixture of carbon disulphide with 6 per cent of absolute alcohol, and on evaporation of the solvent regains its former properties. It is also soluble in
chloroform or naphtha. It cannot be melted by heat chloroform or naphtha. It cannot be
Is the glycering that is decomposition.
Is the glycerin that is used for chapped hands, lips
etc., the same as that used for making nitro-glycerin?
(30) A. R. L. and others ask: Is the Gramme magneto-electric machine made in this country? A. oge, Paris, France.
(31) L. D. D. asks: How could alcohol and water, used for making pickles, be made into good vinadding to it a little yeast and keeping in a moderately warm place until acetification is complete. In pickling, (32) L. J. says: I have a brass hopper on my coffee mill which is badly fly-specked. How can I polish it? A. Remove from the mill and polish with fline
fine
oil
Plea

Please give me a recipe for making a baking powder? A. Powder and thoroughly dry separately by gentle heat $1 / 2 \mathrm{lb}$. tartaric acid, $3 / 4 \mathrm{lb}$. of pure bicarbonate of soda, and as
(33) W. B. N. asks how cavendish tobacco is prepared? If it is steeped in any liquor or any pre-
paration? A. Tobacco, by the better class of manufacturers, is not steeped in any liquor, but after stripping, the leaves are sprinkled with licorice and white sugar, made into rolls and closely packed into oak box-
es, and subjected to pressure, in which form it is sent market.
(34) W, H. L. asks how to bleach or whiten vory piano keys? A. Ivory is whitened or bleached by and exposing it to the sun while still moist, under a glass shade to prevent desiccation and the occurrence of cracks. Repeat the process until the proper effect
is produced. Ivory may also be bleached by immersion for a short time in water holding a little sulphurous acid, chloride of lime, or chlorine in solution; orby exposing to the fumes of burning sulphur, largely diluted
with air. Where the ivory keys cannot be removed the polishing process may be the best
(35) Star asks how to remove writing ink from paper? A. Apply muriatic acid diluted with five or six times the quantity of water, and after a minute
or two wash with clean water. A solution of oxalic acid, citric acid, and tartaric acid may be applied where here is printing, as it will not attack the printed text.
(36) L. G. asks how to remove fruit stains from cotton and linen goods? A. Wash the stained portion clean and apply a weak solution of chlorine,
chloride of lime, or ozalic acid. Lemon juice will fre quently remove stains. Some stains may be taken out by dipping the cloth in sour buttermilk and drying in a (37) S. H. asks how to test a rough diamond nd tell it from glass? A. Put the stone in a leaden cup Warm the powsered flaorspar and a ltcle oil of vitriol. Wrarm the vessel over a fre where there is a copious draught to carry off the nozious vapors that will be ure with a glass rod to fish out the diamond. A genune stone will remain intact, but a fictitious one will be corroded by the hydrofluoric acid that has been generated around it.
(38) C. H. D. asks how to Babbitt the
§rinutific Ampricat.
the old Babbitting and whatever grease there may be. light, etc.? A. We do not know of such a device. SimIf practicable heat the lower boxes quite warm. After
removing them and while warm, put them in place, and removing them and while warm, put them in place, and
adjust the shaft in the way it is to run. If there is any danger of the metal running out at the ends of the boxes, cut thick straw board and fit to the ends of the boxes and up to the shaft so as to retain the metal until it hardens. Heat the metal hot, and pour carefully so as to fill the box and come to the diametrical center of the shaft, remove the shaft and trim off the super-
fl ous metal. Put the shaft again in place. Put on the fl lous metal. Put the shaft again in place. Put on the
upper box and pour through the oil hole. Remove tie box, trim off, and drill out the hole for reception of oil.
(39) J. F. P. asks for the process of tempering edge tools, etc.? A.
Supplement No. 71, p. 1123.
(40) A subscriber asks: What is the simplest way of keeping the temperature of my greenand is well warmed by the sun during the day. A. Put in a few lengths of cast iron pipe, fill them with salt water brine, and connect them with a stove so as to
bring a portion of the pipe in contact with the fire. Let bring a portion of the pipe in contact with the fire. Let
the pipe be 4 inches in diameter and set at a grade, the pipe be 4 inches in diameter and set at a grade,
leaving the stove at a high point and returning to it at a lower one. This will insure a circulation, and by keep. maintained. This apparatus can be constructed by your plumber, or a similar one may be ordered of any dealer in this city. The salt will prevent the water from freezing should the fire be suffered to expire.
(41) A. G. M. asks for information about the fruit called Aku? A. Guinea is the native country of this fruit. It was brought to Jamaica by Captain
Bligh in 1793 , where it grows well. The fruit is about Bligh in 179 3, where it grows well. The fruit is about
