

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
NEW YORK, OCTOBER 21, 1876.

A NEW LIGHT DRAFT PROPELLER.

The principal demand which ship constructors find themselves called upon to meet at the present time is for small swift screw propellers. Pleasure vessels of this description have been constructed in large numbers both in Europe and in this country; and the speed obtained, through the progress made both in modeling the hull and in fitting thereto engines of maximum power yet of most compact form, is certainly remarkable when the small size of the craft is considered. The success thus attained has sugges ted the possibility of securing like qualities in the mediumsized vessels used for commercial purposes, thus bridging over the gap between the light and fast screw steamer and the small steam yacht, which hitherto has formed the strong. hold of the now fast disappearing paddle wheel. The vessels occupying this intermediary position include ferry boats, river steamers, coasters, and the like, the first necessity in which is light draft of water, a cardinal requirement which, when the large carrying capacity and other requisites are considered, at once militates against the use of the screw. It will be seen, therefore, that the problem of a light draft screw steamer is by no means an easy one to solve; but on the other hand, the advantages to be gained by its solution are amply sufficient to warrant thorough study and investigation. That such a course will in the end lead to the desired result is clear from the fact that we are now enabled to lay before our readers oneinteresting instance of a vessel constructed under the required conditions and meeting all the requirements of actual usage in a thoroughly satisfactory manner.
The Geneva-represented in the engraving-has recently been built for the Kingston and Cape Vincent (Canada) Ferry Company, by Messrs. George Chaffey \& Brother, of Portsmouth, Ontario. The depth of water of Lake Ontario, between the above named points, is such as to necessitate a light draft vessel; and at the same time a craft sufficiently fast to beat the best boat in the Company's service was demanded. The general dimensions laid down were as follows : Length over all 103 feet, beam on deck 20 feet, draft forward 3 feet 6 inches, aft 4 feet 4 inches. The vessel accom-
modates on her forward deck fifty head of cattle, and in her cabins and on the upper deck four hundred passengers. The high pressure engine, also built by the same firm, is of the ordinary type of inverted single cylinder, 14×13 stroke, constructed in the lightest manner consistent with strength: the rods, crosshead, and shaft being of steel. There is a return tubular boiler entirely of Lowmoor iron, 9 feet 3 inches long by 9 feet in hight and 5 feet in diameter, containing 157 re turn tubes, each $2 \frac{1}{2}$ inches by 7 feet long. One and a half tuns of anthracite coal is consumed per 100 miles run. This is the average consumption for the season, and is very small considering that the fires are kept in night and day, and that the cabins are heated by steam from the boiler. The propeller is a Chaffey wheel, 4 feet 4 inches in diameter, with feet 6 inches pitch.
On the trial trip over a measured distance of $2 \frac{1}{4}$ miles, the Geneva ran at the rate of 14.2 miles per hour, the engine making 208 revolutions with 100 lbs . of steam. She is now capable of running 15 miles per hour, and has beaten, we are informed, the fastest boats in the vicinity by over two miles per hour, despite the fact that, for the latter, speeds varying from 16 to 18 knots are claimed.
The lines of the Geneva's model are of great beauty. A noticeable fact is that, while running at the hight of her speed, the vessel does not change the water line to any appreciable extent, but maintains the same trim as when at rest. This is remarkable, inasmuch as screw steamers ordi narily, when running at high speeds, settle aft, while many present the appearance of moving up hill.
The builders above named have already achieved consid rable reputation for their steam yachts and pleasure ves sels. all of which are notable for speed and beauty of model Parties interested in the improved construction illustrated in the case of the Geneva may obtain further particulars by addressing Messrs. Chaffey \& Brother, as above.

English Fire Engines.

A series of trials of Messrs. Merryweather \& Sons' new steam fire engine lately took place at Devonport Dockyard, the Admiral,Superintendent,and several heads of the various
departments being present. The engine being placed along side the basin, and four lengths of suction pipe connected, most severe test of raising the water through this verti cal lift (32 feet) was satisfactorily accomplished. Steam was raised to 40 lbs . pressure in $5 \frac{1}{4}$ minutes, and to 120 lbs in 11 minutes. Two jets of water, $1 \frac{1}{4}$ inch in diameter, were thrown through 200 feet of hose to a vertical hight, estimaed at 170 feet, with a mean water pressure of 100 lbs . on the quare inch. After pumping sea water, the engine was the emoved to take its supply from the dockyard fresh wate service. Several interesting tests took place, one notably being that a 2 inch solid jet of water was projected over he various buildings.

Mr. Thomas Fearn.

The Birmingham (England) Gazette, announcing the death of Mr. Thomas Fearn, says: "Mr. Fearn may be said to have been the inventor of the process known as electro-me tallurgy, the patent for which he disposed of to the Messrs. Elkington, and which he was instrumental in introducing to every part of the Continent. He studied at the Queen's Colege, Birmingham, afterwards at Paris, and for some time was a distinguished pupil of the well known German chemist, Dr. Liebig, with whom he formed a lasting friendship He was well known to the leading electro-metallurgists of Paris, Vienna, Berlin, and Cologne, and in Birmingham his society was courted, not only for his bright and far-reaching intelligence, but for his kindly and unostentatious geniality."

San Fernando Tunnel

The tunnel through the San Fernando mountains has just been completed, and is worthy of notice, as it is by far he largest on the Pacific coast. Its length is 6,966 feet, while the longest tunnel on the Central Pacific Railroad, in crossing the Sierra, is not over 1,200 feet. It is not two years since the first borings were made, and since then many unforeseen difficulties have had to be encountered. From the character of the rock and the enormous pressure upon the imbers placed as supports, the tunnel will have to be lined with strong masonry throughout.

Frientific ghmericau.

HETABLISHED 1846.

MUNN \& CO., Editors and Proprietors.

pUBLISHED WRERLIT 4 T

NO. BY PARK ROW, NEW YORK.
O. D. MUNN. A. E. BEACH.
terms for the scientific american
One copy, one year, postage Included....
One copy,
8320
.160

The postage is payable in asdagance ty to.
Ts. The postage is payable in advance by t
scriber then recelves the paper free of charge.
Norr.-Persons subscribing will please to give their full names, and Post \#flce and State address, plainly written. In case of changlng residence
tate former address, as well as give the new one. No changes can be made unless the former address is given.

Scientific American Supplement.
from the Scientifio AmRRICAN, but
A distinct paper from the Scientifio Amricican, bu
TERMS.
One year by mall.
Scientirio Am
Single Coples. \qquad
The safest way to remit is by draft, postal o
S Subscriptio
VOLUME XXXV., No. 17. [New Series.] Thirty-first Year.
NEW YORK, SATURDAY, OCTOBER 21, 1876.

THE SCIENTIFIC AMERICAN SOPPLEMENT.
Fol. II., No. 43
With 43 Figures.
TABLE OF CONTENTS.
. The international exhibition of 1876. Wih 15 figures.-Meteorites at the Exhibition, with 2 engravings.-The Canadian Log House, 1 engraving.-Vulcanized: Fiber Exhibits.-Mosaic Inlald Tables.-Ger-
many at the Centennial.-Exiblt of Corundum ; Interesting facts Concerning Letter of the Manchester Steam Users' Association to the Judges of the Exhbition.-Compressed Air Engine.-The Lansdowne Bridge,
Centennial Grounds, 7 engravings.- ritctionless Taps, by Professor J. E. Sweet, 5 figures.

. engineering

engiveering and mechanics. With 32 figures.-The Progress of the Suspension Bridge between New York and Brooklyn, 1 engrav-
ing.- Bement's Milling Machine for Gun Work, 1 engraving.-How to Make Steam and Water Joints, by Josin A Rose. - Methods of Setting Gas Retorts, with 26 figures.-IIron and Steel Manufacture, by W . Casing and Seating, 2 engravings.
Casing and Seating, 2 engravings.
II. TECENOLOGY, with 36 figures.
and Method of Appication, with 25 fgures (An interesting and valua ble paper).-Chain Making in San Francisco, 1 engraving.-A ward of French Prizes for Improvements.-Agricultural Treatment of Concrete,
with 1 engraving.-Design for Vault and Colonnade in Iron and Conwith 1 engraving. - Design for Vault and Colonnade in Iron and Con-
crete.-Gim,nai Finger Rings, 5 tigures.. -Panel Ornaments, 17 th Century, 1 engraving.-Carved Fountain Ornaments, Ratisbon, 2 engrav-ings.-Designs for Writing Table and Chairs, Vienna, 1 engraving. v. LESSONS IN MECHANICAL DRAWING, by Profebsor MacCord. with 10 engravings.
Electricity, light, heat, etc. - Electro-Magnetic Photogra-phy,-New Telegraph
Machine, 2 engravings
Vi natural history. - Profergor Huxley on Nagara Falls.-Proceedings of the Entomologica :Society.-Congress of Belgian Scien tists.
VII. ASTRONOMY.-Supposed Transit of Vulcan across the Sun's Disk.A Miniature Transit Instrument.-Personal Equation.-Photometric ter.
tiI. Miscellaneous.-Sketch of the Life of the late Jethro Wood Inventor of the Modern Cast Iron Plow.-The Standish Mo Duxbury, Mass.

The scientific American supplement

PROFESSOR HUXLEY'S MISTARE

It now appears that Professor Huxley made a grave mis take in giving such prominence to the Miltonic hypothesis take in giving such prominence to the Mil foreation in his Chickering Hall lectures
To say the least, it was a sheer waste of time and effort, and many aver that it was something a good deal worse: indeed, that he might just as appropriately have spent the time arguing that the moon is not made of green cheese, or that the world is not flat, or in discussing any other childish or antiquated notion, since not one of his audience ever which every American school boy knows to be inconsistent with the commonest facts of geology. More than one of our thoughtful journalists and clergymen have resented, as al most an insult to the intelligence of our people, the idea that a man of Professor Huxley's reputation should pre sume to discuss a topic like evolution, before such an audi ence as was gathered in Chickering Hall, in so trifling and
elementary a manner-shirking, or at least shunning, the grand philosophical and moral questions involved in the evolution of protoplasm, apiarian politics, the missing link, monkey's ears, the human soul, and such things. It was altogether an insult, they make no bones of asserting, for Professor Huxley to insinuate, as he did, that Milton's purely imaginative description is commonly accepted in any literal sense as a true account of the manner in which plants and animals came into being.
It looks that way, we must confess; still we cannot bring ourselves to believe that Professor Huxley really intended to insult us. At the worst, it was a mistake, grievous, to be sure, but unintentional : a result, doubtless, of what cer be sure, but unintentional : a result, doublless, of what cer-
tain of the daily papers have so pertinently described as tain of the daily papers have so perting from insufficient
"Professor Huxley's habit of generalizing data." He had heard of Bishop Coxe, and, so he said, had conversed with some one who insisted that fossils were put into the rocks by the Creator to test our faith; and with characteristic haste, he jumped to the conclusion that all
American Christians, or at least the greater part of them, American Christians, or at least the greater part of them,
were equally ignorant of right views of geology, the origin of species, and such matters. Had he remained to see and hear the outburst of indignation from pulpit and press which his blunder provoked, he would have returned to his native land, we fancy, much less satisfied with the course he had adopted.
We have just been looking over a considerable pile of the religious papers of last week, to see their comments on the lectures, and we are sure that Professor Huxley would be surprised to witness how generally and how vigorously they repudiate the Miltonic hypothesis. Now and then a belated sheet stands up for it, figuratively speaking ; bu the majority stoutly put it aside with scorn, and profess that evolution-or, as the favorite phrase runs, "a modified
form of evolution"-is not only perfectly reasonable and scriptural, but a theory which they have cherished for year and years! And we sincerely trust that the publishers of all those papers have taken pains to send copies of them to Professor Huxley, that he may be speedily apprised of the tude of the American people
For example, the broadly undenominational Christian Union, speaking of the present order of Nature, remarks 'If Mr. Huxley's object was to illustrate the truth that evolution has performed an important part in producing that order, he has admirably succeeded. But that is a truth which no well informed person in America doubts. The mythical Pennsylvania Dutchman, who still votes for An drew Jackson and believes that the sun goes round the world, probably supposes that the Universe was created in a week beginning on a Monday morning, January 1, 6,000 B. C. ... But no one of the exceptionally intelligent audience which listened to Professor Huxley's arguments, and few, if any, who read them, entertain the Miltonian theory of creation.
Here we have not only a positive rebuttal of Professor Huxley's insinuation, but one carrying beautiful internal evidence of its truth. The writer-doubtless one of the younger members of the Christian Union staff-so far from olding that anciently exploded theory, has never learne (or has forgotten) that, according to it , the proper date of creation is, or used to be, not the year 6,000 B. C., but
B. C. 4,004 !
But, it may be objected, the Christian Union is Mr Beecher's paper ; and Mr. Beecher has always been regarded by the strictly orthodox as a trifle unsound on some points. Well, then, take the intensely evangelical Christian at Work, whose vivacious editor, the Rev. T. De Witt Talmage, as
everybody knows, is nothing if not sound. The Christian at Work reprovingly assures Professor Huxley that "it was not at all necessary for him to cross the ocean to demolish a poet's fancies about creation-theories largely imagina which neither are nor have been held for a century."
That is certainly decisive, though, like most of Mr. Tal mage's utterances, it is a little loose in the joints and a trifle extravagant. Our recollection does not cover nearly a century, yet we distinctly remember having been taught pre cisely that account of creation, order, time, and all, while at
school : and to make sure, we have taken pains to hunt up the remains of our old school geographies and histories, wherein we find the Miltonian story set down with great explicitness. We would not presume to say, however, that such absurdities have been imposed upon credulous children of late years.
One more witness against Professor Huxley is all we side of the Protestant community has been fully repre
sented, we will take this time a representative of the other, or non-evangelical, side, the Church Journal and Gospel Messenger. This excellent paper grieves bitterly over Pro fessor Huxley's unfairness in giving his hearers to under stand that the Miltonian theory is generally received among Christians at the present day. On the contrary, " the posi tion he attacks is not the educated Christian's position at all. And Dr. Huxley very well knows it."
It may be so: yet sharity to the absent compels us to pre sume that Professor Huxley was igr orant rather than mali cious or purposely unfair. Evidently he did not know how rapid has been the progress of sound knowledge on this point among our people. It is truly humiliating, none the less, to think that he could have spent so many weeks among us, and go away at last laboring under such a grave misjudgment of our intelligence. We fear his associations here were hardly what they ought to have been.
Since writing the foregoing, we have been thinking the matter over, and it has occurred to us that, may be, this mis take of Professor Huxley's-annoying as it has been for the moment to us, and must be sooner or later to him-may af ter all be useful in calling out a general expression of opin ion, and so serving to emphasize, as nothing else could, the progress we have been making toward juster views of the origin of things. We believe it was Agassiz who first observed that all great truths have to go through the same course of treatment on the way to popular acceptance. First, they are denounced as false and subversive of reli gion. Next, they are admitted to be probable, but not proved, and of little account either way. Finally, they are just what everybody has always believed. Evolution, it would seem, has pretty nearly arrived at the final stage.

the advantages of cheap patents.

After paying a high tribute to American Science and Art in his address, as President of the Mathematical and Physical Section of the British Association, Sir William Thomso said, speaking of the Centennial:
"I was much struck with the prevalence of patented inventions in the Exhibition; it seemed to me that every good thing deserving a patent was patented. I asked one inven tor of a very good invention: "Why don't you patent it in England?' He answered: 'The conditions in England are too onerous.'

We are certainly far behind America's wisdom in this respect," Sir William continued. "If Europe does not amend its patent laws (England in the opposite direction to that proposed in the bills before the last two sessions of Par liament), America will speedily become the nursery of useful inventions for the world."
Sir William Thomson is a clever inventor as well as an able mathematician and scientist. His apparatus for dee sea sounding with pianoforte wire, for example, has given immense help to that sort of investigation, and promises to be of not less advantage to commerce generally. And it was his galvanometer, we believe, which enabled the electrician to demonstrate, at Hallett's Point, the perfection of the bat tery connections intended for the instantaneous firing of the enormous mass of explosives distributed throughout the great mine: an experiment even more impressive, when rightly understood, than the final blast. As an inventor, he appreciates the importance of encouraging inventors; as a patentee, he knows that the protection which a patent gives an inventor is at once the cheapest and the most effective encouragement that his country can offer him.
America is, or is rapidly becoming, the nursery of useful inventions for the world, not because we are by nature mor nventive than other men-every nationality becomes in ventive the moment it comes under our laws-but simply be cause the poorest man here can patent his devices. And i does not matter how simple the contrivance may be, provided it is new.
In the aggregate the little things-which in England or on the continent either could not be or would not be patented, ow ingto the excessive cosi of the papers or other onerous condi tions-probably add more to the wealth and wellbeing of the community, and more to the personal income of the inven ors, than the great things do. And very frequently the pro fit derived from some simple contrivance gives an invento the independent time and the money required for the deve lopment of inventions which he could not otherwise dream of undertaking
A striking illustration is furnished by the experience of the inventor of what is generally admitted to be the great est advance made for many years in the art of weaving, the Lyall loom. During the war he invented and patented a simple compound for waterproofing textile fabrics. It was largely used, and brought him a generous revenue. We would not say that his valuable loom would not have been invented except for the fortune which the previous inven tion brought him; but it is very doubtful if he would other wise have had the means for completing the work, even if he had had the will to do it. Without the encouragement of low patent fees in the first place, it is altogether likely that he would never have become a practical inventor at all Another illustration of the very great importance of some little inventions is found in the galvanometer already alluded to. It saved the first Atlantic cable from being a complete and utter failure, and so demonstrated to the worl the grand fact that submarine telegraphy through long dis tances was not chimerical : yet it consisted essentially of
nothing more than a slender magnetic needle, three eighths of an inch long, carrying a circular mirror about a quarte of an inch in diameter, the whole-weighing a grain and half-being suspended by a film of silk. Without this prompt and acutely sensitive little indicator of electric dis-
urbance, telegraphing through great lengths of submerged wire would have been practically impossible, owing to the length of time required for each signal wave: and it is not at all unlikely that, had Sir William's invention not been on hand in the nick of time, the Atlantic cable would not only have been abandoned as a hopeless failure, financially considered, but capitalists would have declined to sink any more money in that sort of enterprise. But its usefulness did not end there; it has since been and must ever continue o be of the utmost importance in ocean cabling, and in all important electrical operations on land, whether practical or purely investigative.

THE SPIRITUAL SLATE.

These are sorry days for spiritualists. Scarcely a week passes but some shining light in their troubled world is shattered, some "unimpeachable" instrument of the spirits and mediator between poor humanity and the angelic hosts is detected in vulgar trickery. And what is more discour aging, disaster seems ever to press hard upon delusive tri umphs.
The latest misadventure is one of the saddest. Just when, by a clever trick, the subject had been sprung upon the British Association, and the champion performer and wonder worker of the sect, Dr. Slade, had been advertised beyond precedent, a mousing zoölogist plots with a friend of like character, and the result is
one more opportunity for the unbelieving to wag their heads, and cry-Next!

The story of Dr. Slade's experience in this country and in England is an interesting one; and as the English papers have lately been much occupied with his exploits, his downfall is more than ordinarily significant. Most of our readers have doubtless heard of his method, which is specially his own. He takes a slate-that is, he used to take a slate, and very likely still does the same, exposure being no bar to confidence on the part of the faithful-he takes a slate, wipes it clean, puts a bit of pencil on it, then places it under a table, on the questioner's head, behind his back, or elsewhere, and straightway a scratching sound is heard, and in due time a more or less clearly written message is produced: fee five dollars.
Everything appears to be frank, honest, and above-board, also very mysterious and altogether inexplicable, most observers declared, except on the hypothesis of "spirit" inter vention. But there was one circumstance that the sceptical did not like the look of. It was a common thing for spiritualists to claim that they had known the spirits to write for Dr. Slade on the inside of a double slate when the two leaves were securely fastened together. But when an unbeliever offered such a test, the honest Doctor would candidly express his doubts of success; the conditions of the ordinary séance were exacting enough, he would say, and the intelligences which governed him would have nothing to do with locked slates, or the chemically prepared or otherwise doctored slates which too particular Yankees frequently brought Wary intelligences! and eke with tender sensibilities!

Nevertheless they have come to grief. One object of the paper read before the biological section of the British Asso cestigate spiritualism with the hope to bring its vagaries under the protecting wings of Science. Particularly, the "phenomena" developed in the presence and through the ministration of Dr. Slade were to be enquired into. The motion failed on account of the intolerance of certain bigoted scientists of the ungodly sort.
But the examination was made scientifically for all thatby Dr. E. Ray Lankester, F. R. S., and Professor of Zoölogy in University College, London, a gentleman well known to the reading public. Dr. Lankester visited Slade several times, and, like the venerable Dr.Carpenter, was "very much shaken" by what he saw. In fact he simulated considerable agitation and an ardent belief in the mysterious nature of perform saw and heard. All the time he studied Dr. Slade them. So he cosely, and at last he thought he saw through friend Dr. Horatio B. Donkin, of Queen's College, Oxford, one of the physicians of Westminster Hospital, to whom he explained his hypothesis, and arranged for a demonstration of it next day.
The hypothesis was simply that Dr. Slade himself wrote the messages, which were of two sorts, one short and
sprawling, the other long and with the characters well sprawling, the other long and with the characters well
formed: the first Dr. Lankester believed were written with the finger of one hand as the slate was being held under the table, the second while the slate was resting on Dr. Slade's knee, concealed by the table, the operator being ostensibly engaged meantime in preparing the pencil for the "spirits" to write with, and so on. The test proposed was simply to seize the slate after it was cleaned and before it was put un the "spirits."
The thing was done, after two or three messages had been regularly received. With Dr. Slade's permission Dr. Lan kester was to hold the slate under the table; instead, he ac cused Slade of having already written the expected reply, and on turning the slate over, found the charge sustained.
" To any one not predisposed to believe in spirit
"To any one not predisposed to believe in spirit agency at all hazards," writes Dr. Donkin to the London Times, "this seance is sufficient." We have not the slightest notion, however, that Dr. Slade's standing among the mass of spirit-
ualists will be affected in the least. It is said that, when the ualists will be affected in the least. It is said that, when the exposure was made, he simply remarked: "You see that you
have been paid in your own coin; the spirits will not come
to people without faith ?' and all true believers will ac he saying as not only satisfactory but grandly heroic.
Verily Faith, even more than Charity, hopeth all things Verily Faith, even more than Charity,
believeth all things, endureth all things!

