
a WeEkly Journal 0F Practical information, art, science, mechanics, Chemistry, and manufactures.

IMPROVED HAND FIRE ENGINE AND HOSE CARRIAGE
In the accompanying engravings we illustrate an improved hand fire engine and hose carriage combined, which has been
leading hose couplings, two fire buckets, oil can, etc. The complete machine, in readiness for the application of lead ing hose, is so
manufactory.
The owner of the patent is A. M. Hall, Malden, Mass. long and well known throughout the country ; and the ma nufacturers are S. C. Forsaith \& Co., Manchester, N. H., at whose works the machine can be seen and practically teste
water and vinegar upon it, when the well known odor of water and vinegar upon it, when the well known odor of
sulphuretted hydrogen, resembling rotten eggs, will be per ceived if any sulphuret of lime is present
especially constructed with a view to meeting the requirements of towns and villages, and isolated factories which do not afford the facilities of steam or the advantages to be derived from a system of waterworks. Hand engines, as usually constructed, require a large gang of men to operate them, making them comparatively useless in localities where 40 to 50 men cannot be assembled The a mont's notice. with represented, we are informed, can be operated by from two to fourteen men, according to the amount of water and the distance the stream has to be thrown. Two mencan readily draw it over all common grades. At present the manufacturers are build ing one size only the entire equipment weighing only 500 lbs., the only 500 having hose reel 800 feet of hose
In readiness for fire, the engine is always mounted on the carriage, as shown in Fig. 1, while Fig. 2 shows the engine as detached from the hose car.iage, with leading hose run out. Upon an alarm of fire being given, the first man or two at the engine house starts for the scene of action with the machine. Upon ar-

Plateau's Soap Bubble Solution. Terquem publishes the following improved process for
making a solution suitable for Plateau's experiments with aking a solution suitable for Plateau's experiments with hin films, soap bubbles, etc. : Marseilles soap is shaved up into thin strips and placed in the sun or on a stove until perfect ly dry. It is then pu into a bottle with ex actly 80 per cent alco hol (specific gravity 0.865) until saturated at 60° Fah., when the solution will mark 74 on the centesimal al coholometer and have the density of 0.880 The solution must be made cold, for when hot the alcohol wil dissolve a large quan tity of soap and the liquid will become so lid on cooling. A mix ture of glycerin and water is made so as to stand at $17 \cdot 1^{\circ}$ Baumé or have a density of 1.35 at 68° Fah., whic corresponds to equa parts of each when the glycerin is mos concentrated. It is well to heat the bottle containing this mix ture in a water bath To prepare the fina To prepare the fina solution, take 100 part by volume of the d luted glycerin and 25 parts of the alcoholi soap solution; the mix ture frequently be comes turbid because the commercial glyce rin contains gypsum and lime. It is boiled to expel the alcohol, disconnected from the carriage or hose reel by simply turn- at any time. Letters of inquiry or orders should be ad- when the temperature will rise above $21 \varepsilon^{\circ}$ Fah. It is now ing three clamp fingers, which drop into loops, at A. Two dressed to either of the above men then lift the engine from the carriage, it weighing alone only 325 lbs., by the handles, B, setting it upon its own ways, C, as shown in Fig. 2, leaving the hose carriage ready to unreel the hose. The hose being alwar coupled to the engine, no time is lost, as the first sweep of

Mineral Wool.---Curious Chemical Change. The name of mineral wool has been given to a fibrou rm of blast form when to a fibrous formed. This filtration is difficult because at first it run form of blast furnace slag formed by a jet of steam blown \quad milky through the filter. It is best to filter through a funthe brakes, after the suction, D, is dropped into the water, starts the stream. The en gine is so light that it can be lifted and set over a well, cistern, or reservoir. It really needs no priming, although a priming bucket is provided at E, leading by a stopcock into the pipe running from the suc tion to the cylinder. This would provead vantageous should the valves, through non use, become dry. The engine has, of course, two cylinders, the diameter of each being 4 inches, the throw being 6 inches, thus giving a powerful stroke, the brakes mov ing through a circle of 2 feet 9 inches.
Both air chamber and water chamber are copper, and the valves are composition. The hind wheels are 36 inches high, the forward ones being 32 inches, and the lat ter swing under the reel, allowing the machine to be turned in its own length. Twelve feet of $2 \frac{1}{2}$ inch suction hose are provided, with which are used $1 \frac{1}{2}$ inch leading hose with half inch nozzle.
We are informed that with fourteen men the machine has thrown a half inch stream 156 feet horizontally, drawing water perpendicularly 12 feet, and discharg. ing through 100 feet of hose. This range of stream is, as will be seen, sufficient to cover any ordinary factory, warehouse, or dwelling, enabling fires on roofs to be extinguished by the machine stationed on the ground out side.

The makers furnish with the apparatus 12 feet of suction hose, brass strainer, draw rope, spanners for suction and
coupled to the engine, no time is lost, as the first sweep of through it while in a liquid state. Professor Wolpert of nel with a tuft of cotton in the neck, as the cotton can be
 pushed in loosely or tiphtly to can b pushed in loosely or tightly to regulate
the flow of the liquid. Soap bubbles which are not more than four inches in diameter will keep for an hour if laid on a small tripod under a bell jar.-Poggen dorff's Annalen.

Fireproof Dress.

Mr. Oestberg, a Swede, has been conduct ing some sensational experiments in various parts of the Continent with his fireproo suit. This is made in two layers, the inner one of india rubber, the outer of English leather, the head being protected by a hel met resembling that worn by divers. At the girdle is fixed a piece of hose, which serves both for air and water. The air pipe fed from two blowers, is placed inside the water pipe, and brings the air, after being cooled by the surrounding water, into the inner part of the dress. The air inflates the costume, passing away through the two small openings made for eye pieces. The current of air not only keeps the inclosed Kaiserslantern says that it should only be employed with body cool, but drives smoke and flame away from the eyes great caution in architecture for filling under floors and At the back the water pipe divides, one branch serving a wainscoting, etc., for this slag at present always contains sulphide of calcium, which is converted, by the action of the carbonic acid in the air and the water which reaches it when the floors are scrubbed, into carbonate of lime and sulphuretted hydrogen. The latter, as we know, is a gas which is both unpleasant and injurious to health. Before using this an extinguisher, the other passing into the outer coating of the dress, the stream being distributed over the whole oute surface. With the apparatus on, the experimenter stood in he middle of a pile of burning shavings and logs without king the least harm. If a continued use of this withou slag it should be tested for sulphide of calcium by pouring \mid tion allowed to cool, and then poured into a graduated measure and enough water added to make it equal to 100 volumes. It is filtered several times to remove the oleate of lime

Srientific csmerican.

HITABLIBHED 1846

MUNN \& CO., Editors and Proprietors.
 pUbliseme wheriy at
 NO. 37 PARK ROW, NEW YORK.

O. D. MONN.

BEACH.
TERMS FOR THE SCIENTIFIC AMERICAN one copy, one year, postage included...
ren copies, one year, eact each, postage included.
The postage is payable in advance by the publishers, and the subs oriber then recelves the paper free of charge.
Note.-Persons subscribing will please to give their full names, and Post
office and State address, plainly written. In case of changing residence office and State address, platnly written. In case of changing residence state former address, as well as give
Scientific American Supplement.
Scientific American Supplement.
from the Scientifio American, but
and pubilshed simultaneously with the regular edition.
TERMS.
One year by mall..
Scientific Ameri
Sarentricic A
SIngle Coptes
The safest way to remit is by draft, postal order, or registered letter. 10 Address MUNN \& Co., 37 Park Row, N. F
\qquad
VOLUME XXXV., No. 9. [New Series.] Thirty-first Year.
NEW YORK, SATURDAY, AUGUST 26, 1876.

THE SCIENTIFIC AMERICAN SUPPLEMENT. Vol. II., No. 3 5.
For the Week ending August 26, 1876 . TABLE OF CONTENTS.

1. THE international exhibition of 1876, with 37 figures.-Ex hibits of the Hartford Boiler Inspection Company, 10 figures. - Valuable Information about Boilers.-Needle Machinery at the Exhibition,
figures, -Williamson's Hoist Machinery 1 figure, -Bliss and Williams iggures. - Williamson's Hoist Machinery, 1 figure.-Bliss and Williams
Exhibit of Power Presses, 6 cngravings.-Locomotives at the Exhibition 18 figures, with Table of all Principal Dimensions of all Locomotive Exhibited.
2. engineering and mechanics. With 6 engravings.--The Railway Tunnel under English Channel, 1 engraving of the Shaft.-Railway Brakes.-Taking Up Water without Stopping.-Grattan's Pneumatic Telegraph, 2 engravings.-Fireproof Towns.- Pumping Exhaust Steam
Back to Boiler.-Ice Skating in Summer.-The Glaciarium, London.-Ice-Making Machine of the London Ice-Skating Rink, page engraving -Loan Collection of Scientific Instruments.
III. TECHNOLOGY, ETC.-Industrial Uses of Aluminium.-Process fo Photo-Chromic Prints.-25 New Dyeing Recipes-Protection of Steam Reds.
IV. ELECTRICITY, LIGHT. HEAT, ETC. - Lightning Conductors.Dound Tleneter, 3 eng. Clamo tery
V. NATURAL HISTORY.-The Ocean's Bottom, 4 engravings.-GlobigerIna, Orbulina, Rhabdosphere.-Functions of Cerebrum.-The World'
Alphabets, 5 engravings.-How Plants Feed.-Guarana.-Roscoelte Alphabets, sent. VI. MISCELLANEOUS.-Soclety of Antiqu
fessor Young.-The Satellite of Venus.

The scientific American Supplement

MUNN \& CO., Publishers,

PHYSICAL MAN IN AMERICA

From time to time every great mercantile or manufactur ing firm slackens the work of making and selling to review its position and possessions: as the phrase runs, to take an account of stock. Just now the American people are similarly engaged in taking stock.
We have had a hundred years of general prosperity, a hundred years of rapid growth in numbers, wealth, and power: and very properly we celebrate our Centennial year in reviewing the results of the years that have gone, in trying to learn our relative standing among the nations. Not only in the great sample show of our natural and industrial resources at Philadelphia, but everywhere throughout the land, are manifestations of the same laudable desire to dis cover just what we are worth as a nation, what the past has done for us, and what the prospect is for the future.

