A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES. vol. XXXXII.--No. 9.] NEW YORK, MARCH 3, 1877.

THE WIRE FOR THE EAST RIVER BRIDGE.
floor. The wire is now transported to a large oven in which is then several times heated and punched with successively The work of manufacturing the crucible steel wire, from which the great cables s nd other portions of the superstrucwhich the great cables © nd other portions of the superstruc-
ture of the East River Bridge are to be made, is now in acture of the East River Bridge are to be made, is now in ac-
tive progress at the factory of Mr. J. Lloyd Haigh, in South tive progress at the factory of Mr. J. Lloyd Haigh, in South mamely, the drawing. This, with the pointing and cleansing left to be finished in the cold plate by the wire drawer him Brooklyn. Some twenty-two months will be devoted to, ing, Fig. 1 ready described, are illustrated in the large engrav- self. For extremely fine wire, the drawplates are sometimes drawing the 6,800 ,
000 lbs . of wire required. The size of wire at present being made is of No. 8 gage, or 0.165 8 gage, or 0.165 inch. Each of the nineteen strands of each of the four main cables will contain 331 wires of this diameter, so that in each cable there will be 6.289 wires.
The mode of manufacture, which is illustrated in the engravings herewith presented, is quite simple, and its processes are few. The steel is received at the factory in the form of rods rolled to about one quarter inch in diameter, and made into coils. and made into coils. brought to a forne brought to a forge, where one end of the rod is heated and then hammered to a point by hand. If the wire to be produced is to be of fine gauge, necessitating several drawings, it is softened by annealing in a by annealing in a suitable furnace The bridge wire, however, does not require this treat ment, and therefore is carried at once to the cleaners, in or der that any oxide or foreign matter on its surface may be removed. The removed. The cleansing proces consists in dipping the coils in vats con-
taining dilute sul

MAKING THE WIRE FOR THE EAST RIVER BRIDGE.-Fig. 1. With a plate hav ing a hole pierced through a ruby of 0.0033 inch in diam eter, a silver wire 170 miles long has been drawn so near ly uniform that neither the microm eter nor the weig ing of equal at the two ends showed any differ ence in size. Gen erally, however, for steel wire draw plates, a very hard steel, known as savage or wild steel, and made out of pig metal, is em ployed.
It will be ob served in the large illustration that the workmen stand before a bench on which are a number of cylinders. These are heavily built, and are rotated by vertical shaft which extend under the bench. Just be low each drum is a cam which acts up on the pivoted lever shown in the foreground on the left. To the end of this lever is fastened a chain which is at tached to nippers or to a dog. Having thrown his coil over reel, the workma inserts the pointed end as far as possi ble through the proper hole in the drawplate. Then with the dog, he grasps the extremi y which protrude through, watching his chance to do so phuric acid until the surface is sufficiently attacked. Then steel, of the shape shown in the illustration, and firmly af- as the cam on turning allows the nippers to be moved to the the further action of the acid is arrested by dashing a mixture of lime and water over the coils as they lie upon the

Fig 2.

fixed to the table or bench. From the flat side of this plate (at which they have their larger extremity) to the opposite
side (which is not necessarily a truly flat surface) several conical holes are pierced are smaller orifices being carefully finished to the sizes they are respectively intended to give to the wire drawn through them. The holes in each plate are made successively smaller by minute gradations, so that the reduction of the wire and the effort required shall be, at the successive drawings, as nearly uniform as possible. The

Fig. 3

Size of the Wire
drawplate is usually about 10 inches long and $1 \frac{1}{2}$ inches thick, and it is made with great care. In France it is formed by repeatedly fusing and hammering, to insure their complete union, the two lateral parts of a compound bar, one part being of wrought iron and the other of a sort of steel called potin, previously obtained by melting to a paste fragments of cast iron pots with white wood charcoal, throwing this into cold water, and repeating the melting and sudden cooling ten or twelve times. When the union of the two parts is complete, the plate is reheated and extended; and it
as the cam on turning allows the nippers to be moved to the
right. As soon as a firm hold of the wire is obtained, the cam in its revolution acts upon the lever with great power, and thus the wire is dragged through the plate for several inches. The nippers are loosed, and a fresh grasp is ob [Continued on page 130.]

Sirientific smmerian.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
publiseed weekly at
NO. 3 Y PARK ROW, NEW YORK.
o. D. MUNN.
A. E. beach.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included...

The Scientific American Supplement

 The safest way to remit is by draft, postal
Address MUNN \& CO., 37 Park Row, N. Y
Address MUNN \& CO., 37 Park Row, N. Y.
the news ageriptions received and single copies of either paper sold by all
VOL. XXXVI., No. 9. [New Series.] Thirrty-second Year. NEW YORK, SATURDAY, MARCH 3,1877 .

TABLE OF CONTENTS OF THE SCIENTIFIC AMERICAN SUPPLEMENT, INO. 61
For the Week ending March 3, 187\%.

Sewage of Towns.
TECHNOLOGY.

III. CHEMISTRY AND METALLURGY.-Wash blue and its analysis. By
IV. ELECTRICITY.-Globular Lightning. By M. GAston PLANTE. With
two engravings. Chaplet Lightining, same author, with 1 engraving.
v. ASTRONOMY.-The New Star By

ASTRONOMY.-The New Star. By Professor C. A. Young.

MUNN \& CO., PURLISHERS,

PUBLISHERS' NOTICE

New subscriptions to the Scientific American and the Scientific American Supplement will, for the present, be entered upon our books to commence with the year, and the back number will be sent to each new subscriber unless a request to the contrary accompanies the order.
Instead of a notice being printed on the wrapper, an nouncing reached subscription is about to end, the time of expiration is subscriber in the printed address each week, so that the subscriber may see when the period for which he has prepaid is about to expire.

SCIENCE PROPHESIES THE FUTURE OF THE RACE.

M. Alphonse de Candolles is to be credited with the strikingly original idea of applying the principle of the Darwinian theory to determine, not the past, but the future of the human race. That principle he defines as " the forced adaptation of organized beings to surrounding circumstances of every kind, the result of which is that the modifications preserved are sometimes good, sometimes bad, that is, accord ing to our human conception of what is good or bad." Rea soning from the truths determined as to the past history of the world as demonstrated by geology, and from the known
records of the origin and progress, extinction or growth, of the various types of mankind which have existed or now exis upon the earth, he deduces a logical conception of life on our planet centuries hence.
The argument presented is based on these premises; first that organized beings endowed with will and the faculty of locomotion always seek to adapt themselves to their environment, and none do so more effectually than man, because of his superior intelligence. Secondly, that those individuals least able thus to accommodite themselves are most likely o perish, and hence populations are principally recruited by individuals that possess the qualities best adapted to the cir cumstances of the country and the age in which they live Thirdly, that the violent contests between nations and individuals accelerate modifications and adaptations to new circumstances. It will be evident that, in considering the sub ject, two possible conditions of the race at once present themselves, or rather two questions are before us to answer What will be the state of mankind one thousand years hence during which period it is reasonably certain that the physical conditions which affect the species will remain stable? And what will be the state of mankind several hundred thousand years in the future, when vast cosmical changes may possibly have occurred?
The period of one thousand years is an extremely short one in the earth's history. We have historic documents dating even further back; and since their origin, no material change in climate has taken place, nor have the configurations of the globe altered. The supposition of a continuation of present physical conditions during several generations of man is thus presumable; and such being the case, two phenomena may be foreseen, namely: The land will be more thickly inhabited, for everywhere the population is increasing and seeking new places of abode; and as a consequence,
there will be more frequent mingling of races. Conformably to the doctrines of natural selection and survival of the fittest, the weaker races must then either be destroyed or absorbed by the stronger ones. This is already taking place with the Indians, the Australians, the Hottentots, and other aboriginal tribes. There are three great races, however, endowed with admirable qualities for invasion, which will mix with the in ferior races more or less, according to circumstances. These are the white race, represented by the Europeans and their American descendants, the yellow race or Chinese and Japanese, and the negroes. The whites have the advantage of intelligence and ability to bear cold climates; but they cannot endure tropical heats. Negroes possess physical vigor; but as regards bearing cold and heat, they are the reverse of the whites. The Chinese can exist in all latitudes, but they lack courage and progressiveness. The mingling of the three races will therefore never be complete; and al though, ten centuries hence, hybrid peoples of every degree will be found in Africa, in China, and in the north of Europe and America, the primitive races will predominate.
Before the far more remote period designated in the second question shall arrive, great changes may, as we have already intimated, occur. The entire habitable surface of the globe may be altered by the depressions and elevations of its sur face, constantly, though slowly, in progress. New diseases may sweep off whole nations, or the race itself. The acoumulation of ice at the poles may produce changes in winds, in currents, eventually in climate; and another glacial period may supervene, the effect of which would be to drive all or ganized beings toward the equator; and this change in habitation would result in the extinction of many species. Our entire solar system is moving with great rapidity in a cer tain direction. It may enter a warmer or colder part of the Universe, or the sun may blaze up and be destroyed, as did that other sun in the constellation of the Swan quite recently. But setting aside these hypothetical cases, let us see what Science predicts as absolutely certain:
Through the oxidizing action of the air and by human labor, the quantity of metals and coal on the surface of the earth is constantly being diminished. Undoubtedly as this occurs, new ways of working mines to great depth and of utilizing natural metallic oxides will be discovered; but these resources can never be so advantageous as those we now enjoy As they become rare, so will population diminish and indus tries decrease; and this result will be the more marked in countries depending upon such resources. We know that
the terrestrial surface is constantly diminishing, and elevated the terrestrial surface is constantly diminishing, and elevated
regions are being lowered through the incessant action of water, ice, and air. The earthy matter, washed or ground away, is carried to the sea, which is thus filling up. The result, however, will be a total submersion of the land as it
now exists, and the destruction of all organized beings which live thereon or in fresh water. But the human species, because of its intelligence, will survive longest; and perhaps the last man will yield up his life on some isolated coral reef in the vast waste of water. Before this extreme period is reached, however, as the treasures of the earth disappear in certain localities, people will seek them elsewhere; and thus
the races will congregate in masses on smaller areas of terrestrial surface. This concentration will be enforced by other causes, as, combustibles and metals being scarce, intercommunication will be difficult; through the depression of mountain chains diminishing the condensation of aqueous vapors, now fertile countries will become sterile, and populations will accordingly diminish. Then, as the continents deprived of mountains become partial deserts or archipelagoes, the people will become more and more maritime. They will draw their sustenance from the sea, which will form a barrier to the mingling of races. The whites who will avoid equatorial regions will suffer most from ice invasions from the poles; and the colored races in the central archipelagoes, remaining pure as at present, on account of natural selection during their long isolation, will probably be the survivors of the race.
To recapitulate, M. de Candolles believes that our period and that which will follow for the next thousand years will be characterized by a great increase in population, a mingling of races, and a prosperity more or less marked. Then will probably follow a long period of diminution of population, of separation of the peoples, and of decadence.

A GOOD POLICY.

A very handsome compliment has just been paid to the United States by the Secretary of the Geological Society of Edinburgh, Scotland. Writing under date of January 20, to announce the election of Professor F. V. Hayden as Foreign Corresponding Fellow, the secretary justifies the defence of American science by Dr. Draper (see Scientific American, page 360, vol. xxxv.) and says: "I am glad to take this oppage 360, vol. xxxv.) and says: "I am glad to take this op portunity of stating that, in the opinion of myself and my
scientific friends in this city, no government in the world scientific friends in this city, no government in the world
equals that of the United States in the liberality, importance, and, I may add, magnificence of its donations to scientific societies throughout the civilized globe. Beside it the liberality of the British Government, even to British societies, inks into insignificance."
This is as it should be. It is the very best policy of a government like ours to favor Science in every legitimate way. As a people, our indebtedness to Science at home and abroad is simply immeasurable. It has furnished the true basis of our national culture. It has made our agriculture hat it is-the source of national wealth and strength. It has enabled us to become the great manufacturing country of the world, and has done more to further the speedy deelopment of our mineral and other material resources tha ny other agency. We do well therefore to deal liberally with Science at home and to be lavish rather than niggardly in distributing abroad the results of our scientific surveys and experimental investigations.
This policy is particularly worthy of encouragement at this present time. Hitherto no effort has been spared to aid and encourage emigration: with what success and profit may be seen in our rapid increase in wealth and population, nd in the rapid conquest of vast areas lately a wilderness, now overspread by fertile farms, dotted with thrifty towns nd rising cities, knit together by railways and telegraph lines. The time has come, however, when our need is not so much empty handed emigrants, however stout and willing to work, as men of a higher intellectual and financial grade, men with capital to invest, men capable of taking a mor important part in the discovery and development of our ma terial resources. The old world is full of men of this sort, men of culture and enterprise, with money to sustain both who are on the outlook for opportunities for the exercise of their talents. There is no better way to reach such men and give them a favorabie impression of our country and people, than to be well represented at all the local centers of activity and culture. Our government publications are re plete with matter of great interest and value; and it is a wise policy which secures their distribution among the librarie of the world, particularly among those of the scientific societies. There is that scattereth, and yet increaseth: and the converse is equally true, as the same ancient experience discovered: There is that withholdeth more than is meet, but it tendeth to poverty.
It is to be hoped that the ostentatious economy (?) that broke out in Washington awhile ago will pass away before this relatively inexpensive yet profitable policy, in dealing with Science at home and abroad, is completely reversed.

PROTECTION OF BUILDINGS FROM LIGHTNING.

Under this head, the English journals publish an abstrac of a paper by Professor J. Clerk-Maxwell, which is likely, on account of the high reputation of its author as a scientist, to disturb the minds of many who have no very clear conception of the nature of electricity. The Professor states first that it appears to him that the extension of a lightning conductor above the highest part of a building, connected at its lower extremity with conducting strata underground, and thus tapping the electricity, is calculated rather to protect the surrounding country, and to relieve the clouds, than to protect the building
This idea is in direct conflict with experience, which has aught us that buildings protected by well constructed light ning rods are never damaged, but that the surrounding buildings have often been struck; and hence we have the well established maxim that the protecting influence of lightning rod extends around it in a radius of $50,100,150$ or more feet, according to the height of the rod, and other incidental circumstances sometimes difficult to define incidental circumstances sometimes difficult to define.
Whenever a house provided with a lightning rod has been
struck, it has invariably been proved that the rod was in de fective condition; and defects in this regard are more common than is generally suspected. Professor Maxwell goes on to state what, according to his ideas, would be required
to prevent the possibility of a discharge within a certain re to prevent the possibility of a discharge within a certain re-
gion. Take for instance a gunpowder manufactory. He says that it would be sufficient to surround it with conduct ing material, to coat the roof, walls, and ground floor with thick sheet copper, and make no earth connection. He even proposes to isolate the building and its contents with a layer of asphaltum. He says that if the building were struck it would remain charged, and that a person standing on the ground outside, and touching the wall, might receive a
shock but that no electrical effect would be perceived inside the building. We need hardly say that the execution of such a proposal would be so expensive as to make its practical application objectionable on acconnt of the cost; but we must point out that the arrangement would lack one of the main virtues of : good lightning rod, namely, the gradual and silent discharge of atmospheric electricity, and also that from thunderclouds, thus making explosive discharges less destructive, if not preventing them entirely. It would appear that Professor Maxwell wishes to prevent this discharge, and desires to charge the isolated gunpowder maga-
zine with the electricity of the cloud; but he forgets the zine with the electricity of the cloud; but he forgets the
vicinity of the conducting earth under the layer of asphal tum. The surface of the earth always becomes charged by induction when an electrically charged cloud is over it; and if, according to Professor Max well's proposition, the powder ma gazine were isolated, and charged from the cloud, it would only serve to make the induced charge of the earth's surface
stronger in proportion as the powder magazine is nearer to the earth than to the cloud, of which, electrically speaking, the powder magazine would become a part. If there wereno connection between the cloud and the magazine, layers of dry air intervening, the powder magazine, being placed between the negative earth and the positive cloud, would not have its charge equally distributed, but its floor would have an exces of positive electricity, and its roof an excess of comparatively
negative electricity. If a better communication, by means negative electricity. If a better communication, by means
of moist air, were established with the cloud, so as to neuof moist air, were established with the cloud, so as to neu-
tralize the negative electricity and charge the whole powder magazine with positive electricity, the danger would be of a different nature. Having the same charge as the cloud, and being, as we have stated, a part of the same, its antago nist is now the earth; and a discharge between the gunpowder mill and the earth, through or along the asphaltum isolater, is now to be feared, changing suddenly the electric condition of the magazine. We ask if this may not be undesirable, or even dangerous? Certainly, if this be considered an open question, it will be more safe not to run the risk.
Professor Maxwell goes further on to state that it is unneces sary to connect large masses of metal, such as engines, tanks, etc., in the building. But if any conductors communicating
with outside objects, such as gas or water pipes, telegraph with outside objects, such as gas or water pipes, telegraph
wires, etc., en ter, they must be connected. This is a very wires, etc., en ter, the y must be connected. This is a very
curious statement. What now becomes of the isolation, on which, according to Professor Max well, the safety principally depends? If the gunpowder mill be connected with the earth, it can no more be charged like the cloud, but will, by induction, possess the opposite electricity, and the chances of explosive discharge will be made much greater. The greater or less danger from such explosive discharges depends entirely on the degree of perfection of the ground connections these may be good enough to draw slowly the negative electricity from the ground, induced by a positively charged cloud floating over the building, which would also charge the building strongly by induction; but these very connections may be utterly inadequate to discharge suddenly a
large quantity of electricity flashing from the cloud to the building: in which case the current is not confined to the lightning rod, but takes an additional path, any that it can find, and so does the damage. Professor Clerk-Max well says, further, that no telegraph wire from without should be connected with nor enter a powder mill, as it would make the telegraph useless; we would add another important reasonnamely, that sparks of atmospheric electricity entering the mill by telegraph wire, as they often do telegraph offices, would be dangerous visitors.
In order to avoid the expense of covering a whole powder mill with sheet copper, the Professor finally suggested surrounding it with a network of copper rods, one fourth of an inch in diameter, the rods passing round the foundation and 1p each of the corners and gables, and along the ridges. He also proposes to build the copper wire in the wall to prevent theft, and recommends that it be connected with all metals on the outside of the house, such as sheet lead, rainwater pipes, etc., and also with the gas and water pipes in the building; but if these be not present, he says that there is no necessity to take any pains to facilitate an escape of the electricity into the earth; neitioer is it, he thinks, advisable to erect a tall conductor with a sharp point, to relieve the thunderclouds of their charges.
Now with all respect to Professor Maxwell, we must remark that all this is a mere rehash of a very old discussion on a question which was thoroughly ventilated and disposed of some seventy-five years ago, as will be found on reference to Gilbert's "Annalen der Physie," volumes VIII. and IX., wherein is described a controversy between Professors Wolf, of Hanover, and Reimann. Professor Wolf attacked the then increasing notion that tall conductors with sharp points were needless and even dangerous; the latter defended their use, and attempted to prove their effectiveness on the basis
of experience and observation, as well as on theory. In read
ing over this instructive discussion, we cannot help being struck by the fact that, with all our progress in the scienc of dynamic electricity, and its applications to telegraphy, electro-plating, artificial light, etc., we know little more of static electricity than we did seventy-five years ago: while ur forefathers' heads were clear on the subjects of static and professors, and much more so than the heads of our presen ightning rod men, who, by their lamentable ignorance, hav done much to bring lightning rods into disrepute among many classes.

the blue glass deception.

In our last issue, we reviewed the alleged capabilities of sunlight filtered through blue glass, in causing plants to grow, etc.; and by reference to numerous experiments, we reached the conclusion that the light transmitted through the violetblue glass is nothing more than normal sunlight diminished in intensity. We propose in the following to finish our discussion by examining into the effects of light and darkness upon organisms. And we may especially here recall the fact that General Pleasonton claims that not only does the blue light stimulate growth, but that it is a positive remedial agent for such severe ailments as spinal meningitis, nervous irritation and exhaustion, rheumatism, hemorrhage of the lungs, deafness, partial paralysis, shock due to severe con tusion, and others, of all of which he cites cases.
The theory that various colored lights exercise different effects on the human system is an old one. In 1831, Dr Newbery of this city asserted that yellow light stimulates the nervous, pink the nutritive, and blue the locomotive temperament; and recently Dr. Ponza, an Italian physician, has asserted that lunatics are greatly affected by being says, removes feelings of depression, blue induces calmness; and by violet light a crazy person was in one day cured.
It is a thoroughly demonstrated fact that light is an im portant vital stimulant; and that, if its operation be excluded the development of the healthy bodily structure is arrested. Naturalists tell us that in the absence of light the trans formation of a tadpole into a frog is stopped, and the reptile remains a tadpole. Plants in darkness become blanched and stunted in growth; the process of fixing the carbon in their tissues is arrested, a modification of the coloring principle takes place, and they appear white instead of green. The sad effects of deprivation of sunlight are especially observ able among those who live in crowded alleys or cellars, or who work in mines, where the light of the sun seldom or never penetrates. The total exclusion of the sun's beams produces an impoverished and disordered state of the blood, emaciation, muscular debility, and the diseases due to im Onfect nutrition
On the other hand, it is known that for certain purpose darkness or shaded light is advantageous to the bodily condition. Fowls, for instance, may be fattened much more rapidly in the dark, and it would seem that the absence of light exercises a very great influence over the power pos-
sessed by food in increasing the size of animals. It likewis sessed by food in increasing the size of animals. It likewise ing the disposition of animals to take rest, making less food necessary, and causing them to store up more nutriment in the form of fat and muscle. Now, if the organism to be treated is subjected to light, all of which is filtered through blue violet glass, then, as we have previously demonstrated,
it is in light which is considerably shaded. And very probit is in light which is considerably shaded. And very prob-
ably to this cause-and not at all to the peculiar hue of the light-is to be attributed the quieting influence on nervous and insane people which Dr. Ponza has remarked.
But General Pleasonton does not use blue-violet glass alone. On the contrary, he employs a combination of blue light and pure sunlight, the latter very much preponderating. In his grapery, for example, only every eighth row of panes is blue. The mingled light consequently is merely pure sunlight, very slightly shaded; and the animal or plant exposed simply takes a sun bath-the solarium of the ancients, who, knowing the vivifying influence of the sunbeams, had ter-
races built on the tops of their houses so that they might races built on the tops of their houses so that they might
bask in them. This sun treatment is now frequently recommended by physicians for nervous diseases. Dr. Hammond, in one of his lectures, says: "In convalescence from almost all diseases, it acts, unless too intense or too long-continued, as a most healthful stimulant, both to the nervous and phys ical systems. * * * The delirium and weakness, by no means seldom met with in convalescents kept in darkness, disappear like magic when the rays of the sun are allowed o enter the chamber.
To recapitulate in brief, General Pleasonton's claims, of any superior powers for blue glass on account of the color which it produces in transmitted light, are, when tested by the result of previous investigations, unfounded. In some instances, where it is desirable to reduce the intensity of the light, blue glass may be used; but any other mode of shading the light, as by ground glass, thin curtains, etc., would without doubt serve equally as well. The cures produced are ascribable to two causes: first, to the healthy influence of the sun bath, and secondly, to the very powerful influence of the patient's imagination. There are abundant cases known where imagination has so powerfully affected the body as to cause death.
Experiments upon criminals have shown that in one in-
stance, where a person was placed in a bed which, he was informed, had just been vacated by a cholera patient (but
which had not), he exhibited all the symptom s of that disease nother person is reported to have shown all the signs of collapse from loss of biood, from the suppositious idea that he was bleeding to death. As regards the animals fattened under the glass, all the circumstances go to show that the result was due to their enforced quiescence, their shelter rom the weather, and their free exposure to the sun.
It is hardly necessary to add that in our opinion the use of blue glass, as advocated by General Pleasonton, is devoid of benefit.

