

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. XXXV. . No. 13 .

NEW YORK, SEPTEMBER 23, 1876.

IMPROVED STONE-SAWING MACHINERY

Since the discovery of the bort carbon, or black diamond much skill and a vast amount of energy and capital have been expended to render it of practical value to manufac turing industries. It has long been known to scientists as one of the hardest substances in Nature; and it has been, and is still, used by lapidaries in cutting and polishing other precious stones, even the white diamond. It has also given aid to industrial science in improving the diamond drill, and more recently to the mechanic arts, in piving us ne cutting tools for use on substances on which iron and stee cutting tools for use on substances on which iron and stee were useless. But while its value for cutting hard subtances, especially stones of various texture and density, has been known and appreciated, its practical utility ha been impaired by a difficulty in harnessing it, that is, hold ing it securely for effective use. A large amount of inven tive skill, time, and money has been expended in the at tempt to accomplish this, with more or less success; but the attempts were generally entire failures, especially the at tempts to saw and work stone The records of the Patent Office, within the last ten years, show the various modes and ap pliances to this end and the invention of Mr. Branch has been Mr. Branch has been one of the most practi cal successes among all such machines
The circular saw, taking into considera tion its unlimited capacity in sawing lum ber, was considered by most inventors a the one to which the diamond could best b applied for sawing stone. Mr. Branch's first patent,dated June 8,1869 , was for the in , ertion of the diamond nto a the diamond no a holder made in two parts, with recesse or the diamond, and provided with soft me al cushions for the diamond to rest in. These holders wer then dovetailed into the edge of the saw disk, and compressed, by a wedging dévice the diamond into the soft metal. This saw was a success so far as the cutting was con cerned, but the dia mond could not be held securely for prac tical work, and the project was aban doned. Others have attempted improve ments on this by bra zing the diamonds in o iron or steel hold
ers; but the results were no better. The soft metal cushions would yield to the pressure of the work, and the centrifugal velocity of the saw would throw the diamond away. Some inventors, seeing these apparently unconquerable dif ficulties, regarded the circular saw as impracticable; and attempts were made to apply the diamond teeth to the sash r reciprocating saw, claiming for it greater capacity in the awing of large blocks. While this merit may be conced to a limited extent, the reciprocating saw is not equal to the circular saw, either in quantity or quality of equal formed; while the risk of losing the diamond of work per , while the risk of losing the diamond was in no wise essened, except by the use of a sieve or cage to catch the recreant diamond, so that it might be again reset, to be again, as before, thrown out
Mr. J. W. Branch, the inventor of the machine herewith illustrated, claims to have achieved the secure holding of the diamond in steel or iron holders, without the dubious aid of soft metals, and his Stone Monarch, as he calls this sawing machine, gives the circular saw the same prominence in relation to the stone-working industry as in that of wood working.
The peculiar manner of inserting the diamond into holders, and these holders into the saw disks, is fully described n letters patent dated August 31, 1875; and the chief merit
of this invention is the perfect security given to the dia mond under any velocity whatever. The diamond holders are simple in construction (Fig. 2), and are furnished either in the saws completed, or in duplicate, so that any that may become faulty, by undue pressure or otherwise, may be re newed or replaced. They can be inserted into the saw by any practical mechanic, if the saw in other respects be per fect, without his having the skill to set the diamond.
The mode of applying water for lubricating the saws in work, and washing away the grit and dirt, is novel, and is peculiar to these machines. The water is conducted through the center of the mandrel into chambers, and through radial rifices, ${ }^{C} \mathrm{~A}$, in the saw collars on each side of the saw, causing the water to impinge upon the saw blade, and to be, by the centrifugal force, conducted to the cut. This effects hree results: 1. Keeping the journals of the mandrel cool. 2. Keeping the saw cool and even in temperature, preventing all undue expansion. 3. Cleansing the saw from all grit and dirt produced in sawing.

Fig. 2

without complication; and a large proportion of work re quired for building can be finished, ready for erection, with out the aid of the rubber or hand labor. The saws, more over, run at the periphery at an average velocity of 10,000 feet per minute, which effects great rapidity and perfection in cutting stone: the difference being due to the variable density of the stone to be cut, varying from 1 to 36 inche per minute, or per 10,000 feet run of the saw. The ordi nary freestones and sandstones are sawn by these machines at the rate of from 6 to 36 inches per minute, and marble and limestones at from 3 to 18 inches per minute, or an ave rage from 200 to 800 feet per day, making due allowance for handling of stone.

The manufacturers, Messrs. Branch, Crookes \& Co., have on exhibition at the Centennial (section A 16 and 17 , saw mill), two of their diamond circular saw stone machines, with the necessary traveling crane and facilities for hand ling stone. The two machines have 66 and 20 inch saws res pectively. The 66 inch saw contains 84 diamonds, and the 20 inch saw 60 diamonds. These machines are kept in ope ration, practically il lustrating what we have already de scribed; and they at tract a great deal o attention from visi tors to the Exhibi tion.
Patented to Josep W. Branch, unde dates June 8, 1869 May 27, 1873, and Au gust 31, 1875. For fur ther particuiars and for descriptive circu lars, address Branch Crookes \& Co., 114 and 116 Vine street, St Louis, Mo.

Melon Sugar.

 Andros Island, in the long delta be tween the rivers Sa cramento and San Joaquin Californis belongs to a group ow island group o low islands that are at hig water, and therefor fit for culture when reclaimed by embankments they are exceptionally pro ductive Melors ar a crop that never fail in this climate, and the factory on Andros Island can get melon juice from a vast area juice from a vastar of men country small expense for transpcrt. Water me lons with white pulp are preferred. They are planted twelve feet apart one way
BRANCH'S DIAMOND STONE-SAWING MACHIN

 and the other way sithe control of the attendant, and is provided with a simple ure device, adjustable to accommodate the variable tex made ansty of the stone to be sawn. The saws are also tirely or partially through the block, preserving a straight line at the bottom of the cut, but allowing for moldings, rebates, etc.
The table to carry the stone is placed on a series of rollers set in the carriage, which provides for the easy adjustment of the stone at right angles with the saw, so as to cut off any thickness required. The carriages upon which the table is placed is also provided with rollers, fitted upon parallel V ways, and with a feed rack working upon a feed pinion.
It will be observed that there are no slides, and that the roller bearings and journals are all covered, so that the working parts are not impaired by any accumulation of grit or dirt. The saws are used either over or under the work, but preerably over for sawing large blocks and ashlar, and under for edging, crosscutting, and sawing small dimension stone This range of use is due to the central application of wate as, by the centrifugal verocity of the saw, the water is dapted to
feet apart. The leaves of the plants cover the ground and kill the weeds before they interfere. Besides, they make a impenetrable mulching, which keeps the soil moist and prevents baking. The melon juice is free from impurities, which make chemistry costly in beet sugar, is much less ex pensive, and the impis it and and pensive, and the sip the refuse is good for cattle. Taking account of so many of the weight of the fruit, instead of 8 per cent allowed for beets, costs less to make. The difference may be set down as $5 \frac{1}{2}$ cents for melon sugar to 7 cents a pound for beet sugar. In regard to quality, melon sugar is superior. Unless extra care be used, beet sugar is apt to have an unpleasant buggy flavor.
Let it be understood that beets can only succeed in moist bottom lands. Melons strike deep root, and they grow every where on our uplands. No doubt they would thrive luxu riantly in Jersey, Delaware, and Maryland. In the sandy soil of States South, no crop can be more certain, and Bal timore would make a convenient center for supplies of me lon sugar works. Our California correspondent states that San Francisco sympathises with Baltimore, and will keep her advised as to the success of the melon sugar-making in dustry.-Baltimore Sun.

Srientific Gancricau.

MUNN \& CO., Editors and Proprietors.

PUBLISBED WERKLY AT

NO. 37 PARK ROW, NEW YORK.
O. D. MONN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN One copy, one year, postage ticluded....
One copy,

Ten coples, one year, each 82 70, postage include
Ver ten coples, same rate each, postage included.
Tr The postage is payable in advance by the
scriber then recelves the paper free of charge.
then recelves the paper free of charge. NoTz.-Persons subseribing will please to give thetr full names, and Post Offce and State address, plainly written. In case of changing residence
state former address, as well as give the new one. No changes can be made unless the former address is given.

Scientific American Supplement.
A distinct paper from the Scientifio american, but of the same size and pubilished simultaneously with the requiar edition.

One year by mall. TERMA
One year by mall... 8500 Scirntific Am
Single Coples..
The safest wa
The safest way to remit is by draft, postal order, or registered letter. 10 Address MUNN \& Co., 57 Park Row, N. I
Re
the news agents.
VOLUME XXXV., No. 13. [New SERIEs.] Thirty-first Year.
NEW YORK, SATURDAY, SEPTEMBER 23. 1876.

THE SCIENTIFIC AMERICAN SUPPLEMENT.
Vol. II.. No. 39.
For the Week endingSeptember 23, 1876.]

- Black Anillne Ink,-Yellow Coloring:-
 on Cole
Flames
Fess
. LEssons in mechanical drawing, by Professor maocord, 1

 table of contents.
The scientifc American Supplement

 MUNN \& OO., PUBLabRBR,

TWO PERSONALITIES IN ONE PERSON

The record books of the medical profession contain not few reports of patients living double lives: cases in which there is a periodical loss of one phase of mental life and the assumption or resumption of another very different one For example, an hysterical subject will have a fit, and on coming out of it will be found to have lost all memory of the past. The mental faculties remain unimpaired, but so far as knowledge goes the patient's mind is that of an in fant. With more or less delay she will learn to talk, and to read and work, practically beginning life again at the be ginning, and sometimes developing a character quite un like her first one. The physical basis appears to be the same; but the personality is entirely different, with differ ent temperament, different habits, different tastes, and so

Matters will continue after this fashion for an indefinite period; and then the patient will go into another fit, emerging just as she was originally. All the life she has lived since the first fit is suddenly wiped out. She can recal none of it; for the time her second life, and it may hav lasted years, is annihilated, and the current of her origina life flows on as serenely and naturally as if it had neve been broken-until another fit sets her back to the end of her second life, which she takes up again in utter uncon sciousness of a break in it. And so her existence alternate bet ween two lives entirely distinct and independent of each ther, save that the same body serves for both.
Formerly such alternations of consciousness were ex plained by spiritual or demoniac possession. The body was pposed to be tenanted by two independent spirits; or the malignant or beneven time to the ouster might indicate In our more scientific and materialistic days, the spiritual hypothesis has few retainers: the phenomena in question being much more satisfactorily explanable by supposing being much more satisfactorily explanable by supposing
that the patient's mental life has been carried on wholly or that the patient's mental life has been carried on wholly or
chiefly by one side of her double brain, and that, when the action of that side is arrested by disease, the unused sid takes up the intellectual function and continues until an other paroxysm shifts the responsibility to the first used side. So the two lives alternate with the alternating func tional activity of the two brains: the reason that such live are always double and never triple or manifold lying in the fact that we have only two independent brain lobes and no more
The latest case reported of this sort is exceedingly inter esting, and peculiar in that there is a loss of continuity in the life only when the state recurs in which the patient' life began. The case is reported at length in the Revue Scientifique, by Professor Azam, of Bordeaux, where the pa tient lives. The patient is a married woman, now about thirty-four years old, and has been living a double life since she was fourteen years old. For brevity, we will call her first state of consciousness and its repetitions, A, and the econd state and repetitions, B.
At first B came on at intervals of days, and lasted for few hours only. Twice it was absent for three years at time, from the age of $17 \frac{1}{2}$ to $20 \frac{1}{2}$, and again from 24 to 27 . Latterly she has lived the life of B most of the time, A re curring at intervals of two or three months, and remad but for a few hours. Formerly the transition occurred dur
ing some minutes of unconscious sleep following violen pain in the temples; now it is almost instantaneous. In A the patient has always been quiescent and somewhat mo rose in disposition; in B, she has always been bright, gay and affectionate. In A , she has no memory of events whic happen in B; but in B, she has a full recollection of her life
in both states-a remarkable peculiarity in her case, as al in both states-a remarkable peculiarity in her case, as a
ready observed. In B, her distress, on discovering that ther have been blanks in her conscions experience, is extreme but the practical inconvenience of such loss of memory formerly great, has become less with the predominance of B On rare occasions on passing out of B, the patient suffers brief period of agitation and extreme terror, during which her knowledge is somewhat disordered; at other times ther is no apparent derangement
In her passage from B to A (Professor Azam remarks) she does not emerge from a dream, for a dream, however incoherent, is always something. She emerges from no thing. The time elapsed may be an hour, or it may b months, it is all the same to her; an entire section of he conscious life has dropped out. "To compare her existenc enough. An intelligent reader might fill the blank, but she can have absolutely no notion of anything that happened in her secondary state.
A world of curious problems and complications, social theological, and other, are suggested by such a case as this Fancy a person on trial for a crime committed in a previous the criminal's peculiarity: or a woman to find herself sud denly (to her) surrounded by a family of children,owning he as a mother, yet utterly unknown to her! There is a splendid chance for a sensational novelist. And we should like to hea a convention of clergymen discuss this proposition: Suppose a victim of double consciousness to be a saint in A, and a wretched sinner in B. Her earthly existence terminates in B. Will the two states of consciousness be united by the destruction of the conflicting organs of consciousness? Or will two souls remain, to go to their diverse ways? Again if there is one, and only one, soul to survive, will it b damned for the sins of B, or saved by the faith that illu minated A?

THERMO-DIFFUSION...A NEW PHYSICAL PHENOMENON It is a well known fact that gases dilate when heated, un less enclosed in space of invariable volume, in which case th action of the heat is manifested by an augmentation of pres wre which increases with the temperature. If the space in which the gas is contained communicates with the air, th heat determines the escape of the gas through the orifice more or less rapidly, but so that, at a certain instant, if the emperature remain constant, equilibrium will re-establis itself, at which time the pressure of the gas within will be precisely equal to the atmospheric pressure without.
This is easily verified in the following manner: In a block of any porous body (Fig. 1), plaster, for example, a

Fig. 1.
cylindrical cavity i made, in which is in troduced and fastened the extremity of an open tube, $a b$. The outer end of the tube communicates with manometer. On th block being heated equilibrium of press ure will maintained
onstant, the mercury remaining at a level in the branches of the instrument. A modification of this experiment may be made by substituting for the plaster block a vase of porous earth, such as is used in many galvanic batteries (Fig. 2),

Fig. 2

 which is closed pierced cork, through which passes the tube, $a b$, connecting with the manometer;orinstead of using the cork, the tube may be sealed in position by a little plaster. The vessel may remain empty or be filled with pulverulent material; and whatever the form of the apparatus, he results above described will always be the same, provid dry material be always used.
If, however, on the contrary, the material be moist, a new phenomenon presents itself, which, as La Nature states, M. Merget, of Lyons, has recently discovered, and to which he gives the name of "thermo-diffusion." This apparatus is the same as already described, with the difference, however, that the porous vase or block is previously saturated with any volatile liquid. If the device is then submitted to the ac tion of heat, the manometer at once indicates a difference of interior pressure, the augmentation of which depends on th volatility of the liquid, and the temperature reached. By mploying a thermo-diffuser, $4 \frac{1}{2}$ inches long by $1 \frac{1}{2}$ inches in diameter, the interior pressure at the limit of dark red hea has been caused to attain that of 3 atmospheres, or 45 lbs er square inch. This exists as long as the liquid is no ntirely evaporated, but ceases as soon as the evaporation is complete, the mercury at once returning to a level in the manometer, regardless of the temperature present. The con ditions described as occurring in the dry vase then resume This novel phenomenon may be exhibited in still anothe way (Fig. 3). The manometer being disconnected from the

$$
\text { Fig. } 3 .
$$

ube, the end of the la ter is plunged in water As soon as heatis applied bubbles of gas are dis ngaged more or less ra idly. This disengagement is ultimately connected with he evaporation of the liquid, and is uniform as long as the vaporation continues regularly, but stops as soon as the latter terminates. M. Merget indicates, as follows, the con ditions which determine variation in quantity of the ga given off. For similar thermo-diffusers, unequally moist ened, the volume of gas disengaged varies with the propor ion of water absorbed ; and for different thermo-diffusers wet to saturation, the volumes obtained have varied around n average of about 40 times the volume of the apparatus mployed. The velocity of disengagement, which aug ments as the heat increases, depends on the extent of ther mo-diffusive surface, and varies in like manner. It has reached several hundred cubic inches per minute with large porous battery vases.
M. Merget has likewise established that, in thermo-diffu sion, it is the moi t porous periphery which is the necessary condition of the phenomenon, and not the difference in hy rometric states of the gases. Two saturated thermo-di users were placed under entirely dissimular conditions, ne being located in a thoroughly dry exterior atmosphere and a wet sponge being placed in the interior of the ap paratus, the other having highly heated quicklime within o that in such a case its interior air might be completely dry. Both, being submitted to a feeble calorific radiation ave sensibly the same disengagement of gas. If the state of dryness or humidity were the cause of the observed phenomenon, it necessarily would follow in the experiment that the currents of gas would be in inverse direction, which was not the case. Still, even with this fact of the porous vase being a prime necessity established, we are yet without a satisfactory explanation of the discovery. It an only be pointed out that the circumstances may play an mportant part in certain natural phenomena. After study ing the gaseous exchanges between vegetation and the a mosphere, M. Merget concludes that a plant should be re garded as a moist and porous system, possessing the thermo diffusive activity proper to all similar systems under eleva ion of temperature
The leaves of aquatic plants, from this point of view considerable activity, and the quantity of gas intro duced in the plant may reach 30 cubic inches per minute
A leaving a long petiole (that of the nuphar, for exam
le) was placed in air, while the free extremity of the petole was placed considerably beneath the surface of water in a test tube. The apparatus being submitted to solar rays, near-
ly pure atmospheric air passed rapidly under the tube. This took place as if the leaf were a natural thermo-diffuser; and the phenomenon is purely physical in character. The respiration of animals may also be a similar phenomenon; but this has not been sufficiently demonstrated to warrant an affirmative assertion.
The facts of M. Merget's discovery are interesting both from a physical point of view, and in that they tend to explain effects of which the causes are as yet undetermined. They go to show, besides, the mutual interdependence of sciences, th
ly distinct.

PRACTICAL INFORMATION FOR PRACTICAL MEN.

The leading article of the Journal of the Franklin Insti tute for August begins with the positive assertion that the general idea that practical information, useful to a practical man, can be made interesting or instructive to the ordinary reader is an altogether erroneous one. And after a six-page amplification of this discouraging thesis, based on the half century's experience of the Journal, the writer closes with the sweeping remark that there is an incompatibility, now Bearing in mind the warning of an American humorist 'Don't never prophesy unless you know" : we would not ven' ture to contradict the Journal with regard to the possibilities of " all time;" but for the time that now is, we do not hesitate to say that there is no such incompatibility. And further, an expression of thirty years in trying to meet the popular demand for practical information has given us an abiding conviction that, as in the past, so in the future, in a yearly increasing degree, practical information useful to practical men will more and more be desired by intelligent readers; and the success of periodicals devoted to Science and the arts will hinge more and more-as scientific thinking increasingly prevails-upon their presenting promptly, clearly, and sensibly the very information which the Journal asserts to be so essentially unpopular, that is to say, practical information really and truly considered. The impossibility of making attractive to the general reader the stuff which the Journal describes as alone worthy of that title, we should not think of doubting. The Journal has sufficiently demonstrated that it cannot be done. We doubt whether it
could be done even for the ludicrously limited class of men to whom the Journal would apply the term practical; in its own words, a few specialists, each of whom " must have acquired, in the course of his practice in some particular direction of knowledge, enough to have compelled him tn have learned its 'science,' regularly and methodically, to have investigated by his reasoning faculties and founded himself upon principles and not on half-comprehended facts."
The definition is not very grammatical nor very clear; but we gather from it, and from subsequent remarks, that the practical man must not only be a specialist in scientific investigation, but one so furnished with all that has been accomplished in his particular department that no informa tion can be practical to him unless it is wholly original and presented along with the most thorough and elaborate rea soning and formulæ that may be required for its support
and demonstration. "It is the progress and advance of and demonstration. "It is the progress and advance of that the practical man needs information about;" and the method approved for the presentation of such additions to "practical" knowledge is the dryest and most elaborate possible, albeit the investigation is "tedious," the discus sion "recondite," and the concluding results " unintelligi ble, almost incomprehensible, to any others than practical men in an extremely limited kind of practice
It is not surprising that the Journal finds an incompatibility between such information and popularity: but it is surprising to find an editor of intelligence coolly assuming that such information exhausts the limits of the practical, and that no man deserves to be called practical who does not delight in it. The position is sufficiently absurd to be gro tesque

WORKMEN AND THEEIR INSTRUCTORS

A hammer and a chisel are two very simple tools, and surely t seems there can be no great mystery in the use of two snch implements; but a foreign language,or the groundwork of a whole science, can be learned in far less time than i takes to learn to chip a piece of metal an inch long so so smoothly upon its surface that the chipping marks can not be felt. The reason for this difference is simple, and lies in the fact the language or science has teachers who are masters of their subjects, und who make those studies to work out the whole problem for himself. It is as ridiculous for a man whose ten or fifteen years' experience has included the principles of construction, mathematics, mechanical drawing, etc., to assume to teach that intricate knowledge of manipulation necessary to make an expert knowledge of manipulation necessary to make an expert
workman as it would be for a workman who had spent his leisure time in reading books of science for in struction to attempt to instruct the scientific world and this would have been made apparent long ago
but for the lack of education so common to expert work men, and but that, so soon as an expert workman attains the knowledge of his trade, and the skill in the use of language which enables him to enter the arena of debate or tuition, he ceases to be a workman and becomes too often a
stranger to the workmen's interests. Such a faint concep-
ion of the real value of an unusually expert workman is possessed by employers that, if he possess such a qualifica tion only, his sphere of usefulness is limited to his practice and he would search the wide world in vain for a means of
giving to others the benefits of his skill by imparting giving to others the benefits of his skill by imparting
to them the minutiæ of movements, processes, forms, time, speed, etc., which, combined, form that skill which is bes known as manual dexterity. There never has been nor can there ever be a piece of expert workmanship done that was not governed by distinct principles and laws; and the mis fortune is that they are to a very great extent unwritten
laws. Volumes are written for the edification of the work men that had better far never have had existence. Ca the workman do aught but smile at the statement, given under assumed authority, to the effect that tools for cutting wood can be much harder than for cutting iron, or, to state it better, "tools for cutting wood are harder than those usually employed for cutting iron"? And what are we to think of the advice that "the better way to make a scraper" (for flat surfaces) "is to form it like a Venetian stiletto or beech nut"?
Not long ago,a statement went the rounds of the mechani cal press to the effect that a certain French mechanic had discovered a method of reducing the diameters of the tires of locomotive wheels by a process of partial immersion in ago, and it has been in was the practice twenty-five year g6verning the process, together with its application to wheel tires, having been published, together with an illus tration, months before in the Scientific American. Instances of this kind are so numerous that it would take olume to recite them, nor would the recital bring us any nearer to a solution of the question of how best to impart manual dexterity by means of instruction. Our knowledge of practical mechanics,as commonly applied in our machin shops, is crude in the extreme, and will continue to be so
until we have placed within reach of the workman all the intricate knowledge that goes to the very bottom of exper workmanship, which information can only be obtained by practical experiment,made by men chosen by reason of their mechanical skill, under the directions of teachers capable of explaining and formulating the principles and rules govern ing the practice of the skillful artisan.

