
a WeEkly Journal 0F practical information, art, scievce, mechanics, chemistry, and manufactures.

	NEW YORK, MAY 19, 1877.	

NEW LITHOGRAPHIC STONE-
 DRESSING MACHINE.

Lithographic stone is an argil laceous limestone, of a color varying from light buff to a pearl gray. It is quarried in mass, and is split or sawn into slabs of wo or three inches in thicknes and of any required tize. and of any required size. T prepare the stone for use, it i ground to a perfectly uniform face; and then, if the drawing is to be in crayon, a grained surface is produced by rubbing two stones together, fine or coars sand and water being introduced, according to the nature of the face desired. If the drawing is to be in ink, the surface is pol shed, but if it is to be in crayo , quite coare, is the toan , With the elegant theatrical show bills now made by this process, a comparatively rough face is needed. The labor of polishing is done by hand, and it is quite severe, necessitating in most es tablishments a workman who de votes his time to that alone. A machine has recently been de vised for this purpose by MM. Perron and Dehaitre, the an exed engraving of which we extract from the Revue Industrielle. It has been found es pecially useful in working upo large stones, and is said to be capable of performing the labor f six men, and to need but one person to rotate the crank. of the saddle, which is not fastened to the boiler. The conlt also substitutes a uniform pressure in lieu of the variable one exerted by the hand, and thus allows of the production of stones having a much truer face. The construction is exceedingly simple, and requires but little description. The crank wheel actuates bevel gear ang roting a vertical shaf which carries the grinding disk. The shaft is weighted as shown and the stone is adjusted on th carriage of the machine by clamps. The carriage moves in ways on the bed, and is caused to travel gradually from end to end of the latter by a simple feed motion actuated by a chain belt rom the crank arbor. Pulley re provided for belting for th pplication of steam power small pipe leads the water sup ply from any suitable reservoir.

PORTABLE STEAM ENGINE.

The war in Europe, which ha just begun, cannot fail to create greatly increased demand fo merican breadstuffs; and as th prospects for the grain crop, as prospect for grain crop, ported from all sections of th ountry, were alt ou armers will doubtless require more steam engines this yea than ever before. The engine herewith illustrated is well adap ted to farm and plantation pur poses. It differs from others of its class in the arrangement of the engine on the boiler. The steam ylinder bas a broad base, which ylider a broad base, which is fastened to the smoke box by olts, so as to prevent leakage of team, however great the strain Connecting the cylinder with the saddle which supports the crank haft are two wrought iron bars, constituting the framing, which receive the working stress of th engine. The free expansion of the boiler under all pressures is provided for by the arrangement

PERRON AND DEHAITRE'S STONE DRESSER.
wheel, without any carrying pul leys, as will be seen in the en graving, and will work equally well in any position. The speed of the engine can be quickly and readily changed by the engine driver without leaving his usual place The cylinder is fitted with a balanced valve and aut tic which matic elf to do the work required with economy. The steam dome is large and high, and is located di rectly on top of the steam chest and within the smoke stack. The road wheels are entirely of wrought iron with the exception of the hubs. The wearing surface n this engine are large. Th driver's seat, being on the op posite side of the engine, does not show in this engraving.
We learn from the manufac turers that a thrasherman in lowa, who has run one of th Mills engines for three years, states that he has thrashed cn thousand bushels of wheat from long straw with one quarter of cord of wood and ten barrels of water. In another case, a simi ar result was obtained with less an five hundred lbs of soft han five hundred lbs. of soft oal. Other good results, simila the above, are reported. W re also informed that a trial of fifteen horse power Mills en gine, made last year by Mr.Wil Philadelphia, Pa., fixed the duty at liam Barnet Le Van, of of combustible, and twenty-six and eight tenths lbs. of water, per indicated horse power per hour The engineer will perceive that this duty is remarkably en accomplished remarkabl reasing the total weight of th encine.
As far back as the Vienna Ex position, Professor R. H. Thur ston, then acting as Commis sioner for this country, stated in his report on portable steam en gines that, although the English builders were far in advance of all others exhibiting, the Mill engine rivalled the best of them
The engine is made in thre different styles, namely, the mounted farm engine as shown in the engraving, the self-movin thrasher's locomotive, and th self-contained or semi-portabl or stationary purposes. Fo prices and other particulars, ad dress the Fishkill Landing Ma chine Company, Fishkill-on-the Hudson, N. Y., or Thomas J Fales, 18 Park Place, New York, agent for foreign countries.

Helpful Sympathy

A newspaper editor in the mining regions of Pennsylva nia philosophically observes ' When a man gets both of hi legs mashed, rendering him un able to work for three months there's nothing that cheers him up so much, and so effectually keeps the wolf from the door, a for his fellow-workmen to pas a series of resolutions praying for his speedy recovery, and or dering an engrossed copy of the same to be presented to his fam ily."

Artificial coral can be made of 4 parts.yellow resin and 1 part vermilion, melted very fine

Srientifir Smexiran.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.

biblisaed weerly at

NO. S' PARK ROW, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN One copy, one year, postage included....

The Scientific American Suppiemen
 Address MUNN \& CO., 37 Park Row, N. Y.
the news agents.
Publishers' Notice to Mail Subscribers.
Mail subscribers will observe on the printed address of each paper the time for which they have prepaid. Before the time indicated expires, to insure a continuity of numbers, subscribers should remit for another year.
For the convenience of the mail clerks, they will please also state when their subscriptions expire.
New subscriptions will be entered from the time the order is received;
but the back numbers of either the ScIm but the back numbers of either the SCIENTIFIC AmERICAN or the SCIEN-
TIFIC AMERICAN SUPPLEMENT will be sent from January when desired. In this case, the subscription will date from the commencement of the VOL. XXXVI., No. 20. [New Series.] Thirty-second Year NEW YORK, SATURDAY, MAY 19, 1877

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT,
NO. 72,
For the Week ending May 19, 1897.

Borio

recent improvements in photography

Two interesting improvements, of promising practical im the prod have of late been made public. The first relates th without the use of the nitrate of silver bath.
The common method of photography, that universally practised in all galleries for portraiture, and for the best out door work, is known as the wet plate process. It consists in sensitizing the collodion plate by dipping in a liquid charged with nitrate of silver. The sensitization is effected in about three minutes' time; the plate is then withdrawn from the bath, quickly placed in the camera, and the picture taken and developed before the plate has time to dry When all the chemicals are in good order, the bath pure, the
exposure rightly timed, and the development skilfully done, the most beautiful results are produced. Indeed, there seems to be no room for improvement in picturesque details, a realized by the best wet plate operators.
But the method is attended with many inconveniences and irksome details. The gallery photographer must keep in readiness a first-class bath, the purity of which is lessened by every plate that goes in: and the bath soon requires renova tion. The plates cannot be prepared and sensitized so as to be ready for use in advance of the opening of the day's business, but must be prepared and developed after the customer comes. Should the negative prove unsatisfactory, a new plate must de prepared and developed; and thus the bother of the plates involves the loss of so much time that the operator has little chance to consider the best positions for his subject or to study the artistic accessories that go to make up a finished picture. For outdoor work, wherever the photographer goes he must lug his bath along, even to the mountain top, and must there have a dark tent, and water for washing and developing; otherwise his efforts are fruitless. For several years past it has been the study of photographers to discover a reliable method of preparing highly sensitive plates without the use of the bath-a method by which the plates could be used when dry. Among the results of these efforts are a variety of dry plate processes, some of which, in the hands of skilled operators, yield excellent results. But nearly al of them have proved less sensitive or less excellent in their results than the wet process; and none have been able to compete with the latter for portraiture or gallery work.
The French Photographic Society in 1876 offered a prize for the best dry process which should unite rapidity with all the other qualities that go to make a good negative. The competion was closed in December last, and the jury have recently awarded the prize to Mr. Alfred Chardon. The process appears to have advantages over some of its predecessors, but there are inconvenient details about the development and some uncertainty in the summering and wintering of the emulsion; while the prepared plates require twice as much time for taking the picture as the wet plate. More over, the process is not suitable for the ordinary routine work of the gallery.
The author of the new process which we have now to de scribe, and to which we would direct the attention of photographers as a complete and perfect substitute for the wet process, both for indoor, gallery, portrait, outdoor work, and all descriptions of photography, is Mr. Henry J. New ton, of this city, President of the Photographic Section of the American Institute
We have seen the process worked under the author's hands and examined some of the results. We believe that practical photographers, when they come to examine the negatives and prints, will agree with us when we say that they are unsurpassed by anything as yet produced by the wet process. They will also agree with us that Mr. New ton's process is simpler, quicker, easier, less expensive, and
more certain in the excellence of results than the old method. Moreover, for gallery and outdoor work, it pre sents the striking advantage of enabling the photographer to prepare in advance a stock of sensitive plates, and of keep ing them on handready for instant use when wanted
The Newton is an emulsion process. The silver is mixed with the collodion, which remains good for use at any time within a year or more. A glass plate is flowed with this collodion in the usual manner; the plate is then dipped in water it is then ready for use either before or after drying. The picture being taken, it is developed by simply flow ing the plate, in the ordinary manner, with a solution of cerbonate of soda and pyrogallic acid; then fixed with hypo. or cyanide as usual. This is all the manipulation required ior the most beautiful, clean, and splendid negatives. As to sensitiveness, the Newton plates require, in the gallery, less than half the time necessary for wet plates. Portraits by the Newton plates are taken in from five to ten seconds while the wet process, same light and lenses, requires from twenty to forty seconds. For outdoor work, the Newton plates yield as good or better instantaneous pictures than wet plates
The exact formula for the emulsion has not yet been made known by Mr. Newton, but will in due time be freely given to the public. It is sufficient for the present to say that the emulsion is prepared with an excess of free nitrate of silver, which is allowed to remain for a certain number of hours, when chlorides are added. The Scoville Manufacturing Company of this city supply the new emulsion, with practical directions for its use.
The second photo improvement relatesto printing, and is that of Mr. William Willis, Jr., of Birmingham, England. The surface of the paper, sized with arrowroot, is first moistened for a moment with nitrate of silver solution (six grains to the
ounce) and dried. In this condition, the paper keeps for any length of time. The paper is further sensitized by coating with a solution of chloro-platinite of potassium and a solution of ferric oxalate. It is then exposed under the negative for only one sixth of the time required for a common silver print. The picture is then toned with gold, treated with hypo., washed, and finally placed in a weak solution of oxalic acid, again washed and dried. The permanency of hese prints is remarkable. Mr. T. Rodger recently sub mitted specimens to the Edinburgh Photographic Society which he said he had put to extreme tests. One of them, fo example, had been subjected to sulphuretted hydrogen fo twelve hours, and then to twelve additional hours in the aci solution employed to form the gas, all without change. We have lately had the pleasure of examining some of these pla tinum prints, brought to this country by the author, which in tone and color, were in every way equal to the best silver prints.

NEURALGIC STORM BELTS

Dr. S.Weir Mitchell, a physician of Philadelphia, Pa., has ecently conducted an important series of very interesting nvestigations with reference to the relations of bodily pain oo the weather. It is an old popular idea that diseases and injuries of the bones, chronic rheumatisms, and ancien wounds produce a renewed pain on the approach of a storm so much so, indeed, that persons thus afflicted frequently are able to predict impending changes of weather with remark able accuracy. In the course of study of many of the curiou symptoms belonging to the stumps of amputated limbs, Dr Mitchell frequently encountered the above notion; and he became so impressed by the repeated testimony of patients, who stated that their comfort depended largely on the state of the weather, that he resolved to undertake careful research nto the subject. He was fortunate enough to obtain the co peration of Captain Catlin, U.S.A., who had lost a leg in action during the war, and had become a sufferer with neu ralgia in the stump, the pain seemingly residing in portion of the absent foot. This officer kept records of his painful sensations, in connection with the weather reports as shown by the Signal Service, for three years; and he prepared elaborate maps and charts, showing just how certain attacks cor responded to certain periods of barometric depression and ther meteorological phenomena. In brief, he conducted hi elf-examination with an accuracy and scientific thoroughess which cannot be too highly commended
The result now adduced by Dr. Mitchell is that there is very reason to believe that the popular view which relates some pain fits to storms has a distinct foundation; but that as the single element of mischief has not been detected, he is riven to believe that it is the combination of atmospheric conditions which starts the pain into being. The separate factors of storms, such as lessened pressure, rising tempera ture, greater humidity, and winds, appear as a rule to be in competent, when acting singly, to give rise to attacks of pain. Either it is, as above stated, a combination which pro vokes the pain, or it may be some as yet unknown agency acting alone. It was observed by Captain Catlin that his sensations of pain prevailed when the aurora was intense Whether this was due to the magnetic cr electric disturbance prevalent or to the succeeding storm, Dr. Mitchell thinks is questionable.
About the most striking conclusion reached is that relating to the neuralgic storm belt. Every storm, as it sweeps across he continent, consists of a vast rain area, at the center of which is a moving space of greatest barometric depressio nown as the storm center, along which the storm moves lik bead on a thread. The rain usually precedes this by 600 miles; but before and around the rain lies a belt, which may be called the neuralgic margin of the storm, and which pre cedes the rain by about 150 miles. This fact is very decep tive, because the sufferer may be on the far edge of the storm basin of barometric depression, and, seeing nothing of the rain, may yet have pain due to the storm. "It is somewhat interesting," adds Dr. Mitchell, " to figure one's self thus-a moving area of rain girdled by a neuralgic belt 150 miles wide, within which, as it sweeps along in advance of the storm, prevail, in the hurt and mained limbs of men and in tender nerves and rheumatic joints, renewed torments called into existence by the stir and perturbation of the elements."

A NEW EXPLOSIVE COMPOUND FOR LARGE GUNS,

The dangerous element to a gun, from any explosion takin lace within it, is the rate at which that explosion occurs. Stress due to a blow is very much more difficult to resist tha strain gradually applied; and for this reason it is that the slow burning and comparatively weak gunpowder is re tained when so many much more powerful explosives exist No gun has yet been invented capable of withstanding the effects of explosion of gun cotton charges for any length of time, although abundant experiment has been made in thi direction in the hope of substituting gun cotton for gun powder. It is known that an immense advantage would b gained if the whole force of a nitroglycerin explosion could be concentrated on the base of a projectile; but the trouble is that no one has discovered how to harness nitroglycerin for rtillery purposes; or in other words, no one has yet devised an apparatus whereby nearly the whole power of the explosion can be directed upon the ball, and merely a minimum left to act towards rending the gun asunder.
It follows from this that the theoretically most advan ageous explosive for gunnery purposes is one which has an accelerating action, and that it must focus its power upon
the projectile, in a relatively gradual scale, through all the stages, and thus impart to the same the utmost possible velocity. Now, in the case of gunpowder, there is regular combustion, layer by layer; and the amount of gas developed depends directly upon the extent of the burning surface. Consequently, if the size of the grains be increased, the weight of the charge remaining the same, there will be leas surface exposed to combustion, less gas evolved in the first instants of time, and less pressure on the gun. In gun cotton, however, there is, in lieu of combustion, a disintegration which occurs instantly throughout the entire mass; and thus, while the explosion of powder is such that it may be easily controlled, no mode of preparing gun cotton in any particular shape changes its peculiarity of instant detonation.
When a grain of gunpowder is fired in the gun, the first gas that is evolved starts the projectile; and as the latter travels, the combustion area of the powder is constantly augmented until, by the time the flame reaches the interior of the grain, the small remainder of the same is incompetent to evolve by its combustion gas enough to compensate for the ncreased area over which it must act. Hence that nucleus of the grain serves no useful purpose, and certainly affords no acceleration to the shot: but in the new "compensating"
powder, which Captain Charles A. L. Totten, U.S.A., has devised, this nucleus is made to render an accelerating force through being formed of gun cotton, which, exploding in an increased area, exerts little strain on the gun, and checks the tendency of the gas to lose its tension, thus compensating for the increasing space in rear of the projectile. Not only does the inventor claim for this compound explosive high impulsive power, but he states that the waste of large grained powder, which is blown out of the gun with the grain still burning, often reaches 60 per cent of the charge, and that this s saved by the addition of the gun cotton nucleus. In general, he affirms that the combined gun cotton and powder s lighter, and four and a half times more effective, charge for charge, than gunpowder. If this can be substantiated by experiment, there can be little question but that the new explosive will be of the greatest value in modern large artillery, in which gunpowder has been proved too weak to project the mmense shot and shell with proper effective velocity. Captain Totten finds, by test, that no chemical change attributable to the mutual action of gunpowder and gun cotton occurs in his powder. The gun cotton nucleus is spherical, and half an inch in diameter, the powder envelope raising the diameter to one inch. No special machinery has yet been invented for its manufacture.
We may add that the present is the time for inventors to turn their attention to inventions of this class. The war in Europe will result in a great demand for improved arms and explosives of all kınds; and an efficient substitute for gunpowder in cannon, which shall be much stronger in its effects and at the same time as easily controlled, would be f the greatest value to both contending parties.

WHY frest water fish cannot live in salt WATER

It is well known that fresh water fish cannot live in salt water, and vice versa; and it has been supposed that the reason existed in some poisonous effe $=\mathrm{t}$ which the inappropriate water exerted. M. Paul Bert has recently been investigating this subject, and his conclusion is that the death of the creature is not due to any toxic action, but is simply a phenomenon of osmosis or transmission of fluids through the membranes. In order to prove this, it is only necessary to weigh the animal before and after the experiment. A frog, for example, plunged in sea water loses one third its weight. If only the foot of the frog be introduced, the blood globules can be seen to leave the vessels and distribute themselves under the skin. If an animal be taken, the skin of which is not entirely osmotic, the same phenomena occur in the bronchial system.
There are certain fish, however, which exist sometimes in salt, sometimes in fresh, water, changing their habitat in different periods of life or of the year. It therefore, in view of the above, becomes interesting to see how M. Bert applies his discovery to such apparent exceptions to the general rule. A fresh water salmon, for instance, plunged abruptly in sea water, resists the effects longer than other fresh water fishes; but he dies within five or six hours. This shows, according to M. Bert, that the fish never proceed suddenly from fresh to salt water, but enter brackish water where the tide ebbs and flows, and live there a sufficient time to habituate themselves to the change. This accounts for the frequent discovery of large numbers of such migratory fish in the vicinity of the mouths of the rivers which they ascend.
A fresh water eel, plunged in salt water, does not seem to be affected. But in investigating the peculiarities of this species, M. Bert was led into a wrong conclusion, which may be cited to show how easy it is, often by pure accident, to reach an erroneous determination in laboratory experimenting. After having himself placed several fresh water eels in salt water, he found, as already stated, that they remained live and unharmed. Wishing to continue the experiments, he directed his assistant to introduce the fish, and report results. To his surprise, the eels then persistently died after three or four hours' sojourn in salt water, and long search failed to discover the reason why it was that, when M. Bert placed them in the tanks, they lived, while, when the assistant did so, they perished. Finally M. Bert found that his assistant, doubtless on account of the slipperiness of the eels, lifted them with a piece of cloth in his hand. The cloth
protected it from the salt water. Osmosis then o
the denuded portion, and the eel eventually died.
The converse experiment, of inserting sea fish in fresh water, produced analogous results. The gills were the seat of alterations, the same as those noted in fresh water fish placed in salt water. M. Bert also observed that the life of the sea fish could be prolonged by adding salt to the fresh water, thus adding further confirmation to his theory

"LOST HIS AMBITION."

We met, the other day, an expert workman who said that he had lost his ambition. "Where is my incentive?" said he. "I am only a mortal, just like other men. Energy
among others is a means to an end. Health, fame, ease, and luxury are the prizes for which men strive. Show me the man who is energetic in a single cause in which one of these is not the aim, the incentive, and the reward, and answer me honestly how can I make an exercise of more than common energy or industry subservient towards giving me one of these prizes."
'You will never be out of work and will always command respect," was the answer. He smiled, and holding a scraper in one hand and a file in the other, replied: "I never was ou of work a day; I am too well known. I put forth my energy when I want work, and get it at once. Having got it, I work along easily and pleasantly; am always on the best of terms with my employer, get the best wages, work ten hours a day, and -jog discontentedly along, my ambition, energy, and extra ability rusting away for want of the incentive which all men require to call forth more than ordinary exertion. Now, where is my remedy?" "Piecework," was the sugestion made in reply
'You have struck it," was the response. "When I worked on piecework, the work I did seemed mine; every job well done brought me more work; I engaged other men, and taught the boys all I knew; every scrap of information I gave to my men or boys brought me in money by increasing their skill; every extra dozen blows I struck were represented in my wages on Saturday night. I looked well ahead at my work, often preventing blunders from being committed; I was a hardworking, happy man, putting by something for old age. But where am I to get piecework now? One establishment has been working short time, another is doing little or nothing, and most of the others don't see the advantages of the piecework system, which can
and has been carried to the greatest of success, even in repair and ha
We have often suggested piecework, but the reply is that it cannot be adopted in a repair shop or on promiscuous work. Why not? An average job, even in a small shop, asts a day; and how much trouble would it be to estimate week? Any job done in a mated upon for piecework. Sometimes people say: "We do not know what the job is worth." Of course they do not. If a man ties his arm in a sling, he must expect it to grow weak. Just the same with the judgment and perception men used to piecework can estimate how much there is in a job down to an hour's work in a week; but men who never
give the subject a moment's thought cannot. " When I'm too old to work at all," said our friend, "there will be no such thing as daywork, except for laborers."

How to Live Long.

The desire for length of days seems to have been far greater in times past than it is now. With a view of bestowing some timely hints on our active business men, who are rushing on in pursuit of riches regardless of the exhaus tion of their physical and mental faculties, our contemporary the New York Sun publishes a lengthy article, from which we condense the following
Nearly all the principal writers on longevity are agreed that human beings may, under the most favorable conditions, live to a hundred, and several have recorded instances of persons reaching a much greater age; but the instances given do not in any case satisfactorily bear rigid examination. Hufeland, public lecturer at Jena, who published a work on longevity in the last century, thus describes the sor of man who has the best prospect of long life: He has a
well proportioned stature, without, however, being too tall well proportioned stature, without, however, being too tall.
He is rather of the middle size, and somewhat thick-set. He is rather of the middle size, and somewhat thick-set. diness in youth is seldom a sign of longevity. Hair approaches rather to the fair than to the black; his skin is strong, but not rough. His head is not too big. He has large veins at the extremities, and his shoulders are rather round than flat; his neck is not too long; his belly does not project, and his hands are large but not too deeply cleft. His foot is rather thick than long, and his legs are firm and round. He has also a broad chest and strong voice, and the faculty of retaining his breath for a long time without diffculty. In general there is complete harmony in all his parts. His senses are good, but not too delicate; his pulse is slow and regular. His appetite is good, and his digestion easy. He has not too much thirst, which is always a sign of rapid elf-consumption. His passions never become too violent or destructive. If he gives way to anger, he experiences a glow of warmth without an overflowing of the gall. He ikes employment, particularly calm meditation and agreeable speculations-is an optimist, a friend to Nature and domestic felicity-has no thirst after either honors or riches, and banishes all thought of to-morrow. This power of ban-
ishing anxiety has an immense deal to do with longevity.