There is danger however that, with our absorbing interes in the things we have invented, discovered, and made, in our mental and industrial achievements, we may forget the more important item of national stability, what we are: in other
words, the character and conditions of our physical manhood. words, the character and conditions of our physical manhood.
How do we compare bodily with the citizens of more homogenious nations? How big are we, on the average: what is our condition as to health and disease: what is our working force, and how long does it hold out?
Questions like these are especially pertinent at this time for what our country shall be during the coming centuries depends far more upon the physical character of the people than upon the things they have or the machines they use It is fortunate that the material for such studies of physi cal man in America are ready at hand, thanks to the excel tent use made by the Provost Marshal General's bureau of the records of examinations for military service during the late war, an elaborate digest of which has just been completed by Dr. J. H. Baxter, late chief medical officer of that
bureau, and published by the United States Government. bureau, and published by the United States Government
The records cover the physical examinations of more than half a million men, furnishing an amount of data largely exceeding in extent any of a similar nature ever before collected and published. And, as Dr. Baxter justly observes, the value of this enormous mass of statistical matter is hightened by the circumstances that it does not relate to soldiers already in the field, picked men in no wise representing the masses, but to the people: the men engaged in every occupation, professional men, and men of letters traders and business men of every grade,laborers skilled and unskilled, the rich and the poor, the robust and the crippled: in short, to all the citizens of the country, whether of native or foreign birth.
During the first two years of the war, the armies were re cruited by volunteer enlistments, under the control of the State authorities. This method proving inadequate, Congress passed an act, in the spring of 1863, creating a bureau of the war department to be known as the Provost Marshal General's, and to have charge of the recruitment of the armies, by enlistment or by draft as might be necessary. As a preliminary to the latter method, an enrolment of all persons liable to perform military service had to be made; and in order that none but able-bodied men should be put in the field, a thorough and systematic medical examination of all drafted men and volunteers was necessary. Four drafts were made, the whole furnishing records of the examination of 605,045 men, of whom 155,730 were exempted, or a ratio of $257 \% 39$ per thousand. During the same period there wer examined 225,639 volunteers and 79,968 substitutes. the former 50,008 , or a ratio of $221 \cdot 63$ per thousand, and of the latter 21,125 , or a ratio of $264 \cdot 17$ per thousand, were re jected.
Of these and other records, covering the examination of over a million men, nearly half were found more or less in complete and were thrown out ; but as those which could be used seemed to be fair representatives of all, the omission abridged the work rather than detracted from its value. The records made use of showed for each of the subjects of ex amination his age, nativity, residence, occupation, hight complexion, color of eyes and hair, girth of chest at inspira tion and at expiration, social condition (married or single), olor, general physical constitution and condition, distin guishing natural or accidental mark if any, in case of ac eptance, and specification of disease or disability in case of rejection. The scope of the final report is in the main the comparison of each of these elementary conditions with others, and a consideration of their relation to disease. The tables in which nativity is an element of the comparison show the physical condition of the foreign-born citizens of various nativities in relation to each other, and to native Americans, both white and colored.
The first fifteen tables, the anthropological series, treat o physical qualities without relation to disease ; the remain ing seven are pathological, treating of disease and its rela tion to the physical qualities of man, to occupation, and to locality. To facilitate the interpretation of the latter series of charts have been prepared, presenting to the eye th more interesting results deduced from the tables: also number of maps showing by gradations of color the preva lence of disqualifying diseases together and singly, by con gressional districts. In the letter press, the reviews of the tables call attention to what is most interesting and signifi cant of the lessons they teach, and furnish an amount of in formation with regard to American manhood, physically con sidered, the relative healthfulness of different parts of the Northern States, the relation of health to employment, and so on, that is truly wonderful
Another exceedingly valuable portion of the work is the of examining surgeons. In these is given, with othe report
esting matter, a connected and generally graphic account of each congressional district by a resident physician, covering its physical description, its prevalent diseases and thei modes of life and occupations, the fitness of the different modes of life and occupations, the fitness of the different
classes and nationalities for military service, and so on. classes and nationalities for military service, and so on.
From these, in connection with the tables and colored charts, it is our purpose to draw much curious and valuable infor mation for the entertainment of our readers : to sum up, so to speak, our physical assets and liabilities as a nation.

SUMMER SCIENCE.

We have received a periodical bearing the name "Appa lachia," a rather mystifying title until one peruses the pages sufficiently to learn that the magazine is intended to be the report of results accomplished, plans proposed, and infor mation gathered by the Appalachian Mountain Club, the object of which association is the thorough geographical geological, topographical, zoölogical, and botanical study of he mountains of New England and adjacent regions. The required knowledge is to be obtained by systematic explora tion conducted by the members individually; and one cardi nal aim and object is the publication at some future time of ' a detailed and accurate map of the White Mountains, upon large scale and in the very best style of workmanship."
It seems to us that those who have organized this club deserve credit for a very sensible idea, and one that merits to be widely imitated. Camp life in the summer, as witness the throngs which yearly visit the Adirondack region in this State, is extremely fascinating, and generally a grand restore of impaired health. Beside it offers to the hunter and fisherman the best opportunities for sport. Now a club with the objects above stated combines all the benefits of outdoor life, besides placing before its members a definite and useful aim, so that each individual mingles with his holiday relaxa tion work which, from its very novelty and variety, ceases to be labor, and yet is of sufficient importance to stimulate to be labor, and yet is of sufficient importance to stimulate
the best endeavors. We cannot imagine anything more enthe best endeavors. We cannot imagine anything more en
ticing to the scientific student than a summer spent with ticing to the scientific student than a summer spent with
such a club as the Appalachian. If his tastes incline to natural history, he has only to read Professor Sterry Hunt's admirable letter of instruction to know, as Faraday ex pressed it, just " what to look for." There are floral material to collect, limits of altitude of trees, plants, and animals to be noted, nature and distribution of rocks to be observed, rare and remarkable vegetable productions to search for,and so on through a long category. Does he desire a summer of practical surveying, Professor Hitchcock tells just what is to be done and how to go about it, gives a list of points to be determined, and even describes the needful instruments. The artist is offered an enchanting sketching tour, and Pro fessor Fay explains how the knight of the brush and pencil can make himself scientifically useful. Professor Pourtales tells where original explorations are needed, and how they are to be conducted: lastly, Professor W. G. Nowell, for he benefit of those who do not care to be pioneers, suggests where paths may be made, record bottles placed, points of view to be cleared, and other improvements accomplished, which will facilitate the general work. It is original in vestigation conducted under the pleasantest conditions, and certainly well calculated to give those who undertake it a zest for discovery which may stimulate them to higher Bs.
Beside, the task projected has a wider utility than is in olved in its immediate result. There is a lamentable igno rance all over this country regarding our own territory, an ignorance which across the Atlantic becomes surprisingly ense, even among people otherwise highly educated. -u English contemporaries constantly quote American locali ties incorrectly; and to the minds of continental writers, ou cities, counties, and States seem inextricably confused. In geography, as in all sciences, true knowledge has itsfounda tion in details; and where those are clearly and accurately determined, we may look for generalizations based thereo to be equally correct. In the United States, the youth of the nation, and the fact that there are still portions of our immense territory wholly unexplored, are the obvious rea sons why general information has been compiled without the substantial basis we have indicated; and many year will elapse before we shall have that intimate knowledge of ur land which the marvelously minute topographical maps f Sweden, exhibited at the Centennial Exposition, prove hat the Swedes have of theirs. Still we know of no bette means of securing such useful information than by the abors of scientific students, associated as in the presen club, which we trust may be but the precursor of others formed in other parts of the country.

ARTIFICIAL GUANO

The enormous value of the guano deposits of the Chincho and Lobos Islands naturally gave rise to an early and eager search for similar stores of agricultural wealth in other local ities. And seeing that sea fowl were not less numerous and vo racious on uninhabited islands the world over, there seemed to be no reason why the search might not be successful. But it soon became clear that climate had much to do in the matter. Only in rainless regions where the slowly accumu lating layers of excrement, fish bones, dead fowls, and so on could remain undisturbed and undissolved was it possi ble for true guano to accumulate. The search ior it, how ever, was not without good results On many other isiands especially in the equatorial regions of the Pacific, there were found extensive beds of rock, which differed from the usual coral rock in that it contained a large percentage of phosphate of lime, the mineral base of Peruvian guano At first it was supposed that, by some mysterious chemistry
of nature, the coral carbonate had been changed to phosphate of lime; but subsequent researches proved the phosphatic rocks to have had their origin in the air, not under water. They were simply the remains of what in a more arid climate would have been regular guano beds, their organic m :tter having been dissolved and washed away by rain.
To convert these phosphatic deposits into commercial fertilizers, it was simply necessary to restore the organic elements which had originally accompanied them, for which purpose nothing seemed so appropriate as the refuse of fish oil factories. All along our northern coast, enormous quantities of menhaden were annually taken for their oil ; and the compressed fiber and bone remaining after the extraction of the oil afforded a vast quantity of nitrogenous matter, similar to that produced in the digestive organs of fish-eating sea fowl. The company which had undertaken to utilize the phosphatic deposits of the Pacific islands set up their works at Wood's Hole, Mass., at the heart of the menhaden fishery, and there the fish of the Atlantic were made to supply the wasted elements originally drawn from the fish of the Pacific.
A model of these works is shown in the Government Building, at Philadelphia ; and in the company's special pavilion are models of their other works, with a full exhibit of the processes employed, the materials used, and the products obtained.
The exhaustion of the richer beds of Pacific phosphates (and only the richer would pay for transportation) led to a search for like deposits nearer home, resulting in the discovery of the extensive deposits of Great Swan Island, in the Caribbean Sea, about a hundred miles from the coast of Honduras. But this source was soon eclipsed in value and interest by the rich phosphatic deposits along the South Carolina coast. Though known for nearly a century, the fertilizing character of these beds was not detected until 1867, when Dr. Ravenal discovered that their characteristic nodules of supposed marl rock were really composed almost entirely of phosphate of lime, and immediately made arrangements for their collection and conversion into commexcial fertilizers, in the place of the Swan Island phosphates he had hitherto been using.
Previously, the interest attaching to these beds had been chiefly scientific, arising from the strange revelations of an cient life made by their fossil remains-revelations of a time long anterior to the historical period, when our familiar domestic animals, once supposed to have originated with man in Asia, horses, sheep, bulls, and hogs-were living here with animals peculiarly American, as certain deer, musk rats, beavers, hares, opossums, and the South American
tapir. tapir.
The phosphatic nodules in question are found along the water courses of the Sea Island region between Charleston and Savannah, the largest development occurring on Chisolin's Island, about midway between these two cities, at the junction of the rivers Coosaw and Bull. The island, about six miles long by two miles wide, is underlaid with strata of nodules varying in thickness from one to three feet. the diggings of the Pacific Guano Company, to whom the island belongs, the phosphatic stratum lies from two to five feet below the surface, and is about three feet thick. Nodules are also found in quantities in the beds of adjacent creeks. Properly treated, they yield an average of phos phoric acid equal to sixty per cent of phosphate of lime.
The Swan Island's phosphates are less rich, except in the deeper deposits, some of which yield as high as eighty per cent of lime phosphate.
In the conversion of these phosphatic rocks into soluble fertilizers, they are first dried and pulverized ; then, after being reinforced by the richly nitrogenous fish fiber, the whole is digested with sulphuric acid, producing an artificial guano analogous in nature and composition to the purest Peruvian guano, and equally efficient for the nutrition of growing crops.
By this industry, one of the most abundant and uneatable of our coast fishes, the menhaden, is made one of the most valuable. During the past year, upwards of twenty-six hundred men, with three hundred and forty-three vessels,
nine of them steamers, were employed in the nine of them steamers, were employed in the menhaden
fishery. The capital involved was nearly three million dollars, and over five hundred and sixty million fish were taken. Besides the $2,681,487$ gallons of oil obtained for commercial purposes, these fish yielded over fifty thousand tuns of compressed fiber and bone, carrying more than seven and a half million pounds of ammonia in the best possible organic form, the equivalent of 26,000 tuns of Chincha Island guano, and over $1,000,000 \mathrm{lbs}$. of phosphate of lime, readily convertible into agricultural products.