BORN SCIENTISTS

The importance of the innate tastes of an individual be ing considered in determining the choice of a trade or pro ession is well shown in Mr. Francis Galton's recent wor on the antecedents of English men of science, a volume prepared as a sequel to the treatise on "Hereditary Geni us" already reviewed in these columns. Mr. Galton adopt d the excellent plan of a well chosen series of questions, which every scientist was requested to answer and return to the sender. One hundred and eighty scientific men wer thus questioned, and the replies which most appeal to the houghtful are those relative to prevalent tastes. W should expect to find a taste for mechanics among the phys-
icists, and such is the case: the same among the mechanicians and engineers. The underlying cause of scientific re search may be traced in the repeated mention of the posses cases with desire to know facts," curiously of fiction. Mor interesting, however, is the schedule of influences and mo tives which urged the various individuals to follow scienti fic pursuits. Out of 191 people, innate taste for their call ing influenced 59 ; fortunate accidents (generally showing innate taste), 11 ; indirect opportunities and indirect motives 19 ; professional influences to exertion, 24 ; encouragemen f scientific inclinations at home, 34 ; influence and encour agement of friends, 20 ; of teachers, 13 ; travel in distan regions, 8 ; residual influences, unclassed, 3. The large plurality in favor of innate taste is striking. Now take th various callings: Out of 26 cases of physicists and mathe maticians, 12 had an innate taste, 1 no natural taste at all and 7 are doubtful. Of 11 chemists, the taste of 5 was in nate, 1 not, and 5 doubtful; of 8 geologists, 7 innate, doubtful; of 24 zoölogists, 17 innate, 3 not, 4 doubtful; o 10 botanists, 8 innate, 1 not, 1 doubtful; of 7 medical men, 2 innate, 4 not, 1 doubtful; of 6 statisticians, 3 innate, not, 2 doubtful ; of 5 mechanicians, 2 innate, 3 doubtful. It is clear from this that a strong and inborn taste for sci ence is both a prevailing and an enduring peculiarity of the persons considered. A fair estimate for Mr. Galton's deduc tions is that out of every ten men of science, six were natur ally gifted with a strong taste for scientific pursuits. No one person in ten, taken indiscriminately, possessing such an instinct, it follows that its presence must add five fold to the chance of scientific success.
The possession of a special taste for any pursuit is there fore a gift of Nature not to be slighted, and it is in fact vanced.

EDUCATED FARMERS.

If we were asked to point out any especial fact as denot ng beyond all others our rapid progression in knowledge and in civilization, we should select the strong tendenc everywhere manifest to abolish empiricism in all pursuits of
life. It is not very long ago that the physician administered his remedies blindly, and knew less of the function of the heart than does his modern descendant of the spleen and gall bladder. Meteorology, most fickle of all sciences, based as it is on the most changeable of all things, the
weather, has within a very few years made marvelous strides and we are certainly advancing to a point when it will b
easy to foretel the rain and storm of tomorrow as to re onger to be the science in which unaccurately compounded ingredients, under constantly varying conditions, are sup posed by some pleasant fiction to yield invariable results for has not a college been endowed, to educate our future hefs de cuisine? Thumb rules in every trade are now scouted by intelligent working men. The world has shaped itself into a gigantic point of interrogation; "why" is the ques ion of the hour, and faith in things earthly is confine only to those who, like the deluded partisans of Keely and thers of his ilk, mistake ignorance of that which is possi ble for belief in that which is not.
Of all the sciences,none within recent years has so quickly mancipated itself from the fogs of empirical conjecture as that of agriculture. Up to the end of the last cen tury even, people believed that air, water, oil, and salts were the sources of plant nutrition. Wallerius, Bergmon, Palissy, Davy, De Saussure, and Sprengel contributed dis covery after discovery, investigation after investigation but their work was scattered and little known outside their aboratories. It was reserved for the genius of Liebig to nite all these fragments of truth; but it was not until 1840 hat he produced his great work " Chemistry in its Applica tion to Agriculture and Physiology," and thus gathered in oncrete form the materials which are the basis of a now reat and rapidly growing science. It is hard to realize tha agricultural chemistry has found its application for but 26 years, so clearly are its benefits before us in tangible form But on the other hand, this only serves to indicate to us how vast must be the results yet to come, when agriculture, through the instrumentality of its knowledge,shall have be come in its turn as exact as its sister sciences, and as sus eptible of being taught and learnt in the same manner as hey. And to attain this much desired end, our schools and colleges, under the guidance of far-seeing men, are doing splendid work.
The youngest of our universities, Cornell, established an gricultural department three years ago, under the charge o Professor Roberts, the farm consisting of 150 acres, in no ver good condition. Upon this tract of land the whole science of raising crops, as well as the business of managing farm, is taught with a thoroughness which we doubt has ever been exceeded. Eighteen square rods of clover, for in stance, are set apart for eighteen different modes of treat ment with fertilizers. In the experiments with corn, thre lows of each kind or of each mode of manuring or of the different modes of management in other respects, exterd across the field. There are also experimental striy s of oats nd wheat; and thus every method of cultivation of all the farm products incident to our climate is practised directly before the student, who is required personally to perform he labor necessary in connection therewith. The results of the experiments are carefully recorded and stored away until sufficient shall have been gathered, over a number of easons, to justify the determining of accurate averages. Besides this, the students are taught a complete system of accounts. Every hour of labor hired, every product of farm sold, is minutely registered. The food which live stock consumes is recorded on one side and balanced yearly by the market value estimated by a skilled butcher. So that, in his way, the gains or losses, not only of the farm as a whole, but of every branch, are known with the utmost accuracy Every student is required to become proficient in this ac count keeping. Each keeps his books separately,and deter mines estimated values; and as he may sell his own labor to the farm, outside the time required of him, which is but two hours and a half for two days of the week, he is directly in terested in the task. Besides the farm, there is a garden of ix acres, conducted under the same admirable system; and in addition, lectures on practical agriculture are given four times weekly by Professor Roberts. The Country Gentleman, to which we are indebted for these facts, states that the number of agricultural students is still too small, so that there seems to be abundant opportunity for all who may de ${ }^{2}$ sire to acquire a thorough and most valuable education. Certain it is that such instruction is most urgently needed in this country. It has become too much the fashion for oung men to crowd into the great cities, and there to eke out lives behind desks and counters which should be spent in developing the vast resources of the thousands of square miles wherein the richest soil on earth awaits the plowshare. In the Centennial Exposition are exhibited actual glass-enclosed sections of prairie soil with the black unctuous
loam extending downwards far below the reach of the deeploam extending downwards far below the reach of the deep-
est furrow. Go look at that superb exhibit in Agricultural Hall, and think of the possibilities which educated farmers cultivating such land might accomplish. Think of it, stal wart young men, who meditate coming into the city after the present harvest is garnered, to find work where there is none to be had. Expend your labor and means at Cornell, Amherst, Dartmouth, and other like colleges, and obtain pre-empt your land, and start on the high road to independ. ence and ultimate fortune.

Crystallized Gly cerin.

Dr. Armstrong.: recently exhibited, at a meeting of the Chemical Society, London, a specimen of pure crystallized glycerin. The solidification took place while the glycerin
was being agitated on a railroad journey in cold weather was being agitated on a railroad journey in cold weather
last winter. Dr. Odling mentioned the curious fact that last winter. Dr. Odling mentioned the curious fact that
hydrocyanic or prussic acid is an excellent test for the purity of glycerin,the slightest admixture of any foreign substance causing the glycerin to turn yellow in a short time if a little hydrocyanic acid be stirred into the liquid.

IMPROVED APPARATUS FOR LINING INSOLES OF BOOTS.
Mr. Charles Monahan, of St. John, N. B.,proposes to apply the linings of boots and shoes in a quick and perfect manner by an improved machine, which we illustrate herewith
There is an upright post,to the top part of which the last, B,is securely attached. A metallic guard, C, B,is securely attached. A metallic guard, C, extends around the last, and is attached to
a support, D, that slides on the upright stand. a support, D, that slides on the upright stand.
The support,D, and guard, C, are forced in upThe support, D, and guard, C, are forced in up-
ward direction, to project above the last, by a strong spiral spring, D^{\prime}. The pasted lining is placed bottom upward on the last, and prevented from sticking to the boot by the guard, while the boot is drawn over the last. The guard is kept in position by its spring until the boot is in position to be pressed on the last. The boot forces the guard down, and presses the lining firmly on the insole of the sole, so that it sticks to the same in an even manner. The boot is then taken off, a new lining placed on the last, and the next boot brought down. This invention was patented through the Scientific American Patent Agency, July 4, 1876.

Powder for Producing ozone
"In order to produce artificial ozone, Mr. Lender makes use of equal parts of peroxide of manganese, permanganate of potassium, and oxalic acid. When this mixture is placed in contact with water; ozone is quickly generated. For a room of medium size, two teasponed. For a room of medium size, two teaspoonuls of this powder, placed in a dish and occa= ionally diluted with water, would be sufficient. The ozone develops itself; it disinfects the surrounding air without producing cough."

What a British Centennial Judge Thinks of Us. The London Times, of August 14, gives unusual promi nence to a letter written by an English judge at the Cen tennial, which the Philadelphia Ledger copies, and of which
of up 4 miles is easy, there only being about two miles of the way is to the mile. The highest altitude on the road is the summit to the mile. The highest altitude on the road is the summit
of the cañon, which is about 7,750 feet above the level of the

APPARATUS FOR LINING INSOLES OF BOOTS

which ultimately flows into the Colorado, and is about four or five miles long by two or three in width. At its lower end, numerous cañons putinto the valley; and at the base of the hills around these, the coal shows in a semicircle west and ilst around the valley for sis or eight miles. Two, and it east and the and in orincipal the Hutchings, being 32 feet in thicker th principal one, the Huning, being 1 lying horizontally on the east side of the valley and trend ing to the south east. The region is cretaceous sandstone, and the Hutchings shows a foot wall of light gray sandstone with a yellowish gray sandstone roof. In the neighborhood is but very little shale, there being no shale seams whatever in the coal bed. No iron is visible, although higher up in the mountains is seen ferruginous sandstone, which, however, indicates nothing permanent. About one half of the bed of coal is of an excellent coking variety, the specimens we saw, though made in a primitive manner, being equal to the best imported. The coal beds are at an altitude of about 7,550 feet.
The surrounding hills have fine pine timber in sufficient quantity for local purposes, while an abundance of water is close by. Considerable importance can be attached to these coal fields for their accessibility, their great extent, and the coking qualities of their product.-Salt Lake Weekly Miner.

NEW COMbination tool for sewi ng machines.

 We illustrate herewith an ingenious arrangement of a the tools, used in the care and adjustment of sewing machines, in a single implement. It is the in vention of Clara A. Rogers, of New Orleans, La., and was patented through the Scientific tented through the Scien Patent Agency, July Amerisan Patent Agency, July11, 1876. The tools combined are a scissors, wrench, needle straighta scissors, wrench,needle straight-
ening device, throat plate mover, screwdriver, and measure. One of the handle parts of the scissors is provided with an extension, B, that has a square recess, a, for the purpose of serving as a wrench, the stocks of the scissors serving as handles. The recess, a, is fur ther provided with a short and narrow slot, b, which serves for the needles. The other scissors handle has an extension pin, d, by which the throat plate of the machine, whether of glass or metal,
 chine, whether of glass or without
may be readily moved wither may be readily moved the use of a separate the use of a separate tool. One or both stocks of the scis,
sors may be graduated to form an inch or other measure, e sors may be graduated to form an inch or other measure, e -
which is very handy, as the scissors are at any moment available; and the end of the broader stock is made tapering to form a screwdriver. The whole forms an exceedingly con venient and useful tool.

SILVER discoveries have been made in the vicinity of Ar thur's Landing, on the north shore of Lake Superior, about 200 miles northeast of Duluth. A miner dropped down upon some crumbled quartz containing native silver. The rock is expected to yield $\$ 3,500$ or $\$ 5,000$ per tun
tain ance in an editorial as follows. Cap tain Galton, the judge, says that he saw enough there to convince him that American manufactures had been making remarkable strides during the past twenty years. Captain Galton is one of the engineers appointed by the British Board of Trade to survey railway and other public works before they are opened for public traffic; and he was a British judge in the group of railway appliances, and im mediately upon his return home he penned mediately upon his return home he penned
this letter. He had previously visited this country twenty years ago, and during the in country twenty years ago, and during the interval we all know that American manufac turing progress has been remarkable. He
speaks of the great advance in our industries speaks of the great advance in our industries
as shown by the growth in the amount of coal as shown by the growth in the amount of coa
mined, and says that our higher wages, com pared with England, are counterbalanced by the use of machinery to an extent much ex ceeding that generally in use in England. Ob serving the substitution of steel for iron rails on our railways, he candidly remarks that the new rails are almost all made in the United States, and that it is not probable that England will be called upon much longer to supply us with rails. He goes further, and, speaking of general manufactures, says Eng land can no longer expect to get a market for her manufactures in the United States, but she must be prepared to find our manufactu rers competing with her in every market to which they have access. Mr. Galton bluntly tells the Times that England should appreci ate her true position in this matter, and he closes by urging all Englishmen to visit Phil adelphia, where they can see the developmen of American industry, and meet the leading manufacturers as well as the most prominent Americans of all classes.

A NEW OIL CUP,

Mr. Ezra B. High, of Reading. Pa, has patented (July 4, Mr. Ezra B. High, of Reading. Pa, has patented (July 4,
1876) through the Scientific American Patent Agency a novel 1876) through the Scientific American Patent Agency a novel
improvement in oil cups, which we illustrate herewith. The object is to furnish a constant and uniform supply of oil to the bearing at all times. The cup is made in two parts, A D, which are screwed together. The upper part, or reservoir, A, receives a screw plug, G, so fitted as to be airtight. The lower part or distributing chamber, D , is made with a perforated screw stem, to be screwed into the journal or screwed into the box, and in the upper end shaft box, and in the upper end
of the perforation of which is secured a small tube, E, to re secured a small tube, E , to re-
ceive the siphon wick by which ceive the siphon wick by which
the oil is carried to the journal the oil is carried to the journal
to be lubricated. In the bot to be lubricated. In the bot tom of the reservoir, A, are se cured two tubes, B C. The upper end of the tube, B, rises nearly to the top of the reser voir, A, and its lower end ex tends down into the distribut ing chamber, D , so far as to be below the end of the tube, E The upper end of the tube, C rises a little above the bottom rises a little above the bottom, a^{1}, of the reservoir, A, so tha any sediment that may be in the oil will settle upon the bot tom of said reservoir, and can not flow through the tube, C into the distributing chamber, D. The lower end of the tube, C , may be bent up into such a position that a plug may be in serted in it through the air hole
 or vent, F , to prevent the oil from flowing down through the tube, C, when the reservoir, A, is being filled. With this construction the oil will flow down through the tube, C, into the distributing chamber, D, until the lower end of the tube, A, is covered, which will prevent the entrance of any more air into the reservoir, A, and will stop the flow of the oil until enough oil has been carried out by the siphon wick to again uncover the lower end of the tube, B, and al low air to again pass up through the tube, B. In this way the oil will be kept at about the same level in the distribut ing chamber, D , so that the siphon wick may carry it out in a uniform quantity. Air, to supply the place of the distri buted oil, enters through the vent, F.

As at present worked, the gold and silver mines of Japan do not appear to be of much value. Iron ore is abundan and the mines are rich. Magnetic ore in sand and lump is most commonly used. Lead is extracted in many provinces, but in a faulty manner and in small quantities. Some of the ores are very rich. Tin is reported to be found in two localities, and thequicksilver mines are not worked

IMPROVED CONSTRUCTION OF STABLES.

Mr. Frank M. Dixon, of Jefferson City, Mo., has recently invented a contrivance for hitching a horse and fastening a stable door in such a manner that the horse will be freed and the stable door opened in case of fire in the stable, and a contrivance for sounding an alarm at the same time. The engraving shows a transverse section of a stable having the improved appliances. A cord, of cotton or other combusti-

ble material, is stretched along the space above the stable, from side to side, to which the halter of the horse is attached, A cord, C, holds the door, E, shut-say, by a chain, F, and a padlock, G-and the door has a spring, H (dotted line), to throw it open when the cord is released. There is another cord, extending along the space above the stable, from side to side, and connected to an alarm bell, J, and also having to side, and connected to an alarm bell, J, and also having the halter and the door cord attached; so that when the cords are burned off by fire, the door will spring open, the horse
will be released for escape, and the alarm bell will sound. will be released for escape, and the alarm bell will sound.
The halter will pass down from the space above, where it The halter will pass down from the space above, where it
is attached to the cord through guides, K , and the door cord will pass along through suitable guides. The invention was patented on July 18, 1876.

The United States Patent Association.

This society meet on September 7, 1876, at the Franklin Institute, Philadelphia, Pa, for the purpose of suggesting means for the improvement of the patent system and the ormation of an international association for promoting uniformity of patent laws in all countries. Among the members present were Hon. J. M. Thacher, ex-United States Patent Commissioner ; Professor Hedrick, of the United States Patent Office; W. C. Dodge, of Washington, and John S. Perry, of Albany, N. Y., President of the Association.
President Perry called the meeting to order, and read an address, in which he took as subjects of consideration: First, the importance of the patent system in general ; and, second, that of the United States in particular, viewed both in respect to the development of original invention and as inciting inventors to persevere in the perfecting of their plans. He showed the benefits which have arisen from the patent system by a review of the condition of Europe before the patent law was recognized. So long as the laws of pro he patent law whe perty were neither recognized nor properly defined, there could be little incentive to invention or the pushing forward of appliances for the better comfort of mankind. Often an individual, like Roger Bacon, would be on the eve of an invention, and often for that matter did invent; but, well knowing that his rights would be unrecognized, he failed to make it public. Indeed it is well known that several inventions and discoveries of great value, which have since been re-invented, were really made, but suffered to die with the inventor or discoverer from this cause. The first trace of patent law is, he thought, to be foundin the reigns of Henry III. and Edward IV., of England, in the thirteenth and fifteenth centuries, about which periods the services of the villains or serfs gradually became less onerous and uncertain.
He furthermore said: "Patents are sometimes characterized as monopolies and even as vicious monopolies. With equal reason might the possession of wealth honestly acquired be denounced as a trespass upon the rights of others. To take money unlawfully is called stealing; to appropri ate an invention is not by some considered very dishonorable. The public seem to have lost sight of the fact that the inventor has taken nothing which it had before; that he has from his own brain brought into existence and perfected, at his own cost of labor and money, a production as new to the world, and perhaps as useful, as the gold which the miner brings forth from the hidden recesses of the mountains. The most bitter opposition the patent system meets is from the agriculturists, and they of all men are the most benefited by its provisions. With the high cost for labor that has existed during the past twelve years, the business of farming could not have been carried on without the improved machinery that inventors and progressive manufacturers have provided.
" The importance of the patent system in general is shown in that a vast number of articles have been throughits instrumentality added to the means of human happiness, of which the latter must otherwise from necessity have been deprived. In reference to the importance of the patent system in the United States, the speaker argued that the history of patent protection is almost coincident with our existence as an independent nation. The law of patents, as it now stands in the United States, rests on the statutes of

February 21, 1783, and April 7, 1800. These statutes have been modified several times, yet our patent law as it now stands is far from being perfect, and it is in the hope of aiding in correcting its errors, and in giving it a wider
Remarks: These views are in the main sound, although tinged with a few misconceptions. Patents, the chairman assumes, are not monopolies, but inherent rights. The poor miner, who controls the gold that his industry brings from the rocks, is just as much of a monopolist, he tells us, as the wealthy patentee, who compels every poor woman to pay him forty dollars royalty, for the privilege of earning her living by means of his patent sewing machine. Such reasoning, Mr. Chairman, will not do. The people know better. They know by actual daily experience that patents are monopolies. some of them of the most oppressive kind; and no sugar-coating by any Patent Association will alter the fact. It is because patents are monopolies of the vicious kind, that they are valuable, and in such great demand. Of what account would a patent be, if the patentee were not clothed with authority over his fellow creatures to enforce his private demands, in respect to his patent? Of none whatever.
According to President Perry, the miner who first discovered gold in the Rocky Mountains was the natural patentee of the entire range, as respects the precious metal. He takes nothing that the public had before; on the other hand, by his discovery, he contributes to the general supply of gold. Therefore, no one but the discoverer, or the favored few whom he permits, ought to be allowed to work at gold mining on the premises. This is poor logic for the United States Patent Association to promulgate.
Patents, as we have stated, are pure monopolies. They are only tolerated and granted for reasons of public policy. They are issued solely as rewards: for the mere purpose of stimulating people to discover, invent, and study out new forms of industry. The general weal is promoted by increasing the number and variety of industrial arts, which all the people may freely and equally enjoy. Instead of rewarding the inventor by paying him a sum in cash from the collected taxes in the treasury, the government gives him a patent, or, in other words, makes him his own tax gatherer; and authorizes him to compel the people, by force if necessary, to satisfy his demands.
The redeeming feature of our patent monopoly system is that it effects its object, it brings out new improvements, and is limited to a brief period. Our patents run for seventeen years-a short time in the life of a nation; the inventions then become public property, and everybody may en joy them, free from the annoying whip and spur of any wealthy private corporation or patent holder. Great as are the inconveniences of our patent system, the benefits are mazing, and greatly exceed the drawbacks. So long as this continues to be the case, the patent laws will stand.

A PAPER EGG CUP.

Here is a new application of that all-useful commodity,

Fig. 1.

paper, to the purposes of table furniture. Mr R. M. Washburn, of Burlington, Iowa, has patented a paper egg cup, which, besides being a really ingenious idea, is based on sound theory, inasmuch as paper is a non-conductor of heat; it is elastic, so that one cup will hold securely an egg of any size; and it is molded in corrugated form, so that there is always a circulation of air between the egg and its vessel, which is represented in our engravings as empty in Fig. 1, and holding an egg in Fig. 2. The same cups may be used over and over again, or may be thrown a vay after each meal, their cheapness allowing of this latter disposition They are handy for picnic parties or for persons traveling, and as novel raun for hotels, resta raunts, and even private houses. The material may be paper, muslin, or almost any fabric. Tinted of different colors, the cups would be quite ornamental; or they migh serve as a medium for advertising, so that the person using them may

have food for digestion mentally as well as physically. The invention is one likely to be remunerative. It is just such cheap and simple devices which, now-a-days, are most in demand, and produce the largest profit. Those desiring to negotiate for the right to manufacture can obtain further particulars by addressing the inventor as above.

A SIMPLE DIVIDING MACHINE.