It is, in fact, that "management of the mind " which Dr Johnson so justly told Boswell was "a great art," adding that a man when miserable should not go to his chamber and try to think his trouble down, but should seek every possibl means to divert it. Dwelling on misery at once affects, and most seriously, the digestive organs.
There are not a few people the very fineness of whose constitution proves their ruin. They draw so extravagantly upon their powers that they are dust and ashes forty years before the creaky wheels who started in the race with them have done running. In this country we discount our future more heavily, perhaps, than in any other; not by dissipation but by overtaxing our energies. A very large proportion of men who die rich here die twenty years before they ough if they had properly husbanded their vital resources. Mr Macy, the well known fancy dealer, was, we believe, only 56 or 58 , and had been slaving his whole life; in fact, his complete break-up was explained by his intense toil. Such a career seems like getting very little out of life. A still more striking instance of the kind was that of Mr. Augustus Hemingway, of Boston, who worked himself into a lunatic asylum, whence he came worth some $\$ 15,000,000$, only to get into his grave a few months later. We doubt whethe the history of the world could show a more reckless disre gard of life than is shown by commercial men in this coun try. The science of combining intense application with those habits which conduce to longevity is one that they have not acquired. That it may be acquired cannot be doubted. Newton lived to a great age; and great lawyers have been famous for long life. There seems to be a lack of wisdom in commercial men as to the real value of life. The wisdom in commercial men as to the real value of life. They
put a wholly inordinate estimate upon the power of getting and spending.

Rest assured that there is, in brief, only one golden rul to be followed by all who seek longevity-moderation in al things, and management of the mind.

Preparation of Phthalic Acid

A convenient method for the preparation of phthalic acid for the laboratory is given by Haüssermann in Dingler' Journal, page 310. A mixture of one part naphthaline and two parts chlorate of potassium is thrown, small quantitie at a time, into five parts of common hydrochloric acid; and the brownish-yellow products, a mixture of addition and substitution products of naphthaline, is thoroughly washed with lukewarm water by decantation. The mass is then dried at a gentle heat to prevent its freezing together, or, a Böttger suggests, it is pressed between white blotting paper, and then shaken in a flask with petroleum ether (naphtha) to remove the liquid chlorides mixed with it and inclosed with in the mass. After filtering and washing with naphtha, and drying the mass, which consists chiefly of tetrachloride of naphthaline, is snow white. It is heated in a sand bath with five or six times its weight of nitric acid, which should not be stronger than $1 \cdot 35$ specific gravity. Several hours ar necessary to render the liquid homogeneous. After expelling the excess of nitric acid, it is allowed to cool, when the phthalic acid crystallizes out. The acid is purified by re crystallizing it several times from hot water
If the nitric acid employed to decompose the tetrachloride of naphthaline is stronger than $1 \cdot 35$, the reaction will go on more rapidly, but an easily perceptible quantity of nitro naphthalic acid is formed, which cannot be easily separated from the phthalic acid.

To convert the phthalic acid into the anhydride, it is only necessary to fuse it and keep it at a temperature of $180^{\circ} \mathrm{C}$. or 356° Fah., as long as moisture escapes, although some of the anhydride may sublime off. If the temperature has no exceeded 180° C., the residue will consist of anhydrous phthalic acid pure enough for the manufacture of fluores cine and other compounds. By this method, 30 parts of the anhydride can be obtained from 100 parts of naphthaline To make it perfectly pure, the acid is boiled with water, and the anhydride purified by sublimation.
For the preparation of phthalic acid on a commercial scale the method above described is quite expensive, owing to the cost of the materials employed; but for laboratory use and experimental purposes this method is worthy of a trial.

New Weighing Instrument.

The ordinary chemical balance is, of course, rather a costly instrument, it being difficult to make the two halves sufficiently alike, and to combine stability with sensitiveness. M. Pager proposes the following arrangement for small weights. A two-armed tube is filled with mercury, and on one of the mercury surfaces is placed a well fitting plate, which can move in the tube without friction. This serves as the balance scale, and the body to be weighed is placed on it. The liquid will rise in the other arm corresponding ly, and equilibrium is at once obtained with great certainty. Place a known weight, 1 grain, for example, and note how high the mercury rises. Then place a second grain and note the additional rise. Going on in this way, a scale may easily be constructed. As for each rise in one arm there is an equal sinking in the other, this scale can be applied to the other leg also, of course in opposite direction. The sensi tiveness of the arrangement is considerable. It can be in creased by use of the Torricellian vacuum, the plate, with the body to be weighed resting, in this case, on the mercury in the open arm. The scale can here have no fixed zero, since the air pressure varies, which is only a slight inconvenience.

WATER HELD IN A cage and boiled in a sieve. If Mr. Romilly has not succeeded in performing the feat of navigating the sea in a sieve, which in the days of witchcraft was supposed to be the chief accomplishment of the professor of the black art, he has done something apparently as wonderful in lifting water in a sieve, holding it in a cage, and afterward boiling it in the former receptacle. Of course there is nothing really marvelous about the performance, when the natural laws which govern it are considered; but as a series of admirable experiments in capillary attraction, it is none the less striking and remarkable.
Mr. Romilly's investigations were undertaken with a view of determining whether a tissue or sieve extended beneath a bell glass filled with water would sustain the water in the glass, the idea being suggested by Mr. Jamin's successful experiments in sustaining water in numerous fine capillary tubes. A bell glass about 8 inches in diameter was closed with a bobbinet having large meshes, each from 0.08 to 0.12 inch square. The glass was then placed mouth downwards in a vessel of water; and by ex hausting the air above the water was drawn up int the cylinder to the desired height. The air pipe cock was then closed. On removing the glass, the water was maintained therein, and at each mesh of the tissue appeared a water meniscus, while a large general meniscus formed in the center of the fabric The height of the water in the glass was immaterial to the success of the experiment. A large tube, 8 inches in diameter, and 6.4 feet long, was closed above with a rubber stopper, through which the as pirating pipe passed. Water, entirely filling the tube, was sustained by the aid of a piece of extremely fine lace fastened over the lower end.
If, instead of securing the tissue over the mouth of the tube or glass, it be held in place by the hand the water above is still sustained, while the shape of the meniscus below can be changed at will. By gradually lowering the fabric by slowly sliding the hand down the glass, the meniscus is caused to enlarge; and with a bell glass 2.4 inches in diameter, and lace having meshes, 0.8 inch square, the meniscus assumes a curve of from $1 \cdot 2$ to 1.6 inch in depth. This curvature augments with the fineness of the meshes. On this another interesting experiment is based. A square of wire gauze, the edges of which extend beyond the sides of the glass, is held against the mouth of the same by the finger during the aspiration of the water. On lifting the bell glass, the finger is removed, when the gauze remains in place, and the water is sustained as well as if the fabric were permanently fastened. The gauze may be replaced by a ring of metal of the same diameter, over which lace is stretched. When the fabric is perfectly horizontal and fastened in place, if the bell glass is inclined, the water runs out, but the degree of inclination seems to depend upon the size of the meshes. Thus with meshes $0 \cdot 16$ inch square, the least inclination determines the escape of the water; with those 0.04 inch square, an angle of 45° may be safely attained; while with meshes of from 0.02 to 0.03 inch square the following experiment may be accomplished: A glass tube of from 1.2 to $1 \cdot 6$ inches in diameter has, attached to its end by sealing wax, a little hemispherical tea strainer, such as is frequently suspended from teapot spouts to prevent tea leaves entering

the cups. In the other end of the tube are a rubber stopper and an aspiratory pipe, as already described. The tube now being filled with water, the latter is maintained by the strainer even if the tube is turned to 45°, or reversed, provided no air bubble is allowed to touch or traverse the metallic gauze. In other words, when the tube is turned with the strainer uppermost, the water is held in the latter as in a cage. The sides of the latter may be from $1 \cdot 2$ to $1 \cdot 6$ inches high with wire gauze of meshes 0.04 inch square; if the meshes are 0.02 inch square, the height may be 2.8 to 3.2 inches.
Another curious experiment is illustrated in Fig. 1. A large bell glass is continued downward by a piece of wire gauze 1.2 inches in length and of the same diameter as the glass. The meshes are 0.04 inch square, and the fabric extends across the bottom. If, after having filled the cylinder with water, the horizontal base only is placed on a surface of water, and the air pipe above is opened, the water in the glass will run out. If then, before the level of the escaping
water has passed the bottom of the glass, the aspiration pump be started, the water will remount in the glass, and not a single air bubble will enter through the side of the wire gauze addition, although that portion is wholly exposed. And further, the water level may be allowed to descend half the height of the gauze addition; and yet, when the pump is set in motion, no air will be drawn through the wire gauze, a thin pellicle of liquid seemingly cutting off access of the atmosphere, while the water rises in the glass as before. With wire gauze, having meshes from 0.02 to 0.03 inch square this effect is augmented, and the water level may be allowe to fall 1.6 inches below the bottom edge of the bell glass.
The temperature of the meniscus formed does not in fluence its resistance. A bell glass, covered below with gauze which sustained the water, was placed over a ga burner. The flame spread over the watery surface, and the water boiled without falling. An almost invisible gauze

ROMILLY'S EXPERIMENTS IN CAPILLARITY.-Fig. 1.
and because no pigments ever can approach the spectrum colors in brilliancy and purity, and hence, when combined, can never produce white, but only a dull indefinable gray. . de Lestrade retains the idea of superposing the prismatic ues in the retina, but he uses the split-up sunbeam itself nd not painted representations. P in the annexed diagram is the resolving prism, and the spectrum is received on a rectangular mirror, A B, located eight or ten feet distant. The spectrum is therefore reflected upon the screen, C D, say from R to V . Now suppose the mirror to be slightly turned on a vertical axis to $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$; then the reflected spectrum will be moved along to $R^{\prime} V^{\prime}$, and any point, K, on its path must therefore be traversed by all the spectral colors in succession. Rotate the mirror rapidly, and the rapidity of colored impressions, produced on the eye gazing at K , will produce the sensation of white light. Two mirrors, placed back to back, are of course better than a sincle mirror in causing the quick displacement of the colors.
One advantage of this admirable experimentwhich is, without exception, one of the most ingenious that have ever come under our notice-is that it may be employed for the study of the combinations of the various prismatic colors. For this purpose, a metal screen having a rectangular aper. ture large enough for the passage of the whole spec. trum is suspended a short distance in front of the mirror. Small movable screens of various dimensions are hung before the opening so as to intercept such colored parts of the spectrum as are desired to be stopped out. Then, by turning the mirror, a mixture of colors is obtained very easily, and without reference to their relative proportions in the spectrum.

Moles.
A correspondent of the Ohio Cultivator says: " There are two kinds of moles in this countryEnglish and American. The English mole is rather small, with short, thick, blue fur; its feet are large, broad, and powerful, used in burrowing; its nose is also very strong, for the same purpose. It runs in also very strong, for the same purpose. It runs in
burrows, underground generally. I have seen it, burrows, underground generally. I have seen it,
when plowed up in corn fields, burrow under the when plowed up in corn fields, burrow under the
loose soil rapidly, simply by the use of its nose, going, even in hard ground, faster than a dog can follow by digging. I suppose this mole hibernates in extreme cold weather, as I have not noticed it during the colder part of this last winter. I think
suffices for this experiment, and it may be either affixed to |for this reason that its food must be chiefly worms and inthe glass or attached to a metallic ring and simply applied, sects, as these are all gone in cold weather. as already described. When ebullition becomes violent, the water falls; but by regulating the flame by the indications of a thermometer in the bell glass, lowering the heat when 212° is exceeded, the experiment may be indefinitely continued. In order to insure success, however, it is better to connect the bell glass in which the water is to be boiled with another plunged in a vessel of water. The two glasses are connected so that the water is drawn by aspiration into each simultaneously. The dilatation of the heated air then distributes its effect over both glasses and the water does not fall. The water is likely to fall little by little, with a single glass, as steam is raised. Fig. 2 shows the disposition of apparatus for the above experiment. The bell glass, F, has three necks, and is 6 inches in diameter. T is one thermometer, for denoting the temperature of the water, and t is another, for showing that of the air. The gauze is held in place beneath F by a simple rubber band.
Neither before nor during ebullition do the meniscus bubbles become displaced, to rise to the surface. As it is necessary to replace the water in the glass which may be evaporated during the boiling, this may be done in a curious way, in keeping with the odd nature of the entire series of experiments. As soon as ebullition is well established, and the water level has somewhat fallen, a curved pipette is filled with cold water, which is ejected therefrom in a jet against the gauze. The jet penetrates the gauze and the level is quickly re-established.

A NEW EXPERIMENT FOR THE SYNTHESIS OF SUNLIGHT.

M. Laraut de Lestrade has recently exhibited before the Scientific Congress of Clermont-Ferrand, France, a very beautiful and simple experiment for recomposing sunlight from the spectrum. This experiment is now very imperfectly done by Newton's disk, which is painted with segments of different colors, proportional in extent to the area occupied by the colors respectively of the spectrum; and this is rotated rapidly, so that, by the superposition of a number of colored impressions on the retina, a sensation of

white is produced. The trouble is that the apparatus never has and never can accomplish its object; because it is almost impossible to distribute the colors in accurate proportion,
" The other mole is about as large as a half-grown rat Its fur is grayish brown on the outside, but blue close to the skin. Its feet are not so large or powerful as those of the English mole, and its runs are mostly on the surface of the ground, under grass, weeds, or rubbish. Its nostrils are extended beyond all other parts of the nose. Its smell is very acute, also its hearing, but its vision is poor, making it de pend upon its smelling and hearing for its principal guides in the rapid pursuit of insects. The mole's mouth has, in the fore part, four long sharp incisors-two in upper, two in lower jaws, like the squirrel and other rodents. In the back part of the jaw, at this season of the year, the teeth are flat and square, like the grain-eating animals-not rounded and sharp as in the animals entirely insect-eating. So their teeth must have come in contact with some hard substance which ground off the sharp points. Again, they have a double stomach, large and small intestines, etc., whil the animals of entirely insect-eating habit have a small and simple stomach, and scarcely any intestines save the œsophagus and pylorus."

IMPROVED FISH SCALER.

The anncxed engraving represents a convenient hand implement for removing scales from fish, and for scraping them after the scales are loosened.

A thin metal blade has one edge provided with teeth which are similar to saw teeth, while its opposite edge is plain. This blade is bent to a semicircular form, and its ends are secured to the opposite ends of the head or block, A, this forming a scraping tool which can be very conveniently handled. To the opposite end of the handle is secured one end of a cord, to which is attached a long pointed rod or spear, B.
In cleaning a fish the spear is forced through the tail and the point pressed into the table underneath. The operator the point pressed into the table underneath. The operator
then loosens the scales of the fish with the toothed edge of the then loosens the scales of the fish with the toothed edge of the
blade by drawing the implement over the body of the fish blade by drawing the implement over the body of the fish
from the tail to the head. When the scales are loosened, the imfrom the tail to the head. When the scales are loosened, the im-
plement is turned over and the fish scraped with the plain edge. Patented February 22, 1876, by Mrs. Sarah Lawton, of San Francisco, Cal.

the papyrus or paper reed.

The papyrus plant or paper reed, an engraving of which (taken from Knight's Nero Mechanical Dictionary*) is here with presented, belongs to the family of cyperacea or sedges, nearly related to the grasses, and as remarkable for the smal number of its useful plants as the grasses are for their many valuable species. It was called papu by the Egyptians whence the Greek papuros, the Latin papyrus, and our word paper. It grows on the marshy banks of rivers in Abyssinia, Syria, and Sicily, and formerly abounded on the banks of the Nile; but at present it has nearly disappeared from Egypt. The plant has large and abundant root stocks, which spread in the mud and throw up numerous stems from five to ten feet in height, the lower portion being submerged; the stem is triangular and smooth. The leaves all spring from near the base, the upper part of the stem being quite naked and bearing its inflorescence at the apex in the form of a large compound umbel. This consists of numerous slender branching peduncles, bearing at their extremities the flowers in small heads or spikes, and forming a graceful, drooping tuft, which has at its base numerous long narrow leaves.
In making paper, the inner cuticle of the stalk was separated into thin lamince by a sharp point. The finest were those next the pith; and the layers, of which next the pith; and the layers, of which there were about twenty, decreased in
quality as they approached the outer inquality as they approached the outer in-
tegument, which was coarse and fit only for making cordage, mats, etc. The slips were laid side by side on a smooth flat surface, and covered with a second layer placed at right angles to them, after which they were pressed so as to cause the different lamince to adhere to each other and form a single sheet, which was then dried in the sun. It is said that the layers were made adhesive by wetting them with Nile water, to which Pliny ascribes a glutinous quality. The sheets were finally beaten smooth with a mallet and polished with a piece of ivory. When finished, the papyrus was rolled upon a wooden cylinder, the ends of which, projecting beyond the edges of the sheet, were neatly finished and ornamented.
The papyrus plant was used for a great variety of purposes besides paper. Its graceful plumes crowned the statues of the gods, and decorated their temples: its pith was eaten as food: wickerwork boats, boxes, and baskets were woven of its stalk; and of its bark were made sails, cordage, cloth, mats, and sandals for the priests. It was applied as medicine to the cure of fistulas and ulcers; it furnished material for torches and candles, and its roots were used for fuel and manufactured into furniture and household utensils.

Fireproof Walls.

The report of a committee of the Na tional Board of Underwriters, giving the palm to the fireproof quality of brick as a material for buildings, is strikingly confirmed by our own experience. The walls of the Journal of Commerce building, though exposed in the upper parts to an extremely intense heat for nearly two hours, prove to be but slightly injured. A few trifling cracks, readily repaired, near the roof, are the only signs in the walls of the ordeal through which they have passed. The walls were strongly constructed, intended to last, and they have served their purpose. Had the structure been made of granite or marble or iron we can guess what would be its present condition from the fate that has overtaken so many buildings composed of those materials. The report of the Fire Underwriters' Committee makes no new points; but it presents again in a very convincing manner some of the evidences, which ought to be heeded, as to the superiority of brick over stone or iron for building purposes. One of the most impressive proofs given is that offered by the great fire in Boston in 1872, when the rearbrick wall of the new Post Office Building in that city was exposed to a terrible direct heat for hours without sustaining a crack or blemish of any kind; whereas the granite side of the structure, not facing the fire, was seriously damaged, and it was necessary to take down portions of it The report strongly condemns the use of iron in architec ture, declaring it " undesirable for such purposes, and unsafe in a fire point of view." The recent destruction of large iron edifices in New York and St. Louis is cited as testimony on this head.. The wreck of the iron building burned in Bond street of this city last winter was a quick piece of work; but St. Louis beat it at a fire last month, when one of the largest iron structures in that city lay flat on the ground within twenty minutes after the fire was discovered in it. The committee say that wooden columns, pillars, or supports of proper dimensions will stand fire better than iron. They recommend, for fireproof doors or shutters, wood clad with sheet iron or tin. These are all practical sugges-

THE PAPYRUS.
ago soft felt hats were extensively worn in the United States They were very pleasant, but had the one fault of getting limp and slouchingly unsightly in the brim. It struck a keen New Yorker that a bit of galvanized wire run around the brim would not only obviate this, but give the beaver the desired cock at will. No sooner thought of than done, and no sooner done than patented. Luckily a patent does not cost quite so much in the United States as here, and the lucky inventor is said to have netted a fortune. Now we hear that the genius who first brought out wooden toothpicks has made $\$ 50,000$ by his little manufacture. At inrst, if the universal traveler's tale be true, a fork, or the all-useful bowie knife, served this purpose. But, as the country advanced in luxury, the demand for a weapon more civilized and a little lighter became universal. Found the demand, the man who was to satisfy it soon appeared. At first the toothpicks were made of hard, fibrous wood. But this, we aretold by New York journals, did not serve. The hickory toothpicks lasted too long. Latterly he has been making them of soft pine wood, and with a great increase to his gains, for it now takes four sound picks to get the broken end of one out from between the teeth. This almost equals the
genius who, finding no sale for his cargo of shoe pegs in Philadelphia, ' whittled the other end, and soldthem for oats in New Orleans.' At least, so we read in an American news paper, and all the world knows how jealously they cling to the truth."

Action of Sea Water on Lead

The Journal of the Chemical Society says that, after keep ing strips of new cut lead in a bottle of sea water, frequently shaken, for four days, no trace of lead could be detected in the water, but the bright surface of the strips was coated
with an insoluble lead compound. Hence, lead pipes may be used in marine aquaria without any fear of injury to their inhabitants.

Gardening all the Year Round.

