a WeEkly Journal of practical niformation, art, science, mechanics, chemistry, and manufactures.

$\underset{\text { [NEW SERIES.] }}{\text { Vol. XXXV.--NO. }}$.
NEW YORK, OCTOBER 28, 1876.

IMPROVED MACHINE FOR STRINGING TOBACCO LEAVEs. \mid that that tool may be adapted to the work of a milling ma-
We illustrate herewith a new foot power apparatus by which tobacco leaves can be rapidly pushed upon a string, and also along a rod or wire to which the cord serves to secure them. The arrangement is such that the leaves can be strung as rapidly as two persons can present them from opposite sides in front of the needle.
The needle, A, which is shown detached in the foreground rests in notches on inclined projections above the table, with its point projecting over a cavity, B, in the its point projecting a a cavity, in the bed. It is confined against being pushed back by the shoulders formed upon it as shown. A spring, C, bears on the point, and a spring, D, on the body, of the needle between the inclined projections. The string is attached to the head and also to the rod, E, the further end of the latter being secured in a standard not exhibited in the engraving. Fis a fork, pushed between which and the point of the needle the leaves are placed. By means of the treadle and crank mechanism beneath the table, the pusher is caused to move forward, thus forcing the leaves upon the needle, which is lifted by the leaves as they pass out of the notches in which it rests. The springs then force the needle back into the notches; and the pusher, continuing its motion, carries the leaves upon the string, then descends, passes back under the table, and resumes its original position, ready to push forward a new supply of leaves. By presenting the leaves to the pusher, alternately from opposite sides, they are made to hang on each side of the rod until the string is full. The end of the cord is then fastened to the rod, the latter with its load is removed, and a new rod and string are adjusted.
The device is simple and labor-saving, and will doubtless greatly facilitate work where extensive crops of tobacco are to be prepared for drying, etc. tobacco are to be prepared Patented through the Scientific American Patent Agency, |rectangular sides, which is applied to the lathe centers and August 29, 1876. For further information relative to sale of patent or regarding royalties, address the inventor, Mr. Louis Strasser, 317 South Washington avenue, Columbus, 0.

IMPROVED MILLING ATTACHMENT FOR LATHES.
We illustrate herewith an ingenious invention, the object of which is to increase the capabilities of the lathe in order chine. There are many shops where the last named imple ment would be of much assistance, but yet is not so fre quently required as to warrant its purchase. In such cases the present device offers both an economical and a conve nient mode of supplying the need; and as it includes an ad justable bed plate, it besides furnishes an effective adjunc the lathe itself.
The apparatus consists of a swinging frame, A, having

held by a clamp screw in the slot of the standard. The tan gent screw admits of nice adjustment of the frame, and de fines the position of the latter and that of the milling cut ter at the exact hight required.
The frame carries the arbor, D , to which the cutter is ap plied, the arbor being retained at one end in a bearing in the frame, and at the other by a pointed screw center rigidly held in position by a jam nut. It is revolved by a gear wheel at its end, engaging with a gear wheel of the lathe mandrel.
Work is fed to the cutter by means of the solid bed plateand feed screw shown. The plate moves on a guide plate clamped to the lathe carriage, and is adjustable to any angle up to 45°.
The automatic feed of the lathe and the range afforded in the direction of the lathe bed facilitate the milling-off of plane surfaces, and enable the lathe to do the work of a small planer. Instead of using the bed plate for small work, a suit able vise or work holder may be clamped to the tool post. Several devices for this purpose are known to mechanics; bu when this attachment is used, they may be made more simple and substantial, as the hight of the cutter is varied and not that of the work.
By withdrawing the back center of the lathe, and relaxing the clamping nut beneath the bed, the whole milling arrange ment may be removed at once. The device is now operation at the Centennial Exposition, in Machinery Hall, section B 4, column 28.
Patented through the Scientific Ameri can Patent Agency, August 29, 1876. For further particulars relative to sale of rights or of patent, address the inventor, Mr. Wm. Main, Jr., Columbia, S. C.

Inventive Honors.-A medal of the解 adjusted by means of a slotted arc-shaped standard, B. The which the Society of Arts, London, has accepted the trustee latter is secured to the lathe shears by a base part fitted to ship. It is to be awarded every fifth year "for any discovethe lathe and a clamping arrangement. It is removed from ry, invention, or newly devised method for obviating or mathe machine with the milling attachment when not required terially diminishing any risk to life, limb, or health, inci for use. The extension of one arm of the swinging frame dental to any industrial occupation, and not previously cais clamped to the stand by a set screw, and is secured at the pable of being so obviated or diminished by any known and desired angle by the tangent screw, C, that turns in a socket ${ }_{\text {available means." The first award will be in May, } 1877 .}$

\$rientific Gegmericau.

HETABLIBHED 1846.

MUNN \& CO., Editors and Proprietors.
 PUBLISHED WEERLIY 4 T
 NO. 87 PARK ROW, NEW YORK.

A. e. beact.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year. postage tncluded.
One copy, silx months, poostage tinclude

Over ten coples, same rate each, postage nccluded.
tri The postage is payable in advance by t then
scriber then recelves the paper free of charge.
scriber then receives the paper free of charge.
Nota.-Persons subscribing will please to glve their full names, and Post
offle and State address, plainly written. In case of changing residence state former address, as well as glve the new one. No changes can be made unless the former address 18 given.

Scientific American Supplement.
from the Scirntific Ampricas,
A distinct paper from the Scientific amprican, but of the same size one year by mail............... TERMS.
Soinntifio Ame
Soirntifio A
Single Coptes
Single Copes.. 10
The safest way to remit is by dratt, postal order, or registered letter. Address MUNN \& Co.. 97 Park Row, N. Y.
Subscriptions recelved and single coptes of either paper sold by all VOLUME XXXV., No. 18. [New Series.] Thirty-first Year.

NEW YORK, SATURDAY, OCTOBER 28, 1876.

THE SCIENTIFIC AMERICAN SUPPLEMENT. Vol. 11., No. 44. With 49 IILustrations.
TABLE OF CONTENTB.

 V. LEESONS IN MECHANICAL DRAWING, by Professor MACCord,

ViIL. MISCELLANEOUS.-BBographical sketch of James B. Eads, C. E.
The scientife American suppiement

munn a CO., Publishrrbs,

GOME EXTINCT AMERICAN ANIMALS

When the theory of evolution began to displace the old theory of specific creation, its opponents were wont to ask triumphantly for missing links. If species are the result of gradual development by progressive variation, they said, we ought to find an abundance of intermediate forms: where re they?
The advocates of evolution could only reply: They will appear when sought for. Darwin even ventured the pro phecy that in course of time links would be found connec ting the extremely specialized one-toed horse with the nor mal four and five toed mammals. The readers of the Scien tific american know how completely the prophecy has ar fulfiled in the numerous and increasingly specialize during the tertiory period of geology. At the begining of the period the four-toed orohippus was most like the horse that was to be, though it exhibited many unhorselike char cteristics. From that time down to the present the chain development is complete, the precursors of the hors steadily growing more and more horselike in head, and foot and general structure of body and limb. In the middle ter tiary, the mesohippus had but three toes, a slender splint of bone being the only vestige of the lost toe; and in the mio hippus the splint had vanished. Later the three nearly equal toes of the miohippus had become three very unequal toes in the hipparion, the large middle toe being the main i not the entire support of the animal. At the close of the period, the prevailing form was a true horse, in which th dwindled and useless side toes of the hipparion had ceased to exist as toes, appearing only as slender splints under the skin. In the modern horse these splints are sometimes seen, attesting its relationship with the horses of prehistoric times.
Similar, if not as positive, evidence of evolution is norn by the remains of tapirs, rhinoceroses, and otuer hoofed an imals. In eocene times the most prominent of the unequal toed ungulates were the hyrachyus and the palæosyops, the former allied to the lophiodons and tapirs, the latter to the palæotheriums of the European tertiaries. Both these fam lies embraced animals varying in size from a small rhino ceros to a peccary. In the miocene period, these families attained a great development in form, variety, and size; the group becamemore distinctly separated from each other, and some of them possessed remarkably specialized character There were, however, no true tapirs, which afterwards be came so numerous. The ascendant forms of this period wer rhinocerotic, represented by the diceratherum, with its pai of horns side by side on the nose, and the very interesting genus hyracodon, which furnishes a connecting link be tween the palæotheroid animals of the eocene and the true
rhinoceros of the pliocene. The miocene period also prorhinoceros of the pliocene. The miocene period also pro-
duced several species of a more perfect rhinoceros, still duced several species of a more perfect rhinoceros, still
hornless. But more remarkable than any of these, indeed hornless. But more remarkable than any of these, indeed brought to light in the strata of the West, were a number of species of grotesque appearance and gigantic size, resembling the existing rhinoceros in general appearance, but lar ger, some of them approaching nearer to the elephant in ius and length of limb. They have been named titanother died out during the miocene epoch. While they lived they must have played the part of the then extinct uintatherium of the eocene (of which more directly), and that afterwards filled by the mastodons and elephants of later ages.
Very interesting evidence of evolution is also furnished by the equal-toed hoofed animals, represented now by pigs, hippopotami, camels, chevrotains, deer, antelopes, sheep and oxen. Their remains appear but sparingly during the eocene period, but become abundant in the miocene. During this period the first mentioned family were represented chiefly by huge swine-like creatures, some of which ap proached the hippopotamus in size. There was also an al lied four-toed form, more like true pigs; but all the species were of the peccary type. The sole existing survivor of th form on this continent is the South American peccary, ap parently an unmodified remnant of the old miocene fauna. A much more remarkable family was the oreodantidx which began in the later eocene, extended through the mio cene, when they swarmed enormously, dying out in th early pliocene. In nearly all points of structure, they wer
intermediate between ruminants and swine, furnishing intermediate between ruminants and swine, furnishing
complete line of transition between those now widely sepa rated groups. Their remains are found in great abundance both in species and individuals; and a gradual modification corresponding with the chronological position, can be trace from the earlier, more generalized forms to the latest and most specialized: thus affording one of the most complet chains of evidence yet found in favor of a progressive alter through advancing ages.
Exceedingly suggestive, too, is the history of the camel idæ as exhibited in our tertiary strata. Here was apparent ly the original home of this singular group, now represen ted only by the llamas of South America, and the two cam els of the old world. During the middle and later tertiar ages, transitional forms from the more generalized rumi nants-animals increasingly camel-like and llama-like in character-were abundant in North America, whence they probably migrated during the glacial epoch to the presen homes of the existing members of the family, along with horses, tapirs, and peccaries, which disappeared from his country about that time.
Not less interesting is the story told by the remains of those unique eocene monsters to which the names titanothe
rium, uintatherium, dinocera, loxolophodon, and eobasileus
have been given: huge creatures intermediate between the orders represented by the rhinoceros and the elephant Professor Flower compares them to broken piers of th bridge by which the gulf, that now so completely divide he orders of the perissodactyle ungulates and the probos cidea, may have been passed over. They were all elephan like in bulk and general appearance, yet presented a combi nation of characters which made them unlike anything else where known. Their feet were five-toed, their legs straight and massive; their necks longer than the elephant's, and heir small-brained, narrow heads much more like the rhi noceros's than the elephant's. But their distinguished pe culiarity was their frontal armament of three pairs of horns, which, with their enormous size and strength, must have made them formidable indeed. Their end is yet a mystery It has been suggested that at the close of the eocene period they may have migrated to Asia to lay the foundation of that family which first appears in the old world under the mor familiar forms of the typical proboscideans-the elephants, astodons,and mammoths. None of these appear in Americ earlier than the pleiocene period, a long time after they had ecome abundant in the old world.
Among the carnivora which preyed upon the abundant herbivorous fauna of the great plains, forests, and lake re gions of the tertiary ages, not a few furnish extremely cogen vidence of specific evolution. There were among them ferce creatures, larger than wolves (synaplotherum and mes nyx) which presented such a combination of characters that it is impossible to rank them with either of the existing families of the order to which they belong. In some respect they were like dogs, in others they were bear-like; in stil others they were more generalized than any existing mem bers of the order. Then there were several species of hya odon, some larger than any of the European forms, and thers no larger than a fox: "the last survivors of a group otably differing from any now known." In the characte their skulls they stand intermediate between wolves an possums. In the earlier periods, still more generalized types abounded, some of them combining the generic char acteristics of half a dozen of our specialized modern carnj vora.
Per
Perhaps the most remarkable of these comprehensive pes was the tillodontia, which seem to have combined the arteristics of several distinct groups, the carnivors hoofed animals, and the rodents. Some of them w ype, their canines smeil molar teeisors rodent-like. Thei heads were bear-like, their general structure like that of the ungulates, their feet plantigrade. Two distinct forms bounded: one in which the incisors grew from persistent pulps, like the beaver's, the other having all the teeth root Th
The dominent ty of tertiary flesh eaters, however, were arious modifications of felidæ, fierce cats, some of them urpassing our modern lions and tigers in size and strength Chief among them in the miocene age were the saber-toothed igers, which seem to have overrun the whole world abou hat time, and to have lingered in some parts until the hu man period. It is one of the puzzles of palæontology to account for the extinction of this highly specialized type apparently the fittest of all the cat family to win in the struggle for existence. Happily for man they did not sur vive in for

PROSPECT OF NEW GERMAN PATENT LAWS

A correspondent in Berlin sends us the intelligenc that a modification of the present oppressive and illibe al system of German patent law is about to be made that Prince Bismarck has been investigating the code a now existing, has recognized its defects, and will shortly submit to the German Parliament the draft of a new law, he substance of which we give below. As matters now tand, the German patent is practically but little safeguar to the foreign inventor against German piracy, a fact we have stated in a multiplicity of connections. The govern ment itself takes the lead in "adopting" foreign device submitted to its examination under applications for pa tents, and it protects its people when they follow its exam ple. We need go no further than the Centennial Exposi tion to find a striking instance of this in the Krupp guns, wherein is used the Broadwell gas check ring n American invention, and a necessary appendage to al breech-loading cannon. This was submitted to the German government for trial, and was unblushingly appropriated and the inventor virtually told to go about his business The invention is styled the Broadwell ring even in German official reports. Krupp likewise "adopted" the invention and has used it on thousands of guns without paying the in ventor a cent. The same has been the case notably with ther American military inventions.
Of course it needs no argument to show that such a course is not merely detrimental to the interest of foreign nventors, but also highly prejudicial to the best interests of Hermany herself; and of this latter fact the astute Imperia Chancellor has doubtless become fully apprised. The main points of the new law which he suggests are that every in vention, excepting, of course, such as are opposed to law or ood morals, may be patented. Inventors are not bound to givelicences except where such are demanded for the public benefit. The specification must be definite, must be pub lished at a certain time after application, and must embody distinct claims. The first applicant is considered the inven. or, disputes as to originality are to be settled by the courts, and, in obtaining patents, foreigners are placed on he same footing as Germans, with the exception, howe ver
that the former must appoint an attorney or representative in Germany. Patents may be declared void if insufficiently worked in the German Empire. It is considered a proof of such insufficiency if the articles patented are imported into Germany after a qualified person has offered to work the patent within the Empire. All such patents are to be forfeited if the proprietors allow importation without interfering, provided the laws of the respective patentee's native country contain similar ordinances (France, etc.). In all other respects, there is no special proof of working necessary. Patents are to last fifteen years, and in certain levied. Prior publication prevents the grant of a patent, the patent right is transferable by deed or will, divided or undivided. A special court is to be provided for patent suits. Pated. A special court is to be provided for patent suits. Pat-
ent objects are to be marked, as under the American law. ent objects are to be marked, as under the American law.
Patents may be declared void if the invention is insufficientPatents may be declared void if the invention is insufficient-
ly specified, if the foreign patentee maintains no German ly specified, if the foreign patentee maintains no German
representative, if taxes are not paid, or if the patent can be representative, if taxes are not paid, or if the patent can be
proved to have been void from the beginning. There are sonie proved to have been void from the beginning. There are sonle
other, minor provisions, but the above sufficiently indicate the scope and character of the law, which, so far as Americans ar concerned, is but little mprovement on the present system. Of course the complete text is necessary before a just opinion of the provisions as a whole can reached, and we should prefer some experience in its working before hazarding judgment as to its fairness and efficacy as regards foreign inventors. The clauses which require inventors to " give licenses when demanded for the public benefit," those relating to working in the Empire, and the offer by " a qualified person" to do so in the event of the non-compliance of the inventor, seem to open the way to wide constructions adverse to foreigners, and virtually to a continuance of the present injustice. The letter of the law may, it is true, change; but when such constructions are possible, and not only this, but, as past experience shows, have been the rule in (rer many, it is not unreasonable to believe that those who in terpret the law will be guided therein by the light of precedents.

PROGRESS OF THE MISSISSIPPI RIVER JETTIES.

We have held so firm an opinion that a triumphant suc cess a waited the carrying out of Captain Eads' plans, for opening the Mississippi river to the commerce of the world that to read the engineer's reports of the splendid progress of the work is but to learn of the fulfilment of confident ex pectations. The latter report, dated August 18, is now be-
fore us, and the results noted must certainly be gratifying fore us, and the results noted must certainly be gratifying
to the whole country. The channel between the jetties, we are told, is constantly increasing, and the jetties themselves are built up above mean low tide, and for a great length above average high tide. The last survey, made July 27 , shows a channel extending down 11,800 feet from the upper end of the jetties, and within only 250 feet of the deep waters of the Gulf, having an average width of about 350 feet, in which all soundings are 20 feet or more in depth. The line of deepest soundings through the length of 24 miles averaged over 26 feet, and many single soundings showed over 40 feet. Some idea of the progress of the erosion going on between the jetties may be inferred from the fact that the 20 feet channel, existing on June 17, had increased in average width nearly 100 feet throughout its entire length in the forty days between that date and the last survey
Captain Eads reviews, in some detail, various objections which the opponents of his project have urged, and devotes himself more especially to the assertion that the earth washed out of the channel would merely form a new bar outside the jetties, and thus render access as difficult as ever. To settle this matter, he had soundings made in radial thus rom the end of the jeties; and co like series of sound ings made in 1875, he finds that, instead of a bar being formed, there has been actually excavated, out of an area 1,100 feet square immediately in front of the jetties (which area must first be covered with deposit before a re-formation of a bar can occur) a mass of earth equal to 68,400 wagon loads. And this aggregate deepening has occurred while nearly $3,000,000$ cubic yards of earth have been taken up,
from the bar between the jetties, by the river current, in from the bar between the jetties, by the river current, in
excess of the ordinary burden of sediment, and transported excess of the ordinary burden of sediment, and transported
over this area out into the Gulf of Mexico. If the mass had been deposited over the area mentioned, it would have covered the space to the depth of about 18 feet. In fine, i_{t} is conclusively proved that a general deepening has occurred in 490,000 square yards of the area in front of the jetties. comprising the outer slope of the bar and the track of the river discharge, and thus the report of bar advance and
shoaling in front of the jetties is shown to be without any shoaling in front of the jetties is shown to be without any
real foundation. Captian Eads admits that this favorable phenomenon of deepening immediately in front of the phenomenon of deepening immediately in front of the
jetties was unexpected to all the advocates of his sysjetties was unexpected to all the advocates of his sys-
tem, and he ascribes it to the sea current which is induced tem, and he ascribes it to the sea current which is induced
by the prevailing winds, which blow almost constantly from petween the northeast and southeast. The current resulting is driven westwardly beneath the river discharge, and excavates more room for itself as the volume from the jetties becomes gradually stronger. Captain Eads reports in conclusion "In seventeen months after the passage of the act, and
within fourteen months from the commencement of the
work, the jetties have solved the problem presented at the work, the jetties have solved the problem presented at the
mouth of the river. In their unfinished condition, they have withstood with but trifling injury two very severe storms, one surpassing in violence any known in the locality for many years; they have demonstrated the entire ability
the delta formation safely to sustain the works necessary
ontrol the river discharge; they have not been overturned by mud lumps, nor swallowed up in quicksands, nor under mined by the river current: and although largely over 3,000,
000 cubic yards of earth have been swept out from between them into the Gulf, and the channel across the bar has been deepened from eight or nine to twenty-one feet, no evidence of a re-formation of the bar have yet to justify the belief that
any extension of them will be necessary."

STEAM ENGINE SLIDE VALVES.

Some of our correspondents seem to have a difficulty in deciding as to the comparative merits of engines with single slide valves, and engines with separate cut-off valves Take the following letter as a specimen:
"Can you explain clearly and definitely the difference in
action between an engine with a single slide valve and one action between an engine with a single slide valve and one
having two slide valves, one being a cut-off valve, there be ing a throttle in the steam pipe? And what are the advantages of the more modern cut-off engines, in which the gov information in any book and none of the men in our shop seem to have precise information upon it."
If, with a single slide valve,sufficient steam lap is given to the valve to enable it to cut off the steam earlier than when the piston has traveled about three quarters of its stroke, the exhaust becames cramped at the cylinder exhaust port, as explained in volume XXXII, page 101. Hence, to economize fuel by using the steam expansively during a greater portion of the stroke, the cut-off valves were added; and at the same time, to avoid the loss of steam due to long steam passages, the latter were placed at the ends instead of in the middle of the steam chest. This necessitated the employment of two steam valves and two cut-off valves, it being considered that the power required to operate the valves was more than compensated for by the steam saved by reason of the short ports.
The placing of the throttle valve in the steam pipe had the following defects: In the first place, the action of governor takes place after the error which it is intended to emedy has actually occurred : or, in other words, the speed of the engine must be greater than it is intended to be be fore the governor balls will rise and correct the evil. So that
there is an element of time between the acceleration of the speed of the engine and the diminution of the steam supply by the action of the governor and throttle valve. Now in rder that the initial pressure of the steam supplied to the cylinder shall be as near that of the boiler as possible, a supply of steam is provided close to the cylinder, that is to say, in the steam chest; and when the engine is running at her proper speed, the pressure of this steam approximatesto hat in the boiler; and if the engine speed increases and the there is nevertheless a supply of steam at full pressure which has passed the throttle, and is already in the steam which has passed the throttle, and is already in the steam of the governor
Secondly, the throttle valve, by reducing, at the necessary times, the pressure of the steam in the steam chest, corres-
pondingly reduces its temperature, inducing iu the steam pondingly reduces its temperature, inducing iu the steam
chest a certain amount of condensation of the re-entering chest a certain amount of condensation of the re-entering
full pressure steam,admitted when the throttle valve reopens wide. When, however, the governor is attached to the cut off valve direct, the pressure (and temperature) of the steam in the steam chest is not affected by the governor, and con tinues, therefore, to be nearly that of the boiler. The advantage due to this will perhaps he more readily perceived if we suppose that the throttle valve is the steam pipe, and that, the engine load having suddenlylightened, the throttle partly closes, thus reducing the pressure of the steam in the steam chest and cylinder. If, then, the engine load uddenly augments, and the throttle opens wide, the inflow ing steam is required to restore the pressure in the chest be-
fore it can restore it in the cylinder. In other words, the pace requiring its steam pressure to be increased is the contents of the steam chest as well as of that part of the cylnder in open communication with the steam chest.
The action of a governor attached directly to the cut-off valve is that, so soon as the engine load lightens, the supply of steam to the engine cylinder is lessened by cutting it off earlier in the stroke: and there is hence a direct relation existing, at all times, between the engine duty and the consumption of steam, the engine speed being reduced by the extra degree of expansion employed, instead of by wire drawing the steam. In addition to these advantages, most
of the modern cut-off devices are given 2. motion which of the modern cut-off devices are given ${ }^{2}$. motion which
opens and closes the steam ports very suddenly, inducing a opens and closes the steam ports very suddenly, inducing a
greater initial pressure of steam in the cylinder and obtain ing a more sharply defined point of cut-off.