Among the exhibits of the Massachusetts Institute of Technology, at the Exposition, is a novel instrument devised by the professor of physics, to be used as a dividing machine for graduating scales of equal parts. It can be
constructed for a trifling outlay by any one who understands the use of tools, and by its aid scales can be laid down with considerable accuracy. It consists of two strips of wood A, B, which slide in a wooden frame, E. The ends of a cord are fastened to these strips, the cord being fastened, as shown in the engraving, to the weight, C, which is heavy enough slide the strips along the frame. The slips can, however, be kept in any desired position, by placing weights upon them.

At the upper extremities of the slips is a fork-shaped piece of metal which is secured to the strip, A, by a pin, on which it can turn; and a pin on the strip, B, engages the fork, allowing a certain amount of play, which can be varied at pleasure by the adjusting screw, as shown in the engraving. An arm, F, is attached to the frame by a pin, and has a pencil at the end, this being the marker for constructing the scale on a piece of paper which is fastened to the strip, B. To show the action of the instrument, suppose the adjusting screw is turned so that the play of the fork is ${ }_{T} \frac{1}{04}$ of an inch. A piece of paper is secured to the strip, B, and a mark made upon it with the pencil. The weight is then lifted from the strip, B, when it will be slipped along a dis tance equal to the play of the fork, or $\frac{1}{10} 0$ of an inch, and a second mark is made with the pencil. Then the weight is replaced on the strip, B, and that on the strip, A, is removed, when B will be slipped along until it is square with B, a stop preventing the fork from turning back any further. The weight is replaced on A, the other removed from B, a third mark made, and so on, alternately moving each strip through the required distance, until a sufficient numbe of divisions is obtained.
R. H. B.

NEW COMBINATION TOOL.

Mr. Lester Beach, of Derby, Conn., is the inventor of a novel and ingenious combination tool, an engraving of which is presented herewith. The body of the tool consists of two parallel bars, connected at their ends, and at suitable distances apart between said ends by crossbars, so as to

make the tool light and at the same time strong. Upon one end of the tool is formed a screwdriver, A, near which is a hammer head, B; and upon the other edge is an ice pick, C. To one of the crossbars are attached two small steel plates, D, arranged at an angle, so that they may be used as a knife sharpener. Upon the other end of the tool is formed a notched claw, E, for pulling tacks and for lifting stove covers. Upon the edge, diagonally opposite the ice pick, C, is formed a curved finger, F, which may be used as a poker and as a pot lifter. At one end the space, G, is made slightly tapering, and the inner edges of the side bars are flattened, to adapt said space to be used as a wrench for turning various sized nuts. Upon the side bars of the tool are formed division marks of inches and parts of an inch, to adapt the tool to be used as a rule, H. Patented through the Scientific American Patent Agency, August 1, 1876.

The East River Bridge.

Chief Engineer Roebling now intends to hoist a carrier rope of $1 \frac{8}{4}$ inches diameter, instead of $1 \frac{1}{4}$ inches, as originally intended, between the towers of the East river bridge The increased weight will prevent the carrier rope from being hauled across by the traveler ropes now in place; and it will have to be carried across the river in a scow and it wiled taut between the towers, as was done in the case of hauled taut between the towers, as was done in the case of
the first traveler rope. Two 1甚 inches carrier ropes will be placed in position; and then the cradle and foot bridge ropes will be hung on them by pulleys. The carrier ropes are of chrome steel wire, and will weigh about $22,000 \mathrm{lbs}$.

A Statue of Lafayette.

The French republic has recently sent, as a gift to the citizens of New York, a bronze statue of Lafayette, the recitizens of New York, a bronze statue of Lafayette, the re-
nowned soldier whose zeal in the cause of republicanism brought him to this country 99 years ago, and enlisted him in the army which achieved our independence. The statue has been erected in Union Square, looking down Broadway ; and it was unveiled on September 6, with appropriate ceremonies.

Contregymudence.

The Weight of a Body inside a Hollow Sphere.

 To the Editor of the Scientific American:I am surprised at the half knowledge shown by your correspondents in their discussion of the attraction of a hollow sphere on a body within it. Can any one name a scientific man of repute who has repudiated it, or the demonstration of it, which is to be found in "Newton's Principia"? If Mr. Whitmore chooses to represent the mass which exerts the attraction on the body, P (see the illustration on page 84), by the cup-shaped fragment, B EF G C B, his position is undoubtedly correct; but the calculation of the attraction becomes so troublesome that we may well ask for a simpler way. Newton's theorem furnishes this.

It a thin shell, whose section is the circle at AM $a \mathrm{NA}_{\mathrm{A}}$, let a body, P,be found; draw through P in any direction the line, BP b, and revolve around it the line, $\mathrm{A} P a$, which makes with it the small angle, APB: the resulting circles, shown in section at A D, $a d$, will have the areas $\pi\left(\begin{array}{ll}\mathrm{A} & \mathrm{B})^{2} \text {, }\end{array}\right.$ (A B $)^{2}, \pi m t(d b)^{2}$, where $t=$ the thickness of the shell, and $m=$ the quantity of matter in the nit of volume: the attractions on P will equal these masss divided by the squares of the distances from P, namely P B, P b, and multiplied by a constant, f; thus : Attraction at B : attraction at $b:: \frac{2 \pi m t f(\mathrm{~A} \mathrm{~B})^{2}}{(\mathrm{P} \mathrm{B})^{2}}: \frac{2 \pi m t f(d b)^{2}}{(\mathrm{P} \mathrm{b})^{2}}::$ $\frac{(\mathrm{A} \mathrm{B})^{2}}{(\mathrm{P}}: \frac{(d b)^{2}}{(\mathrm{P} b)^{2}}$. But from the similarit
 angled triangles,
$\cdot \overline{(\mathrm{B} \mathrm{P})^{2}}=\frac{(\mathrm{P} b)^{2}}{}{ }^{2}$
at b. That is, the body, P , will not move in either direction along the line, B P p; and as this line may be drawn in any direction whatever in the shell, the body at P will not move in any direction, and will therefore be in equilibrium at every point. To prove this for thick shells or hollow spheres, it is only necessary to conceive them as made up of an indefinite number of thin ones.
Professor Olmsted has been placed in apparent contra diction with this truth because it was forgotten by the writers who quoted from him that the attraction of gravitation varies inversely as the square of the distance. Thus, if the body be lowered half way to the center, it would be attracted by a mass equivalent to one eighth of the original sphere; but as the distance between the body and the center of the sphere is only one half of what it was before the attraction will equal $\frac{\frac{1}{8}}{\left(\frac{1}{2}\right)^{2}}=\frac{1}{8} \div \frac{1}{4}=\frac{1}{\frac{1}{2}}$: or in general, if the force at the surface of a sphere, of radius r, be represented by 1 , and the portion lost in descending a distance, d, by x, we have: $1: 1-x:: \frac{r^{3}}{r^{2}}: \frac{(r-d)^{3}}{(r-d)^{2}}$
$\therefore 1-x=1-\frac{d}{r}$ or $x=\frac{d}{r}$; that is, a body lowered toward the center of the earth would lose in weight and proportion to its distance downward, as Olmsted says.
Your correspondent further confounds attraction with weight when he says: 'Guided by this theorem, we should expect a hollow sphere to balance if suspended from any possible point within the void." Not at all. The confusion comes from not distinguishing between the attraction between the earth and the portions of the shell on opposite sides of the point of support, and the almost infinitesimal attraction between these portions and any body at this point.
The theorem is in fact not to be proven experimentally but is an inevitable consequence of the grand, of ten verified, never disproved law that every body attracts every othe with a force directly as the product of its mass, and in versely as the square of the distance between them, that is, $f=\frac{m m^{\prime}}{d^{2}}$

It should perhaps be added that the demonstration above iven, as Newton himself pointed out, is only true when each shell is homogeneous, though neighboring shells may vary in density to any extent. In the case of the earth, the curious result is found that the center of the earth is so much denser than the part near the surface that the force of attraction increases at first on descending; and so Pro fessor Airy's clock, in the mine 1,250 feet deep, gained 27
Malone, N. Y
C. K. W.

South American Birds

To the Editor of the Scientific American:
On the eastern shore of the Uruguay river, from Pay sandu to Independençia, there is an open rolling country with frequent small ravines, most of whish are bordered with a narrow skirt of timber of stunted growth and flow ering shrubbery, which makes a fine retreat for the birds, and also frequently shelters the deer, South American tiger, and wild cat, which; however, are not abundant. The hill tops are also crowned with timber of similar growth, mak ing a pleasant shade and resort from the scorching sun Except on the hill tops and in the ravines, the country is partially covered with tall coarse grass, which makes a fin
over for quail and partridge. On approaching a ravine, the first thing that attracts your attention is the hum of the humming birds, which are of numerous different varie ties, each bird balancing nicely on its wings while it inserts its long slender bill and extracts sustenance from the desert flower. Along the ravines, wild pigeons, similar to ours are to be found in plenty, and are easily bagged. Next is the small partridge, very much like our northern quail which are difficult to bag on foot and without a dog, a they will hide in the tall grass; but with a trained dog, the sport is fine. On horseback, you may almost ride ove them before they will fly up. They are in flocks generally yet they do not huddle ; and it is difficult to get more than one at a shot. But you may sit on your horse and shoot a whole flock singly, as they seldom fly except they are flushed by a dog. The large partridges, which closely re semble English pheasants, are generally found singly, an the mode of catching these birds is rather peculiar
They are found amongst the tall grass. The sportsman is mounted (carrying no gun, however) and has his dog trained to the work. He walks his horse slowly along, while the dog hunts about amongst the grass; and when he comes close upon the bird, the latter breaks cover, rises a little above he grass, and flies off on a level. When the bird flies, the sportsman puts his horse to his mettle and follows to th spot where he sees the bird alight (probably a hundred yards) and waits the arrival of the dog, who follows at his top speed and rushes in amongst the grass; and soon again the bird breaks cover and flies as before, but only about half a far. The sportsman and dog follow up as before, and the bird is hunted out again by the dog, and divides the distance again, and drops into the grass, pursued by sportsman and dog, this time closing the race for life. The dog rushes into the grass and directly comes out again with the bird unharmed in his mouth; the sportsman in the meantime dismounts and receives the bird, and disposes of him as he thinks proper. I was once an eye witness of such a race and was told that these birds never break cover but thre mes, which seems to me rather strange
Stratford, Conn.

Truman Hotchisiss.

The Atinosphere of the Moon

To the Editor of the Scientific American:
The moon is considered, by some astronomers, to have no atmosphere, as you mentioned in a recent issue; and in the article you gave some very plausible reasons for supposing that there may be an atmosphere of some kind on that body
Heat, as you say, would have a great influence in expand ng the air to a great extent, and rendering it so rare that it would extend out from the surface of the moon a great dis ance, so that its presence could hardly be detected by us et when the moon cooled, the air would be condensed, an hen be as dense or denser than our atmosphere, and could e easily detected.
To prove that the detection of the presence of the atmos phere would be difficult when the air was rare, and com paratively easy when the same bulk of air is made to oc cupy a smaller space, is very simple; for if we take a cubic foot of air or any other gas of the density of our atmos phere, the refraction of a ray of light passing through it would be very evident ; but, if the same amount be made to occupy one hundred cubic feet, the refraction would be very much more difficult to detect, for, according to the old rule, " the greater the difference of the densities of the two ases, the greater the refraction, and vice versa.'
Covington, Ky.
William L. Dudley.
The Direct Motion of the Radiometer an Efrect o Electricity.

The thator of the Scientifi American.

In the communication I sent you a few days ago, upon th radiometer of Professor Crookes, I showed that the exte rior of the glass globe was electrified negatively when ex posed to luminous or calorific radiations. Having made since that time, some more experiments, I have discovered new facts which enable me to explain at least some of the motions of this wonderful instrument. The facts are follows:
I took a strip of mica two diameters ($7 \cdot 8$ inches) in length and having coated one of the sides with lampblack, when it was quite dry I suspended it in a Coulomb's torsion bal ance, having previously electrified the metallic disk of the balance needle with positive electricity. The blackened side of the mica faced the electrified disk. When the needl had come to rest I allowed the radiations from a large ga flame to fall upon the blackened surface of the mica. Not withstanding the light was at a considerable distance and he needle was rapidly repelled several degrees, showing that the blackened face was positively electrified under the influence of radiation. I then turned the strip of mica so that the bright side faced the disk and allowed the radiation to fall as before, upon the blackened surface. This time the needle indicated an attraction between the disk and the mica, thus proving that the bright surface was negatively electrified.
To anticipate an objection to the theory of the radiomete which will be suggested by these facts, namely, that these electrical manifestations are too feeble to account for the rapid revolution of the arms, I made the following experi ment: I rubbed the globe gently with a brush composed of fine threads of glass; the electricity developed on the globe acting by induction apon the nearest mica disk, caused brisk oscillation. I then measured the intensity of the elecricity upon the glass globe by means of the proof plan and
reater intensity in this case than there was when the globe was electrified by the radiations from aluminous or obscure ource and tested in the same manner
From the above facts the following theory necessarily fows as a corollary; The hemisphere, A, being negaively electrified, as we have hown, upon its whole ex erior surface, we justly conclude that the interior is poitively electrified. The hemisphere, B , is electrified in he same way, but its intensity is different, the charge being less at B than at A
The mica disk in the posi
 side turned towards the radiant source, is electrified positively upon the black and negatively upon the bright surface, as we have proved above. As like electricities repel and unlike attract, the positive electricity at A will repel the arm, and hat at B, acting upon the bright face, will attract it, so that will necessarily rotate in the direction of the arrows, amely, A a B. When the arm has reached b, the direction of he rotation will not be changed, but A will now attract, and B repel, and it will continue to move in the direction B $b \mathrm{~A}$. The direct and most usual movement of the arms in Profesor Crookes' radiometer is thus explained in the simplest manner.

Joseph Delfaux, S. J.
11 Rue des Recollets, Louvain, Belgium.

\section*{NOTES ON THE RESISTANCE OF MATERIALS.}

The ordinary formule and tables in technical works for

 proportioning the parts of machines and structures are based on the ultimate resistance of the material which is to be employed, accompanied by recommendations that a certain fraction only of the breaking load should be applied in practice. This fraction varies from $\frac{1}{8}$ to $\frac{1}{8}$, according to the views of different authorities. It has been found, however, that a material may be strained in such a manner as to become unsafe, by a load that is generally less than half the ultimate resistance, so that some of the best authorities consider that the fraction of the breaking load, or factor of afety, should be chosen with reference to the elastic limit of the material rather than its ultimate resistance. Still more recently, attention has been directed to experiments showing that materials could be ruptured by the repeated application of a comparatively small load. It is obvious application of a comparatively small load. It is obviousthat a rule for proportioning a machine, which provides for that a rule for proportioning a machine, which provides for
safety by using only a part of the strain allowed by the heory in which the rule is founded, is at best only a makeshift, and is unsatisfactory on many accounts. If the struc. tures of the materials used in the arts were understood, so hat the effect of strains could be accurately noted, it would f course be easy to give rules which would enable the material to be disposed in the most effective and economical manner. The experiments on the effect of repeated strains, referred to above furnish some facts on which a novel and interesting theory of molecular structure has been based. Although this theory is far from being fully verified by experiment, it is, to say the least, not absolutely contradicted. A good discussion of the subject has recently been given by Professor Spangenberg of Germany, and a translation of the ame has been published in this country, from which the following account has been condensed.
What is commonly regarded as a solid is supposed, in the theory referred to, to be made up of a number of atoms and molecules, surrounded by ethereal atmospheres,and grouped in various forms, according to the temperature and nature of external strains. Most readers know that the theory, so far, is in accordance with that generally adopted by scientists. Perhaps it neerv can be absolutely proved, although thas been shown to be extremely probable. Now it is known that when a mass of metal is melted and poured into a mold where it is rapidly cooled, it tends to crystallize in roups, and this is regarded as the first normal condition. Wrought iron and steel are generally rolled or hammered before use,and this breaks up the crystalline groups and produces a fibrous grain. When a metal is subject to strain, the grouping of the atoms will be changed, and they may return to their former position when the load is removed, or may take new forms, according to the amount of the strain and the rapidity of its recurrence. The effect of repeated strains is to break up the crystalline structure, and induce an amorphous condition. In changing to this state, the strain may act so quickly that all the crystals are not affected, and upture will occur. The atoms of the body are supposed to have a mutual attraction for each other, and the other atoms attract those of the body and mutually repel each other.
It seems to be settled by experiment as well as theory that,contrary to general notions, the resistance to rupture of body is less, the more crystalline is its structure, and inreases as the amorphous structure is produced. It is supposed that the cohesion between separate crystalline groups is less than the cohesion of molecules forming a crystal.
The experiments given in connection with this theory show conclusively that the number and duration of strains are of quite as much importance as their magnitude. Whether hen, the theory on which this action is explained if acepted or not, the facts seem to show the point to which uture experiments on the strength of materials should be directed. Possibly the United States testing board may derive some hints from Professor Spangenburg's treatise
R. H. B.

Chemicals at the centennial.

THE FRENCH EXHIBIT.

The number of exhibitors is about the same as in the German department, but the exhibits taken together are less interesting, we think, than those of Germany. Th want of a good French catalogue of their chemicals is se verely felt. Beginning with the aniline colors, those of A. Poirrier, Paris,are particularly noticeable, both for quantity and color. One huge mass of violet de Paris (dimethylani line violet) is over 2 feet long and 18 inches wide. Sever al of the aniline dyes are exhibited in glass fruit dishes, the foot of each dish being wrapped with silk dyed therewith, and exhibiting a striking manner the difference of color which thesa dyes have when dry or in solution, as most of the reds and violets form green crystals. This seems due to the fact, equally difficult of explanation, that they re lect one color and transmit another, wherefore solution and films are red, thick masses and crystals green or bronze. In addition to several aniline colors, so called, this firm exhib. its the new and costly eosine in larger quantity than almos any one else. Also specimens of benzyl chloride and ben oic acid made from the latter, as well as benzyl anilin This exhibit is unequaled except in the German depar ment, where Bayer \& Co. and the Berlin Joint stock Com pany compete for the first place. Some large blocks of co allin, anilin red, etc., are exhibited by Guinon's Sons Co., Lyons, as also orzulin, cochineal, picric acid, and bisul phite of soda. Clauseau exhibits madder root, whole in owder and flour alizarine and purpurine from madder alcohol from madder, and madder extracts. A. Beslier ex hibits the whole plant of thapsia garganica. Several par ties exhibits dye woods and extracts used in dyeing Charles Dubois exhibits a number of cyanides and other poisonous salts for use in the navy, probably as wood preserv rs, including cyanides of lead and copper, sulphocyanides of mercury, copper, and arsenic, chromate and arsenite of mercury, etc.
Solvay \& Co. exhibit both here and in the Belgian section set of substances to illustrate their new ammonia soda process, namely, salt water, crude ammonia liquor, carbon ate and bicarbonate of soda. The analyses show the extraordinary purity of the soda obtained in this process. The carbonate of soda contains $99 \cdot 438$ per cent of the pure salt, $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right), 0.21$ of common salt (Na Cl), 0.0015 of sesquioxide f iron. The bicarbonate is, of course, less pure, contain ing bicarbonate of ammonia to the amount of 0.42 per cent which is expelled along with the extra equivalent of car bonic acid, on heating to form the monocarbonate. Photo graphs of the exterior of the works are shown
The most interesting pharmaceutical exhibit is that of C . Torchon, Paris, containing a huge block of chloral hydrate, ditto in crystals, a whole guinea pig preserved by the injec ion of chloral, specimens of hydrosulphide of chloral, metachloral, and alcoholate of chloral. In the same case is a bottle of petroleum said to have been produced synthetically, by the action of carbonic acid and steam on sulphide of ly, by.

There are, indeed, many soap and candle exhibits, a few carbolic acid exhibits, sulphur in several forms, capsules and pills, insect powder, glue, gelatin, and bone black; but little of real interest to the chemist. Of ultramarine we noticed but two exhibits, those of F. Richter, of Lille, and Guimet, of Lyons. Faure and Kessler's pan apparatus for oncentrating sulphuric acid is also to be seen in this section.

the belgian exhibit

One of the most interesting objects in the Belgian section is a working drawing (elevation) about 6 feet long, illustratA. De Hemptinné's new method of making and concentrating suiphuric acid. We think this process has not been tried on a manufacturing scale, but it is attracting more attention at this moment, among practical men, than any other novelty in this important industry. Solvay \& Co., Couillet, near Charleroi, have a better exhibit of the ammonia soda process here than in the French section above referred to. The other exhibits are unimportant, excepting the coal tar colors of Max Singer.

He swiss Exhibit.

Bindschedler \& Busch, of Basle, deserve notice for their oal tar products, which include some remarkably large needles of crystallized anhydrous phtalic acid, diphenylamine, artificial alizarine, crystals of anthraquinone, resor cin, toluidine, eosine, and ether of tetrabrom-fluorescene, which latter is the correct scientific designation of the beautiful eosine already mentioned. A manufacturer of coffee substitutes, fig coffee, vanilla coffee, etc., makes quite a display here, as does Hurlimann, who shows artifi cial Swiss honey. We also noticed several specimens of phosphorus bronze, which are interesting, although not strictly chemical.

Holland.
The Netherlands are poorly represented in this depart ment; even coal tar colors are absent, and soaps, oils, glass inks, and paints, with one large pyramid of crude sulphate of ammonia, exhaust the list. One case contains a fair
show of minerals, including a large mass of malachite, and smaller pieces of amethyst, lapis lazuli, and labradorite (locality not given). Von Ketten exhibits a powerful horseshoe magnet, composed of seven leaves; it is $2 \frac{1}{2}$ feet long, we:ghs 83 lbs., and will lift, he says, 500 lbs. A series of models illustrating in detail the effects of the cattle plague were of particular interest, as showing the care with which this subject has been studied abroad.

