A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

J. A. FAY \& CO,'s EXHIBIT OF WOODWORKING $\left.\right|_{\text {ted }}$. The policy of exhibitors has been to give in every case being to select good examples from the stock on hand. Thus MACHINERY AT THE CENTENNIAI.

It is generally admitted that the display of woodworking | ted. The policy of exhibitors has been to give in every case | being to select good examples from the stock on hand. Thus |
| :--- | :--- |
| the fullest possible representation of their products; and in | the visitor saw the average tools under ordinary conditions | It is generally admitted that the display of woodworking lieu of one or two prominent machines working, while the of trial, and at the same time could draw his own inferences machinery at the Centennial Exposition has never been remainder in any one exhibitor's space remain idle, all are as to the excellence of the material used, and the design equaled in any previous world's fair, either in point of va- shown in operation. In very few instances, moreover, were employed in construction.

riety, of efficiency, or of numbers of the implements exhibi- $\left|\begin{array}{ll}\text { special machines made for the Exposition, the general rule }\end{array}\right|$
Continued on page 344

J. A. FAY \& CO.'S CENTENNIAL EXHIBIT OF WOODWORKING MACHINERY.

§rientific sefmericau.

EBTABLIEHED 1846.
MUNN \& CO., Editors and Proprietors.

PUBLISERED WERELY AT

NO. BT PARK ROW, NEW YORK.
O.D.mUNI. A. E. ERACB.

TERMS FOR THE SCIENTIFIC AMERICAN One oopp, one year. postaze tncludea...

ere ten coptes, same rate each Reluded. LT The pastage is payable to anavance on the Notr.-.-Persons subscribing will piease to give their full names, and Post oflce and state address, plalnily written. In case of changling reasidence state former address, as well as give
unless the tormer address is given.
Adstinct paer sclentific American Supplement. and published simultaneousiv with the regular edition.

TERMy.
One year by mall
SCIENTIFIC AMR
TERME.
SCIENTLFIC AMERICAN and SUPPLEMENT, to one addres... 00 Blngle Coples..
The safest wa
Address MUNN \& Co., 97 Park Row, N.
Subscriptions recelved and singie coples of either paper sold by all
VOLUME XXXV., No. 22. [New Series.] I'hirty-first Year.
NEW YORK. SATURDAY, NOVEMBER $25,1876$.

THE SCIENTIFIC AMERICAN SUPPLEMENT. Vol. II., No. 48.
table of contents.

THE CLOSE OF THE CENTENNIAL EXPOBITION.

With ceremonies as simple and yet as befiting as those which marked its opening, the Centennial Exposition has closed, and so our grand celebration passes into the histor of the country. The present is hardly the time to view it in the light of a single event, still less to attempt to point out its results and probable effect upon the industries of the na tion and our future intercourse with the rest of the world. Our participation in its occurrences is too recent, the mem ory of its details too fresh, for a retrospect ; nor can we pre
dicate results on the recent past. during which the excitement results on the recent past. duriol ical campaign bas held the uppermost a in the public mind. We shal rather look for results after the business and trade of the country, now rapidly recovering from the stagnation of the past three years, shall have resumed their normal activity and after the finances of the nation shall have been settled on some sound, honest, and enduring basis.
That the Centennial, both intrinsically as a display and in the circumstances connected with it, has been successfu far beyond the lot of all previous world's fairs, is plainly evident. The exhibits collectively were, with few exceptions splendid representations of the resources and skill of the contributing nations. Never before has there been gathered such a collection of wonderful productions as the English and German pottery, the French silks and tapestries, the Chinese carvings, the Japanese bronzes, the Austrian ar work, the Belgian laces, the superb records of the vast en gineering works of Holland, the exquisite Italian mosaics. the Bobemian glassware, the Russian silver and gold nbjects and precious minerals, the Swedish iron and steel, the magnificent groups of Australian products, and our own la bor-saving machinery.
The extortions and privations which visitors to Vienna encountered at every turn were in Philadelphia rarely met with. Within the grounds the provisions for the public comfort were such that even the colossal crowds, which at times filled the buildings, failed to disarrange them. And then the crowds themselves! Where could two hundred thousand enthusiastic people be gathered within such nar row limits for a day, and yet not a single accident, no injuries to individuals, and no acts of lawlessness occur? What a magnificent proof of efficiency, for our railroads to beable to point to the fact that eight million people have been transported to Philadelphia from every portion of the country, over a period of six months, and but one casualty wherein life was lost had occurred! Eleven years ago, these eigh million people were engaged in a bitter and terrible inter necine war. Now, great national gatherings have taken
place day after day, unmarred by a word of sectional strife or ill feeling. For three years the nation has been suffering under a shrinkage of values and a financial stress which has brought ruin to thousands, and of which no one has escaped the evil effects. Yet despite all the privations and suffering incident thereto, a vast national enterprise has not only been successfully carried through, but has included such a representation of the fruits of American industry and genius as has never before been seen.
While we cannot yet point to special results due to the Centennial, we may at least be assured that it has imparted to our people a valuable and healthy appreciation of the " goodness which lieth abroad." Its tendency has been to break down that bulwark of intolerance and self-sufficiency with his independent notions of self-sovereignty, and which has caused him to depreciate the productions of older nations. On the other hand, it has opened the eyes of the world to the fact that we are ready to compete for prece dence in the trade in certain products, hitherto monopolized abroad, notably our steel, our porcelain, our cotton goods,
and our silks. We have also learned to compare our own work with that done in Europe; and having found where w are excelled as well as where we excel, we have stored up stock of ideas, sure to bear rich fruit in the future.
In these ideas and thoughts suggested, in extended com morce due to the closer intercourse with, and hence bette knowledge attained of, other nations, in the consequent im petus to our industries and educational systems, and in a broader cosmopolitan spirit diffused over the whole country do we look for the best results yet to be gained from the Centennial Exposition.

INTERMITTENT RECORDS AND THEIR INTERPRETATION

A few years ago, men wrote universal history with th utmost precision and confidence, as though the doings and developments of humanity, during all ages and in every
part of the world, were perfectly known. The threads of human history, so far as then possessed, plainly converged toward a little tract of country east of the Mediterranean Sea; and believing that the Scriptures contained a divinely inspired account of man's origin there, men not unreasonaactually or practically blank. But for the past half century, intelligent people have ceased to entertain that view, excep with great and various modifications, determined by a more or less honest desire to maintain the integrity of the scrip tural record. As soon as the matter began to be criticully complete complete and continuous, the chronicles which had been
woven so often into exhaustive histories, were disconnected woven so often into exhaustive histories, were disconnected and fragmentary, extremely limited in scope, and wretched ly deficient every way. Even when fullest, they gave but scanty information of the daily lives of the people, the move ments of nations, the rise of empires, the progress of inven
tion and discovery, indeed of everything now considered most valuable and important, historically considered.

Gradually historical research and archæological investiga tion came in to discover and imperfectly bridge over enor mous gaps in the history once thought complete; highly im portant events were found to have been lost track of; during
long periods of time no records had been kept, and of records carefully made only disconnected fragments have survived unmentioned or falsely mentioned empires were found to have flourished side by side with those which had professed to be not only the people but the only people of their day, while others a little further off were utterly unknown. Splendid civilizations, lasting many centuries, had contributed nothing to the written chronicles of the nations whose records remained ; and others which had apparently burst in full panoply upon the gaze of an astonished world, were found to have had their beginning in barbarism, and to have slowly risen to the lofty stage at which history had formerly found them.
Still more fatal to the ancient view of universal history were the discoveries that, at the geveral y accepted date of man's beginning, Egypt was in her decline, the grandeur of her civilization having reached its culmination before Satan talked wihh Eve in the garden, and that other parts of the world which had been accounted historically blank could show, like China and Peru, the remains of civilization cer tainly as ancient as that of Egypt.
Then geology came forward to show that the six thousand years of Hebrew chronology, or the doubly extended chro nology of Egypt, covered but a minute fraction of the time since man made his first recognized appearance on our globe and that all we know of human history is as nothing compared with the unrecorded ages of which we only know that man existed. Evidence of the gaps in the story of human ity, gaps of enormous duration, are indeed overwhelming Evidence of what man was doing during those ages is for the most part nil. It is possible, however, to bridge over some of those periods by iuferences which cannot be consid ered wholly illegitimate. We know that, back of every civi lization which has been critically studied (no mater how ab ruptly that civilization may have first seemed to come upon the stage of history),there have been found evidences of lower and still lower culture. In some cases it has been possible to trace the succes ive steps of progress almost continuousl from barbarism upward, and everywhere the drift of evidence touching early races is such as to justify the conviction that civilization has always been a product of human effort and time. Even when the antecedents of a civiliza ion are lost entirely, we still know enough of human devel opment not to believe that the nation began when and as it irst appeared on the stago of history.
All this is now common place enough, we are well aware; and it would be unworthy of serious rehearsal here were it not for the instructive parallel which may be drawn between
it and the bistorical interpretation of the equally intermittent and fragmentary records of geology, touching which here is still a great deal of misunderstanding.
In the early days of geological observation, men proceeded just as they had done in the case of human history. It was assumed that the rocks contained a divinely appointed re cord of the earth's history, from which men could gather an exhaustive knowledge of the whole earth's experience. The rata of England and Western Europe were s.udied with their fossil remains were arranged according to the assumed order of their creation, with more or less forcing to make them tally with the Mosaic days. Everything seemed straightfor ward and easy. If fish appeared in great numbers in one ward and easy. In it was because they were created then and there; if mons rous lizards swarmed suddenly in another, it was be cause a new chapter had been begun in the geologic history and so on to the minutest detail.
But as knowledge increased by the study of outlying stra ta, grave doubts began to arise with regard to the complete ness of the supposed 'perfect" record and the correctness of previous interpretations. The times of "first" beginnings had to be pushed back again and again. Formations supposed to have succeeded each other immediately were found else where to be separated by deposits of vast thickness, requir ing enormous periods of time for their deposition. Creatures supposed to have come suddenly into being in one age were found to have existed at periods immensely more ancient iaps were discovered where none had been suspected; broad distinctions of age and formation. were ruthlessly wiped out nd as the work went on, it became more and more apparen hat the classifications and chronologic schemes, which had been so confidently adopted, were largely misleading or
meaningless. To those who studied geology in books the meaningless. To those who studied geology in books, the completeness and continuity of the geologic record remaine undoubted; to those, however, who were engaged in the study of the record itself, its intermittent and fragmentar nature was most apparent. It was seen that only under rare and exceptionally favorable conditions was it possible that any record of life could be made. It was only under still more exceptional conditions that the record, if made, could be preserved. And when the limited scone of geological investigation was taken into the account, the absurdity, of the early deductions considered as comprehensive and ex haustive, became ludicrously plain. Yet when Mr. Darwin appealed to the imperfection of the geologic record, close geologists everywhere raised a great laugh of derision, as hough he had invented the plea to cover the weakness of his case. Public opinion on this point had indeed to under go the same course of instruction and enlightenment that we have noticed in connection with the history of man, a cours which it has not yet by any means coupleted. Even men who consider themselves competent to discuss publicly the deeper problems of geology, evolution, and so on, not un-
frequently show their unfamiliarity with Nature by repeating the old objections to any admission of breaks in the record of the rocks, apparently unconscious that the present scope of geological knowledge is as limited, geographically viewed, as the range of universal history was a century ago, or that it is simply absurd to argue as though what is known of the earth's history is the whole of that history, Even if we had, duly arranged in our cabinets, every fossil the world contains, we should still fall as far short of a connected history of life as our libraries do of a history of humanity.
From the necessary conditions of the case, it is and must al ways be simply presumptuous to make sweeping assertions of what may or may not have been, in the absence of positive evidence. We can only assume that the unknown most probably conformed to the known in general character: that, if there is found in any region a sudden accession of vestiges of high civilization, it is more likely that a civi-
lized people suddenly invaded that country and took posseslized people suddenly invaded that country and took posses-
sion of it , as the whites have this country, than that a pesion of it, as the whites have this country, than that a pe-
culiar civilization came suddenly into existence by direct creation. And similarly, if we find a stratum of rock suddenly (geologically speaking) filled with the remains of a higher form of life than the underlying strata showed, it is more reasonable to attribute the change to migrations, such as we have evidence of, than to creations, of which we have no evidence. And when all the evidence we have points to the evolution of higher types of civilization or of life from lower types: and since we know that, in our histories of earth and man, the unrecorded periods clearly exceed enor earth and man, the unrecorded periods clearly exceed enor
mousiy in duration those of which we have even partial records; $i t$ is altogether more prudent to be modestly guided records; it is altogether more prudent to be modestly guided
by the known than to give ourselves up, as the unscientific by the known than to give ourselves up, as the trascientic
are prone to do, to wild imaginations and the traditions of are prone to do, to wild imaginations and the traditions of
those whose means of knowledge were demonstrably inferior those wh
to ours.

THE STEREOSCOPE.

We are indebted to the late Sir Charles Wheatstone for a series of investigations on binocular vision, which finally culminated in the invention of that now very popular little apparatus, the stereoscope. It was in 1823 that Wheatstone called attention to a fact until then hardly noticed, namely, that the perception of relief in objects is the result of the that the perception of relies in objects is the result of the
superposition of the images, one on each eye; but these imsuperposition of the images, one on each eye ; but these im-
ages slightly differ from each other. The mind, guided by ages slightly differ from each other. The mind, guided by
the experience of many years, receives in this way the imthe experience of many years, receives in this way the im-
pression of various distances; and Wheatstone discovered pression of various distances; and Wheatstone discovered
that this impression may also be given to the mind by two pictures if each is drawn so as to correspond,respectively, to the image received by each eye. In order to prove this, Wheatstone invented the stereoscope. Considered from the standpoint of pure Science (apart from its practical application for amusement, instruction, and research, and the binocular microscopes and telescopes that have grown out of it) this discovery of Wheatstone's is perhaps as interesting as any other invention of recent date, not excepting the kaleidoscope, the telephone, the pseudoscope, and the revolving mirror for measuring the velocity of light, etc. Sir David Brewster, who was erroneously supposed by many to David Brewster, who was erroneously supposed by many to
have invented the stereoscope, used often, while insisting on have invented the stereoscope, used often, while insisting on
the importance of this new conquest in physical science, the importance of this new conquest in physical science,
to describe this instrument unhesitatingly as the most re to describe this instrument unhesitatingly as the most re
markablegift with which the study of binocular vision had markablegift
been enriched.
The first stereoscope by which Wheatstone demonstrated his discovery was a reflecting stereoscope. Two vertical mirrors were placed so as to make, respectively, an angle of 45^{\prime} with the ases of the eyes, and in such a position as
to reflect the rays coming from the right and left into the eyes, the mirrors being joined at a middle point between the axes. Two perspective drawings, correctly made, so as to correspond with the image which the real object would make in each eye, were then so placed, at the right and left, as to cause these images in the mirrors to coincide in the act of vision, and the illusion was perfect. Wheatstone found later that he could dispense with the mirrors and simplify the apparatus by using two prisms, to which he had lenses attached so as to magnify the drawings. Brewster finally had prismatic lenses made. joined by their thinnest edges, by which small drawings, placed at the distance of, say, three inches, could be made to coincide for the vision. It should, however, be mentioned that Duboscq, of Paris, was the first to give to the stereoscope the simple practical form in which it is now seen in the trade; but its popularity did not become established until photography came to its aid, to make binocular pictures perfect in all their details.
It was at the first universal exposition, in London, in 1851, that Duboscq exhibited a stereoscope, and then for the first time the instrument became noticed by the public, although it had been known to scientists for 13 years, during which time Dr. Carpenter and others had continually, in lectures on physical sciences, exhibited the instrument and demon strated the principles of Wheatstone's discovery. According to the statements of one manufacturer of optical in.
struments, a long time elapsed before the people began to struments, a long time elapsed before the people began to
appreciate the beauties of the stereoscope; and for several years no sales of any importance could be made. But at last its merits were realized, and suddenly a large demand sprung up. The stereoscope soon became in fashion; and
the manufacture of the different forms of the instrument (varying in price from 50 cents to $\$ 100$). the grinding of the prismatic lenses, and the production of the photographic prictures (on paper and on glass) have now become an imporpictures (on paper and on glass) have now become an important branch of business,
workmen are occupied.

A recent application of the spectroscope, especially useful for the student of Science, consists in the reproduction of drawings of geometrical figures, illustrating the various forms used in the study of stereometry, such as the pro-
jection of solids in descriptive geometry and spherical trigonometry, and especially in crystalography. In the latter science, it may be made especially useful, as, in this way, not only the crystals themselves, but also the forms resulting from the interpenetration of two crystals, may be ex plained better than can be done in any other way. The re lation of various systems of crystalization, the transition of one form into another, the relation of the nucleus to esterior forms, the directions of cleavage, the position of axes of crystalization, the laws of double refraction, and various other more or less intricate subjects may thus be made simple to the average understanding: and these studies may awaken some interest in this important subject, and simplify it to those who cannot afford to buy the expensive and bulky models of crystals. A number of stereoscopic pictures may thus be made equivalent to a collection of models costing as many dollars as the pictures cost cents.

artificial butter.

There has been for some time past a prevalent impression that, if the manufacture of artificial butter has not died out, at least no product of this description is now industrial y made which has any standing in the market, or which cannut, by any one, be properly distinguished from the gen uine article. It is true that the public, both in this conith and more especially in England, has had placed before it in me newspapers more records of failures in artificial butter making than of the successful efforts therein; and these, to-
gether with the popular prejudice which exists against the material, are sufficient, perhaps, to account for the general impression referred to. The facts, however, we are assured by competent aathority, are altogetber against any such conclusion, for quite recently no less than fifty artificial butter factorios were counted in this city; and large quantities of artificial butter are sold in the market by wholesale dealers, or are purchased direct from the manufactories by large retailers, and offered to the customer as genuine butter. There is, of course, a duplicity in this business which is reprehensible; but if people cannot distinguish the made from he natural product, and if the former is, as reported by Professor Chandler, actually more healthful than the average
cow butter sold, it would be difficult to prove any damages cow butter sold, at would be difficult to prove any damages
save to the moral sense to all, and to the over-qualmish presave to the moral sense to all, and to
judices of a part, of the community.
It will be seen furthermore that, the above being the case, the problem of succesfully producing the imitation product has been solved, and in that we may recognize an important step in scientific progress, which it is worth while to consider briefly in the light of previous efforts. As the successful process is based mainly on the invention of Hippolyte Mège, patented in this country in December 1873, the previous patents, obtained by Bradley in 1871, and by Peyrouse in the same year, as well as that taken out by Paraf in April, 1873 (which last is charged to be a piracy of Mège's ideas) need not be referred to. The best points of Mège's invention are found combined in the reissue of his patents, dated May 12, 1874, and among them these two essential and important operations, namely, the extracsion of the oil from the fat, at a low temperature, and the conversion of the oil, by churning with milk, into butter. The caul fat, being washed, is hashed, melted in a water bath at 125° Fah., and, after becoming separated from the membrane, is
allowed to solidify. It is then pressed, and the oil treated in allowed to solidify. It is then pressed, and the oil treated in
different ways according as the resulting product is intended different ways according as the resulting product is intended
for immediate or future use. It will suffice here to say that the product thus obtained has a grain, and seemingly has no resemblance to genuine butter save in color. With reference to the many other patents issued since the date of Mège's, it may be said that, as a rule, the common defects, of grain, lack of savor, and inferior keeping quality, are pre sent in all; and the products may more fairly be described as chemically prepared tallow than as butter.
The above statements are made on the authority of Dr Henry A. Mott, E. M., a promising young chemist of this city, who for some years back has been engaged in investi gating the subject we are here examining. His researches have included the actual manufacture and testing of the va-
rious compounds patented ; and their result is found in the present, or " true"" as he terms it, process for producing ar tificial butter. To Dr. Mott belongs the credit of this dis covery, although the ownership of his process is in the hands of others; and its salient feature is that he produces, not tallow disguised as butter, but butter itself. This will butter gives water $12 \cdot 29$, and solids 87.71 parts per 100: of artificial butter, water $12 \cdot 005$, solids $87 \cdot 995$. The amount of casein in the artificial product, the detailed analysis shows to be a little higher than in the natural butter (0.745 to 0.19) but not sufficient to make any difference. Compar ing the fats proves that there is a very small amount of
butyrin in the artificial product, and herein lies the chief disparity: which amounts to an absolute virtue, because while sufficient butyrin exists to afford the necessary odor and flavor to the artificial product, there is not enough con tained to render the butter rancid by decomposition.
Dr. Mott's process of manufacture is as follows: The fat, tepid and cold water. It is then disintegrated in a mea hasher, and forced through a fine sieve. Next, it is placed in the melting tank, which is surrounded by water at 116° ${ }^{1240^{\circ}}$. and there kept until the temperature of the fat reaches
stirred. After the scrap has settled, the clear yellow oil is drained off in cans, and left for from 12 to 24 hours in a room at 70° Fah. to granulate. The refined fat is now packed in cloth into small packages, about 8 inches long by $1 \frac{1}{2}$ inches thick by 4 inches wide, and these are placed on metal plates, and piled one above another in a press. Grad ual pressure is applied, when the oil is driven out, and cakes of pure white stearin left. The oil, being cooled to 70° Fah., is next churned with sour milk, annatto. and soda, 100 lbs. of oil being used to 15 or 20 lbs . of milk, 3 ozs. of an natto solution, and 星 oz. of bicarbonate of soda. The mixture 2 is agitated for ten or fifteen minutes, and then led into a tub of pounded ice, with which it is thoroughly mingled. This process completely removes the grain. After the ice melts, the solidified oil is crumbled, and 30 lbs . of 1 ta are in. troduced in a churn with 25 lbs . of churned sour milk Here it takes up a percentage of the milk, as well as the but ter flavor and odor. Lastly, the butter is worked and salted in the usual way, and is packed in frkins, etc., for the mar ket.
Hon. X. A. Willard, President of the New York State Dairymen's Association, an able butter expert, admits his surprise at the flavor, and declares the butter the best yet made. The cost of manufacture is about 13 cents a pound, the selling price 25 cents to wholesale dealers; so that, so far as the saving is concerned, there is very little, over the cost of genuine butter. The economy, however; would doubt less become manifest were the people willing to accept the material for what it is, and thus enable th
come established on a broader foundation
Dr. Mott's report on artificial butter, recently read before the Chemical Society of this city, contains complete details of the Chemical Society of this city, contains complete details of
his processes, together with a review of those previously his processes, together with a review of those previously
patented, besides full chemical analyses, complete estimates, patented, besides full chemical analyses, complete estimates,
and plans for a factory capable of producing 500 lbs. of but and plans for a factory capable of producing 500 lbs. of but
ter daily, and drawings of apparatus, etc. This valuable pa ter daily, and drawings of apparatus, etc. This valuable pa-
per, ton lengthy for these columns, appears in full in the per, ton lengthy for these columns, appears in full in the
Scientific American Supplement, Nos. 48 and 49 , cur rent volume.

the salt bluffs of tiratin river, nevada.