MORE CENTENNIAL AWARDS.

Another lengthy list of Centennial awards has been published, and the New York Times has still better ground for its witty suggestion that people will before long begin to idea that the true mark of distinction lies in failing to ob tain any jndicial notice whatever. Meanwhile it is amusing to notice the efforts which many of the successful exhibit ors, and most especially the sewing machine and piano men, are making to convince the public that each and every one of them obtained the first and best and highest premium. Four piano firms are lavishly advertising the fact, and rein-
forcing their assertions with extracts from the judges' reforcing their assertions with extracts from the judges' re-
ports, which quotations, when considered together, show that the judges avoided an obvious dilemma by characteriz. ing all the pianos as excellent, as doubtless they were, and leaving the rival makers to wrangle over their grammars and dictionaries in determining the exact comparative sig-
nification of the high sounding adjectives employed. Of
course (and every one who has taken the trouble to compre no " first premiums," and it is only uselessly to infer ignor once on the part of the public to blazon forth any claim to such. The regulations of the Centennial Commission on the subject are as follows: "Fourth: Reports and awards shall be based upon inherent and comparative merit. The elements of merit shall be held to include considerations relating to originality, invention, discovery, utility, quality, skill, workmanship, fitness for the purpose intended, adaptation to public wants, economy, and cost. Fifth : Each report will be delivered to the Centennial Commission as soon as completed for final award and publication. Sixth: Award will finally be decreed by the United States Centennial Com mission, and will consist of a diploma with a uniform bronze medal and a special report of the judges on the sub ect of the award."
The cardinal object of the system is to avoid gradation The judges simply write reports on exhibits which they deem commendable, and the Centennial Commission there upon decides which out of the exhibits so reported upon ar entitled to the medal and diploma. From the length of the lists, it is safe to believe that few if any of the objects com mended by the judges were denied the distinction : and in quiry among several exhibitors in this vicinity reveals the urther fact that, in most cases, those who did not receive udicial notice and a report owe it to their own neglect and misapprehension in not entering for competition, or in failing to send in the required description to the judges, or in some other
Exposition.
We do not think that any one will regard the medals and We do not think that any one will regard the medals and
diplomas as of any especial importance. Some system of diplomas as of any especial importance. Some system of
the kind had to be devised, else exhibitors would be dissat the kind had to be devised, else exhibitors would be dissat
isfied at being denied their usual stimulus. The defects of isfied at being denied their usual stimulus. The defects of
the old anonymous jury system, with its multifarious gold the old anonymous jury system, with its multifarious gol
and silver medals, are well known, and the present plan was adopted as a better substitute. It gives everybody a premi um, and that is excellent, and likely to cause universal rratification. The real distinction, however, lies in the re ports; and when an exhibitor receives a document signed by such experts as Dr. John Anderson, or Professor Reuleaux or Dr. Nordenskjold, or Captain Eads, all of whom are judges besides many other eminent gentlemen, pointing out the merits of his device, showing wherein it excels, and thus lending the weight of their high authority in his support then he has something worth any number of meaningless medais; and if he fails to publish that report, and to adver ise the fact that he has received it, and the object he re eived it for, over the whole land, he simply neglects his est interests and throws away the greatest benefit which the Centennial Exposition can secure to him. And this we
strongly advise our readers to do : Do not claim "first prestrongly advise our readers to do: Do not claim " first pre
miums," for that is nonsense; but procure a copy of the re miums," for that is nonsense ; but procure a copy of the re ish it along with such a description of the invention tha the public may see what has been accomplished, and what the accomplishment has earned.
We give below some further names of manufacturers and inventors well known to our readers, who have received fa vorable reports and awards: H. W. Johns, for asbestos and its adaptations to roofing, paint making, engine packing boiler covering, cement, etc. ; Dixon Crucible Company for graphitic crucibles; Morris, Tasker \& Co., gas works ma chinery ; Charles Pratt \& Co., petroleum products; Genera M. C. Meigs, for hydrodioptric light ; Odorless Excavating Company, for cesspool cleaning machine ; W. D. Andrews \& Brother,for centrifugal pumps; Lathrop Anti-Friction Com pany, for lubricant; Jerome Wheelock for automatic cut off engine ; George B. Brayton, for hydrocarbon engine; and Professor R. H. Thurston, for metal-testing machine.

The fish culturists who have recently been in session a the Centennial Exposition treated themselves, during their stay in Philadelphia, to a fish dinner, which is certainly ex traordinary and unique in its way. The bill of fare em braced fifty-eight different kinds of fish, and in its entirety is much too long for publication here. Some of the delica cies, however,are remarkable. Under the head of hors d'auvre froids, (the menu, by the way, is organized with the utmos elaboration) we find Norwegian pluck fish, Portuguese con ger eel, and Spanish conger eel with tomatoes, Turkish botar goes or mullet roes, Japanese shake or dried salmon, cray
fish from the Cape of Good Hope, French tunny fish, Chin ese white and black shark fore guese sword fish and squid, Russian caviar, Chinese dried fish maws, and, most astonishing of all, "desiccated octopus eggs." Noted scientists are honored by having their names applied to the various sauces. Thus we have filet of English soles ic la Buckland, sheepsheads, Agassiz sauce, aspic of eels a la Huxley, and bisque of lobster, Seth Green style. It was a memorable feast, and taxed the culinary skill of the cooks at the Centennial to the utmost. One particular dish seems to have puzzled even the most ingenious cheff and that was kanten (Japanese seaweed) \grave{a} la Sekizawa
Akekio. The aid of the Japanese cook in the employ of Akekio. The aid of the Japanese cook in the employ of
the Japanese Commission was at last invoked, and he proved equal to its toothsome preparation.

AN agricultural society in Massachusetts, desiring to en courage tree planting and the re-foresting of poor lands in that State, have offered prizes for the best plantations of larch, pine, ash, and other trees suited to different localities and soils. The prizes range in amount from $\$ 400$ to $\$ 1000$

MUSICAL BUILDING BLOCKS.

An ingenious method for teaching music in a graphic manner has been patented by Mr. Herman Eckhardt, of Columbus, Ohio, through the Scientific American Patent Agency, September 5 , 1876. It is a toy or game, by which almost any piece of music of a certain number of bars may be set up to be played.
In the engraving, A, Fig. 1, represents a clef block, that is equal in length to the hight of the staff and the added spaces above and below the staff. The clef block, A, con-
tains the G clef, with the lines and spaces numbered, to gether with the names of the notes upon the lines and spaces, and other information, on one side, and the bass clef, etc., on the other side. The clef block, A, also forms the rest or support, against which the other blocks the rest or support, against which the other blocks
are placed. The different musical notes, rests, characters, and signs are placed on blocks of varying sizes, ters, and signs are placed on blocks of varying sizes,
proportioned to the duration of the same-the cubical proportioned to the duration of the same-the cubical
blocks, B, containing whole and half notes, and whole blocks, B, containing whole and half notes, and whole
and half rests, on lines and spaces; the semi-cubical and half rests, on lines and spaces; the semi-cubical
blocks, C , quarter notes and rests on lines and spaces; blocks, C, quarter notes and rests on lines and spaces;
and the quarter blocks, D, eighth and sixteenth notes and rests on lines and spaces, and all the other musical characters, as sharps, Hlats, naturals, dots, etc. The blocks, B C D, are provided with black edge lines, a, that form the lines of the staff in setting up the music, some of the sides remaining without signs or edge lines, to serve to fill up the spaces above and below the staff. The measures are indicated by means of thin strips, D', Fig. 2, of black or other colored wood, that strips, D, Fig. 2, of black or other colored wood, that of the bars. A number of measure strips, B, are proof the bars. A number of measure strips. B, are pro-
vided, in proportion to the number of blocks and bars vided, in proportion to the number of blocks and bars
that may be set up with the same. Any piece of muthat may be set up with the same. Any piece of mu--
sic may be readily set up by selecting the required notes, rests, and sign blocks, and filling up with the remaining blocks, separating the blocks by the measure strips, in the manner indicated.

A New Safety Explosive Composition.

Messrs. L. de Soulages and R. Cahuc, of Toulouse France, have patented through the Scientific American Patent Agency, September 19, 1876, a new blasting powder, which is claimed to produce a dynamical efpowder, which is claimed to produce a dynamical ef-
fect superior to the common mining powders and to dynamite, while it combines the advantages of cheap. dynamite, while it combines the advantages of cheap-
ness and non-explosibility in the open air, with a reness and non-explosibility in the open air, with a re-
duced production of smoke and injurious gases in its duced production of smoke and injurious gases in its
explosion, leaving hardly any trace or residue of solid explosion, leaving hardly any trace or residue of solid
deposit of ashes in the bore hole. It consists of nideposit of ashes in the bore hole. It consists of ni-
trate of potash or equivalent salts, sulphur, and soot or lampblack, combined with tanner's bark, sawdust, similar separating ingredients, ground and mixed in suitable proportions. The compound is then mingled with a solution of sulphate of iron, and boiled until the mass becomes entirely liquid, with the parts so combined as to form a uniform black paste. This, when dried, produces a powder of a blackish color, and of a density of about $0 \cdot 6$. It may be stored for a considerable length of time without undergoing the least alteration or deterioration.
the least alteration or deterioration.
In the atmospheric air the powder takes fire and burns In the atmospheric air the powder takes fire and burns
like any other inflammable body brought in contact with an like any other inflammable body brought in contact with an
ignited body or a flame of sufficient intensity, producing no shock or explosion whatever. Neither atmospheric electricity, nor shocks of any kind, have any action on the powder, which explodes only when firmly tamped or compressed in the bore hole, and ignited, like the ordinary mining powder, by means of a mining fuse.

IMPROVED BALE HOOP TIGHTENER.

We have had several letters from cotton press owners and others, asking for an invention which will pull together the ends of cotton bale bands while the bale is in the press, so that when the pressure is removed the bale will not expand. The object sought, of course, is to save room and consequently the cost of storage and freight. The present invention is apparently in response to this demand. In order to strain the hook around the bale, the inventors employ a lever with a forked claw and a hook, H, the former to engage the hook, A, behind its shoulders, and the latter to engage in one of the holes of the part, E, and draw them together in the manner indicated in the engraving. The hook is connected to the lever, so that it can be shifted toward and from the claw end as the resistance varies. This connection is preferably made by a yoked end of the hook, in which the lever is slipped, so that it drops into
the notches, K, to be held the required distance from the end.
This device was patented through the Scientific American Patent Agency, September 5, 1876, by day, it had risen to 150°; and on the seventh, combustion Messrs. Thomas C. Knowles and James P. Derden, of Vienna, La.

Spontaneous Combustion of Charcoal.
The late Mr. Braidwood, superintendent of the London Fire Brigade, England,remarks that lampllack and charcoal, when the smallest quantity of oil gains access to them, are more inflanumable than sawdust and the vegetable and animal textiles, and should not be admitted among ships' stores.

ECKHARDT'S MUSICAL BUILDING BLOCKS.

MUSICAI BUILDING BLOCK.

 currence we are by this time quite familiar. The same observer, it appears, is also aware of the fact that the pulverization of the charcoal is not absolutely indispensable for such ignition to ensue, for he adds, at the conclusion of his of charcoal is not so quick as with oxygnd charcoal, and hence the spontaneous combustion of stick charcoal does not occur so often." Mr. Hatfield, in a paper containing "Observations on the Circumstances producing Ignition in Charcoal at Atmospheric Temperatures," published in Charcoal at Atmospheric Temperatures," publishedin the Philosophical Magazine, states the following: "If twenty or thirty hundred of charcoal, in a state of minute division, be put together in a heap, and left undisturbed, spontaneous combustion generally occurs." He records, in verification of this statement, the following instance: "A quantity of small charcoal was thrown into a heap that covered about ten feet square and four feet deep. In three days
the temperature had increased to 90° Fah., although it was the temperature had increased to 90° Fah., although it was
at first only 57°, that of the surrounding air. On the sixth

had commenced in several places."
Dr. C. T. Jackson, in a communication to the American Academy, gives the following piece of testimony corrobora tive of what has just preceded: "Three times," he remarks, "I have set fire to charcoal at temperatures below that of dental. I was preparing, while at Bangor, Me., for a lecture in which I had occasion to show an artificial volcano. I took a tray filled with gunpowder and laid it on the stove to dry. I then took a paper of pulverized charcoal, such as is sold

The kinds of wood generally used for the manufacture of The kinds of wood generally used for the manufacture of
charcoal for gunpowder are the black dogwood, the wilcharcoal for gunpowder are the black dogwood, the wil-
low, and the alder. These varieties are all well adapted for the purpose, though for the best brands of sporting powder the dogwood is said to be preferable. The wood is converted into charcoal by heating it in iron cylinders. After the charcoal is removed from these vessels, it is placed in iron coolers provided with tightly fitting lids, and allowed to stand for some hours until quite cool. It is then sent to the mill to be ground, and is afterwards mixed with the other ingredients for gunpowder. With reference now to this process, Professor F. Hargreaves vouches that there are many instances recorded where the charcoal has taken fire

by apothecaries for tooth powder, the charcoal being wrapped in white paper, and placed it on top of the gunpowder that was being dried upon the top of the stove. Having occasion to go out, I took off the paper of charcoal and laid it on the table. When I came back, in about twenty minutes, I observed the paper smoking. The charcoal was completely consumed. During all this time the gunpowder remained on the stove unexploded.
' My next observation was this: While at work in my laboratory, I had occasion to use a piece of charcoal for blowpipe experiments. I went down into my cellar, and brought pose a iece of light, fine, round charcoal suited for that pur damp. I laid it upon the top of a column stove to dry, directly beside a tin pan containing water, which was not boiling and never did boil there. ook the charcoal off the stove and laid it on the table A short time afterwards, I discovered that it was on
fire all through its mass. I laid it aside and it burned fire all through its mass. I laid it aside and it burned
entirely to ashes . . . I repeated the experiment entirely to ashes .-. I repeated the experiment
again intentionally, watching it carefully, and with again intentionally, watching it carefully, and with quoted is not difficult to find. The charcoal possesses wonderful porosity and great power for occluding gases. This absorptive quality is supplemented by a species of selective power: in virtue of which, it absorbs oxygen with much more avidity and in much greater quantity than nitrogen. The enormous condensation which gas suffers by absorption into the pores of the charcoal is attended with the liberation of a quantity of sensible heat that is the equivalent of the work the atoms have accomplished: while simultaneously, the eminent non-conducting property of the charcoal hastens the period of active combustion by preventing the dissipation of the heat thus evolved, and concentrating it upon the porous mass.-Polytech nic Reviero.

Mineral and vegetable Waxes

Mineral waxes are hydrocarbons, often crystalliza ble, and differing from each other in their tempera ture of fusion. They are frequently derived from resinous trees buried in peat beds, and rarely from lignites or coal formations. The principal variety used industrially is ozokerit, sometimes called natural paraffin. It is less dense than water, of a waxy luster, and in one direction presents a conchoidal fracture and in one direction presents a conchoidal fracture, brownish green by reflected light or yellowish brown or red by transmitted light. Powdered, it is a yellow ish white. It is soft, flexible, cuts like wax, and sof tens at a low temperature. The odor is aromatic, and tion also electrifies it negatively. It is fusible into a clear oily liquid, and burns with a bright flame. It is soluble entirely in turpentine and naphtha, more or less in ether, and slightly so in boiling alcohol, when the material separates in crystalline state on cooling. It is unattackable by sulphuric acid.
Ozokerit is found in the Caucasus, in England, and in Austria. In Moldavia, it is directly employed for illumina tion, being used in gas making, and in the manufacture of candles. A factory in Frankfort on the Oder prepares the material under the name of ceresine, and produces over 100,000 lbs. yearly. Ozokerit, in purified form, is largely used by perfumers and in pharmacy in place of beeswax as it hinders medicaments from becoming rancid.

A similar substance, now but little employed, is hatch etin or mineral adipocere. This is of a yellowish white color, has a mother-of-pearl luster, is very soft and is of about the consistence of spermaceti. It is found in Belgium Moravia, Bohemia, Wales, and England. It is scarcely at tacked by nitric acid, but is completely carbonized by sulphuric acid. It is slightly soluble in boiling alcohol and in ether
leaving a viscous and inodorous residue.
Other mineral waxes are neft-gil, found in the island of Tschelekan in the Caspian Sea, near naphtha sources, and baikerite from the vicinity of Lake Baikal. These are fossil waxes, or more probably bitu mens, as are also kir and elaterite. The latter, often termed elastic bitumen or mi neral caoutchouc, is of less density than water, of a blackish color, and is elastic like rubber. It has been found in this country, near Woodbury, Conn., and in many parts of Great Britain.
There is a large number of vegetable waxes but slightly known. Some are se creted by insects, which absorb the sap of various plants. Others are derived from the exudations of palm trees. The Copernicia cerifera, a Brazilian tree, bears leaves from the glands of which carnauba wax is obtained. The commerce in this materia
exceeds $2,000,000 \mathrm{lbs}$. yearly. In the Andes there exists exceeds $2,000,000 \mathrm{lbs}$. yearly. In the Andes there exists
the ceroxylon andicola, which also yields a material known as palm wax. $-L a$ Nature.

On a high bluff near the Iowa river are some wonderful Indian mounds, with the remains of circular floors made of baked clay and the trunks of trees, covered with earth. Underneath the earth are human boues, copper axes with han
dles of polished horn and petrified wood, stone hammers, dles of polished horn and petrified wood, stone hammers, polished, made of a hard reddish stone.

IMPROVED YARN REEL AND TESTER.

The necessity for close attention to the details of cost of manufacturing, both in the matter of stock and labor, has recently received much consideration. This is especially the case in the cotton and woolen manufacture. The two engravings published herewith exhibit very important means towards greater economy in the spinning of cotton and wool, beside keeping the manufacturer informed of the actual quality of the work produced.

Fig. 1 shows an improved yarn reel of new design, par ticularly adapted for use in reeling fine cotton, linen, wool en, or worsted yarns. The reel is one and a half yards in circumference, and connects with a disk graduated into 120 parts, indicating the number of yards reeled from each spindle. An automatic feed motion lays the yarn flat upon the reel, securing accurate and uniform measurement, and con-

Fig. 2. sequently correct results as to stretch, strength, and num bering.

Fig. 2 exhibits a yarn tester
 which is designed to test both the strength and stretch of yarns. A knot, or one seventh of a hank or skein, of yarn is first reeled and then removed from the reel and placed upon the pins, g and h. The crank, i, is then turned to the right until the yarn breaks. The in dex point, d, will then show the amount of stretch in inches and eighths, and the upper index, c, will give also the ex act breaking weight in lbs avoirdupois. The machine is adapted for a breaking weight of 100 lbs. or less, which ge nerally includes any number of yarn above 20 . If any num ber should exceed 100 lbs. in strength, it would be necessary to reel off only half of the amount mentioned above, which would equal 60 yards, and then multiply the weight by 2 . The advantages resulting from the use of such a reel and tester will be at once appreciated by those familiar with this branc of production.
Further information can be obtained from the Brown \& Sharpe Manufacturing Company, Providence, R. I., who are ny, Providence, R. I., who
the inventors and makers.

SAMPLE-WEIGHING SCALE.

The sample-weighing scale illustrated herewith is designed to meet a want often felt where a large number of small articles or parts are to be computed, or large quantities are to be estimated from the weight of samples. One pound can be weighed by ten thousandths. Screws, samples

of paper, drugs, colors, etc., can be accurately weighed. It also answers for a postal scale. The finished parts are nickel plated, and the stand and base are neatly japanned and or namented. The scoop is detached for convenience in use. Further particulars will be furnished by the Brown \& Sharpe Manufacturing Company, Providence. R. I.

A system of weather observations is now applied to the whole coast of Australia. All the stations are connected by telegraph

PATENT GAS HEATER.

The simple contrivance illustrated herewith at once explains and commends itself to those who require a ready means of heating and tempering small tools. It is intended to take the place of a forge in heating and tempering machinery and jewelers' small tools, beside being capable of use for domestic purposes, such as a nurse lamp, etc. A

piece of steel half an inch in diameter can be heated sufficiently to harden in about six minutes. It does not heat to a degree that will injure the quality of the steel, and tools heated by it will be tougher than when heated in a forge in the usual way. Darling, Brown, \& Sharpe, Providence, R I., are the makers of this article.

FISHHOOKS, JETTIES, AND MISCELLANEOUS DEVICES.

We select this week from Knight's " Mechanical Diction ary"* a number of interesting engravings relating to sub jects which it is scarcely possible to classify under any one general heading. In Fig. 1 is represented a number of ingenious

FISH ноокs.

a and b are two forms of spring hook in which a mousing piece engages the barb. c and d are two positions of the same hook, one set and the other sprung. e is intended to give the hook a square presentation, and prevent glancing of the hook in striking. f has a tripping hook which strike from above, and supplements the primary hook. g has a spiral spring shank h has a spring hook attached to th snood, which affords the means of attaching a bait or other snood, which affords the means of attaching a bait or other
hook. i has an additional hook, which is sprung, and thus hook. i has an additional hook, which is sprung, and thus
supplements the primary hook. j has spiral vanes, so as to supplements the primary hook. j has spiral vanes, so as to
revolve it when drawn through the water in trolling. $k l$ revolve it when drawn through the water in trolling. kl
shows two forms-on different scales-of a spring hook whose claws are thrown down upon the fish which tamper with the bait.
In making the hooks, straight wires of the proper size and length are flattened at one end, and the barb formed by single blow with a chisel: The point having been sharpened, the proper curve or twist is given to the hook; the soft iron is then case-hardened, to give it the stiffness and elasticity of steel, by immersion in hot animal charcoal. The hooks

Fig. 1.

are subsequently brightened by friction, and tempered. In the hook-making machine, the wire is run from a reel into the machine, and on the other side the fish hook drops out completed, with the exception that it must be tempered and colored. After the wire reaches a certain point, the requisite length is clipped off. The next operation barbs it; the other end is flattened. It passes around the revolving dies, whose teeth, formed like the notched spikes of a wheel, catch it, and bear it from one operation to the next until it is smoothed and filed, when it passes between rollers that give it the prescribed twist and turn, and it drops into the receiver awaiting it.

