

THE GORILLA.
The gorilla is the largest of the anthropoid apes; and since his discovery in 1847, by Dr. T. S. Savage, he has attracted much attention from naturalists. The writings of Du Chaillu have done much to familiarize us with this remarkable animal; and its strength, ferocity, and cunning have made it remarkable, even in these days of natural wonders. The gorilla is chiefly found on the west coast of Africa, both north and south of the equator. It is generally seen in troops of four females and one male; and these never associate with other animals. The muscular power of the gorilla is pro digious. He marches steadily towards his ene my, beating his breast with both hands and roar ing terribly; when nea enough, he springs upon him, and destroys him by tearing him to pieces. One of Du Chaillu's men was eviscerated by a sin gle blow from the paw of a gorilla.
In the dense forests of the African continent man can only advance with difficulty; and the miasma that pervades them is sooner or later fatal to mankind. But here the gorilla takes up his abode, and his long arms and prehensile toes enable him to swing himself over long distances be tween the trees, and thus to wander over large tracts of country, passing each night in a rudely con tructed nest made for the purpose.
Some of the antics of the gorilla are amusing and resemble certain human characteristics to a remarkable degree. Mr A. R. Wallace had one in Borneo; and when he gave it a piece of food to it liking, it licked its lips, drew in its cheeks, and turned up its eyes with an expression of supreme sat isfaction. If it disliked morsel, it would roll i round on its tongue, and then push it out between its lips. If it could no get the food it desired, would scream like a baby in a passion.
The specimen shown in our engraving, in his saga cious watchfulness agains strangers, is at once on the alert on the approach of strange footstep; and the intruder who will face such a sentinel must be either very ignorant or very incautious. The picture is so vivid and life-like that it seems al most like a portrait taken on the spot; it is the work of Mr. Joseph Wolf, the eminent naturalist and artist, whose book, "The Life and Habits of Wild Animals," we have heretofore had occasion to notice.

A New Wall Paper.

It is now proposed in Germany to make wall paper which will adapt itself to the degree of illumination of the room, becoming darker as the room is more lit up, and vice versa. The Papier Zeitung suggests to this end paper printed or coated with oxalate of copper, which acts in the manner above described. It is believed that very curious and novel effects of color and shade may in this way be produced on wall pa pers, and possibly on other materials.

Late Theories on the Earth's State.

WHO COMES HERE?

Messrs. Hobbs, Pope \& Co., of Boston, Mass., state that Georgia is probery of a mine of pure manganese in that nearly every State in the Union produces manganes to a greater or less extent, as well as all the provinces of the Dominion of Canada. The mines of England, Saxony, Spain, and Turkey mainly supply the European markets with ore. Manganese of high test and superior quality is obtainable only in limited quantities; while the medium and lower

Is the inside of the earth fluid or solid? Even in such an parently simple question as this we are still in some degree of doubt. You may think this is strange, because we find volcanoes throwing out lava, which is liquid rock, and because we find much other geological evidence to show that solid rocks, such as basalt and trap, have been protruded as molten masses within recent geological epochs; but it has recently been shown by Mr. Mallet that the fact of volcanoes throwing out liquid rock may not be inconsistent with the view tha the earth as a whole is solid. Mr. Mallet's investigations go to prove that this liquefac tion of the rocks which we observed may be produced at no very great depth from the earth's surface by the shifting and rubbing ogether of the rocks, ow ing to cracking due to the alteration of the tempera ure, just asboys at schoo ub a button on the bench until it is hot, when they often place it on to thei neighbor's cheek. Apply ing the laws of the me chanical theory of hea o this problem, Mr. Mal let believes that the fric tion of the rocks, caused by the secular cooling of the earth and the conse quent shrinkage, is a suf icient and a satisfactory explanation of the occur rence of the high tempera ure of volcanic action.
Sir Wm. Thomson, also than whom no one is more capable of expressing an opinion, decides in favo of the earth's solidity. He tells us in his address to the Physical Section at Glasgow, that the conclu sion concerning the solid ity of the earth originally arrived at by Hopkins is borne out by a more rig orous mathematical treat ment than this physicis was able to apply; so that the idea of geologists, who were in the habit of ex plaining underground heat, ancient upheavals, or modern volcanoes by the existence of a compara ively thin solid shell rest ing on an interior liquid mass, must now be given up as untenable.-Profes sor Roscoe.
A New Ornamental Panel.
Mr. William Bleiss, of New York city, has patented through the Scientific Patent Agency, December 1875, a very tasteful frame or tile for decorative purposes, which he prepares from a glass plate having a roughened or crystallized surface, on quantity, will often not pay to ship. It is found in inex- the back of which the design is traced in suitable colors to rehaustible beds, like coal; but its deposits are very unreliable, being almost always found in pockets, or in veins or eams, which can never be relied upon as carrying ore fo any specified distance; it is, in fact, next to impossible to estimate the yield of a manganese mine for a specified time

Novel Catalry Equipment.-It is intended to supply slabs of gun cotton as part of the cavalry equipment, to be carried in a sort of waist belt, and used, if necessary, for the destruction of railways, stockades, etc., for which purpose gun cotton has proved the most powerful of all explosive agencies, while it is the safest and most convenient to carry.
resent the seams between the pieces composing a mosaic. ransparent colors are then laid over portions of the work, and cold leaf is laid over the entire surface of the glass, and a backno the surface and form a durable coating. The effect is very handsome ; and as the paint will not crack or blister, the panel may be used in place of encaustic or other tiles for the exterior ornamentation of buildings.

The head of a bolt is usually about twice the diameter of the spindle, and of a thickness which is generally greater than five eighths of that diameter.-Rankine.

Srimtific Ampriram.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
NO. S' PARK ROW, NEW YORK.

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included...
One copy, six months, postage included
ne cony, six months, postage incuad.............................. 160 gratis for every club of five subseribers at 83.20 each; additional copiles a same proportionate rate. Posta e prepaid.

The Scientific American Supplement
is a distinct paper from the Scientific American. The supplement is issued weekly; every number contains 16 octavo pages, with handsome
cover, uniform in size with ScIENTIFIC AMERICAN. Terms of subscription cover, uniform in size with Scientific American. Terms of subscription
for SUPPLEMENT, $\$ 5.00$ a year, postage paid, to subscribers. Single copies 10 cents. Sold by all news dealers throughout the country Combined Rates. - The Scientific American and Supplement
will be sent for one year, postage free, on receipt of seven dollars. Both will be sent for one year, postage free, on receipt of
papers to one address or different addresses, as desired.
The safest way to remit is by draft, postal order, or registered letter. Address MUNN \& CO., 37 Park Row, N. Y.

VOL. XXXVI., No. 5. [New Series.] Thirty-second Year. NEW YORK, SATURDAY, FEBRUARY 3, 1877.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT,
NO. 57.
For the Week ending February 3, 187\%.

III. ELEECRRTCTTT,LIGHTT,HEAT,ETC.-Researches on the Radiometer,

Aall the back numbers of the supplewexv, from the commencement, Jan-

MUNN \& CO., PUBHSHERS, $\begin{gathered}\text { 37 Park Row, New York. }\end{gathered}$

SOME SUGGESTIONS FOR FUTURE POLAR EXPEDITIONS
Of the numerous suggestions for reaching the north pole, which the failure of the recent English expedition to attain that goal has elicited, there are two which, apparently more than any of the others, have attracted public attention. The first is that, to cross the palæocrystic sea, which, by reason of its very irregular surface, Captain Nares pronounces impassible by any known means of sledge or like conveyance,
balloons may possibly be utilized balloons may possibly be utilized. The second contemplates the establishment of an arctic station, at as high a latitude as may be practicable, which shall serve as a basis of operations by a party who shall there take up a permanent residence until the object of the enterprise is accomplished. It is expected that, by this last plan, men can be acclimated, so to speak, to the intense cold, the absence of light for long per iods, the deprivation of vegetable food, and other hardship of the polar regions; and they may be thus rendered less likely to be baffled by obstacles which have determined the failure of most previous expeditions. A project substan tially similar to this is, we understand, already before Con gress; and an appropriation of $\$ 50,000$, and the ordering of government officers and vessels to the duty is proposed.
The objections urged against the balloon project are, first, that the natural phenomena of cold, etc., would probably act upon the gas, or the envelope material of the air ship and determine conditions unfavorable to its continued buoy ancy; and secondly that, as balloons cannot be steered, the voyagers might find themselves carried anywhere but in the right direction; and that, in case of the balloon failing and compelling their descent far away from their base of supplies, their perishing would be a certainty. We allude to this plan simply because it is open to modification in a manne which we shall point out further on. We have first to sug gest a possible improvement on the fixed station scheme.
We do not see the necessity of educating a band of men to dwell under adverse conditions as proposed, when the most that will be required, of all but the leaders, is physical work and endurance; and most especially when the people already fitted by nature for arctic life are at hand on the spot. In other words, we think that it would be much more practicable to engage a number of Esquimaux, bring them South, and educate them up to a point equal to that of the working white men, who would be otherwise employed as pioneers, hunters, sledge haulers, etc. We would teach them the ob ject of the enterprise, and place them under the officers-o course white men-who would furnish the brains, and under whose government the work would be conducted.
It may be argued that the Esquimaux cannot be taught properly to serve the interests of such an expedition. Experience shows to the contrary. They are an intelligent people, and there is not an arctic explorer but can testufy to the material aid which they have rendered. Hall and others who have dwelt among them state that they are quick t learn; and as an instance, Hall mentions that he found no difficulty in teaching them the intricate game of chess. They are the only people that can live in the land of no wood. Peschel, in his new work on "The Races of Man," says: "They have found out how to build huts of snow as quickly as tropical natives build them of branches and leaves: nay, they have constructed arched vaults of stcne which had not occurred to any of the civilized people of Mexico." The same authority, summing up their achieve ments, tells how they warm their huts with train oil lamps, how they invented sledges, and utilized the dog as a draugh animal: "while in America, the most advanced stage of such art was to be found only among the Incas of Peru, who used llamas as beasts of burden, though not as draught ani mals." "Like assistants in the darkness," adds Peschel, "appear beings of our species whose cheerfulness is unaffected by cold and obscurity, and who contentedly wander and range over regions in which Nature seems armed with all the horrors of one of the circles in Dante's hell." We need not recall the invaluable services of Esquimaux Joe in sustaining the sailors of the Polaris on their voyage on the ice floe, or the many instances in which the narratives of arctic explorers quote the value
The expense of maintenance of a party of Esquimaiux, with white men as leaders, would clearly be less than that of a party of white men alone. It will further be evident that t dispatch Esquimaux in balloons would be a different matte from sending other people, because, no matter where the bal loons might come down, unless in the open sea, the travel lers, being used to shift for themselves, would be as much at home as anywhere else. And they would thus be able to support themselves, and also the single white man who might go with them in command. But-supposing of course it be possible to make the gas and the envelope of the balloon withstand the climate-it does not seem to us that high-flying, wind-driven balloons are the proper means to be employed. While any balloon system is open to objections, the low-flying balloon, just capable of lifting one man off his feet so that he can propel himself over the surface with pole, and by the same means cause his balloon to jump ove high obstacles, appears to be the most promising means of locomotion for traversing the palæocrystic sea. A party starting would, therefore, go in as many balloons as ther were individuals; and the chances of failure of all the air ships would be materially less than if the expedition travelled in a single large balloon; while there would be the additional advantages of strength of fabric, easy handling, and possibility of stopping during adverse winds by merely moorin the air ships without discharging gas.

MIND READING AND CONJURORS.

We have recently witnessed two exhibitions of the allege bnormal power of second sight, or, what amounts to the same thing, mind reading. One was the performance of Mr . J. R. Brown, who has acquired considerable reputation as a mind reader. His exhibition consisted in experiments intended to prove the existence of a genuine phenomenal faculty whereby he reads the thoughts of other people. The second was the exhibition of Mr. Robert Heller, the well known conjuror, and his assistant, Miss Heller, wherein the lady, blindfolded, ostensibly saw and described articles not visible to her, but known to the conjuror and his audience. The reader will observe the distinction. Brown seeks to prove a supernatural power by curious experiments. Heller, like wise, performs equally curious experiments, but candidly avows them to be part of his programme of illusions-in hort, neatly executed tricks.
Mr. Brown's so-called manifestations have an advantage over those of spiritualistic and other wonder-working medi ums, in that they are reared on a small basis of actual fact. And it is just this modicum of reality which has commended them to college professors and others seeking the solution of many perplexing biological problems. At the same time the phenomenal nature of the mind reader's apparent powe has secured for him a host of adherents from the ranks of those whose peculiarly framed intellects are always ready to believe anything which rises above the level of their com prehensions to be superhuman. Mr. Brown's ability seem o consist in an exceedingly delicate sense of feeling, doubt less cultivated by long practice; he is also endowed with quick perceptive powers, likewise trained, and possesses sensitive nervous organization. By the aid of these not at all phenomenal powers, he is enabled to detect the involuntary changes either of the pulse, or the breathing, or in the muscles in the person with whom he is in contact. It is an old and well proved fact that a person who has performed any secre tive action, which is on the verge of discovery by another will infallibly and involuntarily indicate the fact by some such bodily motion as above noted. This mental peculiarity is constantly taken advantage of in the cross examination of witnesses in courts, and by detectives in seeking to fix proof of guilt on criminals. Guilty individuals will usually be tray themselves by their physical behavior; thus their actions are carefully scrutinized. Nothing is better understood than hat the mind strongly affects the body: witness the actions of blushing, becoming pale, trembling, weeping, and laugh ing, all of which are involuntary. betraying even to the dull est observer the sentiments of the person affected. Deaf mutes can catch the meaning of persons conversing with them by the merest shades of change in countenance; and nothing shows more clearly how the perceptive powers may in this respect be developed than the fact that the deaf mute has long since ceased the constant spelling of words with his fingers, and has substituted, in an immense number of cases, slight symbolical signs with the hands, movements of the body, and facial expressions, which fully convey the ideas We might multiply instances, all showing that Mr. Brown' mind-reading faculty consists in a keen perceptive faculty rather than in any supernatural mental quaiification. Ex amples of this ability exist in deaf, dumb, and blind persons, who communicate with each other by touch of fingers. But sufficient has been suggested to account for Mr. Brown ability to find hidden articles while grasping the hand of the concealer
As the foregoing negatives the idea of any superhuman power, it will be seen that the mind reader and the conjuror practice their arts by similar means; and on comparing them we do not hesitate to say that Mr. Heller's tricks are immeasurably more mysterious than Mr. Brown's. Eliminating the idea of jugglery altogether, it is evident that, for Mr Heller's lady assistant to name articles touched by him at random, requires on her part a wonderful exercise of the memory, to return the exact answer called for by the peculia form of question; and on the other hand an equally marvel lous celerity of thought is necessary on the part of the con juror to frame exactly the proper question to convey the information to his blindfolded assistant without a moment's hesitation. Robert Houdin, in his "Memoirs," explains the immense labor involved in two persons thus learning what mounts to a new language, the intricacy of which is shown from the fact that the conjuror repeatedly asks questions which convey to his assistant the ideas of phonetic syllables which the latter links together to form the names of per sons designated.

THE COST OF THE EAST RIVER BRIDGE.

It is a curious fact that, in the construction of great public works in this State, the original estimates of the architects or engineers are uniformly exceeded. The two largest struc tures now in progress, the State capitoì at Albany and the East river bridge, are both instances of the truth of the above The capitol is, on paper, an imposing palace, covered with ornamentation of the most elaborate and expensive descrip tion. Its original estimated cost (some $\$ 4,000,000$) has already been far exceeded, and yet the building is not half finished. Indeed, so great, it is now said, will be the additional expense that it is seriously proposed to abandon the work rather than tax the people for the necessary outiay Regarding the East river bridge, the cost first estimated by Colonel Roebling, in 1868 , was $\$ 7,000,000$, exclusive of the land. After this engineer's death, his son, Mr. W. A. Roeo ling, succeeded to the supervision; and he, in 1872, three years after the work was begun, revised his father's eetimste
and added about $\$ 1,000,000$ more. He stated, however, at the time that the probable total cost would be about $\$ 9,500,000$, an increase of size of the work having raised the expense some 8 per cent. That even this estimate was too low was proved in 1875, when the directors sought and obtained an appropriation, raising the sum to $\$ 13,000,000$. Up to the present time, $\$ 6,000,000$ has been expended, for which we have to show two anchorages, two completed towers, and the connecting wires across the river. There are yet the wire and superstructures, additional stone and masonry, land and labor, to be paid for, the total outlay for which, according to estimates obtained by the New York Sun, will swell the entire cost to $\$ 17,569,000$.
It will be interesting to compare this with the cost of tunnelling. The clear span of the bridge across the river measures 1,595 feet; so that for the actual means of transit, the cost is about $\$ 11,015$ per foot. Even measuring from anchorage to anchorage, a distance of 3,475 feet, the cost reaches $\$ 5,056$ per foot. Let us contrast these figures first with those shown in the results of submarine tunnelling. The first Chicago waterworks tunnel, 5 feet in diameter and two miles in length, cost $\$ 457,844$, or some $\$ 43$ per foot; the second bore, 7 feet in diameter and of the same length, about $\$ 39$ per foot. These are of course too small for traffic purposes, but may be quoted to aid us in reaching an idea relative cost. The Thames tunnel can hardly be used for comparative purposes, since it was the forerunner of submarine excavation, and was worked upon over a period of some 36 years. Its total cost was $\$ 2,000$ per foot. Lately a very heavy tunnel belonging to the London Underground Railway has been finished under the London Docks. The work was exceedingly difficult, and the quantity of water to be pumped out enormous. The final cost was $£ 390,000$ per mile, or about $\$ 369$ per foot. Lastly, we have the estimates mile, or about $\$ 669$ per foot. Lastly, we have the estimates
of the English channel tunnel, 31 miles in length, which amount to $\$ 20,000,000$, or about $\$ 122$ per foot.
Now we may glance at land tunnels. The Mont Cenis tunnel cost about $\$ 300$ per lineal foot, inclusive of equipment of road, etc.; the Kilsby (England) double track railroad tunnel, in the construction of which great difficulties in the form of quicksands were encountered, $\$ 262.50$; the Hoosac tunnel, $\$ 300$; Underground Railway, Fourth avenue, New York city, $\$ 285$; Bletchingly (England) double track tunnel, $\$ 120$; the very difficult Hauenstein tunnel between Basle and Berne, Switzerland, $\$ 133$; the contract price of the St. Gothard tunnel now in progress is $£ 1,896,945$, or about $\$ 189$ per foot. Many more examples might be given, but the above will suffice to show that in all probability $\$ 350$ per lineal foot would be a large estimate for a tunnel under the East river. Supposing for the sake of comparison that the total length of excavation be equal to the total length of the bridge, 3,475 feet (it obviously would be much less), its cost would 3,475 feet (it obviously would be much less), its cost would
be, at the above figures, some $\$ 1,200,000$. Consequently, for the sum now estimated as the probable cost of the bridge, New York might have at least fourteen tunnels crossing the river at as many principal streets.
Meanwhile the success of the bridge as an engineering work is by no means assured; nor is it certain that the estimate of $\$ 17,569,000$ will not still further be exceeded. The distance from the pier to the City Hall terminus on the New York side is 2,381 feet; on the Brooklyn side the distance York side is 2,381 feet; on the Brooklyn side the distance
from tower to terminus is 1,881 feet. The whole aggregates from tower to terminus is 1,881 feet. The whole aggregates
660,000 square feet, or some 200 city lots, largely covered with buildings, to which title must be acquired. The estimate given fixes $\$ 25,000$ each for the lots; but in cities where real estate fluctuates so greatly as in New York and Brooklyn, it must be clear that any such calculation is merely an approximation.
Again-and we cannot gainsay the wisdom of the con-clusion-the Board of Directors of the bridge are strongly opposed to take any risk of inferior material on account of an apparent economy in its cost. It has been a question for some time past whether the cables shall be made of Bessemer and open hearth steel, or cracible cast steel only. There appeared from the engineer's report a saving of some $\$ 250,000$ to be effected by the use of the former. Thus the Roeblings offered crucible steel at 9 cents per lb. gold, or for $\$ 612,000$, and Bessemer steel at $6 \frac{3}{4}$ cents, or $\$ 459,000$ in all. The strain withstood by each, per square inch of section, was respectively 179,019 lbs. and $178,163 \mathrm{lbs}$.
Mr. Abram S. Hewitt, in a letter to the Board referring to Bessemer steel, said: " The peculiarity of that material is that it is apt to have weak spots of which there is no external indication. This is probably due to the enclosure of bubbles of air in the mass, or possibly to the oxidation of minute particles of the material while the air is being driven into it under high pressure. No amount of visual inspection can under high pressure. No amount of visual inspection can
determine in what part of the ingot, the rod, or strand of wire, such defects. will occur, and I have seen Bessemer rods break under apparently very inadequate strain." Finaliy, the Board, after carefully considering the question, concluded not to use Bessemer steel-and this even after proposals for the same had been invited-and awarded the contract to supply crucible cast steel wire to Mr. J. Lloyd Haigh (he being the lowest bidder), at the price of $8 \frac{7}{10}$ cents gold per pound.

We said, nearly five years ago, that the probable cost of the East river bridge would be $\$ 20,000,000$. At present the indications are that our prediction will be realized; and judging by the rate of increase in previous years during the progress of the work, even the large sum we named may be insufficient to cover the actual cost of constructing the bridge.

THE MIGRATIONS AND DISPERSAL OF ANIMALS.
One of the most important considerations in studying the
ast history of the earth, as shown by the distribution of nimals, is that which leads us to examine first what mean animals of every class have for dispersal, and second, what barriers Nature interposes to prevent the same. It is a necessary part of the great struggle for existence, which pervades all life, that the creature shall encounter not merely active enemies but passive ones: not merely those which directly threaten its existence, but those which prevent its selfmaintenance by cutting off its access to the necessary means
of so doing: and against these last the organism is often of so doing: and against these last the organism is often compelled by force of necessity to oppose itself. Animals, even those which breed most slowly, increase with a rapidity out of all proportion to the available food in any specified district which they may inhabit; and therefore all are obliged to struggle against the obstacles which prevent then
wandering in search of fresh hunting grounds or pastures.
Whether a certain natural phenomenon is or is not a bar:ier to further dispersion depends very greatly upon the class of animals inhabitating the region which it limits. Thusthe elephant will climb the loftiest peaks and mountains, traverse rivers, and range the densest forests; the tiger can endure the widest extremes of heat and cold, and can swim moderate distances; but on the other hand, the monkeys, for example, must remain within the limits of forest vegetation, while the antelopes and zebras cannot exist otherwise than on the deserts.