The mineral wealth of Nevada is by no means confined as many may suppose, to Big Bonanzas and similar stores of precious metal hid within its seemingly barren moun tains. In many places its sterile plains-the beds of recently evaporated seas-are underlaid with extensive strata of cruder though possibly not less important commodities, amon
Perhaps the most important of the formations of thi haracter are the vast deposits of rock salt along the valley of the Rio Virgin, in the southeastern corner of the State Their discovery is quite recent. Lieutenant Wheeler, in charge of the survey of the region west of the 100 th meri-
dian, first visited their neighborhood in 1869 , and again two dian, first visited theirneighborhood in 1869, and again two years later, at which time the only indication of their pres G. K. Gpears to have been a curious natural well, which Mr logy of those parts. It ligured in his report on the ge Virgin and the Colorado, in a smooth gravelly plain sloping gradually toward the latter, and presents a round, crater like opening nearly three hundred feet across at the top The sides are of unconsolidated detritus horizontally bedded he upper thirty five feet being of half-sorted gravel and sand, and the lower fifteen feet of saline sand showing slight effiorescence. At fifty feet below the land surface is a water level about a hundred and twenty feet across, and below the water the slope of the bottom can be seen contin uous with the bank for fifteen or twenty feet. The water is too salt for drinking. There is no sign that the well ever overflowed, the water is not thermal, and no marks of gey ser action are to be seen. Mr. Gilbert suggests that th well might have been opened by the solution of a salt de posit, which is extremely probable in view of the vast ex tension of saline strata along the river valley.
A correspondent of the San Francisco Chronicle, who lately made a special visit to the salt quarries now being opened up at various points from six to twenty miles above the Colorado, reports that the rock salt occurs in "moun tains," and is quarried like marble or granite. The sal mountains begin about six miles from the mouth of the Rio Virgin and extend along its valley a distance of thirty miles For the first six miles or so, the salt rock appears like com mon coarse gray granite, and is said to contain 92 per cen of pure salt.
The quarries here lie along the east side of the river and within half a mile of the river bank. On the western side twenty miles up, the salt is as white as snow on the surface but beautifully transparent within. The blocks of salt hrown out by blasting look like cakes of clear ice, so crys of it.

The Rio Virgin is a muddy turbulent stream about a hun dred feet wide and very shallow. Where it joins the Colo ado,the latter is perhaps seven hundred and fifty feet wid and from ten to fifty feet deep at low water. The head of
navigation is at Collville, twenty-five miles below, but small navigation is at Collville, twenty-five miles below, but smal
barges of a few tuns burden are towed up to the mouth of barges of a few tuns burden are towed up to the mouth of
the Virgin for cargoes of salt for supplying the mines of E Dorado cañon and elsewhere. The Virgin joins the Colora do at a point six hundred miles above its mouth, and about fifty miles below the outlet of the Grand Cañon. The region about the salt mines is altogether barren and desolate.

Painting the surface with ink soon relieves the pain of a small superficial burn

IMPROVED FIREPROOF AND BURGLARPROOF SAFE. It has been suggested that the simplest fireproof safe is found in a hole in the ground. The present invention im proves upon this idea by suspending a safe by a chain in a well, and alsc by locking it there so as to prevent burglars from raising it. A, in the engraving, represents a well of strong masonry in the cellar under the safe, B,in which is a watertight case, C, of galvanized iron, surrounded, except at the top and bottom, by water. Into this case the safe is lowered by a chain, pulley, crank shaft, counterweight, etc. A staple is attached to the bottom of the safe, and a bolt, K , which is operated through the medium of the arm, a, and rock lever, b, by rod, Z, passes into said staple and so holds the safedown. m, in the small diagrams, is a sliding bolt, which, in connection with the tumblers, L , controls the locking bolt, K. The tumblers are connected to rods, O P, respectively, extending up through the floors to the room in which the safe is used, to be manipulated conveniently. Q is a trap door in the floor of the room, over which the safe stands when raised.
The invention was patented through the Scientific American Patent Agency, September 26, 1876, by Mr. I. J. Gray, of Pentwater, Mich.

In Case of Fire

The season is at hand when fires most prevail, and when the precautionary hints of the late Dr. Hall are most important to be heeded. They are as follows : Keep doors and windows of the structure closed until the firemen come; put a wet cloth over the mouth, and get down on all fours in a smoky room; open the upper part of the window to get the smoke out; if in a theater, church, or school room, keep cool; descend ladders with a regular step to prevent the vibration. If kerosere just purchased can be made to burn in a saucer by igniting with a match, throw it away. Put wire work or glass shades over gaslights in show windows, and in bedrooms with curtains; sprinkle sand instead of sawdust on floors of oil stores; keep shavings and kindling wood away from steam boilers, and greasy rags from lofts, cupboards, boxes, etc.; see that all stovepipes enter well in the chimney, and that all lights and fires are out before retiring or leaving the place of business keep matches in metal or earthen vessels, and out of .the reach of children; and provide a piece of stout fone, long enough to reach the ground, in every chaminer. Neither admit any one if the house be on fire, except police, firemen, and known neighbors; nor swing lighted gas brackets against the wall; nor leave small children in a room where there are matches or an open fire; nor deposit ashes in a wooden box, or on the floor; nor use a light in examining the gas meter. Never leave clothes dear the fire place to dry; nor smoke or read in bed by candle or lamp light; nor put kindling wood to dry on top of the stove; nor take a light into a closet; nor pour out liquor near an open light; nor keep burning or other inflammable fluids in rooms where there is a fire; nor allow smoking about barns or warehouses.

TIME DROP ATTACHMENT FOR ALARM CLOCKS. This is an 纤genious device connected with ordinary clock mechanism, which may be attached to the door of a furnace to turn on the draft; with the faucet of a water pipe

o turn off or on the water; or with the valve of a gas pipe, to turn off the gas at any time. A rod, C, passes through the bottom of the case of the clock, and has a loop formed upon its upper end, to enable it to be hung upon the teeth of the wheel of the larm mechanism, B. To the lower end of the loop rod, C. is pivoted the end of a lever, D, which is pivoted to the bottom of the clock, A, when said
clock is attached to a wall and to the bottom of a shelf. The other end of the lever, D, rests against the arm of an obtuse angled lever, E, which is pivoted at its angle to the bottom of the clock, or to the shelf to which said clock is attached so that its other arm may project beyond the end of the said bottom or shelf. The loop rod, C, the lever, D, and the ob-tuse-angled or cam lever, E, are so arranged that the operation of hanging the loop rod, C, upon a wheel of the alarm

GRAY'S: FIREPROOF SAFE.

er, E, into a horizontal position, so that it may receiveand hold any object hung upon it. With this construction, as soon as the alarm mechanism starts, the loop rod, C , will drop, which withdraws the end of the lever, D, from the arm of the angle lever, E , so that the object hung upon or from its other arm may drop. In case it is not wished to sound an alarm when the alarm mechanism, B, starts, the bell, or hammer, or both, may be detached. The lower end of the loop rod is provided with a handle for convenience in hanging it upon a wheel of the alarm mechanism. The ob ject, in falling, may release a weight which performs the equired operation. This device was patented through th Scientific American Patent Agency, September 26, 1876, by Mr. Charles Cottrell, of Newport, R. I.

IMPROVED BEVEL.

Carpenters and builders will be interested in a new in strument which we illustrate herewith, and which is in tended for use in determining the length of rafters and the

bevels of their ends, when the width of the building nd the desired pitch of said rafters are known. The device may also be used for getting the length and the bevels of the ends of braces, and for other similar purposes. A represents a bar, upon the edge of which is formed a scale of division marks, numbered to represent the length of the rafter or brace, and which should be made upon a scale of an inch to the foot to make it correspond with the division marks of an ordinary square. The bar, \mathbf{A}, is slotted longitudinally to receive the clamping screws, B, which are screwed into straight bars, C, placed upon the lowar side o said bar, A , as shown. In using the instrument the bar, A , is laid diagonally across the arms of an ordinary square, and
s adjusted upon the long arm of the square at a point representing the half width of the building, and upon the short arm at a point representing the desired pitch of the rafters. The bars, C, are then adjusted against the edges of the arms of the square, and are clamped in place by the screws, B. The instrument is now set to give the length of he rafters and the bevels of their ends.' The instrument may be used without a square, by having lines drawn upon it side of the bar, A, to represent the different po ens of the bars, C, for different lengths and pitch of rafters.
The device was patented September 26, 1876, through the Scientific American Patent Agency, by Mr. George H. Bradshaw, of Fayetteville, Tenn.

Enameled Cooking Vessels.

Cast iron cooking vessels, coated on the inside with white porcelain or enamel, are now extensively used, and are generally supposed to be as safe as they are convenient and cleanly. It has been assumed that vegetable acids, which act more or less energetically upon metallic surfaces, do not affect this porcelain lining, and that vessels protected by it may therefore be used for cooking acid fruits, preparing pickles, and kindred processes. It seems, however, that there may be "death in the pot," even when it is enameled. A Scotch chemist, in a paper recently read at Glasgow before the Society of Public Analysts, states that some inds at least, of this porcelain lining are very readiy acted upon by acid fruits, common salt, and othe y acted upon by acid fruits, common salt, and othes ies of lead and oren arenic are dissolved out during ties of lead and even arsenic are dissolved out during culinary operations. Analyses were given of three enamels takén from cast iron pots made by as many dif ferent manufacturers. All contained arsenic, and two of them lead; but it is not so much on account of the presence of these substances that the enamels are objectionable, but because of their highly basic character, which renders them peculiarly susceptible to the action of even feebly acid solutions. The percentage of bases in the three enamels was $38 \cdot 58,53 \cdot 73$, and $55 \cdot 28$, respectively. A one per cent solution of citric acid, boiled in the third, roughened and destroyed the enamel at once, dissolving out enough lead to give a dense black precipitate with hydrosulphuric acid. An enamel that will not bear so moderate a test as a one per cent solution of citric acid is certainly not fit to be used for culinary purposes.
If the enamels employed in this country are similar to those in Europe, as they probably are, our readers should be cautious in using vessels coated with them. We have not experimented upon them as yet, but may do so and give the results at some future time.

A NEW IRRIGATOR.

Mr. Frederick Taylor, of Covington, Pa., has patented, hrough the Scientific American Patent Agency, September 26, 1876, an improvement in irrigating apparatus, which, as hown in the engraving, consists of a tube, A, with a point od and perforated end to be set in the ground near the plants; the water from this tube slowly escapes through the perforations and thus gently moistens the ends of the plants. A number of conically pointed and perforated tubes, B, are attached to a main pipe for holding the water to irrigate a number of plants or hills from one supply, the pointed pipes being attached so as to project laterally from the main pipe.

These irrigators may be used independently of the main pipe by setting them upright on the point in the ground and filling hem. For elevating the maia pipe, and for adjusting the laterals as required, they are made of flexible material; but the points are of metal.

Chloroform has been administered to a child during sleep, and a painful operation was performed, the child sleep ing on and awaking in the morning unconscious of anything unusual having occurred.

LOCOMOTIVES AND RAILWAYS.

Our selections this week from Knight's " Mechanical Dictionary" (published in numbers by Messrs. Hurd \& Houghton, New York city) include a number of interesting engravings of locomotives, among which will be found represented the early machines of Stephenson and others, now carefully preserved as historical relics. We also give illustrations of two rail ways of curious construction. The

FERRY RAILWAY,
Fig. 1, has its track on the bottom of a water course, and Fig. 1.

the carriage which runs thereon has an elevated deck which supports the train. Chains are attached to the carriage and connected to engines on each side of the stream, and in this way the huge vehicle is pulled from shore to shore. A ferry of this kind is in existence at St. Malo, France, and there are others in various parts of Holland. It is a cheap substitute for a railway bridge. Fig. 2 represents Vignolles and Ericsson's

Central friction rail,
which is grasped by apparatus from the locomotive, so that Fig. 2.
 the latter is thus assisted in ascending grades. The rail consists of a flat piece of iron fixed in a vertical position in chairs, a. c, d are horizontal friction rollers, c being fixed and d movable on their respective shafts. To the driving axle, g, is attached bevel gear, h, which rotates the shaft i, which rotates the shaft, e, of the driving roller, c. The
friction roller, d, may be pressed against the rail by the lever, m, which is so connected as to be easily operated by the engineer. The driving wheels, $n o$, may be released from the power of the engine by disengaging the clutches, $p q$, so as to throw the whole force of the engine upon the griping rollers, $c \pi$, when ascending a grade. In Fig. 3 are represented
blenkinsop's and hedley's locomotives,
two of the earliest constructed machines. Blenkinsop's lo-

A, Blenkinsop's Locomotive (1811).
B, Hedley's Locomotive (1813).
comotive, in 1811, was usefully employed at the Middleton colliery in hauling coals on a tramway, the engine having spur wheels working into a rack on one side of the track. The engine, A, Fig. 3, was otherwise supported on four wheels. The fire was built in a large tube passing through the boiler, and the tube was bent up at the end to form a

Fig. 5.

chimney. Two vertical cylinders were placed above the boiler, and the pistons were connected by crossheads and geared into the main spur wheel, which formed the driver. It was long used on a colliery railway between Leeds and Middletown, $3+\frac{1}{2}$ miles distant, and perhaps was the first successful locer weight at $3 \frac{4}{4}$ miles per hour.
propelled by a gearin the center, driven by a pitman from the walking beam. Hedley's locomotive was objected to by esidents of Newcastle, on account of the smoke. He thereore passed the smoke into a large receiver, n, and turned he exhaust steam upon it. From the receiver the steam and smoke were conveyed by a pipe, b, to the chimney, which device soon developed into the steam blast. "Puffing Billy" was at work more or less until 1862, when it was laid up as a memorial in the British Patent Office Museum. Hedley died in 1842.

DODDS AND STEPHENSON'S LOCOMOTIVE
In 1815, Dodds and Stephenson patented an engine (shown by side and end views, Fig. 4), in which the power might be applied either through wrists, at angles of 90° to each other on the driving wheel, or an endless chain working in gear ing on the axles.
In 1829, the Liverpool and Manchester railway, then the most extensive and finished work of the kind ever under taken, was completed, and the directors offered a reward of $\$ 2,500$ for the best locomotive which should fulfill certain imposed conditions. Among these were that it was to consume its own smoke, and draw three times its own weight at a rate of not less than 10 miles an hour, and the boiler pressure was not to exceed 50 lbs. per square inch. The weight was not to exceed 6 tuns, nor the cost $\$ 2,750$.

the " rocket."

Three engines competed for the prize: the Rocket, con structed by George Stephenson; the Sanspareil, by Thomas Hackworth; the Novelty, by Messrs. Braithwaite and Er icsson. The Rocket weighed 4 tuns 5 cwt., and its tender, with water and coke, 3 tuns 4 cwt. It had two loaded car riages attached, weighing a little over 9 tuns and 10 cwt The greatest velocity attained was $24 \frac{1}{6}$ miles per hour, and the average consumption of coke per hour 217 lbs . See A, Fig. 5. The Sanspareil attained a speed of $22 \frac{2}{3}$ miles per hour, but with an expenditure of fuel per hour of 692 lbs. The Novelty carried its own water and fuel. In consequence of successive accidents to the working arrangements, this engine was withdrawn from competition. A fourth ongine, the Perseverance, by Burstall, not being adapted to the track, was withdrawn.
The Rocket engine was superseded in 1837, being condemned for life to the collieries. Here it proved itself capable of a rate of 60 miles an hour; but being gain convicted of levity while on duty, it was cashiered and its place filled by heavier machines of 12 tuns. After a $f v$ years of inglorious retirement, some one, not totally oblivious of how it would look in history, recalled the old soldier from his limbo, and now he enjoys the company of his elder brother Hedley's Puffing Billy, in the English Patent Museum.
In Fig. 5, A is an elevation of the Rocket. I ise boiler, a, is a cylinder 6 feet long, and has 25 tubes. The fire box, b, has two tubes, communicating with the boiier below and above, and is surrounded by an exterior ca, ing, into which the water from the boiler flows and is maintained at the same level as that in the boiler. B is a longitudinal vertical

Fig. 6.