The land of Berzelius is largely given up to " match-makng," if we may judge from the catalogue, where no less han 16 out of the 37 exhibitors deal wholly in safety matches. Norway sends over but five match makers. The well known safety match of the Jönköping's Company occupies a beautiful case, where we find matches, pocket match safes, igniting surfaces, and a new double safety match, which it is said ignites only on the box, and becomes entirely aead instantly the flame is extinguished. In the neighborhood of this famous case are columns covered with matches, with candles, and with aseptine, for the preservation of provisions and animal material. Bengston ex hibits some soda and Glauber salts,and Werner some bone oil in little flasks tastefully suspended to circular rings in tree form. Kimtze \& Co. exhibit several water filters, and Almén a variety of medicated gelatin. The celebrated Swedish filter paper, the only paper used in quantitative chemical analysis, is exhibited by the Gryscksbo Factory at Falun. The same firm exhibit writing, drawing, and printing paper, with a copy of Berzelius' commendatory notice of their filter paper. We saw no filter paper elsewhere in the exhibition, but we believe that Germany is now in close competition with Sweden in that line.
autstria.
We were disappointed to find that Austria had not thaught it worth her while to send over anything but soap and candles. Ozokerite, or mineral wax, seems to be the staple production of certain parts of Austria, Gallicia more especially, and all the changes are rung on this one substance to the exclusion of more interesting products. F. A. Sarg, Son, \& Co., Liesing, near Vienna, have a large white tablet, nearly 20 feet long and perhaps 12 feet high, made of blocks of stearine with a yellow border of wax, and their name and place of business in large letters upon it. This firm exhibits oleomargarin, milly candles, and candles of paraffin and ozokerite, an interesting collection of fatty acids both solid and liquid, glycerin, wax, etc. Another handsome display is that H. Ujhely \& Co., Stockerau, fancy wax in great variety. G. Wagemann exhibits refined mineral wax and petroleum; and Paul Dobel, Boryslaw, Galli cia, exhibits the crude ozokerite in its natural state as well as the melted and refined article.
More of a truly chemical nature is the exhibit of anthra cene, alizarine, sulphanthraquinone, and its sodium salt, by Przibram \& Co., Vienna
The royal-imperial director of the Idrian mines sends a set of minerals and products such as cinnabar,uranate of sodium, potassium, and ammonia, oxide of uranium, and the like.
Chemical glassware of the latest and best forms is sent by Lenoir \& Forster. Small sets of chemical and physical apparatus for national schools comes from A. Kreidl, Prague. The entire collection consists of 76 different articles and reagents, and costs, including packing, 53 Ausirian florins (about $\$ 26$) in Prague. This complete set, as the circular calls it, seemed to us quite incomplete, and, like most little sets of this kind, almost useless either for the instruc tor or learner. The general display of Bohemian glass
ware, of course, is extremely elegant; but a description of ware, of course, is extrem
it would out of place here
In an out-of the way corner is a small horizontal case occupying scarcely two square feet of space, and seldom no ticed by the visitors, containing a new kind of confectionery, exhibited by Josef Gobetzky, Essegg. It differs from most articles of this nature in that it contains a tasteless salt of quinine, said to be the tannate. It is probably the same as those made by Rozsnay, in Arad, and described and endorsed by Dr. H. Hager in his Pharmaceutisches Centralhalle. The latter analyzed them and found that each loz enge contained 0.97 grain of hydrate of quinine in the form of tannate. The chocolate pastilles contain about 0.93 grain of hydrate of quinine. If they are really all that is claimed for them, tasteless and yet therapeutic, we hope to see them introduced here
england.
Like those of the Austrian zection, the English chemicals deserve but brief notice. Soda ash is the staple, and all the possible changes are rung on it, nor are we surprised at this, for this is England's leading industry. Some firms send ove chloride of calcium, sulphur, and starch; one firm sends a bust of Linclon made of ozokerite. The Price Candle Com pany exhibit a large number of photographs of the fatty acids, showing the effect of admixture with varying quan tities of other acids or of paraffin. Dr. Siemens exhibits model of his regenerative gas furnace. Some beautiful irides cent crystals of chlorate of potash are shown by the Green bank Alkali Company. The finest display of rarer chemi cals is that of T. \& H. Smith, which, like many others, ar not down in the official catalogue. They exhibit a larg cake of cafferne, and smaller quantities of codeia, cryptopia apomorphia, muriate of thebaia, citrate of caffeine, othe rare alkaloids, and thebolactic acid, an acid discovered by Messrs. Smith and obtained by them from the mother li ordinary lactic acid.
Importance of Well Seasoned Timber for Carriage Building.
Lumber for bodies and gearings, including ash and poplar for the former, and hickory for the latter, to be proper ly seasoned should be nicely piled in the shade, and pro tected from exposure to wet weather. The cross slats be apart, so as to prevent the boards from warping out of thei original shape.

Boards, as a general thing, check in at the ends, very ften several inches, and sometimes a foot or more. and, of course, the lumber at that part is thereby rendered unfit for use. But to prevent this being a serious difficulty, it is sim ply necessary to place the end slats as close to the edge of the end as possible. Now, it is very obvious that moisture will be retained at the slats more than on the naked parts of boards; the result is that the boards do not shrink so rapidly at the slats as they do away from them; and consequently the boards remain whole and do not become wavy.
It is said by those who profess to know something about wood that, if you set timber upon one end, it will season quicker than it will if laid down. That is very likely so, and if so it may be caused by the fact that the sap or matter ejected ascends through the pores of wood set upon one end, without any hindrance, while it could not so readily if laid down. It is seen that fibers of the wood are longitudinal connections, and all the substance to be ejected collects between these connections in the pores, running from one end of the wood to the other, and flows out in the same direction. Thaf is why the transverse expansion or swelling of wood is great, while its increase in length is hardly perceptible, when the pores absorb water.
Bodies, to be durable, should have the stuff in them high ly seasoned, but not have it cooked too much by suspending it over a stove, so as to deprive it of the requisite substance and render it brittle. Cooking panels, as just described bringsthem in such a condition that it is impossible almos to get them solidly glued on the frame without checking them at the ends, and at the same time they are liable to be split in two.
All that panels require after they are thoroughly seasoned after fastening them to the frame, is to take out the dampness by warming them ; and the frame does not need any thing more. But proper seasoning is a requisite.
No matter how well developed constructiveness may be in a body maker, or the other faculties that aid him, or how experienced a mechanic he may be, even if he can make bodies without any person being able to discover the trace of a joint, if the stuff is not seasoned before it is put togeth er, the body will not, cannot, stand.-J. W. Daron, in the $\frac{\mathrm{er}}{\mathrm{er}} \mathrm{H} u \mathrm{~b}$.

THE AMERICAN SOCIAL SCIENCE ASSOCIATION.

A largely attended meeting of this body took place a Saratoga, N. Y., during the week ending September 9, and many papers of value and importance were read. Among the most prominent was one by Mr. Edward Atkinson, of Boston, Mass., on
the relation of capital to annual production and subsistence.
He commented on the outcry for cheaper transportation by stating that 500 lbs . of meat and grain constitute the ful subsistence of an adult man for one year, and it cost to-da but $\$ 1.25$ to move a quarter of a tun or 500 lbs . from Chica go to Boston, less than one day's wages of a good mechanic In this low cost it would be difficult to find evidence of the rapacity of the railway monopolists. So far as the people of Massachusetts eat bakers' bread, it costs them more to move the bread from the bakers'oven to the mouth of the consumer than it does to move the flour from the whea field to the oven. There are, doubtless, grave defects in our railway system, but the fact must not be ignored that those special corporations, against which the most urgent charges of monopoly have been made, are the ones that do the most service in distributing the largest quantity of product at the east relative cost to the community
The remainder of Mr. Atkinson's paper, which was too long for publication in extenso, was chiefly devoted to the apital and labor question; and it closed with a vigorous at tack on the greenback form of money

Mr. H. R. Hayden read a paper on

life insurance as a social force,

in which he pointed out that a sound system of insurance ffects a distribution of the loss which afflicts relatives when remature death occurs, and which averages human life a ar as the well-being of the survivors is concerned. He complained of the laws affecting insurance in many of the States, stating that they gave advantages to the dishones and so destroyed public confidence.
Mr. Nordhoff read a paper on
He industrial and social condition of the south a question which can hardly just now be kept clear of poli ics; and Mr. Nordhoff's essay dealt chiefly with the subject as it shows the difference between republican and demo ratic misgovernment.
Professor Dwight read a paper on
Legal education in the united states,
n which he contrasted the position of the lawyer in this country with his status in England. In the latter country, he lawyer confines himself to one branch of the profession, and obtains an accurate though limited knowledge; but here the lawyer prepares himself in each department of professional labor, and obtains breadth and comprehensiveness at the cost of precision and accuracy. He furthermore advocated reforms in the system of college examinations, and an ncrease in the opportunities for students to acquire sound learning and a high sense of professional honor.

Cleaning Brass Inlaid Work.-Mix tripoli and linseed oil, and dip felt into the preparation. With this polish. If the wood be rosewood or ebony, polish it with finely powdered elder ashes, or make a polishing paste of rotten stone a pinch of starch, sweet oil, and oxalic acid, mixed with a pinch

Messrs. EL NEW STEAM ENGINE.

 North Englishli James Smith and Benajah Mason, Jr., of engine herewith illustreted, which ind of the novel steam the Scientific American Patent Agency, August 1,1876 The cylinder consists of two flanged sections, which are bolted to a central partition, C. A valve, a, is placed in a slot cut in the head, C, and is pivoted at b. D D are pistons, which are placed upon a piston rod, E, the distance between them are placed upon a piston rod, E , the distance between thembeing a little more than the length of the stroke and the being a little more than the length of the
thickness of the central head combined. thickness of the central head combined.
The valve, a, is enlarged above the pivot, The valve, a, is enlarged above the pivot,
b, so as to engage with the bosses on the b, so as to engage with the bosses on the
pistons, D D, at the end of every stroke, pistons, D D, at the end of every stroke,
being moved by each piston in alternation, opening the supply passage, c, and the exhaust passage, d. The lower end of the valve is continued outside of the cylinder, and formed into a handle at e. The cylin der, A, is mounted on suitable supports, and the piston rod, E , is connected with a crank and fly wheel in the ordinary way.
Steam is taken through a pipe, F, and through the open port, forcing the piston away from the central head, the piston remote from the head following, of course until it strikes the enlarged portion of the valve, throwing the valve over, and allow ing the steam to enter on the other side of the central head, forcing the piston toward the end of its stroke. At the same time the lower part of the valve opens the exhaust port, allowing the steam to escape through the passage, d. If it is desired to reverse the engine, it is only necessary to move the valve, by means of the handle, e, at the proper instant, when steam will be admitted on what was before the exhaust side of the central head. When the engine is made vertical the upper section of the cylinder is made a little larger than the lower one to compensate for the weight of the pistons.

the original steam steering apparatus

 It is very rarely that any invention survives a period of half a dozen years without being made the subject of so many improvements and modifications that, in the end, it often happens that little or none of the original device re mains. We know of no exception to this rule more remark able than that of the steam steering apparatus in which steam, for the first time, was used to operate the rudder of a vessel This machine, in its present form, is practically identical in operation with the first tangible outcome of the inventor's thought. The lapse of 25 years has worked no notable change in its mechanism; and the first apparatus of the kind ever built-an engraving of which as it appears a the Centennial Exposition is given herewith-compares in every way favorably with those of most recent construction, despite the fact that the latter embody mechanical refinements not found in the early model.The inventor of this edvice, the importance of which is now recognized the world over, is Mr. Frederick E. Sickels, already one of the most famous of American inventors through his origination of the well known Sickels cut-off. The control of therudder is secured by operating the valves for the admission of steam to the cylinders by a hand wheel. The rudder is thus compelled to follow the motion of said wheel, which is similar in form and mode of operation to the ordinary helm. Suitable discon necting and connecting gear is pro vided, whereby the steam apparatus can be thrown out of action and the helm worked by hand in the usual way.
Apart from its serving as evidence of the non-alteration of the device from its original form, the apparatus at the Exposition is obviously possessed of much historical interest. It was used by negro pilots in the South previous to the war without the slightest failure in its operation; then it was exhibited in the Crystal Palace, in this city, in 1853-4. It was next put aboard the steamer Augusta, running between Savannah and Fernandina, on a route extremely difficult of navigation by single engine steamers on account of crooked channels. It was, when thus located, submitted to the severe tests of heavy gales and rough seas, with out any impairment of its efficiency taking place. When the war broke out, the Augusta was brought to New York, and the machine was removed and sent to the London International Exhibition of 1862 . There it attracted great attention, and a medal was awarded it; and from this time the machine, of which it is the prototype, has gradually been creeping into use A model which is exhibited at the Centennial beside the large machine, Mr. Sickels states, is prior in date to any attempt, in books, drawings, or models, to devise a power-steering apparatus. It appears further that Mr.

Fig. 1.-SMITH \& MASON'S STEAM ENGINE.

Sickels first began experimenting upon the subject as early
During the present year the invention has been tested by a board of naval officers, and its adoption in the United States naval service strongly recommended. It has already been adopted in the English navy, and is employed on nearly all the British merchant steamers which enter the port of New York. From the owners of these last the inventor receives no royalty, nor do the former in anywise ventor receives no royalty, nor do the former in anywise
make return for the benefits they enjoy, preferring to avoid
of the time devoted to the examination of the Centennial Exposition, than in making just such studies as this. There are other original machines-notably a model of the first sewing machine made by Saint in the last century, beside Elias Howe's original device-which would form profitable subjects for further examination of the same nature.

A Plea for Inventors.

Of all the mental efforts requiring imaginative construcelficult than that which is required to develope a new mechanical movement, or oriciple. The faculty of inventing depends more upon natural endowments, or rather instinctive intelligence, than upon education and experience. Experience only serves to familiarize the inventor with the wants or deficiencies in any particular line of industry, and education assists in giving completeness to the conception; but the conception itself is a matter entirely independent of either, and is just as apt to be suggested by an illiterate and inexperienced person as by one who has spent years in studying and investigating the matter: in fact more so, because education and experience are both the results of study and long familiarity with existing devices, so that they, to a certain extent, incapacitate their possessors from looking beyond the boundary of their experience and teaching. Upon the principle that "fools rush in where angels fear to tread," the illiterate inventor will investigate methods and plans which many an experienced artisan or workman would not entertain for a moment, simply because they do not possess that imaginative construction necessary to give the new creation mental existence, and because their teaching and experience do not include the new idea. Thus many of our most important and most novel inventions have been originated and developed by persons entirely devoid of technical knowledge and experience in the field of mechanics to which their inventions belong. Accident, circumstance, and necessity all contribute to the discovery of new principles. Sometimes, however, we find the skilled and educated mechanic possessed of the inventive faculty, and when this is the case he proves a "world mover." Such was Ericsson, who did more to develope the engine and strengthen the navies of the world than all other inventors combined. Such was Morse, who, with a skill and learning which was admirable in its completeness, adapted and perfected the telerable in its completeness, adapted and perfected that to-
graphic system with such precision and judgment that tographic system with such precision and judgment that to-
day it retains the principal features that he gaveit. Such day it retains the principal features that he gaveit. Such
were Hoe and Colt, and other inventors whose memories the were Hoe and Colt, and other inve
civilized world hold in reverence.

All patents are not productive, neither are all farms; all men are not rich; all mines are not bonanzas; but if we were to strike a balance sheet we would find that the proportion of the profitable and unprofitable patents correspond in a like ratio with the other profitable and unprofitable enterprises which men undertake.
When we consider the vast number of patented articles in the market, many of which are covered by a number of patents, we will realize that the work of the inventor is very often profitable. There is scarcely an article of human convenience or necessity in the market today, that has not at sometime or other been the subject of a patent, either in whcle or in part. The sale of every such article yields the inventor a pro fit. If we purchase a box of pape collars, a portion of the price goes to the inventor; if we buy a sewing ma chine, the chances are that we pay a royalty to as many as a dozen or fifteen inventors at once. Indeed the field is so vast and the number of profitable patents so great that it would be far preferable to undertake a recapitula tion of those patents which are no profitable than those which are.
The universal sentiment is that genius is its own reward; and in order to give effectiveness to the sentiment, the person who possesses genius in any branch of industry is allowed to se his own price upon the result of his labors. It is therefore but a just re cognition of the services of the inven tor that he be allowed to provide for his own wants from the benefits which he confers upon the public. The artist who produces a picture of unusual me rit can find purchasers for it at a fabu lous price. The stage actor who can draw crowded houses can demand and receive for a single performance what would be a year's salary for an ordina ry workman; and the lawyer that pos sesses the faculty of swaying the mind of a jury by his eloquence can demand and receive whatever sum of money he desires for his services; yet the labors of the inventor yield more substantial results, and benefit man kind more than all these combined. He
THE SICKELS STEAM STEERING APPARATUS AT THE EXHIBITION.
the way and overcomes all ourmechanical difficulties; in fact, the way and overcomes allourmechanical difficulties; in fact,
he furnishes us with the honey, while we are the drones in he furnishes us with the honey, while we are the drones in the hive that derive benefit from his labors. Give credit;
then, where credit is due. The inventor is the world's benethen, where credit is due. The inventor is the world's bene-
factor, and as such we take off our hat to him.-Mining and factor, and as suc
Scientific Press.

Oll of Orris Root.

Orris root owes its use during more than two thousand years chiefly to its fragrance, which, curiously enough, does not belong to the living root. Its slight and by no means aromatic smell is first developed into the agreeable perfume after drying, without doubt in consequence of changes of a chemical nature, concerning which at present our knowledge is deficient. When the dried root stock is submitted to distillation with water, eventually there appears upon the water a crystalline odorous matter, which is justly prized in perfumery and is specially prepared by some of the larger distillers. But the yield is very small, only about 1 part per 1000 of the orris root used. The product is of a yellowish brown color, of the consistence of a firm ointment, and possesses the characteristic odor of orris root.

THE HONEY BUZZARD

The honey buzzard is one of the falconida or hawks, and is known to natural historians both as falco pernis (Cuvier) and falco apivorus (Linnæus). It is known throughout Europe; and specimens with a wing measurement of 50 inchbut commonly 20 or 23 inches is the extreme width from tip to tip. The head is always gray, and the eyes, as well as the feet, are yellow. The talons, bill, and talons, bill, and The plumage on The plumage on the upper porion of the body s brown; beneath,brown and white mingle in-discriminately, while the tail, which is long, is marked with transverse ash-colored bars; the toes are only half feathered. In the female the plumage is simiplumage is simivery decisively spotted.
The honey buzzard breeds in trees; the eggs re two in number, color gray, with obscure spots. An egg collector came across a nest of one of these birds while in pursuit of his pursuit of his borne, England. borne, England. found but one ound but one egg, which was
much smaller much smaller
than thaf of the falco apivorus, not so round, and dotted at each end with small red spots, being surrounded in the cener with a broad blood-marked zone.
It must not be supposed that the food of these birds is restricted to honey, which only forms its dessert; but they devote attention to small birds, insects, and reptiles, as well as "rats and mice, and such small deer," and have been known, says a writer in the Young Fancier's Guide, from the pages of which we select the engraving, to purloin the eggs of other birds

A Curiosity in the Baltimore Record office

In the course of the examination of titles in the record office to the ground comprised in Federal Hill Park, which will involve a good deal of labor yet before completion, Mr. Warfield T. Browning (assisting the city examiner,Mr. Henisler) yesterday came upon a deed which excited remark among the persons in the office for some curious matters referred to in it. The paper is a deed of trust in the nature of a will from Dr. John James Giraud, who resided on South street, and owned a part of the Federal Hill ground, conveying all his property to John S. Tyson in trust for the wife, heirs, and legatees, of Dr. Giraud. The deed was executed March 16, 1826, but Dr. Giraud did not die until 1837. Among the legatees was Right Rev. Ambrose Marechal,

Archbishop of Baltimore, for several thousand dollars, and Archbishop of Baltimore, for several thousand dollars, and
the trustees of the poor of the city and county. Among the the trustees of the poor of the city and county. Among the
bequests are two patents, dated January and April, 1821, to Dr. Giraud for "a discovery in mechanism, consisting of a very simple machine of considerable power, for the use of steamboats and other machinery requiring the application of great power. The patent is termed the handle or cylin drical machine, and the machine carries in itself its ful crum or point of support." He also bequeaths his right in a discovery of a specific or medicine for the prevention or cure of yellow fever, plague, and malignant and pestilential fevers. The deed saysits eminent virtues have been proved by three years of operation and trial by order of the government and medical faculty of Havana. Dr. Giraud's memoir on this subject was published in 1825 by William Wooddy, Baltimore. The specific consists of two liquors, limpid, tasteless, and inodorous; they are neither purgative nor emetic, but recall the secretions through the proper emunctories, and the crisis takes place by perspiration, etc.
The composition of the liquors, he says, cannot be discov ered by chemical analysis, and their discovery was the resul of the study and labors of one third of his lifetime. The goverıment at Havana was to have given him, the deed states, $\$ 120,000$ for the discovery; but the commotions in Spain and the death of Governor General Mahy interrupted the negotiations. He says he desires the secret to be sold by the trustees for his heirs to some government, and for tha

HONEY BUZZARDS AND THEIR PREY.
purpose, for the first time, writes down the composition of the recipe. Should any other person, as is not impossible in this age of science and chicanery, be found possessed of the recipe he is to be treated as a fraud, and the trustee is author zed "to prosecute him with all the rigor of the law." The doctor estimated the amount to be realized from the sale of his patents at $\$ 60,000$, and directs that out of that sum $\$ 6,000$ shall go to the archbishop and $\$ 3,000$ to the poor. His san guine dreams of profit from this source were not realized however, no government being found to purchase the patent for the specific; and now the missing ingredient is the money that was expected.-Baltimore Sun.

The Care of Machinery no Mystery.

The Mill Stone, a monthly journal published at Indianopolis, Ind., one of the many good papers printed in the interest of special trades at the West, gives to its readers the following sound advice on the watchful care necessary in operating machinery
To correctly plan and devise improvements in machinery involves the exercise of a considerable degree of original genius; and to fully develop such improvements, and to bring them into the most practical shape, requires, in addition to this, the application of acquired knowledge of the construction of the machine or mechanical combination, in such
anner that each of the different parts thereof may be pro erly proportioned and arranged with reference to the par cular function which it is designed to fulfil. When this done, and the work completed, its useful mission ha ommenced, and inventive talent or skillful instructors nee oot be employed upon it, unless it should be to modify o dd further improvements. Yet, however complete in it self, or however effectually it may perform its work, it is not endowed with the faculty of self-preservation, and, un less it be properly cared for, will be subject to numberles accidents and injuries, involving not only its own immedi te or ultimate destruction, but, in many instances, the los of life or limb to those employed in its operation. This ne essary care requires, not the expert mechanic or profession skill, but simply the exercise of common sense. It is by prompt attention to little things that the maximum efficien y and durability is attained, with properly designed and onstructed machinery. When the bearings of shafts an the spindles are not oiled sufficiently, not only does the in creased friction require a greater amount of driving power ut the bearings are roughened or destroyed in a proportion degree. When the caps of journal boxes are left to oose, the journal wabbles, and, if there is gearing attached to the shaft, its teeth are badly worn out of shape; while if the caps are screwed down too tight, the oil is forced out he journal heats, and both the shaft and bearing are soo rendered worthless. These matters are of no small mo ment, and the as gregate loss re sulting from in sulting from inis very great. It is very great. It is not confinc alone to the ma chinery of mill and other manu facturing opera tions, but occurs in a very much greater degree in machinery em ployed in agricul ture. Many thrasher, horse power, or har vester has been branded of bad construction, and been premature ly disabled, whe a few drops o oil, or one or two turns of the wrench, were al that wererequire to set things to rights. Many oth er items migh be mentioned, in which attentio to little details requiring only an application of or dinary commo sense, will guar against grea and unnecessary waste of powe anddamagetoma chinery;butthes are sufficient to illustrate the al most self-eviden proposition that while talent is re quired to origi nate, and practi cal knowledge to construct machi nery, its most ef
ficient operation, and the profit in its use resulting there from, can only be secured by bringing to bear upon its ma agement the plain, ordinary principles derived from ever day observation and experience.

