## A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

IMPROVED BOILER CLEANER AND MUD EXTRACTOR.
In the accompanying engraving we illustrate a novel de ${ }^{\top}$ ice fcr the immediate removal of mud and sediment of all $k_{\text {inds, as }}$ fast as the same is separated from the water in steam boilers. The impurities are thus given no opportunity to deposit or adhere, and all formations of scale or accumulations of mud, so destructive to boilers and prejudicial to their economical use of fuel, are consequently, as it is claimed, prevented, as is the evil of foaming.
The illustration represents the device applied to a return tubular boiler. $A$ is a box or reservoir, located above or upon the arch wall of the boiler. In marine boilers the reservoir may be suspended from the deck frame above. From this reservoir three pipes extend; the first pipe, B, enters the rear part of the top shell of the boiler or generator, and is connected with a horizontal pipe, which is adjusted a little below the water line. At either end of this horizontal pipe is an enlarged mouth, C, partly submerged, but extending a little above the surface of the water, the mouths being of a diameter to allow several inches variation in the water line. The second pipe, $D$, leading from the reservoir, $A$, enters the other end of the boiler in similar manner, terminating below the water surface. Whęn the boiler is heated, a constant current of water is imme diately established through the bell mouths, $C$, and pipe, $B$, filling the re servoir, A; and, cooling to a certain ex tent, it returns to the boiler by the pipe, D. It will be observed that the up flow pipe is placed about midway between the fire bridge and the back end of the boiler, at a point where the water is presumably hottest. On the other hand the down flow pipe enters the front or cooler portion of the water; and while the wa ter may rise and fall in the boiler to any moderate extent, the enlarged mouths, C, will constantly maintain a current (free from steam) from the surface. As the


KEMP'S BOILER CLEANER AND MUD EXTRACTOR.
of excellent workmanship throughout. For further par ticulars address the manufacturers as above

## Anake Show at Calcutte

" It was early in the morning-not, however, before the snakes, which were in a series of wire-covered boxes, were awake and lively-that we were shown," says a correspond ont, "into a stone-floored room some twenty feet long and twelve broad. In the boxes were the strongest and deadli est snakes in India: pythons, ophio phagi, cobras, korites, Russell snakes, and many others. The Hindoos who had charge of them were two slim, wiry little men, nude to the waist, as most of their countrymen are. They wore nei ther gloves nor had any other protec tion, and had no instrument of any kind in the place. After showing the varied collection under their care, they pro ceeded to open the python cage, and on of them, putting his head in, seized a monster serpent and threw him upon the floor close to our feet. The pytho objected to such treatment, and began to hiss, making at the same time vigorous effort to rise. But the snake keeper was waiting for this, and no sooner did that huge, shining back begin to curve than the keeper put out his hand, and, seizing the creature' tail, pulled it back with a jerk. Instant y the python was powerless-hissing but unable to move; the more he strug gled, the more tenaciously did the keep or hold his tail, explaining meanwhile that so long as the reptile was controlled in that fashion there was no dan ger of its doing mischief; then, just a ts rage was becoming ungovernable he man lifted it quickly, and with a jerk deposited it in the box. Its com panion was taken out in a similar man ner, and slapped and buffeted till hroughout its entire length, some welve feet, it quivered with passion but ell to , quiverod wis passion, but all to no purpose; it, too, was re sion of steam is regulated from the governor direct; and the |placed in the cage, and shut up to hiss at its leisure. The fac | valve-closing mechanism is so arranged that, no matter at | that an ophiophagus is in the Regent's Park Zoölogical Gar |
| :--- | :--- | :--- |
| what point of the piston stroke the cut-off takes place, it is | dens, London, rendered the nextexhibition more interesting | what point of the piston stroke the cut-off takes place, it is

done very rapidly and without shock. In the steam chests
dondon, rendered the next exhibition more interesting, although it may be doubted whether the sudden throwing into so small a room of a snake seven feet long was agreea ble to the visitors. However, there was really no danger for the venomous creature was so completely in its keeper power that we had no occ
done very rapidly and without shock. In the steam chests
the upper and lower seats of the steam and exhaust valves the upper and lower seats of the steam and exhaust valves are placed so near together as to leave only the requisite area of steam passage between them: thus reducing any liby ebullition, in that part of the boiler where the horizontal pipe,C, is located, they are immediately drawn in by the current and carried intn the reservoir, $A$; here the current, weakened by expansion, can support the impurities no longer, and they settle in the reservoir, and are retained until blown off through the third pipe, E, as seen in the engraving. The reservoir may be located at any desired point above the level of the water line, as most convenient, and occupies no appreciable room. It usually holds about three gallons of water. The invention has now undergone tests for over two years, and is claimed to have proved its efficiency, numerous testimonials from the many practical engineers in Canada and mill men on the Saginaw river, as well as owners of steamboats plying on that turbid and saline stream, bearing witness to that fact.
For fire box boilers it is well adapted, preventing, we are in formed, all accumulations of sediment in the water legs; while after four week's ron, no sediment has been found in the boiler the old scale mean the boiler, hing scale mean drope dropping off. The invention is applicable to all kinds of b
ers, single or in batteries. ers, single or in batteries.
Patented August 17, 1875. For further particulars address James F. Hotchkiss (owner of the patent), Bay City, Mich. Patent for Canvd,

THE PUTNAM MACHINE COMPANY'S STEAM ENGINE.
 sion to fear. One bite from th reptile, and any one of u would have been dead in five minutes, for it was exception ally strong and lively; but it was no more able to bite us than the little mongoos caged outside the door. Up ose its head, out came it alithering ton, out came it lated, its huge throat swelled, and all seemed ready for a desperate attack, when the keeper struck the reptile's mouth with the back of his hand, and, before it could strike him, had seized it just under the head. Then it struggled, but only to ge away-it had met that nativ before, and did not at al pprove of his treatment. It pprove might move in. It ong e it in and out as often it pleased, bu the cage was opened, it slunk the ca

THE medical journals, last

## THE PUTNAM MACHINE COMPANY'S BEAE ENGINE.

The engine represented in the accompanying engraving was exhibited at the Centennial by the Putnam Machine Company, of Fitchburg, Mass. It is so constructed that the steam is admitted to the cylinder at full boiler pressure and
spring, published repeatedly ability to derangement from a difference in the expansion of
the the formula for Dr. Ferrier's new remedy for cold in the withdrawn without separating the valves from the valve print the recipe which is: Trisnitrate of bismuth 6 drachms stem. The working parts of the valve mechanism are of pulverized gum arabic 2 drachms, and hydrochlorate of mor hardened steel. The frame of the engine is truncated, and phia 2 grains. This is used as a snuff, creates no pain, and provision is made so that the pillow block can be changed causes, says the London Lancet, the entire disappearance of to either side of the bed. The engine at the Centennial was the symptoms in a few hours.

# Scientitic Gefmericau. 

FISTABLIEHED 1846.

## MONN \& CO., Editors and Proprietors. PUBLISGED WERKLI $4 T$ <br> NO. 87 PARK ROW, NEW YORK

O. D. MONN. A. . BEACI.

TERMB FOR THE SCIENTIFIC AMERICAN. One copy, one year. postage included...

O1ub Rater.
Ten coples, one year, each \& 2, postage included.............................. 2 y CT The postage is payable in advance by the pabishers, and the sabscriber then recelves the paper free of charge.
Notr.-Persons subscribing will please to give their full names, and Post Office and State address, plainly written. In case of changing restdence
state former address, as well as ctve the new one. No changes caa be made anless the former address is given.

Bcientific American Supplemont.
A distinct paper from the soizertific Amerions, b
One year by mall...........................

Bingle Coples....
Address MUNN \& Co., 57 Park Row, N. Y.
the news agents.
FOLUME XXXV., No. 23._[NEW Skries.] Thirty-first Year
NEW YORK, SATURDAY, ${ }^{2}$ DECEMBER $2,1876$.


THE SCIENTIFIC AMERICAN SUPPLEMENT. Vol. II., No. 49.
For the Weok ending December 2, 1876. table of contents.
tWith 49 Engravings.







V. LESSONS IN MECHANICAL D.




VIII. AGRICHLTURE, HorTic iliture, ETC. -Germination or Seeds



The selentinc


## PUBLISHERS' CARD.

Some twenty thousand of the subscribers to the Scien tific american and Scientific american Supplemen will find printed on the wrappers which envelope this week's papers the information that their subscriptions are about to expire, coupled with a request that the same may be renewed for the coming year. But three numbers of either journal, including the present issue, remain to com plete the volume; and as it is our fixed rule not to send pa pers after the term subscribed for is ended, those desiring the weekly visits of our papers to continue without inter ruption; will therefore serve themselves by remitting as soon as possible. At the same time they will, in so doing greatly favor the publishers, as the latter are thus enabled to form proper estimates as to the magnitude of the edition which it will be necessary to print at the commencement of the year. The rates of subscription to either journal or to oth combined remain as heretofore.
The Scientific American Supplement, we would here take occasion to state, was started, as its prospectus intimated, partly as an experiment, and without definite intentio on the part of the publishers regarding its continuance after the present Centénial year. The success which it has en countered has, however, been so genuine, and the circulatio which it has achieved so greatly beyond our anticipations, hat it has been decided to continue its publication. As to he preparation and plans which we have in hand for ren dering both Scientiftc American and Supplement indis pensable to workers in every branch of art, of industry, and of Science, the reader will find them fully detailed in our announcements on the advertising pages of this issue.
Those who have taken the papers through newsdealers rerecommended to continue to do so, and those in the habit of procuring their papers weekly from the stands will find them there as of old; and those who neither subscribe for nor buy the Scientific American nor its Supplement may peruse them both on file in any working men's reading room in the country, or in the library of any institution of learning in the world.
A handsome subscription list will be sent as usual on ap plication by those desiring to form clubs.

## PROSPECTS OF AERONAUTICS.

Though failure more or less signal and complete has been the fate of every attempt thus far made to navigate the ai by mechanical devices, the problem has by no means been given up as hopeless. Better still, sufficient progress has been made of late toward a right understanding of the con ditions and requirements of flight to justify the belief that the obstacles to be overcome are purely mechanical, and sure, sooner or later, to be successfully surmounted. The long sustained flight of birds sufficiently demonstrates the possi bility of propelling heavy objects at great speed through the air by a purely mechanical apparatus: while the smal amount of food which birds require for the generation of the energy expended in flight proves that only a moderate amount of force, rightly applied, is required for that sort of work.
The problems to be solved before aerial navigation take its place among human achievements are consequently these two- the invention of an apparatus to accomplish the work of the bird's wings and tail, and an engine capable of developing great power with comparatively little weight of machinery and fuel. For the purpose of navigation, the flying ship must bs, however, like the bird, heavy in com parison with air, that it may not be at the mercy of every gust of wind; and it must be strong enough to withstand the pressure of strong gales or, what is equivalent, the resist ance due to rapid motion. Hence it is evident that, what ever it may be the successful air ship will not be and will not contain a gas bag. For the practical navigation of the air, the balloon is and will ever be a delusion and a snare and the general recognition of this truth by intelligent workers in this field is one of the most encouraging features f modern aeronautics.
It is quite possible that aerial rafts, supported by balloons, may sometimes be useful in regions favored with winds which blow steadily in a fixed direction for months at a time; but in ordinary climates, they cannot but be as useless for commercial purposes as log rafts in a sea everywhere as vexed by conflicting currents as Hell Gate was in its worst days. A self-propelling vessel supported by a balloon would be little. if any, better. No balloon light enough to sustain such a vessel could begin to withstand the pressure it would meet in stemming or crossing the current of a moderate wind, or in being driven through still air at the rate of twenty or thirty miles an hour : and unless it can do this and much more, it is out of the question for practical navination.
After many experiments and no small amount of costly investigation, the Aeronautical Society of Great Britain, so long presided over by the Duke of Argyll, has pronounced decisively against the balloon as incapable of being made useful for the purpose of locomotion, except in the way of waftage; and in a recent report, the secretary of the society,
declares that the sole improvement of which the balloon is
capable is the invention of some means to secure its ascent and descent without the expenditure of gas or ballast.
Suppose we have, for example, a balloon so weighted that it would float on the discharge of 35 lbs. of ballast, or on receiving an additional thousand cubic feet of gas. It is plain that, if some mechanical means (say a screw acting vertically) were added, capable of exerting a lifting force of 35 lbs. more than its own weight-a light two horse power would drive it-the voyager would be able to rise without discharging ballast, or sink without discharging gas; and so be able to avoid obstacles while drifting over the surface, or o rise above adverse currents to such as might be more faorabld
But for the purposes of real aerial navigation, such drift ng is wholly inadequate. The work to be accomplished is not the floating of a relatively light body in more or less favorable air currents, but the propulsion of a heavy body with a force sufficient to overcome all aerial resistance, and with velocity enough to make the inevitable driftage rela ively unimportant.
This has not yet been achieved, though the efforts toward it have shown some very encouraging results. Certain ex periments made at the expense of the Aeronautical Society o determine the exact lifting pressure of air currents gainst a plane inclined at different angles, obtained results which are especially promising. The plane used was a teel plate a foot square, and the substitute for wind or the resistance, occasioned by the passage of a body at high speed hrough the air, was the llast of a powerful fan blower. Placed at right angles to this blast, the pressure on the plate was $3 \downarrow$ lbs., indicating a wind velocity of about twenty-five miles an hour. Inclined at an angle of $15^{\circ}$, the plate received direct pressure of only one third of a pound, while the ifting pressure amounted to $1 \frac{1}{2}$ lbs. In other words, a plane of 1 square foot, held at an angle of $15^{\circ}$ against a current of air having the velocity of twenty-five miles an hour, will carry four times as much weight as it meets resistance A less angle than $15^{\circ}$ could not be tried, owing to some ob truction to the action of the apparatus. The experiment howed, however, that the ratio of the lift to the thrust greatly increased as the inclination of the plane diminished, and also that the lifting power of the current, per square foot of plane, increased with the extension of the sustainng surface, probably on the same principle that makes a arge sail on a ship so much more efficient than an equal rea of small sails.
The chief thing that remains to be done for the success ful solution of the problem of flight is therefore this To drive a sufficiently broad-bottomed car, say from forty to sixty miles an hour, by means of apparatus acting on th air. With this velocity the resistance of the air would sup port the car, at the cost of a relatively small part of the driving force. A number of experiments have been made n this direction. perhaps the nearest to success being one n which a small engine drove a plane, carrying, with it weight, a load of 214 lbs. around a circular course (planked) at the rate of twelve miles an hour, by means of two wheel working in air and having a driving surface of 60 square eet. A speed three times as great would have been $r e$ quired to lift the apparatus from the ground
Other experiments have shown that, by direct acting ver ical screws, a constant force of three horse power will sup port 100 lbs.; and inasmuch as a one horse power engine has een made weighing no more than 13 lbs., the possibility of n engine's lifting itself in that way is clear. In anothe xperiment made to ascertain what lifting power could be ot from planes moving in horizontal orbits, an engine weighing 186 lbs. was prove capable, under very unfa vorable conditions, of lifting itself with 40 lbs. additiona eight.
If the results obtained by the fan blast and inclined plane are to be depended on, an engine used for propulsion ught to succeed even better than those employed direct in lifting.

## ENGLISH DEALINGS WITH FOOD ADULTERATIONS.

If there is any one subject on which the British public xtremely sensitive, it is the quality and purity of its food ad drink. No country, we believe, has such stringent le islative enactments against adulterations; and the lega ormalities fcr their enforcement are made so few and sim ple that the aggrieved consumers now waste no time in vain denunciations, but summon the offending grocer o butterman forthwith before the nearest magistrate to an wer for the fraud.
An excellent instance, showing how persistently warfare gainst spurious materials is waged, is found in attacks now being made in England on artificial butter. It is a well known fact that, until recently, attempts to produce even moderately palatable artificial butter have failed; and al hough the product has been made of fair savor while fresh day or two's keeping has turned it into mere tallow. In England, however, the fraud has not ended at this. Conscienceless individuals have sold as butter, it is said, horri ble concoctions of old lubricating tallow, and even old tallow candles minus the wicks, which an official analyst describes as "supplied to the poor in the last stages of rottenness." One factory was detected making this delectable product a the rate of two tuns a day. This and many other like case being well known, it is but natural that the British public hould cordially detest " grease butter." The London Aro cer has lately printed long reports of trials of sellers of the adulterated material; and to show how rigidly the penal ties against the adulterations are enforced, we note that a re tailer who purchased grease butter, innocently supposing it to be genuine cream butter, and who sold it to a customer as
the latter, was nevertheless fined $\$ 50$, and further proceedings were ordered to be taken against the wholesale merchant from whom he obtained his supply.
We have frequently remarked this same severe dealing in England with every other species of food fraud. At the same time, no one need remain in ignorance as to what constitutes fraud, because the parliamentary reports on the subject, even in respect to tobacco and other unnecessary luxuries not classified as food, contain reliable and full information relating thereto. The whole matter is a suggestive one for us in this country. Here a prosecution of a retailer by a private citizen, because of the former selling $\frac{9}{4} \mathrm{lb}$. of grease for 1 lb . genuine butter,as in the above cited instance, would be considered extraordinary. Our main reliance for protection is in the vigilance of health boards, whose jurisdiction is local and limited in authority. Hence, in most cities, we may look in vain for either frequent prosecutions or reports of adulterations prepared under official auspices, although the possibility of such reports being compiled is plainly indicated by the admirable yearly work of the Massa chusetts State Board of Health. Reports, however, can merely warn us of evils in the shape of food adulterations, under which we shall probably continue to suffer until penalties are enforced, as rigidly here as they are in England, against each and every retailer who wittingly or unwitting ly sells a spurious article.

## WHAT NEW YORK MIGHT DO WITH THE GREAT FRENCH

 STATUE.Some time ago a number of enthusiastic Frenchmen, ad mirers of the United States, conceived the idea of present ing some monument to the people of this country, in commemoration of the ancient friendship of the two republics. Meetings were held in Paris, a subscription list was opened, and finally it was decided that the monument should be an immense statue, over 200 feet high, to be erected on Bedloe's Island, New York Harbor. The design is "Liberty Illumining the World;" and in harmony therewith, the hand of the figure holds a torch with a gilded flame, while at night a halo of electric light surrounds the head, so that the statue becomes a lighthouse. M. Bartholdi, a celebrated French sculptor, was commissioned to execute the work, and his operations have progressed as far as the completion of one band and fore arm, at present erected in the Centennial grounds. Now, however, there is a hitch in the money matter; and unless the citizens of New York manifest 8 greater interest in the enterprise than they have hitherto
done, it is feared that the project will meet the fate of the done, it is feared that the project will meet the fate of the
proposed colossal Washington monument, the corner stone of which was laid by Governor Young, in this city with impres sive ceremonies some thirty years ago, but of which even th site is almost forgotten. It appears that it has been left to the people of New York to erect the pedestal and also to pay part of the expense of making the statue; but probably for the reasons that our harbor is already brilliantly lighted, and that a statue for ornamental purposes is not particularly needed among the shipping, and that the sum to be subscribed is quite large, our citizens have thus far failed to respond to the call upon their purses. Meanwhile, in Philadelphis it has been proposed that, if New York thus virtually decline it has been proposed that, if New York thus virtually decines
the gift, Philadelphia shall secure it for her inland har the

We are not among those who favor letting the project die or be transferred to our sister city for want of pecuniar help here, first, in consideration of the donors' munificence, and second, because New York is rather deficient in works of art, and therefore the more we can get of them the better. We think, however, that a much superior site to the low lying island might be selected, and that, if a proper situation were ch 2 sen, our citizens would view the matter much more favorably. Our idea is that the Battery is the place for the statue, and we would erect it there in lieu of on th place assigned to it.