the size of a goose's egg and has a sub-acid flavor. it the size of a goose's egg and has a sub-
is consider ed wholesome and nutritive.
(42) B. H. asks what or-moulu is? A. It is a name given to a particular alloy of zinc and copper,
generally aboui 52 parts zinc and 48 of copper. It is o finished as to have the appearance of gold. The erm is often applied in a general sense to works of art. which helps produce the gold-like surface. Lacquer is ofter applied to prevent tarnish.
(43) E. G. M. asks how marquetry is made? A. It is different pieces of colored wood glued to a
ground of some firm wood. It is now chiefly confined in its use to floors, in which the various pieces of wood are usually disposed in regular geometrical figures.
(44) H. C. D. asks how to weld tortoise shell?' A. Provide a pair of pincers or tongs. File the tortoise shell clean and make so as to form a lap joint.
See thas there is no grease about it. Wet the joint with See that there is no grease about it. Wet the joint with
water, apply the pincers hot, following them with wawater, apply the pincers hot, following them with water, and the shell will be joined as if it were one piece. shell. You can test it by trying it on a piece of white
($455^{\circ} \mathrm{M}$. G. asks how to make extract of cinnamon? A. Dissolve 2 drachms of oil of cinnamon and thin stir in by degrees 4 ozs. powdered Ceylon cinnamon; agitate for some time and filter through paper.
(46) T. H. asks for a good indelible ink to use with stamps? A. Mix equal parts black oxide of rub with an equal quantity of smooth white clay into a
paste, water being added for that purpose, or, sulphate of manganese, 2 drachms; lampblack, 1 drachm; powdered loaf sugar, 4 drachms; rubbed into a paste with water. After stamping, dry the linen and wash well
in water.
(47) N. P. asks how to test castor oil? A. If the oil be adulterated with rape oil, it may be de-
tected by its not dissolving in strong alcohol, and also tected by its not dissolving in strong alcohol, and also
by its density. Pure castor oil is soluble in an equal weight of alcohol, specific gravity 0.820 .
(48) J. H. asks: The bluing on some of our them? A. Remove the blades, polish them and blue by heat, immersing the blades in a pan of powdered charcoal while being heated. Remove from the fire when the desired color is obtained. Or use an applica-
tion of thin shellac varnish colored with Prussian blue. tion of thin shellac varnish colored with Prussian blue.
In purchasing a glazier's diamond, is there any way In purchasing a glazer's diamond, is there any way
by which an inexperienced person can tell. which are good? A. No.
(49). S. H. J. says: I wish to fasten photographs to glass for coloring. What perfectly transpar-
ent fastener can I use which will not crack? A. See answer to E. F. (25) No. 12, p. 187, current volume
(50) J. M. asks how the power of a telescope is estimated? A. Divide the focal length of the
objective in inches by that of the eye piece in inches. This will give the magnifying power of the instrument
(51) T. G. A. asks: Would you advise the ase of any hair-producing elixir on the face? A. No.
(52) G. F. S. asks: 1. What is the best method of mending articles of celluloid, such as jewelry, etc.? A. Dissolve good glue in a small quantity of trongest vinegar or acetic acid by aid of heat. 2. Is there no way to restore the bright coral res loid loses after long exposure? A. No.
(53) J. B. asks: 1. Will the airo-hydrogen blo xpips prodace as strong a heat as the oxy hydrogen
blowpipe? A. No. 2. Is the first safer than the latter? A. In inexperienced hands, yes. 3. Is there an alloy of platinum known (to solder platinum) which would resist a greater heat than fine gold? A. No. With skill ful manipulation and a good blowpipe (oxyhydrogen) platinum may be welded perfectly. 4. If so, will you please state whether such could be brought to melt by the illuminating gas and common blowpipe?
the heat of an oxyhydrogen flame is requisite.
(54) G. A. says: Volatile oils cannot be used in public buildings at frontier posts, and candles do not give sufficient light for the post schoolroom.
Can you suggest any simplecontrivance for illuminating Can you suggest any simple contrivance for liluminating
purposes that will produce abriliant light, like the lime
ple machines for making illuminating gas automatical market. The electric lamp, using a small magnetoelectric machinedriven by some small motive power, affords a brilliant ligh $;$; the first cost of the apparatus,
(55) H. M. says: 1. I have a lens (double convex) $41 / 2$ inches in diameter and 26 inches focus. very well. 2. What size and focus will the eyepiece need to be? A. The eyepiece may be an inch in diam1 inch focus, and placed at 27 inches from the objecive.
(56) G. G. says: I wish to etch letters on glass. Have tried asphaltum varnish, shellac, etc. whichall fail to keep the fluoric acid from spreading