Etching on Glass

M. E. Seigwart has lately given some interesting particu ars about etching upon glass.
Since fluoric preparations have been produced at reasona ble prices, the decoration of glass by their means has stead ily made its way. Etched glass is now to be found every where, and glass etching runs glass cutting very hard. It is very easy to understand that well etched objects appear actually more beautiful than those which have been cut The cost of production is cheaper; and since M. Hock, a Viennese chemist, has given us an elaborate work upon the technics of glass etching, the difficulties attending this kind of work have been reduced to a minimum.
As is well known, fluoric acid usually etches smooth while other fluoric preparations yield a matt surface. The most beautiful ornamentation is obtained when certain part of the glass surface are rendered matt by means of fluorid f ammonium which has been slightly acidified by means of acetic acid. The matt appearance is not always the sam with different kinds of glass, but varies much in beauty;
this effect is governed by the composition of the glass, lead glasses being easily acted upon, and furnishing a very fine matt surface.
Where it is desired to have the surface of the glass not altogether matt, but shining like ice, as in the case of window glass, this may be attained in a simple manner by placing the glass plate in a perfectly horizontal position and cov ering it with fine groats. Then very dilute fluoric acid is poured upon it. The groats act as a shield, and produce upon the glass raised points.
Several ways exist of etching photographs on glass. A good result may be secured by covering the surface with a solution of gum made sensitive with bichromate of potash, and printing the same under a negative; after the image has been thus produced, it is dusted over with minium or red lead, and the red picture thus obtained is fixed and burnt in in the usual manner. The easily soluble red glass, so obtained, is treated with strong sulphuric acid, when a white matt design is produced, and the picture appears by transmitted light as a positive.-Photographisches Archiv.

Power of Wooden Vessels to Withstand Pressure. We have lately received a communication from a correspondent at Dayton, O., referring to an unfortunate occurrence, which caused the instant death of one man, and the narrow escape of several others. It seems that a number of men, in the employ of a manufacturer of artificial mineral waters, were in the act of charging a quantity of water, contained in a large iron-bound oaken cask, with carbonic acid gas, at a pressure of 130 lbs . to the inch. The cask. without any previous warning, exploded, with the results above stated. The explosion was sufficiently severe to splinter the cask and the three-inch planking over head. That such accidents are not of more frequent occurrence is to be wondered at ; and under such circumstances we cannot but consider the employment of such vessels criminal. We have often cautianed persons against employing wooden casks for this and similar purposes; as it is evident from their construction that, under such conditions of pressure, the whole strain must come upon the hoops and binding clamps, which, unless of extreme strength, could not be expected to withstand such strain as they were placed under in the above instance. Besides, such vessels are always of doubtful efficacy for such purposes, for, where they hold liquids under pressure, even provided it were possible to render every joint tight, the liquid would gradually ooze through the pores of the wood; and if it so happened, as in the instance above cited, that the liquids contained a free acid, the metal bindings would speedily become corroded and weakened, thus rendering rupture, in time, certain.
Should personal and public safety be sacrificed to the mere question of economy? And is the incurring of such risks justifiable by the small advantages derived therefrom? Before more of such deplorable accidents as the one here recorded have occurred, it is to be hoped that the proper authorities will take the matter in hand, and prevent further loss of life from such criminal practices.

The World's Age.

Mr. William Chambers, the veteran author and publisher of Chambers Journal, contributes to that excollent periodi cal a summary of some of the many views held by scientists as to the antiquity of our world. The Quarterly Review treated the same subject recently, and that most conservative of magazines now admits that the ordinary interpretation of the date of the creation, about 6,000 years ago, is to be set aside as untenable and at variance not only with historic and archæological research, but with the substantial discoveries of geology. The reviewer quotes the opinion that it is impossible that the earth can have existed many millions of years, as the earth is cooling, if not rapidly, at such a rate as to make such an antiquity impossible; and again, there is reason to believe that the earth's rotation is not so rapid as formerly.
The question as to the date of creation must be considered to refer to our solar system alone. The nearest fixed star or sun outside our system-possiby the center of a similar system-is too far off to enter into the question of the age of our sun and its planets and their satellites, being two hundred millions of millions miles away. Sir Charles Lyell gives the date of the Cambrian formation of rocks as at least two hundred and forty millions years ago ; while Mr. Darwin assigns to the world a much greater age even than this. Mr. Adams has essayed to calculate the retardation of the earth by the friction of the tidal waves on the atmosphere ; and in conjunction with Professor Tait and Sir Willian Thomson, he allows 22 seconds per century as the time lost by the slackened speed. Mr. Chambers wisely concludes his article as follows: "We can only say that the theories propounded are eminently suggestive, but nothing more. It is not remarkable that there should be differences of opinion among men of science concerning the dark and stupendous questions of the cosmogony of the world. All we deprecate, in the present state of human knowledge, is rash dogmatising, one way or another.

The Poughkeepsie Bridge

Progress is being made in the construction of the bridge across the Hudson river at Poughkeepsie, a work, which, when completed, will increase the facilities of travel be tween Pennsylvania and New England. The coal traffic alone, it is anticipated, will bring in a large revenue to the bridge, as the freight to Massachusetts and other manufacturing States will be considerably reduced.
The American Bridge Company is to construct the bridge and its approaches, and the materials for the first caisson are
ow being delivered. There will be four piers in the river, below the surface the foundation of which will be 85 fee apart, and will be built up of masonry to 130 feet above high water mark. The bridge is to have a double railroad track, a wagon roadway, and a way for foot passengers. It is stated that the Erie railway can cross the Hudson by this bridge and enter New York city, making a détour of only 10 mile from its present route, which has the disadvantage of land ing its passengers in Jersey City

CHAIN GEAR AND FASTENINGS.

Our extracts this week from Knight's "New Mechanica Dictionary * include a series of engravings relating to chain, together with others showing forms of fastening rope, etc. These will doubtless prove useful to builders, quarrymen, farmers. and others who frequently have occa sion to use tackles, for hoisting heavy weights and for many other purposes.

Fig. 1 shows how a chain, by wrap ping it with strips of canvas or leather may be made into a ound belt, where by power may be transmitted. Fig. 2 is a chain hook which simply clamps one link between two adjacent ones. Fig. 3 shows how chains are fastened by ropes, when, as in the case of a vessel's cable, they are to be subjected to heavy
strains. The upper strains. The upper figure is termed a double and the low-
er a single chain er a single chain
fastening. These
 hitches are very
strong and not liable to slip. Fig. 4 is a chain pulley having pockets or depressions in its periphery, in which lie the links or alternate links of a chain which passes over and

Fig. 3.

gives motion to or transmits from the pulley. In the chain wheel, Fig. 5, the sprockets of the wheel are adapted to re ceive the links of the chain successively. The power may be communicated by the wheel to the chain, or conversely

Fig. 5.
The former is shown in the familiar chain pump, and the latter in machines where the operation is inverted, the column of water pressing upon the buttons attached to the chain and causing them to descend in the tubes, thus rotatingthe wheels.

Fig. 6 represents several forms of

Links
capable of being taken apart and thus becoming a means of uniting the broken ends of a chain. Each half of the link, has a swivel to which it is connected by a head, the swivel of each part forming a nut for the threaded leg of

Fig. 6.

the other portion. The link, b, is made of two sections, b
*Publishedin ambers by Mesers. Hurd \& Houghton, New Yorkcity.
$b^{\prime \prime}$, laid upon each other and riveted. The other figures reform a mousing for each other.

These are belaying pieces consisting generally of bar with two arms fast ened to a postor stanchion by a bolt passing through its stem. Those shown at a, Fig. 7, are simple belaylaged. b is a common leat, lashed in place as leat, lashed in place a laying in or torge plice pin or toggle pliced into the end of rope to secure an eye up on. Forms of
clinches
are shown in Fig. 8. In nautical parlance a clinch is a mode of fastening large ropes to rings, such as anchors, etc. It consists of a
 half hitch with the end stopped back to its own part by seizings. a is a slip clinch; b a clinch se cured, and a simple clinch In carpentry a clinch is fastening, as at d, in whic the long end of a nail is turned over, and the re curved end caused to en ter the material so as to oppose retraction.

LOOPS
of different kinds are illustrated in Fig. 9. a is the simple sleeve or collar ; b, c, and d are modifica tions of the same. e is nau
tically termed a bastard loop. It is stopped in place with

rope yarns. f is a loop used as a fair leader for ropes, etc g is a bend stopped with seizings.

Gold in America---Its First Discovery by the Pre-
In a recent speech delivered in the House of Representa tives, R. B. Vance, member of Congress from North Carolina, said that the first discovery of gold in the United States was made in Mecklenburg, in that State, in 1820. A correspondent of a North Carolina newspaper corrects this statement, saying that the first gold was found in Cabarrus in 1799, and refers to Wheeler's "History of North Carolina" or evidence.
Old chroniclers give an account of a province called Cofachiqui, which was visited by De Soto's gold-hunting expediion in 1538-40, and which was embraced in what afterward ecame the States of Florida, Georgia, Alabama, and Mississ sippi, and, according to Logan, in his history of "Upper Carlina," had its center on the western limits of South Caro ina. Its capital and chief town stood upon the tongue of land between the Broad River of Georgia and the Savannah, ust opposite the modern district of Abbeville. The Spaniards entered this capital after a two months' march, and ound the country ruled by a beautiful Indian queen, Adalla, who entertained the Spanish governor and army with much ceremony. Here they found hatchets formed from an alloy of gold and copper. By this their cupidity was greatly excited, and they concluded that they had found a country abounding in the long coveted precious deposits of gold. And so indeed they had, says Logan (whom we quote freely), but it was neither their good fortune nor their desert to find out the precise spot where gold could be obtained. In less than fifteen miles southeast of the town, on the opposite or Carolina side of the river, lay one of the most extraordinary gold deposits in the world. The Cherokees were well acquainted with the Dorn mine. This is shown by the numerous relics of their handiwork scattered around it, and there can be little doubt that the massive nuggets of its outcropping gold supplied them abundantly with the finer metal of the alloy that so attracted the eyes of the Spaniards. It is no less known, to a few who have inquiredin to the traditions of the aborigines, that the gold and copper, found in their possession, in the form of solid masses or curious trinkets, by the first white men who visited the country, were obtained from these sources.
The Indian method of smelting these metals was one of the most remarkable devices of savage ingenuity; in practical efficiency the famous blowpipe of Dr. Hare was scarcely supperior. Logan tells us that, having first hollowed out
flat stone in the form of a basin, they filled it wlth charcoal, and upon this laid the nuggets of metals. A number of Indians now seated themselves in a circle around the basin, each one having in his hand a long reed pierced through its entire length and armed at one end with a clay tube or pipe. Everything being ready, fire was applied to the charcoal, and the whole mass instantly blown into a powerful heat through the reeds, the clay extremities of which were inserted in the basin, while the Indians blew through them upon the charcoal with all their might, and with protracted expiration. No ordinary lump of either gold or copper could long maintain its solidity in such a crucible. With this process the Indians could easily produce any variety of ornament from those metals, using them either alone or in
alloy. This method was known to have been in use among alloy. This method was known to have been in use among
the Indians who lived upon the gold-producing lands of the Indians who lived upon the gold-producing lands of
North Carolina, and the same process must have been known North Carolina, an
to the Cherokees.
to the Cherokees.
These chronicles and traditions go to confirm what Law-
These chronicles and traditions go to confirm what Law-
son says, that the Indians, from time immemorial, were acquainted with valuable mines of gold and silver in Upper Carolina.-Columbia (S. C.) Register.

The American Institute Fair.

The annual exhibition of the American Institute was opened on September 6, at the Institute's building at the corner of Third avenue and 63d street. Very few of the exhibits are ready for public inspection; and there is likely to be, in consequence, a limited number of visitors for the first few days. This want of preparation does great harm to
the interests of those exhibitors who makea point of being the interests of those exhibitors who makea point of being ready by the opening day, and damages the reputation of
the whole exhibition ; but we have so often commented on it that it is, we suppose, useless to hope for any improve it that
ment.

NEW BOOKS AND PUBLICATIONS.

The World's Sages, INfidels, And Thinkers: being Biographical Sketches of Leading Philosophers, Teachers, Reformers,
ett. By D. M. Bennett, Editor of the " Truth Seeker." Price $\$$. New York city: D. M. Bennett, 141 Eighth street. Mr. Bennett thas attempted, as this title shows, to classify together the
wisest and best of mankind and the fool (or infidel) who "says in his heart: Wisest and best of mankind and the fool (or infldel) who "says in his heart
There is no God."." The work is of neeessity a signal fallure. It is son ty
 wtint hhose of Bradauagh, Holvoake, s. . P. Andrews, and Susan B. Anthony,
that any connection between brains and athelsm can be established; and it
 sharp de anitive line which separates the moderate and tolerant philosopher
from the blatherskite who proves his want of belief in a God by his perpet-

new chemical and miscellaneous inventions.

IMPROVED BRUSH-HOLDING RUBBER STOPPLE. Ferdinand A. Reichardt, New York city.-This is an improved rubber stopple for bottles, which is so constructed as to serve as a
holder for brushes, which may thus be kept within the bottle, and holder for brushes, which may thus be kept within the bottle, and may be exchanged as required. The tapering rubber stopple has
its inner end perforated with a tapering hole, to receive and hold a brush handle.

IMPROVED DINNER PAIL AND LANTERN.
David T. Platt, Greenwich, Conn.-This invention consists of a dinner pail with a compartment for heating tea and coffee, con-
trived to serve for a lantern for the workman going homeat night improved cheese cutter.
Henry S. Jones, Vincennes, Ind.-This invention is a cheese cutter, by which retailers of cheese and othersmay cut off pieces that same time cut them of uniform wedge shape, and from the outside to the center. It consists of a circular horizontal revolving table for holding the cheese, with a graduated scale, show-
ing the sizes for different weights, over which is a radial lever ng the sizes for different weights, over which is a radial lever
cutter, pivoted to a standard attached to the bed piece on which the table revolves, and being adjustable up and down on the standard, to adjust it to the thickness of the cheese.
improved telegraph key.
James O. Byrns, Jersey City, N. J.-This is an improved duplex key, by which the time taken up by the upward motion of the
present key may be utilized, and the sending of the messages be accomplished in about half the former time, and with greater facility and ease. The invention consists of two horizontal and spring-acted keys, whose contact points alternately close the circuit by contact with an intermediate post, the keys being cut out,
when not in use, by the rear set screws bearing against a double post with a dividing insulating layer. The contact of either key closes the circuit, so that by the alternate wording of the keys the working of the hand is utilized in both directions for the transmission of telegraphic characters.

IMPROVED CANNON
Richard B. H. Leighton, Jersey City, N. J.-This invention is a cannon so constructed as to scatter the shot in a horizontal line. It is provided with a wide, flaring, and shallow bore, and is formed
of top and bottom plates, side pieces, and breech piece, riveted to of top and bottom plates, side pieces, and breech piece, riveted to
each other. In the inner side of the bottom plate is formed a transeach other. In the inner side of the bottom plate is formed a trans-
verse groove to receive a rib formed upon the lower side of the shell of the cartridge, to keep the cartridge square when putting it when the ca ${ }^{\prime}$ non is discharged. Round or square, grape or chain shot may be used, as desired. It is claimed that, with this con-
struction, the wide shallow, flaring bore will scatter the shot in a struction, the wide shallow, flaring bore will scatter the shot in a horizontal line, so that it will do
a bore of the usual form is used.

IMPROVED COMBINED BUCKLE AND SNAP.
Richard St. L. B. Chinnery, Kankakee, Ill.-This improved
buckle and snap is for connecting the reins to the bit rings, and in buckle and snap is for connecting the reins to the bit rings, and in so formed thatit may be colored to represent leather. It consists is
the long bent metal strap, the short straight metal strap, the
spring, and the buckle, constructed and combined with each spring,

improved ice cream freezer

Charles L. Dexter, Philadelphia, Pa.-This improvedmachinefor making ice cream is so constructed as to operate upon the cream This is effected by the combination with an ice cream freezer,of an outer tub having arms, friction rollers, and angle irons, with the inner revolving can and the necessary operating gearing.

IMPROVED CIGAR BOX.
Thomas A. Dodd, Providence, R. I.-The object is to furnish an improved cigar box, which shall be so constructed as to allow the
ends of all the cigars in it to be seen, as well as the top layer. The invention consists in a cigar box provided with a glass front, and having a flap hinged to the forward edge of its top, to shut dow
ver said glass front to prevent breakage.
improved weighing scales
Alonzo Pangburn, Fremont, Ohio.-This consists of one or more beams, in combination with the ordinary beam, connected by sus pending the short arm of the additional beam to the long arm of the preceding one, under which it is located, in such manner tha
the range of the scale can be increased to any extent required. It ing small articles.
improved combined buckle and snap hook.
Francis J. Deisz, Pierce City, Mo.-This is an improved buckle a way as to be for connecting a breaststrap with the hames in such the straps securely. Any strain upon the strap causes a wedge block to clamp it more tightly and hold it more securely, a tongue preventing the
clamped it firmly.

IMPROVED REVOLVING BILL HOLDER.
Sylvester W. Maynard, Kingston, N. Y.-This furnishes a nea and compact device for fling bills, receipts, and other papers, in such a manner that they are instantly and conveniently within reach. It consists of a number of receptacles, with spring-acte locked by a sliding and spring-acted shaft and fastening device.
improved hame.
August H. W. Michaelis, Monroe, Mich.-This invention consists fastenings provided with the guards and the ping and the loops, in combination with the perforated upper part of the hames, for con.

NEW MECHANICAL AND ENGINEERING INVENTIONS. improved brick machine.
Richard A. Drawdy, Jacksonville, Fla.-This invention consist in two parallel rollers geared to each other, revolving toward each brick machine, and driven from the shaft of said mud box by suitable connecting gearing, and also in the combination of th platform and its rollers with the frame, the mud box, and the rollers of a brick machine, so constructed as to force out the clay into the molds with a continuous pressure, so that there can be no im perfectly filled molds, as there will be when the bricks are molde ith an

IMPROVED ORE-STAMPING MACHINE.
John Patterson, Belfast, Ireland.-In stamping of minerals and metals there is much difficulty experienced, owing to the subbushes or guides of the stampers, and not only causing much
buncer increased friction, but wearing away the said bushes or guides and stamp rods; and in stamping of animal and vegetable substances and textile fabrics and fibers, great inconvenience is experienced from the dropping of the lubricating material on to the substances
to be stamped. In order to overcome the above injurious effects, to be stamped. In order to overcome the above injurious effects,
the inventor employs vibrating levers to transmit the motion of the inventor employs vibrating levers to transmit the motion of through springs and flexible connections, to the tampers.

IMPROVED DOOR LOCK.
Moses C. Hawkins, Edinborough, Pa.-This lock may be used as a fixed tumbler lock or as a combination lock, in combination be easily picked or tampered with. There is a sliding bolt, with interchangeable tumblers pivoted thereto, and so connected to the casing by a detachable screw that bolt and tumblers may be
taken out from the casing for changing the combination. The inven out from the casing for changing the combination. The notched bolt and the notched tumbler, pivoted thereto, with swinging fence plate and rigid fence bar, that enters all the notches when set by a combination or reversible key. The rever-
sible key may be finally locked to the inside of the lock by a sible key may be fin
revolving escutcheon.

IMPROVED PISTON FOR SYRINGES, AIR PUMPS, ETC.
Reinhold Vander Emde, New York city, assignor to himself and
Charles E. Koechling, same place.-This invention consists of a Charles E. Koechling, same place.-This invention consists of a
piston rod provided with shoulders and elastic collars, that hold piston rod provided with shoulders and elastic collars, that hold
intermediate leather washers placed over the same. The washers and collars are readily replaced when worn out by long wase, but keep up their working capacity
the rubber, without getting loose

IMPROVED WINDMILL.
Daniel Nysewander, Springfleld, Ohio, assignor to himself and he val possible to attach the points, which are bent over toward the cen Wer, to a central plate which is fixed on the end of the shaft. Weights are provided at the extremity of the arms, for balancing There is also a convenient device for momentum when in motion tion of the guiding vane, making it possible to control the motion of the mill by this means.
improved water wheel.
Leonard Long, Princeton, Wis.-This consists, mainly, of buckylinder, the buckets extending from an outer top flange of th nner cone on an inclined segment of a circle to the cone cylinder, and then on an inward and downward spiral curve to the bottom of the same and the lower part of the cone hub.

IMPROVED WATER WHEEL.
Burrell C. Lambeth, Thomasville, N. C., assignor to himself and
L. Younc, same place.-This consists of a novel contrivance o he alternate gates to form chutes, and the device for opening and losing them is contrived to reverse, for application to wheels run-
ning either way. The buckets are provided with spring valves, ning either way. The buckets are provided with spring valves, to
regulate the opening according to the volume admitted, so that the water will be applied to the wheel in an effective manner whether the whole or part gate is used. The wheel is constructed so that it can be reversed to run either way by shifting the attach-
ing disk from one side to the other. The socket of the step has a flat bottom, and the pivot on which it turns has a corresponding
boxes let into slots in the tube of the case, the boxes being tapered from bottom up, and being clamped against the shaft by a ring of
corresponding form. The case is also reversible by taking off the top and attaching it to the other side.

IMPROVED CUT-OFF FOR STEAM ENGINES.
Julius C. Debes, Jackson, Mich.-This relates to that class of cut-off in which the stroke of the cut-off valves is controlled by
the governor; and it consists of a plate placed on a central stud the governor; and it consists of a plate placed on a central stug in the steam chest, and provided with oblique slots, which engage
with studs on the back of the cut-off valves, varying the time of With studs on the back of the cut-off valves, varying the time which is varied by the governor.
improved car coupling.
David P. Cubberley, Marion, Ind.-The improvements consist in making the latch in the form of a bar of a comparatively small
transverse dimension and inclining its rear end (against which the ink bears) upwardly, and to the front, so as to cause the link to ise when the draft is exerted and occupy a position more in alignment with the greatest strength of the latch bar, whereby a much lighter latch may be employed, and the manipulation in disnrain is made to assist in holding the latch down also the draft

> IMPROVED CAR COUPLING.

James H. Wood, Baltimore, Md.-This invention consists in proViding a drawhead with an armed shaft that couples and uncoudrawhead and forming the cover thereof, and a crank that lifts the presser bar at the same time that it raises the coupling bar. These features of improvement render automatic couplings, heretofore regarded as impr
ble to get out of order.

