

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Improved Railway Journal Boxes Wanted.

The present method of applying oil to the axles of railway cars is to take a quantity of fibrous material like waste or rags and saturate it with the lubricating material, and stuff the space in the box underneath the axle full of this saturated material, so that it is in contact with the journal. At the back of the box there is a more or less ineffectual attempt at making a tight joint to prevent oil.from leaking out and dust from getting into the box. That these attempts are ineffectual is shown by the condition of the wheels, which in most cases are covered with grease. There must be great uncertainty about the packing waste being in contact with the journal after the box has run a long distance and the contents of the box have been subjected to the consolidating effects of the jar and concussions of the road. This is, perhaps, the best practicable means of effecting this purpose; but it must be admitted that it is a very rude contrivance for doing it.
Ourobject in calling attention to the defects in the means employed and the methods adopted for lubricating cars is to account for the constant and almost universal annoyance from hot boxes. A record kept on one line showed that in one month there were 3,034 hot boxes. We take the foregoing from the Railroad Gazette. It is indicative of the great demand there is at the present time for improvements in railway journal boxes The gate length of American railway lines is now about eighty thousand miles. The con sumption of oil grease, and waste for lubricating car wheels is enormous wheels is enormous and the delays, acci dents, and damage from hot boxes very great. It does seem as if some ingenious mind could invent a simple improve ment that would obviate all these evils. On this head our cotemporary makes the following suggestions
"The lubrication of railroad cars is a much more com plicated subject than at first sight appears. Not only is it a question of the quality of the lubricants used, which is of itself till involved in tin involved ue will perhaps not be revealed excepting to the earnest inter rogations of me chanical, chemical, ard microscopic science, but there are questions of ma terial and propor terial and propor and journal bear ing, and construc tion of the oil-box itself. Let any one talk with a manu facturer of journa bearings for cars, and he will learn that there is very great diversity of opinion with refer ence to the mate rial and methods of manufacture o
such bearings. Brass compounded in various ways, phos phor-bronze, Babbitt metal, lead, etc., all have their advo cates. The manufacturer will tell you that, if railroad com panies were only willing to pay a fair price for good bear ings, there would be very much less difficulty with lubrica tion. Now, undoubtedly the material which forms the bearing is a very important element, but it is obvious that, as the journal rubs against the bearing, the quality of the former is just as important a factor in the question of fric tion as that of the bearing is.

IMPROVED METHOD OF COMPRESSING COTTON

Since the close of the late civil war, much attention ha been given to the problem of putting the cotton crop of America into such shape as to give vessels and rail lines the reatest possible revenue from its carriage
To a great extent this has been brought about by the fact that since the above period railroads have been active competitors for this business. Prior to the war no cotton was carried by rail from the South direct to spinners, Northern markets, or for export; while to-day it forms a very impor tant element in the business of our great trunk lines. Not
only is cotton now carried overland direct to our American only is cotton now carried overland direct to our American mills, but in all important centers bills of ladingare given by

the rail lines to all points in Europe, and the exchange is sold against these bills to local banks at these points. Memphis, Nashville, St. Louis, Montgomery, Selma, and other cities afford buyers and shippers export facilities to-day equal to New Orleans or Savannah. For the crop year just closing it is no exaggeration to say that the trunk lines of the North have carried $1,000,000$ bales. .This revolution has been brought about by the compress.
In 1865, a car load of compressed cotton consisted of 30 to 35 bales. To-day, from 40 to 45 bales, weighing 20,00 lbs. is the standard. Low rates and the most rigid economy are now compelling an advance in the last named tonnage Cars capable of carrying 25,000 to $30,000 \mathrm{lbs}$. are replacing he old standard of $20,000 \mathrm{lbs}$. Improved road beds and bridges are making these loads safe and economical to move. And now the rail lines are demanding heavier loads.
The object of the invention herewith illustrated is to ac complish this point. Band stretchers,' pulleys and tighten ers, and devices of such nature usually require special fast enings, thus compelling the compress to throw out the buckles that come on the cotton and substitute others adap ted to the tightening mechanism. This is expensive. The of the stretcher involves considerable loss of time and may reduce the work of the compress from 70 hour.
Mr.Burr's method t is claimed, allow the employment of any fastening in use, and, instead of reducing the capaci ty of the compress, increases it. Th bed or saddle of th press and, B , the follower or bottom block, to which the platens areattached are shnwn in Fig are shnwn in Fig. have fixed platen have ixe Figs. 2 and 3 , run ning transversely across their faces At B are block placed in the space between the ribs and having a thick ness equal to the height of the ribs and a length equa to the width of the bed. These block are provided with two or more guide rods, C, that pas through the plates D, and are secure by the check nuts, as shown. These nuts, besides acting as guides, regulate the height to which the blocks, B rise Recesses are formed in the blocks, B, to receive springs of rubber, E. Thes springs surround the guide rods, and bear the blocks up ward with such forcethat their com bined action is mor than sufficient to hold up the super imposed bale. Twen ty to thirty band cut to proper length are fastened by twine into a snug. bundle and the buckles fastened on the ends, as shown in Fig. 4. Thes bundles are laid [Continued on pag
162.]

§rientific Smeritan.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
NO. B' PARK ROW, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included...
One copy, six months, postage included
Clubs.-One extra copy of THE SCIENTIFIC AMERICAN will be supplied
gratis for every club of five subscribers at $\$ 3.20$ each; additional copies a gratis for every club of flve subscribers at
same proportionate rate. Postage prepaid.

The Scientific American Supplement
is a distinct paper from the Scientific American. THE SUPPLEMENT is issued weekly; every number contains 16 octavo pages, with handsome
cover, uniform in size with ScIENTIFIC AMERICAN. Terms of subscription cover, uniform in size with SCIENTIFIC AMERICAN. Terms of subscription
for SUPPLEMENT, $\$ 5.00$ a year, postage paid, to subscribers. Single copies 10 cents. Sold by all news dealers throughout the country.
Combined Rates. - The Scientific American and Supplement will be sent for one year, postage free, on receipt of
papers to one address or different addresses, as desired.
The safest way to remit is by draft, postal order, or registered letter. Address MUNN \& CO., 37 Park Row, N. Y.
Subscriptions received and single copies of either paper sold by a
Publishers' Notice to Mail Subscribers.
Mail subscribers will observe on the printed address of each paper the
time for which they have prepaid. Before the time indicated expires, to insure a continuity of numbers, subscribers should remit for another year.
For the convenience of the mail clerks, they will please also state when their subscriptions expire.
New subscriptions will be entered from the time the order is received;
but the back numbers of either the SCIENTIFIC AMERICAN or the ScIENhut the back numbers of either the Scientific American or the Scien TIFIC AMERICAN SUPPLEMENT will be sent from January when desired
In this case, the subscription will date from the commencement of the In this case, the subscription will date from the commencement of
volume, and the latter will be complete for preservation or binding.

VOL. XXXVII., No. 11. [New Series.] Thirty-second Year.
NEW YORK, SATURDAY, SEPTEMBER 15, 1877.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT,
NO. 89 ,
For the Week ending September 15. 187%.

american fruit in foreign markets

Hitherto, for the most part, the least profitable seasons for unfrequently the waste of fruit most abundant crops. Not to market, or to markets not already over-stocked, has amounted to millions of dollars' worth in a single season; a recent and intelligent estimate puts the loss for such season as high as $\$ 15,000,000$.
Thanks, however, to the ingenuity of our inventors, Ameri can fruit-growers no longer need to see the best fruits of their labors, the most bountiful gifts of Nature, made prac tically valueless by local plethora, while half the world is long ing for a taste and willing to pay a good price for the unattainable luxury. Rapid transit, refrigerating ships and cars, and other means of forwarding fresh fruits to great distances have widened enormously the market for such products; while contrivances for drying, preserving, canning, and so on have lately been so multiplied and improved as to make
it possible not only to prevent wholesale waste of fruit, but it possible not only to prevent wholesale waste of fruit, but
to secure for distant or future use the whole crop of the most abundant years. As a natural consequence, fruit raising promises to furnish from year to year a wider and more regular source of profit; and every year's inventions will help to
make the industry more and more remunerative and sure. make the industry more and more remunerative and sure. The home market for fruit, fresh and canned, is already co-extensive with the whole country, and the fruit season lasts the entire year; the foreign market widens almost as rapidly. The following figures, from an extended review of the condition and prospects of the export trade, printed in the Tribune, shows the progress made during the past sixteen years, the years severally ending July 1st.

269,000	1870
${ }_{364,000}^{238,000}$	1871
865,000	1873
1,001,000	1874
492,000	1875
380,000	${ }_{1877}^{187}$
$\begin{aligned} & 406,000 \\ & 306,000 \end{aligned}$	1877 (11 m

.. \$ 542,000
804,00
$1,700,000$
990,000
$1,63,000$
827,000
$2,831,000$
This for the exportation of fruit to Europe. Considerable quantities go also to Australia, South America, and the West Indies. The large figures for 1865 are owing, in part to the exportation of fresh apples, which was then begun on a considerable scale; the business being fairly established in 1873. Since October, 1876, the shipments to Englandmostly baldwins, greenings, russets, and Newtown pippins -have amounted to nearly four hundred thousand barrels, always at remunerative prices. Circulars recently issued from Liverpool state that as a result of the season's trade a
preference for American apples has becn established in Engpreference for American apples has becn established in Eng
land, and that hereafter, whether the English crop is large or small, large supplies of well selected American fruit are likely to find a good market there. The capacity of the English market for fresh peaches and pears has not yet been tested.
There is reason to believe, however, that it will be limited There is reason to believe, however, that it will be limited solely by the capacity of our refrigerative ships to land sup plies in good condition. The foreign market for canned peaches is almost unlimited, upwards of seven hundred thousand dollars worth having found a lively demand abroad
during the first ten months of the season of 1876-7. And during the first ten months of the season of 1876-7. And
dealers are unanimous that, for the present, peach-growers wealers do better to can their surplus crop rather than dry it. The foreign market for dried peaches has yet to be tested. If the recently invented evaporators prove capable of drying large quantities cheaply and well, the demand for dried peaches abroad may be indefinitely increased. At present the price is too high to tempt the working classes to buy, and they are our principal customers for dried fruit, particularly those of Germany. The poor people of England and Russia buy to a limited extent; France is also a buyer, but whether The miners of Australia are alsó large buyers, but there is not much reason to count largely on a permanent market there. Fruit growing is increasing rapidly in Australia, and before many years the colonies in that quarter of the world must be able to supply at home the home demand. The demand for dried apples in Europe and Australia is now very great, so long as the price does not exceed seven cents a pound; at five cents the market is practically unlimited. Last year something like fourteen million pounds were exported. Curiously sliced apples, though really better than the quartered, will not sell at all abroad. Foreign buyers want them cut in pieces as large as possible, the larger the better. The manner of packing is also important. For the European market the packages must not be smaller than bar rels, and hogsheads are preferred. Australia, on the contrary, will not have packages as large as barrels. For that market the apples must be put up in 55 lb . and 100 lb . kegs, mules. Venezuela also demands small packages.

INDIGESTIBLE MEDICINES.

It is not an uncommon blunder for young or ignorant phy sicians to write prescriptions, the ingredients of which chemically reacting upon each other produce substances wholly different in nature and physiological effect to thos stance of how two harmless drugs when combined formed a highly poisonous mixture, and it may so happen that innocent mendicaments may unite to produce a compound dancent mendicaments may unite to produce a compound dan-
gerously explosive. For the knowledge that still another danger lurks in the apothecary's vial we are indebted to Dr J. W. Compton, of Evansville, Indiana, who has called the
attention of physicians to the frequent indigestibility of their
curative potions. If medicines are not dissolved in the di gestive fluids of the stomach and intestines they can never be absorbed: if not absorbed they can never enter the circulation and hence cannot produce the results intended. There are various diseases which affect these fluids. Thus, they may be carried off by hœmorrhage and sweats,in some maladies the saliva may be withheld, in others the gastric juice becomes deprived of its solvent principles or may be arrested, liver ailments may withhold the alkaline bile, and so on; so that the medicine, especially if solid,instead of producing the slightest good, acts merely as an irritant and foreign sub stance, and occasions at best loss of valuable time. Dr. Comstock gives several striking instances of invalids re jecting medicines in an unaltered state, the drugs being in all instances given in the form of pills, and he calls especia notice to the fact hitherto apparently overlooked that if, in a depraved state of digestion from disease, solid food cannot be digested for the nourishment of the patient, solid medi cines cannot be digested and appropriated to the cause of disease. Dr. Comstock, we think, might have gone a step further and questioned how far all large doses are benefi cial, or in other words how much of the dose does the work and how much is simply excess and consequently foreign matter. The homœopathic practice of medicine furnishes any number of instances where infinitesimal quantities of specifics produce the most marked effect, certainly an effect as plainly apparent as that resulting from a large dose allopathically given. Now if the combining equivalents, so to speak, for a given result are present in one case, they are equally so in the other, the end reached being the same Hence in the latter example it follows that a very large proportion of the dose is useless if not harmful, while it usually has the further demerits of being expensive and dis tasteful.

THE SUGAR INTEREST IN PERU. by professor james orton.

It is singular how exotics are becoming the ruling objects n Peru-Europeans, horses, sheep, sugar-cane, coffee ranges, grapes, bananas, wheat, eucalyptus tree, etc. Peru hough rich in minerals, was never plentifully supplied with useful animals and plants; but possessed of every conceiv useful animals and plants; but possessed of every conceiv
able variety of climate and soil, she has shown herself ca pable of giving a congenial home to every form of life Northern and Southern Europe can meet in this little Re public.
Among the foreign introductions, always excepting the mmigration of Europeans, the sugar-cane is the most im portant. Better than guano or saliter, it is destined to be the surest and most inexhaustible source of the wealth of Peru. The annual yield of sugar and spirits is estimated at $\$ 20,000,000$. The recent rise in the price of sugar has given a new impulse to its cultivation, and the prospect is tha Peru will ere long be a formidable rival of Cuba and the ther Indies. The usual cane crop in the West Indies is $1,130,000$ tuns; in Java, 200,000; in Brazil, 170,000; in Lousiana, 75,000; in Egypt, 40,000. The crop in Cuba last yea was thirty per cent below that of 1875, while the beet crop in France and Germany was well nigh a failure. In 1875, Peru exported 60,000 tuns; in 1876 , over 70,000 . That amoun will be greatly increased this year, provided laborers can be obtained. But thousands of acres are lying idle for want of hands. In fact, the commerce of Peru is diminishing for lack of labor and capital, and Peruvian statesmen are anxiously looking to China for the one and to Mr. Meiggs for the other. The squint-eyed Celestials outbid and outdo the the mongrel races along the coast, and the mountaineers cannot endure the lowlands. But Chinamen must be better treated than they have been. Even now, great as is the de mand for foreign labor, the natives, as in Trujillo, would ersecute the Asiatics and drive them from their shore.
In no other country, save Egypt, is the cane crop so sure as in Peru. Occasionally, as in 1871, the crop may suffer by drought from want of the supply of water from the sierras but in the course of ten years, the decrease would not amount on the average to more than twenty-five per cent As the cultivation is regulated by irrigation as in Egypt, Peru has an advantage over Cuba, where planters depend on Peru has an advantage over Cuba, where planters depend on country, save Egypt, since she can grow the cane withou intermission. The slave labor of Cuba cannot produce it so cheaply. The cane grows more slowly than in Louisiana, and hence is richer in saccharine matter. The amount of juice to the cane is about sixty-five per cent, and its average density is 10°. In Northern Peru, two tons of cane give four hundred gallons of juice, each gallon yielding 1.35 lb . of sugar. The best season for planting the cane is Novem ber, and the yellow variety (originally from India) is pre ferred to the red, being richer. The first planting takes fifteen months to mature; after that, the crops ripen every twelve months. This is true only of Northern Peru, where the soil is thinner but more tropical than at the south; in Cañete, for example, it takes fully two years for the firs crop to mature. Three or four crops are obtained before replanting is necessary. The green and ripe cane are seen in the same field; there is cutting on one end and planting a the other; so that the ground is never idle. The actual time spent in the manufacture of sugar is eight months; the rest of the year is occupied in repairing acequias, etc From the small establishments, the sugar is exported in the crude " concrete;" in the larger mills, it is first refined. For inland transportation, western Bolivia being supplied from Peru, it is put up in conical loaves, weighing 45 lbs. each

Under the present American tariff, refined sugar goes by New York to Europe, the law favoring the New York refiners without benefiting the consumer or the Government revenues. Then, too, the Hawaiian Reciprocity Treaty, allowing free importation of sugars from the Islands, tends to turn the sugar of Peru across the Atlantic.
The sugar cane is cultivated on both sides of the Andes, but it does not grow at a higher altitude on the western slope than 4,500 feet, while on the eastern side its limit is 2,000 feet higher. In the Marañon region, as at Moyobamba, Tarapoto, Aipena, and San Regis, and also in the Urubamba Valley (Upper Ucayali), it grows luxuriantly but will not give crystallized sugar; so it is turned into aguardiente There the grain ripens in six or seven months after planting. Considerable sugar of excellent quality is manufactured at Abancay on the Apurimac, but rudely purified with clay; it is mainly consumed in Cuzco, where it brings forty cents a pound.
But the Pacific slope of Peru, particularly of northern Peru, is the great sugar district; there it is fast taking the place of cotton and rice. The whole coast presents a series of arid wastes and fruitful valleys-alternating Saharas and Edens. Nothing is wanting but water to convert the entire coast into a garden twelve hundred miles long. But it is worthy of remark that wherever the railroads run from the coast into the mountains, they seem to have changed the meteorological character of the lowlands, rains being more frequent on the coast terminus than formerly.
Every port above Callao exports sugar, those of Talaverry and Eten taking the lead. All told, there are about one hundred and twenty large sugar estates on the coast. Lambageque and Chiclayo contain eighteen, of which that of "Pátapo" is the chief and probably the largest in the country. It guarantees $\$ 5,000$ a month freight to the railroad. The Pacosmayo Valley has fifteen, of which the "Lurifico" is the most important, and to which I shall recur. The rich valley of Chicama near Trujillo is crowded with sugar plantations: its twenty-four mills produce to the value of one million soles per month. The machinery is English. The "Casa Grande" of Sr . Albrecht is the most complete. Further south, near Chimbota, in the Valley of the Santa, are two large establishments, "Puenti" and "Viuzos;" the
former has American machinery precisely like that of "Lurifico," only the charcoal process is not used. Choncay, just above Lima, has fifteen estates, of which "Palpa" is the largest, while around the capital are more than twenty, among them the well furnished establishment of "Santa Clara." In the valley of Cañeta are the extensive plantations of the late Henry Swayne, twenty-five hundred acres being under cultivation. There are also numerous cane estates in the departments of Ica and Arequipa, but they yield comparatively little sugar.
The "Lurifico Hacienda" near Pacosmayo being a repreentative establishment, I will describe it. The estate was once the property of the unfortunate President Balta. afterwards of Henry Meiggs. It now belongs to Mr. Ford of the house of Dreyfus \& Co., and is under the superintendence of Mr. Kauffman, from Ohio. Two thousand acres are covered with sugar cane, the rest being given up to rice for the laborers. English steam plows are used in cultivation.
The mill works were designed by Cahill and constructed by Morris of Philadelphia. They cust when put up $\$ 250,000$. Morris of Philadelphia. They cust when put up $\$ 250,000$.
The engine is ninety horse power, and the roller weighs twelve tuns. Three small locomotives from Paterson, N. J., bring in the cane from the field and discharge it upon a "conductor" seven feet wide and one hundred and fifty feet
long. The dried pressed cane, called "bagass," affords all the fuel used for engine and locomotives. There are twelve copper "defecators" or purifiers, each holding four hundred gallons; when full fed, the mill can fill cighty defecators daily. In the defecators, the juice, " guarapa," is treated with lime and heated by steam to 140° to remove acid and scum. Thence the liquor goes to two of the twenty filters filled with animal charcoal, and next into large iron tanks, whence it is transferred to three copper "vacuum pans" in succession, No. 1 having a vacuum of six inches,
No. 2 of thirteen inches, No. 3 of twenty-two inches. In these it is boiled by the exhaust steam. When it leaves the third pan, it has a density of 27°, and is called "syrup." Carried to the clarifiers, where it is treated with steam to remove more scum, it passes next into the rest of the charcoal filters, and then into two other iron tanks from which it is drawn into a fourth copper exhaust pan, called "strike pan," with a vacuum of twenty-five, where it is boiled for one hour till it becomes a thick syrup. Then by letting in a small portion of thinner syrup, it grains, and by continuing this, the size of the grain increases. From the strike pan it goes into the "coolers," which are pans five by six feet on rollers. When cold, it is transferred to the "mixer," where it is stirred by machinery so that it will run into the "centrifugals," which make 1,200 revolutions a minute, to be deprived of its molasses. The coarse grained sugar thus made is called "muscabado" or "granulado " No. 1, and is exported in bags. The grains are apparently cubes, the "blow-up," where it is subjected to jets of steam, skimmed and taken to the strike pan, and made into sugar No. 2. The refuse molasses and guarapa are taken to the distillery aad put into large vats for fermentation, thirteen all told, ten feet deep and ten feet in diameter; thence to the still, rectifiers, and condenser. Every day 1,400 gallons of rum of 40° are made.
The Lurifico works are capable of turning out per day

35,000 gallons of juice, requiring one hundred and seventy five tuns of cane, or nearly $50,000 \mathrm{lbs}$. of muscabado. The length of the process from pressing the cane to bagging the sugar is two days, including one for cooling. In the field and mill there are 939 Chinamen, who get two rations of rice per day, one sol a week, and two suits of clothes a
year. They all live within a small enclosure called "Galyear. They all live within a small enclosure called "Gal
pón," adjoining which is an excellent hospital under the charge of Dr. Heath. They work ten hours a day-five hours before breakfast and five hours in the afternoon. On Sunday, which is pay day, they work but four hours. In less than four years the majority will be free, as their term
of servitude will expire: some will re-contract for a year or two at higher wages, but many will set up for themselves for the great ambition of the more intelligent Chinamen is to keep a shop or fonda. The labor question is therefore constantly revived, and is the uppermost topic at the suga haciendas of Peru.