THE STRUCTURE AND AGE OF THE ROCKY MOUNTAINS From the Missouri river westward, the whole country gradually rises, at an average grade of barely ten feet to the mile, until about the meridian of $105^{\frac{1}{2}}{ }^{\circ} \mathrm{W}$. is reached, an then the Rocky Mountains rise abruptly from the plain.
Thence to somewhat beyond $108^{\circ} \mathrm{W}$. the country is traversed Thence to somewhat beyond $108^{\circ} \mathrm{W}$. the country is traversed
by numerous mountain ranges, separable into two series. by numerous mountain ranges, separable into two series.
The first series comprises two complex axes of elevation, the front or eastern and the Sangre de Christo, whose trend is from N. $10^{\circ} \mathrm{W}$. to $\mathrm{N} .30^{\circ} \mathrm{W}$. The second series is made up of the San Juan, Los Piños, La Plata, and San Miguel ranges, which have a trend of N. $30^{\circ} \mathrm{W}$. to N. $45^{\circ} \mathrm{W}$. Each sories shows a parallelism in its ranges, and the whole system terminates e
The eastern range, which consists of several closely packed parallel axes, and rises sharply from the plain, is composed
of metamorphic rocks, badly fissured by dykes of lava, and not unfrequently capped by lava overflows. The schists are much torn and faulted, and side throws of mineral veins are not uncommon. Along the median line of the axis, ex-
posed here and there by deep cuts, a compact granite, more posed here and there by deep cuts, a compact granite, more
or less syenitic, appears to prevail. The sedimentary rocks occur as "hog backs" along the eastern base, and curve round the southern terminations of the several axes.
The second range, provisionally named
The second range, provisionally named the Sangre de Christo by Dr. Stevenson-to whom (Report of Engineer Department, Wheeler Expedition, 1875) we are indebted for these particulars-is in the main almost parallel with the eastern range, but is much more complex in its structure. Its width is about twenty-five miles in the northern part, diminishing to twelve miles at Sangre de Christo Pass. With its extension, the Spanish range, it is, in Dr. Stephenson's opinion, but the southern portion of a magnificent group which once covered the whole region from East River to South Park. It remains for future explorations to solve the many problems which its complicated structure involves. In the main portion no rocks have been foundof later date than the carboniferous.
The third great axis is the San Juan, for the most part buried under a great mass of volcanic rocks, which almost conceal those of sedimentary origin. Wherever exposed, a marked unconformability is seen between the carboniferous and the overlying rocks. The older formations are inclined at a very high angle, while the cretaceous and (doubtfully) the triassic, which are conformable to each other, have a very small dip.
The next great axis toward the west is the one temed by Dr. Newberry the Los Piños, in part the divide between the Rio de los Piños and the Rio Piedra. The only rocks involved are the carboniferous and (probably) the Silurian. On each side of the range, which is not more than five or six miles wide, the cretaceous rocks are seen forming mesas and dipping only two or three degrees.
The next axis, the La Plata (Newberry) forms in part the divide between the Rio de la Plata and Rio de los Animas. The course of the uplift is almost northwest, and the dip is very gentle where the strata have not been locally disturbed by lava dykes. The only rocks involved are the palæozoic, against which the triassic and the cretaceous abut at a slight angle.
The San Miguel axis is still farther westward, and, like the La Plata, involves only paiæozoic rocks, those of mesozoic times forming mesas around it. Beyond, to the westward, xtends a cretaceous plateau separating the Rocky MounFrom the Great Basin
From his admittedly partial explorations, Dr. Stevenson finds it sufficiently evident that the Rocky Mountains are not
the result of a single grand upheaval, and that the several axes are not wholly synchronous in origin. The general diminution of disturbance westward, as shown by the diminishing steepness of dip, together with the general trend of the several axes, shows that the disturbing force was propagated from the east or east of northeast.

The relations of the strata of the several periods make it easy to determine the era and the comparative energy of the uccessive upheavals. The first was at the close of the car boniferous period. The Silurian and the carboniferous are their deposition, there must have been either comparative quiet or continued subsidence. The line of continuous action thereafter seems to have been that now occupied by the eastern range. In this region there was a subsidence dur-
ing the trias, which but slightly, if at all, affected the inteing the
rior
The
The second epoch of elevation began toward the close of the triassic, and was marked by an exceedingly energetic action along the eastern line, accompanied by a grand erup tion of igneous rocks. The conformability of the trias and of cretaceous in the San Juan area shows that the energy from the main line of disturbance. After the second upheaval there was an extensive subsidence, the record of which appears in the prevalence of cretaceous deposits over th hole Rocky Mountain area
The third epoch of elevation followed hard upon the cre aceous period. The action is generally violent, in some parts terrific, resulting in a perfect maze of cross faulting. Everywhere north and east of the Rio Grande, the volcanic disturbance was excessive, a vast area being buried under a
sheet of lava from two thousand to three thousand feet thick sheet of lava from two thousand to three thousand feet thick;
and enormous dykes, stretching from the Sangre de Christ and enormous dykes, stretching from the Sangre de Chastward far out into the plain, remain to attest the widespread effects of the disturbance.
During the tertiary age, another but much slighter elevation took place, giving the rocks of that age a dip of five degrees. Of the four upheavals, the first and third were much the most general in their effects. The first was syn chronous wited.
complet

INCENDIARY LOCOMOTIVES

Conflagrations produced by sparks and fire from locomo tives are by no means of unusual occurrence. It only necessary to observe after nightfall the fiery shower, with which every engine not supplied with proper spark arresting devices liberally besprinkles the track and its immeand hay ricks, to discover why wooden broyed, and in autumn to feel some wonderment that the adjacent fields of ripe grain or sun-dried prairie grass are not more frequently indled. It cannot be doubted that many a fire is ignited in kindled. It cannot be doubted that many a fire is ignited in
cities, as well as in country villages through which an ex-
press train rushes at fifty miles por hour, the unknown cause of which is the locomotive, scores of miles away before the fire breaks forth.
We are exceptionally patient people, however, and individually at least prefer suffering the loss of a burnt barn than to become involved in legal proceedings versus a huge and wealthy corporation. But on the other hand, immunity on the part of the railroads in this respect begets careless-
ness likewise on their part, notably in the provision of the devices, easily obtainable, which will prevent their locomotives being perambulating incendiaries. The consequence is an increase of the evil ; so that not only has a loser a private end to gain in seeking prompt redress from the railroad company, but he has a public duty to perform in enforcing his right. The railroad, it should be remembered, enjoys its privileges by the sufferance of the people, and it is conditioned not only to serve the public in certain ways but to exercise diligence not to work injury to the public. It is therefore responsible for its negligence; and generally it is incumbent on the railroad to show conclusively that the per son injured actively contributed by his individual neglect to effect the result, if it would save itself from being cast in damages. The tendency on the part of courts and juries is to hold all corporations with great strictness to their duties; and in this rigid enforcement of the law is found the safeguard of the people against the abnormal exactions which great controlling monopolies would otherwise too often be in position to demand.
The manner in which the law regards fires produced by locomotives is cogently stated in a decision recently reached by our highest tribunal, the Supreme Court of the United States. The case was that of R. M. Richardson vs. the Grand Trunk Railway Company of Canada. Certain buildings for freight purposes and for his individual benefit had, by Richardson, been erected, with the company's permission, on land owned by the railroad. These were destroyed by fire from a locomotive, and the action was brought to recover. In its opinion, the court said that the issue to be determined was whether the defendants had been guilty of negligence-that is, whether they had failed to exercise that caution and diligence which the circumstances demanded, and which prudent men ordinarily exercise. Hence the standard by which their conduct was to be measured was not the conduct of other railroad companies in the vicinity, certainly not their usual conduct. Besides, the degree of care which the law requires, in order to guard against injury to others, varies greatly according to the circumstances of the case. When the fire which caused the destruction to the plaintiffs' buildings occurred, it was a dry time, and there was a high wind. At such a time greater vigilance was demanded than might ordinarily be required. The usual practice of other companies in that section of the country sheds no light upon the duty of the defendants when running locomotives over long wooden bridges in near proximity to frame buildings where danger is more than commonly imminent. Evi dence was held admissible as tending to prove the possibility and a consequent probability that some locomotive caused the fire, and as tending to show a negligent habit of the officers and agents of the railroad company. It was further held that it made no difference that a large part of the property destroyed was wrongfully on the railway, the court sus taining the ruling in a case cited that the company in such case was bound to exercise ordinary care to avoid injury, even to a trespasser.

The Arrival of Professor Huxley

Professor i. uxley, the celebrated English scientist, has arrived in this country. He is at present traveling privatey, and will devote the greater part of his brief visit to the Centennial Exposition. It was not his intention to deliver any lectures here, but he bas lately reconsidered his determination, and has consented to give three discourses during the latter part of September, in this city. The topics are not yet announced, but this is immaterial, as there is sufficient curiosity to see an investigator, whose name and works are as familiar to us as to his own countrymen, to fill the largest hall New York possesses. Meanwhile, until our peolargest hall New York possesses. Meanwhile, until our peo-
ple shall have the promised opportunity of collectively greeting the eminent gentleman, we take the liveliest pleasure in extending to him,on the part of the scientific workers, theinventors, and the mechanics of this country, a most cordial and hearty welcome.

Preventive of Hydrophobia.

In a letter published in a recent number of Professor Gubler's Journal de Thérapeutique, another addition is made to the already formidable list of prophylactics against hy drophobia. Dr. Grzymala, of Krivoe Ozeroe, Podolie, reports that during the last ten years he has treated at least 100 cases-in human subjects as well as beasts-of bites by hydrophobic animals with the powdered leaves of xanthium spinosum, with success in every case except one, although cases of bites inflicted at the same time, bur is ways, had terminated in death. The drug is described as
possessing sudorific, sialagogue, and slightly diuretic propossessing sudorific, sialagogue, and slightly diuretic pro-
perties, but less pronounced than those of jaborandi. The perties, but less pronounced than those of jaborandi.
dose for an adult is 9 grains of dry powder of the leaves, repeated three times a day and continued during three weeks; to children under 12 years, half the quantity is given.

To Bleach Sponge.-Soak it well in dilute muriatic acid for twelve hours. Wash well with water, to remove the lime, then immerse it in a solution of hyposulphate of soda, to which dilute muriatic acid has been added a moment beand dry it it bleached sufficient y remove it, wash aga

BREECH-LOADING FIREARMS

It has been stated by Bayard Taylor and other travelers that a revolving pistol, with one barrel and a cylinder to be loaded in several chambers, is to be found in a collection of ancient armor, in Warwick Castle, England, and that an other, of similar design, is to be found among the relics exhibited in the Tower of London. But these remarkable curiosities can scarcely be considered to depreciate the value of the modern breech-loading rifle, the details of which have probably been the subject of as many patents as those of any other appliance. We publish herewith the first of a series of engravings of the many improvements effected during the last few years, which we extract from Mr. E. H. Knight's "American Mechanical Dictionary."*
The Martini gun, A, is the invention of a Swiss. The breech block is pivoted at its upper rear portion, being moved up and down by a lever at the rear of the trigger guard. The firing is by a spiral spring, which actuates a firing pin The cartridge shell extractor works on a pivot below and behind, the barrel being operated by the descent of the front end of the breech block upon one arm of th bell crank lever.
The Chassepot gun, B, is the French arm, and is named after its inventor. I is what we term a bolt gun, an opening on the right hand of the chamber admit ting the insertion of the cartridge. The forward thrust of a knob drives the cartridge into the breech, and a partial rotation of the knob locks the breech piece. The firing is by a needle.
The Prussian needle gun, C , is also a bolt gun, having an inner bolt which forms the firing pin, a sleeve around it, and an outer cylinder, the parts are shown with the needle in its fired position. In preparing to reload, the rear knob is withdrawn, and the axial bolt retained by a catch which engages a projection, withdrawing the needle. The chamber is then unlocked by the knob and slid back, the cartridge inserted and driven into the breech by the chamber, which is locked by a partial rotation. The firing is done by releasing the needle bolt
In Maynard's rifle, D, the barrel is pivoted to the front end of the stock, and its rear end tips upwardly, exposing the chamber for the cartridge, when the barrel is tipped down against a solid breech piece and locked. The Maynard primer consists of pellets of fulminate placed at regular intervals between narrow strips of paper. This is coiled in a chamber in the lock plate, and is fed forward by a wheel operated by a hammer, so as to bring a pellet on top of the nipple at each discharge.
The Merrill gun, E, was constructed for a paper cartridge. The breech was closed by a sliding plug locked in place by a combination of levers. The charge was exploded by a copper cap, placed upon the nipple in the ordinary manner. The Spencer rifle, F, is both a magazine and a single breech-loader, seven cartridges being placed in a magazine in the butt, and being thrown forward to the chamber as required. The breech block is a sector pivoted beneath the level of the barrel, and retreating backward and downward to expose the rear of the bore for the insertion of the cartridge. The trigger guard forms the lever for moving the breech block.
The Laidley gun, G, has a breech block pivoted beneath the barrel and rotating backward and downward to open the ohamber. When in position for firing, is fastened by a locking brace wich is operated by a spring and vibrates on the same axis as the hammer. The breech block is unlocked by a cam and thrown back by a pawl attached to the locking brace and actuated by the hammer
The Westley-Richards gun, H, is an English arm, having a pivoted breech block whose front end is depressed by the action of a lever pivoted to the stock beneath the rear of the barrel.
The Snider gun, I, built at Enfield, England, is similar to our Springfield converted rifle, which we shall describe in a future issue. The breech block is hinged behind and above the barrel, the block throwing upward and forward, exposing a chamber behind. Into this the cartridge is dropped, pushed into the bore, the block brought down and locked by a latch in the rear. The firing pin passes obliquely through the block, and is struck by the ordinary hammer
The Berdan form of this type is shown at J, and has a reech block in two sections hinged together.
K is the Peabody gun, which has a falling breech block, hinged at the rear and depressed by the guard lever, whose short arm engages in a recess of the block and controls its movements. When the block is down, the cartridge is slipped into the bore, and the piece is fired by the fall of the hammer upon a firing pin sliding in a groove in the side of
the block. In opening to reload, the block drops u
The Roberts gun, L, has a breech block pivoled ar operated by a lever which atends backward at the the small of the stock ; the forward end of the breech block being depressed, the center of its motion and its abutment in firing being a concave solid brass centering on the exact prolongation of the axis of the barrel. The breech parts are four in number, articulated without pins or screws. The firing pin passes centrally through the breech block, and is driven forward on the center of the cartridge by a blow of the hammer.
Allen's gun, M, is double barreled, and the breech block is hinged at the side, swinging upwardly and laterally. It carries both firing pins, and is locked shut by a latch.
The first patent in the United States for a breech-loading firearm was to Thornton \& Hall, of North Yarmouth, Mass. May 21, 1811. This gun is represented at N in our engra-