Under this heading, D. H. Jacques, Esq., contributes to the Semi-Tropical Magazine some timely hints to agriculturists, from which we make the following extracts:
Watering so as to merely wet the surface of the ground often does more harm than good. The roots of the plants are thereby attracted to the surface, thus temporarily moistened; but as it soon becomes as dry as before, and harde than ever, the young roots perish in the intervals of water ing, and the plant is weakened rather than strengthened, and not infrequently killed outright. The ground should be well soaked and the watering not frequent. In the case of trees, shrubs, and large herbaceous plants, it is well to draw away the surface earth from them to the depth of two or three inches, doing it care fully, so as not to injure the roots, apply the water, and then return the dry soil This prevents immediate evaporation and gives the roots thefullbenefit of the water without exposing them to be burned up by the hot sun. Where this is not practica ble, as among small plants, holes may be made near them with a dibble or sharpened stick, and water poured into them from the nozzle of a watering pot. The plant may afterward be slightly sprinkled from the nose of the pot and the ground stirred with the prongoe.
Saltpeter, a tablespoonful or more to a bucket of water, is an excellent occasional application to most kinds of garden plants, being at the same time a fertilizer and an insect destroyer. Many grubs and bugs may be destroyed by copious waterings with this solution.
To keep plants bearing: The production of seed is an exhaustive process, and, as rule, its completion is signalized either by the death of the plant, if an annual, or by temporary suspension of the process of rowth, if a biennial or a perennial. The mmediate end for which Nature has sus tained it has been attained. If we are cul tivating it for seed, our object is the same, and we should not interfere with Nature's processes; but if, as in the case of the okra the cucumber, and the summer squash we make use of the immature fruit and desire to increase and prolong its produc tion, we must carefully cut off, before maturity, all that is produced, whether we can make use of them or not, so as to en courage an abnormal production. Also where a root or a bulb is the object of cul tivation, as in the Irish potato or the onion we should remove the flower stems. If seeds are desired, certain plants should be set apart for their production and the earliest and best fruit be allowed to ripen The same rule applies to the flower gar den. If we desire continued bloom, the plants must not be allowed to matur seeds.
Moss for potted plants: It is beneficial at this season, to cover the earth around plants in pots and baskets with a layer of fresh moss, to be changed as it becomes dry and dead. It keeps the moisture from evaporating, se cures a greater uniformity of temperature, and improves the looks of the plant.
Transplanting: Tomatoes, peppers, and egg plants should be transplanted, as required to keep up a succession of fruit, choosing showery weather for the operation, or watering and shading as heretofore directed. In light, porous soils, transplanting becomes a work of some delicacy and difficulty, s the summer advances, especially when the rains are light and infrequent, as is often the case at this season. See previous hints on this subject.
Flower garden work: In the flower garden the operations of the month are mainly the same as in the vegetable garden. Stir the soil, kill all weeds, transplant, shade, and water. Liquid manure is here fully as effective as in the kitchen arden, giving wonderful size and brilliancy to the flowers. Rose and other bushes will be much benefited by a top dress ing of pulverized charcoal and ashes composted with rotten muck or surface soil from the woods.

The Great Eastern to be a Meat Ship.
The owners of the Great Eastern are, it is said, consider ng the propriety of converting that magnificent vessel into huge refrigerating chamber for the conveyance of American meat. A recent examination has disclosed the fact that, like the Great Britain-another of Brunel's ships-the hull is practically in as good condition as when first built, and the directors consider it would be wise to raise sufficient money to put new and improved engines and boilers into the vessel. They have been empowered to prepare a rough estimate of the cost of the new machinery; and in view of he fact that the vessel can even now steam as fast as any of the Atlantic liners, the trade in meat, which is being developed not only with the United States, but also with Brazil, promises to open a wide field of usefulness-a trade in which the great vessel need never carry only half a load.

CTMmanitatimy

Our Washington Correspondence.

To the Editor of the Scientific American
Business in the Patent Office still continues brisk, and a larger number of patents than usual are being issued-the average weekly list for the last three weeks being 352, including all issues.
The competitive examination for the vacant position on the Board of Appeals resulted in the names of Messrs. Bates, Wilbur, and Catlin (as the three best on the list) being re ported by the Examining Board to the Secretary of the Interior, who nominated the first named gentleman to the President for appointment; and he was accordingly apferences, it became necessary to appoint some one to fill his place; and Mr. Wilbur, as second on the above list, was ap pointed to this position. This creates a vacancy in the pri mary examining corps; and now there is to be another ex amination to fill the place made vacant by Mr. Wilbur's promotion, which will probably take place ere this is published.
The Coast Survey Office is now fitting out two parties to survey the coast of Maine: the first party under Lieutenant Moser, U.S.N., on the steamer Endeavor, and the other under Lieutenant Hawley, on the schooner Ernest. A third party is being fitted out for the purpose of making off-shore tida current observations in the same localit
ter Robert Platt, on the schooner Drift.
The question how to survey, economically, the occasional spots of arable land which dot the sterile deserts in the far
West has engrossed the attention West has engrossed the attention of the Land Office for several years. The practice has been to extend one of the
main base lines and one of the principal meridian lines until they intersect in the vicinity of the spot to be surveyed, and from this point continue the survey by laying out townships, sections, etc. This often involves running lines through desert lands, for hundreds of miles, at great expense; to save which Lieutenant Powell, the explorer, now proposes to ar rive at the initial point for this kind of lands by triangulation, which can be done at much less expense and with equal precision. It is thought, however, that the law as it now stands will not allow of this being done; and it is probable that the subject will be submitted to Congress at the next sesion for consideration, and the necessary change in the law.
Many agents of the different European governments are reported as scattered over the country, engaged in buying a_{+}) all the white oak timber in the market ready for ship ment. The French Government has recently made large agentsare busily negotiating for all they can find in New York, Philadelphia, and Baltimore; and Russian agents are York, Philadelphia, and Baltimore; and Russian agents are
securing all they can find wherever it is to be purchased. Ex-Secretary Robeson was very much blamed by the opposition press for making large purchases of this material during his official term; but now the different foreign agents are willing to pay the government double what he gave for it.
There is now being erected in the Mineral Hall of the Smithsonian Institute some remarkable specimens of the plastic art. One of these is a copy in terra cotta of the group "America" upon one of the pediments of the Albert Memorial in London. The figures are of heroic size, and are probably the largest ever made in this material. There is also a pulpit, with the steps leading thereto in red and white terra cotta, relieved by gilding; and two fonts of the same material. The sides of the pulpit are ornamented with scenes representing the life of the Saviour, and the fonts with scenes connected with children from the Scriptures. Washington, D. C.

Occasional.

A New Remedy for the Potato Bug.

o the Editor of the Scientific American
In the spring and summer of 1875, in experimenting with the Colorado potato bug and the action of certain chemicals on the bug and its eggs, I discovered that a solution of the sulpho-carbonate of potassium in water had the property of
dissolving the skin or covering of the eggs. When this solution was applied to the potato plants on which there were eggs, that part of the leaf on which the eggs were would be turned brown and dead, and the eggs (which are generally on the under side of the leaves) would be dissolved and run into a pasty mass which soon dried up.
It is not necessary for the solution to come in direct contact with the eggs; for when it was applied to the upperpart of the leaves, the eggs on the under side would be dissolved as effectually, though not quite as fast, as when the solution was applied directly on them.
I do not remember having seen any notice of this action of the sulpho-carbonate of potassivem on the eggs of insects; and it occurred to me when I read the article in the Scientific American of April 28, page 261, by Professor C. V. Riley, on the grasshopper, that this salt might prove as effectual a remedy for the grasshopper, by destroying its eggs while they are in the ground, as it has proved for the phylloxera in France. In the Scientific American Supplement, No. 34, page 536, there is a copy of an article, read before the French Academy of Sciences by M. Joubert, on the sulpho-carbonates as a remedy for the phylloxera. He as the amount be applied for this insect. These proportions would not do
to apply for the grasshopper, as it would cost more than the land is worth in many cases. If the sulpho-carbonate of potassium has the same effect on the eggs of the grasshop per as it has on the eggs of the potato bug, it would cer tainly be well worth trying.

I hope some one who may have the opportunity of trying this remedy will do so and report the result. The sulphocarbonate which I used is known in the market as the sulphide of potassium.
Philadelphia, Pa.
Wm. L. Billin.

Steam Cars vs. Horses To the Editor of the Scientific American:

An experiment was made in Philadelphia, a few days ago, to show the possibility of superseding horses by steam on their railways. The seven cars used in this trial present nothing different in their general plan from that of the most successful ones which have been many times tried and are now in use in some other localities, except perhaps the ap plication of steam to the brakes for sudden stops.
Steam seems destined to complete its mission to man through the media of piston and crank. These simple devices will probably never be superseded as a means of transmitting the force of steam to a driving wheel. The only thing now to be done is to give to the steam car the best material the best proportion, the best of workmanship, and a leve track to work upon, and its complete success will be assured. No grade should exceed twenty feet per mile; it is far better to go three or four miles round than to go half a mile over a hill at a much steeper grade than this. Six of the cars are inside-connected, and have $5 \frac{1}{2}$ inch pistons and 7 inch cranks; the other is outside-connected, and has 8 inch
pistons and 5 inch cranks. This last is far the best arrangement for hard work. Less area of pistons and longer cranks would be preferable, however, and $5 \frac{1}{2}$ inch pistons and 10 inch cranks would be quite as efficient and would impose far less strain upon the bearings, and hence would be more durable. The bodies of the cars are about twenty feet long, five feet of which, at one end, is used for the boiler and engineer, the machinery being placed horizontally under the floor. Now that we have excellent steel plate for boilers, and have learnt to exactly match the rivet holes by drilling, and to rivet by machinery, there can be no reason why a steam car
should not be made, with all of our improved appliances and experience, to run twenty years at an expense for repairs o less than twenty dollars a year.

The most formidable bars to the success of steam cars are steep grades. It requires only about 8 lbs. to draw a ton on level rails, while the ascent of a 20 feet grade requires about double this amount; and the ascent of a 160 feet grade, like that upon the Worcester and Shrewsbury road, requires about nine times this amount. To figure this out, we have only to divide the number of feet in a mile by the number of feet rise per mile, and then divide the number of lbs. in a ton by the quotient. The last quotient, plus 8 , denotes the
number of lbs. required to draw a ton up the grade. Thus: $\frac{5280}{160}=33$, then $\frac{2000}{83}=60$, then $60+8=68$ lbs. to draw a ton up a 100 feet grade.
Worcester, Mass.
F. G. Woodward.

The Russian and Turkish Navies

The present war between Russia and Turkey is likely to bring about the one event which is needed crucially to test the efficacy of modern armored vessels, that is, their opposi tion in actual combat. All the building of ironclads, and the constant improvements in their armor due to the increase in power of heavy guns, which have been going on for the past fifteen years, fairly may be regarded as accomplished under conditions embodying a constant element of uncer tainty; and this for the reason that the always varying circumstances under which vessels may enter into conflict cannot be foreseen or provided for. Leaving out of consideration the skirmishes which occurred on the coast of Spain during the civil war in that country, none of the European ironclads have ever (with the exception of a single instance) been in action. This exception was the quickly decided fight between the Austrians and Italians, in which twelve Italian armored vessels and eight wooden vessels met the seven armored and fifteen wooden vessels constituting the
Austrian fleet. The Italian flagship Ré d'Italia, a wooden ironclad, was rammed and sunk by the Austrian flagship Ferdinand Max; and the Italian corvette Palestro was blown up. The Italians exhibited extraordinarily bad gunnery, and the Austrians won an easy victory. This battle, however,
furnishes no useful lesson, unless it is to show how difficult furnishes no useful lesson, unless it is to show how difficult against an enemy who manœuvres equally well to get out of the way; for the Austrian could not ram the Ré d'Italia until the latter had had her rudder disabled. The conflict mainly, however, is an instance in point, exemplifying the fact that the conditions determining success in battle are not to be gained by providing a preponderance of ironclads in one opposing fleet; nor can the fortunes or misfortunes of
vessels be invariably provided for by the skill of the naval constructor.
The two fleets which are soon to serve as targets for each other, and thus, at the cost of much blood and money, to furnish data of inestimable value to the war-shipbuilder of the future, are quite evenly matched, as far as ironclads are concerned. Russia has 29 armored ships, and 196 other vessels of all classes, carrying altogether 521 guns; 27 of the first mentioned vessels are in the Baltic, and 2 are in the Black Sea. Of these, the recent report of Chief Engineer
J. W. King, U.S.N., on European ships of war, whence we take our facts, says that but two, the Peter the Great and the Minin, approach the modern standard of fighting efficiency. The Peter the Great's armor is 14 inches in thickness, with iron hollow stringers on the backing besides, which are alleged to give an additional resistance equal to 2 inches of iron. The four guns, two in each of the turrets, are steel iron. The four guns, two in each of the turrets, are steel
breech-loading guns on the Broadwell system, of 12 inches caliber. She has no ram. Her length is 321 feet, breadth 64 feet; displacement 9,510 tons. She has twin screws, and a maximum speed of 13 knots. The Mınin is 298 feet long and 49 feet broad, and displaces 5,650 tons. She carries four 11 inch guns, and 12 inches of armor on 24 inch backing. She is a rigged turret ship on the Coles system, but is undergoing alterations which will place her guns on two turntables on the main deck, so that they fire en barbette over the top of the battery. Next in importance are the broadside vessels Duke of Edinburgh and General Admiral. These are of iron, wood-sheathed, and displace 4,438 tons each. Their armor is disposed in a belt over the vital parts, and is 6 inches thick by 7 feet wide. Their speed is 13 knots, and armament four 8 inch rifled and two 6 inch chase guns. Next in the sea-going fleet are four ships named after admirals, two carrying each six guns in three turrets, and two each four guns in two turrets. The caliber of the guns is but 9 inches, and the armor but 6 inches thick. Two wooden armored frigates follow, which carry large batteries of small guns and thin armor. They may be regarded as obsolete. For coast defence, Russia has the circular ironclads which we have so frequently referred to, but the efficacy of which is, to say the least, doubtful. One has two 11 inch, the other two 12 inch, guns; and the thickness of armor is respectively 11 and 18 inches. There are ten single turret monitors of the early Ericsson pattern, and the three twoturret monitors carrying 10, 8, and 9 inch guns, and having rmor not exceeding 5 inches.
As against this fleet Turkey can make the following ex hibit: The Mesoodiyeh and Memdoohiyeh have recently been completed in England. The first has already been delivered to the Sultan, the second completed her trial trips in January last. The displacement of these ships is 9,000 tons each, length 332 feet, and beam 59 feet. They are full-rigged rigates of the broadside central battery type, with hulls of the usual cellular construction, there being in all 82 watertight compartments. The battery is 153 feet in length, and the armor plating on the sides is 12 inches thick, backed by the same thickness of East Indian teak. The armaments are twelve 18 ton and two $6 \frac{1}{2}$ ton Armstrong guns. The maximum speed is 13.8 knots. Five ironclads follow, each nearly 300 feet in length and carrying 10 inches (in one case 9 inches) of armor plating. The armament of four is fifteen $6 \frac{1}{2}$ ton guns and one 12 ton gun; the fifth has ten $12 \frac{1}{2}$ ton, two $6 \frac{1}{2}$ ton, and 6 small, guns. Seven ordinary station service ships follow, four with armor ranging from 9 to 7 inches in thickness, and carrying each four 12 ton guns, three with armor from $4 \frac{1}{2}$ to 4 inches carry five 150 pounders and one 12 ton gun. Lastly come five gunboats, each carrying two 12 ton guns and 3 inches of armor, and two coast defence monitors. In all, Turkey has 24 armored fight ing ships, nearly all new. She has few wooden seagoing cruisers, and therefore it is probable that no naval combats will occur elsewhere than in the vicinity of the immediate seat of war, and most likely in the Black Sea.

The Fall of the New York Post office Roof.

The falling of a portion of the roof of the Post Office Building in this city recentlykilled three men, and wounded several others who were at work in a room beneath. The Acting Supervising Architect, Mr. James G. Hill, says tha the roof was from 50 to 75 per cent heavier than it should have been. It carried five inches of concrete and cement a the crown of the arches, and a thickness of fourteen inches of the same materials at the deepest part, over the nine inch rolled beams. Some time ago, a portion of a brick wall, which aided in supporting the weight of the roof, was re moved, and in lieu thereof a Howe truss girder was substituted. This gave way, and appears to have slipped from its inner bearing on the interior wall, and also to have brought down the plate and purlin by which the outer end was sus tained. The purlin seems to be badly wrenched; but as yet it is not definitely determined where the structure first failed.
It is generally conceded that the Post Office Building, though imposing in general appearance, is of inferior archiectural merit; but it has always been supposed that, as an difice, it was exceptionally solid and strong. The Coroner has impaneled a jury of prominent architects, and the thor ough investigation which the structure will receive at thei hands will doubtless bring out the true facts in regard to it.

A very general reduction of wages is in progress among the miners and blast furnacemen of Scotland. In a num ber of instances the men are already working on the reduction, and in a week or two the notices will take effect at other works. As a rule, the reduction amounts to 6 d . per day, which brings down the wages to a very low level. In one district it is said that the wages, even for six days' work, will not exceed $\$ 4.50$, gold, per week, when the offtakes are deducted from the gross earnings.-Engineering.

The address of Mr. H. R. Houghton, whose fire escape we illustrated in our last issue, is 59 W est 42 d street, New York city.

HOW TO DO IT, AND HOW HOT TO DO IT. In walking through a workshop the eye of the ordinary observer will almost invariably lead him to form a tolerably accurate estimate of the capabilities of at least a large proportion of the workmen; and especially is this the case in a large shop, where the men can scarcely be so carefully selected as in small establishments, when their numbers are comparatively limited. There is something in the attitude, the interest taken in his work, the energy or delicacy, as the case may be, with which the expert workman handles his tools, which points him out as plainly as the awkwardness, in difference, or abstraction indicates his opposite; and what that something is the pen of our artist.has delineated far more plainly than words can express. Take, for example, the figure represented in "How to Do It" in the act of rough chipping, and it is observable at a glance that his mind as well as his muscle are concentrated upon his work. We are very apt to cast a pleasant glamour upon the past; and this it is which causes each successive generation to look back, perhaps with regret, to the good old times; and to those who highly value mechanical skill, the days of the hammer and chisel were good old times indeed. The workman of the special machine workshop of these days would be altogether surprised to see the large amount of good and accurate work which expert old mechanics can perform with the hammer, chisel, and file. There are, indeed, workmen still extant who would have no hesitation in undertaking to equal in quality and surpass in quantity, upon scme kinds of work, the capabilities of the ordinary vise hand even with the assistance of a modern planer and shaper. Among this class of work the fitting in of brasses into ordinary pillow blocks may be instanced. And although, as we have said, the hand workman of the good old times is not altogether extinct, he is not to be found in special machine shops, and may be looked for in repair shops, where he commands nearly one third more than the average machinist's wages.
In the illustration under the heading of "How Not to Do It," our artist has represented not only errors in the method of manipulation, but also the want of interest in the work which is at times met with in large shops among the operatives; while in "How to Do It," he has shown the proper attitude for the workman performing the several operations, and has given him, in each, the look of a zealous and painstaking artisan
The chipping hammer is not by any means the rude instrument which it appears to the uninitiated; and there are as many styles of using it as there are in the use of the pen. For heavy duty, it should be held near the end of the handle. The arm should swing freely, the hand never traveling further backwards than a line vertical to the operator's shoulder. The movement should be obtained partly from the elbow, partly from the shoulder, partly from the body itself, and (in a minor degree) from the wrist. If then we turn to the figure "Rough Chipping," in "How Not to Do It," we perceive that, with the hammer held as there shown, these movements would be difficult, and would cause a constrained ac-
tion of the body and arm. The chisel should be held close to its head, gripped tight, and pressed firmly against its cut
For fine chipping-that is to say, for the finishing cut-the chisel is held in the same manner; the hammer is grasped nearer to the middle of the handle, and the blows are com paratively light. Under such circumstances, the cut may be so smoothly taken that the finger applied over a length of say, two inches, without the assistance of the eye, will fail to detect if the work has been chipped or filed. Both these op erations require strict attention; and though apparently rude, they are actually delicate if skillfully performed.
In contrasting the two illustrations of rough filing, the practised eye would readily detect the improper manipula tion, irrespective of the want of attention, shown in the on figure. The distance of the operator from his work would alone expose his unskillfulness. To properly use a rough file, it should be held so that the file handle presses against the palm of the hand, and hence so that the strain due to pushing the file will be in a line with the length of the arm from the hand to the elbow. The operator should stand well off from the vise, and must drive the file by a motion of the body almost as great as that of the arms. In this way, the weight of the body will be placed upon the file to such an extent that the heel of the operator's forward foot wil lift from the floor, as shown in our illustration, the fulcrum for the pushing duty being the rear foot. During the return stroke of the dile, the forward or left foot comes into play as a fulcrum, by which the operator's body recovers its former position; and it also enables the arms to relieve the file of press ure during its back stroke. The motion of the file during this latter stroke should be much quicker than during the forward motion. The file is a wonderful tool in skillfu hands, capable, indeed, of producing work more truly smooth and accurate than any other known cutting tool, the lathe tool not excepted. Its use, indeed, in the finishing processes is mainly to correct the inaccuracies which are inherent to work produced by other cutting tools, especially upon plane surfaces; and it is aninexorable fact that we have at this day no machine or tool capable of producing flat metal surfaces as small, even as six inches square, so true that a judicious application of the file will not at least double the contacting area of two such pieces placed together.
Draw filing is a method of using the file which answer two purposes: the first to leave the file marks in the most de sirable direction, and the second to touch only such parts of the work as require operating upon to secure truth and ac curacy of dimensions. Having rough and smooth crossfiled the work down to such a size that the drawfiling will entirely erase the crossfile marks (for filing in the position shown under the heading of rough filing is called crossfiling, whether the file be a rough, second cut, or smooth file), the operator tests his work to discover the protruding spots or places. He then casts his eye along the length of the file holding the latter edgeways to the eye, first to ascertain the curve or sweep of the face of the file, and secondly, to select
a part of the file where that curve is the greatest and most
egular. Then turning the file over, he brings the selected part of the file to bear upon the protruding part of the work, and uses the file as shown in our illustration, watching intently every mark made by the file teeth, so as to insur hat the cutting duty is being performed exactly in the re quired spot, and that the surrounding surface is not being perated upon. If the surface of the work has been draw filed all over, and it becomes difficult to distinguish the file marks being made, he gives the file a slight lateral movemen (first to one side and then to the other) as well as a recipro cating one, so that the new file marks distinguish themselve by slightly crossing the old ones. It is in drawfiling that he utmost skill is to be shown; and here we may caution the perator against an error that he is very apt to fall into. This error is in taking long strokes in drawfiling; because in uch case the filings are apt to clog in the file teeth, produc ing what are technically termed "pins," that is, small pieces of ron which stick fast to the file and cut scratches in the work, entailing a large amount of extra work to file such scratche out. It is obvious that the brains must not be wool-gatherng when drawfiling is under operation; for good judg ment, strict attention, careful manipulation, and perfect con idence must be combined to produce good work. An erro in selecting the part of the file to be used, or an error in ap plying that exact spot to the requisite place in the work, will produce a hollow spot in the work, which, if the latter is down to its proper size, can never be remedied; while want of judgment as to the quantity of metal requiring to be re moved will cause either a badly finished job or else consume more time in testing the work than in filing it. Apropos of his latter fact, a well known master mechanic related to us he other day a piece of advice once given by a skillful work man, A, to an artisan, B, who, though a very industrious painstaking man, was, from lack of experience, somewha he reverse. A had employed B to work for him by the piece; and giving him a locomotive guide bar to file up, he irst told him to test the bar. Then, giving him a rough file he said: "Now file off as much as you think is necessary and don't be afraid of it; when you have done so, come and tell me." B set to work with a will; and in a quarter of an hour he came to A, saying that he had filed off what he con sidered ample. "Go back to your vise," said A, "and file off just as much more. "But-" said B. "There are no 'buts' in the case," said A; "do exactly as I tell you." B set doggedly to work, and obeyed orders; and on testing the job, it required a little more filing in the same places ' This," said our visiting master mechanic, " was a lesson I never forgot and have often remembered to my advantage." The moral here pointed is founded upon a fact which any one who watches the manipuation of vise hands (upon all but very small work) will speedly observe, namely, that, for lack of cultivating the judgment, it often takes more time to try and retry the work than it does to file it. Fitting journal brasses, keys, dies, and sliding blocks, and filing very true flat surfaces, may be instanced as classes of work in true flat surfaces, may be i
which this is liable to occur.

