A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, SEPTEMBER 16, 1876.
$\left[\begin{array}{l}\text { \$3.20 per Annum } \\ \text { (POSTAGE PREPAID.) }\end{array}\right.$
THE GREAT TEXTILE INVENTION AT THE CENTENNIAL \mid know to be earlier than the time of Jacob, for stone inscrip- \mid producing intricate and curious tissues. for guiding and re-EXPOSITION-THE LYALL POSITIVE MOTION LOOM.
To trace back the complete history of the art of weaving would be to transcend that shadowy limit where begins the existence of the human race. The oriole and the weaver bird wove together twigs and rushes, to form their pendent nests, ages before the foot of man trod the earth; and from these, probably, the primeval savage learn the rude prototype fibers of plants and hair of animals into the rude prototype of the fabrics which have replaced the skins of beasts as human clothing. It is a marvelous fact, unparalleled else-
where in the record of human progress, that, from the pewhere in the record of human progress, that, from the pe-
riod when the loom was first devised-a period which we tions of the era of that patriarch, in which weaving is ferred to, have been deciphered-no great improvement or of electricity in a device for superseding the Jacquard ap even modification in its mechanism was made until the year paratus in its present form ; but when we look for a mears 1678, when De Gennes, a French naval officer, conceived the of producing apparently so simple a result as carrying the weaver himself. De Gennes started a current of invention, 1 ly practicable improvement since John Kay, in 1740, inven sluggish but onward in its tendency ; and since his day, in- ted the flying shuttle still in use in the great majority of numerable improvements in loom machinery have been looms.
made, keeping pace in large measure with advancement in
other arts. But neither original invention nor the addition That to substitute a positive, absolute, and uniform mo of improvements has uniformly affected all parts of the loom. tion in the shuttle by means of an external appliance riod when the loom was first devised-a period which we We can point to marvels of ingenuity in the methods for

Continued on page 180

LYALL'S GREAT TEXTILE EXHIBIT AT THE CENTENNIAL

Stientifir glumtrical.

HETABLIEHED 1846.

MUNN \& CO., Editors and Proprietors. publisged wrekiv at

NO. 87 PARK ROW, NEW YORK.

TERMS FOR THE SCIENTIFIC AMERICAN One copy, one year, postage Included...

ver ten copies, same rate each, postage tncluded
CTT The postage is payable in advance by the publishers, and the sub oriber then receltes the paper free of charge.
Nort.-Persons suberibing
Notr.-Perrons subscribng will please to give their fall names, and Post
oflce and State address, plainly writen. In case or changlin state former address, as well as give the new one. No changes can be made unless the former addross is given.
Adistinct paper from the scirivyाricic Auplement
A distinct paper from the Scirntific Amrrican, but of the same aize
One yearby TERMS.
One year by mail.
sotrmytrio AMER
$\underset{\text { The safest was }}{\text { Single Coper }}$
The safest way to remit tis by dratt, postal order, or regisitered leter.
Adaress MUNN \& Co., 37 Park Row, N. Y.
Subscriptons recelved and
VOLUME XXXV., No 12. [New Series.] Thirty-first Year.
NEW YORK, SATURDAY, SEPTEMBER 16, 1876.

THE SCIENTIFIC AMERICAN SUPPLEMENT
Vor Vol. II., No. 38.

ending September 16, 1876. With 67 Figures.

 v. LEESOSNSIN MECHANICAL DRAWING, by Professor MAOCORD,

The Belentino Americen supplement
 MUNN \& CO., Publishars,

AMERICAN CONTRIBUTIONS TO THE DEVELOPMEAT

 THEORY.The address which has deservedly attracted the greates share of attention, out of the many learned essays delivered at the recent meeting of the American Association for the advancement of Science, is Professor E. L. Morse's master ly summing up of all that America has done to promote the rowth of the development theory. Professor Morse is a ardent evolutionist, a naturalist of great learning and abil ty, an indefatigable investigator, and, like most prominen men in the scientific world, has no hesitation in assuming he offensive in support of doctrines of the truth of which he is deeply convinced. Hence there is nothing resembling trimming in his discussion of the evolution question, the pponents of which receive scant mercy at his hands; but acked many of those whose scientific faith is thus at possesses the happy faculty of being always instructive, al ways original, and of lifting his topics out of the slough of technical pedantry in which too many of our learned scien tists seem over inclined to bury modern acquisitions to ou nowledge, especially of natural history.
Professor Morse tells us that the first clear premonition of the doctrine of natural selection came from an American William Charles Wells, borne at Charleston, South Caro ina, in 1757. In 1813 Wells read a paper before the Roya Society, in which he attempted to account for the color of dark-skinined races of men by citing the changes of ani mals under domestication, showing that varieties of men and animals were occurring, not exceptionally, but constantly and that different breeds of animals were thus obtained by man's selective supervision. Hence he argued that a simi lar selection among men had been effected by the compara ive immunity from certain diseases of those who had dar skins. This is substantially a part of the theory of natura selection now expanded by Darwin and credited wholly t him; but the verdure of originality, it seems, must now fad from the English naturalist's laurels. The honor belongs to an American inventor, who, like hundreds of his brethre since his day, has furnished the thoughts whence hav sprung some of the most noted of foreign " discoveries."
This is unquestionably the most important fact broughtfor This is unquestionably the most important fact broughtfor
ward in Professor Morse's paper, and it will provoke uni ward in Profess
Classifying the work of various American investigators, Professor Morse tells us that in producing new evidence for the doctrine of natural selection, Drs. Burt G. Wilder Englemann, and W. K. Brooks and Professor Charles V. Rile have borne distinguished parts. Professor Riley's proof of the inter-dependence of flower and insect in the case of th yucca moth is a scientific triumph. The late Professor Jef ries Wyman completely ruined the beautiful theory that e cells of bees were of such construction as to use spac nd material to the best possible advantage. He found by close study that the cells of all cell-making insects are of
all grades, from shapeless masses to those which approach all grades, from shapeless masses to those which approach
but never reach perfection. The late Professor Chaunces Wright also did admirable work in showing that the ar rangement of leaves of plants along their axis, was due to ircumstances of growth, and was not a circumstance of bind law.
Professors S. F. Baird, J. A. Allen, and Robert Ridgway severally have found that marked differences in birds and mammals are due solely to their surroundings. Thus, fo of the same species, and on the Pacific coast birds acquire a darker hue. Large numbers of like changes, when tabulated and shown on a geographical chart, were found coinci dent with variations already ascertained in the amount of rainfall in the different regions. The total number of spe cies of birds was reduced about one fifth by these investiga ions, and the number of species of squirrels decreased on half or more.
As evidences of the transmutation of species, Mr. James by the loss of one of its a truncate form of mussel, which, rom another form, takes its peculiar shade from the cir cumstances to which it had been exposed, namely, the abraion of its edges and consequent retarding of its growth in e rapid currents of the Mohawk River. has called attention to changes in snails under lik Birney, have all described instances in which changes in an mals have followed altered circumstances of heat or mois ure. Among the examples of the survival of forms by adaptation to changed environment, the discovery by Mr Ernest Ingersoll of marine mollusks and living salt wate crabs, high up on the Rocky Mountains, is the most remark able. Professor Marsh has made a series of brilliant re earches concerning the siredon, an animal of the salaman er kind, that loses its gills, and becomes, when remove from its natural habitat, one previously recorded under a Drs. Packard ant penius (amblystoma). The rear' heor that the blind fish of the Mammoth Cave are of a race crea ad in their present condition by showing that a whole des of fise ries of fishes, ranging from theose with perfect dyes to thes including between them various deficiencies o vision, have been found in American caves and secluded wa ters. The discoveries of Professors Leidy, Marsh, and Cope among the tertiary mammals of the West, have filled wid gaps between older and existing forms, showing all the in termediate animals, so that we have nearly the whole ances try of the horse, back to the five-toed animal, not large han a fox, in the eocene period.
The remainder of Professor Morse's admirable address
ets forth the present theories of Darwin and the evolution school, and more especially dwells upon the gradual devel opment of the intellect of animals. The earliest mammals had the smallest brains; and as we go upward in the strata, the size of the brain gradually increases. Its development in the monkey tribe was regarded as the means by which these animals were enabled to escape from the carnivora which formerly abounded; and intellect even in that early ora thus proved its superiority to brute force.
In his conclusion, Professor Morse showed how perfectly the evolution doctrine accounts for the fatalism of the Turks, the cruelties of savages, and the outrages general y among civilized people, attributed to the total depravity of humanity. He considers all such manifestations as simply relapses to the savage nature which we all inherit from ani mal progenitors ; and that where such relapses in any indi idual become constant, it is the duty of society to treat tha ndividual practically as it would a dangerous beast, and so govern him as to prevent his propagating his kind.

the coming explosion at hell gate.

General Newton has recently stated that the great explo sion at Hell Gate will take place during the latter part of September. The excavations have been complete for some me past, butdelays in passing the appropriation bill by Con ress checked further operations, and for this reason the blow-up did not occur on the 4th of July, as for a long pe riod was contemplated. Those who expect to witness a gi gantic column hurled hundreds of feet into the air, or look forward with some trepidation to the effects of fearful con cussion on adjacent buildings, will hardly find their antici pations realized. The mine will be flooded previous to the explosion; and with the possible exception of jets forced explosion; and with the possible exception of jets forced
through seams in the rocks, there is no reason to believe through seams in the rocks, there is no reason to believe that any very remarkable exhibition of the tremendous
force of the explosives will be manifest. From a scientific point of view the occasion will be of considerable interest, a he earth in the vicinity will be shaken by the communicat ed vibrations, which are likely to travel over a long distance an opportunity will thus be afforded for measuring the ve ocity of sound waves through earth, and preparations ar being made by scientific men to observe the same at points at distances 200 and 300 miles away
The arrangements to guard against any possible dange re being perfected, in utter disregard of the desires both of hose who hope to see the great blast, and those who aspire o profit pecuniarily through the popular curiosity. Steamoats and other craft will be warned away, so that a view from the river will be out of the question; the authori ies have been requested not to grant passes to would-be spec ators on Ward's Island, the best point of observation; and bluff of earth and the buildings near the works preven seeing the operations from the rear, so that the expectan populace will probably have to satisfy themselves with a distant view from the high land on the New York shore.
How much powder, etc., will be burnt is not yet definite y stated. An approximate idea of the quantity may be gathered from the fact that there are about 4,000 drill holes, each 3 inches in diameter, and varying from 7 to 13 feet in depth. Each will be charged with a separate canister of dynamite, vulcan, and rend-rock powder, and the simultan ous explosion will be effected by the current from a bat ery of 800 cells. About two pounds of powder are used to ne of dynamite, and the charges are inserted in the 172 piers of rock and in the roof supported thereby. It is estimated that 30,000 cubic feet of broken rock will be left un der water, and this will have to be removed by dredging so as to secure a channel 26 feet in depth. The total length o unnels, galleries, etc., excavated, is $7,425 \cdot 67$ feet. The mount thus far expended is $\$ 1,686,841$. 45 .

CHEAP COAL

The breaking up of the coal combination and the conse quent throwing upon the market of half a million tuns of coal is a welcome event. The whole coal trade of the Eas has, for several years, been under the absolute control of a monopoly which has signalized its sway by unwaveringly maintaining high prices, without regard to the demand irst, or the depressed condition of all business affairs. It is haracteristic of the patience of our people that no mean have been tried to mitigate this condition of things; but now hat the crisis has come, it is like a gleam of sunligh hrough the black shadows which have fallen across the rosperity of the industrial world. When coal is once mor ubject to the natural laws of trade, and not until then, wil its traffic rest on a sound basis; and when this comes to pass, then we may look for a revival in iron manufacture, and in ll the industries in which steam is used. Too many people re undergoing the effects of long existing business stagna ion not to watch eagerly for any sign, however faint, indi cative of better times, and therefore the gratification fel and openly expressed, at the collapse of the combination, is undeniably great. One public sale of 500,000 tuns will not affect the whole winter's trade, however, any more than one cold day represents the whole winter's weather ; but a matters now appear, the present event is only a beginning nd predictions are freely hazarded that we shall see stil wer prices.
The fall in rates at the late auction seem to have aston ished every one, and none more than the coal dealers them selves. The reduction from the combination schedule for augast averages about $\$ 2.10$ per tun, and average prices ranged from $\$ 2.20$ for Philadelphia \& Beading chesnut to $\$ 3.86{ }_{10}^{5} 0$ Delaware \& Hudson stove. The Vice-President of the Pennsylvania Coal Company asserts that it would cost $\$ 500,000$ more to mine the coal than the prices fetched at
the sale amount to. The agent of the Delaware \& Hudson Canal Company counts up the various expenses of handling, mining, commissions, etc., and claims that a tun of coal costs at tide water $\$ 4.15$, while the average at the sale was but \$2.42. In the coal regions, the operators say that either tolls and labor must be greatly reduced or they must suspend operations. Miners' strikes are feared, and altogether the prospects are gloomy for both laborers and owners.

THE SCIENCE OF MECHANICAL MOVEMENTS.

There are numerous treatises devoted to descriptions of
great inventions and discoveries, and discussions of the processes of reasoning by which they were worked out. It has long, too, been recognized that there is such a thing as scientific invention, in which the mechanic, having definitely determined the result which he wishes to attain, proceeds to achieve it by a series of systematic steps. It is true that the genius for making discoveries, with which some men are endowed, gives them a great advantage over their fellows; but it is equally true that genius, properly directed, is far more certain of success than if it acts without a guide. This is sufficient to account for the great interest which has been taken in the matter by professional writers, and the number of treatises relating to it that have been published. Few of these works, however, go farther than to show the nature of inventions that have already been perfected, and to give discussions of the motions that are produced. It is a great advance when a writer offers to the public a method which is capable, not only of analyzing all existing mechanical movements, but also of furnishing the outlines of any movement that may be desıred. This is the claim made by Professor Reuleaux in his "Theoretische Kinematik," a work which has excited great interest in Germany, and has recently been translated into English. Professor Reuleaux' method of analysis possesses the merit of great novelty, and a description of its nature may be received with favor by readers of an inventive turn of mind.
The reader who is familiar with analysis knows that the discussion of an equation is a very thorough method of determining all the conditions and variations of a given question. The well known problem of the lights, which is to be found in most elementary treatises in algebra, is a good example of this kind; and still better illustrations will occur to the reader in the discussions of some of the equations deduced in what is commonly known as analytical, but more correctly as general, geometry. A somewhat similar plan is adopted by Professor Reuleaux in his Kinematik. All ideas of force and time are disregarded in the consideration of a mechanism, and he merely concerns himself with the motions that are produced. The geometrical methods of determining changes of position are explained; and the nature of simple mechanisms and the manner of compounding them are fully illustrated. This part of the work may be compared with the introduction to the study of algebra, in which the idea of generalization is first presented to the student. Then the notation by which mechanisms are to be represented is introduced. The system adopted, which is entirely novel, cannot be properly explained in a limited space, but some of its characteristics may be noted. The different elements of a machine, such as screws, prisms, cylinders, cones, etc., are indicated by appropriate letters, accented in such a manner as to show whether they are hollow or solid. Letters connected by a dotted line indicate that the two elements are joined by a link, a comma shows confor a fixed link, an elastic link or spring is marked by a for a fixed link, ad elastic link or spring is marked by a
wavy line over the dotted one, etc. The notation is by no wavy line over the dotted one, etc. The notation is by no
means complex, and can be mastered in a short time by any one who is accustomed to the use of algebraic symbols. It will be a surprise to many to find that the elementary parts of mechanism are comparatively so few in number. The use of the notation having been illustrated by numerous exam ples, properly graded, the author proceeds to the final analysis of mechanisms, or discussion of the expressions given by the notation. This is, of course, the object of the whole work, to which all that has preceded has been only prepar cannot fail to see that the method seems to show the possibility of a thorough analysis of any mechanism that can be included in the notation. Those who feel an interest in ro tary engines (and few engineers have not designed at least one of these machines) whin find that by Profersor menine has been pretty thoroughly analyzed by Professor Reuleaux.
The work is by no means exhaustive in every field of meThe work is by no means exhaustive in every field of me-
chanical movements, but is rather intended to furnish the chanical movements, but is rather intended to furnish the investigator an instrument which he can use in his own explorations. Even those who do not care to study the work thoroughly can scarcely fail to gain some useful ideas from turning over the pages and inspecting the sketches of the various movements shown.

SOME NEW LIGHT ON THE ORIGIN OF THE TRUFFLE.
The truffle is a species of underground fungus largely used in French cookery to give a peculiar rich flavor to meats. It comes principally from France, where it is always found in oak or beech woods, and can only be gathered through th agency of the keen scent of dogs or pigs especially trained to hunt for it. Both from the difficulty of obtaining the fungus, and from the fact that it is a delicacy highly prized by epicures, it brings in all markets a large price; and thus truffle hunting has long been a remunerative calling for the \cdots rench and Italian peasantry. In appearance, the truffle is a blackish mass, covered with protuberances and weighing from an ounce to several pounds; when cut open it presents a marbled appearance, and its reproductive portion (it is sex

vered or honeycombed surfaces

Numerous attempts have been made to cultivate these fungi, but with little or no success. Regarding their early development, comparatively nothing has been known, and the spawn or vegetative portion, which, in the case of the
mushroom, is readily obtained, allowing the cultivation mushroom, is readily obtained, allowing the cultivation of that fungus to any degree, has not yet been definitely found in the truffle. Sprinkling the earth with water, in which the parings of truffles have been steeped, has resulted, it is stated, in producing them; and they have likewise been obacorns and waiting for the saplings to reach a few years' growth, when the truffles could be gathered among the roots. Still no practical method of cultivating the truffle is in existence; and since they are found completely isolated from anything which could produce them, we are left in the dark as to how they are originated, or at best with merely the supposition that,at an early period of their development,they are parasites of the tree roots, or the theory that, like oak galls, they are due to the stings of insects. This last conecture, however, arising from the fact that truffles are attacked by dipterous insects, like other nitrogenous cryptogams, has been refuted by the entomologists.
A very curious and recent experiment by M. Brefeld throws some new light on the subject, and may lead to the long sought method of cultivatlon. The penicillium glaucum is the well known green mold which appears on bread and cheese, and which owes its name to the fact that, in free air, it consists of chaplets of spores, in brush form, connected to a stem or pedicle. The mode of reproduction of this mold depends on the medium in which it exists. Now, by placing the penicillium in a closed vessel with very little air, M. Brefeld has obtained nodules which, after being buried in moist sand, fructify with internal asci which do not open. That is to say, they are produced in a manner analogous to truffles. The asci, we may explain here, are the little sacs
in which the spores are contained, and are found in many complex forms of fungi, which build up a special organ alled the peridium to hold these sacs.
It will be seen from M. Brefeld's discovery that he has noted two forms of green mold, one aerial, or penicillium, the other existing when partially deprived of air, or tuberaceous. The truffle through its subterranean location is always in confined air, present besides in limited quantities, and in that state is sexless. Now it remains to find its aerial form, to discover the peculiar penicillium, which placed under the conditions noted will produce, for its nodule, a truffle.

IS BROTHER JONATHAN SO VERY SLIM

In our examination of the newly published medical sta tistics of the Provost Marshal General's Bureau of the late war, with regard to the relative hight of American men, we had the pleasure of showing, the other day, that the native born among our citizens and soldiers stood first in point of stature; while in every instance the foreign born exceeded the stature accorded them in the statistics of the nations they represented. We not only raise the tallest men, but draw from foreign countries, by emigration, men of more han average stature.
The artists are therefore quite right in always depicting he typical American, Brother Jonathan, as very tall. But hey also make him very slim; and theorizing traveler have never hesitated to give a reason for his being long-leg
ged and lank. One blames the climate; another, tobacco ged and lank. One blames the climate; another, tobacco
another, bad cookery; another, his excessive "push " and eagerness in business; while the extra scientific Buchne was sure that the continent was altogether unfavorable to the European type of man, and would allow us no alterna ive but extermination or a speedy approximation to the In dian type. But is the average American really so slab-sided and lean?
Let us see what answer our statistics give. How do w compare with other nations in girth and weight? As statistics of mean weight have but little value apart from meas urements of hight and girth, and age, we will first examin the records with regard to the degree of maturity of the everal racial clements of our armies
From the statistics gathered by the Sanitary Commission Gould found the mean age of $1,012,273 \mathrm{men}$ of all nativi ties, mostly volunteers, to be 25 years and 10 months. As a careful analysis of statistics of physical development shows hat American born white men do not attain their full growth until between thirty and thirty-five years of age, it is obvi ous that the results obtained from these statistics will un der rather than over rate the average dimensions of American men. It will be seen, too, from the following table of men enlisted toward the close of the war, when the average age of recruits was highest, that, with the exception of small number of Canadian recruits, the native born elemen of the army was the youngest.