In the spring of 1813 , William Hedley built a locomotive |section of a modern English locomotive, wuich may serve as with four smooth drive wheels, to run on a smooth rail. a contrast to Stephenson's first crude effort. The boiler is The machine failed to accomplish much, on account of its small boiler. Hedley thereupon, the same year, built another engine (shown at B, Fig. 3), having a return-flue boiler, and mounted on eight driving wheels, which were coupled together by intermediate gear wheels on the axles, and all surrounded by two casings, one within the other, united by stailer the ends. b is the boiler has longitudinal stays connecting the ends. b is the
smoke box, into which the blast pipe, c, discharges. d is the
osopher, Professor Prestel," ascribes weather
the moon." Allow me to present my views.
steam dome, into which the steam from the upper part of the boiler enters, its amount being governed by a regulator controlled by a winch. This serves to obviate in great de gree the effects of priming. The steam pipe, e, has two branches, each entering one of the boxes containing the valves by which the flow of steam to the cylinders is controlled. C is an express engine designed by Gooch for the Great Western Railway, where an unusual rate of speed is maintained. The boiler has 305 tubes, 2 inches in diameter The cylinders are 18 inches diameter and 24 inches stroke the driving wheels 8 feet in diameter, the heating surface of signed by Crampton. It is adapted for the usual gage.
Fig. 6 is a central longitudinal section of an approved form of American locomotive as made at the Baldwin Locoform of American locomotive as made at the Baldwin Loco
motive Works, Philadelphia. Fig. 7 is a perspective view. mig. 8 is a front elevation, one half of which shows a trans. verse section through the boiler. The engine has four dri vers, 600 inches in diameter, and a four-wheeled swing bolster truck, and weighs, with water and fuel, about 65,000 lbs. The flues, 144 in number, are 2 inches in diameter, and 11 feet 5 inches in length. The fire box, of cast steel, is 66 inches long, $34 \frac{1}{2}$ inches wide, and 63 inches deep. Water space 3 inches sides and back, 4 inches front. Grates, cast iron, The cylinders are horizontal. Valve motion gradua ted to cut off at any point of the stroke. The tires are cas and rims, the wrist pins of cast steel, the connecting rods of hammered iron. The truck wheels are 28 inches in diame ter. All the principal parts of such engines are interchangeable.
Attempts are being made, by adaptation of the furnace and boiler, to run locomotives by means of liquid fuel. Differences also occur in the construction of the heating parts, according to the character of the fuel-coal, coke, wood, peat, etc.
The ordinary speed attained on English railways is great er than that usual in this country. The Great Western ex press from London to Exeter travels at the rate of 57 miles an hour including stoppages, or 55 miles an hour while ac tually running. Midway between some of the stations a speed of 65 miles an hour has been reached. A speed of 75 miles is equivalent to 35 yards per second, so that if a row of stakes one yard apart were driven at the side of the road they would, at this velocity, appear undistinguishamotive 7
from another. Were the driving wheels of the locomotive from another. Were the driving wheels of the locomotive
feet in diameter, they would revolve 5 times in a second feet in diameter, they would revolve 5 times in a second,
each piston would traverse the cylinder 10 times per second, each piston would traverse the cylinder 10 times per second
while there would be 20 discharges of waste steam per sewhile there would be 20 discharges of waste steam per se-
cond, causing a continuous sound instead of the cough which is heard when the engine is moving slowly
Very high speeds have been attained, on special occasions, on American roads, probably fully equaling any time ever
made in England. For instance, it is stated that a train, conveying some officials of the New York Central Railroad made the distance from Rochester to Syracuse, 81 miles, in 61 minutes, said to be the fastest time ever made in Ameri-

The life of a locomotive engine is stated, in a paper read before the British Association, at thirty years. Some of the small parts require renewal every six months. The boiler tubes last five years, and the crank axles six years; tires, boilers, and fire boxes, seven to ten years. The side frames, axles, and other parts, thiry years. During this period, the
total cost of repairs is estimated at $\$ 24,450$ in American motatal cost of repairs is estimated at $\$ 24,450$ in American mo-
ney, the original cost of the engine being $\$ 8,490$. It therefore requires for repairs, in eleven years, a sum equal to its original cost. In this time it is estimated that an engine in average use has run 220,000 miles.

Cortegipoulence.

The Sun's Retrograde Motion and the Weather.

Ta the Editor of the Scientific American:
Some time ago, I showed, in your columns, that both lunar acceleration and retardation in the earth are pure results or outgrowths of increase in the sun's motion; and still
later, I showed, through the same channel, that inequality in the moon's mean motion is a result of solar retrograde motion : and now, with your permission, I will show that solar retrograde motion, or the sun's velocity, has much to do with our terrestrial winds and weather.
It is recorded in Harper's Monthly Magazine for November, 1876, that Mr. Charles A. Schott, of the Coast Survey Office, has, by great labor and investigation, discovered that there
is what we may call an oscillation of the winds and weather is what we may call an oscillation of the winds and weather
in about every sevent years. Says the magazine: "All the stations agree in showing a rapid rise in the temperature about February 20. There are also indications that the hottest and coldest epochs change somewhat from year to year, making a complete circuit in seventy years through a range of about six weeks. On comparing the average di rection of the wind with the average temperature, it appears
evident that for years of northerly winds the temperature is evident that for years of northerly winds the temperature is
lower,and for southerly winds it is higher So that secular changes in local temperature are attributable to corresponding changes in the direction of the winds. These latter changes, on the other band, must be a part of a system of oscillation in the general currents of the atmosphere, which may be ultimately due to slight variation in solar radiation."
Here I wish to note three things: first, that the wind and Here I wish to note three things: first, that the wind and
weather are supposed to circulate round the earth in some 70 weather are supposed to circulate round the earth in some 70
years; second, that change in the winds may possibly be due to slight variation in solar radiation; and third, that I see, from another printed source, that a certain " German phil-
moon." Allow me to present my views.
The sun retrogrades in the plane proper of the ecliptic 50 seconds, annually; and so of course does the earth, in her wn orbit, as it were; and it takes her 20 minutes and 20 econds, in other words, 1 year, 20 minutes, and 20 seconds, to reach the same point in the heavens that she was at, say,
on December 31 last at 12 o'clock at night. Twenty minutes on December 31 last at 12 o'clock at night. Twenty minutes
and twenty seconds amounts to one day, or .one rotation of the earth, in 70_{8}^{2} years. In 70 years and 8 months, therefore the earth loses one day on the stars; and it will be seen in a moment or two that she loses the same amount, in the same space of time, on the winds and the weather; for the winds do not circulate round the earth, as supposed, but the earth turns-retrogrades round-to receive the winds, sup posing them to blow from the same quarter.
To give a proper idea of what we mean, suppose the sun o be moving retrogressively at great velocity, and the earth in consequence to be ever meeting and stemming an etheric urrent: suppose too that the earth's rotary motion is topped, and that nothing but her orbital motion and the sun's is going on. In such a case, the etheric current would ver strike the earth on one point of her surface; that would be the point or side of her that is ever lying next to the cur rent. Now suppose that she retrogrades round her axis in year, an amount equal to the $1-365 \frac{1}{4}$ of a rotation-an amount equal to 20 minutes and 20 seconds-the point on her surface that directly breasted, so to speak, the etheric breeze last year would not breast it this year; but one, a little more than 5° east from it, would. Thus, by the earth's westerly or retrograde motion, as it were round her axis, the ever parallel current of storm seems, to all appearance and to meteorological evidence, to circulate easterly round the arth, while in reality it is the earth that is turning round to receive the ever parallel-flowing etheric breeze: a curren that must ever flow directly from the sun as radiance, or
be the result of the earth's being drawn, as it were, through ther by virtue of the sun's velocity, as a vessel propelled through water meets the still water as if it were flowing in a current against it. This, I say, would give the winds and weather an apparent easterly motion round the earth in ome seventy years : and that is exactly as Mr. Schott finds
. I cite again from Harper's Magazine:
Mr. Schott finds no perceptible secular change in the emperature of the country, nor any decided connection beween our temperature and the variations in solar spots or ten stations the mean temperature has been commuted for every day of the year, and it appears from these that
changes in the normal temperature of any day extend over arge tracks of country, and progress in an easterly direc ion." Thus I connect even the winds and the weathe with solar retrograde motion, and I think that the moon has
nothing to do with the weather. She, in every 18 years,and all along through the 19 th year, so conjoins with the sun and earth that the four-sun, earth, moon, and storm cur-rent-are in line, or parallel with each other, and so a sor of periodic 19 years storm occurs. But the moon has no more to do with raising it than the surface of the earth has with the so called seventy years oscillation, that is, th eventy years and eight months oscillation.
When astronomers, meteorologists, and other scientists, an clearly see the sun and the whole solar system moving etrograde in the plane proper of the ecliptic, they will be uch more able to tell how and why phenomena
Gloucester city, N. J.
John Hepburn.
The Corliss Engine at the Centennial.
To the Editor of the Scientific American
While watching the movements of this celebrated engine a few days ago, I noticed among its details two improvements upon former engines of the Corliss style. The most important of these eonsists in the placing of the valves in the heads of the cylinder instead of in the cylinder casting. This disposition of the valves does away with the eight tri ngular cavities in each cylinder which form the ports, namely, A, the inlet, B, the ports, namely, A, the inlet, B, the
exhaust ports. The diagram shows a cross section at one end of a cyl inder through the center of the ports, the aggregate capacity of these ports being equal to from two to four per cent of the steam used
in in working the engine. By placing inder, they are brought almost in contact with the piston (when at the end of its stroke) from end to end of the ports, thus effecting a saving of the two or four per cent omy of the engine in like proportion.
Could a like improvement be
coumptives the consequent saving of f in the valve gear of locumotives, the consequent saving of fuel ought to give the inventor a fortune in a short time. In locomotives, from five to ten per cent of the steam used is wasted in the huge
passages between the valve and piston: and more, another benefit (aside from the direct saving of from five to ten per cent of steam, owing to the more perfect appropriation of the steam used, consequent upon the close proximity of the valves to the piston) is lost. Some engineers argue that cially in engines working under a high degree of expansion. By what line of sophistry they arrive at such a conclusion, I know not. They might, by the same reasoning, say that
sages long enough to contain half of the steam used. It makes no difference whether the steam is exhausted from thecylinder at 90 or at 5 lbs . pressure to the inch; the per entage of waste will be precisely the same. The cubic capacity of the steam passages between the valve and the bore of the cylinder represents exactly the cubic quantity of steam used over and above what is needed to work the engine; and the sooner locomotive builders realize this, the sooner they will be prepared to reduce the length of these wasteful passages.
Another improvement noted in this engine consists in the nterposition of a short link between the rocker arm and he arm upon the valve stem, in such a way as to cause the valve to open and close quickly, and to remain open and almost stationary for a considerable interval. thus giving a very free exhaust and a timely and rapid opening and closing of the valves.
F. G. Woodward.

Worcester, Mass.

The Bude Canal in Cornvall, England.

To the Editor of the Scientific American

The Bude Canal, from Bude to Launceston, is said to have been working for fifty years. It was intended to transport ore from Launceston to Bude, but is now principally used to carry coal, and sand from the coast for manure for the farms. In order to carry the canal over the highest points of the and, a very simple and wonderfully effective plan has been arried out. The canal is made in sections, each on a level; and each two sections are joined by an inclined plane, on which are laid grooved rails. The barges, which are built for the purpose, are hauled bodily out of the canal laden with, say, 4 tuns of coal or sand, and drawn up the tram. way with a chain, and launched again in the next section f canal, which starts from the top of the hill. There are in he entire length of the canal six of these planes, three between Bude to the highest point, and three down into Launceston. At Marham, about $1 \frac{1}{2}$ miles up the canal from Bude, is the first ascent. I judged the length of the incline oo be 800 feet, and the gradient 1 in 6 ; the total ascent, herefore, is about 130 feet. The barges are small, of about 5 feet b3am, and 15 feet in length, and are loaded with 4 tuns, total weight being 5 tuns each when loaded. Fitted on the flat bottoms are four wheels, which run in the grooved rails, laid like an ordinary tramway, in two lines up the incline. An endless cable passes between the rails, up ne and down the other, and round large wheels at either end. These wheels are fixed horizontally. The wheel of the upper end has a strong shaft or axis, which descends into a chamber below, where, by means of cogged wheels, it is connected with an enormous water wheel, the moving power. This water wheel is overshot, and has a diameter of 60 feet. The barge to be hauled up having been placed in position and fastened to the endless cable chain, the water wheel is set in motion, and the barge is rapidly drawn to the top of the incline and floated again in the upper canal. About two miles further up I came to Hobbacott, where is the second incline. This is longer and steeper, and is worked in a different manner. This incline is 900 feet long; total rise, 275 feet. At the top are two wells, 20 feet in diameter and 225 feet deep. At the bottom of each is an escape for water to flow out into the lower canal. Suspended in these wells, by massive cables from a horizontal roller, are two huge iron buckets, capable of holding 60 hogsheads of water each, and weighing, when full, 16 tuns. These are so arranged that, when one bucket is at the top of one well, the other bucket is at the bottom of the other. The bucket which is at the top of the well is filled with water from a sluice, and is allowed to descend; and in doing so, it raises the bucket in the other well, which comes up empty, the water having escaped through a valve which opened mechanically when the bucket reached the bottom. The alternate rising and falling of these buckets sets in motion the endless chain cable on the incline; and by means of cogged wheels, the power is so mul iplied that the descent of the bucket, weighing 16 tuns, into the well 225 feet deep, suffices to haul a barge weighing 5 tuns up the entire length of the incline, 900 feet, in the space of $4 \frac{1}{2}$ minutes. The whole of this machinery is worked by two men and a boy with no further expense than the oil for the machine.
About nine miles further up the canal, at its highest point, is a vast reservoir messuring 60 acres, which supplies he water for working the canal.
London, England.
b. R. Plante.

The Supposed Planet Vulcan.

To the Editor of the Scientific American:
Please to add my testimony to that of others regarding the intra-mercurial planet. Unfortunately, when I saw the planet, supposing it to be known to astronomers, I did not attach such importance to the subject as to induce me to make memoranda, and at this distance of time can only think that it was about the year 1860. I was residing then in Washington Territory, and was superintending then in Washington Territory, and was superintending
some work on a prairie, a few miles from Fort Vancouver, some work on a prairie, a few miles from Fort Vancouver,
on the Columbia River. A range of mountains was in the distance, from behind which the sun had reached an altiude of about 30° above the horizon, when a small boy asked me what was the matter with the sun. On looking at it I saw a planet, not as your correspondent saw it, but as a perectly rounded, well defined dark spot, having with the disk a smaller relative proportion than that you have illustrated, and situated nearer the disk's diameter. I watched its progress till its completion without a telescope, merely glaning with partially closed eyes, at very short intervals. It no one but our party, that I have heard of, saw it. I am
sorry I can give so few data regarding an event of which I am as certain as of my own existence. The clear but peculiar skies of that region in summer may account for the disinctness of the view
Washington, D.C.
Richard Covington.
PRACTICAL MECHANISM.
by Joshua rose.
SECond $\overline{\text { SERIEs-Number } X V}$ pattern making.
Our second example, Fig. 106, is a dezign for another kind of gland, such as is often fitted to glands for pump rods and spindles. For the small sizes, the glands are usually cast

solid, and the hole is drilled out in the lathe, in which case, providing the gland is not very deep, it would be molded vertically, with the head in the nowel, and would be turned out of the solid piece of wood in the style of our previous example, treating for the moment the hexagonal part as a Hange, whose diameter must be turned to the size of the hexagon across the corners. After the turning is done, we mark the hexagon as follows. We set a pair of compasses as nearly as possible to the radius of the turned piece that is to form the hexagon, and divide that piece off into six divisions, n the maner shown in Fig 107; for the radius of a circle n the manner shown in Fing, for the radius of a circle will divide its circumference into six equal parts. so that, if the compasses are correctly set, one trial will be sufficient;
but if not, we must readjust the compasses and go around but if not, we must readjust the compasses and go around
again. Then, from these points, we square lines. as shown again. Then, from these points, we square lines. as shown
in Fig. 107, at 1, 2, 3, 4, 5, 6 ; and then, with the paring

chisel, we pare off the sides to the lines. It is not necessary to actually draw the hexagon on the circumference by joining the lines of division on the top of the flange; for a straight edge, being applied as the paring proceeds, will be all that is necessary to produce a true hexagon. Nevertheess it is possible that error may have crept in, though we have performed the above operation with the greatest of care; it is therefore imperative upon us to apply correcting tests to our work, such as a pair of calipers to try if each pair of the opposite sides are parallel, also the bevel to verify if each angle of the figure contains 120°. Hexagon shapes are so common that a special hexagon gage is very useful; and such a gage, of the most approved form, is shown in Fig. 108, together with its method of application, the edges, A B, being to try the hexagon, and C D to square

the edge to the face, and the edge, E , being used as a straigh edge. If, however, we have not such a gage, we may set the bevel square, shown in Fig. 23, in the following manner: Take a piece of board planed on one side and on one edge, and let A B, in Fig. 109, represent the planed edge, from which we mark with the gage the line, $C D$. Then taking any point, such as I, in the line, C D, as a center, at a convenient distance we describe with a pair of compasses the arc, F G. We then take the compasses, and, without shifting their points at all, we rest one point on the intersection of the lines, CD and F G, and then mark the arc, H. If then we draw a line from the intersection of the $\operatorname{arc}, F \mathrm{G}$, and the arc, H , to the center, I , upon which the arc, F G, has struck, the lines, H I, I C, form the angle required; and we may apply the stock of the bevel square to the planed edge, A B, and set the blade to the line, I H, as den oted by the dotted lines. The bevel being set, we test the work as it proceeds, first cutting down one hexagonal side and then applying the bevel to gage the angle of the others; and as the diametrically opposite sides are finished, we apply the calipers. The lines of division upon all good
pattern work are made very fine, in fact merely distinguish-

in Fig. 110. It is called a cutting scriber, and the end at A is beveled off at both sides, like a skew chisel, forming a knife edge. The end, B, is ground to a point, and both ends

are finished on an oilstonc. The point end is for drawing lives along the grain, while the cutting edge, A, is for drawing lines across the grain of the wood. The wooden handle n the center is to enable the operator to hold it more firmly. It sometimes happens that the size of the hexagon is given across the flat sides instead of over the angle; and when that is so, we proceed as follows: We describe upon a piece of board, as in Fig. 111, a circle of a diameter equal to the given distance between the flat sides. We then take a hexagon gage, or else set the bevel square to an angle of 120° : and applying it to the planed edge of the board, we draw the line, C D, in Fig. 111, in which figure, A is the circle of the size of the flat sides of the hexagon, and BE are the planed edges of the board. We next reverse the bevel; and from the opposite edge of the board we strike the line, F D, cutting C D at the point, D, where both the lines line, F D, cutting C D at the point, D, where both the lines
cut the circumference of the circle, A. Then from the cencut the circumference of the circle, A. Then from the cen-
ter of the circle, A, we draw the circle, G, intersecting the point, D. The diameter of G will be the size of the hexagon across the corners.
If the gland is a long one, it will be better to make it in

halves, letting it part across two corners, as shown in Fig. ners at then a gland of this kind is made in halves, the cor off, and it is therefore proper to make it of hard wood

Water Supply 1 or Towns.

The subject of water supply is one that is now engaging the attention of the authorities in many large towns. The extended drought in the Eastern States during the past summer has revived in this vicinity the enquiry for advice as to the best means of providing an inexhaustible supply f water
The city of Orange, N. J., and the adjoining town of Montclair, both rapidly growing places, have during the past summer been exceedingly short of water, to the inconvenience of many of the citizens. Montclair lies at the foot of Orange Mountain, and the city of Orange scarcely one mile from the base of the same mountain, on which inexhausti ble springs are found by digging only a few feet. It occurs to us that the above places, as well as many other towns, similarly situated in the vicinity of mountains, might readily be supplied in the manner in which the city of Du buque, Iowa, has recently (by accident) acquired a novel and practical water system. Some time ago, in one of the bluffs a lead-mining company met obstruction from water; and to obtain relief the bluff was tunneled, when it was found that a copious fountain had been struck, which ran to waste
for several years. But the water was most excellent, the for several years. But the water was most excellent, the
supply exceedingly liberal, and the"head so elevated that the supply exceedingly liberal, and the head so elevated that the
idea of utilizing it was seized by a company, the property idea of utilizing it was seized by a company, the property purchased, and a system perfected which gives the cheapest and best water supply known in the country.

Origin of Wire Rope.

Mr. Andrew Smith, C. E., of London, in the year 1828 first applied wire rope as a substitute for catgut, in aid of another invention of his for metallic shutters. The rats have destroyed the strength of the catgut line by eating it the position of the sheave or pulley was so placed and so nar row in the groove that none but a small substance could be applied to that particular case. Necessity, after all, was the the mother of invention. Time rolled on, and the author watched anxiously the working of this experimental metal lic cord; four years were spent in experimenting, in order
to test its strength in comparison with hempen rope and chain, as regarded weight, size, strength, price, durability and economy. This required time, patience, and a heavy outlay of capital. On January 12, 1835, the first patent was obtained by Mr. Smith, and in 1839 he had obtained his fourth patent.