IMPROVED HIGH SPEED DRY AIR COMPRESSOR.

We illustrate herewith a new and very compact form of air compressor, designed for obtaining any desired pressure per square inch for driving rock drills, transmitting messa ges, forcing sand blasts, and, in general, all pneumatic pur poses. The perspective view, Fig. 1, shows the engine side of the machine; Fig. 2 represents a section of the compressing cylinders. Motion is imparted to a forked rod which is attached to the center, g, of the plunger pistons, J , in such a way that facility is afford ed for the adjustment of said pistons relatively to the discharge valves of the compressor in order to meet disturbances conse quent on wear and for tightening up the driving connections.
It will be observed from the section, Fig. 2, that there is in reality but one piston, each end of which works in a separate com pression cylinder. Each end is tightly packed; and in each end face is a valve, the stem of which is sur rounded by a coiled spring, I. At the compressing end of each cylinder is an enlargement, H , formed by the extension of the cylinder. This is constructed to form a seat for the outlet valve, G, which is held up to the shoulder by the spring, e, which surrounds its stem. At d is the air outlet. course closes, and the air is compressed before the piston and the cone, D , inward; or it may be adjusted so as to enter a against the valve, G. As soon as the pressure on the latter exceeds the oppositely acting pressure of its spring, the valve opens; and the compressed air then escapes through the outlet, d. As soon, however, as the pressure is sufficiently reduced, the valve spring reacts; and as the piston at the end of its path projects for about $\frac{1}{18}$ inch into the enlarged por tion, the valve comes back directly against it and follows it until once more forming a flush joint with the shoulder. Meanwhile the valve in the piston opens, and air enters between the same and the valve, the piston continuing its rearward stroke until past the orifice, f, which opens directly into the air, and thus a full supply is insured, ahead of the piston, before it begins another compressing stroke. Of course the reverse operation is going on in the opposite cylinder; and in this way the action is rendered continuous.
It will also be noticed that there is not only an absence of ports and passages, but that no water whatever is used in the air cylinder; so that the danger of wear from gritty particles in the same is entirely obviated. The water necessary for cooling is applied only on the outside in the jacket, C. Any kind of water may be used without injury to the compressor. As the areas of opening in the inlct and outlet valves are very large, they require but a slight motion to admit or release the air, consequently the machines may be run at a high rate of speed, from 175 to 200 revolutions, and are made light in weight when compared with the amount of work they are capable of performing.
For further particulars, address the manufacturers, Messrs. Guild \& Garrison, 34 to 44 First street, Brooklyn, E.D., N.Y.
kenyon's adjustable rubier bucket for chain PUMPS.
The annexed engraving represents a new rubber bucket for chain pumps, which may be adjusted so as to accurately

fit the tube, and also so as to take up wear. It acts both as a suction and forcing piston, and is claimed to raise water from deep wells at a small expenditure of power. Fig. 1

epresents an exterior view, and Fig. 2 a sectional view of

 the device.The link, A, is provided with an eye at each end, for at achment to the chain; and on its upper portion is formed collar, B, which receives and sustains the downward pressure of the columns of water, and thus prevents the said pressure forcing the rubber downward and expanding the same. On the link and below the collar is a screw thread on which moves the cone, D. E is a rubber packing, whic

But foul and deadly as the expired air is, Nature, wisely economical in all her works and ways, turns it to good account in its outward passage through the organs of voice, and makes of it the whisper of love, the soft words of affection, the tender tones of human sympathy, the sweetest strains of ravishing music, the persuasive eloquence of the finished orator.
If a well made man be extended on the ground, his arm at right angles with the body, a circle, making the navel its center, will just take in the head, the finger ends, and feet.
The distance from top to toe is precisely the same as that between the tips of the fingers when the arms are extended.
The length of the body is just six times that of the foot; while the distance from the edge of the hair on the forehead to the end of the chin is one tenth the length of the whole stature.
Of the sixty-two primary elements known in Nature, only eighteen are found in the human body, and of these, seven are metallic. Iron is found in the blood, phosphorus in the brain; limestone in the bile; lime in the bones; dust and ashes in all! Not only these eighteen human elements, but the whole sixty-two, of which the universe is made, have their

GUILD \& GARRISON'S AIR COMPRESSOR.-Fig. 1.

smaller tube by moving said cone in the reverse direction. A metal washer, F , is placed on top of the rubber packing, and prevents the same from being forced out of place by the cone, D. This washer has a longitudinal slot, whereby it may be slipped over the link eye. It is then rotated a quarter turn, so that it cannot come off; while the pressure of the rubber prevents its turning backward. The cone, D , is easily moved by grasping the rubber packing in one hand
 other.

Patented April 17, 1877, through the Scientific American Patent Agency. For further particulars, address the inventor, Mr. Thomas Kenyon, P. O. box 103, Hamilton Butler county, Ohio

Marvels of Man.

While the gastric juice has a mild, bland, sweetish taste, it possesses the power of dissolving the hardest food that can be swallowed; it has no influence whatever on the soft and delicate fibers of the living stomach, nor upon the living hand, but, at the moment of death, itbegins to eat them away with the power of the strongest acids.
There is dust on sea, on land; in the valley, and on the mountain top; there is dust always and everywhere; the at mosphere is full of it; it penetrates the noisome dungeon and visits the deepest, darkest caves of the earth; no palace door can shut it out, no drawer so secret as to escape it presence; every breath of wind dashes it upon the open eye and yet that eye is not blinded, because there is a fountain of the blandest fluid in Nature incessantly emptying itself under the eyelid, which spreads it over the surface of the ball at every winking, and washes every atom of dust away. But this liquid, so mild, and so well adapted to the eye itself, has some acridity, which, under certain circumstances, be comes so decided as to be scalding to the skin, and would rot away the eyelids were it not that along the edges of them there are little oil manufactories, which spread over their surface a coating, as impervious to the liquids necessary fo keeping the eyeball washed clean as the best varnish is im pervious to water.
The breath which leaves the lungs has been so perfectly divested of its life-giving properties that to rebreathe it, un mixed with other air, the moment it escapes from the mouth, would cause immediate death by suffocation; while if it hovered about us, a more or less destructive influence over health and life would be occasioned; but it is made of a nature so much lighter than the common air that the instan it escapes the lips and nostrils it ascends to the higher re gions, above the breathing point, there to be rectified, renovated, and sent back again, replete with purity and life How rapidly it ascends is beautifully exhibited every frosty morning.
essential basis in the four substances, oxygen, hydroge itrogen, and carbon, representing the more familiar names fire water saltpeter, and charcoal; and such is man the lord of earth! a spark of fire, a drop of water, a grain of lord of earth! a spark of fire, a drop of water, a grain of
gunpowder, an atom of charcoal!-Hall's Journal of Health.

COMBINED PIPE TONGS, WRENCH, AND SCREWDRIVER. The annexed engraving represents one of those useful ools which combine in themselves the capabilities of a umber of constantly needed implements, and thus reduce both the cost and the bulk of the mechanic's working kit. At the same time, tools of this description are always handy to have about the house or the farm; as they afford a means of quickly doing many a little job of timely repairing, which may save more difficult work in the future. The present device is a combi nation of pipe tongs, wrench, and screwdriver, which implements the gas or steam fitter constantly requires A is a double jaw or clamp, curved at one end to extend around the pipe or nut, as shown, and which has its parts laterally connected by stay pins. On the longitudinal portion of this jaw are notches which receive the pivot pin of the single jaw, B, which enters between the parts of jaw, A, and has an eccentrically shaped clamping end, which is serrated so as firmly to bind upon the object grasped. The lower end, C, of the shank of jaw, B, is tapered to form crewdriver. When this portion is in use, the single jaw drawn out, and the double jaw is reversed to form a handle.

Patent pending through the Scientific American Patent Agency. For further particulars, and for tools, address th inventors, Messrs. States \& Cook, Topeka, Kansas.

A REMARKABLE KINGFISHER.

There are over fifty species of the halcyonida or kingfish ers; but none is more remarkable than the one shown in our illustration. From its peculiar screaming laugh, not unlike the bray of a donkey, it has obtained the name of " the laugh ing jackass." Its zoölogical name is dacelo, one species, d. gigas, being a large bird, 18 inches long, and endowed with strength and courage; it feeds indiscriminately on any animals of suitable size, whether quadruped, bird, reptile, fish, insect, or crustacean. It is a handsome bird, being brightly colored; and its flight is quick and noiseless. Its powerful bill makes it a very formidable enemy.
The Illustrated Neros, of Adelaide, Australia, from whose pages we select the engraving, gives the following particu lars of this interesting bird: "The laughing jackass is almost too well known to need description. His appearance and extraordinary note are familiar to the inhabitants of every country village. Indeed, he frequently extends his researches into the neighborhood of towns, occasionally taking up his abode for life in some healthy suburb, and punctually enter taining the inhabitants thereof, morning and evening, with a succession of those singular sounds which have rendered his name famous Although a kingfisher, he never procures his food from the water, after the orthodox fashion of kingfishers, but fashion of kingfishers, but has more the habits of a bird of prey. Sitting motionless among the lower branches of
some tall gum tree unnoticed, and apparently half asleep, he waits, like Micawber, for something to turn up. Suddenly, without noise, he drops off his bough and flies direct to a certain spot, whence he soon returns, bearing in his beak a lizard, a small snake, or perhaps a rat. His acuteness of sight is extraor dinary. From his elevated post he seems to miss nothing, and discerns his prey in swamps and crevices of rocks at a distance that is perfectly astounding. The laughing jackass has the advantage of being able to live on almost anything that presents itself; hence it is always in good con dition, and apparently in good humor. It seems, indeed, to pass its life in self-congratu lations; and when four or five meet and unite their voices and they invariably do, morn ing and evening, the noise would suggest the idea that a party of demons had broken loose and were rejoicing ove some piece of successful mis chief. But in spite of his careless, happy life, the laugh ing jackass has his peculia duty, and he performs it con scientiously. Snake killing is his specialty: lizards, frogs beetles, small birds, rats, etc. are his usual food. In fact nothing comes amiss to him let a snake appear upon the scene, and the laughing jack ass recognizes his quarry a
once. Never hesitating, he makes straight for it, his agitation being observable by the quivering crest feathers. With some caution, he swoops backwards and forwards, seeking an opportunity to seize the reptile. The snake, with head erect, ready to strike, keeps on the alert. The excitement continues for some time till the bird finally settles down, close by, on the ground. But all his stolid heavy appearance is gone. His wings and tail quiver with agitation and eagerness. Fully alive to the dangerous character of his opponent, he keeps at a safe distance. Flitting round, his head just out of reach, he continues to annoy him, till becoming exhausted, the snake affords him the opportunity he is seeking. With the rapidity of lightning the bird descends upon his prey, then rises in the air, bearing with him the captured snake, neatly held just behind the head, in such a position as to render him perfectly powerless. Rising until he has attained a considerable height, he directs his flight to a more open part of the country, then suddenly backing in the air, he drops the reptile, following it down and reaching the ground almost at the same time. Stunned and bruised, the unfortunate snake is in no condition to renew the contest, and is very soon despatched and eaten by his victorious enemy."

The Secretary Bird.

A curious experiment took place the other day at the Jardin d'Acclimatation in Paris. A nest of living vipers was thrown into the inclosure where the secretaries or snake-eat-

THE LAUGHING JACKASS OF AUSTRALIA.

Underground Telegraphs.

The two valuable practical papers, "Underground Tele graphs," by Mr. Willoughby Smith, and "Underground Tel egraphs in France," by Mr. John Aylmer, C.E., of Pariswhich were read before the Society of Telegraph Engineer at their last meeting, on the 28th ult., has served to bring gain into prominence the subject of covered telegraph lines Taking up a statement of Mr. Prescott's which appeared in the American Journal of the Telegraph some six or eight months ago, that the "use of underground telegraph lines ad thus far been attended with very unsatisfactory results," Mr. Willoughby Smith sought to establish, and undoubtedly ucceeded in establishing, the fact that underground tele graph lines need be attended with no greater risks than open nes-nay that, were the proper material only employed and due care taken in the execution of the work, there is no reason why covered lines should not be made as safe and durable as need be desired. The most interesting feature however, of Mr. Willoughby Smith's communication wa the argument which he brought forward against the employ ment of tar on gutta perch covered wire. A covering of tarred tape is, as is well known, all but universally adopted at present as the fina protective covering. This, it is alleged, is a grave mis take; for by reason of its use the insulation resistance i materially diminished, and the germs of decay, which in time lead to the complete destruction of the coating, ar implanted in the gutta per cha. The tar ought to be abandoned, and in its place tannin, whose employmen was stated to have been high ly satisfactory, ought to be adopted. In the valuable ad dress delivered some tim ince by Professor Abl, since by Prof Abel, at the Society's opening meet ing, this same subject wa dealt with, and the state of our knowledge with refer ence to the causes of decay in gutta percha was shown to be crude in the extreme.
Granting, however, that tar is an objectionable feature in the manufacture of gutta per cha covered wire, was ther not some point in what wa remarked, by one of the speak ers in the animated discussion which followed, that surel then Chatterton's compound was not altogether an un mixed advantage? Chatter ton's compound consists of one part of Stockholm tar to one of resin andthree of gut ta percha, and has long been regarded as the panacea for every evil that could befal gutta percha covered wires No coating can be considered complete, it is said, no wires can be welded homogeneous ly together, without Chatter ton's compound; and if tar is the bête noir it is now stated to be, what becomes of th influence of Chatterton's com
tant tanning agents, much inconvenience has been experi enced, and the trade has been compelled to seek other materials. Two new plants have been brought to market, bu in such small quantities as to be of little use; but if their growth could be encouraged they would be very valuable. One is a small gall from the tamarix, growing in Morocco and also in India. It yields about forty per cent of tannin, which is of remarkably fine quality, and is at present used almost entirely for medicinal purposes. The other is the seed and pod of a kind of bean called balsamo carpon, and yields a tanning gum of great strength. It grows in moun tainous districts in Chili. The seedpods are very soluble in water, an
rain falls.

To Cleanse the Woodwork Around Doors.
Take a pail of hot water; throw in two tablespoonfuls of pulverized borax; use a good coarse house cloth-an old coarse towel does splendidly-and wash the painting; do not use a brush; when washing places that are extra yellow ar stained, soap the cloth; then sprinkle it with the dry powdered borax, and rub the places well, using plenty of rinsing water; by washing the woodwork in this way you will not remove the paint, and the borax will soften and make the hands white-a fact well worth knowing. The uses of borax in domestic economy are numerous; and one of the most valu able is its employment to aid the detergent properties of soap
pound? It is all very well
be told, as Mr. Willoughby Smith told an very well ing, that "in the compound the sting of the tar was taken out." It is a pity that the same process of sting-abstrac tion could not be applied with equal success to the tar in the tape. No, we shall wait for a few further data and a few additional experiments before condemning the tar wholesal and making it accountable for all the mischief ; and we will be content to look for the deterioration of the gutta percha to a very great extent at least, in the cheap and consequently indifferent material which has never been properly tested and hasty manufacture over which no efficient check has yet been introduced.
No one will now attempt to call in question the possibility of manufacturing really good covered wires: the battle of india rubber and gutta percha need not be fought over again for the improvements effected in the latter have been so de cided of recent years that its position is well-nigh unassail able by its old rival. If danger is to be anticipated fromany quarter, paraffin and the products of paraffin will probably show it the most dangerous front. Meanwhile, every one will admit that covered wires as good as need be looked for in the existing state of our knowledge can without difficulty be manufactured, and no one will deny that their laying is a matter which requires nothing more than care to be attended with success. When, therefore, the need for underground telegraphs on a more extended scale than at present doe arise, either from the crowded state of the open lines on every
available route, or from an alternative channel being thought desirable, we may rest perfectly satisfied that our telegraph engineers and electricians will be quite equal to the occasion; and if the day when that need does arise is even buta short way off, they may as likely as not turn round and regard our manner of doing things in much the same light as we regard the now antiquated attemptsof but a few years back in the matter of covered lines.-London Telegraphic Journal.

Care of Horses, Feet.

When the foot is gone, there is no horse left. There is an old adage to this effect, the truth of which is incontroverti ble. Yet no part of a horse's anatomy is worse used than the foot, and there are no more frequent diseases to which the notice of the veterinary surgeon is brought than those of the feet. This comes of the unwise yet obstinately main tained fashion of rasping, cutting, burning, tarring, and greas ing the hoofs. It would occupy too much space here to de scribe the anatomy of the foot fully, but it is a very timely matter just now to consider the structure of the horny outer covering or crust of the foot, by which the delicate inner parts are protected.
Horn is a fibrous substance, which contains twenty-five per cent of water. The fact that it contains water in its nor-
mal composition is a very important one, and needs to be stated here, because, unless specific reasons are given, very little weight is generally accorded to all that may be written or said about the proper treatment of the horse's foot, by either horse owners, farmers, blacksmiths, or professional either horse owners, farmers, blarksmiths, or professional
horseshoers. When horn is deprived of water it becomes dry, hard, and without elasticity, precisely like a piece of dry glue, which breaks and splinters into glassy fragments It is necessary, therefore, that this water should be retained, to keep the horn in good condition. The common practices of burning thesole to procure a fit for the shoe, or rasping the outer surface to get a good shape, and of tarring and greasing the hoof, all tend to drive the water out of the horn, and not only to harden and contract it, but to make it brittle. In this condition its usefulness as a protection for the foot is at once impaired and partially destroyed. When the sole is burned by contact with a hot shoe, it is obvious that the water in the portion of the horn that is heated must be driven off. That is so obvious that no more need be said about it. When the smooth, polished, hard surface of the horn is rasped away, the softer inner fibrous portion is exposed to all the evil influences of evaporation and degradation, and the numberless pores and cells or interstices of the horn are enabled to give up the water they contain. The horn in this case is also made dry and brittle, and, of course, contracts. Tar contains an acid and a volatile oil, which evaporates and leaves a hardened pitchy mass. When tar is applied to a hoof the acid acts chemically upon the horn, and hardens or disintegrates it, and the oil, evaporating, leaves a space between the fibers filled with the hardened residue. It operates precisely in the same manner as when it is applied to leatheras a sole of a shoe, for instance-as a preservative: the leather in a few days becoming hard and unyielding, impervious to moisture, and dry. As with tar, so with grease; both these substances drive out the water from the horn and occupy its
place in time hardening and acidifying the substance of the place, in time hardening and acidifying the substa
hoof crust, rendering it brittle, and contracting it.
The substance of the frog is horn, but is of a softer and more open texture than the sole and crust of the hoof. It is, therefore, more easily affected by injurious conditions, and when it becomes deprived of its water it shrinks more than the more solid horn. From this explanation of the character of the horny covering of the foot any reasonable horse owner may learn how to treat the hoof, and how to avoid injuring it. When a shoe is to be fitted, the edge or wall sole should be prepared by cutting or rasping, and not by burning. Indeed the shoe should be fitted to the foot, and not the foot to the shoe. When, from bad management, the sole and frog have become dry and contracted, no grease or tar should be used; but water should be used freely, and then the hoof should be dressed with glycerin, which will mix with water, and does not displace it. Glycerin contains no acid or acrid properties, but is soft, bland, emollient, and does not evaporate. It therefore softens the horn, and allows the fibers to expand. Contraction is thus prevented, or overcome when it has actually occurred.-Neo York Times.

Culture of the Memory
The student lamenting his lack of ability to remember his lessons, and, jealous of another who spends only half the time which he employs in their preparation, sees that his rival's memory always serves him in the recitation room, may take encouragement from the following, condensed from the Philadelphia Public Ledger
It is a common idea that a good memory is a ready-made gift, which Nature whimsically confers upon some and withholds from others.
Now, the truth is that the memory is a faculty which, as much as any other, needs development. Its capacity is doubtless greater in some than in others by natural endowment, but this difference is less important than that which is caused by education or neglect. Whether for the purpose of facilitating mental processes, or of promoting practical efficiency in life's pursuits, a cultivated memory is much more valuable than a naturally strong one. We may be capable of amassing within our minds a vast amount of facts, or rules, or knowledge of any kind thrown together at random,
without reaping any benefit, either in mental power or the
conduct of affairs; but when the memory has been so trained as to retain what is confided to it in classified order and be overestimated.
Like all our other powers, the memory is strengthened and developed by exercise, and weakened by disuse. In whatever direction we make constant demands upon it, it responds obediently. The merchant finds no difficulty in remember-
ing the prices and qualities of goods in his own line; the ing the prices and qualities of goods in his own line; the
physician easily recalls the daily symptoms of his patient; physician easily recalls the daily symptoms of his patient;
the mechanic does not forget the functions of his various tools. The same conditions, daily repeated, will almost in variably bring up corresponding ideas, and in our regular employments we seldom have occasion to complain of a poor
memory. This may afford a clue to the cultivation of this faculty in directions where it is now defective. If we would have it faithfully serve us, we must keep it in constant use. The same attention which we bestow on our daily business, and which enables us to recall its details with so much ease, will be equally effective if exercised in other matters. To strengthen the memory on any given point, the first requisite is to bring all our mental energy to bear upon it. We are
charged with some message or commission, perhaps, which we promise in all good faith to convey or to execute; but not being in the line of our thoughts, it passes out of our minds and is unfulfilled. We commonly excuse ourselves for such dereliction, on the ground that we are unable, by any effort of the will, t σ command the power of memory. Yet had we by a strong self-control, fixed our attention wholly upon the matter when presented to us, had we dismissed all wandering thoughts and concentrated our mental energies for the time upon that one thing, the impression would have been so strong that, in all probability, it would have been remembered and accomplished. This mental concentration is the first and most important means of improving the memory. It is largely within our own powers of will to enforce this, and he who is conscious of neglect in this respect cannot claim to be excused for forgetfulness.

