A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
Vol. XXXVI.--NO. $\left.{ }_{\text {[NEW SERIES.] }} 10.\right]$
NEW YORK, MARCH 10, 1877.
[\$3.20 per Annum
THE EAST RIVER BRIDGE. \quad haps be equally well made in both cases. The important on the cables, with two inch spaces between the slats for the For the first time in the history of the world a bridge now consideration, however, which led to the adoption of the free passage of the wind. The slats are held in place by spans the East River. The cities of New York and Brooklyn high position, was the accommodation of the shipping, as longitudinal strips, 3 by $1 \frac{1}{2}$ inches, to whichthey are fastened are connected; and although the connection is but a slender the low foot bridge would have at once formed a barrier by round clinch nails. These strips are secured to the cables one, still it is perfectly possible for any venturesome mortal above the water, while the high one is fully 210 feet over the by U-shaped stirrups, plate washers, and nuts. The floor to make the transit from shore to shore with safety. The river. This distance will be maintained for a year or more, was laid in sections of from 12 to 16 feet in length at a time. completion of the foot bridge marks the beginning of the era of active work on the superstructure of the great fabric. We have already explained how ready explained how the heave wire ropes, on which the ten cradles are suspended, were brought over from anchorage to anchorage. The cradles, on the main span are nearly 48 feet long; and they are suspended at such a deflection that the main strands, while main strands, while being made, will be within easy reach of
the men who are to the men who are to
regulate the wires. They are constructed of oak, and the center of the floors is made in part of iron rods, so as to admit of the free passage of the wind and thus reduce oscillation In order to illation. In order to give access to these
cradles, the tempocradles, the tempo-
rary foot bridge, above referred to, and of which an excellent idea can be obtained from the engravings presented herewith, has been recently constructed.
Two designs were made for this part of the work: one pro viding for a bridge in a low position at the level of the floor of the main bridge the other 60 feet above, at the level of the cradles and of the cradkes an trands. Both pos tions have their ad vantages and disad vantages. From th low foot bridge, the regulation of the strands in the cables can be more easily accomplished; but access to the cables could only be had by means of long vertical rope lad ders, difficult and dangerous to climb
The intermediate cradles would have been almost inac- when the lowering of the cable strands will slightlycurtailit. cessible. Provision for safety against storms could per-

Rig. 2
\square The construction of the foot bridge is clearly shown in Figs. 2,3 , and 4. It is made of oak slats 3 by $1 \frac{1}{2}$ inches, laid directly

Chief Enginee Roebling does not hesitate to express his belief that this frail structure may be disabled more than once by violent gales before the main cables ar completed. Its prinipal security against the wind i a pair of inverted storm cables, as sisted by a number of underfloor stays in the main span. In the land span, the uys lead directly uys lead directly the ground. The opes are all secured ogether laterally It is of but little mo ment how much the cradles may sway about in the middle of the span; but all reat waves must be checked before they bech the towers, ach ropes can be in jured. This is done by the underfloor stays and by securely fastening the ropes to the masonry. The inverted parabolic storm cables serve rather to prevent the foot bridge being carried away bodily.

We are indebted for our information to the report of Engineer Roebling, and to the courtesy of Assistant Engineer W. H. Paine.

German Steel

 Iron.-Messrs. Asbeck, Ost́baus \& Co., a German firm, are manufacturing a substance which they term steel iron in five different varieties, so that they can furnish steel upon iron, iron between two layers of tween two layers of two layers of iron, steel core and iron skins, iron core and steel skins, and other combinations.

Srientifir equrican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
NO. Br PARK ROW, NEW YORK.
o. D. MUNN.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included.. $\mathbf{\$ 3 0} 60$
One copy, six months, postage included...............

The Scientific American Supplement

 The safest way to remit is by draft, postal
Address MUNN \& CO., 37 Park Row, N. Y.
WiPP Bubscriptions received and single copies of either paper sold by all
the news agents.
VOL. XXXVI., No. 10. [New Series.] Thirty-second Year. NEW YORK, SATURDAY, MARCH 10,1877 .

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT,
No. 62,
For the Week ending \#arch 10, 187%.
 Modern Science, by Alpred Mey er.-The Spherometer: Instrument
for Measurng the Radii of Shares, with 3 engravings. The Flash
 Italy, wth 14 illustrations; description of the gun, table of the results
of fring, engravings of the targets, the apparatus for measuring velocity, drawings showing the penetration of 22 inch iron plates by the shot
etc.-- On the Rolling of Ships ; a paper read before the Society of Engi-
 new and simple deviec for the Prevention of Rolling.
without Powder. - Decline of English Steam Engines.
without Powder.-Deciline of English Steam Engines
Pipes for Gas and other purnoses. with 3 figures:

 Peat Steel.-A Hornet Fleet: de de
Venetian Marine Architecture.
II. TECHNOLOGY.-Adulterations of Soap.-False Beeswax, how made -Production of Vanadium Aniline Black.-Belgan Process for Bleach-
ing Linen and Cotton.-Dyeing of Mixed Goods. Methyl Green for Cotton- -Dark Yellow Brown.-Transfer of Patter DDesigns.- Now
Size.The French Worsted Manuacture Size.-The French Worsted Manufacture: an interesting paper.-On
the cleaning of Wools; Bleaching and Scouring of Wools: valuable

 or Steaning; Washing; Bluing, Finishnng; Mordants and Various Pre-
parations.-The Keranic Art.--Ostruthin.- Potassium Triodide Test for parations.-The Keramic Art.--Ostruthin.- Potassium Triodide Test for
Sugar.-Cryolite and its Uses, by WILIS BREvToN, PE.G.-Inaugural Essay before the Philadelpha College of Pharmacy.
iil. Lessons in mechanical drawivg New Series, No. 6. By Professor MACCORD. With several illustrations.
V. AGRICULTURE, HORTICULTURE, ETC. - Discovery of an Effective
Remedy for the Grape Vine Disease.-Loss of Shade Trees Remedy for the Grape Vine Disease.-Loss of Shade Trees in Cties.-
Structure of the Mushroom. -Cheap Greenhouses and How to Heat
 one of the most experienced florists. In this valuable practical paper
he illustrates clearly how to heat single and double greenhouses with he illustrates clearly how to heat single and double greenhouses with
the least expense; ;ives the plans for the flues and the full costs for the least expense; ;gives the
construction of the houses.
V. NATURAL HISTORY, MICROSCOPY, ETC.-Pollen. By W. G
Smitr. Being a Microsconical Examination of the Pollen of various
 ble and interesting paperexhibiting the beautiful forms of pollen grains,
their most trominent characteristics, of especial interest to forstst. intheir most prominent characteristess, of especial Interest to fionsts. 1 In-
dicating the plants best suited for hybrizidation, etc.dicating the pants
of the Mieroscope

PUBLISHERS' NOTICE.

New subscriptions to the Scientific American and the Scientific American Supplement will, for the present, be entered upon our books to commence with the year, and the back numbers will be sent to each new subscriber unless a request to the contrary accompanies the order.
Instead of a notice being printed on the wrapper, announcing that a subscription is about to end, the time of expiration is now denoted in the printed address each week, so that the subscriber may see when the period for which he has prepaid is about to expire.

LEMURIA, THE LOST PARADISE.

In our review of Mr. Alfred Wallace's new conclusions rel ative to the geographical distribution of animals, we noted his very important statement that the study of the presen habitations of both animals and plants may add greatly to our knowledge of the past history of our globe. In fact, the chief deduction which Mr. Wallace draws from his extended investigations is that such study may reveal to us, in a man ner which no other evidence can, which are the oldes features of the earth's surface, which the newest, and which have sunk beneath the ocean and thus been blotted out for
ever. It will be seen, therefore, that in the study of organic life we are brought face to face with one of Nature's own records. As in the rocks she writes of the birth of new con tinents and new islands, and of the time when, and the con ditions under which, these mighty additions to the earth's surface were made: so in the habits of organized creatures she conceals the history of her destructive work. By the aid of such knowledge as to past organic mutations as the geolog. ical record supplies us with, we can determine the probable birthplace and subsequent migrations of the more importan genera and families; and in this way, while reaching a conception of that grand series of co-ordinated changes in the earth and its inhabitants, whose final result is seen in the forms and geographical distribution of existing animals, a the same time we embark on a quest of lost lands.

- It is a remarkable fact that traditions substantially agreeing with the Biblical account of the Deluge exist among every known people on the earth. Among the Hindoos, Greeks Chinese, Mexicans, Peruvians, Feejee Islanders, the legend are closely similar; and it is but recently that, from the clay tablets of the Chaldeans, the late Mr. George Smith de ciphered still another account of a great flood. It is besides true that, among a great many peoples, there are traditions of countries which no longer exist. Even on old Venetian maps the lost island of Atlantis, lying west of the Azores, prominently figures. The Greek geographers mention the island; and its sea kings, tradition says, invaded Europe and Africa, but were defeated by the Greeks and their allies. Whether that land was a myth, or whether it was America, is an open question (in view of Dr. Schliemann's discoveries, it is perilous to pronounce any ancient legend baseless); but this aside, the story goes that the Atlantides became so des perately wicked that a deluge swallowed up their island Biblical critics, or at least the majority of them, have long since recognized the fact that, unless the supposition of a
series of the most stupendous miracles be made the theory series of the most stupendous miracles be made, the theory of the Deluge covering the entire earth must be set asice covered only the small area forming the basin of the Eu phrates and Tigris rivers, which then was the sole region oc cupied by the human race. If, however, we couple the two traditions, namely, deluges and lost lands, there will ap
pear a probability that all relate to similar phenomena, which are the subsidence or overflowing of islands or portions of continents by the sea. Therefore it might be a more scien tific view of the Flood to ascribe it to this well understood natural action than to venture so violent an hypothesis, even
on the Mosaic account, as that, 1656 years after his creation, on the Mosaic account, as that, 1656 years after his creation In the whole rance of deductions reached by the study the distribution of animals, there is none more striking than that which proves that a vast continent once existed extend ing from the island of Madagascar to Ceylon and Sumatra. Examination of the fauna of Africa and of Madagascar show that in Africa, especially in the east, there is an abundance of large ungulates and felines (elephants, lions, etc.), all of types now or recently found in India and Western Asia Again, the fauna of Madagascar is wanting in all the larger and higher African forms, and has a wonderful resemblance to that of Malaya and South America. We are, therefore, before the Madagascar must have been separated from Afric had entered. There is proof that, during early tertiary times, a continuous sea, from the Bay of Bengal to the British Isles, complete:y cut off all land communication between Central and Southern Africa on one side and the great con tinent of the eastern hemisphere on the other; so tha Southern Africa and Madagascar were then united, and the latter island helped to form the great continent over which the tribe of lemurs were distributed. There is geological evidence, in Ceylon and South India, all going to show that those physical divisions were bounded on the north by considerable extent of sea, and hence probably formed par of a great southern continent. If we suppose that this hypothetical land occupied the whole area now inhabited by lemuroid animals, we must extend it to Burmah, South China, and the Celebes.
Having established the possiblity of the existence of this last continent, Lemuria, we need follow geology in the per son of Mr. Wallace no longer, but pass to Herr Peschel's views of the great importance of this hypothesis to the his tory of our race. Peschel, in his chapter on the first home of humanity, states that all oceanic islands, when first dis from this and other considerations, he concludes that the first human beings were inhabitants of a continent. Then, by examining into the resemblances of various peoples, he log. ically reaches the view that all our race, starting from a common habitat, may have gradually ranged over all continents and peopled them. He next takes each grand division of the earth in turn, and, by studying its zoölogical forms and their changes, he seeks to determine which division was
the probable cradle of humanity. The basis of his inquiry is the fact that the more highly integrated creatures are the newer, the less perfectly integrated, the older; and measured by this standard, Australia and South America are speedily eliminated from the question. North America has remained primitive in the second highest order of mammalia. Our continent has no tailless ape; and it is where the highest animals appear-the chimpanzee, the gorilla, and the orang -that we must also look for man. Searching through the Old World, the lowlands of Siberia are geologically too re cent; while if Europe had been the starting point, we should have found fossil men, as we have fossil apes. In Southern Asia, British India has been studied geologically with grea minuteness; and judging from the ty pes of mammals found, our primordial parents cannot be localized there.
The inquiry is now narrowed down to Lemuria, a continent, Peschel asserts, required by anthropology; for we can then conceive that the inferior populations of Australia and India, the Papuans of the East Indian Islands, and lastly the negroes, would thus be enabled to reach their present abode by dry land. Such a region would also be climatically suitable; for it lies in the zone in which we now find the anthropomorphous apes. The selection of this locality, Peschel points out, is far more orthodox than it at the firs glance might appear; for we here find ourselves in the neighborhood of the four enigmatic rivers of the Scriptural Eden-in the vicinity of the Nile, the Euphrates, the Tigris and the Indus. By the gradual submergence of Lemuria, the expulsion from Paradise would also be inexorably accomplished. To this may be added that ecclesiastical writers, such as Lactantius, the venerable Bede, Hrabanus Maurus, Kosmos Indicopleustes, and also the anonymous geographer of Ravenna, placed the Scriptural Paradise in Southeaster Asia, and some explicitly state that it was on a detached continent, and that the ingenious maps of the middle age exhibit the first parental pair on a land surrounded by sea lying beyond India, This explains how Columbus, after the discovery of South America, taking it for an insular conti nent lying southeast of the mouth of the Ganges, wrote home to Spain: "There are great indications suggesting the proximity of the earthly Paradise, for not only does it cor respond in mathematical position with the opinions of holy and learned theologians, but all other signs concur to make it probable."
Herr Peschel's hypothesis need not disquiet those who pre fer to believe that Paradise was nearer to the eastern lands of the Scriptures. Its value, its author states, is that "it challenges a geological investigation of Madagascar, Ceylon, and the island of Rodrique, as well as deep sea soundings in the Indian Ocean, to ascertain whether vestiges exist of the higher points of vanished Lemuria."

CITY ARCHITECTURE.

There is a widely extended discussion now going on as to the merits of the better class of houses built in these days Dr. Richardson attacks them on sanitary grounds, and his condemnation is as sweeping and as unreasonable as that of
Mr. Ruskin; and the only remedy which these gentlemen propose for the people of Great Britain is to sweep awa every dwelling from one end of the island to the other. Such exaggerated statements come naturally from the lips of Mr . Ruskin, whose æstheticism does good by inculcating a taste for correctness and purity in style and for genuineness and thoroughness in work; but Dr. Richardson has more utilita rian aims, and such wild propositions serve only to repe people from the consideration of the many sensible sugges tions which he has made. Although it may be theoretically rue that a kitchen should be at the top of the house, it is not recessary to destroy a dwelling that has one at the bot tom; and the people who live in modern houses are not so contemptible, either physically or morally, that their homes should be demolished at the instance of these architectural reformers on account of their unfitness for habitation. Architects and hygeists would do much more for ther contemporaries, and for art and science too, if they would show us how to make the best of what we have; to ventilate thor oughly our basement kitchens rather than to tear down our houses; to lead our sewer gases away from our houses rather than to pull down one side of the structure to build a gas shaft; in short, to improve the homes we must live in rathe than to dream about those we might have if the world wer created to-day, and everybody began existence with un bounded wealth.
Of the comfort and wholesomeness of the better class of American houses it is impossible too speak too highly. The ventilation is generally well provided for, and the heating is equable, and the temperature moderate; dryness in the cellars is an object which our architects spend much pans to achieve, and usually ample light is admitted into he front and back rooms of our houses. But our readers will at once see that we speak of the houses found in the better quarters of our large cities; and our tenement house in crowded neighborhoods, and many of the fllmsy frame structures in rural districts, are scarcely capable of improve ment without razing the entire structure. The evils in the first are due to heavy taxation, which compels landlords to crowd their tenants on to the smallest possible area, and to the inability of tenants to pay rents for large apartments. But there is no reason why large buildings, each accommodating a great number of families, should not have every necessary provision for health and convenience. The houses of the building corporations in London and other European cittes which have been built especially to solve the problem of
health and comfort in crowded neighborhoods, have a lower death rate than many districts where the inhabitants are wealthy and the number of people to the acre small; and
this alone shows that the exceptionally great mortality in New York and other large cities is not due solely to density of population.
But the chief faults in city architecture are to be found in the smaller and cheaper houses. Although many of these are well provided with modern contrivances for saving labor and adding to the convenience of their inmates, they are characterized by two bad practices, namely, disregard of hygienic laws and flimsiness of construction. The excellent system of heating by furnaces placed in the basement is vitiated by making the heaters too small, so that they are overdriven in cold weather, and the air passing through them becomes too dry, thus rendering the lower rooms of the house unhealthy; and it has been shown by the experiments of General Morin, Director of the Conservatoire des Arts et Métiers in Paris, that air currents in contact with red hot iron become absolutely poisonous. It is safer, says Mr. James C. Bayles in an excellent paper on city architecture in the International Reviex, to keep the temperature of
the surfaces of a heating furnace below 500° Fah. Again, the surfaces of a heating furnace below $500^{\circ} \mathrm{Fah}$. Again,
by faulty construction, many of these furnaces carry carbonic oxide and sulphurous gases into the apartments.
Ventilation is a subject on which much has been written, and yet it is little understood. That providsd by the open fireplace is nearly perfect; and difficulties on this subject are found mainly in small houses heated by hot air. Draughts of air in such houses are frequently kept out with weather strips, and air is only admitted by chance opening of đ́oors. The plumber's work is another defective element in these houses; and the dread zymotic diseases which arise from sewer gases bear terrible witness to the truth of this state-
ment. These diseases cause nearly 30 per cent of the total mortality of New York city. And the difference betweer good and bad plumbing, says Mr. Bayles, is so slight as to escape the notice of any but a trained expert, and here the respon
The want of solidity in the building of cheap houses is the cause of the destructiveness of fires in this country. Mr Bayles averages our annual losses by fire at $\$ 100,000,000$. Structures in which cheapness was the only consideration of the architect are in many places so numerous that solitary buildings considered fireproof are destroyed by the fierceness of the conflagration which rages round them. That this can readily be remedied is shown by the example of many European builders, whose cement floors and well plas
tered woodwork are uninflammable, and in whose houses fire seldom spreads beyond the room in which it originates.

the working of patents in canada.

A section in the patent law of Canada requires that the manufacture of the invention or discovery must be commenced within the realm within two years from the date of the patent, or the latter becomes void. Another clause in
the same section declares that a patent shall be void ff, after the expiration of twelve months from the granting of a patent, the patentee or assignee causes to be imported into Canada the invention for which the patent is granted. A clause was subsequently added, however, granting the Commissioner the privilege of extending the time for introducing an invention beyond the two years if application 1s made to the Commissioner not less than three months previous to such expiration, and if ample evidence is adduced that it has been beyond the patentee's control to comply with the two years' requirements.
Some parties who took patents two years ago have supposed that it was sufficient to hold the patent by importing into the country various parts of the entire machine, and putting them together in a Canadian manufactory. The able Commissioner, Mr. Taché, decides that suchimportation does not accord with the spirit or intent of the law; but in a case
which recently came before the Commission, he rules "that the respondent having refused no one the use of his inventions, and thet the importation, assented to by him to be made, being inconsiderable, having inflicted no injury on Canadian manufactures and having been so count nanced,
not in defiance of the law, but evidently as a means to create not in defiance of the law, but evidently as a means to create a demand for the said inventions, which the patentee intended Canada, he has not forfeited his patents.
It is evident from this decision of the
It is evident from this decision of the Commissioner that he intends to construe the laws in a spirit of liberality towards the foreign patentee when it can be done
prejudice to the interests of Canadian manufactures.

the blue glass deception.

An open letter addressed to us by General Pleasonton, of blue glass notoriety, has appeared in the columns of an even. ing journal of this city. The missive relates to our recent too lengthy for reproduction here, nor is such publication otherwise necessary, masmuch as it clearly shows that its author has not perused our artucles with any degree of at tention, or else that he totally misapprehends the nature of the facts and arguments we have advanced.
The main point of General Pleasonton's letter is an objec. tion to our use of the word "deception," a term which we employed, advisedly, since we believe that General Pleason. ton deceives both himself and the public. a view which we can hold without casting the slightest imputation on the gen
tleman's personal integrity. General Pleasonton, then, in electricity as the main duty of lightning rods. Projecting upport of his theories, triumphantly claims that they mustbe points do not attract the thunderclouds; but elevated portions well founded, because "the highest scientific authority in the ${ }^{\bar{i}}$ the ground, as well as trees and houses, when in conducting country "-to wit, the Commissioner of Patents-has granted communication with the earth, become charged by induca patent on their application. That the above official tion, and then exert attraction, whether there are pointed rods is ex officio the greatest of American scientists will be amusing news to our readers. It raises the question as to who is the highest scientific authority now, the Commissione who signed General Pleasonton's patent or the present in-
cumbent, or which one of the numerous gentlemen who have adorned that office for brief periods in the past. Besides, to claim that, because something is patented, it is necessarily scientifically sound and of major importance, betrays but a small acquaintance with inventions in general. The Patent Office does not indorse any device. The patent is simply granted on prima facie evidence that the idea is new and useful; and in endeavoring to extend the benefit of the proection to inventors, the examiners favor the latter, or should do so, in the highest degree, acting favorably whenever there is a possibility of the existence of even a germ of some future better conception. As it is, the Patent Office rejects very many more applications than it ought to; and on the
ther hand, it is constantly erring, often egregiousy, other hand, it is constantly erring, often egregiously, in granting absurd claims. Because the Commissioner of Pat-
ents, in allowing General Pleasonton's patent, made a very sorry blunder (which, by the way, we are inclined to think is chargeable to the examiner, as of course the Commissioner knows nothing of the immense majority of patents to the documents of which his signature is appended in advance) certainly the General cannot convince sensible people that his abnormal theories obtained any indorsement
The remainder of General Pleasonton's letter is but a re affirmation of his interpretation of his alleged results; and the assertion that blue glass alone does not produce the beneficial effects claimed, but that they are wholly due to "associated light." Associated night in his grapery came through through blue violet class spectroscopically examined, as we previously explained-and a distinguished physician of this city has since corroborated our statement by further experi-ment-is nothing but sunlight diminished in intensity ment-is nothing but sunlight diminished in intensity.
ThereforeGeneral Pleasonton'sclaimnow is based on pure sunlight, one eighth of which is diminished 90 per cent: in other words, sunlight weakened $\frac{g}{80}$ in intensity, according to Mr. Gaffield's data, elsewhere noted. As GeneralPleasonton de votes a considerable part of his letter to informing us on
what we based our own criticisms-a favor on his part quite unnecessary, as well as wholly mistaken in its premises and as a still larger part is given up to mere assertion, mingled with curious misunderstandings of our very plain statements, we think that no further notice of his epistle is required. For the benefit of sundry blue-glass-crazed contemporaries, we would add, however that we see no neces.
sity of repeating the large number of experiments-some dating back two centuries-which very positively disposed of the whole subject, even if by not doing so we earn the
imputation of closet theorists. Our long experience in deal. ing with circle squarers, perpetual motionsts, Keely motor people, and now blue glass adherents, besides ali the other de ceptions rife in the mechanica: and scientific world, enables us to bear such animadversion with unruffled equanımity.

