

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

C. H. BROWN \& CO.'S AUTOMATIC CU'I'OFF ENGINE.

C. H. BROWN \& CO.'S AUTOMATIC CUT-OFF ENGINE.

THE BROWN AUTOMATIC CUT-OFF ENGLNE.
The modern stationary engine has reached such a of excellence that now the whole aim of the more promine constructors is directed merely to designing simple, durable and effective mechanical devices by which certain well understood functions may be performed. It appears, in fact, to be determined that we have reached a point of knowledge
further progress is only to be sought by obtaining refinement to the conviction that the utmost economy attainable in a of action combined with durability and accessibility in the high pressure engine is to be reached by establishing, beparts. A few years ago, there appeared to be good reason to tween the duty performed by the engine and the supply of suppose that economy in the steam engine would be sought steam to the cylinder, a relation at all times equal, definite, in the direction of using steam at much higher pressure than and uniform: and further by avoiding wiredrawing and sub-
 have, from time to time, been put forth in that direction $\left\lvert\, \begin{aligned} & \text { have, from time to time, been put forth in that direction. } \\ & \text { The mechanical world seems, however, to have settled down }\end{aligned}\right.$

§rinutific Amrricau.

§uinutifit gmerican.

ESTABLISHED 1846.

MUNN \& CO., Editors and Proprietors.
publiseed weekly at
NO. BY PARK ROW, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included..
Clubs, One extra Clubs.-One extra copy of THE SCIENTIFIC AMERIOAN will be supplice d same proportionate rate. Postage prepaid.
One copy of The Scientific American and one copy of The Scientific Ambricin Supplement will be sent for one year, postage prepaid, to any subscriber in th

The Scientific American Supplement
is a distinct paper from the ScIENTIFTC AMERICAN. THE SUPPLEMENT is issued weekly; every number contains 16 octavo pages, with handsome
cover, uniform in size with ScIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughou the country.
Combined Rates. - The Scientific american and Supplement will be sent for one year, postage free, on receipt of seven dollars. Both paipers to one address or different addresses, as desired.
Address MUNN \& CO., 37 Park Row, N. Y.
(17 Subscriptions received and single copies of either paper sold by all the news agents.

VOL. XXXVI., No. 1. [New Series.] Thirty-second Year.
NEW YORK, SATURDAY, JANUARY 6, 1877.

Contents.	
(Ilustrated articles are marked with an asterisk.)	
Answers to correspondents	$11 / \mathrm{Ir}$
A Apharit tiles.............	7 Leether, human.
Astronomical not	9 Meridian , to obtain the.
Bots	
Bufalo, domesticating the.........	Paper box makin
siness an	1 Patent decisions, recent 10
ter, artiflcial	9 Patents American a
er	ts, official
Calipers, the form	Pear trees, fer
,	4 Photo-copea
Coral bed a new	Photographs o
Dyeing lightrose.	5 Practical meehanism-No
Dyeing red on flannel.	
Enyine, automatic cuid	s, a safeguard
re alarmand bell	4 Refrigerators, ${ }^{\text {dill }}$
Fox, a cunining oid	7 Roofs, tin (4)
metrical teachinge, def	Rouen cathed
Gun cotton, ${ }^{\text {a }}$ new use for.	9 Ruthenium, investigati
Heating cities by main pipe	9 sammill, p
Ink, stencil (7)..	${ }_{1} 1$ Theater scenery,
Inventions patented in England..	
Inventors, opportunity for......:	6: Treasure trove, a wonderful.

THE SCIENTIFIC AMERICAN SUPPLEMENT, Vol. III., No. 53 ,
For the Week ending January 6, 1877 . TABLE OF CONTENTS.

II. Lesssons IN MECAANIMAL DRAWING.-New Series. No. 1. By Pro-

CHEMATRY AND METALLURGT.-New Reagent for Glucose-Tri.

Terms :-SCientific American Supplement, one year, postpaid, $\$ 5.00$
One copy of SCIENTIFIC AMERICAN and one copy of SCIENTIFTC AMERICAN
SUPPLEMENT, one year, postpaid, \$7.0. CLUBS.-One extra copy of the SUPPLEMENT, one year, postpaid, \$7.00. CLUBS.-One extra copy of the subscribers at $\$ 5.00$ each.
All the back numbers of the SUPPLEMENT, from the commencement, Jan-
ary 1, 1876, can be had. Price, 10 cents each.
NOW READY.-The Scientifio American SUpplement for 1876.
Complete in two large volumes. Over 800 quarto pages; over 2,000 engravComplete in two large volumes. Over 800 quarto pages; over 2,000 engrav-
ings. Embracing History of the Centennial Exhibition. Price, five dollars for the two volumes, stitched in paper; or \$6.50, handsomely bound in stif

37 Park Row, New York.

A WONDERFUL TREASURE TROVE

That indefatigable explorer and archæologist, Dr. Schliemann, has recently made a discovery which, if future critical examination substantiate his present interpretation of it, will not only necessitate the re-writing of a great deal of ancient history, but will prove that many legendary and heroic personages, hitherto regarded only as myths, really existed. The surprise that all scholars will feel, on being assured tha Agamemnon, "bravest of the Greeks," Clytemnestra, his wife (sister of Castor Pollux, and Helen, and daughter of Leda the Swan), Cassandra the true prophetess, loved and cursed by Apollo so that no one believed her predictions, and many other characters supposed to be fabulous lived and died, is as genuine as that which all would experience if the daily journals some morning should announce the discovery of the wine jars containing the bodies of the forty oil-scalded thieves, or of Aladdin's lamp with his name carved on it, or of the original plow invented by Dagon the fish-god of the Babylonians, or of the tomb of Perseus containing a mummy of the Gorgon's head.
Dr. Schliemann is a man of extraordinary genius for archæological investigation; and his labors have been fortunate far beyond those of most explorers. In 1868, he astonished classical students by claiming to have found remains of the home of Ulysses on the island of Ithaca; and in the same year, he began the studies at Mycenæ which have recently culminated in the wonderful discoveries above alluded to. He also undertook an examination of the topography described in Homer's Iliad; and becoming convinced that, even if the Greek poet himself was a myth, the story of the Trojan siege was not, he began excavations (at his own expense) on the plain of Hissarlik, which he considered to be the site of ancient Troy. In 1871-3, he dug to a depth of about 50 feet, unearthing layer after layer of ruins, showing that cities and towns had been built, one on the buried ruins of another. Finally, he exhumed vases and treasures of gold and silver and laid bare, as he maintains, the walls of Priam's palace and the streets of the Homeric city. But in his conclusions archæologists have failed to agree; and the prevailing opinion has been that he has merely found the site of some unknown Phœnician trading post, or some other ancient city of little historical importance.
Early in the autumn of last year, 1876, Dr. Schliemann returned to Mycenæ, the scene of his previous labors, where are located some of the grandest ruins of modern Greece. The site is a rocky hill on the northeastern extremity of the plain of Argos, on the eastern coast of the Morea, at present about two miles from the small village of Khayati. The ruins are notable for the colossal stones employed in their construction, the same being the largest blocks used in ancient building, with the exception of those found in the remains of Baalbec. Some of the stones are 25 feet long, 20 feet wide, and 4 feet thick, and tradition asserts that they were put in their places by the one-eyed giants, the Cyclopes. During the reign of Agamemnon, Mycenæ was the principal city of Greece, and here, it is supposed, that king was entombed. For any one but so uncompromising a believer in his own theories as Dr. Schliemann to dig into the ruins of Mycenæ, in order to find tangible remains of the Greek mythical hero, would be considered as foolhardy as to excavate the supposed tomb of Adam in Palestine with the hope of finding the bones of our legendary progenitor; butDr. Schliemann, caring not a whit for general opinion, attacked the tombs with pickaxe and spade, and the result is that he has found a mine of gold and silver ornaments, etc., of enormous value even intrinsically, besides bones and human remains which he declares to be those of the hero-king and his contemporaries. In the first tomb which he opened, he found thirteen gold buttons, curiously engraved, besides a mass of gold blades scattered about. In the next tomb, he discovered a square ditch some 30 feet below the surface of the mount. This was surrounded by an immense wall, in which were human bodies which evidently had been burned. The bones of one person were covered with five thick gold leaves some 25 inches long, on which were inscribed crosses. Then, in a great circle of parallel slabs beneath the archaic sepulchral stones, Dr. Schliemann has discovered huge tombs containing jewelry. In one tomb, containing male and female bones, he obtained eleven pounds of ornaments of pure archaic gold, and two scepters with heads of crystal. Then he found a cow's head of pure silver, with great horns of gold; then a helmet, two diadems, a woman's large comb, a breastplate, vases, girdles, and an enormous quantity of buttons, all of the finest gold. There were some vases in silver, a number of arms in bronze, and a stag cast in lead; but no trace of iron work.
The above magnificent treasure trove was unearthed prior to November 15; but since that date, a telegraphic dispatch has reported the discovery of enough more treasure to fill a large museum, besides further evidence as to the identity of the human remains, and (according to Dr. Schliemann) showing them to be those of Agamemnon and his court.
Archæological authorities in this city, who have been asked for expressions of opinion on the above, admit that there is a much greater probability of Dr. Schliemann's being correct in his views as regards the Grecian than as relating to the Trojan remains. Mr. William Cullen Bryant believes that the tomb is not that of Agamemnon, but of some later king; but, with other authorities, he reserves any positive statement until further and more accurate details are obtainable. He suggests that the tomb of Achilles in Ithaca be searched for, as corroborative of Schliemann's views.
The treasure has been presented to Greece and will be
a gold fever will break out in that classic land, which will result in the wholesale digging up of her abundant ruins.
Apropos of this subject, we may add that, through the liberality of several of her wealthy citizens, New York has recently secured one of the most valuable archæological collections ever got together, many articles in which probably antedate the supposed period of Agamemnon. General Cesnola, whose first collection of Phœnician relics, found in the tombs of Golgos on the Island of Cyprus, the New York Art Museum already possesses, recently found, under the temple of Kurium, in the same vicinity, some 7,000 objects in gold and silver, stone, etc., all of the greatest historic interest as shedding new light on the habits and customs of the ong-extinct race which fashioned them. The list includes ewelry, weapons, inscribed plates and coins, utensils, glass, sarcophagi, etc. For some time, the destination of the collection was doubtful, as the British Museum made strong fforts to obtain the objects, but was unwilling to pay General Cesnola's price- $\$ 60,000$. Finally, to the intense and openly expressed disgust of the English press, after a canvass of three days, $\$ 40,000$ was raised in this city by private subcription, and the antiquities were at once purchased. The remainder of the amount will be obtained after the delivery of the collection in this country.

UNINFLAMMABLE THEATER SCENERY.

Mr. Dion Boucicault, the well known actor and dramatist, has, with very commendable promptitude, instituted experiments in accordance with some of the suggestions for rendering scenery fireproof, elicited by the recent calamity in Brooklyn. If we may judge from recent tests, held in Wallack's Theatre in this city, Mr. Boucicault's efforts have been entirely successful; and although, as he says himself, he has invented nothing, he at least is entitled to the gratitude of the public for his demonstration of the value of the fireproofing washes which he uses, and his public exhibition of the fact before the assembled managers and theatre owners of this city.
The process consists in first soaking the canvas in a solution of tungstate of soda. The solution is a weak one, and the exact percentage of the salt is not determined. Pure tungstate of soda costs about 75 cents per lb., crude tungstate (not quoted by prominent drug firms) probably considerably less, if bought in large quantities; so that the application is not an expensive one. If nothing further were done, this single saturation would be sufficient to prevent the blaz ing of the material; but as it is, the latter on ignition is apt to smoulder slowly. To prevent this, Mr. Boucicault, before painting on the fabric, applies a wash of silicate of soda (water glass). This answers as an excellent priming; or the pigments themselves may be mixed with the silicate instead of with glue, as is now done. The cost of the glue is thus saved, and the paint seems to have gained something in brightness by the substitution of the water glass as a vehicle.
At the trial referred to, two large squares of canvas, which had previously been prepared as above described, were suspended over the stage. Gas was led through a hose, and escaped at the nozzle; and when ignited, it gave a large, strong flame. This, applied to the canvas, wholly failed to ignite it. If the flame was persistently held against one spot, the place was blackened, and in a few minutes the jet forced a hole through the fabric; but not the slightest evidence of combustion appeared. The burnt material seemed to be a hard cement, externally brittle and easily crumbling in the hands. In fact, the effect of the chemicals appeared to be to cover the canvas with a strong coating of very refractory material. Rope, previously saturated with the solutions, and pine wood, which had been given a couple of coats of the same, likewise were perfectly fireproof.
Mr. Boucicault states that the entire cost of treating the igging and scenery of an average sized theatre with tung. state and silicate will not exceed $\$ 200$. There is no difficulty in applying the tungstate wash, which is merely a whitewash, and is put on in the usual rough way. It may be applied to the back of scenery already painted, and may serve as a priming for the paint in every part of the theatre.

defective geometrical teachings.

Although we give all possible credit to Euclid, the ancient Greek geometrician, for having for the first time collected the principal geometrical truths known in his time into a well connected system, based on strictly logical, progressive principles, it cannot escape the attention of any mathematician who has a clear insight into this sublime science that two defects, in the otherwise excellent books which Euclid left as a legacy to the world, have been the cause of much strife, contradiction, error, and loss of time among the unlearned, especially among beginners. These defects are, first, the insufficiency of his definitions of the point, hine, and superficies; and second, the total omission of any information in regard to the relation between the diameter and circumference of the circle. As for many centuries the books of Euclid were the only ones used by students of geometry, the influence of these defects has been very great, while the works of Archimedes, Apollonius, and others, who came after Euclid and com leted his labors, were unfortunately either entirely gnored, or were studied by very few indeed. Euclid's authority in geometry being thus undisputed, his definitions were adopted as indisputable, and as the real base of the science of geometry; but those which he gives of the point, line, and superficies, which all subsequent geometricians have adopted, are by no means correct geometrical concep-
tions, but abstractions of things not only non-existent in centuries, has been nothing less than a great misfortune to istence.

In explanation, let us'make a plain statement of the case and we will begin with the definition of the limits of a body, or its surface, the limits of a surface, or lines, and, lastly, the limits or ends of a line, or points. Euclid proceeds in the reverse way, and speaks first of a point having neither length, breadth, nor thickness; then of a line having only length, and neither breadth nor thickness; and, lastly, of a surface having only length and breadth, and no thickness. The conclusion to which any one with a philosophical and critical turn of mind must arrive is that, these things being impossibilities, and having no material existence, a science based on such conceptions must have a very weak foundation; such a critic would be justified in his opinion.

The point, line and superficies, as defined by Euclid in this abstract way, can have no existence; and if geometry were really based on these principles, the science, renowned as the most positive of all positive sciences, would in reality be based on abstractions, mere notions concerning impossible things. No wonder, then, that these definitions of Euclid have been the points of attack aimed at by all those who have attempted to bring mathematics down to the level of the un certain and unprofitable speculations of metaphysics, such
persons assuming that mathematics is based on definitions,of persons assuming that mathematics is based on definitions,of
point, line, and superficies, which are absurdities in thempoint, l
These faulty definitions can be entirely corrected by following the suggestion made in the beginning of this article. We therefore begin with "Definition 1. The body. All bodies occupy a certain limited space, and, whether large or small, have three dimensions, length, breadth, and thickness." This is illustrated by a cube, parallelopiped, etc., and the science of physics investigates the properties of bodies (such as weight, color, hardness, etc.), and that of chemistry its component elements (such as carbon, hydrogen, oxygen, etc.); but in geometry we only consider the dimensions above given. "Definition 2. The surface. The limit of such a body is called its surface, and from this it follows that such a surface possesses length and breadth, but can have no thickness, as, by attempting to measure this, we necessarily would go either inside the body or outside of it.' This is illustrated by placing a metal cube in water, and remarking that the limits between the metal and the water, where they touch, and where there is neither water nor metal, constitute the mathematical idea of a surface. "Definition 3. The line. The limit of such a surface where two sides of a body meet (its edges) is called a line; this line is common to both surfaces; and it possesses only length, and neither breadth nor thickness." This is again illustrated by a cube or pyramid, and we remark that, by attempting to measure the thickness of the edges, we necessarily would abandon one of the planes and move into the other. "Definition 4. The point. Where two or more such edges of a body meet, or the position whence anyone would start to measure the length of the edges, in geometry is called a point. Such a point cannot have any dimensions at all, being only a position relative to
by the angles of a cube
by the angles of a cube.
Thus it is seer that only bodies have a direct existence, that neither surface, line, nor point, exists independently, but that these ideas depend on the existence of the bodies, and are the component parts of the conception of the limits of their dimensions.
Thus we see that when geometry considers the limits of the dimensions of the bodies, the conceptions of superficies, line, and point are necessary consequences of these consider ations, and are legitimate subjects for scientific research; at the same time, these conceptions or ideas do not subject the science to the objections already mentioned as being suggested by Euclid's faulty exposition.
The other defect in Euclid's books, the absence of any information as to the relation between the diameter and circumference of a circle, has been the cause of much more error. Euclid being the only light for thousands who have studied geometry, and as his books contained no information, the impression became general that the problem of ascertaining the proportion was insoluble, or at least had not, in Euclid's time, been solved. As the importance of this problem was evident to every one, it is not to be wondered at
that many persons, ignorant of the labors of Archimedes, Metius, Van Ceulen, and others, have attempted its solution, to supply this, as they supposed, missing link in geometrical science. Few well informed persons have wasted their time in this direction, but the labor has been bestowed entirely by the ignorant, who, misled by a certain degree of self-conceit, imagined that they have discovered some new properties, which they attempted to use for the solution; the number of such would-be discoverers is very large; and as each went on his own erroneous road, it is not to be wondered at that each reached a different result; and as the premises of each were false, their results were every one inaccurate.
If the method of Archimedes (who first enclosed the circumference of the circle between circumscribed and inscribed polygons of 96 sides, and so found the limits between which the true circumference must be situated) could have been inserted in the books of Euclid, or had been appended to them, the world would have been saved from all the agitation in regard to the quadrature of the circle, and much valuable time would have been saved. But Archimedes lived after Euclid, and so the books of Euclid represent the state of geometrical science before the time of Archimedes;

Lacroix, in his "Geometry," published in France in the beginnıng of this century, first gave a complete logical essay on inscribed and circumscribed polygons, with the method of calculating their peripheries and the peripheries of polygons of double the sides; and by continually doubling, he enclosed the circle in continuously narrowing limits. His method was not new, but he had the merit of so explaining it to beginners that, for its comprehension, a knowledge of only
the first books of Euclid was necessary. His method has been adopted by others, and no one who has studied geometry from the books of Lacroix or his imitators can fall into the absurd error that the relation in question is an unknown quantity. We say "absurd error," because new light has been shed upon this subject from various sides, and mathematicians agree as to the figures expressing the relation, which are better known than those of any other irrational quantity ; and the calculation has been made to 600 places of decimals, which shows much greater progress than has root of 3 , problems which are apparently much simpler than the measurement of the circumference of the circle.