IMPROVED BELT SHIFTER.
Augustine Crosby, Benton, Me.-This invention is an apparatus for shifting belts for stopping or starting machinery; and it con-
sists of a roller supported in a frame that is placed parallel with and near the tight and loose pulleys on the counter shaft, and is pivoted so that the roller may be made to bear against either side of the belt according to the direction in which the belt is to be shifted. It further consists of an arrangement of a rack and toothed sector, by means of which the roller is moved. The advantages claimed for the invention are that with it belts can be shifted without being subjected to wear, that it is particularly
adapted to rubber belts, as it does not chafe them, and that it shifts the belt smoothly, without jarring or noise
improved imitation stitch machine.
Edwin Brown, Georgetown, Mass.-The object of this invention is to make what is known as the "imitation fair-stitch" on boots having the appearance of the stitches by which the soles are sewed on in hand work. It consists of a milled indenting roller on the slide up toward the milled roller by a lever which is to be worked by foot power, to carry the sole and press it against the milled oller, which, being turned by the crank, makes the indentations The milled roller and its shaft-carrying roller and the lever are all attached to a plate, which may be readily attached to a bench or other suitable support, making, it is claimed, a simple and cheap machine.

IMPROVED AUTOMATIC FERRY BOAT COUPLING.
Thomas D. and George E. Husband, Green Point, N. Y.-This is an improved device for connecting a ferry boat to its bridge, so
constructed that it will couple itself as the boat comes into its constructed that it will couple itself as the boat comes into its
place, hold the boat securely, and may be easily uncoupled to replace, hold the boat securely, and may be easily uncoupled to re-
lease the boat when desired. The invention consists in the combination of the sockets, the hooks, the springs, and the levers, with each other, and with a ferry boat and bridge, and in the combination of the wheels, the recesses, and the guide bars, with the
ferry boat and bridge for guiding the hooks into the sockets to erry boat and briage for guidi
improved peg float
James Popham and Ebenezer Popham, Montreal, P. Q.-This is machine for breaking or cutting the projecting ends of pegs from the insoles of boots and shoes; and consists of a grooved
cutter, of pyramidal or cylindrical shape, attached to the end of a apidly revolving shaft, in connection with a protecting guard or casing. The cutter serves to cut off the pegs of long boots, and is or this purpose made cylindrical, with groover and cutting blades tead of downwards, and with the pyramidal cutter. One and the ame machine may thus be applied, without any special adjustment, to every variety of pegged work, from
improved device for punching machines. Louis Prahar, New York city.-This invention is so constructed quired. Thisis effected fy the move to the cutting tool as it is refeed rollers to carry the material forward to the cutting tool, the rapidity of the feed being regulated by the size of gear wheels.
improved shaping attachment for engine lathes. William Brede, Lihne, Island of Kanai, Hawaiian Islands.-This avention is an improved shaping attachment for lathes, so contructed as to do all the work required by an iron or brass worker, hine, and at the space that would be occupied by a shaping maists in the combination of the slotted plate, the arm provided with a dovetail tongue, the blocks, tool holder, and swiveled screw, and o the face plate, spindle, and frame of a lathe; in the table proided with the lug, the bent arm, and the adjustable cross bar, to dapt it to be applied to the lathe bed, the carriage, and the frame of a lathe; and in the combination of the cam wheel, the bent lever, the connecting bar, the slotted bar provided with the colar, and the pawl, to adapt them for attachment to the friction Wheel and the feed screw of a lathe. For heavy work, the attachment may be strengthened by a brace bar, the forward end of
which is bolted to the forward end of the arm, and its rear end is bolted to the bracket or bearing of the lathe.
COMPOSITION FOR LINING PUddLING FURNACES, ETC Marie Eugène Paul Audouin, Paris, France.-This invention is a action of oxide of iron than any other material heretofore employed for the purpose. This material is oxide of chromium, which is capable of resisting the very highest temperatures employed in
furnaces and laboratories-such as the Siemens furnace and furfurnaces and laboratories-such as the Siemens furnace and furnaces heated by dead oils-and is also proof against the action of oxide of iron at the highest degrees of heat. The inventor claims
that there is no dangerof the oxide being reduced under the ordinary conditions of working, and, moreover, the presence of a mall quantity of chromium will not affect the quality of the of a his oxide may also be utilized in the manufacture of and scoria, but with less advantage, as, by the action of certain principles,
more especially potash, soda, and lime, chromates are eventually more es
found.

NEW WOODWORKING AND HOUSE AND CARRIAGE buILding inventions.

improved bench plane.
Jackson Gorham, Crawfordville, Ga., assignor to himself and
Charles E. Smith, of same place.-This invention consists of a stud Charles E. Smith, of same place.-This invention consists of a stud
applied on the top of a smoothing plane stock near the heel, and adapted to fit between the thumb and forefinger of the right hand, while the palm bears against the heel of the stock, whereby the pressure of the hand is distributed over a larger surface, and is
thus diminished on the small area heretofore employed for driving the plane by pressing against the heel of the stock. It also affords a bearing or rest for a part of the hand not heretofore having any support on the stock, and therefore making the work easier. improved lath machine.
Edmund H. Hancock, Augusta, Ga.-The invention consists in placing edge-serrated, planes in addannee of a sam, to cut grovoves in attaching the upper grooving plane to a pivoted shoe provided
with a handle, and in combining collared rolls with spiral feed rolls having a right-angled groove next to the collars. The sides of the grooves of the rollers, next to the guide collars, are cut at
right angles to the axis of the collars, the taper being all on the beveled alike on both sides. Guard fingers prevent the saws from throwing sticks back against the attendant, which is a common occurrence in gang saw machines, particularly when the saws are out of order: these fingers are pivoted to the frame over the way where the stuff passes, and rest on the stuff in such manner that the friction of a piece of lath or other object push
back under them causes them to bind it fast and thus stop it.
improved brake for light vehicles.
Charles H. Appeland Joseph S. Rothenberger, Shimerville, Pa.This improved brake has all of its parts connected with the shafts
and front axle, so that the springs are subjected to no strain when and front axle, so that the springs are subjected to no strain when
the brake is operated, and the arrangement of the parts such that they are out of the way and not liable to be bent or broken from contact with any object. In applying the brakes there isno strain upon the springs, as there must necessarily be when the brake is attached to or connected with the body of the vehicle.

improved saw set.

Christopher Heinen, Fort Laramie, Wyoming Ter.-In this saw set a number of teeth may be set in opposite direction at one operation of the device, and the same be adapred to set any kind of
saw by inserting the dies fltted to the saw. The invention consists saw by inserting the dies fitted to the saw. The in yention consists of a lower base part and a swinging lever part, with removable
dies, gage piece, and regulating screw. The saw is setinto the dies from right to left, and the lever then brought down to set the from right to left, and the lever then brought down to set the
teeth. The person operating the set stands in front of the same, addusts the sems, and brings the elever downs without changing his
position, setting the teeth thereby directly at one operation, in adjusts the saw, and brings the lever down without changing his
position, setting the teeth thereby directly at one operation, in
opposite direction, without reversing the saw or saw set. opposite direction, without reversing the saw or saw set. improved elevator.
John G. Kurtz, Milton, Pa.- This is an improved elevator for use
by carpenters, masons, and painters, for raising their materials by carpenters, masons, and painters, for raising their materials ings, and by flremen and others; and it consists in a standard made in sections, and provided with a 9 groove, the jointed rack
bar, and the gear wheel, in combination with each other and the bar, and the gear whel, in combination with each other and the
frame, and a mechanism for turning the said gear wheel; in the
combination of the springs, the pins, and the combination of the springs, the pins, and the cam levers, whether the second set of springs se used or not, with the hinged ends of
the sections of the standards in the combination of the bar the the sections of the standarars, in the combination of the bar, the arm, and a platform, gallery, or cage with grooved standard, and
with the jointed rack bar and the gear wheel: and in the combinawith the jointed rack bar and the gear wheel: and in the combina-
tion of the spool and the coiled spring with the jointed rack bar. improved dust guard for cars.
William Carr, New York city.-The inventor's object is to furnish for the traveling public a portable dust guard for railroad cars, which may be readily attached to the window of a car so as
to prevent the annoyance by cinders, while it also may be used as a fan and readily folded up after use, for being carried in the pocket. The invention consists of a guard made of a number of folding pieces or strips, that are rigidly connected by a clamp piece, pivoted to one strip and fitting over the ends, which folds
with the strips when released. When the dust guard is detached, with the strips when released. When the dust guard is detached,
it may be used as a fan, and fnally be folded into narrow compass, for being carried in the pocket, by releasing the clamp piece from the ends and folding it alongside of the strips. The strips may al-
so be made available for advertisements, so that the dust guard may be used as a convenient advertising medium for the traveling public.

IMPROVED PRIVY SEAT.
Peter D. Howard and Matt. Allard, La Porte, Iowa.-Should a
person attempt to stand upon this seat, to use the privy, the seat person attempt to stand upon this seat, to use the privy, the seat
will tilt, and thus the seat will always be kept clean. improved wagon brake.
Frank Funk, Beverly, Ill.-This invention consists of a lever connected with a fulcrum bar and brake rod, all so arranged that the
power is gradually increased, as the brake is pulled by the brake power is gradually increased, as the brake is pulled by the brake
rod connected with it against the wheel. The propelling lever is provided with a longitudinal projection or detent to lock the brake
by engaging with a rack bar attached to the side of the wagon. IMPROVED CHIMNEY COWL
Jacob M. Davies, Enon Valley, Pa.-This invention consists of a pipe elbow, fitted to turn on a spindle on the top of the chimney, in a form calculated to be equally as efficient as the hood or funnel commonly used to facilitate the discharge of the smoke, and to be less liable to catch the wind, when contrary and shifting gusts prevail, and conduct it down the chimney into the room, which is so common with the ordinary cowls.

NEW AGRICULTURAL INVENTIONS.

improved antmal trap.
Jacob W. Wilson, Summerford, Ohio.-This trap is so construc-
ted as to close when the animal enters the first compartment, to prevent his escape, and set itself when the animal partment, t o ond compartment or cage. The invention is formed by the combination of the swinging gates, the cranks, the connecting rods,
the weighted platforms, and the bent arm with the box of the trap the weighted platforms, and the bent arm with the box of the trap
and with the gate hung in the opening through the partition of and with
said box.
improved potato digger.
Edward Bartlett, Renfrew, Ontario,Canada.-Thisinvention con sists of arrangements of colters for cutting along the sides of the
row of potatoes, a scoop for digging them up, a revolving spout or row of potatoes, a scoop for digging them up, a revolving spout or
reservoir for separating them from the earth, beaters for preventing the clogging of vines and wood on the scoop, a contrivance of the separators for discharging the potatoes into a spout, appara-
tus for separating and discharging the vines and weeds, and a discharging apparatus for removing the filled boxes which receiv the potatoes from the spout, also supporting, operating and adjus
ting devices.
improved weaning bit for animals.
George W. Ingersoll and Harvey L. Fisher, Toledo, Iowa, assign ors to Jacob L. Neff and Henry Giebert, of same place.-This is a animal is prevented from sucking, and no incumbrance caused to the same in eating and drinking. The invention consists of an outer hollow tube with air holes at the central part, and open ends
with an interior revolving tube with central air holes and open with an interior revolving tube with central air holes and open weighted ends. The air holes are not liable to get clogged, so as
to exclude the air and supply the air at every attempt at sucking to exclude the air and supply the air at every attempt at sucking, thereby preventing it and weaning the animal. When the animal
holds its head in a downward position for eating and drinking, the inner tube is turned by the weights, and the air supply interrup ted as the connection of holes of the inner and outer tubes is discontinued. This automatic interruption of the air supply of the bit forms the main feature of the invention, as thereby not the slightest inconvenience to the animal in drinking is produced, and the same is not compelled to put its whole nose into the water to
exclude the air, which forms a serious objection to the bits at tion wrevents weighted tube, the reliable working of the bit, namely the opening of the air supply holes to prevent sucking, and the closing of he same during eating and drinking.

IMPROVED HARROW.

Jackson De Moss, Noblesville, Ind.-This invention is a harrow pulverizer, which is claimed to thoroughly pulverize the ground ridge or flll up a dead furrow with equal effectiveness, which may be easily cleared of rubbish, raised to pass an obstruction, and may be easily loaded upon and unloaded from a vehicle for the central beam the harrow may be used for cultivating small corn, or other small plants planted in rows, loosening the soil upon both stdes of the row at the same time; and by removing a pin from a hook, the
upon a vehicle.

IMPROVED WAGON COVER.
Charles Cremer, Red Bluff, Cal.-This is an improved cover fo the boxes of wagons, cars, and other vehicles for transporting swine, calves, sheep, fowls, etc., constructed so as to allow the air
to have free passage to the animals, while conflining them securely. The invention consists in the combination of the net, the four rods, the connecting snap hooks and rings, and the holding snap hooks, with the body or box of a wagon, car, or other vehicle. By same time have the benefit of a free circulation of air. The rear end board of the box may be removed to allow some of the aniescape of any.
improved sulky plow.
Alexander Hamilton, Harrisburg, Ark.-This sulky plow is con structed that the plows may be readily raised from the ground sired depth in the ground

IMPROVED PLOW STOCK.
James A. Price, Houston, Tex.-This improved plow stock is so that any kind of a plow and standard may be applied to it, according to the kind of plowing to be done. Each plow is to its own standard
Uriah W. Hardy, Albion, Ill.-This is an improved farm gate that may be readily opened and closed by a person on horseback, and rom the seat of a vehicle. Fulcrumed levers that extend along side of the road operate, by rods, bars, cords, or chains, a fold
ing or weighting gate. A separately pivoted latch piece at the upper part of the gate locks into the recessed post when the gate is lowered.

IMPROVED MILK COOLER
Thomas Sexsmith, Oneonta, N. Y.-This consists of an elevated cooling compartment in the bottom of the pan which holds the milk, into which the cooling medium is aelivered by an inlet pipe, from the mouth of the pipe against the shell of the compartment The discharge passage leads out from the bottom of said compart ment, to which the warmer part is forced by the incoming part The invention also consists of a contrivance for mounting the
The panson,their supporting stools, so that they can be readily levele up in case the stools are not leve.

mproved grain separator

Thomas C. Jory and John W. Jory, Salem, Oregon.-This separator is designed especially for cleaning wheat, but will, by proper adjustment, separate oats from wild oats. It involves in construc tion the following fourprincipal featnres: First, a regulating and
distributing feeder, by which the same amount of grain flowsfrom the hopper at each turn of the crank, and is evenly distributed over the entire surface of the cleaning apparatus; second, an arrangement by which cockle and other small seeds are separated
from wheat, the same being a revolving cylindrical screen from wheat, the same being a revolving cylindrical screen,
through which, as it revolves, the grain is conveyed by a spira through which, as it revolves, the grain is conveyed by a spiral
flange closely fitted to its inner surface throughout its entire length, and a plain hollow cylinder of sheet iron, surrounding the
screen and concentric with it, and having a flange working in the screen and concentric with 1t, and having a flange working in the
opposite direction to receive and discharge the seeds, small grain etc., at the opposite end. Thus the wheat flows from one end of the revolving cylinder, and the small seeds from the other, and both may be collected in proper receptacles. Third, an arrange-
ment for keeping the screening apparatus clean by a vertical ment for keeping the screening apparatus clean by a vertical
shake communicated to it (as is also its rotary motion) by cam shake communicated to it (as is also its rotary motion) by cam
wheels revolving under each end of the screen. Fourth,the carrier is kept free from wild oats, etc., by means of stirrup-shaped knock carrierat each descent of the screen, from which it takes its mo tion.

NEW HOUSEHOLD INVENTIONS.

IMPROVED FOLDING CHAIR.
Adile Matthiessen, Cornwall on the Hudson, N. Y.-This cha has a back piece, to which are hinged the seat and arms. The back legs in such a way as to be capable of holding the various parts in their places. The principal object of th invention is to furnish a conven.
placed in a trunk.

IMPROVED DESK.

Charles A. Atkinson, New York city.-This consists in a desk made in sections, so constructed that they may be connected and of one or more side sections or wings, so constructed and hinged that they may be closed against the sides of the said main desk, the way while still exposing their contents.

IMPROVED COMBINED DISH AND CLOTHES WASHER. Asberry C. Jackson, Orange, Texas.-This is a detachable clothes washing attachment for a sink, and a tilting shelf, upon which wash pan and the draining shelf are surrounded on the sides and top by a cabinet case, which is located in this relation thereto for convenience in storing away the dishes.

IMPROVED FOLDING CHAIR.
Frank F. Parker, Gardner, Mass.-This consists of a folding chair made of a back section, that is pivoted by its recessed ends to flxed
rojecting pins of the swinging rear leg section, while the fron eg section is extended above the seat pivoted to the back, and inged by a lateral cross piece to staples of the rear leg.
mproved apparatus for automatically lighting and Extinguishing gas.
Asahel P. Bell, Manchester, and Thomas Thorp, Whitefleld, Eng-land.-In this invention, a metal cap is secured to the gas main, nd wool or other fibrous material acts as a filter for the gas. eceptacle, made of earthenware or other suitable material, conhrough vertical holes, all of which may be left open, or some may be closed according to the differences of pressure in the gas main. A center piece, in a recess in the receptacle, contains a chamoe for mercury, and this chamber has an oriflce, above which is a holow cylinder, and a second orifice, in which the burner for the aring jet is fixed. At the lower side is a pipe mouth valve hrough which the gas passes into a tube provided with an ordito the burner by wire, and a loop of platinum wire, connected hereto, is carried over the burner. When the gas is at its maxi mum pressure, it depresses the mercury in the center compart ment of the receptacle, thereby uncovering a valve and allowing he gas to enter the tube. A small portion of it passes through an perture to a small interior burner, and this portion of gas is the ignited by the jet and a second platinum wire. The flaring jet from burner. When the cylinder is heated by the wire passing through the flame, the inclosed air expands and expels the mercury, whic alls into the chamber and closes the aperture and shuts off the gas
improved extension bedstead
Rudolf Rigl, Dobling, Austria, assignor to Franz Xaver Katz mayr, Vienna, Au ofa to a single bed, or to two connected beds, or to two entirely detached beds, as desired, the whole forming a strong, compact, ring is taken off a bed for various purposes. When the sota cov ed. When it is desired to make two separate beds, the sliding ac tion is taken out of the frame, and a foot support clamped or the main frame. The siringection forms thereby a searate bed Which may be put up in a different room from the main frame, to be replaced at any time by detaching the end support and sliding the bed section back into the main frame, storing the whole in the bed as a sofa
improved combined stove pipe thimble and register. Charles Pettit, Erieville, N. Y., assignor to himself and Levi P. rreenwood.- dis ind to rough the ceiling and floor, and having a top and bottom plate hrough the center of which the pipe passes in a center tube lining of uon-combustible material, to confine the heat, so as to prevent the heating of the floor through the outer tube. The to nd bottom plates are provided with openings to allow the air to pass for ventilating and for heating, and one is provided with a register.
IMPROVED SEWER GAS TRAP.
John M. Falk, New York city-This invention consists of a rap, similar in form to the ordinery trap, or of any other ap roved form, except that it is preferably larger, and located near he sewer, from the upper end of which is an escape pipe for the rap above the escape pipe to check the gas escaping through the rst trap and cause it to escape through the pipe provided for it which pipe may discharge in any convenient place, such as the utter or the chimney of the house.

IMPROVED SUMMER STOVE.
Charles H. Chase, Newport, R. I.-In thisinvention, a fire pot, of any suitable form or construction, large enough to cover the pot hole of an ordinary stove, is made flat on the top, and has an may be closed by the cover removed from the pot hole of the or dinary stove on which the stove is set. The smoke passes through damper into a diving flue to escape into the large stove, so that he flue of the latter serves for the flue of the summer stove. An ven may be used in connection with this stove for baking. It is round itfrom the opening through its bottom, where the smoke nters, to another opening, where it escapes into the diving flue nd passes off as when the oven is not used, the damper being improved steam washer.
Cyrus C.Carter, Neeleyville, Ill.-This invention is claimed to be o constructed as to enable the clothes to be washed evenly and they are washed in the ordinary way. It consists in an improved steam washer, formed of the flat base or bottom, the inclined ndes, the V-shaped concave top, the rounded and inclined ends, ase. In using the steamer, water is put into itand heated. The teamer is then placed in the boiler, the clothes are putaroun nd over it, and in a few minutes the clothes will be thoroughly form of the steamer causing the steam to pass through all parts of the said clothes.

IMPROVED WASHING MACHINE.
John Zeller,Stouchsburg, Pa.-This machine is so constructed as o rub the clothes in a manner analogous to hand rubbing, will enwill not injure the clothes.
improved fruit and Jelly masher and strainer. Adolph Conrady, Cincinnati, Ohio.-This consists in a metal cup for working it. The screw is mounted in a crosstree, detachably connected to the top of the cup, so as to be readily attached and detarhed, to facilitate the application and removal of the follower for filling and clearing out the cup.

IMPROVED COOKING STOVE
John C. McClamroch, Edina, Mo.-This relates to an ash box located below the perforated bottom of the ash pit, and provided
with a register in its side to admit air, so that the ash box may be with a register in its
utilized as a fire box.

Gusiness and wersmal,

The Charge for Inerrtion undere this headis one Dol
lar a Line for eech insertion. If the Notice ax lar a Line for each hnsertion. If the Notice ex
ceels Four Lines, One Dolur and a Half per Lin ceeds Four Line
will be charged.

Agricultural Implements and Industrial Machin

Chester Steel Castings Co. make castings twice rtisement, page 205.
Glass-Instructions given in etching and frost
ng; also stencll etching. T. J. Calnin, 31 Albany St, 1ng; also stenc
Boston, Mass.
Shaw's accurate and U. S. Standard Mercury
Gauges, steam, vacuum, Hydraulic, and Test Gauges, c., 915 Ridge Avenue. Philadelphia, Pa.