Mr. Alfred Wallace, in his " Geographical Distribution of Animals," the underlying theory of which work we recently reviewed, devotes some very interesting pages to the above topic, considering in some detail the various obstacles to animal emigration. Climate seems to be a potent boundary to the travels of mammals, as there are such animals as the polar bear and walrus, which cannot live, in a state of nature, far beyond the polar ocean. But it is believed that it is not so much the climate itself as the change of vegetation consequent on climate which renders it effective as a barrier. It appears that valleys and rivers are often insurmountable obstacles, as animals which naturally exist on hills would be checked by the difference of vegetation and of insect life, and also by the unhealthy atmosphere often found in valleys. An also by the unhealthy atmosphere often found in valleys. An
arm of the sea over twenty miles wide cannot be traversed by arm of the sea over twenty miles wide cannot be traversed by
land animals, by swimming; but on the other hand, long voyages are often made by mammals that are involuntary passengers on uprooted trees and ice floes. Bats and the
cetacea have exceptional means of dispersal. The latter howcetacea have exceptional means of dispersal. The latter, how-
ever, find themselves opposed by temperature, as the polar species cannot cross the equator, nor can those indigenous to the tropics venture into the cold polar waters.
It would seem that no barrier could limit the range of birds, and that consequently they must be the most ubiquitous of living things; but this is far from being the case. The petrels and gulls are the greatest wanderers over the ocean, and the sandpipers and plovers roam over immense extents of coasts; but there are many species which are wholly checked by natural obstacles. The ocean presents an almost absolute barrier to prevent the birds of one continent passing over to another. Large numbers of birds cannot exist outside the forest countries; others cannot soar above the mountain ranges which bound their inhabited region. Again, the prevalence of their enemies is a potent barrier to birds dwelling in or crossing any region; and where nest-hunting quadrupeds, such as monkeys, abound, they are comparatively scarce.
We now reach that very interesting phenomenon known as migration; and here must be drawn a distinction between the true migrations of fishes and birds and the periodical movements of certain mammalia. Thus, in summer, monkeys ascend the Himalayas to heights of 10,000 and 12,000 feet; in dry seasons antelopes move southward toward the Cape of Good Hope. These differ from the great movements of fishes and birds, since such take place in large bodies and
often to considerable distances. Migration may be looked often to considerable distances. Migration may be looked upon as an exaggeration of a habit, common to all locomotive animals, of moving about in search of food; and in birds, it is especially exaggerated by their powers of flight and the necessity of providing soft insect food for their unfledged young. In North America, every grade of migration is
found, from that peculiar to species which merely shift the limits of their range à few hundred miles (so that in the central parts of the area the species is a permanent resident), to others which move completely over 1,000 miles of latitude. So that, in all the intervening districts, such species are only known as birds of passage. There are many curious facts peculiar to migration, notably that of birds returning, year after year, to build nests in the same spot: a local attachment
which prevents their wandering into localities unsuitable for them. Also that the oid birds migrate first, the young following at random. This indicates the absence of imperative instinct in the habit, and it also accounts for the diminution in numbers of the young that return. On the succeeding year, however, the young profit by their experience, and fly when the old birds do. Another curious fact, however, in favor of instinct, is that." agitation" of caged birds at the time when their wild companions are migrating. This, how-
ever, Mr. Wallace considers to be due to a social excitement, due to the anxious cries of the migrating birds, and to be as cribable to some strong social emotion, gradually developed in the race by the circumstance that all who, for want of such emotion, did not join their fellows inevitably perished. on the way, is thought birds, without apparently stopping
finding their nesting place of the previous year from a distance of many hundreds or even a thousand miles. But the observant powers of animals are very great; and birds flying in the air may be guided by the physical features of the country, spread out beneath them, in a way that would be impracticable to purely terrestrial animals.
Reptiles are scarcely more fitted for traversing seas than nammals; but lizards evidently possess some unknown means, probably while they are in the egg state, of passing the ocean, since they are found to inhabit many islands where there are neither mammals nor snakes. Fishes are not without means of dispersal over land. Some are carried through the air by hurricanes; those living in subterranean waters have been thrown up by volcanoes. Geese and ducks often eat fish eggs without impairing the vitality of the same, carrying eggs without impairing the vitality of the same, carrying
them meanwhile over long distances. Molluscs often attach them meanwhile over long distances. Molluses often attach
themselves to animals or to fragments of wood and stone. and so are transported.
Winged insects possess more varied means of dispersal than any other highly organized animals. Many fly to immense distances; others are carried off by storms; and the floating trees which serve as rafts for mammals are the homes of myriads. Immense numbers of tropical insects are brought to the London docks in foreign woods; and they have often emerged from furniture, after lying dormant for many years. They will survive wonderfully hard usage. Many species can withstand hours of submersion in strong spirit; others can go for months without food.
But on the other hand, wide as is the distribution of insects, the barriers opposed to the same are equally great. Hundreds of species of lepidoptera can subsist, in the larval state, only on one species of plant; so that, on perfect insects being carried to a new country, the existence of the race would depend on the presence of the same or of some closely allied plant. Again, some require succulent vegetable food all the year round, and hence are confined to the tropics; some are dependent on water plants, some on mountain vegetation. Many are parasites of other insects; all have enemies in every stage of their existence; and the abundance of any one of these may render their survival impossible in country otherwise well suited to them.
We have thus briefly reviewed the means which animals have for their dispersal about the globe, and the barriers which Nature has interposed to limit their wanderings. What effect these obstacles have exerted in determining the present distribution of animals, we shall consider in a future article drawn from the same source.
the cause of the delay in issuing the patents.
We are in receipt of numerous letters from inventors, inOffice in forwarding their patents, and also calling our attention to the fact that notices of their inventions have not appeared in these columns. In reply to all, we would state that, for the last two months, the Patent Office has encountered considerable difficulty in having the photo-lithographic copies of the drawings prepared. The acting commissioner has issued a circular, which is forwarded to individual pat entees, in which each is informed "that, on account of the mperfection of the photo-lithographic copy of the drawing which was to accompany the patent, the Office was compelled o return the drawing to the photo-lithographic company for to return the drawing to the photo-itithographic company for
reprint. As soon as a perfect drawing can be procured, the reprint. As soon as a perfect drawing can
patent will be forwarded to your address."
As fast as we receive copies of the delayed patents, we hall prepare and publish the usual notices. The difficulty has now existed since October 31; and while a few patents of subsequent dates have reached us, the large majority have yet to come.

A Prepared Codfish Patent Litigation.

The patent of Mr. Elisha Crowell, under which he claims royalty on all cod and other fish deprived of skin and bones and packed in boxes, etc., for transportation, is to be contested by the wholesale fish dealers of this city. Mr. Crowell has heretofore issued stamps, which the trade purchased and affixed to the boxes of fish, at the rate of $1 / 4$ cent per pound. The dealers now claim that this tax inflicts injury on their business, and that Mr. Crowell has no legal right to exact it. As a large number of merchants are associated in these legal proceedings, and as it is reported that other fish dealers throughout the country will co-operate with them, it is probable that Mr. Crowell's claims will be vigorously fought in he ccurts.

Six Tons of Gold.

Three million dollars in double-eagles recently arrived in this city on a Baltimore and Ohio railway car. The treasure, which weighell six tons, was brought overland from San Francisco, to be deposited in the New York Sub-Treasury. It filled fourteen iron safes, and was guarded by a squad of soldiers, and was in charge of eight Treasury Department clerks.
In our description of the Tomlinson axle box, on page 54. present volume of the Scientific American, the address of
Mr. Tomlinson should have been: "Care of G. L. Kelty, 80 Mr. Tominson should have been: "Care of G. L. Kelty, 80
and 82 White street," instead of "C. L. Kelly," which was he name and address given in part of the edition.
Persons desiring further information may address Mr. Tominson as above, or Mr. James E. Crane, 76 Park Place, N linson as above, or Mr. James E. Crane, 76 Park Place,
Y., or Wm. Knifton, Black Hawk, Gilpin county, Col.

IMPROVED COMPOUND ENGINE.

The object of this improvement is to facilitate the working of both engines by low pressure steam, when such working becomes necessary, as, for example, when war steamers are brought into action. This improvement is the design of Mr. Charles Sells.
Fig. 1 represents a section through the low pressure valve chest of a compound engine, in which the high and low pressure cylinders are on the same axis, showing an arrangement of steam and exhaust valves for operating according to the invention. A is the high pressure cylinder, and B the low pressure cylinder, having the slide facing $\mathbf{C} ; \mathbf{D}$ is the exhaust pipe from the high pressure, and E the exhaust pipe from the low pressure, cylinder; \mathbf{F} is a branch from the main steam pipe; G is a duplex valve which can seat, either as shown in Fig. 1, in which case the exhaust from the high pressure cylinder flows into the valve chest of the low pressure cylinder, or which can be seated on the seating, g, in which case the exhaust from the high pressure cylinder flows by the pipe, E, to the condenser; H is a shut-off valve, which, when seated as shown in Fig. 1, prevents the supply of steam from the main steam pipe to the low pressure cylinder, but which can be opened so as to supply can be opened so as to supply
steam thereto when the valve, G , is seated on g.
Fig. 2 is a sectional plan of the cylinders, A and B, of a compound engine, placed side by side, showing an arrangement of valves for effecting the same purpose; C is the low pressure slide jacket; D is the discharge from the high pressure; E is the exhaust pipe leading to the condenser, and F is the steam pipe from the boiler; G is a duplex valve, whereby the exhaust from the high pressure cylinder can be permitted to flow into the reservoir supplying the low pressure cylinder, or can be made to pass to the condenser when the valve, G, is seated on $g ; H$ is a shut off valve which either cuts off or admits steam from the steam pipe to the low pressure reservoir.
It will be seen that the invention consists in arranging in connection with the cylinder valves by means of which the passage between the eduction of the high pressure cylinder and the low pressure slide jacket can be closed, and a communication can be opened between the low pressure slide jacket and the main steam pipe; so that, when it is desired to work with a considerably reduced pressure of steam in the boilers, both the high and low pressure cylinders are supplied with steam at the عame pressure, and the eduction from both is led into the condenser, the engines being thus worked as ordinary coupled engines, and the combined areas of all the cylinders being thus utilized. We are happy to add that the Admiralty have been so impressed with the value of Mr. Sells' invention that the engines of the new fast unarmored ship Iris, 7,000 horse power, now being built by Messrs. Maudslay, Sons, \& Field, will be constructed on this principle.-The Engineer.

Valuable Antique Inscription

In the Hippodrome at Constantinople may still be seen the remains of a venerable trophy of the Persian war, the bronze serpent which, with the gold tripod it supported, was dedicated to the Delphian Apollo by the allied Greeks after the victory of Platæa, as a tenth of the Persian spoil. On the bronze serpent, which served as a base for the tripod, the Lacedæmonians inscribed the names of the various Hellenic States which took part in repelling the barbaric invader. The golden tripod perished long ago in the sacrilegious plunder of Delphi by the Phocians, but the bronze serpent remained in its original position till it was removed by Constantine the Great to decorate, with other spoils of Hellas, his new seat of empire at Byzantium. Here it has remained in the Hippodrome till our own time, not unscathed, for the last of the three heads of the serpent has long since disappeared; but the list of Greek States inscribed on the intertwined folds of the body remains perfectly legible to this day, having been fortunately preserved from injury by the accumulation of soil in the Hippodrome. This earth concealed about two thirds of the serpent till the excavation made in the Hippodrome in 1855, when the inscription was first brought to light. As the date of the bsttle of Platæa was B. C. 478, it may be assumed that the setting up of the tripod took place shortly afterward. Thus the inscription would not be later than B. C. 476. Of hardly inferior interest is the bronze helmet found at Olympia early in this century, whish, as its inscription tells us, was part of a trophy dedicated by Hiero I., of Syracuse, after his great naval victory over the Tyrrhenians, B. C. 474. If the German excavations now going on at Olympia continue to yield results as promising as the discoveries which have distinguished the first months of this enterprise, we may hope that many similar records of Hellenic triumphs may be found in the rich soil of the Altis.-Contemporary Reviero.

A NEW TUBE EXPANDER.

Mr. Alanson Work, of Providence, R. I., has patented through the Scientific American Patent Agency, October 10, 1876, a new tool for expanding hose couplings and applying them to the ends of sections of hose.
A represents the body of the tool, which receives the spindle, B. A square collar, b, formed upon the middle part of said spindle, keeps it from turning in the body.
The forward part of the spindle, B, has a screw thread to The forward part of the spindee, B, has a screw thread to
receive the lever nut, C, by which it is drawn forward. The receive the lever nut, C, by which it is drawn forward. The

Dr. Schliemann finds an Ancient Greek.
Dr. Schliemann's excavations at Mycenæ are yielding re sults which are of immense value, not merely archæologically, but intrinsically, for he is exhuming gold in remarkable quantities. To print even the mere catalogue of the articles in precious metal which he has brought to light would occupy a large portion of this journal. Golden drinking cups curi ously wrought, golden buttons, breastplates, diadems, figures of animals, leaves, personal ornaments (all in the most perfect condition), are daily found, and the coffers of the Hellenic Bank in Athens (where the treasure is deposited until it can be placed in a museum) are overflowing with wealth.

The most interesting par of the explorer's work is just now in progress, as he has at last reached human remains in a preserved state. Most of the bodies had been incinerated in the places where they lay; and it was evident that many had been robbed al ready. The signs of a shaft sunk into the tomb were noticeable, and the intruder had hastily collected the more valuable ornaments, and de camped. It is doubtful if the robber will be apprehend ed, as he accomplished his wickedness some time before the capture of Mycenæ by the Argives in 468 B. C.-a fact shown by the absence of Greek pottery in the tomb, as such would have been there had the inhabitants of the Greek city, subsequently built over it, known of its ex istence.

SELLS' COMPOUND MARINE ENGINE

radially around and correspond with the incline of the rear part of the said spindle. The forward ends of the segments, D, have hooks, d^{\prime}, formed upon them to hook into radial mortises, a^{\prime}, formed in the rear end of the body, A, to keep the said segments always equally distant from each other, and thus prevent them from huddling or getting closer together in one place than in another. A rubber ring, \mathbf{E}, holds the segments against the spindle, as the said spindle is with drawn after expanding the tube.

The copper tube to be expanded is placed upon the seg ments, D , with its forward end resting against the end of the body, A. Upon the rear part of the body, A, at the proper distance from its end, is formed a shoulder, a^{2}, for the end of the male part of the coupling to rest against, and a second shoulder, a^{3}, for the end of the female part of the coupling to rest against.

Wash for Trees.

Pour ten parts of boiling water on one of gas tar; and when cold, sprinkle peach, plum, and other trees, gooseberry bushes, and even standard roses before any bud appears; the same will be free from insects all the summer. You may safely paint the stems of trees, and the stems of young larch and forest trees, and it will entirely keep away hares and rabbits. Sheep or horses will not touch the stems of apple trees.-Land and Water.

In one tomb there were three bodies of gigantic proportions, which had been squeezed into the small space of six feet be tween the walls. Two were fragmentary, but the third had its face perfectly preserved under its ponderous golden mask. There was no vestige of hair, but both eyes were visible, also the mouth, which, by the enormous weight pressing upon it, had been forced wide open, showing thirty-two beautiful teeth. The nose had entirely gone, and the head had been pressed in such a way on the breast that the upper part of the shoulders was nearly in a line with the vertex of the head. From the top of the skull to the loins, the body, in its squeezed and mutilated state, measured two feet four and a half inches; and the entire remains had been pressed to a thickness of about an inch. Still the immense thigh bones left no doubt but that the man, when alive, was of very large stature; while the appearance of the teeth indicated that he stature; while the appearance of the teeth indicated that he
died-or doubtless was killed, as he was a warrior-when he was about 35 years of age.
In color, the corpse resembled an Egyptian mummy. A broad golden shoulder belt lay across the loins; and from this was suspended a small bronze sword, on which was soldered a beautifully polished, perforated object of rock crystal, in the form of a jar with two silver handles. To the right and left of the body lay long bronze swords; and beside one of the swords, a bronze knife. These weapons had evidently been suspended from a belt, now gone. All the sheaths had been gilded, and were adorned with round buttons of gold, beautifully chased. The handles of the swords were gold plated, and exquisitely engraved. The massive golden mask which covered the head is $12 \frac{2}{3}$ inches in length and breadth, and is so thick that the enormous weight, which for ages has been pressing on it, has made noimpression. "It shows a round face, with large eyes and a large mouth much resembling the features of the body." Dr. Schliemann, in fact, is convinced that all the masks which he has found represent the features of the persons whose heads they covered. "A single glance," he says, " on these splendidly made masks must convince every one that they are real portraits and not ideal types."

When the news spread that the explorer had found a tole rably well preserved body, people flocked to Mycenæ by thousands, from all parts of Greece, to view it. The corpse, however, threatened disintegration at any moment, and Dr. Schliemann in despair of keeping it sent for a portrait painter to prepare a picture of it. Luckily it lasted two days; and before that period had elapsed, a smart druggist, from a town in the vicinity, suggested soaking the remains in spirit in which gum sandarac had been dissolved. This was done; and Dr. Schliemann now thinks that, as the body can be lifted wholly on an iron plate which is beneath it, it can be removed to Athens unimpaired.

Wants to be an Editor.

A young man writes to the Graphic that he wants to be an editor, to which the Graphic editor replies: Canst thou draw up leviathan with a hook thou lettest down? Canst thou hook up great ideas from the depths of thine intellect, and clean, scale, and fry them at five minutes' notice? Canst thou write editorials to measure? Canst thou write an editorial to fit in a three quarter column of the paper, which shall be in length just twenty-two inches, having three inches of fine sentiment four inches from the beginning, and nine inches of humor in the middle, and an outburst of maxim and precept, nine and three quarter inches long, at the close?

A NEW FOOD STEAMER.

Mr. Thomas B. H. Andrews, of Mansfield, Ohio, has patented through the Scientific American Patent Agency, November 28, 1876, an improved apparatus for-steaming food of all kinds, boiling sugar, canning fruit, and for other purposes, which we illustrate herewith.
A represents the furnace, and B the steam chest, which is placed upon the same, and supplied with water for generating steam from a reservoir. The food-steaming box, C, is supported on an extension chamber, \mathbf{A}^{\prime}, of the furnace which may be made in one piece therewith, of cast or sheet iron, and separated therefrom by a hinged damper, C^{\prime}, so that the gases of combustion may be drawn through the same, or not. The furnace has two additional dampers-namely, a front damper, a, and a side damper, b-the hinged damper, C^{\prime}, and side damper, b, being closed when the apparatus is used, as shown in Fig. 1, for the purpose of steam ing food. The smoke, etc., is then drawn through a pipe, d, at the rear of the furnace, and transferred to a short elbow, d^{1}, commonly closed by a gap, d^{2}. When the apparatus is used for boiling sugar or other purposes, the hinged damper is opened to draw the fire through the entire extension chamber for the heating of the evaporating pan, D , placed on the furnace.

The steam chest, B, is connected by a steam pipe, e, and branch pipes, e^{\prime}, with the food box, detach able pipes, f, with branching arms, f^{\prime}, that open near the bottom of the food box, being applied to the branch pipes, e^{\prime}. The steam issues near the bot tom of the food box, and is thereby distributed throughout the food, a cover being placed on the same to retain the heat. The food is thereby steamed in a quick and effective manner, while, by taking off the steam chest and food box, the furnace may be employed for other purposes.

NATURAL HYGROSCOPES.

A very simple and quite accurate little apparatus, for determining the degree of dampness in air or any other medium, may be made from the screw-shaped appendage of the seed of the pelargonium. To the species and varieties of this botanical genus the name geranium is popularly given though the pelargonium differs from the true geranium in several characteristics, the most obvious of which are the half shrubby character of the stems and the somewhat irregular flowers. The mode of constructing the hygroscope is shown in Fig. 1. E is the support of the pelar light wooden, F, inserted in a block of wood. $G S$ is a the spiral extremity. The end, S , turns over a dial, C D, divided as shown. On this circle, zero corresponds to the greatest humidity, and 100° to the greatest dryness. Between these extremes are traced five spiral turns, as the helix does not usually unwind on itself more than four times. Each turn marked is considered as beginning on the diameter. 0 to 100 . Thus, for example, if the helix makes two twists and a half, the indicated degree is read on the

Fiy. 1.

Fig. 2.

Fig. 3.
fine construction. The accordance of the indications in it is quite remarkable.
There are two other hygroscopes noted by La Nature, which are even more simple than the foregoing. The first, Fig. 3, is a cork, B, in which a needle is inserted as a pointer, suspended from a nail by a catgut cord. The catgut cord contains more or less twist in proportion to the quantity of moisture in the air. The needle, therefore, as the cord turns, swings in one or the other direction; and by

Professor Clarke has succeded in preparing a fluoride of nickel containing three molecules of water, $\mathrm{Ni}_{3}, 3 \mathrm{H}_{\mathbf{2}} \mathrm{O}$. It has a specific gravity of $2 \cdot 15$ at 19°, and retains the water at 130°. He also prepared a fluoride of zinc with four molecules of water. He was unsuccessful in making the uorides of gold and of platinum.
Professor Clarke is perseveringly at work on the subject of molecular volumes. (See Scientific American, June 3, 1876.) He gave a list of 17 haloid salts, with their actual ensities (determined by experiment), their molecular volumes, and the theoretical density calculated from their molecular volumes, which agreed in a remark able manner. In all these cases, the volume was $5.5,11,16.5$ or 22 , all multiples of 5.5 the volume of hydrogen.
new method of determining ferrous oxide in silicates,
was the subject of a brief paper by Professor A. R. Leeds. It consists in the method of preparing and using hydrofluoric acid. The ore is pulverized and placed in a platinum dish which is supported on a platinum triangle within a platinum retort or still. The still is charged with fluorspar and sulphuric acid, and filled with dry carbonic acid. On heating the retort, dry hydrofluoric acid gas is evolved, which dissolves the ore and removes all the silicon. The carbonic acid is again passed through the retort until cold, when the ore may be removed, dissolved, and titered with permanganate of potassium. This furnishes the best means of determining the amount of protoxide of iron in an ore or mineral. The objection to the use of the liquid acid imported in gutta percha bottles is that it is not strong enough, and contains enough organic matter to render it totally unfit for use in determining protoxide in the presence of the peroxide of iron. Photographs of the apparatus employed were exhibited. It is to be hoped that some less expensive apparatus may be devised for this process, when it will, no doubt, meet with popular favor.

At the conclusion of Professor Leeds' paper, Prcfessor Charles Seeley made some interesting remarks on

This acid is now very largely employed in this city in making the ornamental glass signs, usually supposed to be made by the sand blast. This involves its preparation on a large scale, as some establish-
ANDREWS' APPARATUS FOR STEAMING FOOD ts preparation on a large scale, as some establish
its indications may be interpreted. The simplest hygroscope of all is a ginger snap or spice cake, placed on a ledge, as shown in Fig. 4. This kind of cake is very sensitive to variations of humidity in the air; and when damp ness is present, it bends, as indicated by the dotted lines, from C B to C B'. During dry weather, it returns to its horizontal position. A straw may be fastened to it as an index, and a dial, as above noted. be constructed by experiment.

NEW YORK ACADEMY OF SCIENCES.