THE EMIGRATION OF AMERICAN MECHANICS TO ENGLAND.

During the past three months some three hundred and twenty-five mechanics have emigrated from this country to England under contract with English employers. In Eng nd, for some time past, building trade strikes the rule, and at present these are in progress in London, Man chester, and seven other large cities and towns. It is to avoid the effects of these strikes that employers seek to im
port American workmen, so that, in brief, the case is preport American workmen, so that, in brief, the case is pre-
cisely the same as if railroad corporations here, during the late uprising, had imported English navvys and train hand to fill the places of their former employees.

Now we need not point out that this is a bad status for any workman in a strange country at the outset. Necessa rily he becomes at once an object of aversion to the leagued members of histrade, and this is none the less intense be cause he is a foreigner. He will find, however unjustly Yankee cheap labor in England placed beside Chinese cheap labor here-the difference recognized only in kind. Law
and justice, it is true, are on his side, but the difficulties of his position will not be modified thereby. While his con tract holds he may continue on, but at its close, or if he emi grates under no contract, then he comes into competition with the great mass of working men, and enters into a condition far worse than that which he left his own country to escape. The United States Consul at Liverpool has issued a public warning against the current report that fewer men are out of employment in England than in the United States. He says that many American mechanics are now in suffering and in destitution abroad; that able-bodied working men are constantly calling at the Consulate for relief which cannot be accorded, and he positively asserts that neither skilled nor unskilled working men from abroad can find employment in England. The English journals themselves express sur prise at the emigration, and call it "a complete reversal of the ordinary course of things." As for any relief from labor troubles being gained, the Engineer reviews the present strikes in progress and sees no likelihood of any such result. On the contrary, it says that "facts do not predicate peace ful times for the emigrants." Our working men will find, moreover, that the English practice of their trades is not their practice; that English habits of life are not their hab its; that, in short, they have got to begin and learn much that is new and strange before they stand on an even footing with their English tradefellows. And they will further find that if, after their contract time has expired, they return home, their years of labor abroad have not brought them nearer to independence, but that there are still new associations to be formed and a new start to be made. It is better to stay at home, better to be first sure that every channel of honest work in this country is exhausted, better to learn to live on reduced wages until the better times which must eventually arrive are at hand, for when they do come they will as cer tainly bring their rewards for those who

Learn to labor and to wait."

PROGRESS OF THE SCIENTIFIC AMERICAN.

Probably there is no weekly periodical in the world whose separate issues are scanned by so many readers as the Scien tific American. In the hundreds of libraries and readingrooms where it is filed, no journal is in greater demand or more constantly consulted. In many villages each copy of our paper goes through a regular round of circulation and reading from one neighbor's house to another; and not unfre quently from a company of readers in one country to others in another country. For example: a Brazilian subscribe writes us that he receives his Scientific American in that country through a club; after himself and friends have en joyed its reading, he forwards it to his brother in England to be by him, after perusal, sent on to another brother in New Zealand.

In this way the effective influence of the Scientific Amer ican becomes very widespread and enormous; a fact to which our advertisers can testify by practical experience No other paper brings them so many orders or such intelli gent, excellent customers. We estimate the total number of ur weekly readers at not far from half a million. The secret of this is that each number of the Scientific American con-
tains valuable information, which is fresh and useful irrespective of the date of the sheet; and it travels through the world until it is worn out, furnishing entertainment and benefit to every reader into whose hands it falls.

increasing the flow of springs.

It is a well known fact that rain water and the water pro duced by melting snow on high land, sinks into the soil until an impermeable stratum is reached. Then it follows hat stratum as the same tends downward, thus producing ubterranean rivers or brooks. When a well is dug this un derground water is sought for; but when the water itsel omes to the surface, then the source is commonly known a spring. In both cases, however, the water flows alon a slope higher of course at the point of departure than a the point where the water is obtained. But during its jour ney obstacles are often encountered which check the flow o that sometimes a well can be pumped out much faste than it will fill. Hence, after every drain upon its resources, it is necessary to wait a considerable period in order to allow the scanty influx to replace the amount of water removed Such wells frequently dry up altogether during the presen eason of the year
There is a simple way of increasing the flow of wells, de ised some years ago by M. Donet, of Lyons, France. Or dinarily the mouths of wells are left open: hence all along the water, from well to original source, there is an equili brium of air pressure. M. Donet's plan is simply to close he well and pump out some of the air. This creates an ex cess of pressure to drive water into the well; the supply is thus increased temporarily, and at the same time the under ground channels through which the water passes are en arged by the stronger stream, and so the supply also be comes permanently augmented.
In the case of a spring, however, one of the principal ad vantages is that the water lifts or ought to lift itself to the level of the soil, and consequently, when a pump is needed, then the source is no better than any ordinary well. Ther a way, however, of increasing the flow of springs by the aid of a simple siphon, which has been devised by M. Chef debien. At the point where the spring emerges make an airtight tank, having a close cover, into which insert a pipe. Bend this pipe over and carry it along for a few hundred eet or so, until by following the downward trend of the and, the end reaches a level, say six feet lower than that of he spring level. Now, apply a pump and draw wate through this tube. It thus becomes a siphon (the pump is is at once removed), and the water continues to flow unde the influence of a portion of the atmospheric pressure equiv alent to the difference of level existing between the spring and the lowest end of the tube.
M. Chefdebien has tried this plan on a spring which took 24 hours ordinarily to fill a hollow place in the rock contain ing about 200 quarts. From the spring he led a piece of lead pipe four inches in diameter over a distance of 192 feet so that he obtained a difference of level of nearly 8 feet A watertight and airtight vessel was also built on the sprin basin, so as to surround the natural escape orifice. This was six years ago. During that time the water has run con stantly; and instead of yielding 200 quarts per 24 hours it has given 3,800 quarts steadily per same period. That is, the flow has, by the above simple expedient, been increased nineteen times.

scientific Chess.

The Boston Daily Globe, in commenting upon the Chess Re cord in the Scientific American Supplement, says: "W unhesitatingly give it as our opinion that there is no othe Chess Department in any paper on the earth, under the earth, or in the heavens above the earth, that "can hold a candle to it." All those who miss seeing this department of Loyd's will miss a golden treasure."
Coming from any other source we might be inclined to egard such encomiums as mere flattery. But the Globe is a vide-awake newspaper, and its chess editor is one of th ablest writers in this sphere. If he does not know whea rom chaff, no one does.

Carier Piseons tor the
Messrs. Moir and Son have a number of pigeons prett regularly employed for the purpose of bringing early intelligence of the results of the herring fishery, and the experi ment has been very successful. One of the birds, says the Aberdeen Frree Press, is taken out in each boat in the after noon, and after the nets have been hauled on the following morning and the extent of the catch ascertained, the pigeon is despatched with a small piece of parchment tied round its neck, containing information as to the number of crans on board, the position of the boat, the direction of the wind and the prospects of the return journey, etc. If there is no wind to take the boat back, or if it is blowing in an unfavor able direction, a request is made for a tug; and from the par ticulars given as to the bearings of the craft, she can be picked up easily by the steamer. The other advantages of the system are that, when the curers are apprised of the quantity of herrings they may expect, they can make prepa rations for expediting the delivering and curing of the fish -Land and Water.

Sizing for Sign Work.-One of the best mordants or sizing for sign work is made by exposing boiled linseed oil o a strong heat in a pan; when it begins to smoke, set fire to the oil, allow it to burn a moment, and then suddenly ex tinguish it by covering the pan. When cold it will be ready for use, but will require thinning with a little turpentine.

Remedy for Poison Ivy.-E. A. Blood, of Bloomington Ill., says that bran poultice is an infallible cure for poison ivy.

IMPROVED FARM LOCOMOTIVES AND STEAM ROAD

 ROLLERS.Messrs. Aveling \& Porter's well known road and farm lo comotives and their steam road rollers have had a new duty and are now adapted for use in connection with the Blake Crusher Company, of New Haven, to their stone and ore crusher. The crusher is mounted on strong wheels, as il lustrated, and, by the aid of the Aveling locomotive or their steam roller, can easily be removed from quarry to quarry or to any place where it may be found more convenient or cheaper to take the crusher to the material than to move the material to the stationary crusher. As either of the engines can likewise be used for hauling or consolidating the broken stone, or driving the crusher, the convenience and economy of this arrangement will be manifest.
Messrs. Aveling \& Porter, we are informed, have built up ward of 1,300 road and farm locomotives; and their extensive manufactory at Rochester, England, has, during the last two years, been doubled in capacity. By reason of the varied duties to which the Aveling traction engine can be applied, including hauling, plowing up prairie land, thrashing, and general farm work, the demand has very greatly increased, ard from six to eight engines leave Messrs. Aveling \& Porter's works every week throughout the year.
The road locomotive is largely employed instead of the or dinary portable engine for farm and other work; it is extensively used in Great Britain for plowing and hauling farm produce, and heavy material on ordinary roads, and its reliability and great economy, when taking the place of animals for such work, have built up for the manufacturers a prosperous and growing business in England.
The engines are built of great strength and comparative lightness. Their ability to ascend steep grades with heavy loads, their handiness, security against damage when traveling even on rough roads, are leading results obtained.
As an illustration of the value of these locomotives for hauling purposes, the following estimate of the daily expense, we are informed, may be taken as approximately correct, altering cost of labor and fuel for different localities: Size of engine, say, 16 horse power; journey 12 miles out, loaded, returning empty; grade of road varying, say, from 1 in 25 to 1 in 10 ; load (without wagons) 12 tons Wages, engineer, $\$ 2.50$; as sistant, with wagons, $\$ 1.75$ coal, half a ton, $\$ 2.50$; oil and waste, $\$ 0.50$; interest and wear and tear, say 15 per ceat, $\$ 2$; water, say, $\$ 1.25$ $\$ 10.50$, total cost of hauling 12 tons of material 12 miles or about 7 cents per ton per mile.
One man only is required for the entire management of the engine, and the total cost of running one of these lo comotizes, of sufficient size to haul and drive the larges thrashers, does not exceed $\$ 4.50$ per day, including wages, fuel, and oil. Such an engine would easily con vey loads of 10 tons of ma vey loads of 10 tons of ma terial on ordinary roads and
ordinary grades. ordinary grades.
The steam road roller of Messrs. A veling \& Porter costs about the same sum fo running expenses, and the results of constructing and maintaining roadways, by the aid of this machine, are, it is claimed, that a saving of from 50 to 65 per cent in ma terial and wear and tear is ef fected.
At the Philadelphia Exhibition, in 1876, the only prize awarded for steam road rollers was given to Messrs. Aveling \& Porter. Both during and after the Exposition the locomotives were employed by the British and Canadian Commissioners in removing from place to place large quantities of heavy machinery and material.
Mr. W. C. Oastler, 43 Exchange Place, New York city, is Messrs. Aveling \& Porter's representative in America.

Mote from the Eye.-Take a horsehair and double it, leaving a loop. If the mote can be seen, lay the loop over it, close the eye, and the mote will come out as the hair is withdrawn. If it cannot be seen, raise the lid of the eye as far as possible, and place the loop in it as far as you can, close the eye and roll the ball a few times, then draw out the hair. The substance which caưsed so much pain will be sure to come with it.
[Continued from first page.]
on the ribs, A, and held in place by the spring hooks, F, Fig. 2. It will be seen that, as the uncompressed bale lies upon the blocks, B, it may be moved about without

disturbing the band which lies between them. The opera tion of the machine is as follows: A bundle of the bands, as shown in Fig. 4, is placed on each of the ribs and between
the movable blocks, which prevent them from moving later
ally. They are held on to the face of the ribs by the hooks,
ald
ance of the bands), the press moves up until it is fully compressed. As soon as the pressure is applied the movable blocks yield until they rest on the plate, D, leaving the bands not only in contact with the bale, but, in the case of full bundles, forced into the cotton from an inch to an inch and a half.
The bands are now fastened, the press lowered, the bale removed, and the operation is repeated. The supply of bands is renewed from time to time as they become exhausted. We are informed that 30 bands has been found not to be too many to put in each bundle. Thus the time consumed in reefing or passing the single band through the press is saved. This results in a marked increase of the amount of work done by the press.
Again, the absolute contact obtained by this method renders impossible poor or shiftless work by a careless tier. These platens are in successful use on the presses of the Union Cotton Compress Association of Memphis. Patents were issued to John T. Burr, dated September 15, 1874, and January 23, 1877, through the Scientific American Patent Agency. Further information may be had by address A. E. \& J. T. Burr, either Memphis or Nashville, Tenn.

The Coming Great Famine in Madras.

A calamity greater, says the Saturday Review, than any that has yet occurred in India during British rule, is now threatening the Presidency of Madras. The famine of this year, which the Government is at present fighting to the extent of its resources, is to be succeeded by another due to the failure of the rains of the Southwest Monsoon, which will continue over another year and which will inflict with double rigor a people already weakened by past suffering. It is reported that even during the present famine more people have been found dead in Madras in one morning than died during the whole of the Bengal famine, and it is asserted that more than half a million of inhabitants have already succumbed.

The difficulties of the situation are increased by the lack of means of inter-communication. There are very few railways, and most of the grain is taken into the interior by bullock carts. But there is no food for the animals any more than there is for man, so that practically there is no way of carrying relief into the distressed districts.
It will be seen that in this case eight portable and cheap field railways will be of great utility. There is no fear of scarcity of grain provided money be obtained to buy it money be obtained to buy it and means of transportation suitable for the purpose be at hand. The funds are already being raised by appeals to the charitable in England, and to inventors and manufacturers the world looks for the necessary railways or other modes of carriage. It has been proposed that men be used for traction purposes on these roads instead of bullocks, six men being estimated equal to one brute. It is hardly necessary to add that the cheapness of the system proposed will be an important consideration, as the routes will probably be both long and numerous.

Dipping Acid for Brass.
A dipping acid for brass is made by mixing together nitric acid, sulphuric acid, and F A bale of cotton is now put into the press, where it is muriate of ammonia, or sal ammoniac. There is no certain rule by which to mix the acids. The bath is composed After the bale is adjusted to the required position (the mostly of nitric acid, the sulphuric acid and the muriate of movable blocks holding it up and preventing any disturb-- ammonia being present in inferior quantities. The mixture

AVELING \& PORTER'S ROAD \& FARM LOCOMOTIVE AND BLAKE'S CRUSHER. must be so strong that a mom tary immersion will be sufficient to make the work bright and clear. To remove the acid, wash in hot water; and to dry the work, imbed it in fine hot saw dust. Heating the work before dipping will remove the oil or grease, which must be removed, or the acid will not act effectually or satisfactorily.

The best Oilstone for Small Drills, etc.-An Arkansa or Wachitas stone, which can be procured of almost any hardware dealer, is the best for sharpening small cutters and drills. Use plenty of sperm oil on the stone, and keep it en closed in a tight box or cas closed in a tight box or case made to secure it. Clean th with kerosene

COMBINED SKIMMER AND FORK.

The annexed engraving represents a new instrument designed to be used for cooking purposes, and is so con structed that it may be used as a skimmer and a fork. The two parts are connected in such a manner that they may be slid back and forth upon each other, to adapt the instrument to be used as a skimmer or as a fork, as may be desired
The skimmer is convexed and perforated with numerous holes, in the usual manner. The fork is made of iron or steel wire, and the prongs and the lower part of the handle are curved upon the same arc as the skimmer. The shank or lower part of the fork pases through and slides in a keeper attached through and slides in a keeper attached to the back of the skimmer near its
rear edge. 'The prongs of the fork pass rear edge. The prongs of the fork pass
throagh holes in the skimmer near its through holes in the skimmer near its
forward edge. The prongs of the fork are made of such a length that when it is drawn back the points of the prongs may be back at least as far as the forward edge of the skimmer, and when the fork is pushed forward its prongs may project far enough for use as a fork.
Patented through the Scientific American Patent Agency February 1, 1876, by Emerson E. Flage, of Brattleborough, Vt.

IMPROVED HOP CULTIVATOR.

This machine has been constructed for digging hop ground by steam power. In the best cultivated hop gardens it is the custom to dig the whole of the land by hand, in others small two-horse plows are used to plow between the rows of hops, these rows being afterwards dug by hand.
Although originally designed for use in hop grounds, the machine is well adapted for sugar plantations and other agricultural work. It is not hauled by a wire rope as steam plows or cultivators are, but is propelled by its own hind wheels which receive motion by gearing. The framework is of angle iron, and at the after end carries a three-throw crank shaft; on this crank shaft is keyed a bevel wheel which gears with a pinion on a vertical shaft; this vertical shaft carries a V pulley which receives motion from the engine by a hempen rope. In front of the V pulley are the guide pulleys, so arranged as to allow the implement to turn round without interfering with the position of the rope on the driving pulley.
The cranks work three vertical connecting rods, which are in the form of the letter T inverted; in the lower parts are fitted the tines; a radius rod is jointed to each connecting rod a short distance above this crosspiece which carries the tines; this radius rod acting as a fulcrum causes the ex tremities of the tines to describe an oval; as the crank shaft revolves (in a contrary direction to the road wheels) the tines enter the ground nearly vertically; as the crank passes the lower center the tines are pushed backwards, tear the earth up, and turn it over. A train of wheels transmit motion to the road axle, on which the driving wheels run loose, but are thrown into gear by clutches worked by screws, which aie tapped into the axle. The machine is steered by the leading wheels.
In setting to work, the hemp rope, which is driven from a V groove in the flywheel of a portable engine, is led round a V groove in the flywheel of a portable engine, is led round
the field on pulleys and porters, and takes a turn round the driving pulley on the machine, as shown in the engraving, which we copy from Engineering. When the digger has made a journey up the field and arrives at the headland, the tines are lifted by the hand wheel, which depresses one arm of the bell crank; on the other end of this bell crank the forward ends of the radius rods are hung, and as it is forced back the tines are lifted out of the ground; the land-side wheel is then released by withdrawing the clutch, the inner or land-side wheel remaining stationary.
The machine and tackle are worked by three men and a boy, namely, engine driver, a man to attend to the machine, a boy to steer, and one man to move, at each bout, the anchors, which are ordinary farm wagons with pulleys fixed to them.
With an eight horse power portable or trac tion engine five acres can be dug per day at depth of 9 inches.
These machines are constructed by Messrs. J. and F. Howard, of Bedford, England, from the design of Mr. J. H. Knight, of Farnham.

Testing the Gas of New York City.

Arrangements have lately been made to test the gas furnished by the several companies to New York city. The pure sperm candle, burning 120 grains per hour, is used as the standard. The principal instrument used in the tests is called a photometer, and is placed in a room, the walls and ceiling of which are painted black. The instrument consists of a 60 inch graduated bar, connecting with two sperm cindles on one side, and with the gas-measuring and burning appliances on the other, comprising an ordinary wet meter, a pressure gauge, and a governor. Upon the bar is
which is placed vertically to catch the light from both sides
All light is then excluded from the room. By experiment ng with the disk the examiner learns, by the position of the box upon the graduated bar when the light falls with equal trength on both sides of the disk, whether the illuminating power of the gas reaches the required standard, that of 16 can-

FLAGG'S COMBINED SKIMMER AND FORK y, Ontario, Canada.

June 26, 1877. For further information address the inven tor, Mr. Isaac H. Allen, Black Creek P.O., Welland coun

Professor S. P. Langley's New Method in Solar

 Spectrum Analysis.No observation of modern physica astronomy is more striking in its con ception than that which attempts to determine the motion of a celestial body by the altered wave-length of it light, and none has attracted more gen eral attention. It is popularly under stood that the proper motion of certain stars in the line of sight has been thu stars in the lae of strated, but tho completely demonstrated, but thos particularly engaged in such studie know how far astronomers have til very lately been from the certainty at tributed to them. It can hardly, however, be deemed
superfluous to still offer, upon so important a question, the dles. The gas must be used at the rate of five cubic feet pe hour, and the meter shows the rate at which the gas is burning

ALLEN'S IMPROVED FIRE ESCAPE.