POINTED LIGHTNING RODS.

The important question as to the proper form of lightning rods occupied the minds of many savants some 75 years ago, and filled part of the scientific journals of that period. It has lately been renewed, and, as formerly, there are defenders and antagonists of the pointed rods. It is argued by the latter that the object of a lightning rod is not to attract the thunderclouds to the building to be protected, and induce discharges there; and it is clamed that long, upward-projecting lightning rods do this very thing, and that, although they are a protection in one sense, giving a ready path to the discharges, they become a source of danger by attracting the electrically charged clouds, and making discharges more fre-
quent. Let us test this reasonng by the well known laws of quent. Le
The amount of electric attraction depends on the extent of the attracting surfaces, and on their distance. If a series of clouds, say of a square mile in extent, floats over the earth's surface, these clouds being charged with positive electricity, they will induce, in that part of the earth's surface within the attractive influence, negative electricty. This charge will increase as the distance decreases, as the clouds follow the direction of the attraction; untll at last, when the distance becomes small enough, an explosive discharge takes place, the
stroke of lightning consisting in the smultaneous discharge of positive electricity from the cloud to the earth, and of negative electricity from the earth to the cloud. The manifestation of light and heat is the simple result of the neutral rzation of the two electricities, and will be greater in propor tion as their quantity and intensity were greater.
Looking at the subject exclusively from this point of view, all that appears necessary is to provide a ready path to the electric discharge, such as a rod made of good conduct ing material, of sufficient capacity to be uninjured by the strongest current, and well connected with the ground, so as to establish at the moment of discharge a perfect commun cation bet ween the cloud and the earth, which, previous to
the stroike of lightning, were charged with opposite kinds of electricity. If we consider the function of elevated points on lighting rods, we find that Benjamın Franklin was correct when he recognized the gradual absorption or discharge ot
in the vicinity or not. The latter will, by their property of silent gradual discharge, serve to diminish the electric tenion; and in place of being a source of attraction they will diminish this attraction, and take from the impending discharge a great deal of its violence.
We must, therefore, come to the conclusion that elevated points are desirable as upper terminals oflightning rods; and experience fully verifies this conclusion by practical results. One of the oldest instances took place in the tower of the cathedral of Siena, in Tuscany, which had been very frequently damaged by lightning. In 1776, a lightning rod was erected; but the people objected, and some of the priests called it an impious contrivance, invented by a heretic; but when it was found that the tower was rarely struck, and that once during a heavy thunderstorm the stroke followed the lightning rod without doing the least damage, the heretical contrivance came into proper esteem. The starlike terminations of some lightning rods are injurious. Faraday has proved that a single point discharges and absorbs electricity faster than a bifurcated or trifurcated terminal; if more points are added, still slower becomes the discharge, by their mutual interference; until at last, when the top is surrounded with an infinite number of points, a ball is the result, and the silent discharge ceases altogether.
But the upper pointed terminal is not the main part of the lightning rod; because it may be omitted altogether, although it is better to attach it. The main part is the ground connection; and as this is out of sight, it is often shamefully neglected. Much ignorance prevails in this respect also; hence it frequently happens that the electric current leaves the rod, to enter the house and pass off by the gas, water, or sewer pipes; and in its course it sometimes causes considerable damage. A connection with a water course, a well (not a cistern), or at least with the moist ground, is not imperatively necessary. If the soil is silicious and naturally dry, it is best to drive some pointed iron bars into the ground in such places as they are most likely to reach moisture, and connect all their upper ends with the conducting rod. The rule that requires a conducting surface equal to that of the roof to be protected, to be buried in the ground, given by some would-be authorities, has no foundation either in theory or practice. It is not the electric charge of a roof which has to be disposed of, but that of a cloud over it; and the latter has sometimes an extent of several square miles. All reported failures of lightning rods may be traced to defective connections. especially ground connections. Rods that are faulty from the outset are often made useless by ubsequent neglect: as we found some years ago at the village of Gilboa. Schoharie county, N. Y. The church was stuated on a hill, and quite exposed; the under end of the lightning rod, which in its upper end was connected with the spire, was pulled out of the ground, and lay on a pile of fire. wood in the rear of the church. If this church had been struck and burnt down, it might have been pointed out as an example of the utter uselessness of lightning rods.

Excitement the Stimulus of Business.

There are a numerous class of men who live almost entirely upon excitements. In a calm dispassionate flow of life and business they are stupid and powerless; but stir up the placid sea until it surges with violence, and they are then ready for a mission-armed and equipped for the toil of life. Such minds are the martyrs of this age of enlightenment-the life they lead is a consuming one, and vitality is spent with a prodigality more than heroic. The requirements of business are making this method of living more imperative, and wthout it success is beyond a reach. Half a century since the out it success is beyond a reach. Half a century since the
rivalries now experienced in all departments of human inrivalries now experienced in all departments of human in-
dustry were then unknown. A new order of mind and new dustry were then unknown. A new order of mind and new
energies are called into requisition. The business man of energies are called into requisition. The business man of
the last generation would hardly be recognized by the prevailing caste. Flesh and blood are capable of enduring many hardships, but the delicate nervous organization, its accom paniment, breaks down at length under the incessant tension. Disregarding the friendly premonitions of temporary illness, the exhausted mind holds on its work by the necessary and agreeable stimulus of fresh excitements, until a sudden reaction crushes its vigor, and then comes on the weakness, satiety, and sorrow of hopeless infirmity.
It is not without a shade of melancholy that we notice in almost every daily journal the record of a faltering in the ranks of business men. This successful merchant or manu facturer has impared his health by overwork, which means too much nervous excitement, and he starts for Europe in the hope of building up his health on a broken foundation. Another professional man is aroused from his dream of am bition with thefrighttul conviction that phthisis has fastened 1ts deadly grasp upon his vitals, and the grim mages of weakness and decay henceforward fill his vision. There has been an alarming increase of disease withn a few years having its orgon in the causes we have named, and the effect of it should be to produce greater moderation What if the profits are less? They can be continued longer and life made happier.
There is no necessity for this waste of life-1t is a sheer delusion, the effect of a foolish ambition. Better accept the necessity of an early disease.-Hunt's Merchants' Mallible

CURIOSITIES OF GLASSMAKING.

The manufacture of glass dates back to the remotest antiquity. In the Metropolitan Museum of Art, in this city, are glass bottles and vases exhumed from the ancient tombs of Cyprus, which were probably manufactured forty centuries ago; and in some of the tombs of Egypt are abundant representations of Theban glassblowers (Fig. 1) at their
are produced in bas-relief raised on a delicate white opaque glass overlaying a transparent dark blue ground, the raised glass overlaying a transparent dark blue ground, the raised
portions being evidently carved by hand. It is supposed that in this, as in the Portland vase, the blue glass was covered with enamel; but the difficulty of tempering the two bodies
of different specific gravity, so that they should withstand of different specific gravity, so that they should wit
the work of the sculptor, must have been very great.

Fig. 4.

The Strasburgh vase, Fig. 4, was found, in 1825, in burial casket disinterred near the fortifications of Strasburgh It is made of white glass, enveloped in a curious network of red glass. About the rim are portions of the name MAXIMIANVS AVGVSTVS, a Roman emperor who died at Marseilles A.D. 310.

Fig. 2.

The history of glassmaking is attainable in so many standard works that it is not deemed necessary to trace it here to any extent beyond what is needful for the description of the most famous productions of ancient and mediæval glass makers, which are represented in the accompanying engravings. The Portland vase, represented in Fig. 2, was found, about the middle of the sixteenth century, inclosed in a sepul-

Fig. 3.
 Monte del Garno, near Rome. It was ornamented with white opaque figures, in bas-relief, on a dark blue transparent ground. It is supposed that the whole of the groundwork below the handles was originally covered with white enamel, out of which
the figures were sculptured, in the style of a cameo with most astonishing skill and labor. The vase was purchased by th Duchess of Por land (whence it name) at a price ex ceeding $\$ 9,000$. Several copies of it were made by on exhibition in
London, the original was accidentally thrown over by a visitor's cane striking it, and was broken in fragments. The pieces, however, were afterwards fitted together with remarkable accuracy, but of course the value of the object was greatly lessened
Next in order of importance is the Naples vase, Fig. 3, which was exhumed at Pompeii in 1839. It is about 12 inches high, and 8 inches wide, and is of the same style of manufacture as the Portland vase. The figures and foliage which form the design are representative of the harvest season, and

Fig. 5 represents ancient Greek glassware. The forms are probably the prototypes of many of the commonest design now in use. A vessel of glass in the form of a fish is shown in Fig. 6. This is attributed to the first Christians. The Greek name for this fish commences with the letters X and ρ of the Greek alphabet, which characters (ch and r) are also the first two in the word "Christ." For this reason the two Greek letters in monogram were adopted as the Christian symbol, and the vessels holding oil used in the sacrament of baptism were made in the shape of a fish.
A very curious vase, found in France, and probably made by the Por during their occupation of Gaul, is repre sented in Fig. 7. It is a cup of yellow moulded glass, and originally was in two pieces. On the sides are raised figures of gladiators, each figure having a name inscribed above it. Similar vessels, decorated in like manner, have been found in England; and it is believed that they constituted the prize offered in gladiatorial combats.

Fig. 6.

The cup of transparent glass depicted in Fig. 8 is of un certain origin, although the fabrication is very remarkable It was found in France in 1862, and is of a dark green color, the inscription being raised in white enamel. It probably dates from the sixth century
The romance of glass making centers about Venice, which city for a long period held the monopoly of supplying al Europe. So useful were the glassmakers at one period in Venice, and so considerable was the revenue accruing to the Republic from their manufacture, that, to encourage the
men engaged in it to remain at Murano, the island where the factories were located, the Senate made them all burgesses of Venice, and allowed nobles to marry their daughters. An old writer, describing the Venetian industry, says: "Th gentlemen of the great glass houses work onlytwelve hours, but that without resting, as in the little ones, and alway standing and naked. The work passes through three hands. First, the gentlemen apprentices gather the glass, and pre pare the same. It is then handed to the second gentlemen, who are more advanced in the art. Then the master gentleman takes it, and makes it perfect by blowing it. In the lit tle glass houses, where they make coach glasses, drinking glasses, crystals, dishes, cups, bottles, and suchlike sort of vessels, the gentlemen labor but six hours altogether, and then more come in and take their places. And thus they work night and day" night and day. Specimens of Venetian glass are represented in Fig. 9. These are yet made in Murano, where there are whole streets of fur-
 naces. They say there "that should any one transfer a furnace from Murano to Venice, or to any of the assembled islands, or to any other part of the earth, to use the same maerials, the same workmen, the same fuel, and the self same ingredients every way, yet they cannot make crystal glass in that perfection for beauty and luster as at Murano. Some impute it to the circumambient air, which is purified and attenuated by the concurrence of so many fires that are in these furnaces day and night perpet ually, for they are like the vestal fires, never going out." The interior of one of these old glass factories, reproduced from a wood engraving of the sixteenth century, is represented in Fig. 10.
Among the workers at the Murano furnaces originated the quaint old notion of the salamander, the fireproof monster It was believed that at

Fig. 8. certain times this won derful being issued from his abode in the furnace fire, and, as opportunity offered carried back some vic tim to his niery bed. The absence of work men, who sometimes departed secretly for
 foreign lands, was al
ways accounted for by the hypothesis that, in some unguarded moment, they had fallen a prey to the salamander. Visitors, too, whose courage could sustain them, were directed to look through the by-hole to the interior of the furnace, and no one failed to discover the monster coiled in his glowing bed, and glaring with fiery eyes upon the intruder. Some gal lant knights in full armor, it is said, dared a combat with the fiery dragon, but always returned defeated: the impor tant fact being, doubtless, then unknown or overlooked that

teel armor, being a rapid conductor of heat, would be likely tempt a more ready approach of the fabled monster.
A belief was long prevalent that glass drinking vessels, made under certain astronomical influences, would certainly fly to pieces if any poisonous liquid were placed in them and sales of Venetian glass vessels of this kind were made at enormous prices. Another idea existed that vessels of a certain form, made in a peculiar state of the atmosphere and through their bottoms. Various articles, such as directly
goblets, were thought to add to the flavor of wine, and to detract materially from its intoxicating quality.

In 1486, Emperor Nicholas, of Austria, established near Vienna glass works for making glass after the Venetian sys tem; and from that time forward the industry greatly increased in Austria and Bohemia. In the seventeenth century the Bohemian workmen began to make a new product, called the "Wilkomm," Fig 11, in white or green glass, painted in enamel with armorial bearings, figures of birds and animals, etc. This was the beginning of the famous

Fig. 10.

The second process involves the use of papier maché and gelatin combined. Billiard balls of this substance cost about one third the price of genuine ivory balls, and are claimed to be quite as hard and as elastic as the latter. They may be thrown from high elevations upon pavements without in jury, and will withstand heavy blows with the hammer. The composition is known as Paris marble, and may be used for raised ornamentation of ceilings, or prepared so as to imi tate fine varieties of marble

Planing Mill Machinery.

We quote from a third article from the pen of Mr . F. H. Morse, published in the Northwestern Lumber man, the following remarks (see pages 115 and 135 of our current volume for the previous extracts):
It is pretty generally conceded by experienced me chanıcs that there is no machine in use the bearings of which require more attention than those of the planing machine. The very high rate of speed at which the spindles are necessarily run, the sudden and severe strains they often receive, and the fine dust which col lects upon every part, absorbing the lubricants and impeding their free operation, renders it vitally importan that constant care should be exercised to keep them in proper order, that they may run without heating and produce smooth work.
Spindfes should be made of rolled or cast steel, cut from the bars and properly shaped in the lathe, but should never be put into the fire. Steel is superior for this purpose in many important particulars, though until quite recently wrought iron was almost exclusive ly used. Steel is much more homogeneous than iron, and for this reason may be turned more nearly to a cylindrical form, a condition which has much to do with the production of bearings that will remain cool under high speeds. A spindle that lacks uniformity as to hardness may by grinding-though not by filing or turning-be made so nearly round as to answer well for moderate speeds; but when put in motion at a rapid rate, the ends of the fingers applied to its sur face will reveal the irregularity in its shape, proving that it is totally unfit to be used for quick running machinery. Good steel is not only more easily re duced to the proper shape, but on account of its su perior stiffness the spindles may be made about one third smaller than where a weaker metal is used, thus greatly diminishing the friction and also their liability to heat the bearings. Its greater strength is another point in its favor. According to Templeton, the difference between wrought iron and cast steel as regards their torsional and cohesive properties is as fol lows, the table showing the results obtained from experiments with one inch round and square bars, in peunds avoirdupois:
Bohemian glass manufacture. The fabrication of the Wilkomm ceased early in the eighteenth century, but attempts are now being made to revive it
The growth of the Bohemian glass industry was much encouraged by the Empress Maria Theresa, who gave priv-

Fig. 11.

ileges to all glassmakers who immigrated to the Austrian dominions; and
the vast deposits of pure the vast deposits of pure
quartz in the Böhmerquartz in the Bohmer berge became the principal seats of the trade. As the trade grew, the Bohemian artists gradually freed themselves from freed themselves from form and decoration; and although their designs were somewhat heavy, the colors and decorations were varied and artistic. The use of a cutting wheel for engraving glass was a great aid to the art, and was a German innovation. The products of Bohemian glassmakers were prohibto France up till 1860 in to France up till 1860, and
specimens became of exspecimens became of ex-
ceptional value in that ceptional value in that
country, and possessed the usual pleasant flavor of forbidden fruit.

Artificial Ivory. We find in our Fren

 contemporaries two processes for the manufacture of this material. The first consists in dissolving two parts of pure india rubber in thirty-six parts of chloroform, and saturating the solution with pure ammoniacal gas. The chloroform is then distilled at a temperature of 165° Fah.; and the residue, mixed with phosphate of lime or carbonate of zinc, is pressed intomoulds and dried. When phosphate of lime is used, the product is said to possess in a remarkable degree the peculia composition of natural ivory.

	torsion.		cohesion.	
	$\underset{\substack{\text { Round } \\ \text { BAli. }}}{ }$	$\underset{\text { BARUR. }}{\text { Square }}$	$\underset{\substack{\text { BARND } \\ \text { BAR }}}{ }$	$\begin{gathered} \text { square } \\ \text { BARP. } \end{gathered}$
Wrought iron. Cast steel	$\begin{gathered} 29,063 \\ 29,111 \end{gathered}$	$\begin{aligned} & 15,360 \\ & 26,880 \end{aligned}$	$\begin{gathered} 43,8881 \\ 105,454 \end{gathered}$	

From this exhibit we find that the torsional strength of the steel is nearly 75 per cent greater than iron, and its cohesive strength nearly 140 per cent greater
The bearings for spindles should as a rule be of brass but with the exception of one or two firms, manufacturers use only Babbitt metal, which, on account of its cheapness and the ease with which it may be replaced when worn out, will doubtless always be in favor. As nearly the same rules that govern the use of one are applicable to the other, we confine our remarks chiefly to those made of the last named material.
The length of bearings is a matter of much more impor tance than their diameter, and our best builders now make them of ample size in this direction. How to mould a bearing properly is something which every operator should thoroughly understand, and it will not be out of place per haps to give some hints as to the best way of performing the operation.
While almost any mechanic can mould a bearing in some style, there are but few who can do the job properly, that is, so that it will not heat, and enable the machine to produce good work. It is often, and in fact most always, the case that, when a planing machine is started up, just after the cylinder bearings have been newly fitted, smooth work cannot be turned out, while it is just the time when it would naturally be expected that the machine was in the best of order; instead, it makes the surface of the lumber uneven or wavy, as it is termed in planing mill parlance. Th usual remedy-if remedy it may be called-is to let them wear down, operators seemingly entertaining the impression that they will be all right after a few days' wear. This prac tice is decidedly erroneous and goes to show that the mechanic does not understand this branch of his business as well as he should. A new bearing can be kept just as cool, and need cause no more irregular work to be turned out, than one which has been in operation a week or a month.
The method of moulding cylinder bearings most com monly practised is to place the cutting cylinder as nearly a possible in its proper position (that is, parallel with the bed of then, after the requisite amount of packing or lining is put on, the upper half is bolted down, and then poured. By this
process one side of the shaft or spindle is surrounded with hot metal while the other remains comparatively cold, and every mechanic of ordinary intelligence knows the result of such treatment; it must certainly spring the shaft and prob ably ruin it. Some mechanics say that when the other side comes to be poured it will spring back into its former shape but this idea is too fallacious to need contradiction. If a bearing made by the above described method is examined carefully, it will be found that the spindle bears only upon the ends of the journal. Bearings for slow moving shaft can be moulded in almost any way, and yet be made to an swer the purpose; but for machinery which must be run a an extremely high rate of speed too much care cannot be exercised in their construction

A NEW FRICTION CLUTCH FOR SHAFTING.

We extract from the Belgian Bulletin du Musée the an nexed engravings of a novel shafting connection, the con struction of which is quite simple. On a bracket, O, Fig. , are the two journals, S , through which pass the ends of

Fig. 1.

the shafts to be coupled. To these extremities, the acting parts, m, of the clutch are attached, and on each face of the latter are rings, V-shaped in cross section, which, when the faces are approximated, interlock. One part of the clutch has a tongue, l, which enters a groove in the opposite part and thus serves as a guide. It will be seen that, when the two parts are brought closely together, the friction between the opposing rings will cause the motion of one shaft to be transmitted to the other.

The movement of the clutch into or out of action is ef fected by the hand wheel, F, and shaft, M, Fig. 2, which

turns a screw engaging with a helicoidal wheel, B. On the axis of the latter are cut two screws, G, oppositely threaded, on which travel nuts, H. On the nuts are lugs which enter the crotched ends of the levers, K. These levers are attached by bolts, E , to the parts of the clutch, and are connected to By this device moving shafts may easily be coupled withou stopping them.

©

On the Shape of the Earth

To the Editor of the Scientific American
In your paper of February 3d, you published an extract from a lecture by Professor Roscoe, in which the opinions of Mallet and Sir William Thomson are quoted to show that the center of the earth is not necessarily in a state of fusion, as I think several eminent geologists, and especially Sir Charles Lyell, always held. But it has been taught for many years that the shape of the earth, being an oblate spheroid, was very strong evidence, if not positive proof that it had once been in a melted state. This doctrine has become a dogma in the seminaries of learning, and in the textbooks; and it has been entertained by many of the most profound natural philosophers for more than a hundred years. I have seen it in the writings of Professor Tyndal and Professor Draper, also in Humboldt's "Cosmos."
Notwithstanding this array of authority, is it not well to inquire whether the conclusion is correct? I do not propose to discuss the origin of the earth, or to argue that its interio is not now in a state of fusion. But I hold that its shape proves nothing as to its origin, or the present condition of its interior. I think the earth could not retain any shape very different from the present one, even if it were composed of solid iron.
It is known by all architects and engineers that there is a limit to the size of arches, depending on the strength of the material used. An arch spanning several inches can be made of soft putty. Many feet can be spanned by an arch of brick, and hundreds of feet are spanned by steel in bridges. But no one believes that an arch over Lake Erie, or over the Straits of Dover, would sustain itself, no matter what material was used. So that there is a limit to the size of any large body, beyond which gravitation exceeds cohesion. The most minute particle of water assumes a globular form when not in contact with other matter. Putty or jelly would act like water, but would require a larger quantity to overcome the cohesion of the particles. A body the size of
the earth, if not revolving on its axis, would be spherical, or the earth, if not revolving on its axis, would be spherical, or
very nearly so, even if composed of steel. But let it revolve on its axis, and it will be an oblate spheroid. A very small planet, like some of the smaller asteroids, or a meteoric rock, might retain permanently any given shape.
Liquids, confined in tubes, press with the same force laterally that they do perpendicularly, at any given depth. The same must be true of particles of matter in solids; but the force of cohesion holds them together so that they are not pressed out laterally. The cohesive strength of any substance being known, it is easy to calculate the height to which a perpendicular column of that substance could be raised before the particles would be forced asunder at the base. The tenacity of cast iron is sometimes estimated a 20,000 lbs. per square inch, but it varies greatly. This is when the force is applied by stretching a suspension, and the particles are strained apart. But the cohesion among the particles would be much greater where the force is applied
by compression. I have not statistics to enable.me to say by compression. I have not statistics to enable.me to say
what it is; but assuming the cohesion of cast iron to be twice as great under pressure applied in a given direction as it is when the force is applied by stretching, that is $40,000 \mathrm{lbs}$. per square inch, and assuming the weight of iron to be 450 lbs. per cubic foot, then a column of cast iron, of uniform thickness, could sustain the pressure of its own weight only to the height of 12,822 feet-a little over two miles. If the earth were a perfect sphere of cast iron, with gravitation and rate of rotation the same as at present, the pressure towards the center of the earth from the poles would exceed the pressure from the same area, near the equator, by an amount equal to the weight of iron 13 miles thick. And the pressure within the polar circles would be about equal to the weight of iron 10 miles thick. This would be a pressure of 165,000 lbs. for every square inch of surface within the polar circles. It would exceed the weight of sixty million cubic miles of iron around each pole. The strain from this enor mous pressure would not be evenly distributed throughout the interior of the earth; it would be mainly concentrated on or near the plane of the equator. I think the earth could not withstand the strain from such a pressure. The poles would sink, and the equator would bulge out. T'here might be an oscillation of the different parts for a long time, but it would finally come to an equilibrium. I think that almost any mathematician will be convinced, by a little examina tion and reflection, that I am right.
T. R. Fisher.