The regular monthly meeting of the chemical section was held at the Mott Memorial rooms, Monday evening, January 15, 1877. Professor J. S. Newberry, President, in the chair. Notwithstanding the inclemency of the weather, the attend ance was unusually large. Mr. Geo. F. Kurz exhibited a new mineral
from Mexico, which contained sulphur, selenium, mercury, zinc, cadmium, and iron, in fact a sort of cinnabar, remarkable for the large percentage of selenium, about 1.8 per cent. It has been named guadalcazarsite, from the locality where it was found. It is said to be sufficiently abundant there to be employed as an ore of mercury, thus furnishing a means of developing the silver deposits. Mr. Kurz also exhibited a specimen of jeffersonite. The first paper of the evening was by Dr. Peter T. Austin, on the
CONSTITUTION OF THE ADDITION COMPOUNDS OF PICRIC ACID WITH HYDROCARBONS.
The author first called attention to the fact that picric acid combines directly with hydrocarbons, like benzol, and that this property is often taken advantage of in preparing perfectly pure hydrocarbons, as some of these picric acid com pounds are very finely crystallized, and may therefore be readily purified. Dr. Austin objected to the use of the term physical compounds as applied to these substances, claiming that there is but one class of compounds-namely, molecular compounds. After illustrating, by means of graphic symbols, the probable constitution of these molecules, and offering some facts in substantiation of his theory, he closed by stating that certain substances, like paradinitro-benzol, are more easily prepared from these picric acid compounds than from any other source.
laboratory notes from the university of cincinnati, was the title of a paper by Professor F. W. Clarke, read by the chairman of the section, Professor Leeds. In the analysis of certain minerals, where it is customary to fuse them with bisulphate and fluoride of sodium, Professor Clarke finds that chloride of sodium may be substituted for the more expensive fluoride with but slight inconvenience. The mixture employed by him contains 3 parts chloride of sodium and 12 parts bisulphate of sodium to 1 part of the mineral. He recommends it particularly for refractory iron ores and for
ments consume 100 lbs . permonth. Iron retorts are employed,
and are found to be better than lead, and last much longer than the leaden pipes which are attached to the retorts for condensing the acid. In regard to the physiological effects of the acid, Professor Seeley thinks the text books exaggerate its dangers. On dipping the hand into hydrofluoric acid, no immediate effect is produced; but if not washed off at once, in the course of half an hour the fingers begin to ache worse than the teeth with toothache; they swell up, and in a day or wo the true skin begins to separate and crack open. These sores do not heal for two or three weeks. If, however, the hand is washed immediately in water or dilute alkali, no more inconvenience is suffered than from sulphuric acid. Lead bottles are used to transport it; and although gutta percha will last three times as long, its cost is much greater in proportion. Hydrofluoric acid can be made very cheaply, and sells in quantities at 18 cents per lb. Professor Seeley believed that it could be furnished here sufficiently pure to answer the objections raised by Professor Leeds.

HIPPOPOTAMUS DENTISTRY.

The hippopotamus now at the New York aquarium recently underwent that most disagreeable experience to all

juveniles, the extraction of a tooth. "Baby," as the unwieldy young female is named, is now some twenty months old; and her second set of teeth or tusks are pushing out the rootless milk teeth. This is attended with considerable suffering, and the animal has been very uneasy, constantly rubbing her snout along the floor or against the bars of the
cage, and instinctively endeavoring in many ways to rid herself of the pain.

To remove a tusk from a grown hippopotamus would be rather a difficult and possibly a perilous proceeding; but Baby, who is but little larger than a good sized hog, is very gentle, and, when it was decided to resort to the forceps, she submitted to being rolled over on her side and only kicked and grunted moderately when, after two or three attempts, a strong pull and a stout twist wrenched forth the offending tusk. Dr. Kohn, the keeper of the hippopotamus, performed the operation, the main object of which was not only to relieve the animal, but also to prevent her swallowing the tooth. It is a curious fact that brutes in a wild state almost always swallow their milk teeth; and it frequently happens that they thus commit involuntary suicide. In members of the cat tribe, the teeth are quite large and sharp when they are shed, and it may easily be imagined that the keen points may produce serious wounds in the internal organs. This is a cause of mortality which we have not seen considered in natural histories, and which might exercise a potent effect in reducing the number of wild animals.
Dr. Kohn calls our attention to a curious phenomenon in relation to the hippopotamus, regarding which naturalists are nos wholly in accord. It is known that, after the animal has remained out of water for a brief period, a handkerchief passed over the skin becomes colored with a reddish liquid. This is commonly believed to be an oily secretion, something analogous in quality to the oleaginous material which occurs in feathers of aquatic birds. If, however, the period of the animal's absence from water be extended, the skin becomes mottled with spots which, on close examination, prove
to be true scabs. Microscopic examination of these, as well as of the red liquid, Dr. Kohn informs us, distinctly shows the presence of blood globules, similar in all respects to those found in the blood of the hippopotamus; so that it is hardly possible to conclude otherwise than that the animal actually undergoes a sweat of blood. The pores of the skin are unusually large and widely spaced apart; and at the orifice of each, a scab is formed.

C゚Mmamitatious.

The First Steamboat on the Mississippi.
 To the Editor of the Scientific American

In the communication under the above heading, published in your issue of January 3, F. L. I. says that the Navigator, published in 1814, contains no information except that relating to the Orleans. Having been upon the river in 1831, I have preserved documents and papers relating to the history of steamboating in the West, in which I find the following facts: All statements in regard to the Orleans agree with those given by your correspondent, except the tonnage. The boats were, in custom house measurement: 1. Orleans, of Pittsburgh, 200 tons, in the year 1811; 2. Comet, of Pittsburgh, 25 tons, 1813: 3. Vesuvius, of Pittsburgh, 90 tons, 1814; 4. Enterprise, of Brownsville, 75 tons, 1814; 5. Ætna, of Pittsburgh, 361 tons, 1814; 6. Despatch, of Brownsville, 75 tons, 1816; 7. Buffalo, of Pittsburgh, 250 tons, 1816; 8. James Monroe, of Pittsburgh, 156 tons, 1816; 9. Wash ington, of Wheeling, Va., 212 tons, 1816. Of the above I propose at this time to give the history of two only, and this because they were both commended by Henry M. Shreeve, to whom undoubtedly the honor belongs of having successfully established steam navigation on the Mississippi. The Enterprise, 75 tons, was built at Brownsville, Pa., on the Monongahela, by Daniel French under his patent, and was owned by a company at that place. She made two voyages to Louisville in the summer of 1814, under the command of Captain I. Gregg. On December 1, she took on board a cargo of ordnance stores at Pittsburgh, and sailed for New Orleans, commanded by Captain Henry M. Shreeve, and ar-
rived at New Orleans on the 14th of the same month. She rived at New Orleans on the 14th of the same month. She
was then dispatched up the river in search of two keel boats laden with small arms for General Jackson's army, which had been delayed on the way. She returned to New Orleans with the cargoes of the keel boats, after an absence of six days and a half, in which time she ran 624 miles. For some time after she was actively engaged in transporting the rapids of Red Riverwith troops, and ninetrips to Natchez. the rapids of Red Riverwith troops, and ninetrips to Natchez.
She departed for Pittsburgh on May 6, 1816, and arrived at Louisville on the 30th, twenty-five days out, being the first steamboat that ever arrived at that port from New Orleans. The citizens of Louisville gave a public dinner to Captain Shreeve for having accomplished in 25 days that which, up to that time, had never been accomplished by the barges and keel boats in less than three months. The Enterprise proceeded to Pittsburgh. The command was then given to Captain D. Worley, who lost her in Rock Harbor, Shipping. port, Ky. Captain Shreeve, on surrendering the command of the Enterprise, proceeded to fit out the Washington, of 212 tons, the hull of which was being built at Wheeling, Va., and the engines at Brownsville, Pa. Shreeve's experience on the Enterprise had sucgested some radical changes, which he proceeded to make in the Washington. It had been the practice on the boats previonsly built to carry the boilers in the hold, in the after part of which the cabin for passengers was also located. They were removed and placed upon the main deck, and a hurricane deck built on them. He rejected the upright cylinders of Fulton and the vibrating cylinders of French's patent; and he placed the cylinders in the Washington in a horizontal position, and connected them to the
water wheels with pitmans working on cranksat rightangles. Fulton and French used single low pressure engines. Shreeve discarded these, and used high pressure. But his greatest improvements were the cam cut-off and the use of flue instead of cylinder boilers; and by using these, one half of the fuel was saved.
On September 24, 1816, the Washington passed Louisville n her first trip to New Orleans, and returned to Louisville in November. While in New Orleans, Captain Shreeve had an interview with Edward Livingston, who informed him that they (Fulton and Livingston) would commence suit gainst him for infringement on their patents. The severity of the winter compelled the Washington to remain at Louisville until March 12, 1817. On that day, she departed on her second trip to New Orleans, and performed this voyage by returning to the falls of the Ohio in forty-one days. The run from New Orleans to Louisville was made in twentyfour days.
It being now practically demonstrated that steamboats could ascend the river in one fourth less time than was required for barges and keel boats, the general public were satisfied that steam navigation was an established fact. At a public dinner given to Captain Shreeve, on the completion of this trip to Louisville, he predicted that the time would come when the trip from New Orleans to Louisville would be made in ten days. This statement was regarded in the same light that Stephenson's was when he predicted that locomotives would be run at 20 miles an hour. Both predictions were a long way within the facts. The trip from New Orleans to Louisville, that required twenty-five days to perform in 1817, was made by the A. L. Shotwell in 1853 in four days and ten hours.
All doubts in reference to steam navigation having been dispelled by Shreeve's success, shipyards were established, and the building of steamboats was actively commenced. Among those who were watching with intense interest the progress made by Shreeve was Edward Livingston. He claimed that, under patents owned by Fulton and Livingston, they held the exclusive right of steam navigation on all the rivers of the United States. Upon the arrival of the Washington in 1817 in New Orleans, Livingston commenced suit in the United States District Court. The Washington was seized by the marshal, and the case went to trial Shreeve fought it out, and had the pleasure of hearing the claims of Fulton and Livingston declared to be unconstitutional; and the right of free navigation of the rivers of the United States by steam was secured to the people for ever Geneva, Ill.

Adward H. Beebe.

To the Widitor of the Scientific American:

Have engineers considered the plan of two or four strong wire cables to be braced and drawn tight under every span of all high dangerous bridges? It is the last feather that breaks the camel's back; and it is just a little too great a load coupled with the motion of the train, that breaks the bridge. A plan that would supply this additional strength would seem to be what is needed. Would not wire cables, which
never break suddenly, and are not much affected by the frost, be just the thing? Has a wire suspension bridge of so short a span ever broken? This plan would combine the truss and the suspension. It would seem as if it would be cheap and effectual in preventing the many such disasters as the one on the Lake Shore road. Certainly, with such disasters, the science of bridge building cannot be complete. There is much yet to learn. Ought not the State Legislatures or Congress to take hold of the matter? The cost of this plan on all dangerous bridges, even on a long line of road, would ot equal the loss by the recent calamity, to which should be dded the more important saving of hundreds of lives, and the loss of reputation of the line. And if all of the bridges on any of the great through lines were known to the traveling public to be thus secured, would it not greatly increase the patronage of such line?
Washington, D.
Washington, D. C.

Boller Explosions.

To the Elitor of the Ssientific American:
I consider the explanation of explosions in boilers in the communication of E. G. A., of Monticello, Pa., to be entirely wrong. For if the boiler was merely hot enough to conver the water into steam, there would be no danger of explosion; the sudden cooling of the iron, and consequent unequal contraction of itsparts, would merely strain the boiler and cause it to leak. According to my experience, the boiler has to be hot enough to prevent evaporating, which generates a gas causing the boiler to rend; and to effect this does not require "a large amount of water to be introduced." Again, the very fact that employers repose confidence in their engineers is conclusive proof that they are worthy of that confidence. And when the employer his been besieged by pedlars of patent appliances of every description, until he is bored to death, he, in order to get rid of them, sends them to the engineer, who, as a general thing, has enough to attend to beside arguing the merits of whatever article the agent ma have to sell. His answer is usually short and decisive.
Now, as to low water reporters or alarms, there are a num ber of points in regard to their working, which E. G. A should remember. In localities where there is any amouut of vegetable matter in the water, it causes a sediment to be end of the reporter, becomes, from constant disuse and from the fact that there is very little circulation in the pipe, solidi-
fied. This prevents the water falling in the pipe, so as to allow the steam to enter and blow the whistle, which is done by the hot steam expanding a brass tube which acts upon a alve connected with the whistle.
There is a rule, adopted pretty generally by insurance companies, to the effect that they will not insure a building containing a steam boiler, unless the said boiler has a safety plug. This plug is hollow, the hole being larger upon the inside than upon the outside. The hole is filled with a patent composition composed of tin and lead, and it is all right, so composition composed of tin and lead, and it is all right, so level falls below the plug, the more intense heat of the steam and iron melts the composition and blows it out. I think all engineers who desire safety would prefer the plug to any low water reporter, as, in case of low water with a reporter, a single cup of cold water dashed upon the brass tube conracts it, and stops the whistle; while, with the plug, the steam has to be allowed to run down before a new one can be inserted. This causes delay and the unavoidable disgrace of the engineer in charge, if the circumstance be due to his carelessness.

An Engineer.
Cambridgeport, Mass.
[We shall be glad to hear from engineers in response to E. G. A.'s strictures; but we would caution our correspondents that vituperation is not argument, nor is it likely to assist our readers in appreciating the merits of either opposing iews. For this reason, we omit publication of some replies already received.-EDs.]

Ideation in Utero.

To the Editor of the Scientific American:

Two objections, which seem to me quite serious, suggest列 you quote from the English Lancet. These are:

1. If the unformed brain of the embryo is capable of re ceiving any impression, and retaining the same during the long period which must elapse before a child's brain can develop sufficiently to enable the child to express its idea in speech, why is not the more perfect brain of the child after birth impressed by external occurrences (especially if of a phenomenal nature) sufficiently to produce memories afterward of events happening during the first few months of existence? In other words, is it reasonable to assert that the embryonic brain is capable of receiving ideas of locality, etc., when we know that the brain of the very young infant is not? Certainly no living person can recall any experience of the first year of his babyhood.
2. But, it may be urged, this impression is due in some mysterious manner to the close linking of the embryo and the mother's body. The circulating blood, therefore, must be the medium, since the nervous connection in the umbilical cord is but slight. Why, then, did not one Siamese twin influence the ideas of the other, when between them there was both a blood and a nerve connection, far more highly organized than any connection between child and mother, and on the integrity of which the actual lives of the brothers depended? It is well known that the mental and intellectual existences of the pair were totally distinct. B.

The Recent Railway Accident.

To the Elitor of the Scientific American:
The accident that recently occurred at Ashtabula, Ohio, whereby about 100 persons lost their lives, of course brings forth many theories as to why the bridge gave way
The bridge was a Howe truss, of one span 157 feet long, built at Cleveland, by the Lake Shore and Michigan South ern Railway; it had been in use about 11 years, and had stood the test of $\mathbf{6}$ heavy engines, and was considered safe by the chief engineer of the road, who stood on it but a few days before the accident while an engine was passing over, and could see no sign of weakness.
The engineer of the leading engine felt something give way when about two car lengths from the end, and pulled the throttle open wide, breaking the drawhead between the tender and train, and thus saving his engine. Some good engineers think that a portion of the train must have been off the track and struck and broken one of the chords, as the bridge fell one way and the cars the other. The chief engineer and others, including your correspondent, could not see the least signs of the cars being off when they went on the bridge; and if a single truck had been off, it would have left marks on the ties. Others think that the frost and the heavy storm raging at the time caused it to give way. My opinion is that the bridge had been greatly weakened by the vibration and concussion of passing trains. These and the cold weather, combined, caused it to give way.
For two years, I ran a printing press, printing forms just as large as would go on, so that the clamps came solid against the chases. When the bolts were made of the best iron I could get, they would break without any seeming cause, the iron looking crystallized and brittle. The strain could never exceed 30 lbs . on each bolt, the latter being $1 \frac{1}{8}$ inches in diameter. One broke in 66 days, having run about 286,000 impressions; the other broke three days after. I then had two pairs made of Swedish iron: the first pairs used ran for about three months. I then put in the others, putting a piece of wood $\frac{8}{5}$ inch thick between clamp and chases, when they run 105 days, and broke about the same time. They always broke in the same place.
Is it not probable that the same principle is at work on our iron bridges, and that the strongest will give way from this cause, if it be not renewed in time?
J. H. S. Erie, Pa.

PRACTICAL MECHANISM. by joshua rose.

Second Series.-Number xix.
PATTERN MAKING.
Our next example will be a pipe bend, such as is shown in section in Fig. 136. It will be seen upon examination that the bend proper is included in that portion contained within the dotted lines, C C and D D, which meet at the center from which the arcs forming the bend are struck. Those parts exterior to the dotted lines are made separately from the bend proper, and are subjects in plain turning, similar to those already treated upon. It will be noted, however, that in this kind of pattern the core is not so well supported as in our previous examples; and it has, therefore, a tendency to sag or droop towards the center of the arc, and also to rise above its proper level when the metal is poured into the mould. To obviate this, we must make the core, and hence the core prints, extra long, as shown by the dotted lines in Fig. 136. It is usual also to make a provision for fastening these external pieces to the bend proper as follows: The flange is one piece, the bend proper another, and the core print yet another. The core print fits into the flange, and

has a projecting piece extending into a recess or holc, provided in the bend proper to receive it, as shown, and thus is the pattern strengthened. If the core prints are made so short that the core overbalances itself when placed in the mould, the moulder inserts, into the mould, stays or supports to keep the print in position; and these supports are called chaplets. They consist of pieces of thin sheet iron bent to about the curvature of the core and riveted to a piece of wire, the device being pressed like a flat-headed nail into the sand. The piece of sheet iron represents the nail head upon which the core rests, and it is inserted into the cope and nowel so that they project the proper distance. They act to prevent the core from either sagging or lifting by floating upon the molten metal. Then, when the casting is taken from the mould, the projecting wires are chipped off, and that remaining in the casting is riveted. This trouble can be, in many cases, saved by simply making the core prints a few inches longer; besides, wherever there is a chaplet, there is an excrescence left upon the casting. In the case of large work, however, the matter is different, on account of the expense of making very long prints and their awkwardness in being handled.
The bend part of our pattern may be either turned in the lathe or pared by hand; and sometimes it is a difficult matter to decide which of the two will best answer the purpose. To turn up a bend, it is necessary to turn up a ring semicircular in section, as shown in Fig. 137, and of a radius corresponding to that of the required bend. This ring is then cut up into portions of the length of arc required, and about one half is in most cases left over. The advantage of this

Frig. 137.

method is the direct and ready manner in which the required form is obtained; whereas in paring and shaping, the bending by hand, though the operation be ever so skillfully performed, will not be so true as if turned. And when we consider that cast.ngs only three thirty-seconds of an inch in thickness are sometimes required, we perceive that the slightest error or deviation from the true shape will be perceptible, and will often result in the loss of a large proportion of the castings. For all small work, then, the turning is of decided advantage; but since such is not always the case with large work, and since the line must be drawn somewhere, a correct decision will always be largely influenced by the facilities afforded by the tools, etc., in the shop. In the example shown in Fig. 138, which is what is called a return bend, the whole of a ring, turned as above described, would be appropriated: therefore, there being no loss of material, the method by turning will in this instance always be preferable.
In fixing the half flanges for work of this kind, not exthe ang six or seven inches in size, the center of the pattern into the flange will be sufficient.

Care must, however, be taken to hold the flange firmly in its exact position while boring for and during the insertion of the screw. It should not be forgotten to add the small projecting piece, B, shown in Fig. 136, which lies in the center line of each arm of the bend, which is provided to enable the casting to be conveniently swung in the lathe.

Before quitting examples of this kind, it will be well to once more direct the reajer's attention to the core boxes, so as to impress upon him the important fact that, where equal thickness of r etal is required, the core box should be as the pattern is. A round pattern demands a round core box; the one is of equal importance with the other. For example, in the designing of a bend, the required thickness is determined by the amount of internal strain to which the casting will be subjected. If, then, we give a round bend and an oval cor box, we either make the bend too weak or we cause the manufacturer to pay for so many pounds of metal which he does not require. In the case of castings so thin as to require care to make the metal flow throughout the mould, an unduly thin place or spot will prevent the flow (at that part) of the metal, and thus spoil a large proportion of the castings.
A half core box for either a bend or a T may be made by preparing a block sufficiently large to cut out the whole recess, as shown by the full lines in Fig. 139. In this case, after the block has been surfaced truly on one side and edge, the grain of the wood being in the direcion denoted by toe arrow, the center lines are marked upon it, and also upon the pattern. We then lay one half of the pattern upon the block, and make the center lines upoa them come exactly fair and even; and then we mark upon the face of the block the outline of the pattern, core prints and all. The core prints will of course be the right size of the core; but the outline marks thus produced form a guide to work by, and the distance between these outline marks and the edge of the core will represent the thickness of metal in the finished cast ing. A margin of stuff in the block is equired outside of the outline marks, so as to give the core box sufficient strength. We next trace out a plan of the core, and then, upon the ends or sides of the block, we describe semicircies representing the exits of the recess to be cut out, the klock being left so deep as to leave stuff enough below the depth of tie recess to afford ampie strength. We may now pro ceed to cut out the core hy our hand tocls, finishing it with the plane, shown in Fig. 14, and smoothing it with sand paper wrapped around a piece of wood of a sweep or curve a little less in radius than that of the core box recess.
Another method of getting out a core box for a bend is shown by the dotted lines in Fig. 139; and in this instance we make the core box in three pieces, the object being to turn up the end pieces, A A, in the lathe, the manner of pro

cedure being as follows: We get out the two pieces marked A A, and square up the faces truly, and chuck them, with the planed faces placed together in the chuck shown in Figs. 56 and 57, taking care that they are chucked so that, when the hole is bored in them, it will be half in each piece, or, in other words, chucking them truly, with the joint between the two. We then pare out the curved part in the middle section, and then glue on the end pieces, A A, A A, and strengthen the whole by placing battens on the bottom and ides.
Fig. 140 represents a half core box for a T. In half core boxes, it is necessary to close the openings in the ends or sides by bradding on pieces of light board, taking care to give draught by paring them slightly concave at the sop, and thus making the ends of the core similar to the slightly ed, thed ends of the pattern. When these pieces are omit core box is required, as in the case of the oblique T it is suf ficient to mark the shape of the core upon one half only of

Fig. 140.

the box; and when this is cut out, we may place the two half boxes together, and trace the second half from the finished one, using a long bent scriber for the purpose of marking.

Cattle Food.