## AMMONIUMNITRODIPHENYLAMIN.

This remarkable compound, the chemical name of which is rather long, but scientifically correct, is manufactured in Switzerland; and it was, in the year 1874, introduced into trade, for dyeing silk and wool with a most magnificent orange color. But it produced the most alarming poisonous
symptoms among the workmen who handled it; the use was symptoms among the workmen who handled it; the use was
therefore soon discontinued, and the manufacture abantherefore soon discontinued, and the manufacture aban
doned. Dr. C. A. Martins, director of the Berlin anilin man ufactory, found that the poisonous properties were not con stantly inherent in the pure article, and that they were due either to impurities or to certain methods of manufacture and he succeeded in making a harmless ammoniumbexani trodiphenylamid, which is now sold under the more conve nient name of aurantia. The longer name is, however, the proper one, as it gives the chemical composition and derivation, which, for the benefit of non-chemical readers, we wil ow explain
Amin is a derivation of ammonium, the formula of the latter being $\mathrm{N} \mathrm{H}_{3}$, while that of amin is $\mathrm{N} \mathrm{H}_{2}$. This base, combined with phenylic acid, or rather with phenyl alcohol, $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{OH})$, forms phenylamin, $\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{NH}_{2}\right)$, which is sold under the name of anilin, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$. Diphenylamin contains two molecules of phenyl, and is represented by the formula $2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{NH}_{2}\right)$. Nitro-diphenylamin is a combination of the latter substance (as a base) with nitric acid, the formula being $\mathrm{N}_{2}, 2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{N} \mathrm{H}_{2}\right)$. Hexa means six; and six molelatter is a hexad, with the formula : $6\left(\mathrm{NO}_{2}\right) 2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{NH}_{2}\right)$. This is the hexanitrodiphenylamin ; and finally, this substance being an acid salt, it is neutralized with ammonium, stance being an acid salt, it is neutralized with ammonium,
making an ammoniumnitrodiphenylamin, of which the for-
mula is $\mathrm{NH}_{3}, 6\left(\mathrm{NO}_{2}\right) 2\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mathrm{NH}_{2}\right)$, which is equivalen contraction to $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{12} \mathrm{~N}_{8}$, the formula for aurantia The latter formula only shows the ultimate sum total o toms, and not the nature of the compound, which is shown n the former formule: but it is well known that the same umber of atoms can be combined in various ways, produ ing compounds of the same ultimate composition, although they differ in all their chemical and physical properties, so that the simplest formulæ cannot always be trusted as the ue one.
We give these details to show to the uninitiated that the pparently unnecessary long chemical names, often used in hese days, are not a mere fancy of the chemists, but ar ell considered practical system

## SILENCE AND HASTE AT DINNER.

There is probably not one among the readers of this paper who would not assent to the general proposition that habit ual haste in eating is hurtful to digestion. Everybody knows hat food hurriedly eaten is very likely to be insufficiently masticated, and not properly mixed with those salivary se retions which are essential to the perfect digestion of many kinds of food, particularly breadstuffs and other starchy preparations. Everybody knows, further, that food hastily swallowed is very apt to carry with it more air than is good for the stomach. Each bolus fills the bore of the œesophagus, and pushes before it all the air that tube contains; the successive charges fill the stomach to distention, often paraly zing its action for a time, and always favoring fermentation of the food rather than its proper solution. All this, and much more of equal physiological importance, is well known every intelligent reader, and we may safely assume tha our readers belong to that class.
It is therefore no easy task which a fair correspondent has set us in a well written communication just received. The
gentlemen of her family. she tells us, have long been subscribers to the Scientific American, and they hold it utterances in high esteem. Consequently she appeals to us to read them a lesson on the evils of hasty eating, hoping that our advice will be heeded, to the benefit of their health and the material enhancement of her enjoyment of the din ner hour.
She writes: "It has become the custom of our gentlemen o devour a newspaper with their breakfast, which, being ight, we must permit; but when the meal of the day, din er, is eaten, it is surely as unwholesome as it is disagreeable o all present to have the head of the house sit with absorbed look, eating as if for a wager, and impatiently watching the servant hand around and clear away the dishes. I am one of five suffering wives, who never eat our dinner without eeling that we are taking time from some business which ur husbands long to return to. We have therefore resolved to appeal to you to address from your editorial chair these men who are seeking dyspepsia and making our temper sour by the trying ordeal of dinner."
If any word of ours could arrest so suicidal a course on the part of any of our readers, our petitioners may be sure hat it would be spoken with all emphasis. But here's th ub: the evil complained of is in many cases one of habit, and not amenable to correction through reason; in more cases, probably, it'is one of necessity, under conditions fo hich the offender is not morally responsible; very rarely, e fear, is it the result of deficient or defective information And since we know nothing of the circumstances of the
present case, any suggestion we may make must necessarily present case, any suggestion we may make must necessarily For most general character, as likely to miss as to hit For example, we might enlarge upon the horrors of dys epsia, its disastrous influence upon character, its power ven where it does not put an end to life outright: only to receive the crushing reply from five, or five thousand, suffer ing husbands: "We know all that, probably as well as you do. But how can we help ourselves? If we were independent of the duties and responsibilities of active life, we might, and certainly would, very gladly eat our dinners with eisurely enjoyment; but the demand upon our time and houghts are such that we cannot do as we would; we ar parts of a great machine, and are driven to sacrifice our pleas ure, our health, may be: and possibly, what we regret stil more, the good temper of our wives, because of the rights and requirements of those with whom we have to do busi ess."
This is"very largely the case where dinner is eaten before the day's work is done. And when it comes in the evening, physical fatigue and nervous exhaustion from the conflicts of the day are not unseldom equally fatal to the social en joyment of dinner. It is easy to say that men should lay aside their business schemes and anxieties at such a time and we admit that it is both the moral and the physiological duty of men to try to do so: still men, as a rule, have perceived is equivalent to duty done. When the penalty perceived is equivalent to duty done. Wheng doing is apt to be indefinitely deferred, as in the case of silent and hasty eating, and when the reward for right-doing is not always immediately apparent, right-doing is likely to depend upon incidental conditions; and here the ruth compels us to observe that the ladies are often quite as much to blame as the gentlemen for the unsocial and
unsanitary habits of eating which the latter so frequently aquire.
For our own part, we approve of the morning paper at reakfast. Generally it is the only means of securing deberate eating at that hour. It is easy enough for those who o'clock in the morning; but earlier-and especially if the bat
e of business is to follow at once-humanity is not social and conversation, except with regard to the morning's news, is all but impossible. The morning paper therefore is in most cases not only a sanitary brake upon the jaws at break fast, but a real blessing to the family as well as to the read r's stomach.
At the midday meal, business is pressing and time brief. As a rule, whatever a business man eats at such a time mus be taken hurriedly. The effect is bad, it is true: but it is a choice of evils, either to eat quickly or go without. Fo his reason it is, whenever possible, the custom to take the main meal of the day after the business hours are over. It is with reference to this meal, we take it, that the just pro test against haste and silence has been uttered.
The pestilent heresy, moral as well as sanitary, that it is unbecoming an immortal being to enjoy his dinner is well nigh extinct; we trust the once prevalent insanity of self mmolation upon the altar of business push and worry is al o dying out. Active men are learning that the human ma hine can be run to death; that moderation pays best in the ong run; and that no time is more wickedly wasted than hat which is unduly saved (?) from the hours of rest and re-creation-including in the latter the dinner hour. In the scientific code of conduct, deliberate and enjoyable eating is ne of the fundamental virtues. It ranks with justice in he moral code. It is a virtue, too, which can be, and ought o be, cultivated by all, most of all by those who are doing he world's best work.
But, generally speaking, it is a virtue, the cuitivation of which calls for effort on the part of the ladigs as well as elf-restraint on the part of the gentlemen. No sensible man will willingly hurry through a meal when he is keenly njoying the food and its accompaniments; and it depend hiefly upon the ladies to secure such conditions at the fami y table. How they can do so, it is not for us to say. Ther an be no general rule for their attainment any more than ingle specific for all diseases. The special conditions and requirements of each household and the idiosyncracies of its members must chiefly determine the course to be pur ued.
There is one point, however, a very important point, which ladies very often overlook. It is this: Civilization and hunger are incompatible. All the virtues and graces of of humanity-certainly of male humanity-fly before an ompty stomach. It may be possible for a man to be hungry nd amiable at the same time, but it is not safe for any wif o presume upon so unlikely an occurrence habitually. Ig norance of their physiological truth has been the ruin of many an otherwise happy household. And we may set it own from both observations and experiences-premising hat our experience in this respect has been exceptionally happy-that prepandial discretion is the severest test of a good wife. Just before dinner is the worst possible time to bother a husband with questions or complaints, or even with efforts to be aggressively agreeable. There is the ime above all others when social silence should grace he home, and make it seem to the tired man the most de. ightful and restful place on earth. Half an hour of quiet just then is the best possible preparation for the social enjoyment of the coming meal, for then the nervous tension and mental strain of business care and anxiety can be gradally relaxed, and the entire system brought into conditions for enjoying food and the amenities of social life. Yet how requently does the wife choose that particular time to spealk of her own trials and troubles, the misconduct of servants or children, the petty requirements of the household, or other things trivial or disagreeable, and then marvel that her husband's temper is not so sweet as it ought to bel The ffense is worse even than introduction of such topics at meal time.
Another physiological fact is often overlooked by well meaning wives who have to complain of the husband's haste or taciturnity at table: that is, the softening influence of a little savory and easily assimilated food to begin with, something calculated to alloy the irritant cravings of huner while stimulating the appetite: this especially when the entlemen are mentally or physically exhausted by the labors of the day. At such times soup is even more conducive to sociability than wine.
This is perhaps not at all what our correspondent asked for, still it seems to us the most practicable way to cure
the evil complained of. The kindness, tact, and skill of the ladies before and during dinner can, in our opinion, do in initely more to correct their husbands' unphysiological ha bits in eating than any amount of scientific disquisition Let the ladies recognize the physiological conditions of the offence and the offenders, and-while trying to prevent or orrect them-study to make the dinner hour so agreeable that their husbands will not be in haste to have it over. and he desired reform will most probably come as a natural consequence, if any reform is possible.

Hot Waterproof Cement.-The following is a valuable cement which, if properly applied, will be insoluble even in boiling water: Gelatin, 5 parts; soluble acid chromate of
lime, 1 part. Cover the broken edges with this, press lightime, 1 part. Cover the broken edges with this, press light-
y together, and expose to the sunlight: the effect of the latter being to render the compound insoluble.

A HARMLEss glaze for earthenware, destined to replace he lead glazes hitherto employed, has lately been devised by M. Constantin. One recipe is 100 parts silicate of soda, 15 powdered quartz, and 25 Meudon chalk. Another is the ame with the addition of 10 parts of borax. The articles glazed can be colored by copper for green, and manganese for brown.

NEW YACHITE FOR PRUTTING COLORED PAPRR. The annexed engraving represents a new apparatus for printing colored paper, devised by M. Flintsch, the engraving of which we extract from the Reoue Industrielle. The paper is led from the roll, a, Fig. 1, above and below guide collers, $b, c$, and $a$, and thence to a felted roller, $e$, where it receives the color from the printing rol
held in a reservoir, $g$, and the paper passes over the roller, $h$, while the color is uniformly distributed by the fixed brushes, $j$, and movable brushes, i. The paper is then led over a guide roller, 8 ; and as soon as one of the ockets attached to the inclined chain sockets attached to the inclined chain ongages one of the bars of wood placed in the box, $t$, the paper is looped over the bar, and is thus carried upward by the moving chain. On reaching the summit of the inclined plane, the bar passes to a horizontal chain which moves very slowly forward. The paper, lastly, reaches a pair of cylinders (shown on the right of Fig. 2, which is a general view of the whole apparatus), on one of which it is rolled.

## Chloride of Lead Disinfectant.

 The London Lancet directs attention to the value of chloride of lead as a deodorizer. The manner of its use is to dissolve half a drachm of the nitrate in a pint of boiling water, and pour this solution into a bucket of water in which two drachms of sodic chloride (common salt) have been dissolved. After chemical action has taken place, the clear supernatant liquid is an odorless saturated solution. of chloride of lead. If this solution be thrown into a sink or vault from time to time, the disagree able odors will soon be destroyed. A ship's bilge was completely disinfected in this way by simply dissolving half an ounce of nitrate of lead in boiling water, and pouring it into the bilge water, which itself supplied the necesisary sodic chloride. Cloths wet with this solution, and hung in fever and accident wards of hospitals, are said to keep the atmo sphere sweet and healthy.
## A FEW STEAY GOVERNOB

Mr. John K. True, of San Francisco, Cal., has patented through the Scientific American Patent Agency, September


19, 1876, an improved steam governor, an engraving of which is given herewith. $A$ is the chest containing the throttle valve, B, admitting steam to the valve chest of the engine to be regulated. $D$ is the small engine for working the valve, B, which is connected to the piston rod, E. F is the valve to the small engine, the rod of which is coupled to the governor, $G$; so that when the balls of the governor rise by increase of speed, valve, $F$, will descend, and admit
steam in the upper end of engine, $D$, which will close the
valve, B; and when the balls fall, it will admit steam to thick. When the wood is taken out of the kettle, put it in the lower end and raise the valve, B. The spring, H, on the the brace, screw and wedge it in the desired form without rod of valve, $F$, balances the weight of the valve. The relaxing, and let it cool a few hours. After the wood is valve, F, can be set for high or low speed by the adjustable coupling, I. J is the exhaust pipe for engine, D. It is pro. it
posed to construct the valve, F, so that both steam ports
will be a little open when both exhausts are closed, and thus


FLINTSCH'S PAPER-COLORING: MACHINE.
the piston will be prevented from making full strokes, and when the opening of one steam port is slightly increased by the movement of the valve, the opposite exhaust will be slightly opened, to allow a little movement of the piston.

## The Cheese Industry.

Our English cousins are still unhappy over the immense mportation of cheese from the United States. Their agricultural journals are still scolding the farmers, for making an inferior article, and thus allowing our factory-made cheese to supply the English market. The London Grocer in referring to a meeting jnst held by the cheese makers states that an association was formed, called the British Dairy Farmers' Association, to which the editor alludes as follows:
"There is plenty of work for the new association to do. Our cheesemakers may be taught a good deal with advan tage, and there are many reforms which they may usefully adopt. Hitherto they have been an isolated and unsocial community. As a consequence, they have made no progress; their trade has languished; the Americans have been gradally driving them out of the market. Some few year ago, dairy farmers saw that, if they were to live by cheesemaking, they must make some radical alteration; and this fact being especially evident in Derbyshire and Cheshire the farmers there took a hint from their American competitors, and established cheese factories on the American itors, and established cheese factories on the American
principle. The Americans are running us hard, and send cheese over here which for price and quality is hard to beat But it is mostly cheese of the lower sort, and cannot in any way be compared with some of the fine qualities of English production. What we want, however, is an improvement in the general quality of the cheese made in this country and we hope that in this respect the enlightened teaching of the Dairy Farmers' Association will do great good. With proper care and skill in the processes of production, with a better knowledge of the nature of the materials they are employed upon, and with a little more enterprise, English cheesemakers may defy the competition of the world."

Honorable Employment.
There is noting derogatory in any employment which ministers to the well being of the race. The plowman that turns the clod may be a Cincinnatus or a Washington, or he may be a brother to the clod he turns. It is in every way creditable to handle the yard, and to measure tape; the only discredit consists in having a soul whose range of thought is as short as the stick and as narrow as the tape There is noglory in the act of affixing a signature by which treasures of commerce are transferred, or treaties between nations are ratified; the glory consists in the rectitude of the purpose that approves the one and the grandeur of the philanthropy that sanctifies the other. The time is soon coming, the Chicago Journal of Commerce thinks, when, by the common consent of mankind, it will be esteemed more honorable to have been John Pounds, putting new and beautiful souls into the ragged children of the neighbor hood, while he mended their fathers' shoes, than to have been set on a throne.

Treatment of Ash
Woodworkers will find the following advice, from the Northwestern Lumberman, useful in the treatment of ash, to render it pliable.
Steam is the ordinary means used to soften ash; but when it is practicable, boiling in water is the best. The chiel thing is to have the right kind of ash, as some kinds bend and others do not. One tract of land may furnish the best of ash; while another, lying close by and having just as good a soil, may produce only an inferior quality. The timber must be heavy and tough, and cut from good trunks. No matter if it has been cut and dried three years. A splinter of this quality of ash can scarcely be torn off, and runs the whole length of the wood before it ceases. Half an hour's
thoroughly dried in the brace, unscrew it and take out the wedges; it will always then retain its form.

IMPROVED STEAK GAGE.
Messrs. H. and A. Greenleaf, Brookyn, N. Y., have patented through the Scientific American Patent Agency, August 29, 1876, a novel apparatus for testing steam pressure, by which the pressure of steam on an area of any given size-say a square inch-may given size-say a square inch-may
be weighed by means of weights lifted directly by the steam without a lever or spring. In the annexed engraving, $A$ is a hollow cylinder, setting upright on a base adapted to rest on a shelf. It is open at the top, on which circular valve, $D$, one square inch in area, is seated. The rod of the valve works without friction through the top of a case, E , surrounding the cy inder, and has the cross beam, $F$, attached to its upper end. The weight, $G$, for weighing the steam paessure, is suspended from this beam by the ods, H. There is a bolder, I, for weights to be added when required. The rods pass through the table for a guide and support against lateral movement. Steam enters the cylinder, A, under the valve by the pipe, J, and the exhaust passes off through the pipe, K. The apparatus is intended as a permanent fixture in a boiler room, and is a positive and comprehensive instrument, readily at hand to test the accuracy of the steam gage and working condition of safety valve, whether the engine is running or not, without the necessity of disconnecting steam fittings, or mathematical calculations. The action of the steam is a direct dead lift of the eract counterbalance of the pressure upon the valve: and the weights being hang directly under the he valve, and cessity of the valve stem fitting tightly in the guides.
For want of such a device, engineers generally depend upon their steam gages, the accuracy of which is doubtful, as in many cases they are seldom or never tested, and thus rungreat risks that may be avoided by this instrument. In case of testing boilers by hydrostatics, this instrument may

be used to any given pressure by simply adding weights up o the required amount.
a Good Cement for Glass.-Orange shellac, bruised, 4 zs.; rectified spirits, 3 ozs. Set this solution in a warm lace, and shake frequently until the shellac is dissolved This cement will stand every contingency but a heat equa that of boiling water.
To Attach Tin to Metallic Substances.-Mucilage tragacanth, 10 ozs.; honey of roses, 10 ozs.; flour, 1 oz. Mix

## OURIOSITLES OF THE CENTENEILI

The Mineral Annexe to the Main Building was probably less visited by the general multitude than any other part of the great display. It was off the line of travel, obscured by its huge neighbor and (owing to its containing,' " nothing but old stones," as we heard a rural visitor contemptuously remark as he turned on his heel on the threshold) people, when limited on time, invariably omitted it from their sightseoing programme. Mineralists and antiquarians selfishly viewed this state of affairs with vast satisfaction, because, even when the crowds elsewhere rendered aisles impassible, the passages of this annexe were free, and one might study the collection leisurely and undisturbed. A great many thoughtful people, who belonged to neither of the above professions, however, found the "old stones" one of the most interesting exhibits in the whole Exposition, and for the reason that those rudely fashioned fragments tell us all that we know concerning that mysterious race that owned our land, long before the Indians became possessed of it . MOUND BUILDERS' RELICS.
Here were arrow heads of flint, broad axes of stone, mortars and pestles the same as Mexican tribes use today, copper pots and kettles, rude needles of bone, spears, and personal ornaments. There were skulls dry and black with age, belonging to that race which came whence we know not, and which disappeared as mysteriously as it arose, lear-
ing us nothing but the mounds which dot the Mississippi
ing us nothing but the mounds which dot the Mississippi
and Ohio valleys, and these crude relics, to tell of their exand Ohio valleys, and these crude relics, to tell of their ex-
istence. All that the strictest research has determined regarding this strange people may be told in a paragraph. Their works, in magnitude, dispersion, and uniformity, in dicate a numerous population essentially homogeneous in customs, habits, religion, and government. They belonged to a family of men, says one learned antiquarian, "moving in the same general direction, acting under common impulses, and influenced by similar causes." No tribe of Indians ever known has attained the social state which would enable them to compel the unproductive labor of the people to be applied to the works that we now find. Geological formations and the condition of the human remains obtained prove that the monuments of the Mississippi valley are at least 2,000 years old. And this is all. Who built the mounds, whether their authors migrated to remote lands, or whether they were swept away by a conquering people or by a terrible epidemic or famine, are questions probably beyond the power of human investigation to answer.
It is curious that, while the cuneiform characters of the ancient people of the East and the hieroglyphics of the Egyp tians can now be translated into modern tongues with ease and certainty, American inscriptions still defy the efforts of the antiquarians. Yet we have monuments of the Aztecs with engraving upon them which we are reasonably certain
written speech, and in this respect we have a foothold for urther efforts, which, as regards the mound builders, we do not possess. We have inscribed stones, it is true. Some are merely covered with representations of animals and no writing, as are the Arizona Painted Rocks, illustrated in this issue. In our collection of Centennial curiosities, we give ketches of two examples, having inscriptions similar to writing, but there is no certainty that such is the fact. The ichigan tablet has scratches on it resembling Runic chaacters; some of the marks correspond to the $A, K, S, D, I$ and $O$ of the old Norse tongue, as a comparison with the al habet shows; others are destitude of any like resemblance. he Cincinnati tablet is an elaborately engraved stone, found vith some human remains in a mound in Cincinnati, Ohio The engraving may be merely ornamental, a view to whic its symmetry would lead; but, on the other hand, it bears a ot remote resemblance to known Central American hiero lyphics. Again, so many such tablets have been found and declared spurious, or as belonging to a later race, that, even admitting these that presented were, as they doubtless are genuine mound relics, there is no proof that the race which uilt the mounds originally deposited them there. And thus ven these slender aids to lifting the veil, which covers the past history of the land we live in, are of no real use.