HOW WE ARE ABLE TO DO IT.

Hitherto the price of technical publications, especially in the departments of mechanics, engineering, and the chemica: arts, has been relatively very high, and for good reasons. The original cost of such matter is usually many times greater than for matter of a purely literary character; the tables and engraved illustrations are expensive; the market for technical works is limited, and their sale for the most part very slow. Consequently it has been impossible for publishers to offer such works at anything like the price a which ordinary works of the same size would afford a profit. The actual cost of each copy of an edition of a technical treatise may be, say, ten dollars, four fifths of which will have gone for composition, engravings, etc., before the work is put upon the printing press; the other fifth will cover the cost of paper, printing, binding, and the author's pay. If the sale of the work is at all slow or doubtful, the publisher will have to charge from fifteen to twenty dollars a copy to ret his money back. Butif, instead of an edition of a thou get his money back. But if, instead of an edition of a thou-
sand copies, it is possible to sell promptly ten, twenty, or fifty sand copies, it is possible to sell promptly ten, twenty, or fifty
thousand copies, the cost of each volume will be very matethousand copies, the cost of each volume will be very mate-
rially reduced. While the smaller element of the cost rerially reduced. While the smaller element of the cost re-
mains substantially unchanged, the larger will be distributed over ten, twenty, or fifty times as many copies, the share for each being proportionately reduced. In other words, the first cost of each copy will be not two dollars plus eight dollars, but two dollars plus eighty cents, forty cents, twenty cents, or even less, according to the number sold. Hence the publish er can afford to sell the work for very much less than fifteen dollars-perhaps for half what each book would have cost him in an ordinary edition. The same conditions hold good in all cases, whether the first cost be ten dollars or one dollar he essential factors in determining cheapness being large ditions and a ready sale.
Still another and often very important reduction in the cost of printed matter, technical or other, can be effected by choosing a form economical for printing, and a more com pact yet still legible type; and by dispensing with cloth or other binding, a further very considerable saving can be made. Given, then, a form of publication like the Scientific American and a large circulation, it is easily possible to furnish, as we do each year, an amount of valuable and timely matter, many times greater than could be afforded for the money through the usual channels of the trade.
The same is shown even more strikingly in the Scientific american Supplement, in which is furnished for five dol lars a year an array of useful and instructive matter fully equivalent to fourteen ordinary volumes of five hundred pages each, with something like two hundred engravings to each volume, many of them very large and costly. An examination of the tables of contents given with the two vol umes for 1876 will discover the titles of about ten thousand separate articles, a large number of them elaborate memoirs, for which in the ordinary form, in paper, the price would be fur which in the ordinary form, in paper, the price would be
from fifty cents to a dollar each. In addition to numerous original and timely articles of great value from the ablest American engineers and scientists, the Scientific Ameri can Supplement is giving from week to week either a ful reprint or a critical abstract of all the best contributions to all the leading scientific and technical publications of the world -matter which cannot be had in any other form for ten times the price we charge for it. The ability to do all this with profit to ourselves hinges on the single condition-a wide and certain market

Thanks to the co-operation of the thousands who subscribe for the Scientific American and the Supplement, we ar able to do what many have dreamed of but despaired of ac complishing, and that is to lay before an increasingly intelli gent public, valuable scientific matter at a price which rivals that of the cheap story paper. Relatively, the readers of Science are yet few in comparison with those who content themselves with trash; but their number is increasing, and with them the possibility of printing Science for the million at a price within the means of all.
Our readers will bear witness that from year to year, as the range of scientific readers has widened, there has been a corresponding improvement in the scope and value of the reading matter and illustrations given in this paper. It is our purpose to maintain the same progressive character in the future, giving our readers the full benefit of the cheapening effect of increased circulation by furnishing, so far as possible, more and better matter for the same subscription price. Thus we make it for the personal advantage of each and readers.

No Connection with the Scientific American.-We learn that certain parties in Chicago have set up a soliciting business under the title of Munn \& Co
We beg to inform our patrons that the Chicago concern has no connection with the Scientific American or the publishers of this paper.
trained close [Continued from first page.] length of to the plate, and this is repeated until a sufficient of wire is made to allow the end to be carried to the cylinder and there secured in the vise provided for the pur soon the cylinder, meanwhile, is out of action; but as treadle, a clutch connects the cylinder and shaft, and the lat ter slowly rotates, thus drawing the wire continuously ter slowly rotates, thus draw
through the plate. Should the wire break, the machine is stopped, the end repointed, and the operation already described begun again. This continues until the rough rod is all drawn down to a neat cylindrical wire, which, however, is yet considerably too large in diameter To reduce large in diameter. Toreduc it, a second drawing through smaller holes is required; and
if the wire is to be very fine, sometimes as many as twentyfour drawings are had, annearing in such case taking place between each drawing. The bridge wire of the size before mentioned requires to be drawn but two or three times to reduce it the neces sary 0.085 inch.
The next process is illusrated in Fig. 5, and is the wincing or, as it is commonly termed, galvanizing. The wire is led over rollers into a bath of dilute muriatic acid already heavily charged with zinc. The acid bites a clean surface, and it is supposed that some zinc is precipitated on the wire, which better insures the deposition of the melted zinc, through a large bath of which the wire is subsequently led. The zinc covering of course protects the wire from oxidation and effects of the weather. The wire is next led to large reels, Fig. 2, whereon it is made into coils, each containing 840 feet, weighing 60 lbs ., and meas. wring some 4 feet 6 inches in diameter. All the wire is require to be straight wire: that is to say, when a ring is unrolled upon the floor, the wire behind must lie perfectly straight and neutral, without any tendency to spring back in the coiled form. spring back in the called form. In order to produce this straight wire, the patented process of
Colonel W. H. Paine, assistant engineer of the bridge, is used. The wire is led from a point within the galvanizing trough in a straight line, under considerable tension, to a guide sheave or winding drum, which is located at such a distance as to permit the wire to be cooled and set before it is coiled thereon. The size of the drum is such as to cause no permanent bending of the wire.
The turning of the drum is represented as being done by hand in Fig. 2; but of course when the manufacture of the wire is further advanced, and when many such drums are necessitated, the work will be done by suitable machines.
Nothing further remains to be done but to test the finished product to find whether it meets all the contract requiremeats. The machine for this purpose is represented in Fig. 4. It consists simply of a long scale arm on which the weights are adjusted, and so caused to pull, at a very strong leverage, on the sample adjusted in jaws connected with the arm. Pieces of wire are cut from each coil, secured one at a time between the jaws, and broken. One person, who adjusts the weights, notes the breaking strain; while another, who watches the behavior of the sample, notes the amount of stretch which it undergoes on a suitably arranged scale. For the No. 8 wire the contract tensile strength is $3,400 \mathrm{lbs}$., and the stretch $3 \frac{1}{2}$ per cent. These requirements, we learned, are generally exceeded, as the breaking strain has gone up as high as 4,480 lbs., and averages about 4,000 lbs.: while the stretch is about 4 per cent. A further test is also made by bending the wire in order to determine its behavior under flexion and torsional stress. There is an interesting process in the way of utilizing waste connected with this wire manufacture which may well be noted here. Of course, in cleaning large quantities of wire, very large amounts of sulphuric acid are needed, and the vats need constant replenishment, as the acid becomes charged with impurities. There is, beside, in a factory of this kind, a great deal of waste metal and scrap of all sorts. In order to utilize both varieties of refuse, the acid is turned into a huge vat and there boiled, by steam, down to a proper density. Into it the scrap metal is thrown, and the whole is heated together. Then the green resulting liquid is run off into tanks and allowed to cool. The acid and iron both disappear; but instead, on pieces of wood suspended for the purpose in the cooling tanks, appears a copious deposit of
sulphate of iron (copperas), a substance of

Each of the large cooling tanks is capable of yielding some 14 barrels of this product daily.
Some improvements have recently been made at Mr. Haigh's works, introducing automatic cutoffs to each wire block, which materially reduce the labor and form perfect safeguards against accidents to the workmen.
It should be added that Mr. Haigh's facilities for the production of the wire are to be greatly increased. Entire pro
of the usual construction, and B the fire box, that is sur rounded at the sides and top with a straight and arched boiler section, C. This bailer section or shell, inclosing the fire box, is constructed with a series of holes, a, Fig. 2, near the sides of the front wall, so arranged that the scraper may be introduced to the inside of the side wall at any height up to the water level, and the side walls and stay bolts then be readily cleaned by working the scraper. The holes, a, are closed by tightly fitting screw plugs when the boiler is in use.
The bottom of the front section, C , is cleaned by the customary handholes, b, at the front or rear wall, which are closed tightly by steamtight plates.
The inside of the rear wall is reached by means of a side opening, d, of sufficient length to allow the scraping device to be introduced torizonally between the flues and clear the parts of the rear wall between the same. This opening is closed by a tightly fitting plate attached by stud bolts.

New Test of Salicylic Acid.

 Salicylic acid, which is now largely employed for therapeutic purposes as an antiseptic in lieu of carbolic acid, and as a means of preservabuildings are to be erected, and new and improved machinery dion for fruit, beer, meat, etc., in order to be efficacious de d, so that the various processes we have described will be carried on, on a much greater scale than is here indicated.
A NEW BOILER CLEANER

The danger of the explosion of any boiler in which scale
is allowed to accumulate is well known; and many com-

pounds to prevent by chemical action the deposition of scale are before the public. But the impurities in water vary so that no chemical preparation can be a panacea; and it is frequently necessary to remove the scale by mechanical means. Mr. Cornelius J. Cronin, of Barnhart's Mills, Pennsylvania, has patented through the Scientific American Patent Agency,

November 14, 1876, a novel device for preventing the for mation of scale in steam boilers, which we illustrate in the annexed engravings. A, Fig. 1, represents a tubular boiler
shall be arched with brick throughout the entire length, 5,200 feet. Of this distance
the arching has been completed, except 600 feet. It will give an idea of the work when it is stated that $7,000,000$ brick have been laid in the arching. All the shafts have been torn down and will be rebuilt in such a manner that the ventiladion will surpass that of any tunnel in the country. The cost of the additional arching will, in the opinion of Mr. Sloan, President of the Delaware, Lackawanna, and Western Railroad, be more than compensated by the security against ac cidents from falling rock.

Density of Alum Solutions.
The following table will be found useful for ascertaining the percentage of alum present in solution by simply taking the specific gravity with a hydrometer:

It will be noticed that a solution of ammonia alum has a slightly lower specific gravity than one of potash alum contraining an equal quantity of the salt.-O. Schluttig, in Deutsche Industrie Zeitung.

The St. Louis "Practical Photographer."

This is the title of a new and handsome monthly magazine devoted to the rapidly growing art of photography, edited by J. H. Fitzgibbon. The second number, for February, constains for its principal illustration a photo of the great steel bridge over the Mississippi river at St. Louis, which may be justly regarded as the last wonder of the world. The general contents embrace an extensive variety of subjects. We welcome the appearance of the new periodical, and wish for it every success.

STREET CARS.
Street railways for passenger cars were first established in the United States about 1850, and in England about ten years afterward. The Boston and Cambridge Railway, commenced in the fall of 1858, was the first in New England. Street cars are usually drawn by horses, but many attempts

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 3 is the Knapp car; B is an elevation, and C a plan of the motive apparatus. a is the furnace, supplied with coal from the platform through the chute, b, c is the boiler; $d d$ are the cylinders. The exhaust steam is condensed by a blast of cold air from the fan blower, $f ; g$ is a smoke pipe, a blast of cold air from the fan blower, $f ; g$ is a smoke pipe,
terminating in a reservoir, h, containing milk of lime, to remove the carbonic acid from the smoke; this also acts as a spark and dust arrester, so that the gas, which finally issues from the pipe, i, is invisible, and causes no inconvenience to the passen gers or others.
The car, Fig. 4, has a circula cab, B, which contains the dum my engine and boiler, and is sup ported on a circular platform, I, esting upon the fore truck, V,

There are four sand boxes, with handles brought to the foo boards. There are two exhaust pipes, the end of each pro jecting slightly upward from the edges of the curtains ove he footboards; and by a cock the waste steam is turned into whichever pipe happens for the time to be at the rear end of he car. All the working motion is quite protected from dir y light boxes which have hinged doors at the sides. The ngine is started on its journey with an initial pressure of 00 lbs. to the inch; and owing to the jacketing of the cylinders the loss by radiation is said not to exceed 5 lbs . press ure per hour, allowing the engine to run 40 miles on leve lines at one charging of the boiler. Fig. 5 is a longitudinal section of the car, and Fig. 6 is an exterior elevation, also showing the stationary boiler from which the apparatus is harged
Among other methods proposed for propelling street cars are engines driven by exploding gas: mixtures, for instance, of hydrogen and atmospheric air. Other machines are operated

Figs. 5 and 6

Fig. 7

have been made to drive them by machinery. Steam engines, known as dummy engines, have been used with success, but the fire and noise of escaping steam are considered objectionable.
We give herewith several engravings of street car motors selected from Knight's "Mechanical Dictionぇry."
Fig. 1 is a view of the Baxter steam car, Fig. 2 the truck and machinery of the same. The boiler is upright, and is

placed on the front platform; a non-conducting partition prevents heat from entering the car. The engine is below the platform. It is compound and double-acting. In ordinary use, the steam from the smaller cylinder exhausts into the larger; but, in ascending grades, the full pressure of the steam may be made available in both cylinders, greatly increasing the power.
and is provided with anti-friction roners, $h i$, upon which the front of the car body, A, rests; the shell of the cab also bears against anti-friction rollers, $m m$. A reach and center pin, U , connect the body and fore truck of the car, and the body is supported on a similar pivoted truck, provided with anti-friction rollers, enabling the two parts to turn indepentruck are each oth by connecting rods, N, and the rear axle, J , which is cranked, is worked as a driver by a pair of oscillating engines.
Todd's combined dummy and car, Figs. 5 and 6, has a main lower frame 22 feet 6 inches long over the buffers, 7 feet wide over all, and 3 feet high from the rail to the top; and on this frame is placed the 14 feet body of an ordinary

Fig. 8.

car. In the center of the frame are two receivers, each containing 30 cubic feet of water. Below the buffer beams are screw couplings and stop valves with perforated pipes running right through the receivers. The wheels are 24 inches diameter, placed 4 feet 6 inches between centers. Cylinders are 9 inches diameter and 8 inches stroke, surrounded with large jackets open to the water of the receivers. At each end of the car, outside the dash plate, is placed a brake handle, and on either side of this a regulator and reversing handle, all arranged as shown. These latter handles fit into spring sockets, so as to be changed from one end to the other, principally to prevent any one from behind moving the car.
by carbonic acid gas, which is compressed into a liquid and carried in strong cylinders. Another device involves the use of india rubber springs; another of steel springs; an other of ammonia vapor: and there are a large number of patented street car engines utilizing compressed air. To this last class belongs
smith Pneumatio Engine,
which is represented in Fig. 7. Compressed air, contained
Fig. 9.

in a large tank on the body of the car, is admitted to a gov ernor or regulator, a^{\prime}, and thence passes to a small auxiliary tank, b, underneath; this is connected with the cylinder valve chest, c^{\prime}, by two pipes, one of which, d, is open and the oth er, e, closed while the car is in motion; but on stopping the car the latter is opened and the former closed, causing the compressed air in the cylinder, c, to be pumped back into the
auxiliary tank, where it is stored up to assist in starting again. The i.llustration shows the car bed and lower works. A car provided with

SMITH AND DE COPPET'S AMMONIA ENGINE
is represented in Fig. 8. Liquid ammonia, stored in a reservoir, a, is withdrawn and injected by a pump, b, into a vaporizer, c, heated by a lamp beneath. The gas is conducted to the engine, d, by a pipe, and is exhausted into a condenser, e, where it is liquefied by a shower of spray falling through a perforated plate, the water being supplied by tanks, f, one at each side of the car, and withdrawn therefrom by a pump. A third pump removes the ammonia from the condenser and forces it into a tank, g, beneath the car, where it is retained for further use. Chains communicate motion from pulleys on the engine crank shaft to pulleys on the driving wheel shaft.
In Fig. 9 three views of a dummy engine are given, showing the compact arrangement of boiler necessary to adapt it to the limited space in street cars.

©゙mmunitations.

To the Editor of the Scientific American.
 To the Editor of the Scientific American:

If the inner coating of a Leyden jar be connected by a wire or a chain to one terminal of an induction coil, and the outer coating to the other terminal, when the battery connection is made or broken, the induced electricity is very much condensed, and shows itself as a much shorter spark ; but the intensity of its light is vastly increased, and the passage of the sparks is accompanied with quite a deafening sound, especially if several follow each other in quick succession. Advantage has been taken of this form of spark to study the spectra of the elements by making the spark to pass between terminals of the material to be examined. I have lately found that the intensity of the light from such a spark from one of Ritchie's 10 inch vertical coil is sufficiently great to admit of projection upon a screen in the lecture room. The terminals were arranged one above the other, so as to give a vertical spark. A 1 gallon Leyden jar was used, and the battery had three Bunsen 2 gallon cells. The terminals could be separated about an inch. About a foot in front of the terminals was fixed a double convex lens, 4 inches in diameter and of about 1 foot focus, and a single bottle prism diameter and of about 1 foot focus, and a single bottle prism
of bisulphide of carbon in front of the lens, where the larger part of the refracted rays would fall upon it at the proper angle, the refracted and dispersed rays falling upon the screen, the focussing being done by moving the lens until a plainly marked spectrum appeared. This spectrum could be very plainly seen when it was eighteen or twenty inches long. In this case, the spark itself answers for the slit in the ordinary method of studying spectra ; and inasmuch as the spark is seldom or never straight, it follows that the spectrum will consist of a series of bright lines all with the same zigzag pattern, which gives a very curious and interesting effect, for no two have the same form; and yet all the bright lines hold the same relation to each other as in ordinary spectra.
It is only necessary to affix small pieces of different metals to the terminals of the coil and pass the spark between them to exhibit, to forty or fifty persons at a time, the characteristic spectra of the elements. Those that I used were sodium, copper, zinc, calcium, and brass. There is usually a tolerably plain continuous spectrum, which I take to be due to incandescent dust particles in the path of the spark, but this does not interfere with the bright line spectrum. This method may be usefully employed when the class is not too large, and when neither a fifty cell battery nor an oxyhydrogen lantern are owned.
Physical Laboratory, Tuft's College.

Are Iodide of Potassium and Chlorate of Potassa Therapeutically Incompatible?

To the Editor of the Scientific American
In your issue of January 20, 1877, the above question is answered affirmatively in an article copied from the American Journal of Pharmacy.
I recollect having once seen a very sick patient treated with iodide of potassium and chlorate of potassa, administered alternately every two hours in large doses, for a number of days in succession, and the patient recovered. I called the attention of the physician to the possible danger of administering the two drugs at the same time; but he averred that he had frequently done it without any bad results following. His knowledge of chemistry and incompatibles would have allowed him, no doubt, to administer tannic acid and iron, or iodide of potassium and acetate of lead, in the same prescription; yet sometimes from people's blunders we gain practical information. It is possible that the safety in these cases consisted in the fact that the drugs were administered with intervals of two hours between them, the one having been absorbed from the stomach before the other entered.
I am of the opinion that, when these drugs are administered with intervals of two or three hours between them, there is no danger of the formation of iodate of potassium. It would be reckless, however, with our present knowledge, for any practitioner to prescribe the two drugs in the same formula.
A. C. Simonton, M.D.

Mitchellville, Iowa
To the Editor of the Scientific American:
The inquiry is often made as to the principle upon which a driving wheal draws its load. The annexed simple analysis
will, I presume, make the matter clear. An engine with a superior astuteness or invention to discover a plan whereby 16 inch piston, 4 feet driver, and 12 inch crank, working at a anti-patent State legistators could, by an extended but sim maximum cylinder pressure of 100 lbs . to the inch, will ilar interpretation of State rights, so legislate as to practi exert a force of about 10 tons upon the piston, A, and crank pin, B, and an equal force upon the head of the cylinder, and,

through the medium of the engine frame, upon the center of the driver in the opposite direction. When the crank is below the center of the wheel, the 10 tons acting upon it pin is divided equally, in this case, between the center of the wheel and its tread. 5 tons at each point; but as the 10 tons acting against the head of the cylinder and the center of the wheel in the opposite direction is just double this amount, the impelling force, in the direction of F and C, will of ourse be 5 tons.
Whan the crank is above the center of the wheel, the 10 tons acting upon its pin will exert a force of 5 tons at the tread of the wheel, as a fulcrum, in the opposite direction. This added to the 10 tons gives 15 tons as the force of acting upon the center of the wheel in the direction, D ; but as this 15 tons is opposed by the 10 tons acting upon the head of the cylinder and center of wheel, we have just 5 tons progres sive force towards E and D. The operation is clearly shown by the arrows.
The reader will perceive that the progressive motion is caused by the action of an ever-varying leverage whose effec tive fulcrum is the adhesion of the wheel to the rail. When the crank is below the center of the wheel, the length of the lever is the radius of the wheel, and the positive agency to locomotion is the pressure of steam against the head of the cylinder, and the negative agency is the pressure of steam against the piston; but when the crank is above the center of the wheel, the case is reversed. The pressure against the piston the wheel, the case is reversed. The pressure against the piston
then becomes positive, and that against the cylinder head negative, and the length of the lever is the radius of driver plus the length of crank. I use the term positive because the engine moves in that direction.
Worcester, Mass.
F. G. Woodward.