Experience teaches us that cattle thrive best on a mixed diet; all hay or all grain will produce less beef than hay and grain. The animal structure of the ox also demands bulk in food as well as richness: the feeding of concentrated food being only profitable so far as the animal assimilates it, beyond that simply increasing the manure heap at a cost far beyond its value. The ox has approximately eleven lbs. of stomach with only two and one half lbs. of intestines to each one hundred lbs. of live weight; the sheep has less stomach and more intestines, giving a smaller percentage of digestive apparatus; while the pig, for every hundred lbs. of his live weight, has only one and a third Mos stomach to ix lbs. of intestines.
A steer would thrive well on a bulk of straw, with a little oil meal, that would shrink a sheep and starve a pig. Pork can be produced from clear corn meal, while mutton requires reater variety of food, and beef cattle would become cloyed and diseased with its exclusive use. A thoughtful attention to these broad facts will change much injudicious feeding nto cheaper meat production.
Onc element in the economy of cattle feeding, the use of traw as fodder, has not received the attention its importance demands. On no one point is the average farmer so incredulous as regarding the value of straw to feed, and on many farms the wasteful practice still exists of turning all the straw into the manure heap. If properly made and reasonably well cared for, a large portion of the straw, especially of the oat crop, should be used as cattle food. Early-cut straw is worth or feed two thirds as much as hay, and is three times as valuable in feeding cattle as in the manure heap. Pea haulm and bean straw, especially if in the latter the pods are attached, are of still greater value. The best heat-producing oods are wheat, corn, oats, hay, and bran. Oat straw will develope as large a percentage of heat as oil cake; bean straw even more; and, in this respect, one hundred parts of oat straw are equal to eighty parts of hay. Straw is deficient in flesh-forming material, it requiring one hundred parts oat traw to equal sixteen parts good hay in this particular; yet, fed with cotton seed or linseed cake, it supplies what they lack in heat-giving and respiratory elements.
For the purposes of feeding out oat straw, our oat crop is allowed to over ripen, a large amount of its nutriment being lost without any corresponding benefit to the grain, which never improves after the upper portion of the stem has commenced turning yellow. Oats cut when just turning from the green state, yield more grain as well as greater feeding value in straw. The narrow margins of profit in cattle feeding in this section of the country demand the closest feeding in this section of the country demand the closest
economies in the food supply, and the most thorough investigations and experiments with an article of so little present market value, and one of such abundance with most farmers, as oat straw.-American Cultivator.

Uses of Glycerin.
According to Klever, one hundred parts of glycerin will dissolve:

$\because=:=\frac{1}{4}$

Acid arsenio
C'n Iron lactatphate.....
". sulphate....
sulphate
Lead acetate
Le. \qquad

Potassa chlorate	
um brom	
Morphia . .	
"، bicarbonate.............. 98.00	
Veratria..1..... ${ }^{1000}$	
Zinc chlor	

the respiration of roots ftere are two functions peculiar to vegetables, which are breathing animals such a confusion is impossible, as their alimentation takes place only by the introduction into the digestive organs of solid and liquid matters, while respiration requires the penetration of oxygen into the lungs. With vegetables, on the contrary, the function of nutrition involves not only the introduction, through the roots, of sub stances soluble in water, such as nitrates, ammoniacal salts, and phosphates, but also the introduction of carbonic acid gas through the leaves. The latter also take oxygen from the atmosphere; and if the plant ceases to grow when it no longer finds carbonic acid gas in the air about it, and if this privation produces death through inanition, so also the plant perishes when deprived of oxygen, dying in such case through suffocation.
The leaves thus play the double part of organs of assimilation and organs of respiration; but the two gases which penetrate into the tissues act very differently. Under the influence of solar rays, the leaves decompose carbonic acid and emit oxygen. The carbon remains in the plant, when it is found united with water, forming those compounds-such as cellulose, starch, sugar, etc.-as are commonly called hydrocarbons. The penetration of carbonic acid into the leaves and the decomposition by light which it there undergoes are necessary to the growth of the plant, and thus constitute a phenomenon of assimilation.

Oxygen also enters the leaves, but its action is not well understood. Why a plant perishes when deprived of the gas is not definitely known; but it is certain that oxygen is not only necessary to the air-breathing organs of vegetables-the leaves, flowers, and branches-but equally so to the roots.

In order to determine the effect exercised by plant roots on the atmosphere of the soil in which they are buried, M. Vesque has recently undertaken a series of experiments, the description of which, with the annexed illustrations, we find in La Nature. To examine whether roots consume oxygen as do other vegetable organs, plants of various kinds were set out in vases filled with pulverized pumicestone. A soil absolutely free from vegetable matters was necessary in order to render it certain that such changes as might occur in the atmosphere about the roots were due to those organs, and not to the oxidation of carbonaceous matters which exist in arable earth. The arrangement of apparatus is shown in Fig. 1. The vessel, A, has three mouths, in one of which the plant is sustained by a stopper of rubber; the second, c, has a stopper and cock, and the third, a, has a thermometer and a mercury manometer, b. Water for watering the plant is admitted at d, the water coming from the funnel, C. In order to prevent bubbling and the consequent modificat ons of the atmosphere in

the vase, \mathbf{A}, the water from the funnel is led into the reversed flask, B, where the air contained in the water is caught. The water then passes off to the plant vase through the tube, n, and rises in said vase until it escapes at the cock, c. The cock, d, is then closed, and that at e opened, when the water runs off to a vessel under the table, the pumicestone in the vase being left sufficiently moistened to answer all needs of the plant.
When it is desired to remove a certain quantity of air from the vase, A, for analysis, the apparatus represented in Fig. 2 is used. The vessel, D , is attached to a musket barrel and filled with mercury, in which is plunged a pipette, E, having a glass cock. A vacuum is thus produced in the pipette, and
it is connected with the cock, c, of the vase, A, Fig. 1. In Fig. 2, the connection is established with a bell glass covering the leaves. The cocks, c, Fig. 1, and i, Fig. 2, are then opened, and the air from A rushes into the pipette. This air is then drawn off into a suitable vessel and analyzed. It is always poor in oxygen, but it contains a small quantity of carbonic acid. The quantity of the latter being a small fraction of that of the oxygen consumed, there is a diminution of the volume of air contained in the vessel enclosing the roots -a fact also shown by the manometer. Thus, like the leaves, branches, and flowers, the roots respire, and the oxygen consumed is not integrally replaced by carbonic acid.

Fig. 2.-MM. DEHERAIN AND VESQUE'S APPARATUS FOR STUDYING: PLANT RESPIRATION

It is easy, by means of the apparatus shown in Fig. 1, to replace ordinary air with pure oxygen. The absorption of that gas by the roots is considerable, and the manometer indicates that a partial vacuum is formed in the containing vessel, and that carbonic acid is emitted. The plant lives very well when its roots are thus plunged in oxygen; but when nitrogen or carbonic acid is substituted for the latter, it dies.
It will be seen, therefore, that the respiratory function of the plant is not localized in any one organ, and that all its parts must be in contact with oxygen. This shows the great advantage of draining land. Water in marshy soil hinders access of the air, and the roots therefore keep near the surface where they can best obtain oxygen. When, however, the soil is thoroughly penetrated by drains, the roots go down to the subsoil, where they still find the necessary gas. Hence this allows the plant to gain sustenance from a larger amount of soil, and the development of these organs is promoted.
While the roots are organs of absorption of soluble matters, they also absorb carbonic acid. By means of the apparatus shown in Fig. 2, the leaves and roots may be en closed in different atmospheres. The carbonic acid supplied to the roots passes to the leaves, is decomposed, and thus charges the vessel, C, with oxygen.
M. Vesque proposes to carry these investigations much further, and doubtless will reach many other important and interesting results.

How Do You Keep Your Books?

We believe, says the American Cabinet Maker, that there is a considerable proportion of men engaged in business-men who know how to buy goods, and can make a good sale of the same-who do not understand the details of keeping accounts. These men go on, year after year, without this knowledge, content if they find enough money in their drawer or at their bank to meet their bills. But, when you talk to them about a balance sheet, they immediately show a lamentable ignorance of the rules by which it should be made. Such ignorance may be very well when trade is flush and the skies are bright; but when the screw of hard times is applied, they are like the captain of a rudderless ship, who does not know when or how the rudder was lost. Part ners go on drawing out money for personal expenses ex ceeding in amount the profits of the business, but they fail to see that this excess diminishes the capital of the concern. A and B form a partnership, and put in $\$ 15,000$ each. If each draws out $\$ 2,500$ for living expenses during the year there must be a profit of $\$ 5,000$ made by the business in order to keep the capital at its original figures. If the profits fall below the amounts drawn out, the capital is diminished by whatever that difference may be. This is simplicity
itself, and it requires no special education to understand it.

Therefore, if a business man understands how such a sheet should be made, he has no excuse for not knowing just how he stands.

Buy Small Trees.
Nurserymen usually describe trees on their catalogues as "second class," "medium," "flrst class," and "extra." The difference in these classes is principally, if not wholly, in the size and height of the trees; and as most farmers desire the best, they suppose that the large "extra" trees merit that description, and hence order them. The fact is, however, that a small tree will grow faster and (if a fruit tree) come into bearing condition sooner than a large one; and, as the Nero England Homestead states, in half a dozen years the tree that was small when planted will be larger and finer than the other. The larger the tree, the larger the roots which it has, and the larger the roots the less fibers there will be upon them. A tree that has plenty of fibrous roots will grow readily if proper care is used in transportation; but no amount of skill can coax a tree to live and flourish which is destitute of these little fibers. The roots of large trees are always more or less mutilated in the process of taking up, while small trees sustain little injury from this source. Dealers in trees assert that experienced men buy small, thrifty trees, while those who are just starting are anxious for the largest to be had. Those who are to set trees the coming season will do well to learn from the experience of those who, at considerable loss to themselves, have demonstrated that small trees are the ones to buy.

IMPROVED LOCOMOTIVE SPARK ARRESTER.

An improved spark arrester for locomotives has been patented through the Scientific American Patent Agency, Nombever 14, 1876, by Mr. Simon Smith, of Mauch Chunk, Pa. As shown in the illustration, there is an inside and outside stack, and an annular space between the same. To the top part of the inner stack is attached a cone, B , which is extended partly downward into the interior, and partly around the outside of said stack. The cone terminates at the lower end with a tapering deflector, C, against which the exhaust steam and sparks strike in their upward motion. Above is arranged a cylindrical wire netting, D, through which the steam escapes to the outside, while the sparks are passed up to the annular top part, E , of the cone which forms a conducting channel for them. Below the top part is again arranged a cylindrical wire net ting, F, through which any steam carried around to the outside may escape, while the sparks drop down in the space between the inside and outside stacks to pipes communicating with the dirt box, from which they can be let out at the will of the engineer. The tapering deflector, \mathbf{C}, that extends down through the inner stack, divides the steam and sparks gradually while passing up through the stacks, and avoids thereby the difficulty arising from the reaction

of steam and sparks by the direct impact of the steam on the horizontal bottom of the steam escape. A free escape of the exhaust steam and a free draught for the fire is thus secured.

Metropolitan (Underground) Railway, London.
The Pall Mall Gazette states that the Metropolitan Railway, with a traffic almost exclusively in passengers, is the most economically worked railway in England. During the last year it earned $£ 100$ for every $£ 39$ which is expended, being 32 per cent better in this respect than the average of English lines. At the same time its revenue per mile was between nine and ten times that of the average, exceeding $\$ 200,000$ per mile.

THE PRICKLY COMFREY.

Our illustrations represent a plant now much recommended, by the French scientific journals, to farmers, as yielding large quantities of excellent forage. It is known as the prickly comfrey, its botanical name being symphytum asperrimum. With regard to the rapidity of growth and amount of herbage yielded by it, the Journal de l'Agriculture de la France, of October 7 last, says: "Two sets put late into the ground in the month of May, in a fairly deep soil but of poor quality, gave on September 29, the one 7,150 lbs. forage, and the second $3,850 \mathrm{lbs}$. The height of each plant was 15 inches, diameter 32 inches. The appearance was that of the small engraving, Fig. 2, which was drawn from nature at the Botanical Gardens, Kew, in England. Two cows, to which we offered the leaves freshly cut, ate them at once, in spite of their roughness. The quantity of water is 88 per cent, and the proportion of ritrogen 0.4 per cent in the green state, or about the same as in green Indian corn. The total of nitrogenous substances is about one third, a remarkable richness, justifying the high opinion cultivators who have tried it have formed of the plant. The sets we experimented on were sent us by M. A. E. Ragou."

The Journal d'Agriculture Progressive says: "We persist in recommending this plant, chiefly for smadl and middle farming; those who farm on a large scale will probably adopt it all in good time. The price of the plant is high; but we must not forget that a thousand plants will yield from fifteen to twenty thousand the year following, and that the planting of these sets, the original price deducted, does not cost more than pricking out cabbages, and less than does planting potatoes."
The following letter, dated October 30, from Culloor, in Malabar, Madras Presidency of British India, was received by Land and Water, from the pages of which we select the engraving:
"Thus far I am glad to be able to report most favorably on the progress of the comfrey roots I brought out with me here for the Tambracherry Coffee Estates Company. I have had them planted on a low, marshy soil, in ridges three feet apart, taking care previously to have the soil broken up two feet deep, and at subsoil of the ridges making a good coating of cattle manure mixed with jungle soil. By this cultivation the roots will not only have considerable depth of soil to grow in; but in the event of having a dry season, the manure, being placed at a fair depth under the top soil, will tend to make it moist for a very considerable time. I was greatly surprised at the quick germinating qualities of these roots, which, in several instances, had not been planted more than forty-eight hours at about three to four inches below the surface, and had appeared in that time one inch above the surface. I also found, after a voyage of six weeks from England, on opening the case, that the roots had germinated a little. The comfrey has now been planted about ten days, and promises well. I only hope our cattle will take to it here, as, being so quick in growth, it will be invaluable, in my opinion, here on coffee estates as a standard food for cattle : grasses being often difficult to obtain

during some seasons of the year. I shall advocate its trial to my agricultural friends in England. I am surprised it is not more generally grown. To a dairy farmer it would be an acquisition. I confidently expect to get here a crop every two months, if not more frequently."

Sand and Water.

An important point in the selection of materials is to procure a pure silicious sand for mixing with cement or lime to
form mortar. The sand used should be free from all nitro form mortar. The sand used should be free form allore she soline matters, such as alkaline chlorides
genous, if not, these matters are liable to undergo a chemical change, after being mixed with the lime and cement, and so cause a rupture of the work even after it has set. For cementing purposes, for mixing with cement, a sharp sand is undoubt edly the best. It would be a saving of cementing material to select sands of various degrees of fineness so as to reduce the interstitial space as much as possible. Pure silicious sand forms, in combination with the limes, a silicate of lime which augments the strength, especially in those parts excluded from the air, as the interior of thick walls. Sand acts as

SYMPHYTUM ASPERRIMUM.

a dilutantfor cement, so that itsapproximatestrength, within certain limits, may be arrived at by knowing the proportions of sand used.
With regard to the selection of water, either fresh or sea water may be used for mixing with Portland cement. It has been shown by Mr. J. Grant, C. E., that the use of sea water augments the strength of Portland cement. This may be due to certain combinations taken place between some of the salts in sea water and the cement; on the other hand, the excess of certain salts will undoubtedly injure the cement. Sewage water, for example, should on no account be used in compoundjng mortar. The author has seen cases in which the best materials, both as regards cement and sand, have been used; but when mixed with sewage water the cement has never properly set, while the same cement, in the same work, compounded with pure water, has set rapidly and well. Care should also be taken in the mixing of cement that too great a proportion of water is not used. The smaller the quantity of water used in the compounding of cement, the better it will be found to be. The volume of water to be used, therefore, should only be sufficient to bring the mortar into a thick paste. Where more water is requisite, it is a sign that the bricks or other materials which are used in the construction of the works have not been sufficiently soaked, and that the mortar is robbed of its moisture, by reason of the inattention paid to this important point.-Engineering News.

A Sinking Island

The Island of Heligoland is reported to be gradually disappearing. It is now, says Iron, less than a mile in superficial extent; but in 1649 it was four miles in circumference, in 1,300 forty-five miles, and, in 800 , a hundred and twenty miles. The encroachment of the sea is effected almost entirely from the northeast, owing to the set of the currents and the direction of the prevailing winds.

Is painting woodwork, a priming coat followed by a dark coat, such as chocolate or purple brown, and finished off with a coat of common varnish, is cheaper than, and as durable as, four coats of common color; it looks better, is more rapidly executed, and stands washing well.
A mixture of 96 parts salt, 20 parts caustic soda, 1 part extract of oak bark, and 4 parts potash, is recommended as a preventive of incrustation in boilers.

A Few Modest Hints.
Although the depression in the iron trade, says the American Manufacturer, is very great, and almost universal, the manu facturers of agricultural implements and hardware, as well as certain other lines of goods, are doing a good business. Especially is this the case in the West. The activity in the farming implement branch is doubtless due to the fact that the tillers of the soil have enjoyed a succession of years of prosperity, and that existing in the hardware branch of manufacture is attributable, no doubt, to the fact that this busi ness is not overdone, as is the case with many other branches, and to the further fact that American hardware is crowding the foreign into narrower limits, not only in this country but in many for eign markets. There is in this a lesson that manufacturers would do well to heed. It shows that if the demand for some manufactures is less than the productive capacity of the works, for other productions it is not. Indeed, the import figures furnished by the Bureau of Statistics show that for many kinds of goods which could be produced with advantage in this country the production is either nil or totally inadequate to the demand. So long as this is the case capitalists ought not to complain that there is no use for their money.
What is needed is diversity. There should be a branching out into the man ufacture of the finer grades of goods. When one looks over the long list of imports and notes how many might be profitably produced at home, he is struck with amazement. The production of iron rails, of many forms of merchant iron, of certain kinds of glass goods, etc., has outgrown the demand; but is this a good reason for allowing the works at which these are made to stand idle or go to decay? Why not use the buildings, the power, as much of the machinery and as many of the employees as possible in producing articles for which there is a paying demand ? Let the owners of such works look over the list of our imports and see if there are not many things which they could produce without making any costly changes in their plan; and let capitalists ascertain in the same way if there is not room for the profitable employment of their money in erecting and operating new works for the production of goods not now made in this country. This would be more enterprising at least, and we hope more profitable, than waiting, Micawber-like, for some thing to turn up. Our English cousins set us a good example in this respect. When one branch of business becomes overgrown, they adapt their works for the production of something for which there is a better demand. Is the iron rail business overdone? then they make the necessary changes for the production of steel rails. Is the pig iron of the vicinity unsuited to this? then they put their ex perts to work to see if an iron rail cannot be made that will compete strongly with steel rails. Their boldness and energy in opening foreign markets are also worthy of emulation.

CHEMICAL MAGIC.

A subscriber to La Nature communicates to that journal a simple trick, which is as deceptive as many of those per-

formed by professional "magicians." It is proposed to place the fumes of a cigarette, smoked by the operator at some distance, in a closed goblet, as shown in our engraving. The goblet is to all appearance empty, and the phenomenon of the white smoke wreaths inexplicable. But the vapors are formed by the admixture of muriatic acid and aqua am-
monia, two or three drops of the former being put in the goblet, and the covering saucer being wet underneath with the latter. The quantity of the liquids is so small as to pass unperceived; but as soon as the saucer is placed on the goblet, white vapors of muriate of ammonia are formed, which closely resemble tobacco smoke.

The Analysis of the Diamond.

The great French chemist Lavoisier undertook the exam ination of the diamond, and it is worth while noticing how carefully he went to work, how he proceeded slowly from one step to another in logical sequence, until he arrived at the true solution of the question he had undertaken to investigate: that is, until he was able to tell us exactly what happens when the diamond evaporates in the free fire, and why it did not do so when surrounded by charcoal. In the first place, he evaporated the diamond by means of the burning glass, and he observed that no visible vapor or smoke was given off, but that the diamond disappeared. He thought that perhaps the solid diamond had in some way been dissolved by the water, and that by evaporating the water, which was in the lower part of the bell jar in which he burnt his diamond, he might obtain the constituents of the diamond in a solid form; but he found that no solid residue was left on evaporation, and thus no trace of the diamond could be found. His next cxperiment was that of placing a diamond in the focus of a less powerful lens than the one he had formerly used, so that the diamond was not heated to so high a temperature as before, again placing $1 t$, however, in a bell jar over water. He then found that the diamond, when not heated quite so strongly, lost only about one quarter of its weight; it did not disappear altogether, but the remarkable fact was noticed that it became covered with a black substance which Lavoisier describes as being exactly like lampblack or soot, so that it dirtied the fingers when touched, and made a black mark upon paper. Hence Lavoisier concluded that the diamond is susceptible of being brought under certain circumstances into the conditiou of charcoal, so that it really belongs to the class of combustible bodies. He was, however, yet far from having proved this point, and he went on experimenting. He next measured the volume of air in which he was going to burn the diamond, and found it to be eight cubic inches. Then he burned the diamond in this volume of air by means of a lens, and found that the air had diminished to a volume of six cubic inches: thus showing that the air had undergone some change by the combustion of the diamond, and that two out of the eight volumes of air had disappeared. The next experiment ne made was to examine the condition of the air in which the diamond had been evaporated. What changes had gone on in the air in consequence of the evapo-
ration of the diamond? After allowing the glass in which he ration of the diamond? After allowing the glass in which he
had burned the diamond to stand for four days, he poured clear lime water into the jar in which the diamond had been evaporated, and he says this lime water was at once precipitated in the same manner as if it had been brought into contact with the gas evolved in effervescence and fermentation, or that given off in cases of metallic reduction. Here, then, he had got on the track of what he wanted. Hitherto the diamond had apparently disappeared, and nothing was found to account for its disappearance; but now he had found that there was something contained in the air in which the
diamond was burned which was not contained in that air before.
The next step he took was to examine the white precipitate or powder whick was formed, and he found that the substance thus precipitated from lime water, by the air in which the diamond had been evaporated, effervesced on treatment with acid, and evo_ved what was then known as fixed air, but which we now know as carbonic acid gas. Here, then, in his last experiment he completes his proof, showing that exactly the same effects are observed when charcoal is experimented upon instead of diamond. Lavoisier had now run his quarry to earth; he had determined exactly whatit is that is formed when a diamond is burned. He has shown that a diamond when burned proiuces exactly the same substance that is produced when common charcoal is burned, and he, therefore, legitimately concludes that diamond is only another form of the element carbon. The reason that the diamond did not burn in the furnace when surrounded by a mass of charcoal was that the air, or rather the oxygen of the air, could not get to the diamond, because it was kept off by the charcoal, which burned instead of the diamond. Professor Roscoe

The Avoidance of Colds.
This is the season when coughs and colds are most frequent, and when by lack of proper care slight attacks often increase to serious ailments. The following sound suggestions by Dr. Dobell, in his excellent work on "Coughs, Consumption, and Diet in Disease "* are therefore of timely importance:
"But 72 per cent," says the writer, " of the cases of winter cough, which I have analyzed, might probably have been prevented by attention to commonplace things. Let us then give a few minutes to their consideration. 1. Sudden

changes of temperature.