The hand of the great statue which it is proposed to erect
 of Liberty

 r,

JAPAN' Rock Chrstal


MLChigan Tablet.
on Bedloe's Island, New York harbor, is set up in the Cen. 'skill in carving and knowledge of anatomy withal than the tennial grounds, in order to afford to the people an idea of the colossal size of the figure when it shall be completed. The weight of the member, with the torch which it holds, is about ten tuns. It is not cast, but is made of thin copper plates hammered into shape and riveted together. The length of hand and wrist is about eleven feet, the second finger is six feet long, and the thumb nail is thirteen inches square. The circumference of the thickest part of the fore arm is sixteen feet six inches. The gallery around the torch accommodates about twelve persons. The total hight of the statue will be one hundred and fifteen feet, or, including
that of the pedestal, two hundred and twenty feet, about that of the pedestal, two hundred and twenty feet, about
thirty feet less than the bight of Trinity church steeple in thirty feet

## japanese art objects.

In a large number of the famous Japanese bronzes, exhibited in the Main Building, the subjects were notably derived from Chinese or Japanese mythology. One of the most magnificent of these works of art is represented, though of course without its exquisite detail, in our sketch, and is an incense-burning vessel held in the hands of a sea god or devil, above whose head the legendary dragon rears itself. For bronzes of this description, the metal is cast in clay molds formed upon models made of a mixture of wax and resin, which is melted out from the finished mold previous to pouring the metal in. The melting furnaces are of exceedingly small dimensions, and generally are iron kettles lined with clay. After casting, the pattern is carefully corrected and worked out by chiseling; but the best bronze casters prepare the model, the mold, and the alloy in such a way as to produce casting which needs no further correct-
ing or finishing. The garments of the divinity represented are elaborately covered with a damask pattern of exquisite inlaid work. The process. by which this is done differs according to the nature of the material on which it is pro duced. Sometimes the design is hollowed out to a certain depth with a graver or chisel, and the ornamenting metal, silver, gold, etc., generally in the shape of threads, is laid into the hollow spaces and hammered over, should the alloy be soft enough. The edges of these grooves are first slightly driven up, so that, when the metal has been laid in, they can easily be hammered down again, thus confining the latter in place. Or else the surface is merely covered in the required places with a narrow network of lines by means of filing, and the thin gold or silver leaf fastened on to this rough surface by hammering. When astrology was a living and not a very dead science, as it now is, those who credited its teachings likewise believed that certain persons were possessed of wonderful powers, which enabled them, when they looked into a crystal globe, of seeing future events transpire. We doubt if the Japanese have any similar su. perstition; but unless they have, there is no obvious use to which their magnificent crystals (two of which we represent) can be devoted, outside of ornamental purposes. The smaller crystal is cut in pear or fig shape, and is surrounded by strangely twisted ivory leaves. The larger one is a perfect sphere, some seven inches in diameter. Both are mounted on superbly lacquered stands. The small crystal is vaed on superbly lacquered stands. The
lued at $\$ 800$, and the larger at $\$ 1,000$.
the russian gold and siliver work
we have already quite fully described in our notes on the Centennial during its progress. The sketch represents a salver and bowl of ornamented silver gilt, over which exquisite fringed or lace-bordered napkins, of some silver tissue, appear to be thrown. Close examination shows that the napkins are no fabric, but are solid metal, forming in one case a part of the salver, and in the other the cover for the
bowl. Every thread of the texture, or of the lace border, even a colored edging pattern, is copied with minute accuracy; and the perfectly natural falling of the folds adds to a deception which can scarcely be discerned save by touch.
Two very curious

## EMU EGG ORNAMENTS

are also depicted. The egg looks as if made of dark green morocco leather, and is about five inches in its long diameter. After removing the contents, the Australian jewelers mount them in silver in very tasteful designs. In one the egg is supported on the twisted trunks of palm trees, and ferns rise up on either side. On top, an Australian aboriginal native is standing. The other design introduces the emu and the kangaroo, while the egg is supported by a kneeling figure.

## PORTUGUESE WATER MONKEYS

are universally used in all hot countries where ice is a luxury not to be obtained save at ruinous prices. They are ves sels of unbaked clay, perfectly porous, and made in the form shown. The larger is intended to hang in a window or wherever a draft of air can be had, so that the evaporation which takes place on the exterior of the vessel may be hasother jar is of the kind which usually replaces the pitcher other jar is of the kind which usually replaces the pitcher
on the table. The ornamentation of the exteriors is quite on the table. The ornamentation of the exteriors is
tasteful, although the design is merely scratched in.

A curious growth of wood is also represented in the en graving. The materialappears to be a species of vine which has been trained and its parts united so as to form a perfectly formed screen or trellis. Lastly, we give sketches of Young Africa's playthings, which show that the youthful denizen of the Gold Coast demands toys not a whit less realistic than his civilized brethren of the rest of the world.
Besides, there is a good deal of crude talent exhibited in the carving. The leopard, for instance, with an unknown animal of incognate species in his mouth, shows far greater
skill in carving and knowledge of anatomy withal than the
frightful spotted horses or jointless-legged cats wherewith Young America amuses himself. The animal, it will be observed, standsat bay, lashing its sides with its tail and holding its prey in its mouth. His spots are burned on with a hot iron. The bird shows a similar imitative ability; the doll, we cannot say so much for; but here the baneful influ once of the vices of civilization affect the untutored intellect, for a bit of English or American calico is added to form a very obvious crinoline.

## Contespoudatuct.

The Duration of Vulcan's Transit.
The distance from the sun of an intra-Mercurial planet, to be in proportion with the grade of solar distances of other planets, ought to be in the neighborhood of $20,000,000$ miles, at which distance Kepler's third law would determine the periodic time of the planet to be about 35 days. Assuming these figures to be substantially correct, and the supposititious planet to have an orbit similar in shape to those of other planets, it would move through about $2^{\circ}$ of its orbit while passing centrally across the solar disk, the duration of which transit could not much exceed five hours tion o
time.
The
These figures are roughly calculated, but they indicate the impossibility of Vulcan's remaining upon the sun's face as ong as the periods suggested by some of your correspondents. To make the duration of transit fifteen hours would be to ocate Vulcan's orbit outside that of Venus.
Rochester, N. Y.
E. B. Whitmore.

## The Scientific American Supplement.

We are in the frequent receipt of enquiries like the folowing:
'Publishers of Scientific American:
You advertise to furnish the Scientific American and SUPPLEMENT for one year, postage prepaid, for seven dollars.
Having already sent my subscription for the ScIENTIFIC Having already sent my subscription for the Scientific American, $\$ 3.20$, I would like to know if, by now for-
warding the balance of $\$ 3.80$, you will send the Supplement warding
along?
Answ
Answer: Yes. Any person now a subscriber to the Scientific American, by remitting to us the difference between seven dollars and the amount he has already paid to us, may receive the SUPPLEMENT for one year: dating from No. 1 of
the Supplement or from the present time, as he prefers. the Supplement or from the present time, as he prefers.
We can furnish all the back numbers. In addition to the We can furnish all the back numbers. In addition to the
large quantity of illustrated information pertaining to all large quantity of illustrated information pertaining to all
the various branches of Science, the Supplement for 1876 the various branches of Science, the Supplement for 1876
will be especially valuable for preservation as a general pictorial and scientific record of the great Centennial Inter national Exhibition.

## Intelligence the Key to Success,

"It may be laid down as a general rule that, in any business, whether it be in trade, in mechanics, or manufacturing, the intelligent educatedman will be the most apt to succeed. f course there. are exceptions, but they on pot the collegian or the man liberally educated in the schools, for as general thing they are not the men we find in shops and fac tories. But we do mean those mechanics and proprietors or uperintendents of manufacturing establishments who make it a point to improve upon their common school education
by judicious reading and study, by which means they keep hemselves posted upon all the improvements and advances made, not onlyin the industries generally, but especially in that particular industry in which they are personally interested.
"For several years past our business has brought us into requent contact with manufacturers in almost every branch tellectual status of this large and growing class of our population. There are two classes of manufacturers occupying pposite extremes-those devoting all the time they can pare, or even more, to the acquisition of mechanical infor aation-in some instances, perhaps, to the neglect of the ractical business details of their calling ; the other class which is much the larger, refusing or neglecting to avai themselves of the information furnished by those publica-
tions and journals devoted exclusively to mechanical, manufacturing, and scientific subjects. They claim that they hav no time to spend in reading papers-no time to waste in the pursuit of knowledge. Indeed theme paper devoted to me hanical scientific, and useful information, they have not even opened it for months, and not unfrequently they will point to a dust-covered pile of unopened papers, with a mile of self-satisfied pride, as an evidence of their indeondence of all editorial or extraneous assistance. Such men forget that this is an age of progress-that nearly al our manufacturing industries are in that transition state, as
it were, between a hopeful opening and a full fruition of it were, between a hopeful opening and a full fruition of
final success. Improvements in methods, improvements in machinery, and improvements in products are constantly eing made;and the manufacturer who neglects to keephim self posted on all such matters not unfrequently deprives himself of the information and experience of others, that would contribute largely to his own success. Inteligence profitable industries; and the proprietor or manager of extensive manufacturing establishments, who goes on the as
sumption that he already knows all that is worth knowing in relation to the industry in which he is engaged, will be apt to find himself, in the long run, left far behind in the race by many who have started out later in the day and under far less favorable circumstances, apparently, who have availed themselves of all the aids offer.d to keep fully up with the march of improvement.
"The growth and progress of manufacturing industries in this country have been stimulated and urged on to their present development largely by the advocacy and encouragement of editors and writers who have given their whole time and talent to the study and investigation of the subject in all its bearings-who have accumulated a vast amount of valuable, practical as well as theoretical, information, that can only fail of its object to benefit and advance the cause to which they are devoted by want of application by those for whose advantage it was collated, digested, and prepared. The ancients had a saying which, literally translated, reads: 'Life is short but art is long.' The range of knowledge, information, or intelligence is so extensive that one man can hardly expect, or be expected, to cover the whole ground. hardly expect, or be expected, to cover the whole ground.
Hence we have a variety of journals or publications devoted to a variety of subjects, covering a variety of fields of thought, study, and investigation. First of all comes the newspaper devoted to the current events of the day. This, of course, every intelligent citizen, whatever his calling or occupation, should read. After that come political, literary, scientific, religious, industrial news, etc. And this latter class is still further divided into agricultural,mechanical, manufacturing news, etc. These journals are, or should be, conducted by men of intelligence, of careful and thoughtful study-men who honestly and earnestly labor for the advancement of the special interest to which they are devoted. It would be a libel on human nature to suppose that such an editor would not collect, collate, and present many useful and practical facts and much valuable information that could not be otherwise obtained. The men, or class of men, for whose especial benefit or edification such information is prepared, who, through ignorance, prejudice, self-sufficiency, or any other cause, ignore and disregard it, neglect their own interests and punish themselves much worse than they do the editors whose labors they treat so cavalierly. In this age of the world, ignorance will not win in the race with intelligence, though circumstances may, for the time being, seem to be in its favor.
"There are undoubtedly many personsinvolved in the care and anxiety of the management of a mapufacturing establishment who honestly think they have not the time to read and study a journal published in the interest of their special calling, no matter how able or valuableit may be. But that should not be the case, and if it is, that fact alone shows the necessity for the very information they refuse to accept. It shows that there is not a wise division and disposition of time. One of the most important factors in the problem of successful management of any business is system, method : a time for everything and everything in its time, as well as ' a place for everything and everything in its place.' It is only the man of intelligence who is capable of so systematizing his time and his business as to make both yield the most satisfactory results. The man who is always in a hurry, always just a little behindhand, so that he feels anxious and fearful lest some important matter will not be accomplished in its own time, may calculate that his system is at fault, and that it is not more time that he needs, but a better and wiser disposition of the time he already has.
"The earnest and honest manufacturer who sets out to build up a great, flourishing, and profitable industrial establishment will avail himself of all the information that can be gleaned from the journal, or journals even, devoted to the particular industry in which he is engaged. And in the term 'journals' we do not include that numerous brood of advertising sheets that, under high sounding titles, are circulated gratuitously and at random, to whomsoever will take them from the post office. Though sometimes containing a few well selected or pilfered articles to give them the appearance of what they are not, reliable journals, they are not edited with that care and ability which alone gives the pecial journal any value, or any claim to the support of the lass to whose interests it is devoted. We earnestly commend these facts and ideas to the great multitude of workers in the industrial fields of the West, in whose interests we
have enlisted, and to whose complete success we look forhave enlisted, and to whose complete success we look for-
ward with hope and gratification."-Western Manufacturer.

## The United States Skate Trade.

It was not many years ago when all the skates used in the United States came from abroad, chiefly from Germany, and the German skate importation was a lucrative branch of trade. Of late this has almost entirely ceased. The Americans make their own skates now, and, oddly enough, the announcement is made that one of their leading skate facories, the Northampton Skate Company, in Massachusetts is filling orders for nickel-plated skates to be sent to Ger-many.-Ironmonger.

## A Fortune in Toothpicks.

It seems that it was not the invention of the wooden oothpick, per se, that netted the inventor $\$ 50,000$, but the dea of making the toothpicks out of soft, brittle wood. It it is said that, when first brought out, the toothpicks were made of hard, fibrous wood; but the inventor soon found that this would not pay, as the picks lasted too long, and he went o pine. It now takes four sound picks to get the broken end of one out from between the teeth; and it is the latter discovery that is said to have realized the inventor his for-

## the practical resulis of the english arctic

 EXPLORING EXPEDITIONWe have before us the connected and detailed narrative of the English expedition, which has lately returned from the arctic regions. A general outline of the voyage we have already presented, noting the fact that the sledge parties from the Alert had reached the highest northern point ever attained, and only turned back when further progress toward the pole became impossible owing to the roughness of the ice and the terrible cold. The official report of the at tempt says that, instead of land extending far towards the north, as reported by the Polaris, Robeson Channel opens directly into the Polar Sea. The Alert rounded the northeast point of Grant Land, but, instead of finding a continuous coast line leading one hundred miles further towards the north, as everyone had expected, found herself on the border of what was evidently a very extensive sea, with impenetrable ice on every side. No harbor being obtainable. the ship was secured as far north as possible, inside a sheltering barrier of grounded ice, close to the land, and there she passed the winter. During her stay of eleven months no navigable channel of water permitting further advance to the northward ever presented itself. Instead of finding an "open Polar Sea," the ice was of most unusual age and thickness, resembling. in a marked degree, both in appearance and formation, low floating icebergs rather than ordinary salt water ice. It has now been termed the "Sea of Ancient Ice"-the Palæocrystal or Pa æcruic Sea; and a stranded mass of ice broken away from an icefloe is named a floeberg.
Whereas ordinary ice is usually two feet to ten feet in thickness, that in the Polar Sea, in consequence of having so few outlets by which to escape to the southward in any appreciable quan tity, graduaty increases in age and thickness until it measures from 8 feet to 100 feet, floating with its sur face at the lowest part 15 feet above the water line.
Strange as it may appear, this extraordinary thickness of the ice saved the ship from being driven on shore: for, owing to its great depth of flotation, on nearing the shallow beach it grounded and formed a barrier inside which th ship was comparatively safe. When two pieces of ordinary ice are driven one against the other and the edges broken up, the crushed pieces are raised by the pressure into a high, long, wall-like hedge of ice.

When two of the ancient floes of the Polar Sea meet, the intermediate lighter, broken-upice, which may hap. pen to be floating about between, alone suffers; it is pressed up between the two closing masses to a great hight, producing a chaotic wilderness of angular blocks of all shapes and sizes, varying in hight up to 50 feet above water, and frequently covering an area water, and frequently covering
upwards of a mile in diameter.
upwards of a mile in diameter.
Such an icy road, which was sure to be continuous, destroyed all hope of the pole itself being reached by sledges. Commander Markham and Lieutenant Parr were, however, absent seventy-two days from the ship; and on May 12 succeeded in reaching N ., as marked on the annexed map. ,, marked on the annexed map. From this position re was no appearance of land to the northward, but, cu-seventy-two fathoms.
In addition to the dispatch of the northern travelers, the coast line to the westward of the Alert's position was traced for a distance of 220 miles by a party under the command of Lieutenant Aldrich; the extreme position reached was in of Lieutenant Aldrich ; the extreme position reached was in
latitude $82^{\circ} 40^{\circ} \mathrm{N}$. , longitude $86^{\circ} 30^{\prime} \mathrm{W}$., the coast line being continuous from the Alert's winter quarters. The most ing continuous from the Alert's winter quarters.
northern land, Cape Columbia, is in latitude $83^{\circ}{ }^{\circ} 7^{\prime}$, longinorthern land, C
tude $70^{\circ} 30^{\prime} \mathrm{W}$.
The coast of Greenland was explored by traveling parties from the Discovery, under the command of Lieutenant Beaumont and Rawson. They succeeded in reaching a po sition in latitude $83^{\circ} 18^{\prime} \mathrm{N}$., longitude $50^{\circ} 40^{\prime} \mathrm{W}$., 70 miles northeast of Repulse Harbor. The land extended as far as latitude $82^{\circ} 54^{\prime}$ N., longitude $48^{\circ} 33^{\prime} \mathrm{W}$., but very misty weather prevented its character being determined with exactness. Lieutenant Archer, with a party from the Discovery, explored Lady Franklin Sound, proving that it terminates at a distance of 65 miles from the mouth, with lofty mountains and glacier-filled valleys to the westward. Lieutenant Fulford and Dr. Coppinger explored Petermann Fiord, finding it blocked up with a low glacier, which extends across from shore to shore. With the exception of Hayes Sound, the coast line of Smith Sound has now been explored from north to south.
When all had come back to the ships, Captain Nares found that the sufferings had been terrible, that the work achieved was unsurpassed in the annals of discovery; but he also found that the heroic devotion of officers and men had secured for the expedition complete success. The work was done, and he was able to decide upon returning to Engjand. While the pole bad, it is true, not been reached, the
practicabilit

## yond doub

We have noticed that because Captain Nares did not ac complish the discovery of the pole, which ly common consent rather than through any scientific reason is considered the goal of all arctic expeditions, his work has been hastily pronounced a failure. This is not only unjust but unfounded for the expedition really accomplished all it started to perform, namely, the exploration of the region adjacent to the pole, and only ceased when insuperable difficulties and the practical completion of its task rendered further labors both impossible and unnecessary. Mr. Clements R. Mark ham sums up its splendid achievements as follows:
First, a great Polar Ocean has been discovered and fully described, which will revolutionize most preconceived ideas, and a knowledge of which will be most valuable to the sci ence of hydrography. Next, a coast line, stretching from $50^{\circ}$ of longitude along the Polar Ocean, has been discovered and carefully delineated; and an exhaustive knowledge of its geology, fauna, and flora has been obtained. The long channel, from Smith Sound to the Polar Ocean, has also been carefully delineated, and the shores on both sides have been explored and described. Most important discoveries have been made with reference to the geology of the unknown area, the value of one of which-namely, the form or existence of an evergreen forest in $82^{\circ} 44^{\prime} \mathrm{N}$.-is alon worth all that has been expended on the expedition. In zo

ing. A number of attempts have been made to introduce this fish into American waters, but this is the only instance of success. A tank, suspended like a compass, to avoid the ship's motion, was especially constructed, and then, notwithship's motion, was especially constructed, and then, natching,
standing the greatest care, attention, and constant watchin out of eighty-eight only seven survived the journey. The remaining six that Mr. Gill has have spawned, resulting in fifty young fry, which exhibit all the peculiarities of the originals. It is Mr. Gill's intention, as soon as he has a sufficient stock, to give some of them to persons who will endeavor to raise them. The fish loaned to the aquarium is a magnificent specimen, and exhibits all the several beautiful colors in perfection.