Nativity.	Numbe	Mean Age.
United States.	196,980	26.955 years.
British Possessions.	14,954	25.352
England.	10,103	27.855
Ireland.	30,412	$27 \cdot 216$
Germany.	30,943	31.029

Unfortunately the instructions to enrolling surgeons did not direct them to record the weight of the men examined. Only the more energetic officers took the trouble to make their work complete in this respect; consequently the staistics on this point are less full than could have been desired. Still an idea of the relative bulk of the men of the five principal nativities may be had from the following ta bles, showing the relation of hight, girth of chest, an ex
pansion of chest to increasing weight in over 10,000 men of
all ages from 18 to 45 years. The men, when weighed and measured, were invariably naked

Weight.	$\begin{gathered} \begin{array}{c} \text { Number } \\ \text { of } \\ \text { men. } \end{array} \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Mean } \\ \text { hight. } \\ \text { inches. } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { Mean girth } \\ \text { of chest } \\ \text { of } \\ \text { axpiration. } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Mean } \\ \text { expan- } \\ \text { sion of } \\ \text { chest. } \end{gathered}\right.$
Under 100 pounds.	14	$64 \cdot 000$	29.714	$3 \cdot 071$
100 and under 120	991	$65 \cdot 191$	$30 \cdot 468$	$3 \cdot 146$
120 and under 140	2,968	$66 \cdot 856$	$31 \cdot 997$	$3 \cdot 238$
140 and under 160	1,894	$68 \cdot 424$	$33 \cdot 642$	$3 \cdot 289$
169 and under 180	427	69.920	34.988	$3 \cdot 289$
180 and over.	65	$70 \cdot 215$	$36 \cdot 554$	$3 \cdot 269$
Total and mean of total.	6,359	$67 \cdot 297$	$32 \cdot 491$	3-242
BRITISH AMERICANS.				
Under 100 pounds.	2	$64 \cdot 000$	$30 \cdot 000$	$3 \cdot 500$
100 and under 120.	38	$64 \cdot 211$	$30 \cdot 737$	$3 \cdot 184$
120 and under 140	304	66.546	$32 \cdot 020$	$3 \cdot 247$
140 and under 160	198	67.848	$33 \cdot 606$	$3 \cdot 298$
160 and under 180	41	69.512	$34 \cdot 439$	$3 \cdot 402$
180 and over.	6	69.333	$35 \cdot 333$	$3 \cdot 333$
Total and mean of total.	589	67.059	$32 \cdot 666$	$\stackrel{3 \cdot 272}{ }$
englishmen.				
Under 100 pounds.	0			
100 and under 120.	56	64.067	$30 \cdot 893$	$3 \cdot 107$
120 and under 140.	243	65.835	$32 \cdot 453$	$3 \cdot 154$
140 and under 150	128	$67 \cdot 625$	$33 \cdot 609$	$3 \cdot 242$
160 and under 180	25	$68 \cdot 480$	$34 \cdot 960$	$3 \cdot 380$
180 and over	2	$69 \cdot 000$	$38 \cdot 000$	$3 \cdot 500$
Total and mean of total.	454	66.348	$32 \cdot 749$	$3 \cdot 187$
IRISHMEN.				
Under 100 pounds.	3	$62 \cdot 667$	$30 \cdot 667$	$2 \cdot 167$
100 and under 120.	158	64.532	$31 \cdot 519$	$3 \cdot 215$
120 and under 140.	724	66•119	$32 \cdot 715$	$3 \cdot 181$
140 and under 160.	450	67•609	33.916	3.233
160 and under 180	74	69•270	$35 \cdot 357$	$3 \cdot 338$
180 and over	8	$69 \cdot 000$	36.750	$3 \cdot 250$
Total and mean of total.	1,417	66.589	$33 \cdot 119$	3-208
germans.				
Under 100 pounds.	3	$63 \cdot 333$	$30 \cdot 000$	$2 \cdot 833$
100 and under 120.	168	$64 \cdot 167$	$31 \cdot 357$	$3 \cdot 262$
120 and under 140	675	65.532	$32 \cdot 601$	$3 \cdot 226$
140 and under 160.	389	66.905	$33 \cdot 969$	$3 \cdot 231$
160 and under 180	104	$68 \cdot 346$	35.192	3.221
180 and over.	- 4	$69 \cdot 000$	36.000	$3 \cdot 500$
Total and mean of total.	. 1,343	$65 \cdot 985$	33.047	3.231

Taking into account the relative youth of the American element of our armies, and the probable inferior age of the Americans furnishing the foregoing measurements, their slightinferiority in girth of chest is not at all remarkable It certainly does not indicate any excessive lankness in the atives of this country.
Dr. Baxter has compiled a table exhibiting the mean re sults of a great number of sets of observations by various authorities. Most of them are too fragmentary to be of us in this enquiry; but such as are complete as regards age, hight, girth, and weight, we have brought together in the following table: Though not sufficiently complete to warrant any sweeping generalization in regard to Brother Jonathan's physical qualities, it carries evidence enough at least to sat isfy one that the typical American is a fair specimen of hu manity, in bulk and weight, as well as in stature.

It will be seen that the average American compares very favorably with the best specimens of the race, the English and the Scotch, as regards bulk and weight. The most extensive series of observations on this head ever made in Great Britain are those of Dr. Beddoe, who collected measurements of over 17,000 civilians and soldiers, between twenty-three and fifty years of age. From these he calculates the mean hight of Englishmen to be 5 feet $6_{1}{ }^{6}{ }_{0}$ inches, and that of Scotchmen 5 feet $7 \frac{1}{2}$ inches. From the careful measurement of one half a million men, little and big, sick and well, by the Provost Marshal General's medical staff, it appears that the average hight of the men of eight of our Northern States exceeds 5 feet 8 inches. In sixteen States, the average exceeds that of the Scotch; and in one State only (Connecticut) does it fall so low as that of the average Englishman.
In the matter of bulk, the comparison, as we have seen, is not less favorable to Brother Jonathan. He is as heavy as the heaviest even in his youth : and the apparent slimness of his immaturity, due to his superior hight, is fairly made up for by the time he reaches his full development.

Artificial Teeth.-Mr. Merrick Bemis, of New Haven, Conn., desires us to state, that his patent (which we quoted on page 106, volume XXXV , and which states that the plates are intended to fit over natural teeth, and in which the teeth are described as all molars) covers the application of the invention to all teeth.
the detachable fandie parasol and umbrella. |Messrs. George Yule, and William M. Henderson, of Penn-
The annexed engraving illustrates a novel, simple, and useful improvement in this staple article of trade. Theinvention may be described either, firstly, as an improvement on the common style of parasol or umbrella, where the handle is at the "r right" end of the stick, as seen in Figs. I and IV; or, secondly, as an improvement on the walking-stick or
In IV; or, secondly, as an improvement on the walking-stick or
Alpine style of parasol, where the handle is at the "wrong" end of the stick, as seen in Figs. II and III.
The invention consists in making both ends of the stick alike, and in providing a detachable handle, capable of fitting on either of said ends; so that a lady can adjust the handle at pleasure, on either end of the stick, as quickly, and with as much ease, as she could expand or close the parasol.
The invention is, first, an improvement on the common style of parasol or umbrella (Figs. I and IV) in respect thatthe handle being reversible - the imversible - the im-
proved article comproved article com-
bines in itself the two bines in itself the two
styles, namely, the common and Alpine; in short, the improved parasol can be adjusted to either of the four different positions represented in Figs. I, II, III, and IV. Secondly, the invention is an imvention is an improvement on the walking-stick or Alpine style of parasol
(Figs. II and III) in (Figs. II and III) in respect that it effectually overcomes the objections to the Alpine style, which are these, namely, that the lady must, when desiring to hoid the parasol overhead, take in the hand that end of the stick end of the stick which had previously been in contact with the not-over clean sidewalk, thus rendering the hand or glove liable to be soiled; and that, when being so held overhead, a substantial hold for the hand is not afforded. the parasol having to be held by the slender stick alone. A glance at the engravings, however, will show that, in the improved parasol, these two objections are effectually over come; for the handle as it has been seen, can readily be changed from one end of the stick to the other. Fig. VI shows a plain handle, in section, containing an end of a parasol stick, and secured to the stick by a bayonet soint. Figs. V and joint. Figs. V and of the same, the hanof the same, the han dle in Fig. V being secured by a screw,
and in Fig. VII by a spring-catch. In Fig VII the spring, a, pressing against the end of the stick, c, throws the tooth of the catch into the
shallow groove in the stick and holds it in that position til released by pressure of the thumb on the knob, b. The above methods of securing the handle, however, are shown merely as a few of the many ways of doing so, the Patent allowing the handle to be secured to the stick by any suitable fastening device
Regarded, then, as an improvement on the common style, or as an improvement on the Alpine style of parasol, the in vention presents the following merits and advantages-it combines, in one article, the common and the Alpine styles; it effectually overcomes the objections to the Alpine parasol; and, further, it allows a lady, when choosing a parasol, to select also a handle to her taste, which can be furnished of the necessary gage. The invention is simple and effective; and, we are informed, the improved article can be manufactured at a price to compete with the unimproved article. We think the invention a practical one, and we augur for it much and lasting success.
Letters Patent for this invention were issued jointly to

sylvania, on the 24th November, 1874.

For information as to rights, licenses to manufacture etc., address, by letter, Mr. George Yule, care of The Hen derson Co., 258 South Third Street, Philadelphia, Penn.

Why Not?

"Can any one give a sensible reason why a person who devises a néw and patentable idea should not secure a patent upon it ? I have ransacked the entire field of opposition without discovering a single reason that cannot be demolished by one whisk of the horse tail of common sense. Granting that all patents are not profitable, we must acknowledge that the expense of obtaining them, especially in the United States, is quite moderate, and that the chance of realizing a patent is always worth the amount it costs to secure it ; and I might sta
how often is it that we run across persons who regret that they did not secure patents upon their inventions or discov eries when they first made them. Many an originator of an idea has failed to secure himself by a patent when he might have done so, and has seen his ideas appropriated, and the invented device finally become a standard article of commerce and trade. As likely as not, the dilatory individual pends the balance of his life in useless regrets that he missed a chance for securing a competence and probably a fortune. It was a neglected opportunity not only to become rich but to enroll his name among the list of men of genius. A few such instances as these are necessary and valuable to point a moral to our tale. Their experience is a living ex mple to other inventors, and is one of the strongest arguments to support our ' Why Not?'
"Again, leaving profit entirely out of the question, a pat
at is a national record of the genius of the people, and

every man who can do so should be proud to have his name placed upon
the record. Is it not the record. Is it not a fact that we feel a glow of pride when we run across the name of some ances tor among the name of patentees in th patent record? W at once feel that w have inherited the national Yanke characteristic of American and we grow tan, and we por tenderer an with sympatheti neighbor who has been spending all his time and money for years in a vain en deavor to invent a perpetual motion ma chine. It is the only chance a great many of us have to send our names down to posterity linked with a noble and public ambition to help our selves and the worl along. If the inven tion does not promise to be speedily remu nerative when it is made, it should be patented neverthe less, as we do not know how soon the necessity may arise that will call for such a device Most the devices whic the dinas faile the originators failed to patent and whic afterwards went int general use have jus such a history.

Many people ar so constituted tha they never pay out a dollar unless they see an immediat prospect of two dol lars being returned for it. Such person will most generall miss the man miss the mance and have the pleas ure of regretting their folly ever af terwards. I there fore ask again, why not patent your in ventions? And I am sure every sensible person will repl
of any invention for seventeen years (the term for which patents are issued) is worth the price of a patent whatever may be its character, unless it is based upon a foolish or in correct theory, or is practically inoperative. I do not intend by this statement to be understood that every such patent will yield a fortune, or even an independence for its owner, but that as an investment of so much money it cannot be regarded as a bad investment. Apathy, or rather a failure to properly put the patented article upon the market, and exaggerated ideas of its value, which lead to exorbitant demands from any one who might desire to purchase, are the principal causes of inventors failing to realize from their patents. Many patentees prefer to let their patents lie un introduced rather than dispose of them at sensible prices, when often these figures would yield a fair profit. Many a good patent is buried and forgotten until it runs out, and then some one, more sensible in such matters, as likely as not picks up the idea, manufactures the article, puts it upon the market, and grows wealthy upon the profits: Again,
why not ?'"-Mining and Scientific Press.
Errata.
Messrs. S. C. Forsaith \& Co., Manchester, N. H., desire us to correct an error in the description of their hand fire engine, published on page 127 of our current volume, by stating that four men, instead of fourteen, were able to throw a half inch stream 186 feet, instead of 156 feet, as printed on the page referred to. The initials of the patentee, Mr. Hall, are J. M., not A. M.
Messrs. J. A. Fay \& Co.'s planer, matcher, and beader, illustrated on page 147, current volume, was entitled, by a typographical error, a planer, matcher, and bender.

THe value of the Centennial buildings is put at $\$ 5,949$, 000 , and of their contents, $\$ 104,820,340$. A large portion of the exhibits, which are not taken into account, are not of in for all that the rest of the exhibition is worth.

HANGINGS FOR SLIDING AND SWINGING GATES.

 The invention herewith illustrated is an improved attachment, or iron, for that class of gates which are opened by sliding them back upon a proper bearing surface in the gate post until a balanced position is reached, and then swinging them round upon the bearing as a center. The device is composed of two cast iron brackets, a transverse slotted swivel, and a bearing wheel, all as shown more clearly in Fig. 2. The brackets, A, are provided with projectionshavng suitable bearing openings for the iron which revolves therein. The projecting portion of the brackets, it will be observed, extends in a diagonal direction from the face of the post. The bearings are thus adapted to permit the iron held thereby to lie parallel to the side or face of the post, as may be desired. The swivel iron, B, consisting of a casting provided at each end with bearing studs. rests in the bearing openings of the brackets and turns therein. The bearing openings of the brackets and turns therein. Thebearing wheel, C , the circumference of which is less than bearing wheel, C, the circumference of which is less than
the inner circumference of the circular opening in the swivel, is provided with journals which rest upon bearings at the bottom of the vertical slots.

Iig. 2

The gate, Fig. 1, is constructed as desired, and one of its bars is held in the slot, passing through the swivel iron and resting upon the bearing wheel. The operation of the gate is similar to others of its class already noted. It is closed, of course, by the opposite movement. Some of the advantages claimed for the described construction are as follows: By constructing the iron with the large circular opening and By constructing the iron with the large circular opening and
vertical slots, the bearing wheel may be readily inserted in vertical slots, the bearing wheel may be readily inserted in its place and be securely held there without the necessity of drilling journal holes or inserting pins. The extended bear-
ing surface, also furnished by this form of casting, serves ing surface, also furnished by this form of casting, serves
to hold the gate bar always in line with the bearing wheel, to hold the gate bar always in line with the bearing wheel,
so that the tendency to cramp or pinch when the gate is lonso that the tendency to cramp or pinch when the gate is lon-
gitudinally moved is avoided. The attachment as a whole is strong, durable, and simple in its construction, it being complete and ready for use when cast, without drilling or finishing of any kind, so that it can be made at a small cost.
We are informed that farm gates put up with this device need no bolting nor bracing; and as they rest with each end squarely on the gate posts, they will neither warp nor sag. They can be raised up so that sheep or hogs can pass under them. The gate may also be placed on the side of a steep bank or over snow drifts.
This invention was patented July 25, 1876, by Elias Shopbell, of Floris, Iowa, by addressing whom further particulars may be obtained.

Coal Dust as Fuel.

The use of dust and pea coal has been thoroughly tried at the Ocean Mills, Newburyport, Mass., for the past year and a half, with the following result: For years they have kept an actual account with scales of every barrow of coal wheeled into the fireroom, and the average weekly consump tion shows forty tuns of broken coal on 18,000 lbs. of cloth, average costing $\$ 7$ per tun, or $\$ 280$ per week, which makes the cost of fuel per pound of cloth over $1 \frac{1}{2}$ cents; under the present arrangement, the weekly consumption is only thirtysix tuns of pea and dust on 20,000 lbs. of cloth, costing $\$ 350$ per tun, or $\$ 126$ per week, which makes the cost of fuel per pound of cloth less than six mills, showing a saving of nearly one cent per pound. This mill is run entirely by steam, and the cost of one and a half cents per pound in burning large coal does not vary from the cost of other mills in the same vicinity. Beyond the saving of fuel, the fire is much easier on the boilers, brickwork, and fronts of furnaces, no repairs having been made on any of the above since the arrangement was putin; and the grates are as perfect as new. This one item almost pays the expenses of the arrangement. The labor is not near as hard on the
firemen, and the engineer has the steam under entire confiremen, and the engineer has the steam under entire con-
trol. Again, if steam is drawn down rapidly, as in dye works, it can be brought up again in a quarter of the time. The want of market for dust, heretofore, has caused its being dumped off on to the dirt piles at the mines at a much greater cost than if loaded into cars; and the accumulation at the shipping ports has been of such inconvenience that thousands upon thousands of tuns have been dumped under the docks to get rid of it. Much of the pea coal has been thrown, also, upon the dirt piles, all of which will now be carefully saved, and shipped to market, the present arrangement developing more steam from one tun than ton Transcript.

EAction of Impure Rain Water on Lead Pipes.
In a paperlately read before the American Chemical Society, Professor Paul Schweitzer says: The laboratory of the University of Missouri is supplied with rain water, which collects in a tank in the upper part of the Scientific Building,and is carried to the working tables of the students by lead pipes, which are furnished by brass stopcocks. In asing this water for ordinary analytical work, as, for instance, saturating it with sulph-hydric acid, it was soon found to be unfit for such purposes, on account of the quantity of metals it had dissolved, after standing in the pipes only a short time. It is a well known fact that pure water attacks lead much faster than water containing a certain quantity of mineral salts, and this seems to be also the case with rain water, which contains invariably ammonia, nitrous and nitric acid: some sulphuric acid was also found in this water, derived from the smoke and cinders which fall on the roof of the building from the coal fires that heat the rooms. The following quantities of metals were found in rooms. TH Sted one United States galon, 231 cubic inches,of the filtered wa-
ter, that had stood in the pipes for one month : 1.079 grains ter, that had stood in the pipes for one month : 1.079 grains
metallic zinc, 0.537 grains metallic iron, 2.503 grains metalmetallic zinc, 0.537 grains metallic iron, 2.503 grains metal-
lic lead, 0.082 grains metallic copper, 0.049 grains metallic arsenic. Total, $4 \cdot 250$ grains.
Arsenic, copper, and probably iron, are derived from the lead pipe, manufactured from an inferior quality of lead, and zinc from the lining of the tank. In supplying private houses or institutions with water through a system of pipes, care should be taken to find out whether the water to be supplied be pure or not : in the former case, and when rain water is the source of supply, as it is in many sections of our State, sead pipes should be discarded, and tin-lined lead pipes substituted for them.

A MARINE SAFE

 Few of the great ocean steamers now leave our ports with-out carrying large amounts of bullion and specie. In case out carrying large amounts of bullion and specie. In case
of the wreck of the vessel, this precious freight is likewise lost, since its weight and that of the heavy safes in which it is inclosed necessarily carry it to the bottom when the ship breaks up. Sometimes, and of course only when the disaster occurs in comparatively shoal water, a buoy is at.tached to the safe, and the latter, if time permits, is thrown overboard. The location of the buoy then marks that of the sunken safe, and it is not difficult to regain the latter.
A much better plan than this, and one that is well worth the attention of ship owners, insurance companies, and oth ers, has lately been patented through the Scientific Ameri-

can Patent Agency (August 1, 1876) by Mr. J. L. Gouley, of New Orleans, La. This inventor proposes to make the safe itself a buoy, in the manner exhibited in the annexed engra-

ngs. A is a sheet copper vessel, the lower part of which, B, is covered with rubber so as to resist the shock of being tossed on breakers. Inside the vessel, A, are a number of
compartments, those marked C^{2} being hermetically sealed and containing only air, while the center one, C, is designed for the reception of treasure. There are two covers' one for the center compartment, the other for the main vessel as shown, the latter being provided with suitable locks. It is intended to mark the safe conspicuously with the name of the owners, and then, in case of wreck, throw it over board, so that, if not washed ashore, it is certain to be picked up at some time.

THE ACME AUTOMATIC DRAFT REGULATOR

We illustrate herewith a novel and ingenious device for regulating the draft of a fire, and which also is claimed to obviate the danger arising from overheated flues. Generally, all smoke pipes are provided with a common close damper for regulating the draft. When this damper is closed, or partially so, the combustion is slow and imperfect, the gases accumulate, and when there is not a free exit they become forced into the rooms. The common damper likewise requires frequent manipulation by hand, to suit circumstances, while the present device does not at any time retard the free exit of smoke and gases, but allows them to pass into the flue as they are generated; it likewise is self-acting in its operation so far as not to require frequent adjusting and so as always to permit the necessary amount of draft for the proper combustion of the fuel.

A is a cast iron collar that fits on the smoke pipe, with A is a cast iron collar that fits on the smoke pipe, with
double open and shut valves. B is a small cast iron boiler without joints, suspended within the pipe in such a manner and of such shape as not to impede the passage of smoke or gases. C is a siphon pipe, leading from the bottom of the boiler to the exterior lever arm, D. This lever, D, is a continuation of the siphon pipe, weighted at one end with the weight, E ; at the other end it carries the metal receivers, F . It is connected as shown with the valves in the collar, A. The action is as follows: With a moderate amount of heat passing up the chimney, the water in the boiler remains at passing up the chimney, the water in the boiler remains at
or near the boiling point, and the valves remain closed; but or near the boiling point, and the valves remain closed; but
as soon as the volume of heat is materially increased, steam as soon as the volume of heat is materially increased, steam
is generated, which forces a portion of the water through is generated, which forces a portion of the water through
the siphon pipe into the lower metal receiver. The latter the siphon pipe into the lower metal receiver. The latter
then partially overcomes the weighted end and the disk descends, partly opening the air valves in the smoke pipe, admitting a current of cold air which serves to reduce the force of the draft in like proportion. Any further increase in the volume of heat passing into the smoke pipe will likewise increase the steam pressure, forcing a greater weight of water into the receivers and opening the aif valves wider and reducing the force of the draft to its lowest point necessary for combustion. As soon as the fire is checked and the smoke pipe cools, the water gradually returns to the boiler, reversing the action; and the draft is gradually increased until the process is again repeated. Thus the fire itself is the agent for regulating its own draft.
There is claimed to be no danger of explosion, for, as state the manufacturers, were the boiler to become red hot, the water would be forced out of it into the receivers, and cannot return again until it has cooled. Though the air valves are self-regulating, and are acted upon by the force of combustion, they can be manipulated by hand if desired, by simply sliding the weight on the arm of the lever, which will open or close the valves, as may be desired.
The device can be readily applied to any stove or furnace, where the smoke pipe is over five inches diameter, either on a vertical or horizontal pipe. Patented October 11, 1875. For further particulars address the S. J. Gold Heater Company, 93 Liberty street, New York city.

Joint Stock Maternity.

A Welsh correspondent sends to Nature an interesting instance of a joint stock concern in the poultry yard: "Two hens sat on, or by, one nest, and thus between them hatched one chick. They have since, for some weeks, been parading the yard, each clucking and manifesting all the anxiety and care of a true mother over this one. The hens never quarrel, or show the least appearance of jealousy or never qua,
rivalry."