Wanted-A small Water Power Engine. Addre
George Austin, Post Ottice Box 4,060, New Yorli Clty. Wanted-Party to manufacture an Automatic
Cut-off Governor on Royalty. A perfect cut-off. Can be made as cheap as Judson Governor. Has been tested
address H. S. Cole, 617 Hill St., Milwaukee, Wis. Foundrymen-A good Dry or Green Sand Moul-
er wants a job. Address C. F. Field, 347 Grand St.
Models and light Machinery made by T. R. Al-
mond,14 Water St., Brooklyn, N. Y. Charges reasouable Good 2nd hand Drop Hammer, 2 to 300 lbs. drop
Description and lowest price. John Forbes, Dart Description
The best Sewing Machine in the world-Makes
the Lock Sttich, the Chain Stitch, and Embroldery Stitch the Lock Stitch, the Chain Stitch, and Embroidery Stitch
from two whole Spoois. Agents wanted every where.
G. L. Du Laney \& Co., 744 Broad way, New York City. Picture-trame Machine-Something new. Makes
frames easier than 1 by the common way. Address . L. Eastman \& Co., Montpelier, Vermont.
D. Frisbie \& Co. manufacture the Friction Pul-
ey-Captain-best in the World. New Haven, Conn. A Scraper Patent for Sale. Address R. Verea,
88 Wall St., New York. Solid Emery Vulcanite Wheels-The Solid OrigInal Emery Wheel-other kinds imitations and Inferior.
Caution.-Our name fs stamped in full on all our best Caution.- Our name fis stamped in full on all our best
Standard Belting, Packing, and Hose. Buy that only. ing Company, 37 and 38 Park Row, New York. Glass Blown Cylinders. T. Degnan, 129 Milk St.,
Boston Mass. Models for Inventors. H. B. Morris, Ithaca,N.Y. M. Shaw, Manufacturer of Insulated Wire for
galvanic and telegraph purposes, \&c.,259 w.27th St., N.Y. F. C. Beach \& Co., makers of the Tom Thumb
Telegraph and other electrical machines, have removed il Water Street, New York:

Pat'd Graining Stencils-J. J. Callow,Clevel'd, 0 . Lathe Dogs, Expanding Mandrels, Steel Clamps,
\&c., for Machninsts. Manufactured by C. W. LeCount, Driving Beltsmade to order, to accomplish work
required. Send full particulars for prices to C. W. Arny, ${ }_{48}$ North Third St., Phtladelphla, Pa
For 2d Hand Portable and Stationary Boilers
and Engines, address Junlus Harris. Ttusville, Pa. Yacht and Stationary Engines, sizes $2,4,6$ and 8
H. P. Best for price. N. W. Twiss, New Haven, Conn. Patent Scroll and Band Saws, best and cheapest
in use. Cordesman, Egan \& Co.. CInclnnatt, Ohio. Hydrant Hose, Pipes, and Couplings.
prices to Balley, Farrell \& Co., Pittsburgh, Pa. "Dead Stroke" Power Hammers-recently great-
y improved, increasing cost over 10 per cent. Prices rePower \& Foot Presses \& all Fruit-can Tools. Fer-
racute Wks., BrIdgeton, N.J. C. 27, Mchy. Hall,Cent'l. Shingles and Heading Sawing Machine.
vertisement of Trevor \& Co., Lockport, N. Y. Steel Castings, from one lb. to five thousand lbs.
Invaluable for strength and durability. CIrculars free. nvaluable for strength and durability. CIr
ittsburgh Steel Casting Co., PIttsburgh, Pa.
For best Presses, Dies, and Fruit Can Tools, Bliss For Solid Wrought-iron Beams, etc., see adver-
tisement. Address Union Iron Mills Pittsburgh, Pa. or ilthograph, \&c
Hotchkiss \& Ball, Meriden, Conn., Foundrymen
and workers of sheet metal. Fine Gray Iron Castings For Sold Emery Wheels and Machinery, send to
the Union Stone Co., Boston, Mass., for circular. Hydraulic Presses and Jacks, new and second
nand. Lathes and Machinery for Polishing and Buming nand. Lathes and Machinery for Polishing and
metals. E. Lyon, 470 Grand Street. New York.
Diamond Tools-J. Dickinson, 64 Nassau St., N. Y.
Temples and Oilcans. Draper, Hopedale, Mass.

(a) (a)hands of a prominent physician for reply the hands of a prominent physician for reply.-C.
W . J. should obtain the best medical advice.W. R. will find a recipe for a black walnut stain on p .90 , vol. 32.-W. N. Will find directions for
making concrete gravel walks on p . 50 , vol. 32 . (1) J. L. C. says: I have a surveying compass, the needie of which does not traverse well.
What is the cause, and how can I remedy it? A. It has probably become d d
should have it charged again.
(2) G. W. D. says: Referring to your ren your paper of November 23, 1874, entitled "A in your paper of November 23, 1874, entitled "A
Possible Improvement in House Heating," I beg to inquire if any considerable increase of heat
could be obtained by massing, by means of reflectors or lenses, the radiations from furnaces,
gas, and oil lamps, or other artiflcial sources, provided the beams are carried in parallel rays and arrested within, say, 6 feet of the focus. I apprehend no difficulty in so utilizing the sun's
rays, but am doubtful as to the gain of heat, in massing heat radiations from other sources. I would not require over 200° Fah. Can this be
accomplished, and how? A. All heatraysare susceptible of accumulation by concentrated radiation, whether of the sun or of artiflial com-
bustion. Blackened surfaces constitute the heat
radiators. Place a wire basket filled with a smal shovel full of glowing coals in the focus of a re-
flector, and the heat rays from it will ignite phosphorus in the focus of a supplementary re flector 12 feet distant. A number of reflectors,
so placed behind as many flres as to concentrate so placed behind as many flres as to concentrate the heat rays upon a given point, will cause a de tensity with the combined rays of the fires, les the loss by absorption into the medium through
which they pass. Light rays from the moon may be concentrated as readily as those from the sun, but no degree of multiplication of such ray From this it is to be inferred of this reflected heat that what little of heat from the sun there may be, that is not absorbed by the moon, is lost on its way to us in it
sphere of the earth.
In using compressed air, would there be an gain of power (without reference to the question of economy) by devaporizing and heating befor constant volume, before compressing it, the pressure will be increased; and then if it is compressed, the pressure will of course be gr
than if it had not been previously heated.
(3) R. K. asks: What is the best material
for locomotive boiler tubes for conducting heat, opper, brass, or iron? A. Brass.
(4) W. H. H. W. says: My neighbor has a
well 40 feet deep and 800 feet from his house. The house is 10 feet lower than the bottom of well. Will it be possible to draw the water from
the well by a siphon? Is it necessary to lower or the well by a siphon? Is it necessary to lower or
cut away the hill that the water will not be required! to rise more than 30 feet. What size of pipeshould be used? A. It will not be advisable to attempt to raise the water more than 25 or 26 feet, nor to use a pipe smaller than 1 inch in
(5) A. F. B. asks: Is it a saving of battery material for a Callaud gravity battery to stand pen at night? A. Yes
(6) J. T. B. asks: 1. Will electricity, passing through a magnet, change its poles? A. Yes. 2. Which is the cheapest. way to run a strong el-
ectric battery? A. A carbon battery excited by ectric battery? A. A carbon battery excited by
bichromate of potash is the cheapest where great bower is required.
(7) G. W. McD. asks: Does the air in the air chamber of an hydraulic ram change in the and some escape, in the working of the ram? A. (8) C. C. J. R. asks. 1. If the circumfernet, does the wheel become mar a large mag 2. Where are its poles situated? A. One pole
would be next to the permanent magnet, the would be next to the permanent magnet, the
other would probably be on the opposite end of the wheel. 3. Does the horseshoe magnet of a If so, is the loss much? A. Yes, gradually; but the loss is sometimes almost insensible for a long while. 4. Does it continue to lose as long as it is
used? A. Yes. 5. How many revolutions ought magneto-electric machine to make in a minute o produce the strongest current of electricity A. The current will increase with most machine n,000 revolutions 6 . Does a magnet lose its pow er when placed near the circumference of an (9) W. N. M. says: I have the two conduc tors of an electrical machine. and the plate,shaft, know of what material to make them, and whether to put them between the wheel standards or on the same standard as the brass globe. A.
Make the rubbers of leather and stuff them with horsehair. They should be attached to the stanard carrying the brass globe.
(10) C. H. R. says: I notice in your accounts of the working of some of the many
cables that electricians have experienced much difficulty in attaining a speed in the transmission of signals that was sufficient to relieve the pressure of business, iand, in order to hasten it, have formed a metallic circuit by joining two wires,
thereby overcoming in a measure the effects of the secondary current produced in the cable by the primary. I have often noticed in some o the electricities when separated to reunite, and would suggest to electricians, if they think it worthy, a trial (my facilities in regard to the necessary apparatus being too limited for any
conclusive experiments). If a vessel could be so eonclusive experiments). If a vessel could be so
constructed as to hold negative electricity (which could be accomplished by charging it, and draw to one end of the cable, and by working the op posite end with positive electricity, it might possibly not only hasten signaling, but overcome some of the other difficulties and make one cable free to work in opposite direction. A. The idea
is impracticable for the reason that a signaler is impracticable for the reason that a signaler
cannot operate opposite ends of the cable at the cannot operat
(11) T. E. asks: What size of boiler should inches stroke? A. Make one 9 inches in diamete and 15 inches high.
(12) J. P. asks: How would you determine in horse power the best way steam heating should
be charged? A. This must be a matter of argument, as there is no universal standard. A ver common rating would be to charge the numbe of cubic feet of water evaporated per hour fo ers would multiply this by 2 , to get the horse
(13) L. W. says: I am told that telegraph
nessages, in traveling from one station to an-
other, go through the ground, and that the wir serves to complete the circuit. Our operato that that the current passes over the wires, and cuit. A. The signals pass over the wire only The earth merely completes the circuit by actin each end of the wire
(14) J. W. S. asks: 1. Is the actual pulling wer of a locomotive engine with 4 feet driving weight of locomotive, size of cylinder, and al other things being equal ? A. Yes. 2. Why are small driving wheels generally adopted for freight
locomotives? A. Because they are required to ocomotives? A. Because they are required to haul heavy loads, and great speed is not wanted. (15) J. A. W. says: How much more will a s, of the same pitch or number of threads p nch? A. Disregarding friction, the rule is follows:
Weight ratsed: $\left\{\begin{array}{c}\text { force } \\ \text { applied }\end{array}\right\}::\left\{\begin{array}{c}\text { circumference } \\ \text { described by } \\ \text { force }\end{array}\right\}:\left\{\begin{array}{l}\text { pitch } \\ \text { sorew. }\end{array}\right\}$ Hence the relation will be the same for all screw aving the same pitch.
(16) W. S. W. asks: Is there any difference between an open crank motion or an eccentric motion? An eccentric motion is a solid crank, but the positiveness in the motion seems not to
be the same. Are there the same dead points in an eccentric as there are in a crank? A. Yes, the motion is the same.
(17) F. C. W. asks : How many times will Take the cylinder fill and exhaust in a second riving wheels, moving at the rate of 40 miles hour. The wheels would make a little more than revolutions per second, so that the cylinde (18) H W K
(18) H. W. K. asks: What is the process of tempering solid steel dies in lead? A. By heat ing steel in melted lead the outside becomes suf-
ficiently hot to harden before the inside does hence the inside is left comparatively soft, an the steel is therefore not liable to crack in the hardening. Another advantage is that the heat ing, and hence the tempering, is very uniform.
(19) W.C. A. asks: Will it make any differ nce in the working of a main telegraph line if putting keys, sounders wire for a short circuit, hort circuit wire? A. It would not interfer with the working of the main line. Vocal sounds
Wix
(20) J. W. S. says : from 40 to 125 lbs. per square inch destroy the elasticity of steel springs working in the boilers Good springs are quite durable in such situ
(21) E. W. W. says : I am building a cis s in diameter, running from the roof, about 20 feet. How large should the outlet pipe be to pre-
vent overflow? A. Make it 3 inches in diame-
(22) A. R. asks: What is the formula for he number of feet in a telegraph pole? A. The following is given for timber measuring: $G=1 / 4$
girth at middle in feet. $g=1 / 4$ girth atone end in girth at middle in feet. $g=1 / 4$ girth at one end in
feet. $g^{\prime}=1 / 4$ girth a tother end in feet. $L=$ length eet. $g=3$ girth a other end in feet. $L=$ length
of \log in feet. $c=$ cube contents of same in feet.

(23) M. G. says : I have been trying to gold
plate a chamber of a revolver. It had been nickel plated, but it had partly peeled off, so I took it all off. I cleaned it thoronghly, and (to
plate it with. copper first) I plunged it into a soluplate it with copper first) I plunged it into a solu-
tion of sulphate of copper, and it turned all tion of sulphate of copper, and it turned an
black. I would like to know what is the reason for this. A. Clean the chamber again carefully and use a cyanide instead of an acid solution o chemism of the acid for iron or steel over that of acid for copper is sufficient to produce the re-
sults obtained. Do not use too much battery. (24) W. F. C. says: What is heat lightning A. Heat lightning is a name given to the reflection of lightning discharges that take place be(25) horizon or behind clouds.
(25) A. R. W. asks: Can you give me a recipe for a phosphorus pastefor cockroaches? A.
Take phosphorus 1 oz., warm water 1 pint; put Take phosphorus 1 oz., warm water 1 pint; put
in a bottle, cork up, and agitate till the phosin a bottle, cork up, and agitate till the phos-
phorus is in a minute state of division, adding towards the end moist sugar $1 / 2 \mathrm{lb}$. Then add agitation till the whole is nearly cold; when cold, form it into a stiff dough with oatmeal, and make into small cakes. Dry in the air.
(26) I. E. H. asks: How can I make rubber stamps? A. Vulcanized rubber is used, as prepared by the manufacturers, and can be procured in strips about 3 inches wide and $1 / 8$ inch thick dress should be set upin type and well olled; a rim about $1 / 2$ inch in hight should be placed around the form, and dentist's plaster, mixed to the
proper consistence, poured in and allowed to set; then the plaster cast is to be separated from the type. A piece of the vulcanized rubber is then ut out, or the size of the plaster mold, and laid press, and heat sufficient to thoroughly harden the rubber is applied. The screw is then turned down hard, and left for a time until the rubber is
perfectly forced into the mold. After the whole is cold, the rubber is separated from the model is cold, the rubber is separated from the model, and any irregularities trimmed off with a sharp
knife ; the rubber stereotype is then fastened, with glue or other cement, to a block of wood,
and the stamp is ready for use. 2. Of what is and the stamp is ready for use. 2. Of what is
the well known oil bath for vulcanizing rubber
composed? A. Atthe present day Parkes' meth-
od is generally adopted; the caoutchouc is sim ply immersed in a mixture of 40 parts sulphid of carbon and part chloride of sulphur; it is nex placed in a room heated to $70^{\circ} \mathrm{Fah}$., and, when all
the sulphide of carbon has been volatilized, the process is so far complete that it is only requisite to boil the material in a solution of about 1 ib. caustic potassa in 2 gallons water, the vulcan
zed caoutchouc being next washed to remove excess of alkali.
(27) H. D. M. F.asks : What is a bogie? A. A four-wheeled truck supporting the fore part extent, if necessary."-Knight's Mechanical Dic (28)
(28) C. D. K. asks: 1 . How can I stain light yellow brick so as to give them a dark color?
A. You cannot stain brick a permanent color as approach to it probably is the cement wash which permeates the pores of the brick. Something of permeates nature of a glaze might be fixed into the face of the brick in the kiln. Light brick may be made darker by smoke, but the color will be
neither even nor agreeable. Cement or oil paint either even nor agree
is the most practicable.
(29) C. M. asks: Would a moist blast for corges, etc., be injurious to the iron? A. No, but
here would be no advantage derived from the introduction of moisture
(30) C. F. G. asks : Fo what are barytes used? A. The sulphate of baryta is the perma nent white of water color artists; it is also em
ployed to adulterate white lead. When mingled in excess with the latter pigment it forms Dutch white : in equal quantity Hamburg, and in lesser amount Venice, white. But it becomes, when ground with oil, translucent, and impairs the pacity of the lead paint.
(31) O. J. H.-Paris green (Schweinfurt green) is an aceto-arsenite of copper. In 100 parts: ic acid, 10.05. Dr. Ehrmann gives as its formula: $\left.\underset{\left(\mathrm{Cu}_{2} \mathrm{C}_{3} \mathrm{O}\right)_{2}}{2}\right\} \mathrm{O}_{2}+3\left(\mathrm{CuO}, \mathrm{As}_{2} \mathrm{O}_{3}\right)$.
(32) A. M. S. says: You stated some time gome students tell me it is an oil. A. The alcohols are classifled after the number of the $O \mathbf{H}$, or hydroxyl, groups contained in them. Thus: ordinary alcohol (ethylic alcohol)- $\mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{OH})$-is a monatomic alcohol; $\mathrm{C}_{2} \mathrm{H}_{4}\left(\underset{\mathrm{O}}{(\mathrm{H})_{2}}\right.$, or ethylline al-
cohol, is diatomic ; $\mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{O} \mathrm{H})_{3}$, or glycerin, is triatomic, etc. We do not know what you mean by "low form" of alcohol; glycerin, the last
named alcohol, is more highly constituted than the former.
How are photographs fastened to glass for the
new style of oil painting ? A. Coverthe picture new style of oil painting? A. Coverthe picture
with a fine cloth, and remove all air bublles by ers of a soft rubber roll
(33) W. B. W. asks: How can I make a petrifying solution to make vegetable tissues hard
and durable? A. The time required for ordinary petrifaction renders its artificial application impracticable. There are various methods of metalizing leaves, etc.. usually by electro-deposition of the metal, which, when properly applied, copy
perfectly. These may be afterwards enameled o suit.
(34) J. D. E. asks: 1. What are the sizes and distances apart of the lenses in the eyepiece vol. 1 A A For mium power, focus of 1stlens, $1 \cdot 30 \mathrm{inch}$: focus of 2 d lens, $1 \cdot 30 \mathrm{inch}$; focus of 3 d lens, $1 \cdot 40 \mathrm{inch}$; focus of 4 th lens, $1 \cdot 00 \mathrm{inch}$. Distance between 1st and 2 d lens, 173 inch; distance
between 2 d and 3 d lens, 2.25 inch; distance between 3d and 4th lens, $1 \cdot 47$ inch. Diameter of 1st and 2 d lens, 0.48 inch ; diameter of 3 d lens, 0.68 nch; diameter of 4 th lens, 0.34 inch . Distance
of diaphragm from 1st lens, $1 \cdot 45$ inch; aperture of diaphragm between 1 st and 2 d lens, 0.08 inch. aperture of diaphragm between 3d and 4 th lens, $0 \cdot 46$ inch; distance of cap from 4th lens, 0.30 inch; diaphragm at the focus of the object glass? A. There should be diaphragms in the tube to cut off the reflections from the inside. 3. What is the ci? A. In telescopic objectives the magnifying power varies directly as the focal length. If the focal length is double, the magnifying power is
double. 4. Is it necessary to have the focus of the field lens of the Huyghenian eyepiece longer than that of the eye lens? A. Yes. 5. Is it necessary to have the rays of light parallel when
they enter the eye? A. They should be nearls enough parallel to enable the eye to bring the object to a focus.
(35) E. P. M. asks: How can I soften some such substance as black hard rubber so as to them? A. The rubber is usually formed into the shape desired while still soft and warm, before
(36) H. N. R. asks: 1. Which is the most powerful, a reflecting or refracting telescope? A. A refracting one. 2. Can I get one which will
distinguish objects 16 miles distant for $\$ 30$? Yes. 3. Where can Iget it? A. Address the opit be tho advertise in our colu. 5 . Would it be it be too long to carry? A. No. 5. Wo
a nighṭas well as a day glass? A. Yes.
A. It is the residue remaining after the removal of certain volatile bodies by distillation from the o-called Stockholm tar. The tar is originally btained by a the prod rude distination of the re
(38) O. J. H. asks: What is Paris green? A.
oisonous of any of of copper, and is the most
(39) F. M. W. asks: Is there such an in strument as a night glass? A. The night glass day glass only in the dimensions of its objective and in some cases the use of an eyepiece of low er power. Ordinarily the so-called day and night lasses do not differ in any respect.
Minerals, etc.-Specimens have been re ceived from the following correspondents, and axamined, with the results stated
T. A. H.-Nos. 1,2 , and 3 are sulphide of iron. of iron, alumina, and clay.-D. S. V.-It is chlor te with felspar, and is of no value.-J.S. M. $=$ Th presence of the sand is probably due to the de-
composition of certain silicates at the source of the spring, the finely divided silica being brought to the surface by the mechanical force of the urity to be of value en for slass making.-S.-The powder consists principally of sesquioxide of iron, together with a little alumina and
sand. We found neither gold nor silver.- \mathbf{P}., of sand. We found neither gold nor silver.-P., o Gold Hill, Nevada.-It is a clay containing lime. quantities. A complete analysis would be reuired to ery small piece appears to be an artificial product. It contains a considerable percentage of opper.-J. McG.-A complete analysis of the beef did not detect any poisonous matter.-J. F W.-No. 1 is mica schist. No. 2 is hornblende. o. 3 is chrysoprase-chalcedony, whose color is due
o nickel. No. 4 is dolomite, a magnesian lime tone. No. 5 is rutile-titanic acid. No. 6 is fel spar mica. No. 7 is a variety of basalt. No. 8 is quartz. No. 9 is impure clay. No. 10 is granite.
Nos. 11 and 13 are semi-decomposed granite. No. 12 is quartz. No. 14 is fint. No. 15 is clay containing iron. Nos. 16 and 17 are hornblende. No. 18 appears to be a specimen of chlorite, a silicate o Y.-It is a talcose rock containing sulphide o ron, which has gradually suffered partial decom position; it is not valuable.-J. T.-It is an impure clay containing oxide of iron and sand. -A W. S.-It contains, or has been in contact while heated with, sand or clay. The scoria consists o caustic lime-S. F F-NO 1 is hematite-a ron ore. No. 2 contains oxide of manganese. No. 3 is hornblende.-R. C.-The yellow body is sulphide of iron. The white, carbonate of lime The hard dark colored piece appears to be chalce dony. The fourth is a piece of scoria.-Cairo The two specimens in match box of alumina. ha" and "Clara," are quartz rock and hematit iron ore.
J. C. R. asks: In what year did the grasshop pers commence their destructive work in this countryi- w. Which you mention as a new size for cotton tra, whict
cloth?

COMMUNICATIONS RECEIVED.
The Editor of the Scientific Ammrican ac-
knowledges, with much pleasure, the receipt of riginal papers and contributionsupon the follow gig subjects
On the Accumulation of the World. By S. A
On Bevel Gears. By H. E.
Also inquiries and answers from the following :
W. F. W.-L. W. P.-B. T. K.-P. F.-H. H.-J. B.-
W. W. C.-F. M., Jr.-W. D. K.-W. K. P.-M. A. G.

HINTS TO CORRESPONDENTS
should repeat them. If not then published, they may conclude that, for good reasons, the Editor eclines them. The address of the writer should Enquaries relatin
Enquiries relating to patents, or to the patentapublished here. All such questions, when initials nly are given, are thrown into the waste baske as it would fill half of our paper to print them all but we generally take pleasure in answering briefis y mail, if the writer's address is given. Hundreds of inquiries analogous to the following
are sent: "Who makes cast iron cannon? Who ells sensitive dry photographic plates? Whose is the best photographic apparatus for outdoo work ? Who sells varnishes? Whose is the pur est white lead ?" All such personal inquiries are pinted, as will be observed, in the column of Business and Personal," Which is specially se pentioned at the head of that column. Almost ny desired information can in this war be expe ditiously obtained.
[OFFICIAL]
INDEX OF INVENTIONS

Ending August 22, 1876
ND EACH BEARING THAT DATE.
[Those marked (r) are relssued patents,

A complete copy of any patent in the annexed list

 ncluding both the spectications and drawings, will beurnished from this offlce for one dollar. In ordering please state the number and date of the patent desired,
and remit to Munn \&Co.. 37 Park Row, New York city ddressing machine, J. M. $\bar{K}_{\text {ennard }}$ larm, fire, A. F. Eells

auger, past hole L. R. Hitchcock B a ng manure, etc., J. B. Archer $\underset{\text { rel }}{\text { arrel, }}$ D. F. Bowker............. | 181,28 |
| :--- |
| 181,323 |
| 181.264 |
| 181,385 |
| 181,389 |
| 181,241 |
| 18 |

Barrel stand, D. Scott Bed bottom spring, W. S. Reynold
Bedstead, wardrobe, C. Kllburn Billiard chalk and ball holder, R. Martine Bluing, inquid Bobbin, C. H. T. S. Robinso M. Van Tine Boller, culinary, J. Bevin... oiller furnace, steam, B. J. Hobso Boiler compound, scale-removing, R. R. Taylor Bolts, etc., making, Le Blanc Boot-lasting apparatus, D. خíorey Boot, moccasin, S. T. Hutchins. Brigem, etc.,
Buckle, J. Lee, Jurns.