THE FORM AND USE OF CALIPERS.

The use of calipers, in finishing work to a driving fit or a working efit, is a subject of great interest to the general machinist, and a-few practical instructions upon the construction and application of calipers will be found useful.
If we notice the standard gauges made by makers of reputation, we shall find them to be, as compared to ordinary calipers, very heavy and strong, the object in thus making them being to prevent them, as far as possible, from springing. We say as far as possible, because deflection always takes place to some extent. Messrs. J. Morton, Poole \& Co., of Wilmington, Del., demonstrated this deflection by a very simple experiment. They made a gauge of about 3 inches between the points, its form being that of a crescent, with the points turned towards each other; the width of the gauge at the middle was about $1 \frac{3}{8}$ inches, the thickness of the steel being about $\frac{5}{16} \mathrm{inch}$. They made a wire inside gauge to fit the outside gauge so delicately that, if the outside one were held with the two hands, holding the gauge near the points, the inside one would be just sustained by the friction of contact of the outside one; while, if the latter were held in the centre by grasping with the thumb and finger, the inside gauge would fall, thus proving the deflection of the outside gauge by reason of its own weight.
This spring is usually the great disturbing element in taking an exact measurement, and it is here that inaccuracy is induced. To measure correctly with either inside or outside calipers, they must be set so that their contact with the work is scarcely if at all discernible. If we require to set inside and outside calipers to make a working fit, we must bear in mind that, if the outline of the work measured by the outside calipers is of exactly the same diameter as that of the hole into which it is to fit, the one will not enter the other; or, in other words, a pin must be smaller than the hole into which it is to go, in order to have a working fit. The amount to which it must be smaller is a measurable quantity, which is allowed for in solid male and female gauges. In the case of calipers, however, we proceed as follows : First, the
points of the outside calipers should have a perfectly even points of the outside calipers should have a perfectly even
contact when put together, or they may be slightly rounding in their width, as many prefer. Looking at the calipers with the flat sides of the legs towards you, the points should not be rounding, but should be shaped as follows : First, file the points to butt squarely and flat together when closed, and then open the legs and bevel off the end on the convex side to an angle of about 45°, leaving the extreme projecting point face about 1-32 inch wide. Then take a small smooth file, and carefully round over the points, and then harden them to a light purple. The object of making them of this shape is that the part of the points in contact, when measur ing different diameters, will always remain the same whereas such is not the case when the points are rounded as is often seen in calipers. So, likewise, if the bevel at the points is placed upon the concave side of the points when
the calipers are opened wide, the nearest point of contact will be on the bevel instead of at the points, rendering it dif ficult, in the inside calipers, to find those nearest points. The inside calipers should, *instead of having the ends bent around to a curve, have them straight, and standing at an angle of about 45° to the main body of the leg. The part standing at an angle need not be longer than 5-16 inch on a pair of calipers 7 inches long; and the bevel at the points should, in this case, be on the short side of the angle, so that, no matter whether calipers are used upon a small or a large
bore, the extreme points will always have contact with the work, and will always stand the furthest away from the centre of the joint. The advantage in this latter point is that we can measure clear to the end of a recess; whereas, if the points are bent around, the curve will, when the calipers are opened at all wide, prevent the points from passing to the In of the recess.
In measuring with the outside calipers we hold them by the joint in the right hand, between the finger and thumb. We then place them upon the work, steadying one leg of the alipers and detaining it in a fixed position by resting it, left hand, usually the forefinger. We then move the calipers so that the other leg traverses very slowly over the work, and watch very minutely how near the point approaches
free passage of the caliper point, on round work, we must
open them; and when so set that the point will just pass over the work without having perceptible contact, we may try to move that point a little laterally. If we find that the least lateral movement causes contact, while there is one point at which contact is not discernible, the calipers are set. To apply the inside calipers, we hold them in the same manner as above, adopting the same means with the forefinger to hold one point upon the work in a state of rest; while the other point is set so that it is barely perceptible, upon very close examination, that it touches the work. We then hold the inside calipers so that one inside and one outside points contact at the middle of the points, while we pass the other point of the inside calipers past and about the other point of the outside calipers; and when the calipers, so adjusted, will just barely touch each other, the work will be of a working fit, providing it is turned and bored true.
The only difference from this arrangement for a driving fit is that the outside calipers must, instead of being set to just escape the work, be made to have very fine contact with the same. The allowance for a driving fit is so smail as to be barely perceptible with a very careful adjustment and manipulation of the calipers, while, for a working fit there must be a perceptible difference, the contact with the inside calipers being more perceptible than that of the outside ones with the work. Here, however, wemustremark that the length of the work is an element of consideration, because the standard of truth and parallelism, incidental to such work as is usually measured with calipers, has a great deal to do with this question. For example, we know of no means of boring that will produce so smooth and true a hole as we can finish with a lap; as a consequence we can practically appreciate that there are upon tool-finished work projections, as well as an uneven surface, and in a driving fit these projections act as elements to conform the fit of one part to the other. Suppose, for example, we carefully bore out a hole, 1 inch in diameter and $\frac{1}{4}$ inch deep, the difference in diameters necessary to a driving or a working fit will be almost inappreciable by the closest application of the calipers; and a very slight amount of hand labor, in forcing the one into the other by rubbing them together, will convert a driving into a working fit, the difference being in this case due to a compression of the high spots of the surfaces of the metal. If the surfaces are positively smooth and even, they will form mirrors. If, on the other hand, we take a piece of work, 3 or 4 inches long, the amount of metal on the surfaces which (even with the smoothest of cuts, as ordinarily taken) stands above the bottom of the tool marks, is sufficient to give the parts a driving fit. To appreciate this fact, it is only necessary to carefully turn in a good lathe a piece of iron, say 2 inches in diameter and 4 inches long, and then take a very fine French file and draw file it across the turning marks.
In using calipers upon flat surfaces, it will be found that the inside calipers can be adjusted finer by trusting to the ear than the eye. Suppose, for example, we are measuring between the jaws of a pillow-block. We hold one point of the calipers stationary, as before, and adjust the other point, so that, by moving it very rapidly, we can just detect a scraping sound, evidencing contact between the calipers and the work. If, then, we move the calipers slowly, we shall be un able, with the closest scrutiny, to detect any contact between the two.
In measuring flat work with outside calipers, we must always so adjust them that they barely touch the work; while, at the same time, one point being detained in a state of rest, the other will not movein any direction without positive contact, and this will give a driving fit. For a working fit, the outside calipers may be set so that they are free from con tact, and have a barely distinguishable movement. In all cases, however, the truth and smoothness of the work is an important element.

Cast Iron Roofs.

Iron is more used for architectural purposes in America han elsewhere, but not always in such a manner as to render the building fireproof. While corrugated iron roofs are an excellent protection against sparks, they yield too readily to any more intense heat. The Germans, who have generally employed tiles, and make the buildings themselves capable of sustaining such roofs, and even heavier ones, are now in troducing cast iron plates for roofs. Those made at the Grœditz Iron Works weigh from 35 to 44 ozs. each, and cover a surface of 8×10, or about 80 square inches, making the weight 4 to 5 lbs. per square foot, or 25 kilogrammes er square meter. A square meter of roofing slate weighs 55 to 30 kilogrammes, and of tile 57 to 60 kilogrammes The plates have projecting edges so they fit very tightly, and are held in place by 2 wire nails beneath the lap.

Discovery of a New Pink Coral Bed.

The U. S. Steamer Gettysburg, while on her way from Fayal to Gibraltar, recently made a discovery of considerable mportance, in the shape of an immense coral bank (hitherto totally unknown), in latitude $36^{\circ} 30^{\prime}$, longitude $11^{\circ} 28^{\prime}$. Par ial surveys were made, and the least depth of water noted was 180 feet, which lin mid-ocean is very significant. Twenty miles west of the bank the sounding line marks 16,500 feet, and between the bank and Cape St. Vincent, 2,000 feet. The commander of the Gettysburg believes that in some portions the coral rises to the surface. How such a reef, in a part of the ocean which is constantly traversed by vessels, can have remained undiscovered is almost inexplicable. It is also stated that the bank is rich in valuable coral of light pink shades of color.

A NEW STEAM CAPSTAN.

The steam capstan represented in the annexed engraving (which we translate from the Revue Industrielle) has lately been constructed by the Marcenelle and Couillet Company, of Belgium, for use in the mining districts. In order to remedy accidents to hoisting engines and cables, it has been customary to provide auxiliary apparatus-at every mine The present machine, being portable, answers the same purpose for several mines, and thus a considerable saving is effected in cost of apparatus. It consists of a vertical tubular boiler of sufficient size to supply steam to the two horizontal engines which are connected to the driving shaft. The latter is geared to the drum shaft by heavy gear wheels, and carries a brake pulley, the brake of which consists of a steel plate encircling the entire periphery of the wheel and it is loosened or tightened by a hand lever. The body of the carriage and wheels are of iron and are very strongly built.
The machine is capable of lift ing a load of $3,300 \mathrm{lbs}$. from a depth of from 1,500 to 1,800 feet, by means of a cable 6 inches in diameter and weighing about 4 lbs. per running yard. The ca ble is of galvanized iron wire and contains a hempen core in which a number of copper wires are placed. These connect witl a battery and with an electric bell near the engineer, so that they serve as a telegraph by which the workmen can signal which the workmen can signa total weight of the apparatus is about $14,000 \mathrm{lbs}$.

A New Way of Outlining
 Theater Scenery.

In the London theatres, scen:c artists are now largely availing themselves of photography and the magic lantern as aids in the production of mimic representa tions of places where the action of plays is supposed to occur. In historical dramas, such as one based on the history of Joan of Arc, for example, the artist, instead of drawing on his imagination for a group of mediæval houses to represent the market-place at Rouen, procures a large photograph of the actual locality. This, by means of the oxyhydrogen light, he throws upon the canvas, the image being suitably enlarged in size. Then he follows the outline, and has an accurate picture. The realistic effect of scenery produced in this way is said to be wonderful.
a new-electric tire alarm and bell pull.
The annexed engraving (which we select from Les Mondes), represents a new and simple fire alarm apparatus, which, when acted upor by heat, causes an electric bell to ring, and

which may ordinarily be employed in lieu of the common press button. In houses and hotels where electric bells are altogether used for purposes of communication, this little device provides a fire alarm wherever a bell-button is located, the locality of the fire being, of course, indicated by the prolonged ringing of the bell.

A plate of metal, secured by three screws to the wood work or wall of the room, receives the conducting wires from beneath and at the base of two metal columns. To the latter are attached two thin elastic plates of metal, which form an acute angle with each other. They are prolonged upward by a sheet of steel which covers them outside the

STEAM CAPSTAN FOR MINING PURPOSES.

on the rod. This movement (from up, down), is effected by an ordinary bell-cord attached to the ring, and a spiral spring serves to carry the rod back to its normal position after the pull has ceased. The apparatus may be adjusted oo as to be very sensitive, and yet it cannot be put out of order by hardpulls on the cord. The set screw shown on the right, touches one of the elastic plates, and so adjusts it with reference to the other that contact between the two will occur at any thermometric degree of heat. A needle fixed on the head of the screw traverses a dial on the inclosing bex of the apparatus. It is merely necessary to set the needle to the graduation in the dial corresponding to the degree of heat at which an alarm is desired. This ingenious device is the invention of M. Gaulnier, of Paris.

To Obtain the True Meridian.

In all of the recent works on surveying, it will be found that Alioth, the first star in the handle of the Dipper, is designated as being directly opposite the pole, from Polaris, the north star. There was a time when such was the case, but now it is far from being correct.
The first published account of this method which we have been able to find, is in a revised edition of Abel Flint's work on surveying, published in 1833, which states that this method was communicated to the compiler, with permission to publish, by Moses Warren, of Lynn, Conn. It appears that this mode of reckoning had been in use among surveyors for some time previously; but we have not been able to find by whom or when it originated.
In 1800, Alioth was opposite Polaris; but a retrograde movement of the latter, of about 20^{\prime} a year, has caused Alioth to be, at the present time, 25^{\prime} ahead and brings Mizar, the second star in the handle, within 5^{\prime} of being opposite to the north star; so that, in fifteen years more, Mizar will be exactly opposite. Polaris is on the meridian 25^{\prime} after Alioth has passed the perpendicular, and 5^{\prime} before Mizar reaches it.

Printing Photographs on Glass.

M. Siegwart, in the Polytechnisches Journal, directs the operator first of all to secure an image by means of gum, honey, etc., and bichromate of potash, and to dust this hygroscopic picture with red lead powder. The red lead image is then burnt in; and the more soluble lead glass thus obtained, is treated with concentrated nitric acid, whereby a dull, white image is produced, which may be viewed as a transpareney.

Hang up the Lantern

No one should ever place a light or lantern on a barn-floor, or on a shop-floor where there are shavings. It is a very easy thing to upset a light so placed, and the result is likely to be the conflagration of the building. It is much more prudent to place hooks here and there about the premises, prudent to place hooks here and there about the premises,
tern upon, and that other things must be kept off them. An unprotected light should not be allowed in a barn under any circumstances. If the kerosene lamp had been hung up and not placed where a cow could kick it over, the burning of Chicago, and the consequent loss of millions of dollars, would not have happened.

THE WILLES AND ROWE LIGHTNING DUMPER

We illustrate herewith a new dumping bucket, which is excellently suited for loading and unloading carts and other vehicles, vessels, etc., when the same are used for transporting any substance which may be dumped without injury, such as earth, stone, coal, and grain. The invention will also be found useful in building operations, for handling mortar and concrete. It consists of a receptacle, triangular in section, and shaped either as shown in the engravings, or in forms slightly modified therefrom. This is suspended by a looped bail from the sides, as shown. One side, A, Fig. 1, is secured to a rod which erte"s apertures in the adjacent ends, so that said side, \mathbf{A}, is pivoted or hinged above so as naturally to swing open, and thus allow the contents of the vessel to escape. To the middle of side A , is pivoted a bar, B , the motion of which is limited by long keepers, and the extremities of which, when the side is closed, fall into hooks on the ends of the bucket. One of these hooks turns upward, the other downward, so the bar, B, by being simply turned on its pivot, becomes engaged with them. It may then be fastened (so as not to be dislodged by any chance shock), by a pin passing through the bill of one hook, as shown at C. Of course, while the earth, etc., is in the bucket, the side, A , is kept closed; but when it is desired to dump the contents, the pin, C , is removed, the bar moved out of the hooks, and the side, A, is at once forced open by the weight of the material above it, which is thus discharged.
In the bucket shown in Fig. 2, a partition, D, is used inide the swinging side, A, so that the orifice made by the opening of the latter is thus rendered smaller. This arrangement is best suited for buckets used for sacking grain, where the discharge is made into a comparatively small aperture.

Patented through the Scientific American Patent Agency, December 5, 1876. For further particulars relative to sale of State and Courity rights, address Messrs. Willes \& Rowe, care of C. W. Stayner, Attorney, Salt Lake City, U. T.

New Investigations on Ruthenium.

M. Saint Claire Deville has recently noted that hyperruthenic acid ($\mathrm{Ru} \mathrm{O}_{4}$), when heated to about 212° Fah., explodes violently, disengaging immense quantities of ozone The same occurs if the metallic acid is placed in a very hot flame; and the fact is the more striking as it is well known that, under ordinary conditions, a temperature of from 318° to 414° is necessary in order that ozone may be disengaged

It would hardly PAPER BOX MAKING

 an form the basis of an industry of sufficient magnitude to warrant the invention of costly and elaborate machinery; but if the reader will call to mind the thousands of uses to which these receptacles are now put, and further, that their employment is constantly increasing, it will be evident that a quicker means of production than hand labor has long since become necessary. If any one ever writes the history of paper boxes, he will find that, during the last three years, they have found a variety of new uses. Confectioners have almost abandoned the time-honored cornucopia for holding candies. Oyster saloons hang out the seductive sign: "Take home a fry in a box;" and even "stews" are now transported in cylindrical boxes of thick waterproof paper. Ice cream frozen hard and packed in paper boxes, is sold in the lobby of the opera and taken home from the confectioners, in place of candy, to the little ones. Retail dry goods dealers have lately adopted the box wherein to envelope small articles; and instead of becoming loaded with bundles of varying sizes, the "shopper" now carries her purchases in neat cases suspended by ribbons from the arm. The grocer ingeniously conceals a bottle in a case, which the purchaser takes with him unsuspected by the passers as to its contents. Besides, boxes, as Mr. Darwin puts it, have "differentiated." The old wall paper covered band box has become practically extinct, like the dodo, and instead, we have a neat light case, square or conical in shape, and stiffened with wood or wire. Look at the ingenuity expended in making paper collar boxes look like something else. Fig. 1.