Continued from first page

moving exteriorly to the sheds of the warp, without absolute and positive connection between the shuttle and the motor, is a problem, requiring for solution something more than a mere modification of existing devices, has been apparently unrecognized. The first weaver pushed or threw the shuttle through the warp with his hands. Kay connected pickers or hammers at the end of the shuttle race with a cord along the front of the loom, and attached to the middle of the cord a handle or "picking peg;" and this the weaver jerked in one direction or the other, causing the pickers to strike the shuttle and drive it through from side to side. In the power loom, the pickers are operated by.proper mechanism; but the principle on which they work remains precisely the same. The shuttle, in fact, becomes a mere projectile, entirely out of the control of the weaver during its passage across the warp. The disadvantages pertaining to this arrangement are so many and so great that the mere recapitulation of them is sufficient to excite the deepest surprise pitulation of them is sufficient to excite the deepest surprise
that, for a hundred and thirty years after the device was inthat, for a hundred and thirty years after the device was in-
vented. during an age of progress more rapid than the world has ever before known, the skill and genius of mankind were baffied in every attempt toward reaching the radical change so obviously and imperatively demanded. And it is necessary to consider these disadvantages for a proper appreciation of the invention to which this article is devoted.
disadvantages of the fly shuttle.
The ordinary shuttle being a mere boat--shaped implement, it slides over the warp thread on its slightly convex bottom. It is obvious that, when hurled as it is with lightning rapidity, the friction on the thread must be excessive. This is in fact the case, and the result is frequent breakage of the warp and constant injury to the filaments of such
delicate fabrices as silk, cambric, etc., so that delicate fabrics as silk, cambric, etc., so that
a limit is speedily reached, in point of finea limit is speedily reached, in point of fineness of the goods mäde, beyond which the fly shuttle is practically useless. Similarly there is a limit in the width of the fabric, or, in other words, the distance the shuttle can be thrown. The wider the warp, the more dif
ficult it is to pick, since, while it is harde ficult it is to pick, since, while it is harder to impel the shutle, it tion. A still greater obstacle to the produc tion. A still greater obstacle to the produc tion of perfect fabrics is the variable nature
of the force by which the shuttle is projecof the force by which the shuttle is projec-
ted. A certain speed of the mechanism beted. A certain speed of the mechanism be-
ing just sufficient to make the throw, an increase in velocity may result in causing
the shuttle to rebound, thus slackening the the shuttle to rebound, thus slackening the weft, or even
leaving a bight in it. Again, if the speed be reduced only five per cent, the shattle may fail to complete its journey. The least evil consequent is that some of the threads are tight, while others lie loose; and when the completed fabric is woven, the former take the strain, giving way first; and the material, as is commonly the case with poor and cheap silk, " cockles," and speedily becomes valueless. The greater evil is a "smash," which must occur pass through them. It then is struck by the lay, the delipass through them. It then is struck by the lay, the delicate dents of the reed are bent or broken. and the threads
of the warp in the vicinity are destroyed. Hours may be of the warp in the vicinity are destroyed. Hours may be
required to repair the damage; but even then, the loom required to repair the damage; but even then, the loom
overseer has no assurance but that, before the machine can overseer has no assurance but that, before the machine can
make half a dozen strokes, the same accident may re-occur make half a dozen strokes, the same accident may re-occur making fine goods the bending of the dents is practically irreparable; and to continue weaving the piece with the reed injured, however slightly, is to produce a fabric with a slackly woven streak in it.
Again, the character of the selvedge of certain goods is one of the criterions by which the quality of the article is determined. To make a perfect selvedge, however, a very delicate adjustment is required to draw the thread of the weft firmly up against the exterior threads of the warp opposite the shuttle, after the latter, having completed its flight, comes to rest just prior to the beat of the lay. This adjustment is exceedingly difficult to attain; and where it fails, the quality of the goods is again injured.
Lastly, the fly shuttle is a source of no inconsiderable danger. Guards have been devised for keeping it in place, and great ingenuity has been expended in the means for checking and reversing its motion. But it is obvious that the picker rarely strikes it so as to propel it in identically the same line, and that slight variations must constantly occur. From these and other causes, determining, perhaps, a failure of the safeguards, the shuttle has often been known to leave the loom and seriously to injure the operatives. It was only recently that we learned of a case where an unfor tunate mill girl was struck in the eye and totally blinded,
and there have been instances where the sharp pointed proand there have been instances wh.
improvements in picking
To remedy all these defects, there have been but few ef forts. The air pump pick was an attempt to drive the shuttle by compressed air, forced into a cylinder, the two long piston rods of which gave motion to the drivers, which impelled the shuttle. This was a failure. Another and more successful device includes a long needle or arm, which car-
ries the shuttle through the warp, then is withdrawn until ries the shuttle through the warp, then is withdrawn until
the lay is beaten, and finally is returned to catch the shuttle the lay is beaten, and finally is returned to catch the shuttle
and draw it back. This may be seen at the Centennial Ex position, applied to a carpet loom, for which class of ma-
chine it is best adapted. A double weft is thus laid in the warp. This is useful for ingrain carpets, but not available, for obvious reasons, for other fabrics. Another and somewhat similar plan includes two hook arms and no shuttle. what similar plan includes two hook arms and no shuttle.
One arm carries the bight of the weft into the warp for half One arm carries the bight of the weft into the warp for half
the distance and delivers it to the other arm, which extends in similar manner from the opposite side. Still another ingenious inventor unsuccessfully attempted to draw the shut tle through by magnets moved above and below the sheds, but the shuttle persistently attached itself to the nearest lodestone, and refused to proceed further without destroy ing the warp threads in front of it. A device successful for short throws, not exceeding five inches or thereabouts, is a rack and pinion under the shuttle carrier. This is now employed in weaving ribbons and other narrow goods, and may be seen on the looms engaged in weaving bookmarks at the Centennial. One more invention is also worthy of notice here, though it failed, and is obviously of no practical value. It was positive, however, inasmuch as a cam tical value. It was positive, however, inasmuch as a cam
traveled under movable needles, and these, rising through the warp in rear of the shuttle, surely but very slowly ushed the latter through.
The above will serve to convey to the reader some general idea of the difficulties existing in the loom, as well as of what others have done to remove them, at the period when

Fig. 2.

THE POSITIVE MOTION SHUTTLE.

Mr. James Lyall began the study which led to his remarka ble invention.

the positive motion shuttle.

We now proceed to the explanation of that device, the essential features of which are represented in Fig. 2, where the shuttle is shown resting on its carriage, o. Motion is given to the carriage and through it to the shuttle by means of a stout band, u, which passes over grooved pulleys fixed to the ends of the lay and communicating with a single large pulley underneath the loom, to which, by special mechanism hereafter to be described, the proper movement is imparted. The wheels, 2 , of the carriage are pivoted to the ends of short horizontal arms; the wheels, 3 , are simply journaled in the carriage. The weight of the latter, therefore, rests on the pivots of wheels, 3 ; and as these rest on the tops of wheels, 2 , it follows that they must receive a counter motion in the direction of the arrows marked on them, exactly equal to the motion of wheels, 2 , which is likewise equal to the motion of the carriage along the raceway, l. Now suppose a sheet of parallel threads to be stretched above this carriage and beneath the shuttle, p. The only points where these threads will be in contact with carriage and shuttle these threads will be in contact with carriage and shuttle
are obviously between the wheels, 3 , of the former, and wheels, 4 , of the latter. If we move the carriage so that the wheels, 2, revolve to the left, wheels, 3 , will rotate to the right; and supposing the shuttle removed, it is clear that, while the threads are successively raised as wheels, 3 , pass under them, the rotation of said wheels precludes any lateral movement on their part. It is easy to see that the laying of the shuttle in place above the carriage will in no wise affect this result, because the wheels, 3, rotate the wheels, , at precisely the same speed; so that the successive threads or the inappreciable instant of time during which they ar from their normal position beyond the very slight elevation, a small fraction of an inch, caused by wheels, 3. This clearly imposes no strain, while a moment's. consideration of the mechanics of the device will show that friction on the threads is practically nothing, being applied at the mere ine formed at the place of contact of two rolling bodies and this never twice at the same points considered in hori zontal succession from thread to thread, because the sheds are constantly alternating and constantly being moved bodily away as the weaving progresses. The wheels, 5 , do not engage with the wheels, 4 , but roll along the under surface a beveled rail, holding the shuttle down to its wor. carriage, can only be removed by drawing it out at the end of the lay.

THE LOOM MECHANISM
The ingenuity and beauty of the device above described alone would be amply sufficient to secure prompt recognitio of its surpassing value; but the inventor has grouped about
this chief feature of his invention a wealth of novel move ments and mechanical combinations, which are also well worthy of notice. Everything is positive; and when we state that cams are abolished and the crank everywhere substitu ed, we perhaps sum up all in the fewest words.
The two diagrams, Figs. 3 and 4, will serve to convey n idea of two of the most important devices out of several for effecting similar purposes. It is necessary in many cases to produce a dwell or period of rest, either in the shuttle or the lay. In the one case the shuttle stops sufficiently long at the end of its run to allow of the lay being beaten; in the other, the lay delays its beat sufficiently for the shuttle to make its journey. The dwell in the lay is necessary in making heavy goods. In all cases it is a great desideratum to have the motion of the shuttle swiftest midway in its course, and gentle at the ends; and one way in which this is accomplished is shown in Fig. 3, where A is a crank disk, from which motion is imparted by a connecting rod, B , to a sliding block in the slotted vibrating arm, C. D is a link attached to the sliding block and pivoted to the frame Arm C, carries, as shown, the wheel, actuates the shuttle band, and is itself rotated by a rack and pinion device, clear ly represented. When the crank disk starts from the posi tion exhibited (the shuttle being at the end of the race), the sliding block is at the upper end of the slot in arm, \mathbf{C}. Hence the arm, and consequently the shut tle, is given very slow motion. But as one end of the connecting rod is carried up the disk, its other end causes the sliding block to descend to the arm, the wheel on the outer extremity of which, therefore, constantly re ceives an accelerated motion, which is mos rapid when theshuttleis midway in its course, and gradually in the same manner decreases until the pick is made. The shuttle is never returned until the lay is got home; so that on matter what the position of the shuttle is to the race when the loom is stopped, on
starting again the first thing done is to draw starting again the first thing done is to draw
it out of the way of the lay. it out of the way of the lay.
Dwell in the lay, an obvious necessity when the shuttle, in weaving wide fabrics, has to travel a very long distance, is obtained by the device shown in Fig. 4. A is a slot ted pulley wheel, in the slot of which is a sliding block, to which is attached the crank of the shaft, B, which imparts motion to the lay. The crank wrist is eccentric to the pul ley; and as the latter revolves, it moves ra dially in the slot. Consequently when near est the center it imparts an extremely slow
or no motion to the shaft, B, and a quick movement when it has traveled out toward the circumfer ence.
the exhibit at the centennial
Without dwelling further upon the general features of the invention, we may pass to some of its practical applica ions as exhibited in the magnificent display made by Messrs J. \& W. Lyall at the Centennial. The five great looms (taken rom the factory in West 23d street, New York city) are lo cated in a commanding position in Machinery Hall, and are represented in the superb engraving which occupies our in itial page. These we shall consider briefly in their order pointing out their several merits and capabilities. To the left of the enclosed space is seen the largest loom in the world, a physical embodiment of the fact, which the reader has doubtless, ere this, divined, that the width of fab ric which can be woven by the Lyall loom is unlimited Weaving wide fabrics, such as oilcloth foundations, by the hand loom hitherto has been a most arduous undertaking ; three men were required, one at each end, to drive the shut tle with heavy hammers, a third to stand between them and aid them in beating the lay. It was labor of the severest sort, and those engaged in it became prematurely old. Contrast this with the colossal machine which scarcely requires the attention of the single young girl in front of it. Imag ine a fabric woven 8 yards wide and 40 yards long in ten hours, 320 square yards of cloth in a single day. Ten such looms could make enough material to cover the enor mous area of Machinery Hall in less than three weeks. The huge shuttle travels 31 feet at every throw, and its jour ney is completed 35 times in a minute. No need of a me chanical counter for the machine itself at the Exposition It is only necessary to watch the involuntary motion of heads and eyes of those who stand in wonderment before the loom, as, like so many Chinese dolls, they gravely wag their craniums from side to side in time with the shuttle. Th great loom is made in two yard sections, in other words, the lay is really beaten up in four places at once. This gives all the strength of fabric which would be imparted by four narrow looms placed side by side. The back beams are sections of 1 yard each, so that they can be made on an ordinary warping machine. In the loom they are united in one by male and female clutches. There is a dwell, of course, in the lay to accommodate the shuttle.
No one can witness the operation of this great apparatus, nor indeed of any of the others below described, without being impressed with the ease and grace with which the huttle operates. There is no breaking of the yarn, no con tant stopping for repairs, but perfect smoothness in ever motion. We can readily believe the manufacturers' state ment that the loom will weave shoddy almost too weak to stand its own weight, or filaments like cobwebs in their delicacy and fineness. Huge looms similar to that at the Centennial are now weaving all the oilcloth foundation that is made in the United States, and have stopped our
importation of that fabric from Scotland, where it was man ufactured by the laborious method already described.
The three machines, represented in our engraving on the side of the enclosure opposite to the great loom, are, first the bag loom, in the foreground; second, a ten quarter cot ton loom ; and third, a heavy jute carpet loom-three admirable exemplifications of the wonderful capabilities of the invention.
the bag loom
weaves four seamless bags with one mechanism. There are four shuttles connected by rods in the single raceway; and they are caused to travel so that each, in passing to one side or the other, fills the place formerly occupied by its neighbor. The bottom of the bag is closed in the loom, so that, as the bags are woven, it is merely necessary to cut them apart. The weaver is, besides, enabled to examine both sides of her work, and thus the holes and defects in the under sides of the bags, which in some other looms cannot b 3 examined, are avoided, and a perfect fabric produced. The machine travels at the rate of about 120 picks per minute, and in construction it is mechanically beautiful. That it must eventually supersede other methods of bag weaving seems to us merely a question of time.
the carpet loom,
in the distance, has a large cop in its shuttle to make heavy jute striped carpet. Its running is the perfection of ease It makes 110 picks per minute, or about 100 yards of carpeting per day.

THE TEN QUARTER COTTON LOOM
is exhibited at the Exposition weaving unbleached sheeting for the well known New York Mills. of Utica, N. Y. The fabric produced is pronounced by competent judges to be unexcelled in point of fineness and level. One girl can attend three machines with ease. The speed is about 94 picks per minute. In this loom are embodied some most ingenious new mechanical devices, in the shape of compound let off motron, variable dwell crank, thin place protector, etc. It is a piece of mechanism well worthy of study in its every part, and its value may be estimated from the fact that the type which it represents has been adopted by the leading mills of the country, those above named and the Wamsutta Mills, of New Bedford, Mass., and many others. We leave for the last the description of a machine which, were all we have already alluded to blotted out of existence, would still be sufficient to ensure for its inventor a worldwide fame. Werefer to

THE CORSET LOOM
represented in the center of the illustration. It is a marvelous combination of the positive motion and power luom with the Jaqcuard apparatus, an embodiment of the three greatest inventions ever made in the weaver's art. Four webs of corset are woven at once, in perfect form, all precisely similar and yet possessing every gore, every gusset, every welt formerly laboriously put in by hand work. Five corsets per day was the extent of the labor of the German weaver: this wonderful invention makes eighty-four The Jacquard cards govern the quantity of warp to be kept in action, so that, when for instance the parts which fit about the protruding portions of the body are to be made, only a certain portion of the warp is kept in play, and through this only the weft passes. As the shuttle then does not pass through the whole warp, but over a portion of it, it would necessarily seem that a slack loop of weft, corresponding to that portion in length, would be left. This is provided for by a let.off device in the shuttle, so that thethread, passing to and fro (after leaving the bobbin) several times between extended leaf springs, is always held taut,and thus only the exact amount required for the pick is allowed to escape.
This machine lies at the foundation of a great industry which has already achieved a fair footing.
the positive advantages of the positive loom.
Thus far we have indicated the immense value of the Lyall loom principally negatively, by showing wherein older devices have failed; it remains now to sum up, in brief terms the advantages which the invention secures, and these are: First. the abolition of the picking sticks; second, a positive motion to the shuttle from any point in its course fourth, the unlimited variety of fabrics which may be profourth, the unlimited variety of fabrics which may be pro-
duced, from the finest silk to the heaviest carpet, from jute oil cloth foundation to exquisite woven embroideries : fifth, the almost total absence of wear, through the small motion of the reed which thus wears but little on the warps, through the small opening of the heddles which thus offer less strain on the same, through the absence of friction of the shuttle on the yarns, and the non-subjection of the weft to sudden pulls on starting; and sixth, the extremely small amount of power required to operate the looms. We saw the huge 8 yard machine, driven by a $3 \frac{1}{2}$ inch belt, and easily worked by hand power exerted on the gearing. We were told that it required but half a horse power for its operation. We saw, furthermore, that, as the great engine at the Exhibition slackened and stopped at noon, the looms continued weaving until their momentum gradually succumbed
We can add no better conclusion than by repeating the opinion we expressed regarding the invention shortly after its first appearance: "It is to the loom what the link motion is to locomotive engineering, or the compass to navigation. It substitates certainty for uncertain ${ }^{+}$, and thus lays the foundations for future development in the tex-
tile arts hitherto unattainable. Radical in its character, it may be compared to the invention which placed the eye of
the sewing machine needle at the point; and like that in vention, it will in its proper field be likely to produce results impossible at present to estimate at their true value." Bold predictions, many pronounced these when we uttered them; but that they are fulfilled even in greater measure than we anticipated, the whole weaving industry of the country will bear us witness. That there has been no corresponding advance in weaving since the application of power to the loom may confidently be asserted; that within late years no invention in any field has exceeded this in importance and value to humanity is likewise truth. It will pass to poster ity as one of the great triumphs of American inventive genius, as the peer of the grand accomplishments of Wat and of Arkwright, of Whitney and of Jacquard.

Corregududute.

The weight of a Body in a Hollow Sphere.

 Tothe Editor of the Scientific American:Your correspondent, whose communication appears on page 84 , seems surprised to find that the "body in a hollow sphere doctrine" is endorsed by Professor Young He will probably, upon inquiry, find that not only Professor Young, but every professor of standing in the scientific world endorses it; and none have ever repudiated it. It was first demonstrated by Sir Isaac Newton, and mathematical demonstrations are not easily set aside.
Let A represent the hol ow sphere, and B the bod placed within, say half way between the center and one side. Then let a representa certain portion of the mass of the shell, which of course attracts B in that direction, and let b be the mass which is oppo site to a, and attracts it i the other direction. Let represent the distance of a and d the distance of b Now the attraction is in
 versely as the square of the distance ; consequently the relative forces are as. $\frac{a}{c^{2}}$ on the left, and $\frac{b}{d^{2}}$ on the right. But the force is also directly as the mass; and b, being farther off, is a greater area, and hence a greater mass (included
within the angle), than a, and is just as much greater as the within the angle), than a, and is just as much greater as the
square of the distance, n, is greater than the square of the square of the distance, n, is greater than the square of the
distance, c. That is, the mass, b, is to the mass, a, as d^{2} is to c^{2}. Hence $b=\frac{a \times d^{2}}{c^{2}}$. Now in the expression of the force on the right, $\frac{b}{d^{2}}$, we will substitute for b its value $\frac{a d^{2}}{c^{2}}$ and we have $: \frac{a \times d^{2}}{c^{2}} \div d^{2}$ or $\frac{\frac{a d^{2}}{c^{2}}}{d^{2}}$. Now, cancelling d^{2}, which appears both as multiplier and divisor, we have $\frac{a}{c^{2}}$, just the same as on the left. It ought to be obvious to any one that the body, B, is attracted equally in both directions, and hence will be at rest as far as the portion of the mass, a, and all the mass exactly opposite, b, are concerned : also that the same will apply to every point of the sphere and to every position of the body, B. Hence " a body placed within a homogeneous hollow sphere of uniform thickness will, so far as the attraction of said sphere is concerned, remain at
r rst in any position." rest in any position.'
Between this proposition and theother, given by Olmsted, that " a body lowered toward the center of the earth would lose in weight in proportion to its distance downward,' there is no discrepancy whatever. Of course it is understood that he means this upon the supposition that the earth is homogeneous, leaving out of consideration the difference of density at different depths.
Let us take the case presented by your correspondent. A
body upon the surface of the earth, at A, weighs,say 4 los. If lowered to P , half way to the center, C, it passes $\frac{7}{8}$ of the "mass," that is, it reaches a new
circumference, P E F G, circumference, P E F G,
inside of which there remains but $\frac{1}{8}$ of the whole mass. Thus the whole $\frac{7}{8}$ outside of this line, farther from the center than the body at P, being neutral according to this theorem, \mathbf{P} is still attracted oward C by the mass within, which is $\frac{1}{8}$ of the whole.
But it does not follow, according to the "queer theorem," pondent hould weigh but $\frac{1}{8}$ as much as at A. Your correses attract each other with a force in inverse proportion to the square of the distance. 2. The distance from P to C being but one half from A to C , the attraction of the interior $\frac{1}{8}$ for the body at P is four times as great as that of the same when the body was at A twice as far from C.
Hence, the mass being $\frac{1}{8}$ as much, and the square of the distance four times less : $4 \times \frac{1}{8}=\frac{1}{2}$, and this is the amount One
One half of 24 is 12 ; so that, according to this " absurd
heorem," the body weighing 24 lbs. at A will weigh 12 lbs it P, half way down, just as your correspondent belicves it would, in fact; and the old proposition does not "fall to the ground," but agrees exactly with the other
Davenport, Iowa
W. H. Pr.itt

Weight On and In the Earth

To the Editor of the Scientific American

With your permission I will show Mr. Whitman the error into which he falls in attempting to disprove the mathema tically demonstrated "body in a hollow sphere doctrine." A careful study of his own diagram will prove that the external shell cannot exert any influence on the inclosed body I will demonstrate it in the following simple manner: Let E, Fig. 1, be the shell of uniform density, C the center, B the body, and A D a diameter passing through Cand B. Suppose the distance, A B = three times B D; it is plain that the body cannot depart from the line, $A D$, because we have equal masses at equal distances from the body on all sides of the line. It is also plain that it cannot approach A or D, be ing equally attracted in both directions. This last asser tion I must prove: Imagine four lines passing through the center of B, and touching D at the four corners of a sur face one inch square. If these lines are produced to A, they will touch A at the four corners of a surface three inches square. Produce these four lines through both sides of the shell; and the parts of the shell within the lines will be two masses, the one at A being nine times as great as the one at D. Now supposing the mass, A, to be divided into nine masses, each as great as the mass, D, each one of these small masses at A exerts $\frac{1}{9}$ of the attraction on B that D ex erts, because placed at 3 times the distance. The nine smal masses at A then exactly counteract the attraction of the mass, D.