even after being dry a long time. WhatI wish is something which I could use to cover the whole glass, except the letters, and which will withstand the action of the acid? A. Beeswax or paraffin is used for this purpose; melt and apply it to the glass previously warmed; (57) J. D. asks: What are the fire-extinuishing chemicals composed of, also whether they are explosive by conlact with steam? A. The materials used in the Babcock and similar fire extinguishers are carbonate or bicarbonate of soda dissolved in water
and a small quantity of oil of vitriol contained in a leaden cup, the inversion of which brings the acid in contact with the soda
(58) A. M. G. asks for a recipe for removing superfluous hair? A. Sulphuret of barium 3 ozs.,
water 12 ozs. A little powdered starch is wetted with water 12 ozs. A little powdered starched When dry it can be removed and takes the hair with it.
(59) R. M. H. asks: 1. What causes animalculx to appear in the vinegar, and do they always come when it is made of grain or fruit? A. Nearly all
vinegars prepared by slow fermentation copic organisms, derived from the germs present in the ferment, and from the air. 2. What must I do to re move them from the vinegar? A. Add a little of solution of sulphite of soda, agitate, allow to stand for a
few hours, and strain off into clean barrels. 3. About few hours, and strain off into clean barrels. 3. About
how long a time should elapse after making until it must be corked tight, or is it better to leave the bung outo
he cask? A. As soon as the fermentation is complete, it may be drawnoff into clean tight barrels for storage. (60) G. T. L. asks: 1. If the vapor of bisulphide of carbon will have any deleterious effects being used instead of steam to drive the engine? A. It would have no bad effect other than that of dissolving all oil or grease with which it might have contact. 2 .
Would there be any danger of explosion on decomposiWould there be any danger of explosion on decomposi-
tion of the liquid bisulphide on being evaporated in an ordinary steam boiler? Would the liquid have any efby steam? A. Bisulphide of carbon vapor is very inwhen ignited. It anen mixed with air, very explosive ing heated to boiling, and, if pure, would have little effect upon the iron. 3. If water and bisulphide of caron be mixed together, the water predominating, and the mixture be evaporated in a boiler, would there be an
explosion or any chemical action of any kind, altering he character of the two mixed vapors? A. No, but the iquids would not mix, and the bisulphide would become entirely vaporized before the temperature of the water attained the boiling point. 4. Is the liquid bisulphide compressible to any appreciable extent, and what its cost in large quantities? A. No. The price, we
elieve, is about 75 cents a gallon. 5. Would it be safe let the exhaust escape through a blast pipe into the
(61) W. N. H. asks for a recipe for good writing ink? A. Take Aleppo galls, well bruised, 4 ozs., clean soft water 1 quart. Macerate in a clean corked
bottle for ten or twelve days with frequent agitation, add $11 / 4 \mathrm{oz}$. gum arabic dissolved in about 2 ozs. of water, lump sugar $1 / 2 \mathrm{oz}$. Mix well and add $11 / 2 \mathrm{oz}$. of sulphate of iron crushed small. Agitate occasionally for two or three days, when it may be decanted for use. When time is any object boiling water may be used inbottle and agitated until the ink is put at once into the
(62) C. A. J. asks how sound is transmit ted by the telephone? A. The voice causes the diaphragm of the instrument upon which it is thrown to ibrate. Electric undulations are induced in the coil that surrounds the magnet, which are precisely analo-
gous to the undulations of the air produced by that oice. This coil and magnet is connected to a similar these undulatious travel through the wire and are received and resolved into air undulations upon a similar diaphragm of the instrument at the end of the line
Minerais atc
Minerals, etc.-Specimens have been rexamined, with the results stated
J. M. B.-The white specimen is agate-correspond ing to the Leucachates of Pliny. The other specimen No. 1 (powder) contains, besides gold and silver, silica, alumina, lime, and traces of magnesia. It would be called a gold-bearing quartzite rock, with, however, a arge percentage of iron. No. 2 is cassiterite or tin
stone.-J. B. J.-It is rich in manganese-braunite.-G. M. C.-It is a calcareous deposit filled with the fossil remains of numerous species of trilobites, and some vegetable matter.-Minerals of J. C.
and L. S. W. are missing.- - E. R. A.-It is a variety of fluorspar-fluoride of calcium.-C. B. K.-Specimens not yet received.-F. P. L.-It is an argillaceous carbonate of iron; its value will depend upon the percent-
age of iron it contains.-A. H.-No. 1 is serpentine and age of iron it contains.-A. H.-No. 1 is serpentine and
trap rock. No. 2 is gneiss. No. 3 is quartzite containing graphite.-J. C. andM. S . - Specimens not received.
$-J . H . P .-$ It is an ocherous clay, but the amount of
metallic base is small. It is not valuable.J. F.-The incrustation consists of caroonate and sulphate of lime, iron, and a little organic matter--A. R. P.-No. 1 is limestone containing mica schist, hornblende, and malachite-carbonate of copper. No. 2 is lime caroo-
nate. No. 3 is a shale rich in malachite. No. 4 is a nate. No. 3 is a shale rich in malachite. No. 4 is a