What British Hardware Manufacturers Have to Do. The last number of the Ironmonger takes the British manufacturers to task for not furnishing what the people demand, and admonishes them, if they expect to retain their trade, to adopt the plan of supplying the article the consumer requires. "Many old patterns will have to give way in this country," it says, "in favor of more handy goods in frequent use throughout the New World. The essence of the American's success consists in the fact that he always supplies just what the consumer wants, or thinks he wants, and that he supplies the want promptly. While an Englishman cannot for the life of him sacrifice stock, the American, who, as a salesman, is frequently 'two or three hours ahead' of our own countrymen, does so without compunction. Only let himsee his opportunity, and he will not hesitate a moment. Of this an instance was recently recorded in the method of dealing by two traders of different nationalities, who were selling goods required by the miners at the gold diggings. The articles were dippers, and they.were supplied by the hundred by an English and an American firm respectively. When the goods were delivered upon the ground, the tide of popular opinion had turned, and something different was wanted. The American tossed all his dippers into a shed and thought no more of them; in less than a week he had a supply of new dippers on the ground. Not so the Englishman; he persisted in trying to sell what he had got, and refused to sell anything else. 'Is it a matter of surprise,' it is asked, ' that the American did a roaring trade, while the Britisher retired in disgust? Why have we lost the ax trade? Because the English ax makers were too proud or too indolent to take a lesson from the Americans, who, utilizing their great experience in the use of such a tool, have produced the best possible instrument for the purpose. Doggedly the English ax maker has gone on making an imperfect tool, and has forced the consu mer at home as well as abroad to buy oftentimes reluctantly, the American product. Less than ever can we afford to repeat that and other mistakes which are now occurring in a not dissimilar line of business; for it will most certainly come about that additional agencies will be opened in this country for supplying such goods. Even at this ology and botany the results are equally valuable, especial- $\mid$ moment the electroplate goods of a leading electroplate comly as regards the distribution of plants and animals. Add to this that complete series of observations, at two separate stations, have been recorded in meteorology, magnetism, tides, electricity, and spectrum analysis: besides other re sults not yet reported.

## Business Precepts.

We find it stated that the founder of the great banking house of Rothschilds made the following rules the guide of a business career culminating in magnificent success:

1. Combination of three profits. "I made the manufacturer my customer, and the one I bought of, my customer; that is, I supplied the manufacturer with raw materials and dyes, on each of which I made a profit, and took his manufactured goods, which I sold at a profit, and thus combined three profits."
2. Make a bargain at once. Bean off-handed man.
3. Never have anything to do with an unlucky man or place. "I have seen many clever men who have not shoes to their feet. I never act with them. Their advice seems very well, but fate is against them; they cannot get on themselves, how can they do good to me?"
4. Be cautious and bold. "It requires a great deal of boldness and a great deal of caution to make a great fortune, and when you have got it it requires ten times as much to keep it."

A Fish of Seven Colors and Three Tails.
Mr. Gill, of Martin, Gillet \& Co., of Baltimore, Md., has just returned from Japan, bringing with him a beautiful and rare fish, never before seen in this country, and which he has kindly loaned to the New York Aquarium. The pecuiar features are several brilliant colors and three separate and distinct tails, all of which the Japanese claim are the result of many and successful years of the most careful' breed-
pany of America are being sold in Birmingham; and through central agency there, what are known as 'Canadian' gold Albert chains, which are really excellent goods of United States make, are being sold throughout the whole of England. Established English ironmongers have a right to look to English hardware firms to supply them with goods that the English people may demand, without driving them to resort to present or future American agencies, either in Birmingham, Liverpool, or London."

To Distinguish between Cotton and Wool in Fabrics. Ravel out the suspected cotton fiber from the wool and apply flame. The cotton will burn with a flash, the wool will curl up, carbonize, and emit a burnt, disagreeable smell. Even to the naked eye the cotton is noticeably different from the filaments of wool, and under the magnifier this difference comes out strongly. The cotton is a flattened, more or less twisted band, having a very striking resemblance to hair, which, in reality, it is ; since, in the condition of elongated cells, it lines the inner surface of the pod. The wool may be recognized at once by the zigzag transverse markings on its fibers. The surface of wool is covered with these furrowed and twisted fine cross lines, of which there are 2,000 to 4,000 in an inch. On this structure depends its felting property. Finally, a simple and very striking chemical test may be applied. The mixed goods are unraveled, a little of the cotton fiber put into one dish and the woolen in another, and a drop of strong nitric acid added. The cotton will be little or not at all affected ; the wool, on the contrary, will be changed to a bright yellow. The color is due to the development of a picrate.

One per cent of lime with silica makes the most infusi ble brick known.

We illug LipROVED FEED WATER HEATER. heater, the operation of which will be readily feed water from the following description: Referring to the illustra tion, the cold water enters through its pipe to the valve a little above the perforated plate. This valve rests upon le little above the perforated plate. This vaive rests upon le vers connected with the float, seen below, wh
controls it. The water escaping from the controls it. The water escaping from the
valve passes through the perforated plate in valve passes through the perforated plate in
the form of rain or spray. The exhaust the form of rain or spray. The exhaust
steam, entering from below through the steam, entering from below through the
large central pipe, strikes the deflecting disk at its top, and is directed against the rain or spray falling from the perforated plate, heating it, it is claimed, instantaneously to the boiling point. The steam then passes around the perforated plate to the steam and wate separator on top, where it drops any water it may have taken up, and passes to the exi well dried. The water thus collected travels through a drip pipe to the bottom of the through a drip pipe to the bottom of the heater. The heated water in the bottom of the heater passes to the pump through the pipe on the right. It will readily be seen that whenever, from the shutting off of the main or from any other cause, the water is pumped down, it cannot fall below the line marked " lowest water line by pumping," as when that line is reached the pump draws air and steam through the air pipe. The ob ject of this arrangement is to collect any oil or floating dirt above this outlet to the pump where it can be drawn off nightly through this surface blow, and any heavy dirt below the outlet where it can be drawn off weekly the ough the botto blow. through the boat is sub stantially made, anf gives no trouble; but as an additional precaution, a spiral drip pipe is used, which preserves its buoyancy unless i leaks more than the pipe can carry off. The float and the plate seen above it also act as pacificators, and prevent the constant turmoil of the water, so that in practical operation the level of the water does not vary over one half inch.
It is claimed that this apparatus, using ex haust steam only, will heat over three times the water needed for the purpose of making steam for power to an unvarying temperature of $210^{\circ}$ Fah., no matter how fast the water may be pumped. It is also entirely self.regulating and requires no attention A thermometer for testing is attached to and furnished with each heater, and a trial of thirty days is allowed. We are informed that the apparatus has been in successful operation for the past eighteen months. The Brooklyn navy yard is using one, the government tests showing, it is stated, a gain of thirty per cent in heating power over their tubular heater. The engineer of the New York Post Office building testifies to a saving by the two in use there of twenty-two per cent by actual weight. One in the Equitable Life Insurance building shows a saving of about eighteen per cent, and others in use by private parties show like advantageous results
For further information apply to the Green Feed Wate Heater Company, 86 Liberty street, New York city.

## IMPROVED FURNACE FEEDER.

Years ago Dr. Arnott taught us that the proper method was to light a fire from the top and let it burn downwards, consuming the gases as they were evolved; and in accordance with this view, he invented a domestic grate for charg-
ing at the bottom. Mr. Frisbie's patent feeder, represent od in the annexed engraving, which we select from the pages of Iron, is designed to accomplish the same object in fur aces and the fire grates of steam boilers.
The accompanying engravings are longitudinal vertica ections, Fig 1 showing the charging cylinder in a vertical sections, Fig. 1 sh
position and with
with a movable bottom or piston. This cylinder is suppor ed by side plates working in bearings on the floor of the fur nace; and, after being filled in the inclined position, is brought up to the vertical by one set of arms and crank pin n the crank shaft, taking into notches in links jointed to the supporting plates. The crank shaft is driven by mean winch and bevel gearing; and when the cylip der has reached the full extent of its swing which brings it directly underneath the cen tral circular aperture, the crank pins leave the notches, and the links then rest upon the shaft, thus locking the hopper in a vertical position. By a continued turning of the winch handle, the crank of the shaft, which is pro vided with a friction roller, now comes into contact with another set of arms on the shaft which raise the piston with its charge of fue to the top of the cylinder, thus causing the fresh charge to displace the previous one (shown at Fig. 2), and propel it into the incan descent mass above. Turning the handle in the contrary direction has the effect of bring ing the cylinder back to the inclined position the crank pin of the first set of arms taking into the notches, and disengaging the links by raising them. A cast iron apron follow the cylinder up, so as to retain in its place the coal just charged into the furnace. The piston remains at the top of the cylinder un til it has passed the opening in the center when it is released by a catch coming in con tact with a cross bar, and falls to the bottom of the cylinder, ready for a fresh charge of fuel.

It is claimed that, by this arrangement, the gases evolved from the coal cannot escape without being consumed; and so perfect is the combustion that nearly all the residuum forms a fine ash, which falls between the bars on their being moved round. Any clinker or incombustible substance contained in the fuel is continually lifted and loosened, and gradually carried to the circumference of the grate by the successive charges of fresh fuel forced up in the center, and may be removed from all portions of the grate by its being brought, in its revolution, opposite the fire hole door. Raking of the bars is entirely su perseded, and the fire door need be opened only rare occasions. Again the stoker is com pletely protected from the violent heat, and pletely protected from the stoking. There is no fear, as might at first sto be supposed, of the cyllader being melted by the heat; the fact is that it does not come in contact with the fireitself, but only with fresh coals. The draft through the grating also tends to keep the gear cool. We learn tha there are already over thirty of the feeders now in use in Birmingham, England.

## Explosion of Benzolin,

Persons who have occasion to repair barrel which have contained naphtha, benzole, or any of the light petroleum oils should b careful how they use a light or even a ho car

## GREEN'S FEED WATER HEATER.

cylinder brought back to an inclined position and filled, with the piston at the bottom. In place of the usual fire bars i a central aperture, surrounded by segmental gratings, which are easily removable, while the whole annular arrangement of grate bars runs on friction rollers, like a turntable, and ay be rotated by means of a crowbar inserted in the holes the cylinder or hopper, swinging on pivots, and provide

Fig. 1
Fig. 2.


## SEA SERPENTS.

There have been so many " mariners' yarns" told about gigantic sea serpents that few believe that any true member of the snake family ever lives in the sea, despite the fact that in our temperate climate there are many of the reptiles known as water snakes which are rarely met with except in ponds and marshes. The truth is that there are sea ser pents, to be sure not colossal monsters with heads as big as hogsheads, and capable of crushing small vessels in their vast folds, but moderate-sized snakes, growing sometimes to a length of over nine feet, but generally about half that. The family of thantophidians to which they belong has only seven genera and about twenty species, and is indigenous to the Indian Ocean and archipelago. The serpents have fat talls and a com pressed body, perfectly adapted to their aquatic existence. They are, in fact, compromises between snakes and eels. Like snakes they are venomous, and their bite is often deadly, although their poison loses its power after the reptile has been out of water a few days. The jaws and teeth are smaller than those of land serpents of the same dimensions. The head is always small. The body changes its form according to the season of the year, being to the season of the year, being sometimes long and thin, again short and thick.
The cerpents belonging to the genus hydrophis are nearest allied to their land brethren, and one especially, the platura, appears to be a connecting link between the two orders. Its general conformity and its large ventral scales all indicate an animal capable of locomotion on the and as well as in the water. The food of the family-one member of which is well represented in the annexed illus tles, which they kill by their venomous bite. 1 curious fact is that the snakes in time become literally covered with barnacles, as when these parasites affix themselves to their barnacles, as when these parasites amis themeve them.

PREHISTORIC RELICS IN ARIZONA.
Arizona Territory is perhaps less known, to the majority
Arizona Territory is perhaps less known, to the majority
of our inhabitants, than any other part of the country; and
yet it has a remarkably fine climate, moderate temperature, but scratched on the surface of the rock, which is a kind of fertile soil, and unbounded mineral wealth. No railways, gritty sandstone, of red color; and many of the animals thus however, have as yet been constructed in Arizona; but the rudely depicted are not, and perhaps never have been, inditlantic and Pacific and the Teras Pacific companies have btained charters and land grants, and when these road
 are constructed, there is every likeliood of this beautiful region being reached by settlers from the East; and its lands,
now chiefly occupied by nomadic tribes of Pimas, Marico


## THE HYDROPHIS

pas, Mohaves, Utes, and Apaches, will be brought into cul- plored. tivation.
To the traveler and antiquary, Arizona is a land possessing especial interest, as it abounds with relics of two popu lations, probably widely separate in point of time. There are to be found here numerous ruins of Aztec sculptures and buildings, which were probably of great antiquity when Cortes arrived in Mexico, and Don José de Vasconcellos crossed Arizona towards the Great Cañon, in 1526. But the ramarkable painted rocks, shown in our illustration, are doubtless much older than the Aztec relics; and there is oubry lo history, legend, or tradition that even attempts to explain
the origin of the inscriptions. The marks are not painted

FOR KEEPING crackers dry, unslaked lime is recommendd. The wooden boxes for the crackers should be about 12 inches deep, and have a tray 1 inch deep to rest just beneath the lid, which should fit tightly. The lime is placed on the tray, and is said to keep the crackers dry for six months if the box is not opened, or for about two months if the box is visited daily.
The Herald of Health says that the right way to cook an egg is to pour water on it at a boiling temperature and leave the egg there for fifteen minutes.


THE PAINTED ROCKS, ARIZONA TERRITORY.

## CENTENNLAL NOTES.

after the fair.
The dismantling of the Great Exposition is being pushed forward with great rapidity, and the scene in the grounds reminds one of the busy haste incident to the week prior to the opening. Freight cars, wagons, and trucks, loaded with filled boxes, are everywhere ; the machinery is motionless, and much of it is taken apart and covered with white lead; on such of the State buildings as are not sold (but most of them are), the placard "For Sale" stares the visitor in the face; and barriers at every hand prevent the accustomed free rambling about the grounds. In the Main Building nearly all the foreign exhibits are fenced in, and admittance to them is denied. The Japanese display is surrounded by a high partition which prevents even the empty cases being seen. The paintings are nearly all packed. Visitors who puzzled over how Markart's immense work was transported
may now have their curiosity satisfied by beholding the canvas removed from its stretchers and carefully rolled on a huge cylinder, a proceeding which smaller oil paintings would hardly undergo without cracking. Most of the statuary is to be sold,and some is already advertised to be offered at auction in this city. The Government Building is closed, and a sentry paces his beat in front of the door. Visitors are still admitted to the grounds at the usual price, but they number scarcely 15,000 a day. Bargain hunters are present in full force, there being a prevalent idea that exhibitors will offor their wares at greatly reduced rates rather than remove them. The reverse,however, appears to be the case; and with some exceptions, the exorbitant prices hitherto charged are maintained. To judge from objects that were sold during the fair and the sums ber of objects that were sold during the fair and the sums
they brought, visitors must have become imbued with the they brought, visitors must have become imbued with the
notion that evergthing exhibited was unique and unattainanotion that everything exhibited was unique and unattaina-
ble elsewhere. We doubt if there was anything, with the exception of certain works of art and oriental objects, that could not be dupficated in this city or even imported from Europe at a very much less cost. The Italian trinkets, which are sold in Genoa for their weight in silver, were universally purchased at about four times their value; the Chinese porcelain went at about the same ratio as compared with New York prices; and as for the supposed Turkish jewelry,thousands of dollars worth of the spurious trash was bought at at least five times its usual cost. At the beginning of the Centennial, some real Turkish goods were offered for sale; and these Mr. Bayard Taylor probably saw when he wrote the letter to a New York journal attesting theirgenuineness. That letter was posted conspicuously by the dealers; and under its innocent guarantee, thousands were induced into buying glass and brass which elsewhere they would have scorned, and which now is gladly sold on the grounds at less than half price. The United States government seems to have profited considerably by the generosity of foreign exhibitors, and in this respect to share the advantages with the city of Philadelphia. Nearly every government represented on the grounds has given something to the National Museum, while many have given all and others the greater portion of their specimens in certain departments. Philadelphia has lately been presented with the German Pavilion; and the Jewish statue of "Religious Liberty" which vilion; and the Jewish statue of "Reiligious Liberty"which
has just arrived, unfortunately too late for the Exhibition, has just arrived, unfortunately too late for the
will be set up permanently in Fairmount Park.
The Centennial Commission are finishing the award business,and shorily will adjourn for a period of several months, leaving the entire management in the hands of that less cumbersome body, the Executive Committee. The members of the Commission are determined to completely wind up the affairs of the Exposition just as soon as the accounts can be revised and final reports prepared, and thus creditably to finish their creditable work.
With the close of the Exposition comes the period of statistics, and they are appearing with a frequency that presupposes a pre-eminent popular mathematical taste. We are told that the total number of cash admissions was Philadelphia report the accommodation of $2,564,000$ guests. Philadelphia report the accommodation of $2,564,000$ guests. The Globe hotel is to be removed to Long Branch, the Atlas
will be demolished, and many of the others will be altered will be demolished, and many of the others will be altered
back into dwelling houses. The attendance at the Exposiback into dwelling houses. The attendance at the Exposi-
tion was lowest during the month of May, averaging 19,946 tion was lowest during the month of May, averaging 19,946
daily; it steadily increased, and during October averaged 102,456 . The fund realized by the 15 per cent royalty on beer and soda water amounts to $\$ 500,000$. The Corliss engine flywheel made 2,355,300 revolutions during the Exhibition. Any point in its periphery therefore traveled an average of 260 miles per day, or 40,147 miles during the en tire Fair.

Sclence in Amertca.
Professor John W. Draper delivered an inaugural address, as President of the newly formed Chemical Society, on the above subject, at Chickering Hall, this city, on the evening of the 15 th of November. He began by stating that the progress of Science depends on two elements, our educational establishments and our scientific societies. Briefiy sketching the scientific and industrial progress of the century, he said that in 1840 it had become apparent that there was provision in the existing educational establishments for instruction in accordance with the world's ad vancein substantial knowledge. The colleges clung to the mediæval as long as they could,and only accepted the modern when they were compelled; and generally, the lecturer considered that the sooner colleges emancipated themselves from the medieval confines of the classics, and assumed thoroughly and sintific progress wonld be promoted

Dr. Draper then sketched the growth of scientifc societios and pointed out the benefts of their organized efforts. He thought that endowment of colleges was a noble disposition of money, but considered that the bestowal of funds on any scientific society was still nobler. The one is a local and transitory benefaction, the other enduring and universal enevolence.
The most important part of the address related to scien ific progress due to Americans, and was in answer to many of the addresses made during the last summer on the Centennial occasion, in which the shortcomings of the United States in extending the boundaries of scientific knowledge, especially in the physical and chemical departments, have been set forth. The persons who make these humiliating accusations mistake what is merely a blank in their own nformation for a blank in reality.
'Perhaps, then, we may without vanity recall some facts that may relieve us in a measure from the weight of this heavy accusation. We have sent out expeditions of exploration both to the Arctic and Antarctic Seas. We have submitted our own coast to a hydrographic and geodesic survey, not excelled in exactness and extent by any similar works elsewhere. In the accomplishment of this we have been compelled to solve many physical problems of the greatest delicacy and highest importance, and we have done it successfully. The measuring rods with which the three great base lines, of Maine, Long Island, Georgia, were determined, and their beautiful mechanical appliances, have exacted the publicly expresced admiration of some of the greatest European philosophers, and the conduct of that survey their unstinted applause. We have instituted geological surveys of many of our States and much of our territories, and have been rewarded, not merely by manifold local benefits, butalso by the higher honor of extending very greatly the boundaries of that noble science. At an enor mous annual cost we have maintained a meteorological signal system, which I think is not equaled, and certainly is not surpassed, in the world.

- Should it be said that selfish interests have been mixed up with some of these undertakings, we may demand whether there was any selfishness in the survey of the Dead Sea? Was there any selfishness in that mission that a citizen of New York sent to Equatorial Africa for the finding and relief of Livingstone, any in the astronomical expedition to South America, any in that to the valley of the Amazon? Was there any in the sending out of parties for the observation of the total eclipse of the sun? It was by American astronomers that the true character of his corona was first determined. Was there any in the seven expeditions that were dispatched for observing the transit of Venus? Was it not here that the bi-partition of Biela's comet was first deected. here that the eighth satellite of Saturn was discovred, here that the dusky ring of that planet, which had esceped the penetrating eye of Herschel and all the great European astronomers, was first seen? Was it not by an American telescope that the companion of Sirius, the brightest star in the heavens, was revealed, and the mathematical prediction of the cause of his perturbations verified? Wasit not by a Yale College professor that the showers of shooting stars were first scientifically discussed, on the occasion of the grand American display of that meteoric phenomenon in 1833 ? Did we not join in the investigations respecting terrestrial magnetism instituted by European governments at the suggestion of Humboldt, and contribute our quota to the results obtained? Did not the Congress of the United of the the eleetric telegraph? Does not the published flora of the United States show that something has been done in botany? Have not very important investigations been made
here on the induction of magnetism in iron, the effect of magnetic currents on one another, the translation of quantity into intensity, and the converse? Was it not here that the radiations of incandescence were first investigated, the connection of increasing temperature with increasing refrangibility shown, the distribution of light, heat, and chemical activity in the solar spectrum ascertained, and some of the fundamental facts in spectrum analysis developed, long before general attention was given to that subject in Europe Here the first photograph of the moon was taken, here the first of the diffraction spectrums was produced, here the first portraits of the human face were made-an experiment that has given rise to an important industrial art !