The accompanying engravings represent a new flexible folding ladder, designed as a means of enabling person

to escape from the upper stories of burning buildings. The side supports, A, Fig. 2, of the ladder are made of webbing woven tubular or of double thickness, with openings transversely through it at proper intervals to receive the rounds results of an independent method of measurement, and one which renders errors from instrumental displacement, on the danger of which so much stress has been deservedly laid, in the sense in which the word is here used, not only unlikely but impossible.
The theory of the proposed method is very simple. Let two spectra be formed side by side, the one of light from one edge of the sun, the other of light from a point 180° dis tant. The instrument being in adjustment, if these point be in the neighborhood of the solar poles which are relatively at rest, all the lines will be continuous in both spectra. But if the instrument is rotated till the light comes from points on the eastern and western sides of the sun, which are in relative motion, not only will the solar lines be discontinuous, in the two spectra: as though the one receiving light from the advancing or eastern side had been slid past its neighbor toward the violet: but any mal-adjustments of the instrument, which simulate this effect, can be with certainty be detected by a means to be shortly described. The solar spectrum consists of two distinct kinds of lines, one caused by absorption in the solar, the other by absorption in the terrestrial atmosphere. These latter being formed by light from all parts of the sun are independent of its rotation.
The prisms are adjusted, till, on looking on the sun directly, the lines are all continuous in both spectra, then the instrument is put in the telescope and the slit placed at such a position-angle that the light in spectrum A comes from the vicinity of the north solar pole, that in spectrum B from the south. On looking in, we see a very long and narrow spectrum, filled with dark lines and exhibiting the chromospheric lines on both sides. It is divided by what appears to be a very fine dust line, in two exactly corresponding parts, and is in reality two distinct spectra, as we see by the opposed chromosphere lines; but as the sources of light for both spectra are relatively at rest, all the dark lines are still continuous. But now (without disturbing any adjustment), revolve the whole 90° about the optical axis passing through the center of the solar image, so that spectrum A is formed by light from the eastern or advancing edge of the sun; spectrum B by light from the western or retreating one. A curious change has taken place. By a very minute but perceptible quantity, spectrum A appears to have been slid past

KNIGHTS HOP CULTIVATOR.

B. The latter have studs or arms of wood, C, fixed into their ends for the purpose of holding the ladder away from the wall, and thus insuring a good foothold to the person descending. The top round, B^{\prime}, is made larger than the others, so that it may extend across the window inside and thus securely sustain the ladder. It is intended that the ladder shall be kept rolled up beside the window, so that in case of fire it may at once be thrown out, when it will uncoil and be ready for use, as shown in Fig. 1. The inventor states that two or three persons may descend at once, and that the ladder constructed as above explained is capable of sustaining a weight of $1,000 \mathrm{lbs}$.
Patented through the Scientific American Patent Agency, its neighbor, toward the violet end, so that every solar line in the first is " notched" at its junction with the second; while, at the same time, the telluric lines are as unaltered as the fixed lines of a micrometer web would be, by moving a scale about in the field. The effect is the same as though the spectra were tangible things, like two engine-divided scales, whose numerous delicate divisions (represented by the solar lines), were all in exact juxtaposition a moment before, and are all now just perceptibly displaced, as when a vernier plate is moved till a coinci dence is made at a new stroke on the limb.
Moving the instrument 90° more, we come again into the axial line of the sun, and the coincidence should return; with still 90° more we are again in the equator, but now spectrum A is formed by light from the western edge, and this time it is moved the other way, as if it were a scale which had been slid by a very slight but distinctly perceptible amount toward the red end; while still the telluric lines retain their continuity, assuring us that no mal-adjustment has occurred.
It will be admitted that this change is, if real, excellent experimental evidence that the wave length is virtually different in light from the eastern and western limbs, as theory predicts. For, granting that the instrument is mal-adjusted in any unknown way or degree, any instrumental cause will affect solar and telluric lines alike, and we may in fact defy ingenuity to sugrest an error of adjustment which will modify one and not the other.
It will be remembered that many lines in the spectrum are only seen when the sun is low. These are clearly due to the absorption in our atmosphere. Many thousands, as we know, are due to absorption in the sun's atmosphere. There remains a large number of lines not coincident with any we
axis of orbit, 82 m .; angle of major axis, 70° and 250°; mi
produce at the electrodes of our battery, and always present in the spectrum. Of these we do know that they are either caused by the sun's atmosphere or ours, without always
knowing which, for these can only be inferred to be telluric from their growing stronger as the sun sets, and this, though easily determined in the case of a single line, becomes a task of great labor where we deal with thousands. It is evident, however, that after having used known telluric lines to determine the fact that the refrangibility of solar lines only is altered, we can reverse the process, and classify unhesitatingly hereafter all lines as telluric which are unaffected by the changes that compel others to betray their solar origin. To merely see these two spectra with clearness, then, is to be enabled to pick out the telluric lines from the others, as though they were mapped before us. They are mapped in fact, and it becomes, under the proper conditions, a matter of simple inspection to determine them.-American Journal of Science and Arts.

CTMMmatratiow

Our Washington Correspondence.
 To the Editor of the Scientific American:

During the last session of Congress, acts were passed authorizing the Commissioner of Patents to extend two patents, if in his judgment the applicants were entitled to it. One of these cases, that of E. T. Bussell, for a combined One of these cases, that of E. T. Bussell, for a combined
rubber and steel car springs, patented Nov. 29, 1853, and rubber and steel car springs, patented Nov. 29, 1853, and
extended in 1867, has just been refused; the other, the Voelter wood-pulping apparatus, has not, I believe, been yet decided.
The commission to try Mr. McClary Perkins met last Monday, but the authorities having the matter in charge refuse at present to have anything to say about the proceedings, preferring to have the matter kept secret until the decision of the commission is announced.
The scientists of this city have been considerably excited over the discovery of two satellites of Mars by Professor Asaph Hall, of the Naval Observatory, with the aid of the new 26 inch refractor. It appears that the Professor really saw one of the satellites on the 11th. ult., but had no opportunity then to wait for the planet's motions, and therefore failed to recognize it as a satellite. He, however, saw on the 16th. ult., at 11 h .42 m. , a faint star near the planet, so faint that the latter had to be thrown out of the field of view in order that the former might be seen. It was nothing remarkable to find a star there, however, as there are many in the region where Mars may now be seen, but this one appeared to be following the planet, which led the Professor to particularly notice it and to carefully measure the dis tance between them about one o'clock. At two o'clock he made another measurement and found that the two stars kept the same distance from each other. He then stopped observations for the night; but on the next morning mentioned his observations to Professor Newcomb, who concluded that it must be an asteroid or else a satellite of Mars which has hitherto escaped notice. As it was known there was an asteroid in that neighborhood the two astronomer waited with some anxiety for the reappearance of the ob ject, but Professor Newcomb was so well satisfied that it must be a satellite that he set to work to calculate its time of revolution, which he found to be about thirty hours. The planet could not well be seen until near ten o'clock on the night of the 17 th. , and this time of revolution showed that the satellite, if it was one, could not probably be seen until nearly the morning of the 18th., but if it was an aster oid it could be seen on the night of the 17th. As soon as
the planet could be seen the professors were on the watch, the planet could be seen the professors were on the watch,
and to their dismay they found a star just where the asteroid should be; but Professor Hall became satisfied from his measurements that it could not be an asteroid, and Professo Newcomb, seeing Mars apparently passing the object, from his calculations thought that it would surely be seen at fou o'clock on the morning of the 18th. at the same place wher it was discovered on the 16th. They accordingly waited and were gratified with the sight of the star in the exact place predicted by Professor Newcomb. From this they were perfectly satisfied that the object of their observations was a satellite of Mars, and to their inexpressible gratifica tion they shortly after discovered a second satellite. At the end of the thirty hour period, the evening of the 18th., their observations were confirmed by the reappearance of the satellite; and Mr. Todd, another of the astronomers, thought he discovered a third object, which may yet prove to be still another satellite. The following extract from the off cial report of Rear-Admiral Rodgers, in charge of the obser vatory, gives all the data relative to the position, time of revolution, etc., that has been obtained at the time of this
writing. writing:
" The first satellite has an apparent distance from the center of Mars of 82 sec ., and its time of revolution around the planet is 30 h . Its magnitude Professor Hall estimates as
the 13th or 14th. The plane of its orbit has now a consider able inclination to the line of sight from the earth to Mars At its elongations its angles of position are 72° and 252°. The second satellite was discovered August 17th at 16 h . It appears to be quite as bright as the first one, and at the elongations has nearly the same angles of position, which correspond to the equator of Mars. Its apparent distance at the elongations and its periodic time are not yet known The following are the preliminary elements of the outer satellite as calculated by Professor Simon Newcomb: Majo
nor axis, 28 m. ; passage of satellite through western axis, August $14,16 \mathrm{~h} ., 40 \mathrm{~m}$. ; the period of the inner satellite or satellites is so short, probably less than eight hours, that it cannot be fixed.
The cotton report for August, of the Department of Agriculture, makes a good showing, but a slight decline is obser vable over the condition as reported for the previous month which was $93 \frac{4}{10}$, the average for this month being 93 . In Louisiana the promise is extraordinary. In Concordia par ish the best crop since 1870 is expected; and in Union parish, "the best since 1860." In some of the Atlantic coast counties there is frequent mention of inferior fruiting; and in the Carolinas generally there has been too much succulence from too abundant moisture. In Georgia and Ala bama, on the contrary, there has been injury from drought, bama, on the contrary, there has been injury from drought,
but of late the weather has been more favorable. In some but of late the weather has been more favorable. In some
of the Mississippi bottom lands, some of the cotton has been abandoned on account of too much wet weather. Consider able complaint of the caterpillar is heard from some ports of Texas, but they do not appear to have affected the crop seriously, except in a few cases. The caterpillar has also appeared in a few places in Louisiana, Alabama, Florida, and Georgia.

The Secretary of State has received a dispatch from our Minister to Greece, in which it is asserted that the United States can now and henceforth will control to a large extent the grain markets of Europe. Russia has been our only competitor in this trade; but under the most favorable cir cumstances for that power the United States has had the advantage of that great cereal-producing country, as ou machinery, railroad system, elevators, and simple customs regulations combined have enabled us to place our grain on shipboard c.t about 15 per cent less cost than the Russian shippers can handle theirs. The war in which Russia is now engaged will certainly not lessen these advantages, and with such an outlook it does not seem too much to assert that with reasonable efforts we shall control the English and some of the principal continental markets. In anticipation of this, British capitalists are now engaged in building six of the largest sized iron vessels designed expressly for the conveyance of grain on English account; and it is suggested that we should not only strain every nerve to meet the in creased demand for our breadstuffs, but that we should supply ships also. It is further suggested that, if we wish to retain this trade for all time, some cheaper means of transportation than railways will be found necessary, and that if w had one or two more canals like the Erie, or if the capacity of that could be increased sufficiently, it would seem
that we could readily retain this trade in our hands until such times as our population became so great as to readily se all our grain at home
The river and harbor appropriation bill of 1876 appro priated $\$ 100,000$ for the improvement of the mouth of th Mississippi river, but "provided that the appropriation shall not be available whenever and so long as there shall be an open channel of eighteen feet of water at mean tide to and from the sea at the South Pass." Captain Brown, th engineer in charge, has reported to the Secretary of War that a survey has been made, showing a channel 250 feet wide and 18 feet deep, and the Secretary has ordered that further expenditure of the $\$ 100,000$ be stopped. The dredges that are working on the other passes will therefore be with withdrawn. This is construed as an official acknowledg ment of the success of Captain Eads' jetty system, and it must be very gratifyiag to him, in view of the official op position he had to encounter before he could get his plans adopted.
Reports just received here state that the Entomologica Commissioners have made an extended trip through a larg reginn of our western territories. The observations of Pro fessors Riley and Packard coincide in indicating that little trouble need be feared from the grasshoppers during the present year in the west. The wet, cool, backward weathe has proved unfavorable for the development of the insects, nd there are only a few localities where the number hatched are insufficient to do any damage worth mentioning. Professor Riley speaks more doubtfully about Colorado in this respect than as to Missouri, Kansas, and Iowa, on ac count of the greater diversity of surface and climate that Colorado affords, yet even as to that State he is very hope ful. In Minnesota and Dakota, Mr. Whitman has compiled report of the observed flights of grasshoppers for the pre ent year. Their directions varied in a puzzling manner nd it is difficult to draw any conclusion from the record as o their destination. Several of the flights were observed to o towards the northeast, which may account for the recent complaints from Canada of a visitation of the 'hopper. A very encouraging circumstances for our farmers is that no
account of the swarms which passed over Dakota describe account of the swarms which passed over Dakota describe he insects as alighting either to hatch or feed.
Major Powell, in charge of the geological survey of the erritories, states that there is but a comparatively small area of arable land now owned by the United States, and is prePublic Lands a ress, at the direction of the Committee on jor's statements, however, are severely criticised by the western papers, who state that he runs an imaginary line hrough Minnesota, Iowa, and Kansas, separating the "arid " and the "humid" territory, west of which he says that farming cannot be successfully carried on. It is stated that the experience of thousands of settlers contradict his theo-
ries, and that even if they were correct at present, there is
o doubt that tree planting would redeem the so-called arid " districts, as it has many other similar localities. One of the Japanese Postal Commissioners is in this city and has been taking observations of the working of the Gen eral Post Office, with a view to incorporate some of its features with the postal service of Japan. He was afforded every facility for carrying out the object of his visit, and appeared much pleased with what he saw.
Washington, D. C.
Occasional.

The Locusts in Kansas.
 To the Editor of the Scientific American:

In answer to many questions now being asked, I would say hat, from all that can be ascertained, there is no dange whatever of another general invasion of locusts into Kansa and adjacent States this fall. This has been my opinion al along, and the experience of the past two months strengthens t. The insects that developed in and arose from the country vaded last year flew, as I said they would, in a N. and N W. direction up to the early part of July; after which their course was more irregular, and finally set in the opposite di rection, namely, S. S. E. and S. W.
The country in which they hatched has been evacuated and serious injury was confined to the extremeN. W. counties of Iowa and to Kandiyohi and some half dozen surrounding counties in Minnesota. With a few rare exceptions, the de parting swarms have been light, and have vanished beyond parting swarms have been light, and have vanished beyond is a common question. They were mostly diseased and para is a common question. They were mostly diseased and para-
sitized when they rose, and kept dropping in scattered numsitized when they rose, and kept dropping in scattered num-
bers in the country they passed over, to perish without notice ars in the country they passed over, to perish without notich
and without issue. The more healthy have been lost to sigh in the thinly settled regions of the Northwest. Those whic ose late in June and early in July from Minnesota, after fly ng northwestwardly, retraced their course and have lately been flying over Iowa and now over parts of Kansas. The have done no serious injury, nor do I anticipate any. Those which left Minnesota a year ago acted very much the same way; but they were followed by immense hordes from the country N. W. of Minnesota and from British Columbia, fo hey bred all through that region in 1876. The present year, on the contrary, all the information that I can gather indi cates that the insects are not, and have not been, in noticea ble numbers in these northwest hatching grounds. Dr. Pack ard did not find them in W yoming, Montana, or Dakota, and there are none in Manitoba or in any of the more settled por tions of British America. I expect to find the same state of hings in the Sascatchawan country. From the mountain regions west of Kansas there is no danger, because the in sects now developing in the higher mountain parks and passes re so relentlessly pursued by parasites and other enemies Hence I say to all who are in the same state of mind: Plant nd leave the locusts out of account. As I have remarke lsewhere: "There is a constant struggle for supremacy be Roen the plant-feeder and its carnivorous enemies. The essive nd has been so numerous for the past three or four year that its enemies have rioted in plenty, and at last, in their urn, have increased inordinately. * * Nature maintains her average in the longrun, and a few seasons of drouth and locust ravages are apt to be followed by a period of more ainy seasons and locust decrease
C. V. Riley.

Glyndon, Minn., August 21, 1877.
Growth of the Human Hair atter Death
Dr. Caldwell, of Iowa, states that in 1862 he was present the exhumation of a body which had been buried two years before. The coffin had sprung open at the joints, and the hair protruded through the openings. On opening the coffin, the hair of the head was found to measure eighteen inches, the whiskers eight inches, and the hair on the breast five to six inches. The man had been shaved before being buried. In 1847, a similar circumstance occurred in Mercer county, Pa. In digging a grave, the workmen came upon the skeleton of a man that had been buried ten years. The hair was as firm as during life, and had grown to a length of eleven or twelve inches.

Copyrighted

The Germans attribute sharp tricks to the Yankees, but following is quite as bold a swindle as any of our own. An advertisement has been circulated promising to send for one mark (25 cents) " a beautiful secret, how to become very strong," and signed M. L. Müller, in Erfurt. A person who sent the required amount received a printed slip with the folowing prescription, enclosed in an unpaid envelope (prepayment is still optional over there): "To become strong! Take a bottle of good red wine, bury the wine in the earth in the neighborhood of an ant-hill, and leave the wine there a whole year. Then dig up the wine again and drink some of it occasionally, and you will receive strength which will increase to your astonishment. M. L. Müller, in Erfurt." The same slip contains the usual copyright expression, "reprints forbidden," or literally "Nachdruck verboten."

We find Mount Union College," says Chief Justice Chase, "healthful, national, making integral education attainable by all;" has superior courses, professors, museum, apparatus, board facilities, $\$ 500,000$ property benefiting its 13,097 students, who earn expenses teaching winters without losing time. For new catalogue, address Pres. Hartshorn, LL.D., Alliance, 0.

PRACTICAL MECHANISM.

by joshua rose.

New Series-No. XXXII.

attern-making.-PULLEys.

For the sake of durability, patterns for pulleys are generally made of cast iron. For convenience in moulding, it is usual to make them in halves, as shown in Fig. 220 A B being the line of division; the hubs are of wood, as they frequently have to be changed to suit different sizes of shafts.

We may commence by building up a wooden pattern fo half of the rim, making it of such a size as to allow for it being turned by the machinist after being cast. Two cast ings having been taken from this pattern, they are bored and turned to equal dimensions, the proper draught for moulding being given in the process. A slight projection is turned upon one half, fitting into a recess on the other as shown a B. When placed together the two halves form the whole rim The cast iron arms may be made either the full thickness o in halves. If made the full thickness they will be fixed to one of the half rims. As half the thickness of the arms is made to project beyond the half rim, it will form a guide to keep the two rims central, so that in this case the projectio shown at B need not be made. The arms are fitted to the ring by turning, and at the same time a hole is bored through the center to form a guide for the hub, as shown at P in the cut. When the arms are cast in two halves, and a half fitted in each rim, the pattern is easier to mould, as a leve parting is secured. The rims must not only be kept centra but be prevented from turning one on the other, hence the necessity for the hole to contain a pin, as shown at P For convenience in drawing the pattern out of the sand, a

couple of holes may be bored and tapped three eighths o half an inch, or larger if thought necessary, near the rim, diametrically opposite each other.
Occasions often occur when it is inexpedient to go to the expense of a pattern for making a pulley, especially if the pulley be large and only one or two castings required. In this case we may make use of the following contrivance, though it must not be expected that as well shaped castings can be made with it as from a finished pattern.
Fig. 221 illustrates by two views the apparatus as made wholly of wood. A is a piece shaped to the circle of the pulley. It is supposed to be large enough to extend at least about a sixth of its circumference; the depth of A is equal to the width of the rim. B forms a connection between it and the center, where the print, P , is fastened. S S are

simply braces to stiffen the frame, the use of which wil presently be described.
A core box must now be made embracing a section of the interior of the pulley. If the pulley is to have six arms, the core box will take up a sixth of the interior, if four arms, a fourth. We will suppose the pulley is to have six arms. The core is made as shown in Fig. 222. A B represents the arm of the pulley passing through the center of the box; from C to 1 D is exactly a sixth part of the inner circumference of the rim. A sixth part of the hub is fixed in the other corner. The piece, C D, is loose at the joints, as it is necessary to take it off to get out the core. The arm also
is loose. When a core is made in this box the arm, A B, is first pulled out; then the piece, C D, is removed, and afterward the other pieces. The hollows around the ends of the arms may easily be formed by the core maker, or they may be formed in the box, as seen in Fig. 222. The hollow or fillet at the end of the arm near the center must be worked out solid with the arm itself, while that which is at the circumference is worked in a piece fixed to C D, the arm being diminished so as to center this piece without making a feather edge. A plain straight arm, oval in section, is the cheapest and most convenient for pulleys made in this way. It may, however, be curved like the arc of a circle, but not made S-formed, as it could not then be drawn out from the solid core.