Some of them are in the shape of miniature Swiss chalets; others resemble dressing cases and have looking glasses and pincushions within. Hair pin boxes furnish a field for similar endeavors; and jewelers' boxes are often marvels of delicate paper and velvet lining.
In Fig. 1, which we take from Knight's "American Mechanical Dictionary,"* is shown how some of the different forms of boxes are made. In producing a pill box, paper from a coil is wrapped around a former, making a cylinder of a thickness depending upon that of the paper and the number of plies. The inside surface of the paper is coated with paste, and thus the joint is made. Such boxes are completed by pushing a disk of paper into the cylinder. The lid is but a shallow box, a trifle larger. Such boxes are also made by coiling a wide sheet of paper on a mandrel in the manner described, and then cutting it into lengths as desired. Lids are made in the same way. Colored boxes are made by an outer ply of colored paper. Such boxes are also made by machinery. In one mode of covering, the strip which is to cover the cylindrical portion has gored margins, which lap over upon the bottom of the box or the top of the lid, as the case may be, and match together.
Boxes are also made from a roll of paper, which is bent over into shape, cut off, the bottom folded in against a former, the contacting portions being pasted in transitu: also of paper or pasteboard cut from the roll, shaped, and secured by rivets or staples, and also from blanks of the required size *Published by Messrs. Hurd \& Houghton, New York elty.
and shape, the machine taking them from the pile, shaping
and fastening the parts together, as will be described further on. $a a^{\prime}$ are, respectively, a blank and a box made therefrom, the scale of the latter being enlarged somewhat. With the exception of two slight gores on the edges of the lid flap, no portion is wasted. Some portions of the box are double and others treble. Parts secured by paste or rivets.

Fig. 2.

Hatfeld's Paper-Box Machine
$b b^{\prime} b^{\prime}$ show a round box and the metallic fastenings which hold the lapped portions. $c c^{\prime}$ are the plan of the pattern and the folded box with a tuck and keeper. $d d^{\prime}$ illustrateanother mode of shaping and folding. $e e^{\prime}$ is still another, with a lapping lid. $g g^{\prime}$, a paper box with dovetailing angles. $h h^{\prime}$, the plan of a blank and the box made from a similar large blank. i is a box made from a circular blank, cut on the principle of i^{\prime}, but of larger size. $j j^{\prime} j^{\prime \prime} j^{\prime \prime \prime}$, Heyl's box, whose overlapping pasteboard flaps are secured by rivets.
Seamless paper boxes, lamp shades, hats, and other hollow articles of paper, are made upon formers which are dipped into the pulp; the latter collects on the reticulated surface by means of a partial exhaustion of the air from the interior of the former, the air being withdrawn through an elastic pipe communicating with a bellows or cylinder.
The water being drawn through the perforations, a film of
 or disk.
On the end of the shaft, a, is an expanded head, d, formed in segments, which are pushed radially outward by links operated by a lever and arm.
f is a tube containing the bottoms of the boxes; these are pressed by the follower, g, kept in contact therewith by a cord and weight, $h ; i$ is a plunger cut-off by which the bottoms are pushed down one by one into contact with the follower, k. This is advanced by a lever, l, operated by the hand-lever c through the medium of the rod, m; o is a treadle connected by cranked arms and rods to the rock-shaft, p, of the lever, l, and to the arm of a lever having a divided head in which a roller is journaled.
The head, d, is rotated by the pulley, r, on its shaft, and the treadle depressod; this throws the roller out of contact with the expanding head, d, and also partially rotates the rock-shaft, p, throwing the latch, l, into position to engage the plunger-rod, k. A box-body is slipped over the expanded head, which is then expanded. The lever, c, is depressed, thrusting out the disk within the expanding head and bringing it into position to receive one of the bottoms which has been pushed down by the plunger cut-off, i. By an upward movement of the lever the box-bottom is pushed into contact with the disk, which, by the same movement, is withdrawn and brings the bottom into contact with the box-body on the expanding head; a slip of prepared paper, pasted on one side, is applied to the junction, the treadle is released, bringing the roller in contact with the side of the box, the rotary movement of which winds the strip around it, where it is fixed by the roller and vibrating fingers on an eccentric.
GATES' MACHINE,
shown in Fig. 3, is for making rectangular boxes. The paper web from the roll, a, passes between the rollers, $b c$, by the upper one of which paste from the trough, d, is applied to its edges. It is then carried forward by the feed-rollers, $e f$, and the necessary slits cut by a vertical ly reciprocating cutter, after which it is subjected to the action of a plunger, h, which shapes it by forcing it within one of a series of moulds, i, on an endless chain, k, advanced intermittingly by a pawl, l, operated by an oscillating lever from the driving-shaft. The boxes are carried around by the endless chain until they successively arrive in a sufficiently dry condition at a point over an aperture, where they are forced out of the molds by a vertically reciprocating plunger, w. Fig. 4 is

JAEGER'S MACHINE.
In this an address or label is imprinted and the box cut out and formed at one continuous operation. The paper passes first between the impression roller, a, and the type-roller, b, which is upplied with ink from the trough, c, by inking rollers, d.
Circular knives and creasers on the roller, g, cut it into the shape shown on the plan view during its passage between that and the roller, i. Paste is applied to its edge by the rollers, $k l$, in con nection with a smaller roller not shown. Proceeding onward, two of the flaps are turned up and secured by pivoted wings, $m n$, the other two being similarly treated by other wings, leaving the end flaps to be folded in by hand.

The Reproduction of Steel Engravings by

 Photography.The photo-engraving process has lately been brought to a wonderful degree of perfection. Not content with reproducing the coarser lines of wood-cuts and pen-drawings, the Photo-Engraving Company of this City have recently prepared pulp adheres to the surface of the former, which is then plates from fine steel line engravings. The result is certain raised from the vat, and, the coating of paper pulp being removed and dried, forms a seamless article which requires no further manipulation for most ordinary purposes, but for ornamental uses may be covered wholly or in part with a second coating of colored pulp, and embossed or otherwise or namented by stamps, swaging, or perforation.

Fig. 4.

Figs. 2, 3, and 4 are machines for making boxes from the roll or from blanks of paper.
hatrield's machine.
Fig. 2 is designed for attaching the bottoms to cylindrical paper box bodies previously formed by another machine. The shaft, a, is hollow, and through it works a spindle, ope-
ly remarkable. Several impressions now before us, printed on heavy paper, present a depth of color, crispness and brilliancy of line, and absence of blur, which would enable them to be readily mistaken for impressions from the original steel plates by any but an expert eye.
This is not the first time that attempts have been made to reproduce fine artistic work in a similar way ; but the preceding efforts have not as a rule been satisfactory, inasmuch as the qualities above-noted, which constitute the valuable characteristics of an engravins, have not been reached. The public may congratulate itself on work of this kind. We sadly need art education in this country ; and the popularization of admirable artistic productions, by placing accurate copies within reach of straitened pockets, is well calculated to foster a healthy and valuable taste for art.

A Safeguard Against Rats.

Rats are accomplished rope-walkers, and are able to make their way even along very small cords. Consequently so long as they can mount upon the lines, nothing edible suspended therefrom is safe from their attacks. A correspondent of the Boston Journal of Chemistry uses wires, upon which circular pieces of tin are strung, and hangs his meat, rain, etc., between the tin pieces. The rats cannot pass the tin circles, because, as they attcmpt to climb over them after walking out on the wire, the pieces revolve.

Dyeing light rose.-For 22 lbs. fabric, use $10 \frac{1}{2}$ ozs. oxalic acid, $5 \frac{1}{4}$ ozs. tin crystals, $\frac{8}{4}$ oz. cochineal. Boil, cool, nter and dye at a boil. Both dark and light rose shades are much better produced with eosine. For dyeing chamois on flannel, dye as for light rose, and add for 22 lbs . fabric, from $\frac{1}{3}$ to ${ }_{\frac{8}{4}}^{8}$ o7. flavin, according to shade.

IMPROVED ICE CREAM PREBTER.

In making ice cream without machinery, it is always found necessary, after the freezing begins, to beat the cream with a paddle by hand. This facilitates freezing, and at the same time secures a smooth and uniform congelation. In machinery for freezing cream on a large scale, it is desirable that this beating be done automatically, and the closer the action of the paddle imitates the movement imparted by th action of the paddle imitates the movement impa
hand, the better. In the apparatus illustrated hand, the better. In the apparatus illustrated
herewith, the above is accomplished by simple mechanism; at the same time, there is improved machinery for rotating, and scraping the interior of the freezing can, the whole being so constructed that a large quantity of ice cream of excellent quality may be quickly produced by a mall expenditure of power.
The machine consists of ice tub, can, scraper to remove the cream from the sides as it freezes, the paddle, and the lid. The tin scrapers, at tached at A, are bent to conform to the shape of the can, so as not to bear hard on the metal and thus scrape off the tin. The paddle, B , is a bar of galvanized iron, having a tin blade protected by a wooden point. The lid is of iron or, tin with apertures at the flange, so that it may be placed over the scraper supports. The cream, being suitably prepared, is placed in the can, and the tub is filled with ice and salt. The scrapers are inserted in place and the lid is attached. In the side of the tub is cut a recess, through which a pinion on the vertical shaft, C, enters, and engages a circular rack on the can. When these parts are brought into gear, the tub is held in parts are brought into gear, the tub is held in
place by the pin, D . The vertical shaft, C , is place by the pin, D. The vertical shaft, C , is
now rotated by bevel gear connected with the now rotated by bevel gear connected with the
main horizontal shaft, which last is turned by main horizontal shaft, which last is turned by
the crank shown. The can is thus revolved until the cream becomes quite thick. The pad dle, which is secured to the disk on the left, is now thrown into operation by the lever, E, on moving which gearing connected with said disk is engaged with gearing on the main shaft. The oscillations of the paddle are continued until the cream becomes stiff and hard. The can is open during the entire operation, and hence its contents are always under the eye of the operator. The inventor states that a boy of 14 years alone can easily make 30 quarts of ice cream at a time without assistance. The cans may hold from 12 to 40 quarts, and there is no churning of the cream into butter by this apparatus, which may be operated by steam, if desired.
Patented through the Scientific American Patent Agency, August 15, 1876. For furtherinformation relative to building machines on royalty, etc., address the inventor, Mr. C. L. Dexter, 245 South 15th Street, Philadelphia, Pa.

IMPROVED PORTABLE GANG SAWMILL
In the machine herewith illustrated, a series of vertically In the machine herewith illustrated, a
reciprocating saws cut, simultaneously, a number of boards from a log. It will be remembered that the old form of gang saw embodies but a single gate the saws in which, of course, act upon the \log only in one direction. In the present apparatus, two gates are employed, each carrying a number of pairs of saws, the pairs in one gate being arranged in alternation with those in the other. Th teeth in the alternate saws in each gate are oppositely directed, so that one set of saws is always acting during each part of the stroke. The gates counterbalance each other, and in this way, it is claimed, the troublesome springing and trembling of the \log (which often occurs when a single gate is used), are entirely avoided. An other new feature is found in the reversed blocks, which are fitted to notches at the ends of the saws, and by means of which the distance between the saws is regulated Screws passing through said blocks are provided for tightening the blades. The log carriage is constructed in the usua way, and is provided with head blocksand dogs for engaging the log between each pair of saws, so that the latter may run completely through the log and leave no stub. The feed motion is adjustable as to rate of feed, and the usual friction apparatus is provided for carrying the carriage quickly back.
The important feature of the machine lies in the arrangement of saws. The two gates, A and B, are similar, and both slide upon ways in the main frame. On the cross-bars of the frames are projecting studs, which support the saws ; each pai of blades is connected at the bottom by means of a pin, which is drawn against the under side of the stud by the straining device. The latter consists of a reversed block, the lugs formed on which are fitted to notches cut in the edges of the saw. A screw passes through the block and bears
on the projecting lug on the cross-bar beneath, so that, by turning said screw, the pair of blades is quickly stretched lainly sererse direction of the teeth of alternate saws urned toward the front of the machine.
A shaft, journaled in the bed-piece, carries, at each end, similarly arranged double cranks, C, the wrist pins of which are placed diametrically opposite each other. D are rods

DEXTER'S ICE CREAM FREEZER.
which connect the pins with studs that project from the gates. By this ingenious mechanical device, the cranks impart, as they rotate, a reciprocating motion to the gates.
The saws that cut down are overhung at the top, while those that cut up are overhung at the bottom, so that there is always a clearance for either set. They are also so ad-

Among the advantages claimed is, that long and slender logs may be sawn without difflculty, as the force is equally exerted from above and below. Owing to the absence of jaring, the speed may be increased; and the strain on the frames being lessened, the latter may be much lighter in construction. The inventor informs us that, by this machine, he can saw 2,000 feet in 10 hours with the same power that is required to drive a 52 -inch circular saw, and that a saving of 20 per cent. is effected over the latter in saw kerf and slabs. The width of the kerf of each saw is only one-third that of a circular saw. He further states that a machine heavy enough to saw a 3 -foot log, will saw equally well three 1 -foot logs simultaneously
Patent pending through the Scientific American Patent Agency. For further information relative to sale of rights, etc., address its inventor, Mr. D. J. Marston, Amesbury Mills, Amesbury, Mass.

A Valuable Opportunity for Inventors.

A Valuable opportunity for Inventors.
The object of the French Societé ${ }^{\text {d'Encourage- }}$ ment pour ${ }^{l}$ Industrie Nationale is indicated by its name. It was founded in 1801 for the purpose of fostering improvements in all branches of French industry ; and to that end it causes all new inventions or processes submitted to it to be examined by the ablest scientists, and reports prepared, which are published in its monthly Bulletin of proceedings. The society awards medals and money prizes for inventions of superior value, and distributes medals and other honors to operatives in manufacturing establishments who become distinguished for good conduct and ability in their trades. Lastly, it furnishes the workman who has conceived a valuable invention, with the means of developing and patenting the same, and of paying the subsequent taxes imposed by French law ; and it also extends aid, pecuniary and otherwise, to inventors who, by reason of age or infirmities, become unable to support themselves. The society is under Government control, and directly under the supervision of the Minister of Agriculture and Com merce. It derives its means from bequests and foundations, subscriptions of members, Government subsidies, etc., and it extends its aid to inventors and workmen wholly gratuitously.
We review the features of this very admirable institution thus in some detail in order that the nature of the offers which it has lately made to 11 inventors may be fully understood. These offers are embodied in a recently published programme of prizes and medals to be competed for and to be awarded during the years 1877 to 1882 inclusive. The programme was prepared by committees of scientists of the highest ability, and it embodies suggestions for forty-two inventions and discoveries

MARSTON'S PORTABLE GANG SAWMILL. over the world as in France in particular. The sum of $\$ 21,000$ is offered in prizes. It will be perceived, however, that the intrinsic value of the awards is the least incentive, and that a much greater inducement is offered by the fact that the successful inventor in any one case will receive the indorsement of the society, and will have his production placed before the French people, indeed before the whole world, in a way that is likely to secure its substantial success and create a ready market for it everywhere.
The list of inventions required is much too long for publication here; and in this connection we can only state that it calls for a new domestic motor, a light weight steam engine, new alloys, new utilizations of minerals, and waste substances, new modes of preserving meat, and so on through the several departments of science. Prizes range from $\$ 1,200$ to $\$ 100$ for each invention, and in some cases, inventors will be assisted during the progress of their investigations. We shall publish the whole programme in the Scientific American Supplement, giving the names of the inventions desired, the prize to be awarded to each, and the period by which each must be ready for entry for competition. To each requirement is also added a brief review of the conditions which render the invention necessary, and a host of valuable suggestions, pointing out what means are now available for the work, and in brief, giving just such hints, from those familiar with the particular industry referred to, as will enable the inventor to set about his investigation in an intelligent manner. The programme will extend through three numbers of our SUPPLEMENT, beginning with the issue of the present week, No. 53.
The central spire of Rouen Cathedral, France, has just been completed. It is 492 feet high, and is of cast iron.

A COLOSSAL AQUARIUM.

M. Toselli, whose ingenious grappling irons and other marine apparatus we have frequently described, has devised an ingenious and novel plan for exhibiting his inventions under conditions of actual use, and in connection with a mammoth aquarium to be erected at the French International Exposition of 1878. He proposes to erect a circular iron edifice, some 32 feet in height, by 60 feet in diameter. In this will be a huge tank, which will be furnished with rocks and marine vegetation, and will contain a large number of fish of all kinds. On the sides of the tank, are to be inserted powerful lenses, and the annular space between tank and building will be divided into galleries, so that visitors in each gallery may look through lenses and thus view submarine life at various depths. In the tank will also be placed M. Toselli's submarine mole, a curious invention somewhat analogous to the diving bell, but which carries its own air supply and is capable of locomotion and also of illuminating the water in its vicinity by means of the electric light. After viewing the descent of this apparatus from the upper gallery, the visitor is to be conducted to the gallery next below. This corresponds to a descent of about 10 feet below the surface, at which point the water still retains its blue color. On the next floor below, a depth of 22 feet is reached, and here the water becomes green, the summits of the rocks on the bottom become visible, and the motions of the huge fish can plainly be followed. On the lowest floor, the visitor will be able to see the interior of the submarine mole as it rests on the bottom, and at the same time will view the sponges, corals, and other inhabitants of the ocean bed illuminated by the electric light.
M. Toselli will occasionally wreck a small vessel loaded with ten tons or so of stone, allow her to sink and then will raise her again by a new automatic apparatus, which he calls the air-hydric chain. Visitors will also be carried down in the submarine mole, which is large enough to accommodate four persons. The general construction and disposition of the tank and galleries will be understood from the annexed sectional view of the building, which we extract from the Revue Industrielle.

a Cunning old Fox.

A farmer near York, Pa., says the Daily of that town, recently set a trap to catch a fox which was making severe depredations in his hen roosts. At each of fourteen successive visits, he found the trap sprung, a stick of wood between its jaws, and the bait eaten up. The circumstance, so often repeated, surprised him. There were no other tracks to be seen but his own and those of the fox, and who sprung the trap was a question that puzzled him sorely. By continuing to rebait his trap he hoped to catch the author of the mischief. On the fifteenth night he found a fine old fox hung to it by the nose, and in his mouth was astick of wood.