Lawrence, Kan.

Boiler Explosions.

To the Editor of the Scientific American:
As the causes of boiler explosions are being discussed in the Scientific American, permitme to offer a word or two in relation to this subject. Occasional mention is made of a certain gas, represented as possessing terrible destructive properties, and claimed or believed by many to be the result of scarcity of water in the boiler, and the real cause of explosion. I have never yet seen any description or analysis of this gas, or been able to obtain any information that would afford a clue to its existence. It is true and well known that water is composed of two gases, oxygen, a supporter of combustion, and hydrogen, a combustible. It is further known that, when these elements are properly mixed, they are capable upon ignition of exerting an immense degree of force. It is well understood, also, that, when the vapor of water is
passed through an iron tube heated to redness, hydrogen is generated. It may not be strange that, with a limited know ledge of the laws that govern the changes among these bod ies, some such idea as the above should have originated But if we review carefully the process by which water is produced, and the method required for its decomposition, we can discover no ground whatever for the theory in ques tion. When a jet of mixture of eight parts of oxygen (by weight) and one part hydrogen is ignited, we have a flam which developes the greatest heat known-namely that of the compound blowpipe. In this flame, even gold is instantly fused and converted into smoke. Now, under this intens heat these gases combine, the sole product of the combustion being a vapor which is condensed to a liquid on cooling showing that water is formed under the most intense heat w can produce.
It is well known that, if a clean iron tube be heated in furnace, and, while it is glowing, a current of steam is passed through it, and thence into a tube of cold water by means of a small pipe, bubbles of gas will rise, and may be collected by inverting a glass jar filled with water over the mouth of the pipe, the gas ascending through the water. The gas thus obtained will not burn by itself, butwill extinguish a lighted taper the instant it is introduced. It resists every effort to change its properties; in short, we know it to be hydrogen, fixed gas, and one of the component parts of the water we Hravé decomposed. Had the separation of these gases been due to heat alone, oxygen would have been produced also, and the introduction of a lighted taper would certainly have produced an explosion; but we can find no trace what ever of oxygen in the jar. On examining the interior of the iron tube, it is found that a rough scale has been formed on the surface, which is easily pulverized, having the appear ance of rust. This substance is proved by analysis to consist of iron and oxygen, showing that the heated iron has absorbed the oxygen of the water. This change is due to the fact that, although oxygen has a strong attraction for hydro gen, it still has a more powerful affinity for iron; hence, it parts with its old associate to unite with the new. Heat has facilitated this change, which would have occurred in time without it. If we substitute a glass tube for the iron one in the latter experiment, it may be heated to near its point of fusion for hours, and a very moderate current of steam passed through; but we look in vain for the formation of gas of any kind, there being little or no affinity between the glass and the constituents of water. The steam will therefore pas through unchanged to the tube of water, where it will all be condensed again, notwithstanding the high temperature to which it has been subjected. When water gets low in boiler, it falls gradually by evapcration, consequently the surface of the boiler must be overheated gradually. Now the quantity of hydrogen that would be produced in a given time depends entirely upon the quantity of oxygen that is absorbed by the heated iron.
This operation is always an exceedingly slow one, owing to the solidity of the material that must be atomized, and the gas is evolved in minute bubbles. Hydrogen being many times lighter than steam, it would be the first to pass out of the boiler. But should the gas accumulate in quantity, we have seen that it cannot burn or explode without a supporter
of combustion. Steam is not a supporter of combustion. Even at a red heat, a mixture of hydrogen and steam cannot become ignited. Heat alone will not decompose water, and there is no way to account for the presence of free oxygen t boiler sufficient to cause explosion.
Exeter, N. H.
George B. Brayton.

Color Blindness among Railway Employees.

In a recent article on the subject of color blindness, we pointed out how this infirmity, when affecting railroad em as it freque mecome a source of public danger, inasish the difference between a red and areen signal lioht From actual examination of railroad men in Europe, it would ap pear that cases of color blindness are by no means rare, but, on the contrary, are somewhat frequent. Among the employees of a Russian line in Finland, Dr. Kzohn recently found 43 persons to whom the red and green lights appeared precisely alike. In Sweden and Hungary similar experiment have also recently been conducted. On one Swedish line, ten per cent of the employees confounded red, green, and white lights. In Hungary, on the other hand, but one per son out of 400 was found totally color blind, while three pe cent of the remainder were more or less affected.

Bicarbonate of Iron.

We have lately received from correspondents in Arkansas samples of water so saturated with bicarbonate of iron as to completely obstruct, by precipitation, the pipes and valves of steam engines in which an attempt has been made to use the water. We are in possession of specimens of this deposited carbonate fully an inch in thickness, and remarkably free from foreign salts. It might find employment in the pro duction of medicinal preparations and ferruginous salts use in the arts.

Discovery of a New Comet.
Professor Henry, of the Smithsonian Institute, announce that a new comet was discovered by Professor Borelly of Paris on Febuary 8, in right ascension, 17 h .13 m . ; declina tion, $1^{\circ} 37^{\prime}$. Its south daily motion is +1 m .44 s . in right ascension, and $+3^{\circ} 7^{\prime}$ in declination. It has a brilliant round nucleus. In this locality the new comet should be looked for during two hours before sunrise.

ASTRONOMICAL NOTES

Observatory of Vassar College
The computations and some of the observations in the iollowing netes are from students in the astronomical de partment. The times of risings and settings of planets ar approximate, but sufficiently accurate to enable ar ordinar bserver to find the object mentioned
M. M.

Positions of Planets for March, 187%

 MercuryThe planets Mercury, Venus, and Saturn rise so nearly with the sun in March that they cannot be readily found Mercury rises at 5 h .42 m . A. M. on the 1st, and sets at 3 h $32 \mathrm{~m} . \mathrm{P}$. M. On the 31st, Mercury rises at 5 h .43 m . A. M and sets at 3 h .46 m . P. M.

On March 1, Venus rises at 6h. 2m. A. M., and sets at 4 h 19 m . P. M. On the 31 st , Venus rises at 5 h .34 m . A. M. nd sets at 5 h .29 m . P. M. Venus and Saturn are in con junction on the 16th, but they rise so nearly with the sun that they can scarcely be seen.

Mar

Mars rises on March 1 at 2 h .53 m . A. M., and can easily be ound by its neighborhood to Jupiter, being a little south of hat planet. On the 31st, Mars rises at 2 h .16 m . A. M., and sets at 11 h .21 m . A. M. The more rapid motion of Mars easterly among the stars has carried it far from Jupiter, and on the 31st they are about 18° apart.

Jupiter.

Jupiter is far south in declination; but as it rises at 2 h 51 m . A. M. of the 1st, it can be seen for three hours befor sunrise. On the 31st, Jupiter rises at 1h. 6 m . A. M.

Saturn.

Saturn, like Mercury and Venus, is so nearly in the line f the sun's path as scarcely to be seen in March. It rise on the 1st at 6 h .46 m . A. M., and sets at 5 h .40 m . P. M. On the 31st, Saturn rises at 4 h .56 m . A. M., and sets at 4 h . 0 m . P. M.

Uranus, which is so distant from us that its diameter is only about four seconds of arc, can, with an ordinary telescope, be seen, unlike a star, to show a disk. With a pow erful telescope, Uranus looks like a very small full moon, whiter than the moon in color. At this time (February 17) one of its satellites can be seen.
Uranus rises on the 1st at 4 h .3 m . P. M., and sets at 5 h . 53 m . the next morning. On the 31st, Uranus rises at 2 h . P. M., and sets 3 h . 52 m . of the next morning. On the 31 st Uranus comes to the meridian a few minutes before 9 P. M., and is then 7° west of Regulus, and nearly 3° north.

Neptune.

Neptune cannot be seen in March with good telescopes.
Sun Spots.
The report is from January 18 to February 17 inclusive On January 18 and 19, the large spot and the larger group of pots, mentioned in the last report, were still visible: the group, consisting of three irregularly shaped spots sur rounded by a chain of small ones, being now near the cente and the single spot, on the western limb. On January 23 when the next photograph was taken, the single spot had disappeared, and the group was far advanced on the wester limb. On January 24 it was observed very near the edge, and, before the next observation, on the 27th, it passed off. The picture of this date shows the sun's disk free from spots. The photograph of February 1 shows a very small spot on the eastern limb which could not be found after that date On February 7 a large spot appeared some considerable dis tance from the equator, on the eastern limb. Probably this is the same spot which traversed the disk between the date of January 4 and 21, but was somewhat diminished in size The photographs of January 8, 9, 10, and 13 show a regula motion of the spot. On February 14 a very small spot ac companied the large one, but it has not since been found On February 17 the large spot was seen very near the west ern edge.

The oldest Piece of Iron.

The oldest pieces of iron (wrought iron) now known are probably the sickle blade found by Belzoni under the base of sphnx in Karnac, near Thebes; the blade found by Colone Vyse, imbedded in the masonry of the Great Pyramid; the portion of a cross-cut saw exhumed at Nimroud by Mr. Layar -all of which are now in the British Museum. A wrought bar of Damascus steel was presented by King Porus to Alexander the Great; and the razor steel of China for many centurie has surpassed all European steel in temper and durability of edge. The Hindoos appear to have made wrought iron directly from the ore, without passing it through the furnace from time immemorial; and elaborately wrought masses of iron are still found in India which date from the early cen turies of the Christian era.

Remedial Agents

Sickness beng a tiresome, monotonous, dreary system of endurance, it is not strange that chronic. patients demand from time to time some medicinal plaything which shall give the combined charm of novelty and renewed hope. This accounts, suggests the Daily Graphic, for the successive eras of water cure, friction, Swedish movement, quassia wood drinking cups, steam baths, galvanism, grape cure, milk cure, sun cure, cundurango, warm blood baths, extreme vegetarianism, will cure, and finally blue glass. All of these have doubt less some specific remedial quality, and all in time will pro ably contribute their quota to the grand coming system of eclecticism.

STRAIGHTENING WROUGHT METAL PLATES.

The straightening of iron plates is an operation to properly perform which requires a great deal of jucigment and carefu manipulation. Every blow delivered should be directed to a definite end, for one misdirected blow entails the delivery of many others to correct its evil influence; and hence, if several of such misdirected blows are given, the plate will have upon it a great many more hammer marks, or " ham mer sinks" as they are sometimes termed, than are necessary. As a result, not only will the painter (in fine work) be given extra trouble in stopping the hollows to make a smooth surface, but the following evil will result: Every blow struck by the hammer compresses and proportionately stiffens the small surface upon which it is delivered, and creates a local tension u_{1} on the surrounding metal. The misdirected blows then cause a tension acting in opposition to the effect of the

properly delivered ones; and though the whole plate may be stiffened by the gross amount of blows, yet there will be created local tensions in various parts of the plate, rendering it very likely to spring or buckle out of truth again. If, for example, we take a plate of iron and hammer it indiscriminately all over its surface, we shall find it 'very difficult to straighten it afterwards, not only on account of the foregoing reasons, but for the additional and most important one that the effect of the straightening blows will be less, on account of the hammered surface of the plate offering increased esistance to the effects of each blow; and after the plate is traightened, there will exist in it conflicting strains, an equilibrium of which holds the plate straight, but the weakening of any of which will cause the preponderance of the others to throw the plate out of straight; for the effects of the blows cannot be permanent unless the whole body of the iron is acted upon to an equal extent by the hammer. Suppose, for example, that we take a flat plate, and deliver upon it a series of blows round about its center. The effect will be to make it hollow on one side and rounding on the other, the effect of the blows being, not only to indent the plate in the spots where they fell, but to carry the whole body of the

middle out of true; because, the area of the iron being increased by the stretching effect of the blows, the center leaves the straight line to accommodate the increased area. Thus, if we mark off a square foot in the middle of a plate, and hammer it so as to stretch it and increase its area $\frac{1}{8}$ inch each way, the form of the plate must alter to suit this added area, and the form of a dish or curve is the only one it can assume. If, however, the outside metal is also stretched to the necessary degree, the plate may be made flat. The skillful workman takes advantage of the stretching of the plate; and so soon as he has ascertained where the plate is out of true, he sets to work to stretch it so as to draw the crooked placed straight, taking care that the shape and weight of the hammer and the weight of the blows delivered shall bear a proper relation to the thickness of the plate and the material of which it is composed. If it is of consequence that the finished work shall bear no

Fing.e?.
marks of the hammering, as in the case of engravers' plates flat-faced hammer is employed ; but for other work, the
shapes, as well
as the weigits, of the hammers vary. The hammer shown in Fig. 1 is called a "long crossface:" "long" because it is intended to be used in both hands as a sledge, and is provided with a long handle (being used for heavy work) and "crossface" because the length of the face on one end stands crosswise with the length of the face at the other. This hammer causes the metal to rise or lift in front of it, the direction in which the rise takes place depending upon the direction in which the length of the hammer face strikes the plate. Suppose, for example, that we strike the blows shown at the
end, A, of the plate shown in Fig. 2, and that we then turn the hammer upside down and strike the blows denoted by the marks at B in the same figure (this the workman can perform, by reversing the hammer, with. out changing his position); the result will be to curl up
 the plate as denoted

Fig. 5 by the dotted lines.
This effect is produced by two causes, the first of which is the shape of the hammer face, and the second is the direction in which the blows fall. Fig. 3 represents an iron plate with one each of the blows, respectively shown in Fig. 2, at B and C, delivered upon it. Then, the in dentation of the plate being denoted by the full line, the tension caused to the surrounding iron will be indicated by the dotted lines. It will be noted that these dotted lines are in each case longer on one side of the mark than on the other, and the reason is that the effect is greater on tiat side, or rather in that direction, because the hammer does not fall vertically upon the plate, but somewhat aslant. If the plate shown in Fig. 2 be turned up on edge so as to appear as in Fig. 4, the direction in which the hammer would travel when striking the blows at B (in Fig. 2) is denoted by the arrows, B, in Fig. 4. While if we turn up the same plate so that its edge, D, in Fig. 2, will appear as the edge, D, in Fig. 5, the direction of the blows shown at C, in Fig. 2, will be denoted by the arrows, B, in Fig. 5 ; so that both the shape of the hammer face and the direction of the blow conjointly act to draw or bend the plate in the required direc tion. If we take a ball-faced hammer, the effect will be produced as shown in Fig. 6, in which the cir cle, A, represent the mark left by a ball-face or pene hammer, and the diverg ing dotted lines show the effect of the blow upon

the surrounding iron. B represents a blow delivered by the same hammer, which, while falling, traveled also in the direction of the arrow, C , the direction effects of the blow being denoted by the dotted lines.

We next come to the twist hammer, shown in Fig. 7 in perspective, and in Fig. 7^{\prime} in front view. This is a hand hammer with the two faces standing parallel to each other, but diagonal to the body of the hammer; so that, by turning the handle in the hand, the direction of the hammer marks will be reversed. Suppose, for example, that in Fig. 8 the outlines represent a plate; the lines slanting one way, as at A, will represent hammer marks made with one face, and those slanting made by the other fare marks made by the other face of the hammer, the direction or line in which the hammer fell being the same in both cases. By very little moving of the position of the hammer handle, then, and by turning the hammer as required, the workman can place the hammer marks in any necessary direction, as shown by the remaining marks in Fig. 8, without requiring to change his position. In referring to the hammer marks, as above, it is position. In referring to the hammer marks, as above, it is
not to be supposed that the hammer indents the work, pronot to be supposed that the hammer indents the work, pro-
ducing "hammer sinks:" the term marks being intended to represent the surface of the metal which received the direct impact from the hammer face.
In addition to the shape of the hammer and the direction of the blows, there is to be considered the weight of the hammer and the velocity at which it travels; and in this connection the following remarks may be made: The effect of quick blow is to cause indentations or hammer sinks, bese the speed of the hammer is of as much importance as its weight. A heavy body traveling slowly may represent the same amount of stored-up energy as that of a lighter one traveling at a greater velocity; but the effect of the impact with another body will be quite different. Thus, to use a
familiar example, a tallow candle fired from a gun will pass familiar example, a tallow candle fired from a gun will pass
through an inch board, making a hole clear through the
board; so likewise the effect of a light hammer and a quick blow will be productive of indentations. Quick blows, therefore, are never employed, the weight of the hammer being proportioned to the size of the work.
We next come to the straightening block, that is, the iron block upon which the iron plates are to rest (as shown upon

Fig. 8.

an anvil) while being straightened. The size of this block should be about 12×18 inches, and say 12 inches deep which is large enough for the largest work, as will be perceived from the following considerations: It is necessary that the plate should be solid on the block, directly beneath the part of its surface which is being hammered, otherwise the effect of the blows will be entirely altered. If, for in stance, A, in Fig. 9, represents the straightening block, and B, a plate resting there-
on, then the blows struck upon the plate anywhere save over the very edges of the anvil will have but little effect, because of the spring and rebound of the plate ; and the effect of the blow will be distributed over a large area of the metal, tending to spring it rather than give it a perma nent set. If the blow is a quick one, it may indeed indent the plate without having any straightening effect. On the other hand, by stretching the skin on the upper side of the plate, it will actually, under a succession of blows, become more bent. In fact, to use a straightening block, so large in proportion to the size of the plate that the latter cannot be adjusted so that the part of the plate struck lies solid on the block, renders all the principles above explained almost valueless, and is a process of pounding, in a promiscuous way, productive of hammer marks, and altogether fatal to the production of true work. In the method of manipulation here explained, every blow delivered is given with the object of liberating the strains which may exist in the plate, holding it out of flat, or of drawing the plate so as to bring into line with the general surface those parts which are not in line with the main body of the plate. J. R.

Cologne Water as an Anæsthetic.
Dr. Hugues reports in the Nice Médical several cases of anæsthesia produced by the inhalation of the odor of Cologne water. A young person suffering with tuberculous meningitis was, during a period of excitation when injections of morphine and chloral had not produced the desired effect morphine and chloral had not produced the desired effect,
brought into a sound sleep within seven minutes after a brought into a sound sleep within seven mine the Cologne had been handkerchief saturated with the Cologne had been
placed over the nostrils. The sleep lasted about an hour, and the pulse remained at 75. There was no period of excitement, and the anæsthesia, without being complete, was very marked. Dr. Hugues has tried no new experiments of his own on the subject, but propounds the theory that a kind of hypnotic action takes place on the olfactory nerves analogous to that produced by brilliant objects (when intensely regarded) on the optic nerves. The journal whence we extract the above thinks that the anæsthesia is more likely produced by the essences entering into the Cologne, or possibly it may be due to their combination. In any event, the matter seems to be worth some further investigation.

Health of Employments.
The following instructive table was prepared by direction of the Massachusetts Legislature, by which it appears that the average age of

Reaching the North Pole.

Mr. J. H. Stevens, of Dayton, Ohio, writes to us to sugrest the use of balloons, to be carried as far north as possible in sledges containing compressed gas, the gas being then atilized to inflate the balloons, which are then to be started with wire ropes attached. He thinks that a series of balloons could be started from the highest latitude, say $81^{\circ} \mathrm{N}$., so as to pass over any intervening ice, and that communication could be kept up between the sledges or the ships and the balloons till the object was achieved. The details of the plan, which he gives with great minuteness, are too long for insertion in our columns.

THE TRIAL OF THE HUNDRED-TON GUN.
The 100 -ton gun, built by Sir William Armstrong for the Italian Government, was, as we have already noted, transported to Spezzia, Italy, and there was fired fifty times, this being the proof test called for by the contract with the maker. The results of the trials show that, with a projec tile weighing $1,997 \cdot 6$ lbs., and charges of powder varying between $299 \cdot 6$ and $373 \cdot 5$, the pressures at the bottom of the bore ranged between 16 and $21 \cdot 4$ tons per square inch. The velocities obtained were between $1,337 \cdot 6$ and 1,504 feet per second.
The four targets, against which the shots were directed, varied both in general construction and in the nature of the plates with which they were covered. Target No. 1 was composed of two soft steel from the Creuzot the creuzot foundry. Their dimensions were
32.8 inches long $32 \cdot 8$ inches long
by 56.5 broad by by 56.5 broad by
$21.8 \quad$ inches $21 \cdot 8$ inches
thick. They were backed by two layers of wood measuring $25 \cdot 1$ inches in thick ness, and sup ness, and sup ported
heavy $\begin{gathered}\text { biron }\end{gathered}$
in heavy iron
framework that framework that rested at an
acute angle on acute angle on
the earth. In the earth. In
target No.
2, target No. 2, there was the same general with the excep tion, however, that the plates were of forged irn, TAR English and partly of French manufacture. Target No. 3 had two plates of iron, separated by wood on its upper half. The outer plate was 11.8 inches, and the inner one $9 \cdot 9$ inches, in thickness. The lower half of the target had an outer plate of 9.9 inches backed by a hard cast iron plate 14.8 inches thick. The wooden portions were the same as those already described. Target No. 4 closely resembled No. 3, so that it will be seen that all were constructed with a thickness of $21 \cdot 8$ inches of metal, besides sufficient wooden backing to aggregate a total thickness of about 51 inches.
The firing ground was located in a ravine near the coast, where a butt was erected of sandbags and gabions filled with earth. The cost of targets and earthwork was about $\$ 125,000$, each armor plate being worth about $\$ 4,000$. The effects of the shot-to enter into the detailed consideration of which here would occupy too much space-fully realized all anticipation. The terrible destructiveness of the enor mous projectile is, besides, well exhibited in the annexed engravings representing one of the targets before (Fig. 1) and after (Fig. 2) being struck. Although the projectile failed to traverse entirely the steel plate, it was considered to have dealt the armor a shock which would have irremediably damaged the same had the plating been upon a vessel.
As might be expected, the tidings of these results have created considerable excitement in England, as they show that such vessels as the Inflexible, hitherto deemed impregnable to modern artillery, are no longer so. The British Ad miralty has already ordered the construction of several plates 24 inches thick, or some three inches thicker than those used at Spezzia. Plans for a still larger gun are also under consideration; and the London Times announces the speedy construction of a 200 -ton Fraser gun, capable of throwing a 3,995 lb. shot.