THE INTER-MERCURIAL PLANET.

Quite a stir has recently occurred in the astronomica

 world, owing to the famous French astronomer M. Leverrie having telegraphed to the various observatories in Europe and America that it was probable that the supposed in ter-Mercurial planet Vulcan would traverse the sun's disk disk in October. M. Leverrier at the same time reques ted that astronomers would watch most carefully for the phenomenon, and this, it is hardly necessary to add, has been done. The result, however, is disappointing, as the planet failed to appear, and the doubt as to its existence re mains as strong as ever, although, on the other hand, the possibility of there being such another world is by no mean unreasonable. It will be interesting, therefore, in the pres nt connection, briefly to review the magnificent labors of M Leverrier, as an incidental portion of which the hypothesis f a planet, nearer the sun than Mercury, suggested itself to his mind. And these labors have earned for the distinguished scientist the title of the "weigher of worlds," for all the reat orbs which circle about the sun have been gaged by him as accurately as if they had been placed in the scale pan of some stupendous balanceThe vast work which we are about to sketch began on September 16, 1839; it was substantially completed on De cember 21, 1875; and the fact was announced by M. Lever rier in person, at the session of the French Academy at the last mentioned date. Every schoolboy knows that the sun the central ruler of our planetary system, and that hi ass is so enormously in excess of that of all the planet aken together that he is capable of swaying their motion without being himself disturbed. So colossal is the sun's at ractive force that the like force which the planets exercise
upon one another becomes extremely small. The sun's ower over Saturn is 250 times that of Jupiter, even when the planets are nearest together; and as there is no disturb ance in the whole solar system greater than that resulting from the mutual influence of Jupiter and Saturn, it is un necessary to proceed further to show the paramount rule of sun. But small as these influences are, we cannot neglect them, for were the planets ruled absolutely by the sun they would go on circling in the same orbits, changelessly and for ever. Now if we consider that the more massive the planet is, the more potently it will disturb its neighbors, it follows that, even if we cannot tell exactly how much this dis turbance amounts to, we can tell how large the planet's mass is, compared, say, with the earth's. Thus we can consider ow much Venus disturbs Mercury, and thus infer her mass, and a chance comet may be affected by Venus, enough to af ord us means for another determination. If our results ver several observations failed to agree, we should search why; we should assume an error, which must be hunted down: and thus we should be led to one of two things, either to find our mistake, or else to discover some fact, before unsuspected
This is Leverrier's method of dealing with planets, in nutshell. Seven planets were known when he began his work; and finding that the tables of their motions in com mon use failed to rigorously accord with results of observa ion, he began the gigantic and complicated task of unravel ing all the forces which produce the planetary movements Wecan no more than summarize his results. Beginning with the earth, he reviewed nine thousand distinct observations of
the sun; and by carefully estimating the sun's apparen monthly displace he distance of our luminary by between three and four mil ion miles. Then he analyzed the observed motions of Ura us, and here he made the grand discovery of the unknown actor above referred to, which in this case could be none ther than another great planet, producing the unaccountable ranian perturbations. Concerning a hypothetical planet e calculated its position; and aided by the lucky circum tance that but a very short time had elapsed since Uranu and the new planet were in conjunction, on pointing his tel scope to the supposed position, he found Neptune. This magnificent result, shedding of itself enough glory on the astronomer to render him famous for ever, was, as we have included analyses of the motions of Mars, influenced by the great asteroid ring, and of Mercury, which has resulted in he noting of the remarkable perturbations, which are only to be accounted for by the existence of some inter-Mercuria matter, or probably by the existence of the supposed Vul can. To the latter view, M. Leverrier, arguing very justly from the analogies of the discovery of Neptune, inclines, and therefore he is constantly on the alert for any visible ndication of the hypothetical planet
In 1859 M . Lescarbault, a physician in Paris, announced that he had witnessed the black disk of an unknown planet ross the sun. Leverrier at once investigated the details of he observations, and, despite the fact that the instrument used were of the roughest description, deemed the proof ad duced conclusive that the planet had been seen: but Liais, an eminent Brazilian astronomer, subsequently reported that, at he reported time of transit, he likewise was examining the sun's face, with a very superior instrument, and that no black spot was visible.
There are few other recorded instances up to the present ime where Vulcan is claimed to have been seen. On August 28 last, M. Leverrier communicated to the French Academy of Sciences, a letter from M Wolf, a well known Swiss astrono-
mer, in which Wolf said that Weber in Prussia had seen a black spot crossing the sun on April 4, last. On the following day, Wolf, Schmidt (an astronomer in Athens, Greece), an Weber had all examined the solar disk, and no spot wa then visible. Weber, unfortunately, did not note the rate of progression of the spot, nor has any one yet been able to find a solar photograph made at any observatory on April 4, so that there is no primary and positive evidence that the phenomenon was Vulcanian. On the other hand, there is secondary evidence to the effect that the spot disappeared within twenty-four hours, and that the period when it was seen would be that of the 148th transit, dating from the ob servation of Lescarbault, the Vulcanian year being $42 \cdot 2$ days. This, M. Leverrier deemed sufficiently important to warrant his making the general request noted in the first paragraph of this article. The result being as stated, the question still remains open, with the probabilities in favo of the halo of meteoric matter which is constantly about the un being the cause of the Mercurial vagaries.
In this connection, however, the annexed espondent details a phenomenon which is certainly worth considering.

To the Editor of the Scientific American

The interest excited by the recent searches of the astron mers, for the supposed planet Vulcan, leads me to report On Sunday, July 23,1876 , at 3 P. M., I directed my tel cope ($2 \frac{1}{2}$ inch) towards the sun's disk in search of spots. As
none had been seen for a considerable time previous, I rather none had been seen for a considerable time previous, I rather
congratulated myself on having at last found one, and on ongratulated myself on having at last found one, and on etting my instrument carefully focussed, was surprised to otice that, instead of the irregular jagged form of common It stood out on the lowerle
clear and sharp, as seen in the of the bright lumina

Thinking that what I saw might be due to a defect in the enses, 1 first rotated the place on the sun's disk. It then removed my object glasses, examined and cleaned them carefully. I did the same with my eyepiece lenses. On restoring them to their places in the tube, the same round body was still in view on the sun's disk. I called a friend to ex-
amine it with me. We studied it for some little time, until mine it with me. We studied it for some little time, until the clouds put an end to further observations. We concluspot, perfectly round and black. We made no attempt to determine the motion of the spot.
A few days thereafter, on renewing my examination of
Be luminary, no spots were visible. he luminary, no spots were visible.
B. B.

New York, October 4, 1876.

It will be perceived that the date of this observation is Mrior to the time when Weber's report was first brought to . Leverrier's knowledge ; and hence our correspondent nation. Nor could the phenomenon have been due to a spot, for, as is well known, this is the minimum period of solar eruptions, and the sun's face has been spotless for many months; besides, spots never appear as black dots, but have learly marked and unmistakable characteristics.
It appears further that M. Leverrier did not definitely designate October 2 and 3 as the epoch when the transit might occur. In his communication to Professor Watson of Ann Arbor, he specified October 9 and 10 . Now M. Leverrier cites with details some thirty observations made by astrono mers since 1750 , and he selects data obtained in 1820 and 1856, and combines them with the recent results of Weber's observation. This leads him to conclude that the Vulcanian vear is not $42 \cdot 2$ days, but 28.00774 days, and the motion of the planet is expressed thus: $\mathrm{V}=15 \cdot 2^{\circ}+12 \cdot 85359^{\circ}(j-1750)$ in which the first term is the longitude and j represents the number of days elapsed since 1750 . The orbit is circular, the ascending node being at $+12^{\circ}$, and the descending node at 195. M. Leverrier now thinks that the transit will be visible on October 30. This date does not coincide with an even number of Vulcanian years of 28 days since our correspondent's observation. There is a discrepancy of two weeks but on the other hand, there is an equal failure of coincidence with Weber's date, April 4.
Since writing the above, we have learned that still anoth er astronomer is to be added to the list of those who have seen Vulcan. Rev. E. R. Craven, of Newark, states that the late Professor Joseph S. Hubbard repeatedly assured him that he had observed the transit of an inter-Mercurial planet. He was at New Haven at the time, and was using the Yale College telescope. The transit was an entire surprise, and hence no notes were taken.

IMPROVED LOCOMOTIVE AND CAR STEAM BRAKE.

An ingenious brake mechanism has been devised by Mr. T J. Shellhorn, of Marquette, Mich., and patented through the Scientific American Patent Agency, September 5, 1876. The steam cylinder, A, as shown in the illustration, is placed mid way between the driving wheels of a locomotive or the wheels of a car truck. The steam is admitted to the cylinder by a pipe, a, entering midway between the cylinder heads, and acting simultaneously upon two pistons, B, that are arranged symmetrically in the cylinder, and acted upon by volute springs, B^{\prime}, of considerable power. The steam pipe, a, is carried up the boiler head to the steam dome, and the admission and exhaust of steam is controlled by a three-way cock. A drip valve, b, is arranged at the bottom of the cylinder, A. The piston rods are pivoted at their outer ends to brake levers, C, which force the brake heads and shoes, D, against the driving wheels, the leverage being obtained by the fulcrum rods, E; said rods are pivoted to the lower ends of the brake levers, and connected by a sleeve or nut, d, with interior right and left hand screw threads, for the purpose of adjusting the levers, C, from time to time, as required by the gradual wear of the shoes, and also for providing for the distances between the driving and other wheels in different locomotives and cars. The right and left hand sleeve or nut, d, is held in stationary position by jam nuts, d^{\prime}. The brake heads, D, are fulcrumed at some distance above the fulcrum rods crumed at some distance above the fulcrum rods to the brake levers, and further connected to the
same at their upper ends by pivoted clearance same at their upper ends by pivoted clearance
links, $e e$. The links, $e e$, are intended for the links, $e e$. The links, e e, are intended for the
purpose of carrying back the brake heads or shoes, purpose of carrying back the brake heads or shoes,
with the brake levers, out of the line of friction with the brake levers, out of the line of friction
with the wheels when the brakes are released. The release of the brakes is effected jointly by the exhaustion of the pressure in the cylinder, the action of the volute springs upon the pistons, and the gravitation of the brake heads. The brake levers, C, are not made straight, but with an obtuse angle, and formed by theheel or part below the fulcrum of the brake head with the upper part. By this means the strain of the wheels is thrown upon the top of the axle boxes instead of upon the sides.

IMPROVED NAIL EXTRACTOR.

Mr. William H. Tinker, of Springfield, Mo., has patented through the Scientific American Patent Agency, August 22, 1876, an improved nail extractor, by which the nail is drawn with great facility without being bent, and which is illus trated in the accompanying engraving. B is a sliding handle weight, by which the jaws, C, are driven in the ordinary manner into the wood below the nail, to be then applied to the same by the double foot or leverage of the jaws. The jaws are fulcrumed to the lower part of the handle, and provided with symmetrically extending levers, D. that are opened by spiral springs, c^{\prime}. The jaws, C, have shoulders, a, in the upper part, that come in contact with the handle or stock, A, and define the position of the levers. The double

leverage admits the pulling of the nail in two different di rections without removing the instrument. This allows th withdrawing of nails from hard or soft wood in an easie manner without bending the nail, as the same may be firs loosened and afterward extracted.

Capital and Labor.

Ask any economist, and he will tell you that capital is the accumulation of past labor, intended to move or assist labor and that it is either a transient or a permanent assistance, the former requiring constant renovation, the latter being of an enduring character. Ask him what labor is, and he will tell you that it is the power which intelligence gives man over the properties of matter and life by which muscular effort can make matter useful. It will be added that this power which the laborer is able to exercise over matter
may be either the direct action of the man, or may be indi
ctly exhibited upon certain inorganic and organic powers in other words, that the workman may be plying his own muscles, or may be guiding animal power, or be using steam, wind, or any other natural motion which man is able to control and direct for his own ends. In technical language, economists speak of fixed and circulating capital, of muscular and nervous labor. All these definitions and distinctions, however, are not fundamental, but only denote tendencies under which the same facts appear in different forms, or in which one of the circumstances which accom panies the fact is exhibited in different degrees of intensity. Thus the labor of a manager is said to be nervous, that of a workman muscular. But unintelligent effort is of no avail, even for the commonest acts, nor can the sharpest intelli--
of this system, which will doubtless be of great interest to all telegraphers. The importance of this invention can scarcely be overestimated. Although eight circuits only have been actually operated by it as yet, there seems to be no reason to doubt but that these may be increased, even to as many as thirty two: that is, to as many as there are tone and semi-tones in the musical scale. It in fact already du plexes the quadruplex in actual operation, and is more re iable and less difficult to operate than the quadruplex. Mr. Gray has spent several years in developing and perfecting his invention, and there can be no doubt but that it is des tined to play an important part in the telegraphy in the future.-The Telegrapher.

our Silk Industry.

The English Textile Manufacturer, reviewing he progress of the silk industry in the United States, says that our manufactures of ribbons etc., for 1875, were double those of 1874 ; and while other branches of industry were in a crip pled state, the silk trade could offer occupation to greater quantity of able regular workmen than usual, besides being able to afford higher prices As characteristic of the increased activity of the manufacture in Paterson, N. J., last year, the im migration of English and French workmen is no . The latter poses their own looms, which hey take with them to work on their, whic cunt The import raw silk in 1875 , was 50位. The in 1874 , and per cent grater than in 1874, and exceeded by 8,807 lbs. the corresponding exports of 1871 : th mount in the latter year being the largest yet a tained, except that in 1875

Utilizing Unmarketable Cocoons.

Mrs. Bladen Neill, of London, England, has in vented a new utilization of cocoons which are ad judged unfit for use in silk making, and has phi anthropically turned her invention to such ac count as to make it the basis of remunerative la bor for women. A certain proportion of every crop of cocoons is rejected, because, the chrysalis ELLHORN'S LOCOMOTIVE AND CAR STEAM BRAKE. crop of cocoons is rejected, because, the chrysalis gence give effect to its thoughts, except by means of mus- escape, and thus the filaments at one end of the cocoon cular effort. No labor appears to be more characteristic of are cut through. The continuity of the thread being brothe brain than the thoughts of a poet or musician are, but both these personages must at least exercise the mechanical function of writing or speaking. Again, it is true that cap ital is the accumulation of past labor, embodied or condensed in material objects. With one exception, namely, land available for occupation or cultivation in densely peopled countries, there is no object whatever, which possesses value, that has not obtained its value by reason that labo has been expended on it. A sack of wheat, a bale of cot ton, a barrel of wine, a wedge of gold, a house, or a spinning machine, possesses whatever value the market assigns to it by reason that labor has been expended on its pro duction. It signifies nothing, from this point of view whether the article is movable or has been gifted with qual ities which cannot be recovered or resumed in their origina form. In every case it is labor, and labor only, which con fers on these objects those properties which economists re cognise and comment on.-Professor Thorold Rogers.

The Electric-Harmonic Telegraphic System.
Although there has not been much said of late in re gard to the electric-harmonic telegraph invention of Mr Elisha Gray, constant progress has been made toward developing and perfecting it. Within the past year very im portant improvements have been made, which materially in crease its value and reliability. Mr. Gray has been for severa weeks past engaged in demonstrating the system on the wires of the Western Union Telegraph Company, and ha certainly shown some remarkable results. On September 21, by invitation of that gentleman, we were present at an exhibition of it in the Western Union building, which was very successful. But one wire was employed,yet it required sixteen operators, eight at each end, to work this single wire. The wire employed was one of the Wes ern Union wires between this city and Philadelphia.
The most important improvement effec ed by Mr. Gray ince we last noticed his invention, is the successful duplexing of his apparatus, so that messages can be sent sim ultaneously from each end of the line. With the apparatus manufactured at the present time, four messages can be sent simultaneously from each end of the wire. Upon the occasion mentioned, four operators were engaged in sending and four in receiving, and the same number were similarly employed in the Philadelphia office at the same time on the one wire. Thus eight messages were being simultaneously transmitted and received, at a speed equal to that obtained in ordinary working of a single circuit on one wire, withou the slightest interference with each other. The principle upon which this system is based is that of the number of ibrations required to give a musical tone. By very ingen ous and simple apparatus, this principle is utilized for th ransmission of telegraphic signals simultaneously on a num ber of circuits over a single wire. The receiving instrument, or instance, which is adjusted to receive the vibrations re quired to constitute the musical note represented by A, will pick up the signals sent by the corresponding transmitter at it is not affected by those transmitted at any other pitch It is impossible to give a very satisfactory description of the system, apparatus, and connections, without diagrams. We propose, before long, to give a full and accurate de scription, with the latest improvements, properly illustrate
are cut through. The continuity of the thread being bro-
ken, it loses its value and is useless for reeling. Mrs. Neill ken, it loses its value and is useless for reeling. Mrs. Neilt
sends to various parts of the world and gathers these faulty sends to various parts of the world and gathers these faulty
cocoons, bọils them, and reels off the fragmentary filaments. cocoons, booils them, and reels off the fragmentary filaments.
These are sent to the spinners and made into a handsome These are sent to the spinners and made into a handsome
silk yarn, which is dyed as required, and the material is issilk yarn, which is dyed as required, and the material is is
sued to poor women who convert it into knit goods. The fa bric thus produced is of such excellent quality that the de mand already has far exceeded the supply

A NEW FODDER FORK.

Mr. William M. Scotten, of Hall, Ind., is the inventor of an improved fodder fork, patented' through the Scientific American Patent Agency, August 8, 1876. The object is to enable the substance to be firmly grasped and securely held while being handled. A and B are the two prongs or tines of the fork, which are pivoted to each other at their bases

The prong, A, is slightly bent; and the prong, B, is made onger, and its point is bent inward into hook form, so that when brought together the points of the two prongs may meet. To the shanks or bases of the prongs, A B, are at ached the handles, C D, which are made half round, so that when brought together they may form a round handle, as shown in Fig. 2, and so that the gripe upon the said handles may hold the prongs together. In using the fork, the prongs are opened, as shown in Fig. 1; the prong, A, is then thrust into the load, the hook prong, B, is closed upon it, and the load is taken to the desired place.
The American Fish Commission recently held a convention in the Maryland State building in the Centennial grounds, at which Professor Baird stated that $8,000,000$ young shad and $8,000,000$ young salmon have been distributed in this country in the past year, and 600,000 eggs sent abroad. Mr. Livingstone Slone has just brought 4,000,000 salmon eggs from California.

SINGULAR ACCIDENT TO A TROUT
The trout shown in the accompanying engraving was recently captured in England, having come to an untimely death. Mr. Frank Buckland, the indefatigable naturalist who edits Land and Water, states that the trout was found lying dead, on its back, with a dace fixed tight in its gills, and further says.
"The only interpretation that I can give of this accident is that the trout had rushed at the dace to eat him, and, seizing him by the head, had attempted to swallow him; the dace, objecting to this process, and possibly knowing by instinct that if he got into the trout's stomach he would never return therefrom alive, fought hard for his life; and seeing a possible way of escape through the aperture of the gills, he used his best efforts to pass through: fate, however was against him, and the unfortunate dace was against him, and the unfortunate dace
became wedged among the gills of the trout, became wedged among the g
and both fish thus perished.
"When we consider the delicate structure of the swallowing apparatus in all animals, ourselves included, it is really wonderful that more accidents by choking do not take place. In our own persons the apparatus for preventing accidents of this kind are, indeed, most marvellous. The trachea or windpipe is situated immediately in front of the cesophagus, and every morsel of food and fluid we swallow has to pass over the opening of the trachea, which is in fact not unlike the slit of a money box, before it can get into the osophagus or gullet. The pain and irritation caused by even a crumb or a drop of water getting by accident into the trachea
is very great. We cannot, therefore, suffiis very great. We cannot, therefore, suffi-
ciently admire the wonderful valve which ciently admire the wonderful valve which
the Creator has placed upon the top of the the Creator has placed upon the top of the
trachea. The valve is self-acting, and luckily for us does nat depend upon any volition of our own. If it were not so, a person's whole time might be taken up in watching every morsel of food he put into his mouth. By a beneficent arrangement, the act of swallowing is quite as independent of the volition of ourselves as is the action of the heart, the power of thought, and the machinery of the human system in general. The same state of things that is found in the structure of the inhabitants of the land pre vails also in the structure of the creatures which live in the wher and ang and cident is very rare; the above drawing is therefore the more interesting, inasmuch as it shows that even fish are so
times choked by the living prey on which they subsist."

Contespumdeuce.

The Tripartition of an Angle.
To the Editor of the Scientific American:
Dividing an angle in two parts is one of the easiest opera tions in geometry; but the division of an angle into three equal parts is considered a difficult and an impossible one. Let it be supposed that the angle, A B C, is divided into three equal parts by the lines, B D and B E; then draw the arc, A C, and its chord; next draw the lines, A D, A E , D E, D C, E C, resulting in two isosceles triangles, A E D and D C E. Studying the properties of these triangles, we find that their altitudes are the division lines. These lines, therefore, must divide the base lines in two halves, and stand rectangular upon them. Therefore, if A D is really equal to $D E$, then A F must $=F E$, and $D F$ be perpendicular to $A E$; and if $D E=E C$, then $D G=G C$, and $G E$ is perpendicular to D C.
The following is the construction and solution of the problem: The angle, A B C, is to be divided into three equal parts : 1 . Draw the arc, A C, with any radius. 2. Draw the chord, A C. 3. Divide the angle, A B C, in two parts by he line, B H. 4, 5. Draw the lines A H and H C. 6, 7. Draw semicircles, A F B and B G C, over each side of the given angle. These semicircles have the property of dividing all lines (chords) drawn from A or C to the periphery, A H C, into two equal parts, because each of their radii is half that of A B C. 8. Draw B I perpendicular to H C in its middle, and B M perpendicular to A H. 9.
Make L I = B . 10. Draw, with radius H I, Make L I = B K.
the arc, H G C. Draw, with radius H I, the arc, H G C. 11. Draw B Ethrough the
point, G, where the arc, H G C, intersects point, G, where the arc, H G C, intersects
the semicircle, B G C, and the same on the other side of $B H$, where $B D$ is drawn through the intersecting point, F .
If the arc, A H C, is divided into a convenient number of equal parts, 8,16 , or so, of which M and K arc two, draw $M C$, and $K N$ perpendicular to M C ; then N is the nadir of the altitude of the triangle, M C K. In the same way more points are found, all lying in the circle, $\mathrm{H} G \mathrm{C}$, with the radius, $\mathrm{HI}=\mathrm{BK}+\mathrm{L} \mathrm{K}$.
Both conditions are really complied with; $C G=G D$ and $E G$ is perpendicular to D C ; the triangle, D C E,is isosceles, and $\mathrm{D} E=\mathrm{EC}$; and further, $\mathrm{A} D=\mathrm{D} E$. Therefore w have $A D=D E=E C$, and angle A B D=D B E $=E$ B C.
It remains to show that triangle D C E is the only isosceles triangle that answers both of these conditions.
M K C cannot be an isosceles triangle, because we made $C K=H K=H M=A D$, and therefore $C K$ is not equal to K M. In every triangle in consideration, one side must be parallel with the chord of the given angle, as M K, A C, DE.