Stick to a Legitimate Business.

Well directed energy and enterprise are the life of Ameri can progress; but if there is one lesson taught more plainly than others by the great failures of late, it is that safety lies in sticking to a legitimate business. No man-manufacturer trader, or banker-has any moral right to be so energetic and enterprising as to take from his legitimate business the capital which it requires to meet any emergency.
Apologies are sometimes made, for firms who have failed by recurring to the important experiments they have aided, and the unnumbered fields of enterprise where they have
ander and the unnumbered fields of enterprise where they have
freely scattered their money. We are told that individual freely scattered their money. We are told that individual
losses sustained by those failures will be as nothing comlosses sustained by those failures will be as nothing com-
pared with the benefits conferred on the community by their pared with the benefits conferred on the community by their
liberality in contributing to every public work. There is little force in such reasoning. A man's relations to a creditor are vastly different from his relations to what is called the public. The demands of the one are definite, the claim of the other are just what the ambition of the man may make them.

The histories of honorably successful business men unite to exalt the importance of sticking to a legitimate business and it is most instructive to see that, in the greater portion of the failures, the real cause of disaster was the branching out beyond a legitimate business, in the taking hold of this and that tempting offer, and, for the sake of some great gain venturing where they did not know the ground, and could not know the pitfall.

The Inventor of Gas Lights.

The inventor of gas lights is said to have been a French man, Philippe Le Bon, an engineer of roads and bridges, who in 1782 adopted the idea of using, for the purpose of illumination, the gases distilled during the combustion of wood. He labored for a long time in the attempt to perfec his crude invention, and it was not until 1799 that he con fided his discovery to the Institute. In September, 1800, he took out a patent, and in 1801 he published a memoir containing the result of his researches. Le Bon commenced by distilling wood, in order to obtain from it gas, oil, pitch, and pyroligneous acid; but his work indicated the possibility of obtaining gas by distillation from fatty or oily substances. From 1799 to 1802, Le Bon made numerous experiments He established at Havre his first thermo-lamps; but the gas which he obtained, being a mixture of carburetted hydroge and oxide of carbon, and but imperfectly freed from its im purities, gave only a feeble light and involved an insupport able odor, and the result was that but little favor was show to the new discovery; the inventor eventually died, ruined by his experiments. The English soon put in practice the crude ideas of Le Bon In 1804, one Winsor patented and claimed the credit of inventing the process of lighting by gas; in 1805 several shops in Birmingham were illuminated by gas manufactured by the process of Winsor and Mur dock; among those who used this new light was Watt, the inventor of the steam engine. In 1816 the first use was made of gas in London, and it was not until 1818 that thi invention, really of French origin, was applied in France.

How the Centennial Revives Business.

Much has been said by the press throughout the country bout the visitors to the Centennial, and the advantages to be derived by the Exhibition. But the American Builder advances an idea which we have not seen alluded to else where:
Every merchant and most well-to-do farmers and mechanics have visited some one of our large cities. But never before did they bring their wives and daughters. This last is the marked feature of the travel this year. For the first time in a number of cases, the wife, mother, and daughters have passed the borders of their native States. To them the crowded car, the well lighted hotel, the thronged streets, he new customs, are a revelation. They will carry back to their homes new wants and desires. Insensibly, perhaps there will be a change in household and personal habits The furniture of the parlor and sleeping room will have ad ditions and changes. Clothing once esteemed as tasteful will be replaced by other styles, not more expensive, but of differeut shades and shapes. The mechanic or the farme will have new and enlarged ideas of his power as a part of ur political and economical forces. This increased know ledge is one of the principal reasons why such expositions ar ncouraged; and it is to play no unimportant part in the pre sent marked revival of business activity.

To electrotype insects, ferns, etc., immerse the object in a solution of nitrate of silver in wood naphtha. When par tially dried, the object should be treated with ammonia. the result being a double salt easily reduced. After thorough drying, expose the article to the vapor of mercury, when the surface becomes completely metalized in a few minutes. It may then be placed in the bath and metal deposited in the usual way.

Brass cooking pans should be cleaned inside with vine ar and brick, then rinsed, thoroughly dried at the fire, and wiped with a clean cloth. White enameled pans require only a little soda and warm water to keep them clean and free from grease.

RAPID TRANSIT LOCOMOTIVE.

We give a plate representing one of the three new tank engines built for the New York and Harlem Railroad, by the Schenectady Locomotive Works. They are intended "to run local trains between the Grand Central Depot, 42d street New York, and Williamsbridge, a distance of eleven miles, including that portion of the Underground Railway on Fourth avenue, between Grand Central Depot, 42d street, and Harlem river. These trains are at times very heavy, owing to excursions, races, etc.: and as the stopping places are very close together, very powerful engines are required
$x 13$ inches; throw of eccentrics, $4 \frac{1}{2}$ inches; outside lap of valve, $\frac{7}{8}$ inch; inside lap of valve, 1 inch; size of main driving axle journal, $6 \frac{1}{2} \times 8$ inches; size of other driving axle journal, $6 \frac{1}{2} \times 8$ inches; size of truck axle journal, $3 \frac{9}{4} \times 6$ inches diameter of pump plunger, $4 \frac{1}{4}$ inches; stroke of pump plunger, $3 \frac{1}{2}$ inches; capacity of tank, 1,200 gallons.-Railroad $G a$ zette.

Common Sense Chairs.

For several months we have had in use sundry examples of the "Common Sense" chairs, as made by Mr. F. A. Sin
tion wheels are used. That marked B can be wedged out between or withdrawn from the other two by a screw on the axis of A. This latter wheel can be moved by the endless chain, C C.-The Engineer.

An Ice Water Head Dress.
In cases of hyperpyrexia, the rapid reduction of the patient's temperature by means of local application of cold is known to be highly beneficial, and in many cases is executed in a rather rough manner by sponging the head, etc. But this presents many inconveniences, such as unnecessary

RAPID TRANSIT LOCOMOTIVE, UNDERGROUND RAILWAY, NEW YORK CITY.

for the service. Their general plan will be recognized as clair, of the Union Chair Works, Mottville, N. Y., and w $^{\text {a }}$ that which has long been advocated by Mr. M. N. Forney. The frames which extend back of the fire box are continuous, although they do not appear so on the engraving. The Westinghouse brake has been applied to the truck and also to the driving wheels. Owing to the great weight on the latter, and the power which the brake exerts on them and also on the truck, the engine can be stopped very quickly; and as there is plenty of adhesion, it can be started without much danger of slipping. The following are the principal dimensions: Gage of road, 4 feet $8 \frac{1}{2}$ inches; total wheel base, 20 feet 11 inches; distance between centers of front and back 0 fiving wheels, 6 feet 8 inches; total weight of locomotive n in work $49,500 \mathrm{lbs}$. ; diameter of drivis wheels, 48 inches, dameter of truck wheels, 26 inches; diameter of cylinders, 15 inches;
stroke of cylinders, 20 inches; outside diameter of smallest boiler ring, $44 \frac{4}{4}$ inches; size of grate, 35×53 inches; number of tubes, 144: diameter of tubes, 2 inches; length of tubes, 9 feet $6 \frac{1}{2}$ inches; square feet of grate surface, $12 \cdot 88190$; square feet of heating surface in fire box, 81; square feet of heatng surface in tubes, $710 \cdot 4$; total feet of heating surface, $804 \cdot 28$; exhaust nozzles, double; diameter of nozzle, $2 \frac{1}{2}$ inches; size of steam ports, 1×13 inches; size of exhaust ports, 24
are therefore enabled to speak from experience concerning their merits. As to comfort, they compare favorably with the most expensively upholstered or stuffed chairs, and are superior to the latter in durability of materials and economy of price. The "Common Sense" chair is made wholly of wood, with elastic wood woven backs and seats. Mr. Sin clair has evidently discovered the art of physiologically forming and proportioning the parts of the chair so as to cure the greatest amount of ease.
Furthermore, his flourishing establishment is an example of what may be achieved by intelligent effort and persevering industry. From a small beginning, with his own labor his works have grown until now he employs twenty-five men, aided by improved machinery. The best ornamental woods are used, which are kiln-dried, worked, and joined in the most substantial manner. His illustrated catalogue shows several varieties of chairs, with the prices, which are quite moderate.

COUNTER GEAR FOR LATHES.

Our engraving shows a new driving gear for lathes, etc. now being introduced by Messrs. Hind, of Nottingham, En gland. The illustration practically explains itself. Fric-
atigue to the patient, and probability of wetting portion not requiring the application of moisture. Mr. Knowsley Thornton has perfected an ice water cap, composed of a coil India rubber tubing, bound together so as to fit the patient head. One extremity of the coil is connected with a pail or ther vessel containing iced water; the other is placed in any convenient outlet for the water to trickle away. Its effec in cooling the brain makes it most valuable in cases of this description.

A Dangerous Plant.

The Revue Horticole draws attention to the fact that conact of the skin with the leaves, and more especially the coots, of the rhus juglandifolia or vernicifera is likely to be ollowed withgreat irritation from the stinging juices which xude from them. The symptoms much resemble those aused by the rhus toxicodendron, or poisoned sumach, long sed in England as an irritant, and still in use in America There is an intense itching, followed by swellings and, perhaps, severe and obstinate ulcers. Though some people can handle the plant with impunity, yet to most it is dangerous; therefore, as it is now in great request in conse they handle it.

BEVEL-COUNTER 'GEAR FOR LATHES AND OTHER MECHANISM.

THE CASTOR OIL PLANT AS A TREE.

In France, under favorable circumstances, castor oil plants sometimes grow to the hight of ten or even 12 feet, and have leaves nearly a yard in width. In England, they give indications of becoming arborescent in autumn; but the cold weather which soon afterwards sets in puts a
further progress in that direction. The tree ricifurther progress in that direction. The tree rici nus, shown in our engraving, is not a distinct spe cies; on the contrary, it is the type of all the va rieties with which we are acquainted, and may be met with continually in warm climates, like those of the Riviera and Algeria, and even as far north as Montpellier, in France, provided it be protected against frost by straw or matting.
The common castor oil plant,says a correspond ent of the English Garden,likes a warm aspect and a light rich soil. It is easily, as all of us know raised from seed, which should be sown in heat early in spring. As soon as the young plants are old enough to handle, they should be pricked out separately into pots, and again placed in heat They must be well watered and shaded until they have become thoroughly established, and should be allowed plenty of air on fine days, otherwise they will throw out long, weak shoots that very materially detract from their beauty. Their growth being very fast, the roots soon fill the pots in which they are placed, and when that occurs they must be shifted into larger ones. Towards the end of this month they may be gradually hardened off and finally transplanted out of doors in good rich soil when all danger from frost is over, care being soil when all danger from frost is over, care being
taken to give them plenty of water in dry weather When castor oil plants are once transplanted, thei roots spread so rapidly that they cannot be lifted and potted again successfully; therefore, if they are to be grown in pots, they must always be kep potted, shifting them, of course, into larger ones from time to time. The only care which they re quire during the winter is frequent but moderate watering, giving them air whenever the weathe is favorable. Thus treated, castor oil plants ma be kept in growth and beauty for several years in succession, when they will form trees, which, if not as large as that here represented, or those grown in more favored climates, will at least add grown in more favored climates, will at lo our gardens in summer. ble varieties are ricinus sanguineus, the stem, leaf stalks, young leaves, and fruit of which are of a stalks, young leaves, and fruit of which are of a
blood red color; r. Borboniensis, which in southern blood red color; r. Borboniensis, which in southern
climates attains a great hight ; and r. giganteus.

BIXA ORELLANA--ANNOTTA

It is from this shrub, the foliage and flowers of which is now figured, that the annotta of commerce, commonly called annatto, is produced. Plants of it are seldom seen except in botanical collections; but they are not devoid of ornament by their fine green leaves and chaste pink flowers. When grown from seed, the plants attain a large size before producingflowers: but when raisedfrom cuttings they flower freely when in a comparatively dwarf state. Cuttings of half-ripened wood strike readily in heat under a bell glass. The plants require a summer temperature of 75° to 85°, and a winter temperature of 50° to 60°. This shrub grows spontaneously in South America, and is cultivated in the East Indies. The fruit is like a chestnut, a two-valved capsule covered with flexible bristles, and contains a certain number of seeds smaller than peas. These seeds are covered with a soft, viscous resinous pulp, of a beautiful vermilion color and unpleasant smell like red lead mixed with oil, and it is this matter which constitutes annotta or annatto. The mode in which it is obtained, says the Journal of Horticulture and Cottage Gardener, is by pouring hot water over the pulp and the seeds, and leaving them to macerate, and then separating them by pounding them with a wooden pestle. The seeds are then removed by straining the mass through a sieve; and the pulp bing allowed to settle, the water is gently poured off, and the pulp put into shallow vessels, in which it is gradually dried in into shallow vessels, in which it is gradually dried in
the shade. After acquiring a proper consistence, it is made into cylindrical rolls or balls, and placed in an airy made into cylindrical rolls or balls, and placed in an airy
place to dry, after which it is sent to market. It is place to dry, after which it is sent to market. It is
most common in the English market, and is in the form most common in the English market, and is in the form
of small rolls, each 2 or 3 ozs . in weight, hard, dry, and of small rolls, each 2 or 3 ozs. in weight, hard, dry, and
compact : brownish without and red within The other process of manufacture is that pursued in Cayenne. The pulp and seeds together are bruised in wooden vessels, and hot water poured over them ; they are then left to soak for several days, and af.erwards passed through a close sieve to separate the seeds. The matter is then left to ferment for about a week, when the water is gently poured off, and the solid part left to dry in the shade When it has acquired the consistence of solid paste it is formed into cakes of 3 or 4 lbs weight, formed into cakes of 3 or 4 lbs. weight, which are wrapped in the leaves of arunda or banana. This vari-
ety is of a bright yellow color, rather soft to the touch, ety is of a bright yellow color, rather soft to the touch,
and of considerable solidity. Labat informs us that the and of considerable solidity. Labat informs us that the
Indians prepare an annotta greatly superior to that Indians prepare an annotta greatly superior to that
which is brought to us, of a bright shining red color, which is brought to us, of a bright shining red color,
almost equal to carmine. For this purpose, instead of steeping and fermenting the seeds in water, they rub them with the hands, previously dipped in oil, till the pulp comes off and is reduced to a clear paste, which scraped off from the hands with a knife, and laid on a clean
leaf in the shade to dry. Mixed with
it makes the crimson paint with which Indians adorn their
bodies; and they employ the leaves and roots in cookery to bodies; and they employ the leaves and root
increase the flavor and give a saffron color.
Annotta is principally consumed by painters and dyers butit is also used to color cheese with, a pale yellow or flesh

THE CASTOR OIL PLANT.
butter, and it is used for the same purpose in some American and English dairies.

A Hospital in a Crater.
The Board of Physicians of the Neapolitan Hospital for Incurables have determined to build a hospital in the crate

BIXA ORELLANA. 7
of Solfatara, lying between Naples and Pozzuoli, in Southern Italy. The vapor that arises from the crater has been found to be charged not only with sulphur but also with arsenic,
diseases have been restored to health by inhaling this vapor for a few weeks.

Facts About Air and Mine Ventilation.
At a recent meeting of the North Staffordshire Mining In stitute, a paper by Mr. Wardle, of Burslem, was read o this subject. He said the temperature of the earth increased as they descended at about 1° Fah. for every 50 feet to 60 feet. At the deep coal pit at Dukinfield, the temperature was constantly 75° Frh. at a depth of 2,151 feet, and at a depth of 17 feet it wasonly 1° Fah., which gave an increase f $1^{\circ} \mathrm{Fah}$. for every 89 feet only. The average degree of temperature of the earth was $1^{\circ} \mathrm{Fah}$ for every 55 feet in descent to a depth of 1,800 feet. and afterwards 1° Fah. for every 44 feet. At feet, and afterwards $1^{\circ} \mathrm{Fah}$. for every 44 feet. At
10,000 feet, the temperature would be $212^{\circ} \mathrm{Fah}$., provided all other circumstances remained the same : at 20 miles, $1,760^{\circ}$ Fah.: and at 50 miles it would be $4,600^{\circ}$ Fah., heat sufficient to melt any known metal. Thus, the deeper the shafts of their coal mines, the greater the amount of natural ventilation they would obtain. A current of air, traveling at a speed of 10 feet per second gave a pressure of 0.492 lb . to the square foot at 16 feet $=0.989$; at $51 \cdot 34=6.027$, and at 200 $=30 \cdot 2$, $=392$, as exis of the earth. These might be described as, first, a breeze; second, a light gale; third, a gale; and fourth, a hurricane. Increased velocity of wind meant greater friction or higher water gage. Air was perfectly elastic; by prossure it could be squeezed into less bulk; and if that pressure were withdrawn, it filled the same space as for merly. Heat had the same effect upon it as pressure. A cubic foot of air weighed 223 grains a cubic foot of water weighed 1,000 ozs.; a cubic foot of watery vapor weighed only 97% grains So that the more vapor there was in the air, the lighter it would be. Friction was estimated by the force required to overcome it. Friction of air increased or decreased in the same proportion that the extent of the rubbing surface exposed to the air increased or decreased. A circular airway offered less resistance in proportion to its area than any other form, because its circumference was less in proportion to its area than the pe rimeter of any other figure. Airways should be as large and with as smooth a surface as pos sible. Splitting the air current was preferable to taking the whole current of air round the work ings in one body. Generally speaking, splitting the air increased the quantity of air obtained by a given ex penditure of power ; but the benefits to be derived from splitting were limited by the area of the shaft.

The Twinkling of the Stars.

The scintillation of stars, and its close connection with changes of weather, has, as is known, much interested Humboldt, Arago, Kaemtz, Secchi, and many others; and recently it has also been the subject of valuable spectro scopic researches by M. Respighi. M. Montigny, who some time ago investigated scintillation in relation to the special characteristics of the light of different stars, pub lishes in the Bulletin of the Belgian Academy, No. 8, an elaborate report upon his researches into the connection existing between scintillation and various meteorological elements. The chief results, arrived at after a discussion of 1,820 observations made on 230 days on 70 differen stars, are as follows: The intensity of scintillation (mea sured by a special apparatus, the scintillometre) increases in variably with the occurrence or approach of rainy wea ther, and with the increase of tension of vapor in the ai on one side, and the increase of pressure and decrease of emperature on the other: the influence of the two for fars being far more sensible than the combined in ren the two later. The scintillation, which is on luence of the two latter. The scintillation, which is on an average stronger during winter than during summer ncreases with the arrival of moist weather at all season It increases also not only on rainy days, but one or two days before, decreasing immediately after the rain has ceased. Moreover, the intensity of scintillation increases during strong winds, and with the approach of barome ric depressions, or bourrasques, the increase being most pronounced when the depression passes near to the ob server. It then largely exceeds the average increase cor esponding to rainy days; and the influence of great movements in the atmosphere totally counteracts the contrary influence of a lowering of pressure. M. Montigny is thus correct in saying that a continued investigation of scin tillation would be of great service, not only for the pre illation would ber but also for the ceneral study of me ision of teorology, affording a very useful means for the explora
tion of the higher regions of the atmosphere. - Nature

Appleton's Encyclopredia.

The new revised edition of this magnificent work is now completed, and forms one of the most valuable and important collections of popular knowledge ever brough out in this country. The printing materials, engravings, etc., have alone cost the publishers over half a million dollars. The reader will be able to form an approximately correct idea of the magnitude and sterling character of the work by consulting the publisher's advertisement given n another page. The work more than justifies what is there stated.