THE TOBACCO PIPE FISH.

In the remarkable tube of fishes known to zoölogists as fistularida, the snout is greatly prolonged as in the centriscidse or spike-bearing fishes, and it bears the mouth at the end of a long tube. The body is long and snakelike, and there is no long spine to the dorsal fin. One of the most singular members of this family is the tobacco pipe fish shown in our engraving ; it is found in many parts of the tropical Atlantic. The body is without scales, and the tail fin is deeply forked, the two central rays being sometimes united and prolonged into a lengthened filament, and at other times being separate, but still elongated. The outer edge of the tube is either smooth or very slightly notched. The color is greenish-olive and the upper The color is greenish-olive and the upper
parts of the body are marked with blue parts of the body are marked with blue
streaks and spots. In some specimens streaks and spots. In some specimens
of this curious race, the back takes a red dish brown hue.

Iron Pyrites-6"Fool's Gold."

The name pyrite is derived from pur, fire, and originally referred to the sparks produced by friction with steel. Pliny mentions several varieties of pyrites, and among them there is a kind resembling brass or copper ; this was, in all probability, the substance now known as pyrites. But with it were confounded copper pyrites (chalcopyrite), marcasite, and pyrrholite, none of which produce sparks.
Pyrites occur abundantly in rocks of all ages, from the oldest crystalline to the most recent alluvial deposits. It usually occurs in small cubes, but sometimes in nodular or concreted masses, often radiated within. It is found both
stalactitic and amorphous in form and veins, in clay-slate,
argillaceous sandstones, the coal formation, etc. Cubical crystals of gigantic dimensions have been found in the Cornish mines, England, the island of Elba, and elsewhere Nickel, cobalt, thallium, and copper sometimes replace a little of the iron in the pyrites, or else occur as mixtures and, in auriferous districts, gold is sometimes present: distributed invisibly through it. Yellow and white or magnetic (marcasite) iron pyrites are dimorphous forms of the bi sulphuret of iron $\left(\mathrm{Fe}_{2}\right)$; the first named is the most common of crystallized minerals. When in the form of minute scales it is very often taken for gold, although it is considerably lighter in color. It is nearly as hard as flint (from 6 to 6.5), of a pale brass yellow, nearly uniform in color; it is
times been employed as jewelry. It forms very beautiful imes been employed as jewerry. It forms very beautiful
ornaments; but the polished surfaces do not hold their lustre and brilliancy very well, unless protected by a fllm of varnish from contact with moist air. The compound is not worth working for its iron.
This pseudo gold, from its wide dissemination throughout the earth's crust, has caused more high-flown hopes and disappointments than any other mineral known to Science. From what has been said, it is obvious that the most elementary acquirements in the science of chemistry or metallurgy would suffice to dispel at once these delusive hopes. By the use of the true philosopher's stone, applied chemistry, thoughtful and enterprising investigators have at last succeeded in transforming even the common pyrites into gold, by extracting the useful constituent, sulphur. In view of the deceptive and pretentious appearance of pyrites to the eye of the unlearned, it has been well said that no more appropriate title could well be attached to the mineral than that by which it is most commonly known - "fool's gold."

Curious Inter-Fertilization of

Pear Trees.
A curious instance of natural mingling of species recently came under our notice, which offers a valuable hint to fruit growers. In an enclosure some 50 feet wide by 150 feet long were set out, about nine years ago, a number of pear trees. Several varieties were in cluded, notably the Bartlett, Sheldon's, Flemish Beauty, and other fine species, together with three or four trees which bore coarse, late ripening winter pears, scarcely fit for anything but cooking purposes An the trees bore abundantly; and until the ast two years the pears of each variety showed no change Recently, however, and in a more marked degree during last summer than during 1875, it was found tha all the fine pears were slowly becoming of a single hybrid species, or

HE AQUARIUM FOR THE PARIS EXPOSITION. 1878.

presented by the formula $\mathrm{Fe} . \mathrm{S}_{2}$, and consists of sulphur 53.3, \quad rather series of modifications, of the winter pears. The ron 46.7 parts in 100 . Iron pyrites are chiefly prized as artletts especially are showing the characteristics of the source of sulphur for making sulphuric acid, alum, Sp ansh brown, and copperas (sulphate or iron); and immense quanbrown, and copperas (sulphate or iron); and immense quan-
tities of it are used in the arts for dyeing, etc. The sulphide is subjected either to a process of roasting or to slow oxidation (fermentation).
In Nature, pyrites readily change to sulphate of iron by oxidation, some sulphur being set free, also to limonite (on the surface), brown clay, ironstone (sometimes in concretion ary nodules of brown and yellow ochre), and afterward throughout by the action of soluble bicarbonate of lime, which carries off the oxidized sulphur as sulphuric acid, with which the lime forms an almost insoluble salt. This salt is gypsum, the source of plaster of Paris. The limonite changes to red oxide of iron.
If a small fragment of pyrite be placed in a small narrow glass tube, closed at one end, and gradually heated over a spirit lamp, or in a Bunsen flame, a rapid decomposition will ensue; and the cool portions of the tube will immediately become encrusted with a sublimate of yellow sulphur. If, after subjecting the test fragment in the tube to the influence of the hot flame for a few minutes, and removing it from the tube by breaking the glass, it is presented to a small magnet winter pears in a remarkable manner, and the "puckery" winter pears in a remarkable manner, and the "puckery"
taste of the latter is especially observable. It is curious that the active part is taken by the winter pears in influencing the others, while they themselves, as yet, show no modification. The question is, how could the winter pear exert this predominating influence, not only over the trees in its immediate neighborhood, but over others at the opposite end of the enclosure. It is, of course, probable, that while the trees were in blossom, the pollen of the winter pear flowers was transported to the flowers of the other trees. The phe nomenon is in any event doubly suggestive : first, in that it is an instance of a new species being gradually formed by the action of Nature ; and second, in that it indicates to fruit growers the danger in placing fine pear trees in proximity to those of inferior variety.

Human Leather.

The question is whether, in this age of utilization, we are going to allow the bodies of the dead to remain unutilized. Although the majority of mankind will doubtless promptly dispose of this not over agreeable consideration by an unequivocal affirmative, two shoemakers in this city think
 otherwise ; and they exhibit a handsome
or vertically poised compass needle, it will be found to have become possessed of strong magnetic properties. This is due to the artificial formation of magnetite (lodestone), a compound containing both the protoxide and sesquioxide of iron. If a fragment of pyrite be subjected, on a piece of charcoal, to the inner flame of a blowpipe, the blue flame of burning sulphur will be readily recognized, accompanied by the pungent and characteristic odor of sulphurous acid gas, which is evolved in large quantity from the burning sulphur. The residue, like that in the former experiment, will be fouud to be magnetic; but if subjected for a moment to the outer top of the flame it will lose this property, and become completely converted into the red or anhydrous sesquioxide of iron. Polished plates of the concretionary variety, as well as the Polished plates of the concretionary variety, as well as the
small, perfectly formed cubical crystals of pyrites, have at
pair of boots made from human leather in support of their views. The skin was furnished from the front and back of a dissecting room subject, who had died suddenly from accident, and upon whom decay had not yet begun to act. It was placed in a solution of hemlock and white oak barks, and, after the tanning, which lasted three weeks, emerged in the shape of a soft, pliable, light brown leather, like fine calf skin, but more porous. The available skin on a good sized man, says these progressive Crispins, will make the legs and uppers of two pair of boots after allowing for reasonable waste. This is the second utilization that has been proposed.
cremate the bodies in gas retorts, and to The other was to cremate the into illuminating gas, and the bones into phosphates.

Asphalt Tiles.

At the Bavarian Industrial Museum there has recently been exhibited a new kind of flooring tiles made from asphalt, in a very simple way: The drawing of the intended design is first made on coarse heavy paper. Then it is covered with bits of chinaand glass, so as to form a mosaic. Lastly, a bor der is made to the sheet, and liquid asphalt is poured upon t. After the whole has been covered, the paper is taken way with cold water, and the tile is finished. This flooring is said to be handsome in appearance, and to resist damp for an indefinite period of time.

(Continued from jirst page.)

induction valve must, both at the time of opening and closing, be very quick, otherwise wiredrawing inevitably takes place, and this will be evidenced in the rounded corners at each end of the steam line, on the indicator diagram.
It is inherent in simple high pressure steam engines that the power imparted to the driving shaft be variable; because, if we disregard the question of economy, and permit the steam to follow the piston during as large a portion of its stroke as possible, the necessity of having a free exhaust, especially with a high piston speed, demands that the exhaust valve shall open freely before the completion of the piston stroke: while if, on the other hand, we use the steam expansively , the pressure upon the piston (and hence the power communicated by it) decreases from the moment that the induction valve closes until the end of the stroke: in other words, during the whole term of the expansion. It is also found in practice that, even under the most favorable of conditions, the load driven by the engine is variable, and it becomes, therefore, a somewhat complicated problem to devise a mechanical movement that shall sacrifice none of the qualities essential to prevent the wear and tear due to quick motions, that shall establish between the duty and the steam supply to the cylinder are always equal ratio, and which shall, at the same time, maintain a uniformity of engine speed notwithstanding variations in the amount of the duty and in the boiler pressure. In this connection, it may be borne in mind that the variation which may take place in the load of the engine, after the steam supply has been cut off and during the term of expansion, is an element tending to vary the speed of the engine. Nor can this element be counteracted or compensated for, except during the period of admission in the next stroke of the piston. The method which, by common consent, has been adopted to secure economy and regularity of speed, notwithstanding these disturbing elements, is to so attach the governor to the induction valve that the action of the former is communicated instantaneously to the latter, the valve being opencd by a positive motion and closed by the action of the governor.
We present in the accompanying engravings views of the Brown engine; and the means by which the before described functions are performed in this engine, may be thus briefly described: In Fig. 2 is shown the valve motion. The steam and exhaust valves are griddle valves, which ensure a large area of opening in proportion to the amount of movement, and give free ingress and egress to the steam; and this it is which, together with the quickness of the valve movement, secures the sharp admission corner and the freedom of exhaust shown in the indicator cards taken from this engine The valve seats are formed of plates, which may be taken on and off the cylinder; and the part over which the valve trav els is raised so that, to true up the seats, the plates may be taken off, and either filed or planed in a few minutes, the operation making no difference to the height of theslide spindles from the seating, thus avoiding a very common defect while simplifying the operation.
The governor is operated by the cut gear wheels shown, which impart a rotary motion to the shaft, A , which operates the governor and communicates rotary motion to the valve shaft, B. Between these two shafts, however, is the friction device, C, which is so constructed as to permit the shaft, B, to be operated by hand independently of the shaft A: and thus the valve motion may be operated by hand independently of the cut gears, which is a great convenience to the engineer in starting the engine. Upon the shaft, B, are the eccentrics, the ends of the straps of which connect with the horizontal lever or arm, E ; and the end of the latter extends into the square slot in the slide spindle guide to the catch of the tongue. It is obvious then that, as the shaft, B, revolves the end of the lever, E, will reciprocate vertically in the said square slot. Turning now to the valve stem and guide, the valve stem is suttached to the guide, F, and in the slot shown in the latter is a tongue, G, pivoted by the pin shown in the guide. The upper end of this tongue has a projecting catch upon it; and beneath this catch stands the end of the arm, E. Now the induction valve is closed when at the bottom of its travel, and the weight of the valve and stem and the pressure of the steam (acting on an area equal to the area of the valve stem) are, combined, always acting to keep the valve at the bottom of its travel, that is, in its normal position; and there it remains until lifted for the admission of steam. The manner of effecting this admission is as follows: per end of the arm, E, acting against the catch on the upslide spindle guide F, lifts thed in the slot shown in the long as the tongue is not tripped. The instant, however, that the latter action takes place, the valve, from its weight and the action of the steam upon the area above mentioned, closes, the movement being cushioned after the valve is completely closed by means of the small dash-pot shown beneath. It is evident then that, by regulating the eccentrics, the valve may be given any desired amount of lead, and that the duration of the period of admission may be varied by tripping the tongue before referred to; and this is accomplished by the engine governor in the following manner: The governor acts upon the rod, N, shown in our engraving, the end of the governor spindle being attached to a crank arm attached to the rod, N. Upon this same rod, and immediately behind the induction valve spindle guide, F, is an arm, standing vertically and carrying a pin, H , standing horizontally. Now the tongue, which, at one end, acts as a catch to the eccentric arm at the other end, protrudes from the back
bove mentioned pin; so that, when the rod, E , lifts (throug the medium of the tongue catch) the induction valve, the lat ter continues to lift until the tail of the catch, G, contacting with the pin, H , thus tripping the tongue; and the valve in stantly closes, returning to its normal position. The action of the governor, then, by controlling the position of the tripping pin, H , controls the period of steam admission, the movement being performed without the interposition of eith er springs or weights. The exhaust valves lie horizontally and are operated as follows: Upon the shaft, D, are the discs, J , which are provided with cam grooves. The rocker arm, K , carries a friction roller extending into the cam groove, the upper arm, L, being attached to the exhaust valve spindle. To compensate for the circular motion of the arm, and the vertical movement of the valve spindle, the connection between the two is made by the eye of the spindle, containing a slot, in which is fitted a sliding die to which the pin of the arm is fitted. To regulate the amount of compression, it is merely necessary to adjust the position of the disc. The parts composing the valve motion are simple and plain, involving, it will be seen, no intricacies; and they are easily accessible. The pins and bolts, as also the eyes of all pivoted parts, are made of steel, and are hardened. The rods, A and B, are of steel. The slide spindles and stuffing boxes are of brass, so finely fitted that they are steam tight from the fit without the aid of any steam packing whatever; and it is stated that some of these spindles thus fitted have run a year without requiring any packing. The piston rod and connecting rod are of steel; the crosshead is provided with brass gibs, which are adjustable to take up the wear by means of the check nuts shown. The crank pin and crosshead pin, and all the bolts, nuts, pins, and studs about the engine, are of steel.
The workmanship upon these engines is, both for fit and finish, of the very first order. The joints of parts fitted together cannot be distinguished, nor can the seating of the nuts against the cylinder cover washers be defined by the eye. The whole of the working parts are finished and have a polish upon them equal to silver plating. The governori of the ordinary fly belt type, and is, for security and safety, enclosed in a polished cast iron casing.
The indicator cards, taken from each end of the cylinder show the admission and steam lines to be notably perfect, with the corners fully and sharply defined; while the exhaust and air lines are one, at all times when the cut-off takes place so late that the expansion curve does not pass below the atmospheric line.
One of these engines supplied the motive power for the Sawmill Building at the Centennial, and received the high est award in the form of a medal and a special judges' report. Another drove part of the machinery at the recent Americas Institute Fair, and was awarded the coveted Centennial gold medal. For further particulars, address C. H. Brown \& Co. Fitchburgh, Mass.

practical mechanism.
 by josieva ros
 Skcond Serims.-Number XVII.
 pattern making.

We need not dwell upon the half core box, which is necessary for this pattern, if the branch stands at a right angle to the body, or the full one, necessary if it is required to stand obliquely. When the body of the T is much larger in diameter than is the branch, we may joint the two in a simpler way, which, so long as it does not entail a great weakening of the body, will be found more advantageous than the method described. This simpler method is: Having found the amount of the length of the branch necessary to allow for curvature of the body (by the process shown in Fig. 116)

we turn upon the branch end an additional projection or stem, as shown in Fig 124, somewhat smaller in diameter than is the branch itself; and we then cut in the body a re cess to receive the branch and turned stem or projection, which recess may be either cut out with a gauge or turned out in the lathe, the latter being, for obvious reasons, the best method. For this latter operation, we take a chuck

and having verified that the point and the face of the chuck of the two V , we draw a centre line across it, set the apexe them. Having marked upon the body the centre of the branch, we find a point diametrically opposite to it upon the ody, and place the body so that the steel centre point enter the point so found at the same time as the body rests in the
V's. We then fix it in this position, by thin straps of hoop-
iron, or any other contrivance that will not project so as to prevent the lath rest (or tool rest, as it may be more properly termed) from being brought close to the work. The work must be securely screwed to the chuck, on account of the high velocity of the lathe in turning. To cut out the recess, we commence by placing a centre bit in the back lathe cenre, and boring a hole, as large as convenient and very nearly to the required depth. A screw bit is not available for this purpose, for it would in many cases be right through he work before there was time to stop the lathe, which is not usually sufficiently under control. We may next take a turning tool, and turn out the recess to fit the end of the branch; and after taking the job from the lathe, we fasten each half of the branch by glueing and screws. In connoction with this method, there is yet another advantage: it is that, by cutting away the body instead of the branch, it renders us indifferent as to whether the shape of the body be spherical, as in a globe valve, or elliptical, or even vasehaped: because, in this case, the shape adds nothing to the difficulty of the job. Should it occur that one end of the T is larger than the other, we may find the height necessary or each of the V pieces (whereon the body rests during the turning process) as follows : Draw upon a piece of board, the line, A D, in Fig. 126, which will represent the plane of the chuck; and let the point, C, represent the centre point of the lathe. Then, from C, we square up the line D; and we set the compasses to the radius of the body of the pattern at the centre of the place where the branch is to be. We take a radius from C, and about $\frac{1}{16}$ inch up from the line A B, and with this radius, we mark on the line \mathbf{D}, the point \mathbf{E}. From this point as a centre, we strike the axes, E and F, whose radii correspond to the unequal sizes of the pattern where the V's are required to be. Then we draw tangents to each of these arcs, and complete the forms of the V blocks, as shown in Fig. 127, in which half of each V block is shown.