The moulder, having prepared a level bed, places upon it
the frame, Fig. 221, allowing the print to impress itself in Faure and Kessel's dish evaporation were removed by rethe sand; a weight is then placed upon the frame to keep it storing the platinum head. in position while the sand is piled around the curve and made level at the full height of the same. The frame is then shifted, and the sand moulded in again. This process

is repeated until the circle of the pulley is finished. Into the mould so prepared mnst now be placed six cores made in the box described in Fig. 222, and also the core to make the hole for the shaft. The whole is then covered with a level cope, and prepared for the casting.

mprovement in the Manufacture of Sulphuric Aeid

 Professor Post, in his new work Ueber. die Fortschritte der Chemischen Gross-Industrie, says, in regard to this importantmanufacture, that there is scarcely any branch of chemical industry where the work has been going on more quietly than here, and to none have so many valuable, contributions been made during the past year. In the manufacture of the sulphurous acid, the residues and waste products from vari ous metallurgical operations are coming more and more into use, while the residues left from roasting pyrites are carefully worked over into metal or vitriol, or prepared for other uses as in purifying illuminating gas. Still, in view of the high price of pyrites abroad, many of the technical chemists there anticipate a period when they shall have to return to the use of sulphur. The Platten furnace for roast ing pyrites dust is coming into more frequent use, while that of Gerstenhöfer seems to be losing ground. The lat ter, of course, still holds the field where ores that are apt to sinter or furnace products (like the lead products of Frei berg) are used, as there, in consequence of subsequent con centration, a certain amount of sulphur in the roasted pro duct is required. In the Platten furnace sintering would be very inconvenient. Hasenclever's furnace for blende is ex citing more interest, and a new modification of his sliding furnace for pyrites has also been introduced.
It is interesting to notice the practical use of sulphuretted hydrogen gas for the manufacture of sulphurous acid. This gas, which is often formed as a by-product, has hitherto only been a source of annoyance and injury. It is also important economically to observe the employment of com pounds of oxygen and nitrogen obtained in the manufacture of aniline.
Probably the most important publication of the year on this subject was the prize essay of Brode on the Glover towers. In this he proves the utility of these towers
for dilute and comparatively cool sulphurous vapors.
The changes in the form of platinum apparatus employed to concentrate the acid are extending. The system of Faure and Kessler (whose apparatus is in use at the Peekskill Chemical Works, and in other places in the United States), has become better known, but the new forms of the old boiler have not been the only subjects of discussion. Post "Changes in these Apparatus," too long for insertion here. He says: On the whole it seems as if more confidence was reposed in the latter than in that of Faure and Kessler, the introduction of which gave rise to the invention of the lat ter. Dr. Schott emphasizes the fact that there is the greatest
tendency, in all branches of industry where distillation or evaporation is carried on, to lessen the capital invested in apparatus, and also the cost of running it. In the manufac ture of spirits, too, the stills are much flattened. It seems as if Faure and Kessler had only intended to lessen the consumption of platinum by leaving off the helmet or head of the alembic, and reducing the platinum covering of the boiler, and in doing this they struck upon the idea of evapo rating about four inches of acid in a shallow vessel shaped like a saucer. The helmet was replaced by a tall, broad, and well-cooled cap of lead. The advantages of a shallow stream of acid are noticeable in the larger quantity concentrated, smaller consumption of coal, and greater dilution of the acid distilled over (17° to $18^{\circ} \mathrm{B}$.). Still, the necessity of frequent repairs and consequent interruption of the process interferes with its general introduction. Soon after the dis advantages of this apparatus became known, two European dealers in platinum, Desmoutis, Quenessen \& Lebrun of Paris, and Johnson, Matthey \& Co., of London, each came into the market with a boiler, the form of which showed that the two latter had made good use of the experience of
the first-named inventors. To favor a strong evaporation and produce a dilute acid distillate, they retained the sam form of kettle, then united with this was a systematic heat ing of the acid in the kettle, but many disadvantages of
ln 1875, in Prussia alone, 51,881 tons of raw material were consumed in 19 factories, employing 836 workmen, and making 69,985 tons of oil of vitriol, worth $\$ 1,359,300$. One tenth of the raw material consisted of metallurgical waste poducts.
Utilization of the burned pyrites is becoming more general in Germany. A number of manufacturers on the Rhine have united together to import pyrites containing copper from Spain, and have the burned product worked up into copper or its salts, in their factory at Duisburg. The burned pyrites of Schœnebeck, which are free from copper, are used to purify coal gas, either alone or after treatment with the manganese solution remaining from the manufacture of manganese solution remaining from the manufacture of
chlorine. It is also employed in making green vitriol to chlorine. It is also employed in making green vitriol to neutralize the sulphuric acid formed by the oxidation of the
bituminous shales of the brown coal formation, for which bituminous shales of the brown coal formation, for which
iron was formerly employed. The burned pyrites of Schœlmer are regularly employed, mixed with other ores, for making iron.
In regard to its use for road-making, for which it is well fitted by its solidity, dryness, and uniformity, Sarrazin gives the following warning. If the pyrites contain any zinc, sulphate of iron and sulphate of zinc are formed, by oxidation, and after a long time spread to the land adjoining and destroy the vegetation, rendering the land useless. Girardin, Aimé, Morin, and Henri have described in Ann. Chem. Phys. the four largest deposits of pyrites, and analyzed 28 of those used in France for making sulphuric acid. The percentage of sulphur in these varies from 30 per cent to 53 per cent., with an average of $45 \frac{1}{2}$ per cent. In 5 they report traces of arsenic; in 5 others a slight trace, while in the others the arsenic was reported at from 0.01 to $0 \cdot 23$ per cent. In 1874, as much as 174,400 tons, worth $\$ 1,200,000$, were consumed in France; of which the mines t Sain-Bel, Department of the Rhône, furnishes 121,000 tons. Belgium, Norway, and Spain furnished 18,000 tons. The consumption of acid has increased two-fold in France and three-fold in England within ten years, much of the inrease being due to its use in the manufacture of fertilizers. A knowledge of the foreign constituents of the ores, especially arsenic and gangue, is very important to the manufacturer. The arsenic passes into the numerous products which are made by the use of sulphuric acid from pyrites; carbonate of lime is decomposed in roasting the pyrites, and is detrimeutal, first by producing carbonic acid, which reners the gases impure, and secondly by forming sulphate of me, which involves a loss of sulphurous acid and makes the use of the burned pyrites in metallurgy difficult. Fluoride of calcium (fluorspar) produces hydrofluoric acid, which produces injury in the leaden chambers, by attacking glass essels used to hold nitric acid, so that the latter comes into contact with the lead and destroys it.
The sulphuretted hydrogen gas produced in the manufacure of sulphate of ammonia is utilized in Kunheim's works in Berlin in this way, that the gas is conducted into the pyrites furnace, where it comes into contact with the glowing pyrites and is completely burned. In this way they not only recover the sulphur that would otherwise be lost, but also avoid injury to their neighbors from the odor of escaping sulphuretted hydrogen. The nitric compounds con tained in aniline residues are utilized at the Schœnebeck works by passing these acids through a Glover tower.

A Curious Underground Railway Accident.

In the open country, where unfenced road crossings are requent, it is easy for cattle to stray upon the track, and it is not surprising that accidents from such causes should take place. But that a disaster should occur upon an under ground railway in the heart of a great city, seems almost incredible. Such, however, was the actual fact, recently, in this city, the scene of the accident being within the central tunnel of the Harlem Underground Railway, Fourth avenue, near 57th street. The New York and Boston express train was at that point approaching the station at 42d street, half a mile distant, when the engineer discovered four wild bull upon the track. The locomotive struck the animals and wa thrown from the track. The passengers were greatly terrified and jarred, but no person was injured. All the anjmals were killed. It appears that they belonged to a herd of wild Texan cattle which was being driven across the city; and on passing the level ground near the Grand Central Depot, in front of the tunnel railway entrances, these four animals suddenly wheeled and dashed off into the middle tunnel on full gallop and encountered the locomotive as stated. It is evident that the entrances to the underground railway need to be better guarded. Perhaps some ingenious person can devise a system of gates to be operated by the cars.

Artificial Lemonade.

Loaf sugar 2 lbs., tartaric acid $\frac{1}{2}$ oz., essence of lemon 30 drops, essence of almonds 20 drops. Dissolve the tartaric acid in two pints of hot water, add the sugar, and lastly the lemon and almond; stir well, cover with a cloth, and leave until cold; put two tablespoonfuls into a tumbler, and fill p with cold water. This drink, it is said, will be found much more refreshing and more palatable than either ginger beer or lemonade, and costs only 30 cents for ten pints. The addition of a very little bicarbonate of potash to each tumblerful just before drinking will give a wholesome effervescing drink.

HOFFMAN'S IMPROVED BEER CASK.
The object of this device, which is intended for the use of ture brewers' uses, is to provide a simple and effective mode of rapidly cooling beer. A metal tube extends from end to end of the cask, and is fastened to the heads. The ends of the tube are secured and closed by means of adjustable taps or are pivoted to rings or a box which incloses the ends of the tube. The device is readily and cheaply applied to casks and barrels now in use.
Among the advantages claimed are that the tube gives great resisting force to the barrel, and that the tube may be

charged with ice, thus causing the beer to keep in rood con dition.

Patented July 10, 1877, by Mr. John Hoffman, Toledo Ohio, who may be addressed for further particulars.

ELECTRICAL APPARATUS TO INDICATE OVERSTRAIN OR

WEAKNESS IN BRIDGES OR OTHER STRUCTURES
This invention relates to certain means of obtaining a prompt indication of the unsafe condition of such structures as bridges, roofs, etc., when such unsafe condition is caused by overloading or undue or excessive strain of any member or of the whole structure, or by derangement of parts at joints or connections, or by any change of condition, either sudden or gradual, from that under which the structure was designed to serve.
In the case of a bridge, for instance, the various members of which are subjected to either tensile or compressive strain the several proportions of such members are so adjusted as to afford a determined margin between the ultimate breaking load or strain and the greatest load or strain to which such member is intended to be exposed under traffic or use. This margin may be reduced by various causes, as the passage of an excessive load, a sudden jar produced by slight obstructions to, or perhaps partial derailment of, wheels, breaking of flanges, etc., or within the structure itself, loosening of rivets, gradual weakening of the member under frequent repetitions of the load, imperfect workmanship, flaws in the material or errors of calculation not apparent at the time of erection. Such lessening of the margin of safety need not be fatal to the structure, provided it can be detected and suitable remedial measures promptly adopted and the originally designed margin of safety obtained.

In the case of members exposed to tensile or compressive strain no permanent injury will result until the limit of elasticity of material is exceeded. Indication of overloading will be recorded before this linit has been reached.
In the case of dislocation or derangement of parts, as the slipping out of position or shutting by of butted joints-as in upper chords, or vertical posts, or oblique struts-in all such and in all similar or analogous cases, it is the object of this invention to furnish a ready means of obtain-
ing a direct indication that such overstrain or derangement has taken place, although no permanent set or immediately apparent evidence may have been left upon the member or structure itself.
The invention consists in attaching upon each member of the structure an insulated wire or conductor, as shown in the cut, so arranged that an electric circuit may be made or broken, by any convenient mechanical means, by the abnormal condition resulting from the excessive strain or dislocation of parts, from whatever cause it may arise, through which a motion either in the substance of the member itself or between contiguous and adjoining members has taken place, the closing or rupture of the circuit to be indicated by an annunciator, operated by the electric current from a bat tery through electro-magnets suitably arranged, the arma ture of the magnets being so adjusted that, as in the case of hotel call-bells, a number or indicator shall be exposed, said

ELECTRICAL APPARATUS TO INDICATE WEAKNESS IN BRIDGES, ETC.

If these coffins originally contained the bodies of paupers it may be asked why they were so carefully prepared with tar and lime. If, however, they held the corpses of persons that had died of contagious diseases, may not this have been done as a precaution to prevent a spread of the disease?

Wine 1,600 Years old.

We do not often drink wine that is 50 years old, less fre quently that which has celebrated its centennial, and wine of

200 years age is an absolute rarity. In the famous Kathkeller at Bremen the visitor is shown casks of wine of wonderful age, and looks with admiration on the cask labelled 1624. The celebrated French chemist Berthelot recently had the pleasure of exhibiting to his colleagues in the French Academy of Sciences some wine about 1,600 years old. He had even succeeded in separating the alcohol from this wine, so that the assembly could see alcohol of 1,500 or 1,600 years age. The color of this ancient wine is not very tempting; in taste and smell it is not remarkable, and it is doubtful if a connoisseur would be pleased to find it on his table.
Berthelot spent the month of May in Marseilles, and while there visited the Borely Museum. His curiosity was excited by a glass vessel which was sealed up and contained some liquid. What kind of a fluid could it be? The Professor obliquid. What kind of a fluid could it be? The Professor ob-
tained permission from the Mayor of Marseilles to open the tained permission from the Mayor of Marseilles to open the
vessel and take the liquid with him to Paris. The total quan tity was only 35 cubic centime ters (about 1 fluid ounce or wine glassfull). The liquid is genu ine wine, is of a brownish color, and contains, in suspension, a solid substance, which does not form a sediment; the odor is decidedly vinous, with a very perceptible aroma, and reminds one of the taste of wine which has been boiled in contact with fatty substances, or, if you please, of sweet apple wine. The taste is strong and hot on account of the large amount of alcohol, togeth er with acid and a trace of some aromatic substance. The coloring matter had almost entirely disappeared already; and only a trace of sugar was found in the wine. The percentage of alco hol corresponds to that of a weak wine; the proportion of acid is almost normal. This is probably the first time any one has handled alcohol of such age. The liquid had kept thus long be cause it was hermetically sealed up in a glass vessel-a very uncommon occurrence. The tube which held the wine was blown out likea hanging lamp, ard af out like a hanging lamp, and a very neatly melted together,
fectly preserved, and in some of the coffins pieces of the clothing still remain
Professor Virchow is making a thorough investigation of this curious circumstance. He expects to find out the substance with which the wood is saturated and which has protected it from action of the soil. The wood appears to be young oak. The separate planks are 3 centimeters ($1 \cdot 2 \mathrm{inch}$) thick, and covered outside and in with a thick coat of tar; besides, the coffins seem to have been a layer of lime on the inside. At present the wood is so hard that the workmen have already broken several axes and saws upon it. The planks are held together by large wrought iron nails, which differ essentially in form from those in use at the present day. They are 8 cm . ($3 \frac{1}{5} \mathrm{in}$.) long, 4 cm . ($1 \frac{1}{2} \mathrm{in}$.) wide, and 2 cm . ($\frac{4}{5} \mathrm{in}$.) thick. On the broad side of the nail is a peculiar furrow running its whole length, which may probably
just as it would be done to-day in our blowpipe flame.
The composition of the glass itself indicated a great age, and like all antique glass was rich in potash and poor in lime. This tube was found at Aliscamp, near Arles, on a broad plain which had been used in the time of the Romans as a burial or funeral place; a farmer who was plowing unusually deep brought it to light. The antiquarians are inclined to the belief that there was once a glasshouse at Arles which produced very fine workmanship. The glass tube was made on French soil, and probably reaches back to the first occupation of Gaul by the Romans.
In regard to the motives which led to the wine being so carefully sealed up in a glass tube, Berthelot thinks that it may be attributed to some religious ceremony or offering to the spirit of the departed. The place where it was found, Campi Elysei," a burial place that was examined long ago adds another argument in favor of this view.

THE BOX TORTOISE.

"Land turtle" is the appellation by which this chelonian is commonly known. Its correct herpetological name is cistudo clausa (Gmelin). Dr. Holbronk describes it under the name of " cistuda Carolina-Edwards" ("North American Herpetology,' 1842 , vol. I., page 31), and Professor Agassiz, the cistudo Virginea, of Grew (" North American Testudinata," 1857 , vol. I. page 445).

Few reptiles vary in color so greatly. I have examined individuals of this species which were of a uniform black-brown color, entir ly spotless; others bright yellow, with black blotches and rays; others black, with yellow spots; and still others, reddish yellow, with black and brown spots, lines, and dashes. It is impossible to find two individuals of this species exactly similar in coloration.

The box tortoise is polyphagous. I have known it to eat berries of many kinds, apples, melons, tomatoes, earth worms, and carrion; and, in captivity, green corn, and meat, both raw and cooked. I believe it might subsist entirely upon "buns and water crackers." I emphasize the "it," for this reason: A tender-hearte lady, a member of the Society for the Prevention of Cruelty to Animals, having observed the boa constrictors at our Philadelphia Zoölogical Garden were fed with living pigeons and rabbits, suggested "buns and water crackers" be substituted, and thus avoid cruelty to animals! I suppose the old lady thought the very sight of the food named by her would cause the boas to smack their labials in wild delight, and to cause them to exclaim in the ophidian tongue, "Oh buns! yum-yum -yum!"

The female box tortoise, when young, lays one or two eggs; when older, six or more. The eggs are nearly globular in form, and are of a dirty or yellowish white color. Like the eggs of serpents, they are covered with a tough skin, not with a hard shell as in the birds. The eggs are deposited in holes in the ground, which the female tortoise excavates with her hind legs and feet only, using them alternately, throwing out the loose earth with her feet. One or two eggs are laid in each hole, and are carefully covered over before she ered the quits the spot. The whole number of eggs are generally deposited in the immediate vicinity.
This tortoise is irregular in its time for going into hibernation. So long as the weather is warm it remans arn is remains above ground, bu when the weathe grows cold and un pleasant it creeps beneath the surface of the soil. A late or early going into hibernation does not foretell the mildness or severity of the winter fol lowing. The win lowing. The win tcr of 1875 was ex tremely cold, yet our cistudos did no go under the ground until November 3, 1874, while they buried themselves about the middle of October in preced ing winters which proved to be mod erate.

In the female cis

Compounds of Silicon with the Platinum Metals. When platinum is fused in a clay crucible lined with char coal, it becomes crystalline on cooling and may be readily pul verized. Boussingault has shown that when platinum is fused with charcoal that contains silicic or sand, or in a clay crucible lined with charcoal, it takes up 2.2 to $5 \cdot 9$ per cent of silicon. Under the same circumstances the other metals of the platinum group take silicon as follows: Iridium, $3 \cdot 7$ to 7.0 per cent; palladium, 3.4 per cent; ruthenium, 2.1 per

THE BOX TORTOISE.

cent. Carbon is not taken up by these metals, and further experiments show that by igniting carbon strongly with silicic acid, the latter is partially reduced; at very high tem peratures the reduced silicon volatilizes and is absorbed by a slip of platinum foil held over the ignited mass.

WATER HOGS.

The South American capivari or capybàra (hydrochoerus capybara) is called water hog, on account of a superficial resemblance with the hog. It is the giant of the rodents, and for this reason is an interesting subject for the zöologist. The two London specimens are of about the size of half grown hogs. Their color is a dirty grayish, which changes on the back into a reddish or grayish-brown. The on the back into a reddish or grayish-brown. The
bristle-like hair has a length of from one to two inches, and
hardly covers the body. It is thickest at the hind portion of

THE WATER HOGS IN THE ZOOLOGICAL GARDENS AT LONDON. olication is required in the use of the tube than in th ts action.

Japanese Mirrors.

Repairing of mirrors is a process to which the art of Eu ropeans and Americans has not yet arrived. As they make mirrors in Japan, however, the process of repairing is no more difficult than that of mending a stove. The Japanese mirror would seem to be only an improvement on that used by Helen of Troy-a metallic affair burnished and polished. It is a bronze disk, composed of eighty parts of copper, fif een of tin, and five of lead. It is cast in a mould com posed of powdered stone and pulverized crucibles. The casing is polished by hand, as the Japanese alone can pol-
ish- and the last process is to rub the surface of the mirror with an amalgan composed of quick silver, tin, and lead. And this is done by hand and with a piece of wash leath er, till the mirror has a bright reflect ing surface. This surface solves the problem of repair ing some mirrors, since it can at any time be readily re polished.
At every stage of the work the choic est materialsare em ployed. The cheap er mirrors have sul phide of lead and antimony instead of tin in their compo sition.
A curious optical effect can be pro duced by some of these mirrors-pro bably the best finished. On the re verse, which is also polished, are words and figuresin relief and figuresin relief bright sunlight the reflection of themir or on a screen these figures are seen to shine through the reflect ed surface of the mirror. The fact is noted by an En lish prof glish professor in
tudo the under shell (plastron) is concave, while in the female the back. The nose is flat, the eyes are expressionless and |the University of Tokio, R. W. Atkinson. He has been it is flat. The specimen from which my sketch was made, set back a considerable distance, forming the main features able to discover no satisfactory solution of the phenomenon, is an old male, weighing a small fraction less than one pound. The little crustacean in the foreground is common in the ocean about the sandy beach of Atlantic City, N. J.
set back a considerable distance, forming the main features
of the head. The neck and body are strongly built; the
but it iscover no satisfactory solution of the phenomenon, hind legs have three and the fore legs have four toes that are mirror is absolutely opaque, and there must be some law of provided with broad, rounded-off nails and connected by refraction, yet not fully discovered, to account for an ap webs. The tail is only indicated by a short, horny protrusion. |pearance so singular. - Philadel phia Ledger.

THE CORDONNIER, OR COBBLER FISH.