Contiıued from first page.
The large engraving which occupies our initial page this week represents one of the most complete exhibits in the whole magnificent array of woodworking machinery. It is that of Messrs. J. A. Fay \& Co., of Cincinnati, Ohio, with many of whose excellent machines our readers are already familiar through the illustrated descriptions which have appeared in these columns. In the manufacture of these implements, extensive experience, talent, and the greatest care are brought to bear. All shafts and turned fittings are fin ished to standard sizes, screws are turned, heads and threads made on a regular system, holes are bored and tapped exactly to correspond, every revolving part is carefully and accurately balanced, all bearings are reamed and scraped none but the best materials are used, and finally a rigid tria and inspection renders each machine, before issuing from the factory, in the best possible condition. The implements exhibited at the Centennial are by no means all of the dif ferent productions of Messrs. J. A. Fay \& Co., but are selected with much discrimination, so as to typify generally the variety manufactured by this firm. We describe them below in detail, referring to each, as will be seen, by a distinguishing number placed on the engraving.
the no. 6 planing, matching, and beading machine is marked 1 in the illustration. It is claimed to be the most important implement of the class displayed, on account of its admirable construction and the speed with which it fin ishes the work it is designed to accomplish. The principal advantages are enumerated as follows:
There are 6 feed rolls, 8 inches in diameter. The weigh of the No. 6 machine is 10.600 lbs ., and it surfaces two sides 24 inches wide, $6 \frac{1}{2}$ inches thick, and matches 14 inches thick. For a more detailed description, the reader is referred to page 147, Volume XXXV of the Scientific American. At No. 2 in the engraving is represented the
no. 4 large size outside patent molding machine.
This wit work any size of molding up to 9 inches wide also plane, match, and bead narrow flooring, etc. The main spindle is $1 \frac{8}{4}$ inches in diameter, provided with an outside bearing ; it is made from best English cast steel, and runs in patent self-oiling boxes, lined with the lining metal. The side spindles have patent setf-oiling steps and bearings, and adjust vertically. The outer spindle adjusts laterally, and swings to any angle desired. The inside vertical spindle is arranged to adjust to and from the stuff, without altering the cutters. The under cylinder has a vertical movement, also a peculiar arrangement enabling the operator to take a greater or less cut without altering the cutters. The cylinder is combined with the rear bed, and is adjusted on the main bed, the false or rear bed moving with the cylinder, making it very convenient to adjust. The feed works are driven by improved gearing, which is heavily weighted, and has two changes of speed. The feed rolls are hung in swinging cranes, and, by the means of a lever at the rear of the machine, are instantly elevated from the stuff, when it is desired to withdraw it before passing the cutter heads. The bed drop is 13 inches. The machine is furnished with pressure bars, springs, steel wrenches, guides, and every thing needed for speedy adjustments. It is made to work either 3 or 4 sides, as may be desired, of 8,9 , and 10 inches wide or under.
the no. 2 inside patent molding machine, with beading attachment,
is represented at 3 . This machine will work moldings on one or both sides, 12 inches wide and under, and up to 5 inches in thickness, also plane, tongue, groove, and bead 12 inches wide.
The cutters may be set at varying angles and are capable of sticking any style of molding, by using cutters on all four sides, thus equalizing the cut and utilizing the power. The under cylidder has a vertical adjustment, graduated todifferent thicknesses of cut while in motion; and by simple loosening one bolt, the pressure bar and stands can be swung enirely clear of the cylinder, giving free access to the cntters for purposes of sharpening or adjusting.
A patent beading attachment upon the pressure bar, over the under cylinder, gages the depth of the bead from the surface of the board, thus securing an automatic adjustment of the beading shaft at all times.
The upright spindles can be moved vertically or horizontally while in motion, the outer spindle to any angle desired. Devices are provided for preventing the possibility of movement after the heads are brought to the desired position; and there is a chip breaker for holding the fiber of the wood while the side cuts are being made. An equal pressure is maintained on the lumber being worked, regardless of any equalities in the thickness. The rolls are connected by expansion gearing, which allows the upper roll to adapt tself to the varying angles on irregularly sawn lumber. At 3 is represented the
patent carving and paneling machine,
the object of which is to produce carvings and recessed or relieved panels on the surface of lumber, edge molding, ornamenting, fret and bracket work, etc. It is especially adapted for fine furniture, coffin and piano manufactories, etc. A hollow iron column gives an ample support for the cutter spindle and also for the table, which is adjusted and regulated to form the required depth of moldings or carvings by means of hand wheel and screw, and has sufficient vertical movement

THE NO. 2 VARIETY WOOD WORKER
s represented at 5. This is one of those remarkable tools
capable of performing the work of several machines. It is adapted to planing out of wind, surfacing straight or tapered work, rabbeting door frames, etc., rabbeting and facing inside blinds, jointing, beveling, gaining, chamfering, plowing, making glue joints, squaring up bed posts, table legs, newels, etc., raising panels, either square, bevel, or ogee sticking beads, working circular molding, ripping, cross utting, tenoning, etc.
When facing or planing out of wind, the vertical and lat ral adjustments can be made simultaneously, thus constan ly retaining the proper distance between periphery of cu and the edge of table. All of the different functions of th machine are secured by the use of two tables. For sawing an extra table can be inserted between the other two, making a solid and continuous saw table. The arbor is of steel, f large diameter, and revolves in bearings supported on the column. One bearing is cast solidly to the column, and the other is movable, and is readily detachable for the purpose of substituting different heads. This is a very advantageous eature.
Another combination, possessing a still wider range of ca pabilities, is depicted at 6. This is the

NEW PATENT UNIVERSAL WOOD WORKER,

claimed to be the only wood worker built in which both sides may be operated, and either side started or stopped without interfering with the other. As a planer, it is adapted for ordinary surfacing and thicknessing, planing out of wind, surfacing square, beveling, or tapering pieces facing up bevels and baluster, etc. As a molding machine it will work moldings, either simple or complex, up to 8 or 9 inches in width, stick sash and doors, tongue and groove and on the wood worker side it will produce waved, oval elliptical, circular, and serpentine and rope or twist mord ings. Among its other uses are chamfering, cornering, rab beting and jointing window blinds, gaining, panel-raising on one or both sides, tenoning, ripping, cross cutting, groov ing, hand matching, making glue and table joints, miter ing, nosing, squaring up, and a multiplicity of other opera tions limited only by the skill of the operator.
The molder and wood worker sides are securely connected upon one solid column with a substantial base, and the two sides of the machine are driven from one countershaft, which conveys power either separately or simultaneously.
The molding side is so arranged as to form a complete four-side molder. The side spindles are fixed to and move with the table, which has a vertical movement of 16 inches. The feeding rolls are arranged for fast or slow feed.
The wood worker side is constructed on the same princi ple and embraces the same general features as the paten ariety wood worker above described.
At 7 we represent the

no. 3 sash and door tenoning machine

adapted for sash and door, cabinet, wheel, car, and railroad shops. The upper and lower cutter heads are adjustable so as to vary the thickness of the tenon or depth of shoulder, the carriage remaining stationary. Gages and stops with the carriage render setting out unnecessaly. The copes are raised and lowered with the cutter heads, but may be inde pendently set. Both cope and cutter head shafts are pro tected against endwise vibration. The upper cutter head is arranged to cut one shoulder of the tenon longer if desired, saw spurs are used in lieu of knife spurs, and the cutters operate with a drawing stroke. There is a binding pulley which keeps the belt right and self.adjusting, and the bonnet may be conveniently swung back out of the way to afford access to the cutters. The
ellis patent blind slat tenoning machine, shown at 8 , is adapted to any length or width of slat, working both ends, cutting the shoulder and rounding the tenons simultaneously at one and at the same operation. The machine, which has a hand feed, is provided with two adjustable arbors and frames, carrying a set of circular saws for forming the shoulder and rounding the tenon. Connected to the arbor frames are revolving disks, into which the slat is inserted and rotated in contact with the saws or cutting tools. We are informed that it is capable of working 20,000 slats per day.
At 9 is shown the
patent self-feed blind slat tenoning machine,
which differs from the machine last described. It differs somewhat from the Ellis machine, as the slat is fed endwise through rotating chucks, the shoulder being pressed against an adjustable gage for regulating the length of slat. By the peculiar construction of the revolving cutting tools, two tenons are cut and divided with one cutter head, simultaneously and at one operation. A pressure upon the treadle causes a rotation of the slat, and at the same time depresses
the chucks, carrying the slat against the cutting tools, enabling them to form a perfect tenon on each end. It will work any length of slat from 19 inches up to 24 inches, and will make any size of tenon desired.
two patent band sawing machines
are depicted in the engraving, one for ordinary curve sawing, the other (10) intended for the furniture, wagon, sash and door,and agricultural shops,etc. An important feature is the method of keeping 'he saw at its proper tension, allowing at the same time some flexibility to the parts, to compensate for any sudden impact, and prevent breaking of the saws by buckling or friction upon the back or sides. There is also a shipper with frictional brake for arresting the saw motion, and the table is provided with irregular adjustment or bevel sawing.
patent band resawing machine
It will re-saw lumber up to 30 inches in width, and from 6 inches in thickness down to the thinnest stuff that admits of re-splitting. It is also arranged for sawing boards from the side of a plank, and is equally well adapted for hard or soft wood. Its working capacity is said to be from ten to fifteen thousand feet per day, depending on the kind and width of material. The saw kerf is about $\frac{1}{16}$ inch thick, and a saving of 20 per cent in lumber is claimed to be effected, shown by the fact that, by the use of this machine, two $\frac{8}{8}$ inch panels, planed on both sides, can be produced from 1 inch lumber, whereas, by other methods, $1 \frac{1}{4}$ inch lumber is required.
The wheels are 5 feet in diameter, and the distance between their centers is such that there is but a comparatively small portion of the saw blade left unsupported, and there is consequently less liability to deviate from a straight course. The upper wheel revolves on a $2 \frac{1}{2}$ inch shaft running in long self-oiling bearings, has a vertical adjustment of 13 inches, and can be adjusted so that the saw will run at any desirer point on its periphery.
The feed rolls are connected by expansion gears, operated by friction. This friction is operated by a shaft connected with a lever in front of the column, by different movements of which the feed is instantly started or stopped, and graduated from fine to coarse. The feed is strong and powerful, and is under complete and immediate control of the operator.

There are also improved devices for cleaning the saw, c. For full particulars, the reader is referred to the decription previously published in these columns. The machine represented at 12 is a
patent combination edging and ripping saw table. designed for edging and ripping up lumber for the flooring machine. It is claimed to have all the ad rantages of a good self feed edging saw; and at the same time, the feet can be thrown off and the stuff passed by the saw in the ordinary manner. By a novel device, when slitting lumber, the operator is enabled to elevate the saw so as to just cut through the board, thus economizing the power by a reduction of the friction on the saw, presenting a better cutting angle of the teeth, and consequently making a smoother cut and re quiring less sharpening of the teeth. The fence or gage has a parallel movement of 8 inches, and is quickly adjust. ed for different widths without the necessity of measuring the table being provided with a gage spaced into inches and parts of an inch.
It is also provided with a binder pulley, hung in a swing ing frame, operated from the front of the machine by means of a rod and handle by which it can be raised or lowered to slacken or tighten the belt, and thus stop or start the saw. The machine will make a straight cut without any guide, by simply letting the feed roll take the board through as started This feature will be appreciated when sawing boards with a
crooked edge, which require straightening before other crooked edge, which require
strips can be sawn from them.
strips can be sawn from them.
In order to meet the need of a cheap and good boring ma chine, for either straight or angular boring, the

UNIVERSAL HORIZONTAL BORING MACHINE,
represented at 13, has been designed. The tableis adjustable for boring at any desired upward or downward angle and the ence for any lateral angle.
The traversing steel spindle is operated by means of a pow erful jointed treadle, fitted with an improved step, which is provided with a steel point, forming a bearing for the end of the spindle, thus greatly reducing the wear, caused by the spindle pressing against a shoulder. The treadle has a weighted counterbalance, giving a quick return to the spin dle. The spiudle is fitted with cone pulley, with thre changes of speed, and adjusting collars to graduate the depth of the hole to be bored.
At 14 is shown a novel
patent band saw setting and filing machine,
which, it is claimed, will set an ordinary band saw blade in three minutes, more accurately than can be done by hand in an hour. The saw being adjusted, the wherls are se far enough apart to straighten the blade, which is then pinched by a cam and wedges. The dies are set on the points of the teeth,and are adjusted with set screws on top. This sets the points over without bending them at the roots. pre venting the warping of the saw which is liable to occur in setting by hand.

Lastly at 15 we illustrate a

hand and power feed surface planing machine.
This is provided with steel-lipped cylinder, pressure bar shaving bonnet, and adjustable tables. It will surface 24 inches wide up to 6 inches in thickness.
This completes our list of machines, which, as embodi ments of the new and ingenious devices, and as showing admirable adaptation to their several purposes, may justly be regarded as representing the best work of both inventor and manufacturer. It is hardly necessary to add that their su perior qualities are appreciated in foreign countries as well as in our own, and that the large trade which their maker now control, with Japan, Australia, South America, England, New Zealand, and elsewhere, is one which reflects great credit upon our home industries. The machines have received the largest premiums at local fairs in this country, a medal at the Vienna Exposition, a medal for excellence and superiurity at the late Clilian Exposition, Santiago, Chili, South America, and also medal of honor and special commendatory reports from the Centennial jurors of

centennial notes.

he frenci fottery display

France, in her section in the Main Building, makes a marvelous display of po:tery, which must be studied piece by piece before any idea can be obtained either of its extent or value. Indeed some of the vases exhibited, made in the Sévres factory during the first years of its existence, are of immerse value, especially in these times, when all old china, owing to the taste for making collections of the same, fetches prices out of all proportion to the intrinsic value of the objects.
Porcelain is of two kinds, " hard and soft paste," distin. guished from each other by their relative density, a quality governed by the comparative proportion of silex entering into their composition. The first porcelain of French manufacture was "pâte tendre", or soft paste, and this was principally made at Sérres. In 1761 the secret of making hard porcelain was discovered, and the manufacture of "patte tendre" was thereupon discontinued, Hard porcelain is produced from kaolin and other materials, and usuaally goes through three processes in its manufacture. The first process, which is the most commonly used for piects of average size, consists in the placing of the paste in a lump upon a mold, which, in the case of a plate, for instance, would represent the bottom half. The mold and paste are
then put on a rapidly revolving brass cylinder in front of then put on a rapidly revolving brass cylinder in front of
the workman, who, by a quick movement of the hand and m.istening with a sponge, causes the paste to assume the desired form for the upper half, as by its pressure against the mold it assumes that of the lower half. So also in the case of the cups; the mold is merely for the exterior portion, the interior being shaped by hand. The second process is used for large pieces, such as vases, soup tureens, etc. The paste is plactd on the revolving brass plate in a lump, and the workman, by means of steel tools, causes it to assume the
shape sought for. The third process, which admits of the shape sought frr. The minute latticed or diagonal figure work upon the body of the piece, to which it also gives an almost paper-like thinness, is one in which the paste, reduced to a liquid form, is run into molds. Some of the French vases are so magnificently painied as to possess a high value as works of pictorial art alone. There is a toilet set on which the color was melted on the glaze, so that the appearance is of polished lapis lazuli, on which the most cu rious effects of light and shade are produced. In the basins, where the pigment in burning has dropped to the bottom, there seem to be several inches of water, so deep is the color; while on the base of other pieces, where the color has dropped off, the ware is mottled blue and white. One Paris firm makes a specialty of porcelain with a mother-of-pearl glaze produced by the use of uranium salts ; another exhibits majolica, where the portions in relief are produced by pressure applied to the back of the object, just as repousse work is done in siiver. Ordinarily such decorations are made separately and attached to the article.
the largest glass plates ever mporited
into the United States are exhibited in the French section. They are two immense sheets measuring 22 feet in hight by 10 in breadth, mounted in maroon colored frames.

the famous tapestry,

exhibited in the French department, consists mainly of the fabric known as haute lisee, or high loom. This, as its name implies, is made on high looms of considerable size. At the top and bottom of the framework composing the loom are horizontal cylinders. Around the upper one, the threads composing the warp are rolled, and around the lewer one the tapestry, as it is completed yard by yard, winds itself Between these two cylinders is stretched the warp, upon the threads of which the artist marks in white chalk the out lines of his picture. To these he adds, for the purpose of
fixing the light and shades, tracings from his pattern fixing the light and shades, tracings from his pattern.
Then, with this latter conveniently placed for reference, he Then, with this latter conveniently placed for reference, he
stations himself against the back of his tapestry, and, with stations himself against the back of his tapestry, and, with
his many-colored worsteds and silks, commences the weaving of his picture. The vertical threads of his warp are divided by a heddle or cross stitch, which keeps half of them in advance of the rest ; but those behind can be brought forward by means of small cords or lisses, one of which is attached to each warp thread. Between the two sets of threads the workman introduces his left hand and takes up as many of them as is necessary. Through these he passes his curiously shaped wooden needle from left to right, and with its point piles the stretched thread, which in turn is passed back in the contrary direction through the space opened by shifting the front and back threads. The manipulation of the threads, the combination and proper use of the many colors and shades of worsted and silk, and the working
out of the design require a skill and delicacy only attained by long practice.
french sctentific apparatus.
France, long celebrated for the products of her opticians and scientific instrument makers, is well represented in this line of goods.
Of opera glasses there is an extensive exhibit, embracing the largest and smallest in cost as well as in size. The finest glasses shown are, perhaps, those mounted in aluminum, a metal admitting of a polish equal to that of silver, and of extreme lightness. This metal, however, though considerably lessening the weight of the glass, adds almost 200 per cent to its cost.
Derogy, Paris, shows a large collection of photographic apparatus, noticeuble among which are a set of extra large object lenses, some very powerful condensing lenses, and specimens of the Derogy system for photographers' use.

This system, which combines in one instrument the power of making, at a given point and with a single objective lens, six pictures of different dimensions, consists, in the addition to ordinary apparatus, of two extra lenses: one convergent, for making the object smaller, and the other divergent, for making the object larger. With these lenses, placed singly, as the occasion demands, in the position assigned to them, the necessity of changing the object glass to signed to them, the necessity of changing the of
produce different sizes of pictures is obviated.
A telescope, valued at $\$ 6,000$, with an object glass $12 \frac{1}{2}$ inches in diameter, is shown by Secretan, Paris. Its magnifying power is 600 times. In this exhibit is an admirably designed camera lucida, or, as it is here called, megalographe. For microscopic drawing and pattern drawing for industrial purposes, this instrument possesses many advantages. It differs from the ordinary camera lucida, inasmuch as it ad. mits of drawing directly from objects under the microscope, or from designs produced by the turning of the kaleidoscope. It is provided with three tubes, one microscopic, the second kaleidoscopic, and the third simple. A prism on a detached tube of its own is adjustable to either of these, and by means of mechanical contrivances the point of view may be changed as occasion demands.

weights and measures,

An automatic balance, in use in the Paris Mint since 1874 is a most ingenious machine. Its object is to determine the weight of twenty franc pieces, and to divide them into lasses, according as they are standard, light, or heavy eight. At one end of it is an inclined trough, in which the pieces are placed; and, as one by one they reach the end
of the incline, they slide upon the weigh pan of a small scale, having at the other end of its beam a counter weight o precisely the s'andard weight for a twenty franc piece. Beneath the weight pan is a hopper, and in front of this latter the mouths of three tubes, terminating in boxes des tined for the reception of light, heavy, and standard weight pieces. Should the piece, after reaching the scale, prove heavy, the weigh pan would be borne down by it, and this, acting upon the balancing needle indicator, causes it to hopper ; and when the piece is thrown off the scale it passes directly into the tube leading into the box for heavy pieces. Light and standard weight coins cause the needle to go to wards the counter weight, or to remain within the limits allowed to the standard weight ; and these movements act upon the hopper as above described, and send the coins into heir appropriate boxes.

THE AWARDS FOR THE LYALL LOOMS.