This is the most difficult to avoid of any on the list. The occupations and amusements of all classes involve such changes, and we cannot stop these occupations and amusements, even were it desirable to do so. But very much could be done to prevent the body from feeling these changes. The first and most important is the complete envelopment of
the body and limbs in wool next the skin, thus interposing a bad conductor of heat between the surface of the body and
the outer air. It is surprising that even in the present day this simple and common sense protection is neglected by so large a number of persons, both of the educated and of the uneducated classes. It is not sufficient for the purpose in
view that a little body vest should be worn, just big enough view that a little body vest should be worn, just big enough to cover the thorax and abdomen, leaving all the extremities unprotected. It should be insisted upon by medical men that the arms and legs require to be protected from the sudthat the arms and legs require to be protected from
den transitions of temperature, as well as the trunk.
"The main source of protection, then, against sudden changes of temperature to the surface of the body, is to be found in a complete covering of wool next the skin. But, besides this, a much greater attention than is common should
be paid to putting on and taking off complete and efficient be paid to putting on and taking off complete and efficient overclothing, on going from hot to cold and from cold to hot temperatures. This is particularly neglected by the working classes, and by girls and boys at schools.

What I have said with regard to sudden changes of temperature will apply equally to two other causes of fresh colds, namely, draughts of cold air, and cold winds. Both are to be deprived of their sting by proper clothing of the kin and mucous orifices.
'Getting wet, and wet feet, occupy a very serious place in our list; and there is no doubt that damp and cold applied to the general surface is the most efficient means of producing chill and vital depression, with congestion of the internal organs. It is necessary that cold be combined with moisture to produce this effect. Even if all the clothes on the body are wet, no harm will come so long as they are kept warm; and this suggests the very great value, to all persons liable to exposure to wet, of light waterproof overalls. They may either be put on to keep the under clothing dry; or if the under clothing has become wet, either by weather or by perspiration, they may be put on to prevent too rapid evaporation and consequent reduction of temperature, especially when the person is about to remain still after getting warm with exercise. In this variable climate, therefore, schoolgirls, governesses, shop and factory girls, and all
women whose occupations call upon them to brave the women whose occupations call upon them to brave the
weather, ought to carry with them complete waterproof mantles, made as light as possible, but extending from the neck to the ankles, which can be put on or not as required and boys and men, similarly exposed, should carry waterproof overalls.

But if wet and cold to the surface of the body is a fruitfu source of catarrh, wet feet-which means wet and cold feet -is a still more prolific source. There is no external influence which so surely produces congestion of the naso-pul-
monary mucous membrane as wet and cold to the soles of the feet. There is nothing so universally neglected, and yet there is nothing more easy to avoid. Warm socks, horsehair soles, goloshes, provide efficient protection agains wet and cold feet. It does not seem to be half enough understood that, although a shoe or boot may not be wet through if the sole is damp it will by evaporation most effectually conduct away the heat from the sole of the foot, and there fore ought never to be worn after exercise is over.
"We have still one item left on our list-namely, fogs and damp air. I have particularly remarked, that although the smoke and other irritating matters constituting fog are unquestionably very injurious, it is the moisture and cold of the fog which are the qualities most potent for mischief to the naso-pulmonary mucous tract. There is but on
means of depriving a fog or mist of itsinjurious properties, means of depriving a fog or mist of itsinjurious properties,
and that is a respirator; and the same may be said of the changes of temperature, of which I spoke just now; a re spirator is the only means of protecting the respiratory pas-
sages from the effects of transitions of temperature. It sages from the effects of transitions of temperature. It would be difficult to over-estimate the value of efficient re spirators, as a means of protection against naso-pulmonar catarrhs, if persons disposed to these affections would only carry respirators about with them in their pockets, ready
put on if required at a moment's notice.
" Although it is quite proper to cover the neck lightly, I am decidedly of opinion that warm wrappers round the neck are objectionable; they produce congestion of the nasal and complaints they are supposed to prevent. On what possible grounds people justify the sudden transition from a hot sit ting room to a wretchedly cold bed room, which may not have had a fire in it for weeks or months, it is impossible to say; but it is quite certain that the absurd neglect of proper warming in bed rooms is a fruitful source of all forms of catarrh. We cannot too much impress this upon our patients. It may often be almost as necessary for a delicate person to put on a respirator on going up to bed as when going out of doors, unless proper precautions are taken to assimilate the romper.

Such, then, are the principal means by which I would attempt to defeat the fickleness of climate. They all assume that the patient suffering from winter cough is to lead an active and an out-of-door life-not to be confined to his bed room, or his sitting room, or even to his house.

American Beef in England.
A correspondent of one of the English journals writes as follows in regard to the American beef recently received in London and other cities:

A novel feature at this year's market was the introduction of American cattle, and the American breeders are to be congratulated on the result of their initial effort. Their con signments were none the worse for their long journey, and
we doubt not the experiment will be followed up in future years to a far larger extent, and with even greater success * * There is a sudden rage for American beef. A
little while ago, when the weather was bad, American beef was selling at two cents a pound at Smithfield, and from ten cents to fourteen cents a pound at Birmingham. To-day I hear it has risen to the same price as English beef, and a well known West End butcher, whose customers are almost exclusively aristocratic, has purchased no beef but American. This looks as if Brother Jonathan were going to beat Brother John out of the field. If it has the effect of lowering the price of English beef I shall not grumble; but if fashion is going to run it up to the price of a luxury, I don't know that we shall be much better off after all."

CHEMICAL PROGRESS IN 1876.

ORGANIC CHEMISTRY.

The immense field which organic chemistry opens for in estigation is being assiduously tilled by a small army of chemists. It is, indeed, a tempting one, for the possibilities are great; in fact, nothing in it seems impossible of accom plishment. The number of possible compounds is infinite, and centuries will not exhaust the field of experiment. Syn thetical chemistry is, perhaps, the most fascinating. The strides that it has taken since Wohler first prepared urea, and broke down that imaginary barrier, the idea that life was essential to the production of organic bodies, almost sur passes belief. At the Centennial Exhibition were exhibited many substances only recently obtained by synthesis and yet articles of commerce. About two years ago we heard with some distrust that the flavoring matter of the vanilla bean had been made from the sap of the pine tree; now it is a commercial article, cheaper if not better than the natural. Recently, other methods of preparing it have been devised, totaly unlike that first discovered, and from different material We refer to its preparation by Reimer from wood tar creo sote, and from eugenol or eugenic acid (found in oil of cloves) by Erlenmeyer. Tiemann, the original discoverer of artificial vanillin, has made important contributions to our knowledge of the subject, having devised methods for the estima tion of vanillin, determined the other constituents of vanilla beans, and made ethyl-vanillin, vanillic alcohol, coniferyl alcohol, and other compounds.
Another interesting case of synthesis is that of bitter almond oil, made from toluol by first subjecting it to the action of chlorine, when benzyl-chloride is produced, and then acting upon that with dilutenitric acid or nitrate of lead. Lipp mann and Hawliczek, of Vienna, have recently subjected this artificial oil of bitter almonds to a series of careful tests, both chemical and physical, and proved its perfect identity in every particular, even in vapor density, with the genuine oil.
Phenol or carbolic acid continues to be the subject of numerous experiments; and Reimer and Tiemann have found that it may be converted into salicylic acid by heating its alkaline solution with tetrachloride of carbon. Para-oxybenzoic acid is produced at the same time. Kupferberg has succeeded in converting the last named acid into salicylic acid. New methods of preparing alcohols and vegetable acids have been devised, and are curious from a theoretical point of view. Many attempts have been made to prepare the costly alkaloids, bu^ as yet unsuccessfully, although in some ases these efforts have led to other discoveries of great im portance.
The synthesis of indigo blue has been equally unsuccessul; the only method of its artificial production produces but a trace of it when the utmost care is expended upon it. The number of new dyestuffs is legion, and is daily increas ing, so that none but a dye chemist may hope to keep up with the latest improvements in this direction. Coal tar products are the chief source of these dyes; but new dyes re occasionally produced from other materials, such as th sulphuretted organic dyes of Croissant and Bretonnière; and even ultramarine has come in for a fair share of attention Eosine, one of the latest and most beautiful of the coal tar colors, has been the source of repeated experiments. R. Wagner has devised a method of detecting it on dyed fabrics by means of collodion; Waterhouse has investigated its photographic action, by mixing it with collodion, as Vogel had done with some other dyes. He found such collodion very sensitive to yellow and green; but on exposing it in the camera, the time of exposure was increased threefold. Bind schedler and Busch state that Egli's method of making eosine by forming benzene-disulphonic acid, and then hydroxylating the compound, works well in practice. In all literature published on this subject, unfortunately, the most interesting details are carefully concealed, probably as trade secrets. The first step in the operation, says Durand, is to conduct benzol vapors into hot and concentrated sulphuric acid. The benzene-disulphonic acid formed is next converted into a lime salt, then into a soda salt, which is converted into resorcin by fusion with caustic soda. The resorcin is purified, and then fused with phthalic acid, which produces the fluorescene To convert this into dibrom-fluorescene is the most difficult part of the operation; and it is on this point that we are left in the dark.
Aurantia is the name given to a new artificial dyestuff which readily imparts to silk and wool a beautiful shade of orange. According to R. Gnehm, this dye is the ammonia salt of an acid discovered and named by him hexa-nitrophenylamin. It possesses the remarkable and unfortunate
eruption like that made by croton oil. Although some persons are not affected by it, it is not suited to general use.
A new series of dyestuffs, formed by the action of glycerin on phenol (carbolic acid) in the presence of sulphuric acid, has very recently been discovered by Reichl, of Prague, who is still at work on it. Both red and purple have been obtained in this way. He has also obtained dyestuffs by the action of glycerin on pyrogallic acid and on thymol, and purposes to study its action on cresol and other phenols. This opens a new field for study, and promises to prove the most opens a new field for study, and
important discovery of the year.
W. H. Perkin, the discoverer of the first aniline dye, is still finding new things in the color line. Among his recent papers is one on anthrapurpurin. Lauth has succeeded in preparing a new class of dyes by the introduction of sulphur into aromatic diamines, and then oxidizing the sulphur compound. It forms a beautiful purple. (See Scientific American, October 21, 1876.)
A natural dyestuff capable of forming lakes has been ob tained by Mederstadt from the musa fehii, a plant of the banana family. Aniline black has attracted more attention than any other aniline color. Most of the experiments relate to the use of vanadium, which has almost entirely superseded copper, notwithstanding its price. One part only of vanadium salt is required for 50,000 parts of aniline oil.
In regard to the alkaloids, the principal work has been done by Drs. Wri,ght and Beckett. Cahnberg gives some new reactions for codeine and atropine; Flueckiger, a new test for brucine; and De Vrij, a new reagent for quinine. Much has been done to aid the analyst in determining various alkaloids quantitatively too. The glucosides, the bitter principles, and the active constituents and essential oils of many plants have been sought and studied. Among the plants subjected to chemicalinvestigation we have, first, the eucalyptus globulus, then dulcamara solanum, vicia sativa, and many others. Ergot has also been analyzed.
The subjects of food and drink have not been neglected, especially wine and milk. The adulterations of wine and the addition of artificial coloring matter is becoming so common abroad, where adulterations are not so tamely submitted to as here, that chemists are exhausting all their ingenuity to
detect the falsifications, and with only partial success. Anidetect the falsifications, and with only partial success. Ani-
line colors are most easily detected by the power of dyeing line colors are most easily detected by the power of dyeing
silk or wool; but fruit and vegetable coloring matter is the most difficult of detection. The best paper on this subject is most difficult of detection. The best paper on this subject is that of Gautier, who has constructed a series of tables of the
reactions with various reagents. Dr. H. Vogel applies the spectroscope to them. Mellias has also written on the detection of colored red wines, and Bretet described a new method of detecting plastered wines.
The subject of the adulteration of milk is so often before the courts that the public are kept informed of all the latest investigations in that department; and it seems as if perfection had almost been attained in milk analysis. Not so with butter, however. The subject of artificial butter still agitates the public as well as the scientific mind. A pharmaceutical society in Leipzig offers a prize of 300 marks (about \$75) for a certain and practical method of testing cows' butter for adulteration with foreign fats. Competitors are required to send in their papers to B. Kohlmann, Leipzig-Rendnitz, before September 30, 1877. Water analysis is in an equally uncertain state, no satisfactory test for wholesome water having yet been devised; and the fight between Wanklyn and Frankland, about the albuminoid ammonia test, is still in progress.

disinfectants.

About disinfectants, a very great deal has been said and written. Carbon disulphide is one of the latest competitors in the field. Zöllner seems to have been the first to observe that mould never appeared in vessels containing a trace of carbon disulphide vapors. The poisonous nature of these vapors would lead us to expect that it would destroy germs of all sorts, and such seems to be the fact. Zöllner kept beef and veal for 32 days, at a temperature of 60° to 85° Fah., in an atmosphere containing this vapor. Hugo Schiff confirms these observations. Little that is new has been learned about salicylic acid, and doubts are entertained of its fulfilling the great expectations formed of it. Attention has been directed anew to borax and boracic acid as antiseptics. Thymol as an antiseptic has been described by Husemann.
analysis.
Analytical chemistry has not fallen behind in either the organic or inorganic branch. Gas analysis and volumetric analysis, or titration, have been subjects of thorough investigation. Many new substances have been introduced as indicators by acidimetry, in place of litmus, such as salicylate of iron, logwood, fluorescene, eosine, and carmine. Grete proposes to use of xanthogenate of potassium for the quantitative determination of carbon disulphide, copper salts, and caustic alkalies in the presence of alkaline carbonates. Kopfer recommends the use of platinum for the ultimate analysis of organic substances. Other new methods of analysis, equally interesting to the analyst, are to be found in journals devoted to that branch oî the science.
The above imperfect sketch of the doings of chemists in our Centennial year sustains the assertion with which we set out, that there is something new under the sun.
E. J. H.

Cast iron should be painted directly after leaving the mould, in order to preserve the hard skin which is formed upon the surface of the metal by the fusing of the sand in which it is cast.

EDEMA GLOTTIDIS

Wnen a great or good man dies of an obscure disease, new incentives are added to the study of its nature and rational treatment. Previous to the year 1799, the clinical history of cedema glottidis had been loosely described by Morgagni and by Bichat; but of the pathological condition, giving rise so suddenly and insidiously to fatal results, but little if anything was known.
General Washington, with the exception of a slight cold for the day or two last past, was in the enjoyment of an ordinary degree of health. Suddenly, and without warning, he was seized with difficulty in breathing; and ere the danger was fully realized, the narrow slot in the respiratory track was closed up, and the nation was startled by the announcement: " Washington is dead!" An autopsy was had, which revealed an œdematous condition of the larynx and complete closure of the little space between the vocal chords; and since the 14th of December, 1799, the medical profession of the whole world has been more familiar with the pathology the whole world has been more familiar
and rational treatment of cedema glottidis.
The immediate cause of death is suffocation from closure of the slit or space between the vocal chords (the rima glotti$d i s)$; and the remote cause is œdematous thickening or enlargement of the parts nearly adjacent to this narrow passage. It will therefore be observed that the thickening may be in the mucous covering of the vocal chords, or in the ventricular bands or false vocal chords; it may be in the covering of the arytenoid cartilage or commissure; it may be in the lip, cushion or body of the epiglottis; or it may extend to all of these simultaneously. Strictly speaking, however, odematous thickening can take place only in tissues like the ary-epiglottidean folds, where areolar tissue is interposed between the mucous membrane and the fibrous or cartilaginous structures beneath: the thickening of mucous membrane, or of the arytenoid muscle, when found, being more dependent upon an inflammatory process. Practically, this distinction is not made, the term being applied to thickening of all laryngeal structures which, in the main, partake of an œdematous character. And within the confines of a narrow and unyielding cartilaginous box like the larynx, an amount of swelling, which in other parts of the body would be of the most trivialconsequence, is productive of grave and fatal results. In some instances the whole larynx is involved, but generally the condition is limited to one or more parts of it. The disease may be idiopathic, as in the illustration given, or it may occur as a sequence of other diseases, springing, as it were, from ambush upon a patient well advanced in convalescence from an attack of laryngitis, whooping cough, measles, scarlatina, small pox, erysipelas, pulmonary catarrh, Bright's disease, or any other disease of which dropsies are among the sequelce. It may be also traumatic, from mechanical injuries to the larynx, or from anattempt to swallow corrosive liquids.
The rational signs consist of difficulty in swallowing and of articulation, with hoarseness and ineffectual cough, a sense of constriction as from the presence of a foreign body within the larynx, difficulty in breathing, with a whistling or stridulous sound, and finally death from suffocation. The physical signs are: More or less enlargement at and above the thyroid prominence, and tenderness upon pressure in proportion to the extent of inflammatory complication. The uvula and tonsils are generally more or less enlarged, and the mucous membrane of the pharynx more or less infiltrated, and of a dusky red color in proportion as the disease is high in the larynx. Generally, by wiping the tongue so as to grasp it with a napkin to draw it well out, or by pressing the base of it well down, the enlarged epiglottis may be seen rising above its natural position, often depressed in the middle by a crease from before backward, and having a semi-translucent appearance. If the enlarged parts are too low to be seen in this way, and there is no laryngoscope at hand, the finger may be passed well down into the larynx, when the condition may be made out with considerable accuracy by the touch. This, however, is a hazardous proceeding, as the
irritation may result in spasm and complete closure of the glottis.
The rational differential diagnosis of $a d e m a$ glottidis is comparatively easy. There is more regularity in the increase or decline of symptoms than in spasm of the glottis, less pain and enlargement than in acute laryngitis, and more rapid development of symptoms than from the presence of an intralaryngeal tumor or abscess. The laryngoscope reveals to
ocular inspection the true condition; and physical differenocular inspection the true condition
tial diagnosis is clear and decisive.
The demand for relief is generally too urgent to justify the delay required for the operation of topical applications. Besides the irritability of the muscles of the larynx, and the liability of local applications to provoke spasm, is a serious obstacle to their use. Among the remedies that have been used as such may be mentioned a solution of nitrate of silver, a solution of alum, and also of tannin. Dilutions of carbolic acid and of the liquor persul. ferri have been recommended. But when it is remembered that danger results from mechanical occlusion, consequent. upon a sero-plastic effusion beneath the mucous membrane, the insufficiency of mere local applications is apparent. If the œdematous enlargement can be reached, as is generally the case, the parts should be freely scarified or incised with a long curved bistoury or hernia knife, as recommended by Dr. Buck, who devised an instrument especially for such use. Relief follows almost instantaneously upon the evacuation of the effusion. Professor
membrane with the end of the finger, when it can be done without too great risk of strangulation. When Dr. Buck's without too great risk of strangulation. When Dr. Buck' plan, which is generally employed, cannot be satisfactorily
performed, the last resort is either to produce an artificial larynx through the creco-thyroid membrane, or tracheotomy; and the prompt relief which almost invariably follows is among the most satisfactory rewards of the surgeon, patients frequently falling asleep after the first few inspirations through the artificial opening. The opening of the trachea, however, is not curative, but affords refuge from the immediate danger of suffocation, while the disease is being controlled by such measures as remove dropsies in other parts of the body. They should be in the main constitu tional; and the fact that these cases often occur in those with impaired or broken down constitutions should never be lost sight of in their treatment.
A. G. F.

ASTRONOMICAL NOTES.

Observatory of Vassar College.
The computations and some of the observations in the following nstes are from students in the astronomical department. The times of risings and settings of planets are approximate, but sufficiently accurate to enable ar ordinary observer to find the object mentioned.
M. M.

anets for F Mercury.

Mercury, which was so beautiful in the evening twilight of January, has now moved on to a position west of the sun, and should be looked for in the morning.
On February 1, Mercury rises at 6 h .22 m . A. M., and sets at $4 \mathrm{~h} .19 \mathrm{~m} . \mathrm{P}$. M. On the 28 th , Mercury rises at 5 h .41 m . A. M., and sets at 3 h .30 m . P. M.

Mercury will be best seen on the 20th, when it attains its greatest elongation from the sun.

venus.

Venus, although approaching the sun in position, is still very brilliant in the morning, and can be well seen during the first half of February,
On February 1, Venus rises at 6h. 1m. A. M., and sets at 3 h .12 m . P. M. On the 28th, Venus rises at 6 h .3 m. A. M., and sets at 4 h .14 m . P. M.

Mars.

On February 1, Mars rises at 3 h .18 m . A. M., and sets at 0 h .30 m . P. M. On February 28, Mars rises at 2 h .54 m . A. M., and sets at 11 h .52 m . A. M.

Mars can easily be rccognized on the 28th by its nearness to Jupiter. Both planets are in the constellation Sagittarius, Mars being a little south of Jupiter.

Jupiter.
Jupiter is conspicuous now in the morning, but is so far south and rises so late as to give scarcely any time for observations before daylight.
On the 1st, Jupiter rises at 4h. 21m. A. M., and sets at 1 h . 24 m . P. M. On the 28th, Jupiter rises at 2 h .55 m . A. M., and sets at $11 \mathrm{~h} .56 \mathrm{~m} . \mathrm{A} . \mathrm{M}$.

Saturn.

Saturn rises so late in the morning and sets so early in the evening that it can be seen for only a very short time after sunset.
On February 1, Saturn rises at 8 h .28 m . A. M., and sets at 7h. 13m. P. M. On February 28, Saturn rises at 6 h. 49 m . A. M., and sets at 5 h .44 m . P. M.

Uranus.
Uranus is better situated for observations, during February, than any other planet. It is in good northern declina tion. It rises about $6 \mathrm{P} . \mathrm{M}$. on the 1 st , comes to the meridian a few minutes before $1 \mathrm{~A} . \mathrm{M}$. of the next morning, and sets at 7 h .46 m . A. M. ; it can, therefore, be seen for more than 12 hours. On the 28th, Uranus rises at 4 h .7 m . P. M., comes to meridian at 11 P . M., and sets at 5 h .57 m . the next morning. Uranus rises before the bright star Regulus, and, when on the meridian, is 2° above it. A small telescope will show its disc, looking like a very small full moon.

Neptune.

Neptune rises February 1 at 10 h .36 m . A. M., and sets at 11 h .54 m. P. M. On the 28th, Neptune rises at 8 h . 51 m . A. M., and sets at 10 h .11 m . P. M. But Neptune can be seen only with the aid of good telescopes. It is among the stars of Cetus.

Sun Spots.
The report is from December 18 to January 15 inclusive. The large spot mentioned in the last report was observed until December 23, moving regularly across the disc on account of the sun's motion on its axis. Owing to cloudy weather, it was not seen after that date. On January 4, a very faint spot was discovered, already considerably advanced on the eastern limb. On January 9, when the next observation was made, a pair of very faint spots was visible on the eastern limb, while this faint spot, first noticed on January 4, was now on the western limb. On January 12, neither the single spot nor the pair could be found. The picture of January 12 shows a large spot on the eastern limb, followed by two very small ones. On January 13, another large spot appeared, irregular in shape and surrounded by faculæ. The photograph of January 14 shows a regular motion of these large spots ; but one of the small ones, which were observed accompanying the spot first noticed on January 12, had disappeared.
These two remarkably large spots are still visible (January ${ }^{17}$), and the one first seen on January 13 will remain on the disc for at least a week longer. It seems probable, from position and peculiarity of shape, that this is the same spot first seen on December 17.