COMMUNICATIONS RECEIVED.

The Editor of the ScIentific American acknowledges, contributions upon the following subjects:
On Using Explosives for Deep Tillage. By J. R. C. Ona Remedy for the GluttedL. Abor Market. By R.S. On the Navy Yard Fire Test.
On Weak Eyes. By
On Throwing a Ball in a Curve. By -
On Why are we Right Handed? By F. H. P.
M. H.-P. L. W.-J. G.-B. C.-W. L. B.-J. T. J.M. H.-P. L.W.-J. G.-B. C.-W. L. B.-J. T. J.-
H. McI.-R. J. K.-H. E. B.-H. H. A.-C. H. R.H. Mcl.-R. J. K.-H. E. B.-H. H. A.-C. H. R.-
J. C. E. -W. B. N.-C.F.-S. H. R.

HINTS TO CORRESPONDENTS. We renew our request that correspondents, in referring to former answers or articles, will be kind enough to of the question. Correspondent
repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them. The address of the writer should always be given.
Inquiries relating to patents, or to the patentability here. All such assignments, etc., will not be published here. All such questions, when initials only are given,
are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleas-
ure in answering briefly by mail, if the writer's address ure in answering briefly by mail, if the writer's address is given.
Hundreds of inquiries analogous to the following are sent: "Who makes tile and brick making machines? Who makes models of boats?" All such personal in-
quiries are printed, as wlll be observed, in the column quiries are primed, as will be observed, in the column apart for that purpose, subject to the charge mentioned at the head of that cclumn. Almost any desired in formation can in this way be expeditiously obtained
officiál.
INDEX OF INVENTIONS
Letters Patent of the United States wer Granted in the Week Ending October 2, 1877,
AND EACH BEARING THAT DATE [Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list ncluding both the specifcations and drawings, will be furnished from this office for one dollar. In ordering, and remit to Munn \& Co.. 37 Park Row, New York city.

Aerial machine, J. B. Wa Anchor, C. E. M rshall...

Anchor, C. E. M rshall.
Animal trap, G. Comada
Animal trap, J. M. Sackma
Apple cutter, T. B. East.
Axle boxes, D. Dalzell
Bag holder and truck, H. L. Tobien.
Bale tie, J. M. Va
Bath, G. H. Ellis.
Bee hive, A.T. Wright..........
Billiard cue tip, R. H. Sanborn.
Blower, fan, J. P. Wilson.