Only one isosceles triangle fulfils this and the other conditions, and this is the one sought for
In a similar way I tried to flnd the law for dividing an ngle into n equal parts, when n is a prime number; but I am obliged to confess that I did not succeed. Nevertheless there is some law in these divisions. I found that the semicircle, A F B, is intersected in $\frac{n-1}{2}$ points by as many cir-
cles, the positions of which I cannot find, and there are as many parallel lines connecting the points of division. So 3 parts has 1,5 parts 2,7 parts 3,11 parts 5,31 parts 15 . If n is an even number, for instance 6, then the problem is to be reduced to tripartitions, which must be made in each half. The semicircle is intersected in $2 \frac{1}{2}$ points, that means

A TROUT CHOKED BY A DACE.
that one of the dividing radii goes through the points wher the two semicircles cut each other, thus dividing the angle in two parts.
W. Thiese. Rochester, N. Y

A New Photographic Test Plat

Mr. William A. Brice, of London, England, the inventor of the improved portable photographic apparatus illustrated in these columns not long ago, has patented through the cientific American Patent Agency, September 12, 1876, novel testing plate, which will enable photographers to de ermine with considerable certainty the quality of the chemi cals employed, the quick or slow working of the lens, and to define whether the presence of "fog" or want of clearness in the picture is attributable to impurities of the chemicals, alkalinity of the bath, diffused light, over-exposure to light or to other causes.
The invention consists of a frame with a sliding glass plate, to which are applied fixed pieces of transparent maerial superposed in layers of one, two, three, and more, in egular succession, to produce a greater or less obstacle to he passage of the light. This is set up between the lens and the sensitized plate, and the picture is then taken in the usual manner. The result is a picture which produces the the light shade or shadow of the object to be photographed with the chemicals and lens, and with light of more or less the same actinic quality, intended to be used for the picture to be taken. When the picture is developed on this plate t is, while visible, wholly divided into sections of unequal intensity, being more or less distinct according as the light has passed through one or more layers. The absence of fog where the light has been transmitted through several sheets of transparent material indicates that the chemicals are
pure, that there is no diffused light, and that the nitrate bath is of proper acidity. If at that section details of the picture are clearly developed, it may be concluded that the general assistance erted movable wire.

photographers will doubtless find labor-saving and of much

The Preparation of Salicylic Acid.

Cahours obtained salicylic acid in 1844, from methyl-salicylate, or oil of wintergreen (gaultheria procumbens). Pro fessors Kolbe and Lautermann in 1860 brought out thei method of obtaining the acid from carbolic acid; but it wa not until within the last year that Kolbe discovered its peculiar preserving and disinfecting properties. The manner of obtaining the acid from carbolic acid is as follows: The saturating capacity of a carbolic and also that of a soda lye is determined, and both are then mixed according to equivalents, so as to form sodic carbolate. The solution thus ob tained is carefully evaporated to dryness, taking care that the dry mass sticking to the bottom of the vessel is constantly removed by scrapers, and that the mass itself is also constantly crushed, with a pestle or other tool, to facilitate its drying out, until at length the carbolate remains as a perfectly dry pow der of a rose-red tint. Excess of carbolic acid gives always an inferior dark-looking residue, which, when it undergoes the final process of treatment with carbonic acid gas gives far less salicylic acid than is in ac cordance with the amount of carbolate cal culated in the mass. The dry carbolate is then either put into the retorts at once, or it may be kept for further treatment by putting it, while hot, into vessels whic may be hermetically sealed. The fac may be that sodic carbolaty plains the necessity of this manipulation After the carbolate is put into the re torts,the contents are slowly heated to 212°
Fah.,and when this temperature is reached, Fah.,and when this temperature is reached
a slow current of perfectly dry carbonic acid gas is allowed o enter the retort. The temperature is then slowly in creased to 356° Fah., and may, towards the end of the opera tion, reach to 428° or $482^{\circ} \mathrm{Fah}$. About an hour after th beginning of the operation, carbolic acid will begin to distil and the process may be considered finished, if, at the latte mentioned temperature, no more carbolic acid distils. It will be found that the distilled carbolic acid amounts to just one half of the original quantity employed. The residue in the retort is basic salicylate of soda, which is dissolved, and which, on acidifying with an acid, yields a brownish colored crystalline precipitate of salicvlic acid.
With regard to the purifying of the crudeacid as obtained by the process given above, Rautert's method is usually mployed; it is as follows: The crude acid is placed in a re tort and strongly heated to 338° Fah., when a current of team at a like temperature is injected into the retort. In the presence of the superheated steam, the acid distils a once; and after a short time, nothing remains in the retor ut a trace of a black resinous mass. The apparatus must be arranged in such a manner that the neck of the retor may be kept free from crystals, as, for instance, by an in

The Literature of Manganese

Dr. H. C. Bolton of this city has been ransacking the litera ture of the past and present to learn what has been said and written about manganese, its ores and its compounds. In communication to the Lyceum of Natural History, in November last, he detailed all the sources of information on his subject. The results of his patient labors have re ently been pullished in the Annals of that society, and also eprinted in pamphlet form under the title of "Index to th Literature of Manganese." In this little pamphlet of 44 ages are contained 400 distinct references to manganes minerals, extending from 1596 down to 1873 , and 1,700 re ferences to chemical papers beginning with Pott's " Exame chymicum magnesice manis Braunstein," published in Berlin, in 1740. The value of an index of this kind, to a person wishing to examine the literature of or study any of the compounds of manga nese, can scarcely be over-estimated. The references are arranged in chronological order, and give the name of the investigator subject of the paper, and list of all the jour nals into which it has been copied with num ber of volume and page.
Nor is this the first work of the sort done by this chemical antiquarian. In $1870, \mathrm{Dr}$. Bolton published a similar index to the literature of uranium, from its discovery by Klaproth in 1789 to 1869.
We hope that other chemists, who have prepared extensive lists of reference on subjects that they were investigating, will be induced to put them in print for the benefit of othersthat may come after, in a style uni-
cals used. The second section of the testing plate, where form with those above described.
the light passes through a less number of layers, gives more or less the same information, but indicates more clearly whether the exposure has been adapted to existing conditions or not. The next section indicates, if properly developed, what time, chemicals, etc., are to be used for the icture to be taken; while the middle or uncovered section indicates by the evident over-exposure that the lens is good and rapid in action,that the chemicals are in good condition and that the light is sufficient in actinic power to produce good pictures with rapid exposure. The device is one which

Electrical Dust Figures in Space.

A brass rod pointed at one end, and with a ball at the ther, is laid horizontally on an ebonite plate supported on wood; receives sparks from an electric machine; is discharged by touching, and removed; and the plate is then sprinkled with fine powder. The author gives drawings of the negative and positive figures obtained. Conceive these turned about their axes, and we have the electrical dust figures in space, of
which the ordinary Lichtenberg figures are merely sections.
M. Lommel fixed the brass rod in a certain position, and moved the ebonite plate up and down under it, taking figures at each position. He also used an ebonite plate with an aperture, allowing the brass rod to pass through it. He shows how the various figures are related to the origina two. The cause of the Lichtenberg figures is to be found (he thinks) in a peculiar state of motion of the air about the conducting body, and this is simply imaged on the ebon ite plate.

TURBINE WATER WHEELS

by s. w. robinso

A look at the numerous turbines on exhibition in Machi nery Hall, and their elaborate catalogues, giving lists of the thousands which have been introduced in this country, gives evidence of a thriving and extensive business; and one can hardly realize that thirty years ago the turbine was scarcely recognized as a motor.

The first wheel of this kind was made in France by Frenchman named Burdin, in 1827 or 1828, but the real me rits of the wheel were not generally accepted till some five years after. Soon after this it began to receive the attention of American engineers; and the first of these wheels of importance was constructed by Uriah A. Boyden, in 1844 , and introduced into the Appleton Company's cotton mills a Lowell, Mass. Tests of these wheels gave remarkable results, the maximum being 92 , and the mean maximum 88 per cent of useful effect from the power of the water.
This extraordinary figure is supposed to be due to the engineer's extreme precaution in polishing the surfaces of the apparatus, using Russian iron guides and floats, and in giving such form to the flume as to impart to the water, as it approached the guides, such a spiral-like rotation as to cause it to enter the guides without resistance. The trials which gave the above percentages decided the great superiority of the turbine over the old breast wheel, and engineers at once saw that, for perfecting water motors, their attention mus be turned into a new channel.
The breast wheel was at once summarily dismissed, and the turbine adopted for reasons unmistakably in its favor some of which are the following: 1. Increase of percentage from five to fifteen. 2. Greater compactness. 3. Perfect freedom from back-water annoyance. 4. Perfect adaptation of given wheel to all heads. 5. More convenient speed of running. 6. Much less subject to fluctuations of speed. 7 Advantages of breast wheel, none
Some of these point are self-evident, but others, such as Nos. 1, 3, 4, and 6, may not be. To help this, and also for the reason that the correct theory of the turbine wheel is but poorly comprehended, as evinced by the forms given the parts in existing ones, the following descriptive exposition of the main theory is given with the hope that practical builders may thereby receive a benefit.
First of all, water wheels must receive power from the water by reducing its velocity, and water engines by action of its pressure. These points are believed to be sufficiently evident from observation. It is therefore obvious that, for a maximum of effect, the water should have the greatest in leaving the motion should be entirely destroyed , and in leaving, the motion should be entirely destroyed. To illustrate, suppose a flat disk be placed square against an iso-
lated jet of water. If stationary, the water will be thrown in all directions without much change in velocity, and no power is developed because standing still. If it moves with the water the stream is not disturbed, and also no power de-
veloped. At half the water velocity, the vane receives its greatest power, but the water is projected laterally, and for this reason the motion of water is not destroyed, and the maximum of effect is known by hydraulic engineers to be only half the power stored in the moving jet. But this is what may be styled a fair example of percussion, and hence builders of wheels who operate on this principle must expect low returns.
Next, suppose the vane be in the form of a hollow half cylinder, and placed so that the jet strikes it tangentially at one side. While stationary, the water is sent around the smooth surface, and escapes, with velocity unchanged, in a direction differing by 180° : and of course we have no power. Giving the vane the velocity of the jet, we get no power again, but with half the velocity of the stream it receives the water with a relative velocity, one half its absolute, and passes it to issue at 180° unchanged, at which the absolute velocity of the water is zero. Now multiplying the motion of vane by the pressure against it, the result is found to be equal to the whole power of the water. In this example we see that the water is delivered upon the float without shock or percussion, and leaves it without velocity, which principle has long been known in theory as the neressary condition for high percentages. As this has regard to the power of the jet only, the latter should, of course, be made the maximum, by giving the water the highest possible velocity of projection. Of the forms of orifice of projection, the one known, from experiment, to give the greatest velocity is that formed in a thin wall, whose coefficient, or realizable percentage of the theoretic velocity, is about 97 . Rapidly con-
verging adjutages give very nearly this, say upwards of 92 , verging adjutages give very nearly this, say upwards of 92 ,
while prismatic adjutages give only 82 per cent. Hence a turbine, whose chutes have parallel sides, can only return a percentage of 82 , provided the wheel otherwise be absolutely perfect. It is therefore evident that the form of chute is of no whit less importance than the wheel.
Again, in turbines there should be a certain adaptation of chutes and floats to each other, and certain forms of wheel passages and exits. The forms most consistent with theory
re best explained by aid of the accompanying diagram, which may be regarded as a side view of a Jonval turbine Let A B represent a float of the wheel, and A C a guide. Le D A represent the direction and velocity of the affluent wa

er, and B F the same for the issuing water. Take A E or $B G$ for the velocity of wheel, which must be equal, from the nature of the case. The point, D , should be found by s the first elements of the floats. Then we have $\mathrm{DE}=$ $\mathrm{E}=\mathrm{B}$ G.
Now if a particle of water moves from D to A, while oint on the wheel moves from E to A, the direction and elocity of the water, relatively to the wheel, will be D E, and hence will enter tangentially upon the float with en
tire freedom from shock. Compared with the cylindrical ane above, the water will move along the curved float, A B without change of velocity, and issue with a velocity, B F equal to DE. But as $D E=B G$, then $B G=B F$, and the $a b$ solute velocity of the water will only be G F. If the wate could be made to issue tangentially, (i F would be zero, as required for a percentage of 100 . Though in practice G F must have a magnitude, it should be reduced to the mini mum. The water has also been regarded as having uniform velocity from A to B . That this be possible, the transverse ctions through the inter-float passages should be the sam t all points. Hence, that the exits be thin, requires them o be long from crown to crown. And again, in order to de elements the guides should have the direction, D A; otherwise th form should be favorable for high velocity of projection.
Now this diagram may be greatly varied, and still thes rinciples hold equally well. It is only necessary that D $=\mathrm{AE}=\mathrm{BG}=\mathrm{BF}$; last element of guide have direction DA first element of float have direction D E; and inter-float pas sages be uniformly large from beginning to exit. The ve locity of wheel will be to that of the water as A E is to A D When the first elements of float, for instance, are perpen dicular to A E, the guide direction, A D, should be 45°. For float direction, $\mathrm{AD}, 60^{\circ}$ to the right, guide direction will b 60° to the left, and A D E will be an equilateral triangle Indeed ADE is always an isoceles triangle.
In designing a wheel it is very important that there be n terference to free passage of water in the curbing or pen stock, or in the vent from wheel; and hence these should be large and unobstructed.-Polytechnic Review.

THE BLACK KNOT.

There are many things in Nature seemingly so insignificant at we consider them unworthy of our notice, yet the have the power of doing us great benefit or harm according
to their habit. The mold, upon bread, cheese, and on most other neglected vegetable matter, is well known to be plant growth of a low order. It is a fungus, and of the same nature as our common mushrooms. The potato dis ease, which is causing so much anxiety in England and on the continent of Europe, is also the result of a fungous growth. These plants are now receiving considerable study rom botanists on
In this country, and peculiar to it, the black knot, as it is called, on plum and cherry trees has recently been proven to be another fungus. Dr. W. S. Farlow, of Harvard University, has presented, in the Bulletin of the Bussey In stitution, a most important paper as the result of his re searches on this subject. The black, warty excrescences on plum trees and on all kinds of wild and cultivated cherries have been noticed by every one from early time, and have long been the bane of fruit growers. For the most part these have been attributed to the work of insects; and this has not been without considerable shadow of reason. Insects are not unfrequently found there, and in old knots insects or their remains are generally found. The curculio often pierces the knot in its young state, and deposits within it its eggs, which soon hatch out. The young live in the knot and may be found there in the various stages of their devel opment. Insects also of different species have been found ithin these knots.
But it is now conclusively demonstrated that the unsight y knots are not of insect origin. Though, till very recent ly, the subject has been almost entirely neglected by botan ists, it now seems certain that they have determined its true character. The knots are not like galls, made by a known insect; and when young, they are most frequently entirely devoid of insects. Again, the fact that the insects are no all of one species, and the very same are also found on trees which are never afflicted with knot, would be quite conclu sive against this assumption. On the other hand, the kno
fungus (sphceria morbosa), which is now accepted as its origin ; and this fungus is not known to exist except in connection with the knot. The mycelial threads, however, of the fungus are found in the slightly swollen stem long before any real semblance to a knot has appeared; but the growth of these may be traced till the knot has attained its full size, and the fungus has shown all its phases of life.
Dr. Farlow has considered the life history of the fungus, whether the disease is the same on plum and cherry trees, and the means of preventing its ravages.
The knots vary in size from a few lines to several inches in length, and average about two inches in circumference. They seldom entirely surround the branch, and of ten cause it to bend or twist into unsightly shapes. The vegetative portion first appears in the form of very minute threads mycelium), twisted together and extending from the cam-bium-or inner-layer of the bark towards the outer portion of the stem. "The fungus first reaches the cambium either by the germination of spores on the surface of the branch, or by the mycelium proceeding from a neighboring knot." Hence the Professor concludes that the growing layer of tissue is where the fungus commences its work of destruction. During the growing stages of the knot-which continue to the flowering time of its victim-it is of a greenish color and solid or pulpy throughout. When it has attained its maturity. it turns black; and in the winter it often becomes cracked, broken, worm- eaten, and hollow. The outer shell contains the perithecia, which are small pits or sacs containing the sexual spores. These, always eight in number, are borne in asci or cells. These cells grow slowly du ing the winter, and the spores in them ripen from the mid dle of January to the end of February. Those ripening in February germinate in from three to five days, if sufficient February
ly moist.
Microscopic investigation proves that the knots on plums of all sorts, and on cultivated, wild, and choke cherries, are identical: though, to the naked eye, they differ slightly in general appearance, owing probably to the more favorable ircumstances for their growth in some species of the genus prunus than in others.
The remedy against this contagious disease is a very ob vious one: simply to cut off and burn the knots and swollen branches when and wherever found. This should be done in autumn as soon as they become plainly seen by the falling of the leaves. It is not sufficient to cut them off, for some of the spores which do not ripen till late in the winter have been carefully observed to ripen after the branches were cut from the tree and not afterwards burnt. Professor Farlow recommends the complete destruction of choke cherry, bird cherry, and wild plum trees, since they furnish means for the rapid propagation of the knot, and are themselves of little value in comparison with the cultivated cherries and plums. "Concert of action is what is needed in this mat ter, and not only by attending to one's cultivated trees, but to the wild plums and cherries that frequent our fence rows and woodlands as well: as in very many instances the latter prove to be pest houses where the contagion is propagated and sent forth to carry desolation over many a thriving tree, dear to the eye of its owner." The wild plums are the most abundant in the Western States, and the wild and choke cherries in the Eastern. These, in their habitats therefore, require special attention.
This is a matter of vast importance to fruit growers; and to institute vigorous measures, against this destructive fungus, will be a great source of profit to fruit producers and ner hants, as well as an equally great source of comfort and njoyment to the consumer.
S. H. T.

The American Reports on the Vienna Exposition, We have received the four volumes of reports of the United States Commissioners to the Vienna Exhibition of 1873 which have just been published, under authority of Congress at the Government Printing Office, at Washington, D. C. The work possesses a double interest: first, in that it is a tangible result of the expenditure of $\$ 200,000$ of the people's money, and of the labors of certain paid scientific commissioners and eight practical artizans: second, in that it is valuable record of the Vienna show, edited with much ability and discriminating judgment.
Professor Thurston devotes volume first to an introduc tory description of previous world's fairs, following which a complete account of the organization of the Vienna Ex position. Copious extracts from the reports of the commis sioners from other nations uponthe United States exhibit ar given; and a report on forests and foresting, by J. A. War der, M. D., and one on sheep and wool, by J. R. Dodge, close the volume. In volume second are collected all the reports on scientific and educational subjects. Volume third is main ly occupied by the editor's own report on machinery and manufactures, to which are added Mr. William Watson's paper on "Engineering and Architecture," that of Mr. Fairfield on "Sewing Machines," and that of Mr.Charles Davis on "Hydraulic Engineering." Volume fourth contains reports on buildings, wood and stone industries, metallurgy, and a copious general index, which greatly adds to the value of th work as a book of reference. There is a lavish profusion of maps and engravings, and the general appearance of the book is superior to the usual official productions of the gov ernment printer. We shall, as opportunity offers, lay be fore our readers such abstracts from the work as appear in teresting. Meanwhile, and in advance of the public verdict we can warmly commend Professor Thurston's labors. He has accomplished a task of great magnitude, with a thor oughness which will secure wide and favorable recognition, and he has given us probably the best set of reports ever based upon a world's fair.

Sclence in America.