Another valuable method of training the memory is through the laws of association. Our knowledge must be arranged and classified if we would recall it with facility. We must base rules upon principles, and effects upon causes, if we would imprint them firmly on our minds. That this is not done with sufficient thoroughness is the chief cause why so much
of the knowledge which we acquire passes from us. The of the knowledge which we acquire passes from us. The
Emperor Napoleon, who was one of the most marked instances of a retentive mind, used to say of himself that his knowledge was all laid away in drawers, and that he had only to open the proper drawer and all that he had
on that subject was at once presented before him.
This is, as we have before hinted, one great need in our present systems of education. To take up a single study leisurely, presenting it to the student in all its relations, and leading him to trace its principles from their foundations up to their highest known results, is of far more real value, both
as a mental discipline, and as a permanent acquisition of knowledge, than to skim over the surface of twenty branches, overloading the mind with isolated facts or rules, bearing no apparent connection with each other, and thus fixing no tenacious grasp upon the memory.
There is one great encouragement to the cultivation of the memory in the fact that the work will grow easier with every effort. If we patiently and steadily fix our attention on every subject we wish to recall, the power of concentra tion will become habitual. If we constantly arrange and
classify our knowledge, it will grow more and more availclassif
able.

Umbrellas, Past and Present.

Count d'Orsay, when reminded that, if he persisted in his extravagance, he would soon be unable to afford himself a carriage, replied that when he could not afford a carriage he would carry the best umbrella in London. The Count was true to his word, nor had he any reason to blush for the cheap and serviceable instrument. In the West it had been no doubt more used than honored; but looking to the East he found abundant sanction for his adoption of the unassuming umbrella. In bearing one he only followed in the steps of the kings and princes of Nineveh, Egypt, India, and China.
From time immemorial, the contrivancefor warding off the sun's rays and casting an artificial shade has been symbolical of the supreme human authority that can convert light to darkness, and in a trice drive ordinary mortals from the brightness of life to the gloom of death. No fitter emblem of his awful power could be imagined for the potentate who, by a word or a nod, could extinguish towards any of his creatures the sun of earthly happiness, and banish them suddenly to the abodes of gloom and despair, or could go yet further and by a glance put out the light of life. At every point of Oriental story one encounters the symbolical um-
brella in literature and art. In the fifth incarnation of Vishnu, when the god goes down into hell, he bears in his hand a sun-shade. In like manner old bas-reliefs represent Dionysius bearing a parasol when he is descending to the infernal regions. To be a king in the East has from the re motest antiquity implied a right to bear an umbrella; and to person following them. In we are more familiar than any other, signifies King of the Eternal Gingham. Satrap is a corrupt abbreviation of Ch'hatra-pati, i.e., Lord of the Umbrella, the title of the Mahratta Princes who reigned at Poonah and Sattara. The
King of A va's designation was " King of the White Elephant
and Lord of the Twenty-four Umbrellas." Writing to the Marquis of Dalhousie some two and twenty years since, the King of Burmah styled himself "His great, glorious, an most excellent Majesty, who reigns over the kingdoms of Phunaparanta, Tampadipa, and all the great umbrella-wear ing chiefs of the Eastern countries." No English foxhunter would care to ride to the coverside at the tail of a company f walking or mounted umbrella bearers; but when the Em peror of China goes forth to hunt he is preceded by twenty our umbrellas. Passing westward, the umbrella was adopted by the ancient Greeks and Romans, as a symbol of power and a dainty article of feminine costume. The Greeks used it as a symbol in some of their sacred festivals, and put it in he hands of gentlewomen. Aristophanes and Pausanias both mention the lady's skiadion. Bestowing it on their women kind of high degree, the Romans also elevated it in their halls of justice as a symbol of authority. A red umbrella was the symbolical canopy under which the Roman judge sat in the basilikon; and when the basilican law courts were devoted to religious uses and passed into the hands of Christian clergy, the new owners of the consecrated judg ment halls were quick to see their advantage in assuming th mblematic umbrellas. Hence the red canopy became the distinctive ensign of the cardinal priest. In his church he officiated, at public gatherings outside his church he walked beneath it. In course of time he dispensed with the rea canopy and its bearers during public promenades, and sub stituted for it a small red canopy so made that he could bea t for himself on his own head. The cardinal's scarlet hat is but a modified and cleverly adapted umbrella. It is the diect outcome of the old symbolical sun-shades of the Orien al despots. That our English umbrella has the same mag nificent descent is shown by its name, which signifies shade maker. Lineal, though remote, offspring of the Biblical "shade defending from the sun," the modern umbrella wa brought from Italy to England by Tom Coryat, who describes it in his "Crudities" (1611) as " something answerable to the form of a little cannopy, and hooped in the inside with divers little wooden hoopes that extend the umbrella in prety little compass," and he introduced it into England as parasol. It was so natural for the ladies who used it gainst the sun to use it also against the rain, that one may presume the umbrella was at once employed in our humid climate as much for the one purpose as the other. So early as 1620, Drayton described it as a thing " to shield you in all sorts of weathers;" but the original and true purpos of the ancient invention was not lost sight of till long after wards. In "Rule a Wife and have a Wife," Beaumont and Fletcher say:
ow, an umbrella,
To keep the scorching
From your fair credit."
The closed sun-shade borne by the black page in the frontispiece to John Evelyn's "Kalendarium Hortense" (1664) is perhaps the earliest notice of the umbrella by pictorial art in this country. Between 1664 and 1710 umbrellas for protection against rain had become so common that, as we have seen, every tucked-up sempstress of Queen Anne's London had one. The umbrella which Under Sheriff Beardman per mitted a footman to hold over Dr. Shebbeare's head in 1758 when that unfortunate gentleman of letters paid the penalty of his indiscretions by standing in the pillory, was doubtless an unusually strong contrivance, as it was used to ward of brickbats
the culprit
Though they did not invent the umbrella, the English have done much to develop and bring it to perfection. Be tween October, 1786, and July, 1871, no less than 292 im provements on the ordinary walking stick were patented in this country; and though some few of these patents refer to undraped batons, some 270 of them are for portable canopies A considerable proportion of these open letters were granted for improvements in one or another of the subordinate parts of the sun-shade-such as ribs, stretchers, tips, handles, fer rules, notches, springs; but the majority exhibit specification hat affect the general design or chief materials of the article ndeed, an entire volume might be written about all the vari us projects for a perfect umbrella. The rhabdoskidopheros is an umbrella, with the drapery folded into a hollow stick from which the canopy shoots forth and expands itself in a trice on the touch of a spring. The MacGregor umbrella may be used with equal effect against the rain or one's nat ural enemies, as it is fitted with a spear, and may be used as bayonet. Just thirty years since an umbrella was invented or people with chilly hands, which had a curious little heat ing apparatus set in its handle. Draped canes have been fit ted with sun dials, compasses, and watches. The lady's parasol riding whip is familiar to every one; but it is not very one who has seen a needle-gun cane, a fishing rod, and pipe stalk fitted with a canopy for the protection of the sportsman or smoker. What would dear old Isaak Walton have thought of a fishing rod fitted with an umbrella? The pecial feature of another umbrella is a long falling curtain that, on the expansion of the parapluie, hangs from the tips of the ribs and the edge of the covering to the ground. When he is in motion, the bearer of this umbrella has the appearance of an unusually tall and animated pillar post; and in order that he may see his way, the falling curtain is provided with a little glass window, bow or otherwise, through which e can gaze on the astonished world. To another inventor e are indebted for an umbrella whose hollow staff is furnished with a pistol, some charges of ball and powder, a screw
telescope, pen and ink, paper, pencil, and a small knife. In
the automaton umbrella the stretchers are put so high that the canopy can be brought down close over the bearer's head. The club umbrella, invented only a few years since, was pe cular in having a handle that could be unscrewed, so tha on removing the hande and p in the with an the confidence that he would see it again on leaving his club, as confidence that he would see it again on leaving his club, as no one would care to "borrow" a handleesss umbrella. But
this ingenious contrivance failed to find favor in Pall Mall, because it was felt to be an unclubable act for a man to enter his club with an umbrella that implied a distrust of the honesty of the members of his joint-stock home. It is almost needless to say that the perfect umbrella of the future will combine all the features of all the previous umbrella sword stick, bayonet, tobacco pipe, writing desk, and pillar post tent, and have its handle fitted with a fireplace, a re post tent, and have its handes itted with a fireplace, a re peating watch, and a compass, and will weigh only eigh
ounces avoirdupois, the weight of the most delicately con structed Paris umbrella.-Hatters' Gazette.

There are extraordinary ways traordinary. le of uncivilraordinary ways of fishing practised by peo ignorance buted countries, which are not the result of fruitful by dire necessity and the instincts of self-support.
A method employed by the Chinese is generally practised at night, and depends upon a peculiar power which a white screen, stretched under the water, seems to possess over the fishes, decoying them to it and making them leap. A man sitting at the stern of a long narrow boat, steers her with a paddle to the middle of a river, and there stops. Along the right hand side of his boat a narrow sheet of white canvas is stretched; when he leans to that side it dips under the surface, and, if it be a moonlit night, gleams through the water Along the otherside of the boat a net is fastened so as to form a barrier two or three feet high. The boatman keeps perfectly still. If another boat passes by, he will not speak he is only impatient at the slight breaking of the silence. While he keeps thus without a sound or stir, the fish, at tracted by the white canvas, approach and leap, and would go over the narrow boat and be free in their native waters on the other side, but for the screen of netting, which stops them, and throws them down before the man's feet.
Every one must have heard of the fishing cormorant,which is actually trained in China to catch fish. A man takes out ten or twelve of these web-footed birds in a boat, and as soon as the boat stops, at his word they plunge into the water and begin at once searching for and diving after fish. They are most diligent workers, for, if one of them is seen swimming
about idly, the Chinaman in the boat strikes the water near the bird with the end of a long bamboo; and, not touched, the bird with the end of a long tambor, and, noted to a sense of duty, the cormorant at once turns to business again. As soon as a fish is caught, a word from to business again. As soon as a fish is caught, a word from
the man brings the bird swimming towards him. He draws it into the boat, and it drops its prey from its bill. There is always a straw or string tied round the neck, to prevent the fish from being swallowed, and this string requires the nicest adjustment, lest it may choke the bird-a result which would certainly follow if it slipped lower down on the neck. The sagacity and workman-like method of the birds are shown when they get into difficulties. If the fish caught is too large for one beak to secure, another cormorant comes up to the struggle, and the two with united effiorts bring their prize to the boat. On the rivers and canals near Ning po, Shanghae, and Foo-chow-foo, the employment of these birds is by no means an uncommon sight; but they are never to be seen fishing in the summer months, their work being in the winter, beginning always about October and ending in May. The birds have of course to be subjected to a system of training, which is carried on in the cormorant
breeding and fishing establishments, one of which is at a distance of thirty or forty miles from Shanghae.
A still more singular practice is to be found amongst the Chonos Indians, who train dogs to help them on their fishing expeditions in much the same way as the shepherd's dog helps the shepherd. The net is held by two men standing in the water, and the dogs, swimming out far and diving after the fish, drive them back towards it. They enjoy their work just as a grod horse, though hard pressed, seems to enjoy the hunt; and every time they raise their heads from the water they tell their pleasure by clamorous barking. The Fuegians, one of the most miserable and degraded races on the earth, train their dogs in a similar manner to assist them in catching birds and sea otters. In times of famine, they kill the old women of their tribe rather than sacrifice their dogs, alleging, as Peschel says, that dogs catch otters, for killing the sharks which abound off their coasts. A.log of wood, shaped so as to appear something like a canoe, is set afloat, with a rope and large noose hanging from one end of it. Before long a shark attacks the supposed canoe, swimming after it, and is caught in the noose, hanging from the stern. It closes on him so that he cannot extricate himself, and the weight of the \log keeps him swimming their canoes, generally steered by women, approach at their leisure and finish the shark with their spears.
All these contrivances of savage nations, or of the strangely civilized Chinese, are meant to kill or seize the fish by nat ural means. It is much nearer home that we have to look to find the element of superstition prevailing, and useless customs invested with the importance of charms. An in-
stance may be found in the oase of the Sicilian fishermen who, when in search of swordfish, chant a jargon of words he meaning of which even they themselves do not know. he song is supposed to be some old Greek verses, which, by time and use among those ignorant of their meaning, have become so altered as to be almost unrecognizable. The fishrmen regard the medley as a sure means of attracting the wordfish, which they harpoon from the boat, when th
Farm, as they suppose, has hrought them within reach.
Far away in northern regions there is a novel method of fishing under ice, which shows more ingenuity than the simple lowering and fastening of a net. A small square hole is cut in the ice, and in this is placed an upright sick, supported by a cross pin run through it and resting a each side on the ice: the end of the stick below this cros in is short, and to it the line is fastened with the bait an oook attached, while at the top of the stick is a piece of col ored rag. Now, though we have called the stick upright it is meant to fall from that position and lie along the ice until a fish seizing the bait pulls its lower end, when with jerk it rises. This contrivance is called a tip-up, from the movement which is certain to follow the seizure of the bait The fluttering of the colored rag, as the stick rises, tells of capture; and a great number of these self-acting fishers and indicators may be placed near together, each having its own hale in the ice; and each, by the fluttering rag, telling it own tale the moment a fish is caught.
The tip-up not only saves the fisher the trouble of holding his line in position and watching with particular care, but so makes the fish itself strike and announce that it is read oo be pulled out
With bodies blackened by the sun to the color of the sea weed, the Japanese fishermen are incommoded by neithe the rain nor the winds. Like the fishermen of all lands, thei restless eyes were wandering from the sea to the heavens With no guides but the stars by night and the blue edge of the land by day, there was need for keen eyesightand watch fulness. In all the Eastern seas there is no more adventurous race than these men.
We could see the floats of burnt wood which buoyed the ends of our fishermen's lines, and to the nearest of these we were sculled. A kind of wood light and buoyant, and with some resemblance to cork, is used for such floats. It grow in the forests thereabouts, and, after be.ng shaped and charred to prevent decay, lasts, without further trouble, for a longer
time than bladders or skins. With some impatience the time than bladders or skins. With some impatience the
black buoy and the line attached are brought on board. Like in inverted bell-shaped flower pot comes the first earthen ware jar, hardly the size of a child's head, attached to the line. Mouth downward, the jar is pulled up from the bot tom, and when all the water has been poured out, the fisher men give a look inside. No occupant being found, the jar is once more lowered into the sea by the attached string which is overrun till the next jar is pulled up, brought on oard, and similarly examined. When six or seven are ex amined, and no occupant is found in any of these, the fish-
ermen show no impatience. But presently from a jar an octopus is jerked upon the floor of the boat, and with some satisfaction the Japanese watch its tentacles wriggle all about the planks and cling round their legs. Changing its hues the disgusting cephalopod loses its redder blotches for paler patches, and eventually crawls into a darker corner to coil itself away. Pouring the water more carefully from the in verted pots, the fishermen secure a few more of these animals, which crawl and twine about with snakelike contortions. The long string of pots took time to overhaul, but the spoils were reckoned reward for the trouble. When the fishing was completed, and the black floats were again left to mark the spot, our boat was sculled somewhat further down the land.
We had then time tolearn something more of this fishing Through, as the octopus is named by the Japanese fishermen entice it our friends, we learn that the tako needs no ban to entrap it; but crawling about on the bottom, or shooting itself through the sea by the expulsion of water, it finds in the dark earthen jar " a comfortable house," and so occupies it until the fisherman finds it and captures it. The tako is largely eaten in Japan, where all the products of the sea are
accounted equally wholesome with those of the land; and accounted equally wholesome with those of the land; and
beneath an ugly skin the flesh of this speckled monster is thought very good, cooked in several ways, and eaten with or without soy or vinegar. Nevertheless, as if to vindicate the dread its constantly changing hues excite, the eating of the octopus is not unattended with danger. Through some poisonous taint, either occasionally or always present, but modified by the process of cooking, people sometimes die terferes but to a trifling extent with the use of food having such a questionable reputation-indeed, at certain seasons, it is largely used by the Japanese, when the cuttle fish are far more plentiful and also more wholesome. Caught by trolling a small wooden fish barbed with hooks, they make good
sport, chiefly to the older fishermen, who are not active enough to go off to sea.-Chambers' Journal.

DECISIONS OF THE COURTS.

Supreme Court of the United States.

NEW BOOKS AND PUBLICATIONS

trength and Calculations of Dimensions of Iron and STEEL Constructions. Translated from the German of
J. J. Weyrauch, Ph.D. New York city: D. Van NosJ. J. Weyrauch, Ph.D. New York cit
trand, 23 Murray and 27 Warren streets.

Another translation of this same work has already been briefly noticed in these columns; and we expressed the view that the contents of the
volume were not in such practical form as would adapt it to the uses of the working eng neer. The present translation seems to us much less open
that objection, and certainly it contains an immense amount of useful ata, entirely outside the formulx, besides examples tending materially to elucidate the latter. The book is rendered much more practical; and Its whole arrangement is, to our minds, better and well calculated to render its various topics more accessible to the student. As regards the inon the other translation, we intended no disparaging reflection upon them; hey are undoubtedly great, and the volume should be carefully studied by all engineers. It is based on a general view of the results obtained in the
xtended course of experiments made in ermine the properties of iron and steel. As these trials have shown the omewhat starting fact that (to quote Professor werto structions have been entirely wrong," it is hardly necessary to point out the importance of any work which deduces a formula which gives all "th Visites for a simple and rational determination of dimensions. Vick's Horticultural Publications.-The enterprising Rochester nd "Guide Book," which are of interest to every farmer, in fact, to every class of persons living in the country. Mr. Vick's publications have ways been signally well printed; but this year they seem to be more hand mely executed than heretofore. They contain useful information for mongthe list before us, the largest, handsomest, and most expensively ex uted is the "Flower V egetable and Garden," a book of 165 pages, full of en gravings, some of which are full-page colored chromos of fruits and flowers
The next in importance is the "Illustrated Catalogue of Seeds and
Bulbs," and then the "Floral Guide." These three distinct publication can be had of the publisher for 75 cents; and we know of no other way of obtaining so much practicalknowledge and information for so small a sum is afforded in these publication
EVERY MAN His Own Lawyer.-A new edition, revised and improved, nd embracing a synopsis of the leading statutes existing in each Sta 2 has just been issued. The original edition of this work, and the severa absequent ones, have aggregated an enormous sale, and are to be found a great many offices and households throughout the country. But th that the author has found it desirable to revise the whole book. The prol essional man, the farmer, the mechanic, the manufacturer-in fact, all lasses of the community-will find the work useful for reference, and o powers of attorney, or conferring licences, and a hand y and reliable advise saving lawyers' fees to the possessor and teaching him his legal rights. Th ook isprinted in both English and German. The price for English edition, y mail, is $\$ 2.25$; for the German edition, $\$ 2.50$. Sold by the a
publisher, J. G. Wells, No. 1 Great Jones street, New Y ork city
gherent anmerican awd forcign zatents.
Notice to Patentees.
Inventors who are desirous of disposing of their patents would find it greatly to their advantage to have them illustrated in the Scientific American. We are prepared to get up first-class wood engaravings of inven-
tions of merit, and publish them in the Scientific American on very easonable terms.
We shall be ple
photogrape as estimates as to cost of engravings on receip ats become the property of the person ordering them, and will be fcund of value for circulars and for publication in other papers.

new miscellaneous inventions.

mproved last.

Charles E. Cree, Marlborough, Masse, assignor to himself and J. E. Curtis, of same place.-In this last the block is firmly held in place and hat the shoe or boot will have its full intended size. The block is wholly ithin the last, having no projecting part to come in contact with the upper while upon the last; and the last and block are kept together, ex-
cept when being removed from the boot or shoe, so that the block cannot ecome lost, and no time will be wasted in looking for and sorting out th become lost, and no time will

MPROVED WEIGHING SCALES
Hosea Willard, Vergenres, Vt .-This invention is designed to improv the lever and beam scale for which letters patent have heretofore been granted to the same inventor under date of suly $25,18 \%$, so that the con quick and perfect manner. This improved scale is used advantageousl for weighing coal from boats, and other purposes, as the scale may be ap pied to the hoisting apparatus, and go with the bucket to the place of deposit, the indicator regulating the loading of the bucket, and determinin or labor.

improved bridle attachment.

Seton S. Cummings, Turner's Point, Tex, assignor of one third his righ
to Walker C. Stevenson, of same place.- This bride is intended for trainto Walker C. Stevenson, of same place.-This bride is intended for training and taming horses; and it consists in the combination of brace and
guide reins, neck and crupper straps, surcingle, and collar. A brace rein guide reins, neck and crupper straps, surcingle, and collar. A brace rein
buckles into the bit rings, and runs through a ring attached to a strap that is secured to the neck strap, and thence it runs through a loop that is at tached to the collar strap, and is fnally secured to a ring that is attached to the surcingle by means of loops. The martingale is buckled into the bit rings, and passes through a loop in the front and lower part of the collar strap, and is fastened to the lower portion of the surcingle. All of the straps are duplicated, both sides being exactly alike; and they are provided
with buckles or other convenient means for lengthening ayd shortening with buckles or other convenient means for lentthening and shortening,
to meet the requirements for horses of different sizes, and for the purpose to meet the requirements for horses of different sizes, an.
of adjustment for different positions of the same animal.
improved corset.
Mrs. Maggie M. Harriman, Kansas City, Mo.-This improvement relates to the form and manner of cutting the first gores, to the shape of the sides of the body or waist of the corset, and to the conjunction of short bones
with a guilted portion on the with a quilted portion on the back of the corset, whereby it is rendered more
waist.
improved apparatus for pickling sheet iron John D. Grey, Baltimore, Md.-The ordinary or old process of removing the oxide from sheet iron is to lay the sheets in a tank containing dilute sulphuric acid. They are placed vertical, or nearly so, with their sides in
contact. By this improved apparatus, the sheets are conveyed slowly through the tank, upon endless chains, thus saving much labor in handling, essening the time required for pickling, and enabling the acid to act upon the sheets more uniformly

NEW MECHANICAL AND ENGINEERING INVENTIONS.

IMPROVED SAW-FILING MACHINE Samuel V. Pattillo, Greenville, Ala., assignor to himself and Frank J.
Kohn, of same place.-This is an improved flling machine by which the
gin saws may be quickly, uniformly, and effectively sharpened. The magin saws may be quickly, uniformly, and effectively sharpened. The ma-
chine is operated by adjusting, first, the file vertically to one saw after the chine is operated by adjusting, first, the file vertically to one saw after the
other by means of the center screw post and hand wheel, and filing the centers and reversed and the machine adjusted for left hand filing when the same operation of sharpening the teeth of each saw is performed as before, and thus a rapidly working and very effective filing machine for before, and thus a rapidiy working and very effective fling machine for
gin saws is obtained that accomplishes the work in better, speedier, and more uniform manner than by hand.