I will now show why a body which weighs 24 lbs . at the surface of the earth will weigh 12 lbs. when lowered hal way to the center: At A, Fig. 2, the body weighs 24 lbs. remove the shell, S, and still keep the body at A, and it wil weigh but 3 lbs., because attracted by a body $\frac{1}{8}$ the size of the earth. Now place the body at P on the surface of the small sphere, and it will weigh four times 3 lbs., being at one half the distance from C, as when at A. Attraction does not vary in inverse proportion to the distance from the at tracting body, but in inverse proportion to the square of th distance

James M. Palin.
Savannah, Ga

Locomotives for Steep Grades.

Messrs. Copeland \& Bacon, of this city, have constructed under the supervision of Mr. Henry C. Walters, and from his designs, a locomotive for use on inclined railroads, and we have had the pleasure of observing its workings on an inclined track. The engine is worked by means of a strong wire rope which runs from one end of the track to the other making several turns around two large drums on the engine one above the other, the upper drum being connected with the steam power by means of a huge cog wheel. Six of these locomotives are to be built by Messrs. Copeland \& Bacon for use on a couple of mountain roads-one near Salt Lake and the other near San Francisco. They are four miles long and very much curved, and do a freight and passenger business, connecting two other railroads with each other The locomotive works finely, and can be stopped anywhere on the steep plane.-Bridgeport Standard.

A New Odontograph.

Professor S. W. Robinson, of the Illinois Industrial Uni versity, has devised a new and very simple odontograph fo describing accurately and quickly, all kinds of gear teeth such as epicycloidal in every form, involute, etc., withou the aid of any other instrument. The device is a ready made scribe templet of flat brass, graduated and finished alike on both sides. By means of tables given once for all, it is properly set for the face or flank of a tooth; and by means of countersunk holes, it may be mounted by wood screws on a radius rod and swung round to position for each tooth of the wheel. The device may be examined at the Cen tennial Exposition in Machinery Hall, at B 10, column 77 tennial Exposition in Machinery Hall, at B 10, column 77 and its theory will be found fully explained in No. 24 (just
out) of the Science Series, published by D. Van Nostrand, 23 Murray street, N. Y.

Falling Hair.

A correspondent of the Medical and Surgical Reporter asks: "What will prevent the falling of hair? I haver used for the past ten years, in my own case, and prescribed fre quently for others, the following with complete satisfaction Glycerin and tincture capsicum, each 2 ozs., oil of bergamot 1 drachm; mix and perfume to suit. This is to be the only dressing for the hair. Wash the head occasionally with soft water and fine soap.

THE LIDGERWOOD ROTARY ENGINE AT THE EXHIBITION.

We have already explained the construction of this ma chine and some of its other forms, in previous issues. It is sufficient here to point out some of the advantages of the type illustrated, which is designed for hoisting in mines and quarries, and represents one of eight similar engines lately completed by the manufacturers for Messrs. L. B. McCable \& Bro., of Baltimore, Md., for use in the permanent water supply tunnel of that city. The machines, be ing reversible, are each connected with two elevator platforms, one of which ascends while the other descends. They lift $6,000 \mathrm{lbs}$. with a single rope at a speed of 200 feet per minute, and at about 60 lbs. steam pressure. Larger sizes of the engine are capable of hoisting up to 7 tuns, at 250 feet per minute. There are no centers, and by manipulating the single lever the steam is made to hoist, lower, or hold the load.
Small hoisting engines of the Lidger wood type are now in use on board steam ers for raising coal, ashes, etc., and have found a wide utilization in quarries and along docks where cargoes are constant ly handled. The portable engine and boiler, which is the third form in which the machine is constructed, is a very com pletely arranged apparatus, containing everything in the shape of necessary fittings, including a compact heater for the feed water. It is made self-pro pelling if desired. Still another form is the adaptation of the rotary engine to platform elevators, such as are used in hotels, warehouses, stores, etc. This has compound gearing, which runs noiseless ly, and a brakeon the flywheel for control ling the load, manipulated by the same lever that governs the engine. There is also a governor for regulating the rate of speed in hoisting or lowering, and the construction throughout renders the ma chine well adapted for the especial pur pose for which it is built.
All of the above forms may be seen a
the Centennial Exposition. The small hoisting engines will be found at work raising ashes in each of the three boiler houses. Several other Lidgerwood engines are at work at the Centennial.
Another adaptation of the rotary engine, and one which has deservedly attracted considerable attention of late, is to the propulsion of small steam yachts or launches. We are informed that in this particular the Lidgerwood machine has attained considerable success. Nine boats, varying in length from 28 to 50 feet, have been fitted with the engine; and one, now in process of building, which is to be 42 feet long, with 6 feet beam, and 3 feet 6 inches depth of hold, is to be propelled at the speed of 12 miles per hour by a Lidgerwood engine equal to a 5×6 inch reciprocating machine.
Among the other advantages of the device, not yet noted, are its simplicity, it having but eight pieces exclusive of bolts, its smoothness and rapidity of action, the fact that its working parts are covered, the absence of brakes, except of course in the elevator engine, and its general utility for all purposes of hoisting or elevating.
Further particulars may be obtained by addressing the Lidgerwood Manufacturing Company (P. O. box 2,132), 165 Pearl street, New York city

WOOD'S IMPROVED PISTON.
We illustrate herewith a universal expanding device for

he pistons of steam engines, which is capable of expand ng the packing rings equally with a positive motion; so that, while the piston can be adjusted as desired, it acts, while working, like a solid piston. While, therefore, it can be regulated so as to take up the usual wear, it will not ac-
commodate itself to the inequalities of the cylinder, no wear more in one place than in another. A further advan tage offered, as will be seen from the following description is that the necessity of removing the follower in order to ad just the packing, is obviated.
At A are the followers, which slide in suitable ways in the piston head. B is a central core or cylinder, which is bored out conically, as indicated by the dotted lines, and which is provided with a conical plug, C, which is forced in by the screw, D. The core is made in segments held to gether by circular springs, E, placed in grooves on its exterior. The followers abut upon this core, and also have fee which press against the packing rings, so that, when the plug, C , is forced in by the screwdriver, the core is expand ed, and the followers, driven outward, produce a uniform ex

THE LIDGERWOOD ROTARY ENGINE.

pansion of the rings. The piston rod, instead of passing through the head, is screwed into a boss cast on one side, of the head, and the plug, C , may be easily removed when de sired.
Patent pending through the Scientific American Patent Agency. For further particulars address John Wood, Jr. Conshohocken, Pa.

BEDELL'S SEWER GAS TRAP.
We illustrate herewith a recent invention in a very im portant department of sanitary engineering, that which re

Fig. 1

Fig. 2

lates to house drainage. It consists of a terra cotta tank, A, 18 inches deep by some 16 inches in diameter by $\frac{8}{4}$ inch thick, inside of which is a U-shaped pipe, B, 6 inches in diameter, also made of terra cotta, the pipe and the tank being cast or molded in one piece. A little below the bottom of the outlet or discharge pipe, this siphon is closed by a copper valve, C, which, when down, is entirely under the water which fills the whole interior of the tank to a hight of some two inches above the valve. The tank again is sealed perfectly watertight, the cover being molded on the tank before it is baked, and the opening (shown in Fig. 2) closed by a thick plate of glass imbedded in putty and held down by thumbscrews. Around two sides of the valve, as
the valve is up, all connection with the tank is cut off, and the sewage thus prevented from entering the tank and forced o go out by the discharge pipe.
The action of the trap, then, is this: The matter to be discharged enters through the pipe, which is provided with a flange or lip, flows down the siphon, and lifts the coppe valve, which, as it rises, cuts off, with the two copper sides placed at right angles to it, all connection with the tank, and forces the sewage to pass out through the discharge pipe When the matter has passed out, the valve falls, closes th opening in the pipe, and thus the process known as siphon ing, by which the water is so often drawn off from simila raps, and the gas from the sewer thus allowed to pass up through the house, is prevented. The gas which comes up the discharge pipe from the sewers can, by this arrange ment, get no further than the tank, fo the siphon is closed by the metallic valve lying two inches under water, an the tank is filled with water to a few nches of the cover, and hermeticall sealed, and the small amount of gas that does find access to the tank canno escape either by the pipe or the tank cover.
It is well known that a sewer gas trap to be of any service whatsoever, must accomplish two things: it must rende impossible the process known as siphon ing, and must offer a mechanical resist ance to the pressure of sewer gas, to pre vent the gas being forced through the water. These two important feature are claimed to be accomplished by the invention described. We are informed that the time required to set one in per fect working order is ten minutes.
For further particulars address the patentee, Mr. William Bedell, 985 Eighth avenue, New York city.

Sensible Assertion.

The Colorado Farmer, published at Denver, utters the following truthful sentiment: Now is the time when the in telligent and educated farmer is going to have the advantage over the one who does not keep him self posted. When times are good, any one who knows how to raise good crops makes money. But when the country seems to have too much of everything in it, the man who picks up the improvements first, and who has raised good big crops cheap, is the man for the times; and we have to say that no man of brains, who has taken up farming for a business, should quit it now; for he cannot sell out without loss, and the time is sure to come when he will do well

HOSE ATTACHMENT FOR FAUCETS.

It has been well said that few great conflagrations have ever occurred which a pail of water would not have extin guished, had it been on hand at the proper time. There are so many causes of little fires which may easily grow into great ones, in every dwelling, that it is a good plan to have the needful pail of water, or its equivalent, always ready; but as filled pails are not handy articles to leave promiscuously about a house, especially where there are chil dren, the ingenuity of inventors has been taxed to supply some other means for a prompt water supply. Such a de vice is that herewith illustrated, it being nothing more than a length of hose provided with a nozzle, as shown, and coupled to an enlarged portion of the ordinary basin faucet. The hose is long enough to lead to any part of the adjacent room or rooms; so that in case a coal falls out of the grate and sets the floor on fire, or a curtain blows out the gas flame, or a lamp upsets, or any similar accident occurs, it is flame, or a lamp upsets, or any similar accident occurs, it is
not the work of a minute to lead out the hose, turn on the water, and at once play on the incipient blaze.

The device can be used wherever there is a water pressure whether derived from a tank on the roof or from the town mains. It will also be found useful for shampooing pur poses. It is one of those simple yet handy little inventions which may often be the means of saving valuable property. Patented July 18, 1876. For further particulars relative to sale of rights, etc., address the inventor, Mr. D. G. Tremoley, 103 South Fourth street, Brooklyn, E. D., N. Y

A Master Piece of Mechanism.

There has been on exhibition for some days in the store of Bates \& Sons, a Little Monitor sewing machine, made from gold and silver. It is the handiwork of James W. Du Laney, a son of the inventor, and speaks highly for his mechanical ability, taste, and good judgment. The machine was shipped to Philadelphia on Tuesday last. 'The plate, was shipped to Philadelphia on Tuesday last. The plate,
needle bar, lifters, foot bar, tensions, spool case, and some needle bar, lifters, foot bar, tensions, spool case, and some
of the screws are of gold, while the other parts of the maof the screws are of gold, while the other parts of the ma-
chine are of silver and white metal. Upon the bed plate is a neat model of the Little Monitor resting upon the water and surrounded by a wreath of laurels. The Monitor has two flag staffs with flags, and the design gives the entire machine an appearance of elegance and taste that will com mand much attention from the sight seers at the great show The machine is in complete working order, well wrought and proportioned as only a master hand at mechanics could do it.
The firm has now on exhibition at Philadelphia over a dozen machines of different patterns, some inlaid with ivory, others gold mounted, and all bearing testimony to the ability of their manufacturers. In a future issue we shall speak more fully of the machine, its inventor, and the manufactory.-Rhinebeck Gazette of July 20.

THE PEARLY ALOE.

One of the most ornamental of the large tribe of aloes, numbering some 200 distinct species, is the Haworthia subulata, generally called aloe margaritifera, or pearly aloe, of which the annexed engraving is a representation. It has a very short stem, and leaves which are flat above and convex below; in short, triangular in shape and rounded towards the tip. The leaves are covered with a number of white, horny tubercles, which resemble pearls, and give the name to the species. The
flowers are greenish, with whitish flowers are greenish, with whitish lobes marked with a green line, and are grouped together in a terminal spike. The beauty of this aloe, however, resides in the leaves, the flowers being. comparatively speaking, insignificant. It is by no means difficult to grow, nor any of the genus to which it belongs; the best soil for it, says J. C., in the English Tarden, is a mixture of three parts loam and equal parts of leaf mold and sand, and it likes good drainage and partial shade in a cool greenhouse.

Singular Property of Tomato Leaves.
Singular Property of Tomato Leaves.
" 1 planted a peach orchard," writes M. "1 planted a peach orchard," writes M. raiso, " and the trees grew well and strong ly. They had but just commenced to bud when they were invaded by the curculio ($p u l$ gon), which insects were followed, as fre quently happens, by ants. Having cut some tomatoes, the idea occurred to me that, by placing some of the leaves around the trunks and branches of the peach trees, I might preserve them from the rays of the sun, which were very powerful.
'"My surprise was great, upon the following day, to find the trees entirely free from their enemies, not one remaining, except here and enemies, not one remaining, except here and there where a curled leaf prevented the to-
mato from exercising its influence. These mato from exercising its influence. These
leaves I carefully unrolled, placing upon leaves I carefully unrolled, placing upon
them fresh ones from the tomato vine, with the result of banishing the last insect and enabling the trees to grow with luxuriance. Wishing to carry still further my experiment, I steeped in water some fresh leaves of the tomato, and sprinkled with this infusion other plants, roses, and oranges. In two days these were also free from the innumerable insects which covered them, and I felt sure insects. which covered them, and I felt sure that, had I used in fact, a pavement was formed over the surface b the same means with melon patch, 1 should have met the Society of Horticulture to make known this singular and the Society of Horticulture to make known this singular and useful property of the

The Battle of the Gages.

A comparison of the weight and cost of a passenger train on the Eastern, standard gage, and on the Boston, Revere Beach, and Lynn Railroad, narrow gage, respectively, has been made. These two roads run nearly side by side and the carrying capacity of the two trains is practically the same. The heavy Pullman car is a disadvantage to the Eastern road in the comparison, as are also the baggage car,which is not required on the short line. A locomotive, baggage car, Pullman car,and four passenger cars on the Eastern road give capacity for 230 passengers, weigh 138 tuns, and cost $\$ 63,000$; one locomotive and six passenger cars on the Revere Beach and Lynn road give capacity for 272 passenRevere Beach and weigh 58 tuns,and cost $\$ 18,000$.-Engineering Nevos.

Railway Economy.

The long engine runs adopted last winter on the New York Central and Hudson River Railroad (engines go through between Buffalo and Albany, 300 miles) have resulted in a notable economy in locomotives, the company having been able to lay up 42 of its stock of engines, notwithstanding a large in ${ }^{\text {rease }}$ in traffic. There are
other considerable economies effected by it, as in fuel (sav ing heating up, cleaning, switching, etc.); and the company is altogether satisfied of the wisdom of the change. It is not pleasant for the men, who are compelled to be away from their homes a much longer part of the time; but the economy is such that there is no prospect that the practice will be abandoned for the old one.-Railroad Gazette.

construction and Maintenance of Public Highways

 The Association of Sanitary Surveyors, of London, the othe day, at their late conference, discussed the question of road making, but the several bearings of the question were lef unsolved. Mr. E. B. Ellice Clark, C.E., the Borough Sur veyor of Derby, read an exhaustive paper on the subject n which he advocated, for macadamised roads, rough paved foundation, with center channels, instead of side water tables. He also suggested a paving of all streets now macadamised; and stated that granite, wood, and asphalt were severally adapted for varying kinds of roadways-namely, granite for roads where heavy traffic has to be considered, and where noise is not a material ob jection; wood where quietness is an essential condition and asphalt in cases where these necessaries have to be com bined, and where flat gradients and facility of cleansing canWe secured.
Way learn of the old Romans the art of forming
arst laia- a

THE PEARLY ALOE.
by hand, the largest faces being placed downwards, the deepest stones occupying the central part of the road, to bea the heaviest traffic. This pavement of flat stones distributed the pressure; and the principle should never, it appears to us, be lost sight of in road making. The great secret in a good foundation is to distribute the weight over a large area of ground. Speaking on this subject,Mr. Ellice Clark says:
"I think it might be laid down as a rule that the harder the "I think it might be laid down as a rule that the harder the
bottom of a road is the better, whether for wood, asphalt, granite, or broken stone; and if you do not start with this nitial, you will never have a sound roadway." We agree with Mr. Clark in thinking a solid hard substratum a requisite, instead of, as generally, dry core or cinder, devoid of the essential qualities of compactness and stiffness. This may be concrete-in fact. a concrete bottom seems to be the pelled to resort to a metalling of the most adamantine rigidity. The truth is there is an essential difference between the hardness necessary for roads and the metallic inelasticity some road constructors advocate. Leaving the subject of foundation, we next come to the formation and the materials of the road itself. Here greater diversity of opinion exists. The battle of paving materials has been
long waged, and stone, granite, asphalt, and wood have by long waged, and stone, granite, asphalt, and wood have by
turns enlisted the public favor. There are a great many strenuous supporters of paving, and we are told that the Manchester streets are examples of the endurance of granite sets. Of course the kind of traffic, whether heavy or light
must be considered in coming to a conclusion. It is shown that Moorgate street, with a daily traffic of 7,400 vehicles, costs 33 cents per square yard per year to pave and maintain. Mr. Clarke estimates a saving of $\$ 250$ a year for cleansing a street of about 3,000 square yards in area if paved instead of macadamized. Allowing $\$ 65$ per yard, including con crete, as the original cost, the total cost per annum for maintenance is a little over 20 cents per yard, if we allow 8 cents per yard annually for this item. In the annual saving of cleansing, a paved road has by far the greater advantage, and we may therefore at once admit the merits of paving over macadam. The same authority says, cateris paribus, 'it is cheaper to pave a roadway having a traffic of 1,000 vehicles per diem over its surface than to macadamize it, and this would be the minimum number to commence paving with."

SUCCESS OF WOOD PAVEMENTS IN LONDON
As regards paving materials, Mr. William Heywood, the City of London engineer, whose experience may entitle him to be considered an authority, says, speaking of the relative merits of asphalt and wood, asphalt is "the smoothest, driest, and cleanest paving, but wood the most quiet." As regards cleansing, wood is more difficult and expensive to cleanse than asphalt; and as both require occasional strewing with sand or gravel, there is not much difference in this respect. As regards repair both asphalt and wood can be laid and repaired with equal facility; but wood is superior to asphalt as regards safety, whether considered in reference to the distance a horse can travel before it meets with an accident, the nature of the accident, the facility with which a horse can recover its footing, the speed at which travel is safe, or the gradient at which it can be laid. As to durability and cost, it is shown that in the city wood pavements have a life varying from 6 to 19 years, 10 being an average life with repairs, that the durability of asphalts is not known, but that wood is dearest if we contrast the tenders received for laying and maintaining for a term of years. Again, referring to the safety of the materials, Mr. Heywood reports that a horse can travel 132 miles before a fall takes place on granite, 191 miles on asphalt, and 446 miles on wood. These approximate figures are deduced from observationsin the London streets. From the above conclusions there is an overwhelming balance in favor of wood, though granite has its admirers, Mr. Clark thinks that, where there are few shops, and thinks that, where there are few shops, and
noise is not objectionable, granite is the noise is not objectionable, granite is the
cheapest and best material; but that in cheapest and best material; but that in
streets of business where absence of noise is streets of business where absence of noise is
a desideratum, preserved wood paving is the best, though expensive. Asphalt, with iron studs on the surface, as used by the Val de Travers Company, is, as Mr. Clark says, objectionable: though we should like to see a combination of wood and asphalt. The Derby surveyor consequently recommends for some of the streets of that town granite pitchers 5 inches by 3 inches, and for others creosoted wood. The experience of London has certainly gone to show us that wood has certainly gone to show us that wood pavirg is not only less dangerous and less injurious to health than granite, but also
more durable than some of the asphalts. more durable than some of the asphalts.
The noise of granite paving is unbearable. The noise of granite paving is unbearable.
The objections raised against wood are the absorption of putrescent matter in the fibers, the permeability and splitting of the blocks, and the consequent undermining of the foundation. These are hardly supported by experience. Mr Deacon, the Liverpool engi neer, observes that the wear is very small. Among the different kinds of wood pave ment, the "Ligno-Mineral Wood Pavement," laid in Gracechurch street-Mowlem \& Co.'s method-the "Asphaltic Wood Pavement," and the "Improved Wood Pavement," may be considered among the most desirable. In most of these the blocks, about 9 inches long by 3 inches wide, and 6 inches deep, are filled between with a quantity wide, and 6 inches deep, are filled between with a quantity of lime and gravel, or liquid tar, or asphalt, and the grain of the wood is disposed crosswise to the surface of wear. In all cases it is desirable to saturate the blocks with oils, as in the ligno-mineral process, or to creosote them. Mr. Clark refers to some pavement at Sunderland, where creosoted Baltic red wood was tried, and which required no repairs for five years. Perhaps we may cite the "Improved Wood Pave ment," now being laid in various parts of London. Two layers of inch boards, creosoted, laid transversely and longitudinally, are placed on the foundation. Upon this the blocks are placed, kept apart by strips nailed to the flooring.
nicholson system.
These joints are then filled in or rammed in with fine bal last, run with liquid tar, the surface of the road being strewn last, run with liquid tar, the surface of the road being strewn
with fine gravel. An elastic foundation is given by this plan of boarded flooring, tending to distribute the pressure plan of boarded flooring, tending to distribute the pressure,
and reducing the wear of the blocks. The ligno-mineral and and reducing the wear of the blocks. The ligno-mineral and
Carey's wood pavement are laid on a concrete foundation and on a bed of ballast or sand. In the first case the blocks are sawn at an angle of about 60°, the object being to expose the fiber obliquely to the wear. The angles of each course are reversed. Henson's pavement has been tried in America with some success. The great merit of all these pavements is their elasticity.-The Building News.