This fish (caranx cilianis) derives its name from the long sharp spines of the dorsal and anal fins, which to many per sons have a fancied resemblance to the awl and bristles em ployed by cobblers in their trade. It is found quite common in various localities, from the Red Sea, throughout all the Indian seas, and is a good example of the genus to which it belongs. No less than seventy species having been lassed in this genus.
The form of this fish is sufficiently curious to render it a conspicuous species, and it may be easily distinguished from

most. If it does, further counterbalancing is necessary. The hole should be bored with a stout tool, held as close in to the tool post as the circumstances will admit. The last bor ing should be taken at a comparatively fast speed, and wit a fine cut.
The next operation is to turn up a mandrel to fit the holes bored as above. The length of this mandrel should be equal to the diameter of the lathe face plate. This mandrel need not be turned from end to end, but only just as far as to le the mandrel stand central with the face plate when the cross head is chucked the second time. The mandrel should be for an inch at each end parallel and of equal diameter, its middle being a snug fit, so as to drive very lightly into the two wrist pin holes.
Then chuck the crosshead to bore the piston rod hole, set ting it so that the mandrel stands exactly parallel with the face plate of the lathe, and making the outer end run true according to the outside of the metal. To test the setting, the surface gauge is held against the face plate and the hook end of the surfacegauge scriber is tried over each end of the mandrel, taking care that the scriber point touches the man dril very lightly, as otherwise it would be apt to spring After the turning at this end is roughed out, it would be well to test the work again, because sometimes the packing used in setting the work will compress a little, throwing the work out of true. In cases where the rod end is tried into the hole to fit the taper, watchfulness is required to see that trying the rod does not affect the setting of the work. In finishing the work, two or three fine cuts should be taken so as to ensure a clean, true, and smooth taper hole, which will not take much grinding to get a smooth polished bearing Instead of using a chalk mark upon the rod end in trying i into the crosshead, it is better to use a little Venetian red mixed with lubricating oil, giving the work a very sligh coat.

SIMPLE WAY TO MAKE ICE.

Among the different principles on which the production of artificial cold is founded, stands foremost the evaporation of volatile liquids, during which evaporation the heat made latent in the vapor causes its temperature to be far below that of the liquid from which it originates, and so robs the remainder of this liquid and the surrounding bodies from a great deal of their heat, in this way producing a cold of which the intensity is proportional to the rapidity of the evaporation, and therefore depends greatly on the degree of volatility of the liquid used.
It is a common lecture room experiment to freeze a smal quantity of water under the bell jar of an air pump, when the vacuum is produced with sufficient rapidity; a tablespoon full of water placed in a watchglass may be frozen in less than a minute, all what is necessary is that the pump be able to remove the watery vapor formed as fast as it is generated If the air pump is not in perfect condition, it is necessary to add some auxiliary agent, and this is to place under the bell jar a flat dish filled with sulphuric acid; this, by its grea affinity for watery vapor, aids the action of the pump, and makes the experiment successful, even if the pump is in a lesser degree perfect.
This lecture room experiment has been modified into a practical machine by Carré of Paris, and is since some year in operation in many of the Paris restaurants. It consists of a hand air pump, which exhausts the air and watery vapor from a strong glass bottle half filled with water, while thi air and vapor before reaching the pump passes through a cylinder with sulphuric acid, which retains most of the watery vapor and makes the evaporation so rapid that a quart of water can be easily frozen in a few minutes, according to condition of machine, of season, and locality.

But in place of freezing water by its own evaporation it is more advantageous to use a liquid of greater volatility, such as ether, carbon bisulphide, liquid ammonia, chymogene, or even liquefied carbonic or nitrous oxide. The latter two substances are indeed so volatile that it requires no machinery to freeze water with them; it is sufficient to surround a vessel with either of those substances, when the water in it will be rapidly congealed.
Less volatile substances may also be made to evaporate rapidly enough to freeze water, without the aid of vacuum pumps, by simply aiding their evaporation by means of a blast of air. Böttger has published a simple method of which the whole apparatus required is represented in the engraving. It consists in a flat dish of very thin sheet copper, in which some carbon bisulphide, ether, or chymogene is poured; this dish is placed on a small square board of pine wood, on
which some water is placed, so as to be between the board and the bottom of the dish. When in this condition the nozzle of a bellows is kept over it in the position indicated in the figure, and by working the bellows a blast of air is thrown upon the surface of the volatile liquid in the dish. and so its evaporation accelerated. After continuing this for little while, the water under the dish is found to be frozen.

IMPROVED GLUE POT

The desirability of keeping glue, while being used, at the ight temperature, and avoiding all liability of its boiling

over, on the one hand, or of becoming chilled on the other, well known to mechanics who have occasion to prepare and use the material. By the invention illustrated herewith his is claimed to be accomplished with certainty and with out trouble. To the center of the under side of the bottom of the shell, A , is secured a screw, a, which extends downward and at right angles to the bottom. C represents the base, from which emanates the heat designed to dissolve the glue. This base has formed through its center an orifice, b, which has within it screw threads corresponding to the threads on the screw, a. The upper surface of the base, $\cdot \mathrm{C}$ is closed, as well as its under surface. The screw, a, afte being entered within the orifice, b, may be received entirely within said orifice, or but partially so.
Heat being applied into the base, C, by steam, or in any ther desirable manner, the shell, A , of the glue pot is turned o as to send the screw, a, after being entered within the orifice, b, which will bring the under surface of the shel closely in contact with the upper surface of the base. In this position the greatest amount of heat is brought to bear upon the glue pot, and the glue within it very speedily be gins to boil. Now, to keep the glue, after being properly prepared, at the requisite temperature, it is only necessary to revolve the shell, A, until itsbottom is brought out of contact with the surface of the base. In this position a stratum of air, entering between the base and the bottom of the shell, will modify the temperature to any degree desired and by simply screwing up or down the cylinder, A, bring ing it nearer to or further from the upper surface of the base, the glue may be kept on the boil, or simmer, or other wise, at pleasure, without danger of boiling or getting too cool to use. This invention was patented January 11, 1876, by Mr. C. S. Comins, of New York city.

Hospitals for those who can Pay.

What is called the Home Hospital Association has been organized in London for the purpose of providing comfortable hospital accommodation, with skilled nurses, in various parts of London, for the benefit of patients who can afford to pay for such advantages. Such hospitals will not only be a great convenience to the public, but will prevent the abuse of charities intended only for the poor.

A scheme is also on foot in London for the establishment of a large hospital composed of separate departments, each devoted to special diseases. It is thought that in this way one general medical staff may be able to superintend the whole institution, and that the material may be rendered more valuable for purposes of clinical instruction.

An analysis by Charles C. Dreuding shows that the or anic constituents of cotton root bark are a red and a yellow resinous coloring matter, fixed oil, gum, sugar, tannin and chlorophyll.
On August 20th last, Frederick Cavill swam the English channel, twenty miles, from Cape Grisnez, France, to Dover England. Time, 12 hours.

Rise and Progress of the Beet Sugar Industry in France.
The following is extracted from the Inaugural Addres delivered by M. Drouyn de Lhuys at the Agricultural Congress at Compiegne:
Though the avowal be made at the cost of patriotism, it must be owned that the art of extracting sugar from the beet, which has now attained such a marvelous development is not of French origin. Even the plant itself is not indige nous, having been introduced from Bohemia by the bar barian hordes that ravaged Gaul at the time of the Roman Empire. In his " Theatre d'Agriculture," Oliver de Serres speaks of it as a kind of forage, and appears to have presared the possibility of extracting the matter which furnished its fermented juice. Its value as food for cattle was enthusiasti cally advocated by the Abbé Commerel, in a pamphlet published at Paris in 1786, under the title of "Instruction sur la Culture, l'Usage, et les Avantages de la Betterave Champ t tre.
The honor of having demonstrated the existence of sugar in the beet belongs to a German chemist, named Margraff, who was born in 1709. He conceived the idea of treating various indigenous saccharine plants, such as carrot and beetroot, with alcohol, and established the fact that beets contain as much as 6 per cent of their weight of sugar. The following extracts from a memoir, which he published in 1745, show in an interesting manner how this valuable dis covery, of whose immense future he could have no concepception, gradually dawned upon Margraff: "I took the roots of white beet, cut them into slices, and allowed them to dry. Then I reduced them to a coarse powder, eight ounces of which I put into a stopped bottle, and poured upon them sixteen ounces of rectified spirits of wine. The whole was then subjected to heat, which was pushed up to the boiling point of the spirit, while the powder collected at the bottom of the vessel was stirred about from time to time. Immediately the boiling point was reached I removed the vessel from the fire, poured its contents into a small linen bag, and squeezed out the liquid part thoroughly from the latter. The liquid thus expressed was filtered while still hot, poured into a flat-bottomed glass vessel, corked up, and set aside in a cool place. The spirits of wine at once became turbid and at the end of some weeks small crystals were formed, having all the characteristics of tolerably pure sugar. These I dissolved anew in spirits, and thus obtained them of greater purity."

This procedure of Margraff was a mere laboratory experiment. Half a century had still to pass before any practical application of his discovery was made. The second step was also the work of a German, though his name, Achard, indicates descent from a French stock. In 1795 he grew large quantities of beet on his farm in Silesia, and extracted from them sugar in abundance. He even got as far as re-fining the product, and in 1799 presented specimens of loaf sugar to Frederick William III. of Prussia.
In 1800 Achard published his method in a work entitled " Instruction sur la preparation du Sucre brut, du Sirop, et de l'Eau-de-vie de Betterave," which attracted the attention of the Institute of France. This body caused a detailed report of the new industry to be drawn up, the matter being then of much consequence owing to the loss of the French colonies. Sugar became still dearer when the Continental blockade suppressed maritime traffic, rising then to six and even twelve francs per kilogramme. Impressed by the necessity of procuring for the population an article of diet which had by this time become an actual necessary of life, the Government caused experiments to be made, one by one, upon all plants cultivated in France which were in any degree capable of replacing the sugar cane. In this manner grapes, plums, maize, sorgho, carrot, and maple were passed under review. Rewards were offered for the encouragement of investigation, and in 1810 Proust received from the Emperor Napoleon the Cross of the Legion of Honor and a sum of 100,000 francs for his discovery of grape sugar; while one of his competitors, Fouquet, was awarded 40,000 francs in acknowledgement of his efforts in the same direction. Grape sugar, however, is not crystallizable; it is friable; it must be employed in quantities twice or thrice as large as are required of cane or beet sugar; and in the form of syrup, extracted directly from the grape, it is even less satisfactory.
Further researches were necessary, and now the turn of beet root came. The first French factory for the extract of sugar from beet was founded at Lille, in 1810, by M. CrespelDelisse. Some Spaniards interned in the Departement du Nord, who were familiar with the manufacture of cane sugar, lent him their assistance as workmen, and the venture soon became a great success. From 400 kilogrammes manufactured the first year, the output rose to over 10,000 in the next. The Institute had nominated a commission, composed of Chaptal, Fourcroy, Darcel, Guyton-Morvan, de Cels, Teissier, Vauquelin, and Deyeux, who were meanwhile occupied in studying the methods recommended by Achard, and seeking to improve upon them. On March 21, 1811, a resumé of their investigation appeared under the title of the impetuous genius of Napoleon, excited by a report of Chaptal's, aspired to solve the problem by main force. A decree of January 15 directed the creation of five schools of chəmistry, to which 100 pupils were to be attached, 100,000 acres of land were to be cropped with beet, and four imperial factories at once established. The downfall of the
lished at enormous cost, by re-establishing ocean traffic, and the restoration of the colonies. On the same day that peace was declared the price of sugar fell two thirds, and declined, little by little, to 1 fr .40 c . per kilogramme. The majority of home-grown sugar makers at once succumbed in the unequal contest, but some few brave spirits still maintained the competition. Among these was M. Crespel-Delisse, who had already gone through the crises of 1812 and 1814. With renewed energy he established a central refinery at Arras, attached to it nineteen agricultural estates, destined to supply its wants in raw material, and constructed special workshops for the manufacture of the necessary plant. His contribution to the general output of sugar in the whole of France rose to $4,000,000$ kilogrammes yearly. In 1824 M . Crespel Delisse's labors were made the subject of a special report by Chaptal; in 1827 he was awarded the great gold medal, and 1864 the Government of the Second Empire claimed for him national recompense as a public benefactor to his country. It is scarcely necessary to recall how few industries have had such difficulties to surmount and have achieved. such rapid successes. In fact, the produce from the beet, when
first called into unexpected competition with that of the cane first called into unexpected competition with that of the cane,
was little more than a coarse brown sugar (cassonade), and there has been no lack of pleasantries at its expence. Many may remember a caricature representing the little King of Rome holding a beetroot in his hand, and crying sadly, " Papa says that it is sugar." Nowaday it is assuredly sugar, and good sugar too. But what vigorous efforts and wha indefatigable perseverance have been required to attain this
end! To achieve this victory nothing less than a triple alliance of agricultural, chemical, and mechanical science ha sufficed.
Let us measure by the aid of figures the distance we have traversed in our onward march since 1827. At that date the annual production of sugar was estimated at $1,000,000$ kilokilos., in 1846 at $247,000,000$ kilos., and in 1871 at $336,000,000$ kilos. In 1875 the production had risen to $450,000,000$ kilos. while the home consumption did not exceed $250,000,000$ kilos., and thus $200,000,000$ were available for exportation Looking back to the glass vessel in which Margraff first crys tallized the juice of beet, heated with spirits of wine, it mus fain be acknowledged that the career of the home-grown sugar in Austria and in France has been a brilliant one indeed.

Epitaph on an Engineer.

The Chicago Age of Steel says that the following epitaph is genuine:

Here lies in a horizontal position, The remains of
George Washington Brown,
Steam Engineer,
Whose abilities and skill were an honor To the craft.
His fire was even; water-line at the middle cock;
Steam-just right.
Every action was marked by the pressure gauge, And limited by the safety-valve,
And so accurately was his machinery regulated
By the governor,
He never met with an accident,
Until most mysteriously-'twas an unlucky dayBoiler, engine and building, with mortals ten, All went up
Higher than a kite
Poor Brown, with nine others, departed this life By steam
Aged 46, Cincinnati, O., April 14, 1871. At the inquest,
The Coroner held the deceased " a blameless man." He was always true;
'Twas the iron that was false;
Providential-so it was to be
Peace to his dust.
The school Blackboard.
A correspondent of the New England Journal of Education states that the Rev. S. R. Hall, LL.D., who recently died in Brownington, Vt., at the age of 82, where he was pastor of the Congregational church for some thirty years, originated the notion of using a blackboard in schools. He first used it in Rumford, Me., in 1816, to illustrate arithmetic. The first one was made of black paper, which he marked upon
with white chalk. The notion was at first ridiculed, but Mr. Hall persisted in its use, and finally met with favor He next used it in Concord, N. H., where he taught for some years. Here it was a great novelty in the public schools, and many visited the school to see its use; but this way of explaining arithmetic was so successful that it was now no teacher seems to be able to get on without it.

New Steamship.

The City of Macon, lately launched from the yard of John Roach, Chester, Pa., has been built for the Ocean Steamship Company of Savannah. She is of iron, 2,250 tons; length, 272 feet over all; 38 feet 6 inches beam moulded; depth from base line to top of spar deck, 26 feet 10 inches; depth of hold, 24 feet 10 inches. She has two compound surface condens-
ing engines of 1,650 horse power. Her boilers are four in ing engines of 1,650 horse power. Her boilers are four in number, and are tubular cylindrical. Her propeller is of the Hirsch patent. She will ply between New York and Savan nah, in connection with the Georgia Central Railroad.

A Satisfactory Grasshopper Machine.

Professor Riley, of the Entomological Commission, has during the summer perfected a grasshopper machine, which seems to be just the thing. It is intended to do away with all extra material, like coal oil, which in the long run is expensive, and to work at all seasons, whether the insects are just hatching or full grown. It is not patented, nor does the Professor intend to patent it, unless it is found necessary to prevent others from doing so. In the Industrialist, the or gan of the Kansas State Agricultural College at Manhattan, Mr. A. N. Godfrey thus speaks of the machine
The Mechanical Department has constructed a new locust exterminator for Professor Riley. This machine operates upon the bagging principle. It is, briefly, a large canvas bag stretched upon a light but strong frame and placed upon runners, which extend with curved tips a little in front of the mouth. The canvas is stretched upon the inside of the frame, thus making the bag smooth and even within. This bag has a mouth ten feet long and two feet high, and converges backward to a small box one foot square with an opening covered with wire cloth above, and containing a slide cut-off at the end. This box opens into a small cylindrical bag two and a half feet long and one foot in diameter This bag is kept in position by two tin hoops attached to wide runner beneath, which is fastened to the main machine by leather straps. The hinder ring contains the door, which is of wire cloth stretched upon a stout iron ring, which fits ightly within the bag-ring, and swings upon a pivotlike the damper in a stovepipe. The door is fastened by a small iron rod dropped through holes in the bag-ring at right angles to the axis of the door. The machine is made to " take mor land" by means of two triangular wings about six feet long attached to the ends, from which are suspended a number of teeth or beaters, which, swinging loosely, drive the 'hoppers towards the center. The wings also serve as attach ments for the motor power.
On smooth ground the machine can be easily hauled by two men, but where the grass is tall and thick it pulls harder. The locusts on hopping into the machine soon each the small back portion, enter the small bag and are attracted to the rear end by the light which enters at the gauze door. When a sufficient number are thus captured the machine is stopped; the cut-off is slid down in the box thus shutting the 'hoppers in the bag; a hole is dug behind the machine, the bag tipped into it, the 'hoppers buried, and " presto !" the thing is done.
The advantages of this machine are many, some of which are that it requires no additional expense to run it, as for oil, tar, etc.; it will catch the winged locusts as well as the young, if operated on cool morning and evenings; and is adapted to almost all conditions of growing grain. The adapted to almost all conditions of growing grain. The
machine can be made for about ten dollars, and perhaps machine can be made for about ten dollars, and perhaps
less. From all appearances the machine will give good satless. From all appearances the machine will give good sat
isfaction, and armed with it we may hope to make a suc isfaction, and armed with it we may hope to make that may try to crush us in the future.

A New Case of Aniline Poisoning.

Not long since we published an article by Dr. Seidler, on the aniline dyes and their effect on the system (Scientific American, page 40, July 21, 1877). Notwithstanding his very plausible theories in regard to the non-injurious effects of infinitesimal quantities of the poison, if such it be, we have some facts from Berlin that seem to throw doubt on his conclusions. On pleasant Sundays in summer large numbers of the denizens of that metropolis seek recreation in the pleasant retreats of Potsdam, the summer residence of royalty. On the last Sunday of July a large number of these pleasure seekers suffered injury from fuchsine poison ing. It seems that reports had reached the Potsdam police that sickness had followed the partaking of some so-called raspberry extract, a favorite flavoring over there, and usually of a very bright red color. The police at once instituted of a very bright red color. The police at once investigation and found that the raspberry extract sold by a certain Potsdam merchant contained but very little of the juice of the berry and very much aniline, especially fuch sine. The raspberry juice found was at once confiscated and an official warning published in the Potsdam papers against raspberry juice. These praiseworthy precautions prevented any further poisoning during the ensuing week among the citizens of Potsdam, but the calamity broke out again with greater severity among the Sunday guests from Berlin. A number of persons who had been wandering about the beau tiful gardens of Sans Souci were resting in Blume's café near the orangery, and drinking white beer mixed with raspberry extract. Soon after partaking of these, symptoms f poisoning were noticed, nausea and vomiting, etc.;some f the ladies even fainted away. Police-consul Thiedecke Dr. Frank, and others have attributed this sickness to fuch sine, although some of our readers might consider this strange admixture of raspberry and weiss beer, upon the empty stomach of a weary pedestrian, able to produce sickness without the aid of fuchsine. Be this as it may, Berlin raspberry juice is at least suspicious.

Fire Arms Improvements.

Col. Silver, of London, Eng., has made two very good mprovements, specially useful in heavy and rapid firing. The first consists of a soft rubber heel piate, which is readil attached to any gun. It takes up the recoil in an admirabl manner, and thus permits the firing of heavy charges with impunity.
The second improvement consists of a hard rubber hand
guard, made in the form of a sleeve, that slips over the bar rel and forms a non-heat-conducting cover. By the use of this guard the gun barrel may be firmly held in the hand even after it has become scorching hot under rapid firing. Samples of these devices are furnished by Mr. Joseph Dixon, 7 Bloom Grove, Lower Norwood, London.