IMPROVED DYNAMO-ELECTRİC MACHINE.
Dieudonneé F. J. Lontin, Paris, France.-This invention consists, first, in combining a magneto-electric machine, in which the induced magnets device for producing currents invariable in direction, for the purpose of exciting the aforesaid magneto-electric machine; and, secondly, in increasing thelength of cores of the stationary inducing electro-magnets of the device employed for producing currents invariable in direction, so as to permit one or more wires to be placed thereon, from which alternate currents in
opposite directions may be taken, by which arrangement currents invariabe in direction are obtained from the induced magnets of the wheel, and also alternate currents in opposite directions from the additional coils upon the lengthened inducing magnets, without the use of collectors or commutators.

IMPROVED WRENCH.
James Shepard, Angola, Ind.-This wrench is easily and quickly operated, as the turning of the handle moves both jaws, the sameadmitting to be opened wider, to be applicable to larger burs, while the length and interior screw threads, that move jointly the jaws having intermeshing tbreads, the outer jaw being guided in an oblong recess of the inner jaw.

IMPROVED WINDMILL
William T. Burrows, Nashua, Iowa.-The shaft of this wind wheel is so pivoted to the head of the tail vane that, in turning out of the wind under the infuence of great force, the wheel will swing up an incline, whereby
its own tendency to swing back down the incline is the means of keeping the wheel in the wind; and, in combination with a wheel in this arrangement, it is proposed to arrange a vertical vane behind the wheel on a pivoted bar, and connected to the vibrating wheel frame, to pull the wheelup the incline, in order that it will swing out of the wind more easily, and the lever of this vane will be weighted to regu
the wheel in so swinging out of the wind.

IMPROVED ORE FEEDER FOR QUARTZ MILLS. George A. Church, Nevada City, Cal., assignor to himself and Edward ore to the mortars in quartz mills, so constructed as to feed the ore to the mortar only as it is wanted, which will feed dry and wet ore with equal facility, which will not allow soft running stuff to run through and fill the mortar, and which
which it is operated.
mproved relief and safety stop valve. Charles P. Wiggins, St. Louis, Mo.-The object of this invention is to prevent accidents from carelessly closing the feed pipe while the pump is In motion, and it is so constructed as to always leave an open discharge. It consists in a relief or safety stop valve, formed of the shell provided
with an inlet, two outlets, and two valve seats, and the double valve, so arranged that it can close only one outlet at a time, to adapt it to be interposed between the boiler and the check valve of the pump discharge pipe.
improved hoisting machine.
Daniel H. Merritt, Marquette, Mich.-This is an improved hoisting machine of considerable power, operated by a friction gearing at varying mo tion, and capable of being stopped at any moment, to support the load to
be hoisted, by a superior brake arrangement; and it consists of a hoisting drum which is operated with friction wheels, and whose shaft is adjusted in parallel manner by eccentric sleeves with slotted arms, connecting rods, and a worm and toothed segment gear. The brake is applied by a similar gear to the other end of the drum, capable of adjustment to wear, being taken off by a brake shoe and supporting-arm at the lower end.

IMPROVED CAR COUPLING.

Benning Rowell, West Sparta, N. Y.-This invention is an improvement in the class of car couplings which are automatic in their operation. The port the coupling pin in position to engage the link when it enters the drawhead, and also serves to hold the link horizontal, or at any required
angle in a vertical or horizontal plane, so that it will enter the drawhead of nother car; also to a pawl lever whose function is to operate the coupling pin of the drawned ngaged the link.

IMPROVED TREADLE.
William B. Floyd, Kansas City, Mo.-This invention relates to an improvement in that class of sewing machines and other treadles that are
worked by the alternating raising and lowering of the feet and legs in worked by the alternating raising and lowering of the feet and legs in
place of the forward or backward motion of the feet, so as to remove all
tion than with the common treadle. It consists of two treadles, that ar arranged in adjustable manner on the laterally swinging treadle bar, tha gitudinally and laterally, to adapt themselves to the position of the feet The compound pivots of the treadles renders the motion of the same natura and easy, so as not to fatigue the worker as much as where the feet and ankles alone do the work. The feet do not change their relative positions oo the legs by the adjustment of the treadles to their position, so that ther no strain upon the ankle joints, but only upon the knee and thigh joints, which can perfo
their greater strength.

NEW WOODWORKING AND HOUSE AND CARRIAGE

BUILDING INVENTIONS.

improved automatic wagon brake.
Charles T. Warren, Atlanta, Ga.-This improved brake for vehicles is so g back, and at the same applied to the wheels by the oper backed withou its being thrown into action. The construction is simple and ingeniou rendering the device excellently adapted to its purpose.

IMPROVED DUMPING WAGON.
Robert A. Reed, Hoboken, N. J.-This is an improved device for attach ment to trucks, cars, wagons, carts, and other vehicles, to enable their
loads to be readily dumped. By the construction, by turning the shaft in loads to be readily dumped. By the construction, by turning the shaft in
one direction the forward end of the body or box will be raised to dump one direction the forward end of the body or box will be raised to dump
the load; and by turning it in the other direction, the body or box will be drawn back into a horizontal position.
improved mitering machine.
Jpsiah H. Mosher and John Pennington, Pewamo, Mich.-This improved mitefing machine is for use in the manufacture of picture frames, moulded
frames, and for the cutting and putting together of frames on any desired frames, and for the cutting and putting together of frames on any desired
angle and length. It consists of a basepiece with graduated guide rails, angle and length. It consists of a basepiece with graduated guide rails,
carrying sliding frame supports with adjustable saw guides secured thereto. The mouldings are first cut at the required miter, and then brought to a perfect joint by running the saw through the joint of the mouldings while they are firmly clamped together. They are then fastened by glue and nails, and thereby two corners of the frame connected in an easy,
quick, and effective manner. The mitering and jointing of frames and quick, and effective manner. The mitering and jointing of frames and mouldin
device.
improved sink.
Benjamin Wallace, New York city.-This is an improvement on the sinks rounding whens, tenement houses, etc., by which the rotting of the su vented, a more effective and readily changed strainer is obtained, and tight joint between sink spout and conducting pipe, to avoid leakage, is
formed. It consists of a sink with side and back guards extended above the formed. It consists of a s
horizontal fianges or seat

mPROVED CAR SCREEN.

William De Courcy May, Baltimore, Md.-This screen is shaped and folds like a lady's fan. It is attached to the side wall of the car, and may be extended and held open in a vertical plane, at right angles to said wall
to prevent air currents from the open windows striking directly upon th to prevent air currents from the open windows striking directly upon the
passengers occupying the contiguous seats. The fan may be lccked, by a catch, in the open or closed position, and constitutes a desirable as well a ornamental appendage of the car.
mproved thill coupling.
Benjamin P. Morrison, Abingdon, Va.-This thill coupling retains the
shafts in strong and safe manner shafts in strong and safe manner on the axie without a detachable bolt, avoids rattling, and allows the ready taking off and replacing of the shaft or poles when the vehicle is placed in the carriage house. It consists of
hook-shaped shaft head, that is locked to a cross bolt, with central flat ec centric part swinging in the ears of the axle clip and entering the recess of its shaft head. The hook-shaped end of the shaft head is first introduced into the ears of the clip while the front end of shaft is resting on the ground, and the flange of cross bolt hanging down. The shaft is then
raised as nearly as possible to the perpendicular, so that the shaft head may pass down between ears far enough for the flange of bolt to be swun into the opening or recess in shaft head. The shaft is then lifted in up-
ward direction until the bottom or rear part of recess is brought in contact with flange of bolt, when the shaft may be swung down to the ground. A thin strip of leather is interposed between the flange of bolt and shaft hea to form a tight fitting of the parts, and preventrattling. The shaft cannot
become detached when in use, has no nuts to work off or bolts to be taken become detached when in use, has no nuts to work off or bolts to be taken
off in attaching and detaching, and forms a simple and effective device fo off in attaching and detaching, and forms a simple and effective device
quickly taking off and applying the shafts or poles.
improved combined freight and stock car.
Jones R. Maitland, Hot Springs, Ark.-This consists of a freight car
with jointly-sliding upper and lower sections, thateither close or open the with jointly-sliding upper and lower sections, that either close or open the upper and lower openings of the car. The upper sections are guided by
friction rollers on strips, and are moved in division casings with inclined bottom rails, having suitable openings for the shedding of the entering by spring bolts. When freight is to be shipped, the sections are closed in similar manner, providing thus a stock or freight car, as required by th service of the road.

IMPROVED CENTER-DRAFT SIDE THILL
Conrad H. Matthiessen, Odell, IIl.-The object of this invention is to be no side draft: and provided with side thills insation of a lever, wire rope keeper, pulley, wire rope or rod, and spring, with a side thill, whifletree and running gear of a wagon. The effect of the arrangement is to take the draft from the rear axle, the pole being merely used for holdback and stee age purposes. The vehicle is thus made to run more steady, with bette
guidance, and less side draft.

new agricoltural inventions.

IMPROVED CORN PLANTER.
George Tatlock and Stanford Newby, New Philadelphia, Ind.-This i an improved machine for planting corn, which opens a furrow to receive constructed that the planting device can be detached and the rest of the machine used as a plow or cultivator, by detaching the side bars, the whee the dropping cylinder, and the hopper, and bolting the forward ends of the handles to the plow beam. The seed is received from a dropping cylinder
and conducted to the ground by a spout, which passes down through holes ind conducted to the grou

IMPROVED ANIMAL POKE.
Benjamin D. Watson, Durant, Miss., assignor to himself and James C Watson, of same place.-The object of this invention is to provide a yoke
that shall prevent animals from jumping over ordestroying fences. A sad die is concaved to fit the under side of the body of the horse, and secured in place by a strap that passes over the horse's back. A mortise is made through the saddle and through theslot. The arm is provided with a point and a perforated spring, the latter acting as a guard for the said point. Another arm is jointed to the arm already mentioned, and is capable of being raised into a horizontal position, but is prevented from rising further by the shoulders of the joint. The former arm is placed between the front
egs of the horse, and the latter is connected with a headstall by a strap When the horse attempts to jump, the raising of the head or striking the
second arm into the fence or other object presses the point through the second arm into the fence or other object presses
perture of the spring into the chest of the horse.

IMPROVED SEED PLANTER.
Harvey J. Robinson, Carpenteria, Cal.-This is an improved machine for planting potatoes, corn, and other seeds, so constructed as to plant the
seed so deep as to be beneath the dry soil so that it may have sufficient seed so deep as to be beneath the dry soil so that it may have sufficient
moisture to make it grow, which will prevent the moist and dry soil from becoming mixed, and which will cut off any weeds that may be growing upon the land being or to be planted.

IMPROVED HORSE HAY FORK.
Peter Grant, Clinton, Ontario, assignor to himself and John R. Grant, Brussels, Canada.-This fork is to be used for loading and unloading hay
nd other similar substances by means of horse power. It entral tubular tine and lateral tines. A tubular plunger fits into the cen tral tine, and is provided at its upper end with an eye or hook, and is plugged at its lowerend, and provided with ears, between which barbs are pivoted. A spring is clamped to the tine by a band and screw, and is provided with a catch pin, which passes through a disengaging lever and side fring, and is held in place by the catch pin. The lever rests under the pring, and is held in place by the catch pin. The free end of this lever is mortise in the central tine and through a slot in the plunger, for limiting he motion of the said plunger. The end of the key is bent over the front of the central tine, and is formed into an eye for attaching the disengaging cord which runs over the pulley.

IMPROVED PLOW.

John Preston, Millford, Ky.-This plowis intended to be used for laying fff or marking land, and for making hills for tobacco, cabbages, and other kinds of plants to be transplanted, for covering corn, and as a shovel plow.
It consists in the combination of a curved beam, provided with a plow late and a rigid perforated bar, a slotted beam, a standard, provided with he square plow and the roller, and handles. In asing the plow for preparing the ground for transplanting plants, the shovel plow opens a furrow, the point where each plant is to be set out the plow handles are raised, which causes the square plow to leave and pass over the soil collected before it. As the square plow is again dropped to the ground, the roller
presses upon the little heap of soil left by the square plow and flattens and presses upon the little heap of soil left by the square plow and flattens and
smooths it, ready to receive the plants. For covering seed, the beam is detached, the square plow is drawn along the furrow, and is raised by the handles at each hill. To adjust the machine for use as a shovel plow, the tached to the standard.
improved clearing attachment for plows. Jonathan F. Dock, Elkhart, Ind.-This invention consists of a frame bolted to the plow beam, and carrying a serrated roller, that revolves on a that projects diagonally from the said frame, for drawing stubble, weeds, etc., into the furrow as it is turned. The frame is secured to the plow beam by a bolt that passes through a slotted arm projecting from the frame.
The advancing end of the lowerportion of the frame is pointed, so that it may readily pass through stubble and weeds. Theroller is grooved spirally with thise directions, forming diamond-shaped projections, which engage sure its rotation. This roller assists in turning the furrow, and also roll sure its rotation. This roller assists in turning the furrow, and also rolls and draws in the stubble and weeds as the furrow is turned. The spring permits it to follow the inequalities of the ground.
improved scythe snath fastening.
Miles Smith, Springfield, Vt.-This invention is an improvement upon tion, in which the tang or toe of the scythe blade was contained in a socket plate arranged to swing so as to give the desired adjustment to the scythe blade, and which socket plate was held to its adjustment by a screw bolt. The object of the present improvement is to provide means for more rig idly holding the socket plate and the scythe blade in their corresponding adjustments, to which end it consists in roughening the under surface of
the free end of the socket plate, and combining it with a plate upon the snath having a corresponding roughened upper surface, which plate swinging socket to hold the latter in rigid position when the clamping bolt is screwed up.

IMPROVED COTTON PICKER.
Orren R. Smith, Raleigh, N. C.-The chieffeature of this invention oonsists of two or more series of pickers formed of flexible spines or toothe rods depending vertically from pivoted bars arranged horizontally, but vi from the balls and by their inter-action carry it up and deliver it to a car ier, by which it is conveyed to a receptacle in rear of the pickers.

improved ditching machine.

Silvanus P. Evans, Ash Ridge, O.-This invention consists in providing ditching machine with an apparatus whereby the shoe which bears the coulter may be quickly and readily lowered or raised, as it is desired, t
cut the ditch or trench deeper or shallower. It also consists in extendin
 which projects over a trough or gutter bearing an endless band moved by ide chains and end rollers, so that the slice of earth cut by the coulter and ide knives of the machine may be broken up in its fall from said mould oard and more easily delivered to the chute at the rear of the machine.

new textile invention

IMPROVED LOOM SHUTTLE.
Ezra W. Marble, Wilkinsonville, Mass.-This improved shuttle is constructed that the cop may be placed upon the spindle without having its interior snarled, as is the case when the ordinary spindle is used, thu voiding the great waste of cotton from the snarling. The spindle is hel in place by a lever that supports the heel of spindle with an oval end, while it is itself supported at the other end by a spiral spring. The oval end of
lever is designed to help in closing up the spindle when raised at the point out of the shuttle box to receive the cop. The socket for the end of spindle is made to fit a round hole with a side groove at the bottom, to accommo date each of its ears. It is inserted within the shuttle by placing the ears lengthwise of the slot that is intended to receive the spindle, and, afte being pressed down
the side groove.

NEW HOUSEHOLD INVENTIONS.

improved folding chair.
Ernest Smith, London, England.-This folding chair may be easily folded nd unfolded, may be adjusted into various positions for use, may be com pactly folded for storage or transportation, and forms an easy and com in pins, hooks, holes, and pins for connecting the rear legs with the for ward legs of the chair frame, and in the chair frame formed of the fron legs, the rear legs, the seat bars, and the jointed arms, and their rounds c cross bars, constructed and combined with each other.

Cusintss and zersonal.

 Patent of Churn for sale. Also wanted a partner to
atent it in foreign countries. Address G. W. Knapp patent it in foreign countries
Arbuckle, Mason Co., W. Va.
Improved Put Friction Twisting Engines of any
power and style. J. S. Mundy, Newark, N. J. Will give $\$ 300$ for Steam Launch. Whitfield, Bay St. Diamond
Diamond Saws. J. Dickinson, 64 Nassau St., N. Y. Improved Spoke and Hub Machinery manufactured
by Colborne Bros., Menasha, Wis. ,
A new deposit of Plumbago or Graphite, said to be the
anest in this country, is now being worked at Uwchland, finest in this country, is now being worked at Uwchland,
Chester County, Penni; both granular and flake are Chester County, Penn.; both granular and flake are
worked to perfection. The Eagle Plumbago Co., at
Uwchland, Chester County, will give all information on Uwchland, C
application.
Book Binders' Case Binding Machine. Send for illus-
trated circular. Frank Thomas \& Co., Cincinnati, Ohio. Help for the weak, nervous, and debilitated. Chronic and painful diseases cured without medicine. Pulvermacher's Electric Belts are the desideratum.
full particulars, mailed free. Address Pu
Galvanic Co., 292 Vine St., Cincinnati, Ohio.
For Sale. -6 ft. Planer, $\$ 275 ;$; 33'/ Lathe, $\$ 300 ; 16{ }^{\prime \prime}$
Lathe, $8175 ; 20 \prime$ Lathe, $\$ 250$; at Shearman's, 132 N .3 S St., Lathe, $1175 ; 200$ L
Silver Solder and small Tubing. John Holland, Cin-
cinnati, Manufacturer of Gold Pens and Pencil Cases. Steam Yachts for sale, new, 14 feet long, 4 feet beam,
$1 / 2$ h. p., $2250 ; 18$ feet long, $41 / 2$ feet beam, 1 h. p., $\$ 355 ; 21$
 450, 800, and $1,200 \mathrm{lbs}$. Will carry comfortably 4,8 , and
12 persons. Send for particulars. S. S. Forsaith \& Co., Manchester, N. H.
For sale cheap-Two valuable Patents (Household Amateur Photographic Apparatus, Chemicals, etc.
Outats, $\$ 5$ to $\$ 25$. Sackmann \& Co., manufs., 278 Pearl St., N. Y.
Persons wishing to have any new article invented, ad dress John Meyer, 717 Craig st., Covington, Ky., inven-
tor of over 500 inventions of all kinds. Permutation and tor of over 500 invention
Patent Right for sale, either by State rights or the whole of the U. S. and Canada; new invention; a Saw
Mill Dog. For further particulars, apply to Alfred Meham, Fayette, Fulton Co., Ohio.
Parties having Room and Power, favorable located,
and would like to assist in establishing a proftable Manand would like to assist in establishing a proftable Man-
facturing business in the Hardware line, are requested
to address for particulars, P. o. Box 451, Athol, Mass. facturing business in the Hardware line, are requeste
to address for particulars, P. O. Box 451, Athol, Mass.
How to make Violins. Write to J. Ranger, Syracuse,
V. Y.
Platform Clothes Wringer, Centennial Prize Medal
Awarded for being " perfectly self-regulating, and well Awarded for being "perfectly self-regulating, and well
fitted for the purpose intended." License to manufacture granted. J. K. Dugdale, Richmond, Ind
Glass Cylinders Tempered in Oil. T. Degnan, 1 600 New and
ines and Boilers, Saw Mills, Wood Working Machine gines and Boilers, Saw Mills, Wood Working Machines
Grist Mills, Lathes, Planers, Machine Tools, Yachts an Yacht Engines, Water Wheels, Steam Pumps, etc., etc.,
fully described in our No. 111 list, with prices annexed. fully described in our No. 11 list, with prices annexed.
Send stamp for copy, stating fully just what is wanted.
Gas lighting by Electricity, applied to public and pri-
vaildings. For the best system, address A. L. Bovate buildings. For the
gart, 702 Broad way, N. Y.
Power \& Foot Presses, Ferracute Co., Bridgeton, N. J. Superior Lace Leather, all sizes, cheap. Hooks and W. Arny, 148 North 3 d St., Philadelphia, Pa