Boot cleaner, Condry \& Quinn..
Boot jack, C. Hull

Bottle stopper, etc., F. J. Seybol
Box covers, etc., W. I. Winne
Box fastenen, W. I. Winne.
Box, wooden. F. Zuenkeler
Bridges, timber splice for, Hubbard \& Eday.
Brush blocks, boring, O.D. \& E.C. Woodbury
Bull wheel, W.H.H.Morris.
Bull wheel, W.H.H.Morris
Bull wheel, C.H. \& D.C.Brawley..
Burglar alarm, Hutchison \& Ran
Burglar alarm, Hutchison \& Ransom.
Burners or carbureters, reservoir for,
Buttons to cards, attaching, C.H. Kellogg. Calender rolls, F. Voith.......
Car heating apparatus, J. F. Cailaway ...
Cars, raw bars for railway, J. T., Wilson
Cars, track clearer for street, L. Wood
Caster, furniture, S. Mvers.
Casting metal articles, A. K. R...........
Cement, hydraulic, C. F. Dunderdale.
Cement, hydraulic, C. F. Dunderdale.
Chair, rocking. H. Closterman, Jr.....
Chairs for supporting garments, w. Lamb
Clother s dryer, D. . K. Hickok..
Cock, Dewrance
Cock, Dewrance \& Mallins
Cock, lock, G. H. Noyes.
cork-fastening mach
Corset, S. B. Ferris.
Curtain roller and bracket, A. B. Shaw
Curtain tassel clamp, A. H. Knapp..
Dish-washing apparatus, Watson \& Scott.
Distilling column. E. G. Starck
Doors, handle for carriage, G. W. Beers
Dratt equalizer, A. K. Williams
Draft equalizer, A. K. Willia
Drill, hand, w. Aldrich......
Dynamometer, A. F. Nagl
Egg beater, T. Borcher.....................
Excavating ditches, apparatus for, W.H.Mint
Fare box, A. C. Godell, Jr ...
Feather duster, J. W. Little .
Fence, F. Fulkerson......
Fence post, A. J. Nellis.
Fence post, A. . . Sprout......
Fence, zigzag, N. H. Hamlet.

Fifth wheel for vel icles, W.J.

Fire escape, E. W. Averell ... | 195,754 |
| :--- |
| 195,88 |

${ }^{\text {Fire extinguisher, T. Flagler }}$ 195,747
195;708 Fulling mill, R. Eifeckc.aeyer..................
Gas or lamp fixture, B. T. Steinhardt Gas or lamp fixture,
Gate, R. A. Horning
Gate, W. Will Gate, W. L. Winis.............
Gem setting, H. G. Mackinney
Halter, C. Stone.
Halter, C. Stone.....................
Harness saddle tree, J. . . Scholl. 195,810
195854
195,819 195,864
$.195,65$
$.195,777$ Harrow coupling; Ough, Loyd \& Johnson........... 19558889
Harro Harrows, seeding attachment, E. H. Chamberlain. 195,796
Hat-pouncing machine, wheeler \& Manley (r). Hay rake and loader. C. A, o'Dell Hay rake, horse, W. Adrian
Head rest, I. B. Peckham
Heating and drying apparatu
Hobby horse, J. A. Peabody.
Horse detacher, G. W. Atkins
Horseshoe, C. H. Chubber
Horseshoe, \mathbf{C}. H. Chubbuck
Hot blast pipes, valve for, T
Keg for white lead, paints, etc., R. B. Turnbull.. 195,739 Lamp, L. H. Olmsted....
Lamps, jet pipe for gas, G. Johnson..... Lantern, G. A. Beidler
Latch, gate, C. B. Clar
Lathes, tool posts for, R. Neasham.
Leather-crimping machine, J. D. Bac
Lock, combination, H. Goodrich
Lock, for desks, etc., W. Park.......
Lock for desks, ete, etc., W. Park
Loom stopping mechanism. J. Megso
Mail bag catch, W. S. Ham
Meal bin, J. C. Durbin ..
Measure and funnel, S. Schippert.
Meats, curing, G. S. Gray.
Millstone dresser, J. G. Holderman.
Molding apparatus, Aikin \& Drummond Molaing machine, Aikin \&
Motor, spring, P. Cavalier
Motor, spring, P. Cavalier. ...
Nailing machine, C. T. Brandon
Napkin holder,
Oar, J. W. Wall.
Package
Package, sampling, w. P. Groom
Packing for oil wells, J. R. Cro
Packing piston, J. H. F. Otto
Packing piston, J. H. F. Otto......................
Paper for feeding, etc., G. L. Jaeger......195,823,
Paper for feeding, etc., G. L. Jaeger....... 195,823, 1955,32
Paper machine, P. W. Hudson.................. 193,
Paper machines, Buchanan \& Smith
Pen, Might \& Taylor..........
Planter, seed, W. S. Barton
Plows, attachment for, T. M. Harbert
Potato bug catcher, L. S. Munroe.....
Pruning shears, C. Llopd..........
Pump, White Wallace, $\&$ Moritz
Pump, J. B. Moutier..
Pump and well, J. Q..Adams.
Pump piston, G. W. Low......
Pump wall, White, Wallace, \& Moritz
Pumps for oil well,
Rail joint, B. Ross.
Railroad rails carrying,
Road engine, J. C. Carr.
Rulers, attachment to parallel, H. K. Averill, Jr. 195
Saddle tree, gig, W. H. Taylor
Safety pin, J. Jenkins
Safety pins, sharpening, Butler \& We.
Safety pins, sharpening, Butler \& Wellge
Sand dryer, J. Maguire........
Saw hand, cross cut, E. C. Atkins
Saw hana, cross cut, E. C. Atkins
Saw teeth, insertible, w. Burger.
Screw-cutting die, M. C. Johnson
Screw-cutting die, M. C. Johnson ...
Seal skins, treatment of, J. Kokesch
Seeder and planter, Bald win \& Shumard
Seeding machine. Van Brunt \& Davis,
Sewer gas, discharging, w. D. Stewart
Sho fastener, v. Nivois.
Sickle ginder
Sickle grinder, A. Cameron
Skate holder, E. C. Henderson...
Sled runners, forming, S. Gilzing
Smoking hams, N. G. Simonds
Snap hook. I. M. Doddridge.
Soldering machine, Dillon \& Clea
Stand for smoothing fabrics, J. F. Fres
Stand for smoothing fabrics, J. F. Frese 195,
Starch, drying and purifying, F. Melkersman.... 195,
Steam engines, A. Cunningham
Steam engines, A. Cunningham...
Stone cutting and dressing machin
Stone cutting and dressing machine, G. Campbell 19, Stove, T. Gemmell...........
Stove, cooking, C. T. Lynd.
Stuffing box, J. Lockhart.
Syringe, vaginal, R. H. Wood.........
Tan liquor, utilizing, H. J. Botehford
Tan legraph, automatic, T. A. Edison............... 195, 191, 195
Tile-laying machine, J. H. Spa