Professor Loomis, New Meteorological Deductions. Professor Elias Loomis of Yale College, after examining the immense number of weather observations collected by the United States Signal Service, deduces the following generalizations. The seven papers wherein the detailed discussion has been embodied have appeared in the American Journal of Science and Arts whence the summarized conclu sions below given are extracted:

1. Areas of low barometer result from a general movement of the atmosphere towards a central area, and this movement is accompanied by a deflection of the wind to the right. which causes a tendency to circulate around the center with a motion spirally inward.
2. This deflection to the right, which results from the earth's rotation, causes a diminished pressure within the area of this inward movement, and the pressure is still further diminished by the centrifugal force resulting from the circulation about a center.
3. The amount of the barometric depression depends upon the force of the wind, and the geographical extent of the revolving atmosphere. The effect of centrifugal force is not considerable except when the velocity of the wind approaches that of a hurricane. With a velocity of 100 miles per hour, the depression due to centrifugal force may amount to about two inches; but in the winter storms of the middle latitudes, with a velocity not exceeding forty miles per hour, the depression due to centrifugal force seldom exceeds one or two tenths of an inch. In these storms, three quarters of
the observed depression of the barometer is usually the effect the observed depression of the barometer is usually the effect of the earth's rotation: but in order that the depression at the center may amount to as much as one inch, it is gen erally necessary that this system of circulating win.
prevail over an area nearly 2,000 miles in diameter.
4. In North America, south of latitude 35°, areas of low pressure are less frequent and generally exhibit a less depression than near latitude 45°, because the area over which a cyclonic movement of the winds prevails is small; and this area is small because, if a cyclonic area could beformed having a radius of 1,000 miles with its center in latitude 30°, its circumference must extend southward to latitude 16°, where the trade winds are steady and seldom interrupted. Such a diversion of the winds toward the north, even if it could be produced, could not be long maintained; so that a large cyclonic area with its center in latitude 30° is wellnigh impossible; and it is impossible that there should be a grea depression of the barometer in latitude 30°, except with a wind having a hurricane velocity. This is believed to be the reason why in North America the centers of greatstorms are generally found north of latitude 40°.
5. The causes which may produce a general movement of the àtmosphere toward a central area are (A) unequal pressure as shown by the barometer; (B) unequal temperature;
and (C) unequal amount of aqueous vapor. Of these three causes the effect of the first is generally so decided that the influence of the other two causes can only be detected by careful observation; but when the pressure of the air is careful observation; but when the pressure of the air is
nearly uniform over a large extent of country, the innearly uniform over a large extent of country, the in-
fluence of the other two causes is sometimes very palpable, and their influence is generally seen in a slight deflection of the winds from the direction they would have if wholly controlled by the first cause.
6. A cyclonic movement of a large mass of air is gen-
erally attended by an upward motion in certain localities, erally attended by an upward motion in certain localities,
chiefly on the eastern side of the center of low pressure, and chiefly on the eastern side of the center of low pressure, and
this upward movement results in rainfall. The rainfall is then not generally the original cause of the barometric depression, but rather an incident of the cycloidal movement of the atmosphere. The fall of the barometer during a rain of the atmosphere. The fall of the barometer during a rain
storm cannot be ascribed to the simple condensation of the vapor of the atmosphere, as some have supposed, since a rainfall of one or two inches prevailing over an area 300 miles in diameter near latitude 30° produces scarcely an appreciable effect upon the barometer.
7. The progress of areas of low barometer in all latitudes is determined mainly by the same causes which determine the general system of circulation of the atmosphere; and change the direction of the winds
8. The heat which is liberated in the condensation of large amount of aqueous vapor must exert an influence upon the movements of the air, so that while the rain is generally to be regarded not as the original cause but rather as one of the incidents of extensive cycloidal movement, if the rain area has great geographical extent, it may have a decided influence upon the amount of the barometric depression and upon the velocity with which the storm advances; sometimes accelerating its motion, sometimes retarding it, and sometimes holding it nearly stationary in position for two or three days.

The Electric Light.

The Russian Government, it appears, is turning its attention to the electric light as an illuminator for military purposes. In some experiments recently made at St. Peters-
burg, with the special object of increasing the distance to which the light produced by electricity may be thrown, it
was found that the power of the light is greatly augmented by covering the carbon burner with a thin sheet of copper.
The augmented light was sufficiently powerful to render objects visible at night at a distance of upwards of 3,000 yards.

Protessor Langley's Apparatus for Eliminating Personal Equations.

A well known source of error in astronomical observations is that due to the deficiencies of the observer himself in the shape of defects in vision, perceptive power, etc. In order to eliminate this, astronomers have adopted two courses; either to find the amount of personal error in each case and apply a subsequent correction, or to diminish or eliminate the same by suitable devices during the act of observation. Pro fessor S. P. Langley describes, in the American Journal of Science and Arts, and new and very ingenious apparatus for eliminating the "personal equation" on the star itself. It is constructed and operated as follows:
On the transit pier (or in any other convenient locality) is a small clock, with a conical pendulum, whose bob slides freely up and down the graduated rod, retaining its position where left. A small horizontal wheel in the clock is con trolled by the pendulum, and turns once for a certain constant number of its revolutions. This wheel revolves once for each equatorial interval of the transit wires, when the bob is set at a mark near the top of the rod, and by sliding the bob sufficiently downward; with the use of a readily constructed table, we can, given the declination of any star between the limits 0° and $\pm 60^{\circ}$, set the pendulum, so that this wheel shall make exactly one revolution while the star passes from wire to wire. This wheel carries near its peri phery a mercury drop or other contact piece, which once in a revolution is carried past a point fixed near the periphery of a stationary horizontal wheel, concentric with the first and immediately above it, but insulated and entirely detached from it.
This upper wheel, while thus related to the lower, is entirely disconnected from the machinery of the clock and is thus far stationary; but it can be revolved by cords passing from a groove in its circumference to the hand of the observer at the transit. As the upper, or ordinarily fixed, and the lower or constantly moving, wheels have common vertical axis of revolution, and as the radial distance of the point in the upper from this axis is the same as that of the contact piece on the lower, it will be seen, while the upper wheel remains motionless, electric contact accompanied by a simultaneous flash, if we desire it, at the transit lantern or elsewhere, will be made at equal and uniformly recurrent epochs, the interval between which depends only on the adjustment of the pendulum. If the upper wheel be rotated forward by hand, through a small distance, and then left, the next contact will still occur, but at a later epoch owing to the lower wheel's having to complete more than one revolution to make contact, but after this the contact
and simultaneous flash will recur at the same intervals, and with the same regularity as before. If the upper wheel be moved backward, the flash will occur once, earlier, and thereafter with regularity. Moving the upper wheel, then, changes the epoch from which any series of such flashes dates, and adjusting the pendulum bob fixes the interval between subsequent flashes. In practice the lamp is removed from the transit lantern, and the two terminals of a batter or induction coil in its place cause the flash to be thrown
upon the wires, whenever the mercury drop is in contact with the point, and at the same instant a mark is made automatically on the chronograph and interpolated in the regu lar record of the beats of the sidereal clock, which go on in the usual way quite independently of any reference to the apparatus just described.
The mode of observation will be anticipated. Before the transit of any star the observer adjusts the conical pendulum heside him (this is the work of but a few seconds), and then seats himself at the instrument holding the cords in one hand like the "reins" of an equatorial. If a flash occur just as a star is crossing the first wire (which is most un likely) he has nothing to do, except possibly to note which was the middle wire, for each records itself on the chronograph without any intervention of his. But if the star be,
for instance, two thirds of the way from the first to the second wire at the first flash, he will draw one of the cords, accelerating the flash and thus causing the star to appear nearly coincident with the second wire when the next spark comes, and repeat the adjustment by the light of subsequent flashes, till the bisection is perfect. Three or four trials are in practice found to yield a bisection which will satisfy a fastidious eye, and when a satisfactory one has been once made, the effect is automatically repeated.
Under the general conception, then, of the possibility of diminishing to any limit personal error, by employing brief views of the star or wire and utilizing the phenomena of persistence of vision, the particularly described device assumes to dispense with the observer's record upon the chronograph altogether, and to substitute a purely automatic one giving the same virtual result as though the image of the star were a tangible object, itself making electric contact with each wire. The share of personality in any observation is relegated to the prior act of bisecting a star, virtually motionless with relation to the bisecting wire, so that if (as seems to be the case) this act is independent of quickness or slowness of perception, of the time of cognition, or of the
speed of nerve transmission; personality, in the technical speed of nerve transmission; personality, in the technical
sense, appears not to intervene at all.

Notice to Patentees.

Inventors who are desirous of disposing of their patents would find it greatly to their advantage to havethem illustrated in the Scientific AmER IdAN. We are prepared to get up first-class wood engravinas of inven-
tions of merit, and publish them in the Scientific American on very reasonable terms.
We shall be pleased to make estimates as to cost of engravings on receipt of photographs, sketches, or copies of patents. After publication, the
cuts become the property of the person ordering them, and will be found cuts become the property of the person ordering them, an
of value for circulars and for publication in other papers.

NEW HOUSEHOLD INVENTIONS

IMPROVED SAD IRON AND FLUTING IRON COMBINED.
Christopher C. Burke,Cuthbert, Ga.-This improvement consists in forming the iron in box form with four smoothing faces, two large ones and be reversible, and with a heating plug or block to be inserted in the hollow ron which has four faces, corresponding to the four faces of the iron. It also consists in the particular means for connecting and disconnecting a
plate carrying one of the ironing faces, to admit the insertion or removal plate carrying one of the ironing faces, to admit the
of the plug or block, and the adjustment of a fluter.
improved reciprocating churn
Allen D. Ferris, Blakeley, Minn.-This invention relates to oscillating churns; and the nature of the invention consists in combining, with a emi-circular cylindrical oscillating churn box, a removable rectangula rame, having slats arranged in it in such manner that when the box is ocked rapidly the milk in it will be violently agitated, the currents being slats. The slats on one side of the frame are inclined in an opposite direc tion to those on the other side of the frame, and the angle of inclination of the slats is such that the milk is directed both upward and downward b the same slats at each oscillation of the churn box. The currents are thus opposed to each other, and a violent agitation is produced which greatly hortens the operation of churning. The slats also serve to gather the but r when it comes.
IMPROVED COMBINED LAMP REST AND SHADE HOLDER.
Partrick J. Clark and Joseph Kintz,W est Meriden, Conn.-This invention relates to an improved lamp rest and shade holder combined, by which the shade may be readily swung out of the way, and securely retained in raised position while the fount is taken off for refilling and other purposes, the pount being securely applied to the fount plate or drasket,and any danger psetting or dropping the lamp effectually prevented. The invention con spring wire holder or clamp that screws the fount or basket tightly to the bracket or chandelier; and it also consists in the connection of a fount plate or basket with an adjustable rod carrying the swinging shade holder. The fount when placed on the spring wire holder is rigidly retained on the plate or basket without danger of being thrown off or detached from the same in accidental manner. The wire holder admits at the same time the
ready sliding of the fount when lifted in vertical direction, for clearing, reflling, etc., and the instant replacing by pressing the fount down on the holding device. The shade or chimney is swung back on the fount as coo as the same is placed in position on the holder, being securely supported in raised position as as to remove and replace the fount and light the lamp in convenient manner.

IMPROVED BROILER AND TOASTER.
Andrew C. Bolton, Greenport, N. Y.-This invention consists of two light wire frames hinged together, and provided with a spring fastening and with a wooden handle. The object of the invention is to provide a broiling or toasting. The frame is formed by bending a wire into a rect angular form, and twisting it together at the center of one of the sides of the frame. This frame is stiffened and supported by two wires which pass diverge from this twist of the wire that forms the frame. The wires that fastened to the frame, and pass under the transverse wires which ar that in which the twist is formed. The wires and the ends of the wire that forms the frame are parallel outside of the twist, and are placed in a woode or non-conducting handle.

NEW WOODWORKING AND HOUSE AND CARRIAGE BUILDING INVENTIONS

improved thill coupling.
Francis E. Justice, Marysville, O. -The object of this invention is to pro vide a simple means for preventing the detachment of the thill iron except
when the thills are raised to a vertical position, and also for supporting the when the thills are raised to a vertical position, and also for supporting the
thill ends off the ground when the carriage is not in use. The said means thill ends off the ground when the carriage is not in use. The said means
consists of a horizontal bar attached to the under side of the eye of the consists of a horizontal bar attached to the under side of the eye of the
thill iron, so as to come in contact with an elastic block which is secured in the socket of the clipin such position as to act as a buffer for the said in the socket of the clip in such
bar when the thills are lowered.

NEW MECHANICAL AND ENGINEERING INVENTIONS

improved scroll-sawing machine.
William Hinchliffe, Nashville, Tenn.-The object of this invention is to on the blade at every portion of the stroke. The table, similar to an ordi nary sawing machine table, in which the shaft of the driving wheel is journaled, and in the lower part of which is pivoted the treadle which is connected by a pitman with the crank formed in the shaft of the wheel. The saw blade is clamped to the bars by means of the clamping screws. and the position of the saw in the clamping device is determined by a pun that projects from the side of each head. The machine is operated ${ }^{\circ}$ by working the treadle, and more or less tension is given the saw by turning a
screw, and by turning another screw the table may be pitched or inclined. The arrangement of the spring is such that the tension on the saw is always the same in all parts of the stroke.
improved device for supplying locomotive tenders with fuel.
Will C. Hamner, Water Valley, Miss.-The object of this invention is to furnish an improved device for supplying locomotive tenders with coal or which shall be so constructed as to discharge the required supply into the
tender at once, so as to avoid the delay which is unavoidable when the tenders are supplied in the usual way. The invention consists in the em ployment of a pivoted or tilting box for supplying locomotive tenders with fuel. To the platform of the railroad track are attached two posts, to the upper ends of which is pivoted a box. The box is made of such a size as
to contain the quantity of coal or wood to be supplied to a tender at a to contain the quantity of coal or wood to be supplied to a tender at a time. To the side of the box is pivoted a hook latch to catch upon a pin
attached to a post secured to the platform. The latch is held forward by a spring attached to the box, and its forward movement is limited by a a spring attached to the box, and its forward movement is limited by a
stop pin also attached to said box, so that the latch will always be in position to catch upon the pin automatically when the box is swung back into place after being tilted to discharge its contents.

IMPROVED SAND CONVEYOR.

Rufino C. Garcia, San Antonio, Texas, assignor to himself and Aug. Robin.-This invention relates to a machine constructed for taking up and
conveying sand into a suitable receptacle. The machine may be pulled by conveying sand into a suitable receptacle. The machine many be pulled by
hand or horse power over he sandy ground, the same being first loosened hand or horse power ver the sandy ground the same being is provided with number of circumferential cutting kivives, and constructed of sufflicient weight to sink
them into the sand, and pack the sametightly in the spaces or sections bethem into the sand, and pack the same tightly in the spaces or sections be-
tween the knives, and is retained in the sections and carried up between tween the knives, and is retained in the sections and carried up between
the knives to scrapers, passing them over to an inclined plate that is sethe knives to scrapers, passing them over to an inched rigidy on side supports of the tongue frame, and over a hinged apron to a suitable receiving box, which is supported on the tongue of the machine, and is readily dumped or removed when filled with sand. In machine, and is readily auped or oes. is readily taken up and collected in cheap and effective manner, requiring only one attendant, either for driv-
ing the cheap and eftective manner, requiring only one atten
improved gas-washing apparatug.
William M. Cosh, Conshohocken, Pa.-The form of this apparatus is
imilar to the ordinary gas-washing box, and has an inclined longitudinal partition, which, in a transverse direction, is horizontal. A shelf or partitio. extends from a point near the outlet gas pipe near to the opposite
end of the washing box. Plain transverse ribs or brakes project downend of the washing box. Plain transverse ribs or brakes project down-
ward from the under surface of the shelf, and notched transverse ribs are ward from the under surface of the shelf, and notched transverse ribs are
placed between these ribs and project in the same direction. An inlet gas pipe leads from the gas generator, and projects downward through the partition, and an outlet gas pipe leads from the washing box. There is an overflow pipe, through which the water may escape; and a blow-off pipe
for removing the water when required. A door is hinged to the lowerend of the shelf, and is capable of being thrown against the end of the box by
gas pressure. The operation is as follows: The box is filled with water, gas pressure. The operation is as follows: The box is filled with water,
so as to completely cover the inclined shelf, and the supply is maintained so as to completely cover the inclined shelf, and the supply is maintained
by a spring tube, in the usual way. Gas is forced in through the pipe and by a spring tube, in the usual way. Gas is forced in throgh the outlet pipe. In its passage it is deflected by ribs, and thrown down a number of times
before reaching the upper end of the partition. By this means the gas is before reaching the upper end of the partition. By this means the gas
brought into contact with a greater surface of water than in boxes of or
nary construction.
improved valve gear for steam engines.
James H. Davis and William White, Winnsborough, Tex.-The object of this invention is to furnish an improvement in steam engines which exhaust at regular intervals, which will enable the engine to be easily reversed, can be easily attached to any engine, which will enable an engine to be worked by water pressure, will run smoothly and with very little
friction, and will be very durable. The crank wheel is made with a profriction, and will be very durable. The crank wheel is made with a pro-
jection rim, to the inner surface of which is attached, or upon it is formed, jection rim, to the inner surface of which is attached, or upon it is armed, ins, which pins, which have rollers placed upon them to diminish friction, and are alternately by the projection, to give a reciprocating movement to the bar.
The bar slides in the bearings in the supports, and to it is attached the tem of the inlet valve, which slides in the steam chest and admits steam nto the ends of the cylinder alternately. The end of the bar is pivoted to the
end of arm rigidy attached to an upright rock shaft, which is provided with two rigid arms projecting in opposite directions, and at right angles with the arms. To the ends of the arms are pivoted the outer ends of the
stems of the outlet or exhaust valves, which are placed at the ends of the stems of the outlet or exhaust valves, which are placed at the ends of the
cylinder, and from which the exhaust steam passes directly down into the cylinder, and from which the exhaust steam passes directly down into the
heater. The rock shaft is provided with a handle to enable it to be turned heater. The rock shaf
to reverse the engine.

IMPROVED TIME LOCK

John B. Overmyer and James A. Huston, New Lexington, O.-The object of this invention is to so improve the time lock that the setting of the lock is facilitated and accomplished in a simple manner without interfer-
ing with the time pieces that work the bolt-releasing mechanism, and also the stop mechanism, arranged to be thrown at a certain fixed time in auto ing nut is moved by time mechanism to throw out the lever stop and release the bolt at the proper time, the nut being reset by a toothed drum gearing with the toothed nut. The lever stop is retained in position by the bottom arm of a pivoted lever that is automatically worked by the pointer of the
nut engaging an adjustable disk of the retaining lever. To secure the reliable working of the lock, two or more time movements and releasing devices may be arranged, so that in case one timepiece should stop the other
would release the bolt. By a proper adjustment of the disk the bolt may would release the bolt. By a proper adjustment of the disk the bolt may
be thrown, whiie the stop is retained in raised position by an arm until the pointer, bearing against the disk, carries the arm back and allows the stop to drop. Thus the additional facility of the automatic throwing of
the stop of the time lock at a certain fixed time may be accomplished, the stop of the time lock at a certain fixed time may be accompl
which adds greatly to the usefulness and convenience of the lock.
improved hydraulic elevator.
George Ball, Springfield, Ill.-This invention is designed to furnish an apparatus for removing iron piles, steel ingots, and other heavy pieces of iron or steel from heating furnaces; also for removing, in packing-houses,
dead animals from scalding vats, and for other purposes; and the invendead animals from scalding vats, and for other purposes; and the inven-
tion consists of a steam or hydraulic ram, connected by suitable transmitting pulleys and ropes with standards of the different furnaces, the ram being operated by starting cords connected to the steam entrance valve,
and provided with devices for exhausting the cylinder and cushioning the ram piston. For the purpose of removing a pile or other body from the furnace the cushioning and exhaust rod tappets on the ram are adjusted to give a stroke equal to one half length of the distance to which the pile
is to be moved. The bugy is placed under the fore plate of the furnace is to be moved. The buggy is placed under the fore plate of the furnace
door when the heater's helper takes the tongue attached to the chain, introduces them into the furnace, and grasps the pile. The helper assumes a position near the starting rope, and, when all is ready, pulls the same, at
first gradually, to take up the slack of the same. Steam is thereby admit ted into the cylinder of the ram, the piston propelled upward, the line of rope taken up, and the pile delivered on the buggy in good shape. The starting rope is then released by the helper, so that the spring of the lever shuts off the steam, exhausting that in the cylinder, and causing the piston head to return to its original place, ready for the next pull. In case the
spring should fail to work, the whore stroke is made by the piston, until the crosshead strikes the exhaust tappet, accomplishes the exhaust, and shuts off the steam, bringing the piston back to rest.
improved gin saw filing machine.
Albert S. Eastham, Navasota, Texas.-This invention relates to improve-
ments in machines for filing the saws of cotton gins in a reliable, rapid and uniform manner; and the invention consists of a revolving circular file, that is withdrawn by suitable mechanism to admit the intermittent
feeding of the gin saw one tooth, which is accomplished by a feed hand and drag or check pawl. The edges of the saw teeth are sharpened by means of reciprocating files at both sides of the saw. The rotary file i
thrown out of the teeth of the saw when the saw-feeding device moves the saw, being again raised to filing position in the next notch. The file lever is weighted in suitable manner, so as to carry the rotary file back into fil-
ing position as soon as the lever is released by the rear arm of the rock ing position as soon as the lever is released by the rear arm of the rock
lever. The rotary file is pressed against the saw with equal force, whether lever. The rotary file is pressed against the saw with equal force, whether
the same is in or out of circle, oy the weight of the file lever, which weight the same is in or out of circle, oy the weight of the file lever, which weight
is moved back or forward thereon to obtain the desired pressure of the file on the saw. All the saws on the cylinder can be brought to the same diame
ter and in circle by placing the circular file to the saw most out of circle
and to that part of the saw nearest to the center of oscillation, and passing
a pin through the rear end of file lever and the rear guide post of the a pin
same.