THE FISH WAY,
shown in Fig. 2, is a device to enable fish to ascend a fall.

Fig. 2

Fish-Way.
It may consist of a series of steps over which the water descends, turning a fall into a cascade, and sometimes known s a fish ladder; or it may consist of a chute with a sinuous rack for diminishing the velocity and assisting the passage of the fish to the level above the dam. In the example, i is an inclined chute having a series of chambers containing comparatively still water, the current being confined to a relatively smaller space.
The success with which Captain Eads is meeting with his construction of willow jetties, at the delta of the Mississipp river, will render interesting the various other forms of JEtTiEs
presented in Fig. 3. Although limited to no particular form, very common construction of jetty is a timber framing, A,

Fig 3.

secured by piles or loaded with rubble. It is often built in the manner of a sea wall having a double row of sheeting piles, the interval filled in with rubble or béton. The latter is excellent. The term jetty is also applied to expensive and solid erections of masonry, and to hards or landing places for boats.
Telford's jetty, B, at the eastern arm of Kingstown harbor, Ireland, is an example of a jetty made of rubble, with a track and parapet of coursed masonry. The foreshore, in most works of this kind, is faced with patched stones, that is, an outer layer in which the undressed stones are not laid at random, but deposited end on, beginning at the lower at random, but deposited end on, beginning at the lower
edge, and so caused to bind and become mutually sustaining edge, and so caused to bind and become mutually sustaining
Jetties of masonry, C, have usually ashlar facings and eartings of rubble or concrete. The walls filled in with béton will be nearly equal to a solid mass; in fact, béton it self makes a wall of such tenacity that its strength is equal to a homogeneous block. When the ashlar masonry is filled in with earth, it requires a bond ; when this is masonry, the counterforts take the form of division walls, which thus reduce the jetty to a series of compartments. The stones of these horizontal bonding courses should be cramped and joggled together, and the top carefully paved to prevent infiltration.
The southern jetty, D, of the port of Havre is exposed to violent storms and a powerful littoral current. It exemplifies the ashlar facing, horizontal bonding walls, rubble fillng, paving, parapets, aprons of piles and pierre-perdue to protect the foundations from the repercussion of the waves, all executed in a style which has provoked the admiration of those who have understandingly examined it.
felting.
The mechanical features of the operation of felting are derived from the jagged character of the edges of some animal fibers which enables them to pass in one direction, that is, root first, but opposes their withdrawal. When the fibers are pressed together by suitable means, the projections interlock, and a compact fabric is produced.

In Fig. 4 are represented several

felting fibers

as seen under the microscope. a is a fiber of Saxony wool, somewhat less than $1 \frac{100}{}$ of an inch in diameter. f is rabbit hair, and b beaver down, which has a diameter of about $\frac{1}{0} \overline{0}$ of an inch. c, d, and e are muskrat, nutria, and hare fur. They all show the jagged edges which confer upon them. the characteristic felting quality.
M. Du Chaillu, the well known African explorer, describes a
primitive easy chair, devised by Obindji, a chieftain of a tribe living in the Gaboon country. This dusky
 potentate is represented,enjoying a siesta in the offspring of his inventive genius, in Fig. 5. The chair is nothing more than a slab of wood which

$$
\text { Fig } 5 .
$$

rests on an inclined four-legged frame, and is held from sliding by blocks at its lower end.
Figs. 6 and 7 relate to

bASKET MAKING

For the finer kinds of baskets, osier is the material most commonly used, but for a coarser article strips of split hirkory, oak, or black ash, are frequently employed (Fig. 6.)

Osiers are prepared by soaking in water, after which they are split, cleaned, and bleached in the sun. A number of rows are laid crosswise to begin the bottom of the basket, and are woven together by a spiral weft of wands, which pass alternately over and under the radial wands, to which others are added as the size increases. The wands are bent up to form the sides, and other rods are woven in and out between them, until the basket is made of the required

hight. The edge or brim is finished by turning down the projecting ends of the ribs, whereby the whole is firmly and compactly united. Handles are formed by forcing two or three osiers, sharpened at the ends and cut to the proper length, down the weaving of the sides and close together. They are pinned fast near the edge and afterwards bound or plaited.

Hydrophobia and Intemperance

Mr. L. N. Noyes, of Boston, Mass., sends us the following, from the Brooklyn Argus
"Hydrophobia, in the dog, I am satisfied, is the result of the animal having been inoculated by biting some person theory may appear, there is not the least question but that the facts will bear it out. First, hydrophobia and mania a potu are identical in most physical conditions-subjects dead of either disease presenting nearly the same autopsy. Secof a dog suffering from rabies, bear the same chemical
analysis. Third, the entire system of the patient suffering analysis. Third, the entire system of the patient suffering
from alcoholic madness is so poisoned that rapid inoculation will follow any contact with the virus of the blood. Fourth the bite of a man in an alcoholic fit has been known to result in hydrophobia. As to the application of these facts: First, with the canine race, hydrophobia is never spontaneous; with man, the disease is known to be. Second, there is not
a case on record of a dog having died of hydrophobia that a case on record of a dog having died of hydrophobia that
will not admit of proof-if the facts can be ascertained - that the dog had previously bitten an intoxicated person, or had been attacked by some other animal suffering from a like inoculation.

George Will. Johnston, Superintendent Brooklyn Society for Prevention of Cruelty to Animals. We think the statements here madeare without founda tion: In regard to the first assertion, that hydrophobia and mania a potu, are identical, by which we presume the writer means that similar symptoms are developed in both, we would refer him to the works of the best authorities, in which he will find that they differ in the most important respects. That the autopsy in both cases is similar is quite natural since there are no well marked anatomical lesions in either; nor are there in hydrocyanic acid poisoning, in either; nor are there in hydrocyanic acid poisoning,
tetanus, etc. Secondly, as to the saliva of a man dying of tetanus, etc. Secondly, as to the saliva of a man dying of
delirium tremens, etc.: we do not fully understand what the writer means. If it is that the same abnormal principles are found in the saliva of both cases, such as would produce hydrophobia if introduced into the healthy circulation, we can only reply that this could only be proved by a number of experiments, which have not, as far as we are aware, ever been made. We almost daily hear of cases where a nose, an ear, a cheek, or a finger is bitten off in a drunken broil, without hydrophobia resulting. Thirdly, there is no virus of the blood in alcoholism. According to Flint, Sr., Minuyer, Watson, Reynolds, Dunglison, and many others, the etiology of hydrophobia is not known while it never appears in the human subject without inoculation in the correct sense of the word, and not as Mr. John ston uses it. The last deduction is too absurd to demand attention.

Correspondence.

The Centennial Trial of Steam Fire Engines.
To the Editor of the Scientific American
Will you please correct an error in your otherwise admi rable account of the trial of steam fire engines at the Cen ennial?
The judges were assisted by Mr. Wellington Leer, as ex pert, not by a Mr. Wellington as you printed it. Mr. Lee is well known as a member of the firm of Lee \& Larned,who, after Latta of Cincinnati, were the pioneers in steam fire engines, and first made them an established success. He is on all accounts the most competent man living to fill the ex edingly difficult position of expert assistant to the judges. Newark, N. J. (harles T. Porter.

To Measure the width of a River.

To the Editor of the Scientific American:
Let A B represent the line of survey (the course being at any point of the compass), striking the river bank at B. Mark a tree or bush on the opposite bank, in line with A B , Then lay off $25,40,50$, or any number of feet from B to D, at right angles with the line $A B$: from D to E lay off the same distance as from B to D; then from E, walk, at right angles to BE and parallel to line A B, until you reach point

F , which is in line with points C and D . Then measure from E to F, which will be the same distance as from B to C, or the width of the stream.
A. S. Lehman.

Fort Cameron, Utah Ter
a.

[For the scientific American.] ROM THE MACHINE TOOLS AT THE CENTENNIAL.

It is somewhat remarkable that, while the exhibits in Machinery Hall show the advancement in special manufactures and processes, yet, in the tools and appliances for producing the machinery, but little progress seems to have been made during the last thirty years. If we examine the loom, the printing press, and the woodworking machinery, our advance is marked by complete and successful applications of new and original principles. But if we turn to the lathe and the planing, drilling and slotting machines, in fact to any of the tools used in the construction of machines, we shall find that we have reach a platform where we may " rest and be thankful," but beyond which we have appar ently but a small prospect of further progress. If we examine the lathe, and ask ourselves in what broad particular we have improved upon the old Smith, Beacock, and Tannett lathe of thirty or forty years ago, we shall not readily find an answer. We have the same bed, the same cone mandril, the same gear, screw-cutting, and independent feeds, the same cross feed, the same compound rest, the same tail stock, in fact, the same design and general arrangement all through; and with the exception of the introduction of the
niversal chuck, our chucking devices are identical. If we turn to the lathe cutting tools, we shall find that our prac tice has been stationary. In planing machines, we have ad hered to a like general arrangement of parts; and the de partures from old practice are not worth mention. The slight modifications consist in arrangements for a quick return mo tion by means of an extra pulley and belt instead of differ ential gearing, and in the application of an independent res attached to the uprights for planing vertical faces. In plan ing machine cutting tools, we have made no innovation and the only departure from the old time practice has been in the modern plan of taking a finishing cut on cast iron with a broad flat-nosed tool with a very coarse lateral tool wed. In ping tool the entire the entre derign, givg to one macing capacity for uch wider lage wheng head has been made movable upon the lod, and various attachments fo he table have been introduced. But the machines built by Maclear and March, a generation since, had a quick return motion, cone mandrils for circular work, and a vise chuck (as good as any we remember to have seen,except that lately introduced by Thomas \& Co., of this city); whereas we do not know of a modern shaping machine equal in ca pacity to the Nasmyth " puff and dart" machine of thirty ears ago. That machine, which is still extensively used in England upon the edges of armor plates, had a stroke of five inches and made 160 cutting strokes per minute. Referring gain to the various attachments for the table, but very few f them are used for ceneral work. In cutting tools for haping machines, we have no modern innovations what In drilling machines, our prest has to the introduction of multiple machines, adapted to special to the introduction of multiple machines, adapted to special stituting a more marked improvement than in the machines above mentioned; but in the drilling machine pure and simple we have made no substantial progress, except it be in the introduction of the twist drill, which is decidedly a step for ward in drilling fine work. The Maclear and March drilling machines above mentioned were as substantial in their raming, and were provided with self-acting change feed as well as hand feed; for light work a treadle feed was em ployed, leaving both hands free to manipulate the work. In screwing machines, we may justly lay claim to advancement in the introduction of solid dies, and in the use now common of segmental dies fitted to adjustable chucks; so that,while the dies cut the whole thread at one cut, they thus avoid the strain on the sides of the thread, which is inherent in those dies which are adjustable and require to take more than one cut to make a full thread. Another modern improvement is in the dies, which are made to throw open when the thread to be cut is finished, so that the dies do not require to travel back over the thread, a movement which abrades the cutting edges of the die teeth, and also entails a loss of time. We have also added pumps for supplying a more co pious stream of oil to the dies; so that, taken altogether, we have made satisfactory progress, notwithstanding that the tap has maintained its original form, except it be in our hav. ing adopted a standard angle and pitch.
Our greatest degree of progress has been in the milling machine, which has been given a very wide range of useful application during the last thirty years. But milling machines and milling cutters, of the same shape as those at present used, and with self-acting feeds, were employed years ago; but their field of employment was then compara tively limited. In the slotting machine, we know of no substantial improvement made during the last twenty-five years, and but little indeed in a much longer period. The slotter introduced by Sharp, Stewart, and Co., of Manchester, Eng land, about the year 1855, had a box frame, and as complete an arrangement of change speeds and table movements as any exhibited at the Centennial. In boring machines, we have made considerable improvement, especially in the in troduction of those of the horizontal type.
In none of these machines, however, have we succeeded in attaining higher rates of cutting speed and feed than were formerly used. It is only when we turn to special machines that the march of modern progress becomes visible. The Monitor lathe, for example, will produce infinitely more small work than was formerly attainable by any machine worked by one operative. It is, however, scarcely just to term it a lathe, since it is more properly a special machine having definite limits of useful application. The introduc tion of solid emery wheels is another modern improvement greatly facilitating our operations upon hard metals requir ing to be very true, but in no way advancing us in the practice of polishing, for which purpose the wooden wheel, covered with leather and coated with emery, still holds its own oo likewise for many purposes the quick running grindstone has not been displaced by the emery wheel. In polishing processes our progress has been but little, the greatest innovation being in the employment of rag wheels.
In many of our special machines, we have merely enabled the ordinary mechanic to produce as much and as good work as the most expert workman did formerly: and we have lowered the standard of capability of our mechanics in a proportionate degree. This, however, is not in the main to be re gretted, since, having the improved machines, we do not as rule require the expert workmen. The only attendant vil lies in that,though we have greatly enhanced our ability o produce new machines, we have in a partial degree pro duced a less skillful class of workmen to repair them. It is rue that worn ou tparts may be duplicated, but that is not sufficient, for the reason that the new part is of the origina ize, whereas the repaired part requires in a majority of cases to be made sufficiently larger to compensate for the wear in the part to which it is attached. Thus, if a hole is
worn larger and the bolt smaller, a new bolt of the original size will not fit the enlarged hole. There are, furthermore, many classes of work which a skillful workman can fit to gether more quickly or economically with the hammer,chisel, and file than can be done by the aid of machine work; but
to be sufficiently expert to do this, the mechanic requires to to be sufficiently expert to do this, the mechanic requires to
be vastly more skillful than our modern practice enables him to become.
The United States has undoubtedly taken the lead in the application of special machinery for special purposes, and hence possesses the largest proportion of special workmen, that is to say, men having more knowledge as to how piece of work should be done than they have manual o manipulative skill to do it; and it is mainly from this clas of men that our inventors are drawn. The whis whe does not find it difficult to handle and manipulate his work by which it is made or manufactured; while he who finds the existing means of production difficult and tedious begins the existing means of production difficult and tedious begins
at once to think out some better means of producing the same at once to think out some better means of producing the sam
result. And though the difficulties to be overcome may preclude his entire success, he generally attains it in some de gree; while others, taking up that part in which his objec was attained and profiting by his failures, search in a new direction to overcome the obstacles which proved to him al most insuperable. It is from these causes that our triumphs in mechanics have been almost invariably practical. It is a common idea that it is the cost of labor to which we owe the greater part of our inventive progress; but there can be no doubt but that, to the causes here pointed out, we are much more large indebted.
Had it been the undue cost of labor, we should have un doubtedly expected to look to theoretical men and capitalists for the innovations; whereas our inventions have been the productions of practical men, with only a partial manipula tive and mechanical education: of those men, in fact, who experiencing the practical difficulties, set about to avoid them by machine manipulation, leaving it to the theorists to follow, and so cover the principles governing the action of the machine. With the diagrams, formulas, and laws that they produce, the inventor is very frequently lost in as tonishment at beholding the cloud of theoretical considera tions enveloping his successful productions, and innocently though naturally, wonders how he came to devise so simple a machine involving such learned considerations,.of which he had not the slightest knowledge. The American me chanic, in fact, not satisfied with the capacity of the ordinary machine tool, and not having had sufficient experience to wed him to a precise method of operation, sets about to firs make those tools as perfect as possible, and next to supplan them, whenever practicable, by taking the processes in de tail and designing new tools, bringing the appliances for planing, turning, grinding, polishing, and screw cutting to gether in one machine, if necessary; and steadily pursuing lis end, adopting new ideas wherever he could find them profiting by others' failures, and substituting for them his own ideas, which might be successful or otherwise, the lat ter case merely showing the necessity for further experiment Thus every failure becomes a success, inasmuch as it is sign post to a road that was not to be taken, besides being a notice to search in other directions. How far we have pro fited by this practical process will be shown on a future oc casion.

PRACTICAL MECHANISM.

Y Joshua rose

Skcond Series-Number Xilif.
To resume, then, having sawn out our piece of wood for the flange, we plane up one side, and set a pair of com passes to the radius of the required flange, and mark a cir cle upon the piece of wood, and then saw off the corners nearly to the circle. We then true up a facing chuck in the chuck from the back placing them far enourh from th center to avoid their coming into contact with the hole which we shall require to bore in the flange. We then dress off the face of the flange to nearly the required thickdress off the face of the flange to nearly the required thick
ness, using the gouge to rough it out with, and the scraping ness, using the gouge to rough it out with, and the scraping
chisel to finish. It is not necessary to finish right down to the center, but merely down to a diameter somewhat smaller
than the hole in the flange will be. Our next procedure than the hole in the flange will be. Our next procedure
is to mark the size of the hole, which is done by setting the is to mark the size of the hole, which is done by setting the
compasses to the required diameter, and then holding them with one leg resting upon the hand rest ; and by bringing the point into contact with the face of the work, we may describe upon the latter a true circle, somewhat smaller in diameter than that required. This circle will serve as a work to describe a circle of the correct diameter, which wil be done by keeping the compass points at equal distances, one on each side of the circle first described. We must, in the last operation, hold the compass points lightly against the last operation, hold the compass points lightly against
the work until we can see that the line described by one point falls in the same line as that described by the other, and then we may make a deep mark. This method is quite as easy an operation as setting the compasses to the radiu of the hole, and, putting one leg in the center of the work, describing a circle with the other; and this process is also
more exact when the wood is rough. We next take a chisel more exact when the wood is rough. We next take a chisel
of about $\frac{1}{8}$ inch wide, and cut our the hole at one cut by of about $\frac{1}{8}$ inch wide, and cut out the hole at one cut by
forcing the chisel lightly through the thickness of the lange, taking care to cut the hole nearly $\frac{1}{3}$ inch too small, so as to allow of finishing with the diamond point or side tool. The hole being finished, we may turn the outside diameter of the flange with a very sharp gouge, leaving
about $\frac{1}{32}$ inch for finishing, which may be done with the craper. When the scraping chisel, as indeed all scraping tools, is in proper order, a slight burr can be felt on the top
face of the tool, which is caused by oilstoning the beveled face of the tool, which
face of the chisel last.
To form the body of the pattern, we take a piece of timber of sufficient size to make the hub and core prints in one piece ; and with an ax, we hack off the corners so as to save lathe work. We then place it in the lathe between the cen rers, using the fork shown in Fig. 48 as the running center and to drive the piece of wood, and screwing up the The large diameter is turned to its size with the gouge and scraper, using the latter to finish with, and bearing in mind that the wood is apt to become loose between the lathe cen ers by reason of the latter becoming imbedded in th wood; and it is necessary therefore, during the earlier por ion of the turning, to try the back center and screw it up into the work, if necessary. Then, with the skew chisel, we
cut two recesses, as shown in Fig. 96, the distance from

Fig. 96.

A to B being the length of the body or hub of the pattern, and the small diameter of the recess being a little above the
required diameter of the core prints. We next turn down he core prints to the required sizes, and turn the par shown at C, in Fig. 97, to fit the hole tight to the flange

and it will be perceived that, by leaving a longer end out ide of the recess or nick at one end than at the other, we ave left room for the flange, and so kept the core prints of equal length at each end, as shown in Fig. 97. The par that protrudes through the flange will in this case be for the top print, and it is therefore given an excess of taper,
for reasons before explained. The hub or body of the pat for reasons before explained. The hub or body of the pat
tern is also made taper, being a little the smallest at the nd farthest from the flange (A, in Figs. 87 and 96), because this hub, being cast endwise, requires draft to permit it to be extracted easily from the mould.
Having brought our pattern, as nearly as possible, to the equisite size and form with the cutting tools, it is neces ary to consider those final processes which so much add to the appearance and smoothness of pattern work. The firs of these processes is termed sand-papering or glass-paper ner, luring him is a sort of wis work under the imegin ner, luring him on to scamp his an, und bring it all ression hat sand paper will hide the defects and bring it all right, while the fact is nearer the reverse; for let a pattern be
never so truly shaped and turned, if the sand-papering be be injudiciously performed, the sharpness of its outline will be destroyed, and very likely its size and shape be seriously interfered with. It is true that it is scarcely possible to do much damage to large surfaces; but that is merely becaus of the great disproportion that would exist between an erro ngendered by sand-papering and the whole size of the pat tern itself. If we have an inch cube to sand-paper, and should take ${ }_{6}{ }^{1}$ inch more off one side than off another, our rror would amount to the $\frac{1}{64}$ of the whole size of the pat ern; but had the same thing been done upon a 12 inch ube, the error arising therefrom would only amount to the $\frac{1}{6} \overline{8}$ of the whole size of the pattern. Again, to remove $\frac{1}{64}$ from one side of each of these respective cubes, w should have 144 times as much wood to abrade away in the that the difficulties attending the sandpapering of a pattern so as to preserve its true form and size, increase in a two old ratio as the size of pattern diminishes, until at last it ecomes impracticable. Exactly where this point is reached it is not possible to state ; it will, however, vary with the capabilities of the workman, the steadiness of his eye and hand, and the nature and material of the work. It must have happened to many that they have made patterns so mall that they dared not attempt to sand-paper them, and hat they have turned intricate details upon a piece of work which could not be preserved in their sharpness under the brasion of sand paper. While therefore we respect sand paper, let us respect our tools more, and let the pattern o core box, as the case may be, be brought as nearly to th orm required as practicable with the cutting instrument, and then let the sand paper be applied, not by folding it to gether and rubbing it upon the work, but by considering the shape we intend to finish, and preparing a piece of wood to correspond to the shape. Such a piece of wood is called rubber. A flat surface requires a flat rubber, a convex sur ace a concave rubber, and vice versá. Rubbers are made of size suitable to hold in the hand, and, in length range up
heet of sand paper, and that is all that is generally used at time. Turned cylinders make good rubbers, for core boxes that are semi-circular, up to about 3 inches in diameter above that size, the turned rubber becomes clumsy, and a
piece flat on one side and planed to suit the curve is used. puch a piece is shown in Fig. 98. To use it, place one fol

of sand paper only around the rubber ; and applying it to he work, move it over the surface of the work, and across he grain of the timber, if it is possible. If the size of the work is smaller than the rubber, we must take short strokes
so as to be able to move the latter steadily, and not round off the work at and towards the edges. A very good plan where extra care is required, is to either glue the sand-paper to the rubber, or else fasten it with a few tacks. Sand-paper glued to a flat board is very useful for small surfaces; but in this case, we rub the work upon the paper, and not the paper upon the work. The grades of sand paper used upon pattern work range from No. $\frac{1}{2}$ up to No. 2, Nos. 1 and $1 \frac{1}{2}$ being most commonly employed.
The surfaces of the hub or body of our gland pattern being straight in their outline, we sand paper them in the lathe with the paper wrapped once around a flat rubber, applying the paper lightly to the work, and moving it very lowly over the work in the manner in which a file is used We next fasten the flange to the body by gluing it by using finishing nails,or by both. If finishing nails are used, care must be taken to use a bradawl before inserting the nails, for fear of splitting the work.
To make the pattern in the manner shown in Fig. 90, the method of procedure is the same as the above, with the exception that the tapering of the core prints must be vice versu, as in this case the core print the farthest from the flange will be the top one in the mold, and must therefore be given the most taper. And since the body of the pattern will lift with the cope, while the flange wiil remain in the nowel of the flask, when the mold is taken apart (as shown in Fig. 91), flask, when the mold is taken apart (as shown in Fig. 91), place on the body or hub, and must not be left of a tight fit, place on the body or hub, and must not be left of a tight fit, as in the former case. A pattern of the form shown in Fig.
92 may be turned, flange and all, out of a solid piece of wood: or if too large for this, we may plane up a piece for the flange and glue a hub to it; and when the glue is dry, turn up the whole patttern at one chucking in the lathe.