State Legislation Concerning Patents.

To the Editor of the Scientific American:
Apropos of your article in the Scientific American for February 17, in reference to State legislation tending to abridge the rights of patentees and owners of patents, I presume that the bill recently introduced in the New York Leg islature is patterned after a law of this State (Pennsylvania) approved April 12, 1872, which enacts substantially as fol lows: That the words "given for a patent right" shall be prominently and legibly written or printed upon the face of any promissory note or other negotiable instrument, the consideration for which, either in whole or in part, shall consist in the right to make, use, or vend any patent invention or inventions claimed to be patented; and the party taking such note shall, as to any defence which the maker may or migh have, stand in the shoes of the original payee or holder. The act proceeds still further, and makes it a misdemeanor with a maximum penalty of $\$ 500$ fine and sixty days' imprisonment, for any person to take, sell, or transfer a nego tiable instrument not having the words "given for a patent right," as before mentioned, knowing the consideration thereof to be, wholly or partially, an interest or right in a patent or in an invention claimed to be patented.
In a case tried here some months ago, brought to recover on a note given for a patent, and not containing the statutable words, the judge charged that if the plaintiff knew, at the time he took the note, that the consideration was an interest in a patent, he committed a misdemeanor, and the note was, consequently, absolutely void. It has, however, been decided in a later case that a negotiable writing given for a patented thing or machine is not within the statute, as, the
latter being a "very extraordinary" act, parties who invoke its aid must bring themselves strictly within its provisions, and the words of the act are a "right," etc., only.
When I first learned, a few days after its passage, of this law-which might better have been entitled "an act to relieve certain fools from the legitimate consequences of their folly," or "a law trap for the unwary "-I unhesitatingly expressed the opinion that it was in direct conflict with that provision of the Constitution wherein plenary power is granted to Congress to legislate upon patents. I have seen no reason to alter this opinion; and if the opportunity occur, professionally or otherwise, I shall seek to test the constitutionality of this absurd and impolitic State enactment in the court of final appellate jurisdiction, as provided by the Constitution of the United States.
Would it not be equally just and reasonable to require that notes given for horses, cattle, grain, etc., should bear across their face the words "given for a mule," or "given for a (which, as between maker and payee, represents no value re(which, as between maker and payee, represents no value re-
ceived) should have the words "given for accommodation"
apparent on its face? It would not, assuredly, require
cally strangle, sn to say, a valuable franchise granted by the whole United States.
J. Pusey.

501 Chestnut St., Philadelphia, Pa.

PRACTICAL MECHANISM.
 by Joshua rose.
 New Series-No. Xxi. pattern making.

In Fig. 146, we have for an example a common globe valve, shown partly in section and with a gas thread cut in

the openings. The flanges vary in shape; but as a rule, small valves are provided with hexagons and large ones with round flanges suitable for bolting to similar flanges to make joints. For small valves, say up to 2 inches, the pattern is usually made with the hexagons cut out of the solid, but for sizes above that, they should be made in separate pieces, as shown in Fig. 147, and screwed to the pattern, so that in case of necessity they may be removed, and flanges substituted in their stead. In Fig. 148, we have a perspective view of the finished pattern ; and Fig. 149 represents the pattern as prepared, ready to receive a flange or hexagon as may be required. A globe valve pattern should be made in halves, as shown in Fig. 150, the parting ine of the two halves being deno ${ }^{+}$ed by A B. To make this pattern, we first prepare two pieces of wood so large that, when pegged together, the ball or body of the pattern can be turned out of them, and long enough not only to reach from P to P, in Fig. 149, but also to allow an excess by means of which the two pieces may be glued or

otherwise fixed together. These two pieces we plane to an equal thickness, and then peg them to retain them in a fixed position, taking care, however, that the pegs do not occur
where the screws to hold the flanges will require to be. We also place screws to hold distance of what will be the ends of the pattern when the excess in length referred to is turned off. We next prepare, in the same way, two more pieces, to form the two halves of the branch, shown at B , in Fig. 149, for which, however, one peg only will be neces sary. These pieces must be somewhat wider than the siz of the required hexagon across the corners, that is, suppos ing the hexagon is to be solid with the branch; otherwis we must make them a little wider than the diameter of the hub of the flange, or of the round part of the hexagonal pieces. Their lengths must be such as to afford a good por tion to be let into the ball or body of the pattern (as shown by the dotted lines in Fig. 149), which is necessary to give sufficient strength. The two pieces must be firmly fixed together, and then turned in the lathe.
During the early stages of the turning, or, in other words, uring the roughing out, we must occasionally stop the lathe and examine the flat places on the body; for unless these places disappear evenly, the work is not true, and one hal will be thicker than the other, so that the joint of the pat tern will not be in the middle. It was to insure this that the pieces were directed to be planed of equal thickness, since, if such is the case, and the flat sides disappear equally and simultaneously during the turning, the joint or parting of the pattern is sure to be central. If the lathe centers are not exactly true in the joint of the two pieces, they may be made so by tapping the work on the side having the narrowest at place, the process being continued and the work being trued with the turning to $: l$ at each trial until the flat places become equal. By this means, we insure, without much
trouble, two exact halves in the pattern, which is very important in a globe valve pattern on account of the branch and other parts, not to mention the moulding. Having turned the body of the pattern to the requisite outline, and made while in the lathe a fine line around the center of the ball where the center of the branch is to come, as shown in Fig. 149, by the line, A, we make a prick point (with a scriber) at each crossing of the line, A , and the joint or part ing of the pattern. We then mount the body upon a lathe

chuck, in the manner shown in Fig. 151. A point center should be placed in the lathe and should come exactly even Tith the line, A. In Fig. 151, V V are two V blocks made to receive the core prints. These Vs are screwed to the lathe chuck, and the pattern is held to them by two thin straps of iron, placed over the core prints and fastened to the Vs by screws. If the chuck and center point run true, the V blocks are of equal height, and the core prints are equal in diameter, the prick point opposite to the one placed

to the center point will run quite true; and we may face off the ball or body to the required diameter of branch, and bore the recess to receive the same. We make the holes in the flanges of the same size as the core prints; but we should not check in the print, because, if a flange with a differen length of hub were substituted, it would be a disadvantage. To obtain the half flanges, we take a chuck and face it off true in the lathe; then, with a fine scriber point, we mark the

center while the chuck is revolving. We then stop the lathe, and, placing a straight edge to intersect the chuck center, we draw a straight line across the chuck face. We then take two pieces suitable for the half flanges, and plane up one flat sic.e and one edge of each piece. If the flanges are not large ones, they may be planed all at once in a long strip. We place the pieces in pairs, and mark on each pair a circle a little larger than the required finished size of flange. We then fix each pair to the chuck, with the planed faces against the chuck, and the planed edges placed in contact, their joint coming exactly even with the straight line marked on the chuck face, and we may then turn them as though they were made in one piece and to the requisite size.
In Fig. 152, we have a representation of one half of a suitable core box, the other half being exactly the same with the exception that the position of the internal partition is reversed. To get out this core box, we plane up two pieces of exactly the same size and length as the pattern, and of such width and thickness as will give sufficient strength around the sphere, allowing space for the third opening. After
pegging these two pieces together, we gauge, on the joint $\left\lvert\, \begin{aligned} & \text { in small valves hexagons to receive a wrench would be sub- } \\ & \text { stituted. }\end{aligned}\right.$ face of each, lines representing the centers of the openings stituted.
and the center of the sphere. We then chuck them (sepa- Fig. 156 is a plan of half the core box necessary for formrately) in the lathe, and turn out the half sphere. We next ing the raised seat. From this construction, it will be seen place the two halves together, and chuck the block so that the large core, though solid with the branch core, is not formed in the three positions necessary to bore out the openings; or if preferred, we may pare them out. The partition (A, in Fig. 152) follows the roundness of the center hole,

and is on that account more difficult to extract from the core than if it were straight and vertical. When, however, the partitions are of this curved form, the pieces of which they are formed are composed of metal, brass being generally preferred. Patterns have in this case to be made wherefrom to
cast these pieces, and they may be made as follows: First, two half pieces, such as shown in Fig. 153, are turned; each

is then cut away so as to leave the shape as shown at C in the same figure, and is then fitted into the spherical recess in the core box, letting each down until both are nearly but not quite level. The two pieces, A and B, in Fig. 153, are then fastened on, and this pattern is complete. When the pieces are cast, they must be filed to fit the core box, and finished off level with its joint face, a small hole being drilled in the center, and a pin being driven through the piece and into the box to steady the corners. We then saw the pieces in halves with a very fine saw.

If the partition, instead of following the roundness of the valve seat, is made straight, the construction of the core box is much more simple. In this case, a zigzag mortise is made clear through each half of the box, its size and shape being that of the required partition. Fig. 154 represents a half core box of this kind. A piece of wood, A, is fixed as shown to the partition, to enable the core maker to draw it out before removing the core from the box. The mortise for the partition should be turned out before the half spherical recess, the mortise being temporarily plugged with wood to render easy the operation of turning.

In very large valves (say 10 or 12 inches) a half core box is generally made to serve by fitting the two half partitions, shown at C, in Fig. 153, to a half core box, and keeping them in position by means of pegs, a half core being made first with one and then one with the other in the core box. It is often necessary to form a raised seat in the body of an angle of such a body. It is shown with flanged openings, though
olid with that forming the hole in the seat and the part low it; therefore the core prints on the body pattern must be left extra long to give sufficient support in the mould for the overhanging cores. The loose round plug, P , is made of the size of the outside of the seat and fitted to the box. The part outside the box is a roughly shaped handle to draw it
 out by. The diminished part, D, is a print, and into the impression left by it is inserted the core made in box shown in Fig. 157. The print, D, is of the same diameter as the hole in the seat; and the print on the pattern is of the size of the increased diameter below the seat. Large angle valves are made with half a core box by making a branch opening in the box right and left, a semicircular plug being provided. Two half cores are made with the plug, first in one and then in the other branch opening. The plug, P , should be in this case only half round.

Washington Life Insurance Company.

Life insurance is for the protection of widows and orphans after the death of the insured, while premiums are required in advance. Ability to meet policies issued should be beyond question, because of the nature of the contracts and the time to be fulfilled. Well managed companies owe it to themselves, as also to their policy holders and the public, that official proof of their good management and solidity exists and cial proof of their good management and soblished for the guide of the public. The W ash-
should ington Life Insurance Company of New York has set a good ington Life Insurance Company of New York has set a good
example by causing an official examination to be made, not example by causing an official examination to be made, not
only of its practice butits financial standing, by disinterested only of its practice butits financial standing, by disinterested
experts under and by the authority of the New York experts under and by the authority of the New Yor
Insurance Department. The result of this examination reflects credit upon the management of the Washington, and shows it pre-eminently sound, with over five million dollars officially admitted assets, nearly all invested in United States, State, city, and town bonds, and bonds and mortgages; while its total real and contingent liability, including "reserve" for all its risks in force, $4 \frac{1}{2}$ per centum of interest, New York standard, are only $\$ 4,386,685.83$, leaving a surplus of $\$ 786,685$, without counting $\$ 92,000$ good, though technically inadmissible, assets, which would increase the actual urplus to nearly $\$ 900,000$.
Good management solicits investigation and publicity, while mismanagement fears it. The examination of the Washington shows it not only sound, but its management " able, prudent, and honorable," expressions well worthy the ambition of any company.-Insurance Agents and Brokers Magazine.

By reference to our advertising columns, the particulars of the official report of the good condition of the Washington Life may be seen.

More Telephone Triumphs

The Boston Daily Globe enjoys the honor of being the first newspaper which has printed a telephonic news despatch. Appropriately enough, the subject of the message is Pro fessor Bell's lecture on his wonderful instrument (illustrated in the Scientific American Supplement of February 10), which was delivered at Salem, Mass., on the evening of Febuary 12. At 10.55 , on the same evening, the Globe reporter in Salem made a verbal report of the occurrence to the Globe office in Boston, eighteen miles away. Not only was the voice of the reporter clearly recognized, but the receivers of the message also heard the applause of the audience which attended the lecture
Professor Bell's lecture was in itself a wonderful exhibi tion of the powers of the invention. From his platform, the speaker placed himself in communication with Mr. T. A. Watson, his associate in Boston. The latter then sent the Morse alphabet by musical sounds, which was distinctly audible to the entire audience. The airs played on an organ were transmitted; and on being asked for a song, Mr. Watson complied with "Auld Lang Syne," and finally made a short speech, the words being perfectly distinguishable to all the people present, who broke into prolonged applause, for which Mr. Watson returned thanks. Every experiment was sucMr. Watson returned thanks. Every experiment was
cessful, and the invention was subjected to severe tests.
cessful, and the invention was subjected to severe tests.
We await, with much pleasurable anticipation, Professo Bell's introduction of the telephone to a New York audience.

Captain Ears

Captain Eads has received the first instalment, five hundred thousand dollars, in United States bords, on ac count of the payment for his Mississippi jetties, which have proved, as we always predicted they would, a grand success. The United States ship Plymouth has passed through the line of jetties at low water, and is the first war vessel to traverse the new channel. She drew seventeen feet of water, and the least depth found by the lead was eighteen feet. The passage of the upper jetties was made by the ship under full steam power in 8 minutes and 17 so onds. Between the jetties there is a channel twenty-four fuet deep and two hundred feet wide. At the head of South Pass there is a minimum depth of twenty-seven feet. On the charts of 1873 the last-mentioned sounding was but fifteen feet; and at the mouth of the Pass, at mean low water, the lead showed but three, four, and seven feet.

THE " LITTLE SPEEDY" CORN SHELLER.

We illustrate in the annexed engravings a new and handy little machine for shelling corn, which, judging from the inventor's statement of its capabilities, is quite certain to meet with a ready welcome from farmers and poultry raisers. It is claimed to shell from ten to twelve bushels of ears per hour. It adapts itself to large and small ears, and is equally effective whether the latter be green or dry. It does not break cobs or corn, is strongly constructed of metal, is not liable to get out of order, weighs but eight lbs., and is easily attached to the grain recepta cle by inserting the wedge, shown at A, in the perspective view, Fig. 1. The working parts of the device are represented in plan, Figs. 2 and 3 and in section, Fig. 4.

The upper portion, B, of the machine is movable, and is rotated about a vertical axis by the bevel gearing and crank shown. The lowe part is stationary, so that in this portion the cob is held immovable while the grains are stripped from it by a device placed in the revolving upper part. The holdingapparatus is shown in Fig. 2 C are sharp-edged wheels upon swinging arms which are held up to the cob by the springs, D Said arms are mutually braced and caused to ad just themselves simultaneously by the curved pieces, E. The.construction of this arrangement as well as its relation to the stripping device Fig. 3, will be clearly understood from Fig. 4 The strippers are pivoted in the upper portion of the machine, and have springs, F, to hold them to their work; and their inner extremitie are suitably fashioned and sharpened for quickly detaching the grain. They also, and for the pur poses already mentioned, are mutually inter braced.

The machine can be operated by any one, with out instruction. The ears are inserted above and held in the hand until seized by the holding device. The wheels on the latter, revolving, allow the cob to pass downward, but of course prevent its turning; while the stripper, as the ear descends, removes the grains. There is no necessity of touching the ear after it is once gripped; and thus, while the right hand turns the crank, the left hand is free to feed in the corn as quickly as may be.
For further particulars, regarding agencies, purchase of rights, etc., address the inventor Mr. Curtis Goddard, Alliance, Stark county, Ohio.

A MACHINE SALESMAN

Among the ingenious devices for gathering small change from visitors to the Centennial were several curious mechanical toys, which the inventor placed in the halls of the principal hotels near the grounds. Each consisted of a case having a glass front through which a miniature scene was vis ible, the trees, houses, figures, etc., being neatly painted and cut out of pasteboard Over the box was placed a request for the visitor to drop in a five-cent piece at a slit in the side and witness the performance which would thereupon take place. When the coin was in serted, on its passing into a receptacle beneath it struck and released a detent; clockwork was thus allowed to act, and the figures were set in motion to represent a trotting race, fox chase, or some similar proceeding. The de vice had places for advertisements; and what with his returns for displaying them and from the very many five-cent pieces which entered the till, we were informed that the enterprising exhibitor cleared quite a large sum of money.
The invention herewith illustrated, while being somewhat on the same principle as the above, is a decided improvement thereon, as it gives the donor of the coins a return for his expenditure in the shape of a photograph card or picture, which is prominently displayed, and which he is induced to purchase by the announcement that on his inserting so many pennies into the slit the object will fall into his hand. It is impossible to remove the card until the requisite number of coins is inserted, nor can the mechanism be operated by any instrument introduced in the slit, so that the "machine salesman" is automatically honest. The construction of the invention is clearly represented in the sectional view, Fig. 2. On the top of the till or money chest is a hollow column, A, which supports the box in which the cards or photographs are displayed, said box having a glass face. Entering the column near its base is the money conduit, which extends upward spirally and, for the sake of symmetry, has an orifice at each side of the column, A. As a coin is dropped into this tube, it descends; and just before it enters the column, it
strikes the end of a pendulum lever, B, which is suitably $\begin{aligned} & \text { roller its lower portion. In this way, as the retracting of } \\ & \text { the bolt allows one card to fall out, another is at once pushed }\end{aligned}$ strikes the end of a pendulum lever, B, which is suitably counterweighted to hold it up to the tube orifice, and which is forked above its pivot to engage a toothed wheel, C, Fig. is thus retracted sufficiently to allow the front card in the cose above to drop out as said card rests, fo will be seen from Fig. 2, upon the bolt. The cards are introduced by lifting the cover of their receptacle, which is afterwards locked They are placed upon an inclined plane, and they are con stantly pushed forward by a movable frame, G, having

Fiq. 1

BRICE'S ADVERTISING MONEY BOX
forward in its place against the glass.
It will be observed that the esca

Fij. 1.

GODDARD'S CORN SHELLER.
notches. As each coin introduced swingsthe lever but once, it is evident that six coins must be inserted in order to cause a complete revolution of the wheel shaft and one retraction of the spring bolt. There may be a greater or less number of notches as desired, as it is evident that by this means the price asked for each card is secured.
The invention may be used for distributing advertise ments, or it might be employed for sellingnewspapers which could be uniformly folded and inserted. It also might be useful for collecting fares from street car passengers, giving each person a ticket in re turn, which the conductor might collect.

Patents in the United States and foreign coun tries have been secured through the Scientific American Patent Agency. For further particulars, address the inventor, Mr. Willam Alexande Brice, care of R. Clifford Poulter, 4A Middle Temple Lane, London, E.C., England.

New British War Steamers

The Dreadnought, double turret ship, lately went out of Fortsmouth harbor for a preliminary trial under way of her machinery, which was under the sole control of Mr. Robert Humphrys, of the contracting firm. Everything passed off with the greatest success. The blast was not once used, nor was it considered necessary to remove the ashes to increase the draught. The en gines easily realized sixty-nine revolutions a minute, while the power developed was con siderably over the contract power of 8,000 horse The speed obtained was about fifteen knots an hour. The ship was so sensitive that she readily obeyed the slightest touch of the helm. Six hours' trial was made in very boisterous weather In running up and down the measured mile course the ship was on several occasions timed when it was found that a mean speed of 14 miles had been obtained. This was highly satis factory but even better results will be obtained when the mile trial is made. The draught of the ship was only 21 feet 11 inches forward and 2 feet 6 inches aft, whereas her estimated load draught when ready for sea is 26 feet 8 inches draught when ready for sea is 26 feet 8 inches
forward, and 27 feet 2 inches aft. As the trial was not only for the purpose of enabling the con tractors to obtain the covenanted horse powe out of the engines, but also for the purpose of ascertaining the consumption of coal in propor tion to power, the boilers were easily fired in spring driven bolt, \mathbf{F}; so that, at every revolution of that order to keep down steam. This was rendered all the more wheel, the bolt slips from the shoulder and its forward end necessary in consequence of the boisterous character of the
necessary in consequence of the boisterous character of the weather, for no sooner did the ship give a lurch or indulge in a roll, which she did whenever she went about, than the spring safety valves lifted, and the steam escaped with a rush. With smooth water, consequently, it is very probable that even better data would have been obtained. t Portsmouth in boisterous tried recently rous weather. The the engines developing superfluous power there being neither hot bearings nor priming, nor trouble of any kind, to impair the working of the engines during the six hours. For the first four half hours the revolutions were purposely kept down; but when the blasts were applied, the arrears of power were so rapidly worked up that it was subsequently necessary to ease the machinery somewhat Even with all the care exercised, the power exerted on the 6th, 9th and 11th half hours exceeded 6,000 horses. The uniformity ex hibited in the workings of the engines was remarkable. The difference in the total means of revolutions of the two pairs of independent engines was only $0 \cdot 17$ per minute. The amount f Nixon's steam navigation coals consumed during the six hours was 48 tons, or 8 tons an hour. This represents an expenditure of $3 \cdot 14$ lb. per indicated horse power per hour, a re sult which may be regarded as highly satis factory from an economical point of view considering the amount of useful work performed

Testing for Boracic Acid.

Mud obtained from the bottom of a borax lake in California was found to contain a large amount of organic matter and sodium carbonate; besides these were found iron, alumina, lime, potash, and silicic, phosphoric, and boracic acids. Owing to the very large amount of soda present, it was difficult to test for boracic acid; but this was done at last by use of Mr. Iles' glycerin test, which we described at length on page 180 of our volume xxxiv., the ordinary methods having in this instance failed entirely to reveal the presence of this acid.

Sapolio contains (besides organic matter) soda, iron, alumina, lime, and hydrochloric, sulphuric, carbonic, and silicic acids.

THE HARPY EAGLE.

Sitting motionless on the ground in the corner of the eagles' cage, in Central Park, New York city, is a curious bird which, at first sight, visitors mistake for an owl, and prey and apart from its own species. The creature rarely prey and apart from its own species. The creature rarely
stirs from its favorite corner. When food is offered, or when some one of the eagles ventures to approach it too closely, it erects a tuft of feathers on the back of its neck, and twists its head about with a rapidity that shows it, despite its sleepy attitude, to be keenly on the alert. The eagles, even the huge bald-headed monarchs of the air, cherish a wholesome respect for the formidable beak and huge talons, and permit the uncommunicative stranger to continue its ponderous thinking without intruding on its meditations.
The bird is a harpy eagle (harpya destructor), and is probably, next to the condor, the most dangerous and ravenous bird of prey indigenous to the New World. It inhabits the tropics between Mexico and the southern part of Brazil, and abounds in great numbers in the warm regions in the interior of South America. In size it is smaller than the condor, but larger than the true eagle, and stands as a kind of connecting link between the latter and the buzzards. The characteristic features of the bird are well shown in the engraving presented herewith. The beak is strong and curved, and the tail long; and the wings are of medium size. The back, wings, upper chest, and neck are grayish black, the tail is black with whitish cross bands, the lower chest and abdomen are white, and the claws yellow.
Unlike the condor, the harpy avoids high mountains where the air is rare and cold, and dwells in dense forests or on the shores of large bodies of water. Its food is small animals, especially monkeys. Regarding its eggs or its breeding habits, but very little is definitely known.