Milk Testing in Holland

At the last meeting of the American Association for the Advancement of Science, held in Buffalo, Professor Von Baumhover, delegate to the Centennial for Holland, gave an account of the milk adulteration question in the city of Amsterdam, where the lactometer is not relied upon ; but a simple and quick method of chemical analysis, introduced by the Professor, is employed, and has been adopted by the city authorities. The method of Dr. Von Baumhover consists in an improvement on that first proposed by Brunner. The trouble commonly found in evaporating milk, in order to find the amount of solid ingredients in it, consists chiefly in the continual formation of a skin on its surface, which swells up from the vapors beneath, and the milk boils over. This is avoided by mixing a sample of the milk with pure, clean sand, placing the mixture on filtering paper, and heating the whole on a slab of porous stone. All that evaporates is whole on a slab of porous stone. All that evaporate
water, and the quantity is shown by the loss in weight. water, and the quantity is shown by the loss in weight.
In good cows' milk, the solid ingredients amount on
In good cows' milk, the solid ingredients amount on the
average to 13 per cent; but as they may vary, $11 \frac{1}{2}$ per cent has been allowed as a minimum, corresponding to a loss by evaporation of water of $88 \frac{1}{2}$ per cent. If the loss in weight is more, the milk may be set down as watered or skimmed, or both, no matter what the lactometer test indicates. In order to find the amount of butter, the filtering paper and its contents are placed in a funnel, and ether poured on and allowed to percolate through; this removes all the butter, and the amount of the latter is found by allowing the ether to evaporate. As the amount of butter in cows' milk varies between $3 \frac{3}{4}$ and 5 per cent, $3_{2}^{\frac{1}{2}}$ per cent may be adopted as a minimum; and milk having less butter than $3 \frac{1}{2}$ per cent, the inventor claims; may be set down as skimmed or watered, or both.

As the determination of the amount of water and butter in milk is simply sufficient to determine its value in a commercial and sanitary point of view, the tests for casein and milk sugar may be dispensed with. In the above explanation, we have only given the main points of the analyses without en tering into the minute practical details, which it is necessary to understand in order to obtain fully reliable results. Pro fessor Von Baumhover stated that the milk inspectors, after
being properly instructed, can in this simple way make 20 or more analyses simultaneously and in a very short time. or more analyses simultaneousiy and in a very short time.
In Holland, it is customary to test only such samples as arouse suspicion by their transparent, watery appearance; and many kinds of milk thus examined are proved to be largely adulterated, notwithstanding that they stand the lactometer test.

NEW BOOKS AND PUBLICATIONS

Notes on Assaying and Assay Schemes. By P. de P. Ricketts, E. M., Ph. D., Instructor in the School of Mines, Columbia College, New York city. Price in
cloth $\$ 2.50$, in paper $\$ 2.00$ New York city: Published by the A

This book is especially designed to meet the wants of the practical miner

 and assayer, as well as to lay down a system for theguidance of the studentand the professional analyst. The rules and directions are the result of long experience, many of them having been tetasted in the laboratory
of Columbia Colleg. Several processes and details, originated in the of Columbia College. Several processes and details, originated in the
mines of the Great West, have been embodied in the work, and complete lists of apparatus and reagents are added.
The Electric Bath, its Medical Uses, Effects, and ApPliances. By George M. Schweig, M. D., etc. Price
$\$ 1.00$. New York city: G. P. Putnam's Sons, 182 Fifth avenue
The writer of this little work treats the subject and his readers with
great candor, admitting that his "failures" in treating patients "have great candor, admitting that his "failures" in treating patients " wave
been illustrative of the fact that the electric bath is no more a panacea been ill istrative ort the any orker remedial agent. Applicable as it is to a great
for allety of pathological conditions, it meets with many where it is destined
varien to have negative or at best imperfect results." He claims, however, that the book is the result of his own experience, and that it owes nothing to
the labors of other practitioners. We commend it to sufferers who desire the labors of other pr
That very useful manualof reference, the Public Ledjer Almanac, George
W. Childs, publisher, Philadelphia, has appeared for the year 1877, and is presented gratis to every subscriber to the Philadelphia Public Ledjer. It contains a carefully prepared calendar, a valuable article on the progress
of Philadelphia during the past century, another on the Centennial Expoof Philadelphia during the past century, another on the Centennial Expo-
sition, a chronology of notable events of the past year, and lists of the offi-
cials of the National and State sition, a chronology of notable evens or the pa Supreme Court, Diplomatic
cials of the National and State governments, Sold
Corps, ete. The page of proverbs contains a world of homeiy wisdom and Corps, etc. The page of proverbs contains
good counsel epigrammatically expressed.

zerent American and forcign zatents.

NEW MECHANICAL AND ENGINEERING INVENTIONS.

improved cartridge crimper.
Mordecai B. Massey, Huntington, Pa.-This little instrument is intended to answer a want which has not, the inventor says, been heretofore sup-
plied satisfactorily. The device consists of a pair of pinchers with jaw plied satisfactorily. The device consists of a pair of pinchers with jaws
formed to fit the shell, and a cylindrical tongue between them, over which tongue the shell is placed for crimping. This tongue has a slight depression in it, into which the jaws compress the shell; and the end of this tongue, on withdrawing the shell, serves as a gauge to show when it is sufficiently crimped. A shellwhich has been used with a heavy charge of powder is so much expanded that it will not hold the bullet, when reload-
ed, unless the mouth of the shell be somewhat reduced in ed, unless the mouth of the shell be somewhat reduced in size; and the
shell must be reduced or crimped in such manner that it will hold the bulshell must be reduce or crimped in such manner that it will hold the bul-
let with its center line from base to point exactly coinciding with the center line of the bore of the barrel. The bullet then starts straight and true The inventor above named claims that his crimper answers the want ex actly.
IMPROVED SAW SET.
George S. Grier, Milford, Del.-Theobject of this invention is to furnish a device for setting the teeth of saws of different sizes, which is capable of
being so adjusted as to being so adjusted as to give much or little set to them, as may be desired.
It consists of two hinged jaws provided with die plates having teeth to en gage alternately with the teeth of the saw, between the lower portion of which jaws, beneath the hinge, a double cam is placed, for closing or open ing them, the said cam being operated by a lever.
improved means of lessening draught of vessels. Edward Ellison, San Francisco, Cal.-This invention consists in certain tconsists in either constructing the vessel with inclined surfaces upo its bottom, or in applying to the bottom or the sides of it inclined plate which will tend to lift the vessel in the water as it moves through it, thereby lessening the draught.

IMPROVED COMBINATION LOCK.
George Winter, Jacksonville, Va.-The present invention is an improve ment upon that for which the same party received letters patent No. 181,-
756 , dated August 29,1876 . The object of the invention is to produce a 756 , dated August 29,1876 . The object of the
cheaper, more simple, compact, and secure lock.

> IMPROVED VALVE GEAR.

Wilberforce Johnson, Camden, N. J.-The object of this invention is to latedat will alike for the admission of steam to the cylinders, the stoppin and reversing of the engine, and which shall have separate devices for con trolling the "lead "for greater or less speed. To this end the devices are located upon a drive shaft, whieh may be either a part of the running when applied to a locomotive. These devices consist in the main of a cen tral loose sleeve encompassing the shaft and connected by diametrical piv ots to a transverse encompassing collar. This collar is geared to the shaft and made to revolve through the devices for controlling the "lead, "and is oscillated by a pitman arranged longitudinally with a drive shaft and geared with it rigidly at one end, and to a sliding collar at the other. This oscilla-
tion is imparted to a rim which slides upon the periphery of the collar and tion is imparted to a rim which slides upon the periphery of the collar and ${ }_{\text {imparts the }}$ s.
improved railway car.
Samuel R. Wallace and Oliver V. Wallace, San Francisco, Cal.-The object of this invention is to obviate the sudden jolt and jar incident to railway cars in stopping and starting. In attaining the end of the inventio the body of the car is located upon swinging supports which have spring seated bearings in the carframe, whereby the longitudinal jolt of the car in its contents, instead of having the effect of the impact and start imparted directly to the said car and contents.
improved feathering paddle wheel.
Francis J. Leisen, Woodbridge, N. J.-This consists of a contrivance of stationary cams in a hollow hub, in which the bucket arms are fitted in
boxes so as to revolve a quarter of a revolution forward and backward to bozes so as to revolve a quarter of a revolution forward and backward t
present the buckets sidewise or edgewise. The essential feature of the in vention is the contrivance of the hub.

IMPROVED ELEVATOR.

Stillman E. Chubbuck, Boston, Mass.-The invention relates-First, to he automatic mechanism employed for throwing the hoisting apparatus proper out of gear or arresting its operation when the ascending platform
is overweighted, or when any object or material placed thereon comes in contact with the floors or timbers of a hatchway, so that the hoisting rope will not continue to be wound up, and so that no injury can result to persons on the elevator or the building in which it is located. Second, to the automatic mechanism employed for throwing the hoisting apparatus proper out of gear or arresting its operation whenever the said hoisting rope
parts, or the platform is arrested in its descent, thereby preventing the parts, or the platform is arrested in its descent, thereby preventing the rope continuing to unwind. Third, to the belt shifting mechanism proper
and the arrangement of the driving worm shaft with two drums for wind ing and unwinding the hoisting rope.

MPROVED FENCE.

Frederick Suiter, De Witt, Iowa.-Instead of wooden fences, which are
costly and not durable, this inventor suggests an iron fence of very simple construction, which is at the eame time strong and capable of being cheaply erected. A semicircular post that tapers upward and downward from base plate at the point where it emerges from the ground. It is strength slots, and fastenings, and also intermediately between the posts to a stub post. The posts of the end panels

IMPROVED SNOW PLOW.

William Cooke, Morrisville, Vt., assignor to himself and Henry A buzzell, of same place.-This timely invention may be commende tute for the large heavy snow plows now in use a much lighter and more manageable apparatus which will effectually keep tracks manner to both ends, and operated by a suitable lever device. rack is cleared of ice by means of spring-acted concave cutters or knives that are applied to a suitable frame, and raised or lowered by a lever. The
plows swing readily on the eyebolts, and are so adjusted that when they plows swing readily on the eyebolts, and are so adjusted that when they
come in contact with any frozen dirt or ice they will lift and run ove it without breaking.

new agricultural inventions.

improved ditching machine.
Daniel Hess, Greenville, Miss.-This invention is an improvementin the class of ditchers, having an endless belt or apron by which the earth is ele vated and deposited upon a cross-belt or carrier. The improvement relates particularly to the construction and arrangement of devices for causing th
machine to advance, to the form of the cutters, and also the mode of a taching them to the elevator belt or apron.

> ImPROVED CHURN.

James S. Smith, Beebe Station, Ark.-This invention is au improvemen in the class of churns having a verticalrotating dasher. The improvement relates first to the construction and arrangement of parts whereby the
dasher shaft and its operating gear are adapted for convenient removal dasher shaft and its operating gear are adapted for convenient removal
from their bearings. The invention also relates to the construction of the from their bearings. The invention also relates to the construction of the
top or cover of the tub or churn-body, in two like-sized parts, which are connected by a hinge and elastic strap, to adapt the cover for convenien application to and removal from the tub.

NEW MISCELLANEOUS INVENTIONS.

IMPROVED ARTIFICIAL LEECH.
Floyd F. McDonald, Blacksburg, Va.-This invention relates to that class of medical instruments intended to subserve the purpose of the natconsists in an artificial leech produced by combining an elastic bolb ope at the upper end, a T tube open at its three ends, a small tube open at one and the onen a suitably constructed knife. The bulb is irst compressed expand and form a vacuum which draws the skin upward; the knife then makes a puncture in the skin, and the blood flows until the requisite quan tity has been drawn.

IMPROVED MEDICAL COMPOUND.
Miss Judie D. Lipscomb, Andrews, Va.-This compound, known as the "chill master," is a specific for fever and ague, consisting of an infusion Catesboci), with cherry bark (prunus Virginiana), dogwood bark (cornus Florida), sassafras (sassafras), flowering almond (prunus amygdalus) sulphate of quinia, Fowler's solution of arsenic, and whiskey in the pro-
portions specified; and it is said to be very efficacious for the purpose.

IMPROVED INDEXER.
John Suter, New York city.-This device is made of one piece of shee metal, and consists mainly of a strip or plate designed to be inserted be reading resumed, etc. The broad end of this strip or plate is bent in such manner as to form a clamp for holding slips containing memoranda, notes tc., against the back of the book.

IMPROVED FIRE EXTINGUISHER FOR VESSELS, ETC. Almon M. Granger, New Orleans, La.-This invention relates to certain
mprovements in chemical fire extinguishers, designed more particularly for harborfireprotection boats and sea-going vessels, butapplicable also in mos of its features to general use. The general principle of the improvement ests in the direct use of the dry gaseous carbonic acid in smothering vol ume, in contradistinction to the common use of a limited quantity of the same dissolved in water under pressure. The means for carrying out the invention consist generally in the combination of a set of capacious venerators for containing bicarbonate of soda, a set of superposed acid essels, a subjacent acid reservoir, and an air pump, or equivalent forcing
apparatus for charging the acid vessels from the reservoir, the whole being combined, by means of communicating pipes controlled by valves or socks so that the acid may be forced from the reservoir in the hold of the boat only when the effective power of the gas is required, and whereby accidental admixture of the chemicals is from the motion of the vessels, or from ther causes, completely avoided. This apparatus embodies many novel details of construction, and from practical experiments upon a large scale onducted on board the New Orleans Harbor Protection Boat, promises to upply a want which the loss of life and property on the sea has made lon
felt. felt.

IMPROVED PAPER BAG.
James H. Percy, Cumberland, Md.-This is a paper bag provided with gether when the mouth of the bag is turned or folded down.

IMPROVED LETTER box.
Joseph Katz, New Yorkcity.-This letter box indicates automatically the time at which the mail is to be collected; and the invention consists of the box that is hingrop, which must be opened to collect the contents of similar teeth of a roller thatoperates, by a pawl and ratchet device, the time-indicating disk.

IMPROVED PANTALOONS CONFORMATOR.
John G. W. Feldmann, New York city.-Pantaloon cutting is by some tailors adopted as a specialty-and they charge, as a rule, large prices for heir neatly fitting garments. NI. Feldman here presents an invention which will enable any one, he says, to cut trousers to a perfect fit, the apparatus being analogous to the conformators used by hatters in measuring
the head. The device consists of a frame of the size and general shape of the leg, with a number of spring-acted adjustable set pieces that bear of the leg, and mark, by pins passing through recesses of the main rame, the exact shape of the leg on a pattern paper applied to detachable marking frame. The latter is supported by a foo part and forced against the marking pins, releasing a suitable spring mechanism. A center waist rule and tape line at the top part serve to take

IMPROVED UMBRELLA SUPPORT AND ROBE HOLDER.
William Rounds, Chester, Vt.-Knowing how difficult it is to hold up a lap robe or boot, an umbrella beside, and to manage the reins at the same time, this inventor proposes an ingenious device for relieving the driver of the care of the two articles first mentioned. To sustain both robe
and umbrella, he attaches to the carriage seat a plate, which is proand umbrella, he attaches to the carriage seat a plate, which is pro-
vided with dovetail grooves for supporting a standard, to which a holding vided with dovetail grooves for supporting a standard, to which a holding
device is seeured, in which an umbrella stock may be clamped and adjusted oo any desired angle on a horizontal or vertical plane. The said stand J -shaped lood the grooves in the plate by an eccentric, and is bent into os the carriage for receiving the lap robe or boot; which is retained by suitable clamping device.

IMPROVED BRICK KILN.

Holland B. Evanas, St. Charles, Mo.-This inventor has devised a useful improvement in the construction of the brick kiln, patented,
jointly, to himself and Ernest G. Kemper, November 9, 1875. A jointly, to himself and Ernest G. Kemper, November 9, 1875. the bottom and arches to the top of the main part of the kiln, and then under the different compartments to the uppermost compartment, nd out at the highest point of the same. A series of shorter flues at the top of the main part and compartments of the kiln are closed in suitable
manner, as required to adjust the heat in the kiln. The permanent flues manner, as required to adjust the heat in the kiln. The permanent flue hort temporary flues, distributed over the top part of the kiln while the hort temporary flues, distributed over the top of the kiln and compart during the process of burning the bricks.

NEW HOUSEHOLD INVENTIONS.

improved meat chopper.

Hugh P. Rankin, Allegheny, Pa.-This invention relates to certain im rovements in that class of meat choppers in which a series of cutters are accessively lifted by a shaft provided with cams, and allowed to chop the meat upon a rotatiug table from the tension of separate springs which force cute cutters downwardly when the cams leave the lift bars carryin latingthe downward stroke of the knives to prevent them from rapidly chopping up and wearing out the wooden table.
improved portable fireplace.
Theodore C. Nativel, San Francisco, Cal.-This invention relates to a ovel construction of portable fireplace designed to be used with an im whoved form of chimney stack which requires no earth foundation, fo portable fireplace is so constructed as to fit in the corner, or any other por ion of the room, and is constructed preferably of fire clay with arrange ments for ventilation. and for preventing the burning of the woodwork of the building.

NEW WOODWORKING AND HOUSE AND CARRIAGE BUILDING INVENTIONS.

IMPROVED COMBINED SLED AND TRUCK.

Sylvanus F. Brooks, Cambridgeport, Mass.-This consists of a truck ody having runners, with semi-circular recesses on one side, and wheels that extend into the recesses of the runners and above the body at the
other side. Projecting side strips support a detachable frame on the body, other side. Projecting side strips support a detachable frame on the body, as a toy vehicle for the amusement of children, being quickly changed to a sled or truck, as desired.
improved machine for shaping plow handles. Edmund A. Conner, Metropolis, Ill.-This is an apparatus for guiding rame attached to the side of a shaping machine, which is capable of being noved vertically by a suitable lever, and which is provided with pins, upon which moves a guide having cam slots of the form desired in the article io be shaped, the article being clamped to the guide, and moved up to the
cutters by a lever connected with the guide.

gusimess and dextomal.

 The Charge for Insertion under this head is One Dollar a line for each insertion. If the Notice exceeds fourlines, One Dollar and a Half per line will be charged.

Agricultural Implements and Industrial Mackinery export and domestic use. R. H. Allen \& Co., N. Y. Skinner Portable Engine Improved, 2 1-2 to 10 H. P. For a Wooa, Erie, Pa
For Sale-Half interest in Foundry and Machine Shop.
Machinist preferred. A.W. Maxwell, Knightstown, Ind Yachinist preferr. A.W. Maxwell, Knightstown, Ind. Yacht and Stationary Engines, 2 to 20 H. P. The best
for the price. N. W. Twiss, New Haven, Conn. Whed A. W. Wi Wanted-A complete set of Patent Office Report
Address, with price, P. O. Box 3,760 , New York city. Pattern Makers can get Metallic Pattern Letters,
letter patterns, of H. W. Knight; Seneca Falls, N. Y. Scerterns, of H. W. Knight, seneca Falls, N. Y Scientific American, 34 vols. (2 to
D. Rice, 923 Race St., Philadelphia.
Wanted.-Good second hand Back Geared Screw Cut-
ting Foot or Bench Lathe. P. o. Box 303, Amsterdam,N. Lightning Screw Plates. A perfect thread at ind Lightning Screw Plates. A perfect thread at one cut
adjustable for wear. Frasse \& Co., 62 Chatham St., N.Y. More than Ten Thousand Crank Shafts made by
Chaster Steel Castings Co., now running; 8 years' conChoster Steel Castings Co., now running; 8 years' conrought iron. See advertisement, page
Metallic Letters and Figures to put on patterns of
castings, all sizes. H. W.Knight, Seneca Falls, N. Y. castings, all sizes. H. W. Knight, seneca Fals, N. Y. and appearance as Whole-Pulleys and Whole-Collars.
Yocom \& Son, Drinker st., below 147 North Second st., Yocom \& Son, Dr
Emery Grinders, Emery Wheels, Best and Cheapest. Awarded Medal and Diploma by Centennial Commission.
Address American Twist Drill Co., Woonsocket, R.I. Address American Twist Drill Co., Woonsocket, R.I.
Paient Scroll and Band Saws, best and cheapest in Paient Scroll and Band Saws, best and ch
use. Cordesman, Egan \& Co., Cincinnati, Ohio To Clean Boiler Tubes-Use National Steel Tube
Cleaner, tempered and strong. Chalmers Spence Co.,N. Cleaner, tempered and strong. Chalmers Spence Co.,N.Y.
D. Frisbie \& Co. manufacture the Friction Pulley-Win-best mis Haven, Conn. Wire Needle Yointer, W. Crabb, Newark, N. Send for circular of Brass Hydraulic Engine for blowing organs. Hilbourne L. Rooseveli, Church Organs,
New York.
Power \& Foot Presses, Ferracute Co., Bridgeton, N. J. Magic Lanterns and Stereopticons for Parlor Entertain-
mentsand Public Exhibitions. Pays well on small capital. ${ }_{74}$ mentsand Public Exhibitions. Pays well on small capital. awarded. McAllister, 49 ITassau St., N. Y.
Superior Lace Leather, all sizes, cheap. Hooks and
Couplings for flat and round Belts. Send for catalogue. Couplings for flat and round Belts. Send for
C. W. Arny, 148 North 3 d St., Philadelphia, Pa.
F. C. Beach \& Co., makers of the Tom Thumb Telegraph and other e
Water St., N. Y.
For Best Presses, Dies, and riruit Can Tools, Bliss \&
Williams, cor. of Plymouth and Jay Sts., Brooklyn, N Y Water, Gas, and Steam Pipe, Wrought Iron. Send for prices. Bailey, Farrell \& Co., Pit tsburgh, Pa
Diamond Tools-J. Dickinson, 64 Nassau St., N. Y. Hydraulic Presses and Jacks, new and second hand. Lathes and Machinery for Polishiirg and Buffing metals.
E. Lyon, 470 Grand St., N. Y. Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel -other kinds imitations and inferior.
Caution.-Our name is stamped in Standard Belting, Packing, and Hosc. Buy that only.
The best is the cheapest. New York. ing Company, 37 and 38 Park Row, New York.
Steel Castings from one lib. to five thousand lbs. Invaluable for strength and durability. Circulars free.
Pittsburgh Steel Casting Co.. Pittsburgn, Pa.
M. Shaw, Manufacturer of Insulated Wire for galvanic
and telegraph purposes, \&c., 259 W .27 th st., N. Y. and telegraph purposes, \&c., 259 W. 27 th stt., N. Y.
Shingle, Heading, and Stave Machine. See advertiseent of Trevor \& Co., Lockport, N. Y
For Solid Wrought iron Beams, etc., see advertisement. Address Union Iron Mills, Pittskurgh, Pa., for ARraph, etc.
Articles in Light Metal Work, Fine Castings in Brass, Malleable Iron, \&c.., Japanning, Tinning, Galvanizing. Boosey's Cheap Music and Music Books. Full CataBoosey's Cheap Music and Music Books. Full Cata-
logues free by mail. Boosey \& Co., 32 East 14th St., New
York. For Sale-Two sets Hydraulic Presses, 10 in.ch cylinother. In good order. P. O. Box 3396, Boston, Mass.