NEW AND CURIOUS ELECTRICAL EXPERTMENTS. A new treatise on statical electricity has recently been published in France by M. Mascart, in which the author has collected a large number of the most curious, striking, and novel electrical experiments. Many of these have but recently been devised, and hence among the engravings, given herewith and taken from the above named work, our readers will doubtless find much that is new and interesting. The name of

rovsseau's diagometer

has been given to the apparatus represented in Fig. 1. The difference in the conductibility of two different liquids, or, in other terms, the time necessary for electric propagation across two identical masses of two such liquids, may serve

Fig. 1 -Rousseau's dagometer
as a distinguishing characteristic. Supposing, for example, it were required to determine the degree of purity of olive oil, which, for commercial purposes, 'is frequently adulterated with peanut and other cheap oils The electric conductibility of the suspected material would be compared with that of oil known to be pure. The least portion of foreign oil alters this conductitility in marked degree, so that here is a novel application of physics to the detection of adulterations, a work ordinarily within the domain of analytical chemistry.
The liquid to be tested is placed in a metallic capsule, C , which rests on a disk connected with the needle, $a b$, mova ble on a central pivot. One of the extremities, b, of the needle traverses a dià; the other carries a small disk which, when in neutral state, rests very near the rod, A, connected to the wire. E D. A battery, P N, transmits, by the pole, P, through the isolated rod. T, and the capsule, an electric discharge into the two balls, A a. The time is then noted, necessary to obtain a maximum deviation under, for example, the following conditions: 1 . The capsule being filled with pure olive oil, a deviation of 40^{\prime} is observed. 2. Filled with peanut oil, $25^{\prime \prime}$ is note.1. 3. Filled with a mixture of the two oils, the deviation is 20^{\prime}. Now a simple calculation, based on the fact, previously determined, that the conductibility of the mixture is the mean of that of its constituents, shows the measure of the fraud to be in the sample $T^{1} \cdot{ }_{0}$. The battery used is a dry pile, that is to say, a voltaic pile formed by bodies containing little humidity, and between which the chemical action is quite weak, in order that the apparatus may retain an invariable electrical status for as long as possible. M. Roussean suggests a battery formed of double disks of zinc and Dutch metal, between which is a mixture of peanut oil and turpentine in equal parts.
gadgain's electric valve.

In Fig. 2 is represented a singular phenomenon yet urexplained. If within an egg-shaped glass globe, of form as shown, the air be rarefied by an air pump, and if between the two balls placed within a spark be caused by means of an induction coil, the following will be observed: When the positive pole is attached to the positiver ball, and the negative lower to the upper negative pole to the upper one, or inversely, a galvanometer inter-
posed in the circuit shows a constantly increasing deviation in proportion as the air in the globe is rarefied. This fact is explained by admitting that, of the two inverse currents simultaneously produced by the coil, one has always a greater tension than the other, and natu rally it is the stronger which constantly prodaces an effect. Thus far there is nothing re Thus far there is nothing re markable; buished, so that of its ball be varnished, so that of its surface only a small conducting
space be left, it will be observed
ure of the surrounding air, the Fig. 2.-Electrie valve. that, for a determinate pressure of the surrounding air, the current transmitted between the two balls has always the same direction, wherever may be the points of attachment of the poles of the coil. The varnished ball seems to fulfil a part similar to that of a valve in a water or air pipe, when
so arranged as to allow the flow to pass but in a single diree tion.
various figures of the electric discharge.
Faraday distinguished four forms of the figures or conditions assumed by the electric discharge: 1. The spark. 2 The feather. 3. The lambent illumination. 4. The ob scure discharge. The spark is the fiery offshoot which leaps between two unequally charged conductors. It becomes thinner as the explosive distance augments, while keeping its brilliancy at the extremities. Fig. 3 represents the spark
 obtained between the conductor of an electric machine and the edge of a metal plate in communication with the soil. Beyond a certain distance from the point of enis sion, the spark no longer traverses a right line, but is formed of a succession of zigzags. Fig. 4 repre sents such a discharge at the distance of from 5.8 Fig. s.-Spark tothe edge of a metalplate. to $9 \cdot 7$ inches. If the dis tance is increased, the form becomes complicated, and late ral ramif ying offshoots from the angles of the zigzag are thrown out, as shown in Fig. 5.

When an electric machine acts in a dark chamber, luminous feathers or aigrettes escape fromthe salient parts of the conduc tors with a dull sound an. alogous to that of a puff of steam or air. These aigrettes are generally formed of a quite brilliant stem which suddenly splits into a large number, of less vi-
 vid violet hue. The branchFig. 4.-A seven inch spark. es in turn ramify and finally melt into darkness. Beautiful aigrettes may be produced by holding a metallic plate at a distance from the conductor a little exceeding that required

Fig. 5.-The zigzag form of electric spark.
to make the zigzag spark, and by terminating the conductor with a small ball. Fig. 6 represents an aigrette obtained at

distance of 13.6 inches. Under these conditions the edge
of the disk becomes slightly luminous, although it is sepa-

rated from the aigrette by a comparatively dark interval. Aigrettes may be still more clearly shown when the non
isolated exterior conductor presents a large surface, as shown in Fig. 7.
It happens sometimes that an electric machine in ac tivity presents, at the extremities of its conductors, espe cially when they terminate in small balls, a lambent illumi nation of variable brilliancy and extent, tranquil, continu ous, and noiseless. Faraday has sinown that in order to transform an aigrette into this species of discharge in ordinary air, it is necessary to diminish the dimensions of the conductor at the point of emission, to force the action of the

Fig. 8.-Electric egg in rarefed gas
machine, and to remove all foreign bodies. The lambent discharges then appear to be the location of a continuous communication from the elec tricity to the surrounding air. In rarefied gases, the phenomenon is most strik ing. Under a vacuum of 2 to 3 inches in the apparatus known as the electric egg Fig. 8, t'iere escapes from the upper ball, supposed
 to be positive, a multitude of purple bands, of which some are directed toward the sides of the globe, while others form a bundle of ribbons ending at the negative ball. At the same time the last mentioned ball and the rod which supports it are enveloped in a thick atmosphere of violet light.
If the upper portion of the egg is connected with the conductor of a machine or terminated by a point which gives a continuous flow, the discharge is not propagated over any great distance. At the positive ball appears a faint purple light, and the negative ball is surrounded by a violet halo; but the illuminations are separated by a completely obscure interval. In this interval, however, a movement of the electric fluids occurs, and hence the phenomenon has been termed an obscure discharge.

stratification of the rlectric light.

When vapors of alcohol, turpentine, etc., are introduced into the electric egg, previous to rarefying the air therein, and when through these the discharge is passed, the luminous emission becomes divided into strata separated by ob scure bands, as shown in Fig. 9. This is produced in all tubes containing rarefied gas. The distance and brilliancy of the strata depends on the nature and pressure of the gas, the dimensions of the tubes, and the energy of the discharges. They are more marked with a bright light and narrow tubes. The explanation of the phenomenon is not yet definitely known.

COMPOSITION OF THE ELECTRIC LIGHT
We terminate the present series of illustrations with Fig. 10, representing the spectrum of an electric spark passing

Fig. 10.-Electric spectrum between two antimony electrodes. tic spectrum of that metal, showing the rays $\alpha, i 3, \gamma, \delta$, in the situations indicated between the red and the green. Af the situations indicated between the red and the green. Af-
ter a number of experiments upon spectra electric sparks, ter a number of experiments upon spectra electric sparks,
similar to others, M. Masson has reached the conclusion that similar to others, M. Masson has reached the conclusion that
the constitution of electric spectra is, for a like substance the constitution of electric spectra is, for a like substance
employed as poles, independent of the electric source and of the medium to which the spark passes.
To Clean Plate.-Take an ounce each of cream of tar tar, muriate of soda, and alum, and boil in a gallon or more of water. After the plate is taken out and rubbed dry, it puts on a beaatiful and silvery whiteness. Powdered mag nesia may be used dry for articles slightly tarnished, but if very dirty it mast be used wet and then dry.

PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR THE
ADVANCEMENT OF SCIENGE advancement of science.
We give, below, brief abstracts of the papers read at the meeting of the above named society, recently held at Buf falo, N. Y.
Professor Burt G. Wilder, in a paper entitled
notes on north american ganoids,
called attention to two pairs of serrated cartilaginous appendages of skin on each side of the hyoid arch of the mud fish. These are too flexible to serve as offensive weapons; and as their function is not known, it was suggested that they be studied in the young fish. Dr. Newberry, in the discussion following the reading of the paper, considered that the parts were remnants of an armor fully developed in the progenitors of the species.
Professor Thomas Meehan took positive ground in an essay on the

fertilization of flowers,

against the theory that plants, as a general thing, abhor close breeding, and that all flowers with color, fragrance, and sweet odors can only be fertilized by insect agency. He stated that the flowers of the black cap and other raspber-
ries, which have neither color nor france, ries, which have neither color nor fragrance, are remarkariy
attractive to insects : and yet the flowers produce raspberries just as well under gauze bags, when the insects are excluded. He summed up his conclusions in the following propositions : First. Cross fertilization by insect agency exists, but not nearly to the extent claimed for it. Second. Where it does exist, there is no evidence that it is of any material benefit to the race. Third. Difficulties in self-fertilization result from physiological disturbances that
general welfare of plants as species.
Some interesting observations on the effects of temperature in changing the
index of refraction in spectroscope prisms were made by Professor T. C. Mendenhall. From experi ments made with glass heated as high as 392° Fah., it was found that the change of the index of refraction in glass for 9° Fah. is $0 \cdot 00003$. This affords a new scale of comparison in cases where there are differences of temperature to be con sidered.

Professor C. A. Young described

new arrangement of the spectroscope for obtaining lines more conveniently separated, and thus facilitating observations of the velocity of the movements of heavenly bodies through the displacement of said lines.
Having calculated the scale which this new arrangement required, he applied it to observations of the comparative speed of the sides of the sun, one of which is of course approaching us, while the other recedes, because of its revoation on its axis. These observations give an average for the motion of 123 miles per second. Calculation would give
by mere theory this motion as 103; but the difference by spectroscopy is within the limits of error of observation.
spectroscopy is within the limits of error of observation.
Professor A. W. Wright added a note, giving the results Professor A. W. Wright added a note, giving
of further investigation into the nature of the

zodiacal light.

Careful researches on his part had shown that the zodiacal spectrum varied but little, if at all, from the solar spectrum except in length, that difference being due to the fact that the former was a faint light. The line 577, which a previous observer had found in the zodiacal light, Professor Wright thought was due to an aurora present at the time of observation. The conclusion was that the zodiacal light must be that of the sun, probably reflected from numerous small meteoric bodies, revolving around that luminary.
the flying lizards of america
was a brief essay by Professor O. C. Marsh, giving a description of the principal characteristics of American pterodactyls. The animal is only known through the labors of geologists.
It was found from the Amerisan specimens that there has been a misunderstanding about the pelvis of the animal. The ischia are found firmly coössified on the medial line, and the pelvis differs in other particulars from what had been supposed. The American specimens give a clear idea, such as was not previously attained, of the hind feet of the animal. The lower end of the tibia has a pulley-like articulation, similar to the bones of a bird. There are also at least two separate tarsa! bones. There is also this remarkable circumstance. In the geological horizon where the pterodacteeth, and hence are unlike all other birds: while pterodacteeth, and hence are unlike all other birds: while pterodac-
tyls are found having no teeth, and hence unlike all other pterodactyls.
Professor S. W. Garman, of the Museum of Comparative Anatomy, at Cambridge, Mass., read a paper on the

```
                        colors of animals.
```

Despite the popular notion that the chameleon and other animals can change their color at will, he says there is a want of scientific evidence in favor of the belief. Drawing
up for consideration a schedule of animals in two groups of up for consideration a schedule of animals in two groups of darkness of habitat determine the colors as a whole. The amount of light in their surroundings is in inverse relation to the brilliance of color The dark colors are found in forests and on dark soils; the light colors on plains and snow. The bleaching process applies to the lowêr surface, to the ventral portions of animals by reflection. In the water the same is
true, the rivers with muddy bottoms being peopled by dark forms; the brilliant colors are found in hot and sunny waters or transpa

Naval Items.
It is the intention of the navy department to put the eamers Alliance and Ranger in commission. The Alliance ful runs over the measured mile at League Island on August ful runs over the measured mile at League island on August
14 , the average speed for four runs being $11 \cdot 3$ knots, with 14, the average speed for four runs being 182 knots, wer.
63.04 revolutions of the screw, developing 882 horse power. Better results would have been obtained had there been a greater depth of water on the course. On returning to her anchorage after completing the trial, she passed through $7 \frac{1}{2}$ fathoms of water, when the revolutions, with the same pres sure of steam and same cut-off, increased to $68 \frac{1}{2}$, which would have given 11.6 knots.
naval engineer corps gazette.
Passed Assistant Engineer L. R. Harvey detached from the United States steamer Pensacola, and to wait orders at San Francisco, Cal.
Passed Assistant Engineer J. F. Bingham detached from the Mare Island navy yard and ordered to the Pensacola. Assistant Engineer W. H. Platt ordered to report for examination, preliminary to promotion.

Better Times at Hand.

On every side, evidences of a better state of business feel ing prevails. Our merchants are confident of a good fall trade, and the fear that the coming winter will be an excep pelled by severe one on our working people is being dis pelled by many stable signs of brisk trade this autumn Even in New England, where the business depression has been most disastrously felt, quite a number of large mills,
silent for many months past, are starting into silent for many months past, are starting into action and on full time, for the fall and winter. In our State, says
the Philadelphia Inquirer, some of the furnaces, mills, the Philadelphia Inquirer, some of the furnaces, mills,
and factories, shut up for over a year, have been reopened, and factories, shut up for over a year, have been retp. The
and work has been or will be resumed very shorty. reason of this is that prices have touched their 1 west point and show signs of improvement. Stocks of goods have been reduced to the bare boards, or very near them; the pro ducts of the country have been unprecedented; and there is of profit, for that is the great business magnet. If our merchants and manufacturers can resurrect the old-time commercial confidence, we may look f.rr the dawn of better
times very soon.

Tasteful steel Plate Engraving.
We rarely seen more tasteful and novel designs for business cards, checks, letter headings,and similar work on stee than those produced by Messrs. John A. Lowell \& Co., of Boston, Mass. By means of finely ruled lines, enclosed in simple yet handsome shields and like figures, effects of great beauty are produced at moderate cost. To manu-
facturers, bankers, merchants, and indeed all who take pride facturers, bankers, merchants, and indeed all who take pride certificates, we can recommend the artistic productions of the above firm.

NEW BOOKS AND PUBLICATIONS.

The Complete Practical Machinist, embracing Lathe Work,
Vise Work, Drills and Drilling, Taps and Dies, Hardening and Vise Work, Drills and Drilling, Taps and Dies, Hardening and
Tempering, the Making and Use of Tools, etc. Illustrated by Tempering, the Making and Use of Tools, etc. Hllustrated by
130 Eagravings. By Joshua Rose. Sent free by mail on receipt 130 Engravings. By Joshua Rose. Sent free by mail on receipt
of price, $\$ 2.50$. Philadelphia, Pa.: Henry Carey Baird \& Co., of price, $\$ 2.50$. P
810 Walnut street.
We have given to our readers so much practical information, on al
branches of the art of producing the finest mechanical work in the economical manner, from the pen of the author of this book, that any commendation here bestowed by us on the work would seem like egotism. The
tens of thousands of skilled operatives who read these pages look regularly tens of thousands of skilled operatives who read these pages look regularly for some iresh instruction in manipulating tools, some new method of
working out a mechanical idea, in our chapters on "Practical Mechan Ism ;" and they are, we know well, seldom disappointed in their search Mr. Rose justly says in his preface that the education of the machinist has
not received its proper share of attention at the hands of authors who have written on mechanical subjects; and he has labored faithfully and skillfully to remedy this defect, and has produced a volume of condensed instruc-
tion, extracted from long experience in many countries, which could only be written by an engineer and mechanic of the highest skill, endowed with unusual facilty in explaining and illustrating his meaning.
Filth Diseases and their Prevention. By John Simon, M. D.
F.R.C.S., Chief Medical Officer of the Privy Counciland of the Local Government Board of Great Britain. Price \$1. Boston, Mass. : James Campbell, Publisher.
Mr. Simon's labors in the etiology of disease have been for many years regarded as the master work in sanitary sclence ; and his reports are mat-
ters of world wide importance, Illustrating the causes and development of al the preventible diseases, which do not vary in different localities. His skill in investigation is worthily supplemented by a clear, concise, and methodical mode of explaining his views; and the thoroughness with which all his work is done gives it the highest value. The State Board of Health
of Massachusetts have ordered this reprint of Mr. Simon's last essay to be of Massachusetts have ordered this reprint of Mr. SImon's last essay to be
published, and they statetruly enough that, " if the practical suggestions published, and they state truly enough that, "If the practical suggestions
made therein were acted on by all ctitizens, hundreds of lives now annually doomed to destruction would be saved, and the health and comfort of the people greatly increased." We shall shortly publish some extracts from
this valuable document, which is one of the greatest importance to every this valuable document,
government and people.
Wood Conversion by Machinery. By John Richards, M. E
London, England : J. \& W. Rider, 14 Bartholomew Close London, England : J. \& W. Rider, 14 Bartholomew Close. The author of this book is a member of the firm of Richards, London, \&
Kelley, of Philadelphia, but has been for some time a resident of London. Keney, of Philadelphia, but has veen for some time a resident of London.
The essays which make up this volume have been published in the Timber Trades Journal; and they contain some valuable practical information on all branches of the subject. In the chapter on ' ' patent monopoly in wood conversion,' there is a boldly outspoken criticism on the action of the Patent Offlice in the notorious Woodbury planer case, which we commend
to the a tention of the woodworkers of this country. We shall probably to the a tention of the wood
recur wo this volume again.
The Interoolonial: an Historical Sketch of the Inception, Location, Construction, and Completion of the Line of Railway
Uniting the Inland and Atlantic Provinces of the Dominion of
Canada. By Sandford Fleming, C. E., Engineer in Chief of the Newfoundland, Intercolonial, and Canadian Pacific Railways. Montreal, P. Q. : Dawson Brothers, 159 St. James street.
This volume affords an excellent idea of the formidable difficulties en.
countered in the construction of the rallway through' the ""Wilderness,"

Which, as the author truly says, " separated the Maritime from the Inland
Provinces," rere cos. The natural obstacles in the way were enormous, and they were conquered only by great courage and untiring patience
is a rallway which. "in all the essentials, has no superior."

Inventions Patented in England by Americans.
 [Complied from the Commissioners of Patents' Journal.]
 Brock. Washington, D.
 Boiler.-A. D. Brock. Washington, D. C. Buffing Leatier, etc.-J. E. Fisk, Salem Mas.
 Child's Carriage, etc.-C. F. Tenney et al., Baldwinville, Mass,
 Cooking Utensil.-J. H. Weare et al., Cincinnati, Ohio Elevator.-n. K. Terry, Jersey City, N.
 Elevator.-R. K. Terry, Jersey City, N. J. Fisi Joint, etc.-R. Long, Pittsburgh, Pa.
 Gydraulic Propelier.-G. G. Caldwell, Baltimore, Md.
 Indicator.-J. W. Thompson, Salem, Ohio. Miccoscope.-J. Zentmayer
 Microscope.-J. Zentmayer, Philadelphia, Pa, Paper box, ETC.-S. Wheeler et al.. Albany,
 Paper box, etc.-S. Wheeler et al., Albany Pavement.-J. Shillinger, New York city.
 Sash Pulley Case, etc.-W. T. Doremus, New York city. Separating Liquids.-J. J. Thomas. Philadelphia, Pa Separating Liquids.-J. J. Thomas. Philadelphia, Pa. Smokeless Furnace.-J. W. Bonta, New Brighton, Pa.

NEW•MECHANICAL AND ENGINEERING INVENTIONS.

IMPROVED LOCOMOTIVE DRAFT PIPE.
Thomas Diffenbaugh, Danville, Ill.-This is an improvement in the draft or lifting pipe of locomotive and other high pressure engines that exhaust into the chimney, which draft pipe is comconsists in making the draft pipe in sections, and adjustable by lever connection with the cabin of the locomotive. The common practice at present is to close up the exhaust nozzles, which, when the engine is working at full stroke, are not large enough to allow the exhaust steam to escape freely into the smoke stack, thereby cramping the engine, as the steam cannot be exhausted quick mough. By making the draft pipe variable in size, the nozzle may be made larger than at present, and the pipe then be adjusted
to the volume of the exhaust steam-larger when the engine is working at full stroke and exhausting a whole cylinder of steam, and smaller when cutting off and exhausting only part of the quantity, thereby allowing the engine to work with more free dom, and maintaining a sharp draft when required.

IMPROVED PISTON.

John Wood, Jr., Conshohocken, Pa.-This invention is a univer sal expanding device for the pistons of steam engines, capable of expanding the packing rings equally with a positive motion, so that, while the piston can be adjusted when desirable, it acts,
while working, like a solid piston; and it consists in the combinawhile working, like a solid piston; and it consists in the combina-
tion of followers sliding in suitable radial ways in the piston head, with a central sectional core or cylinder, which is bored out conically, and is provided with a conical plug, which, when forced into the sectional core, by means of a screw placed in the piston head for that purpose, expands, forcing the followers against the packing rings. The advantages claimed are that, while the piston can be adjusted to take up the usual wear, it will accommodate it
self to the inequalities in the cylinder, and will not wear more in one place than in another, as is the case with packing which adjusts itself. Another important advantage is that it obviates the necessity of removing the follower to adjust the packing.
IMProved PUMP Valve.
Mrs. Charlotte Thomas, executrix of William H. Thomas, de Mrs. Charlotte Thomas, executitix of William H. Thomas, de-
ceased, Sacramento, Cal.-The object of this invention is to provide an improved substitute for frappet valves whose hinged flap, or movable piece, is composed of leather. To this end, the inven-
tion relates particularly to the valved seat composed of hard tion relates particularly to the valved seat composed of hard metal and having a beveled rim, the improved valve having an annulus of soft metal secured in a suitable cavity, and the verti-
cal guides for causing the valve to seat itself accurately, cal guides for causing the valve to seat itself accurately, 子hese
elements being conjoined under a particular arrangement whereby the valve seats itsel in the soft metal at each stroke, and always in the same place.