We have now to make a core box for our T; and for clearness of illustration, we will make the drawing somewhat larger than those for the \mathbf{T} itself. Fig. 127 represents three views of the core box; that portion which projects below the line, at B, may be made separately, and need not therefore be given any consideration. Having drawn the plan of the box, as shown in Fig. 127 at 1, we draw the end and side views, as shown at 2 and 3, and divide these latter into courses of a thickness to suit the stuff at hand from which the core-box is to be made. The courses may be made of equal or unequal depth. Courses 1 and 2 are got out of the full size of the box, while courses 3 and 4 must be of the ength of the box, but their width will differ according to he curvature of the half circle of the core, as shown in Fig, 127 , at 2 and $3 ; 5$ and 6 will be similar to 3 and 4 , and may be marked from them. All these pieces must be planed to a true surface and glued together, each course being allowed to dry before the next one is put on; but for greater expedition, nails, in addition to the glue, may be used, in which case care must be taken that they do not come so close as to interfere with the cutting out of the half circle. The part, A B, if very short, say under 3 inches, may be made in one iece; but if over 3 inches and not over 6 inches, we take wo pieces, of the required length and width, and of half the hickness, and chuck them in the manner previously explained for making flanges in halves; then we place the work in the lathe, and bore a hole for the core, then take them from the chuck and glue them, first together and next to the body of the core box. We next turn the body part of the core to a semi-circle of the required size, and all that will then remain to be cut is that part of the branch that is above the line A B. If, however, the part below A B, in Fig. 127, should be required still longer, then it had better be built up

Fig. 128 .

in the same manner as the other part. The lengths of the pieces forming the courses will be the same, and may be measured on Fig. 127, from A B, outwards. The widths will differ and may be measured from E or F , inwards This separate portion, from the grain of the wood being enduric, cannot be firmly fixed to the main body of the box with glue; we must, therefore, in addition, place battens below the box, and let in pieces of hard wood or metal alove, as represented in Fig. 127, at G and H.

Our fourth example is a double fianged pulley, shown in division, as shown at A, which must be made a little larger section in Fig. 128; and our first consideration is how it shall be moulded. It evidently should lie in the sand in the position shown in Fig. 129; but it will be observed that the sand is confined between two flanges, rendering it practically impossible to retract the pattern from the mould, if it is made in one piece. We say, practically impossible, meaning that it cannot be done economically; for strictly speaking, an expert moulder with every requisite appliance, can mould almost anything, as any one will conclude who examines the various works of art in bronze which appear in art exhibitions and elsewhere. Our pattern must, for ease of mould ing, be made in two parts. If the disc (or spokes, if it be a spoke-wheel) be sufficiently thick to allow it, the division may be made at the centre, that is to say, on the line A P, in Fig. 128. The operation of the moulder may be understood

from Fig. 129, three distinct beds of sand being necessary It may be that a part of a flash is used for each bed, or it may be arranged as shown in Fig. 129, it being a matter of indifference to the pattern maker. In either case, however, draught should be allowed both inside and outside, that is to say, both the interior and exterier diameters of the pattern should be made smallest at the line of parting, the diameters increasing slightly as they approach the flanges. The hubs also should, in like manner, be slightly tapered. Inside sharp corners should be avoided; they should, in fact, always be rounded by cutting them out with a round-nosed tool To construct this pattern, we proceed as follows: For a small pattern, we take two pieces, somewhat thicker than half the thickness of the finished pattern, and large enough to allow for turning. We then chuck' them, as shown in Fig. 130, and turn them up. The recesses shown at the centre by the dotted lines, must be made of
 equal size in the halves of the pattern; and we prepare a chuck with a projection across the centre to fit into the recess, and thus rechuck the pieces and turn out the opposite sides, cutting the hubs out of the solid. We may then fit a plug into the recess in one half of the pattern, and glue it fast, allowing it to project, so as to fit into the recess in the other half; and the pattern is complete, unless the hole in the hub is to be cored, in which case it will be necessary to fix core prints on the top and bottom, in the manner described in our first example.
A useful hint may here be given to the effect that when it is decided to fix prints in the centre of a piece of turned work, a slight recess may be made to receive the print, which is then sure to stand true; and should it at any time get accidentally knocked off, as prints often do, another may be immediately affixed without the trouble of finding the centre. The pattern now supposed to be made, thourh good enough for many purposes, has one great defect which will be readily perceived when we bear in mind our remarks on the properties of timber. It is that it will gradually become oval; and to avoid this, we must

have recourse to what is termed building up, a process whicl must in any event be used if the pattern is a large one. To build up such a pattern, we proceed as follows: After drawing the pulley in section and in plan, as shown in Fig. 131, we divide the whole height of the section into courses, the number of courses being regulated so as to have each of a convenient thickness. It is advisable, however, to have at least two courses in the flange, which will greatly increase its strength. After dividing one of the circles in the plan view into six parts, we draw lines from the points of division to the centre, as shown; and then we make a template of one
han the division, and this forms a template whereby to cut out the segments forming the courses which make up the flanges. A similar template, cut out somewhat larger than the space devoted to B, in Fig. 131, will serve to cut out the sections to be used in forming the body of the pattern. The flanges being made in two courses each, and there being six sections in each course, we shall require 26 pieces of the size of the large template; and allowing each half of the body likewise to consist of two courses, we shall require the same number, to form the body of the pattern, of the size of the small template.

Heating City Houses by Main Pipes.

A paragraph is going the rounds of the newspapers just now, stating that a very novel and at the same time interest ing experiment is soon to be attempted in Lockport, N. Y., by Mr. Holly, the waterworks pump inventor. This experiment is to heat the whole city with steam, after the same manner as it is lighted with gas. Pipes are to run to the different houses, and all the occupant has to do is to turn on a faucet and obtain all the heat he wants.
But unfortunately for Mr. Holly, the idea of heating cities from furnaces is not new. It has been suggested a number of times by different persons, and if we mistake not, Mr. L. W. Leeds, author of a work on ventilation and an engineer, in thissspecialty, tried to organize a company for heating this city by hot air-or steam from furnaces placed in different sections of the city and connecting the heat by pipes to our houses in the same way as water and gas are supplied.

Artificial Butter.

To the Lilitor of the Scientific American

Owing to the receipt of much correspondence concerming my article on artificial butter, which appeared in the Scientific American Supplement, N. Y., Nos. 48 and 49, I wish to state that I own no patent on the process. The only patent held is Mége's, which is owned by the United States Dairy Company, 6 New Church Street. All letters, therefore, should be forwarded to that address. The process I described in my article is simply an elaboration of that patented by Mége, and cannot be used without infringing on the United States Dairy Compan's patent.

Henry A. Mott, Jr., E.M., Ph. D.
New York City.

New Use for Gun cotton

A wad of old gun cotton, the staler the better, is reported by M. Jacquemin to be an excellent test object for adultera tion of wine by fuchsin or orchil. If it be heated with the suspected wine for a short time, it becomes dyed if any foreign coloring matter be present. On moistening the wad with ammonia, if orchil be present, it turns violet; while the fuchsin dye, which cannot be washed out in water, slowly bleaches.

A MICROMETER CALIPER.

In the accompanying engraving we illustrate a valuable workshop tool, the utility of which, as a reliable and convenient substitute for the vernier caliper for all measurements less than one inch, will be at once apparent. The main piece of the caliper is bow-shaped, with a projecting shank a, into which is fitted the screw c, which is accurately cut with a thread of 40 pitch. The shank, a, has a line of graduations of same pitch as the screw, c. The hollow cap, D , which is firmly attached to the right hand end of the screw c, fits upon the outside of the shank, a. One revolution of this cap opens the caliper twenty-five thousandths of an inch. Parts of a revolution are shown on the line of graduations upon the circumference of the beveled end of the cap, d, the value of each graduation being one one-thousandth of an inch in the opening of the caliper. Thus, three whole turns and one fifth of a turn would equal eighty-one thousandths of an inch, inasmuch as three turns equal twenty-five thousandths, and one fifth of a turn (or five of the circular grad uations) equal five one-thousandths, making altogether cighty

one thousandths of an inch. Though graduated to read to thousandths of an inch, half and even quarter thousandths are easily obtained, and measurements are read without the use of a glass. It is provided with screws for adjustment and for holding it securely at any given size. Being made wholly of steel, all the parts are durable, the points of contact also being tempered. It is small, light, well adapted for use as a pocket tool, and will prove invaluable to the better class of machinists and fine tool makers. It is made by the Brown \& Sharpe Manufacturing Company, of Providence R. I.

Dieing cochineal red on flannel.-For 22 lbs. flannel, use 1 lb .10 ozs. oxalic acid, 8 ozs. tin crystals, 2 lbs ozs. cochineal, and $\frac{9}{4} \mathrm{oz}$. flavin are boiled well together, cooled, the goods entered and winced till the desired shade is produced. If a blue tone is required, no flavin is added lout for yellow tones as much as $1^{\frac{3}{4}}$ oz. flavin may he used.

STTRONOMICAI NOTES.

Observatory of Vabgar College.
The computations and some of the observations in the following notes are from students in the astronomical department. The times of risings and settings of planets are approximate, but sufficiently accurate to enable an ordinary observer to find the object mentioned.

Positions of Planets for January, 1877. Mercury.

Mercury sets so much later than the sun in the early part of January that it will probably be seen in the twilight. On January 10, Mercury is at its greatest angular distance from the sun, and can be easily found, some degrees north of the point of sunset. On January 1, Mercury rises at 8 h .41 m . A. M., and sets at 5 h .47 m . P. M. On the 31st, Mercury rises t 7 h .29 m. A. M., and sets at 4 h .28 m . P. M.

Venus.
for in the
Venus must be looked for in the morning. On January 1, it rises at 5 h .11 m . A. M., and sets at 2 h .34 m . P. M. On the 31 st , Venus rises at 6 h . A. M., and sets at 3 h .10 m . P. M.

Mars.

Although Mars differs from Venus only 1h. 22m. in right scension, it rises more than 1 h .30 m . before Venus, because t is in greater northern declination.
On January 1, Mars rises at 3 h .37 m . A. M., and sets at 1 h . 26 m . P. M. On the 31st, Mars rises at 3 h . 18m. A. M., and sets at $0 \mathrm{~h} .31 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.
Mars is now very small, but it can be known among the stars by its being nearly in the same diurnal path with Venus, and about 20° west of that brilliant planet. Mars can also be known by its position relative to the bright star Antares. On January 24, Mars is a few degress north of Antares

Jupiter.

Jupiter can scarcely be seen at all. On January 1, it rises at 5 h .54 m . A. M., and sets at 3 h. P. M. On the 31 st, it rises at 4 h .24 m . A. M., and sets at 1 h .27 m . P. M. On the 31st, Venus, Mars, and Jupiter can all be seen in the morn ing. Jupiter is the farthest south.

Saturn.

Saturn, which has been so well situated for evening obser vers during several months past, now comes to the meridian in the afternoon, and on January 1, is in the southwest when first seen, after sunset. On the 1st, Saturn rises at 10 h .22 m . A. M., and sets at 8 h . 58 m . P. M. On the 31st, Saturn rise at 8 h .32 m . A. M., and sets at 7 h .16 m . P. M.
Low as it is, in the southwest, Saturn, even on January 31, can be seen with small telescopes. A telescope of two and a half inches object-glass will show the curious and wonderful ring, and the largest of its many moons.

Uranus.
On January 1, Uranus rises at 8 h .7 m . P. M. ; and as it is in good northern declination, it can be well seen by 10 h . P M. A telescope of small power will show it round, and like very small full moon.
On January 31, Uranus rises at 6h. 3m. P. M., and comes to the meridian at $1 \mathrm{~h} . \mathrm{A} . \mathrm{M}$. When on the meridian, Uranus is almost exactly in a vertical line with the star Mu Leonis, and 12° below it. Uranus can also be found from the neighbourhood of the bright star Regulus. At the time of meridian of Regulus, Uranus is 5° west of, and 2° above that star.
Neptune.
Neptunes position is good, in the early evening, but only arge telescopes will show it to any advantage.
On January 1, Neptune rises at 0 h .38 m . P. M., comes to meridian at $7 \mathrm{~h} .21 \mathrm{~m} . \mathrm{P}$. M., and sets at 1 h .55 m . the next morning. On January 31,Neptune rises at 10h. 40m. A. M., and sets at $11 \mathrm{~h} .58 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

Sun Spots.

A remarkably large spot, followed by a very small one, and surrounded by faculæ, is observed at the present date, December 17, just coming on.
For a very long time, from November 24 to December 17, the sun's disc has appeared to be free from spots, visible with a glass of two and a half inches aperture.

BOTS.

By Professor C. V. Riley
A correspondent, engaged in the tanning business, asks why " wormals" get into the backs of cattle, and how they undergo their transformations.
Almost all cloven-footed animals, and many other herbivorous species, are infested with bots. These are legless grubs which fall into three categories: 1. Gastric, or those which are swallowed by the animal infested, and which live in the stomach in a bath of chyle. 2. Cervical, or those which crawl up the nostrils and inhabit the frontal sinuses. 3. Cu taneous, or those which dwell in tumors just beneath the skin. They are all the larvæ or early state of two-winged flies (diptera) belonging to the family ostrida, characterized by having the mouth parts entirely obsolete, and popularly called gad flies or bot flies. In the first series, of which the horse bot (gastroplitus equi) is the most familiar example, the egas are attached by the female fly to the hairs of the body, and principally on those parts of the body within easy reach of the animal's moutli. The egg opens with a lid, and the young maggot upon hatching clings to the tongue as the animal licks itself, and is thus carried into the fore-stomach, to which it holds tenaciously by a series of spines around the body, but principally by a pair of sharp hooks at the head. When fully grown, they leave their post with the fæces, burrow in the ground and undergo the final transformation. In the second kind, of which the sheep bot (astrus ocis) will serve as an example, the egg generally hatches
within the body of the parent, and the young grub is deposited alive on the slimy mostrils of its victim. By means of a pair of long and sharp hooks at the head, and of bands of minute spines on the venter, the young grub works its way into the sinuses of the head, and when full grown permits itself to be sneezed out, when it also burrows in the ground and transforms. In the third kind, the parent lays the egg on those parts of the body which cannot well be reached by the mouth of the animal attacked, and the young grub, which soon hatches, burrows into the flesh and subsists upon the pus and diseased matter which results from the wound inflicted and the irritation constantly kept up. The wellknown wormal, or ox bot (hypoderma bovis) so common along the backs of our cattle, and especially of yearlings and two year-olds, and dreaded as much by the tanner as by the animal it infests, is typical of this kind. Residing in a fixed spot, we no longer find in this species the strong hooks at the head, and the spines around the body are sparse and very minute : the parts of the mouth are soft and fleshy.
All these bot larvæ breathe principally through two spiracles placed at the blunt and squarely clocked end of the body, and in the ox bot these are very large and completely fill up the hole to the tumor in which the animal dwells. When ready to transform, it backs out of its residence, drops, and burrows into the ground, and there, like the other species, contracts and undergoes its final change to the fly. The eggs of this ox bot are elliptic-ovoid, slightly compressed, and have at the attached end a five-ribbed cap or stout stalk with which to strongly attach them to the skin of the back.
The gastric bots are best prevented by proper grooming of the horses to remove the eggs or nits from the fore legs-and flanks. Horses, too, that are properly stabled and kept in the shade during the hotter summer months are less frequented by the parent fly. Scarcely any mode of drugging will dislodge the bots when once they are attached to the stomach, without injuring the parasitized animal. Cervical bots are also with difficulty dislodged except when they are fullgrown and ready to naturally let go their hold. Animals may, however, be measurably protected, by enabling them to smear their noses with tar, or by enabling thęm to bury their noses when the parent fly is seeking to deposit. This they will instinctively do if portions of their pastures be turned up and .the ground kept loose. The cutaneous species may be removed by pressure of the thumb and finger, or destroyed by the application of kerosene. If removed while small, the wound in the skin heals up, and no hole will occur in the hide.

Manhattan, Kan.

Domesticating the Buffalo

A correspondent of the Turf, Field, and Farm sends some interesting facts regarding the domestication of the buffalo in Nebraska. He began with two cows and a bull, which he kept with his tame stock. In the spring the cows calved, and in three years the calves became mothers, yielding an an average of 14 quarts of the richest milk daily, for an average of five months. The buffalo strain now extends through a large part of Howard county, in the above State, and the half and quarter breed animals are found to be very hardy
Our contemporary adds, that sufficient experiments have been made in crossing the buffalo with native and grade short horn cattle, and have been attended with such successful results that the most skeptical people cannot fail to be satisfied as to the advantages and value of the intermingling of breeds.

American manufacturers of woodworking and other machinery, who desire to find a market for their products in Europe, are referred to the advertisement of B. Dambacher of Hamburgh, Germany, in another column.

NEW BOOKS AND PUBLICATIONS

Chambers' Etymological Dictionary of the English Language. Edited by James Donald, F.R.G.S., etc.,
editor of Chambers' "English Dictionary," etc. Loneditor of Chambers' "English Dictionary," etc. Lon-
don and Edinburgh : W. \& R. Chambers. New York City : R. Worthington, 750 Broadway.
This very compendious volume is a complete dictionary of the English
tongue, giving the etymology, pronunciation, and meanings of all the tongue, giving the etymology, pronunciation, and meanings of all the
words. The derivations are evidently written by a scholar of the highest attainments, and the significations are given with the nicest discrimina-
tion, showing the wealth of the English la guage, which is, as Macaulay says, " less musical indeed than the languages of the South, but which is, for all the purposes of the poet, the philosopher, and orator, inferior to that of Greece alone." The simpincity and correctness of language in which the
definitions are given, deserve praise, and the meanings of technical
and scientiffcterms are made clear. The typography of this volume is exMandal of the Railroads in the United States for nual of the Railroads in the United States for
1876 and 1877 , showing their Mileage, Cost, Traffic,
Expenses, etc., with an Appendix showing the Debts of
Expenses, etc., with an Appendix showing the Debts of V. Poor.