181,86 \begin{tabular}{l|l}
1,966 \& Kettle, camp, A. A. Gervals.

Kin

Kiln, brick, E. W. Bingham.

181,450 \& Kinn, brick, E. W. Bingham............

Ladder, extension step, W. H. Bitte
\end{tabular}

bureau, J. Isakson
Burner, lamp, H. C. Scott
Candlestick, miner's, Quinilven
Cans, labeling frutt, J. Hinkley
ar axle lubricator, J.:B. Fly
Car brake pad, Russell \&
Car coupling, C. Derrick
Car coupling, A. Scoles
Car, discharging, J. w. McDonald.
ar unloader, grain, G. M. Moulton
ar ventilator, W. Foglesong
Cars, feed trough for stock, z . Street
ars, etc., heater for, M. W. Hazelton
Cart, etc., ventiliting, W. S. And
Cartridges, capping, Bu, I. M. MIIbank.
Cartridge cases, , making
Cartilge shells, testing, Salisbury \&
Cartridge shells, testing, Sallsbury \& Wells
hain, ornamental, S. Davidson
hain, ornamental, J. L. Heeley...
hurn, L . Blust.
Churn, J. Campbell.
levis, spring, Du Brul (r)
Clod crusher and drag, H. Feenders
Clothes dryer, J. P. Howel
Cothes dryer, o. B. Lee............
lothes wringer, F. Wa
Cock, stop and waste, G. Veale. Jr..
ooler, millk, W. H. Hyd
otton cleaner
Cradle, wire, E. Rollert..
Culty and table, M. C. Urquha
cultivator, C. . L. Carter.
Cultivator, D. C. Stover
utting index sheets, s. M. simons
Dental foll, R. S. Williams
Dentist's vulcanizer, J. L. McDermut
Desk, writing, Keys \& Taylor
Digger, potato, A. J. Nellis .
Dividers, A. Gruber
Drawing board, S. James.
Earth closet, J. W. Beyron
arth closet, R. S. Willam
gectric g. W. Stevens.......
levated way, H. W. Farle
Elevator and purifer, water, C. Hartzell
Elevator, hydraulic, M. P. Higgins
Elevator tower, L. B. Sawyer...................
Engine, blowing, P. L. Welmer.
ngine blean, A. R. C. J. Fairburn
Engine balanced valve, J. Fairburn
Engine governor, J. D. Willoughby
, steam. D . A , Stevens
Fare box, w. E. Prall.
Fence wire, barbed, J. F. Glidden
ertilizing, treating refuse for Bonflel
Fire arm, breech-1ooding, H. J.
Fire extinguisher, J. H. Connelly
Fire place frame, Bargis \& Bell..
Fires in oil tanks, extingulshing, J.
Furnace for assaying, T. M. Berge.
Furnace gases, etc., purifyling, Connelly et al.
Furin, F. C. C. E. Smith...
Gage, carpenter's, C. H. B. Hutchinson
Gas apparatus, R. Dean.
Gas burner, F A Seaver acld, A. Kayser
Gas lighting, automatic,
Gas, making, H. w. C. Tweddle
as puriter, P. Munzinge
Glassware, press for molding, J. Haley
Grate, J. R. Case
Harness saddle and check hook, P. Burns. Harrow. A. J. Upham..
Harvester, corn, Hunt \& Bryan Hay elevator, J. R. Fitzhugh.
Hay tedder, w. C. Gifford (r)
Health lift, H. H. Evarts..
Heater, ife place, S. Musser.........
Heater for cars, etc., M. w. Hazelt
Hoe, wheel, R. Vampill...
Hoof trimmer, G. Gretner
Horse detaching device, M. V. B. Walker Horseshoes, removing burr from, C. H. Perkt Hydrant, L L. Scanlan
Hydro-extractor, w. P. Uhilinger Ice crushing machine, D. W. Low..
lluminating apparatus, F. Darracot ndicator, punching, W. Welch
fdicator, station, C. O. Ficht... njector, G. H. Little (r) ack, lifting, H. A. Curtis.

Lamp lighting attachment, R. . Biber. Lamp wick and burner, H. c. Scott
Land roller marker, $\boldsymbol{F} . \mathrm{v}$. Aldridge Lathes, chuck for metal, A. B. Smith.........
Leather, tapering machine, J. \& G. W. Settle Leggings, F. L. Oakley. tempe, E S. St hous Marble, artifictal, R Guelton Mill, fulling, J. Draper Mop holder, Cubbage \& Alexander.... Nall extractor, \mathbf{w} H. Tinker.......
Nall feeding machine, F. Toepfer. Nall plate feeder, F. A.
Nut lock, T. C. Conrad.. Nut lock, D. Deshon....
Nut lock, C. H. Everha Ores, etc., roasting, smelting, J. Duffey
rgan tremolo, read, H. Organ tremolo, read, H. L. Pier
overalls, Crocker \& Sommerfel:
Pails, machine for striping, S. R. Henry.
Paper bag machine, c. H. Morgan (r).
Paper bag machine, S. E. Pettee (r)...
Paper bag machine, s. E. Pettee (r).......
Paper, composition paste for fly, J. Ralsto Paper-folding mechanism, l. C. Crowel Pavem $!n t$, S. Baird.
Pea nut roaster, J. Esposito
Pipe molds, making, w. Smith
Plaiting machine, Robinson \& silsb
Plane, etc., tonguing. C. G. Miller..
Planter and fertlizer, J. C. Fooshe
Planter, con, Z. Water
Plastering tool, A. A. How
Plow, w. Stephenson..
low beam, adjustable, J. Pentreath.. Pop corn balls, forming, G. A. Blodg
Power, transmitting, williams \& Ca
Pres Press, cider, H. L. \& S. M. Brown.
Printed sheets, etc., recelving, J. Pulley or fly wheel clutch, R. A. York
pump, J. S Ad Pump, G. W. Rhinehart
Pump, cattle, J. H. McConnel
Pump, chain, G. Blythe....
Pump, chain, A. J. Purvian
ump governor, J. S. L
Pump valve, w. H. Thomas. Rallway signal, electro-magnetic, Hall \& Sno allway switch, w. E. Prall. Rake, horse hay. H. H. Hathewa Reel, twine, J. Clarke..
Reflector, F. L. Senour....
Refrigerator, J. F. Ferguso
Retort for distilling mercury, F. Gutzkow
Rolling ralls, roll for, W.
Sash holder, E. B. Hill...
Saw, hand, Dtsston \& Shoemak
Saws, tab for gang, H. Disston.................
Sawing machine, flrewood, w. A. Hodgkins
Sawing machine, lath, J. w. Calkins..........
Separator, grain, R. M. Becker
Separator, grain, P. E. Merrihew
Separator, shavings, E. Brown..
Settee, B. A. Osgood...
Shaft coupling, R. Poole
harpening machine, McLaren \& Coventry
Shele pers, making 0 . Donn
Sidewalk, T. Hyatt.
Seve. metalic, G. Herring
Skate, J. A. Dodge..........., A. S. Hodge
led, Brannock \& Cl
Sleigh knee and beam socket, J. J. Cobb.
Sling for packages, G. D. Steven moothing fron, self-heating, J. S. Hull....
Solder-cutting machine, F. C. ©. E. Smith
Soldering furnace, F. C. \& C. E. smith..
Spooling gulde supporter, J. B. Bancro
Squaring tool, frame, J. Cleveland.... tamp, hand, P. Liebe. Cle steam or gas, absorbing no Stereoscope, Wilcox
Stove, C. Bald win...
tove pipe, G. Wrigh
Sove platform, M. De Yonge.....
rank, liquid-measuring, B. William
Teaching singing, G. N. Carrozzi...
Telegraph, perforator, G. L. Ander
Tobacco, making plug, C. Worley
Toy cannon, S. R. Hbbard
rrap, animal, C. R. Jenne.
Tube-stretching machine, J. T. Connelly
Tunnel, subaqueous, J. C. Trautwine.
weer, I. S. Van Winkle
Uype-writing machine. G. H. Morgan..... Valve, balanced, L. H. Hall..
Valve gear, G. A. C. Bremme
Valve, stop, C. Jenkins.................
vehicle head block, z. Fischesser.
Vehicle hub. N. L. Holmes........
Vehlcle pole attachment, B. C. Bra
Vehlcle, trottIng, A. HItchcock...
Vehicle, trotting, A. Hitchcock
Velocipede, S. Gllzinger
Veneers, cutting, J. D. McE
Ventillator, valve, w. Lane.
Wagon brake, Adair \& Babcock
Wagon, manure, J. T.
Washing machnne, s. Lindsley
Water wheel, Rector \& Black
Water wheel, R. D. Sayre....
Weather strip, H. R. Parker
Wealls, lowering brick into, J. Campbell. Windmill, J. H. Painter........
Windmill, G. H. Wallace.....

DESIGNS PATENTED.
9,449.-Shawl Pin.-LL. S. Beals, Astorla, N. Y.
9,450.-Fountain Rims.-J. W. Fiske, New York city ,451.-Fountain basin.-J. W. Fiske, New York cit ,452.-CARPETS.-J. Hamer, Dutchess county, N. 9,454--Belfry.-M. Hild, Philadelphia. Pa.
$9,455 .-$ Jacket.-G. F. Hollis, Boston, Mass.
9,455.-JaCEET.-G. F. Hollis, Boston, Mass.
cago Ill.
9463.-Shirt Fronts.-A. Plant, New York city.
, 464 to 9,472 .-FAbric.-R. Scott et al., Lawrence, Mass.
[A copy of any one of the above patents may be had by
remitting one dollar to MUNN \& Co., 37 Park Row, New
remitting one dollar to MUNN \& Co., 37 Park Row, New
York city.

SCHEDULE OF PATENT FEES.
On each Caveat....... :io
On flifng each application for a P.
On Issuing each original Patent..
On appeal to Examiners-In-Chef.
On application for Relssue.
On fling a Disclaimer....................
n application for Design (7 years).
on application for Design (14 years).
THE VALIDITY OF PATENTS.
We recommend to every person who is
about to purchase a patent, or about to comabout to purchase a patent, or about to com-
mence the manufacture of any article under a icense, to have the patent carefully examined made in the Patent Office to see what the condition of the art was when the patent was issued. He should also see that the claims are so worded as to cover all the inventor was entitled to when his patent was issued; and it is still more essen menton some other existing patent. Parties desir ing to have such searches made can havethem done by giving the date of the patent and stating the nature of the information desired. For further $\begin{array}{ll}\text { information, address } & \begin{array}{c}\text { MUNN \& CO., } \\ 37 \text { Park Row, New York. }\end{array} \\ & \end{array}$
gavertisements.
 Back Page, each insertion -- 81.00 a line.
Engravings may head advertisements at the same rate per line, oy measurement, as the letter presy. Adver.
tisements must be recerved at publication oflce as early as Friday mornin 5 apear in next 188 C

SCIENTIFIC B00KS.

Workshop Receipts, for the use of Manufac-
turerh, Mechanics, and Sclentific Amateurs. 8 vo ,
clgebra Self-Taught. By J. P. Higgs. 8vo, Pocket-Book of Useful Formulæ and

E. \&F.N.SPON,446 Broome St., N.Y.

A GENTS TO CONTROL TERRITORY FOR

M Anvicturgs And patentrig rav-

Steel Castings,
 EAGLE FOOT LATHES

P. BLAISDELI \& CO. Manuratures. Wor reester, Mates

THE BEST
 GOID PGNS

 New York Azency loo Tnssau Street.
 thand m

Wood-Working Machinery,

IITIIIIJWROUGHT BEAMS \& GIRDER

THE UNTION IRON MLLLLS, Pittsourgh, Pal

3700

ROSE-BUDS IN WINTER

PROPOSALS FOR STOVES.

QUARTRMA ATTRERKRTMENT, OFRGR, S

 20 Army Wrought Iron Wood Heater, N.
20.4
20
20
20 20 Army Parlor Coal Heaters.
20 Army Cooking Ranges, No.

Planing \& Matching.

b
N. F. BURNHAM'S Water Wheel

MACHINGRY

 FRIGTIDN CLUTCHES कण VOLNEY W.MASON \& CO.PROV.R.I.

Pond's Tools. ENGINE LATHES, PLANERS, DRILLS, \&ec.

M ACHINERY OF IMPROVED STYLES FOR aiso GUAGE LATHES for TURNING HA NDLES. Sole
makers of Laws Pat. Shingle and Heading Sawing Ma-
calne. Addreas
crivor \& Co., Lockport, N. Y.
 C'IVIL and MECHANICAL ENGINEEREING RE

$\mathbf{V H O L L A N D}^{\prime}$ GSASS OIL CUP' A8 GOLD STREET, NEW YORK.

Y A L E
IRON WORKS,

 $\mathbf{W}^{\mathrm{ATER}} \mathrm{STPPLY}$ FOR TOWNS AND VIL

spare the crotondsavethecost.
Driven or Tube Wells

NEW METHOD

OF
$\mathbb{E} \mathbf{N} \boldsymbol{G} \mathbf{R} \mathbf{V} \operatorname{ING}$.

New York.

The Photo-Engraving Company, late of 62 Courtlandt St., now at 67 Park Place, beg to call the attention of Artists, Authors, Manufacturers, Inventors, Publishers, Printers, etc., to their method of preparing Relief Plates as a Substitute for Wood Cuts, for Printing Illustrations in Books, Newspapers, Catalogues, Circulars, \&c.
This method, though comparatively new, has passed the stage of Experiment and demonstrated its Success by more than four years' practical test. Its productions have been used in every State and Territory of the Union and in England. The plates are in hard type metal, engraved chiefly by means of photography, have a perfectly smooth printing surface, and are furnished on blocks type high, ready for use on any type-printing press. T'hey will wear as long as any Stereotype plates. Electrotypes and stereotypes may be made from them in the usual way.

COPY.',

Almost all kinds of prints may be transferred or reproduced direct. For original work, pen and ink drawings are necessary. These may be made from photographs, pencil sketches, or from objects themselves. We keep a corps of draughtsmen trained to do this work in first class style. We are also glad to have parties prepare their own drawings, and subjoin a few

HINTSTOARTISTS

The most essential point is to make every line perfectly black-not brown, or pale, or bluish-but black. For fine work, make the drawings twice the dimensions of the desired plate, allowing for the reduction by making it proportionately coarser. Draw on a white smooth surface. Good Bristol board is good enough. Make every line as smooth and clean as possible. Carefully observing these requirements, the artist is at liberty to follow his own individual style, and every line will be faithfully reproduced as it is drawn.
We have no agencies and employ no agents. We cannot furnish any price list. We will promptly give estimates ; but the copy to be used must in all cases be submitted, with full specifications.
The Scientific
American uses our plates. Send stamp for Summer Edition of our Illustrated Quarterly Circular. Please say where you saw this.

PHOTO-ENGRAVING CO.,
67 Park Place, New York.

WHIPPLE'S

Patent Door Knob.

VINEGAR. Ho

ROISTVERSIBLE
 T1ATED Men to tiaver and gell goods to

Machinery.

R.TEN PYCK, SCIENTIFIC \& MECHANICAL ENGRAVER ON WOOD 69 NASSAU ST. NEW YORK.

E NGINEERS SITUATION WANTED. - A C LIentenant Colonel of Ent Fineers of the Fronch

 The Toll-Gate! Prize Picture sent rre ! An

STEAM ENGINES FOR SALE.

 Todd \& Rafferty Machine Co.

AMATEUR WORKERS Rareanil Fancy Fouls
Beautiful Designs.

GEO. W. READ \& $\mathbf{C O}$
186 to 200 Lewis St. foot 5th and 6 th Sts., E.R.. N.

H ARGARD UNIVERSITY DENTAL

 waywawzuw

SHAFTSPULLEYS.HANGERS

In stock, and for sale by

Philadelpha, and 79M SELLERS \& CO.,

1blake's patent Stone and Ore Breaker

qavertisements.
Back Paze : earlu as prudur mormina a peer in

ROOFS.

 OLD ROOFS.

ON TIN OR IRON ROOFS

FIRE-PROOF NEW ROOFS.

 New York Slate Roofing Co. Limited. Lathes, Planers, Shapers, Drills, COMPRESSED AIR MOTIVE POWER.-Fo Or partulars of the most recent practice, se nd 20 cent

RMPATENTS

[ESTABLISHED 1846.]
Minn \& Co.'s Patent Ofices. United Staten.
THIRTI PEATS' EXPERIENCR.
MORE PATENTS have been secured through this agency, at
the world.
They emp
perienced men as examiners, speciflcation writera, and draftemen that can be found, many of whom have bee lected from the ranks of the Patent Offlce. elves of Munn \& Co.'s services in examining their in entions and procuring their patents.
MUNN \& CO.. in connection with the publication of
he SCIENTIFIC AMERICAN, continue to examine in the SCIENTIFIC AMERICAN, contInue to examine in-
ventions, confer with inventors, prepare drawings, cifications, and assignments, attend to flling applications n the Patent Ofllce, paying the government fees, and
watch each case step by step while pending before the exminer. This 18 done through their branch offce, corner miner. This is done streets, Washington. They also prepare and fle caveats, procure design patents, trademarks, and ressues, attend to rejected cases (prepared by the inventor or other attorneys), procure copyrights, attend to Interment, furnish coples of patents, and, in fact, attend to every branch of patent business both in this and in forelgn countries.
A special notice is made in the SCIENTIFIC AMERICAN of all inventions patented through this agency, with ten sold, in part or whole, to persons attracted to the in ention by such notice.
Patents obtained in Canada, England, France, Belglum,
Germany, Rusia, Prusia, Colonles, and all other countries where patents ar granted, at prices greatly reduced from former rates. end for pamphlet pertaining spectally to foreign patents, which states the c
or each country.
Persons desiring any ${ }^{\text {Cos }}$ of Patents.
er 26, 1867, can be supplied with ortlem 1836 to Novem nable cost, the price depending upon the extent Any patent 1ssued \sin time the Patent Ofllce commenced printing the drawing nd specincations, may be had by remitug to this of ce 81
A copy of the clal
When ordering coples, please to remit for the same as nd date of patent. and date of paten
anted States patents full directions for obtaining ound Reference Book, gllt edges, contains 140 page and many engravings and tables important to every pat nce for everybody. Price 25 cents, malled free.

Address MUNN \& CO.,
Publishers SCIENTIFIC AMERICAN,
$\underset{\text { Branton,D. C }}{\text { Bras }}$

ROCK-DRILLING MACHINES AIR COMPRESSORS Manuactured by
send tor
Pamphet

Diamond Solid Emery Wheels.

 HANDASYDE'S COMPOSITION For the Removal and Prevention,
and

 ventilation of a Fire Place; RADIATION of a Stove;
CIRCULATION of a Fin Pure Air and an Even a rature throughout a Room. Thi Cintennilid,', annex Main THE OPEN STOVE VENTILA
ING COMPANY, 107 Fulton St.
CNVALIDITY OF STATE LAWS All laws of State legislatures that in any manner inter-

 $\mathrm{m}^{2} \mathrm{man}$ $\rightarrow 2$
R. E. STATE \& CO., Springfield, Ohio. NEWSPAPEER FILE.

MUNN \& CO
Publishers SCIENTific Ameridan.

The Scientific American RFRFRFNNGBOOK
A Bound Book of 144 Pages, for 25c.

 inluarrationy, as Δ ppled to practical Purposes. Wtit Sith Modernsteam Engine-Wth eniry ying
 1

MUNN \& CO., Publishers, Scientific
37
American Omee
Pow, New York.
Stone Channeling

Quarrying Machine,

WARDWELL PATENT, OOR CUTTING STONE INTO VARIOUS SIZES AND DIMENSIONS IN ALL KINDS O STEAM STONE CUTTER CO., RUTLAND, VT
BOLE PROPRLETORS AND MANUFACTURERS. AThree Machinesat Philadelphia Exhibition,
Anexe No. 2, Machinery Hall.
$\mathrm{R}^{\text {OGERS' TANNATE OF SO }}$ SODA BOILE R SCALE PREVENTIVE. Jobs G. ROGERS CO., Madison, Ind.
Send for book on Boller Incrustation.
Portland and Keene's Cement

PUNCHING

L
Niagara
SteamPumpWorks Establiberd 1826. CHARLES B. HARDICK, 23 Adamestre
BROOKLYN, N. Y.

The Tanite Co.,
STROUDSBURG, PA. EMERY WHEELS\&GRINDERS
Machinists' Tools.
Send or ner ilustrate atala gie
Lathes, Planers, Drills, \&c.

PORTLAND CEMENT

ROMAN \& KEENE'S. For Walks, Cisterns. Founda-

 Bogardus' patent universal bccen-

 nURRILL \& KEEZER, 44 Holliday St., Balt HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.
 J. B. PIRRCE, Sec' T .

Mill FurnishingWorks

SCIENTIFIC AMERICAN, FOR 1876.
THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD.

THIRTY-FIRST YEAR.

VOLUME XXXV.--NEW SERIES.

The publishers of the SCIENTIFIC AMERICAN beg to announce that on the first day of July,
1876, a new volume commenced. It will continue to be the aim of the publishers to render the conents of the new volume more attractive and use-
than any of its predecessors.
To the Mechanic and Mo
To the Mechanic and Manufacturer.
No person engaged in any of the mechanical pur suits should think of doing without the SCIEN-
tific American. Every number contains from six to ten engravings of new machines and inventions which cannot be found in any other publica-

The SCIENTIFIC AMERICAN is devoted to the interests of Popular Science, the Mechanic Arts, Manufactures,Inventions,Agriculture,Commerce and the industrial pursuits generally; and it is val-
uable and instructive not only in the workshop and Manufactory, but also in the Household, the Library, and the Reading Room. Each volume contains hundreds of Notes, Receipts, and Suggestions and Advice, by Practical Writers, for Workng Men and Employers, in all the various arts. TERMS OF SUBSCRIPTION -- POSTAGE PAID BY US
One copy Scientific American, one year ... $\$ 320$ $\begin{array}{ll}\text { One copy Scientific American, six months. } & 1.60 \\ \text { One copy Scientific A merican,three months } & 1.00\end{array}$ One copy Scientific American and one copy

Scientific American Supplement, both
for one year, post-paid................. 7.00
The Scientific American Supplemen A weekly paper, uniform in size with the SCIEN contains working drawings of engineering works, and elaborate treatises on every branch of Science and Mechanics, by eminent writers, at home an abroad. An illustrated cover protects the hand omely printed sheets. Price, $\$ 5.00$ per annum ingle copies 10 cents.
Remit by postal order, draft, or express.
e all Post Office or-
MUNN \& CO. 37 PARK ROW, NEW YORK.