The following passage taken from the opening address of Professor Sir William Thomson, on assuming the chair of the section of physical science at the Glasgow meeting of the British Association, will be read with interest as showing the impression made upon an English student of Science by our progress in discovery and practical science:
"Six weeks ago,when I landed in England after a most interesting trip to America and back, and I became painfully conscious that I must have the honor to address you here today, I wished to write an address, of which Science in America should be the subject. I came home indeed vividly impressed with much that I had seen, both in the great exhibition at Philadelphia and out of it, showing the truest scientific spirit and devotion and originality, the inventiveness,
the patient, persevering thoughtfulness of work, the appreciativeness, and the generous open-mindedness and sympathy from which the great things of Science come.
"I wish I could speak to you of the veteran Henry, generous rival of Faraday in electromagnetic discovery; of
Peirce, the founder of high mathematics in America; of Bache, and of the splendid heritage he has left to America and to the world, in the United States coast survey; of the great school of astronomers which followed-Newton, Newcomb, Watson, Young, Alvan Clarke, Rutherford, Draper, father and son; of Commander Belknap, and his great exploration of the Pacific depths by pianoforte wire, with imper fect apparatus supplied from Glasgow, out of which he forced a successin his own way; and of Captain Sigsbee, who followed with the like fervor and resolution, and made fur-
ther improvements in the apparatus, by which he has done ther improvements in the apparatus, by which he has done
marvels of easy, quick, and sure deep sea soundings in his marvels of easy, quick, and sure deep sea soundings in his
little surveying ship Blake; and of the admirable official spirit which makes such men and such doings possible in the United States naval service.
'I would like to tell you, too, of my reasons for confidently expecting that American hydrography will soon supply the data from tidal observations, long ago asked of our government in vain by a committee of the British Association, by which the amount of the earth's elastic yielding to the dis torting influence of sun and moon will be measured; and of my strong hope that the compass department of the Ameri-
can navy will repay the debt to France, England, and Gercan navy will repay the debt to France, England, and Ger-
many, so appreciatively acknowledged in their reprint of many, so appreciatively acknowledged in their reprint of
the works of Poisson, Airy, Archibald Smith, Evans, and the works of Poisson, Airy, Archibald Smith, Evans, and
the Liverpool compass committee, by giving in return a fresh marine survey of terrestrial magnetism to supply the
navigator with data for correcting his compass without navigator with data for correcting his compass without
sight of sun or stars. I should also tell you of 'Old Prob.'s' sight of sun or stars. I should also tell you of 'Old Prob.'s
weather warnings, which cost the nation $\$ 250,000$ a year, money well spent, say the western farmers, and not they alone; in this the whole people of the United States are agreed, and though Democrats or Republicans playing the priations for would for a moment think of starving 'Old Prob.'; and now that 80 per cent of his probabilities have proved true, and General Myer has, for a month back, ceased to call his daily forecasts probabilities, and has begun to call them indications, what will the western farmers call him this time next tions, what will the western farmers call him this time next
year? The United States naval observatory is full of the year? The United States naval observatory is full of the
very highest Science, under the command of Admiral Davis. If, to get on to precession and nutation, I had resolved to omit telling you that I had there, in an instrument for measuring photographs of the transit of Venus shown me by Professor Harkness (a young Scotchman attracted into the United States naval service), seen, for the first time in an astronomical instrument, a geometrical slide, the verdic on the disaster on board the Thunderer, published while I am writing this address, forbids me to keep any such resolution, and compels me to put the question: Is there in the British navy, or in a British steamer, or in a British land boiler another safety valve so constructed that, by any possibility
at any temperature, or under any stress, it can jam? and to at any temperature, or under any stress, it can jam? and to
say that if there is, it must be instantly corrected or re say that if there is, it must be instantly corrected or re
moved. Can I go on to precession and nutation without moved. Can I go on to precession and nutation without a
word of what I saw in the great Exhibition of Philadelphia? In the United States government part of it, Professor Hilgard showed me the measuring rods of the United States coast
survey, with their beautiful mechanical appliances for end survey, with their beautiful mechanical appliances for end measurement, by which the three great base lines of Maine, Long Island, and Georgia were measured with about the
same accuracy as the most accurate scientific measures whether of Europe or America, have attained in comparing two meter or yard measures. In the United States tele graphic department I saw and heard Elisha Gray's splendidly worked-out electric telephone, actually sounding four messages simultaneously on the Morse code, and clearly capable of doing yet four times as many with very moderate im provements of detail ; and I saw Edison's automatic telegraph delivering 1,015 words in 57 seconds-this done by the long neglected electro-chemical method of Bain, long ago con demned in England to the helot work of recording from a relay, and then turned adrift as needlessly delicate for that.
"In the Canadian department I heard 'To be or not to be' -'there's the rub,' through an electric telegraph wire; but, scorning monosyllables, the electric articulation rose o
higher flights, and gave me passages taken at random from higher flights, and gave me passages taken at random from failed to make out the S. S. Cox), ' The city of New York,' 'Senator Morton,' 'The senate has resolved to 'print a "Senator Morton, thousand extra copies," "The Americans in London have thousand extra copies, "the coming Fourth of July.' All this
 my own ears heard spoken to me with unmistakable dis-
tinctness by the thin, circular disk armature of just such tinctness by the thin, circular disk armature of just such
another little electromagnet as this which I hold in my
hand. The words were shouted with a clear and loud voice by my colleague judge, Professor Watson, at the far end of the line, holding his mouth close to a stretched membrane, such as you see before you here, carrying a little piece of
soft iron, which was thus made to perform in the neighborsoft iron, which was thus made to perform in the neighbor-
hood of an electromagnet in circuit with the line motions proportional to the sonorific motions of the air. This, the greatest by far of all the marvels of the electric telegraph, is due to a young countryman of our own, Mr. Graham Bell, of Edinburgh and Montreal and Boston, now becoming a naturalized citizen of the United States. Who can but admire the hardihood of invention which devised such very slight means to realize the mathematical conception that, if electricity is to convey all the delicacies of quality which distinguish articulate speech, the strength of its current must vary continuously, and, as nearly as may be, in simple proportion to the velocity of a particle of air engaged in
stituting the sound?
" The Patent Museum of Washington, an institution of which the nation is justly proud, and the beneficent working of the United States patent laws deserve notice in the section of the British Association concerned with branches of Science to which nine tenths of all the useful patents of the world owe their foundations. I was much struck with the prevalence of patented inventions in the Exhibition; it seemed to me that every good thing deserving a patent was patented. I asked one inventor, of a very good invention: 'Why don't you patent it in England?' He an swered: 'The conditions of England are too onerous.' We certainly are far behind America's wisdom in this respect. If Europe does not amend its laws (England in the opposite direction to that proposed in the bills before the last two sessions of Parliament), America will speedily become the nursery of useful inventions for the world.
ought to speak to you too of the already venerable Harvard University, and of the Technological Institute of Boston created by William Rogers, brother of my Glasgow Univer sity colleague, Henry Rogers, the Cambridge of America and of the Johns Hopkins University of Baltimore, which with its youthful vigor has torn Sylvester from us, has util ized the genius and working power of Roland for experi mental research, and, three days after my arrival in America, sent for the young Porter Poinier to make him a Fellow But he was on his death bed in New York, 'begging his But he was on his death bed in New York, begging his
physicians to keep him alive just long enough to finish his book, and then he would be willing to go.' Of his book, 'Thermodynamics,' we may hope to see at least a part, a much of the manuscript and kind and able friends to edi it are left; but the appointment of a fellowship in the ohns Hopkins University came a day too late to gratify his noble ambition. But the stimulus of intercourse with American scientific men left no place in my mind for fram ing or attempting to frame a report on American Science."

the latest news from the sun.

There are not many persons living who, with the reverond Director of the Observatory of the Roman College, can lay claim to have minutely examined the face of the sun every day for the past ten years. Father Secchi, moreover, as an such his concluseer of Lockyer, Huggins, or Young, an as such his conclusions are worthy of the highest respect.
The new edition of his work on the sun, which has lately been published in Paris, embodies the results of his mos recent investigations, as well as of those which have ex
tended over long periods of time, and hence it may be re garded as one of the latest dicta of Science regarding the physical constitution of our luminary.
Father Secchi's theory of the sun spots is that they are phenomena of eruption. They result from the upheavals which take place in the solar mass, and form, in the photosphere or luminous envelope, cavities more or less regular arrounded by brilliant projecting ridges. The depth of hese cavities rarely exceeds 3,600 miles-generally it is les which absorb and so cut off the luminous rays emitted by whichabsorb and so cut off the luminous rays emitted by
the strata beneath. The physical constitution of the solar mass, and the true nature of the incessant motion of which it is the seat, have been little understood. Now, however we are in possession of a spectroscopic method of distinguish
ing the different currents which cross and mingle, of dis ing the different currents which cross and mingle, of dis apors, and observing the rose-colored protuberances whic ormerly could not be studied, except during a total eclipse when the bright light of the radiant disk was intercepted Father Secchi has determined the closest relations betwee he spots and the protuberances seen on the solar edge.
If the results of a series of observations of solar rotations e considered, it appears that the spots, the most brilliant aculx, and the eruptive protuberances (those which contain netallic vapors) appear as a rule in similar regions on th and comprised between the 10th and 30th parallels of lati ude, and that the majority of these phenomena occur at he same epochs. When a number of individual observa tions of spots and protuberances are thus compared, this conclusion is often at fault; but this is to be expected, be cause the protuberances can be seen only on the edge, while he othe and faculæ are visible on the face, of the sun. On omengr hand, the parallelism of the three ordecs in the aggregate. Moreover, whenever a considerable prospot will appear next day in the same place
spot will appear next day in the same place.
 the spots are a secondary effect of the eruptions which are
revealed to us by the protuberances. It is necessary, however, to note that the latter do not always appear to be true eruptions, as they are often simple jets of incandescent hy drogen which rise from the photosphere like fires from a forge. Such flames cannot produce the absorbent vapors which form the spots. Hence a distinction must be made between eruptive protuberances characterized by the presence of metallic vapors, and hydrogen protuberances wher such vapors are not manifest; but, the author adds, traces of the metallic spectroscopic lines are almost always discerni ble at the base of the hydrogen jets. The difference be tween the two kinds of protuberances, therefore, while ex isting, is not clearly defined. Often the metallic lines of the protuberances are visible on the solar disk,and are prolonged as far as the nucleus of a spot near the edge, affording ir refutable evidence that the metallic vapors have their origin near the nucleus. Beyond the 40° parallels, true spots and eruptions are rarely encountered.
The eruptions are probably violent crises produced by hemical combinations which occur at a certain depth below the solar surface. The cooled products of the reactions unite in thick clouds, like those clouds arising from sul phur volcanoes, which fall by virtue of their weight when condensed, and bury themselves in the luminous envelope while they in turn are quickly invaded by the ambient mat ter of the photosphere. From all sides tongues of fire pene trate the interior of the spot, and, joining it together in places, divide it into segments. These luminous filaments give to the penumbra its radial structure, and then, becoming as it were dissolved in the obscure mass, lose their bril liancy by cooling. The spot then assumes quite a regular rounded form; a period of calm succeeds the fierce efferves cence and the tumultuous and discordant movements which characterize the formative processes. Above the dark nu leus,less intense emanations occur of short and slightly lu minous flames, in which the spectroscope is no longer able to recognize the lines of metals. Then, little by little, the sot diminishes and finally totally disappears.
This theory is believed to account for all the phenomen hitherto observed; and it will be seen that Father Secchi is no adherent of the whirlwind theory, which he somewhat brusquely dismisses as a "fiction destitute of all reality." Out of several hundred spots which he has closely observed he says that but seven or eightshow a spiriform structure This even disappears in a day or two, and often the rotary movement, after becoming slower, is rendered in the oppo site direction. The motion, he affirms, is no essential pro perty of the spots.
The physical constitution of the sun, our author sums up as follows: The sun is formed of a fluid incandescent mass enveloped in a highly luminous photosphere, above whicl there is yet an atmosphere of less density. The photo sphere is a fiery mist, probably of gases which have become luminous through the effect of high temperature and high pressure. Immediately above this, a very thin envelope of metallic vapors mixed with those of hydrogen is encoun tered. This is the chromosphere,and its thickness is from 10 to 15 seconds of arc. Beyond the chromosphere again there is a vast envelope composed of hydrogen and of two un known substances which produce the yellow spectrum line D_{3},and the line 1,474 ,and to one of which the name "helium" has provisionally been given. During total eclipses of the sun, the outer envelope becomes visible and produces the phenomenon of the corona. Finally the vast eruptions hrow forth jets of hydrogen to hights equal to one fourth the solar diameter, 224,400 miles, and with such tremendous velocity that it is believed that the hydrogen may at time eave the sun and pass into the interstellar space.

Look Out for Him.

A correspondent from Springfield, Mo., sends us a receipt signed R. Allen, for one year's subscription to the Scienti fic American.
The writer states that the person to whom he paid his $\$ 3.20$ was a modest, retiring sort of an individual, and re presented himself to be a special correspondent of the paper It is likely that the same party has swindled others out of Weir money, in Springfield and other places in the vicinity We warn our friends in all parts of the country again subscribing and paying money to any one unknown to them, on our account. Notraveling agents are employed; and if any stranger claims to be an authorized agent for soliciting subscriptions, denounce him as a swindler wherever you find him, and keep your hand on your pocket so long as the per son remains.

Naval Engineer Corps Gazette.

September 29. Chief Engineer John B. Carpenter and As sistant Engineer C. P. Howell were detached from the Uni ted States steamship Alaska, and placed on waiting orders. Passed Assistant Engineer Julien S. Ogden has been o dered to duty at the Navy Yard, New York.
October 4. Chief Engineer 0. H. Lackey was ordered to duty as member of the board at Annapolis, Md., for the examination of midshipmen for promotion to the grade of ensign.
Passed Assistant Engineer Robert Crawford has been or dered to temporary duty at the Naval Academy, Annapolis, as an instructor in the department of steam engineering.

For the protection of workmen handling lead and mercury compounds, M. Melsens, of Paris, France, recommends mall daily doses of iodide of potassium. This salt, he says, dissolves the
fects their removal.

A THEORY OF THE BALL PUZZLE

Mr. Hugo Bilgram, of Philadelphia, has written the fol lowing explanation of the ball puzzle described in the Screntific American Supplement, page 576, volume II.:
A current of air, $a b$, striking the ball, B, will not, as might be expected, be reflected in the line from b, nearly at right angles to $a b$, but will follow the course, $b f e$. The reason can be explained as follows: Any current of air has a tendency to carry along with itself the surrounding air but the current, $b d$, can be supplied from one side only, while on the other side, in the angle, $d b f$, a rarefaction of air takes place. The current will therefore be deflected by the pressure of the atmosphere, and take the course as shown. The impact of the air, at b, produces the force, $c g$, while the surplus pressure of the column of air, $i k$, over the rarefied conditions under the current, $b f$, exerts the pressure, $c h$. These two forces united produce a vertical force equal to the weight of the ball. The rarefaction of
al

K
air, between b and f, as well as the deflection of the current, can easily be demonstrated by experiment.

Ourselves as Others See Us.

We all like to know what others think of us, even if their opinion makes us wince; and recognizing this fact, a bright newspaper man has been chatting with the representatives of the foreign nations at the Centennial show to learn their notions of our country and ourselves. The phlegmatic Turk is astounded at our inquisitiveness. "They come up to your stand, handle your goods, ask you all sorts of impertinent questions, never apologize for troubling you, but address you invariably with the inevitable 'how much.'" We fear the Turk makes a fair criticism. The Frenchman thinks our mode of life, so far as eating is concerned, is detestable. "Your mode of living," said one of the commissioners, "is the cause of illness among your women, which must affect the whole race. The undue nse of ice water ice cream, iced drinks of all kinds, the abuse of pepper and salt, are all injurious. You need a public school to teach the art of proper feeding." The Belgian also detests our mode of living and our cooking. He thinks our national stomach must be out of order-not far out of the way-and we eat too much meat. While we are exceedingly sociable, we have no cafés, and drink too of ten and too quickly; this is also the Belgian's criticism. The Frenchman, so far as our character is concerned, thinks "the high appreciation of number one does much to stunt the development of morality." The Spaniard declares us to be " the most cordial and hospitable people in the world." The Italian thinks we lack sentiment and principles. "To achieve what you have done," said one of the Italian Commission, " you have had to make a god-the dol-lar-and a machine of your country, a money-making apparatus." But the American women p
most. Sask myself
Is it innocence, virtue, ingenuousness, or what? They are the most impertinent creatures I ever saw. They go up to a foreigner with the most perfect sang fria, stare him out of countenance, ask him if he is married, how many childron he has, where he comes from, and I know not what. Their excessive freedom of manner to our hot-blooded people seems what I hope it is not. But they take the most extraordinary liberties. Fancy a pretty girl of eighteen laying her little dimpled hand on your arm and asking you, naively or boldly, I know not which, how you like the American ladies? What the deuce can one think?"
Like the Frenchman and Belgian, the Italian is disgusted at our cooking. "You need a thorough reformation of your cuisine," said one. "You have little or no variety of food, and oh! you lack good wines! If you only had our wines, you would have less public drunkenness." The German laments the absence of domestic life; but he seems to regard America as a sort of promised land, and thinks it especially paradise for working men. The Austrian, like the Turk, is disgusted with the national impoliteness. Said one: "The people are pleasant enough, but they do not know the use of the words 'please' and 'thank you,' and seem to imagine that for the admission price of fifty cents they purchase the services, as guides, instructors, and playthings, of all the exhibitors." And then we are woefully ignorant. 'Most of the American visitors here," said the same Austrian, "don't know the difference between Austria and Australia, and ask me how I like living in the bush. One old lady asked me, just now, where is the Belgian and Brazilian stands? You know, the place wherethey make bug jewelry, jewelry out of bugs,' and that is only one instancefrom many hundreds.'

The Dane thinks our middle classes not so well educated as those of his own country. The Mexican is particularly struck by the abuses of our street car travel and our hacks. He would have stringent laws to prevent the overcrowding of the street cars, and, to stop the extortion of the hackmen, capital punishment. The Dutchman doesn't like our women thinks they are weak and puny, compared with their buxom girls. And the opinion of the Chinaman is compressed into the following expressive sentences: "• Much likee Melica. Costee muchee money livee in Melica, costee little money livee Chilee. Chilee man make muchee money in Melica Melican man makee d-n little money in Chilee."-Boston Weekly Globe.

THE "MODEL" SCROLL SAW

We illustrate herewith a new scroll saw, excellently suited for amateur use. It is capable of cutting wood up to one and a half inches in thickness, of holding blades of all sizes, from one fourth inch down to the finest mede all sizes, from one fourt inch dowith the finest made without adjustment, and it of not being and smoothly. It offers beside the advantage of not being driven by a crank motion from the treadle, but by devices which have no dead centers, and which therefore maintain the machine in con tinuous movement. By pressing down the treadle, the stra attached thereto is caused to rotate a noiseless clutch, Fig 2 , by which the balance wheel is driven. The latter, by means of an eccentric, moves the arms to which the saw is attached. The clutch merely touches the balance whee when driven forward, but becomes entirely disconnected therefrom when it is stopped, so that the wheel is thus left to run free. When the motion of the balance wheel slack ens, the treadle, which has been drawn up by the revers

Fig. 1

rotation of the clutch shaft, by the spring arm and strap A, Fig. 1, into its normal position, is again pressed down and the wheel receives fresh impulse. The saw starts a once in the right direction; and the thinner the material cut, the less frequently is it necessary to work the treadle.
The upper saw arm is jointed at B, so that it can be raised entirely out of the way of the work when changing the blade from one hole to another in sawing inside portions To hold the saw, the elasticity only of the upper arm is used and in fastening the upper end of the blade, it is therefore merely necessary to push down the arm until the desired strain is obtained. This of course can be varied to suit the

size of saw and the kind of work. The machine, we are in formed, is made in quantities on special apparatus and to standard gages. It is entirely of metal, and has no adjuncts holding the saw works on steel points, and is jointed to the connecting rod by an adjustable bearing which takes up the
wear. The main shaft is of Stubs' steel. The space under the arm is fifteen inches in the clear, and thus allows of sawing to the center of a piece thirty inches in diameter The balance wheel is so adjusted that there is scarcely any ibration even when the machine runs at from 1,000 to 1,200 revolutions per minute. The finish is ornamental, and the workmanship is neat and good.
For further information address the manufacturers, Messrs. Bush \& Smith, West New Brighton, Staten Island, N. Y.

RUBBER OVERSHOE MAKING AT THE CENTENNIAL.
The inventors of the rubber overshoe were the Indians

RAW RUBBER. THE VULCANIZING OVEN. ARNISHING THE SHOES.
whoinhabited those portions of Brazil where the caoutchouc tree most abounded. Their method of manufacture consis ted in making a rude last of clay, which was covered repeatedly with layers of the juice, each coating being allowed to dry before the next was applied. When a proper thick ness was attained, the mold, with its elastic covering, was held over the smoke of a wood fire for a time, and the clay was then broken out. It was not until 1825 that the rub ber shoe made its appearance in the United States; and then Thomas C. Wales, a Boston merchant, imported a few of the crude Indian productions from Brazil. Rough and ungainly as these feet coverings were, their superiority over go loshes, which were nothing more than wooden shoes or clogs, and which furnished the only means, beyond extra thick leather boots, of protecting the feet during wet weather, was soon perceived. Mr. Wales thereupon sent to Brazil a large number of American lasts of better shape than those used by the native makers; and such a trade in the shoes speedily arose that, at the end of three years, no less than half a million pairs were exported from Brazil to Eu rope and America.
Several years before this time both English and American inventors had been seeking for means of utilizing the caout chouc gum. In 1797, one Johnson obtained a patent in En gland for waterproofing cloth by covering it with rubber in solution. Hummel, of Philadelphia, followed in 1819, with a gum elastic varnish. Then Macintosh, in England, made in the same year waterproof garments which still bear his name. These efforts were, of course, known in the United States; and the rubber overshoe had no sooner become al most an article of necessity when the results of the cogita tions of American inventors over the subject began to ap pear, in the shape of attempts to make the shoes cheaply by the processes already understood. In 1832 Wait Webster, of New York, patented a process for attaching soles to gum elastic shoes; in the following year the first American fac tory for the making of rubber shoes, hose, etc., was estab lished in Roxbury, Mass.; but the mode of manufacture in those days differed greatly from that now in vogue, a fact proved by an exhibition of leather boots at the Fair of the American Institute of 1833, which had previously been sen by J. M. Hood, of New York, to South America, to be var nished with the fresh juice from the tree. The Roxbury factory created a wonderful impetus in the trade, shares of its stock sold for many times their original value, and at once six more companies embarked in the manufacture. In 1835 Charles Goodyear invented his nitric acid process for depri ving rubber of its adhesiveness, and this was at once ap plied to the fabrication of the shoe, effectually supplanting other modes of production. It was itself, in turn, supplant ed by Goodyear's greatinvention of the vulcanizing process and this last, although it has been greatly modified since its origination, is now employed. Such is the briefly told his tory of the rubber overshoe, an article of apparel now al most indispensable, and one that is manufactured in this country at the rate of some six million pairs per year.