Protection of Buildings from Liphtning.
Professor Clerk Maxtell read an abstract of a paper before the Mathematical and Physical Science Section of the British Association at the recent meeting at Glasgow, in which he stated that those who erected lightning conductors had paid great attention to the upper and lower extremiies of the conductor-having a sharp point above the building and the lower extremity carried into the earth as far as possible. The effect was to tap, or, as it were, to gather the charge by facilitating the discharge between the atmospherc accum ula.ion and the earth. That would cause a greater number of discharges than would have otherwise occurred; but each of them would be smaller than those which would have occurred without a conductor. That arrangement was therefore more for benefit of the surrounding country, and for the relief of the clouds laboring under an accumulation of electricity, than for the protection of the building on which the conductor was erected. What was really wanted was to prevent the possibility of an electric discharge taking place within a certain region. An electrical discharge could not occur between two bodies unless the differ ence of their potentials was sufficiently great compared with the distance between them. If, therefore, they could keep the potentials of all bodies within a certain region equal or nearly equal, no discharge could take place between them. That might be secured by connecting all these bodies ly means of good conductors, such as copper wire ropes. It would, therefore, be sufficient to surround a powder mill with a conducting material, to sheath its roof, walls, and ground floor with a thick sheet of copper, and then no electrical effect could occur within it on account of any thunder torm outside. There would be no need of any earth con nection. They might even place a layer of asphalt between he copper floor and the ground so as to insulate the build ing. If the mill were struck, it would remain charged for some time, and a person standing on the ground outside or ouching the wall might receive a shock, but no electrical effect would be perceived inside even by the most delicate electrometer. A sheathing of copper was by no means necssary in order to prevent any electrical effect taking place Supposing a building was struck by lightning, it was quite sufficient to enclose it with a network of a good conducting ubstance. For instance, if a copper wire were carried round the foundation of a house, up each of the corners and ables, and along the ridges, that would be a sufficient proection for an ordinary building against any thunderstorm n England; but it might be well, to prevent theft, to have it built in the wall, and then it would be necessary to have it connected with some metal, such as lead or zinc, on the oof. It need scarcely be added, said the Professor, that it is not advisable during a thunderstorm to stand on the rool of a house so protected, or to stand on the ground outside to lean against the walls.

IMPROVED ENGINE INDICATOR.

Every engineer who has had occasion to apply the indicator to engines running at a high speed has, doubtless, been made unpleasantly aware of the disturbing effect of the weight of the parts which move with the marking points; for notwithstanding the great improvements which have been effected over the first instruments in the way of reducing the disturbing momentum of these parts, there still remains much room for improvement in the same direction.
Some of the conditions necessary to the best steam econo my are a high boiler pressure, prompt and free induction a quick cut-off, reduced clearance, a high ratio of expansion, quick cut-off, reduced clearance, a high ratio of expansion, and a reasonably high piston speed. But it unfortunately happens that the above conditions are exactly those under which the momentum of the moving parts of the indicator produces its maximum of disturbance. Hence, since the introduction of improvements in automatic cut-off engines, through which engines of that class, owing to their not being subjected to the limitations of speed imposed by "releasing gear" cut-off mechanism, can now be made of any size, however small, and run at any speed, the need of a corresponding improvement in the indicator has become apparent; and to a desire to meet this requirement, the instrument il lustrated herewith owes its origin
Fig. 1 is a perspective view, from which it will be seen that the pencil is inserted directly in the end of the lever, A, the other end of which is pivoted to the vibrating bracket, B, which, being pivoted at C with freedom of movement, allows the path of the pencil to be controlled by the ight link or radius bar, D, which is pivoted at one end to the standard, E, and at the other to the lever, A. These parts are so arranged with reference to each other that the curvature of the path of the end of the bar, D, exactly neutralizes the tendency of the pencil end of the lever, A, to move in a curve, and so that the latter is thus constrained to move in a straight line. The lever, A, having only the pencil to carry, is made only of sufficient strength to give the necessary pressure of the pencil to the paper; and the bar, D, having but a slight duty to perform, is also made extremely light. In fact the weight of the parts is claimed to be, by actual test, less than one third of that of the lightest system, hitherto produced, having a parallel movement.
Fig. 2 is a vertical section of the cylinder, piston, and its connections. F is the piston, the stem, f, of which is short, but is supplemented by a hollow trunk, G, which is screwed on its end, and which, passing through the cap, H, steadies and guides it. The connection, I, which connects the piston with the lever, A, passes down the inside of the trunk and has a head or collar, i, the upper and lower surfaces of which are respectively convex and concave, and are concentric with each other. The concave surface rests on and fits the hemispherical end of an adjustable stud, which is screwed into the end of the piston stem, f, and the upper or convex surface fits and is secured by an internal collarin the trunk, G, the whole forming a universal compensating joint which allows both the lateral play required by the parallel movement, and the axial movement of the head, K (which

Fig. 1.
carries the lever system), by which the pencil is brought in contact with and removed from the paper. The connection I, is pivoted to the lever by a taper steel pin. The head, I^{\prime}, which embraces the lever, is separate from the rod, which is screwed into it and secured by a lock nut, i^{\prime}, which allows the length of the connection to be varied to suit variations in the length of the springs. It will be observed that this arrangement involves but two joints between the piston and the pencil, and these are of a substantial and durable character. The pivots at the ends of the brackets, B, are also taper steel pins.
Fig. 2 also shows a minor improvement in the arrangement of the spring in the paper barrel. The drum, L , which contains it, is covered by a milled edge cover, M, to a hub on which the inner end of the spring is attached, so that, by turning this cover, the tension of the spring may be adjusted as desired and secured by the thumb nut, N , the thread of which is cut right or left, according to the corresponding character of the instrument, so that the force of the spring will always tighten the nut.
A patent was granted through the Scientific American Patent Agency to J. W Thompson, August 31, 1875, and assigned to himself and the Buckeye Engine Company, of Salem, Ohio, to whom all inquiries should be addressed. The above company are also the sole manufacturers of Thompson's patent automatic cut-off engines, an illustrated description of which was published in the Scientific American of January 9, 1875

IMPROVED LEVELING ROD
We illustrate herewith an improved leveling rod, patented

hrough the Scientific American Patent Agency by Mr. G. L. Whitehouse, of Farmington, N. H. A represents one part of the rod, and B the other. A has a dovetail or undercut groove in the back, and B has a tongue, C , corresponding to the groove in form, and being fitted into it. Beween the tongue, C, and the main part of B, is a long slit, D; and a screw stud, E, extends from the tongue out through the back part, and has a clamp nut, F, fitted on it to spring the parts together, and thus clamp them to the part of A be \(\left.\begin{aligned} \& D; and a screw stud, E, extends from the tongue out through

\& he back part, and has a clamp nut, F, fitted on it to spring

\& the parts together, and thus clamp them to the part of A be-\end{aligned} \right\rvert\,\)| magnets, wit |
| :--- |
| $\begin{array}{l}\text { tives in coils } \\ \text { of an electri }\end{array}$ | and insulated copper wire, and by the passag nets, with increased adhesion to the rails.

Fig. 2.

A WHITE-FLOWERED BRAMBLE.

Though rarely seen in gardens, this is one of the most striking of all early flowering shrubs; it was originally discovered in 1822 by Dr. Janes, who found it on the Rocky Mountains, where it grows at considerable elevations. The plant was brought into cultivation, says a correspondent of the English Garden, in Great Britain, by Mr. AndersonHenry, of Hay Lodge, Edinburgh, who raised it from North American seeds, the produce of which first bloomed in May, 1870. Our illustration was prepared from a bush of it 4 feet high, in the Royal Botanic Gardens, Regent's Park, London, where we saw it bearing numerous large white London, where we saw it bearing numer
flowers among serrated trilobate leaves. Its flowers among serrated trilobate leaves. Its
single roselike blossoms are succeeded by reddish purple blackberry-looking fruits, reddish purple blackberry-looking fruits,
which have an agreeable flavor. The plant which have an agreeable flavor. The plant
is perfectly hardy, and is well worth a is perfectly hardy, and is well worth a
place in every choice collection of flowering shrubs; its proper position, however, is unquestionably on the outskirts of plantations or in the wild garden. Like nearly all other species of rubus, it may be readily increased by means of root cuttings.

True Economy of Life.

The true economy of human life looks at ends rather than incidents, and adjusts expenditures to a moral scale of values. De Quincey pictures a woman sailing over the water, awakening out of sleep to find her necklace untied and one end hanging over the stream, while pearl after pearl drops the stream, while pearl after pearl drops from the string beyond her reach; while she clutches at one just falling, another
drops beyond recovery. Our days drop one drops beyond recovery. Our days drop one after another by our carelessness, like pearls from a string, as we sail the sea of
life. Prudence requires a wise husbandlife. Prudence requires a wise husband-
ing of time to see that none of these golding of time to see that none of these gold-
en coins are spent for nothing. The waste of time is a more serious loss than the extravagances against which there is such
loud acclaim.
There are thousands who do nothing but lounge and carouse from morning till midnight-drones in the human hive, who consume and waste the honey that honest workers wear themselves out in making, and insult the day by their dissipation and debauch. There are ten thousand idle, frivolous creatures who do nothing but consume, and waste, and wear what honest hands accumulate, and entice others to live as useless and worthless lives as they do. Were every man and woman honest toilers, all would have an abundance of everything, and half of every day for recreation and culture. The expenditure of a few dollars in matters of taste is a small matter in comparison with the wasting of months and years by thousands who have every advantage society can offer, and exact every privilege it affords as a right.-Philadelphia Commercial List.

THE COCA PLANT.

The habit of chewing the leaves of the coca plant, common among the natives of many parts of South America, has recently been commented on by many medical authorities; and we present herewith an engra ving of a branch of the plant, taken from a specimen in flower of the Royal Botanical Gardens, Kew, En gland. The use of the leaves of this plant as a masticatory is of great antiquity in Peru; indeed, it is said to have originated with the Incas, and at the present time is common tbrough New Grenada, Quito, and Pe ru, and also on the banks of the Rio Negro. The South American Indians always carry with them a little bag of the dried leaves, and a gourd containing finely powdered lime, which is mixed with the leaf before chewing. Used in moderation, coca is said to pleasingly excite the imagination, and it also powerfully stimulates the nervous system. In illustration of this, Dr. Spruce romarks that an Indian, with a supply of his favorite coca leaf, will travel two or three days without food and without showing any desire for sleep. Among reand without showing any desire for sleep. Among re-
cent contributions to the history and effects of this cent contributions to the history and effects of this
plant, we may allude to a paper read before the April plant, we may allude to a paper read before the April
meeting of the Edinburgh Botanical Society, from which meeting of the Edinburgh Botanical Society, from which
it appears that without doubt the leaves of the coca, it appears that without doubt the leaves of the coca,
when rightly prepared and used discreetly, possess the when rightly prepared and used discreetly, possess the
effects ascribed to them by all travelers in Peru since Pöppig was there in 1827, but that their effects are not always precisely the same on different individuals. From experiments conducted by Sir R. Christison, the author of the paper above cited, and those of fourteen other gentlemen who undertook to try the plant at his request, the following conclusions have been arrived at: (1) That, taken in quantities of two drachms by healthy persons, it has no injurious, unpleasant, or suspi cious effect whatever; (2) that in a very few cases this dose of an inferior sample, had no effect at all; (3) that in by much the greater number of instances, and with a fine sample in every case, extreme fatigue was removed and prevented from returning, and that no doubt can exist that, in such persons, its restorative and preventive powers will render protracted exercise easy, without any subsequent harm, so far as the restorative is concerned; (4) that it does not in the end impair the appetite or digestion, although hunger, even after long fasting, is taken away for an hour or two; (5) that the use of it probably does not agree with more than a very moderate use of alcoholic stimulants. At the same time the
paper avoided all reference to the possible medicinal uses of this plant. Similar conclusions have also been arrived at by Professor Bouchardat, of Paris, who considers that its services in therapeutics have been most valuable, almost equal to those of cinchona, and that as a nervous and muscular stimulant it ranks with tea and coffee. On the other hand, evidence is not wanting to show that its effects (like those of tobacco, opium, hemp resin, gunjah or bhang, alcohol, and other vegetable stimulants) are certainly highly injurious when used habitually or in excess. A confirmed conuero, as an habitual chewer is termed, is said to be invariably known by his haggard look, gloomy and solitary habit,

RUBUS DELICIOSUS.

listless inability, and disinclination for any active employ ment. Its use is regarded by Europeans as befitting only the Indians; nevertheless, many whites are addicted to it Dr. Weddell, who inquired very carefully into its effects on the constitution, states, as the result of his observation, th opinion that its habitual use acts on Europeans more preju icially than on the Indians accustomed to it from early aberration of intellect, characterized by hallucinations.
Dr. Mantegazza, says the English Garden, fully confirms the statements of Pöppig, and carefully describes its effects, tating the result of intemperance in its use to be frequent ly confirmed idiocy. The principle to which the effects of the coca leaf is due has been named cocaine; but much re-

ERYTHROXYLON COCA.
(ERYIHROXYION COCA.
mains yet to be done before we can speak withany precision as to the properties and uses of this comparatively modern introduction to the pharmacopœia. The plant is easily culivated in an ordinary plant stove in a compost of fresh fibrous loain, leaf mold, and sand; when growing it requires copious supplies of water at the root, and frequent syringings with tepid water keep down insect pests. Cuttings of both stem and root may be employed for purposes of propagation. There are about seventy other species of erythroxylon, some of which have stimulating qualities, while others furnish a tonic bark somewhat resembling that of cinchona. The bark of one species-e. tuberosum-supplies a reddish dye. The majority of the species are natives of South Ame
rica and the West Indies, but others are found in Madagas car and the Mauritius. In nearly all the species a distinct pale band runs up the center of the back of the leaf, as shown in our engraving; indeed, in some descriptions of the leaf of the coca plant, we find it stated that two veins, in addition to the mid-rib, run parallel to the margin.
The leaves of this plant are used to make an infusion, as few as four or five leaves making drink enough for six per sons. The coca is not to be confounded with the cacao, of the genus theobroma, which furnishes the nuts from which cocoa, chocolate, and the shells used for infusion are made.

Curlositlos of the British Patent

A writer in Chambers' Journal has been examining into the history of the British Patent Office; and he describes many cu rious grants in the early history of the office. Among other facts, the write states that there are four thousand appli cations for patents every year; and that cations for patents every year; and that
the office receives the snug sum of $\$ 750,000$ a year in fees and stamps.
The first patents, issued in the time of James I, were more in the nature of mo nopolies or privileges, for which a consid eration was paid to shrewd Jamie himself The very first patent of all was an exclu sive privilege for drawing, engraving, and publishing maps of London, Westminster Windsor, Bristol, Norwich, Canterbury, Bath, Oxford, and Cambridge. The next was for the privilege of publishing por was for the privilege of publishing por
traits of His Sacred Majesty. The third was for an unexplained group of wonder ful inventions. for plowing land without horses or oxen, making barren land fertile raising water, and constructing boats for swift movement on water.
Many of the patents relating to clothing are singular either for their immediate objects or for the language in which they are
couched. One patent for breeches, at a date when trousers had not yet come much into use,described a mode of cutting ut and making "to do away with all the inconveniences hitherto complained of"-by the aid of elastic springs, morocco elastic supporters, straps, buckles, etc. Anothe " protects trousers from mud," by means of a shield attached to the hinder part of the boot heel, which shield receive the splashed mud. Martha Gibbons, early in the present century, patented "a certain new stay for women and others, called the 'Je ne scais quoi' stay which may be 'padded n any part when required for persons to whom Nature had not been favorable"-probably a euphuism for "flat figures. George Holland patented a mode of " making false or dummy alves in stockings. A famous modiste has an improve ment in ladies' dresses, "rendering the same body ca pable of adapting itself to fit different figures." For those "who cannot bear a ligature round the leg," a patentee has a garter made of steel springs, connected with a silver plate placed in the waistband of the dress. One patent tells of a machine for brushing trousers: a frame work supports a spindle which carries a set of concave brushes; a cylinder of wicker or cane is placed inside the trousers to keep them distended; and the spindle is set rotating by an endless band acting on a beveled pul. ley.
The searchers after a machine for producing perpetual motion-that dreamy fallacy of the middle ages-have not failed to make their appearance in the patent world. In 1859 two Germans, Krause and Rotman, residing at Milwaukee in the United States, sent a letter to "Her Majesty the Queen Victoria, Patent Office, London." Her Majesty most likely did not read it, but the Patent Office folks did. It ran thus: "Your Majesty, we humbly advertise that we find out the perpetual motion, a machine very singular in its construction, but the same time very important by the power it gives. We intend to secure ourselves the patent right for the United to secure ourselves the patent right for the United a reward for the invention, we respectfully ask your a reward for the invention, we respectention? To pre-
Majesty if we may come to show our invention Majesty if we may come to show our invention? To pre-
vent mistake, we humbly beg not to believe any person vent mistake, we humbly beg not to believe any person
without having the original patent of the United States, without having the original
and the copy of this letter.'

From the cradle to the grave, says the writer, patentees take care of us in some way or other. Even Dolly is attended to. One patent among many tells us that dolls hitherto made have never been so constructed as to allow of their being placed in a sitting posture, with the legs bending at and hanging down from the knees", and announces that this important desideratum has now at length been secured, Another inventor gives a rocking motion to dolls' cradles" by an elaborate array of clockwork, eccentric wheel, winch, and connecting rod. One of the early patentees had "a hydraulike, which being placed by a bed-side, causeth sweete sleepe to those which either by hott feavers or otherwise cannot tak e rest." A patent medicinal powder, compounded of tobacco and herbs, was so meritorious that "if one teaspoonful be struck for a dose up the nose as snuff, will cure various disorders of the hypochondriac and melancholy kind." Eighty years ago many persons believed in a patented mode of curing numberless aches and pains "by drawing over the parts affected various pointed metals, which from the affinity they have with the offending matters, or for some other cause,
extract or draw out the same, and thus cure the patient." One patentee has a thief-proof coffin, in which the corpse is secured by chaining or hooping it to a false bottom; and another a coffin made impregnable by some special application of " tapped and case-hardened screws."
If we cut short our budget of curious patents, it is only because space fails us. Two of the Lillywhites, the celebrated cricketers, have at different times patented bowling machines; in one instance for the adoption of machine bowling in actual play; in the other only for practice at batting, when a trained bowler is not at hand. If the reader will imagine something of the catapult or cross-bow kind, he may form some idea of these cricketing oddities. One patentee has a balloon for catching fish; a balloon, inflated with air and ballasted with water, is supposed to drag or trawl the and ballasted with water, is tines or nets. Before the Manchester and Liverpool fishing lines or nets. Before the Manchester and Liverpool
Railway was constructed, a bright genius conceived the idea Railway was constructed, a bright genius conceived the idea
of using balloons to draw a ship overland between those of using balloons to draw a ship overland between those
towns, on a tramway of twenty feet gage! A balloon has towns, on a tramway of twenty feet gage! A balloon has
been patented for preventing sea sickness: a platform, resting on a huge ball and socket, supports the seats for the passengers; the platform is connected by cords with a circle of small balloons; and the balloons are expected to keep the platform always horizontal-of course to the great satisfaction of the passengers. Balloons are also intended, by another patentee, to keep in motion the swings which are such a source of delight at country fairs. One of the very earliest patents was for " a fish call, very usefull for the fishermen to call all kinde of fishes to their netts, speares, or hookes; to call all kinde of fishes to their netts, speares, or hookes; and for fowlers to call severall kindes of fowles or birds to their neets or snares." In one part the inventor speaks of
his fish call as a " looking glass"-rather a puzzle to interhis fish call as a " looking glass"-rather a puzzle to inter-
pret. Acrobats are invited to use a patent shoe soled with pret. Acrobats are invited to use a patent shoe soled with
iron, which will enable the wearer, with the aid of a powerful electromagnet, to walk head downwards along a metallic ceiling. There are patents for milking cows, for preserving the hands from chapping, and for curing the croup in fowls Snuff-taking is made easy by "two snuff boxes, one with a slider and the other with a sweep, out of which snuff may be taken without pulling it (the box?) out of the pocket, and without spilling.'