Boiler Explosions.
A correspondent who signs himself A. O. K., thinks that E. G. A. undervalues the average engine tender, and states that, although men in charge of stationary encines are frequently illit erate, their practical ledge, gaincd by expeience, should protect them from the charge of ignorance. He admits that there are many men employed in this important position who are unqualified to assume its responsibility; and it is the engagement of such men which renders the use of automatic alarms, etc., necessary; and he cites the case of a recent explosion which would certainly have been p vented if such an alarm had been attached to the boiler.

Capital and Labor

The best and sweetest friend of the laborer is economy. Save a little every day, lay it by, and it will soon become self-accumulating, by the safe and generous principle of compound interest. It is astonishing, with such a habit once formed, how soon the laborer may find himself enjoying all the pecuniary facilities which he has been in the habit of envying in the capitalist. We know that such a course involves self-denial, no indulgence in liquor, no sacrifice to superfluous fancies, no riotous living; but yet it does admit of all necessities and the intelligent cultivation of the mind. Indeed, this last purpose should never be lost sight of. If we know how to spend less than we receive, we have the philosopher's stone, says the stoic. Anything which is not absolutely needed is dear, no matter what the price may be or, in other words, nothing is cheap which is superfluous.
Extreme measures defeat themselves. If, by any extraor dinary combination, workmen should succeed in establishing five hours per day as the legal representative of a day's labor, is any intelligent person so blind as to suppose, for a single moment, that the laborer has really and pecuniarily benefited himself, though he gets as much for his five hours as he did formerly for ten hours of faithful work? The truth is very simple; he who runs may read. The man's dollars,
which he receives for circumscribed production, are worth just so much less as the amount of labor which he gives for them is diminished, and he will inevitably find their purchasing power to be in that exact ratio. Money is but the circulating medium; his labor is the real criterion of value. The loss of five hours, more or less, as the case may be, is just so much loss of real wealth in the world; and so long as the workman lives he is as much a loser as the capitalist who employs him. Of course five hours will not produce so many shoes, hats, or potatoes, consequently it will require more of those dollars to cover his feet and head and feed him. A suit of clothes will cost him just so much more in proportion as his limited industry shall diminish the value of his dollar.
All associate interests, to be lasting, must be upon an equitable basis. The bargain that is one-sided and unreasonable can never be made to stand; all the legal documents that could be drawn upon that basis would be as naught. The laws of compensation are inevitable, and the rule of justification will come in, by and by, and assert itself. Em-

Mr. F. H. Morse says, in continuation of his article in the Jorthwestern Lumberman, published in our last week's ssue
Following up the history of the planing machine after Bentham's patents of 1791 and 1793, we come to that of Joseph Bramah, granted in 1802, which related to the trans verse, or what is better known in this country as the Danicls planer. This is in fact the only true planer, or, in othe words, the only one which produces a perfectly plain surface but its use in this country is very limited as compared with the parallel planer, it being employed only for making lum er perfectly true, or "out of wind," as it is termed.
From 1810 to the time when the Universal Exhibition was In in London, in 1851, the building of planing machinery in ngland made but little progress, and it might almost be said hat this branch of engineering science lay dormant in that ountry for forty years. In 1844, William Furness, of Liverpool, bought nearly all the machines manufactured by C. B. Rogers \& Co., of Norwich, Conn., conveyed them to Eng land and there patented them. Little benefit, how ever, was ever derived from these ventures either by himself or his country as they were not at all adapted to the English trade. From 1830 to 185 American mechanics and inventors made many im provements in the style and the construction of machines for planing wood, among which the great Woodworth and Woodbury patents are the most noticeable. As they are doubtless familiar to every planing mill owne and operator, it is unneces sary for us to describe them here.
For the past fifteen years the aim of manufacturer has been to perfect th parallel planer, and to-day it is without doubt the most perfect woodworking machine in the country As it is the style chiefly used in our planing mills, these remarks will be main ly confined to this class.
Under this head we will first notice that somewhat peculiar style of machine known as the chain be planer, invented first about twenty years ago by Farrar, whose purpose wa to avoid the Woodworth monopoly. It is undoubt edly the most extensively used of any one side or single planer built, and the principle is frequently em ployed for double or two cylinder machines with good results where th material worked is not less than $\frac{5}{8}$ or $\frac{1}{2}$ inch thick; for thinner than this they give some trouble, as the las board put in has to push the preceding
ployers and employed, master and men, are equally ame nable to this great and good law of Providence. Be sure there is always a third, silent party to all of our bargains. American Cultivator.

Postage Stamp Frauds

In reply to a paragraph recently published in these col umns, suggesting the importance of discovering some new invention by which the fraudulent washing of postage stamps can be prevented, we have received many replies. A variety of novel plans for accomplishing the desired end have been presented to us, together with several very old ideas. For the benefit of those of our readers who may still be studying upon the subject, we would say that the following plans are old, and time spent in their re-invention is wasted

1. The printing of the postal stamp in ink that washes off when moisture is applied to the face of the stamp. 2. Cancellation of the stamp by means of indelible ink. 3. Cancellation by means of a cutter stamp that cuts the face of the stamp. 4. Coupon stamps, one portion of which adheres to the letter envelope, while the other portion or flap is ungummed and is torn off as a cancel in the post office. 5. Translucen stamps gummed upon the face, and secured face down upon the envelope, so that, if the stamp is removed by moisture, the ink leaves the stamp and adheres to the envelope.
The spurious 5 cent piece which has recently been exten sively circulated was found to be composed chiefly of tin and antimony, with an appreciable amount of copper.
through between the dead plates and bottom cylinder; and if there is not considerable end surface to the boards, they slip past each other, causing much annoyance and sometimes endangering the safety of the machine. One great advantage gained by the use of this style of feed is that lumber can be planed in almost any condition, even if wet or covered with ice or snow-a quality which roll feed machines do not possess. For single side planers we would recommend for gene ral work the chain feed as superior to any other; but for two cylinder machines, unless used entirely upon heavy work, the roll feed is the best. Of these two classes there are some xcellent machines built by our American manufacturers. In regard to the care of a chain feed planer, we remark that, in starting a new machine, much attention should be given to the wearing parts of the bed and its bearing bars to prevent abrasion as, if this evil once commences, it can never be stopped. Powdered plumbago (black lead) mixed with oil is the best lubricant that can be used to prevent it The bearing bars beneath the bed should pe faced with highly tempered steel; the traveling bars should be made of chilled iron, the straps of the best grades of Norway or Swedish iron, and the rivets of steel. Great care should be exercised in the manufacture of these parts, especially such portions of them as are exposed to wear, as they are often required to work under heavy pressure, covered with dust and with but little chance for proper lubrication; and, if they are not well con structed and cared for, they will prove a continual source of trouble and expense.

Next in order comes the matcher. This has undoubtedly been made in a greater variety of forms to accomplish the same result than any other woodcutting machine in use. There seems to be nothing like a standard for any one of its parts in existence; each builder designs his machine seeming. ly with no other purpose than to make it as much unlike that of his predecessor in the business as possible. At least such is the opinion one would naturally form from an examination of the different patterns which are offered for sale in this country. They are built with two, four, six, and eight feed rolls, from four to fourteen inches in diameter, as extremes, the large ones sometimes fluted and the small ones with smooth surfaces, and vice versa. We find cylinders varying from four to ten inches in diameter, some with two, some with three, and some with our knives, which are attached in divers ways. In one style they are inserted in the cylinder with their cutting edges projecting past its turned surface; in another they are keyed to the cylinder, and in a third bolted upon it. Again in some machines the cylinder is round, as its name would indicate, and in others rectangular and triangular. The cylinders, too, are made of various materials, the most common of which are wrought iron, cast iron, and brass. In matcher side cutter heads, we find that the same dissimilarity prevails. They are made to carry from two to five cutters. These are in some cases solid, and in others in sections; in one machine placed with the beveled side of the cutter out, or next to the work, and in another in the opposite positions; sometimes straight, and frequently with an edge forming a quarter of a circle, and all these different classes are at work on the same kind of wood and under like conditions.
From all this diversity it would naturally be inferred that the manner of constructing a planing machine was of minor importance, or had not received the attention it deserved; but there are, notwithstanding, machines built which are very nearly perfect, and if an operator understands what is demanded for different kinds of work, and under different circumstances, he will have no difficulty in procuring a flooring machine that will almost exactly meet his requirements.

DECISIONS OF THE COURTS.

United States Circuit Court-District of Massachu-

patent bobbin and spindle.-OLiver pearl et al.vs. the ocean
n Fquitr,-Before Sher J. 2 2, 1877.]

of reference by arrangement under the following heads \cdot Physical experi-
ments (that is, in molecular physics), acoustics. light, heat, magnetism, elec ments, , and chemistrr. The fullness of this collection is very remarkable,
trit we are quite sure that an experimenter might occupy himself daily for a year if he only repeated once every experiment the details of which ar here given. One of the merits of this collection is that it not only gives th the subjects involved. As the author is not writing a history of the art,he is quite excusable for omitting all reference to the authorship of the various
experiments which have been published by others. but any one interested experiments which have been published by others: but any one interested
in the subject will recognize many which have first appeared in this journal, and wili thus recognize how much the "art of projection " 0 wes to one of Trequant

The New Formula for Mean Velocity of Discharge of Rivers and Canals. By W. R. Kutter. Trans lated by L. D'A. Jackson, Ã.I.C.E. Price $\$ 5$. New

 York city: E. \& F. N. Spon, 446 Broome street.Mr. Jackson is already well known to hydraulic engineers through his
"Hydraulic Manual," a very excellent practical work which has already run through several editions. The enew book, which he has rranslated fro a series of papers by Herr Kutter, will, we think, also prove of much value
to the profession. Mr. Jackson points out that all "the old velocity formula both for open channels and for pipes have been proved to have no claim to general application; and as a consequence of thedearth of hydraulic observations of modern date. the hydraulician is recommended to use variable
coefficients of mean velocity of discharge, to be chosen in accordance with the circumstances of each special case." The new formula of Herr Kutter,
however, is based on the experiments of D'Arcy, Bazin, Ganguillet, Humphrey, and Abbot, and on his own investigations, and hence is considere to be of great practical importance, inasmuch as it supersedes the un-
reliable formulæ above referred to. The text of Mr. Jackson's work, which bears the marks of careful editing,relates to flow in open channels generally and fow in open channels in earth. The book contains numerous tables,

gecent americam amd foreign zatents.

NEW AGRICULTURAL INVENTIONS.
improved cultivator.
Thomas R. Landon, Sladesville, N. C.-This improved cultivating plow or cotton, corn, and other plants, is so constructed that it may be readily The rear ends of standards are bent to the rearward, to form feet or have feet attached to them to strengthen them, to enable the plow to be more
easily held, guided, and controlled. The rear ends of the feet are bolted easily held, guided, and controlled. The rear ends of the feet are bolted
to the lower ends of the rear standards. The upper parts of the standto the lower ends of the rear standards. The upper parts of the stand ards are bent inward at right angles, are slotted longitudinally, and are se-
cured to the beam by a bolt, so that, by loosening the bolt the rear stand cured to the beam by a bolt, so that, by loosening the bolt, the rear stand-
ards may be adjusted, as required, to correspond with the adjustment of the forward standards, and to cause the plows to throw moreor less dirt, as may be desired. To adjust the plow as a double dirter, the standards and their attached plow plates are exchanged.

improved sulky plow.

Charles Reed Conway, Midway, Wis., assignor to Jane Eliza same place.-In this sulky plow, the draught is applied to the sulky, instead
of being applied directly to the plow beam. The wheels are made large, and revolve upon the journals of the axle. To the middle part of the axle is attached the tongue, which is strengthened by the braces or hounds, and to which is attached the double tree. The standard is made higher than
usual, so that the plow may not be liable to clog with rubbish. The plow usual, so that the plow may not be liable to clog with rubbish. The plow rear of the axle to keep the plow in line, and enable it to be guided by the sulky. The draught strain upon the plow is supported by a pin that passes through the beam in front of the forward hanger, and the sulky is kept from moving back upon the beam by a pin passed through the said beam in
the rear of the said hanger. Rollers are placed upon the pins to bear against the rear of the said hanger. Rollers are placed upon the pins to bear against
the hanger, to diminish the friction as the plow beam moves up and down the hanger, to diminish the frictio
within the slot of the said hanger.

Improved turf and grubbing colter. Samuel M. Lovell, Shady Grove, Va.-This invention furnishes an improved colter for cutting turf or sod, to enable it to be turned by the plow,
and to cut off roots that may be in the ground and that would obstruct the plow, and which shall be simple in construction, easily kept in order, and of light draught.
improved fruit crate.
Roderick G. Ross and Francis A. L. Cassidy, Wilmington, N. C.-This invention is an improvement in the class of folding fruit and vegetable crates, and relates particularly to the mode of hinging the top and bottom
of the crate to the bent portion of the rods by which the sides are pivoted of the crate to the bent portion of the rods by which the sides are pivoted
together, and also to the means for both securing the cover and bottom together, and also to the means for both
closed, and holding the crate distended.
The Art of Projecting. A Manual of Experimentation in Physics, Chemistry, and Natural History, with the Porte-Lumiere and Magic Lantern. By Professor
A. E. Dolbear, Tuft's College. Illustrated. Boston,
Mass. : Lee \& Shepard. Mass. . Lee \& Shepara.
and which well supplies a want which has been felt for many years. Durand which well supplies a want which has been felt for many years. Durgradually developing from what might be very appropriately called their
infancy, when they were found almost only in the nursery as toys for children or elsewheree as means of mere amusement. During those years these
instruments have been occupying an ever wider and wider fleld in the school room, the lecture room of the college, and the public lecture hall,
and a mutual influence has reacted between these means of illustration and a mutual influence has reacted between these means of illustration
and the methods of instruction for which they were best fitted; by which the character of such oral instruction has been modified and developed, and its enlarged requirements have called for and obtained a constant enlarge-
ment in the capacities of these instruments, until to-day we find in what the author of the above work calls "the standard lantern of the country,"
namely, the College Lantern, manufacture by Messrs. George Wale \&
Co., of Hoboken," a complete outfit, by which an extended course of instruction in Science can be illustrated with a an exness and corilliancy that was not dreamed of a dozen years ago. The art of projection has thus
come to be a matter involving much of detail in reference to the adjustment of apparatus and the management of experiments, and yetbeyond the
meager directions contained in the catalogues of manufacturers, nothing in a collected form has been published on this subject. Isolated papers
have, it is true, appearedin various periodicals, and we among others have want which every experimenter and instructor feels of a handbook which shall give him full directions, systematically arranged, for every part of his work, and which shall supply him with suggestions for the subject as well
as the method of his illustrations. All this the volume before us supplies n an admirable manner. It opens with clear and concise directions for making, at little cost, such a simple porte-lumiere as should answer the requirements of any one not able to procure a more perfect instrument. luding the electric light the description of arvocycalcium (so called), the magnesium, and finally oil and gas lights. Lanterns are then described, and next lenses, and then the subject of "projections" in general is ex-
tensively treated, including the ordinary projection of images of transpartensively treated, including the ordinary projection of images of transpar-
ent objects or pictures with a lens, the projection of shadows from large pieces of apparatus, the projection with the megascope or by reflection
from opaque objects, and the use of the vertical lantern of President Morton. What we have noticed so far occupies the first 43 pages of this book, the remaining 115 pages being devoted to the description of countless
beautiful and instructive experiments to be performed with the instru-

IMPROVED ANIMAL TRAP.
Zachariah J. Anderson, Dallas, Texas.-This invention consists in the combination of a hemispherical cage, a central standard, and a base piece, the top of the standard by a trigger that engages with a ring at the top of the top of the standard by a trigger that engages with a ring at the top of
the standard. The trigger is tripped by a chain to which bait is attached. The circular base piece of the trap may be made of any suitable material. It is rabbeted at its edge to receive the upper portion of the trap, and is
bored centrally to receive a standard, which is secured thereon by nuts bored centrally to receive a standard, which is secured thereon by nuts
that are secured on the rod, and clamp the base piece. An eye is formed at the upper end of the rod, for convenience in handling, and also for re-
ceiving the trigger that supports the cover or cage. The hemispheric ceiving the trigger that supports the cover or cage. The hemispherical ccver or cage is made of wire, and is provided with a cap or top piece of
sheet metal, which consists of two concave pieces attached to the top of the cage, having their concave surfaces placed together, and each provided with a central aperture that fits loosely on the standard. A short section of tube attached to the lower piece forms an additional guide for the cage. A trigger is capable of hooking into the eye. The lower end of the trigger is bent to form nearly a right angle with the upper part, and is connected to chain that is provided with a bait hook, and also with a guiding ring that
slides on the standard. A dog is jointed to the top piece and is capable of clamping the standard, so that the cage cannot be raised without first turning the dog back. There is a handle for raising the cage. The trigger, when the trap is set, hooksinto the eye. Any attempt to remove the bait when the trap is set, hooksinto the eye. Any attempt to remove the bat
fromthe hook trips the trigger, allowing the cage to fall upon the bas
piece. The dog prevents the imprisoned animal from raising the cage. IMPROVED CORN PLANTER.
Thomas C. Young, St. Charles, Iowa.-The supporting frame of this
corn marker is revolved by two horses and a driver. It rests on broad hind corn marker is revolved by two horses and a driver. It rests on broad hind wheels and on curved furrowing pieces that are arranged in front of the seed boxes. The wheels are placed stationary on a square axle, and are
coupled or uncoupled by a clutch mechanism that is moved along the axle by means of levers operated from the driver's seat. The seed boxes may by means of levers operated from the driver's seat. The seed boxes may
be worked separately or jointly, according as one or both clutches are thrown into gear with the wheels. When one box only is required to drop, the opposite clutch mechanism is thrown out of gear, and when both are desired to be interrupted, for turning or otherwise, both clutches are thrown out of gear with the wheels. To the sliding sleeve, operated by the These arms revolve with the axle when the clutch is thrown into gear, and ngage the rectangularly bent ends of the curved rods of a rock shaft, so arms, the and drop the same, and operate thereby, by fixed diametrical arms, the top and bottom slides of the seed-dropping tube. The slides are
so arranged that when one opens the seed-dropping tube the other closes
the same, which produces alternately the filling and discharging of th
tube. The planter is thrown in or out of gear with the wheels when th tube. The planter is thrown in or out of gear with the wheels when the
revolving arms are in nearly horizontal position, the marker rods being therebyalso in a position so as not to interfere with the propelling of the planter.

IMPROVED GRAIN DRILL
James R. Roe, Fairville, Mo.-This drill is so constructed that it wil not clog with trash, will adjust itself to an uneven surface of gronnd, wil sow the seed evenly and uniformly, and may be easily operated. It contain improved thrashing machine.
George R. H. Miller, Oregon City, Oregon.-The novel feature in this ma hine is the feed table, which is placed upon the forward end of the fram ward or back, according as the stalks of the, so that it may be moved for To the table are pivoted two feed rollers, the lower one of which is ribbed corrugated. The journals of the upper feed roller revolve in sto that it may rise to adjust itself to the thickness of the grain, and it i held down to its work by spiral springs. The feed table is also provided with an endless belt carrier for feeding purposes.
improved rotary stalk cutter.
Orson D. Johnson and John F. Bracket, Mount Pulaski, Ill., assignor to themselves and C. C. Mason, of same place.-This is a new machine for cutting stalks into pieces, so that they may be plowed under to fertilize the soil, and not impede the operation of plowing. A drum presses th stalks down and then knives arranged in slots in the periphery of the
former are vibrated longitudinally to cut off the stalks provided for raising the drum when desired.
improved peanut cleaner.
Daniel R. Rivers, Centreville, Tenn.-This consists of a hopper and cy indrical perforated sheet metal revolving screen, having longitudinal row arge holes tolet the stones and dirt out.

NEW WOODWORKING AND HOUSE AND CARRIAGE BUILDING INVENTIONS.

improved spring back for wagon seats.
John W. Wood, Owatonna, Minn., assignor to himself and C. Schoen, of same place.-This is an improvement in springs for connecting the back
of a wagon seat with the arms. The back and arms have hitherto bee connected by a curved plate spring, or the arm itself has been made in the shape of a coiled plate spring, or the arm has been made movable, being held by a surrounding coiled spring. These springs are found in practice to be often fractured in frosty weather by a sudden jar; and in order to structs this connection of rubber, making it flat at each end, so that it ma bereadily fastened between plates at the arm and back, and preferably make it stouter in the middle, to lessen its liability to break at that point. IMPROVED AUTOMATIC SEWER TRAP. John Peter Schmitz, San Francisco, Cal.-A vertical perforated partition
divides the cesspool into two compartments. The street gutters discharge into one compartment, and the water passes through the perforations into the other, leaving the solid matters behind. A weighted valve closes the
mouth of the sewer, but it is opened (to allow escape of water) by a float which is raised when the water accumulates in the second compartment. IMPROVED SAW SET.
Christopher Heinen, Leavenworth, Kan.-This improves the construction of the saw set for which letters patent were granted to the same invento August 8,1876 , to enable the upper die to be more firmly held in place, and
the saw plate to be more easily and accurateiy guided to the dies. The general construction is such that the saw plates are securely and firmly held, and will be moved squarely across the dies, so that the teeth may be accurately and evenly set.
improved wagon end gate.
Theodore L. Block, Sidney, IIl.-A cross bar retains this gate rigidly in position until, by lifting and withdrawing the bar, the gate sections fold in the center, and are, on detaching the side hooks, readily taken off for
dumping or removing the load. The pressure of the load on the inside of dumping or removing the load. The pressure of the load on the inside of
the end gate assists the taking off of the same, as it facilitates the swingthe end gate assists the taking off of the same, as it facilitates the swing-
ing of the gate sections on their hinge connection. The gate may thus be ing of the gate sections on their hinge connection. The gate may thus be
easily locked to the wagon body and detached with great convenience, without
vices.

IMPROVED DOOR CHECK.