It was an excellent idea on the part of the National Rub ber Company, of Providence, R. I., to exhibit not merely their goods at the Centennial Exposition, but also to trans port thither a set of machinery, and to show to the visitor the manner in which rubber shoes are made. The annexed engravings represent the differentoperations, now in progres in Machinery Hall, by means of which the rough lumps of crude rubber are converted into the handsomely finished shoe A mass of raw rubber is represented in Fig. 1. This, cut
into suitable pieces by hand knives almost as large as swords, is thrown between a pair of fluted cylinders, Fig. 2, between which it is masticated and washed by streams of hot water, emerging in the mat-like form also represented in Fig. 1. Next foliows grinding, for from fifteen to twenty minutes, between hot, smooth cylinders; and while the rubber is undergoing this process, the sulphur, tar, and other compounds to be mixed with it are added. The material now begins to form itself into a sheet; and after going through a pair of cylinders which stamp upon it the patterns of the pair of cylinders which stamp upon it the patterns of the
shapes in which it is to be cut, besides ornamentation, etc., shapes in which it is to be cut, besides ornamentation, etc.,
it is led to a reel, as shown in Fig. 3. Meanwhile the black it is led to a reel, as shown in Fig. 3. Meanwhile the black
cloth, which is to form the backing, is led to the same reel, and as the latter is turned, alternate layers of rubber and cloth become wound about it. It remains now to consolidate the two materials, and this is done by passing the double sheet through heavy calender rollers under great pressure. From the sheets, thus prepared and of varying
remain to the end, In Fig. 7, in rear of the varnisher, a
pyramidal iron carriage is shown, which a workman appears pyramidal iron carriage is shown, which a workman appears of this carriage are tiers of bars, and on these bars are fast ened the lasts with the varnished shoes upon them. When the carriage is filled it is pushed into the vulcanizing oven, a small brick chamber beneath which are large coils of steam pipes. The steam heat is gradually brought to about 270° Fah., causing, in about seven hours, the complete vul canization or union of the rubber with the sulphur and oth er ingredients, and leaving the shoes in fit condition for wear.

Mr. James Lick.

M. James Lick, the California millionaire, through whose munificence the construction of the million dollar telescope was some time ago provided for, died in San F rancisco a few days ago. Mr. Lick was born in Fredericksburg, Pa.

The correct rule for laying shingles of any length,in order to form a roof leak-tight, is to lay the courses less than one hird the length of the shortest shingles. For example, when shingles are 18 inches long, many of them will not be more than 17 inches in length. Therefore five inches is al that the courses will bear to be laid to the weather with surety of forming a good roof. The shingles must be three hicknesses over the entire roof. If they are not three hicknesses-if now and then a shingle lacks a quarter or half an inch of being long enough to make three thick-nesses-there will in all probability be a leaky place in the roof at such a point. Moreover, when the lower courses lack half an inch of extending up far enough to receive the rain from the outermost course, in case the middle course were removed, it would be just as well to lay them seven or eight inches to the weather as to lay them only five, or five and a half, inches. Many shingles are only 16 inches long and many that are sold for 16 inches long will hardly meas

CRUSHING AND WASHING THE RUBBER.

MAKING THE RUBBER INTO SHEFTS.
ure 15 inches. In this case-if the roof be rather flat, say about one quarter pitch-four and a half inches is as far as they should be laid to the weather. In case a roof were quite steep it might answer to lay the courses four and three quarter inches to the weather.
When buildings are erected by the job, proprietors should give their personal attention to this subject, and see that jobbers do not lay the courses a half inch too far to the weather.
There is another important consideration which is too fre quently overlooked in shingling, which is breaking joints. Careless workmen will often break joints within half an inch of each other. When the joints of the different courses come so close together, the roof will most certainly leak. Why should it not? There is nothing to prevent it during Why should it not? There is nothing to prevent it during
a heavy rain. Unless a roof is steeper than a quarter pitch,
thickness, according to the parts which they are destined to form, the various portions of the shoe are cut (Fig. 4), the workman following the stamped pattern with his curved knife. There are nine portions which go to make up the
anatomy of the overshoe : the lining, the filling sole, the anatomy of the overshoe: the lining, the filling sole, the outsole, the insole, the forming strip up the heel, the and the junior or auxiliary heel piece; the respective uses of all these are sufficiently indicated by their names. As fast as they are cut out, they are passed to girls who sit be side a high table, perched on elevated stools. Running midway of the table are iron racks, and on pins thereon rest the asts upon which the shoes are formed. The operation of

CUTTING OUT THE RUBBER SHOES.
putting the shoes together, which we illustrate in Fig. 5, is by no means a difficult one, although it requires some skill The lining and inside are attached to the last, and then the various pieces follow in succession, being secured in place by india rubber cement. Varnishing (Fig. 6) is next in order, and then it might be supposed that the shoe was com-plete-that is, to all appearances; but to feel the rubber is soon to be undeceived. It is soft and literally flabby; and
although it has the shape of a shoe now, there is no reason although it has the shape of a shoe now, there is no reason to doubt but that, after a week's wear, the owner would find it half a dozen or so sizes too large, and more resembling a bag than a shoe. But here the vulcanizing process steps in
to render the material hard and firm, yet elastic, and in a condition that, while the shoe may wear out, the shape will
in 1796, and was taught the cabinet maker's trade. About wenty-four years of his life were spent in South America working as a mechanic at piano and furniture manufacture He was an excellent workman and fortune favored him. so to California before the acquisition of that State by the United States, and, foreseeing the rise in value of real estate which followed the settlement of the country, invested his money in land. Meanwhile he started a flour mill, where it is stated he made the best flour offered in the California markets,and which always commanded a dollar or so a barre above ruling rates. During his successful milling business, however, he never lost sight of his land investments, and
he was constantly on the alert to buy up government titles given to soldiers and other tenures of property which the
owners at that time believed would never become very valua owners at that time b ϵ lieved would never become very valuable. In this way he acquired the ground on which the Lick House in San Francisco now stands, for $\$ 40$. That building Mr. Lick had built under his personal supervision, his mechanical knowledge standing him in good stead in construct ing the elegant fittings of rare wood which embellish the halls and parlors. He likewise erected other large buildings on his lạnd, most of which is in the heart of San Fran cisco, the city having grown round and upon it.
Not long ago, as we explained at the time, Mr. Lick set aside some $\$ 5,000,000$ from his immense fortune for various charitable purposes, and for the construction of an immense charitable purposes, and for the construction of an inmense
telescope, vesting the funds in trustees. Subsequently he telescope, vesting the funds in trustees. Subsequently he
reconsidered his project,and sought to change the conditions reconsidered his project, and sought to change the conditions
of certain portions of the gift, and in this way became inof certain portions of the gift, and in this way became in
volved in dissensions with his trustees which gave rise to the report that he had abandoned the project. It is hoped that no legal controversy may arise to prevent a construction of the magnificent telescope, to cost one million dollars, as provided for originally by tbe deceased. Mr. Lick leaves one son only, a man about 50 years of age, who was a tending the Centennial Exhibition when his father died.

How to Lay Shingles.

Not one half the persons who lay shingles when making a roof on a building have any correct ideas in regard to making a roof that will be absolutely rain-tight during a driving storm of rain. We have frequently seen men shingling, who, when they would meet with a worthless shingle, say once in laying two or three courses, would lay this poor shingle among the good ones, saying: "It is only one poor shingle, one shingle cannot make a poor roof." But one poor shingle will make a leaky one. If firstrate shingles are employed, and one poor one is worked in among every
100 , that roof might about as well have 100, that roof might about as well have been without any shingles. If any poor shingles are to be used, let them all be laid together near the upper part of the roof. The best of shingles will not make a tight roof if they are not properly laid, while the same shingles would make an excel lent roof if laid as shingles should be laid.
5.

making the rubber shoes.
much care should be taken to break joints not less than one and a quarter inches. Let all workmen and helpers be taught the vast importance of rejecting every poor shingle, except when the upper courses are being laid.-Canadian Mechanic's Magazine.

An Effort to Preserve the Main Exhibition Building. The Philadelphia Ledger says that preliminary steps have been taken toward the permanent preservation of as much as possible of the utility and beauty of the Centennial Exhibition buildings and grounds. The suggestion has taken strong hold of a number of energetic and influential men, who have expressed their readiness to give the under taking both moral support and material aid.

seasonal behavior of plants.

It has for some time been supposed that the heat of spring acts more powerfully or promptly upon plants in higher than in lower latitudes. De Candolle attempted to test this by planting, in some intermediate locality, seeds of several common annuals, taken from different latitudes. With the exception of one species of seeds, which one confirmed his
opinions, he had in this way but indifferent success, owing opinions, he had in this way but indifferent success, owing
probably to the fact that most of the seeds from the different latitudes represented unlike forms of variable species. It then occurred to him to make the trial with trees instead of seeds. Accordingly, in the early part of 1875 , he sent for branches of four species of trees from Montpellier, and paired them with similar branches from Geneva. After subjecting them to the same degree of heat till all acquired the same temperature, he placed the pairs in glasses of wet sand in a warm room under exactly the same conditions. When these developed buds and leaves in the spring, he found that all the slips from the northern locality arrived at the same stage of vernation earlier
than those in the southern locality.
Two interesting considerations grow out of these facts, one of them practical and the other scientific in character If these are facts, universal in their application, it will be come a matter of considerable practical value in preparing
vegetable products for market at the earliest possible movegetable products for market at the earliest possible mo-
ment. The great profits on many products of the soil depend largely upon their early introduction into market, when the demand is great and the supply small. If, by introducing seeds or plants from a northern locality, the gardener or fruit grower can make his crop ready for the market two or three weeks earlier, the advantages of such a course will not long remain unimproved. It is only necessary, by ac truat and sufficiently exhaustive expe to all our seeds and plants, to gain for it universal acceptance.

In point of scientific interest appears the question why the same temperature acts more effectually upon the plant from the more northerly locality. De Candolle gives two answers to this query. First, that it may be due to natural selection of the buds. The earliest or most precocious have
the advantage in the struggle for existence, while the latthe advantage in the struggle for existence, while the lat-
ter ones are stifled. "In this way comes a selection and a successive adaptation of the tree to the climate." In connection with this, he furnishes incidental information respecting reversion. To illustrate the theory that the above result is accomplished because "every peculiarity of a bud is ordinarily reproduced year after year in the succeeding growth," he cites the case of a horse chestnut tree near Geneva, which, about the year 1822, first produced a single branch that bore double flowers, and has ever since borne nothing but double flowers, showing no tendency to revert
to the single-flowered condition. This branch is supposed to the single-flowered condition. This branch is supposed
to be the origin of all the double-flowered horse chestnuts to be the origin of all the double-flowered horse chestnuts
in the world, all others having been propagated from it by grafts.
The second reason why the northern plant develops, with the same temperature, more rapidly than the southern, is
that the winter repose of the former is more complete than the latter; which,opines De Candolle, in some unaccountable way renders it more susceptible to the heat of spring. De Candolle attributes most importance to the latter explanation, while Dr. Asa Gray, in his comments, seems to incline to the former rather than to the latter
The average time of the flowering of spring plants has been of late attracting considerable attention in Scotland. The Scottish Meteorological Society and the Botanical Society of Edinburgh have both been collecting data upon this subject. Both collections of facts have in view the advancement of meteorological science. The former society
has given attention, for the past twenty years, to facts rehas given attention, for the past twenty years, to facts re-
lating to the budding, leafing, flowering, and defoliation of trees and plants, and to the migrations of birds, in connection with the periodical return of the seasons. The mate rial here brought together on this interesting subject has not yet been worked up so as to exhibit results; and before his is undertaken, it was decided to discuss the observations of Mr. McNab on the flowering of 32 spring plants in the open air in the Royal Botanical Garden of Edinburgh, durng the past twenty-six years. These observations have been published in the "Transactions of the Edinburgh Botanical Society."
Mr. McNab's observations resulted in finding that the average time of flowering of the 32 plants taken had, during the twenty-six years, ranged in different species from January 25 to April 1, and later. He finds that the spring of different years varies considerably in the time of opening, it being sometimes thirty days later than the average, and again twenty-three days earlier: thus making a difference of fifty-three days between the earliest and latest springs during the twenty-six years. This average is obtained
from observations on all the 32 plants; but when particular from observations on all the 32 plants; but when particular flowers are taken, the deviations from the mean are still greater. The greater deviations occur before the time of
the equinox, when the time of flowering is of ten from five to the equinox, when the time of flowering is often from five to
seven weeks earlier or later than the mean. Unusually seven weeks earier or later than the mean. Unusually would be expected, greatly disturbs the plant in its season of æstivation, yet it affects some plants more than others. For example, in 1864, when the preceding December was remarkably mild, and the following January and February colder than usual, one species of blue-eyed grass (sisyrinchium), whose mean time of flowering was eleven days earlier
than that of daphne, flowered eighty-six days before the lat-
ter. When such disturbancesoccur, of course no computed mean can be relied on, unless it be from data gain
servations recorded through a long series of years.
In Edinburgh, the mean temperature falls till January 11, nd then slowly rises. Before the end of February, nearly half the 32 plants have flowered; and the very gradual rise in temperature to that time "suggests that it is not so much preceding daily temperature, in the extent to which these rise above freezing."
If interest in this work can be sufficiently excited to prompt to the taking of observations similar to the above in other sections of the globe outside of Edinburgh and Scotand, we may expect results, in the science of meteorology which will be not only most interesting but most profitable We shall doubtless learn how closely the science of botany is elated to that of meteorology, and how much insight we may gain into the intricacies of temperature and climatic in fuences by knowing the mean time of the flowering of lants in widely separated localities.
Another interesting matter, closely connected with the bove, is the relation of color to the time of flowering of plants therwise similar. Of the 32 plants observed by Mr. McNab, hree were the blue, white, and red varieties of the species scilla bifolia. Of these, he found that the blue flowered first, and on the average ten days before the white, and the lat ter, four days before the red: making the difference of two weeks between the flowering time of two varieties of the same species, differing from each other only in color. The British wild flowers, to the number of 909 species, have been grouped according to their color and the month in which the flowers open. The results are very similar to those ob time of flowering is found to be, from earliest to latest, blue, white, purple, yellow, red, etc.
That the order of colors in
That the order of colorsin spring flowers is from the outer colors of the spectrum to the inner has been several times observed by parties independent of each other; but others in making like observations, have failed to see this order. Of course, to reach satisfactory. conclusions on this point, an xhaustive study must be made upon all the colors of all the flowers, and the general average taken. Such exhaus tive observations, continued from year to year for a long time, can hardly fail to result in very valuable knowledge as to the relative vitalizing power of the sun's rays in different seasons of the year. which will probably be available as well in the study of animal as of vegetable life. This also has a practical application in
It has been suggested frits.
It ha ing from the flower those colors of the sun's rays which the flower itself presents, in order to see what effect it would
have upon the color and locality of the flower. In reply, it has been suggested that the reflected light would probably have less effect upon the plant than the absorbed light, and hence the object might possibly be best attained by exclud ing the colors complementary to those reflected.
Askenasy and others have experimented with flower provided with sufficient food, but excluded entirely from light, and found that some changed their color and other become almost constant by continued inheritance during a long lapse of time, and, consequently, be unaffected by the change of a few weeks or months. H. C. Sorby obtained results similar to Askenasy's, and concluded that " growing flowers in the dark seems to stop the normal development, to a greater or less extent, according to the nature of the col oring matters, the effect being greatest in the case
substances which are the most easily decomposed."
An intimate connection has been observed between the seasonal order of color in flowers and the seeming "erratic behavior of certain radiometers." These eccentricities, observed in things so dissimilar as the color of flowers and the movements of radiometers, both affected by light, may lead us still further onward toward the eventual discovery of orce existing in light.
S. H. T.

THE BLESSINGS OF GUNPOWDER.

All inventions, of whatever kind, belonging to any period f man's existence on the earth, have proceeded from his wants; or as it is stated in the characteristic proverb Necessity is the mother of invention." It is indeed a fact that history, ancient as well as modern, proves the truth,
first forcibly brought out by Darwin, that the mightiest cause of progress has always been, with man as well as with the whole vegetable and animal kingdom, the struggle for existence and the survival of the fittest. This struggle has not only improved individualman from his originally savage
condition to that of civilization and finally to enlighten ment, but, on a larger scale, has also served to promote the progress of nationalities, which has extinguished the weaks er and less intellectual races of mankind, and exalted the stronger and more intellectual. This struggle for national superiority, which in its flnal result proves which are the really superior races, institutes, in its widest sense, war. In ancient barbarous and semi-barbarous times, bodily frength was the only superiority recognized, because it conferred on the possessor the means of compelling from
others recognition and obedience; and hence in olden timethe foremost leaders were always men of powerful frames, who could enforce obedience. This state of things lasted until the world was blessed with the invention of gunpow-
der, which equalized the power of individual men, as the bullet fired by a small man is as mortal as the bullet fired
by a giant. It made an end to oppression of the weak by the strong, and even gave the weak and small some advanvantage, as the chance of being hit by a ball is larger in proportion to the size of the individual, and vice versa \hat{a}.
The general introduction of gunpowder for purposes of defence was the most powerful cause of the downfall of feudalism, that curse of the middle ages, when the weak
and poor had not only to work for the strong and rich, but to submit to the most glaring injustice. It was gunpowder which changed all that, because physical strength no longer gave entire superiority to its possessor, and the powerful soon found that he had to practise justice, even to the lowest and feeblest of his neighbors and dependants. Gunpowder, then, has wrought the great social change which resulted in the lawful protection of the weak; and as necessity is the mother of invention, it is no wonder that this valuable invention was due to that state of society in which the most urgent wants are created, namely, a general war or struggle for superiority. This is a grand subject of contemplation for thedeepest philosophical minds.
The saying that "gunpowder is the greatest civilizer" is herefore a profound truth. It is certain that that wonderful ancient nation, the Chinese, who knew it many centures before the European peoples, had some degree of civil ization at a period when Europe was still plunged into bar barism. At that time the Chinese had a perfect right to consider other nations as outside barbarians; and these na tions made no considerable progress until gunpowder came into extensive use in warfare. Gunpowder at once put an end to the barbarous and demoralizing hand-to-hand fights, and has thus made wars less ferocious and less destructive as it decides battles with far less destruction of life than was formerly the case. Even the improved appliances of the present day, the cannon of enormous size, the mitrail leuses, Gatling guns, needle guns, breech-loading rifles, etc. murderous as they look, and able to kill many men in a horter time before, have, strange to say, an effect con trary to the theory, by which they would naturally be sup posed to have the result of augmenting the list of victim in battles. Statistics of all the recent battles in which these appliances were used have indeed shown a much re duced slaughter of human beings, in proportion to the num ber engaged, than was the case in battles fought before these apparently very destructive and murderous inventions were adopted.
The greatest enemy in war is, at the present day, sick ness, as was shown in the Crimean war, our Southern war, etc. Disease, indeed, has carried off or disabled more men than lead. But since chemical and mechanical ingenuity has conferred the blessings of gunpowder and improved fire arms upon the world, it is now the business of physiologica and medical science to apply knowledge and skill, and devise means of introducing same the health of the soldier, and to reform the treatment of the sick so as to reduce mortality in the hospitals to a minimum: for as we have stated, the mortality by battles is, on an average notwithstanding that appearances point the other way, less than that by disease in the hospitals.
It is a subject of just national pride that many of the measures taken by the staff of our military health officers has been so proper and effective that they have excited the ad miration of all the world, and been imitated and introduced by several European nations. The principal cause of this, we should state, is that, according to the acknowledgment of the heads of this department, their plans were not thwar ted by interference by non-medical superiors, as is the case in European armies. Our medical staff has an independent existence, enjoying the direct support of the United States government, which gives it carte blanche to carry out its own views on the important functions it is called upon to per form. How effectively and honestly thishas been done, and the confidence placed in the medical officers been justified, the history of our war fully and conclusively proves. *

A New Dye Stuff.

Ch. Lauth has succeeded in producing another new class of dyes by the introduction of sulphur into aromatic dia mines, and then oxidizing the new sulphur compound. On heating phenylen-diamine (made from nitro-acetic anilide with sulphur, to 150° or $180^{\circ} \mathrm{C}$. (300° or $356^{\circ} \mathrm{Fah}$.), sul phuretted hydrogen gas is evolved, and a new base contain ing sulphur is formed. This base is converted by oxidizing agents into a beautiful violet dye.
The same substance can be obtained in a more simple man ner by dissolving the muriate of phenyl-diamine in a large quantity of sulphuretted hydrogen water, and slowly adding sesquichloride of iron. The precipitate formed is washed with a weak salt solution and recrystallized from hot water. In the dry state this dye consists of very fine curved and in tricate needles of dark green luster. It is soluble in pure water, but foreign substances change its solubility; with caustic soda it yields a brown precipitate, probably the free base. Reducing agents destroy the color of the violet substance; oxidizing agents destroy it quite quickly. Like the ordinary aniline dyes, it may be modified by substitution; with aniline it produces a blue dye insoluble in water; with alde hyde or iodide of methyl it gives a green, which attaches it hyde or iodide of methyl it gives a green, which attaches it-
self directly to the fibers. Cresylen-diamide from nitrated self directly to the fibers. Cresylen-diamide from nitrated
ortho-acetoluidin gives, under similar conditions, more of a ortho-acetoluidin gives, under similar conditions, more of a
reddish violet; cresylen-diamine, corresponding to paratoluidin, gives a violet red. These new dyes contain sulphur.
Cement for wood vessels required to be water tight.-A mixture of lime clay and oxide of iron separate y calcined and reduced to powder, intimately mixed, keptin a close vessel, and mixed with water when used.
the processes of steel manufacture.
The manufacture of steel by a process as simple as possible, at the lowest cost and of the best quality, has called forth, especially of late years, the exercise of much invent-
ive ability on the part of both chemists and engineers, both at home and abroad. There has resulted such a variety of at home and abroad. There has resulted such a variety of
differing methods that some systematic classification of the differing methods that some systematic classification of the
processes has become very necessary. In the Mittheilungen processes has become very necessary. In the Mittheilungen
dis Hannoverischen Gewerbe-Vereines, Professor Heeren publishes the complete classification, a translation of which is given below, and which will be found both instructive and of value for purposes of reference. As steel occupies nearly the middle place between cast and wrough iron in its proportion of carbon, it may be prepared either by decarburizing pig iron, or, on the contrary, by causing wrought iron oabsorb carbon. The processes to accomplish these ends may be arranged under five principal heads: A, Fabrication of steel by decarburization of crude or pig iron; B, by carof steel by decarburization of crude or pig iron; B , by car-
burization of wrought iron; C , by mixing a wrought iron burization of wrought iron; C, by mixing a wrought iron
poor in carbon with a pig iron rich in same ; D, by mixing poor in carbon with a pig iron rich in same; D, by mixing
pig iron with ore (the pig yields carbon which reduces pig iron with ore (the pig yields carbon which reduces
the ore and transforms the reduced iron into steel); E , di the ore and transforms the reduced iron into steel); E, di
rectly by means of ore ; F, cast steel. Subdividing these rectly by means of ore ; F, cast steel. Subdividing these
systems, we have the following methods under each heading.