CENTENNIAL NOTES.
We continue below our notes on the various objects of interest.

the sandwich islands exhibit

contains a large number of very curious articles; but owing to the lack of necessary descriptive labels, the visitor is unapprised of their remarkable features. For instance, spread out in a glass case is a cape or tippet, which on close in spection seems to be made of bright yellow feathers. As few birds wear such intensely yellow plumage, it would naturally be supposed that the feathers are dyed. The reverse, however, is the case. The cloak is termed the kehe la, and the plumes are obtained from the mamo or royal bird, under each of the wings of which a single yellow feather grows. Now in the cloak there are perhaps thousands of the feathers, and hence the number of birds which must have been killed to secure the requisite quantity must have been enormous. Add to this the fact that the birds themselves are becoming very rare, and the difficulty of producing the garment accounts for the circumstance that it is seldom found out of the possession of kings. The cape exhibited belongs to Queen Emma, and was loaned by her for display. It is about ten inches in breadth, and quite short, yet its value is about $\$ 600$. A relic of the days when human flesh was considered wholesome food is shown in a spittoon inlaid with human bones. Articles connected with the reign of the founder of the line of Kamehameha are regiously preserved, and Kamehameha the First's war clubs form a part of the exhibit. There is also a cane made of a lancewood spear which also belonged to the same doughty warrior. A fiber, little known here, called olona, may prove to be worthy of further experiment as a rival of hemp or even of flax. It is the inner bark of a shrub, which at the age of three years is of the right size for stripping. It can strong A bird's nest is peculiar from the fact that it contains no vegetable or animal matter. It appears to be made tains no vegetable or animal matter. It appears to be made
of horse hair, but is made of what is called pele's hair, of horse hair. but is made of what i
a form assumed sometimes by hot lava.
The highest point reached by vegetation is 12,000 feet and at that elevation the silver sword plant grows, the flower of which is on exhibition. One large case contains the birds found on the islands. They are not named. One red bird, as large as an oriole and with a brilliant red plumage, is the bird that constructs the nests from pele's hair. Castor oil and candle nut oil is also exhibited; the latter is made from a nut bearing the above name.
The Oahu College sends a collection of land shells, containing between 800 and 900 varieties. They are all found on the island of Oahu and nowhere else in the world. Their habitat is under the mosses and lichens attached to the bark of trees. Many varieties are not found alive, and are believed to be extinct
But few industrial products are exhibited, and native manufacturers appear to be of a very primitive nature.
Cloth is made from the inner bark of the bread fruit tree by a kind of felting process; the fiber is steamed and then pounded with wooden mallets, on whose surface grooves are
cut. A cloak made in this manner on the island of Tahiti, cut. A cloak made in this manner on the island of Tahiti,
and ornamented with shells, is shown, and also several larger pieces of cloth or felt, quite thin and tough, and or namented with floral designs.
From the Micronesian Islands there is an exhibit of beau.
tiful pink corals which are unsurpassed in beauty by any thing of the kind ever seen here. They attract great attention and the majority of them have been already sold. This variety of coral is said to be found nowhere else than on the reefs about these islands, where the natives, who are xpert watermen, dive for them
The full dress of a Caroline Island belle is shown, and consists simply of a cape about a foot broad, made of strips of cocoa bark and worn about the shoulders. A waterproo cloak of novel construction is also shown. At each knot of an ordinary fish net is tied a bunch of seaweed. This being spread over the shoulders, net side under, forms a perfect protection against wet.
The display of firewood is quite large, and includes many curious varieties. Of these the wood called kou is said to be the most valuable. It is similar in appearance and character to klack walnut, but has a finer grain and is not so heavy. It can be turned into all shapes, and never cracks or checks, as is the case with most woods. A large number of jars are shown made from this wood and the black koa. These are used by the natives as receptacles for the food called poa, the staff of life among them, a farinaceous food made from a root called taro, something like a turnip. This is baked and made into a porridge. The natives do not like until it begins to ferment.
It is said that the Exposition is not very rich in antiqui ties, save, perhaps, in the Chinese pottery and old Japan bronzes. To inspect some portions of

THE TUNIS DISPlay

is to go back to the time of Abraham, at least so far as progress is concerned, for agricultural implements that were used by the patriarchs are but copied in the tools which the Tunisians still employ to till their ground. A plow is shown made of two strips of wood ; one, the beam, is crossed by the other at a sharp angle, the lower portion of the latter serving for the plowshare. Its point is shod with iron Such an implement might be used to stir up the ground but neither lifts nor turns it. Hand rakes are shown heavy enough for horse rakes. The thresher consists of what an merican farmer would call a stone boat or sled, the bottom of which is stuck full of sharp stones. This imple ment is dragged over the grain as it lies on the floor
With all these discouragements very fine crops of grain are raised; and samples of different cereals are shown, put up in bags. Among them are corn, an inferior yellow variety barley, which is quite plump and bright; wheat, a quality which would rank as No. 3 in this country; three kinds of beans, white, flat brown, and a small black-eyed variety caraway, fennel, coriander, and other similar seeds ; oats are said to be raised abundantly, but none are exhibited
An object which is a genuine antique is the mosaic repre senting a lion and its prey. This was found by Davis' party during his explorations of the site of ancient Carthage. It and in close proximity to the site of the Temple of Astarte, and in close proximity to the site of the Temple of Astarte,
the Juno of the Phœnicians. In this vicinity there appears the Juno of the Phœnicians. In this vicinity there appear
to have been a temple dedicated to Diana, and this lion to have been a temple dedicated to Diana, and this ion other representation on this vast pavement had relation either to the chase or to wild beasts. Through the ignorance of native workmen of how to handle such easily broken objects, every one was hopelessly destroyed, in the attempt at removal, but the lion, which remains in possession of the Bey. The boldness of the design and exquisite execution the work assign it to the most flourishing period of Car thage, say 2,500 years ago. The mosaic is about eight by prey, a horse or other animal with hoofs, from whose prey, a horse or other animal with hoofs, from whose
wound the blood is trickling. The stones of which it is composed are about half an inch square and are set in cement.
The
The principal Tunisian exhibits are of silk, and these are profusely ornamented with gold and silver embroidery. It is a custom among the wealthy to ornament the walls of dwellings with silk hangings above the wainscoting, which is usually of tiles. One of these silk hangings is shown, which is about thirty feet long and six feet broad. It is a pink silk, and is covered with ornaments in various colors sewn on. One case of Moorish costumes contains loose white silk garments called bournouses. The silk is of pearly whiteness, and is ornamented with gold embroidery Bournouses of striped silk, in which gold bands are woven, re also shown.
One case shows the trousseau of a Moorish bride. The arments, which are numerous, are all of pure white silk, and are so thickly embroidered with pure gold and silver that they are oppressively heavy. These costumes are al offered for sale. There are also goods manufactured expressly for the Exhibition, scarves,opera cloaks,and shawls. One is made of silk, through which runs a stripe of rough cotton, the effect of which is quite odd.
some new cotton and wool machinery
on exhibition in Machinery Hall is attracting considerable attention among manufacturers. A new English gin sepa rates the seed withoutcutting the fibers of the cotton, by means of a vibrating knife, a roller, and a combined action of fixed and moving grids. At each elevation of the mov-
ing knife, the grid which is attached to the same lifts the ing knife, the grid which is attached to the same lifts the
cotton to the level of the fixed knife edge and to the ex posed surface of the roller; and on the descent of the mov ing knife, the seeds which have become separated from the fibers are disentangled by the prongs of the moving grid passing between those of the fixed grid. The machine on exhibition is about the size of a common 60 -saw gin which
akes but little over 1 horse power. The machines being automatic, one man can feed two of them, whereas on the saw gin he could feed but one. The out-turn of cotton is from 120 to 200 lbs. per hour, and the seeds are much more thoroughly cleaned. There can be no danger from fire, as it would be impossible for it to communicate with the ginned cotton, and it would be effectively quenched by the action of he machine. Regarding safety, it is impossible to get the ngers cut or jammed, as the grids push them aside and pre ent accident.
There is also a double cylinder burr picker for the clean ing of wool. The wool is placed upon a feed apron, and passing between two feed rollers, is carried by the main cyl inders on to two burr cylinders acting independently of ach other; passing over these, the wool (which is now even y spread with the burrs on top) comes in contact with luted roll, termed a beater or clipper, which removes th urrs and deposits them in a receptacle below. The wool which is now freed from burrs, is carried by a brush to beater, which removes all fine dirt. The wool is then blown into a wool room perfectly cool. The inventor of this ma hine claims that he can clean 500 lbs . of fine or $1,000 \mathrm{lbs}$ f carpet wool per hour. This picker is manufactured by he Atlas Manufacturing Company, Newark, N. J

CARRIAGE WHEELS AT THE CENTENNIAL EXHIBITION

aterials used for making wheels.

For making light wheels, hickory is,in America,employed almost universally for the spokes and felloes, and elm o cum wood for the hubs; for heavy wheels, oak is used fo the spokes, oak or ash for felloes, and elm, gum wood, o cust for the hubs. Hickory is an indigenous American ree, and is found in all States east of the Mississippi river ut the supply has mainly been drawn from Indiana, Ohio New England (where it is now very scarce), the Middle States, and also, more recently, from Virginia and Ken ucky. The term second growth, as applied to this timber has from improper use grown to be a misnomer; it really means a growth of timber that springs up, more or less parsely, on ground that has once been cleared from the orest; but, to justly rate the true value of hickory,each in dividual tree must be judged on its own merits. It rarely happens that a first growth tree has any value for carriage work, and then simply because it has stood alone. What are known as hedgerow trees generally give the best quality of wood, and they are in their prime when from forty to isty yearsold. Hickory is cut at all seasons of the year, but from early fallinto the winter is the timegenerally preferred and it is claimed that timber cut during this period is les liable to the attack of worms. The butt only of the tre hould be used for best work, and for a distance of from ix to sixteen feet from the ground, according to the quality of the tree and the place of its growth. The butt is gener ally cut into lengths suitable for spokes or felloes, and, i intended for spokes, it is then sawn or riven into prope sizes, from center outwardly, and around by the annula rowths: while for felloes it is simply sawn into strips of suitable length. The heart of the tree generally contains what are known as the pin knots, or marks of the smal twigs which grew from the trunk when very small, and this portion in most trees has a brownish color, which feature make the heart wood less salable, although sometimes equa to the whiter wood in all other respects. Four grades of hickory may generally be found in the market, which em race varieties from the very best down to that which is so oor that it is only adapted for very common classes of work n countries where this timber is comparatively unknown the impression prevails that " hickory is hickory," alway possessing the same qualities and characteristics; but a more intimate acquaintance shows that there is as much difference between the different grades of hickory as between totally different kinds of timber, some resembling ivory or whale bone for hardness and elasticity, while other pieces posses no more value for wheelmaking than common pine or deal. Prices vary very materially in accordance with the quality the best grade being worth in the market from three to five mes as much as the fourth grade-a point which foreign astomers are beginning to learn through costly experience he best proves the cheapest in the end. The seasoning o ickory for spokes is an important matter, concerning which here exists a diversity of opinions. The method employed y some of our best wheel manufacturers is as follows After cutting the timber into spoke sizes, it is usually al owed to season in the open air about six months,after whic is placed in the dry room, with a temperature of about 90 ah., which should not, under any circumstances, be allowed exceed 100°; and it is kept in this dry room for from ten days to two weeks, according to the size of the pieces. It is then ready to turn and finish, after which it should again be placed in the dry room for a few weeks, before making up into wheels. It is customary with some wheel makers to subject their spoke stuff, after it is cutinto spoke sizes, to process of steaming without pressure, which occupie om one to two hours, the object being to fix the albume in the wood, render it stiffer, hasten the seasoning, and pre ent checking or splitting.
American oak is fully equal in all respects to the best English oak Take, for example, the dog cart wheel ex hibited by Messrs. Hoopes, Brother, \& Darlington, and no ak from any country could be better. Oak grows in nearly all parts of the United States, the present supply being re ceived mainly from the Atlantic seaboard, and from Ohio add Indiana. It is commonly cut in the same season as hickory-namely from September to February-from eigh o sixteen feet of the trunk being employed, which is cu
clay soil, with exposure to plenty of air and sunshine, is preferable, and the tree is in its maturity when from fifty to one hundred years old.
Elm is found in all the States east of the Mississippi, and the present supply is drawn very largely from Ohio. It is cut in the same season as hickory, but the method of seasoning differs in some respects. When required for hubs, it is usually cut in the required lengths,and a hole bored through the heart; the bark is then removed, and each block reduced point the practice differs in different works, but generally the blocks are then steamed for a short time, to assist in seasoning them without splitting or checking; and after this the ends are dipped, to the depth of about half an inch, in a mixture of hot linseed oil and tallow (or resin), as a further preventive of checking. They are then stored in open sheds, where they remain from two to four years to season thor oughly.
Locust is sometimes used for hubs, and possesses special value on account of its durability; but it splits easily, to pre vent which it requires to be carefully banded close beside the spokes. The mode of cutting and preparing it is simila to that employed for elm.
Gum wood, known in some sections as pepperidge, is found mainly in the States along the Atlantic seaboard,growing but sparingly in the West; and south of New York State it is used considerably by carriage builders for hubs. In its qualities it is very similar to elm, being very difficult to split but it has not the lateral strength of elm, and in driving spokes it is more liable to break between the mortises. The method of preparing it is very similar to that employed for elm, the only difference being that the blocks are not usually
dipped, although this treatment would doubtless be benefidipped, although this treatment would doubtless be beneficial; ; an
latter.
what constitutes a good wheel.
The excellence of a wheel depends, first, upon the quality of the material employed; second, upon the proper preparation of this material; third, upon the proper proportioning of the different parts, and fourth, upon exact and skillful workmanship in combining these parts into a perfect whole. Mr. William Thompson Casson lays down a similar stan dard in his article which appeared in a recent number of London Saddlers', Harness Makers', and Carriage Builders' Gazette, wherein he says
' The gem of the wall exhibits at the Centennial is an English dog cart wheel, shown by Hoopes, Brother, \& Darlington; and from whatever point of view we take it, whether regarding its appearance, workmanship, or material, it is a source of admiration; the spokes and rims are oak, but it requires an experienced eye to detect whether the oak is English or American. They also show landau, brougham, and other wheels of the English pattern, as spe-
cimens of their ordinary manufacture, leaving nothing to cimens of their ordinary manufacture, leaving nothing to
be desired. Those of the old school of wheel makers, who be desired. Those of the old school of wheel makers, who
yet dispute whether any steam wheels can equal those of yet dispute whether any steam wheels can equal those of
hand make, would be convinced of the superiority of the former by a close inspection of the wheels shown by this firm; every joint and shoulder is up and close, without having one part squeezed into another, simply because every tenon, shoulder, and surface is made with mathematical precision. From personal experience learned at the bench, this really seems to be the whole secret of wheel making to have everything tight, true, and fair."

SHAFTS, WHIPPLETREES, AND SIDE BARS
For shafts, hickory is commonly used by American car riage builders, and answers the purpose admirably. Lancewood, however, from the West Indies. would, without doubt, be preferable; but it is difficult to obtain, and very expensive. It is much to be regretted that not a specimen of lancewood in the rough is exhibited at the Centennial; and although it is used in connection with several of the carriages exhibited, it is so disguised by paint or varnish as to give, to those unacquainted with it, little or no idea of what the timber really is. The valuable qualities by which lancewood is distinguished are great stiffness and elasticity, and remarkable strength. Some builders claim, however, and remarkable strength. Some builders claim, however, that lancewood is not so safe as hickory for shaft purposes,
for the reason that, when it breaks, it is liable to break off for the reason that, when it breaks, it is liable to break off
short; and to obviate this danger, some foreign builders short; and to obviate this danger, some foreign builders
fasten strips of whalebone under lancewood shafts, by means of round-headed screws. For whippletrees, hickory is used almost universally by American carriage builders.
Wooden side bars,now so popular in connection with light road wagons, are made of various materials, hickory being preferred by the majority of the best builders, while locust ranks next in favor; and experiments have also been made with bois d'are, Chinese chopstick wood (name unknown to us), and lancewood. Lancewood would doubtless prove the best for this purpose, and come intogeneral use, were it not for its expense,and the difficulty of obtaining it in sufficient quantities; for it possesses those qualities particularly demanded for side bars-namely, stiffness, toughness, and elasticity.-The Hub.

NOTES ON THE AMERICAN INSTITUTE FAIR

ENVELOPE MACEINERY.

There is a remarkably ingenious machine at the Fair of the American Institute, which is said to make 3,000 envelopes per hour. A similar apparatus is in operation in the Government building at the Centennial, but there it is not among the machinery, and is thus out of the route usually followed by those who make mechanism an especial study. It is one of those devices which even the practised eye can
not appreciate at a glance, and when at work it goes through
its multitudinous manipulating performances so quickly its multitudinous manipulating performances so quickly
and yet so deftly that the observer instinctively find him self watching the envelopes come in and the envelopes go out as if a natural phenomenon were taking place, the in ternal operation of which it were useless to try to fathom. The motion of the apparatus is mainly obtained through cams, and these act on rubber rollers on the extremity of the rods moved. The envelope blanks, previously cut out are placed on a table. Beside and above the latter is a paste slab whence mucilage runs to distributing rollers, and these in turn cover movable rollers, whlch are thrust forward to apply the gum to the under surface of a stamp or plunger he plunger now descends and takes against the parts of he envelope to which paste is to be applied, and then rising the envelope, takes it away from the stamp, and conducts it rearward under a square plunger which, descending, pushes he paper through a square hole, thus bending up its edges preparatory to folding. No sooner is the envelope through the orifice than four little doors or shutters clap over it and neatly fold the edges. Next it falls between arms on a long endless chain which moves very slowly rearward, the envel opes going down one way and coming up the other. This travel is long enough to enable the paste to become dry, a process facilitated by a little rotary fan under the chain, which keeps up a draft of air. Lastly, as each envelope returns to the table of the machine, fingers rise on each side, remove it from the chain, and place it on asmall platform which turning, deposits the envelope neatly on edge beside its pre decessors. Then the young lady who presides over this wonderful machine quickly runs her finger over the requis tenumber of enveloges to form a pack, surrounds them with the usual ornamental strip of paper, and the process s ended.
There is one good feature about the American Institute Fair which occurs to us here, and that is that it offers excellent facilities for the undisturbed study of its contents. It is useless to attempt to examine intricate machinery at the Centennial, owing to the now almost constant crowd; and to post oneself in front of an object with a note book, and to is, espestions of the exhibitor, or, worse yet, to try to sketch, ter of a throng whose curiosity impels each individual member to ask questions on his own account, or else to consti tute himself a critic on the efforts of the amateur pencil. Nothing delights us more, however, than to see the interest manifested by the people in machinery and invention, and in that view we can forgive the annoyance. It would not be a bad idea, though, for enterprising exhibitors to hire artists to sit and sketch their exhibits by the week, by way of adver tisement. But this is wandering from the American Institute Fair, where-and here is a contrast to the Centennialan exhibitor the other day set an engine racing for our inspection, at a most remarkable pace, and no one manifested the slightest interest in the proceeding. People passed, instinctively wagged their heads, as they always do, in time with the machine, and proceeded onwards. The engine in question, we found, presented some features not wholly new but well worth examining.
the balance engine
It has two pistons in its single cylinder. From the front piston and through boxes near the edges of the cylinder cover extend two piston rods, each connected to a crank on the driven shaft. From the rear piston a single main pis-
ton rod passes directly through the front piston, then through themiddle of the cylinder and connects to a crank formed by making the inner sides, of the two cranks already mentioned, twice as long as the outer sides. That is, imagine a W with the middle angle twice as high as the side strokes, and consider a crank at each angle. The main piston rod would then be attached to the angle at the apex, and the two smaller rods to the angles at the base. The cranks, it will be observed, are set in the same plane, and not quartering, as is usually the case. The steam ports ensroke cylind and the troke of each piston of course equals half the length of the cylinder. The steam enters between them and forces them
apart, and then enters at the ends and carries the pistons together. Now the sum total of all is that the power is applied to the shaft just as the two hands are to the handle of an auger, and the reciprocating parts are balanced; while the engine-despite the very indifferent workmanship-runs at high speed with little vibration.
the harris steam pump
is quite new, and has a positive action. The main piston, on arriving near the end of its stroke,raises a poppet which admitssteam to the valve piston and at the same time closes
its communication with the exhaust. This throws the its communication with the exhaust. This throws the
steam valve, which admits steam, to the other side of the main piston, causing it to make the return stroke. The instant the piston moves from under the poppet it drops to its seat, closing the steam and opening the exhaust on that side of the valve piston, which, together with the steam valve, remains at rest until the other poppet is raised to admit steam to the opposite side. There are no outside con ing plunger pump pattern.
an ingenious mechanical movement
will be found embodied in the Vanhorn \& Cranston papercutting machine in the main hall. The arm which draws from the clamp to hold the paper, prior to the lower end butabove the fulcrum. Hence, when the lever is pulled down, the clamp is carried downward until its further mo-
ion is prevented by the paper under it. The lever then changes to one of the first order, having its fulcrum on the lamp rod pivot, while the former fulcrum now is the piv oting point of the lever end to the carriage which supports the knife. Consequently, further forcing down of the leve ifts the carriage with great force, and the knife is caused to cut the paper. The device is very simple, and so con tructed that the greatest power is applied just where it is needed.
As a whole, the fair is interesting, and visitors to the Centennial, sojourning in this city, will do well to visit it. It is especially rich in household articles, and in new esigns in furniture, etc. The machinery department is not o well filled as usual; but there are many novelties which will repay careful examination. The attendance is con stantly large ; and on Saturday and Wednesday nights which seem to be especially favored, the building is gene ally crowded.

Opening of the New York Aquarium.

The New York Aquarium, located on the corner of 35 th street and Broadway, this city, was recently opened to the public. The tanks contain a large number of fish, includ ng a white whale from Labrador, several shark, a hug sting ray, and terrapin, besides an interesting collection o zoöphytes. A laboratory for naturalists, with the necessar appliances for investigation, is provided; and in the piscicul tural apparatus, the process of hatching and rearing sal mon may be witnessed. On the opening night, President R B. Roosevelt, of the New York Fish Commission, made an address on the objects of pisciculture.

A Disastrous Boiler Explosion.

A terrible boiler explosion recently occurred at 'Zug \& Co.' mills at Pittsburgh, Pa. The boilers in the nail mill blew up, demolishing that building and half the adjacent rolling mill. Some twenty men were killed and as many wounded No cause is as yet assigned for the casualty. The boilers were in charge of a careful engineer, and it is stated that they were inspected some five weeks ago and were then in good condition.

NEW BOOKS AND PUBLICATIONS.