For Best Presses, Dies, and Fruit Can Tools, Bliss \& Lead Pipe, Sheet Lead, Bar Lead, and Gas Pipe. Send
for prices. Bailey, Farrell \& Co., Pittsburgh, Pa.
Hydraulic Presses and Jacks, new and second han Hydraulic Presses and Jacks, new and second hand
Lathes and Machinery for Polishing and Bufflig metals.
E. Lyon \& Co., Solid Emery Vulcanite Wheels-The Solid Original
Emery wheel - other kinds imitations and inferior Caution.-Our name is stamped in full on all our best The best is the cheapest. New York Belting and PackThe best is the cheapest. New York Bel
ing Company, 37 and 38 Park Row, N. Y.
Steel Castings from one lb. to five thousand lbs. In-
valuable for strength and durability. Circulars free ittsburgh Steel Casting Co.. Pittsburgh, Pa
For Solid Wrought iron Beams, etc., see advertise-
ment. Address Union Iron Mills, Pittsburgh, Pa., for
ment. Adares
Shingle Heading, and Stave Machine. See advertise
Hand Fire Engines, Lift and Force Pumps for fire and all other purposes. Address Rumsey $\&$ Co., Seneca Falls, N. Y., U. S. A.
The Zero Refrigerator was awarded a grand Centen Tterich' Etterich's Screw Cutting Tools are in great demand Patent Scroll and Band Saws. Best and cheapest in Best Glass Oilers. Cody \& Ruthven, Cincinnati, o.
J. S. will find directions for making lard n the management of boilers on p. 293, vol 36 , As to on the management of boilers on p. 293, vol. 36 . As to
testing boilers, see p. 246 , vol. 34 - W. . can plate brass,
etc., with nickel by the process described on p. 235 , vol. etc., with nickel by the process described on p. 235, vol. 33.-O. E. will find directions for making oil of pepper-
mint on p. 219, vol. 31.-E. O. T. will find an excellent mint on p. 219, vol. 31.-E. O. T. will find an excellent
recipe for cement for mending roofs on p. 187, vol. 35.J. B. will femd a recipe for tough glue on p. 43, vol. 32-paper on p. 378, vol. 28.-T. S. L. can remove paint spots
$\underset{\text { from lases by following the direction on p. P23, vol. } 36 .}{ }$ -. T. S. will find a deseripition of the Gatiing gun on

 kalsomining on p. 351, vol. 24.-P. A. N. directions for suffcient data. - R. F.I. will find directions for building an ice house on p. 251, vol. 31.-E. B., C. F. Q., J. W. B.
N. C., G. P., R. K. B., J.F.P., W. H., J. P., and others, who ask us to recommend books on industrial and sci entific subjects, should address the booksellers who

irms, for ca

(1) O. C. K., of Leipsic, Germany, says: To make lead pipes nearly harmless, as regards the
poisonous properties of the lead salts soluble in water fill the pipes for a short time with dilute sulphuric acid $\left(\mathrm{SO}_{4} \mathrm{H}_{2}+10\right.$ or $20 \mathrm{H}_{2} \mathrm{O}$). The pipes will become covered with a thin coating of sulphate of lead ($\mathrm{SO}_{4} \mathrm{~Pb}$), which
is far more insoluble in water than the oxyhydrate of is far more insoluble in water than
lead $\left(\mathrm{Pb} \mathrm{OH}_{2}\right)$ generally formed.
(2) A. G. says: I have a rough chamois skin leather bag, into which, by some mistake or other,
there came some English vermilion, dry. How could I there came some English vermilion, dry. How could I
clean it out? A. Vermilion is a compound of mercury clean it out? A. Vermilion is a compound of mercury
with sulphur, and there is no solvent for it that would with sulphur, and there is no solvent for it that woul
not damage the materials of the bag. Remove as much of it as you can with a stiff brush, and then cause an energetic stream of water to impinge upon the discolored
surface, so as to mechanically carry off the particles of the pigment.
(3) G. B. S. asks: 1. Will tin (old cans, etc.), copperplated, do for the coppers in a gravity bat-
tery? A. Yes. 2. Will salt (sodium chloride) do for the aline substance? A. Better use sulphate of zinc. Will common plate (window) glass do for the plate in an (4) W. M. M. says: I have a magic lantern, nd want to know what kind of oil gives the best light or it. A. Kerosene gives as good a light as any, and
better than most others.
(5) C. M. asks: What can be applied as a depilatory on horses, destroying the pigmentary gran-
ules yet not destroying the life of the hair? The object ules yet not destroying the life of the hair? "The object
in view is to brand colored horses with a white brand. A. This is not practicable. The color of the hair above ine water or nitro-muriatic acid (qqua regia). It is not probable, however, that the action of these will be rapid
enough for your purpose.
(6) C. E. H. says: Four years ago I had in mill an upright shaft of eight inches diameter which, with attachedgearing, weighed several thousand pounds. The toe on which it turned commenced cutting badly. It was impossible to remove the toe. Washers of steel
raised the shaft too high out of the step, wore out rapraised the shaft too high ort or the step, wore out rap-
idy, and did not work thoroughly well. I went to a number of machine shops for advice. One told me to grind it out with emery; another said my only course
was to take down the shaft and send it by rail to the hop, and none could give me any speedy and economical cure for the trouble. At length met the rightman, who told me to raise the shaft and put under the toe
(in the step) an old-fashioned large-sized copper cent. This I did, and the heating and cutting ceased at once, and the difficulty was permanently overcome. Since then I have put small cents in the steps of millstone spindles and always with good effect. The grouv it
filed up with the copper, and the toe looked as though it were copperplated and burnished. I even got to intro-
ducing a small copper cent under each new spindle, and ucing a small copper cent under each
(7) A. J. F. asks: How can I set the lenses of an eyepiece to a telescope? It is composed of two
plano-convex lenses. A. The Huyghenian eye lens is one third the focus of the field lens, and is placed its
own focal length with the focus of the latter.
(8) A. L. S. says: I learn from tables on he heat of water with steam, that 60 lbs. pressure equals $292^{\circ} 6^{\circ}$ Fah. Is this the degree of heat under any and all
circumstances? A. This is for fresh water. The temcircumstances? A. The changes, if the water contains impurities.
(9) G. W. K. says: I have tan vats which water to preserve them. How shall I keep mosquitoes from breeding in them? A. Cover them'tightly
(10) E. C. H. says: I wish to fill up a low place in a lot with a mixture of sand and gravel. How
much will it settle after leveling it off 1 foot deep with no packing? Surface of plot is a rich loam, subsoil a clay bottom. A. From $1 / 4$ to $1 / 3$.
What is the thinnest circular saw I can use 10 inches in diameter for sawing 2 inch white oak, saw running on 700 revolutions per minute with 2 horse power
of No. 16 gauge, or about $\frac{2}{201}$ of an inch thick.
(11) I. says: Nearly all lugs or supports them in the middle of the boiler; so if eithere, one of shem in the middle of the boiler; so, if either end of the is hung by the middle. This is all wrong. There should be either two or four supports on each slde of the boiler, the longest space between the two inside ones. Is not
this so? A. Yes. We could not tell you why the
former course is pursued, except that common sense is m
Why is it that persons at this period of mechanical
cience place tightening pulleys science place tightening pulleys on the load line or pull-
ing side of a belt? A. We do not know, but we are glad to call attention to these points again, as we have frequently done before
(12) G. H. A. says: I sometimes preserve eggs in limewater, and they keep well, but look limyaf-
ter taking out of the solution, notwithstanding that I let the lime settle in the water till it looks clear, and dip It out, leaving the lime behind. Is there anything that can put in to remove what little lime stays in the
water? A. Wethink filtering will answer the purpose Place a piece of filtering paper in a funnel, and pour in he liquid.
(13) C. S. O. asks: 1. Has the compound
of stroke over a single cylinder sufficiently long to se-
cure an equal amount of expansion? A. It is claimed cure an equal amount of expansion? A. It is claimed
that the machinery can be made lighter, with the comthat the machinery can be made lighter, with the com-
pound engine, for high grades of expansion. 2. Will highly volatile liquids give more power than water
engine, from the same fuel? A. Not necessarily
(14) G. S. C. asks: Could not hot air bal-
loons be used for aerial navigation, if a light furnace loons be used for aerial navigation, if a light furnace
were constructed which would constantly run a hot curent into the balloon? A. It would be dificuit to carry
enough fuel for an extended voyage. Fire balloons have been used successfully for short trips.
(15) A. S. E. says: The centrifugal force on the sea board and that on the top of the highest mountain is considerable. The specific gravity is the same. Let a globe be turned rapidly, and water put on;
it climbs to its greatest diameter, and flies off. Two canals are cut at the same declivity, one north and the other south; the velocity is the same in both. Neither
does this influence affect the wind. Please explain the law that counteracts this influence and produces the equilibrium? A. There is a slight diff
fect or gravity at the different levels.
(16) C. G. V. P. says: Is it practicable to heat the passenger cars with the steam from the locomotive? If so, in what manner is the steam conducted from the boiler? It seems to be a failure in Europe, and some of my European friends ask me what the Screntific American thinks about it. A. It might be possible, but it would be necessary to increase the size and in a similar manner to the air pipes used with continuous brakes.
(17) M. W. H. says: How many lbs. press ure can an ordinary ho
A. Between 300 and 400

1. What is a high pressure engine and boiler? Is it
not one that condenses its steam, and uses the water
over again? A. In the common acceptation of the term, high pressure engine is non-condensing. 2. What plank of ron, both out and inside? It is 3 feet in diameter and 10 feet higni? A. Your data are insufficient.
2. How can phosphorus be made into solution for
using on gan sights after night and other similar purusing on gun sights after night and other similar pur-
poses? Idissolved some in hot olive oil, also in turpentine, but it settled and formed a hard body as soon as cooled, in both. What is the trouble? A. Probably the perature in which phosphorus will glow or show light? A. About 32° Fah.
(18) F. R. H. says: I have an iron tank 4 eet in diameter by 12 feet long, in which I put dead stock to be steamed out. This tank is supplied with
steam from a portable boiler and engine. The steam dome is 1 foot high, and the pipe rises from the dome $11 / 2$ feet in three turns, and goes 6 feet down into the tank in the bottom. When 1 turn on the steam to the pump it into the boiler, at the same time running the steam down. It has only begun acting so lately. Can not unlikely that your pump is out of order. You can regulate the amount of steam let into the tank, so that (19) Wh.
(19) W. F. A. says: I have tried to bend basswood, but have failed. I gave it a long steaming,
and it would break off short. Then I tried a short steaming, but it worked in the same way. Can you give me some information? A. It is very possible that the
specimens you tried were not suitable. It may be that secimens you tried were not suitable. It may be tha treatment, but the methods are not generally known. There is now for sale in this country bent-wood furniture, which is, we believe, manufactured abroad by a (20) A. B. says: I saw in the Scientific American, of January 20 , an engraving of a new water
velocipede. Please tell me if the two floats would be velocipede. Please tell me if the two floats would be
better if they were of the shape of a triangle, and what should be the distance between the floats? How long, from end to end, and of what size should the padale
wheel be? What should be the thickness of the floats, and what would be the best material to make them, in case of stones or rocks in the river? A. We think the cigar shape is best for the fioats. Their size depends on the load to be carried, and must be calculated for any particular case. Distance apart, 2 to 4 feet, accord-
ing to capacity, will do. They could be made of light
(21) F. W. B. asks: What power can I use run a dental engineand a small polishing lathe head
have tried water motors, but they fail. A. We think here are water motors in the market that will answar There are also small steam and electric engines suitable for the purpose.
(22) S. N. M. says: 1. I read that the earth's otation is retarded 22 seconds a century $=0.22$ seconds a year. Also that two thousand million years ago, the
earth was rotating twice as fast as now. If fgure thus: Earth now rotates in $86164 \cdot 09$ seconds, and $\frac{86164^{\prime} \cdot 09}{2 \times 0^{\circ} \cdot 22}=$ 195,327 years ago earth rotated twice as fast as now. Am I wrong? I also find the following: "It therefore fol-
lows that she was rotating at about the same rapidity as now, when she became solid; and as the rate of rotation is certainly diminishing, the epoch of solidification cannot be more'than ten or twelve millions of years ago."
How can this be? A. Your calculation does not seem to How can this bes A. Your calculation does not seem to
be correct. The assumption is for 0.22 seconds a year at present. We presume the article gives reasons for the second statement, which is not
(23) W. C. W. asks: How will a cast iron vertical boiler, 3 feet high and 15 inches in diameter, and firebox in base of boiler, with 15 tubes, as compared with a wrought iron one of similarform? A. We think the wrought iron boiler is preferable on many accounts, and advise you not to use cast iron.
(24) W. H. P. asks: Will it require less
atmospheric pressure? Would there be a decided gain
in the expense of fuel in thus evaporating in the expense of fuel in thus evaporating water? A The amount of heat required would be a few per cent
(25) A. B. says: 1 . We intend to put a si-
phon to draw the waterfrom a part of mines, the height phon to draw the water from a part of mines, the heigh feet from the summit. There is 600 feet of tunnel with a gradetowards the other end of 6 inches to the 100 feet We can extend the pipes to a depth of 35 feet, so that the discharging end will be 18 feet below the suction end. Length of pipe in all will be 700 feet. Will it work? A. It will be necessary to have an air valve a the highest point, which must be opened occasionally o may be made automatic. 2. We intend to use 3 inch gas
pipe for the siphon, but the present supply of water will probably run through a $11 / 2$ inch pipe, and the wate will increase inquantity. Can we regulate the siphon so that the present supply of water will runin a continual stream through the 3 inch pipe by putting a stopcock on the discharging end and keeping it open $1 / 4$ or $\frac{1}{3}$ of the
(26) A. A. H. asks: How can I remove ink stains from fabrics, fingers, and paper without in
juring the article stained? A. To remove ordinary ink (tanno-gallate of iron) stains, the following treatmen is recommended: In many cases lemon juice will often of oxalic acid (1 part to 2 parts water) and rub well with a soft cloth. Or use a solution of chloride of tin (1 par to 3 parts water, or pure dilute muriatic acid (1 part to 10 parts water). Apply with a camel's hair brush, and hen wash in cold water. Where the colors of the fab ric are affected by the above treatment, moisten the
spots with fresh milk and cover with fine salt This should be done before washing. If the fabric is fine and delicate, the stained portions may be dipped in melted tallow and then pressed for some time between layersof warm pipeclay. Stains of indelible ink (made from nitrate of silver) may be removed by moistening them with a brush dipped in a strong aqueous solution of cyanide of potassium, and then well washing the fabric
ous.
How
How can I gild book covers, picture frames, etc.? A Fine gold leaf is used for ornamenting books. It is frames in the covers by a press. On gilt picture the gold-like finish on these frames is produced by lay ing on first silver leaf, and then lacquering this with an added gum sandara orange shellac, to which is ofte boge, etc.
(27) J. W. S. says: Can you give me a coodformula for making a fuid extract of annotto? A red, and red lead. Macerate it with twice its weight of alcohol for several hours and filter
Please tell me how to make a good stencil ink, which contains no oily matter and will dry quickly? A. Rub up a quantity of lampblack in a mortar with enough of a strong, hot solution of dextrin in water to form a ometimes used in place of the dextrin and water. (28) J. R. K. asks: By what process can I remove the silver from old mirror backs, so that it can
be used again? A. If it is silvered, use nitric acid, and crystallize from the solution by evaporation in a s ma porcelain vessel. If the coating is an amalgam of tin
and mercury, use mercury, and loosen the film by rubbing with a cloth.
I have some wal
I have some walnut furniture finished in shellac. It got wet in moving; and wherever the water touched it,
it left a white spot. How can I reedy this? the spots with a little oil mixed with Yenice A. Rub the spo
tine ar
Is arsenite of copper called Paris green? A. No. Ar-
senite of copper is known as Scheele's green; Paris reen is an aceto-arsenite of copper.
(29) G. J. H. asks: Is there any way to separate tin and copper which have been melted toof the tin may be burned out by prolonged exposure to the air at a high temperature. This is the only practical method we know of. Small quantities of the alloy may be dissevered by dissolving it in a slight excess o settle to bottom of the vessel, when the copper solution may be decanted and the copper precipitated out as ox ide with.an excess of potassa, soda, or lime. This pre cipitate may be reconverted into metallic copper by firs drying it thoroughly, and then mixing it in a crucible
with powdered charcoal, and exposing to a high temperature. The tin may be recovered in a similar way.
(30) W. B. M. says: I want to build a tank 48 inches deep by 48 inches wide by 96 inches long, for
boiling linseed oil with steam. What amount of pipe will be required to dissoive the manganese used in boil ing that amount of oil? A. This can best be det ined pipe, but this, of course, is dependent on the tempera ture attained and the length of time allowed for the op
(31) W. B. asks: Is there any possible way to get the turpentine taste out of rosin? A. Pulverize the rosin and boil it for som
(32) O. E. says: I will advise R. L. D., who asks how to harden an eggshell, to lay the egg in vinegarfor two weeks. The shell becomes soft, and you
can stretch it like a piece of rubber. Lay it in a strong can stretch it like a piece of rubber. Lay it in a strong
solution of saltpeter for two weeks, and then you cansolution of saltpeter for two weeks, a
not strike it to pieces with a hammer.
(33) A. J. J. asks: How can I make an indelible mixture of nitrate of silver, using oil? A. Yon
may make an emulsion of the nitrate in the oll by rub may make an emulsion of the nitrate in the oll by rub

f carbonate of soda.

(34) H. E. W. asks: 1. In the manufacture electric annunciators, will malleable iron castings castings? A. Yes. 2. If the magnet cores are screwed
directly to the malleable iron frame, without a connect ing piece of iron, will it answer as well, the malleable
iron acting as the connecting piece? A. Yes. Which iron acting as the connecting piece? A. Yes. Which
is cheaper, to cast small articles in brass, or to cut them with dies? A. Castings will probably be found
(35̃) W. P. E. asks: 1. Have you any having been obtained by a single motion, without gearingof any kind? A. We do not remember having seen
or heard of such a device. 2. Could such a speed be advantageously applied, for instance in blowing a steam fog horn for the Signal Service, or for other purposes, provided the machine giving the motion was not too ex
pensive? A. It might be usefully applied to numerous
(36) A. M. W. says, in reply to D. W.' query as to his singular phenomenon: This does not ap pear to me at all singular. It is very evident that the currence, where steel runs in or on steel, that the bear ing will, if allowed to get dry, become heated to such degree that the temper is lost, and the surfaces get to
cutting and almost weld together. The statement that the plate was bent by the hammer shows that the plate was soft then, even if it had once been hardened. D. W but he does not say that there was oil on the plate collar it was most needed. In my experience I have neve known hardened steel to cut or grind together whe properly lubricated, and I think it impossible to produce that effect except by a pressure that would expel every particle of the lubricant. Two hardened steel surfaces
may be ground together when dry without losing the temper ; but they would not adhere with the tenacity that D both stones gave the spindle and plate apportunity give off the heat to the cast foot and bed. In my opinion, the construction of the oval end spindle would have a tendency to run dry even under common lubrication, as it would only bear on a small part of the end, which might, with the weight of the stone, force it dry. Hard ened steel bearings do not oftengive any notice of be
ing dry, except by refusing to do duty, a very few revo lutions being sufficient to announce the fact and ruin the bearing. I would suggest to D. W. that he make his spindle so that its end rests its whole surface on the step with a hole in the latter opposite the center of the spindle. The spindle should be made like a cup, so as
to form a reservoir for the oill, and so deep that the end to form a reservoir for the oil, and so deep that the end
of the spindle shall be immersed.
(37) J. S. B. says: I have found a specimen of tantalite. Can you tell me anything about this rare and is valuable, especially when found in crystallized forms. May we expect to find it in veins or beds, or on
high or low lanss? A . Tantalite is $\mathrm{Fe} \mathrm{O}, \mathrm{Mn} \mathrm{O}, \mathrm{TaO}_{5}$, rous oxide. Some specimens are mearly destitute manganese and some contain oxide of copper and lime Its luster is nearlypure metallic, somewhat adamantine, its color is iron black, and streak redaish brown to black. It is opaque and brittle, and its hardness varie from 6 to 6.5 . Its specific gravity is from 7 to 8 . It is confually associated with beryl it is also found and ated with gigantolite in albitic granite, and with lepido lite, black tourmaline, and colorless beryl. The name is usually extended to the American mineral columbite
, the average analysis of which gives
(15.57), $\mathrm{Mn} \mathrm{O}(5.0), \mathrm{Sn} \mathrm{O}_{2}$ (a trace)
(38) T. McC. says: 1. I am building a small horizontal steam engine, with 2 inches bore and 4 inches
stroke. What size of boiler would I need for it, and what should be the thickness of the iron? A. Make it 15 inches in diameter, 24 inches high, of $1 / 8$ inch iron, for 60 lbs . pressure. 2. What would be the best speed
to run it at in order to get the most power? A. You may run it at 250 revolutions a minute. 3. Could I make a cylinder of an engine with 2 inches bore and 4 inche stroke with Babbitt metal, that would stand
pressure as well as brass or iron? A. No.
(39) H. P. S. says, in reply to A. B.'s ques tions as to the violin: There are two or three different tools with which the grooves are cut. One of the best well be described in a limited space or without illustra tions. With it a perfect groove can be cut around a vio lin plate in half anhour. A perfect groove cannot be
made without a tool well adapted to the purpose. The threads mentioned by A. B. are known as purfing, and similar slips of ebony, and are glued into the groove be fore the plate receives its final finish. Staining is, in most cases, done upon the wood, with thin, transparent that in the ordinary manner, but the technicalities of this portion of the subject are too numerous for treat ment in brief sp
umn of this issue
(40) D. H. M. says, in reply to D. W.' query the mill had been in of his mil spindle: I suggest lower end of the spindle to such a nice fit on the step
that no oil could get under it, which caused friction sufficient to produce heat enough to weld it, and as it wa done suadenly, the heat dia not extend far in either dicooled it down again. While the oil that it was covered wreparation, and at the ace of borax or oxcluded the at mosphere so that no change of color of the heated part took place.' I have seen a hardened steel gudgeon that
was in the lower end of a water wheel shaft welded to the step when it was three feet under water. The forc of the wheel twisted and when it was taken out the piece could no h a sledge hammer.
(41) R. L. C. says, in reply to D. W.' query as to the millstone spindle and step: I have reground or welded to the steel plates npon which they
run. In one case the steel point was $11 /$ inches in diameter, andprojectedfrom the spindle (which was 4 inches
in diameter) about $31 / 2$ inches. It was twisted off about $11 /$ inches from the end, and the parts were to all apcase, the point was of about the same dimensions as hefirst; but instead of twisting the pointoff, it turned in the spindle (which of course cut it badly), where it
tuck to the plate. After considerable hammering, the were broken apart, but not where they were welded, as part of the plate came away with the point when they
separated. I account for it in this way: As long as two eparated. I account for it in this way: As long as two
metal surfaces that areintended to run together are properly lubricated, we have no grinding or welding if they are proportioned to the work they have to do. In the above cases, the person in charge of them said there was plenty of oil in the pots. It often happens that the pasage ways get stopped up and the oil fails to reach the parts, and
instantly.
(42) M. D. L. says: We desire to manuacture for our own use in large quantities, carbon plates ize and greater length than we can find in the market What mixture of materials secures best results? What degree of compression is required? How is compression applied? Should the mixture be heated while under compression? What kind of mould is used? How can we prevent the carbon from adhering to sides of mould? raph," Prescott says: " The fine dust of coke and cokng coal is first put into a close iron mould of the shape required for the carbon and exposed to the heat of the
furnace. When taken out, the burned mass is poroug nd unft for use, but byrepeatedly soaking it in thick yrup of gas tar and reheating it, it at length acquires
(43) R. J. J. asks: How can I make a galanic machine for giving shocks from the wire of the elegraph sounder? A. You can get a prettystrong hock from an ordinary telegraph relay, if you have one ratus. The connections are made in the following app ner: The relay is joined up in circuit with a battery and mechanical vibrator for interrupting the circuit, and two wires with handles, to be held when taking the shock re connected to the binding screws of the relay's he
(44) H. A. H. says: I have a glass jar, abou wo feet of insulated wire, some blue vitriol and some ulphate of zinc. Please tell me what more I want to make a battery with? A. Get a copper plate, attach the he wire sticking out. Fill the jor obout two thirds full with a weak solution of sulphate of zinc and water, and aspend a zinc casting, provided with a terminal wire rom the top of the jar; let the zinc just dip below the surface of the solution. Now drop a few crystals of lue vitriol on the copper plate and join the wires for

Minerals, etc.-Specimens have been r eived from the following correspondents, and xamined, with the result stated
WillJ. M. P. send us a specimen of the residue from is limestone water ?-G. S. A.-The piece of rock connalysis to determine all of the other constituents. also contains a little arkansite-titanic acid. The pieces of metal consist apparently of the iron from
your ladle, together with some titanic acid.-J. Z.-So far as we can discover, the segar contains only very oils peculiar to tobacco, and cannot well be imitated. G. H. P.-Itis a variety of mica called muscovite, con-
isting of potash atumina, and silicic acid. It is no isting of potash, alumina, and silicic acid. It is no oluable.-B. F. C.-It cens. We do not see that it would be likely to prove ery efficacious as a scale preventive. It will not injure pasteboard box without a name on it. No. 1 is chlorite composed of oxide of iron, magnesia, alumina, and sil
ica. No. 2 is chondrodite-a silicate and fluoride of magnesium. No 3 is spinel-magnesia and alumina
D. F. H. asks: How is the tubing of brass band instruments formed, and how are the dents re wooden organ pipes, but they do not give more than whistling sound. Can any one give me the proportion whisting sound.
for a middle C?