Steel obtained by a long heating of the cruden. 1. Steel obtained by a long heating of the crude iron in an oxidizing atmosphere, the metal not being brought to fusion. (a) Tunner's method in sand, where the deoxidation is produced by means of the oxygen in the air. (b) Jullien's method, in forge scales or spathic ore. This produces malleable iron. (c) Herzeeles' method in steam; (d) Thomas' method in carbonic acid. The last two processes have not meen employed to any great extent.
2. Natural steel : In chis method, employed since the earliest times, the crude iron is melted in a refining furnace with wood charcoal, and decarburized by the ferrous oxide of the scoria. The product is purified by a repeated refin. ing. 3. Puddling : This process is the same as the preceding, from a chemical point of view, but is practised in a reverberatory furnace heated with coal. It is necessary to purify the product by repeated refining or by transforming 'it into cast steel.
The construction of puddling furnaces has undergone The construction of pudding furnaces has undergone
many changes. We may distinguish (a) the ordinary puddling furnace with fixed hearth and heated by coal, (b) the dling furnace with fixed hearth and heated by coal, (b) the
same heated by lignite or peat, ($c)$ the puddling furnaces of same heated by lignite or peat, (c) the puddling furnaces of
Schafhauutl and others, with mechanical rabbles designed to Schafhäutl and others, with mechanical rabbles designed to
diminish the labor so fatiguing to the workman. These, however, have been entirely superseded by new systems. (d) The Danks furnace, the hearth of which is formed of a hol low cylinder placed horizontally, and turning aboutits axis. It gives a product of excellent quality, and is economical. The interior lining, however, is difficult to maintain. (e) The Ehrenwerth furnace has a horizontal circular hearth turning about a vertical axis. (f) The Pernot furnace also has a circular sole, which, however, is not horizontal, but slightly inclined, so that during its rotation the iron and scoria run to the lowest point and are thus in a state of con-
tinual motion; while the elevated parts of the hearth, totinual motion; while the elevated parts of the hearth, to-
gether with the iron and scorix thereto adherent, are subgether with the iron and scorix thereto adherent, are sur
mitted to the oxidizing action of the air. Professor Heeren mitted to the oxidizing action of the air. Professor Heeren
thinks this furnace to be the best,because it realizes the adthinks this furnace to be the best, because it realizes the ad-
vantages of mechanical puddling without needing any special lining.
4. The Bessemer process : A current of air, finely divided, is passed through the liquid crude iron. The carbon, sili con, and a part of the iron burn, and the temperature is so highly elevated that the iron, decarburized in part or trans
formed into steel, remains molten. It is then run into formed into steel, remains molten. It is then run into molds.
5. Bérard's modification of the above: Air and gases are alternately introduced into the retort with different advan tages.
6. Peters' process: The liquefied crude iron in a reverber atory furnace falls in the form of rain in a vertical chamber in which the furnace gases also pass, and in which air is blown so as to decarburize the metal to the desired degree.
b.-methods by carburization of wrought iron.

1. Indian or Wootz steel: Wrought iron of extraordinary purity, obtained by treating a very pure ore in small cham-
ber furnaces by the direct method, is hammered, made into bars, cut into short pieces, and placed in small crucibles with a few green leaves. The crucibles are hermetically sealed and heated for a long time at a high temperature. The ron is transformed into steel by uniting with it this
carbon contained in the leaves, and the steel even partially melts. These half melted masses furnish the famous sword blades and plates of Persia and Damascus.
2. There are several other processes resembling the Indian which, however, arenot carried on on a large scale. There are (a) the Mushet process, in which wrought iron obtained by the ordinary refining method is melted with powdered
wood charcoal. (b) The Vickers' process, analogous to the wood charcoal. (b) The Vickers' process, analogous to the The Stourbridge, Brooman, Thomas, and Binks processes The Stourbridge, Brooman,
3. English cemented steel: Wrought iron of the best possiblequality is, in the shape of bars, packed in clay boxes, together with wood charcoal coarsely pulverized. The heating continues for two or three weeks. Without melting, the iron is changed into steel, which by remelting i transformed into cast steel.
4. Parry's cupola steel : Fragments of wrought iron, melt
ed in the cupola with a large consumption of coke or wood charcoal, may be transformed into steel or even into cast iron according to the length of the operation. . This system offers an advantageous met
5. Chenot's process: Ins.
6. Chenot's process: In this the ore is reduced by heating it progressively with coal. A non-melted iron sponge is obained, which is ground and separated as well as possible from the gangues by the aid of a magnet. Lastly, it is
mixed with carboniferous mixed with carboniferous substances, and melted under pressure. The principal disadvantage of this process is the difficulty of separating the gangues without losing the steel.
7. Casehardening has for its object the transformation of the surfaces of wrought iron objects into steel. It is done in two ways. (a) The pieces are placed in small sheet iron boxes and surrounded with chips of wood. The boxes ar minutes, to an intense red heat. They are then removed quickly, opened, and their contents thrown into cold water, whereby the exterior steel shell is rendered as hard as glass. (b) The pieces are heated to a whitish red and moistened with ferrocyanide of potassium, which acts, by its cyanogen, on the iron, and transforms the surface into steel.
c.-methods by fusion of a mixture of cast and wrought iron.
The two materials may be, both or only one of them, used in a melted state.
8. Bessemer steel, prepared by the ordinary method. Th crude and wrought iron here are both liquid, while, as we have previously said, cast iron may be directly transformed into steel. The method most followed, and which leads most surely to the end in view, consists in completely de carburizing the crude iron in the converter, and in adding to the melted metallic iron a rigorously determined quantity of liquid crude iron. The carbon of the latter affects the previously decarburized iron, and makes a steel containing a given proportion of carbon.
9. Crucible steel is obtained by melting in crucibles a mix ture of crude and wrought iron. The former liquefies first and slowly melts the iatter.
10. Martin's steel is similarly made, by replacing the cru cible with a reverberatory furnace. The crude iron is lique fied under a thin layer of scoria on the concave hearth of a reverberatory furnace, heated to an intense red-white heat by Siemens regenerator. Scraps of steel and wrought iro of all kinds in desired quantity are added, and the steel is run into molds of cast iron.
d. -methods by a mixture of cast iron and ore.

Uchatius steel: The cast iron is granulated by running it into water while molten, and the grains are melted with spathic ore, peroxide of manganese, and wrought iron in by thes. The ferrous oxide of the spathic ore is reduce by the carbon of the cast iron, and the surplus of carbon
unites with the wrought iron to make steel.
e.-methods by preparation direct from the ore.

The Siemens direct process: The ore is melted alone, with out addition of reducing material, at a very elevated temper ature; then the iron is reduced and transformed into wrough iron or into steel by adding coal.
F.-CAST STEEL.

For the purification of steel by fusion, cemented, forged, and puddled steel are employed. To improve the qualities of the steel, and notably to augment its hardness, diverse substances are addcd. Thus we have: 1, silve steel, 2, nickel steel, and 3, wolfram or Mushet specia

the russian system of trade education.

 Our correspondents at the Centennial Exposition have a ready briefly described the courses of study in many of the institutions of learning there represented. There is onegreat school, however, which is worthy of something more great school, however, which is worthy of something more
than passing notice; and for many reasons its exhibit may be profitably studied by all interested in the importan question of how best to impart practically valuable techni cal education. While, with all mechanical schools, the cardinal object of the Imperial Technical School of Moscow, Russia, is to eliminate all useless or routine labor in the acquisition of a trade, and to require the student to perform only such as is best adapted, in connection with proper dvice, to give the necessary knowledge, it adopts to this nd a different method from any hitherto practised; and for the first time it has successfully proved the value of abso-
lutely systematic instruction applied to the acquirement of industrial skill. The method of teaching the mechanica arts here initiated has gradually spread itself into all the Russian technical schools; and it is not unsafe to believe
hat, judging from the reported results, the same mus ventually supersede other modes of instruction elsewhere It is our purpose in the following to exhibit briefly the practical way in whtch the system is carried on.
The auxiliaries of education appointed for the teaching of any mechanical work whatever-for example, fitting-are divided into three categories. Taking fitter's work as an example, under the first division belong collections of tools sed in the various operations, with which the beginne nust make himself perfectly familiar before entering upon practical labor. Some of these collections are exhibited at
the Centennial. There are collections of instruments for the Centennial. There are collections of instruments for
measuring, for drilling, and for finishing, models of files increased to 24 times ordinary size for the purpose of ex hibiting the shape of teeth, etc., models of taps and dies hignithe 6 times for the study of the direction of the
angles of incision, and models of drills similarly magnified for the practical study of cutting angles; and there is also a collection of instruments and apparatus for teaching the tracing of yet unworked metal articles. Similarly in turning both in metal and wood,and in joinery, there are like collections, in which every tool is represented either in actual or in largely magnified form, so that the most accurate knowledge is thus imparted relative to every characteristic of the edge is hus
implements.
Having learned what he is to work with, the student is next taught practical manipulations. These are included in the second category, and it is worth while to review them In wood turning, the pupil begins by following exercise models of various channelings, then he learns to turn a cyl inder, a cone, a bullet, and so on, through thirteen articles, up to a vase and cover. In model and pattern making, the first lesson is to saw straight and along fiber, then to saw in a curved line, then to plane wood of different sections, to make joints, and the last of 25 operations is cross scarring by a skew abutting. At the forge, the student begins by forging square out of round iron, then round out of square Nuts are next made, then screw heads of all shapes, then bolts of various kinds, then welding and steeling; and the last operation is to make welded ears to square bar iron. Metal turning starts with a simple cylinder and ends with right and left worms of a screw. Fitting begins with cleaning castings, which is followed by chiseling of various sur-
faces. There are 29 filing operations, beginning with the faces. There are 29 filing operations, beginning with the filing of thin edges according to marked lines, and ending
with the filing of cast conical apertures. Then come with the filing of cast conical apertures. Then co
punching and boring, drilling, and finally screw cutting. These are merely general operations. Models are followed and the work is accurately graded, so that the beginner overcomes by degrees the difficulties presented. The teach er sees that each number of the programme is satisfactorily executed, and keeps the learner on that particular piece of work until it is mastered. Then the next operation in the series is undertaken. the instructor giving all the requisite explanations. Hence it is impossible for a student to be come a good chiseler and a poor filer at once, or skillful at
the drill and bungling with saw and plane. In every course the drill and bungling with saw and plane. In every course
the order is inflexibly followed, aud the acquirement of each integral advance is the only road to progress.
Lastly comes the third category, or the practical applica tion of all that has been learned. And here another series of lists meets us. But instead of the objects being, as it were, merely abstract, they are parts of machines, etc., selected so that in their execution all the practical resources of the art which the pupil has been studying are brough into play. The wood turner begins by producing a stuffing ox cover. Then follows the shell for a step, a valve with a bullet seat, oil cups, rollers, star and bevel wheels, cylin er cover, same with stuffing box, pulley, and so on through list of 43 pieces, ending with the chamber of a bullet valve. The model maker following models of wood
joinings starts with a tongue joint, and, after producing 25 rinds of joints,scarrings,etc., begins on patterns. The list in cludes a grate bar, crank,puppet, wall box,sheave drum, and eccentric bevel wheels; and the eighteenth and last require ment is a set of patterns for a horizontal feed pump. The metal turner makes a steam cylinder, piston, cylinder cover, and lastly a crank shaft. The last five operations required of the fitter are the fitting of a toothed coupling, of a clutch coupling, of brasses to a plummer block by five planes, of a parallelopiped to an aperture, and the fitting of sliding plates. That the pupil who has gone through this course becomes a skilled workman, it is hardly necessary to point out. He must be so if he succeeds in graduating at all. But all this is merely preliminary. The student has yet to learn to be an engineer, and to this end he has been taught theory for a portion of his time. He now advances to a new school of practice, namely, the mechanical works. There, while he
may not labor at the bench himself, he sees others doit, and may not labor at the bench himself, he sees others doit, and
he is taught construction. There is a large force of hired he is taught construction. There is a large force of hired workmen carrying out orders on a commercial footing, for
engines and machines of all kinds. There are iron and brass founderies, engineers' shops, builders' shop, forge, joiners' and painters' shops, drawing office, and counting room. The student is obliged to study everything, from iron smelting to book keeping, and thus his course is completed.
It is the fortune of a large number of graduates of the scientific courses of our colleges, when thrown for the first ime upon their own resources, to take positions as draftsmen; some few enter works to learn the practical part of a trade. The latter are neither apprentices nor skilled hands. Those who become draftsmen, not possessing as a rule the practical ground work for an industrial career, nor from their
position having opportunities for acquiring the same, too position having opportunities for acquiring the same, too often remain draftsmen for their best years, if not for all their lives. The trade learners, meaning some day to follow their profession, perhaps learn the truth that, while the profesand, concluding to adhere to the trade, become educated to a certain branch, and, under the principle of the division of labor (in these times constantly expanding), find in the end that their knowledge is confined within the limits of a nar ow specialization.
With such an education as we have outlined, it is difficult to imagine either of the above results; for even should professional opportunities fail, the shop is ever open to a workman whose skill is as broad as a trade itself and not confined to any one branch thereof. Such acquirements, moreover,
could not be of the greatest value to any person in any walk could not be of the greatest value to any person in any walk of life. The Emperor of (iermany,should he lose his crown, lent practical compositor and printer. The Queen of Eng-
land is a skilled seamstress, a successful authoress, an artist of ability, and a mistress of the spinning wheel and loom. These are but well known instances, out of the scores of examples, of the highest of dignitaries protecting themselves against reverses of fortune by acquiring trades.

THE PROFITABLENESS OF IRRIGATION.

During recent years the British Government has invested something like seventy millions of dollars in irrigation works in India, and it is proposed to spend thirty millions more for such purposes during the next five years. In almost every instance, the works have proved immediately re munerative, while in some cases the profit has been enormous.
On a few of the larger complete works, the expenditure has been as follows:

Ganges Cana	\$13,223,2
Eastern Jumna Canal.	1,038,615
Western Jumna Canal	1,671,085
Godavery Delta Works	3,221,405
Kistnah Delta Works.	2,164,470
Cauvery Delta Works.	211,020
Sind Inundation Canals	2,980,0

For all India the net annual revenue fromirrigation works now amounts to upwards of five million dollars, or $7 \cdot 7$ per cent of the capital invested. From Oude and the Central Provinces, the returns have been nil. In Rajapootana there has been an annual loss of 19 per cent of the capital. Elsewhere the profits were very encouraging. In the Northwestern Provinces, the revenue shows a profit on the outlay of 4.6 per cent, in the Punjaub 5.6 per cent; in Madras 27.6 , in Bombay, including Sind, $16 \cdot 9$, in British Burmah $3 \cdot 27$ per cent. The Ganges canal yields 4.88 per cent, the Eastern Jumna 252 , the Western Jumna 30, the Godavery delta works $42 \cdot 16$, the Kistnah works, $19 \cdot 73$, the Cauvery works $273 \cdot 31$, the Sind canals $33 \cdot 3$ per cent annually.
Charging against the capital outlay of these works the interest lost on the money invested before the works became productive, compensation paid to landowners, money spent on unfinished and impractical schemes, etc., in addition to the direct outlay, the revenue still shows a considerable balance of profit. The corrected capital, and the percentage of annual revenue thereon, appear in the following table:

	Capital invested.	Percentage of revenue on capital.
Northwestern Provinces.	\$17,827,225	$5 \cdot 2$
Punjaul	15,671,010	$4 \cdot 8$
Madras.	9,467,200	22.72
Bombay (with Sind).	11,113,940	11.9
Gauges Canal...	14,400,890	4.5
Eastern Jumna Canal	2,349,890	11.2
Western "	6,531,965	$7 \cdot 6$
Godavery Delta Works	3,418,525	$39 \cdot 7$
Kistnah	2,337,135	13.2
Cauvery	1,467,890	36.6
Sind Inundation Canal.	5,930,000	18.6

But the revenue returns from these great undertakings are not the only source of profit. In a country like India, where rains are irregular and transportation difficult-and often in the wet season impossible-a failure of seasonable rain is apt to be followed by loss of harvests and consequent famine, entailing great loss of life, loss of revenue to the government, and sometimes the abandonment of thousands of square miles of fertile soil to the jungle, for lack of cul. tivators. All this is prevented by irrigation.
In 1860, when a large part of the Northwest Provinces was baked as in an oven, the Ganges canal preserved grain crops enough to feed a million of people who must otherwise have perished unless kept alive at the cost of the Government. And again in 1874 a great multitude were saved from the And again in 1874 a great multitude were saved of starvation; and the enormous outlay consequent upon the famine in the low provinces was kept from being still more enormous by the Soave canal, which even in its unfinished condition enabled luxuriant harvests to come to maturity when otherwise every green thing would have been destroyed by the drouth. In other parts, the seats
of some of the worst famines of history have been thorof some of the worst famines of history have been thorters.

COMPARATIVE COST OF ILLUMINATION.

A number of experiments have been made lately in Lon don to test the comparative cost of illumination with the va rious materials used for that purpose. Below is the result, the first column containing a description of the materials
tested; the second, the price of the material in London, tested; the second, the price of the material in London,
reckoning twenty-four cents to the shilling; the third column shows the duration of the light furnished for one cent the light being reduced to equal one sperm candle. With tho exception of the last named material, common gas, the prices do not varysufficiently from those which prevail here to effect the value of the comparison. London gas is reputedly of inferior illuminating power, so that the economy of its use can scarcely be so much greater than ours as its cheapness would seem to indicate.
Standard sperm candles, per lb. Best wax candle per lb Belmont aperm candle, per gallon Stella, or Burmese wax, per Setroline candle, per lb
Composite candle, No. 1, per ib.
"
Common dip candles, per lb
Almond oil, in moderator, per gallon Colza, per gallon.
Paraffin oil, in lamp, pergallon
Common gas, per 1,000 feet.

The price of gas being about three times as great ${ }^{26}$
解
can accrue from its use on the score of cost. Still it mus rank among the most economical of artificial illuminations least three or four times as economical as common candles, for a given amount of light.

A British Steam Tramway

The Wantage line was only opened for public traffic in October last, and lies in a somewhat remote district. Per haps it may be well to state, for the information of those who are unacquainted with its formation, that it is about $2 \frac{1}{2}$ miles in length, laid down along the side of the turnpike road leading from the town to the station of the Grea Western Railway at Wantage Road. It consists of a single line of 4 feet $8 \frac{1}{2}$ inches gage, with four turnouts or passing places, with movable facing points at intermediate distances.
The rails are of the ordinary bridge section, 40 lbs . per The rails are of the ordinary bridge section, 40 lbs. per
yard, bolted to longitudinal timbers of the dimensions 10 inches by 6 inches, with transoms 5 inches by 4 inches, 10 feet apart. The line crosses the turnpike road once only in the distance, and passes over the Wilts and Berks canal by an iron bridge of 38 feet span; its sharpest curves are of 70 feet radius, and its steepest gradient is 1 in 47, the length of the longest being 330 yards. The machine in use on the line is Mr. Grantham's patent combined steam car. The car has from the commencement continued to run daily with satisfaction, and without in any way obstructing the traffic on the road; and from its freedom from noise, steam, and smoke-the two latter being scarcely observable-horses traveling on the road appear to take no more notice of it than of an ordinary horse car. It may be stated also that on the occasion of the Berks volunteer review, which was held on August 7 last, on ground adjoining the Great Western Railway station, when it was computed that not less than 5,000 persons traveled on the road in vehicles of all descriptions during the day, and the car was running backwards and forwards the whole time, no inconvenience or difficulty with the horses was experienced. The car, which is 27 feet 3 inches in length, 11 feet 1 inch high, and 6 feet 6 inches wide, is divided into first and second passenger compart ments, with the boiler and machinery fixed in the center, and runs on four wheels, one pair for driving, the other pair fixed to a radial axle for easing the curves; it is propelled backwards and forwards without turning at either end of the line, and only requires to be replenished with water after a double journey ; it is driven from either end by removable levers, the driver having complete control of the machine as regards turning on, shutting off, or reversing steam, as well as applying the brake power, which is so perfect that the car can be brought to an almost immediate standstill. It is constructed to carry, both inside and outside, 60 passengers, and the full complement has often been conveyed by it; it appears highly popular with the public, and the trav eling is much prefered to that of the horse cars; and judging from the silence with which it glides along on the rails, th absence of clatter and noise, as well as the ease with which the machine can be worked, it is considered, by those compe tent to form an opinion of its action, that the time is no far distant when the expensive system of working our stree raffic on tramways by means of horse power will be suc ceeded by the use of steam under proper restrictions, espe cially as it must be apparent to all acquainted with the sub ject that the cost of working must be greatly in favor of steam. For the information of those interested, the cost o working the Wantage line, per day of twelve hours, a early as can be ascertained, is submitted

distance traveled per day, 40 miles.

Weight of gas coke, 240 lbs

```
Fuel for lighting.
Oil and light for car
Driver'swages.
Conductor's wages.
Estimated wear and
Cost of working per mile, 11 cents for steam car. \(\$ 4.20\)
Cost of horse cars-Four horses, at 72 cent
```


Two drivers.

```
Conductor...
Estimated wear and tear
Rent of stables, etc
``` 8 cen

Cost of working per mile, 16.5 cents for horse car. \(\$ 6.60\)
It will be seen by the above table that the cost of working he Wantage line by horse power is greatly in excess of the cost of working it by steam power; but the time occupied owing to the restrictions laid down by the Board of Trade,
confining the speed to eight miles per hour, is the same.