Tremont Place, Boston, Mass. New York city: F Dewey,

 37 Park Row.As its name indicates, this journal is devoted to the interchange of
hought and experience among librarians, and with this aim it enters a fiel itherto wholly unoccupled. We have a great many large and excellen ibraries in this country; and there is a constant increase going on both in or render the vast mass of information thus accumulated accessible to the reading public. to keep his own particular charge up to the latest dates in constantly adding new works, and, perhaps above all, to constitute in him self a living index of what the book makers have done, is but a rough state ment of the librarian'sduty; and that these ends can be accomplished bette
by the unlon of librarians, which the present journal seeks to bring about by the union of librarians, which the present journal seeks to bring about,
than by individuals, it is hardly necessary to suggest. The first number of the periodical, which is issued monthly, contains a number of interestin communications and papers, among which we note some sensible practica hints to starters of libraries, and a good many ideas for the care, indexing
etc., of books. There is, beside, a useful record of new publications, no etc., of books. There is, bestde, a useful record of new publications, not
merely in this country, but throughout the world. The journal is elecantly merely in this country, but throughout the world. The Journal is elegantl
printed, the margins are luxuriously wide, and the present number has a illustration of the new RIdgway library building in Philadelphia. The sub scription price is $\$ 5.00$ peryear, or 50 cents per number.
The Complete American Trapper. By William H. Gibson.
Illustrated by the Author. Price $\$ 1.75$. New York city: James Illustrated by the Author. Price $\$ 1.75$. New York city : Jame Miller.
We are inclined to think that the author's claim that "this is the moss comprehensive work on the subject ever published' 'is a fair one, judging
from thealmost endless varitety of traps and other ' 'evices to cffect the from the almost endless variety of traps and other cievices to effect the
capture of animals and birds which he illustrates and describes. He even tells us how to trap the hippopotamus, the lion, and the tiger: and from
these great beasts he descends through the cale untll he reaches a daintily dellcate way of catching humming birds by a few drops of birdlime on the eaves of a lly. Trap making-or, to sreak generally, the pitting of huma nuity, which not many possess; and in gathering together all the curion nuity, which not many possess; and in gathering together all the curiou
devices described in his volume. the author has done excellent service in helping very many people to ideas which doubtless would never occur to
them. The book contains 143 engravings-mainly representative of the them. The book contains 143 engravings-mainly representative of the
apparatus explained-and is written clearly and well. It will be useful not apparatus explained-and is written clearly and well. It will be useful no merely to hunters and trappers, but willalso serve to exhi.
what has already been accomplished in this particular line.

zecent Americau and forcign zetatents.

NEW MECHANICAL AND ENGINEERING INVENTIONS

IMPROVED METHOD OF CONVERTING MOTION
Hiram L. Joslin, Mankato, Minn., assignor to himself and Henry K. Lee, same place.-This consists of a reciprocating head work ing backward and forward among belts, and having clutches o way, and the other side going the other way, so as to apply the power continuously in one direction.
improved brick machine.
Ferdinand Michel, Dallas, Texas.-The table to receive the tempered clay is attached to the rop of the frame from which it is fed into the molds. Followers enter the molds from below, and serve
as bottoms to the mold when being filled. A weighted block withas bottoms to the mold when being filled. A weighted block with-
draws the followers when the pressure is removed. By operating draws the followers when the pressure is removed. By operating a lever, the followers may be forced up to press the brick, and to
raise them out of the mold after being pressed. There are other raise them out of the mold after being pressed. There
ingenious improvements in the mechanical construction.
feeding apparatus for card-printing presses. William M. Clark, Philadelphia, Pa.-As the card passes down projecting downward along the platen to guide the card to the projecting downward along the platen to guide the card to the
place where it is to be printed. As the card reaches the place where it is to be printed, it is stopped by inwardly projecting curved points, which receive its lower edge. As the platen is drawn back, these curved points raise the card slightly as its lower edge slips from them, so as to release it, should it stick to the platen, and allow it to drop from the press. The arms which carry
the points slide upon gripers so that they may be adjusted as the the points slide upon gripers so that they may be adjusted as the
improved apparatus for removing coke from retorts. Joel F. Rice, Louisiana, Mo.-This consists of a sliding scoop placed on asw ivele support, that is carried by a ruck, the scoop
being forced into the retort under the coke by a winch, and withdrawn by the same means.
improved windmill.
Edward Williams, Potosi, wis.-This consists of a solid wheel of Edward wiliams, Potosi, Wis. -This consists of a solid wheel of tion. There is a secondary set of curved vanes outside of the rims to increase the capacity of the wheel. The power is trans-
mitted to the pump rod by a pair of eceentric wheels and a lever, mitted to the pump rod by a pair of eccentric wheels and a lever,
giving increased leverage on the upstroke, with quicker motion giving increased leverage on the upstroke, with quicker motion
on the downstroke, and enabling the wheel to lift from a greater on the downstroke, and enabling the wheel to lift from a greater
depth. The tail vane is double, and diverges each way, so that the wind has greater power to hold it steady. The connecting rod works upward from the crank to a level, having the pump rod connected to it in such manner that the pump rod has but little vibration in the hollow axis of the turntaboe, and thus doess not
require so much space as when the crank works over hollow axes. require so much space as when the crank works over hollow axes.
The main stem is set in the adjustable step, for plumbing the turnThe main stem is set in the adjustable
table readily when the tower settles.

IMPROVED TOOL HOLDER.
Christian C. Bergh, St. Paul, Minn.-This consists of a vibrating holder for holding engraving and other tools in applying them to the oil or grinding stone, so as to insure the proper angle of the
bevel, and thus make the points true. The said holder is an extension rod fixed on a vertical pin at one end, and having at the other end a chuck in which the tool to be sharpened is fastened. The
oilstone is placed at such inclination that the bevel of the tool bears fair on the face of the stone.
improved railway signal.
John H. Williams, Albion, N. Y.-This consists of an arrange-
ment of levers and connecting rods, which are combined with a danger signal or flag in such a manner that the same is displayed by the action of a passing train upon levers and rods

IMPROVED SAND POMP.

William H. Birge, Frankiin, Pa.-This consists of an inner and outer tube, forming together the lower end of a sand pump, arranged to slide one within the other. The inner tube is provided which engages with a rack formed on the edge of a slot in the outer tube. A spring assists the parts to regain their nominal position. The object of the invention is to provide a valve which shall have a positive motion, not depending upon the action of the water or sand to open or close it.
improved paper pulp separator
Joseph S. Smart, Troy, N. Y.-The object is to utilize the coarse and heavy stock that is collected at the bottom of the settling vats in the manufacture of paper, so as to draw the same off to regrind,
and conduct it back to the vat for use. To this end, a settling vat and conduct it back to the vatfor use. To this end, a settling vat
is provided with revolving bottom arms, that convey the heavy particles of pulp to an outlet, and, by a connecting pipe, to a neck pipe back into the vat.
improved condenser for steam engines. Robert Hardesty, Shepherdsville, Ky.-This invention comprises a condensing cylinder surrounded by an iron casing, with a space
between condenser and casing. At the top, the casing extends above the condenser far enough to form an air chest. The condensing water is forced in between the casing and condensing
cylinder at the bottom by a pump, ascends to the air chest, and cylinder at the bottom by a pump, ascends to the air chest, and
enters therein in a shower. By suitable pipes, a portion of the enters therein in a shower. By suitable pipes, a portion of the
steam is conducted past the condenser into the heater. The general construction is such that, when the engine stops, all the water above the condensing cylinder will soon pass through it, thus cutting off the supply of water to the valves. When the engine starts, the water will rise in the air chest until the air becomes sufficiently compressed to force the water through as fast as the pump sup-
plies it. This will again supply the valves with water. This invenplies it. This will again supply the valves with water. This invengine. If there is any exhausted steam above the pressure of the atmosphere, it will exhaust part of it into the air and condense the remainder. If the steam is below the pressure of the atmosphere, it will exhaust it by condensation.

IMPROVED BLOW-OFF COCK FOR STEAM BOILERS. Samuel Myers, Pittsburgh, Pa.-The valve for controlling the
discharge of water is made to fit loosely in its case or socket, so as to permit the passage of a small quantity of water around the valve and over the seat while the valve is closing, for the purpose
of washing off from its seat any scale or other solid matter that of washing off from its seat any scale or other solid matter that
may have lodged thereon. The valve is, however, designed to ft may have lodged thereon. The valve is, however, designed to fit
sufficiently tight in its casing to prevent scale, etc., passing along with the water, which thus washes the seat, at the instant of closing.

IMPROVED MIDDLINGS SEPARATOR.
Edward T. Archibald, Dundas, Minn.-This invention consists in bolt, and in and on each side of holes in the dome of the bolt, that lead into the fan chamber to guide the air and dust.
improved flour bolt. William H. Woolard, Windsor, Ill.-This consists in providing a
stationary auxiliary head, carrying a packing of sheep's pelt hav-
ing the wool on, which is forced against the rotating head of the ing the wool on, which is forced against the rotating head of the
bolt reel by means of springs, and retained in place by leather bolt reel by means of springs, and retained in place by leather
straps. The object is to prevent the accumulation of dust on the bolt head, and to prevent the escape of specks and four dust from folt chests commonly known as speck boxes.

NEW AGRICULTURAL INVENTIONS.

improved cultivator.

Edward Nauman, Bridgeport, o.-In this cultivator, by moving,
one of the side standards forward and the central standard back, the machine is adjusted as a side wipe. By moving the center standard forward and attaching a larger shovel to it, and moving the side standards back, and attaching half shovels to them, the machine becomes a potato plow. By detaching the center stan-
dard and moving one of the side standards forward, the machine becomes a double shovel. By detaching the side standards, the machine becomes a single shovel; and by detaching the center standard, and attaching half shovels to the side standards, the machine becomes a corn coverer. The farmer is thus provided with a number of useful implements arrangedin compact form.

IMPROVED CULTIVATOR.

Horace C. Briggs, West Auburn, Me.-Novel devices are provided whereby the ends of the beams may be moved wider apart or
closer together, as may be desired. The points of draft attachment may also be raised and lowered as circumstances may re quire. The depth to which the plows enter the ground may be regulated and the machine may be easily guided around short
turns in crooked rows.
improved ridge-forming machine. Andrew D. Martin, Abbeville, La.-This invention is a machine for forming ridges for planting sweet potatoes; and it consists in
the combination of two plows and two rollers inclined with each other, so as to throw the soil toward each other to form a ridge The upper ends of the two rollers incline toward each other; and as soon as the dirt has been heaped by the plows, the rollers press
it together to form a steep ridge. The plows may also be used it together to form a steep ridge. The plows may also be used
without the rollers, for ordinary ridges, such as for cotton, corn without t
or cane.

MPROVED CULTIVATOR
Edwin W. Joy, Iowa City, Iowa, assignor to himself, Marcus F Dunlap, and Samuel J. Faust, of same place.-This relates to cul
ivators in which short independent axles are hinged to a yoke tivators in which short independent axles are hinged to a yoke
connecting the two axles, to allow horizontal oscillation of wheels relatively to the beams, and which are used without a tongue; and it consists of the application of another yoke in a manner to regulate the oscillation of the wheels and prevent them from cramping oo much and binding against the beams.

MPROVED CORN PLANTER
Burton Hakes and Ellis Hakes, Marengo, Iowa.-The general
construction is such as to drop the seed automatically and at uniconstruction is such as to drop the seed automatically and at uniform distances as the machine isdrawn forward to enable the hills
to be planted in accurate check row, and to throw the dropping to be planted in accurate check row, and to throw the dropping
mechanism out of gear when the opening runners are raised from mechanism
the ground.
improved stalk puller.
Robert D. Brown, Austin,Tex.-This consists of jaws which grasp e stalks, and which are actuated by hand levers to lift the latter The device was described and illustrated on page 358, volume The dev
XXXIV.
improved wheel cultivator.
Thomas R. Wallis, Egg's Point, Miss. -This consists of a novel contrivance of frames for coupling the body frameof a wheel cultivator to the short independent axles employed in machines for
cultivating high plants. The frames are composed of elliptic cultivating high plants. The frames are composed of elliptic
plates and connecting bolts, the plates being fitted at the middle plates and connecting bolts, the plates being fitted at the middle
on the axles, so that they can be readily taken off and shifted on the axles, so that they can be readily taken off and shifted
higher or lower, for which a number of holes are made in the higher or lower, fo
plates for the axle.
improved bee hive.
Noah D. Hayden, Dallas, Tex., assignor to himself and Amasa 0 Clapp, of same place.-The brood chamber has its top and front that, by swinging one side of the hive open, the brood chamber may be swung out, giving convenient access to its open side. The inner side of the brood chamber is made detachable, so that it may be removed to give convenient access to the said brood chamber,
and enable the comb frames to be easily separated and removed. improved seed planter.
John H. Lee, Livingston, Ala.-This invention relates to an im-
proved construction of a seed planter, designed to plant corn proved construction of a seed planter, designed to plant corn,
peas, beans, rice, turnip seed, and cotton seed, either in hills or peas, beans, rice, turnip seed, and cotton seed, either in hills or
rows, as may be desired. The invention consists in the particular construction and arrangement of parts, in which an ordinary plow
is fitted up with detachable seeding devices, and is adapted to independent use as a plow or a combined use as a seed planter, thu forming an efficient and economical implement for farmers who are possessed only of a single horse.
improved drain fence.
Dr. William A. J. Pollock, Kinston, N. C.-The object of the invention is to provide a means for preventing live stock from crossing over from one field to another, in which there may be growing crops, when such flelds are bounded by canals, creeks, or large
ditches. The invention consists in a very strong, peculiarly constructed frame work, which is designed to be placed in the cana of the dividing lines of the fields, whether such division line be fence or a second ditch at right angles to the canal.

NEW MISCELLANEOUS INVENTIONS.

IMPROVED FLUME.
Samuel C. Dike and Sidney M. Brawn, You Bet, Cal.-This invention relates to that class of flumes or chutes which are used for
conveying lumber, wood, etc.; and it consists of a sheet metal conveying lumber, wood, etc.; and it consists of a sheet metal
trough, made up of semi-cylindrical sections, supported on trestle work or other suitable support, and provided at its upper end with grating for separating the wood, lumber, etc., from the water IMPROVED HARNESS LOOP.
Duncan McMillan, Dodge Center, Minn.-This consists of a double metal loop fastener, adapted to fasten two loops in hame,
breast, holdback, breeching, and other straps to ringsand buckles, without sewing the strap loops, as they are commonly done.
improved balance line for mast hoops.
William E. Leighton, West Pembroke, Me.-Thisinvention is inin the lacing together of the hoops by lines equidistant to the sail rope, and attaching the lines by sheaves running along the mast to the jaw of the gaff.
improved gas burner.
Charles Royle, New York city.-This burner is so constructed dat it may be adjusted to regulate the flow of the gas, and conse remove any part of the burner for this purpose. The invention consists in a cap spun in to fit upon the neck and top of the base, having holes formed in its upper part corresponding in number and position with the holes through the said base, and having it lower part spun outward to receive the
and to serve as a handle for adjusting it.

IMPROVED WATCH BALANCE.
August F. Curpen, Plymouth, 0 .-This invention consists of a mode of connecting the balance wheel to the staff, so that in case
the watch falls the wheel will move on the staff by the shock, and the watch falls the wheel will move on the stafr by the shock, and
be stopped by the plates of the watch, if the watch falls flat on its side, or by other platesprovided for the purpose in case the watch falls on the edge. This protects the jewels from breaking, and saves considerable expense for repairs.
improved plug tobacco.
George H. Ly ford, Brooklyn, N. Y.-The object of this invention is to furnish plugs of tobacco so formed that the brand, trade
mark, name of manufacturer, etc, or other desired information may be readily applied to them. Tags of wood are imbedded in the body of the plug beneath the wrapper, the said wrapper being cut a way over the middlepart of said wrapper.
improved holdback for thills.
George Seil, East Randolph, N. Y.-A short tube is slipped upon
each of the thills from its forward end. Another short tube fitt each of the thills from its forward end. Another short tube fits loosely upon the first tube, so as to be easily slipped on and off the
end of the thill. The rear end of the second tube rests against end of the thin. The rear end of the second tube rests against a
er, for securing the holdback strap to it. With this construction, readily slip off the forward ends of the thills, and the horse will be entirely disengaged from the vehicle.
improved open side thill.
Conrad H. Matthiessen, Odell, IIl.-The object of this invention is to improve the construction of the open side thill for which letters were issued to the same inventor November 30,1875 , to pre-
vent the harness being drawn to one side by the springing of the thill, and to enable the holdback straps to be more easily connec-
ted with the thill. To this end the thillis now made hook-shaped ted with the thill. To this end the thillis now made hook-shaped
in front, and in the rear has a bifurcation reinforced with an in front, and in the rear has a bif
intermediate brace, all in one piece.

> IMPROVED ATOMIZER.

Frank E. Stanley, Auburn, Me.-This relates to such improve ments in atomizers that they may be employed for finishing pho
tographs in water colors, india ink, and crayon, and also for tographs in water colors, india ink, and crayon, and also for al
shading in which color can be used in a liquid state. The invention consists in inserting an adjustable wire with pointed end into the liquid tube, to regulate the amount of liquid issued. A cap or hood with detachable nozzles, having varying oriffces, dmits the confining of the spray to a certain surface.
improved watch case spring.
Numa J. Felix, New York city.-The object is to provide for an
improved spring, that may be fitted with but little trouble int improved spring, that may be fitted with but little trouble into any case, so as to facilitate the repairing of broken springs by any
watchmaker in a short time. The invention consists of a bearing or bridge piece, with downward bent end posts that bear in per any case.
improved spark allrester for stove pipes.
Horace W. King, Richmond, Mo.-Holes through the pipe, above he water level, in a boiler attachment which surrounds its lowe nd extinguish the sparks. An air Jacket surrounds the pipe above the boiler, with holes in the bottom to allow the air to enter. Veseds extend down into the boiler from the head, for holding the medicating or other substance to be discharged into the air by the
heat of the boiler. Holes in the top of the boiler are provided for the escape of the vapor of the water, and receive ball covers when hey are to be closed.

IMPROVED CORDER FOR SEWING MACHINES
John J. Donahoe, New Orleans, La.-A trumpet-mouthed tubu ar guide is constructed in two parts, and joined together for oeth above and below the holding plate of the tube gudes the clot contrivance of the attaching plate for regulating the hight of the cord guide. All are arranged with special reference to fastening
a cord wrapped in a strip of cloth between two pieces of cloth, by
sewing the edges of the cord-inclosing strip and the edges of the cloth together at the same time.
improved tax and interest calculator.
Niels Larsen, West Point, Neb.-The invention consists in the combination of three concentric cylinders, which are movable in ependent of each other, and the two outer ones provided with penings, allowing portions of each cylinder to be seen. The cyl hundreds, the middle one tens, and the outer one units. By prop erly moving the cylinders the tax or interest upon a given sum o amount will be exhibited through a stationary shield.
apparatus for the generation and hydration of sulphurous acid gas.
William Maynard, New York city.-This invention relates to ap consists mainly in the following features: First, constructing th pan for burning the sulphur with a conical bottom, whereby large amount of heat is conserved and the sulphur burnt withou subliming, as is the cave in ordinary furnaces; secondly, in the peculiar construction of the furnace door, designed to secure eas of manipulation, safety, and other inctank al advantages; an condenser, which both operates as a reservoir for the water fed to the condenser, and is a receiver for the waste gas and azotized air IMPROVED RIDING SADDLE.
John T. Gathright and James C. Watson.-The object of the inither wei form a more perfect seat for the rine whoutle of the ree aud the thigh puffs on theskirts form a continuous concave or hollow seat extending well down on the leg of the rider.

NEW HOUSEHOLD INVENTIONS.

improved ironing apparatus.
Henry J. Nott, St. Mary's, Texas.-This machine embodies nine construction. The iron is attached to a carriage above the table and is supported in rails so that it may bedrawn forward and back by cords communicating with a crank. The table is pressed up against the iron by levers. Devices for fluting and other opera ions are provided.

IMPROVED FOLDING TABLE.
James M. Kimball, Woodstock, Ill.-This consists of an under rame pivoted to one of the middle boards, so as to swing around line with it for folding, and crosswise of it for setting up the ne end, and locks with the legs of the other end, so as to hold the table upright. There is a weighted hook for hooking the two sec tions of the table together.

IMPROVED KNOB ATTACHMENT.
William H. Gonne, Chatham, Ontario, Canada.-This invention consists of a spindle that connects the knobs and shanks, and bind the shank, and on the spindle at the opposite end. The roses are rovided with spurred sockets to be attached securely to the doors. This admits the ready adjustment of the knobs to any thickness of

NEW WOODWORKING AND HOUSE AND CARRIAGE
 BUILDING INVENTIONS.

IMPROVED VEHICLE SPRING.
William Hunt, Oskaloosa, Iowa.-To the upper part of the for ward spring is bolted a circular block, which flts ihto a rccess in a upeer part of the forward spring and its disk are pivoted to th bar, and the flanged block by a bolt, which passes through the said parts, the blocks thus forming the fifth wheel of the hehicle. A spring brace bar, the rear end of which is secured to the center of the rear axle, holds the springs perpendicular. By this construction, when the vehicle is loaded so as to compress the springs and wing the brace into horizontal position, the parts of the spring will be nearly
resista strain.

Wusiness aud zerxsoual,

 The Charge for Insertion under this head is One Dol-lar a Line for each insertion. If the Notice ex lar a Line for each insertion. If the Notice ex-
ceeds Four Lines, One Dolar and a Half per Line will be charged.

Agricultural Implements and Industrial Machin ry for Export and Domestic Use. R.H.Allen \& Co.. N.Y.