Hiram Shunk, Davenport, Iowa.-This is a stop for holding doors or shutters open or shut; and it consists of a spring formed from a ribbon of steel, the extremities of which are attached to the wall, and the center
portion bent into a threefold loop forming a spring clamp, which engages with the outside of a loop or knob attached to the door, retaining it with sufficient force to prevent the door or shutter from closing by a pressure of wind or other slight cause. The clasp thus formed presents rounded ends, which readily slip over the loop attached to the door, and press the smaller part of it with a force which retains the door, but which may be over come by pulling the door. The ends of the ribbon forming the clasp are formed into ears, through which screws pass for securing it to the wall.
The stop not only answers the purpose of holding the door, but it also serves as a buffer which prevents the door from striking the wall as it is serves as a bu
thrown open.

NEW MECHANICAL AND ENGINEERING INVENTIONS.

IMPROVED HAT-bRIM-LURING MACHINE.

Ambrose Hill, Yonkers, N. Y.-This is an improved machine for luring be done well, and at the same time very quickly; and it consists in the combination of a hinged frame, spring, shaft, pulley, fly wheel, luring wheel, connecting rod, and treadle with each other, and with the frame for luring rest bar, and the detachable rest with each other, and with the frame for supporting hat brims while being lured.
improved motive power.
William W. Corey, Lisbon, N. H.-This is an improved mechanism for applying power to a hand car and to other mechanisms; and it consists in an improved motive power, formed by the combination of the four levers driven. The form of the levers may be varied, as the particular use to IMP
IMPROVED RAILROAD SWITCH.
Ferdinando Luchini, Natchitoches, La.-In this switch the switch rail is perated by devices located upon the car. When the car is upon the main track and is going in the direction in which the switch rails po.nt, the ange of the car wheels will push back the switch rail. When the car is main track, no movement of the switch rail is required.
improved dust guard for sewing machines. Albert A. Capeling, Rochester, N. Y.-This invention consists in an improvedguard, cover, or case for the works of sewing machines, more eslator located underneath the table. The guard completely encloses the works, and has a spring-closed door for permitting access to the regulato: The driving band runs through eyeleted openings.

improved valve seat.

Jacob F. Cock, Rockville Centre, N. Y.-This improvement consists i providinga valve seat of leather or other elastic or yielding material, placed ing, or placed in a channel in an annular plate, which may also contain the packing for the lower end of the pump cylinder, and to which the valve ma be attached. The object of inis invention is to provide a valve seat which shall not readily wear, and which will permit the valve to close tightly, and which may be readily repaired. In applying this invention to new pumps, in the process of manufacture the valve seat or lower portion of the pump cylinder is grooved a
valve seat is placed.
improved grading machine.
Irven Coppock, Alba, Mo.-This is a machine to be employed for farmng purposes, grading streets and roads, cutting ditches of all kinds, breaking ground for railroad cuttings, etc., and loading it at the same time di rectly on a wagon running in connection therewith; and it consists of an by suitable mechanism, and which throws, by a shovel or scoop-shaped mould board, the earth on an endless belt that is placed at suitable inclination, and driven by pulley and chain connection with the axle of the main wheels.
improved locomotive spring
James Jenkins, Cortez, Nev.-In this invention the upper spring con-
tacts with, and rests with its ends upon the ends of the lower. Median clips, employed to embrace the edges of springs, are connected by a spiral spring and internal flexible connection; while clips prevent lateral dis placement between the middle and ends. Guide straps allow a free an
independent movement to each of the springs upon the other, but not in a lateral direction.

improved lubricator.

George W. Gageby and William James, Johnstown, Pa.-This lubricator is for automatically lubricating the cylinders of engines; and it consists of two valves oppositely arranged upon the ends of a common stem, and pro-
vided with seats upon opposite ends of a chambered tubular conductor that connects the oil cup and steam chest, and is so arranged that steam pressure from within the steam chest closes the valve against the seat on
the lower end of the tubular conductor, and a removal of the pressure from the steam chest allows the valve to drop and permits the lubricant to ente the steam chest.

IMPROVED KEY HOLE GUARD FOR LOCKS
ock is applied to the door by recessing the same from the inside to the thickness of the lock, so as to leave the door strong enough, and withou being weakened to the same extent as by the common mortise lock set in
from the edge of the door. A face plate closes the lock from the inside, and is attached to the door by fastening-screws. The sliding latch bolt is guided in the casing and operated by turning the knob spindle in either
rection, being engaged by extensions of the guide socket of the knob spindle, the extensions bearing against the lugs of the recessed interior part of the latch bolt. The latch bolt is acted upon by a spiral spring, that throws the
same instantly forward when the knob is released. The outer section of the latch bolt is screwed into the wider interior section, and may thereby be readily detached for the purpose of reversing the external section of the plied. The external section of the latch bolt is guided in a suitable metal lined recess of the door, the guide recess connecting the edge of the door and the lock casing. The spiral spring is placed outside of casing, and enlarged end of the latch bolt, which arrangement of bolt section and spring reduces the width of the casing, and admits the carrying back of
the lock from the edge of the door, leaving solid wood where it would the lock from the edge of the door, leaving solid wood where it would
otherwise have to be cut away. A pivoted guard plate swings at the inside of the casing adjoining the wood, and closes, when placed in por instrumen operating pin, the lock against the introduction of a key or instrument
from the outside. The pin swings in curved slots of the casing and face plate. The guard plate forms an additional safeguard against the opening
and picking of the lock from the outside. The lock is, therefore, of special advantage for outside doors, hotel, and such other rooms that are desired to be secured from the inside
improved apparatus for introducing powdered fuel INTO FURNACES
George K. Stevenson, Valparaiso, Chili.-The object of this invention is
to introduce powdered or granular fuel, such as coal, coke, or similarhydro to introduce powdered or granular fuel, such as coal, coke, or similarhydroperfect combustion and more intense heat than heretofore; and the invention consists in connecting the fuel tube with furnace by a sleeve and tube,
the latter of which is provided with a twisted plate that is made adjusta ble, as hereinafter described. The fan heretofore used exclusively in the attempts to introduce powdered fuels has not given satisfactory results, on account of the uncertainty of the blast of the fan, except at a given high velocity, which circumstance
of greatly diminished value.

improved atmospheric gas engine.

Joseph Wertheim, Bornheim, Prussia.-This invention relates to an improved combined atmospheric gas engine, in which the explosive force of
a suitable gas and air mixture and the atmosphere pressure are utilized as motive powers; and it consists, mainly, of a cylindrical explosion dome, connected by a siphon pipe with a reservoir. In this pipe, but at its lower
part, is a paddle wheel, arranged in a casing with curved chutes, on which part, is a paddle wheel, arranged in a casing with curved chutes, on which
the power of the explosion in the dome and of the atmospheric pressure the power of the explosion in the dome and of the atmospheric pressure
created by the vacuum therein is exerted by means of water or other liquid. The explosion may be produced by a suitable mixture of illuminating gas and air that is admitted into the explosion dome, and ignited by a slide
valve with an igniting mechanism. The explosion forces the liquid, through a double valve arrangement of the siphon pipe, paddle wheel, casing, and connecting channels, into the liquid reservoir at the end of the siphon pipe,
and back again by the vacuum formed in the dome and pipe, imparting, by and back again by the vacuum formed in the dome and pipe, imparting, by
the forward and return motion, a continuous rotary motion to the paddle the forward and return motion, a continuous rotary motion to the padde
wheel. The liquid valves control the escape of the gases from the explosion chamber, in connection with the return of the liquid, by means of a
slide valve and interior pendent float valves, any mechanically escaping liquid being returned by a small collecting chamber and pipe to the liquid reservoir. The regulating device is operated in connection with the fly wheel of the paddle wheel shaft, interrupting temporarily the explosions in the dome when the speed is too fast

IMPROVED COMBINATION TOOL

Isham U. Malphurs, Gainesville, Fla.-This is an ingenious combination
of monkey wrench, gimlet, screwdriver, and pipe tongs or nippers. The of monkey wrench, gimlet, screwdriver, and pipe tongs or nippers. The
lower end of the wrench bar forms one jaw of the tongs, the opposite jaw being pivoted to said bar. The end of the pivoted jaw handle is fashioned out into a screwdriver, and the gimlet is attached to the back of the movable jaw of the wrench.

IMPROVED COTTON CHOPPER.

John H. Gilleland, Peak's Hill, Ala.-The new feature in this machine
consists in two levers, which are pivoted, near their lower ends, to each consists in two levers, which are pivoted, near their lower ends, to each
other and to a cross bar of the frame, so as to work upon each other like the parts of a pair of scissors. In the adjacent faces of the lower ends of
the levers are formed half-round notches, which, when the said ends are closed upon each other, form a bearing for the forward journal of the chopping shaft, which may consequently easily be detacked.

IMPROVED FRICTION CLUTCH
Samuel Peppard, Oskaloosa, Kan.-This is an improved device to take the place of cranks and pawls for transferring motion, which shall have no
dead point, and will act at once when the power is applied. The side or face of the wheel or other object to be driven is made conical, to correspond with the faces of conical rollers, which revolve loosely upon the journals of an axle. The middle part of the axle is widened and has angles formed upon its opposite sides. The axle has a hole through its center, through which a shaft passes. The hub of a disk, to which power is ap plied, revolves upon the shaft. The face of the disk is made slightly coni lightly in one direction it will be wedged by the rollers between the whed and the ring, so as to carry the said wheel with it in its revolution.
improved clamp for holding ratchet drills. Louis Beland, North Springfield, Mo.-This is an improved apparatus
for holding and feeding ratchet drills employed in drilling fish plates while in place on the rails. It consists of a clamp formed of two parallel bar of iron or steel, which serve as ways for a sliding nut, through which th end with hooks of peculiar form, which are capable of engaging with th lower side of the rail. The nut carrying the feeding screw is capable of being adjusted to any number of holes within the limit of the length of the parallel bars.
mproved car coupling.
Oliver Crum and Milton Crum, Monsey, N. Y.-This car coupling couple n inclined lanner without danger to the attendant; and the drawhead has for uncoupling and coupling by a swinging bridge operated by a lever arm of the shaft of the coupling hook, so as to uncouple simultaneously the cars is thrown off the track. The drawhead also tas in case one of the play, and is capable of resisting more fully the concussions of the cars.
mproved chuck for metal-turning lathes. Jay H. Harris, Sacramento, Cal.-This chuck consists of a pair of jaws
that may be made to project more or less beyond the lathe center, and that may be made to project more or less beyond the lathe center, and which may be closed tightly on the shaft by a nut, which closes them by
following their inclined sides. Dogs are placed eccentrically in the ends of the jaws, which preventany slipping of the work. This device is quite simple, and is well calculated firmly to hold shafts and other objects to be turned.
improved device for drawing pulleys from shafting. Henry F. Casterline, Grand Detour, Ill.-In repairing shafting it is fre decome set very tightly, so that to take them off involves the expenditure of considerable time and labor. The present invention suggests an ingenious device for the purpose, which consists of swinging hook levers that
are forked and curved inwardly at the ends, which spring over the pulley. are forked and curved inwardly at the ends, which spring over the pulley.
The levers are pivoted to at traveling screw head that serves to pull the pulley by a screw shaft. A loose pin is clamped into the socket end of the screw, and may be taken out and exchanged for others of different lengths, so as to bear on the shaft end and fit the lever hooks to the pulley, admit
ting the device also to be used as a jack screw byputting a plate at the cen ter of the screw head.

IMPROVED COAL-HOISTING APPARATUS.
Guiseppe Paci, New York city.-The object here is to hoist coal, bricks, nd other articles from vessels directly into the carts by utilizing the powe
f the horses pulling said carts. There is an inclined endless belt, with step-shaped parts, to be operated by the carthorse for rotating a drum, on which the hoisting rope is wound. The cord runs over guide pulleys of a
supporting frame and of a bucket-conveying carriage, that locks and unsupporting frame and of a bucket-conveying carriage, that locks and un-
locks a fixed button in automatic manner to convey the load or lower locks a fixed button in automatic manner to convey the load or lower
bucket. The work of the endless stepping belt is stopped or interrupted by a lever actuating a double clutch and brake mechanism of the winding drum shaft. A weighted lever and swinging hub-locking standard secure
improved tube sheet and fastening for tubes of STEAM BOILERS.
Daniel Hess, Greenville, Miss.-The object of this invention is to enable
the defective fire tubes of steam boilers to be the defective fire tubes of steam boilers to be removed with convenience
and dispatch, and without injuring the tube sheets. To this end, the and dispatch, and without injuring the tube sheets. To this end, the
patentee countersinks the holes or apertures in the tube sheets to receive patente nuts, which are applied to the ends of the fire tubes for securing or fastening them to the tube sheets.

IMPROVED SHACKLE.

Henry W. Dilg, Portland, Oregon.-This invention consists in constructing the shackle of two parts or curved bars having a loose jointed or de form at the other end, whereby it is adapted to be locked to the companion form
bar.
improved mounting for portable engines.
Robert M. Beck, Westininster, Md.-This invention relates to an improved mounting for portable engines, designed with a view to simplicity, cheap-
ness, and substantial construction; and it consists in the improved means of supporting the boiler and its engine upon wheels, and strengthening and bracing the same in its attachment.

IMPROVED CAR WHEEL CHILL
William Wilmington, Toledo, O .-The object of this invention is to cas would give the greatest wearing qualities, and at the same time treaserve such form and amount of unchilled surface to the tread as will entirely, or to a necessary extent, relieve the tension which is the result of cast-
ing wheels with the entire face of the wheel chilled to a uniform depth ing wheels with the entire face of the wheel chilled to a uniform depth.
The improvement consists in constructing the chill with an inner recess a The improvement consists in constructing the chill with an inner recess at
the outer edge of the portion forming the tread, and with a number of transverse grooves, running from said recess across the inner face of the
chill, both of which grooves and recess are to be filled with sand or nonchilling material to conform to the face of the chill preparatory to casting the wheel.

IMPROVED WROUGHT IRON BRIDGE

William H. Miller, Curwensrille, Pa.-This consists of a truss made of six-sided frames of iron placed upright in a line and clamped together.
The top and bottom chords are provided and the structure is stayed with plates and braces in a manner calculated to make a light and strong bridge capable of sustaining great weight, and being very stiff against lateral vibration.

IMPROVED STUMP PULLER.
Joseph Richter, Jordan, Minn.-This invention consists in the combinaand holding pawls with each other and with pawls, connecting rods, chains, of the cords or chains and the hooks with the pawls, the connecting rods and the levers. When the rear ends or handles of the levers are raised, the weight of the rear pawlswill hold both pawls in gear with the ratche wheel; and when the rear ends or handles of the said levers are lowered
the weight of the rear pawls will hold both pawls in gear with the ratchet wheels. By operating the levers, the shaft will be turned, winding up the chain, and drawing the stump. The shaft is held from being turned back by the resistance of the stump when the levers are being raised to make another stroke by the pawls, which engage with the teeth of the ratchet
wheels, and are pivoted to and slide upon a rod, attacked to the rear posts
of the side frames. The outer ends of the pawls project to serve as weight
to hold their engaging ends against the teeth of the ratchet wheels, and handles for sliding them away from the said wheels.
improved car coupling.
Charles G. Case and Daniel Gould, Davenport, Iowa.-This consists in a winging and spring cushioned coupling hook, provided with an upwardly projecting shoulaer connected with a top shoulder in the opposite drawbar nter their corresponding cavities and may thenbe locked by side leove The uncoupling is also readily accomplished by swinging the cams down so as to release the hooks from the top shoulders of the drawbars.

IMPROVED COTTON PRESS.

Charles T. Mason, Sumter, S. C.-This consists in the arrangement, in suitable frame, of two screws, each provided with a right and left hand hread, and two followers or platens, between which the cotton is pressed,
supported upon, and moved in opposite directions by the said screws. The object is to throw the entire pressure of the followers on the compresing screws and thus obviate the necessity of making heavy and expensive press rames, and also to increase the rapidity with which the press may be operated.
improved automatic brake lock.
Garhard H. Roling, Bellevue, Iowa.-This wagon brake is operated automatically in going down hill by the neck yoke, and released by the strain nd release fletrees when on level ground. The alternating application and release of the brakes by the automatic action of the horses, according er. The brake is also automatically released whenever the wagon has to er. The brake is als
be moved backward.

IMPROVED CRACKER MACHINE.
John Rannie and Alexander Rannie, Palmyra, N. J.-This machine is esigned especially for use in the manufacture of what are known in the rade as "sort goosu, such as ginger snaps, lemon snaps, bon-bons, fancy
 ent the dough from adhering to and clogging the cutters, to indicate the exact thickness of dough that is passing from the feed rollers to the cut ters, to stamp the dough with various devices before it passes to the cutters, to enable the scraps to be readily separated, and to prevent the cakes of
dough from turning over as they pass from the feed apron to the pan dough from turning over as they pass from the feed apron to the pans
upon the delivery apron.

NEW MISCELLANEOUS INVENTIONS.

IMPROVED TUNING PIPE

William G. Cook, Jersey City, N. J., assignor to himself and D. M Read, New York city.-The object of this invention is to furnish an im justed to sound any note of the scale, and which may be used as a tuning pipe and as a toy musical instrument. The invention consists in the com-
bination of the slotted sliding bar, having an index plate formed upon its bination of the slotted sliding bar, having an index plate formed upon its
outer end, the lever, and the pivoted fulcrum bar, with the slotted frame, outer end, the lever, an
the reed, and the case.

IMPROVED OIL STOVE.
Jacob M. Chamberlain, Albany, N. Y.-This stove, for burning kerosen and other oils, consists in the arrangement of an oil reservoir, provide with a space for water upon its upper surface, and an oven, and flues an t also consists in a vessel of peculiar construction for heating or cooking purposes.

IMPROVED BEVEL.
Albert Devoe, Oneonta, N. Y.-This is an improved extension brace rule, by which the bevels at both ends of a brace, and the mortises for a brace may be readily laid out at any angle of the same, the brace rule being also conveniently used as a mitering and try square. It is composed of sliding and slotted main pieces, that are connected by a guide and clamp screw,
and provided with graduated end rules, which are adjusted on the main nd provided with graduated end rules, which are adjusted on the main ieces by additional clamp scréw
improved bale tie.
John L. Sheppard, Charleston, S. C.-The buckle is approximately hook
haped, and pivoted to the band. The free end of the band is loope round the bent free arm of the buckle. In effecting the lock, the buck is turned on its pivot, so that the loop of the band will slide under the ben end of the buckle arm. The tie is simple, strong, easily manipulated, an cheap.

IMPROVED UMBRELLA.
Emerson Folsom, Toledo, O.-This improved folding or telescoping um brella or parasol may be readily arranged into small and compact shap cor being conveniently carried, packed, or stored, or drawn out for use a and durable, construction; and it has a telescoping stck and ribs that are locked by spring catches when drawn out for use, in connection with the unner and tip holder.

IMPROVED TYPE WRITER.
William H. Snider, Angus, Ontario, Canada, assignor to himself and Jonas T. Bush, of eame place.-The object of this invention is to so improve the key levers for type writers that either a considerable reduction in the number of keys may be made, or the application of the keys be enlarged to a considerable extent, so that the speed of the type writer may be
increased and the working of the same facilitated. The invention consists increased and the working of the same facilitated. The invention consists
of a compound key lever, obtained by attaching a steel spring, with a type of a compound key lever, obtained by attaching a steel spring, with a type
at the movable end, to the rear end of the same, and arranging one or the movable end, to the rear end of the same, and arranging one o ter of the spring or the combination of spring and key letters be formed.

IMPROVED PAPER BOX.
Richard H. Foster, Gloversville, N. Y.-This invention relates to packin boxes for that class of gauntlets that are provided with stiff wrists; and it consists of a square box provided with internal corner pieces or blocks, and
with a central elevated table at the bottom of the box, and a removable piece tha is received by notches in the inner corners of the blocks, the object being to provide a box in which gauntlets may be packed without injuring the stiff portion of the wrist. The box and the corner pieces may be made from pasteboard, wood, or cther suitable material. The advantage claimed for the invention is that ga ntlets having stiff wrists may be packed in boxes of this description withoutinjury to their form.

IMPROVED FEED BAG FOR HORSES.

George C. Booth, New York city, assignor to himself and Robert Gibson, of same place.-The mouth of this feed bag is attached to a band or hoop of wood or iron, to which is hinged a cover for closing the bag, and which, when the bag is in use, acts as a stay or brace for holding the bag in the
required position, being hooked into the hame or breast straps of the har ness. There is a peculiar ari angement of cords for sustaining the bag, by which it is prevented from swinging, and is held steadily. It is claimed
that the bag is always in the position required for feeding; it throws no that the bag is always in the position required for feeding; it throws no
impediment in the way of breathing; it can be readily attached and de tached; and it folds compactly with or without the feed contained. The annoyance to the horse of inhaling the dust of the feed is entirely obviated,
and the head is relieved of the weight of the bagegiving freedom of motion to the horse's head, avoiding the wasting of feed by the movement of the head.

Gusimes amd zersomal.

 The Charge for Insertion under this head is ${ }^{\circ}$ One Dollar Machine Diamonds, J.Dickinson, 64 Nassau St, N. Y. Try the Improved
We want agents and travelers in every part of the U . heel Co., Weissport. Pa. Wanted-By a man of fifteen years' experience in the
manufacture of wood worth planers and other woodworking machinery, a a situation as foreman or
man. Address L . Marcellus, Worcester, Mass.
For cost of Gas Works and Gas Making, address For cost of Gas Works and
D. Patton, Hicksville. Ohio.
A small sum will buy a good Patent on Return Steam Traps and Boiler Feeders just granted. Addess E. Fox, Safety Linen Hose for factories and public building educed prices. Greene, Tweed \&Co., 18 Park Place, N. \mathbf{Y} Manufacturers of Small Steam Yacht Machinery, send An old established manufacturing firm think of moving their works West. Cities and towns willing to offer in-
ducements, address Post Office Box 4779 , New York city. National Steam Pump-Simple, durable, economical. educed price. National Iron Works, N. Brunswick, N.J
Power \& Foot Presses, Ferracute Co., Bridgeton, N. J.
Superior Lace Leather, all sizes, cheap, Hooks Superior Lace Leather, all sizes, cheap. Hooks an Couplings for flat and round Belts. Send for c
C. W. Arny, 148 North 3d St., Philadelphia, Pa.
F. C. Beach \& Co., makers of the Tom Thumb Tele-
graph and other electrical machines, have removed to 530 Water St., N. Y.
For Best Presses, Dies, and Fruit Can Tools, Bliss \&
Williams, cor. of Plymouth and Jay Sts., Brooklyn, N.Y.
illiams, cor. of Plymouth and Jay Sts., Brooklyn, N.Y Water, Gas, and Steam Pipe, Wrought Iron.
prices. Bailey, Farrell \& Co., Pittsburgh, Pa.
Hydraulic Presses and Jacks, new and second hand Lathes and Machinery for Polishing and Buffing metals.

Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel - other kinds imitations and inferior
Caution.-Our name is stamped in full on all our best Caution.-Our name is stamped in full on all our best
Standard Belting, Packing, and Hose. Buy that only. The best is the cheapest. New York Belting
ing Company, 37 and 38 Park Row, New York.
Steel Castings from one lb. to five thousand lbs. Invaluable for strength and durability. Circu
Pittsburgh Steel Casting Co.., Pittsburgh, Pa.
Shingle Heading, and Stave Machine.
ment of Trevor \& Co., Lockport, N. Y.
For Solid Wrought iron Beams, ment. Address Union Iron Mills, Pittsburgh, Pa., fo

More than Ten Thousand Crank Shafts made by Chaster Steel Castings Co., now running; 8 years' con
stant use prove them stronger and more durable than wrought iron. See advertisement, page 141
Skinner Portable Engine Improved, $21-2$ to $10 \mathrm{H} . \mathrm{P}$.
Skinner \& Wood, Erie, Pa . Spin
Split-Pulleys and Split-Collars of same price, strength and appearance as Whole-Pulleys and Whole-Collars.
Yocum \& Son, Drinker st., below 147 North Second st., Philadelphia, Pa.
Yacht and Stationary Engines, 2 to 20 H. P.
for the price. N. W. Twiss, New Haven, Conn.
The largest and most successful manufs. use Blake's
Belt Studs. Greene, Tweed \& Co., 18 Park Place, N. Y. Scientific American, 11 vols. of old, 35 vols. new series,
will sell cheap. Address 611 Green st., Philadelphia, Pa. Emery Grinders, Emery Wheels, Best and Cheapest. warded Medal and Diploma by Centennial Commission Patent Scroll and Band Saws, best and cheapest Clean Boiler Tubes-Use National St
Cleaner, tempered and strong. Chalmers Spence Co.,N.Y.
4. 4 (4)

It has been our custom for thirty years past to devote correspondents; so useful have these labors proved that the Scientific American office has become the factotum, or headquarters, to which everybody sends, who wants special information upon any particular subject. So large
is the number of our correspondents, so wide the range is the number of our correspondents, so wide the rang and supply correct information, that we are obliged to employ the constant assistance of a considerable staff of experienced writers, who have the requisite knowledge For example, questions relating to steam engines, boil ers, boats, locomotives, railways, etc., are considered and ability and extensive practical experience. Inquiries relating to electricity are answered by one of the most able and prominent practical electricians in this country
Astronomical queries by a practical astronomer. Chemi al enquiries by one of our most eminent and exper nced professors of chemistry; and so on through a the various departments. In this way we are enabled large mass of information which these correspondence columns present. The large number of questions sent-
they pour in upon us from all parts of the world--renders it impossible for us to publish all. The editor selects隹 general interest to the readers of the Scientific Amerider go into the waste basket. Many of the rejected questions are a primitive or personal nature, which should be answered by mail; in fact, hundreds of cor respondents desire a special reply by post, but very few postage stamp. We could in many cases send a brie
reply by mail if the writer were to inclose a small fee, ollar or more according to the nature or imporane the case. When we cannot furnish the inf
money is promptly returned to the sender.
J. O'K. should read our directions for kalsomining on p. 133, vol. 34.-J. P. H. and F. M. S. will
find some excellent directions for polishing wood on p. 15, vol. 30. For French polish, see p. 11, vol. 32.-A. E. R. will find a description of a caloric engine on p. 66, . and W. P. H. will find something on cleaning wool on silver on metals on p. 299, vol. 31.-J. C. should read Auchincloss on "Link and Valve Motions," to be ob-
tained of D. Van Nostrand, 23 Murray street, New York city.-E. B. will find directions for making printer's a bronze dip on p. 8, vol. 36. For a varnish for bronzed work, see p. 65 , vol. 32 . N . will find directions for making hydrogen on p. 341, vol. 27.-L. W. V. D. will find on p. 204, vol. 28, directions for preserving natural flow-ers.-J. L. S. is informed that the garden box is the well
known tree from which boxwod is known tree from which boxwood is obtained.-L. G. will find the definition of a horse power on p. 33, vol. 33 .
W. B. E. will find directions for making a calcium light on p. 219 , vol. 30 .-A. F. B. will find something on bronzing door knobs on p. 283, vol. 31.-H. H. should pprentice himself in a good machine shop.-J. S. M.
will find something on decalcomanie on p. 275, vol. 34.S. J. T. will find directions for making impression paper
on p. 363, vol. 31.-E. N. T.'s idea of light is the correct on p. 363, vol. 31.-E. N. T.'s idea of light is the correct
one. See p. 308, vol. 30.-J. F. F. will find a recipe for a writing fluid on p. 106, vol. 27.-W. A. M. will find a will find an article on refitting leaky p. 182, vol. 1, Scientific American Supplement.-S. H. will find directions for making malleable cast iron on p. 138, vol. 29.-T. W. P. will find instructions for chasing a double thread off 1 inch pitch on p. 21, vol. 31.-J. C.
G. can fasten ivory to wood with glue.-S. R. S. will find a recipe for copal varnish on p. 298, vol. 26. Fine gun stocks are French polished; see p. 11, vol. 33.-O.
W. M. will find directions for silver plating without a battery on p. 299, vol. 31. For nickel plating, see p. 186, vol. 34.-T. H. will find directions for transforming ci-
der into vinegar on p. 106, vol. 32.-C. H. B. can silver
. plate brass without a battery by following the directions on p. 299, vol. 31. For a gilding process, see p. 116, vol.
32.-P. J. will find directions for bronzing on brass on p. 51, vol. 33.-E. D. H. will find directions for preparing R. B., S. J., F. H., C. A. K. K., R. T. W.,., F. W. W. C., and
and others, who ask us to recommend books on industrial and scientific subjects, should address the booksellers
who advertise in our columns, all of whom are trust(1)
(1) M. S. T. says: We have a pump with 2 pipe discharging into a 4 inch discharge pipe and rais pipe discharging into a 4 inch discharge pipe and raises inches more weight or 2 inches more water working in
her discharge valves than she ought to have? A. No. her discharge valves than she ought to have? A. No.
The large pipe is an advantage, as it diminishes the reThe large pipe is an adva
sistance due to friction.
(2) L. C. F. says: Is there a varnish, and what is it, by which a bright copper kitchen boiler can
be kept bright? A. Use a solution of light-colored gum (3) A. M. C. asks: What preparation will take out the yellow stains in linen, caused by water run-
ningdown a smoke stack where soft coal is burned? ningdown a smoke stack where soft coal is burned? A little dilute hydrochloric acid, and rinse thoroughly in (4) T. J. asks: How can I proportion silibrick or stone? How can I put a polish on them? A. Boil for one hour 1 part of water glass (silicate of soda
or potassa) in 6 or 7 parts of water, decant the liquid and mix it thoroughly with 2 parts of kaolin. The coating
(5) W. H. T. says: Having seen several inquiries as to what would keep petroleum or kerosene
from penetrating leather, etc., perhaps the following may be worth publishing: Mix glycerin and common glue, and apply to the leather by soaking or otherwise
before the petroleum, etc., has been in contact with the leather. Before adding the glycerin, prepare the glue as usual with carpenters, and add glycerin as flexibility,
(6) F. F. says: It is clear that the effects of cold on iron are not generally understood; otherwise, no ticed that, in winter, when I dropped a heavy solid wrench, it would break in two like glass; but a wrench made of pipe would never break, no matter how cold it might be. If bridges were made of pipes, and had, for xtra security, a wire rope on the bottom to stay them heaper than the present ones.
(7) R. O. W. asks: Why does the wheel of a gyroscope while in rapid motion resist a force which tends to move its center in any direction other than in a
straight line, except when moved in the plane of its re volution? Can you tell where an explanation may be found? A. The theory of the gyroscope has been admirablyillustrated by analysis; but though many popular articles have been written to explain it, we have seen very few that give the reader much idea of the matter.
One of the most recent, however (in the second volume of Johnson's "Cyclopædia"), is so simple and complete as to leave little to be desired. We could not asily givea synopsis of the explanation in these colwe think you will find satisfactory information in regard to your queries. See also p. 91, vol. 31 .
(8) H. R. G. asks: A few days ago, a man rew a Derringer pistol of No. 44 caliber and shot an-
other. They were, at the time of the shooting, about one foot apart. The pistol ball only penetrated the man's heavy overcoat, and fell to the ground, having only severely bruised the man. Does a pistol ball gain in velocity and force within a certain distance from the muzzle of the pistol, and then begin to lose its motion, stant it leaves the muzzle? A. It loses power from the stant it leaves the muzzle?
instant it leaves the muzzle.
(9) J. L. asks: In the Gramme electri machine, what should be the diameter of the iron of bout $\%$ inch.
(10) J. S. M. asks: How will a journal box for a lathe, of Babbitt metal instead of brass, work? A. It wou
wer.
Wh
What is the best substance for grinding glass for ee p. 363, vol. 31.
(11) T. T. R. says: I wish to know if mal eable cast iron will answer for electro-magnets when it rapidly. A. Wrought iron is preferable, but cast iron
(12) A. D. C. \& Co. say: We wish to encase some hamsin cloth. Please inform us how to paint the cloth. A. Many cover the hams with clean white cotton cloth, and use no paint; but the cloth is oftener coated with a lime whitewash, sometimes colored with
a little turmeric. In large packing establishments, the cloth is simply passed through crude pyroligneous acid (wood vinega
(13) W. B. E. says: 1. I desire to make an oxycalcium light, as powerful as that used at the late entennia. Can I use alcohol for the flame? If so,
what size and shape must the flame be? A. The socalled oxycalcium lamp cannot be made to yield as bril liant a light as the oxyhydrogen under any conditions. In the oxycalcium lamp, the wick may be contained in
round or flat tube placed close to the lime, and the jet a round or flat tube placed close to the lime, and the jet
of oxygen is made to pass through the flame in the same manner as with an ordinary blowpipe. The orifice of the oxygen jet is about $\frac{3}{}_{\frac{2}{\bar{\sigma}}}$ to $\frac{1}{7 \overline{0}}$ of an inch diameter. 3. Of what kind and how large must the reflector be? A. Use a hemispherical reflector of silver plated copper, about 18 inches in diameter.
(14). N. A. W. says: I read as follows "The reason that salted meats cause scurvy is that the salt abstracts the potash; and if potash is sprinkled on the food as one sprinkles salt, the difficulty is averted?",
Does chemistry substantiate this? A. As to the true Does chemistry substantiate this? A. As to the true
cause of the malady, the opinions of authorities seem to cause of the malady, the opinions of authorities seem to
differ widely. It has not been demonstrated that salt iffer widely. It has not been demonstrated that sat is even attributable to the disproportionate quantity soda over potash salts in such meat. There are comm nities that subsist almost exclusively on salt meat, an yet are free from scurvy. It is claimed by some authorities that the disease is due to the absence of fresh vegetables. This, in the main, would seem to be the true so are communities where rare, the people living altogether on vegetable diet The later writers on this subject assume that the disorder is due to the joint action of exposure and to general has been heretofore considered a speciflc for this disease but the reports of the late polar expedition do not sub
(15) J. W. W. says: 1. I have tried with out success to make liquid indigo blue (sulphate of in-
digo). It looks all right when it is firs the indigo precipitates, leaving the liquid as clear as spring water. Can you give me a recipe for the above how you prepared the sulphindigotic acid. Heat the indigo in a suitable glass vessel with a quantity of strong-
est oil of vitriol for an hour or so. Then allow to cool, est oil of vitriol for an hour or so. Then allow to cool,
and dissolve in hot water and neutralize the excess of and dissolve in hot water and neutralize the excess of
sulphuric acid with carbonate of ammonium. The ingo should be added to the acid in excess before hea temperature required for the reaction. Fuming (Nordhausen) sulphuric acid will accomplish the result without the application of heat. 2. Are the various aniline dyes poisonous in such quantities as are necessary to
color liquors, such as peppermint, etc.? A. These dyes color liquors, such as
are not all poisonous.
(16) W. C. T. asks: 1. I want a metal that could melt in an iron ladle, that will be a little harder than pewter. I took some thin sheet brass, lead, and but when they got mixed, the alloy began to burn with blue flame and burnt away, leaving a white powder Please explain. A. Both tin and lead when exposed dly oxidize; and if the conditions last long enough, the whole of bothmetals will become converted into oxides. When lead is oxidized or burned in this way it always colors the flame blue: this is a characteristic reaction of the metal. Copper under the same conditions tinges alloy at so high a temperature. Cover the surface of the molten metal with some sal ammoniac. 2. What is the
best parting sand for small patterns? A. Use the best lumbago (graphite)
(17) J. D., Jr., asks: Is there any metal or combination of metals that will expand in cooling, that
can be made as hard, say, as Babbitt metal? A. Yes The alloys of bismuth and antimony with lead and tin expand to some extent at the moment of solidification,
This is owing to the crystalline arrangement of the mole cules that takes place in these metals under such conditions. Within certain limits, all the metals expand by increment of heat. and contract by loss of heat. Try
the following: Antimony 1 part, bismuth 2 parts, lead 1 part, tin 4 parts.
(18) H. B. S. says: 1. Please tell me how o limit the deposit of copper in electrotyping impres-
ions of seals, etc.? After the face of the seal is well covered, the metal begins to pile up on the edges in hard round masses. A. Varnish such parts of the casts power. 2. Is there any simple manual I can buy giving information on such points? A. Sprague's "Flectricity: its Theory, Sources, and Applications," is one of the
(19) J. A. asks: How can I cement rubber earthenware? A. Melt together equal parts of as-
hot. The cement, when set, is very strong, is waterproof, and resists the action of corrosive fluids.
(20) D. S. asks: How can I keep the worm out of hickory timber? A. Sprinkle or (better) wash the
wood with pyroligneous acid (crude wood vinegar) conwood with pyroligneous acid (crude wood vinegar) con-
taining creosote. This will destroy the insects, and preserve the wood, in a great measure, from decay in damp
(21) B. B. T. asks: Are there any animalspring and well waters contain some form of animal life, but not all. It is dificult, however, to find a sample of water that is wholly destitute of life or the undevel-
(22) S. E. S. asks: Is there any substance, not poisonous, that can be put into a thick gum arabic paste to keep it from shrinking in size, and yet not get
harder than india rubber, still to get sufficiently dry in one day to handle and cut the next, the gum being cast in moulds? A. There is nothing that will accomplish this. A. Pour 1 part a solution of subnitrate of mercury? part of mercury, in a porcelain dish, and let the vessel stand for 24 hours in a cool place; separate the crystals formed from the excess of mercury and mother-liquor, and dissolve them in water mixed with one-sixteenth the solution and lve the filtrate in a bottle with metal lic mercury covering the bottom of the same.
Will an ink from bichromate of potash attack steel pens? A. Not to any extent.
(23) J. S. asks: Is there any method or process for casting india rubber without using a vulcanizer, so that when taken from the moulds the ru
hard but elastic, and appear white? A. No.
(24) C. A. H. asks: What ingredients besides cast iron cuttings do you use in making miniature volcanoes? A. Gunpowder, charcoal (in powder), nisometimes nitrate of strontium, which gives a crimson low to the flame.
(25) B. M. S. asks: Can asbestos be applied on an ordinary blanket so as to make it fireproof, and unpleasant to use a blanket soprepared as bed clothing. It would not be difficult to produce a blanket, the weft or warp of which should consist of asbestos fiber. Asfireproof varnish, or paint.
(26) W. H. C. asks: With what preparation can I harden an alloy of equal parts of tin and zinc to any degree of hardness without
qualities? A. This is not feasible.
(27) W. H. R. says: I want to bore a hole of ${ }^{\frac{6}{5} 5}$ of an inch caliber; what sized drill, in 16 ths, 32 ds , or 64ths must I ask for to do this with? A. You cannot get a drill of the size you want that will be measurable
in the denominations you name. The nearest you can in the denominations you name. The nearest you can
get will be a $1 / 4$ inch, which will be $\frac{2}{55}$ inch too small. Since, however, the hole is always larger than the drill, it may answer.
(28) C. R. asks: Please inform me if an oscillating engine of the same proportions as a slide valve
(29) E. A. V. asks: How can I face cast iron with cast steel? A. The steel is placed in the mould, and the molten cast iron is let run through until it gets cast iron is stopped, and the inflow is continued to fiil the mould.
(30) W. C. D. says: 1. I am fitting up a 5 nch center foot lathe without back gear, and I want the mandril (which runs in boxes) to project about 1 inch
outside the boxes on the left hand end of head stock, to mount small pulleys on to drive overhead apparatus. By what means can I keep the mandril up to its work with the least friction? A. Make the end of the spindle flat,
and provide a flat-ended adjusting screw, putting a disk
(31) S. A. H. says: 1. I frequently make mall brass castings to be used in experiments, and am honeycombed, the metal appearing to have been oxidzed. I melt the brass in a crucible in a stove, with bituminous coal. Should I put any flux on the metal? A. Your difficulty probably arises from not letting the air out of the mould. Add the zinc after the other metals are
melted, and use broken glass as a flux. 2. Brass artimelted, and use broken glass as a flux. 2. Brass articles, such as cheap telescope mountings, etc., seem to
have a good finish which is not ground and polished. Are they simply burnished after making smooth as possible with the chisel? A. Files and emery paper will anwer this purpose. 3. How shall I make the best lacquer or brass mountings? A. See p. 242, vol. 34.
(32) J. S. asks: 1. How can I forge a hand hammer? What is the best shape for the steel before
punching, to make a nice eye? A. Punch the eye the first thing, and do the forging afterwards. 2. Which is he best way to lay planer knives with cast steel? A.
(33) R. G. asks: Would a valve gear that would open and close the ports with a much quicker movement than the ordinary eccentric, and throw pre-
cisely alike during the inner and outer strokes of the engine, be valuable? It will cut off at any point of stroke desired, or it will wire-draw; and it is reversible? A.
(34) H. M. S. asks: How can I properly temper the face of an anvil that has had the temper taken
out by being in a burning building? A. Heat the face, nd harden in a copious supply of water.
(35) S. H. asks: Is there anything I can mix with the sand that comesnearthe casting in mouldweaken it? A. We know of nothingfor this purpose.
(36) W. J. McG. asks: 1. What is the eccentricity of the moon, and of the primary planets? A.
The following is the eccentricity in miles: Mercury