Those who make it their practice to decry the contribu tions of their own country to the stock of knowledge may perhaps stand rebuked by the expressions that sometimes fall from her generous rivals. How can they read without blushing at their own conduct such declarations as that recently uttered by the great organ of English opinion, the foremost of English journals? The Times, which no one will accuse of partiality in this instance, says: "In the natural distribution of subjects, the history of enterprise, discovery, conquest, and the growth of republics fell to America, and she has dealt nobly with them. In the wider and multifarious provinces of art and science she runs neck to neck with the mother country, and is never left behind!"
spontaneous Combustion in Coal.
At this season it is advisable to test the temperature of all piles of coal, whether in sheds or out of doors, in order to detect any tendency to heating. The usual method of running down tubes (ordinary inch pipes, sharpened at
lower end) from the top of the piles to the bottom, at frequent intervals, will repay for the trouble. Whether in sheds or out of doors, coal is apt to heat, and more particularly so after being stored about three months. In many
ture taken daily, by lowering a thermometer into them : in this way any accumulation of heat can be easily detected, and the remedy applied before loss is incurred. When un due heat is detected, turning over that portion of the pile is the surest remedy. In several cases of heating that have occurred recently, only the watchfulness and promptitude of those in charge have prevented serious losses.-American Gaslight Journal.

Preservation of Timber with Salts of Copper
Experiments by M. Rottier show that wood impregnated with copper may be long preserved, but will not last under ground for an indefinite time. However carefully prepared, decays after a longer or shorter interval.
So long as the wood contains a certain proportion of copper, it resists decay; when the copper is no longer there, it is in pretty much the same condition as unprepared weod, and speedily decomposes.
Some thin slips of soft poplar wood were carefully dried and afterwards impregnated with a solution of pure copper sulphate, containing $1 \frac{1}{2}$ lbs. of crystallized sulphate of cop. per per 100 lbs. water. It was not found necessary to resort to pressure, as, the wood being very thin, mere immersion sufficed for its thorough impregnation with the antiseptic fluid. The strips were washed several times with plenty of water, and dried. Some were then set apart for analysis, and others buried, in a box filled with ordinary garden mold kept continually moist by repeated waterings. The annexed tableshows the results:

| - |  |  | Remarks. |
| :---: | :---: | :---: | :---: |
| 15 grains of wood prepared and dried.... | days. | grains. |  |
|  |  | 0.63263 |  |
| 15 grains of wood prepared and dried... | 68 | $0 \cdot 38575$ | Wood still perfectly sound. |
| 15 grains of wood prepared and dried.... | 117 | $0 \cdot 33946$ | ly sound. Strips showing a |
| 15 grains of wood pre- |  |  | few black spots. |
| pared and dried. | 179 | $0 \cdot 26231$ | Wood almost entirely decayed. |

Here we see, as plainly as it can well be shown, that the preservation of the wood was due to the presence of the cupreous sulphate ; by degrees, as it parted with this metal lic salt, it decayed. Now let us consider the causes of re moval of the copper. They are three: 1. The presence of
iron. 2. The presence of certain saline solutions. 3. The iron. 2. The presence of
presence of carbonic acid.
Timber prepared with copper is liable to decay when the proportion of the latter contained in it becomes very small. It appears probable that its duration might be proonged by fixing more copper in the ligneous tissue.
The ordinary method of preparing tinıberdoes not permit of the solution of the question; wood plunged in a solution of copper sulphate takes up a pretty nearly constant quan tity of the metal ; and that quantity is very small. Special processes are requisite to introduce larger quantities of the metal into the tissues.
Ammoniacal copper salts: The use of the ammoniated salts of copper allows of the introduction of large quantities of copper in woody tissue. Numerous experiments showed that wood so prepared contained from 0.255038 grain to $0 \cdot 112639$ grain of copper per $15 \cdot 43$ grains of wood. It appears, therefore, that there are various ways of im pregnating wood with copper in excess of the ordinary proportion. It remains to be seen whether the excess of copper gives a notable increase of durability. To decide this question seven strips of wood were buried in the ground side by side : 1. A strip unprepared, A. 2. A strip prepared with sulphate of copper, B. 3. A strip prepared with ace with sulphate of copper, B. 3. A strip prepared with ace
tate, C. 4. A strip prepared with catechu, D. 5. A strip tate, C. 4. A strip prepared with catechu, D. 5. A strip
prepared with sulphate and afterwards heated, E. 6. A strip prepared with acetate and heated, F. 7. A strip pre pared with cuprammonium sulphate. The results are

|  | $\left\|\begin{array}{c} 15 \cdot 49 \text { gralna of of } \\ \text { wood oned } \\ \text { talned or } \\ \mathrm{SO}_{4} E \mathrm{H}_{2} \mathrm{O} \end{array}\right\|$ | $\underset{\substack{\text { Wood } \\ \text { rotetedy } \\ \text { after } \\ \text { after }}}{\text { and }}$ |
| :---: | :---: | :---: |
|  | grains. | days. |
|  |  |  |
| phate in the ordinary way.... | (1)0112639 | 67 |
| C. Wood prepared with acetate of copper. | $0 \cdot 1543$ | 95 |
| D. Wood prepared with sulphate of copper and catechu.. . ........ . | 0.20059 | 120 |
| E. Wood prepared with sulphate of copper and heated afterwards. | 0.1543 | 80 |
| F. Wood prepared with acetate of copper and heated afterwards. | $0 \cdot 35489$ | 160 |
| G. Wood prepared with ammoniacal copper sulphate. | $0 \cdot 255038$ | 130 |

These results have been confirmed by repeated experi ments, in seme of which the prepared slips of wood were found as fresh and sound after an interment of 200 days as when first consigned to the ground.
Of the several methods above described, one only, the employment of ammoniacal copper salts, appears of any practical utility. Acetate of copper and indigo are each of them too expensive ; catechu is too restricted in its action. On the other hand, the ammoniacal salts of copper are adapted for general use, and are, comparatively speaking, cheap; and the slightly increased outlay necessitated by their adoption would be more than compensated by the assurance of greeter durability in the timber so prepared.

## The French International Exhibition of 18 Regulations for Foreign Exhibitorn.

e Commissioner General of the French Internationa Exposition of 1878, to be held in Paris, has published the regulations for exhibitors. We extract the following from the articles relating to foreign contributions:
Article 5. Packages from abroad containing products destined for the Exposition must bear as distinctive marks the letters E. U., surrounded by a circle and traced by a brush. They are to be addressed to the commissioner of brush. They are to be addressed to the commissioner of
the exhibitor's country. Such packages will also bear the the exhibitor's country. Such packages will also bear the
fol'.owing indications, namely, the colors or emblems of fol.owing indications, namely, the colors or emblems of
their national flag. Foreign commissioners are expressly requested to inform the Commissioner General, at as early a date as possible, as to the form of address and special signs for recognition which each may adopt.

Article 6. Both French and foreign products will be ad mitted within the Exposition from January 1,1878, to March 30, inclusive. These dates are subject to the revision of the Commissioner General
Article 7. The Exposition is constituted a custom house depot. Foreign products entering under customs laws may do so up to March 15.
Articles 8 and 9 . These relate to the building of structures Articles 8 and 9. These relate to the building of structures missioner General. Work thereon may begin by December missioner General. Work thereon may begin by D

Article 10. Evergthing must be in place and in order by April 15: This provision will be rigidly enforced, and the Commissioner General will dispose of all allotted space either not occupied or incompletely occupied on that date.
Articles 11 and 12. Packing boxes must be emptied at once, and removed. If the exhibitor does not do this, the Commissioner General will have it done. Exhibitors must also take care of their own boxes, no place for storing them be ing provided.

Article 14. Afl exhibits must be removed by December 15 1878. After that date they will be stored at the exhibitor's expense; and if not then removed before June 30, 1879, they will be sold for the public benefit.

## NEW BOOKS AND PUBLICATIONS

The Use and Abuse of the Steam Bomke. By Stephen Roper, Engineer. Philadelphia, Pa.: C
Publishers, 624 Market street.
The author says in his preface that " 'the great mistake of many writers on the steam boller and steam engine is that they write too much." This book proves the fact. It appears to be devoted to advertising a well known boller insurance company, several boflers in common use, and some of the
author's inventions. Such practical information as is given is useful, bu author's inventions. Such practical information as is given is useful, but
is obtainable in much more condensed form in other works. The book, however, serves one good purpose in reminding us that we have not re
celved that amended copy of Mr. Roper's previous production, in which he promised to give credit to the Soikntific Ambrican for extensive extracts taken from our columns without a word of recognition; nor has he yet explained why he publishes a notice which we wrote
garbled with self-flattering interpolations of his own.
david and Anna matson. By Abigail Scott Duniway. Price AVID AND ANNA MATsON. By Abigail Scott Duniwa
$\$ 2.00$. New York city: S. R. Wells \& Co., Broadway.
This is claimed to be a poem, and the author informs us that she ha This is claimed to be a poem, and the author informs us that she has
"snifed the bland breeze of the broad Missisippl"' and "Hstened all
rapt to Nlagara's groan." She now has an opportunity to "snifr,'" and rapt to Nlagara's groan." She
ulsten to the groan of the pubitc.
How ro Sing. By W. H. Daniell. Price 50 cents. New York
city: S. R. Wells \& Co, Broadway. city : S. R. Wells \& Co., Broadway
The author, an experlenced music teacher, has condensed into this ittile
manual a great many useful suggestions on the development of the volce. manual a great many useful suggestions on the development of the votce
The work is written in colloquial style, is pleasantly readable, and can b commended to vocallsts of all grades.

## Gectut Amexican aud fortigu zedtents.

## NEW MECHANICAL AND ENGINEERING DNVENTIONS.

IMPROVED STONE-DRESBING MACHINE.
John C. Miller, Bridgewater, Va.-This has reference to a ma-
chine for grinding or dressing the ends or heads of grave and othchine for grinding or dressing the ends or heads of grave and other stones into any required shape in rapid and convenient manner,
without danger of injuring the slabs by cutting or otherwise. The invention consists of adjustable supporting pieces and holding be ground or dressed by a reciprocating trough with a metallic shaping plate contalning sand and water.

IMPROVED LOCOMOTIVE.
William Holdsworth, Traverse City, Mich.-This is an improve on vertical axes and adapted to work in contact with a rail laid equidistant between the parallel rails, upon which the locomotive is supported in the usual way. The improvement relates particularly to parts for varying the pressure of the driving wheels upon the central friction rail, and for guiding and supporting said
wheels while permitting their lateral and vertical adjustment.

IMPROVED SHIP'S WINDLASS.
Joseph L. Dickenson, Hempstead, N. Y.-This inventor makes the plug, which connects the chain wheel of a windlass (which reversect is to enaule the movable wheel to be readily discon. Th from the fixed wheel, so that the anchor may be easily let go, if need be, during the process of weighing.
improved anti-friction bearing.
James Warren and George Wilkes, Monroe, Iowa.-This consiste
of an arrangement of rollers of peculiar form, and bearing plates of an arrangement of rollers of peculiar form, and bearing plates to which theyare applied will be relieved from end thrust, the object being to relieve the journals and steps, of vertical and other
shafts that are subjected to end pressure, from strain and friction
improved valve gear for steam engines.
George E. Tower, Annapolis, Md.-This invention is designed for
marine engines, but is applicable to others as well. It relates to a means for adjusting and working the main valves of an engine, whether the same be applied to the side or head of a cylinder. The chief feature of the invention is a shifting lever mounted on a ro-
tating eccentric or crank, and connected with a rocking frame or tating eccentric or crank, and connected with a rocking frame or tionary while the engine is running. When the rocker is station-
ary the movement of the lever is least eccentric or 1rregular, and the valves cut, off at about seven tenths of the stroke. But when the lever attains its greatest eccentricity, the valves cut off a
about two tenths of thestroke. Between these limits the bout two tenths of thestroke. Between these limits the moveposition and movement of the lever is, in this instance, effected by position and movement of the lever is, in this instance, efrected by
an irregular cam, whose adjustment with the rocking frame shifts the point of connection between it and the lever, such point bing
stationary, or vibrating in the arc of a circle, correspondingly.

MPROVED
John W. Chewning, Jr., Shadwell Depot, Va.-This invention re ates to certain improvements upon the horseshoe machine for
which letters patent were granted the same inventor, August 29 , which letters patent were granted the same inventor, August 29 ,
1876 , and it consists in the construction and arrangement of a de Fice for feeding the bar, from which the shoe is made, to the maice for feeding the bar, from which the shoe is made, to the maIMPROVED LOCOMOTIVE.
John Westcott, Tocoi, Fla.-This invention relates to a nove onstruction of a locomotive for drawing cars which are suppor ted upon swiveling pedals that slide in lubricated channeled rails, and it consists in piveting the supporting pedals in laterally adjuschanneled rails so as to obviate binding, and whereby also they are adapted to roads of different gage.

IMPROVED HORSE POWER.
Isaac Joyner, Jonesborough, Miss.-This invention consists of a Wheel with spider frames that support an interior drum or cylintransmitted by a friction wheel, in contact therewith. One of the radial frames supports an outermost circle that forms, with
able levers and friction shoe, an effective brake mechanism.

## FEW HOUSEHOLD INVENTIONS.

## IMPROVED SAD IRON.

H. B. Evans, St. Charles City, Mo.-This invention consists in a eif-heating sad iron, having a removable fire box or drawer, a ownward direction, the main object of the invention being to

> IMPROVED CARPET CLEANER.

Sarah B. Stearns, Duluth, Minn.-This consists of a number of alternately working spring arms, with beaters or whips fastene o the ends, which are operated jointly with revolving dusting brushes at the ends of radial arms. The dusting brushes may be detached and replaced by
tion with a suds trough.

IMPROVED VENTILATOR.
Henry A. Buzzell, St. Johnsbury, Vt.-This consists of a drum attached to the stove pipe, the drum being connected by pipes and
funnels with the story below and with the upper and lower part of the room, to draw off the air to the chimney.

IMPROVED CLOTHES DRYER.
John F. Jaques, Moline, Ill., assignor to himself and John W Bartlett, of same place.-This is a folding frame of peculiar con convenient clothes rack, and which is capable of being folded in to a small compass.

## REW WOODWORKDYG AND HOUSE AND CARRIAGE <br> BUILDING INVENTION8.

IMPROVED CIBTERN.
James Kennon, Jamestown, Ohio, assignor to Mary E. Kennon, of same place.-This is a walling for wells and cisterns, made o ring, the upper continuous plece of burned clay, with top cov than the lower to support thereon the next, and form a kind of shoulder for the surrounding earth.

IMPROVED DOOR LOCK.
Gustar Winter, Denver, Colorado.-This consists of a door lock With two or more bolts and tumblers, which are so arranged in of the lock and operated by the bolts and key, that the key hole is closed at the side opposite to that from which the key is intro duced.

IMPROVED CARRIAGE TOP.
George F. Knight, Carroll, Ohio.-This invention consists in
making the top of a buggy or other vehicle of sheet metal, the making the top of a buggy or other vehicle of sheet metal, the
same being fastened to an internal frame and braced by bolts, six in number, while the top is connected with the seat frame by front and rear braces, the latter being jointed and the former rigid. This construction is found to greatly facilitate the trimming of
the top, as that can be done before the frame is bolted on, and the top, as that can be done before the frame is
therefore at much less cost than in the usual way.

## IEW AGRICOLTURAL ENVENTIONS.

IMPROVED TOBACCO SUCKER GERM DESTROYER.
Joseph H. Knaus, John R. Harford, Walter C. Knaus, and An-
drew J. Furr, Boonsborough, Mo.-The object of this invention is drew J. Furr, Boonsborough, Mo.-The object of this invention is
to improve the construction of the tobacco sucker germ destrojer or which letters patent were granted to Joseph H. Knaias and handle is grasped in the hand, with the fingers beneath the cross bar, and the cavity between the arms is placed against the tobacco stalk, directly over the sucker germ, and is pressed against said
talk with sufficient force to cause a cutter to project against said stalk with sufficient force to cause a cutter to project against said
germ. The cutter is then rotated, and cuts out and destroys the germ. The cutter is then rotated,

IMPROVED FARM GATE.
Willam H. Richardson, Sheboygan Falls, Wis.-This is an imrovement in that class of gates which side open and shut ove solers, so not be so liable to get out of order. The ingention consists in clamping two rim-grooved wheels to a gate bar so that each will revolve upon a rigid hollow bearing, through which the clamping bolt passes.

IMPROVED RELN HOLDER.
George W. Waters, Center, Mo.-This consists of a bar of wood having straps adjustably. attached, for strapping the bar to the shoulders, and for connecting the reins to the bar, the object being
to provide a device for guiding teams while plowing, or doing to provide a device for guiding teams while plowing, or doing
other similar work, which will permit of the free use of the hands other simil
and arms.

IMPROVED GARDEN RAKE.
Anna Maria Suydam, Waterloo, N. Y.-A blade of segment hape, with sharp edge, is bent in one piece with the tines, and forms a stiffening back for the same. It is made in line with the
handle, and at about a right angle to the tines, and serves to clean handle, and at about a right angle to the tines, and serves to clean
and cut away the small patches of grass and bits of weed that are and in hoeing in the garden paths.

IMPROVED NOSE RING FOR SWINE
Edmund S. Richards, Tripoli, Iowa.-The sharpened ends of a piece of wire are passed through the gristle of the hog's nose, ringing a roller on the wire just in front of said nose. Small leaher washers are then placed upon the sharpened ends of the wire,
and the said ends are bent down upon the outer sides of the said washers, securely fastening the ring to the hog's nose. When a hog with this device attempts to root, the roller turns upon the wire, and the hog can make no impression upon the ground.

## IMPROVED HAY LOADER.

Joseph Richter, Laketown, Minn.-This invention relates to certain improvements in that class of devices which are designed for
loading wagons with hay, straw, or grain. It belongs to that type of loaders in which an adjustable rake gathers up the hay and delivers it to an ondless revolving apron provided with teeth, which
apron is operated by a band and pulley connection with one of the driving wheels, and delivers the hay to the top of the wagon. The improvement consists in the particular construction, arrangement, and adjustments of the loading derices.

IMPROVED METHOD OF CHECKROWING CORN.
Charles B. Maclay, Delavan, Ill.-The convexity of the ground, tance between the hills planted. The gain or loss in this respect is noted, and may be corrected in this machine by means of an expansible wheel. A chain passes around this wheel and also a collar on the axle of the machine, so that the rotation of the wheel may cause the reciprocation of the seed slide. The wheel is expanded, thus drop the seed in hills a greater or less distance apart.

## NEW TEXTLLE MACHINERY.

## IMPROVED PICEER CHECK.

Robert Davidson and John Richardson, Fall River, Mass.-This is an improvement in the class of friction devices designed for gradually arresting the picker staffs of power looms, in place of
suddenly stopping them, as commonly practised. It relates to the suddenly stopping them, as commonly practised. It relates to the adjusting the angle of the strips to each other, for varying the riction exerted on the picker staff. By means of adjustable brackets, the binders may be set nearer or farther from each
other, and thereby the binding force of the check device increased other, and ther

## FEW MISCELLANEOUS EIVENTIONS.

IMPROVED CROQUET MALLET.
Harry Malin, Pleasantville, Pa.-This is an improved croquet mallet that will not bruise the balls, and makes them last much longer, while it requires a light
ber caps or facings at the ends.
improved portable fire mscape.
Herbert R. Houghton, New York city.-This fire escape consists of a wire rope baving a series of cross bars or rests interlaced and ashed thereto, the said rope having a loop formed at its upper ond, with an extension end, for convenience of escape upon the main rope. The whole is suspended by a snap hook caught in an ye, which is screwed to the floor of a room. As its weight is only in hotels, for whom it is especially designed.
improved machine for modnting photographs.
Robert Sheane, Listowell, Ontario, Canada.-This invention contogether with uniform action. In the lower part is a glass plate esting on a rubber or other elastic cushion, and in the upper part is a follower with an adjusting screw. The cards on which the photographs are to be mounted are put in the upper part, and
pressed down one after another on the pasted pictures lying back pressed down one after another on the pasted pictures lying back pon the glass, which are thus pasted to and mounted on the cards
improved pocket book fastener.
Daniel M. Read, New York city.-This invention is an improve nent upon that for which the same inventor has already received
letters patent, and relates chiefly to the construction of the tening attached to the strap encircling the pocket book which is composed of a flat sheet metal top plate and a channeled bottom plate. The top plate is provided with an end extension, which is ent back over the end of the flap of the pocket book, to cover protect, and confine said end, and the bottom plate has a lengthwise depression or channel forming a corresponding raised por-
ion, in which are formed three holes to receive the pin fixed in tion, in which a
the base plate.