SELF-SETTING RAT TRAP.

The annexed engraving represents a very ingenious rat trap, simply constructed in a manner calculated to allay the

suspicions of the wisest rat, as, after catching its victims, it displays them so that they serve as decoys for others. It consists of a drum-shaped cage of wire divided by a horizontal partition into two compartments. In the head there is a square hole into which is secured, by buttons, a frame carrying a number of downwardly projecting wires. In bearings in this frame is also a shaft, having upon it two diverging rows of wires, which form a swinging gate, sus-

Fig. 1.
pended centrally between the wires of the inlet. This gate the rat can easily push aside, so as to gain access to the interior; but he cannot return, because the gate at once swings back into place. The bait is placed in the upper compartment, and thither the rat makes his way. As soon as it dawns upon him that he is caged, he loses his presence of mind; and in his desire to depart, he dives into the first opening that presents itself. That opening is in the partition, and it leads him into the lower compartment. He cannot return, because the aperture encloses another frame, which is surrounded by converging sharp wires. There he stays, and by his presence deludes his friends into the belief that everything is all right, and that they can step right in and carry off the bait. When they try to do it, they join

Mr. Charles E. Longden, of Naugatuck, Conr., has patFig. 2. lobes, etc., were subjected to a test by throwing them care lessly around the floor, driving nails into boards with a lamp chimney, and pitching the plates 15 or 20 feet on a hard floor. One small plate was thrown into the air about 25 feet and allowed to fall upon a brick floor, without breaking. Lamp chimneys were placed on lamps and heated, and cold water was sprinkled upon them, but these severe tests did not affect he ware in the least. The works employ about 150 persons, mostly boys and girls, and turn out about 1,000 dozen lamp chimneys daily.-Tribune.

EW MANUEACTURE OF RUBBER ARTICI ented through the Scientific American Patent Agency (January 2,1877), a new process and new process and
apparatus for apparatus for forming rubber articles, which consists in dissolving the india rubber in naphtha or other suitable solvent, and dipping the moulds or forms upon which the articles are vulcanized into the solution of rub ber a rumb times, allowing sufficient time after each dipping for the naphtha to evap-
him. After a sufficient number of rats are collected, they orate more or less. When the mould or form becomes sufmay be removed by taking out the wire frames. Their sub- ficiently coated with rubber, the articles are allowed to dry sequent disposal may be left to the consideration of a Scotch errier.
Patented through the Scientific American Patent Agency December 5, 1876. For further particulars relative to sale of State and county rights, etc., address the proprietors and manufacturers, J. T. Wilhide \& Brother, York Road, Carrol county, Md.

More Blue Glass Skeptics.

Mr. Thomas Gaffield, of Boston, who for very many years has given much attention to the action of sunlight on glass, and the action of colored glass upon transmitted sunlirht, makes the following statements, which would be damaging to the nonsensical blue glass theory of Pleasonton if that statement had any foundation to rest upon. Mr. Gaffield says: "The poorest kinds of colorless glass, and even those kinds which have been changed to a yellowish or purple tinge by exposure of years to sunlight, will transmit a much larger amount of the chemical rays than the most actinic of the really colored glasses, the blue and violet." He adds that, in a series of photometrical experiments made by Professor Stimpson and himself in 1867, they fouad purple or violet glass to cut off about 90 per cent. of the light rays; and he estimates that the same glass transmits from 20 to 30 per cent. less chemical influence than any colorless glass.
It has been suggested to us, by a skeptic in patent blue glass science, that it is difficult to perceive how the blue violet rays, which were already in the sunlight before it was filtered by the glass, can be augmented in their influence by such filtration. If they are thus augmented, as is claimed then it logically follows that the present compound of sun light is a very inferior production, in which certain ingredi ents serve to diminish the value of the others, and that the Creator has blundered badly in its manufacture.

Hard Times for Ironworkers in Germany.

In Krupp's works there were 12,100 hands employed in the spring of 1875; in September, 1876, there were 9,000 . The wages for 12 hours were $\$ 1$; now they are 80 cents. In the works of Horde in 1875, 2,800 men were employed, who worked six double shifts every week; in 1876 there were 1,500 men working five double shifts. The Gute-Hoffnung Hutte, at Oberhausen, employed in March, 1873, 7,175; in October, 1874, 5,876; in January, 1876, 4,142 hands. In the Bochum Steel works 4,600 men were employed in 1873 , while in the first two months of 1876 the number was 2,250 .

Remarkable Glassware.

A number of prominent citizens of New York and Brooklyn, including William Cullen Bryant, Erastus Brooks, Chief Engineer Nevins, Secretary Edward A. Kollmeyer, of the Brooklyn Fire Department, and others, paid a visit on Tuesday to the La Bastie Glass Works of South Brooklyn to witness the manufacture of glassware under the process patented by M. de la Bastie, of Paris, in 1875. This process seems to differfrom the manufacture of other glassware only in the component parts of material used, as oxide of lead, soda ash, acid, broken glass, sand, etc. After the ware
has passed from the workmen's hands it undergoes the an has passed from the workmen's hands it undergoes the an
nealing process by being thrown into a bath of tallow. The visitors were conducted through the works and the process of manufacture was explained. They were then conducted
on the mould, and are afterwards vulcanized in the ordinary on the
way.
The

The apparatus used is represented in the annexed engrav ing, C being the vat for containing a solution of rubber or other vulcanizable substance. F is a movable frame, that is capable of sliding vertically through the table, E. A sup port, B, rests upon the frame, F, and has the socket, a, at tached to its under side. In the socket, a, the moulds, A, are placed, so that the moulds project downwards into the rubber solution. The frame, F , is raised or lowered by means of the windlass, G, which is arranged in the frame of the table. A cord, b, running from the said windlass ove he pulley c attached to the under surface of the table i connected with a crossbar, d, in the lower part of the frame F. D is a reservoir for containing a supply of the rubber solution, which is delivered through the pipe, e, to the vat , as the rubber solution in the vat becomes exhausted by dipping the moulds. The moulds or forms, A, are made rom glass. They are first dipped, then raised out of the aid solution and allowed to stand for a short time; and if he coating is not of the required thickness, the operation is epeated. After removal the forms are placed in a vulcan zer, and the rubber is vulcanized in the usual way.
The advantages claimed for this method of working rubber are that articles are seamless, and have a finished exterior and interior surface. They can also be made much more apidly than by the ordinary process. The glass form per mits of readily removing the rubber after it is vulcan ized, and it gives the surface of the rubber, which is in contact with the glass during the process of vulcanizing, a

smooth and finished appearance. A further advantage consists in dispensing with moulds for the outside of the article.

Crab Orchard salts contain lime, magnesia, potash, soda, sulphuric acid, and a trace of hydrochloric, carbonic, and silicic acids.

INDUSTRIAL BARBARIANS.

Dr. Harmand, a French traveler who has recently ex plored a large portion of Cambodia, in Further India, de scribes in his narrative a curious tribe of people known as the Kouys. The name Kouy itself is an interrogatory, mean ing, in the native language, "What is it?" A curious, though of course accidental, coincidence will be noted between the sound of the name and the Latin interrogation Quis 9 Of this tribe there are several sub-tribes, known, strangely enough, by the names of the peculiar industries which form their reby the names of the peculiar industries which form their re-
spective specialties. Thus there are the palm-sugar Kouys, the elephant-hunting Kouys, the paddy-gath ering Kouys, and many others, besides the ironmaking Kouys, whose primitive foundry is illustrated herewith. There is an odd analogy of this industrial division of the barbarous people to the separation of the Dutch and English into guilds, each pursuing its peculiar craft

In the native smelting furnace there is a rectangular hearth upon which the ore is piled in layers, alternating with charcoal. To serve as tweers, twenty-six clay tubes, spread in a fan-shape, are inserted in the walls and led under the charge. Outside the masonry these tubes are prolonged by bamboo pipes in like number, which connect with ber, billows wh the bellows. These las consist of deer skins
fastened tightly down at their edges. To the middle, a rope is attached and led to a bent
lever. By raising this lever, the workman pulls up the mid dle of the hide, thus drawing in the air through the furnaces. The draft produced in one direction is now forced back through the charge in the opposite way by the smith pressing the deer skin down with his foot. As shown, there are two bellows which, working alternately, keep up a con stant blast. There are no valves, and the air of course enters and leaves by the same orifices. So hot a fire is produced by these primitive means that the workmen are compelled to use bamboo screens to shield them from the heat. On each side of the furnace are apertures, whence the scoriæ constantly escape. The furnace is kept in operation but for one day; for by the end of that time it is completely burned out, so that next morning the barbarian ironmaster begins his said to be of fair quality
cident, as it affords a very easy reclining position, and keeps the sufferer with his head and limbs in their natural relative positions.

The average prices for domestic fleece wool in the United States from 1824 to 1861 were for fine $533-10$ cents, for The average for the four years, from 1861 to 1866 , during the war, were: for fine 75 6-10 cents, for medium 74 cents, and for course 70 7-10 cents. In 1864 and 1865 fine and medium wool sold for $\$ 1.15$ a pound, and even coarse woo ometimes sold for $\$ 1$ a pound The average prices for eleven years, from 1866 to 1876 inclusive, were: for fine 55

A KOUY SMELTING FURNACE.
gives the following interesting informa ion regarding the manufacture of Japanese fans. Every one as doubtless remarked the exceeding neatness displayed in heir workmanship, and also has probably wondered how such carefully made articles even as the commoner kinds of
paper fan can be imported to this country and sold at re tail for five cents each Like many other man ufactures, the principle of division of labor is carried out a long way by this branch of industry. The bamboo ibs of the fans are made by private people in their own houses and combination of the various notches cut in the lower part is lef to one of the finishing workmen, who forms the various patterns of the handles according to plans prepared by the designer. In like manner the designer gives out to the en ravers the pattern hat his experienc hinks will be salable or the season next en uing; and when the different blocks have been cut, it still rests with him to say what colors are to be used for each part of th lench par ferent sheets are to be used for the opposit ides of each fan. In fact, according to ou informant, this officia prices in October, 1876 , were: for fine 45 cents, medium 40 holds, if not the best paid, at any rate the most important pos cents, coarse 33 cents a pound; and the average for the year tion on the staff-in-ordinary. When the printed sheets which was for fine $44 \frac{1}{4}$ cents, for medium 44 cents, and for coarse 61 $\frac{1}{2}$ cents.-Philadelphia Ledger.

A NEW AMBULANCE.

Our illustration clearly shows the construction of what seems to be a very convenient device by which a wounded or otherwise invalid person may be carried on the back of a comrade or porter. It will be seen that the weight of the burden is equally distributed over the back of the carrier, so that the whole is borne without undue fatigue. The invention has been used in Turkey during the recent civil war and was found to be handy and easily constructed. It is moreover, light and portable when not in use; and it migh be employed in portable when not in use, and it migh fans have been handed over to the workman, in company with the sets of bamboo slips which are to form the ribs his fors is to fold the two hets are form the fan the will heets rease. This is done by putting them between two pieces of heavily oiled paper, which are properly creased. The four re then folded up together and placed under pressure When sufficient time has elapsed, the sheets are taken out and the moulds used again, the released sheets being packed up or at least twenty-four hours in their folds. The next proess is to take the ribs (which are temporarily arranged in order on a wire) and set them into their places on one of the sheets after it has been spread out on a block and pasted. A

CONVEYING THE WOUNDED FROM A TURKISH BATTLE FIELD

For the Scientifc American.J
 a day's ice yachting on the hudson.

By invitation of Commodore Irving Grinnell, of the New Hamburgh Ice Yacht Club, the writer spent Monday, February 19, in the interesting sport of ice yachting on the Hudson, at New Hamburgh, 65 miles up the river. Mr. Grinnell and the writer prepared for the cold by donning warm overcoats and gloves, and protecting the feet and lower part of the legs from the wind by placing thick knit stocking legs over the junction of pants and shoes and under the indispensable "arctics." When ready, they proceeded from the house down to the river through the grounds, noting before starting that the thermometer was in the vicinity of the freezing point. There was a slight breeze, which soon freshened up, and the ice was in good condition, the morning's sun hav ing as yet had but little effect on it. A safe course could be had for about two and a half miles from just above the New Hamburgh dock, up the river. With some misgivings, the writer lay down on the narrow deck of the Flyaway; and with the commodore at the helm the yacht was soon flying across the river. Flying expresses it; the sensation is like nothing else, and it is very pleasing, though at first one feels like holding on very tight, naturally expecting to be shot out on the glossy surface every time the direction of the craft is reversed. This turnng around, with the speed abating but a little, is a queer sensation. The yacht is steered so as to spin around inside of her own length, or a little over, the skates scraping sideways along the ice, and the adhesion being such that she does not, as would naturally be expected, slide sideways for some distance over the ice before getting on her course again, but makes a perfectly circular track around There were some eight or ten yachts sailing to and fro, tacking here and there on the ice; and occasionally two or three coming up the river together for a friendly trial, made fine pictures with the ice-bound river stretching down, the Tanzkammer bluff to the left, with the grand old Storm King in the distance.
The craft Flyaway has an extreme length of 25 feet from the end of her boom to the tip of her bowsprit; she is built very narrow, in more of a boat form than most ice yachts, the side timbers running past the mast and curving in to the bowsprit as in form of a sailboat; she is sloop rigged, and carries 342 square feet of canvas. When, from the number of times the yacht had been up and down the river, zigzag ging here and there, the writer judged that he had been fully an hour on the ice, his watch recorded but 15 minutes. It is fast living; more impressions are received, and more events take place in a given space of time, than under any other conditions. One minute the boat was at New Hamburgh, and in another, before the observation was noted, she was a mile up the river. Time is constant, but distance loses its ordinary relations to it
Strange to say, from the slight jarring produced by the runners on the ice way, those who are new to the sport feel a sensation much like that felt on the approach of seasick ness; and it has even happened that persons have been veri tably seasick. The rearing, which frequently occurs, does its sha:e in causing this feelnng, as does the quick spinning around before described. This rearing usually happens with a strong wind, and generally when the yacht is on a curve rising some two or three or even four feet above the surface of the ice, the rest of the frame, and consequently the deck, rising in proportion, so that the uninitiated voyager naturally expects a capsize, the yacht running for a few seconds en tirely on the leeward and rudder skates. The voyagers sailed with the wind abeam or from the west, the river's course at New Hamburgh running about a point east of north; and the boat usually made a tack and a half in a mile of straight course, keeping, as is always the case in ice yacht sailing, the sails flat aft, and steering so that the pennant at before the wind in a line with the gaff. When put directly the yacht's speed dropped down to that of the wind, the canvas shivering as if in the eye of the latter. At this dimin ished speed the yacht can be easily stopped by being spun around and brought head on to the wind. This is the method most generally adopted in heavy winds, instead of luffing up in the usual way from a beam wind. The vessel is anchored by placing the rudder at right angles to the keel, and lowering the jib.
In ordinary sailing, a vessel would be at her greatest speed before the wind; while in ice yachting it is just the contrary. Curiously, when sailing at a great speed with the wind abeam, or three quarters free, the yacht travels so much faster than the wind that the latterseems to blow from ahead. In beating to the windward, an ice yacht is pointed more closely, and her speed is about the same as that of the wind. An ice yacht attains her greatest speed when running in a
direction somewhat similar to that in which direction somewhat similar to that in which the wind is blowing, making long legs to the leeward, or, as ice yachts-
men say, she " beats to the leeward." The resultant wind strikes her on the bows; and on changing from one leg to another, instead of " iibing," she goes into stays, with the wind, as before stated, apparently ahead.
A ice boat makes a good deal of noise, though it is not noticed much by the sallors. However, when standing on the ice and watching them, the "roar" of the skates can be heard over a mile away. The Flyaway, with Mr. Grinnell
and the writer on board, participated in the morning in a scrub race with seven other yachts; but no fast time was made, the wind being fickle. The winning yacht made the
ix miles sailed in some 20 minutes. About midday, the

Flyaway was headed for the shore; and it seemed to the
writer as if she were going to run into the stone embankments writer as if she were going to run into the stone embankmen
of the railroad; but by a dexterous turn she was spun half around and stopped.
Mr. Grinnell and the writer then embarked on board the Whiff, the beautifully finished yacht which attracted so much attention at the Centennial Exhibition. The wind being somewhat more steady, some fine spurts were made; and with a ten mile breeze, the swift craft made successively, $1 / 2$ mile in 45 seconds, 1 mile in 70 seconds, and finally 1 mile in 69 seconds, the latter being at the rate of $52 \frac{1}{5}$ miles per hour The Whiff in the afternoon won a 12 mile race, to which
about six miles should be added for tacking, in thirty-three about six miles should be added for tacking, in thirty-thre
minutess there being two other contestants, the winner com ing in a minute ahead.
As results of this day's yachting, the writer found that his face was burnt somewhat by the wind, that the muscles of the upper part of the body were somewhat sore from the straining in holding on to the yacht, and that, as he dropped off to sleep, ice was all around him, and he seemed to hear the runch of the skates, and to be spinning around ad infinitum
[Those of our readers who desire to construct ice boats on the most approved plans will find the full working drawings of the Whiff in Scientific American Supplement, No 63. .Every detail, including runners, framing, rudder, sails, and riggiag, is given to scale, with full particulars. We believe that no publication of the actual plans for building fast ice boats was ever made until those given last year, in our Supplement No. 1, appeared. The two sets of plans (Supplements No. 1 and No. 63) cover the subject very fully; and as a result, the adoption and general use in all cold climates of the American forms of ice yachts may b expected. From Norway, Sweden, Russia, Germany, and
Canada, many copies of these ice boat plans have already Canada, many copies
been ordered.-Eds.]

NEW YORK ACADEMY OF SCIENCES.

The chemical section of the Academy held their regular monthly meeting at the School of Mines, Columbia College, on Monday evening, February 12. The first paper of the evening was by Professor C. F. Chandler, Ph.D., on the
composition of petroleum and the profer standard of safety
Professor Chandler stated that, although petroleum had been known for centuries, it had only recently come into general use for illumination, for the reason that suitable lamps had been wanting. Lamp chimneys were invented about the beginning of the present century, previous to which time there had been only smoky lamps such as are found at Pomperi. The inventor of lamp chimneys had done a great deal for civilization, by making it possible to read at night. In 1856, the manufacture of oil from Boghead coal was be gun, and in a short time coal oil, or kerosene, had come into extensive use. Lamps had been devised for burning this
coal oll, and proved suitable for burning petroleum. A com. pany was organized to collect the petroleum, which was soaked up by blankets from the surface of pools of water The speaker then described the boring of the first well by Colonel Drake, the subsequent excitement, the quantity of oil produced, and other incidents connected with it. The oıl, he said, usually comes from Devonian rocks, which are much older than the carbonıferous or coal measures. Petro leum contains about 85 per cent of carbon to 15 per cent of hydrogen. It consists of a series of hydrocarbonsof the sim plest knd known as the marsh gas or paraffin series, CH_{4} $\mathrm{C}_{2} \mathrm{H}_{6}$, etc., or of the general formula $\mathrm{C} \mathrm{H}_{2 \mathrm{n}+2}$ The oils of Italy do not contain any of the lighter olls, which have
already evaporated. In Pennsylvanıa, the rocks are imper. already evaporated. In Pennsylvania, the rocks are imper ious, and evaporation was consequently impossible.
In California, where the oil is more plentiful on the surface, there is but little beneath, as it has all run away or evaporated. There is another series of hydrocarbons called olefines, o the general formula $\mathrm{C}_{\mathbf{n}} \mathrm{H}_{2 \mathrm{n}}$, but these do not occur to any considerable extent in American petroleum. They are dis tinguished from the paraffin or marsh gas series by the fac that they are attacked by sulphuric acid and converted into
alcohol, so thatthemanufacture of alcohol from illuminating gas is a possibility. Alcohol was exhıbited at the Paris Ex hibition made in that way. There is some doubt at present
whether the white solid which we call paraffin belongs to the paraffin or the olefine series; probably there are some of each series. There is another series of hydrocarbons known as the aromatic series, benzol $\mathrm{C}_{6} \mathrm{H}_{6}$, etc., which is found in Rangoon tar, but not in our petroleum. When benzol is treated with nitric acid, it is converted into artificial oil of bitter almonds. Dr. Chandler thought he had noticed this odor in treating petroleum with nitric acid. After a digression on artificial alizarine, the speaker described the method of refining petroleum by fractional distillation, the destruction of coloring matter and gummy substances by sul phuric acid, and washing with soda, to remove traces of the acid. Slugge acid is the name given to the acid after it has been in contact with the oil, and it is from this acid that we derive the foul odors wafted to this city from Long Island City by every easterly breeze. This acid is used in the manufacture of fertilizers. In regard to testingsafe and danger ous oil, Dr. Chandler showed some interesting experiments. Some oil was placed in an open tester and graduaiiy heated on a water bath with a inermometer It was found to flash, or give off combustible vapors, at 110° Fahr.; and it burned at 118°, being what is called very safe oil. He then placed some of this same oll in a closed vessel resembling a metal lamp, but rrovided with a cork instead of the common head
or burner, and having electric wires attached. On heating
the oil to 85° the oil to 85°, and sending a spark through the vapors, an ex plosion took place which blew out the cork with a loud re port, showing that oil, which has been considered safe, gives out explosive vapor at ordinary summer heat.
devices for securing pressure in filtration
was the subject of a paper by Professor C. A. Seeley. He obtains the pressure on the principle of an aspirator, two bottles being employed and the water allowed to flow from one to the other.
This meeting was largely attended, a number of ladies be ing present, as is usually the case when the meetings are hel at the School of Mines. Nor are we surprised at this, for Dr. Chandler's museum of chemical curiosities is alway open to the inspection of the visitors, and recently this col lection has received several important additions from the Centennial Exhibition. Among the finest of these is Baye Co.'s complete set of coal tar colors, both aniline and lizarine, with the intermediate products, each specimen be ing elegantly mounted with distinct gilt labels bearing the English and German name, and in many cases also the chemical formula. They are also numbered to indicate the order of manufacture; thus, Nos. 1 to 4 are coal, German English, Scotch, and American; 5, coal tar; 6, benzol; 7 nitrobenzol; 8 aniline oil; 9, diamond fuchsine in large crystals; 10, sllk dyed with fuchsine; and so on through each of the principal colors. Then came the rarer homologues of the benzol series, toluol, nitro and benitro toluol, chloride of benzyle; cumol, xylol, and toluidin; then naphthalin, nitro naphthalin, and napthylamine, muriate of aniline, a full set of methyl violets (ten in number), iodides of ethyl and methyl, wood tar, phenol (carbolic acid), rosolic acid, picric acid, and corallin. In the alizarine section, the same orde is observed, coal, coal tar, anthracene (crude and pure), bi bromanthracene, anthraquinone, sulphanthraquinonic acid alizarate of sodium, and alizarine of seven different kinds, with specimens of cottons printed with them. Dr. Chandler has been particularly fortunate in securing to our city this beautiful and instructive exhibit, which he kindly places where all may see it free of charge.