BREECH-LOADING FIREARMS.

ving, and had a breech block, which was hinged on an axial pin at the rear, and tipped upwardly at front to expose the front end of the charge chamber. The flint lock and powder pan were attached to the vibrating breech block.
Sharps' rifle, 0, has the barrel rigidly attached to the stock, the rear being opened or closed by a vertically sliding breech block, which slides up and down in a mortise operated by the trigger guard, which is pivoted at the front end, or by a lever. The primer consists of small pellets of fulminate inclosed in a copper casing so as to be waterproof. These are placed in a pile in a hole in the lock plate, forced upward by a spiral spring, the upper one fed forward by a plunger, caught by the cup of the hammer, and carried down upon the nipple. The cartridge is in cloth, the end covered with tissue paper saturated with saltpeter, through which the fulminate will ignite the powder
Burnside's rifle, P, has the barrel attached to the stock, the breech piece being pivoted beneath the barrel, so as to wing downward and expose the chamber in the front end of the breech piece for the insertion of the cartridge. Other forms of breech-loading rifles will be illustrated in orthcoming issues of this journal.

To make a good organ pipe metal, take equal quantities of tin and lead, cast into sheets, and plane smooth.

Imitation Marble.

Carl Boschau says that if a statue, made of plaster of Paris or papier maché, be coated with thick white dammar arnish, and then dusted with pulverized glass, it will have when dry, the appearance of alabaster. If it be afterwards varnished a second time, and dusted with coarsely pulver zed white glass or mica (marienglas) and again dried, it will a a very successful imitation of Carrara marble, especially the marble veins be first traced on it with some delicate blue pigment. This method of preparation follows that of Nature, for alabaster consists of very small crystals of sul phate of lime, and Carrara marble of somewhat large rystals of carbonate of lime, which in reflected light glis ten like white sugar. This effect is obtained with perfec deception by the brilliant white glass in coarse powder.

An Oil Pipe Three Hundred Miles Long.
The Pennsylvania Transportation Company, of which Mr Henry Harley is president, has been chartered by the State of Pennsylvania for the purpose of transporting oil from the oil regions to the principal Atlantic seaboard cities. The plan proposed is to run the oil through a four inch pipe aid on the surface; the forcing powe will be 900 lbs. to the square inch; there are to be stations at distances of fifteen miles, at each end of which an engine o a 100 horse power will be erected to work a pump to continue the flow from poin to point. The company having decided upon the construction of the work, the president sought the services of Genera Herman Haupt. He pronounced the cheme, after a thorough examination to be entirely practicable, and is now acting as engineer-in-chief. In view of the enormous product of oil in this coun try- 30,000 barrels per day-and the ank it now holds among the leading ar icles of export, coupled with the exor bitant charges for railroad carriage from the wells to the seaboard, by the completion of the enterprise and its successful operation a complete revolution will be accomplished in the handling of this article. As a proof of how valua ble this traffic has been to the several railroads over which the oil has been borne, it is only necessary to say that up to the present time the railroad charge aggregate $\$ 79,000,000$. The minimum cost of transporting oil by rail is 50 cents per barrel, and the minimum cost by the pipe process is 16 cents. The average charge by rail is $\$ 1.25$.
The estimated cost of the entire work, including fixtures, etc., is $\$ 1,250,000$; and considering the difference in cost between this method and that by rail, upon the hypothesis that the company will discount at least 25 cents a barrel on rail rates, it will readily be seen that, with all the expenses of operating, the first year's earnings will pay the first cost of the work. The Pennsylvania Company is the parent company, but there is also the Baltimore Transportation Company, chartered by the State of Maryland, and some five other companies are expecting to unite. The first objective point or terminus will be Baltimore, as being the most feasible and direct route for the pipes. Following which other termin will be established in Philadelphia, New York, etc.

The pipes being laid on the surface, and there being no obstacle in the way of forcing the oil to any hight, the line will literally be an air line, and the dis tance from the oil regions to Baltimore is 300 miles. The oil will be distributed from the pipes into immense reservoirs, with refining establishments adjacent. Of course the whole railroad system will oppose it, for it is taking from them a traffic from the very nature of which there could be no competition; but the advantage to the oil producers, who will have the entire control, will be immense, and the advantages which will accrue from such facilities to this in
The feasibility the oil through pipes is concerned, has been fully estab ished by the present system in operation in the oil regions, where the aggregate length of the pipes conveying the oil from the several wells to the reservoirs is nearly 250 miles. -Boston Traveler.

Prizes for a New Bleaching Agent

A Vienna industrial league offers a silver medal to aniy one who will discover a method of bleaching every kind of silk perfectly white without the use of sulphur or other chemical injurious to silver. In embroidery and silver lace, where silk and silver are used together, the silver is blackened by the sulphur in the silk. A similar prize is offered for the most beautiful and solid domestic article for weight. ing light-colored silks.

IMPROVED AMALGAMATING APPARATUS.

The improved apparatus illustrated herewith is for separating gold from sand and other impurities by means of a suction blast. A represents a reciprocating screen, on which the gold-bearing sand is placed. The bottom of the screen is inclined in opposite direction to the perforated part, and conveys the material into a hopper, B, of the upright suc tion tube, C, from where it passes through an aperture, a into the lower part of the same to be acted upon directly by a suction blast from below, the blast being created by a suc tion fan, D. The air enters through the open bottom end of the suction tube, which is made with inclined steps, b, that produce the gradual widening of the tube toward the top end. These steps serve to throw the sand, dirt, or other substances that slide down at the side of the tube back into the current of air, to be acted upon and carried in upward direction. The heavier upward direction. The heavie gold particles drop down into a suit able receptacle below the bottom opening of the suction tube, while the lighter ones pass with the sand along the semicircular top part of the tube, and over the partition wall into the downward extending tube, $\mathrm{C}^{\boldsymbol{\rho}}$, that conveys the sand, in connection with a steeply inclined bottom, to a series of amalgamating pans, E , that are filled with quicksilver, and placed so closely together that the tratal width of the narrow spaces or intarstices between the pans is or interstices between the pans is equal to the width of the entrance opening of the suction tube. The gold-bearing sand is thus carried with considerable power through the spaces between the pans, the fine gold particles being absorbed by the passage in close proximity, and the affinity to the quicksilver.
A central tapering partition, $\mathrm{E}^{\boldsymbol{}}$, at the opposite side of the pans, divides the current and conveys the sand sidewise through the side ducts, F, to the center of the suction fan, from where the same is thrown by centrifugal power on a curved and tangential fluted pan, G, at the bottom of the fan casing. The remaining particles of gold are amalgamated in the fluted pan, and the light impurities thrown to the outside of the casing. Thus the gold particles are separated in their course through the apparatus, the heavier ones being dropped in the suction tube, while the lighter ones are amal gamated in the pans, and the remaining ones, that are mechanically carried along, in the fluted pan at the mouth of the fan casing.

This machine was patented through the Scientific Ameri can Patent Agency, July 4, 1876, by Mr. Thomas W. Irwin, of Port Madison, Wash. Ter.

NEW LAMPWICK TRIMMERS

Mr. John Bannihr, of Hempstead, N. Y. has pat ented (July 4, 1876) through the Scientific American Patent Agency, a novel improvement in lamp wick trimmers, which is represented in the accom. panying engraving.

The shear cutters, A, are contrived to cut alike and at the same time from both edges of the wick to the center, whereby the wick is trimmed better and more uniformly than when cut across from one edge to the other. The cutters, which are curved for trimming the wick in form for an oval burner, are extended down at the ends a suitable distance below the point of cutting, and pivoted together at both ends, B, and also to a supporting ring, C, that rests on the burner some distance below the top for a steadying support, and for a gage to govern the hight of the cutting above the top of the burner The levers for working the cutters are pivoted to the standard, E , mounted on the ring, C , and are connected to the cutters at the center between the pivots, B. The edges of the cutters are shaped in the form of two sides of a triangle, the apex of which is at the center of the cutters lengthwise, thus enabling them to shear-cut the wick from its edges to its center.

A NEW EGG HOLDER.

The annexed engraving represents a simple egg holder, devised by Mr. Henri Guilbeault, of New York city, and to him patented through the Scientific American Patent Agency, July 4, 1876. It consists of a cup, B, of suitable form, with a ring, D, and spring tongs, A. The parts are combined, as shown. in such manner that an egg placed in the cup may be securely held by bringing the ring down upon the egg by sliding a double button, C, which connects the jaws of the tongs, through slots made in them for that purpose. The egg is thus held while it is being eaten from the shell.

A New Chicago Rolling Mill.

The Joseph H. Brown Iron and Steel Company, of Chicago, are nearly ready to begin operations in their merchant mill. All finishing trains, except the 22 inch beam mill, are ready to operate, except making steam connections. The puddling and
heating furnaces are ready to work and the boilers in place heating furnaces are ready to work and the boilers in place.
The bar mill and 9 inch train are in position, as well as the top and bottom mill. They are building a blast furnace 18 feet by 80 feet. This will be, when completed, one of the most complete establishments in the West. It has six double puddling furnaces (Siemens) with a daily capacity of eight tuns each on double turn; two scrap furnaces (Siemens) with a capacity of 20 tuns each per day; and five Siemens' heating furnaces, 32 gas producers, a 22 inch beam mill to roll 90 feet long; 16 inch bar, with six stands of rolls; 9 inch guide 20 inch top and bottom mill; 20 inch muck train \cdot all these
hinks that this will soon tell on the main bar ; and in fact the pilots say its effect is already so marked that they can ake over the main bar any vessel drawing twenty feet of water. If this be the case, the work on the jetties has al ready accomplished much more for the South Pass than many years of laborious and expensive dredging have been able to do for the Southwest Pass.-Philadelphia Ledger.

The Resources of Animals.