The nine hundred pages of this volume contain full accounts of the history and present condition of every railroad in this country, the collection and compilation of which indicates the extent of the labor which has been bestowed on the work. It is a book that will prove itself to be of the
The Atlantic Monthly. Subscription price, $\$ 4$ a year.
New York City : Hurd \& Houghton, 13 Astor Place. New York City : Hurd \& Houghton, 13 Astor Place. a prospectus announcing several attractions for the coming yan. Among man. Aldrich, Howells, Clemens (Mark Twain), C. F. Adams, Jr., and others, man. Aldrich, Howells, clemens (Mark Twain), . F. Adams, J ., and others, much interest and value; and the series of portraits, commenced last year
by a likeness of Longfellow, will be continued by one, by the same author by a likeness of Longfellow, will be continued by one, by the same author
of W: C. Bryant. The Atlantic has been in existence for nineteen years, and an index for that period, covering the first thirty-eight volumes, is
in preparation.

Simplified Weights and Measures, on a Natural System
Applicable to Most Civilized Nations. By Louis D'A Applicable to Most Civilized Nations. By Louis D'A tckson, A.J.C.E., author of "An Hydraulic Manual,"
Price, $\$ 1$. New York City: E. \& F. N. Spon, 446 Broome Street
The author of this work has, like many of his fellow laborers, an ease
task before him in demonstrating the inconvenience of the weights and measures now in common use in English-speaking countries; but the difficulty introducing a new one, however reasonable and harmonious in itself. he entirely fails to appreciate. The very little progress made by the French
metric system, which is admirable as a theoretical scheme, and is practically successful in France and elsewhere, should convince advocates of a new methods of the immense task that lies before them when they essay to
assimilate the practice of all countries in the world. But we must admit An Introduction to Qualitative Analysis. By F. Beilstein. Translated by I. J. Osborn. New York
City : Van Nostrand, 23 Murray and 27 Warren Streets.
This useful little manual gives practical instruction by directing the stu-
dent now to make his own researches, commencing with the list of special indications given by common salt, and ending with some of the most com plicated of organic compounds. The instruction contained in it is thorough, correct, and comprehensible
Report on the Transportation Route Along the Wis-
consin and Fox Rivers, in the State of Wisconsin. consin and Fox Rivers, in the State of Wisconsin.
By Gouverneur K. Warren, Major of Engineers and By Gouverneur K. Warren, Major of Engineers and
Brevet Major-General U. S. A. Washington, D. C. :
Government Printing Office.
The n this report wions and surveys for the important investigation 1869. Major Warren reports adversely to the permanent improvement of the Wisconsin River by a system of canalization or rectifleation of its high
andllow water channels, aud recommends a canal along its banks as the andy 1 mew water channels, aud recommen
onlthod of remedying the difficulty.
The 'Useful Companion and Artificers' Assistant, ncluding nearly Six Thousand Valuable Recipes, and a New York City: The Empire State Publishing Company. well arranged, and the recipes and instructions are carried down to the latest date. The compiler has covered very extensive ground, gives his eaders instruction in agriculture, telegraphy, practical mechanics, harmony and counterpoint, book-keeping, photography, billiards, cribbage,
and letter-writing. The chapter on health and medical advice is very full and explicit, and the recipes are judiciously selected from a variety of authorities, native and foreign. This book contains seven hundred pages
of closely arranged matter. Price only 82 . It is probably the cheapest of closely arranged matter. Price only
work of the kind that has been published.
We have another trade catalogue before us, which is suggestive not so much for the manner in which it is gotten u, which is very neat and taste of fine clocks made by Seth Thomas' Sons \& Co., and it exhibits time-pioce in bronze and marble, showing a high degree of art workmanship. The
home manufacture of such clocks-which hitherto we have imported nainly from France-shows how closely we are entering into competition with the countries which have hitherto held almost a monopoly of the art
industries of the world.

We are not sufficiently versed in the inner working of the cork and har (such as firms engaged in other businesses prepare in a simple and ines pensive manner), must be issued in the most elegant style of typography, upon the finest paper and embellished lavishly with costly engravings. Such, however, appears to be the custom; and the large hardware concerns regard, so far as dress goes, as editions de luxe, to be sold at fancy prices by frst-class retailers only. We have just received a supplement to the catalogue of the Hopkens \& Dickenson Manufacturing Company, to which the above description especially applies. It is certain that books of this class
cost a great deal of money, and the simple fact that the trade indulges in uchvery costly advertising, proves that the same must pay. So that, after all, the books are agreeable evidence of a good state of business.

DECISIONS OF THE COURTS.

United States Circuit Court-District of Massachusetts. edwin l. brady vs. the atlantic works.

> Inventions Patented in England by Americans. Air brake.-C. A. Bonton (of N. Y.), London, England. AIr Ejector.-John Y. Smith (of Pittsburgh, Pa.), London, England. ANCHOR.-R. M. Robinson et al., Philadelphia, Pa.
BreEchloading Fire Arm.-W. L. Headley, Brooklyn, N. y. Breechloading Fire Arm. - w. L. Healley, Bro
CAtching Fish. - B. F. Smith et al., Philadelphia, Pa Chandelier, ETC.-J. H. Hobbs, Wheeling, W. Va. Chest Protector.- H. Hayward, New York city, et al. Coal Sieve, etc.-P. Peckham, New York city.
> Cutting Screws, etc.-E. Schlenker (of Buffalo, N. Y.), London, England.
> Exercising apparatus, ETC.-J. D. L. M. Lozier, Orange, N.J.
> Gas Engine Piston.-G. B. Brayton, Exeter, N. H.
Grain Separator.-Howes \& Co., Silver Creek, N. y.
> Grain Separator.-Howes \& Co., Silver Creek, N. Y
> Harvester.-C. H. McCormick, Chicago, Ill. Three patents.
Hat Machinery.-D. Brown, Massachusetts. HAT MACHINERY.-D. Brown, Massachusetts.
Horsestien Macine, etc.-J. R. Williams, Pittsburgh, Pa. INJECTOR.- J. F. Hancock, Jamaica Plains, Mass.
> Lighting CigARS, ETC.-H. B. Stockwell Ban, Mass. Lighting Cigars, etc.-H. b. Stockwell, Brooklyn, Magic Lantern.-E. Wilson, Philadelphia, Pa. MAKING ScRews.-American Screw Company, Providence, R. I.
MAKING STEEL--J. Bari (of Brooklyn, N. Y.), London, Englazid.
MARINE SIGNAL.-E. E. Mann, Lawrence, Mass.

> Paper Folder.-W. Braidwood, Mou
Pavement.-W. T. Crim, Beloit, Wis.
> Potato Digger.-L. A. Aspinwall (of Albany N. Y.), London, England. Preserving Food, ETC.-G. W. Scollay, St. Louis Mo.
Printing Ciecks.-W. A. Simmons, Penge, England.
> Refrigerator.-J. J. Craven, Jersey City, N. J.
> SADIRONS, ETC.-T. H. Ashbury, Philadelphia, Pa.
SCREW MACHINERY.-S. Vanstone, Providence, R.
> Shoe Vamping.-L. R. Blake, Boston, Mass. SoLDERIMG CANG.-.-W. H. H. J. Howe, North Sale
STONE DRESSING.-J. Woods, Nicholasville, Ky
> Stone Dressing.-J. Woods, Nicholasville, Ky.
Stove.-Jewett et al., Buffalo, N. Y.
> Tove.-Jewett et al., Buffalo, N. Y
> durbine for Smale machines.-J. Fletcher, Philadelphia, Pa

NEW AGRICULTURAL INVENTIONS.

improved steam plow.
George F. Bratt, New Orleans, La.-This machine consists mainly of the divide the sod into parallel strips or slices; (attached to a drum) whic which follow immediately behind the aforesaid circular cutters, and cut o divide the strips or slices into small pieces and then turn said pieces to side down, operating in this respect like the mouldboard of a plow. The ikewise cooperate with the circular cutters in propelling the machine, thus rendering unnecessary all supplementary driving mechanism which does not aid in cultivation. The invention consists, 3 , in blades attached radially to a shaft, and which follow the diggers and rotate at higher speed, so ere, the break up, and thoroughly pulverize the soil dislodged by said dig gers, thereby completing the work of

tilth.

NEW MECHANICAL AND ENGINEERING INVENTIONS
IMPROVED VENTILATOR FOR CARS, ETC
John C. Bates, Cold Spring, N.Y.-This invention relates to an improved entilating apparatus specially designed for railway cars, but applicable to and intended for buildings also. It consists in the construction and ar ongement of parts in which an inlet pipe for the air, leading from the top che car, carries from the motion of the car a current of air down into a passing from thence through water trap to eliminate the cinders, the air aid drum is constructed with end chnally heated drum into the car. ated in a containing case into which hot air is admitted from a heater be low the car, and from which it is drawn by a pipe terminating in the open connects with a pipe leading to the containing case of thich receives the in pure air from the bottom of the car and discharges the same in accordance with the law of convection.
improved lattice piers for timber truss bridges.
Lewis Scott, Brighton, Mich.-In this invention two sets of posts are so be located on opposite sides of the girts. They are all sustained upon common base that is thus connected with a superposed beam so as to form a reinforcement brace or support to each other. This has the effect of dividing and evenly distributing the weight or strain along the whole length of the foundation or base.

IMPROVED SWING.
William Mogle, Anoka, Minn.-This is a swing which may be adjusted for the use of a child or a grown person, and the novelty consists of inne nd outer vibrating rods, to the lower ends of which the foot board is ap lied by lateral pivot rods in a vertically adjastable manner, the seat beng applied by arms and supporting braces to the inner vibrating rods. The he pressure of the feet on the foot board oscillates the swing in the oppo site direction, in the customary manner, the swing working easily with little pressure on the vibrating foot board.

NEW MISCELLANEOUS INVENTIONS.

IMPROVED TOBACCO PIPE.

Martin Bourke, Mineral Ridge, Ohio.-This device is an improvement in the class of cigar pipes or pipes having the form and general appearance of a cigar, and designed for smoking fine cut tobacco. The improvement refor holding the tobacco, and to the form of the inner end of the mouth iece against which the tube abuts also to a spring attached to a detach ble endpiece or plug, and whose function is to hold the tobacco tube gainst the mouthpiece.

IMPROVED FOOT WARMER FOR VEHICLES.
Henry P. Buckland, Stary Ridge, Ohio.-The object of this invention is furnish a device for keeping the feet and lower extremities warm while iding in the winter months. It consists of a receptacle for containing hot
water, having a triangular chamber for one or more lamps, extending, through it, provided with doors and a smoke flue.

IMPROVED OIL CAN.

Leonidas R. Shell, Richmond, Va.-This invention relates to an oil Jan, having attached within it a force pump and measure, so constructed and rranged that the oil may be pumped from the barrel or cask, either int the can itself or into the contained measure; the latter being provided with
a gauge, which, at all times, shows how much oil it contains. When it is desired to fill the can the oil may, by this arrangement, be made to pass, frst into the measure, gallon by gallon, thusreadly showing how much i ny defnite quantity may be drawn, immediately from the can, by mean of the contained pump, measure, and guages.
improved launching apparatus.
Martin Bourke, Mineral Ridge, Ohio.-This invention has for its object to enable life and other boats to be launched from the deck of a vessel, with safety and dispatch. The inventon consists in such manner that the outer end which projects beyond the side of the vessel, may be raised or lowered by suitable tackle, as re quired by the size of the vessel, or the height of the deck above the water The sides of the groove in the ways are notched or provided with ratchet teeth, and with these, a pawl, attached to the keel of the boat, engages in such manner as to hold the boat stationary on the ways until ready to be
launched. Said pawl is also constructed in such form as adapts it to act launched. Said pawl is also constructed in such form as adapts it to act
as a brake when the boat is descending the ways. The ways are made in as a brake when the boat is descending the ways.
sections to adapt them to be stowed in small space.

IMPROVED LIFE BOAT.
Martin Bourke, Mineral Ridge,Ohio.-The object of the invention is firs to produce a life boat which will insure perfect protection to the passengers from the waves, whict shall be of such shape that it cannot remain pacity. The object is, secondly, to provide a life boat with a deck or cove to perfectly protect the passengers from wind and waves, and which may be readily detached by the passengers to facilitate their escape when the boat is about to encounter reefs, rocks, or other obstacles, or is otherwis in extreme danger of destruction. The third part of the invention relates to.propellers or paddles, which may be held locked in such position that
they will not impede the progress of the boat when sails are being used. they will not impede the progress of the boat when sails are being used.
The invention relates, fourthly, to an improved construction of paddles and The inventio
deadlights.

chuturs and getsomal.

The Charge for Insertion under this head is one Dollar
a Line for each insetion. If the Notice exceeds Four
a Line for each insetion. If the Notice exxceeds Four
Lines, One Dollar and a Half per Line will be charged.
Agricultural Implements and Industrial Machinery for
Export and Domestic Use. R. H. Alen \& Co, N. Y.
Superior Lace Leather, all Sizes, Cheap. Hooks and
Superior Lace Leather, all Sizes, Cheap. Hooks an Couplings for fat and round Belts. Send for
C. W. Arny, 148 North 3 d St, Fhiladelphia, Pa.
Emery Grinders, Emery Wheels, Best and Cheapest. Awarded Medal and Diploma by Centennial Commission, Awarded Medirian Twist Drill Co., Woonsocket, R. I.
Address Amer
F. C. Beach \& Co., makers of the Tom Thumb Tele graph and other el Water St.. N. Y.
Williams, orr. of Plymouth and Jay Sts Troons Bliss Water, Gas, and Steam Pipe, Wrought Iron. Send fin prices. Baile, Farrell $\&$ Co... Pittsburgh, Pa.
Patent Scroll and Band
use. Cordesman, Egan \& CO., Cincinnati, hio.
To Clean Boiler Tubes-Use National Steel Tube
Diamond Tools-J. Dickinson, 64 Nassau St., N. Y. Y. Fire Hose, Rubber Lined Linen and Cotton, Fines quality. Eureka Fire Hose Co., 13 Barclay St., N. Y.
D. Frisbic \& Co. manufacture the Friction Pulley-Captain-best in the World. New Haven, Conn.
Power and Foot Presses, Ferracute Co., Bridgeton,
N. J. Lathes and Machinery for Polishing and Buffing metals. E. Lyon, 470 Grand St., N. Y.

Lansdell's Patent Steam Syphons-Lansdell \& Leng's Lever and Cam Valve. Leng \& Ogden, 212 Pearl St.,N.Y. Magic Lanterns, Stereopticons, and Pictures for Par-
or Entertainments and Public Exhibitions. Pays well on small capital. 74 Page Illustrated Catalogue free. Best Bolter 19 Nassau St., New York.
Best Bolter for Sawing Handles, Furniture Stuff, Wagon Stuff, Fence Boards, \&c.
Richard W. Montross, Galien, Mich.
Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel -ther kinds imitations and inferior Caution.-Our name is stamped in full on all our best
Standard Belting, Packing, and Hose. Buy that only. The best is the cheapest. New York Belting
ng Company, 37 and 38 Park Row, New York
Steel Castings from one lb . to five thousand lbs. In valuable for strength and durability. Circulars free Pittsburgh Steel Casting Co., Pittsburgh, Pa.
M. Shaw, Manufacturer of Insulated Wire for
M. Shaw, Manufacturer of Insulated Wire for galvanic and telegraph purposes, \&c., 259 W. 27 th St.,
Shingle, Heading, and Stave Machine. Se
ent of Trevor \& Co., Lockport, N. Y.
For Solid Wrought-iron Beams, etc., see advertise ment. Address Union Iron Mills, Pittsburgh, Pa., for Boiler Shop-
Boiler Shop-now running, for rent low, to a compe-
ent man. Address Machinist, Baltimore Md tent man. Address Machinist, Baltimore, Md. County, or City Rights. Address B. F. Grayson, Jr, Luray, Page County, Va.
R. H. Norris \& Co., Paterson, N. J., Steam Gauge Manuf's; also Steam and Hydraulic Gauges of any make r pattern repaired.
Foundrymen lette
Foundrymen, letter your patterns with Metal
made by H. W. Knight, Seneca Falls, N. Abram Dilley, of German Valley, N. J., has patented a Heel Evener for boots and shoes. See advertisement
in another columm.
Articles in Light Metal Work, Fine Castings in Brass, Malleable Iron, \&c., Japanning, Tinning, Galvanizing.
The "Triumph" is the Best Scroll Saw for Ame teurs. Send stamp for Circular to A.W. Morton, 22 Platt St., N. Y.
For Pure Natural Lubricating Oil, suitable for Paper Mills, Iron Works, Cotton and Woolen Mills, Flour Mills, Planing Mills, Street Railways, \&c., send direct to Geo
Allen, Franklin, Pa. Price per bbl., 30 . per gal.; half bbl., क7.50; 10 gals, $\$ 3.75$.
Manufacturers of
Manufacturers of Hydraulic Oil Presses, send circulars and price list to E. N. Hoffman, Waxahachia, Texas.
For Sale-Letters Fatent for a Portable Fire Escape. Address H. R. Houghton, P. O. Box 1621, New York city. Wanted-Situation as Foreman in Plow Shop. Address J. A. Morsman, Sparta, Randolph Co., Ill. Box 121.
Twenty inch Propeller Castings, $\$ 5$. \quad Goss Bros., Twenty inch
Barnstable, Mass.
Pump Patent for Sale.-A strong, durable, lift and force pump, no leathers or packing of any kind except for the
stuffing box of pump rod. Address, E. J. Delaney, San Jose, California.
For Sale.-Pate
For Sale.-Patent Combined Hose Carriage, Automaic Winding Reel and Irrigator; will sell Staie Rights, or on royalty. Address E.J. Delaney, San Jose, California.
Wanted a Man that thoroughly understands the Galvanizing of sheet iron, etc. None but first class men
need apply. Address with references, P. O. Box 909, Montreal, Canada
For Sale at a ba
For Sale at a bargain, One Corliss Engine. Cylinder 20x48. Kelly \& Ludwig, Machinery Agents. 720 Filbert
Street Philadelphia, Pa.
Blake's Crusher Wanted, -10×4, second hand. Send Blake's Crusher Wanted. -10×4, second hand. Send
cation and price. J. E. Mitchell, York Avenue, Phil. Boosey's Cheap Music and Music Books. Full Cata-
lagues free by mail. Boosey \& Co., 32 East 14th St., New agues free by mail. Boosey \& Co., 32 East 14th St., New
York. ing in one, three useful articles, carried by every one.
one. Just out in U. S., and having an extensive sale. Would make arrangementswith parties for other foreign patents. I. C. Cowles, 3 Granger Block, Syracuse, N.Y.
See Notices to Inventors on back page, by Patent, Box