\section*{The Lowe Gas Process.}

The long effort to obtain the gases of water upon a practical scale, that is, in unlimited quantity and at an economical cost, is too old and familiar a story to need repetition here It has covered so many unsuccessful attempts and so many misrepresentations that the very name has been a synonym for failure and fraud. Nevertheless it is to-day an accom plished fact, as real as the systems of steam power and tele graphy ; and it is peculiarly gratifying that, after sixty-five years of unsuccessful experiments, in which the most en lightened nations have participated, our Centennial year coundrymen, of a complete demonstatich on the industries of this industrious age, can hardly be es timated. This journal has heretofore directed attention to mated. This journal has heretofore directed attention
w accepted and accomplished a test upon so large a work ing scale as to entitle it to a marked recognition. It has re ently gone into operation at the Manayunk Station of the Philadelphia Gas Trust, with such excellent results as would seem to justify all that has been claimed for it.
Indeed, each successive trial appears to develop stronger points in the system. For example, in the able report of Professor Henry Wurtz upon its workings in Utica, where it distributed satisfactorily some \(24,000,000\) cubic feet, its acility was deemed remarkable at a yield of 3,000 cubic feet er single generator for a run of forty minutes. At Phila delphia, however, it has, in the first days of its operation produced as high as 10,000 feet for thirty minutes, and it is believed that increasing familiarity with the apparatus will show a gain even on this. This advance is, in part, attribut. able to the delivery of steam at a temperature never before ttained, and by a plan at once economical and efficient, the heat being derived from the products of combustion pre iously burned in a stack of refractory material, through which, when at a white heat, the steam is conducted. This ngenious method also avoids the oxidation so troublesome all other superheaters.
The high heats evolved by this simple apparatus are like y to reduce to a minimum the carbonic acid gas, already a a low proportion in this process. It would really seem that the question which has been so prominently before the public of late, as to the possibility of obtaining better and more economical methods of lighting, has been fully met and anwered by this system.
It certainly furnishes a very brilliant illuminant at what claimed to be an important reduction in cost, and it is to be hoped that those who control the gas-making interes will give prompt attention to the matter. Their busines has grown to be one of the great industries of the period nd it should be conducted upon progressive principles.
But valuable as this process may be for illuminating pur ooses, it must be manifest that a demonstrated success in his department carries with it some great possibilities in he direction of fuel. There is scarcely a question of great r practical interest than that relating to improved methods of heating, as it affects so wide a range of manufactures in metallurgy, mechanics, and chemistry, to say nothing of the till wider realm of domestic uses. Our present systems re still grossly defective and wasteful, utilizing not more than one eighth of the heating power of coal,without reckon gin the inconvenience and cost of handling so heavy a ma terial.
It is hardly unsafe to predict that the coming fuel, for the next stage of swiftly developing civilization, will be in gaseous form, the advantages of which are too apparen need enumeration.
When this time comes, and we hope to see it, it is our be ief that the gases employed will be the product of water b me such process as the one whereof we write. Air, whic is similarly decomposed into gas, is employed to some ex ent now, principally in the case of the Siemens furnace fo steel manufacture, but the excess of nitrogen and carbonic cid render it a very questionable economy. Certainly an element that would furnish hydrogen, in lieu of these two non-combustible gases, would possess great advantages.
The field of investigation presented by the Lowe process at Philadelphia is one of great interest, and should be improved. We shall watch its development and report upon from time to time

\section*{NEW BOOKS AND PUBLICATIONS.}

London, England: Rivingtons, Waterloo Place. For sale by J. B. Lippincott \& Co., Philadelphia, Pa.

This is a continuation of a very admirable text book prepared for the use of students in the Government Sclence and Art Schools, South Kensing. on, London, and espectally directed to the requirements of the examiners
of that celebrated institution. If the architects and builders of the coming generation are educated up to the standard contemplated in this work, and are imbued with the thoroughly practical spifit it inculcates, an important improvement in our homes and public bulldings, in regard to both the art and the sclence of architecture, may be looked for. Technical explanations are seldom given with such clearness as in this work; and itis a plty
that the author's name is not given, as he has written a standard manual of the very highest excellence. Part I. of the book was published some time sicce, and reviewed by us at the time. Part III. is now in the press.
The Elements of Graphical Statics. By Karl Von Ott, Pro-
Practical Science, etc. Translated by George Sydenham
Practical Science, etc. Translated by George Sydenham
Clarke, Lieutenant Royal Engineers, etc. Price \(\$ 2.00\). New York city: E. \& F. N. Spon, 446 Broome street.
The ilterature of the graphical method is rapidly extending, and its study
ow forms a large and important part of the education of properly trained now forms a large and important part of the education of properly trained
engineers; but although Professor Clerk-Maxwell, and more notably the eng1neers; but although Professor Clerk-Maxwell, and more notably the
late Professor Rankine, have used thts method in their many well known works, it has scarcely recelved the attention which it merits. Leutenant Clarke has faithfully performed the translator's task, and has added some valuable notes to Professor Ott's book, which is an excellent introductory reatise on the whole subject.
lgebra Self-Taught. By W. P. Higgs, M. A., etc., Author of "Scientific Notes for Unscientific People. Pric.
This is the book that we have been looking for for some time past, namely, a cle arand practical introduction to the sclence of algebra, writen in a way to interest the young and uneducated. The many correspondformulas", should read this little book carefully; and it will open before hem a large fild read this little book carefully; and it will open before mech anical arts.
lectro-Telegraphy. By Frederick S. Beechey, Telegraph Engineer. Price
A very readable little text book, containing much information.
ables for Systematic Qualitative Chemical Analysis. By John H. Snively, Ph.Dr., Professor of Analytical Chemistry in the Tennessee College of Pharmacy, etc. Price \(\$ 1.00\), post paid. Nashville, Tenn. : C. W. Smith, 158 Church street.
This handy volume cont alns practical directions for the analytical pro-
ranged in tabular form, and are well adapted for the use of students, as an
Introduction to the voluminous ilterature on the subject. Much of the matter ts new and original; and the author's explanatory notes give many detalls of manipulation, and point out the precautlons to be observed by he operator. The book bears promise of much utllity.
iver Complaint, Nervous Dyspepsia, and Headache : Their
Causes, Prevention, and Cure. By M. L. Holbrook, M.D., Editor of the "Herald of Health," etc. New York city : Wood and Holbrook, 13 and 15 Laight street.
The treatises on health and disease which have been published in great Who flock to the doctors in search of remedies for dyspepsta, liver com-
plaint, and other troubles, brought on, as Dr. Holbrook points out, mainly by gluttony, intemperance of all kinds, and laziness. This ittle book gives the only recommendation possible in such cases, namely, moderation in
food and drink, carein the chotce of food, exercise, and cleanliness. It is not much to the credtt of the invallds and hypoch
The Wool Carder's Vade Mecum, a Handbook of Woolen Industry. By W. C. Bramwell. Terre Haute, Ind.: Hebb and wigley.
ormulx for calculating speeds, etc., are espectally valuable
A Song of America, and Minor Lyrics. By V. Voldo. New
York city: Hanscom \& Co. \& Co
The "Song of Amertca" commences: "Waien Earth was but a fledg-
Ing, and her race first entertalned the eversasting space," etc. The Ing, and her race first entertained the evarsasting space,' etc. The
author does not explain where earth's race lived when earth's feathers be gan to grow, nor the nature of the entertalnment to which everiasting
gace was invited: but he puzzles his readers with a wilderness of riddles of space was invited: but he puzzles his readers with a wilderness of riddles of
the same kind, and astonishes them with seventy pages of matter that dethe same kind, and astonishes them with seventy pages of matter that de-
fies the interpreter, and laughs him to scorn. Every line in the book has fies the interpreter, and laughs him to scorn. Every line in the book has
a sphinx-like impenetrabllity about it that would be exasperating if it were a sphinx-like inpenetrablilty about it that would be exasperating if it were
not perfectly easy to place the volume in the basket thereunto appointed. Mr. F. Guicheteau has recently patented a newspaper fle of very conventent form. It consists of a paper box, made in the shape of a book and
appropriately lettered on the back. Inside the box, where the backs of the papers are, are cross wires for flling the papers on, and a steel spring fo
holding them tlghtly in place. The flles are made and sold by Mr. F holding them tightly in place. The fil
Clerget, 1,575 Broadway, Brooklyn, N.
W. E. MARSHALL, artist, has made some fine steel plate portratts of th

\section*{Zerent \({ }^{2}\) mericau and foreign zetatents.}

\section*{NEW AGRICULTURAL INVENTIONS.}
mproved hand cultivator
James S. Lucas, Bowling Green, Ky.-This consists of a hand
ultivator with V-shaped arms, having a suitable number of teeth ultivator with \(V\)-shaped arms, having a suitable number of teeth tween the rows of vegetables, and forms thus a convenient imple ment for field and garden use.
improved mowing machine.
Frank Pastorius, Quincy, Ill--This is an improved device for
giving motion to the sickle bar of reapers and mowers. To the giving motion to the sickle bar of reapers and mowers. To the
journals of the gear wheels, which engage with the drive wheels, journals of the gear wheels, which engage with the drive wheels,
are rigidly attached two cams, set in opposite directions, so as to alternately push against the opposite sides of, and thus oscillate, lever, which is connected with the sickle ba

IMPROVED FEEDER FOR THRASHING MACHINES. John Potterton Fison, Teversham, England.-This invention re lates to a combined drum guard and feeder for thrashing ma
chines. It is designed to prevent accidents by making it impossichines. for any person to fall upon or be drawn into the drum, and to ble for any person to fall upon or be drawn into the drum, and to
act, also, as a feed regulator. Should any unusual weight come act, also, as a feed regulator. Should any unusual weight come
upon either the cylinder or the upper part of the feed board, the cylinder instantly descends upon the feed board, and the lower at the same time rises to meet the cylinder. The cylinder and feed
board being thus brought together, the feed opening of the maboard being thus brough
chine is entirely closed.

IMPROVED Harrow.
James M. Flower, Traverse City, Mich.-The harrow frame is formed of four sections, each section consisting of three bars, ar ranged in the form of the letter \(\mathbf{N}\), connected at one end by
cross bar, and hinged together in pairs.

IMPROVED STRAW CUTTER.
Hugh G. Fladger, Lilesville, N. C.-The balance driving whee has an eccentric groove in one side, in which a roller works \(t\) operate the cutter lever, the rolle
the free end of the lever on a pin.

\section*{NEW MECHANICAL AND ENGINEERING INVENTIONS.} IMPROVED CAR COUPLING
John Slade, Bay City, Mich.-This invention relates particularly o the form of the shank of the hooks, and to the provision of bev eled blocks, attached to the side of the hooks, whereby the latte improved coal chute.
Edmund R. Bulkley, Perth Amboy, N. J.-This consists in the combination, with an adjustable discharging chute section an the feeding bin of an adjustable and intermediate section having bin, and for preventing a too violent fall of the coal into the hold of the vessel.
improved hay and cotton press.
Isaac N.Ward, Henryville, Tenn., and Hugh R.White, Lawrenceorg, Tenn.-This invention is an improvement in cotton presses for fllling, and the follower is worked from beneath. The head and sides of the press box are made removable, and the ends travel
with the follower, which is operated by pivoted levers. The said with the follower, which is operated by pivoted levers. The said
levers are connected by movable clamps or dogs, with vertical rods which are pivoted to the ends of the follower, and attached, box ; so that as the levers are vibrated, the clamps or dogs bite on said rods, thereby raising the follower and the ends of the press box and the rods simultaneously. The said ends are made in sections to facilitate the removal of the bale.
mproved car coupling.
Alvin K. Mott, Atlantic, Iowa.-This consists of a drawhead, piece that slides in side grooves and top perforations of the drawhead, and couples the arrow-shaped head of the link. The forked forward motitn of the spring block and the seating of the lock prece on the forward projecting top flange of the same.

IMPROVED MANDREL OR CORE FOR CASTING. James M. Rohrer, Shamokin, Pa., assignor to himself and Wilof the mandrel together are bored out tapering to fit the tapering ends of the sheH, so as to be easily removed. The shell is cut lon-
gitudinally to receive a beveled key, which is cut beveling, so that
it will give toward the center, as the shell contracts when the cener plug is given from the shell to relieve the pressure caused b the shrinkage of the casting in cooling. This sectional mandrel is used in casting cylinders of any kind that require hard and smooth inner surfaces.
NEW WOODWORKING AND HOUSE AND CARRIAGE BUILDING INVENTIONS.

IMPROVED WHIFFLETREE COUPLING.
Asa T. Martin, Jr., Waverly, Iowa.-This is an improved coupling for connecting whiffletrees with the double tree, and the double tree with the tongue, so constructed as to prevent them from
tipping or turning over. It also causes the end that moves fortipping or turning over. It also causes the end that moves for-
ward to rise, so that it will return to its place. The coupling bolt, ward to rise, so that it will return to its place. The coupling bort,
which is rigidly attached to a washer, is bent at an angle at its which is rigidly attached to a washer, is bent at an angle is made
point of intersection with said washer. The washer thicker upon one side than at the other, to counter gle of the bolt and give the whiffletree a firm seat.
improved sawmill dog
Alfred Mepham, Fayette, Ohio.-This invention consists of a dog, mounted on a block, which slides up and down on the stand-
ard, with a crank pinion and toothed bar for working it, and ratchet lever for applying great force to press the dog into the log. There is also a secondary plank dog detachably connected to
the block carrying the principal log dog, and contrived with the block carrying the principal log dog, and contrived with a cranked screw nut for drawing the plank up to the standard, in
addition to the contrivance for pressing the dogs down into the timber.
improved sash balance
W. Woodward, Nashville, Tenn.-The object of this invention is provide a simple and efficient sash balance, in which the cord yet arranged so as to permit the raising or lowering of each sash to its entire length. To this end the invention consists in grooving the sash upon its edges and attaching the cord to the same at the bottom, then passing it between two pulleys, arranged about the middle of the nindow frame, and thence around a third pulley, 1 ated
IMPROVED COMPOSITION PAINT FOR COATING ROOFS. Thomas Dana and Zechariah B. Stuart, Manchester, N. H.-Thi compound may be used as a waterproof coating for any purpose
It is not affected by heat or cold, and is light and durable. It is composed of gutta percha, isinglass, chloroform - and rosin, japan \(^{\text {a }}\) and asphalt varnish

IMPROVED LOCOMOTIVE WHEEL. Wilson Weathersbee, Spring Garden, Ill.-This is a new method
of gearing one or both of the driving wheels of a locomotive, so that they can turn independently of each other in going around curves, and thus prevent sliding, as when both wheels are keye ast to the axle.

IMPROVED PUMP.
David N. Green, Rockbridge, Ohio.-The novel feature consist detachable plugs held over lateral apertures in the pump stock by sliding key
improved horseshoe blank.
James N. Whitman, Pembroke, Me.-This consists of a rolled ba of iron or steel, having formed on one side thereof, in process of olling, calks for the heel and toe and a nick at the end of eac blank. Upon the reverse side is a clip
responding to those on the calk side.
mproved signal attachment for elevators
Charles Hoffman, New York city.-This consists of an elevator or dumb waiter, arranged with a number of separate pulls and catch for each story, that come in contact with a signaling or alar
improved saw swage.
Asher Willey, Rochester, Mo.-This consists of a recessed stock provided with shaping dies of different curvatures, that are se The the recesses of the stock, and locked by an inclosing sleeve same, so that a cutting edge corresponding to the curvature of the shaping die is formed, and thereby a tooth of greater or less cut ting power obtained.
mproved sugar mill
James Mallon, Baton Rouge, La.-This invention consists of ugar mill, arranged with a perforated steam pipe in front of the receiving rollers, and one or more perforated steam pipes in the cane knife for forcing small jets of steam up through the cane as t passes over the knife or turn plate

IMPROVED CAR REPLACER
Homer G. Brooks, Greenville, S. C. - This consists of a casting that rises gradually on an inclined plane from the broader lower part to the narrower higher end, at a level with the rail, being fit ed thereto by bottom recesses and rail head binding wings. Guide rooves an the wheel to the rail.
mproved cotton press.
William H. Horn, San Augustine, Tex.-This relates to the press on which a patent was granted May 5, 1875, to William B. Hollo-
well; and it consists of a duplicate master wheel on the drum for working the follower : also an improved contrivance for connecting the pitman to the lever and to its pivot, whereby the machine is rendered more efficient, and may be made lighter for a given strength.

\section*{NEW HOUSEHOLD INVENTIONS}
improved apple corer.
Isaac Rogers, Sheridan, Oregon.-This invention consists in comop with a fork, coring tube, and cutter, a cross piece having top pins, whereby the pared and sliced apple is automatically
removed. The forward stroke of tube and blade cores and cuts the fruit, while the return stroke carries the core back and drops the divided fruit.

IMPROVED CARPET SWEEPER. Samuel F. Leach, Chelsea, Mass.-This invention consists in car-
pet sweeper gear wheels made of leather, treated with a hardening and waterproofing substance or substances. Leather is better than wood or metal because it is entirely noiseless and will not tear the will always preserve its round or true shape which is not the as it with rubber wheels.
improved suspension bed spring
James W. Wright, Washington, D. C.-This invention relates to in detachable wire springs bent so as to form seats in which the ends of the slatsare suspended, the said pieces of wire having their
middle parts bent into coils, through which passes a rod, and their ends extended upwardly in the form of arms terminating in which. The seats for the slats project laterally from the said rod, same, while the upwardly extending hooks are detachably fas tened to the e
ded position.
improved automatic fan.
Morris Ruben and Herman K. Bradshaw, Alexandria, Va.-The object of this invention is to provide a cheap and available motiv power for driving fans, with a force sufficient to produce a cur-
rent of air over a dining room table, bed, or sick couch, thereby ccomplishing the double result of supplying a cool current of air, and driving away flies, mosquitos, and other troublesome insect To this end the invention consists in an overshot wheel, arrange be operated by a stream of falling sand or water, and combine with peculiar medianism for operating the fan.

MPROVED FRUIT JAR RACK.
Stokley D. Dilts, Lawrenceville, Ill.-This rack consists of bars and frames, the latter being provided with opening to allow th p to be secured at a greater or less eleva suit jars of differenthights.

IMPROVED FURNITURE_CASTER.
Benjamin E. Flanders, Brooklyn, N. Y.-This consists of a caster the socket of which is provided with an interior concavo-conve lass shell, which extends from the upper point of greatest pres tallic casing. The friction between shell and ball being reduce to a minimum, the wear is decreased.

IMPROVED CARPET FASTENER
John H. Campbell, New York city.-This consists in a carpe o be placed over and slid under the heads of rivets. Whe he fastening nails are placed in position, and the carpet cut, sewn, nd stretcied, the edge of the same is carried by the flat knife un er the clamping top part, and the knife then withdrawn. The oothed part of the fastener takes firmly hold of the edge of th arpet, and prevents its escape, whatever be the
IMPROVED REFRIGERATOR.
Mahlon Moon, Morrisville, Pa.-Between a preserving chamber and the ice chamber, a fibrous or absorbent material is placed to ollect and carry off the moisture condensed from the air. This
urnishes a simple device for preventing injury to fruit, etc., by

\section*{NEW MISCELLANEOUS INVENTIONS.}
improved fountain penholder.
Almerrin P. Allen, Denmark, Iowa.-This is an improved founpen during writing, while holding at the same time the main the of ink in check, and conveying it in regular and even manner to
the point of the pen. The novel features are a cap extension and the point of the pen. The novel features are a cap extension and beveled point, connected by narrow side strips, that fit the shape of the pen.

IMPROVED FUNNEL.
John O. Barton, Chicago, Ill.-This is a convenient device for grocers and others dealing in sirups. The invention consists of a funnel, with an interior plug, to close the discharge spout, and ross wires to indicate the quantity to be measured. The funnel which the pipe, connecting with a force pump applied to the barrel, is attached, so as to force the sirup quickly into the jug.
improved combined electric fire signal apparatus and fire extinguisher.
Thomas F. Nevins and John W. Smith, Brooklyn, N. Y.-With the pipe through which the water is brought into the building and in the upper part of the room is connected a perforated pipe through which the water is discharged into the room, and in
which, near the pipe, is placed a stopcock. To the handle of the stopcocs is attached a weight. The stem. of the weight is made with an eye to receive a pin, that is held back by a spring and is held forward by a cord which is led to different parts of the room, cause the weightre occur, the flame may burn off the cord and charge of water into the room. In the the cock and causel a atswneel, which, when the cock is thus opened, rotates thereby, sounding an alarm.

IMPROVED TOY CAMERA.
August Herzog, New York city.-This is a photographic apparatus, of simple construction, consisting of an upright frame, to which a camera, with sliding lens tube, is applied. Supports are also provided for
improved electrical apparatus,
Jerome Kidder, New York city.-This apparatus is designed for medical use, and includes several novel devices. A portion of a series of battery elements, arranged for transmitting a circuit through the body, are adapted to operate an induction coil. A has become spent in power, in the elements. There are new supports for the induction coil, and some novel arrangements for modifying the force of the induced currents.
improved process for the manufacture of rawhide. William Coupe, South Attleborough, Mass.-This improved process consists in submitting the hides or skins from which the hair of lime removed to a succession of baths composed of a solution of tallow, beeswax, and paraffin, and then submitting them to the action of a revolving drum or other suitable softening apparatus. improved toy pistol.
Otto C. Butterweck, St. Louis, Mo.-This invention consists of a pistol in which any projectile is impelled from the barrel by a conThe piston rod is drawn back by means of a button or loop on its rear end, and is retained in position by a projection, on a spring trigger, which catches against the front surface of the piston; the spiral spring being compressed between the latter and the inner surface of the rear end of the pistol.

\section*{IMPROVED BUCKLE.}

Charles W. Higinbotom and Frederick F. Smith, Vandalia, Ill.This invention is an improvement in that class of buckles in which the tongue is made dctachable and entirely separate fron th or lug in the center, and with claws or points on its ends, which pass through holes in the strap or straps, to which the buckle is ap plied. When the tongue is adjusted in place, the rib or lug prevents ing the strain to which the strap is subjected.
IMPROVED BARBED FENCE WIRE.

Rollin G. Brown, De Witt, Iowa.-This consists in an improved ing loops and barbs formed upon their ends.