7,434,000, Venus 492,000, Earth 1,618,000, Moon 13,000, Mars $13,463,000$, Jupiter $23,810,000$, Saturn $49,000,000$,
Uranus $85,05 z, 000$, Neptune $140,000,000$. 2. Has our distance from Alcyone been estimated or determined? The nearest estimate is that it would take light at least three years to traverse the distance. 3. Is there any appreciable amount of heat derived from bodies outside of
(37) P. B. G. says: There is a floating transparent mass which floats over the pupils of my eyes. In looking at a white object the mass looks like a knotted
spider's web; in looking at a dark object, or reading, it spider's web; in looking at a dark object, or reading, it
seems like a blur. A. From your too general description we should judge your trouble was conjunctivitis, that is, a floating mucus, caused by inflammation of the an astringent wash, alum water, or something of that nature.
(38) J. R. asks: What are the exact proportions of the ingredients used in making oxygen gas, for the in light? ate of potash and 1 part peroxide of manganese, well mixed together. Wash the gas well as it comes over.
A pound of this mixture should give you about 25 galons of the gas. 2. What is the best way of making hy drogen to mingle with oxygen? A. Hydrogen is usuall prepared by the action of diluted sulphuric acid (1 of
acid to 7 of water) on scraps of zinc. This gas should also be well washed before using. Scrap iron and a less dilute acid are occasionally employed, instead of zinc, in
(39) H. C. asks: 1. How much water should take to dissolve 1 oz . nitrate of silver? A. It will dis-
olve in 5 ozs. water at 55° Fah. and in 0.6 oz . of boiling solve in 5 ozs. water at 52° Fah. and in 0.6 oz. of boiling
water. 2. How much to dissolve 1 oz. tartaric acid? A.
Tartaric acid is soluble in 4 parts of water at 60° Fah, Tartaric acid is soluble in 4 p
and in 0.5 parts at 212° Fah.
(40) S. L. asks: Can tannate of caffeine be made from pure cafeine? A. The tannate of caffeine may be obtained as a beautiful white precipitate, if an
aqueous solution of caffeine is added in excess to aqueous tannic acid. An infusion of tea, by its tannin, also pre-
(1)
(41) S. K. asks: What is the proportion of depends altogether upon the temperature at which the depends altogether upon the temperature at which the
solution was saturated. The solubility of the salt increases as the menstruum is warmed. Bromide of po-
tassium is soluble in 1.87 parts of water (by weight) at tassium is soluble in 1.87 parts of water (by weight) at
32° Fah., in 1.55 parts at 60°, and in 0.98 parts of water, 32° Fah., in $1 \cdot 55$ parts
at 212° (boiling point).
(42) W. F. K. asks: 1. Is there to your knowledge any soap made entirely of vegetables? A.
There is no soap of this kind. 2. What is put into soap to harden it? A. After the saponification is finished, the soap is coagulated by the addition of common salt. The
precipitated soap is then pressed, cut into form, dried. This gives hard soap.
(43) E. N. W.-Saffranine $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4}\right)$ is prepared commorcially by treating crude aniline oil with
nitrous acid gas, and then with arsenic acid or bichronitrous acid gas,
(44) P., C., \& Co., ask: In packing ice in walls 10 inchesthick, will coke dust or ordinary cinders
be equivalent to sawdust? A. If the coke dust is as porous as charcoandust, it may answer the purpose. In es used.
(45) J. M. asks: 1. How long will it take ash and maple to season well? A. About 2 years. 2.
would it be better to season them in sheds or in the open r? A. Let them be covered sounding boards? A. We presume, if so used, it is because it is a tough wood, less likely to split than most
woods. 4. Which is the next best wood to spruce for sounding boards? A. Perhaps white wood or pine: 5 . How long will spruce take to season well, if cut $1 / 8$ inch hick? A. Six months or so, not to dry, but to season.
6. Which is the stronger, brass or cast iron? Cast iron for your purpose, probably.
(46) E. A. B. says: I notice that A. C. L. makes inquiries in regard to laying a pipe. If he were
to use an earthen pipe of considerable larger diameter to use an earthen pipe of considerable larger diameter
than the lead pipe, enclosing and retaining the lead pipe in the center of the earthen one by means of spiders placed at suitable distances, thus causing an air space to encircle the lead pipe, would not this form a better
protection than if sawdust alone were used? A. The suggestion is a good one for the purpose indicated, provided the air space is hermetically sealed at the outlets.
But it will not compensate for want of depth when the But it will not compensate
pipe is laid in the ground.
(47) R. M. asks: What shall I do, or cause to be done, to stop the serious leaking of five tin roofs, on properties erected last year? The tinman used the
best tin, but, as is usual here, the joints are not soldered; but the sheets are raised at the edges two inches or so and pressed together and then turned over slightly. The
roofs are rather flat. The seams run from the gutter to the peak of house. The consequence is that when the snow is melting, the water backs upinto the seams and flows into the room beneath, doing much damage. The tinner says the seams cannot be soldered now they have
been painted. A. In this city the tin is always soldered, been painted. A. In this city the tin is always soldered,
except upon steep roofs. The conditions you mention except upon steep roofs. The conditions you mention
try roofs very much. Perhaps you can remedy it in a measure by tightening the seams, and giving them a coat
(48) C. F. J. asks: What will remov pimples and black worm specks from the face? A. Take
rose water 3 ozs., sulphate of zinc 1 drachm; mix. Wet rose water 3 ozs., sulphate of zinc 1 drachm; mix. Wet
the fach it, gently dry it, and touch it over with the face with it, gently dry it, and t
cold cream, which also gently dry off.
What is the chemical name for Paris green, and what are its constituents? A. Paris green(Schweinfurtgreen)
is the aceto-arsenite of copper. In 100 parts it contains: is the aceto-arsenite of copper. In 100 parts it contains:
Oxide of copper $31 \cdot 29$; arsenious acid $58 \cdot 65$; acetic acid
$\left.\begin{array}{l}10 \cdot 06 . \text { Its composition may be fo } \\ \left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right)_{2} \\ \mathrm{Cu}\end{array}\right\} \mathrm{O}_{2}+3\left(\mathrm{Cu} \mathrm{O}, \mathrm{As}_{2} \mathrm{O}_{3}\right)$.
(49) C. A. M. asks: 1. How can I harden nada balsam without interfering with its color? A. It is hardened to some extent by heating for a short time
2. How can Canada balsam be rendered colorless? A. It may be bleached by exposure to sunlight. 3. Is there any other transparent substance that can be worked in as soft a condition, or as easily, and afterwards hardened
without losing its transparency? A. There are several without losing its transparency? A. There are severa
other gums and balsams (compounds of certain resins other gums and balsams (compounds of certain resins
with various essential oils) that may be substituted for the Canada balsam-such as balsam copaiba, balsam tolu, gum benzoin, and Venice turpentine, also good an. Canada balsam, however, gencrally gives the
(50) F. B. says: I want to keep a hot bar such as they have in restaurants. I do not want to use
gas, and I cannot put in a stove because I have not got chimney. How can I do it? A. There are small stoves in the market arranged to burn kerosene oil. If
you could provide suitable means of ventilation in your you could provide suitable means of ventilation in your
rooms one of these might answer the requirements.
(51) E. W. M. asks: How can a suitable white paint for paper water pails be made? A. Zinc paint practically available for this purpose that we paint prac
(52) D. says: I copied from a back number of your paper a recipe for an acid blister for curing sprains, ringbones, etce, in lyorses. I used it according cannot get the sore to heal or the hair to grow over the place. The recipe is as follows: Take oil seneca 14 ozs.,
oil rosemary 5 oz3., oil lavender 3 ozs., oil turpentine ozs., and pyroligneous acid 4 ozs. Mix well togeth and place in an earthen vessel, then add and stir in grad ually sulphuric acid 1 pint until effervescence ceases.
Shave off the hair and apply once a day to the affected part. Keep the part perfectly dry for two weets, and rest the animal for a month. A. Wash the sore night and morning with pure water containing a little salicylic acid, and cover with. a clean cotton cloth, between the
folds of which a little of the dry acid has been rubbed folds of which a little of the dry acid has been rubbed.
This will purify the sore and protect it from the attacks This will purify the sore and protect it from the attacks
of insects. If this fails, it will be necessary to treat the nimal constitutionally.
(53) B. K. D. asks: If a steampipe 100 feet long is connected to a boiler with an ordinary valve at
20 feet from the end, which is securely plugged, will there be as much pressure at the further end of the pipe as there is between the boiler and valve, allowing the
(54) F. B. asks: What size of engine is re
(54) F. B. asks: What size of engine is requat size of screw is required? It want to keep her at as light a draught as possible, and get a speed of from 10 to 15 miles per hour. A. You will be obliged to devise special machinery for any such speed as you speak of,
and you must determine the necessary data by experiment
(55) J. B. W. asks: What size of wheel hould be used for a boat 100 feet long and of 20 feet beam, drawing 10 feet of water? I have a non-condens-
ing engine, 26 inches in diameter of cylinder and 30 to feet diameter, and of 15 to 18 feet pitch.
(56) W. M. K. asks: At what angle to the ine of direction should a plate, in passing through water, be placed, to secure the greatest pressure sideways,
with the least resistance to its forward motion? we understand your question, the angle does not make
any difference in the pressure on the sides. Possibly, however, we do not get your idea.
What difficulties or objections are there to using nitroglycerin as a motor by exploding it in a cylinder? The principal objection is that it would generally be
necessary to provide a new cylinder after each explo-
ion.
Is there any chemical compound, safe to use, which will decompose slowly, producing considerable heat? A. We think that you will find that wood and coal are the
(57) A. R. says: I wish to discharge under 36 feet head 100,000 gallons of water per minute through a circular iron pipe, placed at an angle of 45° to the hori-
zon. What should be the diameters of the upper and lower ends of the pipe? A. We are not sure that we et the idea. If you will send a sketch, showing the ar-
(58) R. V. J. says: I am running two boilers , one at a time, for the purpose of heating a large
building. If I pump water to the first guage, in a few minutes it will run up and fill the glass and all the guages. the water is due to the constry A. Probably the rise manner in which the steam pipe is attached; but we positively, from the data sent.
(59) G. W. asks: With what velocity will air enter a vacuum? A. About 1,300 feet a second, if
(60) H. G. W. says: 1. Is the most powerful battery the best for electro-plating? A. No, but difbattery will it take to goldplate a watch case? A. A one gallon cell will answer.
tery power to silverplate?
A. Better use two of the bove named cells.
(61) E. D. W. says: 1. I am constructing a ine of telegraph 14 of a mile in length, and have three relays, each relay has $1 / 4$ of a lb . of No. 30 silk covered
wire. Will they be suitable for that distance, and will No. 15 galvanized wire answer for my main line? A. Larger wire, say No. 23, would be better adapted to so Short a circuit. No. 15 wire for the line will answer. for making a cheap battery for my main line with the copper, to which a gutta percha covered wire is soldered, in the bottom of a jar, and suspend a piece of zinc with
a connecting wire in the upper part; after which fill the
jar about ${ }_{3}^{2}$ full of water to which has been added about haif a pound of sulphate of zinc. When this is dissolved, drop a few crystals of blue vitriol on the copper
disk. Five or six cells will be required. (62) G. L. P., Jr., says: 1. The ports in a small brass cylinder are out of place. Is it possible to have them filled with brass, so that they may be cu
out again? A. Yes, by burning in. 2. Could plaster Paris be used for cores in casting brass? A. Yes, but it is apt to cause air holes. 3. Would a common house
furnace give heat enough to melt brass? A. Yes. 4. furnace give heat enough to melt brass? A. Yes.
What is the best brass alloy for small castings? A per 10 , tin 5, zinc 2 parts.
(63) J. T. F. asks: How can the surface of a pane of glass be softened so as to receive any impres-
sion, and then harden again? A. This is not feasible, sion, and then harden again? A. This is not feasible, except by a unif
suitable furnace.
(64) H. F. A. says: I wrote some time ago for directions to electroplate insects, and I ask the fol-
lowing questions: 1 . What are the proportions of nilowing questions: 1 . What are the proportions of ni-
trate of silver and wood naphtha for the dip? A. Make a saturated solution. 2. How shall I treat with ammo nia? A. Dip the articles in aqua ammonia. 3. How do
you vaporize mercury in order to expose the article? you vaporize mercury in order to expose the article? A
By heating, but great care must be taken not to breathe
(65) J. H. M. asks: Can you tell me how many cells of a carbon battery (4 inch jars) are neces-
sary for the production of the electric light? A. About 40 or 50 cells.
(66) J. N. asks: 1. Will the pressure in a boiler ultimately raise the water from the bottom, so that the plates will get red hot, generate a gas, and cause an explosion? A. If there is plenty of water, and the boiler is reasonably well designed, the water will not be
driven from the plates. We know of no good evidence in favor of the generation of the gas. 2. When I was second engineer, we had a foree pump of which the check valve spindle was too short. I told the first engineer that it would not be safe, but "he knew his business." On going to start the engine, I found no water took an iron red, wrapped a cleam valve, let out the steam, took an iron red, wrapped a cloth round it, and found
only 6 inches of water in the boiler. The fire was damped. I brought some one to see it, who soon made a great change. If I had moved the fire first, I am afraid I should have been moved pretty quickly. Please give me your opinion. A. When the water is low in a boiler, and you do not know where it is, the safest thing
to do is to haul the fire if it can be done quickly, or if to do is to haul the fire if it can be done quickly, or if
not, cover the fire over with ashes, and allow the boiler to cool somewhat, before raising the safety valve or admitting water. 3. I have been where several boilers pipe from the force pump. The fires of the middle boilers were urged until they were very hot, and the side
fires slow. Then the middle boiler would empty itself fires slow. Then the middle boiler would empty itself
into the side boilers. Can you explain? A. Boilers should always be so connected that such action would be impossible. This precaution is only neglected by the
(67) L. B. says: Please tell me how I ca find out how many lbs. of steam passing through a 2 inch feed pipe into a 10×18 inch cylinder is equal to
horse power? A. The steam per horse power per may vary from 20 to 100 lbs., according to the character of the engine. The horse power is the product of the effective pressure in lbs. per square inch, the area o the piston in square inches, and the speed of the pisto in feet per minute, divided by 33,000 .
(68) J. A.W. says: Will you explain why a certain load located at a distance from a certain power should show more resistance when so attached than it
would when more closely located and attached, or to more explicit : Why does a train of cars so made up with empty cars in front of the loaded cars pull harder than the same train would with the loaded cars ahead of the empty cars? I know this to be fact. A. If you can
conveniently send us the data on which you base your opinion, please do so, together with such obscrvations especially of the empty card, when made up in the dif ferent ways mentioned. As you state your question, we
have not sufficient information to form a decided have not
opinion.
(69) C. A. R. asks: How can I clean deers antlers without scraping near the roots, where the horns are so rough? A. Try a little fine pumice powder moist-
ened with strong alkali. Rub well and wash with wa ter. Or use muriatic acid, free from iron, in place of e alkali.
(70) W. S. says: I have a conservatory in which the plants droop and die from (I believe) the effects of carburetted hydrogen gas escaping from the
pipes in the street adjoining and oozing through the soil in the house. I have complained to the officials in charge of the public gas supply, but they only scout the idea and do nothing. Can you suggest any chemical or other appliance whereby the bad effects of the gas
might be neutralized? A. If this is, in reality, the cause, the trouble may be alleviated to some extent by sprinkling the floor with dry slaked lime and charcoal in powder; but the only practicable and effectual way to here is nothing practically available that as
(71) S. A. C. asks: Please tell me the dimensions for a poultry house for 800 hens, and the way
o build it? A. Make the building two stories in height inclose it with matched boarding: also board it on the inside of the studding, and fill in the exterior frame with sawdust, tan-bark, or clay. If a part of the barn on the south side of the hay-mow can be partitioned off for the purpose, so much the better; or the poultry-house may be erected against the south side of the barn as an extension thereto. Provide an open stairway from the
frst to second story for self and fowls; let the floor of the first storybe of the natural earth, and that of the second story of matched plank. Iu the first story provide plenty of glass windows on the south, the east, and
the west sides; and in the second story about one half the number of similar windows; provide several of these
windows to open for ventilation and protected with wir cloth. Under the stairs in first story place boxes, in which quite young chickens may be brooded over night, secure from rats and other vermin; also, make cages in the corners, in which hens inclined to set at improper times may be placed and fed. Near these provide a box, always filled with sand, lime, and ashes, for the fowls to
wallow in. In the second story, on the north side, make boxes for the hens to lay in and set in, with the entrance for the hen on the rear side and the place to take the egg out in front. Plenty of gravel and pounded bones should be given them at all times, with an occasional meal of meat in winter. Overhead the roostsare to be placed, of rough poles, 1 or 2 inches in diameter, with
the bark on. Thus provided, the hens will continue to the bark on. Thus provided, the hens will continue to lay, if furnished with meat occasionally, all winter. A
place for doves or pigeons may be made in the roof of the building, if desirable.
(72) S. B. M. asks: If you think it possible to re-tin fruit cans after they have been used and rusty,
will you tell me the best mode of re-tinning them? My idea is to first cleanse with acid, and then dip in molten tin. A. Your method is a good one. Cover the tin bath with a layer of molten wax to kecp the hot tin from contact with the air.
(73) J. F. K. \& Co. ask: Is there an im proved tool for truing up crosshead wrists? A. We
(74) D. D. asks: How can I use a lamp in a magic lantern so as not to cover much of the reflector?
A. The reflector should be set so that the light reflected from it shall come to a secus in the fome of the lected then it diverges with the light from the flame, and the two enter the condenser under similar conditions. Or
you can have the body holding the oil on the outside of the lantern, and the oil carried to the burner througlı pipe.
(75) A. O. asks: How can I find the macrni fying power of a microscope? A. Place under the mi-
croscope some definite measure; then look, with one eye, in the microscope, and with the other look at a rule placed the same distance away on the outside With a little practice, it will be seen how long the one outside. In the same manner the apparent diametcr of the field may be determined; that is, if 1 division inside covers 100 divisions outside, then the power is 100 , etc.
(76) W. E. N. says: What size of steam engine can I run with a boiler 16 inches high and 12 inches inches with mands of $\frac{1}{8}$ inch copper, $1 / 2$ inch wide. Th inches with bands $\frac{1}{5}$ inch thick and $11 / 2$ inch wide. The
heads are $\frac{3}{13}$ inch thick. A. You can make an engine
(77) D. H. L. asks: Would there be any anger in eating water melons raised from the seed of a
(78) A lady writes to know what is the mat ter with her greenhcuse. The plants drop their leaves attributes it to the paint on the gardene she thinks, was kept too close during the summer, so that the red spiders became very numerous. But the greenhouse trouble is of another kind. A. See if the gas main is not near the greenhouse; the effect of coal gas in any form would be as described. If the paint
used on the pipes has any gas tar in its composition, it used on the pipes has any gas tar in its composition, it Plants will sometimes be several years in recovering from the effects of it. The rose house should be left open during the summer.
Minerals, etc.-Specimens have been re eived from the following correspondents, and examined, with the result stated:
S. H.-The stones found in the coffee are small quartz pebbles.-F. G. K.-You failed to number or otherwise with bright specks of pyrites. The them is trap rock, piece of quartz discolored by sesquioxide of iron. Bepiece of quartzdiscolored by sesquioxide of iron. Be
sides these, there are a piece of slate, a sample of clay sides these, there are a piece of slate, a sample of clay iron garnet.-T.S.-It is galena, sulphide of lead. It contains, when pure, $86^{\circ} 6$ per cent of lead, and $13 \cdot 4$ per cent of sxlphur. The specimen you send is much mixed with earthy minerals and pyrites. It would require an
analysis to determine the available quantity of lead.

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American acknowledges,
with much pleasure, the receipt of original papers and contribution upon the following su On a Human Clock. By J. F. B On Spiritualism. By R.S. H., by T. B., and by B. C. H. On Wrought Iron Bridges. By J. E. G On Postage Stamps. By J. W. S., and by H. W. B. Also inquiries and answers from the following:
J. M.-M. M.-O. H. H.-L. P. K.-C. R.-E. B. W
W. J. S.

HINTS TO CORRESPONDENTS.

repeat them. If not then published they appear should

 that, for good reasons, the Editor declines them. The address of the writer should always be given. Inquiries relating to patents, or to the patentabilityof inventions, assignments, etc., will not be published inventions, assignments, etc., . wil such questions, when initials on published are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take plea-
sure in answering briefly by mail, if the writer's address is givén.
Hundreds of inquiries analogous to the following are sent: "Who sells rotary nail-cutting machines? Who makes the best coal gas apparatus for hotels, large houses, etc.? Who sells steam blowers? Whose is the
best mariner's compass? Why do not mikers of papermaking machinery advertise in the Scientific American?" All such personal inquiries are printed, as will caN: All such personal inquiries are printed, as will
which is specially set apart for that purpose, subject to
the charge mentioned at the head of that column. Althe charge mentioned at the head of that column. Al-
most any desired information can in this way be expeditiously obtained.
official.
INDEX OF INVENTIONS

Letters Patent of the United States
Granted in the week Ending
January 23, 1877,

AND EACH BEARING THAT DATE.

[Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list, Arning both the specincations and drawings, will be furnisled from this office for one dollar. In ordering please state the number and date of the patent desired,
and remit to Munn \& Co., 37 Park Row, New York city.

Alarm and punch, W. H. Barr...
Aniline dyes, preparing, L. Leigh
Aniline dyes, preparing, L. Leigh
Animal trap, T. Belknap...........
Animal trap, A. Reed...
Axle for plows, B. C. Bradley
Bale tie, B. Hempstead..
Bale tie, w. B. Hayden
().
Bather's appliance, Hac
Bee hive, J. A. Barke
Blow gun and arrow, L. C. White Bolting reel, M. Buck
Boom and sail attachment, F. Norwood
Boot and gaiter strap, S. Hodgin3
Bottle stopper, J. M. Hoyt
Broadcast sower, Buist \&
Building block, M. Nolan
Building block, M. Nolan.
areau bedstead, C. H. Smith
Button gaiter boot, J. A. Batchelder Calendar, F. Ratcliff......
Caloric engine,
Car coupling, A. Allen....
ar coupling, G. W. Hudson....
Car coupling, W. w. McCollum
Carpet beater and sweeper, C. Elsasser.
Carriage, J. W. Post....
arriage tops, support for
artridges, capping
asting valve seats, J. Berr
Churn, W. F. Gray.
Churn, J. Tull.....
ar and wress, B. B. Bollinger
Cloth cutting machine, A. Warth
Clothes drier, A. A. Peterson.
Clothes pounder, E. R. Hampton
Coal scuttle, C. S. Irwin...
Copy holder. F. H. Joyner
orn harvester, C. D. Ree
Cotton presse, J. T. Burr
Cotton stalk cutter, Jo Cairne \& Johnsto........
ultivator, E. H. \&i S. D. Perkin rry comb, U. G. White. Damper, automatic, M. W. Baily. Dental plates, stamping, C. F. Barnard Dental plugger, C. King.
Derrick, portable, B. Jack
Door bell, J. P. Connell.
Draught equalizer, G. W. Harrington.
Draughtsmen's compasses, J B. Fricke
Drill jar, F. E. Quinn
Dyeing silks, process for, J. Ra
Earth closet, L. Altemus...

Eaves trough, J. F. Biegela

Electric railroad signal, J. D. Hughs
Electricthermostat, E. J. Frost..
Electric train signal, L. L. Ferris
Electric telegraph. R. K. Boyle...
Evaporating apparatus, D. Watson
Eyeglass, F. P. Iannarone.
Fan, automatic, S. F. Gray
Feathering paddle whee
Fence, 0 . H. Smith..
Fire alarm bell striker, W. Donaldson.
Fire kindler, J. McFarland
Fire kindler, J. McFarlan
Flooring, O. S. Dickinson
Folding bier, W. White.
Force pump, H. T. Drain.
Force pump, C. H. McKeeh
Fruit jar, J. T. Schaffer...
Gas burner, B. Donohue
Gas stove, W. M. Jackson (r)
Grain separator, A. W. \& C. T. Kendrick
Grain drill, J C. Bake
Grain elevator, J. L. McLaughlin
Grain register, L. Poole.........
Grate bar for f.
Hame and trimming Gtraub.......
Hammers, manufacture of, D. Maydol
Hand rest, J. Ridge
Hanger for garments, L. Hellmann
Harness saddle tre
Harrow and land roller, W. M. Stehley
Harvester rake, O. Cooley
Hat holder, P. H. Miner.
Hat holder, P. H. Min
Head rest, W. L. Miltz
Hoak eyes, manufacture of,
Horse collar, A. Rutherford
Horse collar, A. Rutherford
Horse hay fork, H. Fisher
Horse hay fork, H. Fisher
Horse hay fork, J. Orr...

Horse-hampering device, W. H. Means....
Horseshoe, Cornish \& Hunt Horseshoe, T. Thistlewood (r) Ice houses prezer, J. F. Rote Ice machine, R. H. Lucas
Index for books, Snider \& W
Ingots, compressing, W. R. Jones
Injector, W. Randall..
Jug, etc., T. G. Hargrave...........
Keys, making machine, A. Shogren
Keys, making machine, A. Shogren...........
Knob latch, reversible, Griscom \& Grossman
Lamp black, making, J. Rogers.......
Lamp chimney cleaner, C. P. Palmer.
Lamp extinguisher, C. T. Colby.
Leech, artiffcial, F. F. Mc
Letter box, E. T. Marsh..
Lightning rod clip, A. Snook....
Lock for pianos, etc., A. S. Bleake...
Locomotive exhaust, E. Longstret
Locomotive exhaust pipe, J. C. Farmer
Malt crushers, attachment to, C. Stoll
Mariner's compass, w. Thomson
Ceat, extrer, C. B. Andrews..
Milk, exolrer, Kinyon \& Brown.
M. L. Mowrer.