Tool bandle, J. H. Anthony
Toy, buzz, S. A. Standiford
Trace carrier for harness, J. L. Scholl ..
Truck iron for railway cars,
Track iron for railway cars, J. T. Wilso
Tubes, die for drawing, S. P. M. Taske
Turbine water wheel, J. M. Case......
T'ype case, A. A. De Calonne
Valve adjuster, slide, H. B. Doolittle
valve adjuster, slide, H. B. Doors
Vehicle dash rail, B. C Converse
Vehicle hub, J. M. Whiting.
Vehicle hubs. sand band for,
Vehicle wheel, W. J. Drew
Ventiiating steam street c
Ventiating steam street cars, E. Longstreth
Vessels, center board for, s.
Washing machine, W. I. Clous..
Watches, dust band for, o. Hoyt
Watches, dust band for, o. Hoy
Water closet, J. Demarest.......
Water elevator, compressed atr,
Weather strip, M. W. Williams.
Window frame etc., ventilating, A................ 195, Philips.. 195,
Yokes, ring and pulley for neck, S. M. Palmer
DESIGNS PATENTED,
10,263.-CARPETs.-Frank E. Allen, Yonkers, N. Y.
10,264.-LACE FABRIc.-Abraham G.Jennings, Brookl
10,264.-LACE FABRIC.-Abraham G.Jennings, Brookly
N. Y.
$10,65 .-$ Braceler.-H. Lang, Kennett's Square, Pa.
102 - Pocket Book Clasps.-L. Messer, New Yor
N. Y.
10,26i.-PRinted and Woven Fablics.-W. Morris,
10.268.-DISH HANDLES.-S. Stevens, Jersey City, N. J.
10,669.-SHow CARDs.-W. C. Wilson, \& T. S. Harrison,

Philadelphia, Pa
[A copy of any of the above patents may be bad by
remitting one dollar to MUNN \& Co., 37 Park Row, New

Valuable Practical

 BCInNTIFIC BOOZS

THE DINGEE \& CONARD CO'S ROSES

 1 NDEX PLATES FOR GEAR-CUTTING MA-

20,shepard's celebizated S50 Serew Cutting Foot lathe.

 PASSENGER ENGINES OF MIDLAND

KNOW

 THSEL Phillips' Vertical Burr Mills:

$\underset{\text { For }}{200} \mathbf{H A}$. P. PTw

NOTICE TO INV ENTRORS:
WORK FOR ALL ${ }^{\text {Wood-Working Machinery, }}$

65 Mige in catids

Wright's Automatic Cut-off Engine.