The positive motion lcom, which was one of the most important American inventions exhibited at the Centennial has deservedly received from the expert judges the highest commendation. The report states that the reasons for the ward are "variety, extent, and importance of the looms exhibited; invention of the positive motion, its wide range of applicability, fitness for the purpose intended, and excellence of design, construction, and working utility and econ my." The Messrs. Lyall, whose exhibit, it will be remembered, we described and illustrated recently, have also re. ceived another award for a lock-stitch shuttle machine: in which the vertical needle bar is reciprocated from a rotating haft by an epicycloidal movement: on account of the apparatus being, in the judges' opinion, "the most rapidly run ning sewing machine." This is the machine which we saw binding
the closing ceremonies of the exposition.
At sunrise on November 10, the thunders of salutes from battery on George's Hill in the Exposition grounds, and from the United States ship Plymouth, announced to the people of Philadelphia and the hundred or so thousand vistors there gathered that the last day of the Centennial had arrived. By ten o'clock the Exhibition buildings were thronged; but at that hour, to the disgust of those who had ecured commanding positions whence to view the cere monies on the grand platform at the end of the Main Build ng, a steady cold drizzle of rain began, which by noon beme a continuous pour. With characteristic promptitud he authorities at once prepared the interior of the judges difice; an army of carpenters put up a new platform in
winkling. Theodore Thomas, his orchestra, and his chorus. were packed in the galleries; and when the procession of dignitaries, headed by the President of the United States, entered the structure, everything was in good order and the confusion which had seemed imminent was happily rrested.
The triumphant strains of Wagner's Inauguration March were followed by a brief prayer; and then, after one of Bach's grand choral fugues had been rendered, Mr. Morrell, the chairman of the Centennial Executive Committee, made the opening address, in which he briefly reviewed the general advantages of the Exposition. The $T e$ Deum by the chorus preceded a speech by President Walsh, of the Cen has accomplished, he said: It has afforded an Centennia has accomplished, he said: It has afforded an opportunity scale may be liberal in its expenditure without useless extravagance; that its laws may be strictly enforced with impariality, and without harshness; that its regulations may se ure the efficiency of its departments and uniformity in their action; that its whole course has been free from financial embarrassment, or even a payment deferred; and tha motion, no one of the immense throng within the limits of he Exhibition was sensible of its restraint.
Director General Goshorn's address was in about the sam
strain. Finally General Hawley, the President of the Centennial Commission, came forward, and,in a few appropriate words, acknowledged our national gratitude to our foreign visitors, and thanked the city of Philadelphia and the general government. As, at the conclusion, the audience joined in the hymn "America," the original flag of the American Union, displayed by Paul Jones on the ship Bon Homme Richard, was unfurled, and national salutes of forty-one guns were fired from the land battery and the war vessel After the burst of cheering which the display of the histori cal banner elicited had subsided, President Grant advanced to the front of the platform, and in a low voice said: " Mr President and Gentlemen of the Centennial Commission, I now declare the International Exhibitirn of 1876 closed." Then as he waved his hand, a telegraph operator behind him touched the key of an instrument, the signal 7-6 rang forth from all the gongs and bells, and at that instant the great Corliss engine slackened its motion, became slower and slower, and then stopped. The great audience reverently sang the Doxology and dispersed. As they left the grounds the huge English road engine came puffing out of the gates, dragging two cars loaded with filled packing boxes. The Exposition was indeed over.

New York Academv of sciences.

A special meeting of the biological section of this society was held on Monday evening, October 30, at the library of he New York Aquarium.
Professor A. E. Foote, of Philadelphia, exhibited a speci men of rutile in quartz, said to be the finest in the world. The crystals were about 5 inches long, thicker than a kniting needle, and doubly terminated. This specimen was ound at Hanover, N. H., and formerly belonged to Dr Chilton. The professor also exhibited a large and beautifu merald from Mungo, New Granada, and a fine specimen of rubellite (a variety of tourmaline) both from the same col ection, now the property of Dr. Foote.
Professor Hubbard exhibited a fossil tooth of an elephant weighing 13 lbs., from near Rochester, N. Y.
Some seeds and nuts of tropical sources were also pre sented, and referred to Professor Martin to determine their pecies.

THOUGHTS ON EVOLUTION.

Professor E. C. H. Day, chairman of the section, made a brief address on evolution. The speaker first declaimed any dependence of evolutionism on Darwinism; the latter may prove false, and yet that does not disprove the former. The dea of evolution has been generally accepted in physical matters, in astronomy, in geology, etc., and it is on'y whe applied to life that it meets with opposition. He then ex plained that the doctrine of evolution is not atheistical, but implies greater wisdom on the part of the Creator than doe pecial creation. He drew comparisons between the length of the life of man, three score years and ten, and the sup posed age of the world, representing the former as $\frac{1}{1}_{10}$ inch on a line from 120 feet to ten blocks long. He attewpted to explain how the honey ant, although a neuter. could be the result of natural selection; also the disappearance of large and powerful animals before smaller ones of more intelligence. The disappearance of hair on the back, in passing rom ape to man, was explained on the supposition that ani mals that walk upright and rest in a perpendicular position do not need its protection, while it is a positive injury as a refuge for insects and as affording a better hold to an ad ersary in a hand-to-hand conflict.
Dr. Newberry replied with some well put remarks on our inability to argue the question with our present limited nnowledge, and advanced the usual objection persistence of species.

FISH CCLTURE

was the subject of some very practical remarks by Mr Frederick Mather. He stated that the Chinese had been credised with practising fish culture for a long time, but it had only amounted to the transfer of unhatched eggs to ponds that they wished to stock. Fish culture was intro duced here twelve years ago, and now America is ahead of the world. Some of the advantages of the artificial over the the natural are that far more eggs are impregnated in the former operation, that, the young being protected, more of them live to maturity, and that we are able to transport them safely over long distances, a lot of salmon eggs having recontly been received in good order from California. There are some fish, however, the eggs of which,forming a slimy mass, require different treatment; others do better when left to Nature. The speaker exhibited some of the engs and young fish just hatching out, and stated that light was very njurious to them at this stage, as the eyes are very large and sensitive, being plainly visible before the fish leaves

he egg.
 He also exhibited a most remarkable

PAIR OF SIAMESE TWINS,

two tiny salmon hatched from one egg and bound together in a manner quite like the human twins recently deceased. Although quite lively, he predicted for them a short life because they hatched head first, which is a bad omen for the vitality of the fish.
At the conclusion Mr. Coup invited the members present to visit the Aquarium, where an opportunity was offered them to see millions of these little fish in the very act of leaving the egg, as well as the other curiosities, of interest to ichthyologists.

ONE tenth of one per cent of the whole atmosphere conains oxygen enough for the supply of the whole population of the world for 10,000 years

The Boston Commenk Clerks.
 Boston are as capable, industrious, and faithful a set of bank officers as can be found in any city in the world. But after
all, it states, the place to find an extensive army of well all, it states, the place to find an extensive army of well
trained bank clerks is in the Bank of England. This institrained bank clerks is in the Bank of England. This insti-
tution, with its capital of ninety millions of dollars and dattution, with its capital of ninety millions of dollars and dat-
ing back to 1694, today employs 900 clerks. The building ing back to 1694, today employs 900 clerks. The building
in which these clerks do their work covers five acres of in which these clerks do their work covers five acres of ground. It has not a single window upon the street, the light of day being admitted only through open courts. It has a clock in the center of the bank with fifty dials. The Bank of England is situated in the center of London; but it
has one branch at the west end of the city, and many branches in the provinces. Though the Bank of England employs a very heavy force of clerks, it would seem, from a glance at its business, that it ought to keep them well employed and fairly remunerate them. Its sole work in its issue department is to give out notes to the public. The profit the bank derives from its issue department is the interest received upon the $\$ 70,000,000$ government debt and securities, which, at the rate of 3 per cent, is $\$ 2,100,000$ a year. By its dealing in coin and bullion, it has the reputa tion of making $\$ 150,000$ a year. The amount of Bank of England notes afloat generally averages about $\$ 100,000,000$, and has lately reached $\$ 165,000,000$. The deposits in the Bank of England, out of which it of course makes a great deal of money, range from $\$ 60,000,000$ to nearly twice that sum.

The Adulteration of oils.

We subjoin some extracts from the "Report on Adulterations and Sophistications" presented to the American Pharmaceutical Association at its meeting, in Boston, last autumn. Three signatures were attached to the report, namely, Adolph W. Miller, chairman, James R. Mercein, and M. L. M. Pe:xotto; but Mr. Mercein stated that the whole of the work had been performed by the chairman.
Oil of almonds. We are informed on most excellent authority that the so-called French oils of almond, both fixed and essential, are obtained exclusively from peach kernels. Oil of bergamot. We were shown a highly complex formula, said to be used by the manipulators in Germany for skillfully reducing this oil. Almost three fourths of the compound consisted of the oils of orange, copaiba, lemon, a little neroli, and several others. We were informed that large quantities of this sophisticated oil are disposed of in Europe.
Oil of Ceylon cinnamon. Albert P. Brown found this oil to be adulterated with sassafras and cloves. The oil of the leaves of the Ceylon cinnamon is also frequently sold in place of the true oil of the bark. The former is a brown, viscid, essential oil of clove-like odor; it is sometimes called heavy oil of Ceylon cinnamon.
Oil of erigeron. A specimen of this oil was sent to the writer by Mr. Joseph L. Lemberger, which was so largely adulterated that the true odor was entirely overpowered by that of turpentine.
Oil of juniper berries was offered to the writer by a highly respectable firm of wholesale liquor dealers, who, in their desire to have a really pure and superior article, had themselves imported it direct from Holland, having ordered the very best that was obtainable. As a very much greater quantity had been sent than their order called for, they were anxious to dispose of a portion of it. The gentlemen were so very sure about the absolute purity of their oil, for which they had paid a liberal price, that they were loath to believe their own eyes when. after agitation with an equal quantity of water, only 20 per cent of their so-called oil was left, the remainder being alcohol.
Oil of lemon, put up in original cans and genuine imported cases, branded " E. B. Co.," was found by the writer to contained 25 per cent alcohol. There is every probability that both seals were counterfeit, as the letters composing them were slightly different from those found on the top of genuine cans from Brehmer \& Sanderson. The metal on which the seals had been impressed also presented a dull and tar nished appearance, while it is usually perfectly bright and lean.
Oil of melissa. The oil of lemon grass, obtained in the East from andropogon citratus, is very frequently substituted for
the true oil of melissa, which is distilled in Germany from the true oil of mel
melissa officinalis.
Oil of origanum rarely reaches this country. A few pounds imported by the writer cost about $\$ 5$ per pound. The socalled commercial oil of origanum is obtained in France from thymus vulgaris. The original packages are even distinctly marked essence de thym rouge. As has been already stated, this oil is very frequently mixed with turpentine in large proportion. Its chief consumption is among the manufacturers of patent liniments, who are totally indifferent to quality, if they only obtain an original package.
Oil of peppermint was met with also largely with castor oil and alcohol. Twenty-six lbs. of this adulterated oil yielded, when distilled by the writer, $8 \frac{1}{2}$ lbs., of pure oil, about a gallon of castor oil remaining in the still. The proportion of alcohol, which had been present, is represented in the loss.
Oil of rose geranium is now so frequently substituted by the ginger grass or palma rosa oil, obtained from andropogon schœnanthus, that it is somewhat difficult to procure the true oil of pelargonium odoratissimum or radula in commerce. Oil of sassafras was purchased by the writer from a party who represented that he had personally distilled it, and it was found on evaporation to leave a residue of 14 per cent of rosin.

Oil of verbena is almost out of the market, being everywhere substituted by the oil of lemon grass, andropogon citratus
Oil of wintergreen was offered to the writer by a tall Jer sey man, who professed to have distilled every drop of it himself, and who therefore claimed to be able to guarantee its absolute purity: and it proved to contain just two thirds of its volume of alcohol. It is somewhat remarkable that even this large proportion of alcohol could scarcely be recognised by the senses, and that, as far as could be judged by the taste and smell, this was an unusually fine specimen of oil of wintergreen. Several other lots have leen met with containing various proportions of oil of sassafras.
Oil of wormseed. Joseph L. Lemberger has favored us with a specimen of the oil, smelling very strongly of rancid turpentine.
Oil of wormw
Olive oil is largely substituted by some of the cherer fixed oils found in this market. Very little of that which is sold by grocers is even imported from Europe. A New York merchant, who is extensivelv engaged in bottling this arti. cle in imitation of the imported style, informed us that for the cheapest grade he is in the habit of putting up refined cotton seed oil, and for a somewhat better brand the oil of benne. The expressed oil of mustard, a by-product in the purpacture of table mustard, is also applied to the same to, also kindly inform friend, whom we have before allound nut oil (arachis hypogoca) is used to an enormous extent for admixture with olive oil, so that but very little of the latter is exported strictly pure.-Chemist and Druggist.

Microscopic Detection-- Wool and Hair
The American Naturalist furnishes some interesting facts on this subject. The United States Treasury Department has admitted calf hair goods free from the duties levied on those composed in part of wool; and evidence having been furnished that some fabrics, claimed as made of hair, contained more or less wool, a commission was appointed, in which Dr. J. G. Hunt, the well known microscopist, was asso-
ciated, for the examination of these fabrics. The possibiliciated, for the examination of these fabrics. The possibili cow and calf and than manufactured mixture the hair of the microscopists, especially as these fabrics vary on different parts of the same animal. The commission has, however, been able to classify and distinguish them. Wooly hairs have no pith, and no perceptible taper. Their mean diame ter varies from a five-hundredth to the thousandth part of an inch. At irregular intervals they have one-sided spiral camels, goats, and llamas; and many other animals have a portion of these wooly hairs. On the other hand, straight hairs are shorter, thicker at base, and tapering. The pith is a large part. The scales on the outside, of which there are twenty to forty in a hundredth part of an inch, lie smoothly. In wool they project more or less, and are from fifteen to thirty to the hundredth part of an inch. With these and other dising the colored fibers in mineral acids, and then mounting them in glycerin, and by using high powers, that in a few samples there was no wool; in a larger proportion there was small quantity; in a very large number of samples there was from five to ten per cent, as well as a much larger propor
tion; and in one case it was difficult to find five per cent of genuine cow hair.

A block of iron about $2 \frac{1}{2}$ inches'long by $1 \frac{1}{2}$ inches square, flat at the bottom and drawn out for a handle with a wooden end, like a soldering iron, is an excellent implement for re moving old and hard putty from sashes. When hot (not red hot) the iron is placed against and passed slowly over the putty, which becomes softened by the heat and is ren dered easily detachable from the wood.

A VERY small quantity of oleic acid dropped upon a sample of gum copal, and but slightly warmed, will dissolve that gum completely.

NEW WOODWORKING AND HOUSE AND CARRIAGE BUILDING INVENTIONS.
improved freight car.
Edward D. Shaffer, Moncton, New Brunswick, Canada.-This in ing the car into two parts, also openings in the top and bition divid the car for admitting and discharging grain, and inclined partitions, forming, with said vertical partition, two hoppers for the grain to be transported.
improvement in grain car doors.
James M. Duncan, Covington, Ind.-The door is made in two parts, each part being pivoted at its upper and outer corner to one
of the door posts, and capable of swinging in a vertical plane. The separating line of the door is an arc described from the pivot of one of the doors, making the edge of one door convex, and tha
of the other concave. It also consists in a hinged bar for sustaining the door when closed, which rests in recesses in the door posts, and in brackets for supporting the bar and doors when opened. The advantages claimed are that the door closes tightly, that it
avoids the necessity of nailing the doors when loading, and also makes them lighter.
improved drain trap and ventilating cowl
Edward G. Banner, London, Eng.-The first device is a balanced
lever trap for preventing inflow of noxious gases from drains through the pipes leading from water closets in dwelling houses The construction is such that the greater the pressure of the re closed, so that no flood water, sewage, or sewage gas can the trap
past it. The same inventor has also contrived a new ventilating cowl. In order to withdraw a current of air from soil pipes
etc., the shaft is carried up from the soil pipe ; and upon the top of the shaft is mounted a revolving cowl, provided with a valve of MPROVED MACHIE SAWING STAVE
George W. Richardson, Arlington, Ky., assignor to himself and W. T. Davis, same place.-This consists of a stationary circular track, around which the saw runs. The saw is turned by a friction pulley, opposite to which is a friction roller, in a notch of to
track, which presses the saw against the driving pullees. The table for the work is arranged at another notch in said track, for the passage of the staves and other objects sawn off.

IMPROVED SHINGLING BRACKET
David M. Moore, Windsor, Vt., assignor to himself and James H. Cook, same place. -This is an adjustable bracket for staging, elevated seats, or other purposes; and consists of pivoted braces
with prongs or teeth at the lower ends, and connected by pivo rods, that may be adjusted to greater or less width of the bracket by suitable bolts.

NEW AGRICULTURAL INVENTIONS.

improved cultivator.
Charles R. Hartman, Allison, IIl.-This cultivator may be used for cultivating tall plants, will not be broken by the plows strikby one or the other horse getting a little in advance.

> IMPROVED FENCE.

William Stacy, Cottage, Iowa.-This fence is portable and yet not liable to be blown down or pushed over. Each panel is formed of two or more horizontal boards, having a cross bar attached to
each end, and a cross bar attached to their mide each end, and a cross bar attached to their middle parts. To one end of each panel is secured an arm, which projects to enter the
end of the adjacent panel, where it is secured in place by a pin. end of the adjacent panel, where it is secured in place by a pin which cross each other near their upper ends, and the lower parts of which are connected by a cross bar. The lower parts of the panels are kept in place by a key.
improved cotton seed drill.
Henry Steckler, Jr., New Iberia, assignor to himself and Richard Henry Steckler, Jr., New Iberia, assignor to himself and Richard
Frotscher, New Orleans, La.-This consists of a dropping wheel
that is provided with a series of holes at some distance from its that is provided with a series of holes at some distance from its
periphery. Through a perforated rim, V-shaped wires are passed, periphery. Through a perforated rim, V -shaped wires are passed,
that serve to stir up the seed in connection with radial side stirrers, that serve to stir up the seed in connection with radial side stirrers, dropping the same on an oscillating fork, pivoted below the open-
ing of the seed receptacle, to be conducted by the funnel-shaped ing of the seed receptacle, to
opener or plow to the ground.

IMPROVED HARVESTER DROPPER.
William H . Akens, Pennline, Pa.-This is an improved device for delivering the cut grain from the platform of a reaper, and in nea next round.

IMPROVED PLOW.
Adam Schuetz, Carondelet, Mo.-This is an improved plow for easming ridges for planting sweet potatoes, and which may be
eadapt it for any of the uses of an ordinary plow.

NEW MECHANICAL AND ENGINEERING INVENTIONS.

improved cotton press.
James H. Davis and William White, Winnsborough, Tex.-This consists of a contrivance for driving the screw, which works the follower by a worm when doing the work, and a toothed wheel when returning the follower: also, of a removable case which re-
ceives the pressed bale and carries it away on a truck to be tied, while another box takes its place to receive the next bale.
improved wrench.
Andrew M. Mortimer, Salt Lake City, Utah Ter.-The stationary jaw is attached to a shank. A movable jaw slides upon the shank, site the edge of the said shank. Upon the adjacent edges of the shank and bar are formed ratchet teeth, which engage with each other to hold the movable jaw in place while the wrench is being used. To the bar is attached a loop, through which the shank
passes, and through the bend of which passes a set screw, which passes, and through the bend of which passes a set screw, which
rests against the spring. When the wrench is being used, the rests against the spring. When the wrench is being used, the
strain upon the jaws holds the teeth of a bar in gear with the teeth of the shank, a spring keeping the movable jaw from getting out of place while shifting the wreneh upon the work.

NEW Miscellinineots inventions.

improved hose spanner.
John E. Taber, Fall River, Mass.-In this spanner, the end that embraces the hose coupling is enlarged and provided with a cient length at each side of the handle to insure a good bearing on the surface of the coupling, so that the spanner draws laterally on the lug pin when applied. Apertures are cut in the sides of the
groove thus formed for permitting the escape of snow or mud.
improved paint brusi binder.
Lewis Tanney, Beaver Falls, Pa.-This is a metallic binder for paint brushes, formed of two semi-cylindrical plates, having semi circular disks attached to their upper ends, and having eyes
formed upon their side edges. The cross plate has eyes formed in its end edges, and there are suitable fastening wires.
improved electro-magnetic lock.
Hilborne L. Roosevelt, New York city.-This relates to an improved electric lock for office doors and other purposes; and it
consists in the armature of an electro-magnet that retains a swinging arm with two sliding and spring-acted bolts, of which one is withdrawn for opening the door, when the arm is released by the attraction of the armature, and by the action of the spring of the second bolt, which is actuated and set by the closing of the door, ready for throwing open the first bolt on the action of the magnet.