Mosquito net frame, La
Moth trap, R. McInturff
Neck yoke, metal, W. H. Johnson
Nut lock, W. C. Gould...
Ores, treating, z. A. Willard.
Paneled chair seat, J. M. Waters
Paper box, J. P. Buckkingham.
Paper collar, Averill \& Ginn..
Pessary, C. N. Fowler.
Pianofortes, etc., stringing, G. Morgan
Pipe tongs, S. N. Jessop......
Pipes, joining, J. F. Parsons.
Plug tobacco machine, T. W. Prathe
Pocket book lock, F. F. Weiss.......
Pottery in kilns, thimble for, E . Leal Power hammer, T. Shaw (r)
Pump, deep well, W. S. Blunt.
Pumping engine, Carr \& Arthur
Railrosiver journace, , S. Cha
Railroad signal, A. M. Bodley
Railroad switch, D. Rousseau.
Railroad ticket, B. C. Pole....
Railroad ticket, B. C. Pole.........
Railway car heater, J. O. Osborne
Reciprong
Reed organ stop action, W. D. Park Refrigerator, W. P. Whitson.
Registering device for bottles,
Registering device for bottles, E. Z̈ahringe
Revolving cultivator, G. Stevernson.
Revolving fire arm, H. L. Gardner.
Revolving fire arm, H. L. Gardne
Revolving fire arm, D. B. Wesson
Revolving fre arm S. W. Wood
Rock drill, S. Ingersoll (r)
Rolling hoop iron, F. Hickman
Running gear for wagons, M. D. Benne
ash balance, Eichenlaub \& Gabrie
Saws, guide for circular, C. I. Chaffee
caffolding, A. Blondin
Scaffolding, B. J. Pot
Scoop, E. A. Barnes..
crew driver, etc., fire arm, B. B. Hotchliss
crew machine, metal, N. C. Hub
Seat, reversible, L. T. Stanley
Sewing machine, C. B. True. O. Jones
sewing machine shuttle, D. W. Brown.
ewing straw braid, J. O'Neil
Shaft coupling, J. H. Belse
Show case, H. Houghton..
Signaling by reflected light, H. C. Manc
Skelping die, H. C. Evans
Slate, reversible hinge, Van Kannel \& Papp
led tongue, J. P. Lawson
Snap hook, A. B. Tanner
Sofa bedstead, W. Ott...
Spike puller, J. Douglass
Spring whiffetree, A. Assman
squirt can, J. W. Tallmadge...
team, superheating, C. J. Eame
Steam boiler circulating device, W. Ord
Steam pump valve gear, B.
Stench trap, T. Boldemanin.......
tone compound, artificial, C. Welland
tool, spring supported, W. C. Huffman
Stove board, J. S. Brooks..
Stove platform, C. E. L.
Tepe steeping device, Wood ward \& Jeffords
Telegraph alarm ana signa1, T. A. Edison.
Tightening roller, etc., Erskine \& Weed
'ivbacco press, N. B. Jones.........
Tool carrier, dental, J. W. Gilbert
Toy, A. Fritz.
Toy trumpet, F. McLaughli
Traction engine, J. S. L
Treadle, C. Hopkins.
Trimming, M. P. Bray
Tug carrier, G. Jeakle.......
Umbrella runner, P. Molloy
rabrella runner and tip cup, o. M. Smith. Valve, T. Boldemann.........
Vapor burner, M. L. Ballard
Vehicle top support, Marlatt \& Wrigh
Veneers, composition, C. H. Land...
Veneers, composition, C. H. Land
Wagon brake, R. M. Baker.......
Wagon lock, F. Rakes
Wagon, side spring, J. Ledwith...........
Wardrobe bedstead, w. Sutcliffe.
Washing machine, J. Myers...
Washing machine, C. K. Rogers
Watch escapement, N. Meyers...
Water pipe, lateral, W. L. Church
Waterproof hose, J. Murphy...
Water tube, boiler, etc., W. B.
Water tube, boiler, etc., W. B. Glov
Water tube boiler, etc., w. Ord.
Weather strip, E. C. Underwoo
Welt trimmer, w. R. Barton..
Wheel brake, B. B. Hotchkiss.
Wheelbarrow and cultivator,
Windlass hoist, J. \& H. Fulmer.

$.186,597$
$.186,544$

THE DINGEE \& CONARD CO'S ROSES
 ordied Esend for our Rose-groversin A merica. Refer to 100,000 customersinthe
United States and Canada. THE DINGEE CONARD
CO., Rose-GRowERS. West Grove. Chester Co. PQ

Washington

LifeIns.Co.of N.Y. 155 BROADWAY

Sound to the Core: Its Management , Core: Its Managem

Read the following Official Certificates

1 ANTED ${ }^{-\mathbf{M e n} \text { to solicit orders for our good }}$
Traveling expenses paid by company.

Now Ready.

ILLUSTRATED HISTORY
CENTENNIAL EXHIBITION

OF 1876 .

The Full History and progress of the Exhibition, Maps of the Grounds, Engravings of he Buildings, and accounts of all the most notable
Scientific and Mechanical objects, profusely illus rated with Engravings, are tific American Supplement for the
year 1876. This work consists of Two Latre Volumes, comprising over 800 quarto pages, qual in quantity of reading matter to over Seve to the great INTERNATIONAL EXHIBITION is very extensive, and probably forms the most complete and full history of the affair that can be obtained. The illustrations pertaining to the Exhibition are more than 450 in number. A copious Special Index of all matters relating to the Exhibi tion is given. Those who desire to possess a com
lete and splendid Illustrated Record of the Cenennial Exposition should have the Scientific American Supplement for 1876.
In addition to this splendid History of the Cenennial Exhibition, the Scientific American Suplement for 1876 contains a vast amount of reading matter of great value for reference and preservation. It presents to the reader, in attractive
corm, full accounts of the Advances made during the year in allthe chief departments of Science nd the Useful Arts, covering the progress in heering, Electricity, Light, Heat, Sound, Architec ure, Photography, Technology, Pisciculture, Agri culture, Botany, Horticulture, Rural and Household
Economy, Materia Medica, Hygieue, Natural Hisory, Zoology, Microscopy, Meteorology, Terrestria omy. The whole illustrated by over Two Thousand Six Hundred Engravings. The wide scope of this its wealth of illustration, render it the cost valu ble contribution to scientific literature while in price it is probably the most economical. The Scientific American Supplement for 1876 omplete, is supplied, stitched in paper, at the low price of $\$ 5$. Strongly bound, both volumes in one book, $\$ 6.50$. Bound in two separate books, $\$ 4$ each, or $\$ 8$ for the two. Sold at the leading Bookstores

MUNN \& CO., Publishers,

N. B.-We supply the Scientific American an Supplement for 1877 to subscribers at the com bined rate of $\$ 7$ for the two papers, we paying post age. Any person who has already subscribed to he Scientific American for 1877 may obtain eithe the SUPPLEMENT Tor 1876 complete, or for 1877, a $\$ 7$ and the amount already paid on his subscription orScientific American.

MUNN \& CO., Publishers.

$\left.\begin{array}{c}\text { Ineurance Defartiment, } \\ \text { Albany, January } 23 \text {, } \\ \text { and }\end{array}\right\}$

To the Editors of the Evening Journal
Having caused a personal examination to be made nsurance Company affairs of the Washington Life Insurance Company of New York, as of the 31st day
of December, 1876, by Hon. John A. McCall, Jr., Deputy Superintendent, duly appointed by me for that purpose, and deeming it for the public interests that the result of his investigation should be
published, I herewith enclose his report for publipublish
catior
Very

Acting Superintende

Albany, January 23d, 1877.
$\begin{gathered}\text { Hon. William Smyth, } \\ \text { ance Department: }\end{gathered}$ I respectfully report that in accordance with the
provisions contained in your apointment No. 362 ,
dated December 26t, 1876 and with
of asse completed Ballard, examination and of the W. Smyth, I have
Insurance Company of New York City. Insurance Company of New york
exhe very stisfactory condition of the company as
inited below is attributable to the management of its affairs by able, prudent and honorable men. It
gives me pleasure to state that in a minute and ex-
acting investigation I find nothing to condemn, but,
on the contrary much to commend Complete schedules of mortgages, deferred premi-
ums, and real estate invcstments as of December 31st,
1876 , being the date of examination, have been placed 1876, being the date of examination, have be
on flil in ihe department.
The following are the assets and liabilities :
onds and mortgage
$\$ 159,28480$
$2,344,25279$
Cash in bank and office
Accrued interest on investments
$2,334,25279$
116,65418
5307126

Loans on policies within their value	19,10946	
Net uncollected and deferred premiums	180,499	95

Stocks and Bonds: Par Value. Marlet Value. S. 6's, registered.... $\$ 510,000$ $\$ 581,400$		

V. S. 6 's, registered.... $\$ 510,00$
. Y. State 7 's, regis'd $100,000 \quad 100,00$
 Brooklyn 7's, regist'd 260,000 299,000 Brooklyn 6's, regist'd 103,000 107,000 $\begin{array}{lll}\begin{array}{l}\text { Kingston City Coupons, } \\ \text { bonds }\end{array} & 11,000 & 11,000\end{array}$
$\$ 2,093,200 \$ 2,359,100 \$ 2,359,10000$

Total assets ... \$5,265,495 36 Deduct items not admitted:			

Mortgages taken for debt. $\$ 10,83881$
Value of real estate over de-
partment appraisal. 37,78480
$\begin{array}{llll}\text { partment appraisal........... } & 37,78480 \\ \text { Agents' balances............. } 43,592 & 92\end{array}$
Total admitted assets.............. $\xlongequal[\$ 5,173,27883]{83,216}$

$\begin{array}{ll}\text { Unpaid losses and enciovments not due..... } & 43,306 \\ 82 \\ \text { Premiums paid in advance. } & 288 \\ 5\end{array}$

Total liabilities as to policyholders....... $\overline{\$ 4,386,68583}$
Surplus as regards pollcyhold's $\mathbf{7 8 6 , 5 9 3} 00$

ann A. McCall, Jr., Deputy Supt

E. S. FRENCH, $\begin{aligned} & \text { Sup't of Agencies. } \\ & \text { W. HAXTUN } \\ & \text { Secretary }\end{aligned}$

THE SUCCESS.

WANTED.-SECOND-HAND WOOLEN MACHINERY
in good order, Carding, spinning, and weaving Jeans
and Satinets, Farties wishing, of sell adorass, giving
price, \&c., JOHN T. DULANY, Belton, Texas.

 HEN Y CAREY BAIRD \& C 0 , Industrial Publishers, Booksellers \& Importers,

BROWN'S REMEDI思S.

 GMPLES FREE.

OTIS' Machinery.

ARSENIC IN THE ARTS.-A Lecture

NEW DEPARTURE $\begin{gathered}\text { RRAVELINo } \\ \text { men watee }\end{gathered}$

$\$ 66$ Week in our own town. Terms and \%s outtit MESSRS. B. DAMBACHER \& CO., Ham-

 Of every desciription
 GRINDERS, IN STOCKEEGE PLACE,
121 Chambers \& 103 Reade Sts., New York City
 Bankers and Brokers T2 Broadway, New York.
Important to Engineers and Λ reliitects.
 "THE ENGINEERING NEWS "

GIVEN AWA Y:-In order that every one may see

$\mathrm{H}_{\text {tions }}^{\text {OME }}$ or their construction. with engravings show

SHAFTS.PULLEYS.HANGERS
COUPLINGSETC.
In Stock, and for Sale by
illiam sellers \& Co., Price lists and pamphletets on application.

Pond's Tools.

Engine Lathes, Planers, Drills, \&e.
Sendfor Catalogue. DA DIDWW. POND Sucessor to

RELIEF PLATES IN HARD TYPE METAL, For Printing

ALL KINDS OF PICTORIAL ILLUSTRATIONS

In Books, Newspapers, and Catalogues.
These plates are an excellent substitute for woode
ELECTROTYPES AND STEREOTYPES
are made from them in the usual manner
We offer special advantages to

MANUFACTURERS AND INVENTORS,

as our mechanical work is of the best quality and rapidly executed.
Our plates are used satisfactorily in the SCIENTIFIC AMERICAN and the SCIEN TIFur plates are used satisfactorily in the SCIENTIFIC AMERICAN and the SCIEN the country
"COPY."
We work direct only from Prints or properly prepared Pen and Ink Drawings. Any other copy may be furnished, such as Photographs. Pencil Sketches, or the articles themselves, htwh. Pases we have drawigs made in the best manner by our own trainc
draughtsmen. any size. We make the plates larger or smaller, as desired.
We are glad to have customers prepare their own Pen Drawings, and append one or two

DIRECTIONS TO ARTISTS

The most important requisite in Drawings for our use is that every line shall be
The paper or drawing board must be white and smooth.
For fine work drawings should be made double the scale of the plate desired
Carefully observing these main points, the artist has the utmost freedom in hi styles of drawing.
For further information and fine samples of our work, send stamp for current number of our illustrated Quarterly Circular

INGS

- THE LETTER WRITER.

2. THE CROSSING SWEEPER.
3. THE ROYAL PRINCESSES.
4. THE SKEIN WINDER.
5. THE SPANISH SISTERS.
6. A REST ON THE HILL.
7. THE FAIR CORRESPONDENT.
8. BARTHRAM'S DIRGE.
9. GOING TO SCHOOL
10. PEEP 0'day boy's Cabin.
11. THE SCANTY MEAL.
12. THE AMAZON.

Printed on heavy toned plate paper, 12×15 inches.
Liberal discount to the trade Sent postpaid on receipt of price.

Please
PHOTO-ENGRAVING CO., 67 Park Place, New York.

STHAMMUMPS.

W00d-Working Machinery,
 Mroved Tenon Machines, Mortisisg, Mouliting, and
Re-Saw Machines, and Wood-Workig Machinery gene-
 (Shop formerly occupied by R. BALL \& CO.) Brainard Milling Machines and styles

Steel Castings,

GEORGE C. HICKS \& CO.,

 Baltimore. Md. CLAY Retarts, TILLSS FIIWANTED THE SOLE MANUFACTURE, for England, of one or two Patent Articles in demand
by steiln users. Advertisers have good mann facturing
pres

$\$ 290$. For REiT PIINOS IN THE MORLD

BEAN'S FRICTION CLUTCH, The Best on the Clobe, Univerasily adopted br ROLLING MILLS.
No breakage of Gear or Machinery. None other can
weigh the Pow weigh the POWER. SAFETY ELEVATORS.
D. FRISBIE \& CLO., New Haven, Conn.

AYER \& SONS MANTAL

cet our Estimate before making any advertising
contracts. Our business in large. Fanilititios unsur
passed.
$\$ 12$ a day at home. Agents wanted. Outf and
Lathes, Planers, Shapers, Drills,
C-

 THIE COMPOUND STEAM PUNP USES team expansively, hence economically. Simpler tha springs, tappets, or reversing vall ves. Critical exami
nation invited. Address E. \& A.
 Driven or Tube Wells

VINEAAR Hom mide nivors

AGENS. . $\begin{aligned} & 64 \text { page Illustrated Catalogue Free } \\ & \text { Boston Novelty Co., Boston Mass. }\end{aligned}$ The Toll-Gate! $\begin{gathered}\text { Prize Picture sent free } \\ \text { An ingeniousgem! } \\ \text { I }\end{gathered}$

98 Amarticles. Samples free. Address,

NEARLY ONE THOUSAND IN USE. bufaly pony plaxer. Willeain

GEO. PARR,
Buffalo, N. Y.
gexturtisementy.
 Ennrraings may head advertisements at the same rate
 COARDIOL COFFEE ARUGARMACHINERY

 P.BLAISDELI \& CO., Manufacturers of the Beestars, Masell Patens, Upright Drills

THE BEST

Boiler Feeder

FRIEDMANN'S INJECTOR, NATHAN \& DREYFUS, New York.

[ESTABLISHED 1846.]
Mann \& Co.'s Paternt Oficices.
 thirty year is' experience. MORE PATENTS have been secured through this
agency, at home and abroad, than through any other in agency, at h
the world.
They employ as their assistants a corps of t e most ex-
perienced men as examiners, specification writers, and perienced men as examiners, specification writers, and
draughtsmen, that can be found, many of whom have been selected from the ranks of the Patent Office. SIXTY THOUSA ND inventors have availed them-
selves of Munn \& Co.'s services in examining their inselves of Munn \& Co.'s services in examining their in-
ventions and procuring their patents.
MUNN \& CO., in connection with the publication of the SCIENTIFIC AMERICAN, continue to examine in-
ventions, confer with inventors, prepare drawings, speventions, confer with inventors, prepare drawings, spe-
cifications, and assignments, attend to fling applications in the Patent Office, paying the Government fees, and watch each case, step by step, while pending before the
examiner. TThis is done through their oranch office, corner F and 7th Sts., Washington. They also prepare and
file caveats, procure design patents, trade marks, and reissues, attend to rejected cases (prepared by the inventor
or other attorneys), procure copyrights, attend to interferences, give written opinions on matters of infringement, furnish copies of patents, and, in fact, attend to
Aign countries. ICAN of all inventions patented througn this agency,
with the name and residence of the patentee. Patents with the name and residence of the patentee. Patents
are often sold, in part or whole, to persons attracted to the invention by such notice.
Patents obtained in Canada, England, France, Belgium,
Germany, Russia, Prussia, Spain, Portugal , Germany, Russia, Prussia, Spain, Portugal, the British
Colonies, and all other countries where patents colonies, and all other countries where patents are Send for pamphlet pertaining specially to foreign pat-
ents, which states the cost, time granted, and the reuirements for each country.

Copies of Patents.
Persons desiring any patentissued from 1836 to Novem-
ber 26, 1867, can be supplied with official copies at rea sonable cost, the price depending upon the extent of drawings and length of specifcations.
Any patent issued since November 27, 1867, at which
time the Patent Office commenced printing the drawin and specifications, may be had by remitting to this of and specincations, mains of any patent issued since 1638
A copy of the claims of will be furnished for $\$ 1$.
Wheve, and state name of pate to remit for the same a and date of patent.
A pamphlet, containing full directions for obtaining United States patents, sent free. A handsomely and many engravings and tables important to every patentee and mechanic, and is a useful handbook of reference for everybody. Price 25 cents, mailed free.

Address MUNN \& CO.
MUNN \& CO.,
Publishers SCIENTIFIC AMERICAN,

S. EMERSON'S PATENT DAMASCUS TEMPERED SA WS

A Patent Planer, clipper, Lumberman's clipper, from clipper crosescut, Universad Λ Ajustable saw A

Printing sine nemeriting

MACHINISTS' TOOLS.
Lathes, Planers, Drills, \&o. New haven manceactiring con HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.

ROCK DRILLINC MACHINES AIR COMPRDESSORS
 Niagara Steam Pump Works established 1826. CHARLES B. HARDICK, 23Adams Stree
NON-COMBUSTIBLE STEAM BOILER AND PIPE COVERING

OLD Rolled Sintuct

The fact that this shafting has 75 per cent. greater
strength, a finer finish, and is truer to gauge, than any

KNOWWEST

STEAMPUMPWORKS, $92 \& 94$
Great reduction in prices. S. Send for catalogue. T PUNCHING Drop Hammers and Dies, for workPRESSES. CARK.

NEWSPAFECT
The Koch Patent File, for preserving newspapers
magazines, and pamphlets., has been reconty improved
nd price reduced.

MUNN \& CO.

CIVIL ENGINEER and EXPERT
HENRY A. ST JOHN, 31 \& 33 Broad St... Room 8, Ne
York City
Specifle Specifcations, Maps and Estimates furrished on a
Railway or Public Works and Private Propertics.
AN ENGLISHMAN OF GOOD ADDRESS Who has had dome experience in America among Amer
 STUDIES OF MATTER AND LIFE. - By Prof. Henry J. Slack, F.R.S. A most interesting an
valuable paper, explaining the latest scientifictheorie

Blake's Patent Stone \& Ore Crusher.

 NEW PATTERNS, with important im等 W. $\quad \begin{aligned} & \text { foretgn countries. for breaking hard an } \\ & \text { foritte substances } \\ & \text { for cor } \\ & \text { ANY }\end{aligned}$

BUSINESS DI RECTORY
This pirectory contains orer sionaun names of persons

Mill Furinise's

Imporant For ail corporation and

$\xrightarrow{\text { 品 }}$
 BRADFORD MILL CO.
 Fronch whiteryin of

MANUFACTURE OF ARTIFICIAL BUT-
 granings. - Being a Aistory of the Artitialal Butter
Manufacture. Descriptions of the Principal Procese now in use, Details of Latest Improvements, Plan of an Artifcial Butter Factory, Engravings of the Machinery
required, Chemical Analyses of Butter and of Artificial required, Chemical Analyses of Butter and of Artificial
Butter, Details of the Costs of setting up an Artiffcial
Butter Factory, the Capital required, the materials Butter Factory, the Capital required, the materials and
quantities consumed, Cost of manufacture per pound, quantities consumed, Cost of manufacture per pound,
the Daily Proft, etc. A complete and reliable treatise 8 and 49 Price 10 cents each. To be had at this office and of all newsdealers.

and Efficient.

JOSEPH

 Adares. C. TODD,

IT PAVS to sell our Rubur Hand printing Stanng:
Cotton Seed Huller.

Lime Extracting Heater and Filter indispengale to eonomy inuseo steam. logue on application to the manufacturers,
STLWELL $\&$ BIERCE MFFG Co, Dayston, on

THE TANITE CO., STROUDSBURG, PA. DOIT Schlenker's New Machine BOLT ${ }^{\text {Schlenker's New Mac. }}$ Revolving-Die. CUTTERS HOWARD IRON WORKS, STATE, COUNTY AND SHOP RIGHTS

 EAGLEFOOTLATHES,

 PYrometers, For shoming hat of

 BAKER'S
Rotary Pressure Blower

SCIENTIFIC AMERICAN For 1877
the most popluar scientific paper in the world.
thirty-second fear.
VOLUME XXXVI. - NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN beg to announce that on the sixth day of January, 1877, a new volume was commenced. It will continue to be the aim of the publishers to render the contents of the

To the Mechanic and Manufacturer
No person engaged in any of the mechanical pursuits should think of doing without the Scientific American. Every number contains from six to ten engravings of new machines and inventions which cannot be found in

TEERMS OF SUBSCRIPTION.
One copy of the Scientific American will be sent for one year, 52 numbers, POSTAGE PREPAID, to any subscriber in the United States or Canada, on receipt of three dollars and twenty cents by the publishers. One extra copy of the Scientific American will be supplied gratis for every club of five subscribers at $\$ 3.20$ each; or six
Postage free.
The scientific American Supplement.
A weekly paper, uniform in size with the Scientific American, but a distinct publication. It contains working drawings of enginecring works, and elaborate treatises on every branch of Science and Mechanics, by eminent writers, at home and abroad. An illustrated cover protects the handsomely printed
55.00 pr and . single cop 10 cents.
the Scieviri the for United States or Canada, on receipt of seven Dollars by the publishers.
The safest way to remit is by Postal-Order, Draft, or Express. Money carefully placed inside of envelopes, securely sealed, and carefully addressed, seldom goes astray ; but it is at the sender's risk. Address all letters and make all orders, drafts, ete., payable to
MUN $\&$ CO.

37 PARK ROW, NEW YORK.
THE "Scientific American" is printed with CHAS.