COMMUNICATIONS RECEIVED

The Editor of the Scientific Anerican acknowledges,
with much pleasure, the receipt of original papers and with much pleasure, the receipt of original
On Spiral Springs. By J. T. G
On Man's History. By J.E. W
On Mechanical Science. By E. B.
On Kerosene Oil for the Hair.
Oy G. H. S.
On the Origin of Solar Light.
By G. P. H.
On the Origin of Solar Light. By G. P. H.
On Canceling Postage Stamps. By H. D. M.
lso inquiries and answers from the following:
H. P. G.-S.-T. A.-G.H.-W. B.-P. M. G.-J. M H. P. G.-S.-T. A.-G. H.-W. B.-P. M. G.-J. M

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear should hat, for good reasons, the Editor declines them. Th address of the writer should always be given. Inquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, when initials only are given, are thrown into the waste basket, as it would fill half of
our paper to print them all; but we generally take pleas our paper to print them all; but we generally take pleas-
ure in answering briefly by mail, if the writer's addres is given.
Hundreds of inquiries analogous to the following are sent: "Who sells square lenses for magic lanterns? Who sells telegraph instruments for learners? Whose
is the best theodolite? Who sells the best aniline dyes? Why do not makers of steam plows advertise in th Scientific American?" All such personal inquiries ness and Persunal," which is specially set apart fo that purnose, subject to the charge mentioned at the head of that column. Almost any desired informatio can in this way be expeditiously obtained.

INDEX OF INVENTIONS

Letters Patent of the United States w ted in the Week Ending

April 10, 1877,
AND EACH BEARING THAT DATE
A complete copy of any patent in the annexed list, furning both the speciflcations and drawings, will be
from this office for one dollar. In ordering lease state the number and date of the patent desired, nd remit to Munn \& Co., 37 Park Row, New York city.
Amalgamating ores, L
Animal trap. M. Early
Anti-friction bearing,
Anvil, blacksmith's, Axle box, D. Dalzell
Bale band tightener, etc., Jutting, J. R. Reppar
Barrels, etc.,., lining, M. Laflin.
Barrels compressing, o. D. Goodell ..
Bedstead, wardrobe, M. CPosby
Beer, ale, etc., cooier for, F. V. Baudelot
Beer cooler, F. v. Buadelot.
Beer cooorer, F. V. Baude
Bench plane, G. Goche
Bevel, J. F. Klinglesmith
Blackboard, Kinsley \& Packard
Boiler tube stop plug, M. Coryell
Boot and shoe, J. M. Bibbins
Boot and shoe, J. Fleming........
Boot and shoe heel, M. A. Myers.
Boot and shoe last, Batley Boot and shoe last, Batley, Keats \& Neil Boot safety sole, Watton \& Crane.....
Breech loading ordnance, F. M. Swall Bridle attachment, S. S. Cummings Broiler, C. D. Symonds
Button fastening, G. W. Beeley
Car brake, L. T. Hay...
Car coupling, A. T. Big
Car coupling, J. B. Zink.

Casting pipes, core for, J.
Chandelier, F S. Shirley
Chuck for pipe fittings, J. Flowe
Churn darher, F. M. M. Johnson
Churn dasher, J. L. Maxwell
Clasp for skirt supporters, E. C. Fales
Coin, box for holding, C. E. McConnell Coloring matters from aniline, Wolf \& Betley Cooking utensil, S. Spoor (r)
Corn harvester, W. H. \& J. L. Cox. Corn planter, J. Leitc
orset, M. Cohn (r)....
Corset, I. D. v. Warne
Cotton chopper, J. B. Eaves
Cotton picker, O. R. Smith

Cultivator, J. C. Stevens
Cylinders, etc., polishing, M. H. McNai
Dental engine, B. M. Wilkers
Dish warmer, J. H. Wright......
Ditching machine, S. P. Evans...........
Ditching machine, T. T. Fleener........
Ditching machine, Slaton \& Wadlington
Door bell, w. . E. Sparks...
Door bolt, R. Eichmuller.
Drawbridge, R. C. Moundso..........
Eave trough cover, J. R. Creighton
Electroplating wire, Wallace \& Smith.
Engraved plates, etc., polishing, R. Neale
Exercising machine, Hansom \& Russell
Exercising machine, Hansom \& Russell
Exercising machine, G. W. Wood....
Eyeglass, J. S. Spencer
Fats, rendering, W. W. Andrew
Feed cutter, , R R. Whit
Feed cutter, J. R. Whittemore
Fence, iron, Root \& Stricklan
Fence, iron, J. H. Van Dorn.
Fence post, W. B. Markham.
Fence post, W. B. Markham.
Filter, liquid, M. Lansburgh ..
Fire arms, lock for, I. Robbins......
Fire arms, wiper for, J. T. Hamiton

Fly fan, J. F. McMillen
Fly fan, G. W Jile
Fly fan, G. W. J. Woltz.
Fly wheels, ett.., balancing
Fruit drier, J.M. Kee
Fruit Jar, J. L. Mason
Fuel, artiffial, J.Q. A. Ziegler
Gaiter, C. Libby.........................
Gas meter, register, etc., J. J. Squire (r)
Gate, automatic, , T. E. Breakey.....
rain drill, C. E. Patric
Grinding hollow ware, etc., W. Scull
Grinding machine, S. Bevan (r)
Grinding minh, J. Mellinger
Hammer, riveting, E. Wright...............
Handles, attaching, F. G. \& W. F. Neidringhau
Harness breast collar, W. Gibbs.
Hannes pad M.
Hides and skins, treating, N. Wilson
Hitching, post, W. N.
Hop drier, C. A. Sands.
Hop drier, C. A. Sal
Hop press, J. Jakel.
Horse hay rake, L. Myers (r)
Horse power, traction, D. T. Gillis
Torse protector, W. S. Marsh....
Iorseshoe machine, W. Roberts
Hose nozzle, J. H. Stump
Hot water apparatus, E. Lawler........
Hub cap and axle nut, A. R. Cushman
Hub, elastic, G. W. Hayes
Hub, metallic, C. E. Owen.
Hub runner, G. F. Kimball.
Hydraulicelevator, E Brewer
Hdraulic engine, C. D. Page .
Ice ax, W. H. Coleman..
Key and knob S. Tragheim
Key and knob fastener, W.
Key for locks, , Schade....
Key for locks, W. H. Taylor

Keys, stock for the manufacture of, W. H.Taylor 189,52 Knitting needles, L. E. Salisbury189,500, 189,501, 189,502 Lamp chimney, H. L. Ives
Lamp extinguisher, E. C. Blakesle Lamp, fountain, E. J. Stearns.. Lamp, street and park, J. Stimpson..
Lamps, lighting night, J. R. Rowland Lamps, ighting ngh, A. Warren
Leather cuting die, A.
Life boat, sectional, G. Bates
Life boat, sectional, G. Ba
Lifting jack, A. R. Hurst
Lifting jack, v.
Lightning rod coupling, L. Bradley
Lightning rods for oil tanks, J. A. Sheri
Liquid measure, S. R. Dummer...................
Look, strap, B. Kane.........
Loom, gimp, R. Stone........
Lumber dryer, J.J. Curran....
Magazine cane gun, M. Daigle
Mayazine cane gun, M. D
Milk cooler, B. D. Miller
Moistening pad, C. . . St
Moistening pad, C. E. St
Monument, A. Smith..
Music, electro-pneumatic, W. F. Schmoele et al
Nail plates, pile for, W. H. Powell
Nozzle and sprinkler, N. Malmquist
Nouze and spriter, J. Meyer
Nutene
Ovortable, E . V.
Oven, portable, E. V. Van De Mark ..
Packing demijohns, etc., G. W. Peck! Pantaloons, shaping, E.
Paper bag, A. S. Denniso
Paper box, A. Goldabel
Paper box, A. Goldback.....
Pavement, stone, B. F. Cam
Petroleum products, etc., H.w.C. Tweedle. 189,401,
Phetroleum products, etc., H.W.C. Tweede
Photornic
Pianos,
Pianos, hollow support for, J. Fairma
Pipe coupling, s. Lightburne, Jr...
Pipe coupling, s. Light
Plow, D. . Ferguson
Plow, C.
Plow, D.
$\begin{aligned} & \text { Plow, J. C. Jenk } \\ & \text { Plow, J. Reich. }\end{aligned}$
Printing press, J. J. W
Pump, w. s. Davis
Pump, whetet, chain, ,....
Pump bute steam, C. Ahrens
Pump
Pump, steam, C. Ahrens 189,414
Pump, suction and force, , B. B. Swan 189,518
Pump pipe join then
Pump pipe joint, ete., J. B. Eads
Railway ate, Fox $\begin{aligned} & \text { Vorwald. }\end{aligned}$.
Railway joint, Palm \& Fitzgerald...
Railway rails, bending, w. R. Jone
Reverberatory furnace, J. Mo
Revolving frearm, O. Jones...
Boad scraper,
Safety pin shield, W. A. Butler
Sap spout, E. Willis
Sash balance, B. S. Mccune
Saw grinder, E. P. Terrell.
Saw guipe, adjustable, G. W. Bake
Saw mills, log turner for, J. Orm
Saw mills, log turner for,
Saw, scroll, J. A. House..
Saw sharpener, J. Walsh
Sawing machine, M. Rose
Sawing machine, scroll, G. H. Truxell
Sawing machine, scroll, G. H. T.
Scales, platform, H. T. Lawton.
scrubbing machine, P. Byrne, J
Scrubbing machine, P.
Seed planter, J. Wafer
Seeder
Seeder and fertilizer, o. Stone......
Sewing machine shuttle, W. Bown.
Sewing extension table, H. G. Crawfo
Sewing machine take-up, J. . Follett
Sewing machine take-up, J. L. Follett...
Shavings. grinding, I. \& A. G. Tompkins
Shell, B. B. Hotchkiss
Shot cartridge, H. H. Barnard.
Show case, W. T. Shere
Spelling, teaching, D. A. Willbanks
Steam pipe covering, A. Carey
Steam radiator, R. S. Gillespie
Steam radaiator, R. S. Gillespie
Steam for cooking in cans. F. M. Warren.
Steabres etc., w. Mather
Still, T. Gaff..
Stirrup, H. H. Knight
Stop cock lock, H. C. Meyer \& Co. (r)
Stove caster frame, E. H Voorhees
Stove drum, Vosburgh \& Van Slyck
Stor
toves, zinc board for, E. Jon
Sugar, clarifying, J. Sch wartz
Suspenders, J. R. Pollock
Suspenders, A. Shenfield.
S.
Target, spherical glass, A. H. Bogardus.
Tea kettle, J. Reinig...
Telescopic ballast tube, A. Berghold..
Thrashing machine, concave, J. H. Sharp.
Thrashing machine, concave, J. H. Sha
Three horse equalizer, E. B. Decker...
Tobaceo pail cover, F. A. Braymer, Jr.
Tobacco stem flattener, N. H. Borgfeld
Toe calks, making, H. C. Field...
Trunk, ete., H. F. Worthington.
Turbine, Osborn \& Lybarger.....
Tuyere machine, J. E. Atwood.
Tuyere machine, J. E. Atwood
Umbrella runner, T. G. Hojer.
Valve, balanced, W. Stephens
Valve, circular, H. L. Tumy .
Valve, steam pump, J. W.
Valve, steam pump, J. W. Math
Valve, safety, I. M. Phelps
Vehicle hub and
Vehicle hub and box, G. W. Eldridg
Vehicle spring, J. W. Groat
Vehicle wheel, J. McGowan
Ventilator, Harrold \&
Ventilator, P. Mihan
Vessels, construction of
Wagon bed, R. R. Hunt
Wagon box strap bolt, J. Jensen....
Wagon tongue support, R. Dudey.
Washer and amalga
Washing machine, S. L. Denney
Washing machine, E. McBride
Washing machine, D. Miller
Watch roller abstractor, B. Frese.......
Weed hider, McDonel, Thorn \& Ewing
Wheel tire, I. I. Pyle.,
Whiffletree attachment
Windmill, G. R. Comstock
Window sash, J. Petri
Wire fabric, H. R. Van Eps
Wooden rods, etc., making, Smith \& Saltar.......................199,51
Wrench. J. B. Fox 189,35
Wrench J. D. Ler DESIGNS PATENTED.
9.892.-CASSIMERES.-F. S. Bosworth, Providence R.
9.893-CARPETS.-J. H. Bromey
9. Philadelphia, Pa.

9,894-CARPETS.-H. F. Goetz, Boston, Mass.
$9,955-$ CASSIMFREES.-T. Holmes, Brooklyn, N Y.
$9,896 .-$ SASH Hon
9,897.-SASH Hol.DER.-T. Overton, Rockport, Texa
9.89NS.-A. D. Smith. Cincinnati, Ohio.
898.-CASSIMERES.-W. A. Walton, Providence, R. I.
899.-TowEL Borders, ETC.-R. T. Webb, Randalls
town, Ireland.
ghavertixements.

 Good and Useful Practical Books.

 Bell. Carpentry made Easy ${ }^{2010} 5$
 Bomurne.-Recent I Improvements in the Steaim Entine.

 of ot The above or any ofour Books, sent by mall, free

AIR COMPRESSORS A Specialty of heavy pressures. THE NORTALEK IRON WORES CO.,

The best Washing Machine in the world

 MATHAS COMMERCE. Inventor. MANUFACTURERS WANTING ROOM

S95 ${ }^{1}$ manth and

 PLUMBAGO. PLUMBAGO.

AGENTS WANTED FOR THE BEST

 30 ISTTING CARDS, WITH NAME, 100, POST-PAID.
Agents outatioc. A .J. STINE \& CO., Dallastown, Pa:

EMPLOYMENT.

PATHENTS at AUCTION.

RISDON'S IMPROVED TURBINE WATER WHEEI Yiedded at the test or trurbines at Centen- nial Exposition the best reseuts at all states T. H. RISDON $\&$ CO. Mt. Holly, N. J. Manufacturers of MILL MaCHineky
WESSELL METAL. A PERFECT IMITA
SPECLAL MACHINERY, TOOLS, MODELS AND ${ }_{55}^{\text {Patented Articles made et ord er by A. A. Poo }}$

OTIS' Machinery

 VANDERBURGH, WELLS \& CO., MA

AMERICAN IEWELRY COMPANY'S

 AMERICAN JEWELRY COMPANY.-CINCINNATI, OHIO.

EU CARNEGIRE BROS. \& Co. Adtest

Practically
plode
impossible to
to

Stationary Enginesand Botiers, and
Spark Arresting Portal bie En

gines for plantation use. Send for ines for plantatiton use. Sen fo
our circular. Discount to the trade w. PAYNE \& SONS,

> BOOTSFOURCE BLAST BLOWER FIRST PREMIUM AWARDED

> ATPAEIS \& VIENNA THOUSANDS IN USE BOTH IN THIS COUNTRY \& EUROPE. SPEED ONLYIOOTOL5O REV. PER MIN. SAVES HALI ${ }_{\text {the }}$ POWER P.H.\& F.M.ROOTS MFRS.CONNERSVILLE IND.
S. S. Townsend, 6 Cortlandt St.,N.Y.,Genl. Agt.

FIREAND REDBRICERPESSES. FACTORY, No. 309
S. Fith St., Phila.

TRADE ENGINE

Noiseless in oferation-Perfect
in work
of Cost Steeni. $p-$ all light parts
 hiphest attaan superior to any

 A NEW COMPOUND THAT WILL

 H.K. SHANCE, Patentee, Daston, Ohio.

 Lathes, Planers, Shapers, Drills, $\frac{\text { Gear\& Boltcutters, \&c.e.gould, Newark, } \text {, }}{\text { WATCH GUARD CHARMS. }}$

2

 Brown \& Sharpe M'f'g Co., PROVIDENCE, R.
Have ready for delivory Universal and Mlain Miling
Machines,
two sizes of
of

OD \& LIGHT worcester, Mass Manufacture all kinds of Iron-Working
Machinery, ncluding manynovelties
Shafitig, Pullege , dc. Shafitige, Pruleeg, ${ }^{\text {en }}$
Send for Circulars Machinery, Woch as Woodworhi Planngs, Tongueing , and Grooving

 Patent Adjustable Rubber Bucket

geluextipement.
Inside Page, each insertion -.-.75 cents a line.
Back Page, each insertion -- 81.00 a line. Engravings may head advertisements at the same. per line, by measurement, as the letter press. Adver-
tisements must be recetved at pubbication offce as early as Friday morning to appear in next isuue.

GUARDIOIA'S COFFEE \& SUGAR MACHINERY
 Messrs. C. ADOPHE LOW \& CO.. 42 Cedar
 macamax Best Tempered Cast Steel Retail Price, 9 Cents per lb.
WARRANTED. Namien Fisher \& Norris, Trenton, N. J

Machinists' TOOLS.

Lathes, Planers. Drills, \&c.
NEW HAVEN MANUFACTHRING CO.

PETTENGILL'S

NEWSPRPRR DIRECTORT
ADVERTISERS' HAND-BOOK FOR 1877.
PRICE,
Containing complete lists of America

S. M. PETTENGILL \& CO. 37 Park Row, New

RPIENTS

[ESTABLISHED 1846.]
Mand \& Co's Patent Oficices.
The Oldest Agency for soliciting
United States.

thirty years' experience

MORE PATENTS have been secured through this
agency, at home and abroad, than through any other in agency, at
They employ as their assistants a corps of the most experienced men as examiners, specifcation writers, a draughtumen, that can be found, many of whom
been selected from the ranks of the Patent Office.
SIXTY THOUSAND inventors have orailedthem-
selves of Munn \& Co.'s services in examining their inventions and procuring their patents.
MUNN \& CO., in connection with the publication of
the SCIENTIFIC AMERICAN, continue to examine incifcations, and assignments, attend to flling applications in the Patent Office, paying the Government fees, and
watch each case, step by step, while pending beforethe examiner. This is done through their branch office, corer F and 7th Sts., Washington. They also prepare and ecaveats, procure destgn patents, trade marks, and reor other attorneys), procure copyrights, attend to interment, furnish copies of patents, and, in fact attend to very branch of patent business, both in this and in forA special notice is made in the SCIENTIFIC AMERICAN of all inventions patented through this agency,
with the name and residence of the patentee. Patents are often sold, in part or whole, to persons attracted to he invention by such notice.
Patents obtained in Canada, England, France, Belgium,
Germany, Russia, Prussia, Spain, Portugal, the British Colonies, and all other countries where granted, at prices greatly reduced from former rates. Send for pamphlet pertaining specially to foreign pat-
ents, which states the cost, time granted, and the rents, which states the cost,

Copies of Patents.

Persons desiring any patent issued from 1836 to Novem-
er 26,1867 , can be supplied with offcial copies at res onable cost, the price depending upon the extent of drawings and length of specifications. time the Patent Office commenced per 27, 1867 , at whic and speciflcations, may be had by remitting to this of A copy of the claims of any patent issued since 1638 Will be furnished for $\$ 1$.
above, and state name of patentee, title of invention and date of patent.
A pamphlet, containing full directions for obtaining United States patents, sent free. A handsomely
bound Heference Book, gilt edges, contains 140 pages ande engravings and tables important to every pat entee and mechanic, and is a useful h ndbook of res
ence for everybody. Price 25 cents, mailed free.

Address
Publishers SCIENTIFIC AMERICAN, 37 Park Row, N. Y.
BRANCH OFFIC
Washington, D. C.

Mill FurNisising Works

JOSEPH C. TODD

$\substack{\text { Cor } \\ \text { RNa } \\ \text { Sha }}$

 rit. Neir Tork, or Pa .

COVERING
 HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.
V. B. FRNIKLI, V. Pres't. J. I. Lukit, PTer J. B. PIIRRCE, 180 O J.

MINTUNTB= Easthampton, Mass. PERFECT NEWSPAPER FILE

 every one was
Address MUNN \& CO.

SNVOERSLITTLE GIANT STEAM ENGINE

E

Local and Traveling Agents Wanted

 GUIID \& GARRISON, Williamsburgh, N. $\mathrm{F} .$,
Manufacturers of STEAM PTMPS

LeCOUNT'S PATENT Machinists, Tools.

Incombustible Mineral Wool
 P. 0. Bor 4461.

WIRE ROPE

 Hhentand Rop. or or 11 tiberty street, New York
Send of circular.

ENOWEES

STEAMPUMPWORKS

ROCK DRILLING MACHINES

AIR COMPRESSSORS

Type and Printing Materials
FOR SALE.

The fohlowing Fonts of Type, in good condition, hav

 Agixteen Cases Job Type, in Cabinet.
All the above are Coper-faced Leads, Brass Rules, etc.

Racks, 2. Shons,
Imposing , dones, one 75×30 inches, one 72×30, both on
tands with drawers.

EAGLE•FOTLATHES,

 95 \& 97 Liberty St., New York. BOGARDUS' PATENT UNIVERSAL ECCEN-

\$3 PRINTING PRESS

 Do anopross. Lrarger size sor liare.equalsave morne printing and advertising ank
and

1872, 1873, 1874, 1875, 1876,
SCIENCE RECORD.

GEOOLAY AND MINERALOGY,
ABTLONOMY
BIOGRAPHY' AND NECR

Working Models

COVGRING

ant isinis.
Front St., near Gouverneur, N. Y.

A. S. CAMERON'S

"SPECIAL" Steam Pump Is the standard of Exceilence at home and abroad. REDUCED PRICE LIST

A. S. CAMERON,

Works, Foot of East 23d St. NEW YORK CITY

The New \$20 Microscope is fully equal toany that conlu have been bought three For the best. book of practical instruction get "How Use the Microscope," by John Phin. 75 cts. by mail.

Pyrometens.
 payton oam fump.

Tube Cleaners for cleang Boller

TO INVENTORS AND MANUFACTURERS

FOLLOWS \& BATE, Manchester, England, Hardware
and Machinery Merchants, are prepared to buy AmeriGoods for Cash, and to act as sole Wholesale Agents.

 줄

 Driven or Tube Wells
 CELEBRATED FOOT LATHES.