 For Sale-One Corliss Engine, in good order;cylinder 20 in. diam., 48 in. stroke. Apply to Kelly \& Nicely dilled Indeex, Pulleys, 5 in. diam,. 3 in.
ace. Lathe Gear Cutting and Work Holder Attach face. Lathe
ments very che
Lawrence, Ms.
Manufacturers of or Dealers in Tray and Bow urning Machinery, please send Descriptive Circula

For Sale-State Rights of Patent Safety Horse iesgraf, carc of Box 733 , New York city.
Hill's Champion Clothes Dryer has taken every
First Premium wherever exhibited. Arranked for yards and roofs. Great inducements to agents. Champit
Dryer Company, 513 Main Street, Worcester, Mass. Boiler Punch Lathes, 9 ft. Planer. Brooks \&
Winebrener, 261 North 3d St., Philadelphia, Pa. 700 Impt'd Chromos, cheap. Box 29, Pittsb'g, Pa R. H. Norris \& Co., Steam Gauges and Silk Spool Fire Hose,Rubber Lined Linen and Cotton, inest Tool Chests filled with the very best tools are
funnished by ames T. Pratt \& Co., 53 Fulton St., New York. Circulars sent.
Paper Pulley Cover to prevent Belts from slip-
ping-Patent for Sale. Address J. de Vries, 114 Wooster St., New York
Split-Pulleys and Split-Collars of same price,
strength and appearance as Whole-Pulleys and Wholestrength and appearance as Whole-Pulleys and Whole-
Collars. Yocom \& Son, Drinker St., below 147 North At a Bargain-Centennial Exhibition Shafting.
Four lines of $21 / 2$ and 3 in ., complete. 65 ft ., 105 ft ., 120 ft., and 170 ft . A. B. Cook \& Co., Erie, Pa., or D. 9, 72 ,
Machinery Hall. achinery Hal
Hyatt \& Co.'s Varnishes and Japans, as to price,
color, purity, and durability, are cheaper by comparison than any others extant. 246 Grand st.,N.N. F. Factory, New-
ark, N. J. Send for circular and descriptive price Ist. For 13, $15,16 \& 18$ in. Swing Engine Lathes,
address Star Tool Co., Providence, R. I. The Scientiflc American Supplement-Any de-
sired back number can be had for 10 cents, at this ottice, Hand Fire Engines, Lift and Force Pumps for
fire and all other purposes. Address Rumsey \& Co., Seneca Falls, N. Y., U.S. A.
More than Ten Thousand Crank Shafts made by
Chester Steel Castings Co., now running; 8 years' constant use prove them stronger and more durable than stant use prove them stronger and more d
wrought iron. See advertisement, page 285.
See Boult's Paneling, Moulding, and Dovetailing
Machine at Centennial, B. $8-55$. Send for pamphlet and sample or work. B. C. Mach'v Co.. Battle Creek, Mich.
To stop leaks in boiler tubes, use Quinn's Pat-
ent Ferrules. Address S. M. Co ,so. Newmarket,N.H. Water, Gas, and Steam Pipe, Wrought Iron.
send for prices. Ballev, Farrell \& Co., PIttsburgh, Pa. For Solid Wrought-iron Beams, etc., see adver-
tisement. Address Union Iron Mills
Pltsourgh, Pa. for lithograph, \&c.
Shaw's accurate and U. S. Standard Mercury
Gauges, Steam, Vacuum, Hydraulic, and Test Gauges, $\& c ., 915$ Ridge A venue, Phlladelphia. Pa.
Solid Emery Vulcanite Wheels-The Solid OrigInal Emery Wheel-other kinds imitations and infertor. Caution.-Our name is stamped in The best is the cheapest. New York. Belting
ing Company, 37 and 38 Park Row. New York. ing Company, 37 and 38 Park Row. New York.
Models for Inventors. H. B. Morris, Ithaca,N.Y. M. Shaw, Manufacturer of Insulated Wire for
galvanic and telegraph purposes, \&c., 59 W. 27th St., N.Y. F. C. Beach \& Co., makers of the Tom Thumb
Telegraph and other electrical machines, have removed
to 530 Water Street, New York.
Pat'd Graining Stencils-J. J. Callow,Clevel'd, 0.
Lathe Dogs, Expanding Mandrels, Steel Clamps,
\&c., for Machinists. Manufactured by c. \mathbf{W}. LeCount, So. Norwalk, Ct. Send for reduced Price List.
Driving Belts made to order, to accomplish work required. Send full partlculars for prict.
148 North Third St., Philadelphia, Pa.
"Dead Stroke" PowerHammers-recently great-
is improved, increasing cost over 10 per cent. Prices reduced over 20 per cent. Hull \& Beden Co., Danbury, Ct. Power \& Foot Presses \& all Fruit-can Tools. Fer-
racute Wks., Bridgeton, N.J. \& C. 27, Mchy. Hall, Cent'l. Steel Castings, from one lb. to flve thousand lbs.
Invaluable for strength and durability. Circulars free. Invaluable Yor strength and durability. Cla
Pittsburgh Steel Casting Co., Pittsburgh, Pa.
For best Presses, Dies, and Fruit Can Tools, Bliss
\& Williams, cor. of Plymouth and Jay, Brooklyn, N. Y. Hotchkiss \& Ball, Meriden, Conn., Foundrymen to order. Job work solictted
For Sold Emery Wheels and Machinery, send
tne Union Stone Co., Boston, Mass., for circular.
Hydraulic Presses and Jacks, new and second
nand. Lathes and Machinery for Pollshing and Bumng
metals. E. Lyon, 470 Grand Street, New York. Diamond Tools-J. Dickinson, 64 Nassau St., N. Y. Shingle, Heading and Stave Machine. See ad-
vertisement of Trevor \& Co., Lockport, N. Y.

G. D. T. will find a recipe for waterproof
lue on p. 43, vol. $32 .-A$. C. G. should use Indian glue on p. 43, vol. 32.-A. C. G. Should use Indian
ink for architectural drawings.-C. A. W. can
French polish beechwood. See p. 11, vol. 32 . To French polish beechwood. See p. 11, vol. 32. To
mend a rubber band, put a piece in with the cement described on p. 203, vol. 30.-F. S. will find directions for making baking powder on \mathbf{p}. 123, vol. 31.-F. E. H. will find directions for transfer-
ring engravings to glass on p. 298, vol. 31.-G. S.
should consult a dentist--W. T. B. will find direc-
tions for making hard soap on pp. 331,379 yol 31. -W. O. G. will find directions for cleaning shells ou p. 122, vol. 27.-S. N. C. will find directions for
browning gun barrels on p. 11, vol. 32.-C. P. can blue steel work by the process described on p. 123, vol. 31.-W. M. will find directions for silver-
ing mirrors on p. 267, vol. 31.-W. P. will find diing mirrors on p. 267, vol. 31.-W. P. will find di-
rections for making a weather glass on p. 75, vol 30.-P. K. D. will find that the pretended plated ections for an imposition. For electro-magnets o p. 123, vol. 31.-H. S. B. will find directions fo making Babbitt metal on p. 364, vol. 29.-C. A. H will find a recipe for a hair restorer on p. 363 , vol 31-D. A. H. Will find complete instruction in the
art of mechanical drawing in the ScIENTIFIC American Supplement.- E. R. G.'s plan for chord and altitude of a segment given, is very old.E. S., W.L. B. J.H., H. C. S., and others who ask us
to recommend books on industrial and scientiflc subjects, should address the booksellers who ad vertise in our columns, all
thy flrms, for catalogues.
(1) A. W. says: 1. I have an achromatic object glass of 30 inches focus and $11 / 2$ inches aper You can use the one described on p. 315, vol. 34 , or the one described on p. 203, vol. 35. 2. What
advantage has an eyepiece with four glasses over advantage has an eyepiece with four glasses over
one with only three? A. An eyepiece with four
(2) A. G. C. asks: 1. What power is neces-
sary to drive two circular saws (1 cross cut and 1 sary to drive two circular saws (1 cross cut and rip) of 12 inches in diameter, in 2 inch pine lumps?
A. About 4 or 5 horse power. 2. What size of engine 3×6 inches, running at 250 revolutions per minute, cutting off at about $1 / 8$ stroke. A. One with about 75 feet, superficial measure, of heating urface. -J. E. E., of Pa.
(3) A. E.R. says: What would be the dimen sions of an air pump to work from an eccentric
to give 80 lbs. pressure to the square inch in the shortest time? A. If you have plenty of powe to drive the pump, you can get 80 lbs. pressure with a large pump as quickly as with a small one,
if the action is direct. And in proportioning the size, you need only look to the total pressur which you wish to exert.
(4) E. D. G. asks: 1. If a balloon has, would it not havedouble that lifty of 100 lbs twice the volume of gas could be compresse within its sphere? A. It would have less. 2. A
balloon will ascend until it reaches equilibrium, balloon will ascend until it reaches equilibrium, weight. the gas and atmosphere are of the sam weight. If by a safe process the gas could be elevation? A. Yes, if the balloon could expand(5) O. J. B. says: Please give me a method state its use in mechanics. A. Draw a circle, divide its circumference into any number of equal parts, and draw radii from these points to the center of the circle. Then divide one of the radii into the same number of parts. increasing the length of the successive divisions, from the cen
ter, in geometrical progression. Transfer the points so determined to the successive radii, thus determining points of the spiral.
(6) R. M. B. Says: Can a ladle or suitable
vessel be made for melting 2 lbs . of iron in a common blachath's forge? If so iron in how shall it be made? A. There are small plum-
bago crucibles made for this purpose. Metal bago crucibles made for this purp
ladles would nut serve your purpose
(7) J.N.W. asks: 1. Who first applied steam power to the propulsion of boats, and is the in-
ventor of steam navigation? A. The Marquis de Jouffroy, of France, used a steam engine in a vessel some years before Fulton. 2. Who first applied steam power to a locomotive on an expert-
mental track, and is entitled to the credit of the invention of railroading? A. It is generally supposed that the first locomotive was built by Cugnot, in France, in 1769. 3. Who made the first rified cannon? A.Rifed cannon were first brought
into use in 1857. Doubtless many had been invented, and numerous experiments had been
made, before that time. We cannot, however, made, before that time. We cannot, however,
state definitely who was the first inventor. Possibly some of our readers can answer the question. 4. Was not the Merrimac the first ironclad vessel ever used or invented? A. Ironclads were
used by the French in the Russian war. In this used by the French in the Russian war. In this
country Captain Eads constructed several, which were in use before the Merrimac appeared.
(8) H. S. G. says: Suppose I sour a piece of
cloth with 1 lb sulphuric acld to 40 gallons water for the space of 3 minutes : if I use 80 gallons of absorb any more of the acid in the same time?

If we understand you, no

(9) J. T. P. says: I visited the Girard College, Philadelphia. An attendant told me that or brace themselves about the same as an arch of a bridge. I have spoken about them to a number of friends; they say that the steps run in the
wall about 3 feet, while the attendant said that wall about 3 feet, while the attendant said that
they rested in the wall only about 2 or 3 inches? Was he right? A. The steps are supported es-
sentially on the principle of the arch. They have, sentially on the principle of the arch. They have,
in addition, a direct support upon the front edge and on one end of each step; a single step cannot fall withoutturning over backwards, but this is prevented by the weight of the wall upon one
end of it. A very little compressive strain, therefore, upon the arch joints, which are at right
angles to the under side or soffit is sufficient to angles to the under side or soffit, is sufficient to
bold it firmly. See Nicholson's "New Director," edition of 1854, plate XIV, for a similar stairs.

The steps are also doweled together with iron (10) B. F. T. says :
(10) B. F. T. says: Are principles estab tion of any angle (except a right angle) to be impossible? A. The construction can be made for any angle, but the strictly geometrical solution is said to be impossible, because the construction
cannot be made by the aid of straight lines and cannot be made by
(11) L. C. asks: How can I secure dry walls in the basement of my house? The plastering
does not dry. A. It is caused probably by the does not dry. A. It is caused probably by the It is usual and necessary in such con of furring. upon lathing nailed to wooden strips placed vert cally upon the face of the wall at every 12 inches. This secures the plastering, both from any
dampness that may come out of the brick o tone wall, and (by preventing the brick from re ducing its temperature) from the condensation o either of which is suffieient to destroy it. We cannot suggest any remedy short of the replaster ing upon lath as here described.
(12) C. F. S. asks: How large a boiler will it require to run a $31 / 2$ inch stroke boat engine quired? How fast would the boat go ? A. It is you do not state the diameter of cylinder. This applies to several other queries.
(13) H. \& B. say: In our cooling room rise to 50° and fall again. We complain of wet walls, dripping of ceiling, cold damp air, and
melting of ice. How can we obtain a cold dry air? A. The dampness arises from the precipitation of water from the air in cooling, and there
may be some leakage from the ice melting above. may be some leakage from the ice melting above
A more free circulation of air would reduce the A more free circulation of air would reduce th dampness, but athe same bere increase the tem pact body; but we must allow that the air can be cooled only by a sacriftce of the ice. A good cooling room is made under the mass of ice and with an air passage around the sides; in this case the doors arenot opposite one another, but open upon the passage at different points. When the ice ize for the body of ice. In this case it will kee for two years.
(14) W . T. says: The length of a pendu he which vibrates once an hour is very nearly the diameter of the earth. Does a
tion exist on other planets? A. No.
(15) G. W. B. says: We wish to build a house 30×34 feet, of 3 stories, 26 feet high in all.
How shall we construct hollow walls so How shall we construct hollow walls so as to make them damp-proof, and what thickne s shall we
make the walls? A. Make the wall 14 inches thick, that is to say, the inside wall upon which whe door joists rest 8 inches thick, thick, the outside them 2 inches wide. These two divisions of the wall should be tied together with anchors made of hoop iron or other light iron, or with cross ties of the brick itself, at about every 4 feet in hight of the wall, and say 5 feet apart, set in rows and a (16) W one abo the other
(16) W. E. S. asks: Can I construct a horseshoe or U-shaped electro-magnet, by tem-
pering so that it will keep its magnetism after the circuit has been broken for abouta half or a minute, more or less, as desired? A. If you make your magnet so that it will retain magnetism for half a minute after the circuit is broken, it
will retain the magnetism permanently. There is will retain the magnetism permanently. There is
no half way work about it. It either holds its no halfway work about it. It either holds its
magnetism permanently, or gives it up immedimagnetism permanently, o
ately the circuit is broken.
(17) E. P. S. asks: How can I make a cheap telescope, which will show the rings of Saturn A. Take a plano-convex lens of $11 / 2$ inches ape
ture and about 5 feet focus: place the flat side against the end of a tube a little less than 5 feet in length, into which slides another tube. To the end of the small tube fasten the eyepiece, which m ay be either a double convex or double con-
cave lens of about 1 inch focns. The double convex lens gives the largest field, with the image nverted; the other shows the object erect and
(18) W. G. W. says: 1 . A body weighs more at the poles than at the equator. Is any part
of the increase in weight due to its being nearer of center of the earth? A. Yes. 2. I think that
the ceal a person starting at the north pole, and going in any direction, must go south. Is this so ? A. If
it were a true pole, and his course were limited to the surface, we think your proposition would
(19) H. H. M. says: 1 . I wish to ask some
questions as to the ice house described on p. 251, questions af to the ice house described on p. 251,
vol. 31. "Provide a good drain in. your icehouse to vol. 31. "Provide a good drain in. your icehouse to
carry off the water." If I build my icehouse on age, and if so, how large and deep should it be? A. Yes, if located outside of the building. Make it 6 feet in diameter and 6 feet deep, conical, with base at bottom. Provide an opening at top, cov-
ered with a stone, so that you can empty it when ered with a stone, so that you can empty it when he ceiling.," "Are the ceiling pitched roof over the ceiling." Are the ceiling and roof to extend
over the exterior wall, and is the roof to join said wall so as to exclude the air from the space be tween the interior and exterior walls? A. Yes; the roof is to cover every part of the building,
and should project wellover the eaves. 3. "Make doors lined with canvas.' Do you mean that canvas is to be substituted for boards on inside
and outside of doors, and why? A. The doorsare and outside of doors, and why? A. The doors are
canvas filled with sawdust; this is to make them
lighter for use than boarding would be. 4. In a space 6 feet square and $81 / 2$ feet high, how ca you have "a cube of ice of 7 feet ?" A. This was an error of the types; you will find it corrected n No. 41, p. 188, vol. 35.
(20) H. D. T. says: A friend of mine, in at empting to alight from a moving train, stumbled, he and recelved some bruises about the face y coal dust. He was advised to blister, and did o, keeping the blisters open for a week. Al Can anything further be done in this case? Probably nothing short of a surgical operation will remove the spots.
(21) J. O'B. asks: How can I keep oroide of gold from being discolored? A. The so-called acquered, it will not discolor
(22) 0 . R. asks : If a piece of Babbitt metal weighing 25 or 30 lbs. and containing antimony, be placed in a well, would it hurt the water fo house use and drinking purposes? A. Under
certain circumstances, it would prove injurious. (23) F. W. W. asks: Why, when alcohol and aqua ammonia are mixed in about equal parts,
does the liquid turn a light red ? A. If the redoes the liquid turn a light red? A. If the
agents are pure, this change does not occur.
(24) M. V. W. asks: How can I clear sirup of sorghum and molasses? A. The sirup is neu-
tralized with a little lime water and filtered while hot through bone black, which clarifies it per (25)
(25) W. C. B. asks: How can I remove verigris from apple butter? A. You cannot remov it without injury to the butter
(26) W. asks: How is benzine, such as is sold for cleaning clothes, prepared? A. It is one of the direct products of the distillation of petro-
leum (specific gravity 60° to $70^{\circ} \mathrm{B}$.) It is an in red
(27) O. J. C. says: A c se of poisoning by Paris green happened a few days ago, and there is some controversy among the physicians as re-
gards the proper antidotes which should have been applied. A. Give recently precipitated moist erric bydrate, best administered in the form of Emetics should also be given with magnesa. pump applied. Carbonate of soda is sometimes made to replace the magnesia wholly or in part. 2. What is Paris green made of? What are its proportionate ingredients ? A. Paris green
(Schweinfurt green) is the aceto-arsenite of cop-
 oxide of copper $=31 \cdot 29$; arsenious acid $=58 \cdot 65$:
acetic acid $=10 \cdot 06$. 3. In what respect does Paris green differ from Scheele's green ? A. Scheele's
(28) W. H. asks: At what speed ought I to un my water wheel, which is an overshot of 18 eet diameterand 5 feet face, economy of water
being the desired object? A. At between 6 and 7 volutions per minute
(29) E. L. G. asks: 1. Can copper be nickel plated? A. Yes. 2. How can I plate a rim about
the size of a pail hoop? A. Use nickel salts and the size of a pail hoop? A. Use nickel salts and
(30) J . B. asks: 1. Will electricity, passing hrough a magnet, change its poles? A. It can
be made to do so. 2. Take 100 magnetic needles, fasten each to a piece of small wire, say 2 feet long, and these with the magnets attached to a single wire 5 feet long; now will a strong current
of electricity, passing through this wire, change of electricity, passing through this wire, change poles of all these magnets? A. No
31) J. C. W. says: We have had a discussion on the merits and demerits of upright and horizontal engines and boilers. Is there much
difference as to the durability and efficiency of either when the same care is taken of them? A. Not much, but it is a little in favor of the hori. .ntal engine. 2. What kind, upright or hori-
zontal, would you advise for six horse power? A. zontal, would you
A horizontal one.
(32) H. A. P. asks: Are cast iron turnings as good for a ground connection for a lightning rod as wrought or scrap iron? A. Yes. You can-
not err by having too much surface exposed to not err by having too much surface exposed to
the wet ground; and the more iron turnings you use, the better.
(33) E. M. asks: 1. What size and how much of silk-covered wire do I need to make an oz.? The A. inch long. A. Cover your core with No. 20 cot-ton-covered copper wire to the thickness of
$3 / 4$ of an inch. 2. What kind of a bartery, and how large, mu
battery.
(34) W. S. asks: Can you give me a formula for reducing the area of a pipe in feet to its dito say, if the area of the pipe is 0.063 feet, then area in square feet by 0.7854 , extract the square oot of the quotient, and multiply the result by 12.
(35)
(35) C. asks: What pressure per square inch will first class steel pipes stand, $5 / 8$ inch out-
side diameter, $1 / 8$ inch thick, making $3 / 8$ inch inside diameter? A. The bursting strain per square inch would be about two fifths of the tensile
(36) A. D. S. asks: If the ancients believed that the world was flat, why is Atlas always re-
presented as carrying a globular world? A. Acpresented as carrying a globular world? A. Ac-
cording to some legends, Atlas was a great philosopher who was the first to teach that heaven was in the form of a globe.
(37) T. J. S. says: Please give us a recipe
for a cement that will resist the action of alcofor a cement that will resist the action of alco-
hol. A. Melt together equal parts of pitch and gutta percha. Apply bot.
(38) J. A. (C. asks: Please name a substitute for lime in a washing compound of sal sod see that the introduction of lime, or any substitute similar in properties, is requisite. A solution of subcarbonate of soda (sal soda) in wate is all that is required. The following recipe has lately been introduced in large laundries; it is o German origin : The clothes are simply boiled for water containing about half a pound of commo hard soap, ground fine, and 2 ozs. spirits of tur pentine to the gallon. The clothes, after rinsing asual in clean water, and drying in the air, do (aD) 1 R I_{2} : I (:39) A. R. L. asks: Is there any acid used in the manufacture of sirup? Is it injurious, nou m detect the presence of it? A. Id but it is all removar sirup, yes, sulphuric acid tion of the sirup with a solution of chloride of presence of sulphuric acid.
(40) R. I. C. says: I have made an ink by ching 5 gailons water, $1 / 2 \mathrm{lb}$. \log wood, $1 / 2$ oz. bi-
chromate of potassa, and $1 / 2$ oz. prussiate o potash, but this ink will not mix with other inks, Why if this? A. Ordinary ink contains gallat of iron, which is precipitated as Prussian blue on the addition of any mixture containing an alka-
line ferrocyanide. At the same time a portion o the chromate suffers decomposition.
(41) P. J. B. asks: What substance will re not immediately reappear? The shiny appear ance is probably caused by its rubbing agains the back of a wooden seat in a horse car. A ponge it regularly with a soap containing con-
siderable alkali. If this does not succeed well, siderable alka
(42) W.W. A.asks: Is there anything in urious in paraffin wax, if mixed with bread A. There is not, but paraffin is not desirable a
(43) 'T. L. M. says, in reply to M. H. C., who sks if a point on a connecting rod between the enters of the crank pin and crosshead journal describes a perfect ellipse, or if the figure it deother : It describes a perfect ellipse
(44) F. M. P. says, in reply to (I. S. P., who here were hundreds of chicken Last spring here were hundreds of chickens hatched in a
box 2 feet square by 6 feet long, set on end. The upper half was full of frames like sieves, frames covered with canvas; these were 4 inches apart, onslides. They were filled full of eggs, and a the bottom of the box was a coal oil lamp burning: directly over it was a pan with water in to and the eggs were turned every day.
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated
J. D. B.-It is red Jasper.-F. D. B.-All four are fint, containing different percentages of iron - J. B. H. - It contains about 20 per cent of iron - H. C. B. -They are crystals of sulphate of lime
O. H. J. - No. 1 is spiegeleisen. No. 2 is flint. No is decomposed mica.-J.B.-It is compact quart rock. The small percentage of iron contained in it may hurt it for the purpose proposed.--J. H.P. No 3 is o. 1 is hornstone. No. 4 is milky quartz. No. is ferruginous quartz. No. 5 is quartzite. No. 7
is shale. No. 8 is gypsum. No. 9 is iron sandtone. No, 11 is crystalized selenite-W. M. B. It contains sulphuric acid, chloride of sodium, carbonate of lime, and a great amount of organic matter. Add lime water, boil, and filter through gravel, sand, and charcoal.