Animals, even of the least important species, sometimes resort to shifts and expedients, to defend and support thei existence, so curious as to astonish even those observers who are most familiar with their habits. The ittle gossamer spider, having no wings, still finds its home in the upper air. Weaving a tiny kite of web and flying it aloft by unwind ing a thin kite string from its spin neret, it finally fastens the lowe end to a twig, and climbs fearlessly up the filament, till at last it sit ar above the earth and catche midges upon its floating raft in th air. This little forager has been found sailing in the air nearly a mile high by balloonists.
The male spider has usually a very poor show for liberty or even for life. Small and lean, weak and cowardly, a mere speck by the side of his big blushing sweetheart, she enerally catches him when he firs comes courting, spears him with her fierce mandibles, gnaws the qui vering flesh off his bones, and fling his polished skeleton into the sew r. She is heartless and ferociou -a coquette and a warrior. Wo man's rights are carried to an ex treme. The husband is not allowed o vote or to govern his own family Before his brood of 1,000 childre have climbed merrily upon their

IRVIN'S AMALGAMATING APPARATUS

 inch flues in each. They also have drawings for a complete and his bones bleach in the back yardBessemer plant.-Iron Age.

Purifying Carbon Disulphide.
Recent chemical investigations seem to have included the whole range of photographic materials, and, in addition to hose already named, we find our notes call attention to a mode of purifying the most useful material for dissolving india rubber-carbon disulphide. In the state most commonly presented, it possesses such an intensely fretid odor as to make its use unbearable ; the new process promises a product in a very pure condition. The method of purification consists in mixing fuming nitric acid with a sample of the disulphide distilled off palm oil, and then adding dis tilled water, filtering, and distilling between 50° and 60° A peculiar violet compound produced at one part of the pro

BANNIHR'S LAMPWICK TRIMMER.
cess has been traced to the iodine well known to be almost always contained in commercial nitric acid.

The Jetties.

The progress of work on the Mississippi River jetties has gone so far that Captain Eads was recently enabled to close up Grand Bayou, a channel that has heretofore drawn off about one third of the water of the South Pass. The closing of this bayou so increased the current through the Pass that in less than two days the channel was deepened more than a foot through the greatly increased scour. Captain Eads

GUILBEAULT'S EGG HOLDER

Then there is the hermit crab, the pugnacious crustacean that can seldom succeed in preserving its own life at all ex cept by finding the shell of some large snail or whelk to crawl into. Having a bulky and soft abdomen, it is pecu arly vulnerable to attack from predacious fishes and crabs and its only safety is in covering its salient extremity. I it finds an eligible snail shell empty, it immediately take oossession by backing its exposed body in and fastening the shell on by the posterior hooks, leaving its head and legs outside. Then it drags the shell around till it is outgrown when it seeks another. If it finds none unoccupied it fre quently kills a living snail, eats him, and unceremoniously takes possession of his house. Or it attacks a tenant crab the winner of the combat retaining the premises. The loss f an eye or a claw is by no means a mortal injury, or even a permanent crippling, as the mutilation heals, and the eye or limb reappears as good as ever. Speaking of crustaceans, did you ever see a long or soft-shell clam in his native wilds? Do you know what that exposed proboscis is which you call the neck? It is a double-acting muscula pump, with two pipes and valves, through one of which salt water is drawn and through the othe expelled. It drenches the gills, which retain as food any bit of nutriment that may float in, when the filtered water is passed out through the othe valve. And that dark lump in the clam, whic you have often rejected, madam, as the stomach, is not the receptacle of food at all, but merely an excellent enlarged liver, which epicures might, without torturing the humble bivalve, make into a paté de foie gras
Most animals that are in danger from predacious foes are of a natural tint, resembling the hues of the earth or trees upon which they live. Partridges, quails, and other sand and heath birds are brown, like their dwelling place, nd the color serves to conceal and protect them. Some but terflies and locusts are exactly the shape of the leaves of the ree upon which they cling, so that they are not visible in heir true character. Where a hundred have settled you annot see one, only the leaves clinging to the branches and waying in the wind. Not only the color of the leaves is imitated, but the venation, to the most minute particular and it is only when you strike the bush with a stick that th "leaves" rise and flutter away. Some of thes leaf insects, as they are called, change their colors with the season of the year-green in spring brighter in summer, and brown in autumn, like the true leaf. Even the imperfections of the leaves are mimicked-those characteristic mark ings and erasions of the leaf which result from the attacks of minute insects. The decay or dying leaves is so imitated that, as Mr. Wallace remarks "it is impossible to avoid thinking, at first sight, that the butterflies themselves have been attacked by real fungi."
In the turbulent brooks of Connecticut, and probably of other States, is found an ingenious lit tle insect, that the rural people know as a bundle bug, an inch or two long, which protects itself
from predacious fishes by gluing to his sides small sticks somewhat longer than his body, until he is encased in an ir regular woodencylinder-a jagged and clumsy boat in which he alternately floats and crawls. This carpenter worm leaves an orifice for his head and legs, and his artificial shell seems a thorough shield.
The medusa or jelly fish of our seacoast is well known to all sea bathers; and its phosphorescence often reveals its whereabouts to steamboat travelers. It is as large as a tea plate, flat, gelatinous, and translucent; with the convex portion forward, it pushes its way through the water as if it
were a small parasol-a white fringe a yard long, waving were a small parasol-a white fringe a yard long, waving backward from the edge, assisting the resemblance. This creature has hardly any life; it seems to have only one organ, which receives and ejects food, and its movemen through the water is by a series of convulsive jerks. Lift it out of the water and it drops through the fingers like thin jelly. But in its native element it has the power of sharply stinging with its fringe, from which it is called nettle fish This fringe, when microscopically examined, is found to be
filled with minute sacks, each of which contain a microfilled with minute sacks, each of which contain a micro-
scopic arrow ready to discharge. Friction bursts the cells and causes the discharge of myriads of arrows into any soft flesh that may be the canse of the disturbance. The harm is not great to any robust organism, but it must be sufficient to shock and paralyze some of the inferior fishes. Graphic.

Currespondente.

How to Straighten a Shaft.

We frequently receive letters from our subscribers detailing some experiment they have made, or some new wrinkl in the detail of manufacture, or concerning a novel device they have found to answer for some particular purpose; for all such communications our correspondents have our thanks.
Although the large number of such communications precludes the possibility of our answering or publishing all, yet we convert as many as possible to the benefit of our readers. We are sometimes surprised to observe how completely the information forwarded to us on a given subject will answer an inquiry made on the same subject by some other correspondent. Fọ example, A. F. writes: "You will do me a great favor if you will tell me how to straighten an
iron shaft, $2 \frac{1}{2}$ inches in diameter, that is slightly bent, and iron shaft, $2 \frac{1}{2}$ inches in diameter, that is slightly
will not work without binding in the bearings."
The same mail brought a letter from J. J. H., who writes

To the Editor of the Scientific American:

The following is a good way to straighten shafts that have been sprung by heat or otherwise. Lay the shaft on bearings at each end, with the arched side up, about 1 foot from the ground; then build a fire (wood will answer) under the part or parts to be straightened. When hot, chill the the top side, which is to be straightened, with water, which can be best done with a swab; continue the heating and chilling till the work is complete. Allow the heat to come back to the top side between each chilling, to quicken the process, and to ascertain when complete. After the shaft is hot, a very little fire will be required to continue the heat. I think that any kind or size of metal shafting can be straightened by this process. I made the experiment on a wrought iron shaft 5 inches in diameter and 12 feet long that was sprung 3 inches by being burnt in a mill. It was
was only 2 hours from the time I built the fire under it till was only 2 hours from the time I built the fire under it til
it was perfectly straight.
J. J. Hill.
Hayden's Ferry, Arizona, July 1, 1876.

[For the Sclentific American.] DEVELOPMENT OF SPEE

THE DEVELOPMENT OF SPEECH

As the seventeenth century was preëminently one of revolutions, the present is one of evolution. Everything is supposed to have been evolved from something else, man from monkeys, articulate speech from inarticulate cries, writing from hieroglyphics, etc. A few weeks since the American Philological Society met in New York city, and among their discussions were some of much interest. Professor Harkness read a paper in which he stated that comparative philology had proved that all the known languages and dialects have been evolved from one parent tongue, whether by differentiation, natural selection, and survival of the fittest, or by other processes. Darwin, in his "Descent of Man," draws some of his most forcible arguments from the resemblance of the human fetus to the full grown ape and other animals. The unspoken language, the inarticulate cries of infants, has not, so far as we are a ware, been carefully studied, and compared to the cries of birds and animals. H. Taine has re cently directed attention to this subject by an article on "Lingual Development in Babyhood," published in the $R e$ vue Philosophique. But M. Taine passes over the multitude vue Philosophique. But M. Taine passes over the multitude
of different cries and exclamations, consisting, as he says, of different cries and exclamations, consisting, as he says,
exclusively of vowel sounds, and expects articulate speech. exclusively of vowel sounds, and expects articulate speech.
Some of his observations are, however, valuable and interSome of his observations are, however, valuable and inter-
esting, as being the first that have been accurately made and intelligently recorded. We hope that these observations will be repeated by others, so that in time the mass of facts will be large enough to enable us to generalize upon them, and eliminate the personal factors which vitiate the conclusions drawn from too limited a number of facts. Idiosyncrasies in children are probably as common as elsewhere; abnormal development must not be mistaken for a normal condition; one child will differ so greatly from some other child that we shall at first incline to think there is no common ground between them; but as observationsincrease, the facts
will gradually fall into system, and order come out of chaos. From a study of the speech of babyhood we shall learn not only how language is formed, but shall see in it the gradual unfolding of the intellect. Babies' selections of words are instructive to the biologist; the order in which they acquire the power of pronouncing the consonants is an interesting study for the phonetic scholar. Why, for instance, can every infant pronounce the word no, for several months be-
fore it can say yes? That the English sounds of th are difficult for our children is not surprising; but why are our sounds of j and ch, which few foreigners ever succeed in utering correctly, easier for a child to pronounce than w, or f , or g ? Yet we have heard a boy of three years say jay for way, chun for fun, and jajy for wagon. Again, an American child, who has heard no language but English, will sometimes introduce into our words the most difficult vowel sounds of other languages, such as the unpronounceable German ö and ü, or French eu and u, which he has never heard M. Taine says that the little girl on whom his observations were made began to attach a meaning to certain words before she pronounced any word to which she attached any meaning. This will, we think, agree with the experience of most parents, and is not strange, for animals learn to under tand our language which they can never speak. The first word pronounced by her was papa, but for a time she did not comprehend its meaning. At the age of fourteen months and three wecks, he says, she could pronounce mama, tété nurse), oua-oua (dog), koko (hen, cock), dada (horse wagon), mia (cat), kaka, and tem. To the latter word she gave a very extensive signification, such as give, take, see, look; it seemed to be a word coined to express her principal desires. Another child, observed by the writer, began with the word no, which was spoken very emphatically in reply to any question, and without a definite idea attaching to it. The ame may be said of another common expression used by her, "don't do it;" she soon after learned to say mama, bow-
wow (dog), and dink (drink). At the age of fifteen months she began to imitate, repeating almost everything she wa told to, and here the habit of generalization was again ap parent. She was told, on seeing an ice wagon pass, to say ice. She can pronounce it nicely, and says it every time she sees a horse and wagon, showing that she has extended its meaning to all wagons, and probably to horses also. Another curious case came under our notice sometime since of a little boy who applied the term dady to every man he saw, and al so to chickens, dogs, horses, etc., much to the annoyance of his mother.
In a paper read at the Bristol meeting of the British Association, D. A. Spalding advanced the idea that the progress of the infant is but the unfolding of inherited powers. He makes no application of this principle to the power of speech, although he might have done so, and we are inclined to be lieve that, just as a child learns to walk as soon as his limbs are strong enough to safely support him, so he will learn to
talk as soon as the brain is sufficiently developed to evolve deas requiring expression, subject, of course, to the la that perfection is only gained by practice.
E. J. H.

[For the Sclentific American.] THE FIRST CHINESE RAILWAY.