## IMPROVED CIGAR HOLDER.

John Hutton, New York city.-This is a skeleton holder consist jg of the mouth piece in combination with the spring arms an from hard rubber.
IMPROVED PROCESS OF LITHOGRAPHING TRANSFERS. Charles R. Biedermann, 8t. Louis, Mo.-This invention consists mainly in dispensing with the preliminary treatment of the stone effected by hardening the copy on paper into a solid type by the application of nitric actd, and transferring, and flxing the hardned copy upon the stone by heating the same to blood heat, with ut chemical treatment of the stone.
improved combined gas meter and carbureter. John M. Cayce, Franklin, Tenn.-Mr. Cayce's present invention or use, like other meters, in dwellings and other buildings, and lso for performing the function of a secondary motor for opera ng an air-carbureting apparatus. The chief element of the ap paratus is a bi-chambered wheel or cylinder, of what may be water or other liquid, suitable for sealing its open ends, and is oscillated upon its axis by the passing current of gas required to be measured, each reciprocating movement thereof causing the Fibration of a weighted lever, and thereby the reversal of a four
Way cock, by which the gas current is caused to enter one cham way cock, by which the gas current is caused to enter one cham-
ber of the wheel while the other is discharging its contents, and vice versa.
AMPROVED DREss Clasp
Alexander L. Fyfe, London, England.-This clasp is adapted to waistband. The dresis is held in a clip, which consists of a pair o jaws, cupped or hollowed, and having on one a spring pad or aushion which fits in the hollow of the other, and thus securely retains the dress. The pad consists of a disk of metal, cupped or hollowed, with a spiral spiring behind it, and is fitted in the hollow of one of the jaws. The Jaws are provided with a runner, so formed as to embrace and compress them flrmly together at the point where the dress is held. The runner may be of any desired
form, and the back of the jaws may be corrugated or roughened transversely to ornament them, and at the same time retain the
the $r^{u}$ uner more securely in position.

## Fuginess aud zetsonal,


 weul be charoved.
For Sale- 10 in . Bement Slotter, Friction Hoist




 Wanted-OI royalty, by a rellable house, some








 1 Wanted-To purchase Theine or Caffeine largely.
Price and particulars to zirr. Dlson, Canonbury Lodge,










 The Gating Gun receiveal the only medal and








 Firo Hose,Rubber Lined Linen, alos Cotton, hnest The Solentinc Amercican supploment Andy yo-
 Benator, Triaes, and stam Pitpe, Wrought rron.
 tor ithortaph, \&ec.
 nal Emerf Wheel-other thadesimtition and niferoror.



 10500 Water Btreet, Nee York.


 Stoel Casting trom one ib.tonve thoveand 1be.
 metals. E. Lyon, 470 Grand Street. New York.
Dismond Tooselo J. Diokinson, 64 Naseau St., N. Y. "Dead Stroke" Power Hammers-recentiy great-
19 improved, increasing cost over 10 per cent. Prtces rely improved, incereasing cost over 10 per cent. Prices re-
duced over 20 per cent. Hull $\&$ Belden Co.. Danoury, t Lansdell's Pat.Steam Syphons-Lansdell \& Leng's Walrus Leather, Emery, Crocus and Composi-
tion for polishing Metals. Greene, Tweed \& Co., 18 Han for polishing Metay
Park Place, New York.
D. Frighio of Co. manuracture the Friction Pul-
ey - Copatain-best in the worid. New Haren, conn. For Sile-Two frst lass Housebold Articlees, by


Chester Steel Castings Co. make castings twice
as strong as malleable tron castings at about the same

Pate<br>

## 

It has been our custom for thirty years past to devote a considerable space to the answering of
questions by correspondents; so useful have these labors proved that the SCIENTIFIC AmeriOAN office has become the factotum, or headquar ters to which everybody sends, who wants special
information upon any particular subject. Solarge is the number of our correspondents, so wide the range of their inquiries, so desirous are we to meet their wants and supply correct information,
that we are obliged to employ the constant assigthat we are obliged to employ the constant asslo-
tance of a considerable staff of experienced writers, who have the requisite knowledge or access to the latest and best sources of information. gines, boilers, boats, locomotives, rallways, etc., are considered and answered by a professional
engineer of distinguished ability and extensive practical experience. Enquiries relating to electricity are answered by one of the most able and prominent practical electricians in this country. Astronomical quieries by a practical astronomer.
Chemical enquiriesby 6 ne of our most eminent and experienced professors of chemistry; and so on through all the various departments. In this way we are enabled to answer the thousands of questions and furnish the large mass of information which these correspondence columns present. The large number of questionsent- all parts of the world-rendi impossible for us to publish all. The editor selects from the mass those that he thinks most likely to be of general interest to the readers of the SCIENTIFIC A merican. These, with the replies,
are printed; the remalnder go into the waste are printed; the remainder go into the wast
basket. Many of the rejected questions are of a primitive or personal nature, which should be an spondents desirea special reply by post, but very few of them are thoughtful enough to enclose so much as a postage stamp. We could in many to enclose a small fee, a dollar or more, accor When the nature or importance of the case.
R. B. L. will find directions for polishing pebbles on p. 138, vol.30.-J.D. Will find a descrip tion of a method of utilizing the waste heat from
lime kilns on p. 280, vol. 32.-J. D. will tind directions for tanning sheepskins with the wool on $p$. 233, vol.26.-B. I. will find a good recipe for black
ink on p. 250 , vol. 34.-R.I. \& U. K. should consult ink on p. 250, vol. 34.-R.I. \& U. K. should consult
The $H u b$, published in this city.-L. A. F. willind an article on potash in corn cobs on p. 306, vol. 26.-J B. P. will find a description of a spring
power for sewing machines on p. 134, vol. 27.-F 74, vol. 22 .-J. S. M. Will find directions for painting magic lantern pictures on another page of
this issue. For a recipe for jet black ink, see $p$. 250, vol.34.-M. G.S. will find a reciperor Babbit metal on p. 122, vol. 28.-W. F. S. will find the de monstration of his rule for finding the area of a
triangle in any good book on trigonometry. E. B. Will find directions for ebonizing wood on $p$.
50 , vol. 33.-J. W. B. will find directions for serving cider on p. 11, vol. 31.-D. will find an ex planation of the travel of car wheels on a curve on p. 288, vol. 35.-R. L. K. should put a table spoonful of coarse brown sugar in a quart of
flour paste, to fasten paper labels to tin cans cipe for a blue answers F. ., who wil ind a re W. B. P. will find directions for gilding without a battery on p. 106, vol. 34. For silver-plating with
out a battery, see p. 269, vol. 31. For nickel-pla ting with a battery, see p. 151, vol. $30 .-$ G. F. R will find something on keeping water fresh on $p$. 156, vol. 31.-F. W. E. should galvanize his iron
sink. See p. 34, vol. 31.-R. B. W. Will find a reWill find directions for treating a corn on p. 202 vol. 34.-W. A. will find directions for making vinegar from cider on p. 106, vol. 32.-S. D. P. will find directions for waterprooflng canvas on $p$. tions on p. 11, vol. 31. For a recipe for bird lime,
see p. 5 fit, vol. 28.-J. S. P. will find an his query as to rotary engines on p. 123 , vol 30 . J. H. R. will find a recipe for oroide metal on p.
347 , vol. $30 .-F$. H. N. will find articles on com pound engines on p. 122, 280, vol. 30.-R. L. Will
find the dimensions of the propeller of the BaxAnd the dimensions of the propelier of the Bax
ter canal boat on p. 281, vol. 29.- R. A. C. is informed that Mr. Charles Darwin, the evolution-
ist, is living.-E. B. can drill china with a sharp swiftly revolving steel drill. For coppering iron, see p. 90, vol. 31.-C. E. S. can line his cooking ketties with a porcelain coating by the process
described on $\mathbf{p}$. 882, vol. $32 .-\mathrm{H}$. B. B. will find a scription of vulcan and rend-rock powders on p.
2, vol. 34.- E. T. B.,G. M.W.,J. A.,G F.S.,A.W.A., Gooks on industrial and scientiflc subjects, should address the booksellers who advertise in our columns, all
(1) J. H. I. says: 1. Please give me a re-
cipe for restoring the color to cloth, the color having been taken out by lime. A. Have you tried a little dilute muriatic acid? The most sat isfactory method, perhaps, will be to have the
cloth re-dyed. 2. How can I restore the color to ject it hat which has become yellow? A. Subject it to the vapor orid gas) in a tight box or
chur (zulphurous acid.
(2) G. P. H. says: How can we make raw-
hide soft and pliable for hobbles, bell collara hide soft and pliable for hobbles, bell collars,
lassos, etc.? Is it the glue in the hide that makes it so hard? What is tie best method to soften it? Oil alone will not do it. A.The hides of animals, the large amount of nitrogenous principles which they contain, are very prone to rapid putrefac-
tion when exposed to a moist air. In very dr climates they soon lose their natural supplenes and become stiff and hard by a process of desic cation. It was by the finties that of fixing the all these ous bodies contained in the hide, that is, thesys tem of tanning them, was first introduced. We do not know of a better one that we deem practicable in your case.
(3) E. G. W. says: I hear that a German ient way of ext $\$ 400$ prize for a cheapand efflcoal gas. Does petroleum gas contain the acid, and does the acid impair the light? A. Gas from cetroleum contains only a very small quastity of
carbonic acid. The quantity is so small that it may be altogether overlooked
(4) H. C. asks. Would filtering vinega of charcoal) change the color or injure the vinegar in any way? A. Make your filter of animal charcoal, or freshly or thoroughly burnt vegeta-
ble charcoal. If the charcoal has not been thoroughly burnt it may impart some unpleasan taste to the vinegar. If the vinegar be allowed of pass slowly through the fllter, a part, at least,
(5) F. B. asks: How shall I bleach a silken abric ? A. Have you tried sulphurous acid? Thi butit requires some previous technical exper ence in the matter to be enabled to do th well After being sulphured, the goods are passed through an extrem
(6) J. H. R. asks: What degree of heat does it require for calcining gypsum in an oven? The gypsum is brokenabout the size of hickory nuts.
How long will it take to make good stucco out of How long will it take to make goodstucco out of
it? A. If, as we understand you, you wish to ignite the gypsum ln order to obtain plaster of Paris, it is necessary to remove the greater part
of the water of crystalization by heating the mineral for some time at a temperature of about $300^{\circ}$ Fah. If the temperature is allowed to rise above $360^{\circ}$, it will not, when moistened, resume
its water of crystalization. There are numerous its water of crystallization. There are numerous
other precautions necessary to beobserved, in orther precautions necessary to be observed, in or-
der to obtain a good product. See p. 173, ScIENCE der to obtain a go
(7) E. K. M. says: Our home-made hard soap, in drying, shrinks very much. What can we
do to make it retain its shape? A. All recently do to make it retain its shape? A. All recently
made soap sbrinks more or less in drying, from the loss of water. This cannot be avoided. (8) C. D. asks: How are blank spaces ob ongraving process? I understand the method of photo-engraving (by means of the sunlight passing through a photographic negative and falling on a plate of glass coated with a fllm of gelatin and bichromate of potash, etc.); but I have never yet seen in any description of the process an ex
planation of the means employed to obtain the from a quarter of an inch to an inch in width Are such lights in the picture obtained by eating
away the spaces between the reliefs with acids in the stereotype plate, or are the spaces cut out the plate with the engraver's tools? A. See pp
$178,235,139$, vol. 33 , and pp. $95,186,189,168$ p 178, 235, 139, vol. 33, and pp. 95, 186, 189, 188, 185,
SCIENCE ReCORD for 1876 . You will find, by examination, that the references to this and other similar processes have been very numerousin the back numbers of the SCIENTITIC American. 2. Do you know of any acid that will corrode or mixed with waterand has hardened, so that th parts touched by the acid may be brushed awa of lime is soluble to some extent in hydrochlori and nitric acids, also in sulphate of ammonia. What is the hight of the lines in relief in an engraving obtained by the photo-engraving meth-
od after the soluble fllm has been washed awa from the glass plate? A. This dependsaltogethe upon the and the length of time of exposure the light.
(9) H. C. says: What composition can be serve them from the attack of moths? A. Use a
dilute alcoholic solution of carbolic acid: about dilute alcoholic solution of carbolic acid: about
1 part of the acid to 12 or 15 parts of alcohol.
(10) C. P. asks: 1. What is the best mate rial to add to linseed ofl while boiling, to give it Barruell, Jean, Mulder, and others, the borat of manganese is the most excellent siccative. 2.
How much of the dryer should be added? A. Use 1 part to 1,000 parts of the oil. 3. How can lin economically bleached in considerable quant ties? A. It is usually bleached by exposure to
strong sunlight in shallow leaden trays (about 4 inches deep) covered with sheets of glass. (11) J. L. A. asks: What will directly de.
stroy a human tooth, in the mouth or out? A. There is no such substance or preparation known (12) H. P. I. says: I use a large wood tank the pores of the wood. Is there anything that can be applied to the wood that will fill the pores and not be acted upon by the brine? Would soluble glass do? A. Perhaps a preparation of as-
bestos might answer your puppose; this may be bestos might answer your puypose; this may be
obtained in this city, as you will see by consult-
ng our advertising columns. Soluble glass we
have not tested in that respect.
(13) R. K. P. says: I have $\Omega$ well inemy it? A. Drop a pipe into ir. Hithin a few inche of the surface of the water, and then pump the out. Fresh air will take its place
(14) J. S. says: There is a wooden parti-
ton dividing tworooms. I wish to know if the tion dividing two rooms. I wish to know if the
sound of loud talking and laughing can be stopped, so that persons in an adjoining room can hear nothing but a humming or indistinctnoise. Will paper, $\frac{1}{12}$ of an inch thick, keep back the sound ? A. Nail a few upright strips upon the face of the partition, and cover it with cloth, wet a little, stretched taut, and tacked to the strips. Now put
a wall paper upon the cloth ; at the same time fill a wall paper upon the cloth ; at the same time fill
up the joints of the plank in the present partition where open.
(15) C. A. asks: Can limestone, which has been put in a kiln, and has not been heated
enough to extract all the carbonic acid (that is, it does not slake), be put again, after cooling, in nother kiln, and make good lime if heated sufficiently? A. Yes.
(16) C. F. asks: I want to coat pump tubing unthe inside with coal tar. The tar is to be boiled hard and brittlewhen cold. Would it affect the water so as to make it offensive for family use?
A. Good asphalt or pitch might answer, but we cannot insure success in all cases. The method of charring the exposed surfaces of the wood is you suggest.
(17) L. N. says: 1. A man nearly lost his joining a lime kiln. When found, he was insensible, and could not be resuscitated for over a nour. The doctor says that the effect was pro-
duced by gas friom the kiln. Some of us do not duced by gas from the kiln. Some of us do not
believe that, as there could not be much gas in the room. The house is about 30 feet from the kiln, and the gas must have entered by the win correct. 2. How much gas must there have been to produce this result? A. Ten per cent of the gas in the atmosphere of a room is sufficient to for a short time in the room; but this is subject 0 wide variations, according to the age, physical ted air.
(18) O. C. asks. Do the forces arising from theattraction of gravitation and from momentum
depend on the same law for their effective action? will raise 100 lb 200 lbs . And if 60 lbs . steam will drive a saw 700 revolutions per minute through a 6 inch stick, then it will require (in theory) 120 lbs. to drive it at the same speed through two 6 inch sticks. In practice, I find that force on the lever has the has not. The amount of steam is not required to be doubled. One says that this is on account of the momentum, which is not governed, even in theory, by the same law that gravitation is governed by. I contend that it is on account of friction, which theory does not allow for, and that momentum and gravitation, as above illustrated,
are governed by the same laws in theory. Am I right? A. You seem to have the right idea
(19) J. F. D. says, in reply to A. E. \& Co., who wish to augment the capacity of their flouring
mill: You appearto be running the mill to a decided disadvantage. I would suggest that,instead of putting in another run of burrs, you run the tones properly drafted and dressed, and run at proper speed, you ought to grind at least 15 bush ls of wheat per hour on each run, and that will Sive the engine all it can do. I know it can be hour on a 4 feet burr, and 35 bushels of corn on a $31 / 3$ feet, running both at once and making a yield of over 42 lbs . of flour per bushel. Our engine is about the same size as the one mentioned,
(20) G. E. T. says, in answer to H. S. G., who asked if the cloth would not absorb more sulphuric acid in the mixture of 80 gallons water
and 2 lbs . sulphuric acid than in half that quanand 2 ibs. sulphuric acid than in half that quan-
tity. The cloth, if thoroughly agilated and of any considerable quantity, say from 10 yards up, ould absorb nearly the whole of the acid. Id more acid by using the larger quantity than the
(21) J. H. N. says, to W. H. J., who asks us
explain how car wheels gec round a curve: 1 . car wheel is some 2 inches larger on the inside, r next to the flange; and so the car wheels, in going round a curve, always run up to the flange on longest rail, and so bring the inside wheel to bear on its small end. A. It must be evident that, unlessall the curves of a road have the same radius, the curving of the wheels will not prevent
lipping in some cases. 2 . Why do the wheels and rails on the east side of north and south roads wear out the fastest? A. Experienced railroad men believe that this does n.
(22). H. E. E. says, in answer to W. H. F., who asks which car wheel slips in going round a
curve: Neither. I have often seen a distiller roll his barrels to a warehouse some 50 yards away on two poles laid parallel about 2 feet apart; the barrels swayed from side to side and adjusted themseives automaticall, and kept the track, although at one place there was an abrupt angle
of $15^{\circ}$ or $20^{\circ}$, which is worse than a regular curve
on a railroad. If the barrel is placed on the
track too far to the right, that part of the barre where it touches the right radl is larger than the part where it touches the left rail, which causes the right hand end to roll faster than the lef the same thing will take place on that side. And so it is constantly adjusting itself on the track with no cause for either end to slip. even in turnng a curve. Just so with the car wheels (which re conically shaped from the flange outward provided a proper amount of lateral play is al owed by laying the track a little wider than th
T. P. H. asks: How do dentists harden and polish their vulcanized rubber plates?-A. R classy surface, to wood? It must be imperviou to dampness.-S. Bros. ask: Is there a successfu way of treating the material for pianoforte sound ng boardsin order to increase the volume and du ration of sound

## COMOUNICATIONS REGEIVED.

The Rditor of the Scinasitivid Angbican acnowledges, with much pleasure, the receipt of original pape
On the Earth's Motion. By J. A. B. On Light, Space, and Matter. By A. On ap Messure of Vy J. Wy B On the Bible and ProgressiveThought. By $P$ F. Pn Cotton and Wool. By A.R.L. Also inquiries and answers from the following : G. H. -D. L.-W. B.-T. J. L.-R. \& B.-J. T. C

## HINTS TO CORRESPONDENTS.

Correspondents whose inquiries fall to appear mhould repeat them, If not then published. they declines them. The address of the writer should always be given.
Knquiries relating to patents, or to the patentability of inventions, assignments, etc., willnot be published here. All such questions, when initials as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by nall, if the writer's address is given. are sent: "Who buys ores of antimony? Who makes spiral springs? Who makes electric engines? Who makes flexible shafting?" All such in the column of "Business and Personal." which is specially set apart for that purpose, subject to the charge mentioned at the head of that column. Almost any desired information can in this way be experitiously obtained.