COMMUNICATIONS RECEIVED

The Editor of the Scientific Ambrican acknowledges, with much pleasure, the receipt of ing subjects:

On the Analogy of Light, Heat,
On a Lusus Natura. By J. H. P.
On Railroad Rails. By P. M. A. and others. On Flying Machines. By C. C. M.
Also inquiries and answers from the following :
HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appear
should repeat them. If not then published, they should repeat them. If not then published, they declines them. The address of the writer should declines them.
always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, when initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answe
by mail, if the writer's address is given. Hundreds of inquiries analogous to the following are sent: "Who makes japanned tin novelties and toys? Who makes watchmen's time detectors? Who makes spring balances? Who manufactures india rubber?" All such personal inquiries are "printed, as will be observed, in the column of apart for that purpose, subject to the charge mentioned at the head of that column. Almost any desired information can in this way be expedittously obtained.
[official.]

INDEX OF INVENTIONS
Letters Patent of the United States w
Granted in the Week Ending September 26, 1876, and each bearing that date. [Those marked (\mathbf{r}) are retssued patents.]

A complete copy of any patent in the annexed Hat ncluding both the specifications and drawings, will b please stace the number and date of the patent desired, Agricultural botier, L. \& C. Full
Arithmettic case, w. F. Baada..
Artiticial marble, L. De Planque
Axle set and gage, w. C. Carleto
Bag holder, Green \& Finney.
Bag-turning machine, Judson \&
Balanced valve, B. T. Babbitt.
Barb for wire fences, F . Armstron
Basin faucet, E. S. Rich
Bee hive, E. P. Worrall
Bevel, G. H. Bradshaw
B111 nle, C. S. Whitman..
Brd cage, J. H. Chap
Blowpipe, Dodge \& Gushurst
Boats, detaching, w. A. Brice
Boats, detaching, Otterson \&
Bolt cutter, W. A. Laure.
Book case, W. Homes....
Boot and shoe, H. Brossel............
Boot counter support, G. W. Powers
Boot soles, shaping, J. B. Johnson (r)
Boots, making, J. W. De Castro........
Bosom-troning board, L. A. Van Kuren
Boxes, making, W. H. All
Bracket, c. B. Pettengill
Breech-loading fire arm, H. A. Castle.
Brick and tile machine,
Burial casket, E. Allen..
Burner for coal, J. M. Hicks
Cancelling postage stamps, etc.............. Palmer at
Car axle, J. D. Imboden.
Car axle bearing, S. Clark
ar coupling, G. W. Putnam
arbureter, J. A. Plerce...
Carpet stretcher, G.c. Miller....
Carriage top, landau, R. Dunn
Casting medals, w. B. Moore
Chair and cradile, s. c. Megill Chimney, G. F. Knlght
Cligar cutter, P. A. La France (r)
Clasp for corsets, M. E. Maneflel
Coftee roaster, F. Prrewe...
Cooking range, T. J. March
Corn planter, H. Beitzell...
Corn planter, L. B. Rowland
Corrugating sheet metal, S. S
Cotton press, L. Lewis...........
Coupling vehicles, W. Goodwin
ream from milk, separating, D. Pettengill.
Curtain tassel, H. D. Osgood.
Cut-ofr branch plpe, G. W. H.
Cutting nippers, H. B. Todd
Dental plugger, C. M. Richmond...............
Dlamond millstone dresser, A. C. Pry
Dlamond millstone dresser, w. P. Uhilinger
Die, pipe elbow, S. G. Warner
Die, horseshoe, J. R. Willa mins
Drum screen for minerals, M. Neuerburg
Egg beater, J. G. Brothwell.
mery grinder, G. Fow
Envelope, G. H. Booth
Eraser holder and pencil protect
Evaporating pan, J. S. Blymyer
vaporating pan, J. s. Blymyer
Fence, G. W. Young......
Fence post, M. H. Knight
Fence post, w. W. Plank
FIre and burglar proof safe, I. J. Gray
Fire escape ladder, J. A. Groshon ...
Fireproof bullding, J. J. Schllinger.
Fire wood sawing machine, . Ruel.
Floating gin, C. Mann
Flood fence, w. Davis
Flue stopper, J. R. Higgins.
Folding bedstead, D. Arnaud
Fringe-twisting machine, S. Mortimer
Fruit gatherer, S. R. Ruckel.........
Frrutgatherer, S. R. R, B. B.........
Furrow gate forplowe
Game apparatus, B. B. Townsend ..
Garment stand, F. A. Hatch...
Gas condenser, surface, C. W. Isbell.
Gran binder, J. Garrard
Grain
Grain, thrashing and separating, B. Carpenter
Grave fill
Grave filler, Parsil \& Van
Hair crimper, G. E. Hart.
Hair pin, w. R. Clough
Handles, fastening hamm
Harmonica, E. D. Tuttle
Harrow, E. D. \& O. B. Reynold
Harrow teeth, S. Emer
Hay rake and cocker,
Head rest, G. A. Shaw...
Heating stove, etc., C. D. Moody.
Heel evener, Dilley et al
Heel evener, Dilley et al..............
Hides, handing, etc., J. R. Teass.
Hitching post, C. F. Roth.
Hoof expander, C.
Horse power, J. E. Muldrow
Horse rake, revolving, w. H. Hall.......
Horseshoe blank bar, A. B. Seymur
Horseshoe olanks, bending, J. Wike ..
Horseshoe blanks, making, J. R. Will
Hose coupling, Tyler \& Severson.
Iron boats construction of, J. T. Smith
rrigating apparatus, F. T
Journal box, W. H. Lungren
Lace leather, making, H. Lo
Lamp burner, E. Botleau.
Lamp shade, R. R. Crosby
Lamp shade, R. R. Crosb
Lasting machine, boot G. W. Copeland. 182,.56
l.ead traps and bends, making, T. F. stevenso

lilstone dress, P. B. Vicle...
Ineral substances, etc., mixing, P. Lea, (r)
Oortising chisel, E. H. Sm
Needle-threadIng device, J. Foste
Nut lock, E. G. Felthen
Nut lock, E. G. Felthausen
Oil can, w. N. Thompson.
Oil can, W. N. Thompson................
oll burning locomotive, C. J. Eames..
Ordnance, construction of, A. Krupp.
Ordnance, construction
Peg float, c. s. Sanford.
Petroleum, treating, G. Al...en
Pin-sticking machine, C w
Pin-sticking machinne, c. W. Pratt........
Plpe nozz1e, blast furnace,
Plating machine, L. J. Boy
Plane guide, A. J. Teamer.
Plane guide, A. J. Teamer..
Plow point, J. w. Beverly..
Plow polnt, J. W. Beverly.......
Pressed glass pendent, J. H. Hobbs
Printing music, etc., M. Allissoff....
Propulston of vessels, E. J. Collett.
Pump, F. Kah1........................
Pump, F. Kah1...
Pump, A. Riddell
Purifying fron and making steel, J. L. Randall.
Radiator, J. R. Reed....
Rallroad crossing, D. Pl
Rallroad raill jontit, J. E. Atwood
Rallway. A. S. Halllde...........
Reclining chair, N. N. Horton.
Reference index, D. A. Davis
Remedy for hog cholera, M. R. Yewell.
Reverberating furnace, H. McDonald..
Revolving tire arm, J. Davis
Rivet heads, cutting. A. W
Rocking chair, M. Ohmer.
RockIng grate for furnaces, H. Adams.
Rod adjuster for oll well, J. M. Reardon
Roofing material, C. M. Warren, (r)......
Rope machine, Whiton, Thoma
Rotary churn, J. R. Bennett....
Rotary churn, A. M. Mortimer.
Saw mill head block. W. Phillips.
Sectional steam generator, M. B. Buel
Seed planter, W. F. Finney.....
Shaft coupling, M. H. Kernaul..
Shaft coupling, M. H. Kernaul...
Sheet metal can, 'T.J. M. Jewel
Shet metal jointer, C.
S.
Shovel-grinding machine, W. A. Mey
Show case, Dallenne and Messager.
Show case, J. Starr, Jr
Show case, J. Starr, J....
Show card, C. A. Righter.

$$
\begin{aligned}
& \text { Slphon head, mineral wate } \\
& \text { SIIde valve, J. Brady }
\end{aligned}
$$

Soda water fountain, C. Gretner
Spark arrester, w. Rushton.....
Spark arrester, w.
Spike-drawing tool, Converse et al
S.
Spindle and bolster, W.
Spinning top, C. Nicklas..
Spring bed,
Steam hammer, w. Walker...
Stock separator, A. Minor
Straw cutter, A. Heverly.
Sulky gang plow, T. B. Fagan
Swing, H. J. Blakeslee................
Temporary binder, H. H. Edwards.
Temporary binder, H. H. Edwards.
Thill coupling, C. Sangster........
Tie buckles, making, H. W...........
Time drop attachment, c. Cottrell.
Tobacco, curing, C. S. Philips.
Tobacco extracts, treating, s .
Track clearer, Perry \& Manley.
Truss, w. L. L. Plerce.
Try square, F. Veazte.
Tube expanaer, Tyler \& Severson.
Umbrella runner, Vack cover
Vehtcle axxe, , D. Dalzell.
Wagon end gate, R. C. Wilson......
Wash board, J. o. Bently.
Wash boller, J. W. Field
Wash bonier, J. Wachine. k. Murphy..
Watch barrel, c. Barclay..
Water closet, J. H. Keyse
Water closet, J. H. Keyser..
Water Ilter, I. Brach........
Water meter, J. R. Pad
Water meter, P. Wells..
Water motor, J. B. Mor
Water motor, J. B. Morrow....
Wheel cultIvator, w. Aldrich.
Wheel cultyator
Wheel plow, E. D. \& O. B. Reynold
Window mirror, C. A. Demilag.
Wire stretcher, R. Ellwood.........
Woven wooden fencing, J. J. Hall
Wrench, A. M. Mortim
Wrench, J. T. Reed..
Yarn-winding machine, w. Haslam........
DISCLAIMER FILED.
Birmingham, Coun.
designs Patented. Pa.
9,502.-Stave Basket.- B. F. Tuthill, Burlington, V
9,503.-Fountain.-W. Tweeddale, Brooklyn, N. Y. 9,504--Embroidery.-E. Crisand, New Haven, Conn.
[Δ copy of any one of the above patents may be had
remitting one dollar to Munn \& Co., 37 Park Row, New
York city. remitting
York elty.
sCHEDULE OF PATENT FEES. On each caveat.....
On each Trade mark
On filing each appication for a Patent (17 years).
On issuing each original Patent..
On appeal to Examinera-1n-Chief.
On application for Reisene.
On dilng a Disclaimer.........................
On an appitcation for Design 3% years).
On appilication for Design (7 years).
On application for Design (14 y eara).
the validity of patents.
We recommend to every person who We recommend to every person who is
about to purchase a patent, or about to commence the manufacture of any article under a license, to have the patent carefully examined
by a competent party, and to have a research by a competent party, and to have a research made in the Patent Office to see what the condiHe of the art was when the patent was issued
He sho see that the claims are so worded as to cover all the inventor was entitled to when his patent was issued; and it is still more essen-
tial that he be informed whether it is an infringe ment on some other existing patent. Parties desir ing to havesuch searches made can have them don by giving the date of the patent and stating the by giving the date of the patent and stating the $\begin{array}{ll}\text { information, address } & \begin{array}{c}\text { MUNN \& CO., } \\ \\ \\ 37 \\ \text { Park Row, New York }\end{array},\end{array}$

2duertisements.

Back Pake, each insertion -- $\$ 1.00$ a line.
Engravings may head advertisements at the same rater
per line, oy measurement, as the letter press. Adver.
tisements must be receeved at publication office as early
as Friday morning to appear in next issue
OUSE-BUILDERS, CONTRACTORS, \& OTHERS-
Agente Wanmplon Treble Door Lock. Best In the world:
SETS OF DRAWING INSTRUMENTS 75 to

JAMES W. QUEEN \& CO., Opticians,

$\xrightarrow{\text { RAPPR'SAND HUNTER'S HAND BOOK. }}$

Scientific Farmer.
3 Price stion ayoar.

NEW BOOKS.

$\underset{\text { Dealers in frrst class }}{\text { ALd }}$, hand Machnery Limited,

THREE THINGS IN ONE
ventilation of af Fire Place; RADIATION of a stove;
CIRCULATION of a Furnace Pure Air and an Even Tempe-
rature throughout a R Room.

ELECTRO-METALLURGY.

 galvanoplastic manipulations:

 manual of electro-metallurgy: in

 ho will furnish his adaresg. BAIRD \& CO.,
TAKE

 B LOSSOM ROCK, HArbor OF SAN Francisco.
 DAYTON CAMPUMP,

 gine, but derives ire motion from a cam.
Speed can be reguated to sult evaporation.
fumplng Return from Steam Heating ApSend for Circular.
 TO ELECTRO-PLATEERS, JEWELERS, AND BATTERIES, CHEMICALAK, AND MATERIALS, in
 GEORGE C. HICKS \& CO Baltimore, Md
CLAF RETORTS, TILES, FIRE BRICKS, \&c.
 IT PAYS to sell our Rubber Hand Printing stamps
Terms free A. HARPER \& BRO., Cleveland, δ.

BARNES Foot Power
MACHINERY.

 JIN BARNES,
Winnebago Coord

V struction fent CARed. Wosked by hant CuN-
 EAGLEFOOTLATHES

EAGL
$4=4$
4
8

 \$3 W ATCHES. Cheapest in it it known
 $\mathrm{F}^{\text {OR ALL KINDS OF MACHINERT }}$ S. Ap. Hily to

$$
\begin{aligned}
& \text { Woodworth Planers nna Matchers, } \\
& \text { Daniels d Dimenion Planert, Untien }
\end{aligned}
$$

 Cuting Saws Moling, Morising ind
Sawno Carving. Horing, Shaping, Friez

TRADEMCNIR

Horiming diliting

 OIIEl safry hoisting No. 348 BROADWA OTIS, BEW YOSE \& CO | The Lehigh | "The best wheel we have ever had |
| :---: | :---: |
| Emery Wheel. | $\begin{array}{l}\text { Gil ves, } \\ \text { tion }\end{array}$ |
| our sawer perfect satisfac- | |
| HARPI | |

 The Toll-Gate! Prize Picture seft free! An The HOADLEYYGINE.
PORTABLE STEAM ENGINE. WITH AUTOMATIGAL CUT-OFF REGULATOR THE BEST AND MOST EGONOMICALENGINE MADE TheJ.C.HOADLEY CO. LAWRENGE, MASS.
STEAM ENGINES FOR SALE.

 The cost. Driven or Tube Wells

T The UNION IRON MILLS, Pittsourgh, Pa.

 CELEBRATED FOOT LATHES

Cotton Seed Huller.

blake's patent Stone and Or Breaker

FINE TOOLS AND FOOT LATHES

 The Lehigh Emery Wheel
 Steel Castings

 $\mathbf{M}_{\text {making shin or ins }}^{\text {ACHPROVED STRLES FOR }}$

LOOK 2 gams gine sides in in worm

 WHIPPLE'S
Patent Door Knob.

Ravertisements.

 vertisements must be received at pubitiation ofince as
eariy as Fruday mornuno to appear in next tsele

PATENTC'SIMPROVED NT ELEVATOR BUCK ETM'

H. W.JOHN S' PATENT. ASEESTOS

ASBESTOS ROOFINC.

 erings for exposed wood and iron. In pails, kegs and barrels
ASBESTOS STEAM-PIPE AND BOILER

 Indestructibe, self-1mbricating, flat, and round, all sizes.
Fire-Proof Paints and Coatings, Cements
for Steam-Joints, Acld and Cas Retorts, Leaky Roofs, \&c. Roof Paint, Sheathing, and Lining Felts.
sbestos Boards, Paper, Thread, Cloth, \&c.
These articles are ready for use, and can he easily applied
by any one. Send for Samples, Pamphlets, Price Lists ente. H. W. JOHNS, 87 Maiden Lane, N.Y., Working Models

[ESTABLISHED 1846.]
Minn \& Co.'s Patent Oficicss. The Oldest Agency for Soliciting Patente in the United Btates.
THIRTY YEARS' EXPERIENCZ MORE PATENTS have been secured through thie the world.
They employ as thetr assistants a corps of the most ex praftenced men as examiners, specifcation writera, and
draftenen that can be found, many of whom have been selected from the ranks of the Patent Office
SIXTY THOUSAND inventors have avalled themventions and procuring thetr patenta.
MUNN \& CO., in connection with the publication of the SCIENTIFIC AMERICAN, continue to axamine in ventions, confer with inventors, prepare dra wings, apein the Patent offlce, paying the government fees, and watch each case step by step while pending before the examiner. This is done through thetr branch offce, corner
F and 7th streets, Washington. They also prepare and file caveats, procure design patents, trademarks, and re or other attorneys), procure copyrighted by the inventor ferences, give written opinions on matterv of infringe-
ment, furnish coples of patents, and, in fact, attend to ment, furnish coptes of patents, and, in fact, attend to
every branch of patent buasiness both in this and in forelgn countries.
A spectal notice is made in the SCIENTIFIC AMERI-
CAN of all inventions patented through thls agency, with the name and residence of the patentee. Patents areo orvention dy such notic
Patentsobtained in Canada, England, France,Belgium, Germany, Russia, Prussia, Spain, Portugal, the Britioh granted, at prices greatly reduced from former rates. Send for pamphlet pertaining spectally to forelgn patenta, which states the cost,time granted,and the requirement or each country.
Persons destrin Copies of Patento
ber 26,1867 , can be supplied with offliclal coples at rea sonable cost, the price depending upon the extent of drawings and length of speciftcations.
Any patent issued since November Any patent issued since November 27, 1897 , at which
time the Patent Oflle commenced printing the drawing and specifications, may be had by remitting to this of fice 81.
A copy of the claims of any patent lasued since 1896 will
De furnished for 8 . oe furnished for 81.
When ordering co
above, and gate na
and date of patent.
A pamphlet containing full diret bound Reference patents sent free. Δ handiomely and many engravings and ta bles important to every patentee and mechanic, and is a useful hanabook of rein ence for everybody. Price 25 cents, malled free.

Address MUNN \& CO.,
Publishers SCIENTIFIC AMERICAN,
BRanch opfice-corner of F and 7 th str

Releiéplatesinthar Type-Meeal Hetan
 Machinists' Tools. Lathes Maners brills \&c.
 HANDASYDE'S COMPOSTITIO For the Removal and Preention o

 Lathes, Planers, Shapers. Drilll

The Standard-Best Stock-Finest Finish D. ARTHUR BROWN \& CO. Fisherville, N. ${ }^{\text {M }}$

 Brayton Reany Motor
 Penna. Ready Motor Co.,

 Anemity

ROCK DRILLING MACHINES AIR COMPRRESSORS.

Todd \& Rafferty Machine $\mathbf{C o}$

PROPOSALS WILL BE RECEIVED, CPTTO

 SNYOER'S LITTLE GIANT STEAM ENGINE

(TMPROV BITENT

The Scientific American REFERENCE BOOK

A Bound Book of 144 Pages, for 25 c.

Oot recept of 2 cents, we end by mall, poat pads,

${ }_{5}$
 7inuerametry, as A pplee to P ractical Purposee. With

 12. Valuable Tablean

 Mol

 MUNN \& CO., Publishers, Scientifc American Office,
37
Park Row,

Stone Channeling

Quarrying Machine,

WARDWELL PATENT.
FOR CUTTING STONE INTO VARIOUS SIZES AND DIMENSIONS IN ALL KINDS OF BTRAY STOKE CUTTER CO., RUTLANT, VT. E-Three Math PORTLLANDCEMENT

Rogrse ran

Portland and Keone's Cement.

Niagara

SteamPumpWorks HARLES B. HARDICK, BROOKLYN, N. Y.

The Tanite Co., STROUDSBURG, PA. EMERY WHEELS\&GRINDERS

䢒

 HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.
I. B. FRAIMII, V. Pres't. J. Y. ALLBRI, PTos't J. B. PIERCE, SPO'J.

Nix

SCIENTIFIC AMERICAN, For 1877
THE MOST POPULAR GCIENTIFIC PAPER THIRTY-SECOND FEAR
VOLUME XXXVI.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN beg to announce that on the first day of January
1877, a new volume commences. It will continue o be the alm of the publishers to render the con tents of the new volume more attractive and use ul than any of its predecessors.
To the Mechanic and Manufacturer
No person engaged in any of the mechanical pur
suits should think of doing without the ScIEN mber contalns from ix to ten engravings of new machines and inve tion. Interests of Popular Science, the Mechanic Arts Manufactures,Inventions, Agriculture,Commerce and the industrial pursuits generally; and it is val uable and instructive not only in the Workshop
and Manufactory, but also in the Household, the Library, and the Reading Room. Each volume Cibrary, and the Reading Room. Each Vagges
contains hundreds of Notes, Receipts, and Sugge thons and Advice, by Practical Writers, for Work ing Men and Employers, in all the various

TERMS OF SUBSCRIPIION.
One copy of the SCIENTIFIC American will be
sent for one year. 52 numbers, POSTAGE PRE PAID, to any subscriber in the United States or Canada, on receipt of three dollars and twenty cents by the publishers.
One éxtra copy of the Scientific American will be supplied gratis for every club of five subscribers
at $\$ 3.20$ each; or six copies for $\$ 16.50$ without extra at $\$ 3.20$ each; or $81 \times$ co
copy. Postage free.
The scientific American supplement A weekly paper, uniform in size with the SCIEN contains working drawings of engineering works, and elaborate treatiseson every branch of Science and Mechanics, by eminent writers, at home and abroad. An illustrated cover protects the hand somely printed sheets. Price, $\$ 5.00$ per annum. single copies 1 cents.
One copy of the Scientilic American and one
copy of the Scientific American Supplement will be sent for one year, postage prepaid, to any sub. scriber in the United States or Canada, on receipt of seven Dollars by the publishers.
The safest way to remit is by Postal-Order, Draft, or Express. Money carefully placed inside of envelopes, securely sealed, and carefully addressed, seldom goes astray; but it is at he sen-
der's risk. Address all letters and make all order's risk. Address all lett
ders, drafts, etc., payable to

MUNN \& \& CO. 37 PARK ROW, NEW YORK. THE "Scientiflc American", is printed with
CHAS.ENED JOHNON \& CO, SNE. Tenth and
Lombard Sts., PHIladelphia, and 59 Gold St., New York.