The Japanese have readily taken to the mechanical, sci ontific, and other improvements to which intercourse with the rest of the world has introduced them. For ages they were more exclusive than the Chinese; but now that the barrier is broken down, the Japanese make the most of their opportunity; and they really seemed to have learned and adopted more foreign notions in a few decades than the Chi nese have acquired in centuries.
But the iron horse has at last been domesticated in China; and if the old conservatives of the Celestial Empire ever read anything but Chinese classics, they would class the locomotive with that wooden horse which stands as the representative of treacherous gifts. If the locomotive does not revolutionize China in the end, its power has certainly been overrated. The trial trip was taken on a short road out of Shanghai, on June 30 last, and on July 3 regular travel commenced, six trains running each way daily, and the receipts being highly satisfactory. Six daily trains over a road only fivemiles long is not a very heavy day's work; but with
the Chinese, in making innovations, it is wise to make haste the Chin.
The first railroad in China, from Shanghai to Woosung, is ten miles long; but the road was only completed to Kangwan, half the distance, when it was opened with much ceremony, the pleasantest part of the programme being on the second day, when the natives were allowed to travel free, and appear to have received that proposition as heartily as any dead heads among the outside barbarians could have done. It is three years or more since the British and continental ironmasters, in session at Liége, took China into their calculations as a possible market for iron, locomotives,cars, and all the mechanical paraphernalia of railways. The first idea was to present the Emperor of China with a small specimen railway; but Chinese red tape-as much more complicated as a Chinese puzzle is more puzzling than any otherprevented the plan from being successful. The next movement, and it would seem a feasible one, was for the foreign residents to buy ground for a carriage road, from Shanghai to Woosung. Englishmen must have their drives, and there could be no harm in that. Then railroad estimates were do to bisk the first were at too high a figure. It would not dragon might pounce, and, with a whisk of his tail, demolish. So the estimates were cut down to a single track, of ery narrow gage, 2 feet 6 inches, very light rail, 27 lbs.; a
mum speed of only 15 miles per hour. The road was com menced in January, and in the months which have elapsed the projectors have gained in confidence. They have built for the road two engines, the "Flowery Land" and the " Ce lestial Empire," weighing each 9 tuns; they have eight inch cylinders and ten inches stroke, have each six wheels, and side tanks.
With a sagacious eye to the consequences of an explosion upon the Chinese temperament, the boilers were tested to 200 lbs. to the square inch. And, for a little while at any rate, the speed will be kept down, and the chances of collision or track jumping will be studiously guarded against. Even to cut off a Chinaman's queue would be fatal to the enterprise; and at this late day in the history of railroads, the problem of safety is made prominent above that of speed. It were much to be wished, for the sake of the public, that Britons and Americans were so far Chinese that to kill one would be disaster worth consideration as well financially as moral y. If we learn safety in railway trofic from the first Chi y. If we learn safety in railay trinc from eling world. And if, from this small beginning, the iron interests should receive a much needed impetus, that, too, would be a welçome event

THE IMPACT OF LIGHT.

abstract of a lecture by captain abney. r. e., f. r. s., at the loan
the religion of the world'sinfancy, and it
Astronomy was the religion of the world'sinfancy, and it
an hardly be a matter of surprise that untutored yet incan hardly be a matter of surprise that untutored yet in-
quiring minds, unaided by any distinct revelation, should quiring minds, unaided by any distinct revelation, shoula ystem, the possession of divine attributes, and, as they gazed upon the wondrous effects of his magical painting, that they should have offered to him their adoration and worship, and carefully noted any phenomena due to him. Thus probably

THE FIRST PHOTOGRAPHIC ACTION

noticed would be at a very early period of human existence, when the exposure of the epidermis to his rays caused what is known to us as tan, whilst the parts of the body covered would remain of their pristine whiteness. A photographic action which would be remarked at a later date would be the fading of colors in the sunlight. Ribbons, silks, curtains, and similar fabrics of a colored nature undergo a change in tint when exposed to it.
ribbons Changed by light.
I have here a specimen of a pink trimming used by the fair sex, and the lady who presented me with it informed me that it was "a most abominable take-in," as the color 'goes" after two days' wear. Her ideas on the subject and my own somewhat differed, for to me it presented a capital opportunity of using the material as a means for obtaining a photographic print in a moderate time I have here two results of the exposure of this stuff to the sunlight. One was exposed beneath a negative of an anatomical subject, and we have the image represented as white upon a pink ground. The other subject is a map. An ordinary map was superposed over a square piece of the stuff, and placed in sunlight whilst in contact. We have in this case the lines of the map represented as pink on a white ground, from which the color had faded.

chemical changes caused by light

The general opinion is, I believe, that the color is given off somewhat similarly to the scent from a rose. Were this entirely the case, the light would not act as it does, but, beneath the negative or map, the color would bleach uniformly. The bleaching seems to be a really chemical change in the dye,due to the impact of light. There are many other bodies besides dyes which change in light, and some of them are of the most unlikely nature. I had intended to show you to-night the change that takes place in glass by exposure to light for long periods. My friend, Mr. Dallmeyer, has in his possession specimens of brown and flint glass, which have markedly changed color in those halves of the prisms purposely exposed to solar influences. In some is a " yellowing" of the body, and in others a decided "purpling."
what light is.
It is, however, only those bodies which change rapidly in the light that are utilized in photography. The most com mon amongst these are various compounds of silver, for they are peculiarly sensitive to the action of light. Nearly every silver compound is more or less changed by it, and when I say changed I mean altered in chemical composition When we reflect what light is we can better understand its action. Light, as experiment, confirmed by mathematical investigation, tells us, is caused by a series of waves issuing from the luminous source, not, indeed, trembling in our tangible atmosphere, but in a subtler and infinitely less dense medium, which pervades all space, and which exists even in the interior of the densest solids and liquids. These waves of ether, as this medium is called, batter against and try to insinuate themselves amongst the molecules of any body exposed to their action, a good many millions of millions of them impinging every second against it. Surely it is not surprising to think, small though the lengths of these waves be, that this persistent battering should in some instances be able to drive away from each of the molecules some one of the atoms of which they are composed.

How Light acts upon silver chloride
Take as a type that salt of silver which was, perhaps, the first known to change in the presence of light-silver chloride. For our purpose we may represent each of its molecules as
made up of two atoms of silver locked up with two atoms o hlorine. Let us consider the action of the light on only ne molecule. The waves strike against it energetically and persistently ; the swing that the molecule can take up is not in accord with the swing of the ether. It is shaken and bat tered till it finally gives up one atom of chlorine; the vibra tion of the remaining two atoms of silver and one of chlor ine are of a different period, and are not sufficiently in dis cord to cause a further elimination of an atom. The mole cule which contains the two atoms of silver and one of chlo rine is called a sub-chloride of silver or argentoas chloride and is of a gray violet color. If, then,I place silver chloride (held in position by a piece of paper) beneath a body, part of which is opaque and part transparent, and expose it to sunlight, I shall find that, where the opaque parts cover it, there the white chloride will remain unchanged, whilst on the portions beneath the transparent parts, the dark silver sub-chloride will have been formed. Of course were the paper, after removal of the body, to be further exposed to light, the image obtained would disappear, as a blackening over the whole surface would ensue. In this state, then the print is not permanent. Fortunately for photography, a steady solvent of silver chloride was found by Sir John Herschel in sodium hyposulphite. On applying this salt to the ima e, it was removed, and also one atom of silver and one of chlorine from the sub-chloride molecule, leaving the atom of metallic silver behind. The chemical change that takes place on the silver chloride can be very distinctly shown by exposing it perfectly pure beneath water. The presence of the sub-chloride is shown by the color, and that of the chlorine can be exhibited by the usual chemical tests.
action of light on albuminate of silver.
In making an ordinary silver print on paper, we have, however, something more present than silver chloride; we have an organic salt known as the albuminate of silver, that is, a combination between albumen and silver. I have in this test tube a little dilute albumen-the solid constituent of the white of an egg. Into it I drop a little silver nitrate : a flocculent precipitate is at once apparent. The silver from the nitrate has combined with the albumen, and on burning a piece of magnesium wire before it the outer surface shows a darkening; evidently, then, the albuminate of silver is decomposed by light. For silver printing purposes, paper is coated on one surface with a solution of albumen and sodium chloride, and the production of the silver chloride and albuminate is effected by floating that surface on a solution of silver nitrate. When dry, the paper, which is now sensitive to light,is ready for exposure beneath a negative. Here we have two prints produced on paper so prepared. If now we have two prints produced on paper so prepared. If now
I take one of them and dissolve away the insoluble salts in I take one of them and dissolve away the insoluble salts in
sodium hyposulphite, you see that the color is of a disasodium hyposulphite, you see that the color is of a disa-
greeable foxy red tint. To show you how this want of a greeable foxy red tint. To show you how this want of a
pleasing tone may be overcome, the other print is immersed pleasing tone may be overcome, the other print is immersed action the metallic gold is deposited on the darkened portions of the picture. Now when gold is precipitated, it has not the well known yellow color,but is a bluish purple ; thus the deposited gold mixes its peculiar tint with that of the silver, and after immersion in the hyposulphite we obtain a print whose beauty cannot be surpassed.

the magic photograph

I daresay that many of you may have been charmed with the production of magic photographs, as they were called. Some few years ago the sale of such was enormcus, but now the curiosity of the public seems to be satiated. The magic, as you may be aware, consisted in being able to produce on a white piece of paper a photograph of some unknown object. These mysterious pieces of paper were generally supplied in packets. containing with them a piece of blotting paper. The directions stated that the blotting paper was to be damped, and while moist, to be applied to the surface of one of the accompanying pieces of blank paper, and then a photograph would shoot out. I will endeavor to show you one method
of their production. Here I have an ordinary photographic of their production. Here I have an ordinary photographic
print which has not been treated with gold, but merely imprint which has not been treated with gold, but merely immersed in sodium hyposulphite and then washed. I immerse it in a solution of mercurous chloride which I have in
this dish,and immediately a bleaching action is set up. The action continues, and the paper is apparently blank. What has happened? Simply a white compound of silver and mercury has been formed, which is indistinguishable from the paper. If I wash the paper and dry it, it is in the state of the paper supplied in the packets. I have one here washed and dried, and I immerse it in the sodium hyposulphite. The image immediately reappears, a combination has taken place between the constituents of the hyposulphite, the mercury, and the silver
Need I say that the blotting paper supplied is impregnated with the same sodium salt? In damping it the molecules of the latter are so separated and mobile that they are free to combine with the white image. By similar treatment the picture may be made to again disappear and once more rea.jpear

LIGHT AND FERRIC CHLORIDE.

Besides silver there are various other metals which will give a photographic image. This paper, which has a slightly yellow tint, has been brushed over with ferric chloride, more commonly known as perchloride of iron, in which we have the maximum number of colors of chlorine combined with metallic iron. Allowing ordinary white light to act upon it, the waves cause a disturbance between the iron and the chlorine atoms, and one of the latter is shaken off, leaving ordinary ferrous chloride, or muriate of iron, behind. A piece of paper, similarly prepared, has been exposed beneath
negative, and the reduction of the ferric chloride to the errous state can be demonstrated by floating it on a solution of potassium ferricyanide. The combination between the lowest type of the iron salt and this salt results in the for
mation of a deep blue precipitate, known as Turnbull's blue You see, after applying it, we have the lines of this map, of which this is the negative, of an intense blue. Instead of demonstrating the change of the iron salt by this means, may float it on a weak solution of silver nitrate. The fer rous salt of iron will reduce the silver, while the ferric salts are wholly inoperative to produce the same effect. Here we have such a print.
The principal investigator of the action of light on iron compounds was Sir John Herschel, and he employed a varety of different combinations. Perhaps one of the most nteresting exhibits in the photographic section is that old ist of Fellows of the Royal Society, on which werepasted, by the hand of that distinguished philosopher, the actual solar spectrum prints made during his researches on these and other metallic salts.