NEW HOUSEHOLD INVENTIONS.

improved stove pipe attachment.

George H. Hancock, Richmond Factory, Ga.-This consists of a standard secured to the stove, with an adjustable clothes-drying
fork or rack, and an adjustable lamp support. The attachment fork or rack, and an adjustable lamp support. The attachment
forms a convenient clothes-drying and lamp-supporting device, forms a convenient clothes-drying and lamp-supporting device,
which may be placed on any stove and set to any position rewhich ma
quired.

IMPROVED BASIN FAUCET.
Edwin S. Rich, New York city.-The novel features in this invention consist, first, of a flange ϵx tension of the interior collar into ozzle of the faucet; and, secondly, of an additional stem valve water passage when the compression valve is removed.

कusiness aud æersonal,
 Lur Line for each inestion. If the Notice ex-
ceeas Four Sinee, one Dolar anda Half per Line ceads Four Lineal
will be charged.

If you want a complete collection of the best Cecipes and trade hints published in Sclent ific American
Cor past 10 years, send \$1.50 to H. N. Munn, 37 Park Row, New York, for
Agricultural Implements and Industrial Machin-
ery for Export and Domestic Use. R.H.Allen $\&$ Co... N. \mathbf{x}. Town and Village Hand Fire Engines, with hose
carriage and fittings, only \$350. Send for cuts and fulit
 For durability and economy, use Blake's Belt
Studs to forsten Belts. Greene, Tweed \& Co., 18 Park
Split-Pulleys and Split-Collars of same price
trength and appearance as whole-Pulleys and whole Collars. Yoc om \& Son, Prinker st., below 147 North Second St., Philadelpha, Pa.
To Lease-The largest portion of the building
corner canal, Center, and Walker sts., now occupled as Billiard Manufactory and
tsement In another column.
The Cabinet Machine-A Complete Wod Wor
er. M. R. Conway, 222 W. 2 d St., Cinclinatit, ohlo. The Gatling Gun received the only medal and
award
Fiven for machne guns at the Centennial Exhliltlon. For Information regarding this gun, address Gat-
Ing Gun Co., Hartord, Conn., U. S. A. Journal of Microscopy-For Amateurs. Plain,
practical, rellable. 50 cents per year. Spectmens free For Sale-Shop Rights. e every Tool Builder and
manufacturer tor Bean's Pateet Frittion Pulley Counmanufacturer for Bean's Patent Friction Pulley Coun
tershaft. D. Frisble $\&$ Co., New Haven, Conn. superior LLace Leather, alllizizes, Cheop. Hooks
and Couplings for flat and round Belts. Send for catalogue. C. W. Arny. 148 North 3d St., Phlladelphia, Pa.
Magic Lanterns, Stereopticons, for Parror En-
 Noiseless Exhaust Nozzles for Exhaust Pipes
and Pop Valves. T. Shaw, 915 RIdge Av., Phuta., Pa. Fire Hose,Rubber Lined Linen, also Cotton,finest,
qualty. Eureka Frre Hose Co., 13 Barclay st.,New York. Shingle, Heading and Stave Machine. See ad-
vertisement of Trevor \& Co., Lockport, N. Y. The Scientific American Supplement-Any de-
sirec back number can be had for 10 cents, at this oullice,
 Water, Gas, and Steam Pipe, Wrought Iron,
send tor prices. Batier, Farrell \& Coo., Plttsburgh, Pa: For Solid Wroughtiron Beams, etc., see adver-
tisement. Addrese Union Iron Mills, Puttaburgh, Pa. for lithograph. \&c.
Solid Emery Vulcanite Wheels-The Solid OrigInal Emery Wheel-other ktndd imitations and inferior.
Cautlon.-Our name tis stamped in full on all our best
 The best 1s the cheapest. New York Beltung and Pack-
ng ocmpan, 7 and 8 Prark Row. New York.
500 new and seeond hand machinesat low prices,
 Hand Fire Engines, Lift and Force Pumps for
Are and ail other purposes. Address Rumsey
 Chester Steel Castlugs C Co., now running; 8 years' con-
stant use prove them stronger and more durable than wrought iron. See adverttsement, page 349.
See Boult's Paneling, Moulding, and Dovetailing
Machne at Centennial, B. 8 . 55 . send for pamphlet and sample of work. B. C. Mach' y Co., Battle Creek, Mich. M. Shaw, Manufacturer of Insulated Wire for
galvanic and telegraph purposee, ©c..,59 W. 2 tht st.. N.Y. F.C. Beach \& Co., makers of the Tom Thumb
Telegraph and other electrical machnes, have removed to 530 Water Street, New York.
Safety Linen Hose for Foctories, 1 to 3 inches, at
educed rates. Greene. 7 weed $\&$ Co., 18 Park Place, N . Y . Hyatt \& Co.'s Varnishes and Japans, as to price,
color, purty, and durabilty, are cheaper by comparison

 For Sold Emery Wheels and Machinery, send to
the Union Stone Co., Boston, Mass., tor clrcular. For best Presses, Dies, and Fruit Can Tools, Blise Steel Castings, from one Ib. to five thousuand liss.
Invaluable tor atrength and durabillty. Circulara free.

Diamond Tooos-J.Dickinson, 64 Nassau St., N. Y. Slide Rest for 88 to fo fit any lathe
wightman, 23 Cornhill, Boston, Mass.
"Dead Stroke" Power Hammers-rrecently great.
is Improved, increasing cost over 10 per cent. If Improved, increasing cost over 10 per cent. Frrices fo-
duced over 20 per cent.
Hull \& Belden Co.,

A. J. can polish starched linen goods by
following the directions on p. 203, vol. 31.-C. W. will find a description of a calcium light on p. 219, vol. $30 .-$ č. K. R, will find directions for ma-
king friction matches on p. 75, vol. 29.-C. F. will king friction matcenes on p. firections for hardening millpicks on p .
will 170, vol. 25.-M. W. can make vinegar by the pro-
cess described on p. 106 , vol. 32. A. B. R., c. \mathbf{w}., cess described on p. 100, vol. 32 .-A. B. R., C. W.,
B. L., J. K., J. C. M., E. T. H., F. W., and others, Who ask us to recommend books on industrial and
scientifl subjects, should address the booksellers scientifle subjects, should address the booksellers
who advertise in our columns, all of whom are Who advertise in our columns, al
trustworthy firms, for catalogues.
(1) W. H. L. asks: Does a person, in lifting one wheel of a 4 -wheeled wagon off the ground ift more or less than a quarter of the whole
weight? A. More than a quarter if the vehicle weight? A. More than a quarter if the
is rigid and the load equally distributed.
(2) A. Y. asks: Is there any practical way
of leveling without a theodolite? A. You can of leveling without a theodolite? A. You can
construct an instrument with an ordinary buildconstruct an instrument with an ordinary build-
ers
level, that will enable you to get the hight. As such matters are discussed in in special treatises and would occupy too much space for theo co umns, we must refer you to some good book
the subject There is a cheap level in the mar
ket, which is accompanied by full directions for $\left.\begin{array}{l}\text { ket, wh } \\ \text { use. }\end{array}\right]$
(3) A. C. F. asks: What is the proper speed or grindstones, wet and dry? A. Circumferen tial velocity, 1,800 to 2,000 feet per minute.
I have a 10 horse power
I have a 10 horse power locomotive boiler; it will hardly make steam enough for a 10 horse
power engine. Would it be practicable to wall in the boller and form an arch over the top, arranking it to lead the heat (after leaving the flues) under the boiler towards the frebox, along the side of the firebox toward the front, then up and over the top of the boiler, back to rear end, and
up the stack ? A. If you have a strong draft,you up the stack? A. If you have a stro.
may gain something by the change.
(4) T. P. F. asks: If two launches were built, one 30 and one 40 feet long, the same in
every particular except length, which would run every particular except len
the fastest ?
A. The flrst.
(5) B. P. R. asks: 1. In a hot blast or airtight steam boiler furnace, which is the best way
to supply the air, under the grates or on top of to supply the air, under the grates or on top or
the burning coal? A. Under the grates. 2. How many lbs. steam to the square inch will a boile 24 feet long by 40 inches diameter, of $13 / 4$ inch
iron, stand with safety? iron, stand with safety? A. About 60 los. 3.
What dimensions of smoke stack oughtI to have What dimensions of smoke stack ought It to have
for the boiler, with two flues, each 14 inches in diameter? A. The cross section of the chimney should not be less than about $\frac{1}{}$ of the grate sur-
face. face.
(6) J
(6) J. S. C. asks: Is the statement that poles based on an actual test by weighing, or is it theoretical? A. Based on actual test.
(7) C. F. S. asks: 1. How large a boat will and an engine with $31 / 2$ inches stroke and about $33 /$ inches bore, drive, and at what speed? A.The 2 machine will be suitable for a boat from 18 to 30 feet long. 2. What size of wheel and what pitch
should I use? A. Use one 20 or 24 inches in dishould I use? A. Use on
ameter with 3 feet pitch.
where does
Where does ice form in freezing, on top or a cottom of the water? A. You can probably
sette the matter to your satisfaction by observer setion on a pond in which ice forms. First there
tions will be a thin sheet of ice, which gradually thickon the under side.
(8) J. K. asks: Why will not iodide of potassium form in large crystals when made according to United States Pharmacopoeia? A. In or-
der to obtain good crystals of K I , it is necessary that the crystalization should proceed as slowly cuum. The co loults are obtained when larg quantitites of the materiala are operated upon at once. The solution of the iodide should be as
neutral as possible.
(9) M. asks: 1. Is the common commer cial potash in solution a good fertilizer for a
grape vine when applied to the soil about its roots? grape vine when applied to the soil about its roots?
If so, of what strength should it be used? A. We would not recommend the use of potash. 2. Are ground or pulverized bones good for the same
purpose? A. The fliely.ground bones mixed purpose? A. The finely.ground bones mixed
with soil or peat make a very desirable manure. It would be better, however, to treat the ground bones with about one third the weight of oil of vitriol (speciffic gravity 170) in order to obtain the soluble superphosphate. The acid should be di-
luted with luted with about 2 parts of water, and well
stirred in with the bone dust; it should then we al stirred in with the bone dust; it should then be al.
lowed to stand forabout 12 hours, when enough lowed to stand forabout in hours, when enough
loam should be stirred in to absorb all the liquid. This is one of the best manures known. 3. If thesea articles were applied to a loamy or porous
soil, situated 10 feet from a well of water, would there be any danger of contamination to the wa-
(10) E. M. L. asss: In cutting up tortoiseshell, a lot of small scraps are made. How can
they be worked up into a solid mass, by dissolthey be worked up into a solid mass, by dissol-
ving, or otherwise? A. The larger scraps might ving, or otherwise? A. The larger seraps might
possibly be utilized for small inlaid work. Send us a few of the scraps and we may po
able to suggest some other application.
(11) W. S. C. asks: What produces the
phosphorescent light known as fox fre? phosphorescent light known as fox flre? A. We
do not recognize the name, but suppose you refer to the strongly phosphorescent solution of phosphorus in hot olive oil. Bisulphide of carbon or one of the essential oils may be made to replace the olive oil as the solvent. It would, perhaps, be well to state that the employment of the bisulphide solution of phosphorus is liable, when the
liquid is in contact with the air, to produce spon-
(12) S. W. J. asks: What is a simple and harmless preparation for turning dirty brownish red hair to a white color ? A. There are me-
thods by which this might be accomplished, but we cannot recommend any of them.
(13) F. S. M. asks: Which is the best way to make a solution for silverplating? I have made a solution, but the silver comes off again.
I made it by dissolving some silver in nitric acid I made it by dissolving some silver in nitric acia;
and after making the salt dry, I put it in a soluand ater making the salt ary, put in in a solu-
tion of cyanide of potassa ($\mathrm{K} \mathbf{C y}$) in water. It
It it all comes off again. A. Your method of pre-
paring the solution is a good one; the trouble
doubtless arises from the inefficient manner of
reparing the articles preparing the articles. Different metals require different treatments. As a rule, the first thing to be done is to remove the greasy fllms with which
most objects are covered; this is effected by boilmost objects are covered; this is effected by boil
ing and rubbing in a solution of caustic soda made by boiling about 2 lbs. of common soda crystals with milk of lime, produced by slacking
$1 / 61 b$. of quicklime with hot water, and well stir 18. lib. of quicklime with hot water, and well stir-
ring. After this alkaline bath, the objects should ring. After this alkerine bath, the objects shouln
be washed in several waters or in a running be washed in several waters or in a runing
stream. They are next cleaned in acids, again stream. They are next cleaned in acids, asaing
washed, and then transferred to the depositing solution. Copper, brass, and German silver articles should be immersed in a pickle composed of water 100 parts, oil of vitriol 100 parts, nitric acia speciflc gravity 1.3). 50 parts, hydrochloric acid
parts. It is well also to coat the surface with parts. It is well also. to coat the surface with
thin fllm of mercury. This is effected by means of a solution of 1 oz. mercury in sufficient nitric acid, with three times the quantity of wate
diluted to one gallon; there will form or blackish deposit over the surface, which on brushing softly, gives place to a brilliant coat-
ing of mercury; the object should be trans ing of mercury; the object should be trans
ferred to the depositing cell the instant this is ob tained.
(14) J. McJ. asks: What will remove dried colodion from white cotton, without injuring the it, it will be preferable to a solvent. A. Try steeping the cloth in cold water,and then rubbing to break up the flims.
(15) A. C. says: How thick should the cop per and zine plates be, and of what thickness tioned on p . 234 , vol. 34 ? A. The plates may be made of any convenient thickness. No. 14 or 16 copper wire is used for the connections. 2. How should the zinc be suspended? A. From a wood en or.metallic frame resting on the top of the
(16) G. B. McC. asks: Is it possible for the water to be carried out of the boiler through th pump? We were sawing with a portable stean
mill, and shut down at night with the usual mount of water. In the morning there was n
water in the boiler, and we had to fll her up water in the boiler, and we had to fhe her up
through the safety valve. There is a check valve on the feed pipe close to where the pipe connect
with the boiler. A. It would not be possible, it with the boiler. A. It would not be possibe, in
the check valve were tight, which, judging from the check valve were tight, which, judging f
your account, might not have been the case.

(17) A. H. asks: 1. Please give me full di | rections for making a good condenser for an in- |
| :--- |
| duction coil. $\begin{array}{l}\text { A. Cut tinfoil up into sheets of }\end{array}$ | the desired size, and make of them two piles like the leaves of a book, one pile containing one

more sheet than the other. Upon the extreme end of each of these piles place a tinned wire strip of metal, and by means of a soldering iro run all the edges together so as to make a perfect metallic connection. Cut sheets of paper large enough to allow a margin of at least an inch
round three sides of the foil. The paper should be thin, not highly glazed, and should show no n reaction by redaening when moistened wit thoroughly dry, placed in a vessel of paraffin kept well over its melting point, and then draine sheet by sheet as smoothly as possible. A well baked piece of wood somewhat larger than the paper is laid upon a table, its face soaked with paratin and a sheet or two of paper laid up-
on it; upon this is laid the largest pile with its oldered end projecting, and all 1ts leaves turned back except the lowest one, which is to be rubbed smoothly out on the paper: lay over this two
sheets of the paper, and on top of this the other book of foil, so placed that it lies exactly ove the frist sheet except for the margins at the op-
posite ends ; turn back, as with the other all its posite ends; turn back, as with the other, all its
leaves except the first, and upon this place two eheets of paper ; continue this process, laying back, upon the paper, sheets of foil from the books alternately, and between each foil two sheets of paper. When all are in place, cover
with two or three sheets of paper and a board like the first; the whole should then be compressed by clamps and warmed up to the melting point of parafin, increasing the pressure to drive out
all excess. The flrst board should be provide with a binding screw at each end, and the wire o the corresponding foils should be soldered to it 2. Which will produce the best result, 3 lbs. silikcovered wire No. 37 , or 1 ibs. No. 32 ? A. Thr
pounds of No. 37 will give the longest spark.
(18) A. D. asks: 1. Does the addition of glass to lead make it ring like silver? A. The product isquite sonorous. 2. Will glass combine
with lead? A. Oxide of lead is soluble in molten glass.
(19) L. B. \& Co. asks: What will hold up soapstone in solution? A. Such rocks can only berendered soluble by fusion with alkalies or altreatment with boiling water and acids. The rock (in small quantities) may be partially decomposed and dissolved by means of strong ho
solutions of hydrofuoric and sulphuric acids.
(20) S. asks: What degree of heat is nehammered or drawn out? A. It is generally drawn cold, being previously annealed.
Minerals, etc.-Specimens have been received from the following correspondents,and oxamined, with the results stated
We have received minerals as follows, in packages without names of senders: Two specimens of micaceous red hematite, an excellent ore of
iron. Two specimens of clay of good quality, iron. Two specimens of clay of good quality, a
mixture of finely divided silica and silicate of al umina, which might be employed in polishing, in
making some varieties of vitrified wares etc.-A.
E. -It is augite, and contains some oxide of iron
W. E. T. They -W. E. T.-They are both iron pyrites, and contain no precious metal. - N. V. C.-It is brown

COMMUNICATIONS RECEIVED.

The Editor of the SCIENTific American ac knowledges, with much pleasure, the receipt of
original papers and contributionsupon the follow ing subjects:
On the Centennial Awards. By G. B.
On Sound. By J. A. F.
On Foul Air in Wells.
On the Moon. By J. D.
On Cutting speeds. By T.J. B.
On Trisecting an Angle. By J. McM.
On Smoky Chimneys. By F. G. w.
Also inquiries and answers from the following

HINTS TO CORRESPONDENTS.

Correspondents whose inquiries fail to appear may conclude that, for good reasons, the Editor declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, when initials
only are given, are thrown into the waste basket only are given, are thrown into the waste baske,
as it would fill half of our paper to prict them all; but we generally take pleasure in answering briefly by mail, if the writer's address is given.
Hundreds of inquiries analogous to the following are sent: " Who sells paraffin? Who sells gutta percha? Who sells crude India rubber? Who sells proprietary stamps. Who ser sthe best an
tronomical telescopes? roid barometer?", All such personal inquiries are printed, as will be observed, in the column of "Business and Personal." Which is specially set apart for that purpose, subject to the charge
mentioned at the head of that column. Almost mentioned at the head of that column. Almost
any desired information can in this way be expeany desired inform
vitiously obtained

[OFFICIAL.]

INDEX OF INVENTIONS

Letters Patent of the United States were Granted in the Week Ending October 17, 1876. and each bearing that date.
[Those marked (r) are relisued patents.]
A complete copy of any patent in the annexed 1 Het, nclum
 Adding machine, J. H. Mears. Advertising ribbon rccl, H. J. R. Rice
Agricultural

Apple parer, J. D. Seagrave.
Ash sifter, A. M. Ketchum.
Bale tle, A. A. G. Goldsmum
Bale tie, manufacture of
Band-cutting shears, s. D. D. D. Drake
Base urning stove, Dwyer \& Carter
Bed Belts, cutting and punching, A. L. Binckley Bill file, J. o. Clay
Billarard table attachment, collende
Blacking distributer, D. G. Roll
Bottle and cup stopper, C. Newm.
Botte faucet, w. \& R. Bentley
Bougte, Fowler, Smither, \& Alle
Bracelet. P . J. Cullithan,
Breast tran.

Burglar alarm, J. F. Steen
Butter ildsh, E. G. Cate.

Calculator, N. L. Larsen.....
Candie lamp, F. I. Howar
Car axle bearing, Frame \& Scot
Car couphng, F. . F. Whe Whe
Car starter, L. R. Sharp.
C.
Car safety appliance, etc..

Chlmney top and vent11
Churn, A. G. Walton.

Clothes pounder, J. Russell.

Coffee and tea pot, I. G. C.
Coffre pot, E . B. Manning.

Coton and corn planter, etc... W. Scott.
Cotton, device for plcking, R. A. Cutuft
Cotton har vester, Stoddard \& Herndon.
Cotton press, Davis \& Whtt
Cotton seed drill, H. Steck
Cracle, A. Woodward.

Cultivator, c. C. .. Hentriey
cultivator, E. Pratt (\mathbf{r}).