American Fire Arms for the Turks

The Providence Tool Company is at present filling the argest contract for arms ever given to a private armory. It is making six hundred thousand Martini-Henry rifles for th Turkish Government. At the close of last year there had
been about one half of these rifles made and delivered. Rebeen about one half of these rifles made and delivered. Re cently the Turkish Government has been very urgent for the apid fulfilment of the contract, and the works for some me have been turning out these arms at the enormous rate of one thousand per day.

Fire at the St. Louis Bridge.

A destructive fire took place a few days ago in St. Louis Mo., among some shanties and frame buildings at the eas end of the great bridge. A stiff breeze was blowing at the ime, and the fire spread so rapidly that it was some hour before it could be checked, and by that time 1,000 feet of the approach to the bridge was rendered impassable, and it is likely to remain so for some time. The skeleton of the ap proach remains, all the woodwork having been destroyed. The damage to the bridge is estimated at $\$ 125,000$.

Fruit Trees.

It is a good practice to wash the trunk and main branche of fruit trees with lime wash. If the white color is not agreeable. a little soot can be put in to neutralize the glare The wash destroys the eggs of insects and the germs of fungi, and keeps the bark free to swell as the cells grow Where the white scale abounds on the bark the branche may be painted with linseed oil. It is a sure cure, and really seems to make the tree more healthy and vigorous than it would be without the wash.

A New Anæsthetic.
A new anæsthetic has been described by M. Rabuteau be fore the Academy of Sciences, Paris. It is hydrobromic ether, which, he says, can beadministered without difficu: . and which is, moreover, eliminated almost completely by the respiratory passages. It holds an intermediate place be tween chloroform, bromoform, and ether. Considering the frequent recurrence of chloroform accidents, any new anæs thetic which promises to yield a greater degree of immunity from danger of a fatal result is worthy of trial.

Gerent Amprical and foreign eatents.

INEW HOUSEHOLD INVENTIONS.
improved washing machine.
Charles K. Rogers, Oswego Falls, N. Y.-For the purpose of washing out treaky and heavily soiled parts, as wristbands, etc., a washboard in a wringer, so that all the implements required for washing are placed with in convenient reach.
improved washing machine.
William Doan, Blountsville, Tenn.-Tnis consists in an arrangement of cup shaped plungers or compressors attached to a two-armed lever, which is pivoted to the side of a box for containing the clothes and water. The box is provided with
rmproved window shade roller.
Daniel Willis, Harrison, N. J.-When the shade is drawn down slowly, a Daniel Willis, Harrison, N. J.- When the shade is drawn down slowly, a
catch at each revolution of the roller drops into a cam notch, and, when the shade is released, holds the roller from being drawn back by the ten the shade is released, holds the roller from being drawn back by the ten-
sion of the spring. If the shade is drawn down a little and then released quickly, the quick motion of the roller throws the catch outward, so that
it will pass over the shoulder of the notch, and when the motion is checked it will pass over the shoulder of the notch, and when the motion is che
the catch will again drop into the notch and hold the roller in place.
improved washing machine.
Samuel C. Wilson, Forest City, Ark.-By suitable construction, as each presser block moves forward and presses the clothes against the roller, the pawl of that roller will be drawn back, and as the presser block is drawn
back the pawl will be pushed forward to turn the roller and change the oack the pawl will be pushed forward to turn the roller and change the
position of the clothes, so that they may be operated upon each time in new place.

IMPROVED aUtomatic fan.
Seward F. Gray, Valdosta, Ga., administrator of James M. Gray, de ceased.-This is an automatic fan for keeping off flies from dinner tables, sick beds, etc. The speed of the fan may be regulated, in the customary
manner, by a suitable spring brake and regulating screw, that acts on a friction wheel placed on the shaft of one of the transmitting wheels of the clock train.
improved earth closet.
Lemuel Altemus, Olney, Philadelphia, Pa.-This earth closet is so conthe seat.

IMPROVED SHADE HOLDER FOR KEROSENE FIXTURES. Partrick J. Clark and Joseph Kintz, West Meriden, Conn.-This is a shade holder for fixtures of all kinds, in which a lamp or fount with
chimney is used, so arranged that the fount, with the chimney attached, chimney is used, so arranged thal the fount, with the chimney attached, and shade can be moved horizontally sufficiently to be taken from the fixture without removing the shade.
improved coal scuttle.
Charles S. Irwin, St. Joseph, Mo.-This scuttle has a conical body with knees, on which it rests when placed on the stove. The bo
with median slide, to adapt it for use on magazine stoves.

IMPROVED PAPER DISH.
Sylvester E. Harlow, Fairbury, Ill.-The dish is made from a disk of paper which is cut radially from the center to the circumference, and it is
stamped or crimped so as to form a conical bottom, that projects upward, and the flaring rim. The radial edges of the disk are thus made to overlap each other, and are secured by clips.

IMPROVED WARDROBE BEDSTEAD.
Wilson Sutcliffe, Wetherford, Texas.-This is an improved piece of office furniture, that combines office desk, bookcase, sliding and folding
bedstead, hat rack, wash basin, and other devices, so as to utilize all available space in a very convenient manner.

IMPROVED COOKING RANGE
Thomas J. Whitehead, South Paris, Me.-In this case, as in that for
which a patent was granted to same inventor February 3, 1874, the rang which a patent was granted to same inventor February 3, 1874, the range
is in a double walled casing or air chamber, with doors and lids, affording access to the range. It is designed to have greatly increased facilities for cooking on a large scale, and possesses several new features adapting the
construction to that end.
improved reclining chair.
Benjamin F. Manier, Green Island, N. Y.-This consists of a supporting frame, which is attached to the bottom of the chair, and pivoted to the
forked spindle, revolving in a stationary socket base. The bottom frame forked spindle, revolving in a stationary socket base. The bottom frame
and chair are adjusted by the joint action of an arm pivoted to the spindle and to a bell crank lever.
improved nutmeg grater.
Henry Scheibel, Bridgeport, Conn., assignor to himself and John ing main frame, having a socket or receptacle, with a spring-acted follower ing main frame, having a socket or receptacle, with a spring-acted follower volving the disk with the other hand, the nutmeg is grated.

IMPROVED BOOK SUPPORT.
Allston Wilson, New York city.-This is a book rest of cheap and com-
pact construction, on which the book may be conveniently arranged for reading and the leaves retained or clasped without the use of the hand, the book being quickly placed thereon and the leaves turned over in an easy manner. It consists of a supporting block, with swinging arms, folding away in a recess of the block, and having pivoted holding arms or clasps,
folding into recesses at the ends of the arms, for holding the leaves, When folding into recesses at the ends of the arms, for holding the leaves. When
the book is placed on the rest for reading, the arms are raised to the height required by the size of the book, and the holding arms then swing forward on the leaves. For turning a leaf, the arms are slightly raised, and, after the turning of the leaf, carried down again on the pages. When the book is taken off, after use, the leaf holders are folded back into the arms, and the arms then folded down on the block, so that the rest takes up only a small space, and may be stored away in convenient manner

IMPROVED DOOR SPRING.
Frank C. Rheubottom, Union City, Mich.-Screen and storm doors are generally hung on the outside of, and so as to lap over, the case, rendering
it necessary that the spring shall fasten on the edge of and swing under the door when opened, while the moulding of case also leaves a very small space for the attachment of spring. Hence this inventor employs a downwardly tapering spiral spring, which may be adjusted to the edge of a doo or the oval surface of a moulding.
mproved spring pillow.
Angeline Underwood, Carrollton, Ill.-This invention consists of a skeleton frame composed of longitudinal curved spring ribs of wire, and transverse stays attached to a square frame, and backed up by one or more elliptic and spiral springs, and the whole covered in a suitable manner. The object is to provide a pillow which shall retain its form and be cooler and
more comfortable in use than those of ordinary manufacture. Eyes are formed on the ribs and stays form a joint with the frame, so that the parts may move freely without danger of breaking. The frame or skeleton thus
formed is covered in any desirable way. A pillow made in this manner is
formed is covered in any desirable way. A pillow made in this manner is
cool, cleanly, and much more pleasant to use than the ordinary stuffed ones. It is specially adapted for pick romems and and hospitals, as it is is readily
ored and cleaned. When the pillow is to be osed merely for a " sham aired and cleaned. When the pillo
the spiral springs may be omitted.

NEW TEXTILE INVENTIONS.

improved farn guide and cleaner for spooling MACHINES.
Joseph Garrett, Chester, Pa.-The object of this invention is to provide cheap, durable, and efficient device for use in connection with the yarn guide of cotton spooling machines, for preventing the yarn passing through
the guide slat always in the same place, so that the yarn will not be broken the guide slat always in the same place, so that the yarn will not be broken
by the accumulation of dirt, seeds, etc., on the guide, as when the ordinary gy the accumu
improved knitting machine needle.
Stephen Woodward, Manchester, N. H.-This improved needle for knit ing machines is so constructed that the hook and latch of the same may sed for knitting, without the trouble of removing the unused ones from the cylinder; and the invention consists of a knitting machine needle pro vided with a hinge or loose joint between the latch piece and the shank and also with an extension or crook of the shank. When the hook is down the shank will be at the left, the crook at the right, and the hinged part on the right of the end of extension, so that the shauk will readily run in the cam, while the hinged part will be turned up from the work.

NEW AGRICULTURAL INVENTIONS.

IMPROVED CORN HARVESTER.
Aaron Wilson, Tekama, Neb., assignor of one half his right to C. B. Telyea.-This is an improved machine for gathering corn from the stalk while standing in the field, which removes all the ears from the stalk by eans of stripper fingers.
improved milk pan
William Cooley, Waterbury Centre, assignor to himself and C. C. War ren, Waterbury, Vt.-In using this apparatus, the milk is put into the pan, the cover is put on, the air pump is applied, and the air is pumped out, forming vacuum above the milk. By thus removing the pressure of the air from the milk the cream is claimed to rise quickly.

IMPROVED BEEHIVE.
Randall T. Van Valkenburg, Angola, Ind.-The new features are found
in the door having a rear piece with contracted aperture for excluding robbers. Also frames inclosed by the gauze covered frames, which form the living and breeding apartment for the bees; and surplus boxes for receiv g the surplus hoy made

IMPROVED ANIMAL TRAP
George Washington Gibson, Shelbyville, Ky.-This trap is so constructed that there may be nothing to alarm the animal as he enters the trap, thatit will lock the animal in as he attempts to reach the bait, and will reset itself as the animal passes into the cage or inner chamber

IMPROVED CHURN

James W. Smith, Humansville, Mo.-The cream havingbeen pouredinto the receptacle and the cover secured, a rotary dasher is set in motion, and made to throw the cream toward the center, while its arms operate the re-
ciprocating dashers, that force the cream outwardly from the middle of ciprocating

IMPROVED EGG CARRIER.

Lewis Inglee, New York city.-The eggs rest on elastic rubber disks by vertical leaf springs.
improved combined corn planter and cultivator. Eli Chapman Gage, Witoka, Minn.-This improves the construction of
the corn planter for which letters patent were granted to same invento the corn planter for which letters patent were granted to same inventor
December 30,1873 . The novel features consist in the addition of a gear December 30, 1873. The novel features consist in the addition of a gear
wheel, which may be removed and another substituted when it is desired to wheel, which may be removed and another substituted when it is desired to
alter the distance apart of the hills, and a new mode of suspending the plows when turning or moving from place to place

IMPROVED HARVESTER RAKE ARM.
Samuel Noxon, Jr., Ingersoll, Ontario, Can.-This consists of the metal lic section of the rake arm made in two parts, each of which has a part of
the pivot for the cam roller, and also a pivot for the hinge by which the the pivot for the cam roller, and also a pivot for the hinge, by which the
arm is hinged to the revolving head of the rake stand. The arrangement is such that not many pieces are required, and the construction is simplified.

MPROVED HAND CORN SHELLER.
Ludwig H. Pirrung and Michael Zirbes, Chicago, Ill.-This consists of a
grooved plate, swinging toothed lever, and conducting hood and spout, fo grooved plate, swinging toothed lever, and conducting hood and spout, for
conveying the shelled corn to a suitable receptacle. The ear is held with conveying the shelled corn to a suitable receptacle. The ear is held with
the left hand, and turned while the lever is worked to and fro with the the left hand, and turned while the lever is worke
right hand, until the corn is shelled from the cob.

IMPROVED CULTIVATOR.
Elijah H. Perkins and Solomon D. Perkins, Visalia, Cal.-This machine is adapted for cutting theweeds beneath the surface of the ground in cultivating plants so small as not to require soil to be thrown around them. It is also so constructed that it may be expanded and contracted for cultivating
rows of plants of different widths.

IMPROVED HOP POLE.
Charles A Sands, Burlington, Kan.-This invention consists of a central pole that is permanently set in the earth, upon which slides a cross head, to the outer extremities of which wires are attached, that are held at their lower ends by hooks fixed in stakes driven in the earth. The pole is pro-
vided with a rope for raising the cross head, and the ropes are furnisned with friction blocks for the purpose of holding them taut.

improved tree protector.

John G. Peace and Isaac D. Comstock, Salem, Mo.-This consists of a tree box or protector, made of a number of slats nailed to top and bottom
bands of sheet metal, and closed by the hook ends of the same lapping over the end slats. The tree boxes may be manufactured very cheaply, and applied or removed with great facility.
mproved churn
James Higgins, Westfield, N. J.-This consists in hanging a dasher churn on trannions in a suitable frame, and providing or.e of the trunnions with \imath toothed wheel and a lock lever or detent, by which the churn may be
held in a vertical or inclined position. It further consists in the construction of the mechanism by which the churn is driven.

IMPROVED COMBINED FERTILIZER AND SEED SOWER.
Richerd L. Galer, Dunham, and Elijah E. Spencer, Paris of St. Armand East, Quebec, Can.-This invention consists in a combined fertilizer and in such a manner that or crooked movable boots, divided into two flukes in such a manner that, the fertizer being placed in the front boxes and thereto), the drills open the ground, and the fertilizer falls first and then the seeds. The fertilizer and the seeds are then covered with earth by covers hinged to the boots. This machine is capable, by means of its
:traight and crooked movable boots, of changing the width of the rows and
currows in which the fertilizer and the IMPROVED beEHIVE.
Hiram Hatfield, Ossian, Ind.-In this invention the main portion of the hive, being an inner case, rests on cleats on the front and back, having its bottom composed of two sloping pieces, one of which drops below the other
sufficiently to make a suitable passage for the bees into the hive, but so that the passage cannot be gained by the crawling bee moths hive, but so have entrance through the outside case to this passage. It may be closed by a slide, and the passages may be partially closed by a detachable gate The hive fills the outside case between the front and back, but is narrower he other way to make ventlating spaces, in which the dampers are arranged to shut off the air; also, to cut off the passage into the upper part of the outside case when the honey boxes are to be changed.

IMPROVED CULTIVATOR AND CHOPPER.

William B. Killough, Larissa, Tex.-This cultivator and chopper is so onstructed that the plows may be conveniently raised from and lowered to the ground, adjusted to work at any desired distance apart, and at any esired depth in the ground, which will enable the plows to be move aterally in guiding the machine, and which will allow the plows and chop
ping hoe to yield should they strike an obstruction, to prevent the machine rom being broken. This invention consists in combinationsof the vario parts, to receive and support the operating mechanism of the machine, fo guiding and controlling the plows, and for other operations which need en gravings to properly describe their nature.

IMPROVED HORSE HAY FORK.
John B. Denning, Ross, O.-This fork consists essentially of a straight stock and pivoted arms or spurs,operated by a sliding rod. There is a new construction and arrangement of the catch and sliding rod which economizes space, and enables the case to be made flat and narrow, and at the
same time avoids the necessity heretofore existing of pivoting the catch in same time avoids the necessity heretofore existing of pivoting the catch in such manner as to be exposed exteriorly of the case.

NEW MISCELLANEOUS INVENTIONS.

improved combined sack holder and sack filler
Friedrick Sondermeyer and Frederick Schindler, Perryville, Mo.-This an improved machine for holding sacks while being filled, and for rais ing grain or other substances from the floor or ground and discharging it into the sacks. The new features are improvements in the hopper and adhacent machine is moved forward, so that the grain may be taken up by the the machi
elevator.
improved cartridge.
Herbert Buffington, Jacksonville, Fla.-There is a movable auvil for artridges, consisting of a tubular main part, conical head, and end collar or shoulder at inner end. The fire from the primer passes directiy throung thereby the reliable firing of the cartridge, and also a more effectiv
curge combustion of the powder charge.

IMPROVED HELMET LIGHT.
Henry K. Nütze, Philadelphia, Pa.-This is a safety reflecting light, combined with the helmet of
breast of a person by a hook
improved electric train signal
Laning L. Ferris, New York city.-This is a signal to be used on railway rains for indicating the separation of the train or the detachment of cars, and for the use of the conductor in signaling the engineer. It consists of a device attached to each end of the cars that automatically makes an electrical connection so as to ring a bell at the engine when the cars are
separated. It also consists in the arrangement of levers or keys by which separated. It also consists in the arrangement of levers or
the conductor by pulling a cord may signal the engineer.

IMPROVED HAT HOLDER.
Payson H. Miner, Rome, N. Y.-This consists of a support formed of a continuous rod, having conical spiral at one end, upon which the hat rests, and a coil for receiving the screw, bywhich it is attached to the under sid and to whi. The
improved schoor des

> IMPROVED SCHOOL DESK SEAT , Kirk's Cross Roads, Ind.-When th

Eldridge Haynes, Kirk's Cross Roads, Ind.-When the seat is thrown up into vertical position the supports form contact with metallic stays, that are screwe the side standards and to the fulcrums of the seats, so as to

Harry B. Cornish consists in cutting slightly tapering arc shaped grooves in the under surfac of horseshoes. The arc of the said grooves is described in a vertical plane and the grooves are dovetail in transverse section and open downward. It counterpart of the arc shaped dovetail. The object is to provide a horse shoe in which the calks may be readily inserted or removed, but which can not become loosened by any action of the horse's foot.
improved reversible seat
Lucius T. Stanley, Indianapolis, Ind.-This seat is supported by two pairs swinging bars, whose upper ends are pivoted nearer together than the

IMPROVED MACHINERY FOR SCALLOPING BOOT UPPERS.
William Manley, Rochester, N. Y.-This is an improved machine for
molding the button flies, vamps, and quarters of shoes while being scal holding the button flies, vamps, and quarters of shoes while being scal loped. It was fully described and illustrated on p. 322, vol. 35 .

improved weighted horseshoe.

Eugene E. Seixas, Galveston, Tex.-This is an improved weighted horse shoe designed for use in training a horse to trot fast, by extending his striking his knees with his feet. It is so constructed that the weight may
stren be attached and detached, as required, and which when attached shall be entirely out of sight.

IMPROVED BOTTLE STOPPER.
George A. Ohl, Newark, N.J.-This improves the bottlestopper for which letters patent have been granted to A. Luthy, under date of November 2 ,
1875. It consists, mainly, of a rigid curved stoper-carrying lever that provernsist, mainly, of a rigid curved stopper-carying lever that provided at the lower end with an elongated loop or eye that plays in an
extension staple of a solid collar of the neck, to which the closing bail is pivoted.

IMPROVED BLANK BOOK

Hezekiah S. Archer, Brooklyn; N. Y.-This book is so made that an sheets whose reading matter has become valueless, or whose memorand have served the purpose for which they were originally intended, may te
removed. The leaves are open slotted, and are held by clamp nuts working removed.
on screws.
improved wire fence barb.
John Nelson, Creston, Ill., assignor to himself and William H. Gossc., , piece of wire by forming loops at the ends of a straight middle part, at right angles therewith, or nearly so, and upon the opposite sides of the wire, leaving the points projecting in opposite directions.
improved fountain pen.
William Alexander Brice, care of R. Clifirord Poulter, 4A Middle Temple Lane, E.C., London, Encland.-This consists in controlling the flow of
ink to the nib by admitting the air to replace the ink in the reservo ink to the nib by admitting the air to replace the ink in the reservoir
through a bent U-shaped capillary tube leading from an orifice in the side of the reservoir or holder in a convenient position, to be covered by the thumio or finger of the writer when it is desired to check the supply of ink to the pen.

IMPROVED BLOWING TOY.
Henry J. Green, New York city, assigner to Henry Shaffer, of same
place--This is an instrument for indicating the capacity of the lungs by place.-This is an instrument for indicating the capacity of the lungs by gle expiration from the lungs.

IMPROVED COMPOSITION FOR FIREPROOFING.
William J. Ryckman, Brooklyn, assignor to himself and Frank B. Burt, New York city.-In order to render fireproof stage scenery-curtains,
dresses, and fabrics in general-this inventorproposes a sizing compound, which also brings out the subsequently applied paint. It consists of equal parts of borax, alum, and muriate of ammonia.

IMPROVED REIN HOLDER.
Ransom P. Murray, Ashtabula, O.-By this device the reins may be tightly adjusted or displaced in a moment, while they are prevented from
dropping down and getting dirty or entangled with other parts. dropping down and getting dirty or entangled with other parts. The in-
vention consists of two steel springs attached by one fastening bolt, their vention consists of two steel springs attached by one fastening bolt, their
free ends passing in opposite directions to each other, one end extending free ends passing in opposite directions to each other, one end extending
through a top slot of the upper spring part, to be guided thereby when inthrough a top slot of the uppe
serting or detaching the reins.