URANIUM LIGHT-SENSITIVE SALTS
Uranium salts are also capable of being reduced to less complex forms by the action of light. I will not enter into detailed description of the decomposition, but will simply exhibit the method of producing a print with the salt. The paper has been coated with uranic nitrate and exposed to tght, beneath the same negative before shown to you. The image is made visible by a solution of potassium ferricyanide s in the case of the iron salt.
In the cases of photographs are shown some interesting specimens of iron and uranium prints, made by Niepce de St. Victor. I believe they were presented to Sir Charles Wheatstone by that ardent experimentalist. The subdued brown tones of the latter were probably obtained by the admixture of a little iron with the uranium.

platinum pictures.

Within the last couple of years the salts of iron have been put to practical photographic printing purposes by Mr. W. Willis, jr., of Birmingham, and a valuable process resulted from his labors. The sensitive salt employed is an organic salt of iron known as ferric oxalate, and Mr. Willis made the discovery that among other metals platinum could be reduced to the metallic state from a double chloride of potassium and platinum, by ferrous oxalate in the presence of a potassic oxalate. A piece of paper is floated on a weak solution of silver nitrate and dried; and over the surface is brushed a mixture of the platinum salt and the ferric oxalate. After exposure to light (which produces the ferrous salts) beneath a negative, the paper is floated on a solution f neutral potassium oxalate, when the image at once ap pears formed of platinum black, a substance at once durable
and incapable of being acted upon by atmospheric influence. Such an exposed paper I have here ; and floating it on oxalate solution, you see the image is immediately developed. The unreduced iron salt can be eliminated by soaking the print in the oxalate solution, and a rinse and hyposulphite removes all traces of silver nitrate. After a few changes of water, the printmay bedried, and is permanent. I should explain that the paper is first coated with silver nitrate in order to cause the platinum to adhere firmly to the surface of the paper. When omitted, the fine black powder formed is apt to precipitate in the bath.

vanadium

Before dwelling upon that metallic compound which in photography is next in importance to silver, I must call your attention to the first vanadium print ever produced Professor Roscoe, who has already delighted an audience in this room with an admirable lecture on Dalton's apparatus and what he did with it, has made a classical investigation of the compounds of this metal, and among other interesting facts has noticed that the vanadium salts are redu

LIGHT and potassium dichromate.

We now have to consider the printing processes which are due to the action of light on the dichromates of the alkalies in the presence of organic matter. For our purpose to-night we may take as a type potassium dichromate, a salt which readily parts with its oxygen to those compounds that have an avidity for it,more especially to certain carbon compounds under the influence of the ether waves.
To show that this salt is thus easily reducible by light in the presence of organic matter, I have here a piece of paper which has been brushed over with it, and exposed beneath a print. For a moment I float it on a weak solution of silver nitrate. The brilliant crimson color of the part not exposed to light tells us that silver dichromate has been formed; but where the solar rays have acted, the color re mains unchanged. A slight modification of this process now xhibited to you is known as the chromatype, the offspring f Mr. Robert Hunt, so well known in the scientific world for his researches on light.
the wonderful aniline process
While experimenting with the chromatype process, Mr W. Willis, the father of the gentleman I have already mentioned, discovered what is known as the aniline process. It
is based on the fact that an acid in the presence of potassium is based on the fact that an acid in the presence of potassium
dichromate strikes a blackish green or red color when brought in contact with aniline. You will see the modus operandi when I say that paper is floated with potassium dichromate and a trace of phosphoric acid. Aniline is dissolved in spirits of wine, and the mixed vapors allowed to come in號
of the light has so changed the potassium salt that the aniline vapor causes but little coloration, while, where the paper has been protected from it, the dark color indicates that the dichromate is unchanged. The formation of this black color is familiar to the manufacturers of aniline colors, being, I believe, similar in composition to the residue left after the formation of aniline purple by Mr. Perkin's method.
It should be noted that,for copying engineers' tracings and drawings this process is extremely valuable, as there is no occasion to take a negative on glass before obtaining a print. All that is requisite is that the original should be fairly penetrable by light. A piece of paper prepared as indicated, a sheet of glass to place over the plan, and a box in which to place the exposed print to the aniline vapor, are the only necessary plant for the reproduction of a design.

What is an Ingrain Carpet?

The two-ply ingrain known to the trade is a fabric com posed of two webs, or "plies" of cloth, made with different colored yarns-say one "ply" green, the other red-of equal consistence or texture, u nited at the edges or selvages of each by the selvage threads, and ingrained or united at different parts of the cloth, wherever called for by the design or pattern. If the red "ply" represents the ground color of the design, then the green will be the figure color ; and whenever the green figuring "ply" appears over the red ground "ply," that is ingraining. The more general this ingraining or mixing up of the two webs or "plies," the better the fabric is ingrained, and the longer it will wear. The three-ply ingrain is made and ingrained after the same manner.
A two-ply carpet, woven on the same loom and "mount ed" in the same manner as a two-ply ingrain, if woven plain, without any design or pattern, would be a seamless bag; a three ply, under the same condition, a double bag, or two bags joined together by one side of each.
The old Scotch two-ply ingrain weighed about 24 ounces to the yard. The weft yarns were heavier than those now used, and the warp threads were three-cord worsted, and much stronger and heavier than the two-cord now in general use. Two things are gained by the substitution of the two cord warp for the three-cord, though the fabric is rendered less durable. One is the saving of worsted, the most ex. pensive of the two materials which compose the fabric; the other is that the warp being finer, it permits a wider scope in shading the weft colors. This will be understood even by the unskilled reader, if he will place an unequal number of coarse and fine black threads on two pieces of scarlet or white cloth or paper of equal width. The finer the black threads are, the brighter the colors underneath will appear. Ingrain carpets are frequently called Scotch carpets. and by others Kidderminster. The difference in the nomenclature of this fabric, we presume, is due to the fact that, until 1821, Kidderminster had nearly a monopoly in making ingrain. In the memorable strike of that year, which com menced in March and continued into August, it lost nearl all its ingrain trade, which mostly fell into the hands of Scotch manufacturers.-Textile Manufacturer.

Glass Circle for the Measurement of Angles.

Mr. Lewis M. Rutherfurd, whose ruled diffraction plates, as substitutes for prisms in certain classes of spectroscopic work, have gained him a very extended reputation, in 1870, proposed a glass scale for the measurement of the angles of astronomical photographs. It was to be read by a micrometer microscope, and fitted with a gravity slide with one V and one flat slide. He has now carried out the idea by construct ing a glass circle about 10 inches in diameter, divided to 10 minutes of arc, adapting it to a spectrometer similar to the one used by Mascart, and described in his paper on the measurement of wave lengths. The measurements wer read by two microscopes each magnifying 75 diameters This arrangement is one of the most delicate mechanical refinements that has ccme under our notice.

New Compensating Pendulum.

Professor J. Lawrence Smith has recently invented a new compensating pendulum, in which he avails himself of the great expansibility of ebonite, which, between 32° and 158° Fah., approaches that of mercury. The pendulum rod is o steel, with an adjusting screw at the lower end; and a roun rod of vulcanite, with a hole in the center, is passed on to the steel rod fitting it loosely and being held in place by the adjusting screw. The bob of the pendulum consists of heavy piece of brass, with a hole through the center large enough to admit the vulcanite, over which it passes, and, by a properly arranged stop, rests on the end of the vulcanite furthest from the lower end of the pendulum, so that any expansion of the vulcanite elevates the brass bob, thus com pensating for the downward expansion of the steel rod and brass bob. Professor Smith says that four months' use of this pendulum on an astronomical clock has given very sat isfactory results. It can be adapted, at a cost of 20 cents, to isfactory results. It can be adapted, at a cost of 20 cents, to
the ordinary mantlepiece clock, the pendulum of which usu ally beats in half seconds.

Madder Orange.-Madder red, if exposed in a chest to the fumes of nitrous acid No. 3, yields a fine orange, which is not damaged by boiling soap lye. The red may be pro duced either by dyeing or steaming, and it is indifferent whether the cotton is oiled or not. The action of the fumes is to be continued for five minutes. If it is shorter the orange is converted into a brown by diluted alkalies or by soap.-Reimann.

NEW RAIL SAW AT THE LANDORE STEEL WORKS. This saw is made by Messrs. Kitson \& Co., Airedale Foun dery, Leeds, England. Instead of the rail being brought up to the saw, the latter, mounted in a swing frame which os cillates on the main shaft, advances to the rail. Our en graving is prepared from a photograph of the actual ma chine, but does not show an ingenious self-acting clutch ar rangement, which has since been addad, for holding the rail firm while being sawn. The saw is placed sufficiently far from the rolls to admit of a 65 feet length being rolled, to be afterwards cut into rails of the required dimensions. On the occasion of a recent visit, some Great Western Railway bridge rails, 86 lbs. to the yard, were being rolled, and afterwards sawn into two 32 feet lengths. The production of the rail mill at these works is from 600 to 700 tuns a week, the largest output in any one week having been about 850 tuns, though 160 or 170 tuns are frequently got out in the twenty-four hours.-The Engineer.

Dental Gardening

Miss Adelia L., aged 28, nervous tempera ment, very healthy and robust, consulted me on May 10. 1876, in reference to trouble with left superior second bicuspid. I found, upon examination, a large cavity upon posterior surface, high up under the gum, with exposed pulp and considerable inflammation, attended with severe pain. The cavity being extremely difficult of access, and the patient preferring not to take the chance of possible trouble after a painful operation, I extracted. A moment after, I proposed to her, partly in jest, to fill and replace it. She agreed, and after excavating, etc., I filled the pulp canal with oxychloride and cotton fiber, and the other cavity with amalgam, and then, carefully rinsing the socket first, the tooth was carried up gradually into the alveolus, carrying with it a piece of silk which was laid longitudinally along the root in such a manner that, when the tooth was in such a manner that, when the tooth was nearly in place, the gradual drawing out of the silk furnished a vent for the escape of air or water confined above the root. Previous to replacing, about one sixteenth inch of the ti of the root was excised, as it was curved con
siderably. Pain followed for five siderably. Pain followed for five minutes, af ter which the lady closed the teeth forcibly and with a snap, without any feeling of discomfort. She was directed to avoid using it for a day or two, and then report. Ten days after, May 20, she came in and stated that for a couple of days there was some soreness, since which time she had eaten on that side of the mouth without trouble, and at the time of examination the tooth was as firm as the contiguous ones. No ligatures were used to keep it in place at first, as reliance was placed upon the antagonists in the lower jaw.-W.E. Hyde, Danielsonville. Conn., in Dental Cosmos.

A JAPANESE FLOWER BASKET

In the Japanese Building at the Centennial Exposition is to be found a variety of hanging baskets, containing ornamental plants. One of the most graceful designs is shown

in the annexed engraving, the basket being made of the roots of trees, laid parallel and encircled by hoops. Ferns and other plants, judiciously selected, are placed with their roots inside the basket, the flowers and foliage hanging down outside. It would be difficult to imagine a prettier ornamen for the parlor or conservatory.

Patents for Seeders and Planters
Another very useful summary and digest of all patents in a particular class of inventions is announced. It will include the drawings, briefs, and claims of all patents for seeders and planters, from 1836 up to and including July, 1876. The range covered by the class is a very extensive
one, including fertilizers, liquid manure machines, land markers, etc. The book will contain from 400 to 600 pages, illustrated by about 3,500 drawings. It will be well bound, and sold for $\$ 25$ per copy, by the author, Mr. James T. Allen oom 116, Patent Office, Washington, D. C.

New Engraving Process.

Messrs. Leitch \& Co., it is said, are now successfully prac tising a new process, which has not hitherto been carried on here. The drawing is done on glass, covered with a thin etching ground, which is of a pale green color, and so thin

SAW FOR CUTTING HOT STEEL RAILS.
that it can be removed with the finest etching point, thus allowing of the most delicate lines being drawn. By placing a sheet of black paper underneath, the artist can perceive at once the progress and effect of his work, the lines of which appear in their natural black. This plate, when finished, is treated as a negative, and a photograph obtained from it, say on zinc, from which a surface block is got in the ordinary way. The great advantage is the possibility of seeing how the work proceeds, for in several processes this cannot be done, and the artist finds, when he has finished his drawing, that it looks very different from what he expected or intended.