IMPROVED COMBINATION LOCK.
George Winter, Jacksonville, Va.-In this invention, the bolt is locked by a series of sliding dogs or tumblers provided with semicircular grooves to receive rotating pins, having semicylindrical posts adapted to fit in said grooves. When the pins are adjusted
in one position, the dogs may be raised simultaneously out of the in one position, the dogs may be raised simultaneously out of the
notches in the bolt, thus allowing the latter to be withdrawn into the case; but when adjusted in another position, the dogs are held locked, the semicylindrical portion of the pins in such case enter ing the grooves in the dogs. The position of the pins is indicated by a series of fingers inserted in the dogs, and pointing to numerals inscribed on the face of the lock.
improved horseshoe machine.
John W. Chewning, Jr., Shadwell Depot, Va.-This invention relates to a novel construction of horseshoe machine; and it conating the swaging die and bending jaws, in the combination with the pivoted jaws of bending and guide rollers, in the construction and arrangement of the ejector for the swaged horseshoe, in the tion of the and arrangement of the knife for cutting oll for ad justing the length of said section.
improved self-dumping scow.
Philetus L. Murphy, New York city, assignor to himself and John A. Squires, same place.-This consists in a scow made in two its center, the deck being inclined from the outer sides to the line of division. The parts connect with each other at one end by hinges, and at the other end by a rope, so that when said rope is released the weight of the load automatically.
dump the
improved stone-sating machine.
James Pepler, Green Point, N. Y.-This in vention consists in the to make diagonal or straight cuts through a block, or to make both diagonal or straight cuts at one time in a block of stone. The operation may be described as follows: The block of marble or other stone to be sawn is placed on the support; and if it is to be worked up into monumentshafts, the saws are arranged so that the rollers will guide and deflect them so that they will saw diagonally through the block. On turning the blocks over, the saws
are arranged two in one socket or holder at one end, to bring are arranged two in one socket or holder at one end, to bring
them as near together as possible, to cut out the wedge between the shafts. The saws may be arranged so that part only will saw diagonally, or all may be adjusted to saw in that way.

improved nail plate feeder

 William H. Rittenhouse, Norristown, Pa.-In this invention, two spring nose pieces are employed instead of the one rigid oneheretofore used, in order that, when the barrel is turning over on here oore use, ine inder that, when the barren is wurning over the presure of the bearings will
one of the
spring it, and so nip the plate that it will not feed while turning. The blank from which the nail is cut obliquely across has one edge
longer than the other, necessarily; and as the reciprocal feed longar than the other, neecessarily; and as the reciprocal feed
turns the long and the short edge up alternately, in ordinary nail turns the long and the short edge up alternately, in ordinary nail
plate feeders, high speed is not possible, because the moving knife plate feeders, high speed is not possible, because the moving knife
lifts the plate from the bed knife when, in turning, the long edge is up. But in this device, when the short edge is up, and the nose lear it every time, and there is no limit to the speed, so far as the clear it every time,
feed is concerned.

IMPROVED RAILROAD RAIL JOINT.
Duncan C. Waddell and John F. Finger, Marion, S. C.-This invention consists of a chair that embraces the bottom and inner side of the rail, and is provided with a central standard or bearing piece, which comes between the ends of the rails when they
are placed in the chair, and extends beyond the outside of the rail, where it is mortised to receive a split key, that rears against the web, the said key being retained by a wedge driven in the split. The device forms a rigid support for the ends of the rails. It may
either be placed on the cross ties or between them. The bearing piece between the ends of the rails permits the wheels to pass over piece between the ends of the rails permits the wheels to
the joint without jarring or injuring the end of the rail.

IMPROVED SEWING MACHINE FOR EMBROIDERY. Charles Marin, Newark, N. J., assignor to himself and Isidore
Rosenthal, New York city.-This invention produces embroidery Rosenthal, New York city.-This invention produces embroidery
stitches of varying lengths at one side of the fabric only, and reains the embroidery stitches at the ends by fastening stitches that pass through the fabric at a considerable saving of thread. The machine is made in the nature of the sewing machine, and flat or ralsed designs of any conflguration, in a rapid, even, and perfect manner. It consists, essentially, of a reciprocating needle bar, with two adjustable needles, a slotted presser foot, a swinging
and parallel feeder, and a shuttle that placesthe embroidery stitch and parallel feeder, and a shuttle that places the embroidery stitch
n position for the fastening end stitches of the adjustable needles. IMPROVED WHEEL TIRE.
George Cornwall, Garden City, N. Y.-This consists of a tire the essential part of which is rawhide. The hide is fitted on a metal hoop while in a soft state forfixing it in the required shape, and an elastic cushio
metal band.

IMPROVED LUBRICATOR.
Joseph W. Reed, Kalamazoo, Mich.-This fnvention is a double atomatic lubricator for steam cylinders of locomotives and other engines, by which one of the lubricators may be dispensed with;
and it consists of a cup cast in one piece with fixed internal feed pipes, having regulating top nozzles and outer cocks for shutting off the steam. The casting of feed pipes and cup in one piece makes the cup cheaper, and without joints. The steam passes
up the pipes from the steam cylinder, and condenses gradually in up the pipes from the steam cylinder, and condenses gradually in he nozzles and down the pipes as long as the engine is running. When the steam is shut off, the supply of oil is interrup
ing regularly continued when the steam is let on again.

IMPROVED WIND WHEEL.
Alfred M. Vanpelt, Capioma, Kan.-By suitable construction, as
the wind blows against the forward sides of the fans, it presses the wind blows against the forward sides of the fans, it presses the wind, unless it be strong enough to raise the said weights, and thus take the fans out of the wind. By suitable adjustment, the thus take the fans out of the wind. By suitable adjust
whanged to work with any desired power.

IMPROVED WATER WHEEL Samuel G. Marlin, Clarion, Pa.-This consists of a wheel com-
posed of two disks placed side by side, each having buckets and
issues, which are so adjusted that the buckets of one fit in the issues, which are so adjusted that the buckets of one fit in the
issues of the other, in such manner that, by adjusting one of the disks toward or from the other, the capacity of the issues may be raised to any extent,

IMPROVED WINCH.
Elias Sorrinson, West De Pere, Wis.-This consists of a common winch, whose crank shaft is placed by sliding pinions in connection
with a second hoisting drum, and with rubber rollers for taking up the slack. It serves to hoist two or more sails at once.
improved tool for capping and uncapping cartridges. Isidoro Zamboni and Carlo Zamboni, Owatonna, Minn.-This is an improved device for removing the exploded cap from a cart-
ridge shell for breech-loading shot guns, and recapping and reridge shell for bre
loading the shells.
improved lifting jack.
Thomas J. Corn, Sni Mills, Mo., assignor to himself and James M. Faulk, same place.-This consists in making the parts of a lifting jack so that they may be folded compactly together for stor-
age or transportation. When this is desired, the lever is removed and the standards are folded.

IMPROVED MIDDLINGS SEPARATOR.
Jefferson Graham, Alden, Minn.-There is a vertically recipro-
cating shoe having screens, each clothed with finer and coarser numbers of bolting cloth; also a series of chutes, one set for delivering the purifled middlings out of the machine, and the other for delivering the imperfectly separated matters upon the screen
below. With the above, a blast fan is combined. below. With the above, a blast fan is

> IMPROVED GLOVE-SEWING MACHINE. Gullrandsen and Johan C. Rettinger. Copen

Peter E. Gullrandsen and Johan C. Rettinger, Copenhagen, Den-mark.-The object of this invention is to construct a glove-sewing machine on the revolving hook system, which produces with two
threads a stepping and cross stich, that resembles and equals the threads a stepping and cross stich, that resembles and equals the best sewing done by hand, and makes the seams strong and dura-
ble. The device includes glove-feeding cups, reciprocating needle bler with tension devices, a rotating hook with bobbin and tension,
and a compound mechanism for operating the cross stitching deand a compound mechanism for operating the cross stitching de-
vice. The horizontal actuating mechanism of the parts is inclosed vice. The horizontal actuating mechanism of the parts is inclosed
below the table, and operated by a treadle, the glove-feeding cups below the table, and operated by a treadle, the glove-feeding cups
being run close to each other,or at some distance from each other being run close to each other,or at some distance from each other,
to take hold or relinquish the work by means of a pressure spring to take hold or relinquish the wor
and releasing treadle connection.
improved slaughtering apparatus.
Kennard Knott, London, Ontario, Canada.-This invention reates to an improved slaughtering apparatus in which the bullock upon a car, which transports the body to the mechanism by which it is hoisted for being dressed. After the dressing operation it is lowered, divided in halves by a swinging saw, and the two parts,
which are suspended from hanging tramways by wheel hooks, are which are suspended from hanging tramways by wheel hooks, are
quickly conveyed by said hooks into the freezing house, where they are packed, or from which they may be removed to cars or

NEW CHEMICAL AND MISCELLANEOUS INVENTIONS.

improved pocket calendar.
Benjamin F. Norris, Chicago, Ill.-The improvement consists in me particular construction and arrangement of the two shee of indentations corresponding to the divisions of the calendar face, and the other of which is provided with a stud, one end of which affords a knob for turning the disk, and the other end of
which forms a stop which enters into the indentation of the other which forms a stop which enters into the indentation of the other tion of the divisions of the two disks and prevents accidental displacement of the same while in the pocket.

IMPROVED LANTERN
Henry C. Kelly, Chicago, Ill.-This invention relates to a novel construction of the lantern; and it consists in the construction and base proment of the burner and deflector air to the burner, the con struction of the outlet for the hot air above, and the means for at taching the guards to the base piece, and thus connecting and
holding the several parts together.

MPROVED PUZZLE BLOCKs

Ripley R. Calkins, St. Joseph, Mo.-The object of this invention to provide a mechanical or material verification of the geomet rical problem "that the square described upon the hypothenuse of a right-angled triangle is equal to the sum of the squares upon
the other two sides." To this end the invention consists in the combination of flve blocks, three of which are in the shape of similar right angle triangles, one in the shape of a trapezium, and the other in the shape of a trapezoid, which blocks are adapted to be put together to form a single square upon the hypothenuse of a
right-angled triangle, or to be transferred or arranged in two right-angled triangle, or to be transferred or arranged in two
squares upon the other two sides; the same to be used in schools squares upon the other two sides; the same to be used in schools
for purposes of illustration, or to be used as a puzzle for general for purposes

improved street lamp.

Lewis O. Cameron, Pittsburgh, Pa.-The improvements constituting the invention are embodied in three features, namely: 1st.
Constructing the glass body of the lamp with a large opening at Constructing the glass body of the lamp with a large opening at
the bottom, and providing adjustable perforated plates for closing the same, the said plates being attached exteriorly. 2d. Making the metallic cap or top portion of the globe adjustable and removable. 3d. Providing the lamp with a detachable holder or reservoir or gasoline or other light hydrocarbon.

IMPROVED BROMINE STILL
Freeling W. Arvine, Mason City, W. Va.-The points of novelty in this invention consist in making the still with a funnel-shaped bottom, introducing the steam pipe at the lowest point of the
same, and providing an annular orifice for the escape of the liquid ame, and providing an annular orifice for the escape of the liquid product. It also consists in providing a return pipe for the es
caped bromine at the mouth of the receiver, and conducting the caped bromine at the mouth of the receiver, and conducting the the still for utilization by decomposition.

IMPROVED HORSE DETACHER.
Amos M. Barker, Macon, Neb.-In using the device the cock eye of the tug is put over the outer arm of a double hook, and the double hook, holding the hook securely in place. Should it become necessary to detach the horse, the driver pulls upon the cord attached to the arm of the rod. Fhis turns the rod and raises its head out of the space between the points of the double hook, when the draft strain turns the hook forward, draws the tug from the
said hook, and the horse is detached.
improved pocketbook fastening.
Ernst Schnopp, East New York, N. Y.-This lock consists of a face plate, with swinging handle, applied to the closing flap of the pocketbook. It has a center knob at the under side of the same,
that enters a centrally perforated radial spring plate for closing the lock, the button being released by pulling at the face handle. IMPROVED TEMPORARY BINDER.
Ferdinand Guicheteau, Brooklyn, N. Y.-Thisinvention consists the combination of a spring clip of novel construction with the back of a book-shaped box or receptacle, hach be placed on a pair of needles flxed to the said back and retained by a spring. The
latter is slotted, and so placed as to be capable of following the latter is slotted, and so plac
papers down on the needles.

IMPROVED UMBRELLA SUPPORTER.
August H. Adams, Piqua, Ohio.-This consistsof an attachment for vehicles, having a socket for the umbrella handle at one end
and double sockets at a suitable angle at the opposite end, to be secured by cla
the wagon sea
improved ear rings.
Leon P. Jeanne, New York city.-This invention consists of a pring lever hook, attached to a knob of the ear ring or drop, and curely in position.
improved billiard ball.
Gustav Magnus, Berlin, Prussia.-These ballsare made uniformly solid throughout, without any pores or cavities. They are per
fectly elastic. They rebound to a hight of eighty feet if thrown on an iron plate. Their center of gravity is exactly in the cente on an iron plate. Their center of gravity is exactly in the cente
of the ball, so that they lie still in any position on a surface of of the ball, so that they lie still in any position on a surface of
quicksilver. They do not crack or peel off, and they do not lose
their color. The ingredients are rubber, sulphur, a suitable color their color. The ingredients are rubber, sulphur, a suitable color ing matter, and heavy spar, or sulphate of baryta, the latter in a quantity at least fifty per cent of the rubber. The mixing is done in the usual way. After having made a ball, as nearly true as pos-
sible, and about one half inch smaller than the finished ball, it is sible, and about one half inch smaller than the flinished ball, it is
enveloped in a sheet of the same mixture, having the required color, of three eighths of an inch thickness, and put in a very stron metallic mold of adequate form. The whole is then submitted to the curing process during at least ten hours, commencing with low temperature, and increasing it slowly but steadily. The mix ture is exposed only for one hour or less to the highest degree of
heat, which will vary according to the quality of the india rubber heat, which will vary according to the quality of the
used. The cured balls are then turned and finished.

NEW HOUSEHOLD INVENTIONS.

improved water fender for doors
Elliot L. Valentine, Oakalla, Ill.-This consists of a water con and other similar places, to catch the water that drifts agains hem, and conduct it outside thesill.

IMPROVED WASH BENCH
Peter E. Rudel, Grand Rapids, Mich.-This is a folding wash bench, hinged to a vertical standard carrying wringer rolls. The
bench is formed of two sections, which consist each of a platform supported upon a hinged frame or leg, and adapted to fold and li

IMPROVED INVALID BEDSTEAD.
Franklin E. Sawyer, Hyde Park, Vt.-This bedstead may be easily and conveniently adjusted by the occupant or attendant to any position, to be used as a common bed, or as a sofa or settee, o other, and has accommodations for the storing away of soile clothes.

IMPROVED BOTTLE WASHER.
William Scherenberg, New York city.-In using the machine lowered, bringing fin a frame and secured. A trough is the which water and shot, tacks, or other suitable substance, ar poured. A wheel is then turned which shakes the frame and bot tles, washing the said bottles clean in a short time. When the bot tles are sufficiently washed the frame is turned through a half rev-
olution, which allows the water and shot or tacks to flow from the hution, which allows
improved washing machine
Allen D. Ferris and Albert N. Ferris, Blakeley, Minn.-The suds box is made in the form of a half cylinder, and to it is attached a series of parallel cross bars, which form the rubbing board, and at
the same time strengthen the zinc bottom. The top opening is surrounded with a curve which prevents any water that may be spilled from running off upon the floor, and serves as a rest for the attachment of a wringer. Devices are provided to hold the suds box stationary while the wringer is being used

improved spring pillow.

Jacob Beamer, Manor Station, Pa.-The object of this invention is to furnish, in place of the feather pillow, an improved wire spring pillow, that is conducive to sound and healthy sleep by keeping the head cool, and admitting pure air to the back of the same. Wire cloth is stretched on curved band springs, which are
attached to the lower ends to a suitable supporting frame, and at attached to the lower ends to a suitable supporting frame, and at
the upper ends, by a cross strip, to upright rack bars. The supthe upper ends, by a cross strip, to upright rack bars. The sup-
porting springs are laterally braced by a curved stiffening rod.

IMPROVED EVAPORATOR FOR REGISTERS.
W. R. Fowle, Baltimore, Md.-Theinvention consists in moistening hot air as it passes into an apartment from a furnace or stove, or less saturated with water. The absorbentsare endless pieces o fabric held by opposite rolls, and dipping into the water, being spaced by ring grooves in the top roll. The invention is equally adapted to any form or location of register by means of an attachment open at the bottom so as to enclose with a lid the ordinary floor register, and prov
that of the evaporator.

NEW AGRICULTURAL INVENTIONS

improved farm gate.
Dennis C. Bacon, Litchfield, Ill.-This consists in hitching the eyes and long staples.
improved churn.
David J. Rogers, Bardstown, Ky.-This invention relates to certain improvements in churns, designed to simplify and extend the sists principally in the combination with a tube or case, provided with slits and perforations, of a projecting handle for holding the tube stationary against the bottom of the outer case while th dasher is being worked up and down in the said tube, by means o which arrangement any vessel withouta special cover may be em-
ployed for the outer containing case, and the churning devices adapted for use in the one as well as in the other.

NEW WOODWORKING AND HOUSE AND CARRIAGE
 BUILDING INVENTIONS.

improved wagon spring attachment
Reuben Doty and Joseph Doty, Wellsville, N. Y.-This is a de ice for attaching springs to a wagon body, composed of a top plate, a cross bar, encircling clip or band, and downward extend-
ing lugs, to form shackles for springs, the whole made in one piece.
IMPR
MPROVED ROCKER AND TRACK FOR CRADLES AND CHAIRS Daniel Rupp, Four Corners, Iowa.-This device is so constructed that the rocker shall always have a smooth surface to rock upon, however rough the floor may be, or however soft the carpet. The invention consists of a track having a right-angled bracket with a
V -shaped slot, in combination with a cradle rocker, having a pin which enters the slot in the bracket.
improved portable house
Francis M. West, Des Moines, and Addison R. Smalley, Snyder, Towa.-This is a portable house that may be readily shipped an struction being strong and durable, while at the same time neat in appearance. The walls are made of grooved and tongue-locked logs, with detachable door and window casings applied in similar
manner. The floor is connected to the joints by pins and recessed manner. The floor is connected to the joints by pins and recessed locking strips, while the roof sections are supported on dovetailed
rafters by lateral bearing strips and top battens, the parts being interlocked rigidly.

NEW TEX'ILLE MACHINERY.

apparatus for boiling and dyeing silks, etc. Lewis Leigh, Pittsfield, Mass.-This consists in the combination mechanism, with the two vats for moving the rods that suppor the material being boiled or dyed, and in the combination, with the end of the outer vat, of a box, connected with the space be ween the two vats by an opening. The box receives the was from the ebullition of the liquid in the first vat, and, being highe
than the said vat, allows the liquid to flow back into the same than the said vat, allows the liquid to flow back into the same
thus avoiding any risk from boiling a liquid in an airtight space.
improved spinning and doubling machinery. John L. Taylor and Robert Ramsden, Bolton, England.-This in
vention relates to the machines known as trostle spinning and double frames, and consists in imparting a positive motion to th bobbin on which the yarn or thread is wound, and a variable mo tion to the inverted fier, which is flxed to a bush, bearing upon a laimed for the washer placed on the lifting rail. The advantage claimed for the improverients are : First, no oil is required for the
spindle to lubricate the bobbin after doffing, as heretofore; sec spindle to lubricate the bobbin after doffing, as heretofore; sec
ondly, no snarling of the yarn on the top of the spindle can take place; thirdly, no friction of thread against the filier leg; fourthly, no removal of fliers when doffing; fifthly, a great saving of wast is effected, and of time in doffing, and the bobbins can be doffed while the frame is going; and, lastly, as the bobbins bear upon metal plates, they are not liable to be saturated with oil, and con-
sequently no oil can penetrate to the yarn on the bobbin, as sequently
heretofore.

马usimess and extsonal,

 The Charove for Ineertion unied this headis one Dollar a Line for each insertion. If the Notice ex-cead Frur Lines, one Dollar anda Half per Line will be charved.

Agricultural Implements and Industrial MachinD. Frisbie \& Co. manufacture the Friction Pul-
ley-Captain-best in the World. New Haven, Conn. Wanted-Parties to manufacture, on a royalty,
an tnstrument to prove steam Gauges. Address E . F . Osborne, st. Paul, Minn.
"Eureka"-Best Weather Strip out. Patent for in Scl.American,oct.9,' 75 . Frank Fieury, Spring ifeld, III. India Rubber-Capitalists are invited to Exam-
Ine a new process of manufacturing India Rubber, by which one half the labor and machnery are saved.
Address India Rubber, 52 Park Place, New York Clty. Foundrymen, letter your patterns with Metallic
Letters made by H. W. Knlght, seneca Falls, N. Y. First class Mechanical Draughtsman is open for
engagement. Address T. P. Pemberton, 50 Clermont Wanted-An Analytical Chemist. Address, stat-
ling age, experience, references, and salary expected, P. O. Box 1041, New York.

A good Machinist is wanted, who can invest
si, ogo in a good paying business, which will be perma-
nent A Scraper Patent for Sale. Address R. Verea,
${ }_{88}$ Wall st., New York. More than Ten Thousand Crank Shafts made by
Chester steel Castings Co., now running; 8 years' conChester
stant use
prove costings
co., now running; 8 years' conought iron. See advertisement, page 189.
Solid Emery Vulcanite Wheels-The Solid Origtnal Emery Wheel-other klnds imitations and Inferior.
Caution.-Our name is stamped in full on all our best Caution-. Our name is stamped in full on all our best
Standard Bettng, PackIng, and Hose. Buy that only.
The best 1 the cheanest. The best st the cheapest. New York Belting a
tng Company, 37 and 38 Park Row. New York.
Glass Blown Cylinders. T. Degnan, 129 Milk St.,
Boston, Mass. Boston, Mass
Planing Machines-For the best and cheapest
traveling-bed or "Farrar" Planers-24, 27 , and 30 in. also 15,18, and 24 in. stationary-bed mach10.
Lane $M \not \subset ' g$ Company, Montpelier, Vermont.
Models for Inventors. H. B. Morris, Ithaca,N.Y. Steel Name Stamps, post paid, for 18 cc . per letter.
Marks on Wood, Iron, and steel. Agents wanted. Steel Marks on wood, 1ron, and steel. Agents wanted.
Handbook of Useful Information for Lumber-
men, Millwrights, and Engineers (155 pages) sent free by
Horse Nail Machhnes-Wanted Machines for fin-
1shing and pointing Horse Nails. J. W. Britton, 8 sth Ishng and pointing
Ward, Cleveland, 0
Jethro Wood.-I fanyof our readers can send or
refer us to any publication contalntng a portratit of refer us to any publication containing a portrant of
Jethro Wood, the plow inventor, we should be obliged.