IMPROVED ROWLOCK.
Eugene Spedden, Astoria, Oregon.-This rowlock is so constructed that it may be readily shipped and unshipped, and cannot be lost, mislaid, or and adapted to be attached to the gunwale of a boat.

improved skate.

John Marson Lamb, South Hampstead, England.-The improvements to secure or detach the skate, said sole plate carrying adjustable toe-clamps, to embrace the side edges of the boot sole, and having a claw which imbeds itself in the heel. The sole plate is operated by a lever similar to some
improved wick attachment for lamps.
John C. Shopland, Northport, N. Y., assignor to himself and William Morgan, of New York city.-The object of this invention is to provide may be filled at any time without extinguishing the light, by detaching the burner, and supporting the same during the refiling of the lamps, employing the light of the flame during the filling by the sufficient supply of oil contained in the wick. The invention consists of a wick attachment, con-
sisting of two separate wicks, the upper sliding up to the wick tube of the sisting of two separate wicks, the upper sliding up to the wick tube of the
burner, and being wound upon a slotted revolving frame below the wick tube, and forming continuous contact with the lower endless wick within the lamp by a guided and spring-acted roller pressing thereon. The burner has a base plate with downwardly extending posts, for supporting the burner and upper wick section during filling, and is tightly secured to a collar and intermediate non-conducting layer of the lamp bow
improved gig harness saddle
John Neill, Sinclairville, N. Y.-In this invention the metallic saddle tree, the side plates or wings of which have their front and rear edges bent upward and outward, and have a leather secured to them, to form sockets to receive the upper ends of bearers, is fastened to the pad. The skirt has
its edges sewn to the edges of the pad. In the lower part of the skirt is formed a cross slit, through which the bearer passes, and which is strengthened by a loop. The bearers are passed in through the slits in the kirts, are passed up beneath the said skirts into the sockets of the saddle break, or require to be renewed from any other cause, they may be drawn out by simply screwing out the terrets. By this construction no jockey is required, making the saddle neater in appearance and simpler in construc-
tion, while at the same time requiring less labor and less stock.

IMPROVED TOY HOOP
Henry F. Post, Paterson, N. J.-This inventor attaches to a child's hoop a diametrical rod with central frame, carrying a pivoted bell, that is actuated by contact of
lution of the hoop.
improved pocketbook fastener.
Daniel M. Read, New York city.-This improves the construction of the pocketbook fastener for which letters patent were granted to same inventor January 11, 1876, so as to make it simpler in construction. The entire fastener is now made of only two pieces.
improved transportation package.
Nathaniel Halsted, Scranton, Pa.-By means of this package, butter, ard, and other substances may be transported safely in ge may be kept on ice in warm weather. Springs are contrived to support the bottom and sides of the jars, and the partitions between the compartments are constructed with openings through the bottom for the circulation of cold air rom ice to be carried in one of the compartments for keeping the butter

improved incubator.

Harris W. Axford, Omaha, Neb.-This is a heating, ventilating, air moistening, and electric heat regulating apparatus for an incubator.
pan contains the eggs to be hatched, said pan being in an oven, surround pan contains the eggs to be hatched, said pan being in an oven, surrounded
by a dead air space, and an insulating box filled with powdered charcoal A pipe admits the heated and moistened air from the chamber surrounding the heater. This pipe contains the damper, to be opened and closed by a lever, which is worked by the armature lever of a magnet, which is placed in the circuit of a battery. The circuit is closed by a mercury gage, which causes the valve to shut off when the heat is too high. When the reverse
is the case, said gage allows the valve to be opened by the spring of the armature lever. The mercury gage enters the center of the incubating oven, where it is subject to the heat, and one part of the wire is kept in
the mercury, while the other part connects with the adjusting screw, which is made to dip into the gage, more or less, according to the degree of heat wanted; so that whea the mercury rises to the point of the screw and makes connection, the armature lever will be attracted, and thus the valve will be closed until, by the cooling of the oven, the mercury falls away from the point where the circuit will be broken, and the valve will be opened by the spring. The heat is furnished by a lamp supplied from the supply of oil, and thus maintaining regular heat.

UNITING THE UPPERS of boots and shoes. David W. Thompson, Englewocd, Ill.-The seam is formed mainly by
means of a narrow strip which is sewed to the verticaledgesof the quarters means of a narrow strip which is sewed to the verticaledges of the quarters
(the face sides of the leather being placed together). The edges of the quarters, as well as those of the strip, thus lie adjacent and opposite when the seam is pressed flat. A linen stay piece is applied on the inner side of
the seam, the same being stitched through the edges of the quarters and the strip, so that all are firmly secured together. But the edges of the qnarters are not directly connected by stitches.

IMPROVED Book clip.
John T. Weston, Creston, Iowa.-This is an improved device for holding music books open upon organs and other musical instruments, and it con into U form, having coils formed upon the middle part of its arms and having the outer parts of its arms bent over parallel with their inner parts In using the device, a bend is placed at the back of the book, when opened at the required place, and arms are placed upon the pages of the book. The coils enable the device to be placed upon books of various thickness. The ends of the arms are bent to form eyes to prevent said ends from catching upon and tearing the paper.

IMPROVED ADDING PENCIL

Charles C. Fields, Abingdon, Va.-The object of this invention is to provide a simple and convenient registering atiachment for pencils and penholders to facilitate the addition of long columns of figures. The invention belongs to that class of adding devices in which nothing less than the tens
are registered, while the units are carried in the mind until they are raised are registered, while the units are carried in the mind until they are raised
to tens. The working parts of the device are compactlyarranged in a case to tens. The working parts of the device are compactlyarranged in a case, through which projects an extension of the slide to permit the operation of
the latter by the finger to move the registering wheel, and the said case is the latter by the ellger for attachment to the pencil, and has also an independent painter and set of digits, whereby the number of units to be carried are separately registered and kept whenever the addition of a column interrupted.

IMPROVED CARPET SWEEPER.
Henry F. Noyes, Boston, Mass.-This invention relates to an improved form of box or case for carpet sweepers; and it consists in the construction and arrangement of the hinges for fastening the lid or cover of the case to the frame, which hinges are formed of straps of metal arranged to embrace a.pintle contained within a marginal bead of the cover, and having their
leaves extended vertically downward into a mortise or slits cut edgewise leaves extended vertically downward into a mortise or slits cut edgewise
in the rear board of the frame wherein they are secured by rivets. It also consists in constructing the arched metal top with a marginal bead, and the edge of the frame with a corresponding groove, and combining the two so as to prevent the escape of dust.

NEW MECHANICAL AND ENGINEERING INVENTIONS.

improved boat detaching apparatus.
William A. Brice, care of R. Clifford Poulter, 4A Middle Temple Lane, E.C., London, England.-This invention consists of a block with horizontal aperture, across which two bolts pass at opposite sides. The block is suspended at the upper is suspended from the device by a loop of rope pass through the aperture in the block from one side, and over or round the hold at the opposite side, and another loop similarly passsd through the aperture and round the other bolt from the other side. The strain on the two ropes in position, and the the sus ind rope is upon them; but immediately they are relieved of the strain by the boat being completely water-borne. The bolts, being in a vertical position, fall by their own gravity and slip out of the loops, which are thus set free

IMPROVED EARTH AUGER.
George W. Shapley and Daniel Phillips, Austin, Minn.-This auger is so constructed as to euable a much larger hole of be ored than the diamerim, so that they may be taken up by the cutters.

IMPROVED CLOTH CUTTER.
George D. Ferris, Springfield, Ill.-This is a combination of a cutter and either straight across the piece or on a bias.
improved plug tobacco machine.
Thomas W. Prather, Union Depot, Tenn.-This invention consists in an arrangement of rollers for forming plugs of tobacco from leaves, which are
fed to the said rollers by an endless apron; and it also consists ina cutting device for cutting the tobacco into suitable lengths after it is flattened by the rolls.
improved metal turning lathe.
Sander Johnson, Minneapolis, Minn.-This consists in the combination of friction rollers placed in spring bearings with the tail stock of a lathe in such a manner that they bear
between it and the lathe bed.
improved apparatus For bunching brooms.
Daniel Van Wicklen, Green Bay, Wis., assignor to himself,Frank Lenz, and August Brauns, of same place.-This consists of two adjustable needles lower part of which is V-shaped near thepoints or upper ends. The object is to provide apparatus for rapidly tying brooms in packages suitable for

IMPROVED HORSESHOE NAIL CLINCHER.
Jacob Slautterback, Mifflintown, Pa.-By suitable construction, as the
handles are pressed together, the jaw that rests upon the forward end of the nail will be drawn downward, bending and clinching the nail. Here s a new and powerful mechanical construction.
improved hand snow plow.
Edwin R. Betts, Bear Lake, Pa.-This consists of a snow plow whose mould board runs by guide rollers and grooves along the rail, and throws
the snow from the inside of the same by a curved upright flange or plate on the snow from the inside of the same by a curved upright flange or plate on
improved gate-operating mechanism.
Albert R. Sherman, Natick, R. I.-This apparatus is for springing and closing gates for railroad crossings and other places. It consists, essentially, of a piston rod connected to the gate so as to swing it open and shut.
Said piston works in a cylinder open at one end to the atmosphere, and connects at the other end, by means of a tube with a pump for forcing a liquid or fluid substance against the piston, so that it is moved in one di rection or the other to operate the gate both ways.
improved ice elevator.
Louis Zistel, Sandusky, O.-This consists af an inclined way, extending from the float in the water to the shore, and from the shore up to the highest point of the ice house, along which an endless traveling rope is con-
ducted, being stretched over suitable pulleys, and moved by horse or other power. Knots of the rope take up a follower, and convey the cakes of ice power. Knots of the rope that conduct them to the ice house.
along the way to the chutes thater
improved circulating device for steam boilers. William Ord, Brooklyn, O.-This invention consists of a boiler with a downward extending water leg, arranged at both sides of the fire box at and a series of conducting tubes to the rear end. The water leg cymmuni cates by bottom holes, and by side holes near the corner or upper part of the leg, with the boiler.

improved steam whistle

John Einig, Jacksonville, Fla.-This consists of a whistle that is divided ongitudinally into three or more compartments of different lengths, each with the usual mouth. The object is to produce simultaneously in a whistle three or more harmonious sounds.

IMPROVED GAS RETORT COVER
August Schwarz, New York city.-This cover is so constructed that may be easily opened and closed, may be closed perfectly tight, and wil
improved anti-friction journal box.
George Wilkes and Alexander Port, Monroe, Iowa.-This consists in the arrangement in the journal box of passages for oiling the rollers, and of a receptacle for oil into which the rollers dip at every revolution around the journal. The object is to provide a journal box that is advpted to journals of car axles, and to other heavy journals, that will be as neariy
frictionless as possible, and which may be readily taken apart for repairs. improved railload tie.
George W. Chandler, Moingona, Iowa.-This consists of a tie constructed of clay or stone blocks, connected by longitudinal iron straps bolded
gether, the straps carrying fastening plates for supporting the rails. IMPROVED HORSE POWER
Radford C. Rhodes and William F. Holden, Crawfordsville, Ga.-This consists of a vertical supporting frame, placed on the main frame of th king post, and extended above and below the same for supporting a ban wheel an shaft beel the to a and whe and pinion on common shaft below the top pie
improved heat fender for furnaces
Joel B. Chandler, Clinton, Iowa, assignor to Francis L. Tupper and M . Chandler, of same place.-This consists of an arrangement of flange strips, to which are riveted, upon one side, sheets of iron, and upon the
other side sheets of zinc, inclosing an air space between. The device thu formed is provided with hooks on the iron side, for hanging it to the rod that cross the face of the furnace. The object is to provide a device fo protecting workmen from the intense heat.

IMPROVED COTTON CHOPPER.
John R. IIcCormick, Georgetown, Tex.-This is an improved machine for scraping, chopping, and cultivating corn and cotton, which embodies
new mechanical construction, enablingit to be easily guided and controlled new mechanical construction, enabling it to be easily guide
and readily adjusted for chopping or cultivating, or both.
improved fastening for sectional ratchet wheel.
J. Morris Childs, Utica, N. Y--The object of this invention is to secure a ratchet wheel to the round shaft of a hayrake in such a way that it cal be put on and taken off without removing the attachments of said shaft, and will carry
and in such a that the shaft with it in its revolution.
improved circulating device in steam boiler. Jacob T. Wainwright, Philadelphia, Pa.-The object of this invention is of combustion back and forth several times through the boiler, and by in troducing the feed water near the point of exit of the products of combus tion, causing it to move between the partitions or deflecting plates towar the warmer portions of the boiler in a direction contrary to that taken by the products of combustion.

NEW WOODWORKING AND HOUSE AND CARRIAGE BUILDING INVENTIONS.
Improved crosscut sawing machine.
Heinrich M. Blohm, New York city, assignor to himself and Johann Erlenwein, of same place.-This is a crosscut sawing machine, that may be worked with great facility by one person, so as to be applied for the
cutting of trees, sawing of the trunks into pieces, etc. It consists of a re ciprocating saw carriage, to which motion is imparted by a rocking sea arrangement, the saw being guided in horizontal or vertical position and fed to the work by spring-acted roller attachments.

IMPROVED FLOOR CLAMP.
John Milton Wilson, Nashua, N. H., assignor to himself and James H Hall, of same place.-This consists in the arrangement of two arms hinged together, so as to form a toggle or knee joint. Upon the extremity of one of the arms a lip is formed that embraces the edge of the flooring. At the
extremity of the other arm a mortise is made, in which a spur is placed, extremity of the other arm a mortise is made, in which a spur is placed, which is driven into the joist. One of the arms is provided with a ratchet,
and the other arm with a pawl, which retains the parts in position when and the other arm with a pawl,

improved wagon lock

Frank Rakes, Greenup, Ky., assignor to himself and William Bryson, of same place.-This device is so constructed that it may be applied to an removed from the wheel while the wagon is in motion. It is formed of an
U-shaped block, provided with the bent shank, a swiveled or pivoted link and a strap. The block is applied to the wheel rim, and as the wheel ro tates forward the jaw clamps the sides of the tire and felly.
improved sled tongue.
John P. Lawson, Chandler's Valley, Pa.-This consists of a sled tongue In which the tongue part is readily detachable from the roller, it being held made taut by a key driven through the tongue against a ring to which the chains are hooked.

IMPROVED FLOORING.

Otis S. Dickinson, Granville Corners, Mass.-This relates to a peculia fastening for the blocks composing tessellated wood flooring; and consists of fastening strips that are T-shaped in cross section, and are fastened to
the floor, and which fit into grooves cut across the end of the grain in the blocks.

MPROVED BOARD ROOFING
Arnold W. Zimmerman, Denison, Tex.-This is so constructed that the boards may contract and expand with changes of temperature withou opening the joints, and which will carry off the rain without allowing it to work in through the said joints. The boards are provided with wide rabtheir opposite edges
improved frame building.
William R. Morris and Joseph Slanser, La Rue, O.-In order to enable ny person to put up such buildings without requiring skilled help, this are bolted together, and locked to the girders by wedge pieces. The posts support the roof by angular plates and plate bearers spiked to posts.
improved machine for planing shingles.
Willard A. Kitts, Oswego, N. Y.-This invention relates to machinery for planing taper sawed shingles both sides at one operation, in which th shingles are passed along the planing knives by push bars worked by end-
less chains. Themachine consists of rotary planers in stationary bearings, one for each side of the shingle, and spring pressers, for pressing the shingles against the planers. The arrangement is such that the tape shingles can be presented to planers in stationary bearings.
improved wheel plow carriage.
Abner K. Wolfe, Prairie City, Mo.-This invention consists in arranging crank axles independently, so as to swing upon tongue, and combining crank axles independently, so as to swing upon tongue, and combining
them with evener, arms, and draft rods, so that when one plow stops the
other can advance to relieve the machine from shocks and side draft, and other can advance to relieve the machine from shocks and side draft, and
 The Charge for Insertion under this head is One Dollar
a line or oech insertion. If the Notice exceads four
lines one Dollar ond a Half per line will becharsed

Diamond Drills, J. Dickinson, 64 Nassau St., N. Y. Valuable patent for sale. Address Box 2277, Phila., Pa. For Sale- 10 H. P. Portable Engine, $\$ 450$; 40 H. P. in. x 12 ft. Lathe, $\$ 175$; at Shearman's, 132 N .3 d street,
N.F. Burnham, York, Pa., wishes to contract with on machine shop in each State to sell
and manufacture gearing for them.
Universal Screw Cutting Index and Rule for Con pound Gearing, pr
New Haven, Conn.
For Sale-State or County rights; an article keepers in the hardware line. Address J. A. Worley,
Baxter's Adjustable Wrenches-The best for Farmers Householders and
Park Place, N. Y.
Wanted-Situation as draughtsman or shop foreman. Understands general machine work. Small salary a a
cepted. References first-class. Address "Expert," 41 N. 4th St., Philadelphia, Pa.

Send for James W. Queen \& Co.'s Catalogue of Draw-
ing Instruments and Materials; also catalogue of Micro scopes, Field Glasses, Teiescopopes, and other optical in ., Philadelphia, Pa.
For Saie-The whole or part interest in a money an
abor saving invention, for shoe factories, now in pract abor saving invention, for shoe factories, now in pract
cal operation. Address J. M. De Lacy, Trenton, N. J.
The Zero Refrigerator was awarded a grand Centen-
nial medal. Send for book. Lesley, 226 W. 23d St., N. \mathbf{Y}. Book on Making and Working Batteries, Electrotyping, Plating, etc., 25 cts. T. Ray, Box 356, Ipswich, Mas Cheap $1!1-$ Foundry and Machine Shop, with or with
out Agricultural Dep't. F. D. Bennett, Jackson, Mich Power \& Foot Presses, Ferracute Co., Bridgeton, N. J. Superior Lace Leather, all sizes, cheap. Hooks and Couplings for flat and round Belts. Send for
C. W. Arny, 148 North 3d St., Philadelphia, Pa.
F. C. Beach \& Co., makers of the Tom Thumb Tele Water St., N. Y.
For Best Presses, Dies, and Fruit Can Tools, Bliss \&
Williams, cor. of Plymouth and Jay Sts., Brooklyn, N.Y. Water, Gas, and Steam Pipe, Wrought Iron.
rices. Bailey, Farrell \& Co., Pittsburgh, Pa.
Hydraulic Presses and Jacks, new and second hand. Lathes and Machinery for Polishing and Buffing metals.
E. Lyon, 470 Grand St., N. Y.
Solid Emery Vulcanite Wheels-The Solid Origina1
Emery Wheel - other kinds imitations and inferior. Caery Wheel - other kinds imitations and inferior
Caution.-Our name is stamped in full on all our best Caution.-Our name is stamped in full on all our best
Standard Belting, Packing, and Hose. Buy that only.
The best is the cheapest. New York Belting and PackThe best is the cheapest. New York Belting
ing Company, 37 and 38 Park Row, New York.
Steel Castings from one lb. to five thousand lbs. InPittsburgh Steel Casting Co., Pittsburgh, Pa. Shingle Heading, and Stave Machine. For Solid Wrought iron Beams, etc., see advertise
ment. Address Union Iron Mills, Pittsburgh, Pa., for
lithograph, etc. lithograph, etc.
Chester Steel Castings Co. make castings twice as strong as malleable iron castings, at abou
price. See their advertisement on page 157 .
Set of Mechanical Curves, as illustrated in Sci. Am. Supplement, No. 50 , mailed on receipt of $\$ 5.25$, by Keuffel Esser, New York.
Hyatt \& Co.'s Varnishes and Japans, as to price, color purity, and durability, are cheap by comparison than any
others extant. 246 Grand st., N. Y. Factory, Newark, others extant. 246 Grand st., N. Y. Factory, Ne
N. J. Send for circular and descriptive price list.
Walrus Leather and supplies for polishing Iron, Stee See Boult's Paneling, Moulding, and Dovetailing Ma chine at Centennial, B. 8-55. Send for pamphlet and
sample of work. B. C. Mack'y Co., Battle Creek, Mich.