Muldex Muriss
will find directions for writing on glass on p. 203, vol.33.-S. B. will find directions
for dissolving mica on p. 241, vol. 32.-J. A. I for dissolving mica on p. 241, vol. 32.-J. A. L.,
J.O. M., and T. B. will find directions for ebonizing wood on p. 50, vol. 33.-C. R. can calculate the horse power of his engine by the formula given on p. 33, vol. 33. As to speeds of pulleys, etc., see
p. 180 , vol. 26.-T. S. should galvanize his castings. See p. 315, vol. 33.-B. B. will find a description of an incubator on p. 277, vol. 33.-A.C. G. should use Indian ink for architectural drawing.-C. P.
R. R. will find dircetions for making rubber R. R . Win find directions for making rubber
stamps on 156, vol. 31.-C. H. will find a recipe for a depilatory on p. 183, vol. 34-M., G. C. M., C. H. L., W. B., H. H., J. I., T. B. C., and many dustrial and scientific subjects. should address the booksellers who advertise in our columns, all of whom are trustworthy firms, for catalogues.
(1) C. B. W. says : 1 . Why is it that there are so many more square inches in the smoke arch of a locomotive than there are in the flues, when the steam exhaust and petricoat pipe are in
their places? A. To give the cinders a chance t \(\begin{array}{ll}\text { fall in the smoke box. } & \text { 2. Would there be th }\end{array}\) same draft to the locomotive if the arch only the flues when the draft is made by the exhaus steam? A. We think not
(2) C. W. J. says: 1 . My house is in the cottage style, one story high; the main body is \(32 \times 14\) feet. The roof is a hipped roof, with pediment in front of main roof. The roof is perforated by two terra cotta flues. Would you advise the use of lightning rods? A. Yes. 2. What kind and size rods would insure safety ? A. Use iron rods
half an inch in diameter, and terminate them in half an inch in diameter, and terminate them in the rods together at the top of the house and in the earth. Also connect lateral rods at the earth to insure good contact with the ground. 3. The
roof around the terra cotta leaks. What kind of roof around the terra cotta leaks. What kind of
cement or plaster would effectually stop the cement or plaster would effectually stop the
damage and annoyance? A. See p. 183, vol. 33 .
(3) H. P.S. asks: 1. What is the hardest etal or composition for rellers, that will not ust or corrode by salt water or dampness? \(A\). bronze. See p. 180, vol metals termed phosphor and most durable metal to use for rollers, and what is the method of hardening? A. Steel bardened as described on p. 51, vol. 30. 3. What is the cheapest method of turning or grinding chilled cast iron rollers or boxes? A. See p. \(55 \%\)
(4) H P \& S say. We have one hig (4) H. P. \& S. say: We have one high stroke, with the ordinary slide valve. It make 48 revolutions per minute, driving our whole gine exhausts, there is a drag to it, and a kind of a sucking noise which we cannotstop. The valve has got about \(\frac{-1}{3}\) inch lead, and takes her steam alike at both ends, and the crank passes her centers easily. The slide valve sets square on it face and perfectly tight; we have tried it, and it will not leak a drop of water. How can we stop this drag on our exhaust ? A. There is probably
not enough steam lap on the valve to give a free exhaust, in which case the lead may be made 1 inch.
(5) J. D. H. says: What is the cause of the long lines found cut in the piston of a steam en
gine as well as in the cylinder? A. Abrasion o cutting, from grit in the lubricant, bad fitting, or other cause.
(6) A. F. \& Co. say : We are running an old解 n top of cylinder. It cuts off the steam at
nches from the end of stroke, is making 112 re olutions per minute, and drives 2 runs of 4 feet tones, grinding 5 bushels wheat per hour, and driving the necessary machinery. We carry 60 tending some time to put in an extra run, cen we increase the power of an engine by putting in onger valve, so as to cut off the steam, say at \(\%\) stroke? We have ample room in steam chest and can lengthen stroke of valve both by the eccen-
tric and the rod shaft. A. You would not in ric and the rod shaft. A. You would not in crease
stroke.
(7) M. J. 'T. asks: What metal is suscepe of the highest polish? A. Steel.
(8) N. E. L. says: 1. What is Mr. Corliss mprovement on the steam engine? A. Corlis close to the bore of the cylinder, and thus gov erned the engine by cutting otry the steam earlie or later in the stroke, according as the amount of the load diminished or increased, and by this means effected a saving in fuel. 2. Was he th frst man to use steam expansively A. No. What percentage does the Corliss save by placing This depends upon the length and size of the ports of which comparison is made. 4. What percentage of fuel ought I to save by an expansion valve? A. It dependsupon the degree of expansion used and other circumstances. 5. I am
going to take off my plain slide valve, give my going to take off my plain slide valve, give my eccentric a longer throw, add more lap to the valve, and let steam follow about one third. The emery wheel, etc. A. A plain slide valve will give a very distorted action if given lap sufficient to cut off the steam at one third of the stroke as ou propose. See p. 3is, vol. 31
(9) J. W. D. E. asks: If 50 lbs. tractive
along a level railway track at the rate of 5 mile per hour, what will be the increase of force nespeed of 10 miles per hour? A. About 12 lbs . The power required will of course be more tha wice as great, since there is an increased resist
(10) H. A. H. says : 1 . I have constructed wo cylinder ; inside of that I put a towerpot (for porous cup) and inside of the flowerpot I put piece of copper. I then attached a copper wire to the zinc cylinder, and one to the copper in the , then \(Y\) made a solution of sulphate of copper and put it into the flower pot next to the put it into the jar next to the zinc cylinder; the connected the two wires at their other extremties, but I get no sign of electricity. Pleaselet me know what is wrong. A. The battery you de
scribe would produce a current, although not cribe would produce a current, although not very strong one. 2. Can I make Leyden jars Yes, by covering the inside and outside with tin Yes,
foil.
(11) W. H. J. asks: Will you please ex around a curve side wheel slides. B argues that only the inside Wheel slips. C. argues that only the outside slides. Who isright? A. It might be possible for eithe action to occur in certain cases. Generally, o moderat.
C. W. J. asks: How can I preserve guava and citron?-C.H. T. asks : Can you tell me o ome way (other than by grinding or filing) by which the black caused by hardening can be recoved from the steel, leaving the steel gray?-
C. H. L. asks: How can I make a good flavorin . H. L. asks: How can I make a good flavoring
for cigars?-P. S. K. asks: How can I make Bel fast ginger ale?

\section*{COMMUNICATIONS RECEIVED.}

The Editor of the Scientific American ac original papers and contributionsupon the follow ing subjects:
On Rambling Notes. By L.
On Disinfectants, etc. By H.
On a Point on a Connecting Rod. By W. H. On a Solar Phenomenon. By S.J. W. On Squeaking Boots. B.
On Spiritualism. By B. J. L.
On Workmen and their Instructors. By S. On Patents. By G. W. H.
Also inquiries and answers from the following
V.-E.A.D.-A. J. C.-C. C. R.-C. C.-W. C. F
J. R. N.-W. W.-J. B. O.

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appea hould repeat them. If not then published, they declines them. The address of the writer should lways be given.
Enquiries relating to patents, or to the patenta bility of inventions, assignments, etc., will not be published here. All such questions, when initials nly are given, are thrown into the waste baske as it would fill half of our paper to print them all mail, if the writer's address is given.
Hundreds of inquiries analogous to the following are sent: "Who makes raingages? Who sells the improved hydraulic ram, described on p . 259 , vol 1? Who sells ice-making machinery? Wh ells propellers suitable for boats 12 feet long Who sells machines for bending, punching, and
rounding band iron? Who sells oilstones? Who ells surface butt hinges, suitable for cupboar doors? Who sells small knife blades? Who sells matches for use in the open air? Who sells folding tents?" All such personal inquiries are rinted, as will be observed, in the column of Business and Personal. which is specially set apart for that purpose, subject to the charge ny desired information can in this was be expe ditiously obtained.

OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent of the United States were
September 19, 1876
and each bearing that date.
[Those marked (r) are retssued patents.]
A complete copy of any patent in the annexed 1 ist, ncluding both the specifications and drawings, will be
furnished from this otlice for one dollar. In ordering lease stace the number and date of the patent desired
nd remit to Munn \&Co., \({ }^{77}\) Park Row. New York city Air pump, D. E. Bangs
Animal poke, ollver \& Phillips
Arrow gun, C. Robinson.
Artifcial coal, etc., making, J. Fr
Atitcial
Atomizer, F. E. Stanley.
Atomatic air compressor, w. D. D.al.
Ax polls, making W. N. Armstrong. Baby Jumper, N. H. Brown..
Baby jumper, N. H. B
Barbed fence wire, R.
Barrel, J. Tomlinson.
Barrel, J. Tomlinson
Barrel-flling machi
Bed bottom, A. G. lrving
 Clay grinder, C. B. Wyatt. Coffee and tea pot, w. E. Roact
Collar button, S. W. Y. Compression faucet, J. Hills Connection for lead pipes, H Guyer
Cooper's croze, C olmstead. Corn planter, W. \& J. N. Jones Cotton bales, etc., treating, F. G. Wheel
Cotton press, W. H. Horn........... Cover for sap pails, Preston \& Rulifson
Crosscut saw handle, J. Neimeyer........ Crosscut saw handie, J. Nein
cultivator, E. A. Aderholt.. Cultivator, E. W. Joy.... Curry comb, F. B. Bradley
Cutting textile materials, Cutting textlie materials, A. Warth
Damper regulator, w. B. Le Van... Die for ornamenting leather, E. H. Brewe
Die for cutting fence barbs, J. B. Oliver.. Dropper for fertilizers, P. F. Randolph
Dumpine wagon jack, w. W. Sawyer Dumping wagon jack, W. W. Sa
Electrical circuit, w. E. Sawyer Electromagnetic signal
Elevator, w. K. Marvin
 Fastening soles of boots, C. H. Trask Filter, feed water, J. Mulford. Fire, extinguishing, F. C. Zapfle Fire place grate, open, T. Brown Flask for molding. G. E.
Flume, Dike \& Brown.. Fluting iron, N. R. Streeter...... Folding chair, G. C. Paine. Folding seat, J. L. Kapple...
Folding table, J. M. Kimba orging bolt blanks, G. B. Hi ountain nozzle, D. B. Chase........ Friction feed clutch, J. W.
Fruit jar rack, S. D. Dilts.. Furnace grate, T. Fewkes.........
Furniture caster, B. E. Flanders. Garden implement, J. Gold foll condenser, Hood \& Reynolds Grate bar for furnaces, G. Sc
Grinding machine, J. L. Otis. Hame for harness, J. D. Turbeville Hand cultivator, J. S. Lucas.. Hand signal for railr
Harrow, C. Schöttler. Hat box, kneeling stool, etc., P. Dutto Hay rack, J. W. Foust.........................
Hides during tanning, handing, o. w. Bea

Holdback attachment, c. Phelps.
Hook water conductor, L. and w. Hoop machine, J. Dobbins. Horse hay rack, H. C. Herchelrode
Horse power, Brown and Kendrick. Horse rake, J. W. Fenwick..........
Horseshoe nail die, J. H. Zottman. Horseshoes, making, C. Browning Hot air stove attachment, C. Kalbfuss Injector, H. Rougy
rron wire, straightening, W. H. Paine
Ironing apparatus, Evans and Kester Joning apparatus, Evans and Kestler. Kiln, G. Mendheim. Knife, fork, and steel. rest, L.....................
Land drag and clod crusher, J. M. Crockett.. Lantern, J. Krumme
Lasting machine, boot, Copeland et al. Lime and cement, making, U. Cumming Lockwork for clocks, Covell et al....
Magneto electric machine, J. Gray. Magneto- electric machine, J. Gray
Malt drying kiln, R. D'Heureuse.. Mandrel or core for casting, J. M. Rohre Measuring chain, W. Chesterman...........
Mechantcal movement, Towle \& Benton Metals in forges, etc., treament of, J. P. Gil M11k coooler, H. A. Hannum............
Mine gases, testing, A. L. Douchy.
Minerals, etc., treatment of, J. P. Glll
Mold for shovel handles, H. Oliver..... Mold for stamping mill shoes, w. Hain
Molding and pressing brick, E. Rogers. Mortsisng machine. C. Gadker...
Mowing machine, F, Pastorius, Oil squeezer, H. Ols
onler, R. D'Heureu
Openstde thill, C. W. Matthe......
Painting machtne, I. W. Cooser Painting machine, I. W. Cooper.
Paper bag machine, F. Anderson Paper board, diminishing,
 Pipe wrench, H. C. Stouffe Plasterer's trowel, willamson \& Greaser.
Plate lifter, M. G. Barbour.............. low, J. Smoot, sr.
Pocket knife, A. W. Woate
Portable elevator. A. Mille
Projectile for riffed ordnance, B. B. B. Hotch.........
Pulley block hanger, J. F. Barker..............
ump, D. N. Green
Railroad crossing, J. H. AInsworth
Ralroad rail joint, F. W. Marston Rails, stralghen. Marston. Railway siknal, J. H. Williams.. Retining and packing sulphur, E. J. Frase Rotary engine, F. F. Schofield adiron, J. M. Whiting... Saw mill dog, A. Mepham . Saw swage, A. Wiley .
 Seed planter, J.
Sewing machine

\section*{Shirt, T. Green..}

Shot, apparatus for selecting, R. Poole tgnal attachment, C. Hoffman Snk strainer, S. Porter

Spokeshave, G. D. Mosher
Spring punch, leather, etc
talk puller, R. D. Brown.
team, utilizing exhaust, J. Downes.....
Stem-winding device, watch, A. Troller.
Stone-dressing machine, I. W nitcomb...
Stone sawmill, D. E. Stearns
Sugar mill, J. Mallon
Swing, J. F. Johnson
Thill lug, T. Barrett
Tonic preparation, w. Turne
Tonic preparation, W. Turne
Tool holder, c. C. Bergh....
Trace hook, T. J. Hubbell
Turbine water wheel, B. M. Majilto
Turbine water wheel, D. S. Walsh
Twist drills, making, w
ype writer, Sholes \& schwalback
Valve coupling pipe, D. w. Magee.
Vehicle spring, S. N. Betts.
Vehicle top, G. R. NcCrea........................
Veneers, cutting for barrels, J. A. Waterman.
Ventilating attachment, C. C. Sankey..........
Vise, G. E. Chamberlln
Wall bracket, J. P. \& A. A. Fielding.
Watch balance, A. F. Curpen...
Water closet, G. Jennings .
Water closet handle, J. S. Delehanty.
Water fowl, catching \& Kupferle
Weeding and transplanting, ,..........
Wheel culttvator, W. P. Huhbard
Windmill, M. J. Covell
Windmills, regulating, D. Turnbuil...
DESIGNS PATENTED.
9,497.-Alto-Relievo.-B. Coolidge, Lawrence, Mas
\(9,498-\) Twink Holder.-W. Griscom, Reading, Pa.
9, 499.-Types.-J. Giildensteln, Roselle, N.J.
9,500.-CARPETs.-E. Guiraud, New York city.
[A copy of any one of the above patents may be had by
emitting one dollar to MUNN \& Co., 57 Park Row, New York city.

SCHEDULE OF PATENT FEES.
On cach Caveat.....

On flling each application for a Patent (17..................................
On appeal to Examiners-In-Chi
On appeal to Commissioner of Patents. On application for Retis
nan applicationfor Design 3X years)
On application for Design (7 years).
On application for Design (14 eears).

\section*{THE VALIDITY OF PATENTS}

We recommend to every person who
mence the manufacture of any article under
by a competent party, and to have a researc made in the Patent Office to see what the condiHe should also see that the claims pare was issued He should also see that the claims are so worded his patent was issued; and it is still more essen tial that he be informed whether it is an infringe ment on some other existing patent. Parties desir ng to have such searches made can have them don through the Scientific American Patent Agency, ature of the date of the patent and stating the information, address \(\quad\) MUNN \& CO.,
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{2aduertisements.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Inside Page, each insertion -- \(\mathbf{7 5}\) cents a line. Back Page, each insertion -- 81.00 a line. Engravings may head advertisens per line, oy measurement, as the letter press. Adver.
tisements must be receved at publication offce as early as Friday morning to appear in next is8ue}} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{BAIRD'S} BOMS

FOR PRACTICAL MEN

 HENRY CAREY BAIRD \& CO W3 WATCHES. Chespest in the known LEHIGH EMERY W HEELS

M ANUFACTURERS AND PATENTEES hav

\section*{Engraving on Wood} Partner Wanted or For Sale.

 GEORGE C. HICKS \& CO., Baltimore, Md

Kanuracturers of the Blaladell Patent Upright Drills and
Wood-Working Machinery,

Pulladelpha, and 79 Liberty st., New York Price litats and pamphiets on application
\(\$ 60\) A WEEK
UPRIGHT BOR

\section*{(2) anit}

 F of a safely Screw Steam Plat Patment rights

 B. C. MACHINERYCO. Batte Creek, Mich.

At Centennal Exhbibtion, Machnery Hall, D. 9,66 ,
Also atentrance to Pump Annex.

 \(\$ 50 .{ }^{00}\) SCREW-CUTTING FOOT MATHES

\section*{EAGLE F FOOTX LATHES,}

Pond's Tools.

YALE
IRON WORKS,

MACTINRRT

ROSE-BUDS IN WINTER

VINTEGAR. HOW MADE IN Planing \& Matching.

The fact that this shafting has 75 per cent great
tre ngth, a inner finish, and 18 truer to gage, than an

HOISTRERRSIBLE
 \(01 \mathrm{~S}^{\prime} \begin{gathered}\text { sAFETY } \\ \text { Misistint }\end{gathered}\)

 The Toll-Gate! Prize Picture ent triet An

STEAM ENGINES FOR SALE

\section*{THE EXXSH BEST \\ GOLDPGNS}

and
spare the crotond save the cost.
Driven or Tube Wells

\section*{}

HARYARD UNIVERSTTYDENTAL

A
NEW DEPARTURE. MEN

F OR SALE-In lots to suit, ,2,000 worn out bright

 TRAYG to sell our Rabber Hand Printing Stamm FINE TOOLS AND FOOT LATHESS

 The Lehigh Emery Wheel

\section*{Steel Castings,}

 LOOK sonaw wewtumw NO wimay waway
 WHIPPLE'S
Patent Door Knob.

Pyrometers, \(\begin{aligned} & \text { For shownirg heat of } \\ & \text { Orens. }\end{aligned}\)

\section*{Diamonds}

 ReliefPlatesinHardType-Metal
 Machinists \({ }^{3}\) Tools.

 HANDASYDE'S COMPOSITION For the Removal and Prevention o
解

HOUSTON TURBINE
 Beiot, Wisconsin.
Lathes, Planers, Shapers, Drills, IT. SELIG JUNIOR, © CO.

Mill FurnishingWorks

I He UNion IRON MILLS, Pittoourgh, Pa.

 Todd \& Rafferty Machine Co

 PROPOSALS WILL BE RECEIVED, UP TO

 SNYOERSLITTIE GIANT STEAM ENGINE

 F article; can be made cheap, and will sell fast. A
rare chance for a party with a few hundred dollars,
fowners having no tme to attend to it. Call at 992 Green
wch St., New York.

,

The Scientific American REFHRFNGFBOUK

\section*{A Bound Book of 144 Pages, for 25 c.}

 veations; state taws conce tien

5. Unitud siateen doroytyht, Le.

12. Valuable Tableas

 MUNN \& CO., Publishers, Sclentifc \({ }_{37}\) American OMce
Park Row,
Stone Channeling
Quarrying Machine,

WARDWELL PATENT. FOR CUTTING STONE INTO VARTOUS SIZES
AND DTMENSIONS IN ALI KIND OF NDS OF BTEAN STONE CUTTER CO, RUTLAND, VT.
BOLE PROPRLETORS AND MANUEACTURERS. EGThree Machines at Philadelphia Exhibition
PORTLAND CEMENT

 Portland and Keene's Cement.

\section*{Niagara} SteamPumpWorks
 charles b. hardick,

The Tanite Co., STROUDSBURG, PA. EMERY WHEELS \& GRINDERS

DAMPER
REGULATRS BEST GAGD LEVERS, HARTFORD

\section*{STEAM BOILER}

Inspection \& Insurance COMPANY.
 J. B. PIIRCE Seci'.

\section*{Mix Mix}

SCIENTIFIC AMERICAN, For 1877.
\(\underset{\text { THE MOST POPOLAR SCIENTIFIC PAPER }}{\text { IN }}\)

\section*{THIRTY-SECOND YEAR}

VOLUME XXXVI.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN beg to announce that on the first day of January 1877, a new volume commences. It will continue tents of the of the publishers to render the conful than any of its predecessors.
futive and

To the Mechanic and Manufacturer.
No person engaged in any of the mechanical pur uric Americany Every number contains from six to ten engravings of new machines and inven tions which cannot be found in any other publica
The SCIENTIFIC AMERICAN is devoted to the Interests of Popular Science, the Mechanic Arts, and the industrial pursuits generally; and it is val uable and instructive not only in the Workshop and Manufactory, but also in the Household, the Library, and the Reading Room. Each volume ontains hundreds of Notes, Recelpts, and Sugge ons and Advice, by Practical Writers, for Work

TERMS OF SUBSCRIPIION
One copy of the Scientific American will be PAID, to any subscriber in the United States o Canada, on receipt of three dollars and twenty cents by the publishers.
One éxtra copy of the Scientific American wil ee supplied gratis for every club of five subscriber \$3.20 each, or six opy. Postage fre
The Scientific American Supplement. A weekly paper, uniform in size with the Scien tific American, but a distinct publication. I contains working drawings of engineering works,
aud elaborate treatises on every branch of Science and Mechanics, by eminent writers, at home and broad. An illustrated cover protects the handsomely printed sheets. Price, \(\$ 5.00\) per annum Single copies 10 cents.
One copy of the
on of the scientific American and on copy of the SCIENTIFIC American Supplement will criber in the United States or Canada, on recelp of seven Dollars by the publishers.
The safest way to remit is by Postal-Order Draft, or Express. Money carefully placed inside of envelopes, securely sealed, and carefully ad dressed, seldom goes astray; but it is at the senders, drafts, etc., payable to

MUNNN \& CO.
37 PARK ROW. NEW YORK
```