For the cheapest and best Small Portable Engine CCircular Saw Mills of the celebrated and popular ventor by the Lane M ' f 'g Company, Montpelier, vt. M. Shaw, Manufacturer of Insulated Wire for
galvanic and telegraph purposes, $\& \mathrm{c}$., z5 F.C. Beach \& CO., makers of the Tom Thumb
Telegrap and other electrical machines, have removed

Pat'd Graining Stencils-J. J.Callow,Clevel'd, o. Lathe Dogs, Expanding Mandrels, Steel Clamps, So. Norwalk, ct. Send for reduced Price List.
"Abbe" Boit Forging Machines and Palmer
Power Hammers a specialty. Send for reduced price Power Hammers a specialty. Send for reduced price
Ists. S. C. Forsaith \& Coo, Manchester, N. H.
 you want. S.C. Forsalth $\&$ Co., Manchester, N. H.
Lane's "Monitor" Turbine Water-Wheels are not perpetual monton mantines, but theer- combeels are more
and and greater advantages than any other water motors or
fered the public. Address Lane Mgg Co.,Montpelier.vt
Driving Belts made to order, to accomplish work
reaurred. Send full particulars for prices to C . W. Arny, required. Send full particulars for prit.
18 North Third St., Phlladelphta, Pa.
See Boult's Paneling, Moulding, and Dovetailing,
Machine at Centential, b. B.55. Send for pamphtet and
 Hydrant Hose, Pipes, and Couplings. Send for
prices to Bailey, Farrell \& Co., Plttsburgh, Pa. "Dead Stroke" Power Hammers-recentlygreat
Iy improved, increasing cost over 10 per cent.
Prices reduced over 20 per cent. Hull \& Belden Co., Danbury, Ct. Power \& Foot Presses \&\& all Fruit-can Tools. Fer-
racute Wks., Bridgeton, N.J. $\&$ C. 27 , Mchy. Hall, Cent'l. Shingles and Heading Sawing Machine. See ad-
vertisement of Trevor $\&$ Co., Lockport, N. Y .

For best Presses, Dies, and Fruit Can Tools, Bliss For Solid Wrought-iron Beams, etc., see adver-
tisement. Addrese Union Iron Mills Pittsburgh, Pa. for lithograph, \&c.
Hotchkiss \& Ball, Meriden, Conn., Foundrymen
and workers of sheet metal. Fine Gray Iron Castings and workers of sheet metal.
For Sold Emery Wheels and Machinery, send to
the Unlon Stone Co., Boston, Mass., tor clrcular.

Diamond Tools-J. Dickinson, 64 Nassau St, N. \mathbf{Y}. Temples and Oilcans. Draper, Hopedale, Mass,

It has been our custom for thirty years past to aevote a considerable space to the answering
questions by correspondents; so useful have these labors proved that the Scientific AmeriCAN office has become the factotum, or headquar-
ters to which everybody sends, who wants speci ters to which everybody sends, who wants special
information upon any particular subject. Solarge information upon any particular subject. Solarge
is the number of our correspondents, so wide the is the number of our correspondents, so wide the
range of their inquiries, so desirous are we to range of their inquiries, so desirous are we to
meet their wants and supply correct information, that we are obliged to employ the constant assisters, who have the requisite knowledge or acces to the latest and best sources of information.
For example, questions relating to steam enFor example, questions relating to steam en-
gines, boilers, boats, locomotives, rail ways, etc. gines, boilers, boats, locomotives, railways, etc.,
are considered and answered by a professional are considered and answered by a professiona
engineer of distinguished ability and extensive engineer of distinguished abirs and extensive
practical experience. Enquiries relating toelectricity are answered by one of the most able and prominent practical electricians in this country.
Astronomicalcueries by a practical astronomer. Astronomicalqueries by a practical astronomer.
Chemical Chemical enquiries by one of our most eminent
and experienced professors of chemistry; and so and experienced professors of chemistry; and so
on through all the various departments. In this way we are enabled to answer the thousands of
questions and furnish the large mass of informa questons ahich thesi correspondence columns present The large number of Guestionssent-they pour in upon us from all parts of the world-renders it
impossible for us to publish all. The editor selects from the mass those that he thinks most likely to be of general interest to the readers of the SCIENTIFIC AMERICAN. These, with the replies, are printed; the remainder go into the waste primitive or personal nature, which should be an-
swered by mail; in fact hundreds of correspondents desirea special reply by post, but ver few of them are thoughtful enough to enclose so much as a postage stamp. We could in many
cases send a brief reply by mail if the writer were cases send a brief reply by maili in the writer were
to enclose a small fee, a dollar or more, according Ito the nature or importance of the case.
When we cannot furnish the information, the When we cannot furnish the informatio.
money is promptly returned to the sender.
T. B. G. can remove tattoo marks from the hands by the process described on p. 331 , vol.
$30 .-G$. B. should read our remarks on p .202 , vol.
 wood by the process described on p. 50 , vol. $33 .-$
I. F. D. H. will flld directions for making printI. F. D. H. will find directions for making print-
ing ink on p. 107 , vol. $35 .-$ Mrs. R. can chemically ing ink on p. 107, vol. 35.-Mrs. R. can chemically
preserve natural flowers by dipping them in hot melted paraffin.-G. S. can best clarify varnish
by flltration. - B. \mathbf{C}. is informed that a recipe for erasive soap was published on p. 181, vol. 31.-B. erasiv sill find directions for cutting glass with
L. F.
hydrofluoric acid on p. 379 , vol. 33.-F. hydrofluoric acid on p. 379, vol. 33.-F. S. can pol-
ish white metallic alloys by the process described on p. 57 , vol. 34.-R. W., T. D., W.S. A., W. B.,
W. A. R., A. A.C., dustrial and scientific subjects, should address the booksellers who advertise in our columns, all of whom are trustworthy firms, for catalogues.
(1) M. M. C. asks: Does a point on a conand crosshead journal describe of the crank pin or is the figure which it describes slightly larger
at one end than at the other? A. Slightly larger at one end t
at one end.
(2) A. W. H. asks: I have a side stroke slide valve portable engine. Cylinder is 7 7/3 inch-
es in diameter, with 14 inches stroke. It israted es in diameter, with 14 inches stroke. It israted at 12 horse power. I run a gin stand with it at
speed of 250 to 300 revolutions per minute. I think it ought to run at 125 or 130 revolutions of the driving wheel per minute when the gin saws are
at their maximum, 300 revolutions per minute. at their maximum, 300 revolutions per minute.
A friend contends that the engine would do the A friend contends that the engine would do the
work more easily running at 75 revolutions per work more easily running at 75 revolu
minute. Which is right? A. You are.
(3) I. P. says: Of what benefit is lagging between the jacket and the boiler of a acomo-
tive? A. It prevents the heat passing off, by conduction, to the air.
(4) A. B. says: We have two engines, each 7×12 inches, attached to one shaft;they are rever-
sible by link motions, and are provided with ordinary slide valves, One of the engines has too
much opening on either center. How can we much opening on either center. How can we
mhorten the stroke so there will not be more than shorten the stroke so there will not be more than
$\frac{1}{6}$ inch opening on either center? A. Place the crank.
(5) G. M. F. asks: Will plaster of Paris,
made in the form of a cup, answer for the porous made in the form of a cup, answer for the porous
cup in the Bunsen battery? A. No, for the reaon thatit is not porous.
(6) C. W. M. asks: 1 . What should be the Inside and outside diameter of a helix, whose
length is 3 inches? A. Inside 1 inch, outside inches. 2.Of what size should the wire be, to give the greatest lifting force? A. Use No. 14 copper
wire. 3. Would any kind of wood do for a spool for winding it on? A. No spo
Wind the wire on the iron core
(7) W. B. asks: If two
(7) W. B. asks: If two magnets be placed
parallel, with their opposite poles together the parallel, with their opposite poles together, the
poles will attract each other. If the magnets be poles will attract each other. If the magnets be
placed end to end, with the positive pole of one to the negative pole of the other, they will repel,
according to Ampere's theory, whereas in praetice according to Ampere's theory, whereas in practice
they attract. How is this explained? A. According to Ampere,they should attract under the con-
(8) A. S. says: I am making an electro magnet, which
silk, and then dipping in paraffin. The only par-
fear may be adulterated with something tha would spoil my wire after I have taken the pains oo wind it. Would you advise me to use it? A.
The silk is sufficient. The dipping in paraffin will o harm.
(9) M. A. G. asks: 1. Is a hollow lightning
rod as good a conductor of electricity rod as good a conductor of electricity as a solid
one of the same diameter and same metal? A one of the same diameter and same metal? A.
No. 2. Is the conductive property of a rod in A. To its solid contents
(10) C. M. says: 1. I have an electrical con uctor on my dwelling house, composed of thr wisted iron wires and a small copper wire be ween each of the three strands, about $1 / 2$ an inch diameter altogether. Is such a rod a suitable
protector against electric shocks? A. Yes, if protector against electric shocks?
properly connected with the earth.
A. . Wes, if properiy connected with the earth. 2. Would a
galvanized iron rope of 34 inch diameter be as
good as a conductor? ably twice the weight per foot of the lightning rod. A. Yes, better than the other.
(11) W. N. G. asks : What is the average distance which a printer's hand travels for eac ype set? A. About 30 inches.
(12) L. C. K. says: I wish to bring water into my house from a spring 30 rods from the house and 100 feet higher. I wish to use $1 / 2$ inch
iron pipe. I am told that it will flll in a short time with rust so as to stop the flow of water en irely. Would it be advisable for me to lay iron
or lead pipe? A. A tin-lined iron pine is now bein lead pipe? A. A tin-lined iron pipe is now be will best answer your purpose, and probably not cost more than a lead pipe of sufficient thickness to bear the pressure.
(13) T. E, K. asks: Is there a preparation ure of cast iron borings 100 lbs. and sal ammo iace 8 ozs,, well wetted with water.
(14) G. D. M. asks: Can you tell me what
substance plasterers mix with their white glue instance plasterers mix with their white glue sive a gray color and make it tough like rubber ? A. No; glycerin is said to be a good coating for the interior, but lard and oil is most commonly glue long enough to be well saturated, will bea a nail driven in without cracking.
(15) F. R. asks: Is solder as good after it A. No.
(16) L. S. C. asks: 1. What good materia or paint can you recommend to cover a a hingle
oof, to make it approximacely fireproof against sparks and heat in case of the burning of an adjoining building? A. Quicklime boiled in linseed durabie wall 9 inches thick be made of sun a durable wall 9 inches thick be made of sun-
dried unburnt brick for a building one story high, the foundation being of burnt brick? A. We should consider the wall too thin: it it not likely to sustain the roof; 16 inches thick would do better. It could be laid up in clay. 3. Would hy-
draulic cement adhere to such a wall, if plastered on the outside? A. No; it would be better to fur off the
usual way.
(17) J. R. K. asks: Has the temperature (17) J. R. K. asks: Has the temperature
any effect on a steel spring blade? A. The effect will not be noticeable by ordinary measure-
(18) T. M M. asks: Is there not such a thing as getting lumber too dry? We kiln ourlumber in
a very hot dry house. Sometimes we leave it in a a very hot dry house. Sometimes we leave it in a
week longer than we should if we were in a great hurry for it. Our foreman claims that there is no such a thing as getting lumber too dry; but
we find sometimes, after we have used lumber that has been in the kiln so long, that the end hat has been in the kiln so ong, that the end
wood swells. A. We think your foreman is right; but killn-dried lumber is no doubt more subject to
swell by the absorption of moisture than that swell by the absorption of moisture than that which is seasoned by long exposure to the action
of the weather. If you stack your lumber two of the weather. If you stack your lumber two
or three years before using it, you will no doubt or three years before using it
have the best seasoned stuff.
(19) J. S. asks: How much powder will a and length 41 , inches, take to throw a a shell 4 of a mile? A. From $1 / 2$ to 341 lb .
(20) B. F. M. says: I have canned some blackberries and raspberries, but I have lost
about 2 cans by the cans pulling in two ; someabout 25 cans by the cans pulling in two ; some-
timesthey will burstall to pieces. Can you give times they will burstall to pieces. Can you give
us some reason for it? A. In canning fruitit is us some reason for it? A. In canning fruitit is
necessary, in order to expel as much of the air as possible, as well as to destroy any incipient be as full as possible and (2) that before being sealed they should be placed for a short time in boiling water until their contents become of the same temperature as the surrounding water, in
which condition they should be sealed, and immewhich condion they should be sealed, and imme-
diately thereafter removed and allowed to cool.
(21) L. A. asks: Is there anything except nuriatic acid that I can use for soldering copper or tin to galvanized iron, or for solderiug the iron itself, and make a smooth job? A
chloride of zinc, or sal ammoniac.
(22) B. W. says: We have some steelyards hat have no poise. Can you tell me how to make teelyard acts is that of the simple lever. If you can get two or three correct weights, you can
make a poise by experiment. To calculate the proper weight of the poise, measure the lever arm of the weight, and that of the poise to one or
more of the notches, and use the proportion that more of the notches, and use the proportion that
any given weight is to the required poise as the distance from the fulcrum to the weight.
(23) C. E. C. asks: How can I best succeed
earing that is siightly too na
File out the sides of the bearing
Is it likely that any other substance than oil or nud is the cause of the water foaming or surg ing in the upright tubular boiler? A. There ar power.
(24) F. H. S. says: My friend claims that in mence to move at the same moment that the de tent liberates the said escape wheel. I claim
that the inertia of the train of wheels is sufficient that the inertia of the train of wheels is sufficien toretard the time for commencement of motion
of the escape wheel sufficiently to allow the bal of the escape wheer sufficiently to allow the bal
ance to move through a space of at least three degrees from the time the detent has just liberaed the escape wheel to the time that said escap wheel commences its movement with every bea be. Who is correct? ter is the more correct of the two, though the amount of motion of the balance wheel before
the other commences to move could only be the other commences to move could only be
settled by experiment. It should be noted, also, that the teeth of the escape wheel could have such a shape that it would be in motion whil disengaging from the escapement. Possibly this
(25) J. E. W. says: I am running my en gine at the rate of 175 revolutions per minute.
What would be the difference in the amount of steamthat I should use if I ran it at 200 revolu tions per minute, provided that I increase the ize of pulley on machinery so that the engin will be doing the same amount of work ? A probably be a little gain by using the increased
(26) A. L. asks: What would be the safe pressure for $1 / 2$ inch external diameter steel pipe 3 inch in thickness, and also of 1 inch externa diameter steel pipe, $1 / 4$ inch thick? A. Abou
, 000 and 2,000 lbs. per square inch respectively.
(27) W. R. H. says: In a recent issue you describe a new electric battery. I have had this battery in use since January last. The jar is a zinc, twice the hight of the tumbler. The porous cup is made of blotting paper around the zinc turned in at the bottom. The copperwire is coile over the paper, which keeps the zinc and paper in place. Sulphate of copper solution is used as in a Daniell battery. This battery can be con structed for twenty cents, and will work
from 5 to 8 weeks, producing a current suitable for experimental purposes. By making the zinc cylinder twice the hight of the tumbler, the bat tery remains in working order longer. The zinc being very thin, is soon destroyed on the lowe dge; but by pushing the cylinder down, the same acid. A. The Daniell battery is the action of the modiflcations, and this is as good as many others used
(28) E. S. asks: What will remove a lin seed oil stain from common white cloth? A. Try
benzine or naphtha, and press with a little warm pipe clay.
(29) R. T. S. asks: How can I dye white id slippers black? A. First steep the material in a strong, hot solution of logwood, and then in
one of sulphate of iron (copperas). Repeat if necessary.
(30) W. B. asks: How can I pulverize mica? . Heat it as hot as possible, and while in this condition plunge it suddenly into cold water. It
thus becomes very brittle and may be reduced difficulty
(31) W. G. S. asks: What is the hydraulic About $121 / 2$ lbs. on the square inch. Can I get a full large blaze from glycerin by purn, but it fluid above the light? I can get it to will not get any larger. A. A higher temperature in contact with the air will produce a rapid decomposition of the glycerin, giving a much
stronger flame, but at the same time liberating irritating and offensive fumes of acrolene. 2. What is the cost of it compared with alcohol?
A. Glycerin, in comparison with alcohol, is very cheap.
(32) D. F. E. asks: How much sand and ime does it take to mix one bushel of Rosendale cement in mortar for laying brick ? A. One of
cement, one of lime, and six of sand will make a cement, one of lime, and six
good mortar for brickwork.
(33) W. G. W. says: I am bringing water 250 feet from a well through a $11 / 4$ inches plain
wrought iron pipe. The water is clear and good to all appearance; but when it has stood in a pail or vessel of any kind an hour or more, a greasy reddish scum arises to the surface in sufficient quantity to color the inside, so that it requires
considerable scrubbing to clean it off. Is there considerable scrubbing to clean it off. Is there any chemical property in the water that causes
the difficulty? A. The sediment you mention is very probably due to some corrosive action of the water on the iron conduits. This may be due in part to the presence of free carbonic acid. Draw a quantity of the water, add to it a small quantity of lime water, and allow to stand over-
night; then draw off the clear water. The addinight; then draw off the clear water. The addition of the lime water will neutralize the free
acid, with which it forms an insoluble salt, and at the same time precipitate any iron that may be in sorution. Experience will soon teach you the
(34) J. A. V asks: What is the most efficient means of stopping and preventing leaks in
gutters? I have oneof copper thatleaks terribly, gutters? T have one of copper thatleaks terribly, If your roof is a steep-pitched one, the copper lining of the gutter may not extend up far from flowing over the back edge of i, into the
woodwork of the cornice; or the contraction and
expansion may haveworked the joints loose. The
latter should be closely examined, and, if loose,
repaired before painting. We find no dificulty
here In keeping gutters, that are simply lined here In keeping
(35) C. F. S. asks: 1. Is the radiation of the method of heating private dwellings with furnace in basement and tin pipe leading to dif-
ferent rooms at the floor called direct or indirect? A. Indirect. 2. When this method is used, where should fresh air be admitted to the room thus heated, at the floor or near ceiling ? A. Fresh air should be taken from the exterior of the house at the basement, and supplied to the air chamber of the furnace by a special pipe or shaft, which may be of wood; it is this air, when warmed, that
becomes the fresh air of the rooms. The fireplace flue will carry off the vitiated air, having its opening near the floor.
Can cast iron be casehardened with prussiate of potassa? A. Yes.
(36) L. W. asks: Will any injurious effect. or steam arising from boiling or hot aniline dye? A, Yes, it is extremely unhealthy, if from no other causethan induced predisposition of the system to t
plications.
(37) A. H. S. asks: Is it injurious to a per son's health to sleep in a printing office after in type metal is poisonous. A. If the office i in type metal ventilated, and free from the odor of ben zine and other exhalations, it will not be un healthy. The antimony does not evaporate.
(38) G. G.says: I need a flexible tube to use in kerosene oil. What is the best material to otanswer. A. Try one of leathing kerusene oil, what is the best distance to have base of flame from surface of oil? A. About $21 / 2$ inches.
(39) E.T. M. says: I am about to construct a Hume for carrying off the smoke from a quicksilver furnace, the smoke being strongly impreg nated with sulphurous acid. What effect will it
have on a four feet flue constructed of Portland have on a fourfeet fue constrat, gravel, sand? A. The effect will be lime into an oxysulphide,and finally into sulphate of lime, which will resist any further change.
(40) J. W. says: My cellar is always wet to the gravel,the drains going into it, will the water soak in the gravel? A. It depends upon the nature of the several strata over which your house tands. Better consult some of the older residents of yol. 35 .
(41) M. E. A. asks: 1. I wish to build an in which to keep meat, etc. A. Yuns of ice, description of one of this size on p. 251, vol. 31 (in which read " 7 feet square" for interior chamber instead of 6.) 2. Is it best to build it into a bank and cover the top with earth, or build it all above round? If the former, how shall construct it A. It is not necessary to build it in a bank; le feet below ground. 3. How should the door be made? A. Provide a canvas on the inside that ill allow it to be packed with about 6 inche thick of sawdust. 4. Should the provisions be kept in the same room with the ice? A. No; but in the surrounding passage, as in the description
above referred to.
(42) W. D. asks: Can vinegar be made di rectly from corn or corn meal without first conthen to grape sugar, and then to vinegar? No.
(43) J. H. P. says, in reply to B. D., who ished with mercury. What will remove the mer cury ? "A. Cover the gold in a glass vessel with niric acid. The acid will eat the mercury all off and will leave the gold less brittle than if hea had been applied to it.
(44) E. P. says, in answer to C. B., who regulate the running of the plow : We often do this by shifting the outer end of the clevis off the eam towards the land, and fastening it at the
(5)
(45) J. M. L. says, in reply to H. P. B. form one of the best clarifiers for cider and wine One pint of pulverized eggshells will clarify one barrel of cider or wine in from 24 to 48 hours, ac cording to the clearness of the weather. As egg hells cannot always be had in sufficient quantities, can you tell me of a substitute for eggshells? t is the small quantity of residual adhering al bumen, and not the lime salts composing the shell, that exerts the clarifying action upon the the liquor. A good substitute for the expensive egg albumen may be obtained from water tha has been used to wash the starch from wheat flou or scraped potatoes, by allowing it to stand unmeans it is rendered turbid, and, after a thor time, a flaky white substance deposits, which has the same properties as white of egg, and isknown as vegetablealbumen. The shells are chiefly composed of the carbonate and phosphate of lime, together with a little organic matter. In some parts of Europe and elsewhere, it is common to clarify wines, etc., by heating for a short time ing through bags of fine linen.
(46) N. A. B. asks: 1. Can I arrange the motive power of an electric clock so that a regu-
lator will not be necessary, and so that slight va
riationsin the force of the current will make no
difference in the time kept? A. No. 2. I have n instrument for producing shocks by the extr urrent; it has no secondary coil. If I should at tach a condenser to it, could I obtain any of the
effects of frictional electricity, or is the secondry coil necessary? A. A secondary coil is neces ary to obtain static effects of any considerable tension.
(47) J. V. A. says: Is there any metal or ther substance that is perfectly or almost per ectly impenetrable to magnetism? If I take a magnet and place a plate of some substance above hrough it so that it would have no influence on piece of iron placed above it? A. No. There is nothing which will cutoff magnetism except iron which does so by itself absorbing the magnetism
(48) W. H. asks: 1. How can hard cistern water be made soft and good for table use? Th hardness arises from the cistern being built of precipitation of some of the foreign matter. 2 precipitation of some of the forelgn matter.
Is a partition of common brick laid in cement dividing the receiving conductor from discharge pump pipe,
hink not.