J. E. M. will find a description of the jointed boat oar on p. 343, vol. 34.-J. L. will find direc-
tions for fastening leather to iron pulleys on p. 409, vol. 33.-H. W. T. will find something on incubators on p.
273, vol. 33.-D. F. H. will find a description of the 273, vol. $33 .-\mathrm{D}$. F. H. will find a description of the
manufacture of postage stamps on pp. 208,227 , vol. $2 \% .-$ J. M. will find a description of a flour bolt on p. 117, vo
32.-O.F. S. will find something as to acid chromate o lime on p. 28, vol. 36 .-H. E. W. will find a good recipe
for lacquer for brass work on p. 116, vol. 33.-C. L. C. for lacquer for brass work on p. 116, vol. 33.-C. L. C.
and F. W. D. are informed that the botanical name of the garden box is buxus sempervirens.-A. B. will find di rections for grinding old faucets on p. 182, vol. 1, Scien
tific American Supplement.-H. A. B. will find direc TIFIC AMERICAN SUPPLEMENT.-H. A. B. . cylinder on p. 298, vol. 26.-A. A. B. will find particulars as to the opening of the Paris Exposition on May 1, 1878,
on p. 376, vol. 34.-W. I. will find directions for changon p. 376 , vol. $34 .-$ W. I. will find directions for chang-
ing cider into vinegar on p. 106, vol. 32.-J. A. W. will ing cider into vinegar on p. 106, vol. 32.-J. A. W. wil
find directions for making Pharaoh's serpents on p. 218 , the he. Efer, the heat of the hand. The glass does not make it boil

- J. H. W. is informed that the United States Capitol is lighted with gas, which is ignited, when necessary, by
electricity.-T. R. W., Jr., will find on p. 299, vol. 35, electricity.-T. R. W., Jr., will find on p. 299, vol. 35 ,
directions for making paste.-F. W. will find a recipe for a silver polish for metals on p. 299, vol. 31.-Will A.
V., who asks as to shellac varnish, state explicitly what V., who asks as to shellac varnish, state explicitly what
it is that he desires to know?-T. F. T. will find something on burning petroleum in boiler furnaces on p. 165 ,
vol. 30.-J. A. C. will find directions for galvanizing iron on p. 346, vol. 31.-V. A S. will find directions for mak ing indelible ink on p. 394, vol. 33.-F. W. H. will find a
description of an incubator on p. 273, vol. 33.-P. S. T.
will find directions for making a blackboard on p. 299,
vol. 28.-D. O. will find something on the use of old silk on p. 309, vol. $31 .-\mathrm{J}$. J. B. will find a recipe for a black J. D. M., W. A. M., J. A. C., A. K., A. J. W., A. J. B.,
H. K., I. L., W. C. F., J. T. S., and others, who ask us
to recommen bots to recommend books on industrial and scientific sub
jects, should address the booksellers who advertise i our columns, all of whom are trustworthy firms, fo
(1) P. F. K. says: 1. We have a forty horse power return tubular boiler which I blew off lately
for the purpose of washing it out. I blew off at 10 lbs . pressure, having previously pumped it full of water. off cock and left it to cool off. I soon heard loud re ports in the boiler, like pistol shots. I shut off the w
ter as soon as I could, whereupon the reports died awa ter as soon as I could, whereupon the reports died away.
A. The noise was caused by sudden contraction of the heated plates when cooled by the entering water.
Why do the rails on curves of a railroad last longer Why do the rails on curves of a railroad last longer
than those on a straight track? A. We could not answer this question satisfactorily without knowing more
(2) S. G. asks: 1. How is salicylic acid manufactured? A. By strongly heating for several
hours a neutral alkaline carbolate in an atmosphere of ours a neutral alkaline carbolate in an atmosshere of
carbonic acid. The residue in the retort is dissolved in hot water, and the salicylic acid is precipitated in an impure state by the addition of a mineral acid. It is puri fied by distillation in a ${ }^{*}$.current of steam. See p. 259 ,
vol. 35. 2. Could it be used in solution, without quickime, for preserving eggs? A. Yes, if the eggs wer
(3) J. N. S. says: I have concluded to paint my floor and some shelves contiguous to a small engine
with tungstate of soda, as I fear that the excessive heat with tungstate of soda, as I fear that the excessive heat
from the furnace will ignite the woodwork. Will you please give me the formula for mixing the tungstate of oda and water, and the tungstate with the silicate, fo
the paint? A. Dissolve about 1 lb . of the salt in 3 or gallons hot water, and apply with a brush. Dissolve 1 lb. of the waterglass, in fine powder, in 1 callon of boil-
ing water and apply as a varnish. It may be mixe d with ing water and apply as a varnish. It may be mixed with
little oxide of zinc, well agitated when using. It will a little oxide of zinc, well agitated when using.
preserve the wood, as well as render it fireproof.
(4) L. K. says: I have an achromatic telescope which makes stars of the first magnitude appear
as large as the full moon; and I wish to know what additions I can make to increase its magnifying powe A. We think you want to increase its defining power instead of its magnifying power; for no good telescope lill show stars to be anything but a point with more or mosphere. Your telescope lenses are not properly mad or they are misplaced, they have too much aberration, ither spherical or chromatic, or probably both. Take piece of paper three fourths of an inch in diameter, and cover the center of the objective; then focus on an ob-
ject. Then remove the piece, and cover the outside portion, letting the light pass through only that part hich was covered in the first instance. Then focus on the same object, and note the difference of the two.
These will agree if the glass is of the proper curves. If the edge is the shortest focus, then that part of the lens polishing, and vice versa.
(5) W. W. M. says: I have just completed a large barn, and up through the center I have erected from a solid foundation, a strong framework of 8 fee quare; this runsup to the roof. The object of thi ny barn work, such as cleaning oats, cutting hay, shell ing corn, pumping water, etc. I have seen a power
erected in the form of a drum with perpendicular fans which could be closed or opened at pleasure, 1. Ca . If such a plan for the construction of such apowe revolving rectangular cupola upon your barn, the fan might be fixed stationary withina light circular rim, and he force of the wind, when too violent, moderated by he insertion of automatic luffer-blinds in the front of the cupola. The most simple form of such a windmill,
however, would be that in which the sails or fans are set horizontal, and the shaft horizontal and with bear ings near the floor of the cupola, in which case only the upper half of the mill wheel is exposed to the wind. 2 Would it be practicable to have a power of this kind
worked on the principle of the turbine wheel? A. W worked on the principle of the turbine wheel? A. We
think not, as in the case of the turbine the weight of the water is an element that would not apply here.
(6) G. B. M. asks: Can you give me any in ormation concerning the building of a Vienna bake
ven? A. We have been informed that the bread of the ienna Bakery depends, not upon any peculiarity in the ven for its alleged superiority, but upon the yeast and the method used in the manufacture. The ovens are
said to be constructed as follows: They are like theoldfashioned brick ovens which were used before the in scale. There are six of these, each twelve feet long and at the broadest part nine feet wide, the shape being oval. A roaring fire of wood is made in one of these ovens, nd kept until three feet of masonry underneath it ar heated through. The ashes are then carefully swep out, and the bread is baked on the hot tiles which form
the oven floor. Steam pipes pass through these ovens, he oven floor. Steam pipes pass through these ovens,
but these are heated onlywhile the baking is in progress in order to maintain an even temperature. It is necessary to make a new fre in an oven only once or twice in
hree days, according to the amount of baking re quired.
(7) S. G. asks: What is the greatest number of revolutions allowed to a steam fan blower per minute? A. It depends on the form of the fan, pressure
of blast, etc. It would require a considerable treatise t answer your question properly, but you will find much
(8) T. R. V. asks: Does pouring hot water on a frozen lead water pipe cause it to burst? A. We
magine that the hot water only reveals the cracks that imagine that the hot wate.
(9) O. C. L. says: I wish to move a lever ap and down with a force of about 12 liss., and at the rate of about 80 strokes each way per minute, by means
of a weight having a fall of 6 feet. How heavy a weight shall I use, and how shall I a ranange it to work at
thi above speed? How long will itrun? A. You do onot send the above speed? How long will it run? A. You do not send
sufficient data. You can make the calculation for your sufficient data. You can make the calculation for your-
self from the following considerations: Theoretically self from the following considerations: Theoretically,
weight \times (distance it moves while lever makes a stroke) $=$ $12 \times$ length of stroke; so that, if the weight moves ${ }_{1}^{1-2}$ a fast as the lever, it must be 144 lbs.; and if the distance noved by the lever per minute is 6 feet, the contrivance
will run for 12 minutes. A set of gear wheels, with clock escapement, or some similar cont
the movement, will answer very well.
(10) J. C. T. asks: What is the loss of powe on the crank motion compared with the power applied at a tangent? In other words, if it takes 1 ton of coal
to do a given amountof work on the cylinder and crank movement, cutting off at half stroke, with a pisto traveling 300 feet per minute, how much coal would it ake to do a like amount of work if power were applied cutting off so as to work steam down to atmospheric pressure, the rim of the wheel traveling the same number of feet per minute as the piston does? A. There is
no loss of power. You will find this point fully dis no loss of power. You
cussed on p. 121, vol. 31 .
(11) G. A. D. asks: Is it more economical to carry a steam pressure of 60 or 65 lbs. on boiler than it is 40 or 45 lbs ., the engine easily doing the work re-
quired with 25 or 30 lbs . pressure? A. It depends on the engine. If the pressure is reduced by throttling, it will be rather a disadvantage to use high pressure steam. If the engine has an automatic cut-off, there
may be considerable economy in using the increased pressure
(12) J. C. D. asks: What is the best way of testing a boiler in order to ascertain its economy in fuel?
. Measure the coal burned and water evaporated, and also test the quality of the steam
(13) G. W. K. says: 1. Which is the best Way to drive a burr, with belt pulley on spindle, or with bevel gear? A. Unless you use cut gears, the belt will be
rather more efficient. 2 . Will itbe difficult to keep an inch belt from running off of pulleys on upright shafts 10 feet apart? A. Flanged pulleys are often used on
vertical shafts, but are not necessary if the shafts are vertical shafts, but are not necessary if
(14) C. W. N. asks: 1. If a vessel and her cargo weigh 1,000 tons, will she displace 1,000 tons of water, or more or less? Can the hull be modeled so as
(always weighing 1,000 tons complete) to displace more always weighing 1,000 tons complete) to displace m dis
or less than 1,000 tons? A. The weight of water dis placed will always be equal to the weight of vessel and cargo, whatever the models, it being understood, of course, that the vessel floats. 2. A butcher has stated positively to me that, if a creature were put on the
scales, weighed, and then killed in his tracks, that he scales, weighed, and then killed in his tracks, that he would weigh more dead than alive. I disputed this;
was I right? A. We should have been inclined to dispute it too, unless your friend had produced some indis putable evidence in support of his assertion.
(15) J. B. says: I wish to run a small engine, a little time each day, by compressed air, using a
boiler 40 inches $x 20$ feet for a reservoir, and a windmill to force air into the boiler. Can I force the air in with a common force pump, such as is usually used for forcing water into steam boilers? A. It will probably be
necessary to use a water jacket, or some device for cooling the air, if the compression is considerable, unless
(16) M. A. K. says: There are five machines run by compressed air. The compresser stands half a mile from the work. When the compressers are
run by steam, it takes 65 lbs. pressure to run them run by steam, it takes 65 lbs . pressure to run them.
When there is 55 lbs . on the engine, all the machines will not run well. But if one of them stops, the others run all right; and the air escapes from the escape valve on the compresser just as much when the five machine claim that they do not raise pressure enough; another ma claims they are making more than the machines need; fhile. A. According to your account, we agree with while. A. According to your account, we agree with
you that it would be better to increase the pressure.
(17) W. J. McG. asks: In an ellipse the semi-conjugate diameter is equal to the distance from
one of the foci to another and of a semi-transverse dione of the foci to another and of a semi-transverse di-
ameter; and in the application of square root, employed ameter; and in the application of square root, employed
to find distance of foci from center, I make use of a contraction, as follows: To find the difference bet difference. Example: What is the difference between the squares of 7 and 9 ? A. $9+7=16 . \quad 9-7=2.2 \times 16=$

32. Proof: $7^{2}=49,9^{2}=81 . \quad 81-49=32$. A. This is a ell known principle, to be found in neals a. Treatise
(18) J. H. D. asks: Is a locomotive any heavier on the track when drawing a heavy load than she is rumning light or drawing a light load? If she is, how
much, and why? A. If, as is usual, the locomotive is attached to the load in such a manner that it only draws and does not exert any lifting force, the weight
(19) O. G. S. asks: Will a certain quantity of ice placed in an airtight glass box and suspended in water give a greater amount of cold to the water than
the ice were first placed in contact with the water? A given quantity of fce at 32° Fah., unless acted upo by some hygroscopic salt which determines its rapid liquefaction, cannot be made to reduce the temperature of a surrounding body of water more than a certain
number of degrees in a given time. The total and ultimate quantity of heat absorbed or rendered latent by the ice, in the process of liquefaction, regardless of
the time consumed in the act, will be the same under any conditions. Surrounding the block of ice by a glass envelope will somewhat retard the refrigeration of the
surrounding body of water. The degree of refrigeration
exterior heat, the quantity of ice liquefied, and the time consumed in the act
J. S., p. 91, vol. 36 .
(20) B. F. M. asks: Is there a cement that will fasten the butt ends of a rope together, and do it
quickly? A. We do not think it probable that you will succeed well in this. One of the strongest cements adaptable to this purpose consists of a solution of best glue in strong, hot, acetic acid. Even this, however,
does not dry immediately. A fused mixture of equal parts of asphalte and gutta percha is also recommended (21) D. H. says: In a recent issue of your journal, you advised blue colored lamp chimneys to be ased by persons reading a great deal at night. How can
I color my lamp chimneys? A. You cannot stain them satisfactorily, but may purchase suitable chimneys of blue glass.
(22) C. M. says: A German paper gives the following: "Lamp chimney and blowpipe combined. In this novel device the vapors of petroleum mixed with the whole apparatus being of the size of a small scale, lamp, and an experimenter can melt in this way, in a small crucible, 4 ozs. of copper or nickel, or 3 ozs. of wrought iron within 10 minutes' time." Is this possible? A. Popular accounts like the above are usually to be given does not seem impossible.
(23) H. B. asks: 1. Is a short stroke engine 10×16 or 18 inch engine better, and will it furnish more power and more quickly than a 10×20 inch one? A. For the same piston speed, the short stroke engine which make more revolutions per minute than the other, Which may be an advantage or not, according to the design and construction of the engine. For the same num-
ber of revolutions in each case, however, the long stroke engine will develop the most power. 2. Will a portable engine and boiler, say of 25 horse power, for sawmill use, furnish as much power as one of the same size
stationary? A. Yes, if the machinery has the same (24) N. E. L. says: Which takes the most power, a large or a small circular saw, both having the
same surface speed and the same number of teeth to the inch, and cutting the same kerf? A. If one saw has twice the diameter of the other, and cuts at the same rate of speed, it only makes half as many revolutions in power to drive it, under the conditions you any more In practice, however, large saws are thicker than small ones, and frequently run proportionately faster and
with larger feeds and deeper cuts; so that generally arge saws take more power than small ones.
(25) G. H. E. T. asks: What sized fan lower, and what number of revolutions of such, would be required to fill an iron tank which is $2 \times 1 \times 2$ feet in 2 minutes of time to 5 lbs. pressure? A. You will find it difficult, if not impossible, to produce such a pressure
with a fan blower; and if you use a positive action or displacement blower, you cal culate its size to deliver a given quantity of air at a fixed velocity, or the velocity required to deliverthis quantity with a fixed deivery per stroke.
(26) G. T. asks: Our engine room is of stone, two stories high, and is excessively hot in sum-
mer. Ithink it could be much improved by proper ven tilation, but do not know exactly how to proceed. I hought of putting a large air shaft, say 2×4 feet, above the boilers to extend above the roof. Do you think that but the dome, cylinder, and heater are not jacketed, and they radiate a great deal of heat. A. From the description, we judge that there is considerable radiation of heat that might be prevented with advantage both as regards economy and comfort. Then you should admit the outside air, either by means of a wind sail or ven-
tilating wheel, and provide a shaft to allow the heated tilating wheel,
air to escape.
(27) T. W. D. asks: How may a novice refine bookbinders' gold rags on a blacksmith's forge? A. Cut the rags into very small pieces, mix them with a
small quantity of carbonate of soda place loosely in small quantity of carbonate of soda, place loosely in a
small, covered, black lead crucible. Heat the crucible at first moderately and when the clothsare all carbonized raise the temperature to bright redness. The fused gold will collect as a small button in the bottom of the crucible, and when cold may be removed and freed from the
soda by a little sulphuric acid. (28) F. L. asks: In your issue of February 3 there is an article on bronzing. I have tried the com-
position, but there is something wrong about it. My position, but there is something wrong about it. My
method of applying it is to cover the article I wish to method of applying it is to cover the article I wish to
bronze, and let it dry, and then brush it off. What is wrong? A. Heat the metal in the samemanner as when applying a lacquer. The prepar
(29) A. S. asks: 1. Would a plan for cleaning out or scouring sewers be patentable? A. Yes, if open, or under the waths at all tides ${ }^{\circ}$ A. Some of them open, or under the water at ant tides A. Some of them
are partly open at low water. 3 . What are the maximum and what the minimum grades given to sewers? A. The maximum is that of the steepest streets, which in some name either that or the minimum. The not dita name either that or the meed-in some streets not sufficient to prevent the water from backing up into the drains during the preva lence of showers. 4. Are any with only the grade caused
by the fall of the tide, such as the Canal street sewer must be, I think? A. There is a slight grade even in Canal street. 5. Are the inlets from the streets open, or have theyy traps? A. They have culverts which form a
trap; these, however, are easily punched through in trap; these, however, are easily punched through in
cleaning them out, and are not alwayskept in repair. 6 . Is there any difficulty in keeping any of the sewers from accumulating sediment ${ }^{9}$ A. Yes. 7. Is any expense incurred yearly in removing sediment, and is it heavy? A. A contract is made to remove the sediment in the sewers
by the load, and that in the culverts by the year. It is a
(30) S. H. B. asks: Can aniline ink stains
moving ink stains refer to iron inks. A. First try a little rong alcohi, and, then with atrong olution of do the of lime, expose for an hour to bright sunlight and wash well with clean hot water
(31) M. A. F says: 1. I want to make a boiler 8 inches in diameter and 20 inches long. If made of $\frac{1}{8}$ inch copper, how many lbs. pressure will it stand ter shall I put in? A. You can carry a pressure of 100 los. per square inch with a copper boiler. 2. Will wrought iron boiler of the same size stand as much pressure as the copper one? A. The iron boiler wil
stand 140 lbs . Allow a space between the tubes of from $1 / 2$ to $3 / 4 \mathrm{inch}$. 3 . Will the iron boiler do to run an en ine $11 / 2 \times 3$ inches? A. The boiler is rather small, if you desire to work the engine up to full capacity.
(32) T\&D. say: We have a blower, run. ning at the rate of 3,000 revolutions per minute. Does itmake any difference in the hardness of iron, if the blower is near the cupola or some distance from it? A Within the ordinary limits of a foundry, the posi
the blower will not make any material difference.
(33) E. C. B. asks: I hold that if 1 ton pressure be applied to the plunger of a hydrostatic inch whichis 1 square inchin area, the pressure on ardless of size of connecting pipe, if the latter is fur of water. My friend asserts that the hole in the conecting pipe gives the pressure, and the increase will be as its area differs from the area of
right? A. You have the correct idea
(34) S. H. B says: One of your correspon ents recently asked for the correct name of what called the blue hawk. I find, by Cone's "Key to North American Birds," that it is the peregrine falcon (falco
(35) S. H. B. says: I had occasion to tes ne of your answers a short time since as to silverin lass, and had good success, except that I do better with out warming the solutions, and by cleaning glass as
(36) J. A. H. says: I have a hard black rub cr ornament that I wish to fasten to a piece of hard laad.
We use plumbago, etc., and that, with iron and sted ings and otherdirt, gets ground into my hands so th takes a great deal of time and labor to clean them. an you give me a recipe for something that will take oil and dirt off thoroughly and quickly? A. Wash your hands first with oil and sand and then with soap

COMMUNICATIONS RECEIVED

The Editor of the Scientific Auerican acknowledges, ith much pleasure, the receipt of original papers an ontributions upon the following subjects:
On Separating Cobalt from Nickel. By L. S. On Reapers. By G. H. R.
On Instinct. By E. H. R.
On the Supposed Planet Vulcan. By P. On Poisonous Fireworks. By D., S., \& Co.
On Boiler Explosions. By C. W.'Y. On Boiler Explosions. By C. W. Y
On Milking Cows. By A. E. U.
On Milking Cows. By A. E. U.
On Force Analyzed, etc. By T. D.
Also inquiries and answers from the following.
P. H. \& C. F.-J. E. P. H. \& C. F.-J. E. G.-J. C. W.-D. D. J.-E. G.M

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appear should repeat them. If not then published, they may conclude
hat, for good reasons, the Editor declines them. The address of the writer should always be given. Inquiries relating to patents, or to the patentability
of inventions, assignments, etc., will not be published of inventions, assignments, etc., will not be published ere. All such questions, when initials only are given, are thrown into the waste basket, as it would fill half o our paper to print them all; but we generally take plea is given.
Hundreds of inquiries analogous to the following are sent: "Who makes machinery for spinning cotton edar board for boat-building? Who sells hair-head ng machines? Where cin sunflower seed be bought Who sells machines for cutting cards? Where can rail ay ticket-printing machines be bought?" All such per olumn of "Business and Persural ", which is sed, in the ta apart tor that purpose, subject to the charge men tioned at the head of that column. Almost any desire information can in this way be expeditiously obtained.

official

INDEX OF INVENTIONS

Letters Patent of the United States
Granted in the Week Ending January 30, 1877,
AND EACH BEARING THAT DATE. [Those marked (r) are reissued patents.]

A complete copy of any patent in the annexed list, ncluaing both the specifications and drawings, will be
urnished from this office for one dollar. In orderin please state the number and date of the patent desired,
Aloy, composition, F -
nimal trap, W. ... Cox
nimal trap, S. T. Stou
Axle boxes, making, T. V. Le Rey
Bag machine, M. \& R. W. Murphy..
ail and ear for buckets, A. Miller $($
Bale tie, A. A. Goldsmith (r).
Bale tie, A. J. Hanson
Bale tie, P. Hayden..
arbed fence wire, A. C. Decker
Bed bottom cover, spring, K. K. Peck.