## [OFFICIAL.]

INDEX OF INVENTIONS Letters Patent of the United statee vere Granted in the Week Ending October 24, 1876,

## AND RACH BRARING THAT DATE

 [Thosemarked (r) are reisuued patents.]A complete copy of any patent in the annexed list,
ncluding both the specfications and drawings, will be ncluding both the specifications and drawings, will be
farnithed from this offle for one dollar. In ordering please state the number and date of the patent desired,

Ash sifter, M. J. Cristie
AwnIng. F. Hohorst....
Backlash, preventlng, J.........afner.
Baker's oven, E. A. E. Böhm........
Bale tie, E. E. Plerce..........
Balling manure, B. Ackerman.
Barbed fence wire, L. E. Ev
Barrel cover, Whitmore \& Butle
Bath car, C. H. Cooper..............
Bee hive, J. W. \& T. H. Davis.
Blacking brush, C. B. Goldsmith
Boat-detaching apparatus, R. Greenwell. Book, forming and inserting stape Havel Boot shanks, cutting, J. M. Watson.
Boot nail machines, L. Goddu (r)... Boot stiffeners, forming, L. Bottle stopper, A. E. Rich..........
Box for artificial flowers, I. Birge Brick machine, F. Grant.
Brick mold, C. M. Brown

## Brick mold, C. M. Brown... Brash, Holmes \& Lawrence Burglar alarm,

Burglar and fire alarm. N. Harpe
Burglar and ifre alarm. N. Harper
Butter package, A. W. Monroc.. Can opener, I. W. Heysinger..
Candle holder, H. W. Kahlke.
Canister, J. H. Preater
Car coupling, B. Day.
Carcoupling, J. King.
Car coupling, S. F. Page
Car coupling, G. W. Whittington............
Carbonic actd generator, $\mathbf{c}$. H. Thompson.
Carpet cleaner, S. B. Stearns
Carriage wheel felly, E. Dans, Lew
heese press and hoop, $\mathbf{q}$ w. Mill
Chimney cap, F. Lichtenfels
CIgar holder, J. Hutt
Igarette machine, L. J. Bejottes.
Ircuit closer, signal

## 

Cisep for holdng garments, A. L. Fyte. lock case, Ele
lothes dryer, J. F. Jaques
Clothes wringer, McMillen et al (r)
Coal gas, making, T. Curley.
Cork extractor, J. S. Saunders
Corn planter, F. A. Barr..
Corn planter, I. Houghtlit
Corn sheller, Douglas \& Parkhurst.
Cotton bale tie, J. W. Petty ( $\mathbf{r}$ )
Corton openerer andllapper, White..............
Cracker machlne, I. J. Hilgerd.
Cracker machine, I. J. Hilgerd.
Croquet mallet, H. Malln..
Curtain fixt
Curtain fixture, I. W. Heysinger
Curtain fixture, w. E. Skinner.........
Des
Die for makIng hoes, H. Hammond.
Door lock, G . Winter
Double force Draft equalizer, P. W. Thomson. Egg beater, W. B. Nichols... Egg carrier, Bull \& Woodrufl
Electric log, J. P. Haines......... ........
Electric rallway signal, J. I. Conkiln, J Electricmagnet bell, F. W. Griswold Elevator bucket, W. G. A
Escapement, R. Barclay. Escapement, R. Barclay
Extension table sild
Extension table slide, A: Mare........ Frrm gate, w. H. Richardson Feather renovator, Stewart \& Smith. Feed regulator, F. Klinl
Fence, R. L. Garrett...
Fence strip, J. Brinkerhoff.
Fire escape, H. R. Houghton.
Fire escape, A. Kindermann
Flower trellis, C. H. Westcott.

## Foot rest, E. F. Mersick

Foot warmer, G. E. Hayes...............
Frutt dryer and steamer, w. Braid wood.
Furnaces, feeding, etc., J. P. Burnham...
Furnaces, supplying blast to, N. R. Packard Furniture, strengthening legs
Gagelathe, Brown and Howe
Garden rake, A. M. Suydam........
Gas bag pressure for, G. H. Looml
Gas-enriching apparatus,
Gate, J. M. McEncIre.......
Gate latch, S. M. TInkham
Glass tablet, ornamented, M. B. Church
Grain separator, J. H. Elward
Graphoscope, W. H. Lewis..
Gun sight, H. Hammond....
Hand planter, S. P. Babcock
Hand sled, J. Lee...........
Harness saddle, J. A. Duca
Harrow, A. W. Davis.....
Harvester, C. W. Levalley......
Harvester, Petersen \& Thorson
Harvester,
Hareetersen J. Werner, Jr....
Heating drum, T. B. Field.
Heating drum, I. B. Fiela
Heating stove, c. $\mathbf{~}$. Buck
Heating stove, Dickey \& Perry...........
Hog-singelng apparatus, W. R. Berger. Horse power, I. Joyner.
Horse rake, D. P. Sharp.
Horse rake, D. P. Sharp....
Horseshoe machine, Russel Horseshoe machine, Russell and Claude..
Hose connection, fire engine, P. H. Owen Hot air furnace, J. R. Walls.....
Hydraulic cement, A. W. Shaw Hydrault Jack, Byrnes \& Grosh Incubator, H. W. Axford
Inhaler, G. I. McKelway
Iron and steel direct, making, w.....................ttle
Iron fence, J. B. Wickersham............
Ironing apparatus, Batley \& Perren
Lamp, R. W. Park
Lamp pendant, E. Blackman
Lasting girth for boots, G. W. Copeland
Lath, Lath, E. Coleman.
Life-preserving suit, F. We.....
Lifting Jack, W. Donaldson
Limekilln, H. Stacey.
Lime kiln and gas gene
Lime kiln and gas generator, J. Cowan. Liquid filtering apparatus, T. R. Sinclair Lock for satchels, W. Roemer (r) Locomotive, W. Holdsworth.
Lozenge machine, C. H. Hall Lozenge machine, c. H. Hall....
Measuring rule, E. D. Waterbury Measuring rule, E.
Meat can, J. Norton
Midaings separator, Elisenmayer \& Dehne
MIddIIngs separator, W. H. Geohegan.
Midullnge separator, Slagle \& Graham.
MIllstone d ress, Grigg \& McElroy
Mustache guard, J. S. Horton....
Nose ring for swine, E. S. Richard
Oll cup, J. Vair...
Organ reed, H K.
Organ reed board, sub-bass, J. A. A. Smith
Paper barrel machine, I. B. Taylor..
Pencll and eraser holder, P. Schrag.
Permutation lock, J. Meyer........
Photographs, mounting, R. Shean
Picker check, Davidson \& Richardson
Pipe wrench, T. Keen3n....
Piston for deep wells, J. Old
Planing machine, Brockus and Barnum
Plow, M. D. Dozier.
Plug tobacco, C. Siede...... (r)
Pneumatic switch lock,
Pneumatic switch signal, D. A. Bu
Pocket brok fastener,
Pocket brok fastener, D. M. Read
Pring
Printing yress, G. P. Gordon (r)......
Printing wheel, hand, R. T. Willams
Projectile, B. B. Hotchk188
Pump, L. D. R
Pump, w. Wing
Quartz crusher, F. M. D.....
Quartz mill, D. D. Mallory.
Range, A. Richmond........
Ratchet wrench, R. R. Wils
Ratchet wrench, R. R. Wilson.........
Reed organ action, A. H. Hammond.
Retn holder, G. W. Waters


## Rock-drilling machine, c. C. Creeger...... Rolllng blanks for oll well sockets, L. Ya

 Rotary blocter, J. M. Keny....
Rotary churn, J. McDermald.
Sadde for spening top rolls, e Rotary efor spinning top rolls, etc............................... Sasn balance, J. Schater
Sash holder, s. Byram.. sehh holder, A. Y. R. Fry..........
Seeding machine, J. H. Jones
Sent Sewing machine, J. Jamleson...
Sewing machine feed, o. S. Haz Sewing machine shuttle, G. W. Baker Shade for the eyes, H. C. Kromer..
Shade holder, E. Blackman....... Ship'swindlass, J. L. Dickenson Shoe, wooden soled, T. R, Hyde. Shutter, sheet metal, A. O. Kittredge..............
Skelng and warps, printing, Horton \& Caldwell. Sled brake, J. A. Hanson.
Sletgh bell, $\mathbf{l}$
. . W. Tucker.. Splce box, A. B. Frazer. Spindle for spinning frames, etc.................... Spirits, treating and aging, G. Goewey
Spring bed bottom, J. Forbes, Jr Spring bed bottom, S. H. Reeves Station Indicator, Alian et al............
Steam cooking kettle, W. G. Flanders Steam engine gov
Stirrup, R. Sabin.
Stone-dressing machine, J.
Stove plpe joint, J. Draper.
Stove plpe shelf, Johnstone et al.
Street sweeper, J. W. McDonald. Surgical clamp, A. G. Strubell. Swivel hook or pin, safety, T. Cogswel
Tack strip and machine, E. Woodward Tappet for stamp rods, J. Brodie. Tethering device, J. L. Jackso
Thermometer, G. B. Wiggin... Thrashing machine, A. S.
Trabaco pipe, J. Bing ham Tobacco pipe, J. Bingham............... Tool holder, New, Mathews, \& Berr
Toy thaumatrope, W. H. Earle...... Trace buckles, E. G. L. Latta.............................. 183,688 ,
Treadle, Trump \& Frederick........ Trimming, A. Sturm.................
Turbine water wheel, A. D. Cole. Vehicle axle, B. F. R1chard
Vehicle wheel, J. Huber.... Ventllator, H. A. Buzzell. Ventilator, J. W. Collins....
Ventilator, Vaile \& Sander
ventiliator, Vaile \& Sanders...................
Ventilator and roof protector, E. M. Brock Ventllator for flues, Hay et al.
Wagon brake, C. G. Deming. Wagon dash, J. E. Lines. Warping machine, J. J. \& G. Ashworth
Washing machine, H. E. Smith Washing machine, B. I. William Water closet, w. Smith .........
Water heater, W. S. Reynolds. Weather strip, A. Prott..
Wheel plow, s. F. Welch
Wheel plow, s. F. Welch
Windmill, A. J. Ball.....
Windmill, A. J. Bail.....
Windmill, A. H. Cleavela
Windmil
Wood-molding machine, N. M. M.....
Wrench and pipe cutter, J. Brewer
Writing implement puncturing, E
Writing implement, puncturing, E. Stewart....
Yarn bobbin winder, s. T. \& W. s. Thomas
DISCLAIMERS.
3,609.-Plow.-G. Watt, Richmond, Va.
157,425.-Vehicle Spring.-R. M. Stivers. N. Y. city
DESIGNS PATENTED.
9.593.-Cooring Ranars.-A. P. Corse, Troy, N. Y.
9,594.-Statue.-J. B. Crawford, Rochester, N. Y. 9,595 to 9,597 .- EMBROIDRRY.-E.Crisand, New Hew

9,599.-Boa.-M. Freytag, Chicago, III.
9,600.-SHow CABD.-J. Fuld, New York cit

FOR THE WEEK ENDING OCTOBER 31, 1876. Abdominal supporter, N. J. Hanc
Agricultural boller, I. Marrs...... Balanced silde valve, S
Bale tie, D. T. Lew Bale tie, D. T. Lew 1 .
Baluster for stairways,
Barbed fence wire, L .
Barbed fence wire, L. B. B. M.
Base-burning heater, J. pear Bath for tempering steel,etc., $\mathbf{H}$. Herrenschmid.
Bed bottom. W. J. Myers .............
Bed bottom, invalid, I. M. Rhodes.
Bedstead fastening, L. Schnelder.
Brrch beer, making, H. Decker
Bird cage hook, P. Bradford.......
Blacking box holder, R. Latrelle Boller feeder, F. A. Pratt. Boiler tube leak stopper, Jones \& Lynch
Boot and shoe, O. B. Dodge........... Bottle and cup, comblned, M. Blo Bow and arrow, C. Goodwin.
Box fastener,G. A. Mertens. Box fastener,G. A. Mertens
Button, E. S. Wheeler..... Button holes, boring, E. Hanshew
Buttons, inishing, M. M. Rhodes Can, metallic, Green \&
Canister, w. J. Rasin
Carbrake, A. E. Hove.......
Car coupling, G. H. Ames (r) Car coupling, F. C. Weir... Car coupling, Mohr \& Lawrence. Cartridge-loading device, T. P. Cam Cartridge primer, A. C. Hobbs..........
Casting belt pulleys, A. L. Bricknell Casting belt pulleys, A. L. Bricknell
Casting car wheels, N. Washburn Casting car wheels,
Churn, E. A. Hewitt. Cigar cutter, F. Winkler Cloth-shearing machine, I. Brooks
Clothes pin, w. H. Mayo.......... CoIn counter, A. Bernsteln Compound engine, J. McCrack Copy nolder, H Deyo .......
Corn planter, A. C. Evans.. Corn planter, Thompson \& R
Corset and pad, J. A. Bates.
Cotton planter and distribute

| 188,4929 |
| :--- |
| 189,739 |



Explosive compound, E. Judson.....
Extension lamp fixture, J. A. Evarts Extension lamp fixture, J. A. Eva
Extension trunk, P. B. Andreac. Eyelets, making, S. W. Young..................
Fatening for sleeve buttous, M. P. Bowman..
Feed water heater, C. D, Smith. . Feed water heater, C. D, Smith...
Fertllizer distributer, J. Sensenig. Fertilizer distributer, J. Sensenig..
Filter, B. Schiffilin (r) Fiter, B. Schiefreinn (r)......
Fire arma, check restor,
Fire kindler, F. D. Cordes ...
Fluting machine, E. J. Cutter........
Folding carriage seat, J. Pendergast Folding carriage seat, J.
Folding table, E. F. Mersi
Foot rest, O. C. Whitte Fountain pen, W. H. Sprague
Frult can, J. B. McNaibb.............
Frult dryer, C. W. \& E. . . Jones Galvanic battery plate, J. Byrn
Game target, J. s. Pearce...... Gang plow, L. Chapman.....
Gas carbureter, D. E. Bangs Gas generator, T. Van Kanne Gas meter, Detwiler \& Fajen
Gas stove, A. C. Lippitt....... Gate, Sowerby \& Deck.
Glass lamp, L. D. Hatt
Grain binder, D. McPherson.
Grain drill teeth, J. H. Lewis
Grain header, A. J. Hodges
Graller, B. F. Frazier..........
Hand snow plow, E. R. Bette. Hand snow plow, E. R.
Harveetere, E. Emmert.
Harvester, E. A. Peck (r)...
Harvester, G. H. Spaulding.
Harvester rake, J. F. Stark.
Health ilt, F. G. Johnson..
Harvester rake, J. F. Stark.
Health lift, F. G. Johnson.
HeatIng stove, J. W. Bell...
Heating stove, J. W. Bell..............
Heating stove, J. $\Lambda$. Lawson......
Heel for boots and shoes, J. Tingle Hoe, field and garden, C. A. Howard
Hoisting and tramming, T. Rhoads. Hoops, manufacture of, H. S. Smith Horse brush, J. F. Furt
Horse collars, making, J. Horseshoe, W. E. Yates.....................
Horseshoe nall clincher, J. Slautterback Hydrant for watering stock, J. Compton. Hydraulic motor, E. Buss
Inketand, A. Hormann...
Iron for smoothing clothes, w......................
Ironing voard, J. M. Kendall...................
Jewelry setting, A. C. Greene.
Knitting machne, T. C
Lamp, H. B. Thompson..
Lamp burner, G. Chase. ...
Lamp collar, L. J. Atwood
Lamp
Lamp wick, G. K. Osborn...............................
Lasting machine for boots and sloes, L. God
Lasting machine for boots.
Lath saw mill, $\cdot \mathbf{C}$. F. Fing.
Lathe
Lathe carrler, H. W. Oliv
Lawn seat, J. R. Wherry

Leather hose, making, H. Wakema
Life raft, J. Rider................
Map and charc stand, J. Browne
Mash tub, C. Halter............
Meat chopper, D. R. Kinyon
Mechanical movement, т. s. Huntint......................
Mechanical power, H. J. Gastmann........
Milk can cover, R. Rennick.
Mok can cover, R. Renning car wheels, N. N. Washburn. .......
Mouthplece, smoking pipe, B. F. Van Cleve
Musical instrument, A. Schoenhut.
Neck yoke, F. Hannig..........
Neck yoke, F. Hannig
Newspaper flle holder, A
Nursing bottle, w. Kennish....
Nut lock, A. \& J. F. Thomp
Odometer, J. N. Brokaw....

Onl stove, O. Edwa
onler, N. Holmes.
Oll crusher, J. W. Dowler..............
Ore-roasting furnace, Huttner \& Scot
Ores, washing, etc., F. del V.y Mart
Oscllating valve,G. W. Van Deren.

Pantaloons conformator, J. ....................
P. Feldmann.
Paper box, Lockwood \& Lynch...............
Paper ribbon blocks, forming, F. Relchert.
Passenger register and indicator, W. F. Nedler
Pessary, J. P. Barnett
Pipe and hose coupling, J. G. .................... 1. Platform, wagon trestle, L. M. Fitch..
Plow fender, A. C. McLeary..........
Plow haddles, shaping, E. A Conner. Plow pontat, w. H. Coo
Plow standard. W. W.

## Pocket for garments, A. D. Pena...

Pressure valve, A. Kayser...................
Pump cylinder and valve, D. W. Kellogg. Punching and anaging metals, L. Chapman
Rallroad switch, A. E. Hover... Rallroad switch, A. E. Hovey
Rallroad switch, F. Luchint Rallroad tie, E. E. Lewls......
Rallroad tracks, E. E. Lewis.. Retort. wood gas, M. Levy (r).......
Revolver, barrel for, T. M. Wailis Road scraper, J. Stubbs.
Rock drill, H. C. Sergean Rolling mill appliance, J.
Rotary engine, S. s. Hul


Rotary harrow. J. N. Norrtis
Rowlock, E. E. Spedden.

Sash balance, w. C. Barnes.
Sash rastener, G. Voll.
 saw sharpener, , , Howland.............
sams to handes, attaching, J . Holden. Sowng machnine, J. Ackiey.
Sawng
Sing mecher
 School degk. E. G. Durant.
 Seed planter, J. W. Brigham. Sewer Inlets, cleaning, R. A. Shn
Sawing machine, F. H. Brown...
 Sewing machntine take-up, J. L. Folle
shade holder o stade holder, $\mathbf{O}$. N. Perktin
Shaft bearing
a.
B.

```
smarpentng drille, tool for, A.
```

Sheet metal measure Jo Ah. F. Champlin
shirts, manumatacture, of, Pond
shoe buckie, G. F. Banlster.
Shoe buckle, G. F . Banister.
Show box, E. $\&$. Maginn (r)
Show box tor cracers, E. Maginn
Show case, F. Pollard....
Slckle grinder, H. s . ste
Soap compound, A. R. Stanton
Sora bedstead, C. Pabs.
spder and baking pan, D. B. Smith
$\underset{\substack{\text { Splinning mule, J. Bro } \\ \text { Spooler, } \\ \text { s. F. } \\ \text { F. Cobb }}}{ }$
spring-bed bottom, J. Menzies
Sping hoe for graln drills, J. s . Bogle
springs, atting and tempering, C. B. Koon
Staves, making, H. s. smith
Steam boller and engine, w. Fianna
Steam cooker G .
steam cooker, G. B. \& W. W. Follet
Steap ladaer chalr, S. J. Harrison
Stop mechantim, draw frame, w. R. Handy
Stove grate, T. Holt..
stove grate, A. McVean....
stove grate, Mc Vean \& smit
Stove pipe elbow, Hoeltg
Stovepine thimble, attachment, D. W. Bryant.
Supsender end, J. $\mathbf{w}$.
Swivel, J. $\mathbf{c}$. culiford
Tacks, as8orting, Brigham \& Pratt.
Telegraph facsimile, j. L. Young.
Three horse evener, w. Haltulug, s
TTicket punch, J. . S. Foste
TIme lock, z. Pbillips....