COMMUNICATIONS RECEIVED

The Editor of the Scientific American ac riginal papers and contributionsupon the following subjects:
On Water Supply for Seabuard Towñs. By H B. M.

On Shrunk-On Parts of Machinery. By T. I. B On the Radiometer and its Uses. By S. H. T. On the Pyramid and the Sphynx. By C. R. On the Sinking of a Large Pond. By J. N.
On Working Men's Demonstrations. By J.E.E On a Submarine Railway. By P. S. On Building Prisons. By H. G. K. On the Hidden Key. By J. E. W On Preparing Ornamental Leaves. By M.A. K lso inquiries and answers from the following :
T. P. P.-J. B. H.-W. G. W.-W. W. K.-M. W. W
M. G. P. asks: Are not meerscbaum pipes Metimes boiled in wax etc., to bring out the olor? If so, what is the process?-F. S. K
sks: Please give me a recipe for keeping the eavil from corn after it is cribbed in the shuck

HINTS TO CORRESPONDENTS Correspondents whose inquiries fail to appea may conclude that, for good reasons, the Edito declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentaility of inventions, assignments, etc., will not be ublished here. All such questions, when initials only are given, are thrown into the waste basket, but we generally take pleasure in answering briefly y mail, if the writer's address is given.
Hundreds of inquiries analogous to the following
are fent: "Who sells bicycles? Who bores for re fent: "Who sells bicycles? Who bores fo ater by driving well tubes, and what is the cost Who operation? Who sells wooden clocks machinery for preparing moss for upholster rrs' use? All such personal inquiries are Business and Personal," which is specially se part for that purpose, subject to the charg entioned at the head of that column. Almos ditiously obtained.
[OFFICIAL]
INDEX OF INVENTIONS Cetters Patent of the United states August 15, 1876

d ench bearing that date.

[Those marked (r) are retssued patents.]
A complete copy of any patent in the annexed list,
cluding both the epecifications and drawings, will be cluding both the epecifications and drawings, will b lease state the number and date of the or. In ordering, and remit to Munn \&Co., 57 Park Row, New York city
larm, electric burglar, J.
181,078
Animal tether, P.
Ax, J. W. Warner.
Baking and brolling, J. H. Bruce....
Bale band tightener, C. H. Chase (r)
Bale tie tightener, J. Thayer.....
Bale tie, wire cotton, P. F. King
all thrower, mechanical, C. H. Bagley.
Bellows, valve for, A. Smith
Belt, chain, J. Behe
elt fastener, J. P. Burnham
Bill holder, revolving, S. w. Maynard.
Bn, meal, D. C. Clou
Bits, etc., holding, W.
Boller and setting, w. H. H. Barber (r)...
Boller furnace, steam, J. E. Wootten
Bolts, etc., rolling screw threads on, T.T.Prosse
Bone black, drying, P. Farley
Boot heel, C. Schwerdtfeger....
Boots, etc., screw for, A. Angst
Bosom form, A.W. Thomas.
Bottles, cork fastener for, W. D. Balcom
Bracket, Jenks \& Byatt.........
Brick machine, R. A. Drawdy.
brush, R.
rush and sprinkler, G. Birtwistie.
Buckle, Clinton \& Basset
Buckle, A. B. Woodard.

Suckle and snap, R. S. B. Chinner
Buckle and snap hook, F. J. Dess
buckle, harness, W. F. Whitney.
Bustle. E. J. Ham..........
Butter rackage, B. Beller
Cutton pliers, c. M. Plat
an, square, J. H. Scott.
Cannon, R. B. H. Letghto
Car coupling, E. Zorger.
Car draft bar, rallway, W
Car, sleeping, w. .. Pai
Car truck, J. Ireland....
Car truck, J. Ireland............
arpet fastener, あ. S. Dieffenbacher.......
asting, collapsing core for, J. K. Dimmic
asting die plates, J. B. McC
Chain,. . W. Levalley........
hair, folding, W. B. Cogger
Chair, folding, F. F. Parker.
Chair, folding, J. H. Travis.
Chair, perambulating, T. Divine.
Chair, reclining, T. M. Brintnall.
Chair, tllting, H. Parry
hamber and urinal, P. F. Campbell
Chimney cowl, J. M. Dav
Churn, P. K. Parkhurst..
Clgar box, T. A. Dodd.
Cigarette papers, case for,
Clock dial, H. F. Henderson
loth-cutting machine, R. B. S. Sanson
commode, S. E. Smith.
ooler, beer, W. La wrence.
Cooler, milk, T. Sexsmith
rkscrew, R. Decker
Cotton, baling, R. De Gray...................
Cotton chopper and scraper, W. M. Sanders.
Cotton, borated, C. G. Am Ende......... Cotton, borated, C. G. Am En cotton gin, H. A. Stearns..............
Cotton gin feeder, F. W. Flyn (r).. radle for children, Frawley \& Eviston Cultivator, J. W. Chase.
Cultivator, H. D. Green. altivator, corn, G. Brad Curtain tassel clasp, J. W. J. Robertso Cuttern tassel, clasp, J. J. M. Desk, C. A. Atkinson. Digger, potato, E. Bartlett .
Digger, potato, A. L. Libbey
Digger, potato, A. L. Libbe
Digger, potato, S. Martin..
Dish and clothes washer, A. C. Jackso
Disks of metal, etc., cutting, D. Brix. Distilleries, mashnng, etc., for, G. Ellenberger. 18 Dock, floating, T. J. Wheeden. Drawing frame stop, I. N. Edgerly Dryer, Adams \& Blondin
Elevating and carrying,
Elevator, J. G. Kurtz..
Elevator and purifier, water, T. T. Bishop
Elevator, hydraulic, T. Stebins.
Engine, compound, E. F. Althans
Engine cut-off, steam, J. C.
Engine, rotary, A. C. Speer
Engine valve, pumping, Cope ϵt al......
Engines, valve for steam, T. \& A. Shary
Eyeglass, J. s. spencer.
aucet-locking device, L. Bleter
Feather renovator, W. M. Shelto
Hire kindler, S. S. Brown
Flour bott, w. D. Murray
Flying machine, F. X. Lamboley Fountain for mineral waters, ett.., A. . . D. Puff
Frame for family records, L. Patterson...... ruit dryer, A. M. Mortime Frutt dryer, A. M. M
Frutt jar, H. D. Hall.
Furnace for roasting ores, H. G. Livermore
Gas machine, A. C. Rand.
Gasaliers, tube retain
Gate, U. W. Hardy...
earing, double, I. Smith
enerator water indicator, E. H. Ashcrot
Glove, J. L. E. Ranniger.......
Governor attachment, C. Neer
Grate, transverse reckIng, H. Swindell
Grating, burglar-proof, C. P. Haughia Gravestone, metallic, W. J. Dew
Grindstone hanging, C. Hefft.......
Gun barrels, turning, H. C. S. Dyer
Gun, battery, A. E. Mititimor
Hame, A. H. W. Michaelis...
Harness pad, Ridgley $e t$
Harrow, J. De Moss....
Harrow, tooth, D. w. Hughe
Harrow teeth blanks, makin
Harvester, W. H. Pritz............
Harvester spring lever, r. s. Bro
Hay for fuel, twisting, J. S. Foster Hinge, spring, I. Buckman Hoof spreader, McIntos
Hydrant or water plug, E. R. Ice cream freezer, C. L. Dexter roning board, M. Λ. Bryan Kitted goods, finishing, J. L. William Lantern, т. B. Osborne.................. Latch and lock, W. H. Taylor athe, gage, L. Hull (r) athe shaping attachment, w. Brede Lubricating compound, Lyon Match holder, W. Ferguson attress, life-preserving, G. N. Torrence Metals, refining, Corson et
Microscope, J. Zentmayer
Millstone dress, J. K. Snavely
osquito bar, A. C. Edwards.............
Music leaf turner, o. W. Clark
Ores, reducing, M. Laflin
Ores, reducing, M. Latin............ Overalls, G. R. Eager
Overalls, s. Laskey Paper bag, J. s. Ostrander.............. Pen-bandle attachment, w...... F
Penholder, fountain, L. Berg.... Planoforte, bell, Hill \& Wing

DESIGNS PATENTED

,437.-UMbrella.-G. Bockstaller et al., St. Louls,Mo.
438.-Skirt Borders.-G. Bowman, New York city ,439.-Embroidery. - E. Crisand, New Haven, Conn. Cal.
444.-FlowerBoxes.-J. Rogers. New York city ,445.-STover.-E. Smith, Albany, N. Y.
, 446 .-MIrror Frame.-R. W. Myers, New York city ,446.-Mirror Frame.-R. W. Myers, New York city.

,447. - Fork handles, ETC.- C. Osborne, New York city [A copy of any one of the above patents may be had by | [A copy |
| :---: |
| remitting |
| York eity |

SCHEDULE OF PATENT FEES

 n each Caveat......on each Trade mark.............................. on issuing each original Patent On appeal to Examiners-In-Chief. on application for Reiss On fling a Disclaimer..................... On application for Design (7 years)

THE VALIDITY OF PATENTS

We recommend to every person who about to purchase a patent, or about to com license, to have the patent carefully examined y a competent party, and to have a researc made in the Patent Office to see what the cond He should also see that the claims are so worded s to cover all the inventor was entitled to whe his patent was issued; and it is still more essential that he be informed whether it is an infringe ment on some other existing patent. Parties desir ng to have such searches made can have them don arough the Scientific American Patent Agency, y giving the date of the patent and stating the

Sducriticmenty.
Inside Page, each insertion - - 95 cents a line. Back Page, each insertion -- $\mathbf{8 1 . 0 0}$ a line. Engravings may head advertisements at the same rate per line, oy measurement, as the letter press, Adver. tsements must be recexved at publucation oflce as early tsements must ve receco day morning to appear in next tisue
$\mathbf{R}_{\text {IST, }}^{\text {OSE'S COMPLETE }}$ COM PRACICAL MACHIN HENRY CAREY BARDD CO

 A YOUNG GERMAN ENGINEER, HAVING

 Jick-scREWS-The Patent Right for the simplest PROPOSALS FOR STOVES.

Engraving on Wood

 $\$ 55087^{\prime \prime} \begin{aligned} & \text { a Week to Agents. Samplea FREE. } \\ & \text { P. o. vICEERY, Augusta. Maine. }\end{aligned}$
 8100. REWARD. 8100 .

Steel Castings,

 quiring great strength Send for circular and price ilst
to CHESTER STEL.
CINA STREET, PHILADEELPHIA, PA.

Industrial Publishers, 810 Walliut bet
Hi Jogho Mo MAKE SPIRAL SPRIGGS. By

 Todd \& Rafferty Machine Co.

Planing \& Matching.

AIR COMPRESSORS

N. F. BURNHAM'S Water Wheel Has DISP LACE D hundreds of other
Turbines, but HAS NEVER BEEN IT
SELF DISPLACED Pamphlet ree. OSE'S COMPLETE PRACTICAL MACHIN
 Industrial Publishers, 810 Walnut St., PHILDDELPII
$\mathbf{W}^{\text {ANTED-TO Manufacture some Patente }}$
 CELEBRATED FOOT LATHES

 B

CTVIL Rnd MECHANICAL ENGINEERING a
Passed In Intris coton very practical. Anstituage, unsu

$\mathbf{R}^{\text {OSEPS COMPLETE }}$ CRACTICAL MACHIN HENRY CAREY BAIRD \& CO.,

Pond's Tools.
engine latthes, planers, drilles, \&o
$\mathbf{M}_{\text {makine }}^{\text {ACHY OF MPR }}$
 D. LANGELLSASTHMA \& CAJARRH REMEDY

 121 Chambers \& 103 GEade Sts., New York City.

WHTPPLE'S
Patent Door Knob.

REVERSIBLE
FOTGTRING BNGTM
 WANTED Men io traver andoding god id

0

1 Safery hoisti a

R OSE'S COMPLETE PRACTICAL MACHIN
 HENRY CAREY BARD \& CO.

In Reription, with dimensilons, working drawinge, and

$\mathrm{R}_{\text {IST, }}^{\text {OSE'S COMPLETE PRACTICAL MACHIN- }}$
 Philadelpal
 Nem
STEAM ENGINES FOR SALE.

PATENT SCROLL SAWS.

BEAN'S FRICTION CLUTCH, The Best on the Globe No breakage of gear or Machinery. N
well
SAFET
D.

New Haven. Con

Wood-Working Machinery,

The dnion iron mills, Pitroourgh, Pa.

T HE CENTENNTAL INTERNATIONAL EX

(OBPROLLED

The fact that this shafting has 35 per cent greate

CENTENNIAL MLLLS. Harrison's Standard Flouring and Grinding Mills
 markert and others are thyted to examine their pecu-
uarities.
uall on or Por 5a. Sec. E. No. \&., Machnery Hall. Ph

$\mathrm{R}_{\text {IST, }}^{\text {OSE'S COMPLETE }}$ CRACTICAL MACEIINHENRY CAREY BAIRD 8 CO.,

Philadelphis, and 79 Liberty St., New York.
Price 13ets and pamphlets on application

BLAKE'S PATENT Stone and Ore Breaker

[ESTABLISHED 1846.]
Mnna \& Co.'s Patent Oficices.
The Oldest Agency for Soliciting Patente in the

THIRTY YEARS' EXPERIENCR.

 MORE PATEENTS have been secured through thisagency, at home and abroad, than through any other in the world
They employ as their assistants a corps of the most experienced men as examiners, specification writers, and raitsmen that can be found, many of who SIXTY THOUSAND inventors have avalied them entions and procuring their patents.
MUNN \& CO.. in connection with the publication of the SCIENTIFIC AMERICAN, continue to examine inVentions, confer with inventors, prepare drawngs, ape-
ciflcations, and assignments, attend to fling applications In the Patent offlce, paying the government fees, and watcheach case step by step while pending before the exminer. This is done through their branch offlce, corner and 7th streets, Washington. They also prepare an file cas eats, procure design patents, trademarks, and re-
lesues, attend to rejected cases (prepared by the invento or other attorneys), procure copyrights, attend to tnter-
ferences, give written opinfons on matters of infringe ment, furnish coples of patents, and, in fact, attend t every branch of
A special notice is made in the SCIENTIFIC AMERIAN of all inventions patented through this agency, with ten sold, in part or whole, to persons attracted to the in vention by such notice.
Patents obtained in Canada, England, France,Belgium, Colonies, Rusia, all other countries where granted, at prices greatly reduced from former rates. Send for pamphlet pertaining specially to foreignpatente, which states the
or each country

Copies of Patents.
Persons desiring any patent 1ssued from 1838 to November 26, 1867, can be supplied with offlial coples at readrawings and length of apectications
Any patent lisued since November 27, 1887, at whe me the Patent Offlce commenced printing the drawinge ance 81.
A copy of the claims of any patent isaued aince 1888 wil be furnished for 81
When ordering coples, please to remit for the same a and date of patent.
A pamphlet containing the laws and full directions for obtaining United States patents sent free. Δ hand
somely bound Reference Book, gilt edges, contains 142 pages and many engravings and tables important to every patentee and mechanc, ana is a useful handibook of re Address MONN \& CO.
brasgoi
Stion, D. C

Cos-Coruer \mathbf{F} and 7 th Row, N. $\mathbf{Y}_{\text {. }}$.

ROCK-DRILLING MACHINES A IR COM ${ }^{\text {AND }} \mathbf{P}$ RSSORS Send tor Pampheticigh rock prichur, Moise

TheStandard-Best Stock-Finest Finish D. ARTHUR BROWN \& CO. Fisherville, N.H
 and sawing stone. J. DICKINSON, 64 Nassaul St., N.Y. Brayton Reaay Motor.
 Penna. Ready Motor Co., 132 N. 3d St, Philladelpha,', Pa Working Models And Rypermental Machnoer Metal or wod made Compressed air motive power.-Fo

Nillill II IIII!

As a rule, it pays best to advertise what one has to sell
or wishes to purchase, in papers having the largest cir or wishes to purchase, in papers having the largest cir in the article. Partles having Manufacturing Establish Construselin orlease, or who wish Estimates made 1 Heating Apparatus, Steam Engines, Bollers, Wood an Iron Working Machinery, Agricultural Implements, or that it pays to advertise in the SCIENTIFIC AMERI CAN.
The value of the SCIENTIFIC AMERICAN as an ad vertising medlum cannot be over-estimated. It goe
into all the machine and workshops in the country, an is taken at the princtpal libraries and reading rooms he United States and Europe
The SCIENTIFIC AMERICAN and SCIENTIFIC han all other papers of their kind a in the world combined; and at no period since the commencement of the
publication of these papers has the weekly circulatio been as large as at the present time. 47,500 an issue of the SCIENTIFIC AMERICAN CAN SUPPLEMENT, $\mathbf{1 5 , 0 0 0}$, making the COMbR circulation, 62,500 every week.
If anything is wanted in the mechan
for it in the SCIENTIFIC AMERICAN
If one has a patent or machinery to sell, advertise in If any one is exhtbitican.
Trany one is exhibiting at the Centennial, it will pay For rates, see the first column of the last page of this

The Supplement.

Next to the SCIENTIFIC AMERICAN, the SCIENculation of any paper of its class published. The SUPPLEMENT :s a distinct pubilication from the SCIEN han ameng the subscribers of the regular edition Terms for advertising are very low, as follows:
Back Page, tinted cover....35c. a line \}ACH $\left.\begin{array}{l}\text { Back Page, tinted cover....35c. a line } \\ \text { Inside page25.a line }\end{array}\right\}$ Insextion. Discount for large space
Address the publishers,

Munn \& Co.,
$3 y$ Park Row, New Yort
Stone Channeling Quarrying Machine, Lathes, Planers, Shapers, Drills Biralor Rumie, ти"

 Price of Stationary Engines:
 H. B. BIGEI,OW \& CO New Haven, Conn.
RACING BOAT STOCK.
SPANISH \& WHITE CEDAR. Extralenged. BER and VENEERS, MAHOGANY, SATINWOOD ROSEWOOD, WALNUT, \&

促
Greo. W. Read \& Co.,
Water Theels.

WARDWELL PATENT,
FOR CUTTIING STONE INTO VARIOUS SIZE AND DIMENSIONS IN ALL KINDS OF QTEAM STONE CUTTER CO., RUTLAND, VT. Anuree Machines at Philadelphia Exhibition
Machinery Hall. NON-COMBUSTIDLE STEAM BOILER \& PIPI

NITH GAIE SPACET地
 SCHLENKER'S
 HOWARD IRON WORKS HOWARD IRON WURKS,

$R_{\text {OGERS' }}^{\text {OGANNATE }}$ OF SODA BOILE

 Es Send Jor book. on Botler Incrustation. Madison, Ind.Portland and Keene's Cement.

DROP PRESSES
MIDARETOWN, CONN.

MUNN \& CO.
 Steam PumpWorks Established 1826. HARLES B. HARDICK, BROOKLYN, Ner.

The Tanite Co.,
STROUDSBURG, PA. EMERY WHEELS\& GRINDERS
Machinists' Tools.

PORTLAND CEMENT

Boandids patent universal bccis B

DAMPER
REGULATORS BJS GANDLEVER MURRILL \& KEIZER, 44 Holliday St., Bal HARTFORD

STEAM BOILER
 Inspection \& Insurance COMPANY
 W. B. Fradminl, V. Pres't. J. M. ALLAT, Pres't

 J. B. PITRRCE, Sec'J.Mill FurnishingWorks

R10 \%)

SCIENTIFIC AMERICAN, FOR 1876.
the most popular scientific paper in the world.

THIRTY-FIRST YEAR.
VOLUME XXXV.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN beg to announce that on the first day of July B78, a new volume commenced. It will continue to be the aim of the publishers to render the conents of the new volume more attractive and use To the Mechanic and Man
facturer No person engaged in any of the mechanical pur IEIC American. Every number contains from ix to ten engravings of new machines and inven Hons which cannot be found in any other publica

The SCIENTIFIC AMERICAN is devoted to the nterests of Popular Science, the Mechanic Arts, Manufactures, 1 aventions, Ag, able and instructive not only in the Worksho nd Manufactory, but also in the Household, the ibrary, and the Reading Room. Each volume contains hundreds of Notes, Receipts, and Sugges tions and Advice, by Practical Writers, for Work ing Men and Emples TERMS OF SUBSCRIPTION - POSTAGE PAID BY US.
One copy Scientiflc American, one year ... $\$ 320$ One copy Scientflic American, six months. 1.60
One copy Scientiflc American,three months 1.00 One copy Scientiflc A merican,three months
One copy Scientific American and one copy ne copy Scientific American and one copy
for one year, post-paid..
7.00

The Scientific American Supplement A weekly paper, uniform in size with the ScIEN contains working drawings of engineering works, and elaborate treatises on every branch of Science and Mechanics, by eminent writers, at home and abroad. An illustrated cover protects the handmely printed sheets. Price, $\$ 5.00$ per annum Remit co postal 10 cents.
Remit by postal order, draft, or express. Address lateters and mat Post Office or

MUNN \& CO.,
37 PARK ROW, NEW YORK.
THE "Scientific American" is printed with
CHAS.ENEU JOHNSON ©O, INK. Tenth and
Lombard Stis., Philadelpha, and 59 Gold St." New York