Leander Walker, Dallas, Texas.-This invention has relation to trection engines for running on common roads and rails, and to be used for drawing plows, and as a motive power generally. The nature of the invention consists mainly in transmitting motion to the driving and transporting wheels by means of the friction of a long rotating shaft inclosed inside of
elongated hubs of said wheels. The invention further consists in combining friction pressure wheels with the hubs of the driving wheels for in creasing the friction on the latter, as will be explained. By means of the creasing the friction on the latter, as will be explained. By means of the
screws the wheels can be very forcibly pressed against the hubs, and any desired degree of friction produced. The power which drives the wheels acts through the medium of the axle, which may turn faster than the
wheels; consequently the amount of friction can be so regulated that the wheels; consequently the amount of friction can be so regulated that the
wheels cannot slip on the ground, however great may be the power applied wheels cannot slip
to turn the axle.

improved canal boat.

Wiiliam P. Fest, Chicago, Ill.-The object of thisinvention is to furnish new corstruction of canal boat, and improved system of propelling the
same, by which the water is not agitated in the least, and the washing o the banks prevented, the propelling mechanism being arranged with equa facility in new or old boats, so as to enable them to travel at considerable speed and in either direction. The invention consists of a canal boat hav ing a central water channel extending at the bottom of the boat from the bow to the stern, and admitting and discharging the water through aper tures of equal size in the hull of the vessel. A spiral propelling screw is nel divided into arms or branches bàck of the same, that unite to a single channel before the water leaves the boat. The boat may be propelled with considerable speed in forward direction, and also reversed, as the screw works equally well in either direction; but when the boat is required to be regularly propelled in both directions, a second set of branch chan nels has to be arranged at the front part of the boat, in connection wid side and lateral gates, for establishing either communication with the cen of the boat takes up but a small be built at comparatively small cost, furnis ing thereby a canal boat that may be run as a towboat or as a regular canal steamer, which, by the per fectly still state of the water at the discharge opening of the stern, has no the least injurious influence on the canal banks.

IMPROVED CAR BRAKE AND STARTER.
Alexander Winston, Fayette, Towa.-The object of this invention is to brove, by which the ans other purposes an improved rotary cumulativ for starting the same; and the invention consists of friction whels worke by contact with the car wheel when applied by the brake lever, producin the winding up of one or more springs, and the locking of the same by
pawl and ratchet devices on the shafts of the friction wheels until the pawls are released by a treadle, and the power stored up in the springs ap plied to the wheels for starting the car. The brake mechanism may be used in either direction, the friction wheel shafts sliding in guide slots of is car frame. As soon as the car is desired to be started the brake leve
is held backward direction, so as to press the friction wheels against the car wheels, but at the same time a treadle, operated by the foot, lifts ne pawl out of the ratchet, said pawl releasing, by its pivot joint, the sec ond pawl, so as to throw the joint power of the springs on the friction
wheels, and by the same on the car wheels, assisting thereby materially in starting the car. The springs of one shaft coil in opposite direction to that of the other, so as to admit the cumulative working of the brake and starting device in either direction.
improved engineers' plotting table
Albert R. Crandall, Lexington, Ky.-The object of this invention is to the field notes may be plotted in rapid and accurate manner at a saving of time, and without taxing the eyes to injury in the least; and it consists of a sliding and slotted table carrying the plotting paper, in connection with a base disk and the foot or clamp of the protractor and retaining weights.
The foot or clamp and the protractor are arranged on a shaft vertically The foot or clamp and the protractor are arranged on a shaft vertically
above the center of the base disk, the shaft having a prick point at the above the center of the base disk, the shaft having a prick point at the
lower end for marking the stations. A suitable lever arrangement raises protractor, or weights from the paper, and lowers the foot clamp of the themselves by pulleys on the concaved arms. The protractor turns the paper, and is adjusted by hand, and by a tangent screw and spring clamp,
to the vernier. The foot clamp carries a thread, adjustable by screws, in to the vernier. The foot clamp carries a thread, adjustable by screws, in
line with the zero points of the protractor, to set the paper by and to detect errors in case any should occur. The sliding table is operated by a micro meter screw, whose head is divided at the circumference, being arranged
to turn freely on the shank of the screw, and also to be clamped to a fixed head by a thumb screw, so that each measurement may start from the zero point of the head.

NEW MISCELLANEOUS INVENTIONS.

improved fire escape ladder.
Henry B. Walbridge, Brooklyn, N. Y.-The object of this invention is
o provide a portable and convenient ladder, more particularly designed for use as a fire escape, but which may be used for other purposes. In con struction there is a pole, having a disk or bridge piece at or neari is center over which the stay rors are stretched, which rods are fastened to the pole
near its ends, and serve to stiften and strengthen it. In one end of this pole there is a pulley, and to the other end a crosstree is attached, which hinged or pivoted to a truck. A jointed or rope ladder is attached to the crosstree by means of ropes or chains, and to the free end of the said lad der a rope or chain is attached, which runs over the pulley and downward
toward the foot of the ladder, and is operated by hand or by means of a suitable windass. A brace is pivoted to the pole which is inserted in th first joint of the ladder, to keep it the proper distance from the pole. In
a case of fire, when invalids or timid persons are to be removed from upper parts of buildings, a box or basket is provided, which is secured to the ladder by means of a hook. This box, together with the ladder, may be raised and lowered by means of the rope or chain.

improved last.

John T. Poole, Benton, New Brunswick, Canada, assignor to Samuel J. for securing the block to the last, which shall be simple in construction and reliable in use. This last is so constructed that when the block is pushed
down into place in the recess in the last a hook and catch will engage with the rear and forward edges of a plate and fasten the bar securely. When the block is to be withdrawn, a hook is inserted in the hook hole in front
of the upper arm of the catch lever, and as the hook is drawn upon the catch will be raised, which will allo
plate and the clock to be removed.

IMPROVED STIRRUP FOR OIL-WEIL MACHINERY.
Frans A. Segerdahl, Karns City, Pa.-Stirrups as ordinarily constructed for oil pumps are liable to breakage, and are a constant source o
trouble and expense. The object of this invention is to provide a stirru which shall obviate these difficulties. The side pieces of the stirrup and the bar receives the strap from the walking beam. Shoulders are formed by drawing in the side pieces to receive the pitman. Stays or braces are
formed on the stirrup, that extend from the lower end of the side pieces
above the shoulder. The eyes thus formed are filled with wood or other suitable material, and the sides of the stirrup are drilled to receive bolt having beveled heads. Beveled washers having flanges that embrace the
sides of the stirrup are placed under the nuts of the bolts. Stirrups as sides of the stirrup are placed under the nuts of the bolts. Stirrups as entirely obviated.

improved artificial leg

Cornelious Collins, Albia, Iowa.-This invention consists in a novelcon struction of the ankle joint, whereby a perfectly free articulation is allowed
without noise. The lower end of the block forming the lower portion of the limb is curved, leavinga reduced bearing,which will allow a free motio of the foot forward and backward as well as laterally. The front concav surface of the block rests upon a cushion, and is held down thereon by
means of a joint formed of two bolts. The joint thus formed will allow means of a joint formed of two bolts. The joint thus formed will allow
free play, and the cushion will prevent shocks in walking. In rear of the free play, and the cushion will prevent shocks in walking. In rear of the
joint is a hook, which is connected by an eye joint with a bolt fixed into joint is a hook, which is connected by an eye joint with a bolt fixed into
the block. The hook enters a recess made through the foot section and the block. The hook enters a recess made through the foot section and
engages loosely with a pin fixed into this section. This hook joint also allows the foot to articulate forward and backward, as well as laterally The bottom of the foot is arched out and the space filled with hair, or some other suitable material which will prevent noise in walking and afford
elasticity. The cushion thus formed is covered with a piece of leather elasticity. The cushion thus formed is covered with a piece of leather
which forms the joint for the front section of the foot. This knee spring which forms the joint for the front section of the foot. This knee spring
is a strong strip of india rubber, fastened in such manner that it will is a strong strip of india rubber, f
act to strengthen the leg when fixed.
improved cigar-bunching machine.
Charles H. Schneider, Cold Spring, N.Y.-This invention rclates to an in proved machine for making cigar bunches in rapid and uniform manner so as to facilitate and expedite the manufacture of cigars; and the inven
tion consists of a crank roller, a sliding roller, moving along brackets, with nclined parts and recesses, a lower adjustable roller, and of an endles band or apron, that passes around the rollers and revolves with the same For working the machine, the binder is first placed upon the band or sec tion of the apron between rollers, the sliding roller having been placed in-
to forward position against the shoulders of the brackets. The filler, of to forward position against the shoulders of the brackets. The filler, of
any size, is then placed upon the binders, the fingers readily determining any size, is then placed upon the binders, the fingers readily determining
when the required quantity of tobacco is therein. The binder and fillers when the required quantity of tobacco is therein. The binder and filler are then gradually pressed down between the two rollers, the sliding roller
being brought forward on the inclines of the brackets until it comes into contact with another roller, when it drops into a slot and remains in fixe position therein. After the whole series of aprons has thus been filled he crank roller is revolved three or four times, and the bunches then take out, being ready for the moulds. By arranging a number of aprons and
rollers in one machine, the operator passes first along the entire series of rollers in one machine, the operator passes first along the entire series of
aprons, and charges the same with binders and fillers, and turns finally the prons, and charges the same with binders and fillers, and turns finally th turn of the crank, enabling thus the turning out of a large number of uniform bunches in quick and economical manner.
improved game apparatus.
James F. Spence, Brooklyn, N. Y., assignor to himself, Calvin E. Davis with balls; and the nature of the invention consists, first, in a circula table having a central conical depression, surrounded by an inclined shel and inclosed by a rim or guard, which is of convolute form, with one o more gates or openings leading upon the shelf, the said central conical de-
pression being provided with radial channels flaring outwardly and adapted to receive the balls which are projected on the table, and to indicate b figures the different amounts won by the players; second, in a blowpipe o novel construction, which is provided with a spring in its enlarged end,
and adapted for propelling the balls upon the table by blowing through the pipe with the mouth.

IMPROVED HAIR CRIMPER.
John Leeming, Poughkeepsie, N. Y.-The object of this invention is to rovide an inexpensive, efficient, and convenient device ror crimping hair consısts of a hairpin, similar to those in common use, differing only i tion a wire is wound several times, and its ends are twisted together, form ing a tongue, which is a little longcr than the hairpin. This wire is made of flexible material, preferably of copper. The hair is interwoven with the prongs of the hairpin in the usual way, and the wire is bent around it.
This device is small and light, and quickly and easily applied, and the hair may be crimped near its roots, and without the use of clamps.

NEW AGRICULTURAL INVENTIONS.

improved hay elevator.
Julius L. Malcolm, New Athens, O.-The object of this invention is to facilitate the hoisting of the hay from the wagon to the mow in quick and convenient manner, the carriage being returned and locked after the load
is dropped to the starting point above the wagon; and the invention con sists of a track beam of inverted T-shape hung from the rafters of the bar and supporting the wheeled carriage. The pulley over which the hoisting with end catches for supporting the load. The catch lever has a pendant stirrup that is raised by the sheave of the fork, so as to release the catch lever from a stop block of the track, and drop the same on the projection of the pulley, to retain load below the carriage until it arrives at the poin where it is to be dropped. The catch lever is released from the recesse nd curved stop block of the track by the contact of the sheave of the ha dent stirrup of tha catch ap the the the so as to clear the same and admit the forward motion of the carriage along the track. The catch lever engages then the catch pulley, and suspends thereby the load below the carriage. When the load arrives at the point
where it is to be dropped, the trip cord is pulled and the fork opened. The carriage returns then along the inclined track, or by the action of th eighted cord, to its place above the wagon, where the catch lever is raise rom the projections of the pulley by passing along the curved stop block, to be reloaded and hoisted as before.
improved grain cradle.
George E. Clow, Seymour, Ind.- -This improvement relates to providing socket for the post of the cradie head, and to the construction whereby aid socket is made adjustable and detachable, the object being, first, to will, and second, to enable the parts composing the cradle to be separated for shipment.

NEW TEXTILE INVENTIONS.

IMPROVED CLOTH-MEASURING MACHINE

William D. Porter, McComb, O.-This invention relates to a machine o apparatus in which cloth or other kind of fabric can be measured while beng wound upon a roller. The board forming the center of a bolt of cloth ustable rotary shafts, and as the cloth unwinds it passes over a reel, b which its length is measured, and is then wound upon a roller arranged wo rolls and is thereby pressed and smoothed before being rewound upo the board.

The Charge for Insertion under this head is One Dollar a line for each insertion.
"Little All Right," the smallest and most perfect Reolver in the world. Radically new both in principle and operation. Send for circular. All Right Firearm's Co.,
Lawrence, Mass., U.S.A.
S. B., Niagara Falls, N. Y., wishes to procure a family ce Machine. Address as above.
For Solid Wrought Iron Beams, etc., see advertiseithograph, etc.
George S. Boutwell, Counsellor in Patent Causes, 150 Devonshire St, Room 62, Equitable Building, Boston,
Mass.
Patent Salesmen Wanted.-We will employ a number
of men recommended as to character and ability, who have had experience in selling patents and ability, who good pay to good men. F. F. Adams \& Co., Erie, Pa.
Wanted-A position as Mechanical Engineer or
Draughtsman, by an inventive man, for a moderate salary. Address Otto Schrott, Hartmann's Hotel, 45 and 47

Estimates wanted for sinking a well about 100 feet deep, or would buy the necessary tools for doing the
work if they can be had cheap. Address F., Carlstadt, Bergen county, N. J
For Sale-Lathes $15 \mathrm{in} 6 ft,$. , $\$ 135 ; 19 \mathrm{in}$.8 ft ., $\$ 165$;
 Indianapolis, Ind.
Shaw's Noise-Quicting Nozzles for Escape Pipes of
Locomotives, Steamboats, etc. Quiets all the noise of high pressure escaping steam without any detriment
whatever. T. Shaw, 915 Ridge Ave., Philadelphia, Pa. Styrax, Oak, and Black Poplar (almost equal to Walk nut) sawed to order, for cabinet makers and wheel-
wrights. Address G. B. Lartigue, Blackville, S. C. R. R. For best and cheapest Cider and Wine Presses, adess H .
Split-Pulleys and Split-Collars of same price, strength Yocum \& Son, Drinker st., below 147 North Second st Philadelphia, Pa
Screw cutting Foot Lathes, W.E. Lewis, Cleveland, 0 Nickel Salt and Anodes of superior quality at lowest
market prices. I. Feuchtwanger \& Co., 16 Dey st.N.Y.
600 New and Second-hand Portable and Stationary Engines and Boilers, Saw Mills, Woodworking Machines, rist Mills, Lathes, Planers, Machine Tools, Yachts an fully described in our No. 12 list, with prices annexed. Send stamp for copy, stating fully just what is wanted
Forsaith \& Co., Machine dealers, Manchester, N. H.
John T. Noye \& Son, Baffalo, N. Y., are Manufactur rs of Burr Mill Stones and Flour Mill Machinery of all
inds, and dealers in Dufour \& Co.'s Bolting Cloth Send for large illustrated catalogue.
Power \& Foot Presses, Ferracute Co., Bridgeton, N. J. For Best Presses, Dies, and Fruit Can Tools, Bliss \& Lead Pipe, Sheet Lead, Bar Lead, and Gas Pipe. Send or prices. Bailey, Farrell \& Co., Pittsburgh, Pa
Hydraulic Presses and Jacks, new and second hand. Lathes and Machinery for Polishing and Buffing metals.
E. Lyon \& Co., 470 Grand St., N. Y.
Solid Emery Vulcanite Wheels-The Solid Original
caution,-Our name is stamped in full on all our best tandard Belting, Packing, and Hose. Buy that only. The best is the cheapest. New York Belting and Pack
Steel Castings from one lb. to five thousand lbs. Invaluable for strength and durability. Circu.
Best Pulleys and Couplings made; secured to shafts without keys, set-screws, bolts, or pins. Send for cata logue. Taper Sleeve Pulley Works, Erie, Pa.
Skinner Portable Engine Improved, $21-2$ to 10 H. P. kinner \& Wood, Erie, Pa.
Diamond Planers. J. Dickinson, 64 Nassau St., N.
More than twelve thousand crank shafts made by se prove them stronger and more durable than wrought use prove them stronger and more durable than wrough Emery Grinders, Emery Wheel Hedal and Diploma by Centennial Commission. Addres American Twist Drill Co., Woonsocket, R.
(1) N W asks: How an I put a good and durable finish on walnut wood? A. Rub the work over with a stiff brush. Take a strip of woolen cloth about wo yards long, roll it up into a hard roll. Dip one en to the boiled oil and add a few drops of shellac var nish, and rub the work
(2) C. H. P. asks: How many pounds will leather belt 16 inches wide, of the strongest kind, susleather belt is about $3,000 \mathrm{lbs}$. per square of a good tion. From this you can readily calculate an answe to your question.
(3) G. C. P., Jr., asks: What ingredients are used in making kalsomine for walls, and the promixed with water and glue sizing. To 1 lb . glue use 15 lbs. zinc white. Soak the glue over night, and the next morning prepare as for gluing wood. Put the zinc hite in a vessel and pour on hot water, stir untilit ap pears like thick milk. Mix with the liquid glue and ap-
ply to the wall with a brush. If too much glue, the ma erial cannot be laid on smoothly. Stir frequently while applying.
(4) J. H. W. asks: 1. How to make a good Dissolve gutta percha in chloroform to the consistency
of honey. Heat the surfaces to which it is to be ap-
plied, and press together. 2. Also how to make a rubplied, and press together. 2. Also how to make a rub-
ber cements A. Gutta percha 3 parts, pure India rubber 1 part, cut small, pyrogenous oil of turpentine or isulphuret of carbon 8 parts. Mix in a close vessel and gently before using.
(5) A. R. B. says: In the summer time I see as the sun never gets as far north as the latitude in which I live, I would like to have explained how it hatits rays can come from a northern direction? north window, which would not require the sun to be (6) J. W. H.
(6) J. W. H. says: 1. I am building an engine $3 \times 51 / 2$ inches cylinder for a launch 20 feet long. No. 2. With a 22 inch propeller, had I better place the shaft near the bottom of the boat, allowing the propeller to work below the keel? A, Yes. 3. With a feet pitch the propeller would have to make over 400 revolutions to drive a boat 10 knots ; 18 that too fast to built, it can be safely run at this speed.
(7) F. M. T. says: What size boiler and what size engine should I have to use to propel a boat 15 feet long, 30 inches beam, and 6 inches draught? cannot use a screw, and with side wheels would it be
better to have the connecting rod on the shaft of the wheels, or have gearing? A. You might use a geared ngine $21 / 2 \times 4$, with a boiler 20 inches in diameter and 3 eet high.
(8) T. S. L. asks how to kill those smal rigglers that appear in making a filterer? A. The best plan will be to clean the cistern. You can filter the water by passing it through sand and gravel, arranged in layers.
(9) J. M. B. says: Can anything be added glue, thatwill make it slightly elastic or tough when dry, without much impairin
(10) A. McC. W. asks: How may grapes e preserved, in theirnatural state, through the winter A. Select sound bunches, being careful not to bruise or
crush them or start them from the stems, and keep in a cool, dry place
(11) R. L. says: I wish to make about 1,000 moulds with hara glossy surface, averaging 2 inc 18 in diameter by $11 / 2$ inches in height, to be used for wrapping paper on in rings to give these rings shap when dry? A. You might use papier mache, as de American. The surface migit be perfected by mean
(12) H. W. S. says: In the issue of August is an article headed $\$ 20,000$ prize for a taction process. Where is the proper address to writ the parties who make this offer? A. "Director of the terior, Basse Terre, Guadaloupe
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
J. W. F.-The clay is of fair quality-it contains some ree sica, organic matter, and a little iron besides the market, or be used in the locality where mined in manfacturing pottery, etc.-E. S. W.-It is tourmalinecomposed of silicic and boracic acias, potash, soda, lamina, lithia and iron oxide.-H. C. G.-There are no positive indications in the rock of any notable qualities
of valuable metals or minerals. The particles of metalike appearance are pyrites.-Box marked L. P. contains ne specimens of fluorspar-calcium fluoride. The white uncrystalline fragment is chiolite-soda alumina fluoride. The substance in paper is simply quartz and colored by iron oxides.-A. C. A.-The allo
 nalysis of it for you

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American acknowledges, contributions upon the following subjects:
On the Manufacture of Rubber Hose. By H. T. M. On Carrying a Bar of Iron. By S. B. E. On a Mathematical Problem. By P. J.D On an Explosive Bullet. By P. M. On a Rare Caterpillar. By F. W. On Powder Mill Explosions. By C. H. R. On Some Insects. By C. F. S.
On Education of Parrots. By W. B. C.
On a New Keely Motr. r .
On a Nsw Keely Mot:r. By M. A. J. Beecher. By
On Working Men and Rev. H. W. Becher
A. B. W.
W. M.-G. S. B.-J. M. F.-B. T.-T. C.-H. G. W. - F. J. T.-L. R.-E. S. G.-H. O.-L. H. P. \& Co - J. B. B.-S. A. R.-J. M. McC.-J. F. W.-J. J. P. -S. S.-E. M. W. \& Co

HINTS TO CORRESPONDENTS
We renew our request that correspondents, in 1 eferring to former answers or articles, will be kind enough to name the date of the paper and the page, or the number
of the question. Correspondents whose inquiries fail to appear should repeat them. If not then published, they may conclude ddress of the writer should always be given
Inquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, when initials only are given, are thrown into the waste basket, as it would fill half of ur paper to print them all; but we generally take pleasure in ans
is given.
Hundreds of inquiries analogous to the following
ng wheat, and for other farm operations? What is the and civil engineering? Who sells good book s on steam engineering?" All such personal inquiries are printed, Persoual" which pose, subject to the charge mentioned at the head of that column. Almost any desired information can in this way be expeditiously obtained.

official.