Bedstead, invalid, W. Spanner
Bedstead, wardrobe Bedstead, wardrobe, W. McNaughton
Beehive, H. Hatfleld Bell toy. E. C. Barton. Bessemer steel scrap, piling, P. \& W. R. Hayde Birdcage screen, G. W. Chapin Blank book, F. Bowman.. Bobbun winder, A. C. Ca Boiler, Selden \& Nagle. Book clamp, G. T. Wood. Higgins \& Knott Boot attachment, J. H. Johnson Boots, moulding soles of, J. H. Walker. Bottle tops, cover for F M. Piper Bottling machine, A. Christin.. Bran treating process, E O. Pease Brick kill. E. W. Bingham Broom, A. C. Jacques..............
Brooms, bunching, D. Van Wickl Brush, making, J. M. Fatterson.... Camel for raising vessels, S Kitchen. Can, sheet metal, A. E. Leland. Can, sheet metal, A.
Can, tin, J. C. Howar Car brake, street, Kimpel \& Forchland Car coupling, C. H. Knowlton Car starter, S. S. Vollum Cars, draw bar for street, M. Osborn
Carpet sweepers, A. W. stewart Carriage jack, A. J. Tschantz Carriage painter's easel, J. G. Hohenstein Carving attachment for lathes, F. Arbey. Chair, F. L. Patch.
Chair, barber's and dentist's, L. M. Angle
Churn, J. Higgins
Churn dasher, C. J. Syme Cigar show box, F. A. Bracyer.,. Jr..
Cigars, mouth piece for, J. L. Gross Clay picking machine, R. W. Stieneker
Cloth measuring machine, A. Brown... Clothes sprinkler, Maas \& Schnelke. Coffee mill, A. Shepard. Corn planter, J. Clarridge Corn planter, H. Jones.
Corn planter, S. P. Loyd. orn planter, J. G. \& J. H. stokesbary Corset, E. S. Reed.
Cotton gin, P. C. Sawyer..
Cotton gin, W.o. Watson
Cotton gin feeder, Coons \& Van Winkle Cotton seed planter, J.
Cradle, J. A. Kirchner.
cultivator and corn planter, J. F. Poole
Cup, S. S. Newton
Dental plugger, C C . Dental purposes, gold foil for, R. S. Williams Desk, advertising, F. Vornbrock.
Die for making hoes, J. C. Klein Die for making hoes, J. C. Klein..................
Dough-kneading machine, E. L. Edwards. Earth auger, G. Fletcher...
Earth auger, G. B. Franklin
Egg poaching utensil, Townsend et al
Electric telegraphy, A. G. Bell........
Engine, duplex pumping, G. F. Blake
Engine, rotary, J. C. Thomas. Eraser and pencil combined, P. Schrag Evaporating alkalies, Keen \& Burgess (r)
Explosive composition, E. Judson (r)
Eyelet, S. W. Young
Faucetfor baths, etc., , olouble............... . Meyer
Fellies, making metal, R .
Fence, D. R. Ostrander......
Fertilizer and seed sower, Galer \& Spencer Fire alarm signal box, G. Floyd. Fire alarm signal, C. Selden..... Fireproof curtain, W. D. Baker Fireproof express chest, Glover \& Morris. Fireproofing composition, W. J. Ryckman Flovoring sifter, C. F. Wickwire ruit basket, C. c. Roberts
Furnace, etc., smoke consuming, K. M. Jarv Gurnaces, heat fender for, J. B. Chandle Game apparatus, Pitman, \mathbf{w}, Mydrating chlorine, wasnar Gas extinguisher, automatic, T. T. Frye Gas from petroleum, etc., J. Rigby. Gas purifier, P. Munzinger... Gasoline burner, J. H. Bean.
Gate, J. Coffits.......
Gates, operating, A. R. Sherman..
Grocer's scoop, W. T. Sherer Harness pad skirt loop, J. R. Stone
Harness saddle, S. E. Tompkins
Harrow, D. Couch
Harrow, A. F. Davis
Harrow, w. C. Moor
Harrow and cultivator, H. H. Mille
Hat rack, L. F. Gehr
Heater. J. Guardiola
Heater, portable, M. Waterbury.
Heating apparatus, hot water, E.
Heating apparatus, hot water, E. W. Kempin.
Heating soldering irons, etc., J. S. Hu
Hollow auger, G. N. Stearns (r)
Honey box, H. N. Tennant
Horse hay rake, B. Owen...
Horse power, Rhodes \& Holden..
Hose to coupling, attaching, E. A. Leland
Hydraulic elevator valve, T. Me
Hydraulic motor, w. J. Lane...
Ice elevator, L. Zistel. ...
Lamp, Hinrichs \& Re
Lamps, heater attachment for, C. A. Howar
Lap board, G. L. Price
Lathe for irregular bodies, F. Arbey
Lightning rod coupling, Reyburn \& Martin
Loom, A. Gartenmann.
Loom shuttle, A. Hallowell
Leal cabinet, J. M. Evans
Meat cutter, etc., Goodchild \&Hay 186,716
186,753

	$\begin{array}{l}\text { Mining bucket, trip. } \\ 4\end{array}$
Miningmachine, F. M. S. Lechnven	

Oiler, J. H. Bertram...........
Organ coupler, reed, Kelly \& Arno Organ coupler, reed, Kelly
Organ, reed, G. B. Kelly..
Organ, reed, Kelly \& Rand...............
Organ stop action, reed, G. B. Kelly...
Organ, sto action, reed, Kelly \& Rand
Organ, stop action, reed, Kelly \& Rand
Paper box,R. B. Davis..
Paper box, L. P. Heath
Peg float, T. F. Lippengood.
Pen, fountain, P. Goehring.
Pencil sharpener and protector, J. Watrous.
Piano stools, G. A. Ramseyer........
Pigment base, making, H. Knight..
Pile driver, , Gregg..
Pipe coupling and joint
Pipe coupling and joint, H. R.................
Plants, setting, C. J. \& H. W. Williams.
Plow carriage, wheel, A. K. Wolt
Plow point, W. A. Conaway.......
Plow, sulky, \mathbf{W} B. Newman.
Printing press. E. Beech..............
Propelling vessels, T. H. Rawlings.
Rail joint and ffsh plate, Brown \& Smith.....
Railroad tie, G. W. Chandler.............. Rein holder, R. P. Murray....
Rock drill, J. B. Johnson..
Sack holder and sack fller,
Sad iron, C. H. Westphal.
Sample card for neck ties, D. Richter
Saw mill, gang, D. J. Marston
Sawing lumber, J. Springer...
S Swing machine, crosscut, H.

```
Screw blank holder, magnetic, E
```

Screw blanks, making, S. Vanstone
Screw cutting die, A. J. Smart....
Screw cutting die, A. J. Smart....
Screw-threaded rods, making, Va
Screw threaded stock, making, S. Van
Screws, making wood, E. E. Quimby.
Seed dropper, L. Francisco...........
Seed planter, etc., s. B. Gilliland..
Shade holder, Clark \& Kintz.
Shutter worker, W. C. McG.ill
Silt basin, J. Weidenmann...
Silt basin, J. Weidenmann
Sleigh thills, attaching, w.
Snow plow, R. G. Little...
Soda, carbonating, J. McCloskey....
Soldering machine, Dillon and Clea
Spike puller, M. S. Prentice...
Spinning and twisting machin
pinning and wisting machine, H. A. Chapin
Stamp, hand, H. S. Blunt.
Stanchion, A. H. Taft.

Steam radiator, A. W. Cram............
Steam trap and boiler feedèr, E. Fox.
Steam whistle, J. Einig...
Stencil copying press, A.
Stirrup, H. H. Knight....
Stool, spring seat, Hutchinson \& Lung
Stove, coal oil, J. W. Underwood........
treet sweeper, w. H. Gunnell.
Sump extractor, W. Berry, Jr..........
Sugar, drying hard, W. R. Elmenhorst.
Sulky plow, Fuller \& Boyd.
Suspenders, L. C. Warner...

Tenoning and mortising, F. Arbey.
Test gage, O. D. Thayer...
Tobacco curing apparatus, A. Fenn.
Toy horse and carriage, A. Q. Ross...
Tripod for rock drills, J. B. Johnson.
Trunk fastener, \mathbf{F}.
Tube packing. S.L. Fox (r)
Umbrella rib tip, Valentine \& Morrison
Undershirt and drawers, L. R. Sharp......
Valve attachment, safety, H. G. Ashton.
Vehicle spring, W. W. Sayers....
Vehicle wheel, D. \& A. W. Davis.
Ventilating buildings, L. A. Johnson....
Veterinary instrument, L. W. Hamilton
Veterinary instrument, L. W
Wagon brake, C. T. Warren..
Wagon seat fastening, L. A. \& A. L. Davis.
Wash board, S. A. Goulu.
Wash board, T. M. Webb.
Wash board, T.M. Webb......
Washing machine, A. S. Hart...........
Washing machine, Snell \& McDermott.
Washing machine, H. N. Tucker...
Watch, J. R. Hopkins...................
Waters, drawing still, E. R. . Sibley........ Water pipes, freezing o
Weather strip, F. Davis
Welding metal tubes, S. P. M. Tasker...........................
Wheel and pinion, etc., master, M. B. Erskine....
Wheel cultivator, S. Dahlbom
Windmill, Funk \& Mille
Wood bending machine
DESIGNS PATENTED.
9,719-CORSET.-M. Adler, New Haven, Conn.
9,722 to 9,722.-CARPETS.-W. De Hart, Amsterdam, N. 9,723.-CARPFTS.-J. E. Hill, et al., Philadelphia, Pa.
$9,724 .-$ LAMP HoLDERS.-P. Kintz, West Meriden, Conn. 9,725.-MATCH Boxes.-P. Rosenbach, Brooklyn,N. Y.
9,726, to $9,728 .-\mathrm{CARPETS}$.-C. Uster, Amsterdam, $\mathrm{N} . \mathrm{Y}$.
[A copy of any of the above patents may be had by
remitting one dollar to MUNN \& Co., 37 Park Row, New York city.]
gaturetisemratp.
 Engravings may head advertisements at the same
per line, hy measurement as the letter pers.
vertisements must be received at pebtication office
PषOO FOR SALECHEAP.

UPRIGHT DRILL PRESSES,

1NILES ENGINE
 sausage-nitives hes,
 NILES TOOL WORRs,

THE AMERICAN FIREMEN
 HOW TO USE PHOTOGRAPHIC BACE-

TMER Sphicerrini
 STEEL PENS

Of superior European manufacture, and
celebrated above all others for
ELASTICITY EVENNESS OFPOINT ||OURABILITY|
\backslash Bankers, Merchants,
vernment Officials,
Correspondents,

IUISON, BLAKEMAN, TAYIOR \& CO.,
$\frac{\text { Nos. } 138 \text { and } 140 \text { Grand St., NewYork. }}{\text { A L U M I N I U M - I T S CHARACTER }}$

OPIUM
50 Yisitino Girdis mith nane in. ina stami. CeNCRETE DOCKS OF NEW YORK.-With two
and the methgs, showing the Foundations of the Docks
PLEMENT Naking the Concrete Blocks. SUP. PLEMENT No. 23. Price, 10 cents.
WANTED-A SITUATION AS ENGI-

500 =wiveppant

Redrop

SCROIL SAWS.

WEBSTER PECK, Manufacturers' Agent,

A FLY-WHEEL ACCIDENT. - With draw

 Noiseless in operation-Perfect
in workmans sip-all light parts
of Cost Steen of Cast Steel.
Every Enge indicated, and
valve orrected to give the
highest attainable results. Valve corrected to give the
hinhestattainable results.
Warranted superior to any
semi-portable Engine in the semi-portable Engine in thy
markete
Send for Price List and Circa
lar.

Machinery

$T \mathrm{THE}$ UNION IRON MILLS, Pittsburgh, Pa., Manu

 cost

ARSENIC IN THE ARTS.-A Lecture
 paper. SCI ENTHIC AMELICAN UPPPLENENT No. No.
Price, 10 cents. To be had at this office and of all news-
dealers.

NEW DEPARTURE, TRAvELNO

 MESSRRS. B. DAMBACHER \& CO., Hamburg, Germany, dealers in American Wood-Working
Machinery and Tools of all kinds. Messrt. D. E Co solicit consignments from American manu facturers.
Catalogues and descri ptive circulars desired, bv mail.

MACRIMERT

 121 Chambers \& GEOHGE PLACE, 103 Reade Sts., New York City.

ARMEeb WOOD WORKINE Machinery. Woodworth planers and Matchers,
Danicls d Dimension Planers, Univer-
sal Wood Workers, Band © ircular Ra, Wood Workers, Band \& Circular
Cutine Saws, Molding Mortisings Cuting Saws, Molding, Morising and
Taws. Garving, Boring, Shaping, Friez. ing d Sand Papering Machines, Wood
Lathes Maching fiy Forniture,
Car, Wheel di Agricultural Shops. Car, Wheel \& Agricultural Shops,
Superior to ang in use. Prices reduced to suit the times.

$\$ 10$ to $\$ 500$ INVESTED IN WALL ST. Often leads to wealth. A 7 2 pare book explaining every-
thing, and a copy of the Wall street Review, sent free. JOHIN HICEKLING \& CO
Bankers and Brokers 72
Broadway, New
York.
 Chromos, and a copy of the best 16 page literary paper
now published, to. any reader of this paper who will
send them two tct. stamps to pay mailing expenses.

ON BOILER INCRUSTATION AND COR-

FLOM FLOWERS
 EMA
 In Stock, and for Sale by
 Philadelphia and 79 SLLALAERS \& CO., Price lists and pamphlets on application.
 WANTHD $\begin{aligned} & \text { salesmen to sell light hardware to } \\ & \text { Dealers. No P }\end{aligned}$

Pond's Tools.

Ennine Lathes, Planers, Drills, \&c.
Send for Catalogue. DAVID W. POND, Successor to
LUCIUS W. POND, Worcester, Mass

RELIEF PLATES IN HARD TYPE METAL,

ALL KINDS OF PICTORIAL ILLUSTRATIONS

In Books, Newspapers, and Catalogues.
These plates are an excellent substitute for woodcu
way, giving equally good results for much less money.
ELECTROTYPES AND STEREOTYPES
are made from them in the usual manner
We offer special advantages to

MANUFACTURERS AND INVENTORS,

as our mechanical work is of the best quality and rapidly executed.
Our plates are used satisfactorily in the SCIENTIFIC AMERICAN and the SCIEN-
TIFIC AMERICAN SUPPLEMENT, and by Manufacturcrs and Publishers in all parts of
the country.

the country. ${ }^{6}$ COPTY."

We work direct only from Prints or properly prepared Pen and Ink Drawings. Any other copy may be furnished, such as Photographs, Pencil Sketches, or the articles them-
selves, in which cases we have drawings made in the best manner by our own trained draughtsmen. Photograpins, taken in the ordinary way, are suitable, and they may be of any size. We make the plates larger or smaller, as desired.

We are glad to have customers prepare their own Pen Drawings, and append one or two

DIRECTIONS TO ARTISTS:

The most important requisite in Drawings for our use is that every line shall be perfectly black
The paper or drawing board must be white and smooth.
For fine work drawings should be made double the scale of the plate desired.
Carefully observing these main points, the artist has the utmost freedom in his choice of
For further information and fine samples of our work, send stamp for current number of our illustrated Quarterly Circular.

LIST OF ENGRAVINGS.

1. THE LETTER WRITER.
2. THE CROSSING SWEEPER.
3. THE ROyal princesses.
4. THE SKEIN WINDER. 5. THE SPANISH SISTERS.
5. A REST ON THE HILL.
6. THE FAIR CORRESPONDENT.
7. BARTHRAM'S DIRGE.
8. GOING TO SCHOOL
9. PEEP 0'dAY BOY'S CABIN. 11. THE SCANTY MEAL.
10. THE AMAZON.

Printed on heavy toned plate paper, 12×15 inches.

Liberal discount to the trade. Sent postpaid on receipt of price.

PHOTO-ENGRAVING CO., 67 Park Place, New York.
 a specialty of heavy pressores. THE NORWALKIRON WORKS CO.,
W00d-Working Machinery,

 Brainard Milling Machines and styles

Steel Castings,

GEORGE C. HICKS \& CO., Baltimore, Md,

WANTED THE SOLE MANUFACTURE,

AYER \& SON'S MANVAL

contracts. Our business is large. Facilities unsur:
passed. Prices the lowest. Terms the best.
$\$ 12$ a day at home Agents wanted. outil and Lathes, Planers, Shapers, Drills, STH PRPRHOTOGRAPHICAPA-

 THE COMPOUND STEAM PUMP USES
 ation invited. Mdd ress E.X A. Betts, Wimington. Del.
$25{ }^{\text {Beautiful Cards }}$ With name. 10 cents post paid. spare the croton and save the cost. Driven or Tube Wells

YINEQAR. How madid in haow

\$984*mexamix

\& LIGHT Machine Co.
WORCESER, MAss
Manufacture all Iron-Working Machinery, Slafting, Pullegs, so.

Dayton Cam Pump.

ghaturtisementy.

GOARDIOLA'S

 COFFEE \& SUGAR MACHINERY

FOUR GRAND PRIZE MEDALS!

 B. K. BLISS \& sons

R RATENTS

[ESTABLISHED 1846.]

Mnna \& Co.'s Patent Oficices.
The Oldest Agency for oliciting Patents in the
thirty year rs $^{\prime}$ experience.
MORE PATENTS have been secured through this agency, at
They employ as their assistants a corps of t e most experienced men as examiners, specifcation writers, and
draughtsmen, that can be found, many of whom have been selected from the ranks of the Patent Office.
SIXTY THOUSAND inventors have availed SIXTY THOUSAND inventors have availed them-
selves of Munn \& Co.'s services in examining their inventions and procuring their patents.
MUNN \& CO., in connection with the publication of the SCIENTIFIC AMERICAN, continue to examine in ventions, confer with inventors, prepare drawings, spe-
ciffcations, and assignments, attend to fling applications in the Patent Office, paying the Government fees, and
watch each case, step by step, while pendingbeforethe examiner. This is done through their orancho officeec, cor
ner F and 7 th Sts., Washington. They also prepare an ner F and 7th Sts., Washington. They also prepare an
fle caveats, procure design patents, trade marks, and r issues, attend to rejected cases (prepared by the invento or other attorneys), procure copyrights, attend to inter ferences, give written opinions on matters of infring
ment, furnish copies of patents, and, in fact, attend every branch of patent business, both in this and in for eign countries.
A CAN of all inventions patented througn this agency are often sold, in part or whole, to persons attracted to the invention by such notice.
Patentsobtained in Canada, England, France, Belgium,
Germany, Russia, Prussia, Spain, Portugal, the British Colonies, and all other countries where patents are granted, at prices greatly reduced from former rates Send for pamphlet pertaining specially to foreign pat-
ents, which states the cost, time granted, and the reents, which states the cost, t.
quirements for each country.
Copies of Patents.
Persons desiring any patent issued from 1836 to Not er 26, 1867, can be supplicd with official copies at rea onable cost, the price depending up Any patent issued since November 27,1867 , at which
time the Patent office commenced printing the drawing and specifications, may be had by remitting to this of fice $\$ 1$.
A copy of the claims of any patent issued since 1638
will be furnished for $\$ 1$. above, and state name of patentee, title of invention, nd date of patent.
A pamphlet, containing full directions for obtaining bound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every pat entee and mechanic, and is a useful hamdbook of refer

Address MUNN \& CO.
Publishers SCIENTIFIC AMERICAN,
branch office-Con Park row, N. \mathbf{Y}.
BRANCH OFFICE-C

SAWS! SAWS!! SAWS!!! EMERSON'S PATENT

MACHINISTS' TOOLE.
Lathes, Planers, Drills, \&e. NEW HAVEN MANGFAGHENG, CO HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.
 I. B. PIERCES Bexis.

Niagara Steam Pump Works Estasussabi 189\%.
 COVERTNG with "in sp

 SHAFTING

KNOWNES ${ }^{\circ}$

STEAMPUMP WORKS
 PUNCHING Mrop Hammers and Dies. for rork PRESSES.
Macinery or improve sivi For

NEWSPAPER FILE

MUNN \& $\mathbf{C O}$

BARNES
Foot Powe
MACHINERY.
10 NVALUALEERAACHINES

ecommateurs. or Artisans. Highly
Catalogened. Send for illustrated
N. He BALDWIN, Laconia,

20 North $4 t h$ St.,

To appear end of February. The United States BUSINESS DIRECTORTY
 Price to parties who send their order before the bo is issued कौ.70. GEO. DE COLANGE \& Co 8'Bublishers,

Mill FURNOYE'S

 $\frac{\text { J. T. NOYE \& SON, Buffalo, N. Y. }}{\substack{\text { MPORTANT FOR ALL CORPORATIONS AND } \\ \text { MANF'G } \\ \text { CONCERNS. Buert }}}$ man,s Time Detector, capable of accurately con-trolling the motion of a watchman or patrolman at the

 ing, contrary to the
clocks infringing
acoording to law.
MANUFACTURE OF ARTIFICIAL BUT-er.-By Prof. Henry A. Mott, Jr., E.M. With six en Mranufacture, Descriptions of the Principal Processes
Mon
now in use, Details of Latest Improvements, Plan of an Artificial Butter Factory, Engravings of the Machinery required, Chemical Analyses of Butter and of Artifcial
Butter, Details of the Costs of setting up an Artiflial Butter, Details of the Costs of setting up an Artificial
Butter Factory, the Capital required, the materials and
quantities consumed, Cost of manufacture per pound, quantities consumed, Cost of manufacture per pound,
the Daily Proft, etc. A complete and reliable treatise contained in ScIentific American Supplement Nos and of all newsdealers.

JOSEPH C. TODD

Formerly o Hodd Rarerty, ENGINEER Na MACHIN
IST Flax, Hemp, Jute, Rope, Oak um, and Baging
Machinery, Steam Engines, Boilers, etc. Also Agento
 and price. Address. C. TODD,

Brayton Ready Motor
It has no boiler, is safe, economical, started by any
one in one minute, occuppes, smanl sace, and
unsurpassed steady, reliable power spad an
Penna, Ready Motor Co.,
NUC'S IMPROVED
PATENT ELEVATOR BUCKET,

CHLORIDE OF CALCIUIM.
FOR SALE VERY, CHEAP.
B ${ }^{\text {OHARARDUS PATENT UNIVERSAL ECCEN }}$

Working Models
 Tube Cleaners for diening Biver

J. H. Blaisdell's

THE TANITE CO., STROUDSBURG, PA. EMERY WHELSS AND CRINDERS.

BOII
 Schlenker's New Machine Revolving-Die. end for Cataloges., iving priee

 HOWARD IRON WORKS, $\$ 3$ Watches. Chapest in the kown EAGLEFOOTLATHES,

aWith seroll and circuar saw At tach

TO INVENTORS

 AND MANUFACTIRERSFoiriows \& BATE, Manchester, England, Hardware
 Pyrometers, For shoming han of

LeCOUNT'S PATENT

 Machinists ${ }^{\text {Tools. }}$

Inagutulu

SCIENTIFIC AMERICAN For 1877
the most poptiar scientific paper in the world.
thirty-second fear.
VOLUME XXXVI.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN beg o announce that on the sixth day of January, 1877, a ew volume was commenced. It will continue to be the im of the publishers to render the contents of the new volume more attractive and useful than any of its

To the Mechanic and Manufacturer.
No person engaged in any of the mechanical pursuits should think of doing without the Scientific American. Every number contains from six to ten engravings of ew machines and inventions which cannot be found in

TERMS OF SUBSCRIPTION.
One copy of the Scientific Λ merican will be sent for one year, 52 numbers, POSTAGE PREPAID, to any subscriber in the United States or Canada, on receipt of three dollars and twenty cents by the publisher
One catra copy of the Scientific American will be supplicd gratis for every club of five subscribers at $\$ 3.20$ each; or six copies for $\$ 16.50$ without extra copy. Postage frec.
The Scientific American Supplement.
A weekly paper, uniform in size with the Scientific American, but a distinct publication. It contains working drawings of enginecring works, and claborate treatises on cvery branch of Science and Mechanics, by eminent writers, at home and abroad. Λ n illustrated $\$ 5.00$ per annum. Single copies 10 cents.
$\$ 5.00$ per annum. Single copies 10 cents.
Cne copy of the Scientific American and one copy of the Scientific American Supplement will be sent for one year, postage prepaid, to any subscriber in the United States or Canada, on receipt of seven Dollars by the publishers.
The safest way to remit is by Postal-Order, Draft, or Express. Money carefully placed inside of envelopes,
securely sealed, and carefully addressed, seldom goes astray; but it is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

MUNN \& CO

37 PARK ROW, NEW YORK.
THE "Scientific American" is printed with CHAAS.
ENEU JOHNSON \& CO.'S INK. Tenth and Lom-
bard Sts., Philadelphia, and 59 Gold St., New York.