E. L. C. can fasten cloth to brass by following the directions given on p. 101, vol. 34.-C. H. E. will ind directions for making manifold paper, for wri-
ting in duplicate or triplicate, on p. 154, vol. 30 . It is a well known device.-A. C. will find directions for drillp. 251, vol. 28. -C. is informed that peroxide of manganese is sold in the market, packed in barrels containseparating platinum from gold on p. 409, vol. 35.-F. S. C. will find directions for French polishing on p. 11, vol. 32.-G. O. will find directions for preparing skeletons of nimals on p. 75, vol. 28.-D. W. will find the desired in B. B. T. should state what method he employs, and b. B. T. shoud state What method he employs, and
what ore nickel.J. G. S. will find directions for blu-
ing steel on p. 123, vol. 31. For polishing shirt bosoms, ing steel on p. 123, vol. 31. For polishing shirt bosoms,
ttc., see p. 213, vol. 34.-W. L. L. will find directions for silvering mirrors on p. 267, vol. 31. - J. N. will find some-
thirg on the use of petroleum in boilers on p. 164 , vol. thirg on the use of petroleum in boilers on p. 164, vol.
30.-C. V.L. will find a recipe for an aquariom cement on p . 202, vol. 28.-W. M. B. will find a description of the photo-engraving process, which is probably the one he enquires about, on p. 272, vol. 32.-E. D. L. will fnd the dimensions of the Birmingham wire gauge on p.
233, vol.28. J. J. should use rubber varnish on his cot ton cloth. See p.11, vol. 32.-J.'M. wi'l find on p. 151,
vol. 30 , directions for nickel plating.-T. R. S. will find
a recipe for a washing fuid on p. 27, vol. 34.-B. B. C. a recipe for a washing fiuid on p. 27, vol. 34.-B. B. C.
will find a good recipe for shoe blacking on p. 27 , vol. 34.-C. A. M. will find directions for making an electric
machine on p. 266, vol. 34.-T. J. M. will find direction for making a barometer on p. 394, vol. 33.-J. S. will
for find directions for making paper stick on tin on p. 362,
vol. 36.-C. A. H. will find a description of toughened vol. 36.-C. A. H. will find a description of toughened
glass on p. 402, vol. 32.-B. S . will find a recipe for varnish for patterns on p. 409, vol. 33.-W. A. H. will find
directions for making rubber stamps on p. 155, vol. 31.R. T. W. will find something on hardening copper on p. 123, vol. 32.-E. J. willfind directions for hardening rubber on p. 203, vol. 35.-C. I. H. will find full descriptions of air brakes on p. 289, vol. 34.-H. W. will find a recipe
for white ink on p. 268, vol. 33.-R. C. will find directions for tempering steel onp. 122, vol. 30.-T. F. M. will find directions for making root beer on $p .170$, vol 27.-J. L. P. will find rules for calculating the propor
tions of gear wheels on screw-cutting lathes on p. 107 tions of gear wheels on screw-cutting lathes on p. 107
vol. 34.-C. D. will find directions for repairing shee vol. 34.-C. D. will find directions for repairing sheet find directions for making parlor matches on p. 75, vol 29.-J.C. M. will find a recipe for a black walnut stain on p. 90, vol. 32.
(1) A. I. says: I have been told by a great coil or kick much pretended to know, that a gun would re not close down to the powder. I experimented with gun barrel some time since, leaving $11 / 2$ inches or more
space between shot and powder, and found the recoil to be very much less than when the shot was rammed solid down. Ilaid the barrel on a plank and measured the distance of the recoil at each fire. I used only a barre
of a gun and fired it by a slow match, so it was free to of a gun and fired it by a slow match, so it was free
move. A. Your experience is contrary to that of many he did from the gun on his shoulder.
(2) J. S., of Brussels, Belgium, asks: 1 sure engine that has not a variable expansion cut-off A. It cannot be changed without making some alteration in the valve gear. Your engine shơld have the
valve set to cut off the steam at about $3 / 4$ of the stroke. valve set to cut off the steam at about $3 / 4$ of the stroke.
2. What is the formula for the quantity of water in cubic feet to be evaporated for an engine? A. Allow from 40 to 45 lbs. per horse power. 3. Would the crushing speeds of the engine, not per hour, but two differen speeds of the engine, not per hour, but at a given mo-
ment ? A. Yes. 4. Is there any rule or formula to cal culate the intensity of the crushing force between the relative distances travelled by piston and roller respec tively in a given time, making deductions for friction of the parts. 5. What will be the best ratio of expansion if the engine runs at 25 revolutions per minute? A.
The same as before, supposing that you refer to getting The same as before, supposing that
the most power oat of the engine.
(3) M. H. P. asks: 1. What percentage of nourishment does butter, beef, and beans respectively
contain? A. The ratio of nitrogenous or fiesh-producing material in each is approximately as follows: Beef 25, beans 9 , butter (pure) none. .2. Why is it that the
tables, showing percentage of nourishment in food, by tables, showing percentage of nourishment in food, by
different authorities, differ so greatly? A. That differences do occur in tables of this kind, and principally in the figures given for animal food, is because of the nonhomegeneity of such material, and the arbitrary meth-
ods of selecting the materials for determinations. The best results are, therefore, only approximate.
(4) A. P. B. says: I have a vulcanized rubcome soft, and is now quite gummy and cracked. Is there any remedy for it? A. We do not know of a practical remedy for this. The interior surface may be
somewhat improved by coating with a varnish made by somewhat improved by coating with a varnish made by
dissolving equal parts of caoutchouc and gutta percha dissolving equal parts of caoutchouc and gutta percha
in hot naphtha or bisulphide of carbon; such varnish is in hot naphtha or b
sold in the market.
(5) A. J. and others ask: How can we make a good varnlsh for patterns? A. Use shellac varnish
with just enough fine lampblack to color it. Do not apply the varnish too thick. It is not hygroscopic. Tap the pattern gently at different points before attempting
to remove it from the sand. If your sand does not work well, dust the pattern over with fine blacklead, as itlies in the fiask, preparatory to packing the sand.
(6) L. S. W. says, in reply to J. B. C., who asks for a demonstration of the following theorem: If
tangents be drawn to 3 circles of unequal diameters, the tangents be drawn to 3 circles of unequal diameters, the based on analytical geometry. If I can prove that (1) (2), (3) are in a straight line, the theorem is demonstrat ed: Let $r, r^{\prime}, r^{\prime \prime}$ be the radii of the 3 circles. The coordinates of (1) and (2) are:

Equation of the straight line passing at (1) and (2) is: $\left\{r\left(b^{\prime}-b^{\prime \prime}\right)+r^{\prime}\left(b^{\prime \prime}-b\right)+r^{\prime \prime}\left(b-b^{\prime}\right)\right\} x$ $-\left\{r\left(a^{\prime}-a^{\prime \prime}\right)+r^{\prime}\left(a^{\prime \prime}-a\right)+r^{\prime \prime}\left(a-a^{\prime}\right)\right\} y$
$r\left(b^{\prime} a^{\prime \prime}-b^{\prime \prime} a^{\prime}\right)+r^{\prime}\left(b^{\prime} a-b a^{\prime \prime}\right)+r^{\prime \prime}\left(b a^{\prime}-b^{\prime}\right.$ o. The symmetry of this equation sufficiently

The latter has for co-ordinates: $\left\{\begin{array}{l}x=\frac{r^{\prime} a^{\prime}-r^{\prime} a^{\prime}}{r^{\prime}-r^{\prime \prime}} \\ y=\frac{r^{\prime} b^{\prime \prime}-r^{\prime \prime} b^{\prime}}{r^{\prime}-r^{\prime \prime}}\end{array}\right.$
Remarks: The points (1), (2), (3) are called "centers of
similitude." The line, $\mathbf{D ~ E}$, is the axis of similitude. (7) J. P. M. asks: 1. If I have a glass tube 14 of an inch in diameter, with a bulb on its end 2 inches in diameter, and an airtight piston working in the tibbe. what force would it exert by heating from 60° to 104° Fah. ? A. If air is employed, as the original pressure
or volume is multiplied in a definite ratio by a given or volume is multiplied in a definite ratio by a given
change of temperature, if it is greatly compressed, the change of temperature, if it is greatly compressed, the
change when it is heated will be proportionately large.
2. Would it be any more if filled with mercury or with compressed air? A. The tension of mercury vapor un-
der this change of temperature would be very slight, and much less than in the case of compressed air.
(8) C. S. asks: What is oil of bay rum made from? A. Bay rum is obtained by distilling rum with the leaves of myrcia acris, sometimes called
he bayberry. The tree is a native of Jamaica and ther West India islands.
(9) O. A. S. asks: How is hop extract made? A. Tincture of hops is made by taking 5 troy zzs. hops in powder, and a sufficient quantity of di-
uted alcohol. Moisten the powder with 2 ozs. of the alcohol, pack in a cylindrical percolator, and pour
luted alcohol on till 2 pints tincture are obtained.
(10) J. C. D. asks: What is the .best varish for varnishing a drawing made in India ink with heavy lines and parts, which have been tinted with various colors? A. Put a drop or two of acetic acid in the ink ; and when the drawing is dry, varnish with mastic
varnish.
(11) C. V. P. asks: How can I stain the grain side of a calf skin a permanent black? This
leather contains oil, and the stain must have something alkaline, alcoholic, or acid to make it bite in. A. First ub well with a strong aqueous solution of proto-sulextract of logwood.
(12) H. B. B. asks: How can I make a dark blue ink with gunpowder? A. Make a strong solution and add a sufficient quantity of sulphate of indigo (in digo carmine) to produce the desired tint.
(13) B. F. B. asks: How can I cure chilblains? A. The following treatment has given general satisfaction: Melt together in a suitable vessel 3 ozs.
beeswax, 3 ozs. Venice turpentine, 8 ozs. lard, and 1 beeswax, 3 ozs. Venice turpentine, 8 ozs. lard, and
pint sweet oil. Stir these well together and raise the pint sweet oil. Stir these well together and raise the temperature till the mixture simmers; then allow
cool. This should be applied to the feet on a piece of cloth when going to bed. A sure protection against this irritating ailment is found in good, dry, woollen clothing for the feet.
(14) J. C. C. asks: 1. Is there any electric current or power in the so-called electric belts and of alternate discs of zinc and silver, wetted in vinegar once a day, to be worn around the body to create an
electrical current for the cure of pain, etc.? A. Yes, electrical current for the cure of
but such currents are very weak.
(15) G. W. S. says: I am using an oxyhy drogen gas machine for burning sheet lead together. I make the hydrogen by using commercial sulphuric acic
part, water 7 parts, and granulated zinc. It melts the 1 part, water 7 parts, and granulated zinc. It melts the the lead seems to tarnish and will not unite together. use chemically pure muriatic acid as a flux. A. Use a of ammonium) insted of the acid, and the inner cone of the fiame-not the extreme tip-which oxidizes the metals rapidly. The operation should be performed as rapidly as possible. Your jet, being fed with air, which containsonly about $\frac{1}{5}$ part oxygen, is not an oxyhydro gen jet, but a blast lamp. The general arrangement of
our hydrogen generat
(16) J. E. asks: How is solder applied in and manufacture of tinware, so as to make it adhere, and lay evenly on the surface of the tin? A. Use, in
onjunction with the solder, hydrochloric acid in which has been dissolved all the pure zinc it will take.
(17) F. L. asks: Is there any mixture with which I can color an alloy of block tin and lead to a copper color? A. A lacquer composed of thin shellac
varnish colored with turmeric and dragon's blood is sometimes used for this purpose. A thin electrolytic de
(18) H P S much more satisfactory results.
(18) H. P. S. says. To the top of a violin: The tops of all good violins are of spruce, with fine, straigh grain. Backs are curled maple, the grain in short, fine
waves, not wild, as it is termed. Shellac varnish is
worthless, and worse, on a violin. Two kinds of varnish
may be used, namely: 1. Best coach oil varnish, (a light coat, with long time to dry). 2. The old Cremona var-
nish, the basis of which is the rare gum amber. If this nish, the basis of which is the rare gum amber. If this
varnish is used, no other coloring will be necessary, as the varnish gives a beautiful amber color, though deeper stains may be used if desirable. The
the market; but if A. A. A. will address the initials as
above, at Syracuse, N. Y., I will give him particulars reabove, at
(19) H.T. D. asks : 1. How can I get a good deposit of iron from its sulphate, or any solution that may be preferable? I have succeeded in getting only a
black powder from a sulphate solution. I think I can utilize a good deposit of iron. A. Use a very strong solution of the proto-sulphate in an aqueous solution of
chloride of ammonia. The anode should be moderatey large and of \dot{g} ood wrought iron. Use one large Smee strong and constant, but in no case strong enough to de compose water. The bath must be as nearly neutral as possible, and the surface of the cathode perfectly clean; this is the greatest source of the dificulty. The con-
nections should all be made before the cathode is placed in the bath. 2. In Napier's "Electro-Metallurgy" there are some remarks upon depositing alloys. Would the carbonate of ammonia and cyande of potassium solution,
(20) A. H. W. says: I send you a bottle containing a worm which troubles our well water. It is never seen in summer, and then the water is pure and quite cola. As soon as cold weather comes and then the water has a smell and seems warmer than in summer. Can you inform me of some thing, not injurious to health, that can be put in to clear just tinting it with an aqueous solution of permanganate of potassa. If, after standing for a few hours, the tin
disappears, the water is unfit for drinking purposes. 1
is not advisable to add any chemical to the water; the best that can be done under the circumstances is to add a few frogs or tadpoles which feed upon the insects and
worms, and purify the water. This method is an old
(21) R. L. asks: 1. To what degree of heat should coal be exposed to make illuminating gas in the most economical manner? A. About 2,200 Fah. 2 ing purposes, and what would be the disadvanta non-purified gas? A. The purpose of purification is prindipally to remove the carbonic acid gas, which great ly impairs both the heating and light, producing qualities of the gas, by obstructing its proper combustion. The gas will burn readily, however, withoutpurification. 3. Have there ever been any successful attempts to gen erate coal gas with a small heating apparatus of about the capacity of an ordinary stove? A. With an iron requantities in the way you mention. The pipe leading from the retort should be of ample dimensions to pre vent clogging, and the hot gas, as it comes over, should be thoroughly washed with cold water in order to remove the tar, coal oils,ammonia salts, etc., which come
over with it. 4. Would the gas and coke burnt sepaover with it. 4. Would the gas and coke burnt sepa-
rately give out a smaller or larger amount of heat, than rately give out a smaller or larger amount of heat, than
the quantity of coal wherefrom they are produced? A. the quantity of coal wherefrom they are produced? A.
The total amount expressed in foot-pounds would be the The total amount ex
(22) W. J. T. says: I saw on each side of the sun a perpendicular rainbow-colored streak, about about 10° away. Thermometer +19 , atmosphere hazy. What was the cause? A. This class of pheno light by caused by the refraction and decomposition of the same crystals of ice fioating in the atmosphere, on the sa
principle as the prism produces the different colors.
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the result stated:
A. M.-It is galena (sulphide of lead) containing in 100 parts, $86 \cdot 6$ lead, $13 \cdot 4$ sulphur. It is the principal ore of lead worked. - R. \& P. - It is a piece of amorphous
quartz rock, somewhat discolored by sesquioxide of quartz rock, somewhat discolored by sesquioxide of
iron. There is a remote possibility that it may contain a small percentage of gold. This would necessitate a gualitative analysis,-A. H. K.-It contains sulphide of
antimony, sulphur, nitrate of strontium, nitrate of potantimony, sulphur, n.
ash, and gunpowder.

COMMUNICATIONS RECEIVED.

The Editor of the ScIENTIFIC American acknowledges,

 ith much pleasure, the receipt of originalontributions upon the following subjects:
On Boiler Explosions. By B. F. C.,and by J. M. L.
On Public Buildings. By J. B
On Balloons. By J. F. B.
On Migratory Spiders. By J. S. D.
On Thomas Edward, Naturalist. By
On the Suez Canal. By
On the Ball Puzzle. By J. т.
H.
On the Ball Puzzle. By J. T. H
On Mathematics. By T. F.
On Mathematics. By T. F.
lso inquiries and answers from the following:
J. o.--J. L. L.-E. G. S.-W. T.-C. C.-S.--J. R.-
H. H. D.-A. G. F.-H. F. A.-B. F. G.-T. W. H. H. D.-A.
R. M. - E. H.

HINTS TO CORRESPONDENTS.

Correspondents whose inquiries fail to appear should epat for or. If not then published, they may conclude
that, for good reasons, the Editor declines them. The address of the writer should always be given. Inquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, when initials only are given, re thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take plea-
sure in answering briefiy by mail, if the writer's address is given.
Hundre

Hundreds of inquiries analogous to the following are egulating wheel? Who sells batteries for plating? What is the price of peroxide of manganese in the New York mar-
ket ?" All such personal inquiries are printed, as wil ke observed, in the column of " Business and Pervoul," which is specially set apart for that purpose, sublmost any desired information can in this way be ex. peditiously obtained.

INDEX OF INVENTIONS

For which
Letters Patent of the United States were ranted in the week Ending December 12, 1876.

N EACH BEARING THAT DATE.

A complete copy of any patent in the annexed list ncluding both the speciflcations and drawings, will be furnished from this office for one dollar. In ordering, please state the numbe and date of the patent desired,
and remit to Munn \& Co., 37 Park Row, New York city.
[This list should have been published before the two in ir ver week's issue, but the copy did not arrive in time. Air valve for blast cylinders, J. Hemphill.......... 185,321
Bake pan hanging, J. Gravenstine................. 185,228
Bale band stretcher, C. M. Pearre............ 185,347 Bale tie, J. C. Du Bois.....

Barn door hanger, J. A. Swan
ee hive, G. W. Snider
essemer, ladles operating
Blind slats, mending, N. Hotz
Boats, launching, M. Bourke..........
Book cover protector, G. W. Holden
Boot cleaner, T. Ash.....................
Boots, scalloping uppers of, W. Manley

[^0]

Pressing metal into ingots, J. B. Tärr....
Propelling vessels, etc
Railr Railroad frog, w. T. Egan....
Railroad jack, C. W. Hornor.
Reclining chair, B. F. Manier Reclining chair, B. F. Mani
Recorder, N. Van Rees.... Revolving ore rasaster, W. Bruckne.......
Roll for utilizing steel rail Rolls, making metal, T. Whitehouse Roofing tiles, making, J. C. Anderson.........
Rotary diamond holder for saws, I H. Al. Rotary pump, J. Lange Rafety guard harness, K napp \& Schallhor Sash holder, Tucker \& Gary..
Sash pulley case, J. Vetterlein.....
Sawing shingles, machine for, J. P School seat, J. P. Clair...........
Scissors sharpener, H. P. Brooks
Scroll sawing machine, Trump \& Frederic
Sectional jointed nozzle, R. Hoskin....
Sectional steam generator,
Seed planter, E. W. Quincy
Seeding machine, J.
Settee, H. A. Moore
Sewing machine plaiter, F. A. Kursheedt.
Shatt hanger, T. R. Pickering...........
Shovels
Shovels and spades, making, H. M. Myers
Side bar vehicle, F. P. Stone.............
Signal, telegraph alarm, W. H. Saw....er.
Sink and basin trap, L. B. Carricaburn
Sliding keel for boats, J. H. Hatton
Smoke-consuming furnace, Bryant \& Young.
Smoking tube M. Bourke
Solder wire making, H. G. Hulburd..
spice chest, J. H. Preater..
team pump, A. S. Cameron..
Stove, portable, A. Lodor
Stufing matresses, machine, for, D. Harris Sulky plows, Langsford \& Stroud..... Swing, W. P. Rogers
Table, F. H. Cutler
Tag machine, W. Heckert
Tailor'stable, A. Warth....
Tea kettle, N. A. Menaar
Tea kettle, N. A. Menaar (r)...
Tenoning blind slats, C. Freike
Testing meters
Testing meters, A. Harris...........
Thrashing machine, G. . . . Miller.
Tire-upsetting machine, S. Maharay.
Tobacco stripping, Hawes \& Ackley.
Toy, automatic, Bake
Toy hoop, H. F. Post
Travelling satchel, E. W.P.
Triple cylinder engine, A.
Tube cutter, H. H. Fuller..
Tube cutter, H. H. Fuller............
Tubes, making metal, T, Whitehouse..........
Tubes of cast ingots, forming, T. Whitehouse
Turbine water wheel, McCormick \& Brown
Umbrella, L. L. Treman...
Umbrella tip cup, O. M. Smith.
Valve gear, engine, A. Comer.
Wash board, w. Todd
washing
Washing machine, Stem \& Baker.
Washing machine, S. C. Wilso
Washing machine, S. C. Wilson.
Watch escapement, C. Holes...
Watchman's detecter, G. A. Schultz
Water pumpingapparatus,
Wheel-harrow, F. Bramer
Wheeled chair, H. S. Smith
Wirefence barb, J. Nelson............ Wool carding machine, P. L. Klein
Wrought iron bridge, W. H. Miller

DESIGNS PATENTED 9,666.-Business Cards.-J. M. Huiskamp, Keoku
Iowa.
9,667, 9,668--Knit Fabrics.-M. Landneberger, Phila
9,669.-BILLHEA