INDEX OF INVENTIONS
Letters Patent of the United States were Granted in the Week Ending August 7, 1877
AND EACH BEARING THAT DATE
[Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list, Acluang both the specifications and drawings, will be furnished from this office for one dollar. In ordering, and remit to Munn \& Co., 37 Park Row, New York city.

Adding machine, M. M. Cram .
Agricultural steamer, J. T. Kin
Agricultural steamer, J. T. Kin
Ammonia salts, S. Cabot, Jr....
Axmonia salts, s. Cabricator, L. Johnson.
Bale tie, cotton, H. Hamilton
Ballot box, Fricker \& Seineck
Barrels, W. McMurtrie
Beehive, Deardorff \& Stutzman
Beehive, J. Hefner
Beer pump, E. Stew
Bell, call, F. Ratcliff
Bell, door, W. Wint
Bell, door and alarm, J. G. Wiggins
Bellows, J. Agnew.
Belts, etc., w. Eppelsheimer
Berth for ships, etc
Berth for ships, etc., J. C. Thompsorr....
Bessemer converter bottom, W. H. Haw Bessemer concrete, J,
Beton or con
Boat, F. D. Graves
Boiler head machine, R. C. Nugent (r)...
Boot and shoe machine Kimball \& Merr Boots and shoes, D. A. Sutherland
Bottle closing device, W. H. Hicks
Brake, wagon, T. C. Lawrence....
Brake, wagon, T. C. Lawrence
Bridge, draw, M. McGrath.............
Burner, T. R. Almond.
Button fastening, F. W. Ludwig
Button machinery, E. A.

Canal lock, W. L. Marshall.

Cap, S. \& W. Katz
Car axle box, R. B. Eason
Car bell, street, C. Keppler
Car coupling, J. Rockville
Car platiorm, R. A. Cowe
Carbon paper, A. B. Simond
Carbureter, D. E. Bangs.
Carpet fastener, J. Failin
Carpet fastener, J. Falling ..
Carriage, child's's, C. G. Macht
Cartridge, I. Davis...
Chair folding H. Closels, w. W. Palme
Churn, J. \& J. S.
Churn, E. Buell ..
Clamp for carpenters. W. Heckert
Clothes and fruit dryer, G. J. Curry
Corn-shelling machine, C. P. S. Wardw
Cotton harrow, J. F. Price
Cultivator, D. Stanchfield
Cultivator, D. Stanchfield
Cultivator, w. G. Barnes.
Cultivator, E. M. \& M. L. K.........
Currier's Enife, R.
Cut-offgear, F. F. Hemenw
Cut-off, water, J. G. Diem
Ditching machine, J. A. Grove
Divider and siding hook, H. Sherman
Door bolt, S. Sargent..........
Egg, nest, D. M. Livingston
Elevator, H. Davies.........
Etching glass, W. Campbell
Evaporating pan, W. M. Dixon
Fan, M rrx \& Blasi..............
Fare register, W. H. Hornum
Faucet, T. A. Andrews........
Feather renovator, H. M. Sin
Feather renovator, H. M. Sinclair
Feed water heater and filter, W. J. Aust
Feelted faterics, J. F. Green..
Fence, J. Brinkerhoff (r)
Fence, Green \& Knapp.
Fertilizer, C. F. Pankni
Fertilizer, C. F. Panknin
Fetter, Ladd \& Parker
Fetter, Ladd \& Parker......
File, bill, W. . Woods (r)...
Filter, water. Tittle \& Noite
Firearm, W. M. Wood
Firearm, J. Lee...
Firearm, \mathbf{D} Smit
Firearm, D. Smith............
Fire escape, T. A. Andrews.
Fire escape, B. F. Frank.....
Fire escape, B. A. Richardson
Fire escape, G. J. A. Taggart.......................
Fire escape and extension ladder, W. A. Hoyt

Flour, bolt, J. L. Detwiler
Flower pot, J. F. Alt........
Fooㄲ, canning, W. K Lewis
Fruit, dryer for, G. Harris....
Fruit dryer, Church \& Perkin
uel machine, M. E. Cotter.
Furnaces, etc.. H. A. Stadler
Garter, J. L. Moore
Gas burner, W. \& W. S. Bedell
Gas retort, A. W. M. Maas.
Gate, J. M. C. Bennett...
Grain binder, J. M. Hollister
Graining wood, R. J. Doolan
Grate, H. Rogers.
Hame tug attachment, J. A. Criswell.........
Harrow and cultivator, Sanders \& Nichaolds
Harvester, C. C. Bradley (r)
Harvester binder. P. Peteler
Harvesterk b. Lux
Hay fork, J. Lux..........................
Hay rake, G. M. \& C. C. Richardson (r).
Hay rake, S. Ritty.....................

Hay rake, J. H Thom
Hemmer, J. P. Ioor Hoisting, clamp for, T. Maxon. Holdacack iron, S. E. Winslow.
Horse power, Kramer \& Boke. Horseshoe, J. A. Conkey
Horseshoe, T. Henry
Horseshoe nails, D. B. Loring.
Hose coupling, T. W. Eccleston
Ice plows, N. P. Nelson.
Ink, N. T. Tilman...... Iron, dividing cold rolled, J. S. At
Jacequard machinery, w. P. Jennin
Journal boxes, D. A. Hopkins.... Kettle, J. I. Burr. Kitchen boiler, E. H. Frazier...
Lamp extinguisher, S. N. Long Lampe, G. S. Rix. Lathes, C. A. Cooley.....
Leather, etc., H. R. Cas Lifting jack, S. A. D. Ba.
Lifting jack, T. R. Day..
Lightning rod, W. H. Pa Lightning roo,
Lumber, compound,
Match box, H. Ellig Mold for plaster casts, J. B Motor for light machinery. . . J. Hood. Movement, mechanical, A. E. Hotchkiss
Mower, C Lindbom Nail plate feeding machine, E.J. Couch Nail machinery, J. M. E. Baackes. Organ stop, A. Trowbridge, Jr...........
Ornamental articles, etc., Bliss \& Badger Ornamental articles,
Paint, W. Longman..
Palette, W. F. Whit. Palette, W. F. White...
Paper bags, F. H. Melvill
Paper box, G. A. Denison.......
Paper, waxing, S. Hammerschla
Penci, Pencil, artist's, O. P. Gas
Pianofortes, T. S. Gould
Pictures, stereoscopic, H. Pictures, stereoscopic, H.
Pillow shams, J. R. Cross.
Pipo Pipe coupling, H. Pen
Pipe, A. W. Morgan.
Planter, S. Lyon... Planter, S. Lyon...
Planter, L. Scofield. Planter, A. M. Sou
Plow, B. F. Chandle
Plow, J. F. Mead
Plow, T. . Smo Plow, T. E. Smoot
Plow, A. H. Gale Plow, G. H. Smith
Printing press, J. Printing press, J. B. Rankin......
Printing presses, W. F. Widmayer
Propeller, M. D. Nelon Pump, J. W.Lemon Pump, J. A. Parsons
Quilting machine, Quilting machine, J. J. Crall...
Radiator, steam, J. J. La wler ..
Rein holder, D. C, Montgomery Roll grinding, T. H. Savery
Roll grinding, J. Megaw Roots, snow guard for, P Sand pump, W. H. Birge. A. Dugan Sash fastener, window, L. P
Saw, circular, D. B. McRae
Saw ing Sawing metal bars, W. R. Jone Scythe, G. Bishop Seeder and cultivator, D. Mack
Seeding machine, Van Brunt et al. (r)
Shirt Shirt pattern, H. Dy
Slicer, J. B. Howard
 Snap hook, W. Heath...
Soap, R. E. Whittemore Spark arrester, J. A. Pae...
Spinning mule, P. McGove Spinning mule, J. Martin
Stalk cutter, M. W. \& Stalk cutter, M. W. \&P. Resse
Steam boiler, H. S. Coleman.. Steam boiler, H. S. Colem
Steam trap, D. Edwards
Stench trap, O. M. Rice... Stench trap, O. M. Ric
Stove, O. Edwards ..
Stove pipe elbow, G. Choat....
Stove pipe elbow, J. M. Lauby
Stove pipe elbow, M. Lauby
Straw cutter, W. H. Sullenbe
Straw cutter, W. H. Sullenberg
Suspender clasp, F. Eckermann
Suspender end, J. H. Murfey .
Suspender end, J.
Swing, E. Schlueter

Target, flying. E. M. Leavitt
Tea, coffee, etc., strainer, etc., H. C Rice.
Telescopes, E. Gundlach ...
Thill coupling, Gandy Wil
Thill coupling, Gandy \& Wilson
Thill coupling, J. A. Whipple
Thill coupling, J. A. Whipple
Thrashing machine. J. P. \& J. W. Gordon
Thrashing machines, side gear for,Kramer \& Bok
Tide wheel, Andrews
Time lock, L. Lillie.
Time lock, J. Sargent (r)
Tire. F. Mulliner
Tool, A. Knight.
Type, hard metal,
Type, hard metal, G. W. Casilear
Umbrella, W. S. Harris.
Umbrella, W. S. Harris
Umbrella cover, J. C. Hurcombe.
Valve, L. Mangold
Ventiler
Ventilator, L. D. Harvey
Vine, espalier, etc., P. A.
Wagon axle, C. E. Cookerly
Wagon, buckboard, J. L. Phillips
Wagon draft attachment, T. Andrew
Wagon seat, Franklin \& Feavel....
Wagon seat, Franklin \& F
Wash basin, J. E. Boyle..
Was
Wash basin, J. E. Boyle.................
Wash board. H. F. W. Liebman......
Washing machine, Briggs \& Knowles.
Wash board. H. F. Briggs \& Know
Washing machine, Br ma
Wanine, J. W. Horn ...
Washing machine, J. W. Ho
Wash basins, etc., J. E. Boyl
Wash basins, etc., J. E. Boyle
Watchman'stime detecter, G. W. Shingleton..
Watchman'stime detecter, G. W.
Water coset, etc., vaive, J. .. Bo
Wells, steaming oil, A. J. West
Water closet, etc., vaive, J. E. B
Wells, steaming oill, A. J. West
Whiffetree hook, N. W. Bowen
Whip, A. F. Gerald
Whip, F. Hopkins
Whip, F. Hopkins
Windmill, M. S. Hodges

193,872
193,54
DESIGNS PATENTED.
10,138.-EMBRosi 10,139.-SToves.-J. Dwyer, Detroit, Mich.
10,140 to 10,142.-OIL CLotr.-C. T. \& V. E. Meyer, Ber$\underset{\text { gen, N. J. }}{\text { 10,143-Cooki }}$
10,143.-Cooking Stoves.-J. A. Lawson, Troy, N. Y.
10,144.-Book Covers.-J. Becker, Boston, Mass 10,144.-Book Covers.-J. Becker, Boston, Mass.
10,45--Frames For Sugar Bowis. - F. Dunworth.
New York city.
ork city.
1A copy of any one of the above patents may be had by
remitting one dollar to MUNN \& C Co., 37 Park Row, New
remitting on
York city.]

9aturnticrumsuty.			
Inside Paye, each insertion---75 cents a line. Back Page, each insertion---- $\mathbf{\$ 1 . 0 0}$ a line.			
Engravings may head advertisements at the same rate per line, by measurement, as the letter press. Advertisements must be received at publication office as early			

PHERICAL ELEVATOR BUCKET.

T. F. ROW

Pond's Tools

S1200

Brole Manufacturer,
Brooklyn, E. D., New York.
GAIRD'S SCHENTFIC CATALOCULES
 WE OFFER TO REPRESENT FIRST-

Hardened Stael Arbors: Prout \& Co..Maeminstst, Newark, N.J.
 PATENT MINERAL WOOL

THE DINGEE \& CONARD CO'S ROSES

The George Place Machinery Agency

 LOCOMOTIVE ENGINEERING-THE

Miernler's Diamond Dust.

25 Fancy car is no ${ }^{2}$ alike with nami ioc
SMALL STEAMBOATS AND YACHTS.-

spare the croton and sate the cost.
Driven or Tube Wells

 THE NEW GERMAN PATENT LAW

Wood-Working Machinery,

$\underset{\text { GRAY IRON }}{\text { LIGRT }}$ CASTINGS

aunders, Pittsburgh, Pa.

GLASS OILERS. Boestn weo sond for fircularit PATENT SCROLU AND BAND SAW. MACHiNES
speciality. CORDESMAN, EGAN \& CO., Cincinnati, Lathes, Planers, Shapers, Drills,

$\mathbf{V} \| \mathbf{N E} \mathbf{E} \boldsymbol{A} \boldsymbol{A} \boldsymbol{R}$
 MADE TO ORDER.

Can I Obtain a Patent? This is the ifrst inquiry that naturally occurs to every quickest and best way to obtain a a atisfactory answer,
without expense, is to write to us (Munn \& Co.), describing the invention, with a small eketch. All we
need is to get the ilea. Do not use pale ink. Be brief. need is to get the izea. Do not use pale ink. Be brief.
Send stamps for postage. We will immediately answer
and inform you whether or not your pirobably patentablete and if fot give you the neecessary
instructions for further procedure. Our lone enables us to decide equickly. For this advice we. enake
noclarge. All persons who desire to consult us in re gocharge. Aln persons who desire to consult us in re-
gard oobtaing patents are cordially invited to do
so. We shall be happy to sce them in person at our so. We shal be happy to sce them in person at our
office, or to advise them by letter. In all cases, they plans, an honest opinion, and a prompt reply.
\# hat Security II
o Munn \& Co. will be faithfully guarded and remain confadental?
Ansver.-You have none except our well-known in
tegrity in this respect, based upon a most practice of thirty years' standing. Our clients are
 of a clientry in interests, when committed to our profes. sional care. never has occurred, and is not likely to oc seciet and cantidential
Address MUNN \& CO.
Publishers of the SCIENTIFIC A.AERICAN,
37 Park Row, New Y,

A U C ${ }^{\text {anction }}$ WESTON DYNAWDEELECTRICMACHINE CD
 $\overline{\text { AIR COMPRESSORS }}$ FOR ALL PURPOSES.
A SPECIALTY of HEAVY PREESURES.

THE SANITARY CONDITION
in CITY AND COUNTRY DWELLING-HOU
By GEogex E. WARING.
Being No. 3I, Van Nostrand Science Series,

DA.ITBURY DRILLICHUCKS. 25 ELEGANT. CARDS, no two alike, with name, SWARTHMORE COLLEGE.
 MECHIANICAL DRAWING-BY PROF.

Pen

 $\frac{\text { U. } \boldsymbol{S} \text {. PIANO } \boldsymbol{C O}, \text {, } \boldsymbol{8 1 0} \text { Broaderay, }}{\$ 12 \text {. } \mathbf{x} \text {. }}$ Boull's Patent , Reveris Motiou

$\$ 5$ to $\$ 20 \begin{gathered}\text { per day at home. } \\ \text { free. }\end{gathered}$ STILsson $\&$ Co., Portland. Morth ${ }^{85}$. 65 Mixed CARDS, with name, ,100. and stamp. Blake's Patent Stone \& Ore Crusher.

COMPRESSED AIR STREET RAILWAY

Model Engines.
-

 SPECTRUM ANALYSIS, BY PRoF RED

THE BEST

Boiler Feeder

FRIEDMANN'S INJECTOR,
NATHAN \& DREYFUS, New York.

COPYRIGHTS
Messrs. Munn \& Co., in connec'ion with the public ion of the Scientific American, continue to examine Inventors.
In this line of business they have and over thirry YEARS' experience, and now have uneq cull:d facilities for the preparation of Patent Drawings, Specifications,
and the Prosecution of Applications for Patents in the United States, Canadu, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to them is done terms.
We send free of charge, on application, a pamphlet to procure them; directions concerning Trade Marks, Copyrights, Designs, Patents, Appeals, Reissues, Infringements, Assignments, Rejected Cases, Hints on
Foreign Patents.-We also send, free of charge, a Synopsis of Foreign Patent Laws, showing the cost and method of securing patents in all the principal coun-
tries of the world. American inventors should bear in ${ }^{\text {tries of the }}$ mind as a general rule, any invention that is valuable to the patentee in this country is worth equally as Five patents-embracing Canadian, English, German French, and Belgian-will secure to an inventor the ex clusive monopoly to his discovery among about one HuNDRED AND FIFTY MILIONS of the most intelligent people in munication are such that patents can be ab tined abroad by our citizens almost as easily as at home. The expense to apply for an English patent is $\$ 75$; German, $\$ 100$; French, $\$ 100$; Belgian, $\$ 100$; Canadian, $\$ 50$.
es of Patents.-Persons desiring any patent
 on oflial copies at reasonable cost, the price depending upon
specifications.
Any patent issued since November 27,1867 , at which ime the Patent Office commenced printing the drawthis office $\$ 1$.
A copy of the claims of any patent issued since 1836 will be furnished for $\$ 1$.
When ordering copies, please to remit for the same as above, and state name of patentee, title of inven-
tion, and date of patent. A pamphlet, containing full di Reference Book, gilt edges, contain 140 pages and many engravings and tables important to every pat-
entee and mechanic, and is a useful hand book of refernce for eryanic, and is a usent, mailed free

Address
Publishers SCIENTIFIC AMERICAN.
37 Park Row, N. Y.

right's Pat. Bucket
lungers are the best.
alley Machive Co

 GREAT BLOWING ENGINE; HIGH

JOSEPH C. TODD,

 and price. Address \boldsymbol{J}. C. TODD,
COMPRESSED AIR MOTIVE POWER-

EAGLE FOOT LATHES,

4

 95 \& 97 Liberty St.. New Yorl

COMPRESSED AIR PNEUMATIC DIS-

Steel Castings,

 MACHINISTS' TOOLS.

Lathes, Planers, Drills, \&c. NEW HAVEN MANUFAGCURINGCO. ROCK DRILLS WORKED BY COM

HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY
W. B. FRANKLIN, V. Pres't. J. M. ALLEN, Pres't. J. B. PIERCE, Sec''y.

TORPEDO VESSELS. By Mr. DONALD

ROCK DRIILINA MACHINES AIR COMPRESSORS

STEEL - ITS MANUFACTURE AND

 HOW TO BUILD BOATS CHEAPLY.-A

THE TANTTE CO. STROUDSBURG, PA. EMERY WHEELS AND GRINDERS.

 87 MAIDEN LANE, NEW HOREK.
Mill Stones and Corn Mills.

 $\begin{array}{cc}\text { Patented ri6s-r-18744 } & \text { BOLT CUTTERNS } \\ \text { Dies open and close and Bolt }\end{array}$

Žrientifit Ampritam.

The Most Popular Seientific Paper in the World. thirty-second year.
Only \$3.20 a Year, including Postage. Weekly.
This widely circulated and splendidly illustrated paper is published weekly. Every number contains six-
teen pages of useful information, and a large number of riginal engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in Tue Scievtific American a popular resume of the best scientific information of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as
possible abstruse terms. To every intelligent mind, possible abstruse terms. To every intelligent mind,
this journal a afords a constant supply of instructive reading. It is promotive of knowledge and progress in every community where it circulates.
Terms of Subscription.-One copy of The Scien-
tific American will be sent for one year-52 numbers postage prepaid, to any subscriber in the United States canada, on receipt of three dollars and twenty
ents by the publishers; six months, $\S 1.69$; three cents by the
months, $\$ 1.00$.
Clubs.-One extra copy of THE SCIENTIFIC A ALERIat $\$ 3.20$ each; additional copies at same proportionato rate. Postage prepaid.
One copy of The Scientific American and onc copy
of The Scientific Amrucan SU Pplement will be sent for one year, postage prepaid, to any subscriker in the
United States or Canada, on receipt of seven dollars United states or
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes, Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters,
MUNN \& CO.,
37 Park Row, New York.

NOTICE TO FOREIGN SUBSCRIBERS.
 the regular and speedy transmission of the ScIENTIFIC AMERICAN direct from the office of publication in New table exhibits the yearly subscription prices of the SCIENTIFIC AMERICAN and SUPPLEME
oreign currencies, payable in advance

The best way to remit is by Postal Order. Make the
order payable to MUNN $\&$ CO., New York, United States, and forward the order to us with the name of the sender nd the address to which the paper is to be mailed MUNN \& CO.,