A Golden

AU'CTiOTON.

THE DRIVEN WELL
 The George Place Machinery Agency
 | |
| :---: |
| | |
 VINEAGAR. How made in in hours
 MADE TO ORDER.

DUC'S IMPROVED ELEVATOR BUCKET.

PATETT MMINERL WOOL:

In Savilust Mo Paring! 50 PER CENT. OF WOOD SAVED.

AGENTS wanted.

BLAKE'S STONE AND ORE BREAKER AND CRUSHER,

MEN Natizequavay EARLY

WANTED DETEOTIVESE-A Rew men in each

KNIGHT'S AMERICAN MECHANICAL DICYTONARY

JOHAN KOOPMANS \& CO. OF AMST'ER

 Jou can rake esioner day, sent your adaress to Agents

SALES WANTED ON A YEARY SMLABY MEN \$125

 The National Patrolpom Gas Co.

CONDIT, HANSON \& VAN WINKLE SoleAgents

STE MODEL NORK-GEAL PRESSES:

ON THE LAUNCHING OF LARGE VES

 SAMUEL HALL'S SON, Established 183 . 229 W. 10th Street, N. Y

BHD WARMMRE
Patented by Job. Crockett, of Newburgh, Ohio.
Northern Ohio Hospital for the Insane.

 ated, ased, or invalid class, is, M.D.D.,
Supt. Cleveland Hospital forthe Insane.

 Address JOB CROCKETT, Newburgh, Ohio. Baker Rotary Pressure Blower.
 Warranted superior to any WILBRAHAAM BROS.
 Wrais Pefiriteinilis his Wuks

Medal and Premium T.B.ALCOTI'\&SON MOUNT HOLLY, N. J. For their Improved TURBINE WATER WheBuS
Fine Tools, Foot Lathes and Saws,

Machinery.
Hardened Steel Árbors.
gaduertismentu.

ENGINEERS WANTED
 FOUNDRY AND MACHINE SHOP FOR Sale or Rent. We offer at a a bargain, our old works,
consisting of three fubstantian brick buidings, sheds,
ample water power and facilities sor conducting an iron

Webster's Unabridged FOUR PAQES COLORED PLATES. A WHOLELIBRARY NITSELF
The sale is aO times as great as the sale of any

A NON-CHANGEABLE GAP LATHE
 $\$ 66$ a Week in your own town. $\begin{gathered}\text { Terms and }{ }^{85} \text { outgt } \\ \text { Hree. }\end{gathered}$

CAVEATS, COPYRIGHTS, TRADE
Messrs. Munn \& Co., in connection with the publica tion of the Scientific American, continue to examine
Improvements, and to act as Solicitors of Patents form Improvements, and to act as Solicitors of Patents for
Inventors. In this line of bexper and now have unequaled facilities for the preparation of Patent Drawings, Specifications, and the Prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs.
Munn \& Co. also attend to the preparation of Caveats, Trade Mark Regulations, Copyrights for Books, Labels, of Patents. All business intrusted to them is done with special care and promptness, on very moderate terms.
We send free of charge, on application, a pamphlet
containing further information about Patents and how containing further information about Patents and how
to procure them; dircctions concerning 'Trade Marks, Copyrights, Designs, Patents, Appeals, Reissues, Infringements, Assignme
Foreign Paterts.-We also send, free of charge, a Synopsis of Foreign Patent Laws, showing the cost and tries of the world. American inventors should bear in mind that, as a general rule, any invention that is valuable to the patentee in this country is worth equally as
much in England and some other foreign countries. much in England and some other foreign countries. Five patents-embracing Canadian, English, German,
French, and Belgian-will secure to an inventor the exFrench, and Belgian-will secure to an inventor the ex-
clusive monopoly to his discovery among about oNe HUNDRED AND FIFTY MILLIONs of the most intelligent people in the world. The facilities of business and steam communication are such that patents can be obtained abroad by our citizens almost as easily as at
home. The expense to apply for an English patent is \$75; German, \$100; French, \$100; Belgran, \$100; Cana dian, $\$ 50$.
Copies of Patents.-Persons desiring any paten issued from 1836 to November 26.1867 , can be supplied
with official copies at reasonable cost, the price dewith official copies at reasonable cost, the price de-
pending upon the extent of drawings and length of specifications.
Any patent issued since November 27,1867 , at which time the Patent Office commenced printing the drawings and specifications, may be had by remitting to this office $\$ 1$.
A copy of the claims of any patent issued since 1886 will be furnished for $\$ 1$
as above, and state name of patentee, title of invention, and date of patent.
A pamphlet, containing full directions for obtaining United States patents, sent free. A handsomely bound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every pat ence for everybody. Price 25 cents, mailed free.