Cutter heads, balancing revolving, A. Hall
Desk and sewing machnne cover, A. Cunningha
Desk attachment for chars
Dlamonds, cuttIng, T. F. Tully.,
Die and shoe for quartz mulls, Bart
Die and shoe for quartz mills, Bartol \& Louzarde
Dissinfecting water closest, etc., E. Howard....
Domestic distillingapparatus, T. L. Lynch.......
Domestic distillingappara
Drain trap, E. G. Banner

ज

Dusting brush, L. Hobolth......................... 188,	Thill coupling, J. W. Anderson.................. 188,244
Dyeing apparatus, D. Allen........................ 188,	Three horse equalizer, T. Hoadley................ 188,396
Ear muftier, W. Abbott............................ 188,	Tongue support for wagons, I. N. Harbaugh..... 188,392
Earth auger, C. D. Pterce.......................... 188,467	Torch, M. Saulson................................ 188,322
Egg carriers, forming, L	Toy combination,
Embroldering attachment, I. M. R	Trace carrier. J. D. Hobbs........................ 188,268
Emery wheels, etc., factng. T. A. Richa	Try square, J. Essex............................... 188,887
Emery wheels, toolfor facing, T. A. Ric	Tubing, making metal, J. B. Root ..188.327, 188,328, 188,329
Envelope, E. D. Dougherty	Tuck marker and creaser, J. T. Sterrett......... 188,388
Excavator and dumping	Variable cut-off, B. Brazelle....................... 188,446
Exercising machine, F. and J. Ha	Variable sign, L. Niclander........................ 183,414
Extension table silde, S. B. Alex	Ventilating cars, J. Loughl
Fare reg1 ter, w. J. Stillman	Ventilating cowl, E. G. Banner................... 188,278
Fastening for horse blankets, J. Hall............... 188, 391	Ventilator, W. H. Maxield....................... 188,317
Feed water - eater, c. Hew	Wagon seat awning, D. Jannopoulo.............. 189,899
Feed water heater, I. P. Magoo	Wardrobe bedstead, F. Caulier................... 188,67
Fence, w. Stacy	Wash board, J. S. Garner.................. 183,294
Fence wire to posts, M.	Washing machine, C. Fitch...................... 188,289
Filtering liquids, T. R. St	Washing machine, C. Stone....................... 188,452
Finger nall trimmer, w	Water meter, S. Plymale.......................... 188,116
Flood fence, Marshall \& Sallar..................... 188	Water pipe, etc., T. Warhurst.............. 188,448
Flute, L. C. Southar	Whip button, W, O. Daniels...................... 183,449
Fretght car, E. D Shaffer.......................... 188 ,	Window screen, B. F. Cunnin
Frult basket, J. H. Mar	Wire-barbing tool, J. Dobbs...................... 1 8,379
Game card, R. T. sitterle	Wrench, C. M. Jordan........................... 188,266
Gearplaner, A. Haniucr.	
Grinder for bridges, J. Fos	DESIGNS PATENTED.
Glass tool, J. Lamont.......................... . 19.	9,590.-Bracelets.-H. Carisile, Jr., Philladel
Glassware, making, Adams \&	9,591.-Spoons.-H. W. Hirschfeld, West Meri
Glassware, making hollow, T. B.	9,592.-Floor Oil Cloths.-J. Meyer,Lansingburg,N. Y.
Grain drill, w. H. Naum	
Grin grinder and scourer, L. O. Stevens......... 183,399	
Grappling projectlle, Greenough \& Morrison...... 188,457	
Grate, G. W. Geisecnhainer...................... 183,456	
Hanger for blinds or doors, \mathbf{E}.	Un each Caveat.
Harrow, flexible, J. A. An	1n each Trade
Harvesterdropper,	')n fling each application for a Patent (17 yeart)..... 815
Hatan clothes rack, I. W. Heysi	In Issuing each original Patent....................8\%20
Hay and cotton, press, J. Lytch.................... 189,313	nn appeal to Examinera-in-Chef..................... 810
Hay loader, T. Elliott.	Un appeal to Commissloner of Patenta...................120
Health lift, J. P.)n application for Reissue. \qquad 830
Hecl machine, boot, z. M. Lan	On filing a Disclaimer.
Hinge, C. E. L. Holmes.	on an application for De
Hinge for glass articles, B. Bakew	.n application for Design (7 years)..................... 815
Horseshocs, making, S. Espach................... 188	
Hor seshocs, making J. A.	
Hose spanner, J. E. Taber.	THE VALIDITY
Hydraulic motor, w. $\mathbf{0}$. W	We recommend to every pers
Joints, apparatus for contrac	
Kitchen commode, W.	
Lamp, T. W. Brown	
Lamp chlmney cleaner, D. T. Freese............. ${ }^{183}$	by a competent party, and to have a research
Lathe dog, J. McGeorge \qquad 183, Leather-cutting machine,etc.,Schoffeld \& Stevens 183,	by a competent party, and to have a research made in the Patent Office to see what the condi-
Leg and foot rest, T. Weddle..................... 183	rt was when the patent was issued.
Lightning rod, R. S. Cole........ 188	uld also see that the clarme are so worded
Lightuing rod, C. H. Sm	
Lightning rod connection, \mathbf{C}	his patent was issued; and it is still motiol
Liquid measure, J. F. Judy	
Lock stop box, T. Birch....	
Lubricating compound, P. Sweeney.............. 183	
Masonic badge, J. McCoy......................... 188,318	rough the Scientific American Patent Agency,
	by giving the date of the patent and stating the
Milk cooler, Eddy \& Foster......................... 188,	
Milliag tool. J. M. smith.......................... 188,272	dr
Mllistone exhaust, G. L. H. Behrns............... 183,248	

preparing G. H. Bla

at box, R . Hermance
Nut 1,ck, D. R. Pratt
oll chandelier, H. wellington Ore concentrator, F. E. Mills. Paint bruash binder, L. Tanney
Paper collar, F. Wixson
Psisenger
Petroleum lamp, w. Dette.
Piano action, M. C. Knabe
Pipe couping, w. T. Ny han.............
Planing ina : ine guil e, tait \& Prindle
Plaster celling, cornice, etc., T. P. Clear
Plow, G. T. Hedrick.
Plow fender, W. A. Barro
Plumber's olug, W. A Butier
Pocket check book, , e. E. Wraring, J
Prin ing on metal, etc., L. B. Smith
Prin ing on metal, etc., L. B. Smith.
Printing telegraph, A: A. Knu
Puanp valve, \mathbf{C} Roth
Ranp valre, C Riltches, J. s. willi........................
Rawhide, treating, S. A. Darrach........
Refining petroleum, etc., D. M. Lamb.
Refrigeration, process of, R. H. Lucas
Revolving firc aric, G. W. Schofeld (r)
Rocking chair, P. Born.
Safety pin, L. D. White
Sawmill dog, Smith \& Mey
School desk, M Lancaster
Screw propeller, Crossley \& French.
Screw-threading machine
Sewer trap, T. Guerin
Sewing furs, machine for. C. F. Knoch...
, B. Moc Sign, \mathbf{w}. Draper
oda water apparatus, w.
Soda water, making, w. Gee.
pinning framo, spindle, Atc. . J. Essex. pring bed bottom, G. Huntingto station indicator, A. L. \& J. S Waggone tave blanks, trimming, D. Rait........... team cooking apparatus, c. R. Gllbert
Steam engine governor, W. Yates.
Steam packing, T. Colvin
tock car, B. Martin..
top, steam governor, E. R Hub dard
love plpe attachment, G. H. Hancock
ove pipe joint, R. Mainer.....
traw cutter, J. Q. Crosby
triping implement, Carr, Relf, \& Ares
Sulky plow, G. Curkendall.
Tar burner, gas retorta, J............

qalvertisememts

Inalde Page, each insertion - - - 75 centa a inne Back Pase, each insertion -- - 81.00 a line.
ngravings may head advertisements at the same rave per une. oy measurement. as the letter press. Adver
Hsements must oe recosved at publication affce as earlz Hsements must be reccived at publication af
as Mrdaay morning to appear in next tisule

TRRL LETTRR CVTTING-Seals \& Prespes, Brands,Sten
cils, \&c. Prices low. Steel Stamp Works, N. Hav.,Ct
A GENTS WANTED-To sell the Champion and
CHAMPION
ELEVATORS.
Wivinuquaw iviz B5@隹
TAKE WE:
अCTITPS
or Moving Car
on Sidings.
Pat. Oct. 10, 1876.

R. Bo STATE \& CO.. Sprineflold. Ohio. $^{\text {St }}$

Last Chance.

Buy roor Tickets

 Now!!DRAWING POSITIVELY

All communtcations, orders for Tlocets, and applica General Mannaser. Pradsiort.

 IT PAYS to sell our Ruberryand Prnting Stamp \$100. REWARD. 8100

Pond's Tools.
ENGINE LATHES, PLANERE, DRILLS, \&CC
Sand for Catalogua, DAANID W. Po ND,
OCIUB w. FOND, Worceater, Mase.

Wood-Working Machinery,

EAGLEFOOT LATHES

APPLETONS'

American Cyclopædia.

NEW REVISED EDITION.

Entirely rewritten by the ablest writers ON EVERY SUBJECT
 Hexand Endrainge and Mapo.

The Fork originally publiehed under the title of the

The American Cyclopædia.
Wuthn the Rast tei years the progreag of disacovery

GEOGRAPHICAL KNOWLEDGE
ave been made by the Indefatigahle explorers of Arrica
The great political revolutions of the last decade, with

eranent and adthentic histori. In preparing the present edition for the pres, it thas
accoringly veen the alm of the edior to bring down

> OLITICAL AND HISTORICAL EVENT
 No en oft the originali stereotype plates ha :e been used

PRINTED ON NEW TYPE,

Porming, in fact, a new Cyclopodia, with the same plan
and compasa its receecessor, but whith f far rrater ecunary ex enditure, and with such muprovements in
s cumposition as uave been suggested by longer ex

the illustrations,

Whichare introduced for the first time in the presen

ARTISTIC EXCELLENCE.
 THE AMERICAN CYCLOPedia is NOW COMPlete

FIVE HUNDRED THOUSAND DOLLARS
chasive of paper, printing, and binding.

PRICE AND STYLE OF BINDING In extra Cloth, per vol.......... n Half Turkey Morocco, per vol. I Haif Rusia, extra gilt, per vol In Full Russia, per vol.

THE BEST CYCLOP EDIA EVER PUBLISHED ne that will supersede all others, is now offered to the
ublic at a very moderate price,less than one cent a page

ing of ten cents per da

 line there will be sumething subbstantial saved, and

> UNIVERSAL LIBRARY in itself,

CiJ Specimen pages of THE AMERICAN CYCLOgrati son application.
sear sons whating to subscribe, can recelve the whole
set one
delivery sulting one or more volumestat any tumet the
D. APPLETTON \& CO., Pnblishers.

Engraving on Wood,

 Steel Castings,

 The Complete Practical Machinist ind A select list of books on Steam and the Steam Engine,
 urnish his amenny Carey baird \& CO.. AIR COMPRESSORS FOR ALEL PURPOSES. THE NORWALE IRON WORES CO.,
§rientific gmericau.

L. SMITH HOBART,
 JOHN C. MOSS,
 D. I. CARSON,

RELIEF PLATES IN HARD TYPE METAL

For Printing

All Kinds of Pictorial Illustrations

In Books, Newspapers, and Catalogues.
These plates are an excellent substitute for wood cuts, being used in precisely the me way, giving equally good results for much less money. ELECTROTYPES AND STEREOTYPES are made from them in the usual manner.

We offer special advantages to

Manufacturers and Inventors,

as our mechanical work is of the best quality and rapidly executed
Our plates are used satisfactorily in the SCIENTIFIC AMERICAN and the SCI. ENTIFIC AMERICAN SUPPLEMENT, and by Manufacturers and Publishers in all parts of the country.

$$
{ }^{*} \mathrm{COPY}
$$

We work direct only from Prints or properly prepared Pen and Ink Drawings. Any other copy may be furnished, such as Photographs, Pencil Sketches, or the articles themselves, in which cases we have drawings made in the best manner by our own trained draughtsmen. Photographs, taken in the ordinary way, are suitable, and they may be of any size. We make the plates larger or smaller as desired.

We are glad to have customers prepare their own Pen Drawings, and append one or two

DIRECTIONSTOARTISTS:

The most important requisite in Drawings for our use is that every line shall be perfectly black:

The paper or drawing board must be ohite and smooth.
For fine work drawings should be made double the scale of the plate desired.
Carefully observing thesa main points, the artist has the utmost freedom in his choice of styles of drawing.

For further information and fine samples of our work, send stamp for current number of our illustrated Quarterly Circular.

Please say where you savo this.
PHOTO-EN GRAVING CO.,
67 Park Place, New York.

Planing \& Matching.

350
§rientific American.

Adtrethicments.

Back Payo naide nate

 mapravings may head advertisements at conta same rate per une. oy measurement. as the letter press. Ad-vertisements must be received at publication offce as

 CO LEASE-All the lofts and part of the first

 PATENT SCROLL SAWS.

 Bigelow Rngine,
 T Prree of tatuon ons Enenine: ${ }^{2} 10$ to it Send for Illustrated circular
and PrIte LLitu
H. B. BIGLLOW \& co.

TMATENTS

[ESTABLISHED 1846.]
Mnn \& Co.'sPatent Ofices.
The Oldest Agency for soliciting Patenta in the
thirty. fears' EXPERIENOR.
MORE PATENTS have been secured through this
agency, at home and abroad, than through any other in the world.
They empl
They employ as thetr asistants a corps of the most ex-
perlenced men as examiners, specincation writera, and draftrinen that can be found, many of whom have been
selected from the ranks of the Patent offlec. SIXTY THOUSAND inventors have avalled themventions.and procuring their patents.
MUNN \& CO., in conneettion with the pubilcation of
the SCIENTIFIC AMERICAN, continue to examine inentions, confer with inventors, prepare drawinge, speclifcations, and asigignments, attend to flling appliccationg
it the Patent Oullce, paylig the government fees, and watch each case step by step while pending before the ex miner. This is done through their branch office, corner fle ca veats, procure design patents, trademarkg. and re-
issues, attend to rejected cases (prepared by the invento or other attorneys), procure copyrights, attend to interrerences, give written opinions on mattery of infringe-
ment, furnish coples of patents, and, in fact, attend to every branch of
elgn countries.
A special notice is made in the SCIENTIFIC AMERIhe name and residd ans patented through this agency, with ten sold, in part or whole, to persons attracted to the inentican oy such notice.
Germany, Kusela, Prusala, Spain, Portugal, the Britis Colonles, and all other countries where patents are
granted, at prices greatly reduced from former rates. ranted, at prices greatiy reduced from former rate
Send for pamphlet pertaning spectally to foreign patente which states the cost,time granted, and the requlrement country.
Persons desiring any patent issued from 1836 to Novemoer 26, 1867, can be supplied with ofllicial coples at readrawlogs and length of speciflications. Any patent 188ued since November 27, 1887, at which
Ame the Parent O\#tlice commenced printing the and spectifcations, may be had by remitting to this ofA
be furnished for $\$ 1$. above, and scate name of patentee, title of invention, and date of patent.
A pamphlet containing full directions for obtaining
United States patents sent free. a handomely nited States patents sent free. Δ handiomely
bound Reference Book, gllt edges, contalins 140 page and many engravings and tables important to every patentee and mechanic, and is a useful handbook of
ence for everybody. Price 25 cents, mailed free. MURess MONN \& CO., Publishers SCIENTIFIC AMERICAN, BRaNCH opfice-Corner of F and 7 th street

COLD ROLLED

DUC'SIMPROVED
PATENT ELEVATOR BUCKET, For Brevers, FR Flour Mills, Grain
Elevators, Sugar Reliners,
Erc.

THe cheapest and best upright and
 MPORTANT FOR ALL CORPORATIONS AND

H. W.JOHNS' PATENT. spestios

 asbestos paints.
 erings for exposed wood and iron. In pails, kegg and barrel
ASBESTOS STEAM-PIPE AND BOILER
 ASBESTOS STTEAM PACKINC.
Fire-Proof Paints and Coatings, Cements
for Steam-Joints, Acld and Cas Retorts, Leaky Roiss, \&C, Roof Paint,
sheathing and Lining Felts. Asbestos Boards, Paper, Thread, Cloth, \&c.
These articles are ready for use, and can be easily applied
by any one. Send for Samples, Pamphlets, Price Lists, tet. Patentee and Manufacturer, Established 1858.

Machinists' Tools.

ROCK DRILLING MACHINES
AIR COMPNRESSORS
manufactured by BurleichRock Drill Co.
send for pamphlet. FITCHBURGMASS.
Brayton Reaay Motor.
 Penna Ready Motor Co.,

WITH "6ALR SPACEO TMPROVETENT

 chfinery Merchants. Est'd 1866 .
LONDN, ENSLAND, and BERLIN, GERMANY.

NEWSPAPER FILE.

MONN \& COBU.,
Publishers gomintitio ammiona.

The Scientific American REFERENCR BOOK
A Bound Book of 144 Pages, for 25 c.

 fi. United States Copyright Law
 \% Geometry
 9. Horse Power,-SImple and Plain rules for Calcu-
iating the Horse Power of steam Engines and Streams
of Water.

MUNT of the country, and of the undersigned. Sent
aall on recelpt of the price.
Scientific American Office. 37 Park Row, Now
Working Models
And Experimental Machnery, Metal or Wood, made
order by
J.F. WESkNER, 62 Center St., N. Y.

 HE UNION IRON MILLS, Pittsourgh, Pa- The attention of Engineers and A Archltectrali IB Called

 Todd \& Rafferty Machine $\mathbf{C o}$.

 Professor huxley in america.-Ful

W ANTED-A Mechanical Draughtsman thor-
 L thes, Planers, Shapers, Drills,

PORTLANDCEMENT

Mill Furnishing Works

 Portl nd and Keene's Cement.

THE TANITE CO., EMERY WHEELSAND CRADERS.

B TRARDUS' PATENT UNIVERSAL ECCEN-

The Standard-Best Stock-Finest Finishd. ARTHUR BROWN \& CO. Fisherville, N.H.

 HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.

 J. B. PIIRECE, SOCOJ.

आumple

SCIENTIFIC AMERICAN, For 1877.
THE MOST POPOLAR GCIENTIFIC PAPER
IF THE WORLD.
THIRTY-SECOND YEAR.
VOLUME XXXVI.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN beg to announce that on the frrst day of January,
187π, a new volume commences. It will continue to be the aim of the publishers to render the con tents of the new volume more attractive and use ul than any of its predecessors.

To the Mechanic and Manufacturer No person engaged in any of the mechanical purITIC Anerioas ix to ten engravings of new machines and inven Hon. nterests of Popular Science, the Mechanic Arts Manufactures,Inventions, Agrnculture,Commerce and the industrial pursuits generally; and it is valable and instrucuve not only in the Workshop and Manufactory, but also in the Househola, th ontains hundreds of Notes, Receipts, and Surges ons and Advice, by Practical Writers, for Work ing Men and Kmployers, in all the various arte.

TERMS OF SUBSCRIPIION.
One copy of the Scientific American will be PAID, to any subscriber in the United States o Canada, on receipt of three dollars and twenty cents One extra copl
One extra copy of the Scientific American will be supplied gratis for every club of five subscriber copy. Postage free.
The Scientific American Supplement A weekly paper, uniform in size with the SCIEN afic Amgrican, but a distinct publication. It contains working drawings of engineering works, and elaborate treatises on every branch of Scienc nd Mechanics, by eminent wrters, at home and abroad. An illustrated cover protects the hand Ingle copies 10 cents.
One copy of the scra opy of the SCiEntific American Supplement wil e sent for one year, postage prepaia, to any sub of seven Dollars by the publishers.
The safest way to remit is by Postal-Order oratt, or Express. Money carefully placed ressed, seldom goes astray; but it is at the sen der's risk. Address all letters and make all or ders, drafts, etc., payable to

MUNN \& CO.
37 PARK ROW, NEW YORK