4 4 ditex

L. S. will find directions for dyeing ostrich feathers on p. 11, vol. 32.-A. W. will find directions for
preserving natural flowers on p. 204, vol. $28 .-$ G. D. will preserving natural flowers on p. 204, vol. 28.-G. D. will
find instructions for tanning skins with the hair on on directions 0 p. 218 vol 31 -B M. M. will find a directions on p. 218, vol. 31.-B. M. M. will find a
method of solving his trigonometrical problem in any elementary work on trigonometry.-L. W. will find in-
structions for constructing a windmill on p. 241, vol. 32 $-W$. M. will find a statement of the lifting power of hydrogen on pp. 74, 139, vol. 31. For a method of gen-
rating hydrogen, see p. 341 , vol. $27 .-\mathrm{A}$. C. will find di--E. A. H. will find directions for constructing a water fiter on p. 282, vol. 34.-J. W B. will find directions for till find and polishing agates on p. 138, vol. 30.-J. W. C crew-cutting on p. 107, vol. 34.-W. W. will find an a ticle on the passage of water through orifices on p. 48,
ol. 29.-O. J. P. will find directions for making skele ton leaves on p. 99, vol. 34. To bleach leaves, etc., see
p. 405, vol. 34.-G. T. B. will find directions for kalso mining on p. 133, vol. 34.-S. S. will find directions for etting rid of echoes in large rooms on p. 139, vol. 35.beets on p . 264, vol. 28.-W. M. W. will find a descrip tion of a petroleum engine on p. 303, vol. 24.-M. W will find directions for frosting glass on p. 264, vol. 30.J. B. will find that an aqueous solution of dextrin will make a good mucilage for use in spatterwork.-J. T. R.
can polish tin articles by following the directions on can polish tin articles by following the directions on p.
57 , vol. 34. For stove polish, see p. 219, vol. 31.-E. R. 57, vol. 34. For stove polish, see p. 219, vol. 31.-E. R.
will find an article on the madstone on p. 266, vol. 26 . Only ignorant people believe in its virtues.-E. J. B.
will find a recipe for cochineal ink on p. 200 , vol. 30 . T. K. McD. will find an answer to his query as to the commencement of the day on p. 401, vol. $28 .-$ P. S. A. will find directions for making rubber stamps on p. 155, vol. 31--L. T. D. can remove inkstains from paper by
following the directions on p. 154, vol. 30.-C. W. W. following the directions on p. 154, vol. 30.-C. W. W.
will find an explanation of the difficulty from oil leakwill find an explanation of the difficulty from oil leak-
ing from a stove-pipe on p. 266, vol. 26.-P. S. K. will Ind a recipe for a rosewood stain on p. 154, vol. 30 . French polishing is described on p. 11, vol. 32.-J. W.
W.'s query as to alcohofic strength of liquors was anon p. 156, vol. 35.-Z. F. F. will find an answe A. W. T. shas to wheels on a curve on p. 268, vol. 35. rections on p. 169, vol. 33.-G. W. W. will find a descrip tion of mica.on p. 88, vol. 25.-J. R. will find direction for polishing metals on p. 37, vol. 34.-W. H. S. will find a recipe for a sympathetic ink on p. 267, vol. 34.-J. V
H. will find a description of the compression engine on H. will find a description of the compression engine on
p. 66 , vol . 34.-L. J. T. will find directions for hard ening plaster of Paris on p. 43, vol. 34.-H. B. W. will 28.-F. K. is informed that there is no rule p. 251, vol the horse power of a boiler.-C. T. D. will find a recip for a white alloy on p. 139, vol. 31.-C. W. will find directions for calculating the teeth of gear wheels on p. 147, vol. 34. For proportions of speed pulleys see pp
$26,73, \mathrm{vol}$ 25.-F. M. will find a good recipe for sho 26, 73, vol. 25.-FF. M. will find a good recipe for shoe
blacking on p. 27, vol. 34.-M. J. H. can cut and polish blacking on p. 27, vol. 34.-M. J. H. can cut and polish recipe for a depilatory on p. 186 , vol. 34 -M. A. will fin recipes for fireproof cement for roofs and fireproof pain on p. 280, vol. 28.-G. A. C. will find an answer to his query as to a cannon on a car on p. 273, vol. 32.-J. H.
B. will find directions for preserving ornithological specimens on p. 159, vol. 32. We know nothing of the process of inlaying which he describes; but it is easily
tried.-G. H. can nickel plate his iron castings. See p. tried.-G. H. can nickel plate his iron castings. See p
186, 34 . Pure rubber is white when first made, but turns black after exposure to the atmosphere.-E. P. M will find a recipe for a cement for leather belts on p. 300 vol. 33.-J. W. R. can copy his drawings with a pantagraph. See p. 179, vol. 28.-N. C. can clean and polis graph. by the method described on p. 122, vol. 27.-P. F
wills find directions for making condensed milk on p. will find directions for making condensed milk on p
343 , vol. 30.-W.D. will find a description of the Vienn bread manufacture on p. 240, vol. 34.-N. J.S. will fin directions for making paste that will not sour, on p. 299, vol. 35.-P. M. will find directions for nickel plating
with a battery on p. 186, vol. 34.-F. B. F. will find directions for constructing a windmill on p. 241, vol. 32.S. R. will find a recipe for a black walnut stain for use on white wood, on p. 337, vol. 33.-D. A. L. a B. win
find directions for precipitating lime from water on p.
379, vol. 35.-L. M. D. V. will find answers to his quer 379, vol. $35 .-$ L. M. D. V. will find answers to his quer
ies as to the sinking of a body in deep water on p. 208 vol. 33.-F. S. will find directions for making dried
yeast on p. 204, vol. 33.-J. S., M. A. R., J. V., W. W yeast on p. 204, vol. 33.-J. S., M. A. R., J. V., W. W.,
C. A. S., J. D. H., W. T. M., I. K. .., and others wh ask us to recommend books on industrial and scientific our columns, all of whom are trustworthy firms, for cat
(1)
(1) R. N. says, in reply to E S., who re its sectional find its diameter. For all such calculations, I once de vised a formula which is very convenient to carry in one's head; that is, add to the area $\cdot 273$ of itself, and
the square root of the sum will be accurate within 0001 the square root of the sum will be accurate within 0001 ,
The convenience lies in this, that $273=3+90 \times 3$, so that The convenience lies in this, that $273=3+90 \times 3$, so that
3 and 9 are the only numbers to be remembered. Thus, to find the diameter corresponding to the area 78539816 places to the right; then multiply this product by 9 , set ting the new product beneath the former, but one place to the left; add up, and find the square root, which is less than 0001 of 1 (the true value of the diameter)
Thus: ${ }_{\text {Area }}$

$\begin{array}{c}0.78539816 \\ 23561948 \\ 212575032\end{array}$
$\begin{array}{l}0.99981185768 \\ 0.999906\end{array}$

milar formula for the diameter of a sphere of give contents is even more accurate. From double the con-
tents subtract 09 of said contents; the cube root of the tents subtract 09 of said contents; the cube root of the remainder will show the d
leas than 140000th. Thus:

Contents
Doubled
$\times 09 \ldots$

\section*{| .523598775 |
| :--- |
| .04719750 |
| 472388975 |
| .00007366025 |}

Cube root
(2) B. F. H. asks: Will an iustrument that will work on 50 feet wire work on shorter distances with (3) R. C. C. says: I have a glass jar (1 gal on) and a zinc cylinder, a porous cup, and carbon cyllider. Please inform me with what materials shall charge them to make a batery? A. Put nitric acid in
the porous cell with the carbon, and 1 part sulphuric to 20 water in the glass jar.
(4) E. R. B. asks: What is the best plan to put on a tin roof? Do you recommend the standing of the best. If the tin is brought down over the edge o theroof or gutter and carefully nailed, with the nail rather close, the wind will not get under it to blow it off
Every plate of the tin should be nailed to the roof in laying it.
(5) A. E. G. asks: 1. Is it any advantage, in the construction of a refrigerator, to fill the space being materials? A. Great advantage. 2. Does not fined stratum of air prove a perfect non-conductor? It is an excellent non-conductor. 3. Is there anythin better for filling as above than cork chips $\&$ A. They
answer well. Any non-conducting body containing in answer well. Any non-conducting body containing in
its pores large quantities of air, answers well, as char-
(6) S. M. J. says, in reply to J. O. G., wh ays that you state that an English fire engine lifted wa possible for a fire engine with its many joints and im perfections to raise a column of water to that height, 32 feet, without the intervention of a foot valve in the suc-
tion). I am in charge of an English fire engine that has for lengths of suction, each 8 feet long, and a screen foot 6 inches long, in all 33 feet 6 inches. I have stoo ar, with the exception of less than a quarter circle a the engine; and the suction pipe would not stay under
water until I put a man to hold it under, after which I water until 1 put a man to hold it under, after which
had no trouble whatever in raising water and working bad no trouble whatever in raising water and working (7) I. V. asks: How can I make the ink nsed with stencils? The kind I have reference to is in
hard cakes and makes a plain and clear mark. A. I onsists principally of lampblack, boneblack, sulphat of indigo, and dextrine or gum arabic, mixed well to gether, moistened, pressed into cakes and dried thor nd soap.
(8) L. P. C. says: Please state if oxygen can be made from saltpeter? A. Oxygen can be ob60° Fah. in a glass vessel. The proportion of the gas, however, is much less in quantity than is obtainable from the chlorate of potassa, besides being contaminaed by nitrites, free nitrous and nitric acid and nitrogen, Correde he comections and render the gas fra

Minerals, etc.-Specimens have been re eived from the following correspondents, and examined, with the result stated:
J. N. C.-It is infusorial earth. See p. 240 , vol. 35.--
W. D. - -No. 1 is black mica. No. ${ }^{2}$. contains sesquioxide of iron, free sulphur, and clay (silicate of alumi na). No. 3 is felspar containing crystals of red hema-
ite (sesquioxide of iron). No. 4 is clay containing cartite (sesquioxide of iron). No. 4 is clay containing car-
bonaceous matter. No. 5 might be used as a polishing powder and in glass manufacture.-G. W. D. B.-Your ample of peat does not contain tannic acid; but like all lation in close vessels or incomplete combustion in the air, pyroligneous acid may be found with the products the substance may be made to yield a considerable quan tity of illuminating gas, pyroligneous acid, etc., by granites. Granites consist quartz, felspar, or orthoclase, and mica. Most of them contain here and there, especially after having been ex traprock greenstone, pyrites, large crystals of quartz etc. There is no granite that we are aware of which is wholly free from these. Consult some good work on geology.
P. S. K. asks: How can I make a pianoorte sounding board, of wood, the four edge lines be ing one plane, and the middle rounded like the belly of violin, without cutting or scraping the wood?-A. A A. asks: 1. In making violins, what kind of wood is the
top made of, and how is it stained or colored? 2. What is the best way of finishing violins, with shellac or good recipe for putting up spiced salmon and trout me What is the proper mode of canning fresh mackerel?-A. . W. asks : In playing a game of whist, my opponent on my right cut me the ace of spades three times running. What are the chances of such an occurrence ?-
E. A. H. asks: How is Indian corn hulled to prepare it for hominy ?-S. W. G. asks: What is the best materia

COMMUNICATIONS RECEIVED.

The Editor of the Scientiric Anerican acknowledges, with much pleasure, the receipt of original
On the First Steamboat on the Mississippi. By F.L.J.
On Boiler Explosions. By E. G
On Aeronautics. By C. E. D.
On Aeronautics. By C. E. D.
On Bridges in Pennsylvania. By M. B. S.
On American Silk Manufactures. By L. L.
On Constructing Theaters. By
On the Keely Motor. By M. C.
On a Grain Dryer. By J. O'C., by R. S. E. and by S. S.

On a Flying Machine. By C. S. A.
On Weight on and in the Earth. By S. A. C. also inquiries and answers from the following:
J. M. A.-L. J. C.-J. F. W.-L. V. H.--_.-F. L. S.-

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear should epeat them. If not then published, they may conclude
hat, for good reasons, the Editor declines them. The address of the writer should always be given. Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, when initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take plea-
sure in answering briefly by mail, if the writer's address is given.

Hundreds of inquiries analogous to the following are sent: "Who sells white litharge? Who sells convex
glass, made to size ? What is the cost of the finest glass per tun? Who sells chromate of lime? Who sells American cigarette or rice paper ? Who sells old,
traight-grained mahogany, suitable for stove patterns? All such personal inquiries are printed, as will be ob served, in the column of "Business and Persoual," which is specially set apart for that purpose, suoject to ne charge mentionen at the head of that column. Al-
most any desired information can in this way be exexpeditiously obtained.
[OFFICLAL.]
INDEX OF INVENTIONS
Letters Patent of the United States were ranted in the week Ending

November 21, 1876.

AND EACH BEARING THAT DATE

[Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list, furnished from this office for one dollar. In ordering, nd remit to Munn \& C 0 ., 37 Park Row, New York city
Air and water bed, G, M white
Air pump, pressure attachment, D. E. Bangs Iloy as a back for mirtrors, depositing, C. A.L..... 184,456 nimal tether, P. A. Reichert. \cdots................. 184,663 nvil and vise, W. E. Canedy.... utomatic brake, H. McCalip utomatic musical instrument, P. Ehrich. Axking alter bread, P. H. Horan. Bale tie, G. S. France
Bale tie, H. H. Moore
Baling press, W. B. Duncan
Baling press, A. D. Miller..
Baling press, W. A. Wright

Batten roof or wall, R. Bentle
Bedstead, H. B. Coyle (r)..
Beer pump, R. \& E. Mudd
Beer pump, R. \& E. Mudd.
iind adjuster, R. J. Stuart.
Book binder's cloth, etc., A. G. Fell............
Book rest for lecture chairs, A. L. Williston.
Bottle fllling Bottle filling apparatus, W. Gee..........
Bottles, manufacture of E. N. Curtice. Brush, G. R. Davies....................... Brushes, making met
Buckle, V. A. Bond.............
Burglar alarm, W. F. Maurice
Bustle, Bar
Butter pack
Butter pack
Butter package, S. C. Williams
Car axle box, o. L. Smit
ar brake, J. Rhoads.
Carriage pole head, G. Bray, J
Cartridge box, S. T. Satterwhite Churn, o. Eliason.
Cder press, J. C. Salisbu
Circular knitting machine, E. Tiffany
Cloth-measuring machine, J. Waylan
Coffee and spice mill, T. H. Darling
Commode cover, F. Foster.
Conductor's punch, J. H. Davis.
Convertible chair, A. T. L. Da
Copy holder, H. H. Hendrix.
Corn husker and sheller, G. E. Luck
Corn planter, H. R. Scott..
Coupon nipper and punch,
Cracker machine, E. P. Waste.
Cultivator, T. I. Teagle
Current water wheel, D. o. Be..........
Curtain cord tightener, J. A. S
Die for making hoes, J. Graf.. Die for making hoes, J. Gra
Dish drainer, H. Stone..... Door lock, Whitson \& Hush
Double plow, W. Clark..
Draft attachment, R. Beem....................
Electric light buoy, Smith, et al..........
Electromagnetic motor, G. F. Green.....
Electro vapor bath, Johnson \& Cherry.
Ellipso pantograph, A. Anderson.
Endless rope railway,
Envelope, W. H. Hart

Extension table slide, L. Menzer
Fare bog, Adister, \& Freimut. Pigot.
Farm fence, D. B. Groffl..............
Feeding air to furnaces, C. J. Hagstree
Fence, J. A. Burnham..
Fence builder's gauge,
Fence post, S. N. Lennon.

Flange joints, etc., securing, H. A.
Flexible blackboard, J. R. Minehart.............
Flour bolt, Hurd \& Simpson
Folding chair, J. A. Ware
Folding chair, J. A. Ware.
Folding table, J. S. Corban.
Food from dessicarted eggs, C. Peck.
Foot rest for chairs, J. H. T
Force pump, o. W. Grover.
Freight car, J. D.
Freight car, J. D. Imboden..................
Frictional electric machine, C. H. Hinds
Fringing machine, J. B. Linco
Fruit box, C. W. Weston.
Briut jar, T. G. Otterson
Fruit picker, J. Sager.
Furnace door, H. A.
Gauge, F. D. Hazelton.
Gang plow, W. M. Rich
Gang plow, W. M. Richardson.........
Gas, indicating power of, W. T. Sugg
Gas binder, C. H. Hin
Gas cock, P. Becker.

Gas oven or summerarlor.
Gas regulator, Taylor
Gate, R. E. Stephens....