FOR THE WEEK ENDING JANUARY 2,1877
Apple corer, J. Fallows....
Bale tie, J. W. Petty
Battening for roofs
Beer faucet, J. Meyer
Boat launching apparatus, J. Strachan. Boring tools, etc., J. J. Greenough Boring machine, I. S. \& J. W. Hyat Boots, etc., L. R. Blake..........
Boot manufacture, L. . . Blake. Breech loading fre arm, F. W. Freun
Breech loading fre arm, H. Bridle and halter, J. Straus.
Burglar proof safe, R. Neumann Button lock and fastener, M. M. Shur Can opener, C. G. Mortimer Car coupling, P. ©. Sloan
Car coupling, F. L. Stewart. Card rack, P. G. Toepefer.
Carpet sweeper, G. W. D. Cartridge, Pierce \& Eggers Cartridge weighing machine, J. H. Gill Chemical fire extinguisher, A. M. Granger Chuck for metal lat
Cigar machine, R. A. Bright, Jr
Clothes drier, I. N. Hurd
Coal oil stove, J. A. Frey
Cooking stove or range, A.C. Williams. Cop builder, w. B. Parkhurst. Cores from moulds, removing, H. H. Fisher Corn planter, M. Gregg Cotton chopper, J. H. Gilleland Cradle or crib, L. Atwood Cradle snath band, w. H. Kretsinger
Crib, J. H. Powers Cultivator, J. H. Jone Curry comb, C. E. L. Holmes
Dental drill, G. V. Black, (r). Die thrâshing machine tooth, J. W. Waterman Dough kneader, E. Staples. Earth pulverizer, W. H. McClanahan Elevator, S. E. Chubbuck.......
Engine, portable, J. Richardson Engine, portable, J. Richardson.......


```
Feathers, renovating, I. L. Fisher.
Feather renovator, H. G. O. Pabst. Feed water heater, A. Carpenter.
Flask for casting, H. H. Fisher... Fluting machine, T. M. Tucker
Fly fan, S. W. Mills..... Fly fan, S. W. Mills...
Fruit drier, J. H. Bro Grume drier, J.e, G. F. Kearney.
Gas retort fastening Gas retort fastening, H. G. Morris (r)....
Geometric napping block, J. M. Boorma Glue, etc., cooling, C. O. Garrison.... steam engine, P. Brotherhood Hand stamp, B. B. Hill..
Hanger for shafting, J. M. Stone...
Harness breast collar, T. C. Maris..
Harrow, w. S. Davis.............. Harrow, W. S. Davis.
Harrow, A. o. Stiveso Harvester, G. H. Spaulding. Hay press, J. Taylor........... Heater for oil wells, J. Odell....
Heating box irons, F. Stichbury Heel stiffener, W. H. Williams......... .....
Hexagonal nut bars, making, C. H Robison.
Horse brush flexible motor, J. J. Greenough.
                    Hore stall, fre engine, w. C. Davol, J.,( (r)
                    Hose coupling, M. S. Cu
                    Inspirator, J. т. Hancock
                    Key fastener, T. C. Upson.
                    Kitchen sink, J. M. Carson....
                    Lamp bracket, sewing, W. Vass
                    l
                    Loose rim wheel, R. Jacobi..
                    ubricant and anti-crustant, I. Bernhard.
                    Meat mangler, Steeples et al
                            Metal punching machine,I. C. Schuyler
                    Metal punching machine, A. Watkins.
                    Minks, raising from,G. Houdaill.
                    Molding pipes, H. H. Fisher
                    Multiple circuit closer, Striedinger & 
                    Needle bar and knife, E F. Dwyer
                    Noodle machine, G. Fritz.
                    Nut lock, L. Sterne
                    Nut lock, W. Tunstil
                    Ore roasting, W. K. Aldersley.
                    Ornamenting wood, etc., W. Sutherland.
                    Pantaloon protector, Howard & Hayward
                    Pattern chart, H. W. Subera 
                    Pipe wrench, Peterson & Dunneh
                            Plaiting machine, M. Neville
                            Plate, stem-winding watch, C. S. Moseley
                    Mlow, J. Oliver....
                    Pump handle, A. S.
                    Railroad rail joint, J.A. Eno
                    Registering ballot box, W. H..Nicolls.
                    Relief valve, hydraulic, C. Sellers.
                    Revolving fire arm, A. E. Whitmo
            Road scraper, E. Huber..
            Rotary engine, S. R. Cleveland.
            Rotary paper folder, Duncan & Wilson.
            Rubber articles, forming, C E Bracke
            Running gear for vehicles, E.D. Weller...185,992,
                    Sagger pin machine, I. W. Knowles..
                    aw flling machine, A. Marti
                    Scaffold, L. Park
                            scholar's companion, E. W. Smith
                    Scoop, B. F. Pratt........
                    sewer trap, F. B. Wells.
                    Sewing machine, G. M. Pra
                    Sewing machine, button hole, A. Farrar
                    ewing machine, quilting, H. Oram....
            Sewing machine, quilting, F. L. Palmer.
            Shade for gas lights, B. B. Schneider (r)
            Shelf, portable, G. A. Colby
            side spar wagon, C. W. Saladee
            Siphon taps and stoppers, H. J. Co
            Sleeping car berth, w. Fette....
            Snap hook, E.J. Steele...
            ofa bed, J. D. Hauschildt
            Spring motor, I. Solomon.
            Square, J. C. Marshall.
            Steam boiler furnace, P. W. Lamb.
            Stencil pen, A. E. Hix.
            Still, J. G. Ellerhorst.......
            tove pipe, G,Buchanan.
            treet car, D. A. Foster..
            Sulky plow, H. J. Schmeiser.
            ulphurous acid, making, A. F. C. Reynoso
            Tallow cup, D. Parmer
            Thread spool, J. McMillan
            Time lock, E. Stockwell...
            Tobacco safe, J. W. Maynard
            Tossing tub, ore separating,W........
            Towing canal boats, D. W. Cooke.
            Traveling bag, satchel, etc., W. Ro mer
            Umbrella, W. H. Richardson
            Valve connection, G. H. Corliss.......................
            Vehicle spring, S.N. Beecher.
            Vehicle spring, G. A. Richards.
            Wagon brake, E. Bennett......
            Wagon gearing, L. W. Frederick.
            Wagon jack, H. D. McGenrge
            Washing machine, F. M. Karr.
            Water distributer,J. H. Rhodes
            Water motor, K. L. Mills.....
            Watering stock, device for, A. B. Ram
            Wheel plow, F. S. Davenpo
            Wind wheel, Howland & Sweetland
            Vindmlll. C. C. Harris
            Wool burring machine, E. Trombly
                DESIGNS PATENTED.
                    9,686.-SALVER.-A. Conradt, Middletown, Conn.
9,687 .-SATCHELS, ETC.-W. Heller, New York city.
                    9,687.-SATCHELS, ETC.-W. Heller, New York city.
9,688.-TYPES.-A. Little. New York city.
9,689.- PAPER Box.

9,690.-CARRIAGE Top Joint.-G. F. Smith, Plantsville,
Conn.
9,691.-Stoves.-N. S. Vedder, Troy, N. Y., et al.
\(\begin{aligned} & \text { [A copy of any of theabove patents may be had by } \\ & \text { remitting one dollar to MunN \& Co., 37 Park Row New } \\ & \text { York city.] }\end{aligned}\)
York city.]
schedule of patent fees.
\begin{tabular}{|c|c|}
\hline ach Cave & \\
\hline On each Trad & \\
\hline On fling each application for \(a\) Patent (17 years & 15 \\
\hline & \\
\hline On appeal to Lxaminers-in Chie & \\
\hline apealto con & \\
\hline apphication for & \\
\hline & \\
\hline an & \\
\hline (pication & \\
\hline & \\
\hline
\end{tabular}

응duertinements.
Inside Page, each insertion - - 75 cents a line.
Back Page, each insertion - \(\$ 1.00\) a line.
Enyravings may head advertisements at thesame rate per line, by measurement, as the letter press. Ad-
vertisements must be received at publication office as early as Friday morning to appear in next issue.
WANTED.-SITUATION AS draughtsman or shop foreman. Advertiseris a practical
machinist, liberaly educated, and has been for three
years draughtsman on waterworks construction. Refer\begin{tabular}{l} 
years draughtsman on waterworks construction. Refer- \\
ences tas to ability a and charater. \(\begin{array}{l}\text { Adress } \\
\text { CLARESON, } 86 \text { East Avenue, Rochester, N. Y. }\end{array}\) M. M. \\
\hline
\end{tabular}

REVEDSTBLE
HOISTIINC REVESIETNE



Driven or Tube Wells





ALUMINIUM-ITS CHARACTER,


A FLY-WHEEL ACCIDENT.-With draw-


STREET PAVEMENTS AND SIDEWALKS
 ON THE PREPARATION OF DEX




Now Ready，New Revised Editions．


 oreign publications in this department of literat．
HEN RY OAREY BAIRD \＆ 00 ． Industrial Publishers，Booksellers \＆Importers，
810 Walnut Street，Philadelphia． \begin{tabular}{c} 
SII Watnut Atreet，Philadelphia． \\
\hline
\end{tabular}

\section*{5}

Smanl Tools of al kill kis；also GEAR WHEELS，parts
 stilwell＇s patent
Lime Extracting Heater and Filter．

 \(\$ 5\) to \(\$ 20 \begin{gathered}\text { per dayat home．Samples worth } \\ \text { ree．} \\ \text { STINsoN }\end{gathered}\) Lathes，Planers，Shapers，Drills， Gears Boltcutters，sce，e．gould，Dew，
 Mand rime Detetector，caparbe of a accuratele con－




CHTMEPPHOTOGRAPHICAPPA－



\section*{IIIL \\ IIIII \(1+\downarrow\) WROUGHT BEAMS \＆GIRDERS}
\(T\) Tict










\section*{NEW DEPARTURE TRAVELNO
}
\(\$ 50 .{ }^{00}\) Soor Drill Presses．

Blake＇s Patent Stone \＆Ore Crusher．



 revolving shart and fly－wheel，are intring ements on our
patent，mand makrs and users of such will be held ace
countabe dadar P．BLAISDF工工 \＆CO．， Worcester，Mass．， Manufacturers of the Blaisdell Patent Upright Drills and other first－class Machinists＇Tools．




L．SMITH HOBART，JOHN C．MOSS，D．I．CARSON，


RELIEF PLATES IN HARD TYPE METAL，

\section*{ALL KINDS OF PICTORIAL ILLUSTRATIONS}

In Books，Newspapers，and Catalogues．
These plates are an excellent substitute for woodcuts，being used in precisely the same way，giving equally good results for much less
ELECTROTYPES AND STEREOTYPES
are made from them in the usual manner．
W e offer special advantages to

\section*{MANUFACTURERS AND INVENTORS，}
as our mechanical work is of the best quality and rapidly executed．
Our plates are used satisfactorily in the SCIENTIFIC AMERICAN and the SCIEN－ Our plates are used satisfactorily in the SCIENTIFIC AMERICAN and the SCIEN－
TIFIC AMERICAN SUPPLEMENT，and by Manufacturers and Publishers in all parts of the country．

\section*{＂COPエ．＂}

We work direct only from Prints or properly prepared Pen and Ink Drawings．Any other copy may be furnished，such as Photographs，Pencil Sketches，or the articles them－ draughtsmen．Pases we have drawings made in the best manner by our own trained any size．We make the plates larger or smaller，as desired．

\section*{DIRECTIONS TO ARTISTS：}

The most important requisite in Drawings for our use is that every line shall be perfectly black．

The paper or drawing board must be white and smooth．
For fine work drawings should be made double the scale of the plate desired．
Carefully observing these main points，the artist has the utmost freedom in his choice of
For further information and fine samples of our work，send stamp for current number of our illustrated Quarterly Circular．


LIST OF ENGRAVINGS
1．THE LETTER WRITER．
2．THE CROSSING SWEEPER．
3．THE ROYAL PRINCESSES．
4．THE SKEIN WINDER．
5．THE SPANISH SISTERS．
6．A REST ON THE HILL．
7．THE FAIR CORRESPONDENT．
8．BARTHRAM＇S DIRGE．
9．GOING TO SCHOOL
10．PEEP O＇DAY BOY＇S CABIN．
11．THE SCANTY MEAL．
12．THE AMAZON．

Prin
Luberal discount to the trade．
Sent postpaid on receipt of price．

Please say where you saw this．
PHOTO－ENGRAVING CO．， 67 Park Place，New York．

STEAM PUMPS


 \(\$ 80{ }^{\wedge}\) ciand

 \(\$ 290\) ．FOR BE in use all over the U．S．in over 900 （townsby

 years by a responsible incorporated Manufacturing Co，
referring by permission to the Chemical National Bank，
New York City far the stronestank in America
Pianos sent everywhere on trial．We have no agents． Pianos sent everywhere on trial．We have no agent
Send for Ilustrated Circular giving full particulars．
Addres
（Please
UNE WANTED THE SOLE MANUFACTURE for England，of one or two Patent Articles in demand
br steam users．Advertisers have good man facturing
premises，and a first－class connection among steam users

 SUBMARINE FOUNDATIONS．－Being a


\section*{MEITENTS}
［ESTABLISHED 1846．］
Mini \＆Co．＇s Patern Ofices．

The Oldest Agency for oliciting Patents in the thirty years＇experience．

MORE PATENTS have been secured through this agency，at the world． the world．
perienced men as examiners，specifcation writers，an draughtsmen，that can be found，many of whom have SIXTY THOUSAND inventors have availedthe selves of Munn \＆Co，s services in examining their in ventions and procuring their patents．
MUNN \＆CO．，in connection with the publication of the SCIENTIFIC AMERICAN，continue to examine in ventions，confer with inventors，prepare drawings，spe－
ciffcations，and assignments，attend to flling applications in the Patent offlce，paying the Government fees，and watch each case，step by step，while pendingbeforethe examiner．This is done through their oranch office，cor－ file caveats，procure design patents trade marks issues，attend to rejected cases（prepared by the invento or other attorneys），procure copyrights，attend to inter－ ferences，give written opinions on matters of infringe－ ment，furnish copies of patents，and，in fact，attend to
eign countries．
A special notice is made in the SCIENTIFIC AMER CAN of all inventions patented througn this agency With the name and residence of the patentee．Patents the invention by such notice．
Patents obtained in Canada，England，France，Belgium， Germany，Russia，Prussia，Spain，Portugal，the Britis Colonies，and all other countries where patents are
granted，at prices greatly reduced from former rates Send for pamphlet pertaining specially to foreign pat ents，which states the cost，time granted，and the re－ quirements for each country．
Persons desiring any patent issued from 1836 to Novem ber 26，1867，can be supplied with official copies at rea
sonable cost，the price depending upon the extent of drawings and length of speciffcations． 27,1867 ，at which Any patent issued since November 27， 1867 ，at whic
time the Patent Office commenced printing the drawing time the Patent office commenced printing the drawing
and specifications，may be had by remitting to this of and spe
will be furnished for \(\$ 1\)
When ord
above，and state name of pase to remit for the same as and date of patent．
A pamphlet，containing full directions for obtaining United states patents，sent free．A hardsomely bound Reference Book，git edges，contains 140 page and many engravings and tablesimportant toevery pat entee and mechanc，and is a useful handbook of
ence for everybody．Price 25 cents，mailed free

Address MUNN \＆CO．，
Publishers SCIENTIFIC AMERICAN，
BRANCH OFFICE－Corner of \(F\) and 7 th Streets，
\begin{tabular}{|c|}
\hline gadrertisimentu. \\
\hline \begin{tabular}{l}
\(\overline{\text { Inside Page, each insertion -.- } 75 \text { cents a iline. }}\) Engravaingse, aach man inserino-.- advertisements at the same rate \\

\end{tabular} \\
\hline  \\
\hline
\end{tabular}

Machinists, Tools. sen for New ins rimprovern par rerss.
Lathes, Planers, Drills, \&o.
new haven manceactividi. co.
HARTFORD

\section*{STEAM BOILER}

Inspection \& Insurance COMPANY.

\section*{} J. B. PIERCB, SOC'T.

CIVIL ENGINEER and EXPERT



\section*{ILLUSTRATED HISTORY}

\section*{of ter \\ CENTENNIAL EXHIBITION}

\section*{Of 1876.}

\section*{The Full History and progress of the} Exhibition, Maps of the Grounds, Engravings of Scientific and Mechanical objects, profusely illustrated with Engravings, are given in the Scientific American Supplement for the Volumes, comprising over 800 quarto pages equal in quantity of reading matter to over Seven Thousand ordinary book pages. The space devoted to the great INTERNATIONAL EXHIBITION is veryextensive, and probably forms the most complete and full history of the affair that can be ob
tained. The illustrations pertaining to the Exhibition are more than 450 in number. A copious Special Index of all matters relating to the Exhibition is given. Those who desire to possess a com plete and splendid Illustrated Record of the Centennial Exposition should have the Scientific American Supplement for 1876.
In addition to this splendid History of the Centennial Exhibition, the Scientific American Sup plement for 1876 contains a vast amount of read ing matter of great value for reference and preser vation. It presents to the reader, in attractive form, full accounts of the Advances made during the year in all the chief departments of Science Chemistry and Metallurgy, Mechanics and Engineering, Electricity, Light, Heat, Sound, Architec ture, Photography, Technology, Pisciculture, Agriculture, Botany, Horticulture, Rural and Household Economy, Materia Medica, Hygieue, Natural His-
tory, Zoology, Microscopy, Meteorology, Terrestrial tory, Zoology, Microscopy, Meteorology, Terrestria Physics, Geography, Geology, Mineralogy, Astron-
omy. The whole illustrated by over Two Thousand omy. The whole illustrated by over Two Thousand
Six Hundred Engravings. The wide scope of this splendid work, its surprising variety of contents, its wealth of illustration, render it the most valuable contribution to scientific literature extant,
while in price it is probably the most economical. while in price it is probably the most economical. The Scientific Anerican Supplement for 1876,
complete, is supplied, stitched in paper, at the low complete, is supplied, stitched in paper, at the low
price of \(\$ 5\). Strongly bound, both volumes in one price of \(\$ 5\). Strongly bound, both volumes in one
book, \(\$ 6.50\). Bound in two separate books, \(\$\) each or \(\$ 8\) for the two. Sold at the leading Bookstores and News Offices, and by

\section*{MUNN \& CO., Publishers,}
N. B.-We supply the Scientific American and SUPPLEMENT for 1877 to subscribers at the comage. Any person who has already subscribed to the Scientific American for 1877 may obtain eithe the Supplement for 1876 complete, or for 1877, a preferred, by remitting to us the differencebetween \(\$ 7\) and the amount already paid on his subscriptio for Scientific American.

MUNN \& CO., Publishers.

NON-COMBUSTIBLE STEAM BOILER AND PIPE
COVERING


\section*{HOME}

Insunluce Co. of leer Yonk
Office, No. I35 BROADWAY, N.Y.
CASH CAPITAL, - - \$3,000,000 00 Reserve for Re-Insurance, - 1,858,464 68 Reserve for Unpaid Lossise \& Dipidends, 243,40224 Net Surpilus,

TOTAL ASSETS, 1,002,783 90
\(\$ 6,104,65082\)
J. H. Washburn, Sec. Ohas. J. Martin, Prest.

\section*{PERFECT}

NEWSPAPER FILE
The Koch Patent File, for preserving newspapers,
magazines, and pamphlets, has been recently improved
magazines, and pamphlets, has been recently improved and price reduced. Subsoribers to the SCIENTIFTC AM-
ERICAN and SCIENTIFIC AMERICAN SUPPLEMENT Can be
supplied for the low price office of this paper. Heavy, board sildes; inscription
"SCIENTIFIC AMERICAN," in gilt. Necessary for "SCIENTIFIC AMERICAN," in gilt. Ne
every one who wishes to preserve the paper. every one wh
Address

\section*{MUNN \& CO.,}

\section*{TAKE}


Working Models

 Dayton Oam Pumpio






OTIS' \(\mathrm{M}^{\text {safert histing }}\) Machinery.

ThNGINES, BOILERS, MACHINERY,


\(\$ 984\)
Tade by one Agent in 57 days. 13 new
Second-Hand Machinery for Sale.


Steel Castings,
 Wood-Working Machinery,




THE BEST

\section*{Boiler Feeder}

FRIEDMANN'S INJECTOR, manufactured by
NATHAN \& DREYFUS, New York.

\section*{Send for Circular}

GDORGP C. HICKS \& CO. Baitimore. Md.

 Samples 81.00 . Large profts to agents. Address Harris
burgh Pa., Family Cornsheller Co. Lock Box 9.

\section*{} COLD ROLLED SHAFTING, HANGERS, PUULIEYS,
COUPLNGASBELTINA,TA NITE EM ERY WHEELS
AND GRINDERS, IN STOCK. 121 Chambers \& GEOERGE Reade Sts., Pew York City

 \(\$ 10\) TO \(\$ 500\) INVESTED IN WALL ST. Often leads to wealth. A A 2 page book explaining every-
thing, and a copy of the Wall Street Review, sent free

JOHN HICK LING \& CO.
Bankers and Brokers, 72 Broadway, New York MESSRS. B. DAMBACHER \& CO, Ham


\section*{SHAFTSPULLEYS.HANGERS}

\section*{in stock, and for Sale by}

Philadelphia, and 79 Liberty St., New Yor
Planing and Matching.
 \(\$ 5 \% .60\) AGENTS PROFITS per week. Will prove WT. H. CHIDESTER 218 Fulton St., New York.
 EAGLEFOOT LATHES,


\section*{Pond's Tools.}

\section*{Engine Lathes, Planers, Drills, \&c.} Send for Catalogue. DA VID W. POND, Su
LUCIUS W. POND, WOrcester, Mass.




\section*{JOSEPH C. TODD.}

 the celeb
the
lang Engin
and
and price

\author{
10 Barclay St., N. TODD,
}


THE TANITE CO., STROUDSBURG, PA. EMERY WHEELS AND CRPADERS.
BOLT Gchlenkers New Machine Revolving-Die.

HOWARD IRON WORKS,
notes milu funisising works



FOR INVENTORS:-ALL KINDS OF



\section*{}

SCIENTIFIC AMERICAN For 1877,
the most popluar scientific paper in the world.

THIRTTY-SECOND PEAR.
VOLUME XXXVI.-NEW SERIES.
The publishers of the scientific ankerican beg o announce that on the sixth day of January, 1877, a new volume was commenced. It will continue to be the dim of the publishers to render the contents of the ew volume more attractive and nesequl than any of its

To the Mechanic and Manufacturer.
No person engaged in any of the mechanical pursuits should think of doing without the ScientificAmerican. Every number contains from six to ten engravings of new machines and inventions which cannot be found in any other publication.

\section*{TERMS OF SUBSCRIPTION.}

One copy of the Scientific American will be sent for one year, 52 numbers, POSTAGE PREPAD, to any subscriber in the United States or Canada, on receipt of three dollars and twenty cents by the publishers.
One extra copy of the Scientific Amerrican will be supplied gratis for every club of five subscribers at \(\$ 3.20\) each; or six copies for \(\$ 16.50\) without extra copy. Postage free.

The Scientific American Supplement.
A weekly paper, uniform in size with the Scientific American, but a distinct publication. It contains working drawings of engineering works, and elaborate treatises on every branch of Science and Mechanics, by eminent writers, at home and abroad. An illustrated cover protects the handsomely printed sheets. Price, \(\$ 5.00\) per annum. Single copies 10 cents.
One copy of the Scientific American and one copy of the Scientific American Supplement will be sent for one year, postage prepaid, to any subscriber in the United States or Canada, on receipt of seven Dollars by the publishers.
The safest way to remit is by Postal-Order, Draft, or Express. Money carefully placed inside of envelopes, securely sealed, and carefully addressed, seldom goes
astray; but it is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

MUNN \& CO.,
3 PARK ROW, NEW YORK.
THE "Scientifc American" is printed with CHAAS.
ENEU JOMNSON \& CO. S INK. Tenth and Lom-
bard Sts, Philadelphia, and 59 Gold St., New York,```


[^0]:    Portmanteau and bath tub. E. Watts
    Pot handle, H. Hemelright....