Tollet mirror, w. staehlen....
Trangplainter and hole digger, w. M. Ryan.
Trap for water plpes, F.
Turbine water wheel, A. H. Wagne


Upright planoforte, , G. W. Nelll ...............
Valve for direct-acting enginas,
ventllator, 0 . Harred
Vertical steam boiller, I. Barto
Wagon seat, A. M. Kendall
Wagon standard, Dlmond $\&$ Mulle
Washboard plates, making, G. w. Barrett
Washing machine, W. J. Bradie....
Watch barrel, J. A. Stawyer...
Watch protector, H. A. Rosenthal
Water meter, v. H. Higgi
Water motor, o . Lindey
Waterproof cover for cofflis, $\mathbf{W}$. w. Robinson.
Water-ratisting macnine, J. A. Ayres.
Waterlin trough, $\mathbf{F}$ A. Corman
Watering trough, F. A. Corfman....
Whifletree center, H. K. Porter
Whifletree center, H. K. Porter
Window blind, sheet metal, A. o. Kittredge
Wrench, $\mathbf{G}$. $\mathbf{H}$. Buzzell.
DISCLAIMER.
115,115.-Sunsin
Pa., et al.
designs patented.
 $9,600,9,607$ - Typrs.-J. Herriet, New York city 9,609.-BEzastrin.-J. Wilkinson,Mount vernon, N. $9,610-$ EAB RING. $-J$. Wulkingon, Mount Vernon, N . $\mathbf{Y}$
[ $\Delta$ copy of any one of the above patenta may be had by Tork elty.
sCHEDUNE OF PATENT FRES,
On each Caveat.....
On aling each application for a Pater.................
On 1ssuing each original Patent.
On appeal to Examiners-In-Chief.......
On application for Relssue
On iling a Disclaimer....................
On application for Design ( 7 years).
THE VALDITY OF PATENTS.
We recommend to every person who is
about to purchase a patent, or about to comabout to purchase a patent, or about to commence the manufacture of any article under a by a competent party, and to have a research made in the Patent Office to see what the condiHe should also see that the claims are so worded as to cover all.the inventor was entitiled to wnen his patent was issued; and it is still more essential that he be informed whether it is an infringe menton some other existing patent. Parties desirthrough the Scientific American Patent Agency, by giving the date of the patent and stating the nature of the information deared. For furcher $\begin{array}{ll}\text { information, address } \\ & 87 \text { Para ROWN \& CO. New Yor }\end{array}$ $\begin{array}{r}.820 \\ .810 \\ .820 \\ \hline\end{array}$

## gavertisements. <br> Inside Page, each insertion - - 75 centa a line. Back Page, each insertion - 81.00 a line. Inside Pase, each insertion -- -75 centa a line. Back Page each ingertion - 81.00 a line. Engravings may head advertisements at the same rate Engravings may head advertisements at ins same rate per line, by measurement, as the letter press. Adver. wsements must be recerved at publication afice as earty世sements must be receaved at publication afice as Friday morning to appear in next tseus PORTABLE FIRE ESCAPEP

 $\frac{\text { H. R. Houghton, P. O. Box } 1621 . \text { N. Y. City. }}{\text { © }}$





## STE PHOTOGRAPHICAPPA-

 25 FANCY CARDS, all styles, with name, 10, pos. EXPERIENCED FIRM desire full Control of a

 SILYERED ELASS TELESCOPE For Sale-Ten Inches anerture, best English make. Fuul
particulars by mail. Address P.O.Box 913, Springield, O



## 53 O P

Smplified Weichis AND Measires, or a Natu-
ral System applicable to most civilized nations. By Lowis D' A. Jackson. 8vo. 81.00 . Bomer Incrustation and Corrosion. By F. J Electro-Telegraphy. By F. S. Beechey. 16 mo . 60 cents.
WORKshop Recerpis. For Manufacturers, MeWorksiop Recerpis. For Manufacturers,
chanics, and sclentific Amateurs. 8vo. 82.00 . Treatise on the Origin, Progriss, Prevention,
and Cure of Dky rot in Timber. By T. A. Britton. Colored Plates. 8vo. 88.00 .
Water Supply. The present practice of Sinking
and Boring Wellis. By Ernest Spon. 8vo. $\$ 3$. * Lsts of our Pablications sent free on application. Fir sale-Double 10x24 Engine for Stern Whee IMPROVED CHIMNEY CAP. This Invention consists of a Chimney Cap made of cast
Iron or Sheet Metal contructed to nt any Chimbey. Ir mak or sheet Meap and eanil adjusted Cap
ILEDERICK LICHTENFELS, Newark, N. J. - JM:CARPENTEFR MANMACTURER OF FIRST CLASB TAPS AND


 A

 W ANTED -A FIRST CLASS MACHINIST and and Draftsman tomanufacture Printing Presees
and
dress Box Tramp Baitimore, Md.
P8 A A ATEUR PHOTOGRAPHICAPPARATUS-
 S FREW PROPELLLRRS, THEIR SHAFTS AND





The fact that this shatring has 73 per oent greater
surenge,


 Todd \& Rafferty Machine Co.

 Lathes, Planers, Shapers, Drills,



FOR 1877, In addition to all its former excellences, heretofore
surpased by no other religious weekly newspaper in the
world, will iffer several ENTIRELY NEW FEATURES, FIRST. - We shall print through the year sERMONS
by the mosi eminentcler gymen orthe conntryor al dill de-
nominations, from Mal nominations, from Mai ne to Calif ornia. Our reader-




A PAPER CITY,


 The WORKS OF CHARLES DICKENS In the famous and unsurpassed Household Edition of




 as Stories, and Sketches by Boz.
ner cial
Triver pages.
Traver, and additional Christmas The Myatery op ted in Drood, A Chid's History of

## FIFTEEN SUBSCRIBERS

DICKENS COMPLETE. Thi inpeprander ofers for ss twice as much as any
other religious journal in the country or the world, and THE PAPER FOR HARD TIMES.
 Specimen copies, containing full list of other pre-
miums, sent free upon application. Address
P.-0. Box 2987. - THE INDEPENDENT,
-

WANTED: SALIESMEN $n t$ a siary of \%1200a


## Last Chance.

Buy roor Tickets Now!! dRAWING POSITIVELY Thursday, Nov. 3Oth, OR MONEX REFUNDED.
A Fortune for only \$12 THE KENTVCKKY CA $\overrightarrow{S H}$ DISTRIBUTION CO.







 Mand




THE CRNTRNNTAL INTERNATIONAL EX




Wood-Working Machinery,



EAGLEFOOTLATHES,

Pond's Tools.


$\$ 559$ 87 a week to Agenta. sampies FREE. INVALIDITY OF STATE LAWS





## GRAVEL ROOF'S


 BEDFORD'S Eurelea Air Pistol. Eureka M'f'g Co., 171 Devonshire St., Boston, Mass,

 DUCK CUN FOR SALE CHEAP-nearly



Marine Sr



 IMPORTANT FORALL CORPORATIONSAND







## NEWSPAPER FILE.

## 



MUNK \& CO.,
Publishers sominsine angroan

Prize Medal Awarded Centennial Exhibition 1876.

## BAIRD'S Bouss

FOR PRACIICAT MRIN
 who will furnish his address.

 $\underset{\text { HENRY CARET BAIRD \& }}{\text { HED }}$


Danbury Drill Chacks,
New-1876-Pattern. G GREATLY IMPROVED-ALL CAST STEEL. PRICE REDUCED TO \$8.00. THE HULL \& BELDEN CO., MA
 And! Address,with stamp. E. C. ABBEY, Butalo N.

## FRIGTIDN GLUTCHES

At Centennial Exhibition, Machinery Hall, D. 9, 66.
Also at entrance to Pump Annex.







 TRON BRIDGE BUILDING-A complete de-

 AMERICAN SUPPLEMENT, 10 cents per copy. To be
Ban at this ottice and of ail news aeenta.


ELASTITCTMUSS



POTTER's AMERICAN MONTHLY 50,000 Illustrated; Best Family Magazine in the



## SHAFTS.PULLEYS.HANGF.RS

n btock, and for Sale by
Pnlladelpha, william sellers \& CO.
Price lists and pamphlets on application.
 $\$ 57.60$ AGENTS' PROFITS per meck. Will prove ented. Samples sent free to all Address Ad $\begin{gathered}\text { Add } \\ \text { W. H. CHIESTER, } 2 i 8 \text { Fulton St., New York. }\end{gathered}$ H Jow TO MAKE SPIRAL SPRINGS. By Which aro easily mose. With three engravings or the tools,



RELIEF PLATES IN HARD TYPE METAL For Printing

## All Kinds of Pictorial Illustrations

In Books, Newspapers, and Catalogues.
These plates are an excellent substitute for wood cuts, being used in precisely the me way, giving equally good results for much less money.

ELECTROTYPES AND STEREOTYPES
are made from them in the usual manner
We offer special advantages to
Manufacturers and Inventors,
as our mechanical work is of the best quality and rapidly executed.
Our plates are used satisfactorily in the SCIENTIFIC AMERICAN and the SCI ENTIFIC AMERICAN SUPPLEMENT, and by Manufacturers and Publishers in all parts of the country.

$$
{ }^{6} \text { C O P Y. }
$$

We work direct only from Prints or properly prepared Pen and Ink Drawings. Any other copy may be furnished, such as Photographs, Pencil Sketches, or the articles themselves, in which cases we have drawings made in the best manner by our own trained draughtsmen. Photographs, taken in the ordinary way, are suitable, and they may be of any size. We make the plates larger or smaller as desired.

We are glad to have customers prepare their own Pen Drawings, and append one
or two

## DIRECTIONS TOARTISTS:

The most important requisite in Drawings for our use is that every line shall be perfectly black.

The paper or drawing board must be white and smooth.
For fine work drawings should be made double the scale of the plate desired. Carefully observing thesa main points, the artist has the utmost freedom in his choice of styles of drawing.

For further information and fine samples of our work, send stamp for current num ber of our illustrated Quarterly Circular

Please say where you savo this.
PHOTO-ENGRAVING CO., 67 Park Place, New York.

## 

Steel Castings,

 STEAM ENGINES FOR SALE




$\$ 17.40$ for $\$ 5.00 .-$ New Novelties, Address NAT. NOV. CO., 400 Chestnut St., Philad., Pa. WATCHES. Cheapest in the known ThE HOABEVMNO
PORTABLE STEAMEENGINE.
WITH AUTOMATICAL CUT-OFF REGULATOR THE BEST MOST ECONOMICAL ENGINE MADE TheJ.C.HOADLEY CO. LAWRENCE. MASS.


 Chean stmple drable, and errective.










 GEORGE C. HICKS \& CO., Baltimore, Md CLAY RETORTS, TI ES, FIRE BRICKS, \&c (1) WATCHES, Chenpest in the known SPARE THE CROTON \& SAVE THE COST. Driven Or Iubo Welis

 Durable, and Efficient. Sample Send for Pamphlet and IMproved Soldid steel Cotters for
all PInde of Vartety Morlders
made to order, and warranted
mat the by C. MACHINERY CO
Batie Creek. Mich

## 

A canvassing for The Illustrated weekly. Experienc



B LOSSOM ROCK, HARBOR OF 8AN FRANGBCO Ci. Full Account of 1ts Removal, Method and Cost. B

ROSE-BUDS IN WINTER Hivikizw

P. BLAISDBIT \& CO. Worcenter, Mase..
Manufacturers of the Blaigdell Patent UprIght Drills an other Arst-class Mach!nist's Tools.
(9) $=$ anis Small Tools of all kinds; also GEAR WHEELS, parts
of MODELS, and materilis of ail kinds. Castings of Small Lathes, Engines, sild Rests, etc. Catalogues free.
GOODNOW $\&$ WIGHTMAN, 23 COrnlill, Boston, Mass.
Planing \& Matching.
 - $09 \begin{aligned} & \text { Each week to Agents. Gonds Stapice. } 10.00 \\ & \text { testimonials } \\ & \text { ticulars ire }\end{aligned}$

## (-) ET MaFETY Hoistiva

 No. SA8 BROADWAY, NETS BROS, \& CO.M ACHINERY OF IMPROVRD STYLERS FOR Making silng ies, HEADING and sTAVEB




## 2Aluxtitisturents.

 Enoravings may head advertsoments as the same rate
per une, by measurement, as the letior press. Adeartsy as Mridny morning to appear in next tesue.

## Diamonds Carbon <br> thaped or Crude furnimed and eet for Foring Rock  <br> THE BEST <br> Boiler Feeder

## FRIEDMANN'S INJECTOR

MATHAN \& DREYFUS, New York. Sendfor Circulár.

## Th Lease,

ALL THE LOFTS AND PART OF THE FRSST


COMPRESSRD ARR MOTIVE POWER- -For



## LOOK Ro Rat Filling stione in in world

## WIPE ROPE

Address JOHN. A. ROEBLING'S SONS, Manufactur-
era, Trenton, N. J., or 17 Liberty Si, New York.
Whe erg, Trenton, N. J., or 117 Liberty St, New York.
Hhelagand Rope for convexing power iong distances.
Send for Circular.

[RSTABLISHED 1846.]
Man \& Co'sPatent Ofices.
The Oldeat Agency for Bellelting Paconte in the
THIRTI TEAES' EXPSERIENOA.
MORE PATTRNTS have been eecured through thin
agency, at home and abroad, than through any other in agency, at home and abroad, than through any other in
the world. the world.
They employ as their aerlstanta a corpa of the most exdrattomen thant can be found, meny of whom have been selected from the ratke of the Patent 0mice. SIXTY THOUSADID inventort have aralled them-
selves of Munn $\&$ Co.'A servicee in arnminting chelr inventions and procuring their patenta.
MUNN \& CO.. in connection with the pablication of the SCIENTIFIC AMRRICAN, continue to eramine inventions, confer with inventora, propare dra winge, ape-
cifications, and aesignmenta, attond to allug appications ni the Patent oflce, paying the government feen, and watch each case step by step whlle pending before the examiner. This la done through their branch omice, cornar F and 7th streets, Washingtion. They also prepare and issues, attend to rejected cases (prepared by the inventor or other attorneys), procure copyrighta, attend to interferences, give written opinions on matters of infrimpenent, farnish copies of patents, and, in fact, attend to
every branch of patent bualnesa both in this and in forelgn countries.
A special notice is made in the sCIENTIFIC AMERICAN of all inventions pas tented through thar agency, with the name and resicence in part ur whole, to persona attracted to the olvention py such notice.
Patents obtained in Canado, Kasland, France, Belgaum, Oermany, Rasela, Froado, Spaln, Portaga, the britidah
Colonles, and all other countries where patanta are Colonies, and all other countries where patanta are
granted, at prices greatiy reduced from former rates. send for pamphiet pertalning specially to forelgn patento, Which states the cost,time granted, and the requirementa for each country

Copien of Patente
Persons desiring any patent iscred from 1888 to Novemsonable cost, the price depending apon the extent of
drawlinga and length of drawinga and length of apecincationa. Any patent 1ssued since November 2n, 180n, at which and specifications, may be had by remitting to thic oface 81.
$\Delta$ copy of the clalms of any patent iccoed ance 183 will We furniahed for $\$ 1$.
above, and scate name of patentee, title of invention, and date of patent.
A pamphlet contalning fall directions for obvining Dound Reference Book, gllt edges, contaline 140 pect and many engravings and tables important to every patontee and mechanic, and is a useful handbook of res ance for everybody. Price 25 centa, malled tree. YOSNA $\mathrm{CO}_{n}$ Publishers sCIENTIFIC ANRRICAN, BRaNCH opfice-Corner of F and fin Atreeta,

# Scrientifit <br> THE 

## For 1877.

The Most Popular Scientific Paper in the World. THIRTY-SECOND YEAR.

Only $\$ 8.20$ a Year, including Postage. Weekly. 52 Numbers a Year.

This Widely Circulated and splendidly IIcontains sixteen pages of useful information, and a large number of original engravings of new inventions and Machinery, New Inventions, Novelties in Mecherean Machinery, New Inventions, Novelties in Mechanic, tography, Architecture, Agriculture, Horticulture, etc.
Mechanics find in The Scientific American the latest and most valuable information concerning their various trades, and details of all the latest and best improvements in machinery, tools, and processes, together with such useful knowledge as will tend to dignify the cupations and lighten therr labors.
Inventors find in The Scientific Ambrican al necessry instructions how to secure Letters-Patentor tions of the best inventions made in this country and in Europe ; an official list of all Patents granted weekly at Washington, with numerous explanatory notes ; discusions of questions concerning the Patent laws of the

Manufacturers find in The Scientific AmeriAN ilustrated aricles descriptive of the most recently nvented machines used in various onanufacturing of engravings of new ornamental designs ; practical recipes of much value.
Engineers find in The Scirntific American daluable descriptions of all the best inventions connect ine Steam, Raliroad, Marine, and Mechanical En ress of science in all these a faithful record of the proand abroad.

Chemiste find in The Scirntific Ambrican details of recent discoveries made in Chemistry, and articles on the app seful arts.
Agriculturists and Horticulturists find Thi Scientific Amrrican engravings and descripvaluable information on matters relating to Floriculture ;

Send Ten Cents for Specimen Copy of THE SCIENTIFIC AMERICAN.

## sumificimernin

## SUPPLEMENT.

85 a Year by Mail, post-paid. Send 10 Cents for Specimen Copy The Scientific American Supplement is a large and splendid periodical, issued every week. Each number contains sixteen large quarto pages, profusely illustrated with engraving Fifty-two numbers a year. Uniform in size with the Scientific American. The Supplement is, however, separately paged, distinctive in character, and forms a most valuable independent publication.

The Contents of the SCIENTIFIC AMERICAN SUPPLEMENT for the year 1877 will embrace a very wide range, covering the most recent and valuable papers by eminent writers in all the prinelpal departments of Sclence and Useful Knowledge, to wit:
. Onowhror and Yotallargy.-Embracing New Chemical Discoveries, Improvements, and Processes, with en-
gravings. New Processes of Working Iron, Steel, Lead Coper Processes of Working Iron, Steel, Lead, Copper, Gold, Silver, and the Various Metals, tion, etc.
2. Yoobandos and Faghinooring.-The latest and best paper upon Steam Engineering, Railway Engineering, Min ing, and Civil Engineering, Mill Work, Textile Indus try, with engravings and working drawing
3. Mooterety, Hght, Eeat, soond.-Latest Improvements in Telegraphy, Telegraph Engineering ; Improvements in Galvanic Batteries, Electric Engines, New
and Useful Applications of Electricity in the Arts, with engravings.
. Arohltooture.-Examples of the best New Structures, with details and drawings.
B. Tooknologg.-New and Useful Inventions and Discov eries relating to THE ARTS: Improvements in Pho tography, Printing, New Implements, New Machin ery, New Processes, New Recipes, Improvements pertaining to Textile Industry, Weaving, Dyeing,
Coloring, New Industrial Products, Animal, Vegeta ble, and Mineral-with engravings.
B. $\Delta$ griocultare, Botany, asd Eortioulturo.-Newand Use ful Information in all branches of Agriculture. Des cripdons of New Plants, Trees, Shrubs, and Flowers, New, Useful, and Interesting Facts in relation to Cul tivation, Propagation-with engra vings.

Rural and Eonsobold Iceosomy.-The Latest Informadion concerning Building Materials, New and Valuable Recipes, and a great variety of Miscellaneous Information pertaining to Rural and Household affairs, with engravings.
8. Matoria Modica, Theorapoattes, Eygleno.-Exhibiting the progress of Medical Science in various branches,
New Medicinal Preparations, New Health AppliNew Medicinal Preparations, New Appli-
9. Natural Elistory and Zoologg.-The Latest Investigations, Discoveries, and most Interesting Information

0 and II. Yoteor000g7, Terrestimal Phydict, Geography.Phenomena, Travels, Explorations, and Discoveries,
22. Geology and Mineralogy.-The Latest and most Interesting Geological Investigations and Reports, and
3. Astronomy.-Recent Interesting Discoveries and Information, with Reports of Astronomical Phenomena, Progress, New lnstruments, etc.
TyRYs :-Solentifio Amerlican Supplement, one year, postpaid, \$5:00. One copy of Scientific American and one copy of Scientific Ambrican Supplement, one year, post-paid, $\$ 7.00$. CLOBS.-One extra copy of the SUPPLBMENT will be supplied gratis for every All the back numbers of the Supplement, from the commencement, January 1, 1876, can be had. Price, to cents each.

37 Park Row, New-York.

THE TANITE CO., EMERY WHEELS AND CRINDERS. Bogardig patrnt univbrsal bocrn





ASBESTOS ROOFING.
ABBESTOS Bithich ipt ind boiler


H: W. JOHNS, 87 Maiden Lane, N. Y.,


 MURRILL \& EREIKR HARTFORD

## STEAM BOILER

Inspection \& Insurance COMPANY.
 J. B . PIERER

## 



## Machinists' Tools.


Lathes, Planers, Drills, \&c

ROCK DRIILING MACHINES
AR COMPRESSORS

PORTLANDCEMENT



Portland and Reone's Cement.



## Niagara

 SteamPumpWorks Katablishat 1828.OHARLES B. HARDIOK, 2SAdamestreet PJNCHING






WITH "AIR SPAOE" IMPBOVEMERNT




$\mathrm{T}_{\mathrm{BR}}^{\mathrm{HE}}$ "Scientino $\Delta$ merican" ${ }^{\text {it }}$ pritiod wita