Glass bowls, etc., making, G. L. Fessenden.
Grain elevator, A. J. Smith...................
rainseparator, J. J. West
Hanging saw gangs, o. C. Meigs
Harrow J. Woorridge
Harrow. J. Woolridge.
Head block for sa w mills, G. Herrnstein.
Heating device, etc., boiler, W. H. Harris
Heating stove, Droege, et al......
Hook and laddertruck, J. Pine.
Horse hay rake, H. Y. Cahill
Hose coupling, S. H. Loring.
Injector, E. Korting...
Japanning small articles, c. Radeliffe.
Knife scourer, S. M. Haskell.
Lamp bracket, S. S. Barrie.
Letter box, J. Katz..........
Liquors, ageing, \mathbf{H}. G
Loom, G. Crompton
Lubricating compound, P. P. Seeeneer
Melting snow and ice, I. Kendrick.
Mop head, E. \& E. G. Sirret (r).. Mosquito net frame, R. C. Millings.
Motor, sewing machine, J. B. Butto
Ores, reducing, W. H. Sterling Ornamenta fnr, J. F. \& G. S. Mathias oscillating steam ingine, S. Gibson.. Padding machine, E. Marble.
Paper and metal box, A. D. Cha
Paper bag, J. H. Percy..............
Paper, manufacture of, A. G. Fel
Peanut roaster, J. Esposito (r). Picker for looms, S. E. Avery..............
Pillow sham support, A. S. Whittemore. Pipe and heater, petticoat, C. B. Winans
ipe cutter, G. Muner..
Plaiting machine, Burcky, et al......................
Planchets, etc., cutting out, Briggs \& Boutwell. Plow, G. W. Parish..
Plow attachment, G. S. King
Potato digger, M. B. Rigg
Pump, A. S. Cameron.
Pump, W. B. Farrar
Reciprocating churn, J. J. Goodłue Renning and bleaching hair, J. Bene Revolving buddle for ores, \mathbf{W}.
Rice cultivator, G. W. Parish. Riding attachment for plows, J. Bailey
Sample shoe holder, J. H. Jewett...... ash fastener, W. G. Bulkley. Sawing circular slabs, J. J. Dimond.... rew threads, cutting, T. J. Water seat hooks, making iron bars for, W. G. Collins. Seed planter, cultivator, etc., L. Flatan
Self-c osing hatchway, A. G. Stevens. Self-c osing hatchway, A. G. Steve ewing machine, J. McCloskey. Sewing machine, J. O'Neil.. ewing machine, C. B. Tru Sewing machine tucker, A. W. Brown
Shoe for driving pipes, Brown et al Shoe for driving pipes, Brown bet fire, D. H. Whilldin.
Soap, A. Dove.
Solar camera, C. R. Jenne....
Speed indicator, J. M. Napier.
Split wheel, B. T. Mills.
spring bed bottom, C. E. Brown
Spring bed bottom, Olive et al.....
Spring seat, Littleffeld $\&$ Sheridan
Steam and vacuum pump, J. R. McPherso team pressure regulator, T. R. Morgan. Street lamp, combination, L. O. Can
Stud for boots and shoes, M. Bray..
ulky plow, M. Brown............... Table leaf support, P. J. Liljeholm. Tan bark for transportation, R. Loercher
Tape line lumber measure, W. L. May.... Tapping pipes under pressure, J. Miller Telluric globe, J. F Rose Thermostat, W. H. Markland
Thill, W. Benson.
Time lock, W. F. Kistler.
Tobacco-cutting machine, E. Goodwi
Tool handle, A. Eckert.......
ube expander and cutter, S. Enge
uck marker, A . Johnston
Umbrella, Valentine \& Morriso
Umbre la stand, L. E. Ladd.
Underwaist, E. W. Philbrook
Upsetting tires, machine for, N. Sawyer
Vacuum brake for cars, T. Cooper
Vaccuum chamber, brake, T. Cooper...
Vacuum chambers, making, T. Cooper
Vegetable cutter and slicer, A. Iske
ehicle seat, F. Oppenheim.
Wash board, J. M. Gor
Wash board, G. Muller
Wash boiler, G. H. Robertson.
Washing machine, G. Buchanan...
Water motor, hight, J. A. Svedberg
Wheel plow, A. H. Burlingame
low, I. R. Gilber
Withe band for ship masts, G. A. Lane,
Woods, finishing hard, J. Hawksley.
Wrought iron girder, D. Hammond

DESIGNS PATENTED.
9,640 9,641.-Centre Pieces.-H. Berger, New York city.
$9,642,9,643$.-Centre Piece.-J. Blankenberg et
Buffalo, N. Y.
9,644.-BRAELLETS.-H. Carlisle, Jr., Philadelphia, Pa 9,645-WALL
Bend, Ind.
9,646.-GLASS Bottles.-C. Dorflinger, White Mils, Pa
,647.-GLAssware.-J. H. Hobbs, Wheeling, west Va
9,648 to 9,650 --OIL CLoTH.-C.T. Meyer, et al., Bergen,N.J. Conn. 9,652.-CARRIAGE.-D. P. Nichols, et al., Boston,
9,653.-STATUARY.-J. Rogers, New York city. $9,654 .-\mathrm{W}$
Mass.

DESIGNS PATENTED.

 ,658.-HAT HOLDER.--J. Hall, Newark, N. J.
,659.-WATCH CASE.-J. Laurent, New York city. 660.-Hvge.-J. Leger, Providence R I.

「A copy of any one of the above patents maybe had by emitting one dollar to MUNN \& Co., 37 Park Row, New

schedule of patent fees.	
On each Caveat ...	
On each Trade mark	25
On fling each application for a Patent (17 year	15
On issuing each original Patent	0
On appeal to Examiners-in Chief	0
On appeal to Commissioner of Patents	0
On application for Reissue.	0
On fling a Disclaimer	10
On an application for Design (3\% y	10
On application for Design (7 ye	
On application for Design (14 years).	30

Inside Page, each insertion -- 75 cents a line. Engravings may head advertisements at thh same rate
per line, by measurement, as the letter press. Adper line, by measurement, as the letter press. Ad-
vertisements must be received at publication office as N THE PROGRESS OF AERONAUTICS An essay read bef ore the A eronautical Bociety of Great
Britain. By Frederick W. Brearey, Seretary of the As-
sociation sociation. A usefulu and interesting paper. Containing
brief account of the most reent trials of ballons hav.
ing mechanical propeling attach

 $\$ 10$ TO $\$ 400$ INVESTED IN WALL ST.
Often leadstowealth. A 72 page book explaining every-
thing, and a copy of the wall street Review, sent free. Bankers and Brokers, 72 Broadway, Now York MINERALOGICAL SPECIMENS FOR sale, Bergen Hill Zeolites and Calcites, For circular of
particulars, address
buth Street, New York City.

MRESSES to MIfr, KELSEY \& Dow. Merlden, Conn
INVENTORS, AND OTHERS OWNING patents of light articles, in general use, may find it to their advantace to communicate with us. Agents us. wanted throughout the U. S. .to solicicit riders. UTON INDUTHIAL WORES Co., Cincinnati, Ohio.

C ASTING S
 Goobrated Catalogne Free. WIGHTMA, 23 Cornhill, Boston, Mass-

A Scientific Christmas Present for your Boys:
THE TOM THUMB TELEGRAPH

3for Pamphlet and $15=$ $x=$ MESSRS. B. DAMBACHER \& CO., Ham

SIL VERED GLASS TELESCOPE

 Lathes, Planers, Shapers, Drills,

Pond's Tools.

In Stock, and for Sale by WILLIAM SELLERS \& CO.,
Philadelphia, and 9 Liberty St., New York
Planing and Matching.
 Strair

I$\underset{\text { with }}{ }$ FOOTLATHES,

MACRISERT

LIST OF ENGRAVINGS.

I.-THE LETTER WRITER OF SEVILLE. This picture present

II.-THE CROSSING SWEEPER. A scene familiar enough to dwellAs inder ork in the winet season, The faces are not common ones. The bris is that of one likely to make III.-THE ROYAL PRINCESSES, CHILDREN OF GEORGE IV IV.-THE SKEIN WINDER. A domestic scene of the old Roman time An original subject, and treated in an agreeable manner. Most of our readers will recall similar experiences.
The poet Longfeelow eites, in his
Courssip of Miles stan \mathbf{V}. THE SPANISH SISTERS. From a painting, by J. Phillips, of the
 VI.-A REST ON THE HILL. A fine bit of unsophisticated nature.
 VII -THE

Washington Irving touched

VIII.-BARTHRAM'S DIRGE.

 IX.-GOING TO SCHOOL. This subject needs little exposition. Shaks

X.-PEEP-O-DAY BOYS' CABIN. The home of a guerilla freebooter

XI.-THE SCANTY MEAL. A very pleasing and natural picture. The XII their capacious saws.
XII.-THE AMAAZON. A portrait of Helena, fifth child of Queen Victoria, at about five years of age. The character is a pretty conceit, though the comparison is rather by contrast tha
similarity. These Engravings are printed on flne toned plate paper-size 12×15 inches-and the collection PHOTO-ENGRAVING CO., 67 Park Place, New York.

Bratara Milling Machines and and atice

$\frac{4}{4}$

NEW DEFARTURE. XAYELLNO

TAKE TAK

Wood-Working Machinery,

 withrir Rug er Richandson,

STEAM PUMPS.

 REVEBSIBLE
HOISTINC BNGINX FORALLPURPOSES.
 ROSE-BUDS IN WINTER

WANTED: SAIESMEN at a salary of $\$ 1200 \%$

TITIII $\perp+1$ WROUGHT BEAMS \& GIRDERS

THE UNION IRON MILLS, Pittsburgh, Pa., Manu fracturers of improved wren
rirders (atented
reat fall which has take place in the prices of

 cost of Insurance a voidede, and the serious losses and in-
terrrption o busines caused by free these and like con-
siderations fully justif any addition first ost.
believed, that were

\$290. FOR BETT PIINOS IN THE WORLD
 you can try our pianos. Genuine Rosewoodover-
Strung- fulliron plate-7i-3 octaves- Agraffe-and vers
sessing every improvement known, and warranted 5 Years by aresponsible incorporated Manufacturing Co.,
Yeafer
refering bypermission tothe Chemical National Bank
New York City, by far the strongest bank in Ameri ca, Pianos sent everywhere on trial. We have no agents.
Send for 1 ustrated Circular piving full particuars.
Add
(Please name this paper).
810 Broadway, New York.

ELOCUTIONIST'S JOURNAL GIVES choicest standard and current pieces for professional
and amateur Readers and speakers
wast the thing the the wanted. Mammoth size, only 40 cts. a year. single
copies of news-dealers only, JESSE HANEY \& CO., 119
Nassau Street, New York, assau Street, New York.
ENGINES, BOILERES, MACHINERY.
 FOR SALE, EXCHANGE OR TO LIcense. The Heel Evener for Boots and Shoes. Patented
September 26th 1 1786, and recently noticed in this paper.
Sput Price ete.,
New Jersey.

in FINE JET BLACK Every variety of turned woodwor

$\$ 3$
 SPARE THE CROTON AND SAVE THE COST. Driven or Tube Wells
 The Toll-Gate Prize picat reant of oed $\mathrm{M}^{\text {achivisry }}$ or maproved strues fon

 Todd \& Rafferty Machine Co.

B bonsres sman
 \$8 voung amirica scrolu. sa wbeats PES,

JOSEPH C. TODD,

 I. . C. TODD,

10 Barclay St., Nei York, or Paterson, x. J.
S耳FIEPMOTOGRAPHEAPA55/inches; Send for illustrated circular.
B. MORGAN, 14 Ann St. New York, P. O. Box 4349.

gaduettignemty. Inside Page, each insertion - - 75 cents a line.
Back Page, each insertion-- $\$ 1.00$ a line. Engravings may head advertisements at the same rate per line, by measurement, as the letter press. Adver
tisements must be received at publication offce as early as Friday morning to appear in wext issue.
 Flues, Super-Heated Steam, Oll stills \&c. PORTLAND AND KEENE'S CEMENT.

THE BEST

Boiler Feeder

FRIEDMANN'S INJECTOR,

NATHAN \& DREYFUS, New York.

Send for Circular.
Niagara

C_{6}Steam Pump Works. Estanushex 18\%.
CHARLEs b. HARDICR, 23Adamsstreet 189%.
Postage Free. now is the time to subscribe

happer's Perloolcals.

markable facts of the publishing business of this or any other age or country.-Christian Advocate, N. Of these standard publications it is not necessary to say more than that each resumes in itself the history and progress of the time in a certain department; ond preserving and illustrating all events of importance the world over, the third anticipating fickle fashion and chronicling its changes, and all commend ing themselves equally to the reader, no
what ses, age, or condition.-N. Y. World.

Harper's Magazine.

tution and an educator of the people a half million of readers know to-day.-Boston Franscript.

Harper's Weekly.
 Harper's Weekly should be in every family through- out the land, as a purer, more interesting, higher-

 out the land, as a purer, more interesting, higher-toned, better-illustrated paper is not published in this

Harper's Bazar.

a weekly devoted entirely to their interests in all its various departments of literature, fashion, and domestic arts. It is an admirably conducted illustrated
paper, containing essays, editorials, stories, and general information of a superior order.-Brooklyn Eagle.

TERMS for 1877. Harper's Magazine, One Year...... $\$ 400$
Harper's Weekit, One Year..... 400
 One copy of either wlll be sent for one year, POSTAGE PREPAID by the Publishers, to any Subscriber in the
United States or Canada, on recei pt of Four Dollars Harper's Magazine, Harper's Weeklit, and Harper's Bazar, for one year, $\$ 1000$; or any two for $\$ 700$;
postage prepaid by the Publishers. postage prepaid by the Pubishers.
An Extra Copy of either the Magazine, Weekly, or Bazar, will be sent gratis for every Club of Five Sub-
scribers at $\$ 400$ each, in one remittance; or, Six Scribers at $\$ 400$ each, in one remittance; or, six
Copies for $\$ 000$, without extra copy ; postage prepaid by the Publishers.
Address harper \& Brothers, New York.

Subscriptions taken for Harpers Peri- odicals by Booksellers and Periodicai Dealers throughout the United States

AMATEUR WORKERS

Rare \& Fancy Woods

BEAUTIFUL DESIGNS.
Send 3e, stampfor our new and enlarged.Catalogue and
price list (sth edition justissued to
186 to 200 Lewis SEO., Woot of 5th to 6 Co. St

Fagle Anvils Retail at 9 Cents per Pound. face and Horn of BEST CAST STEEL. They are the ONLY Anvils that are WARRANTED. They are better than all others and much cheaper.喓 Send for Circular to

FISHER \& NORRIS, Trenton, N: J.

WIRE ROPE
Address JOHN A. ROEBLING'S SONS, Manufactur
ers, Trenton, N. J., Wh, els and Rope
Send for Circular.

MPORTANT FOR ALL CORPORATIONS AND manss Time Detector capable of accurately con-
trolling the motion of a watchman or patrolman at the
different

COLD ROLLED

 The fact that this shafting has 75 per oent. greatestrength, a haer finish, and is truer to gaget than an
otherthuse, rendersit andoubtedily the mosit economica

GPORGE C. HICKS \& CO Baltimole, Mad.

ROCK DRILLING MACHINES
AIR COMPRESSORS
Manufactured ey Burlefernick Orilli Co
sena for pamphlet. fitchburis Mas.
LOOK Ro Reat solling ationd in tho World

PORTLAND CEMENT

MACHINISTS' TOOLS.
 NEW HAVEN MANGFACTERENG CO:

HARTFORD

STEAM BOILER
Inspection \& Insurance COMPANY.
 J. B. PIERCK,

NOYE'S MILL FURNISEING WORKS

THE TANTTE CO., STROUDSBURG, PA. EMERY WHEELS AND CRIADERS. PUNCHING Prop Hammers and Dies, for mork. PRESSES.

BoLi
CJTTERS.

Schlenker's New Machine Revolving Die. Send for Catalogue, giving prices
and full description. HOW ARD IRON WORKS, buffall, N. Y.

COVERING

WITH «'AIR SPA CE" IMPRROVEMENT. Foot E. 9th St. N. Y.; 1202 N. 2d St.. St. Louis, Mo MILL STONE DIAMOND DRESSING MA MiamonivEs. Simple, effective, and durable, Also,
diamond-pointod tools for truing Emery
stones stones, Chilled Iron, and Paper Calender Roils, and other
mechanical purposes. AAso Diamond Tolls, SaFs, and
Drills made to order.
A. DICKINSON, 4 Nassau St., N.Y. TO SHIP AND ENGINE BUILDERS,

NEW York State Reformatory
ELMIRA, N. $\mathbf{Y} .$, Dec. $7 t h, 1876$. PROPOSALS
are invited until 1st January, 1877, at noon, for an engine ormatory, upon foundations to be furnished by the
 ing 5 four (4) inch flues.
Popopoll description of must
Boilers, and state earliest date for delivery. for delivery.
2. R. BROCKI
General Superint

safety hoisting
Machinery

SCIENTIFIC AMERICAN For 1877,

the most popular scientific paper in

 THE WORLD.THIRTY-SECOND YEAR.
VOLUME XXXVI.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN beg oo announce that on the sixth day of January, 1877, a new volume was commenced. It will continue to be the
aim of the publishers to render the contents of the aim or the publishers to render the contents of the
new wolume more attractive and useful than any of its predecessors.

To the Mechanic and Manufacturer.
No person engaged in any of the mechanical pursuits should think of doing without the Scientific American
Every number contains from six to ten engravings Every number contains from six to ten engravings of
new machines and inventions which cannot be found in any other publication.

TERMS OF SUBSCRIPTION. One copy of the Scientific American will be sent subscriber in the United States or Canada on receipt of three dollars and twenty cents by the publishers. One extra copy of the Scientific American will be supplied gratis for every club of five subscribers at $\$ 3.20$ each; or six copies for $\$ 16.50$ without extra copy Postage free.
The Scie
The Scientific American Supplement A weekly paper, uniform in size with the Scientific
American, but a distinct publication. It contains workAmerican, but a distinct publication. It contains working drawings of engineering works, and elaborate tre tises on every bran home and abroad. An illustrated cover protects the handsomely printed sheets. Price $\$ 5.00$ per annum. Single copies 10 cents.
One copy of the Scientific American and one copy of the Scientific American Supplement will be sent for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven Dollars by United States or Canada, on receipt of seven Dollars by the publishers.
.The safest way to remit is by Postal-Order, Draft, or Exppress. Money carefully placed inside of envelopes, securely sealed, and carefully addressed, seldom goes
astray ; but it is at the sender's risk: Address all letters and make all orders, drafts, etc., payable to

MUNN \& CO.
37 PARK ROW, NEW YORK.
THE "Scientific American" is printed with CHÅs.