Address MONN \& CO.,
Publishers SCIENTIFIC A MERICAN.

CUARDIOLA'S

 COFFEE \& SUGAR MACHINERY
 Steel Castings, 5wwawax

ping Machine Have novel device for changing
length of stroke while in motion also, automatic dowz feed, and
quick return Four sizess
Patented 8668 , Wood $\&$ Light Machine C.
 Iron Working Machiner
Shafting, Pulleys, $\&$ oc.
MACHINISTS' TOOLS.

THE BIGELOW Steam Engine.
botil portable and stationary.

H. B. BICELOW \& CO., New Haven, Conn.
P.BIAISDEI工 \& CO: Worcester, Mass.,
Manufacturers of the Blaisdell
Patent
Tools.

Harrison's Nystem of Grinding! New standard flidering milas.
 Millers and Aitiow ioney For All.

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.
W. B. PRANKLIN, V. Pres't. J. IL. ALLEN, Pres't. J. B. PIPRCE, Sec't.

JOSEPH C. TODD,

 S. C. TODD,
$\mathrm{F}^{\text {OR AIL }}$ KIN. LITTLE ALL RIGHT NEW POCKET FIRE ARM.

Smallest and most perfect Revolver
in the world. Usual form of Stock,
hande, dispensed with. A perfect handie, dispensed with. A perfee
safegarad against accident. Send for
Right Fire Arm Co., Lawrence, Mass.
Saylor's Portiana Cement.

Mill Stones and Corn Mills. We make Bur Millstones, Portable Mills, Smut Ma-
chines, Packers, Mill 1 Ticks, Water Wheelis Pulleys, and
Gearing Gearing,
catalogue.

LEFFEL WATER WHEELS.
With recent improvements.
Prices Greatly Reduced.
Prices Greatly Reduced.
7000 in successful operation. FINE NEW PAMPGLET FOR 1877, James Leffel \& Co., 109 Liberty St., N, Y. City

Small Tools of all kinds; also GEAR WHEELS, part
of MODELS, and materials of all kinds. Castinge on Small Lathes, Envines, slide Rests, etc. Catalaguesfree.
GOODNOW \& WIGGTMAN. 23 Cornhill, Boston, Mass.

COMPRESSED AIR MOTIVE POWER-

S90

Pond's Tools,

Lathes, Planers, Shapers, Drills

S1200

 5\$3
Bonl's' Patent PReverese Motion

of mould in the
Bolld wood with
.

B. C. MACHINERY CO. Battle Creek, Mich.

THE TANITE CO., EMERY WHEELS AND CPINDERS.

$\$ 3$ PRRINTIIGG PRESS 53: $=5=$

H. W.JOHNS' PATENT. SEESTOS

Liquid Paints-all shades, finest in the world Rire Proor Paint, for Wood work, \&c. \&c.
 Steam Pipe and Boile r Coverings
Steam Pracking, fat and round ails sizes.
Fire Proof Ceatings, Sheathings an These articles are ready for use and can be easily applied by any one. Send for samples, Pamphlets, Price
Lists, \&c. H. W. JOHNS MANUFACTURING COMPANY,

 (YONCRETE AS A BUILDING MATERLALL-A chitects, London, by A. Payne, with discussion of of the
subject by prominent architects. This lecture and
hbe ext by
n
 FOOT LATHES $!$ 品
 AIR COMPRESSORS A SPECIALTY of HEAVY PRESSURES. THE NORW ALK IRON WORKS CO
SOUTH NORWALE, CONN.

1872, 1874, 1875,

SCIENCE RECORD.
A few copieg of these splendid books are offered at

 Geology avd mineralugy,
Astonony
Bocidit and necrology
Fach yearly volume containg agout eow octavo pages,
including a large number of handeome engraings:

SECOND-HAND ENGINES AND BOILERSFORSALE
Portable and Stationary. Junius Harris, Titusville, Pa: spare the croton and save the cost.
Driven or Tube Wells
 25 mima the mev geman patent cam