The San Fernando Tunnel

The San Fernando tunnel, through the San Fernando mountains, on the Southern Pacific Railroad, California, is the largest one on the Pacific coast. Its length is 6,966 feet, or 1 mile and 1,686 feet. The work of construction was remarkably rapid; it is not two years since the first borings were made. Many difficulties were encountered. San Fernando is the petroleum region of Los Angeles, and there nando is the pers in the were fears lest in fluids and rases. The rreat pobstacle has been the charac fluids and gases. The great obstacle has been the character of the rock, and the enormous pressure upon the timbers placed as supports. The tunnel will be lined with masonry of great strength. The longest tunnel on the Central-Pacific, in crossing the Sierras, is only about 1,200 feet, not one fifth the length of the San Fernando

Poisoning by Virginian Creeper
The details of two cases of poisoning by the well known Virginian creeper or American ivy (ampelopsis hederacea) have been communicated to the medical papers by Mr. Bernays, of Chatham, England. The sufferers were two children, aged respectively two and a half and five years, who had chewed some leaves of the plant, swallowing only the juice. They were quickly seized with violent vomiting and purging, with considerable tenesmus, then collapse, sweat ng, and faint pulse, followed by deep sleep for two hours, from which they were aroused by a return of the vomiting and purging. Milk, with some rum mixed in it, was freely administered, under which treatment the children soon recovered; but four hours after the commencement of the at tack there was considerable dilation of the pupil.

The pressure in lbs. per square inch produced by cenrifugal fans equals the square of the velocity of the tips of the fan in feet per second divided by 97,300 .

Hops as a Photo Preservative,

Notwithstanding the great improvements that have been recently made in the various emulsion processes, and the degree of perfection that has been attained in the preparation of the emulsions, many photographers, even amateurs are conservative enough to stick to their baths, simply be cause they have long been accustomed to work in that way, and because in the various bath processes there is more latitude in the road leading to success than there is with emul sion work.
It is far from our intention to undervalue the advantares of the several emulsion processes, because they require, for their most successful working. a degree of nicety and care much greater than most of the processes with the bath; but we cannot shut our eyes to the fact that there ar many who, from long experience of the older methods of working, get very fine results with it, and who have neitherinclination nor time to battle with the difficulties of anything that to them is new. Taking it for granted, then, that for some time at least dry plates will still be sensitized in the bath, we gladly chronicle any dvance that may be made or any improvemen that may be effected.
We have recently made numerous experi ments, and think the desideratum has been found in ordinary hops-preferably the variety known as Bavarian, which seems stronger in certain qualities than the English hop.
Two ounces of hops are infused for one hou in twenty ounces of water at a temperature of 170° Fah., and the whole then turned into a cloth, and the liquid pressed out. When cold, twenty grains of pyrogallic acid and the albumen of two eggs are added, and the mixture is well shaken for ten minutes. It is then filterod into a dish and used in the ordinary way; or, if only a few plates are to be prepared, a smaller quantity may be made and poured off and on pural times. Plates preserved with this so ution, dry perfectly hard have a fine gloss, a yild negatives of veryhigh quality. The解 or ic that over-d uarded against. Although the solution can be easily made, it is desirable that, if possible, it should be made to deep, and therefore we have added carbolis acid and salicylic acid to separate quantities, and shall note the result on a future occasion.
Meantime we consider the hop preservative as above indicated, a decided improvement on the beer and albumen. It possesses all its good without any of its bad qualities, the principa which are the sticdiness already referred to he varying qualities of beer in different local ities, and, especially, the irregular proportions of chloride which more or less are always present, and to get rid of which many workers are in the habit of adding silver ni trate, which always introduces an additional element of un-certainty.-British Journal of Photography.

A SWEDISH CENTENNIAL EXHIBIT.

Our engraving represents a very neatly executed device for exhibiting the various sizes and shapes of nails manu factured by one of the Swedish ironworks. It is the figure of a reindeer, the hide of which is formed of the nails, the forms and dimensions of which are so selected that the con tour of the animal is unimpaired, the proportions and form being exactly preserved. The figure is to be found in the

Main Building, near the north entrance ; and it attracts large numbers of visitors, who cannot but admire the fidelity and ngenuity with which the design is carried out.

New Blue Color.

Girard has taken out an English patent for the following process: He heats 1 part of methyl, ethyl, or amyl diphenylamin with two parts of oxalic acid for 10 to 15 hours to 239° Fah., and washes in water, alcohol, or petroleum. The residual powder is dried and heated for some hours to 230° Fah., which renders it soluble. To prepare methyldiphenylamin 100 parts of diphenylamin, 68 of muriatic acid, and 24 of wood spirit are digested for 15 hours at 536° Fah., at a pressure of 12 atmcspheres.

A MARINE AQUARIUM

An aquarium, says Mr. R. M. Shurtleff in Forest and Stream, from the pages of which we select the engraving, though a very simple matter, was never understood till recently. Persins who keep gold fish in globes find it necessary to change the water frequently, and even then the fish do not remain in a healthy condition. If the tank be properly arranged, the water need never be changed at all. All animals breathe oxygen, and throw off carbon, while plants breathe carbon, and throw of oxygen. If we establish in our aquarium a proper balance of animal and plant life, both will thrive as in their natural homes.
Supposing that our tank has been selected, we should first place in it enough clean pebbles to cover the bottom to a depth of two inches. Above these we may arrange larger rock forms, and if done with taste and judgment it will add much to the beauty of our aquarium, and also furnish hiding places for the fish.
One of the best plants for the salt water aquarium is ulva litissima, which may be found in large fronds cast upon the beach after a strong wind has been blowing from the sea Its color is rich dark green, and when in a healthy condi t ion it is firm and crisp to the touch. Another very hand. some plant that thrives well in the aquarium is catramor. pha. It is found in deep water, and can only be gat by dredging. It resembles a mass of fine green threads, which, when untangled, are sometimes found to be thirty feet in length. Entromorpha compressa is a beautiful green plant
found on nearly every shore at low tide. It grows in long $\begin{array}{ll}\text { times as perfectly formed anemones. They also multiply }\end{array}$ grass-like leaves, that move in most graceful lines with ev- by self-division: a portion of the animal, usually near the ery motion of the water. We have never found it very base, gradually separates from the main body. If closely hardy in the tank. The plants of a brown color, though ery beautiful for a time, will soon decay in the aquarium Some of the red algæ do very well and are a great addition. The Grinnella Americana is one of the best. Chondrus crisp. us (Irish moss) will somptimes do well; and solaria, if found rowing to a bit of stone, will live in confinement, bu should not be exposed in much light. There are innumera ble beautiful plants to be found at low water mark, that will always tempt us to try, and, if watched closely and removed f found decaying, will do no harm.
Ourillustration shows many of the most interesting ani mals that are adapted to the marine aquarium. In the cen tral part of the picture is a fully expanded sea anemone. Seen in this condition one can readily see why it has received the name of that beautiful flower. At times it appears a mere mass of jelly, and the fishermen along the coast have called it halibut slime, supposing it merely a mass of slime from that fish. The body of the anemone may be described as a double gelatinous sac; the inner sac is the stomach, the pace between it and the outer membrane is divided by ver ical partitions, eagh compartment being connected at th upper part with a hollow tentacle. The tentacles serve to atch, and convey to its mouth, such animals as happen within its reach. The anemone is reproduced by eggs that observed for a few days a single row of tentacles will make heir appearance, and increase in number with the growth. Though a low form of life, the anemones are among the most beautiful and interesting objects in Nature. In color, hey vary from a light brown to a deep chocolate. They re found on the coast north of New York, very abundantly in the vicinity of Newport. To the left of them are three of a bright red color that were brought from Bermuda They differ from the others in having less power of expan sion to the body, and have fewer tentacles, but make up for he lack of grace in form by their gorgeous color. The eneral scientific name for them is actinia. Just above is hown a bunch of serpula contortuplicata. They belong to the annelida or worms proper. They breathe through the skin by sacs or gills. In the present genus the respiration is by gills which are elegant in form and brilliant in color, The body of the serpula is short, the hard tube in which it ives in the sand being many times the length of the animal. Projecting from the tube may be seen a fan-like ap
 This fan is the serpula's gills, and aid it in procuring its food. If viewed with a magnifying glass, it will be seen that the exterior of the gill tufts is covered with wonder fully delicate filaments or cilia which are constantly waving in regular ripples; by this movement a current is produced

that brings in a multitude of minute animals upon which the worm feeds. The serpula is furnished with an arrange ment for stopping its tube when it wishes to retire ; this is a conical appendage developed from one of the little anten næ, which hangs from the tube and is called the operculum One specimen in a tank has two kinds of plants growing from its operculum. When first placed in the tank the ser pulæ are very sensitive, and pop into their tubes at the leas jar. Near the serpula is shown the common shrimp, which is regarded as an excellent scavenger of the tank. The shrimps are so transparent that the food can be seen in the stomach and we can almost trace the process of digestion.
Attached to the lower part of the rock work are more of the brown, and some of the beautiful little white, anemones. It is almost impossible to describe their form, as they are so changeable. At times hanging from the rock to which they are attached, the tentacles drooping like the petals of a withered flower, again the body stands erect, the tentacles extended to their utmost limit, and in constant motion. Suddenly a part of the body will be contracted as if a string had been drawn tightly around it, and sometimes there will be two or three of these constrictions at the same time. Again, they will assume tho form of a rose, and one never tires of watching them. Some days they appear of an opaque white or cream color ; an hour later we find them so nearly transparent that the interior divisions of the body can be clearly seen.
At the lower left hand corner is shown a mussel (modiola plicatula), and above it the soft clam (mya arenaria). The black mussel (mytilus edulis) is not shown in the drawing, but is a useful member of the aquarium family, as it lives upon the little animalculæ that sometimes become so plenti ful in the tank as to obstruct the view. The star fishes are curious and interesting, but are hardly safe for the aquarium, as they are ravenous eaters, and will probably destroy the shell fish we most wish to preserve. They have a singular way of feeding. Placing themselves upon the animal they wish to devour, the digestive sac is turned inside out so a to enclose their prey, and the animal is sucked from its shell.
The hermit crab (pagurus longicar pus) is shown inhabiting the shell of a tritia trivitata. These curious little crabs have no armor of their own, and so take possession of any mollusk's shell that happens to fit them-usually one of the buccinum family. The rock crab should not be introduced, unless it is a very small specimen, as they over turn the rock work, and are blessed with an appetite that is neve satisfied. The spider crab (labinica canaliculata) is interest ing and less destructive. It loves to dress itself with bits of plant, or anything that comes handy, and then parades with as much evident satisfaction as any dandy.
At the extreme right of the picture is shown a bunch of tubularia. This plant-like object is formed of a number of tubes branchingin all directions; the end of the tube appears a flower, its petals opening and closing constantly. These heads live a few days, then drop from the stem to be replaced by a new head that may be seen slowly traveling up the tube. The sea horse (hippocampus Hudsonius) is another strange little animal that we should possess if possible. Its natural food is the serpuloe which it sucks from the tubes, but it will feed upon the soft part of a shrimp or clam. At the top of the illustration is shown a branch sertularia. In a picture of this kind only a faint idea can be given, as the beautiful little animals that have formed it are scarcely discernible with the naked eye.
Nearly all the animals we have named can be found on our own coast. Those who prefer to do so can purchase them of dealers. In conclusion we would say that the care of a marine aquarium can be only a source of pleasure to any one who loves Nature. These animals have been drawn from a glass jar holding about twelve quarts of water. For many months it has supported twenty or thirty anemones, besides many other animals, and has always been in a perfectly healthy condition. The only care required was now and then the addition of a little fresh water to replace that evaporated.

A Purple Cyanide as a Dyestuff or Pigment.
When cyanide of potassium is added to an acid solution of a copper salt, a red color is produced which has already been mentioned by different observers. The substance formed is very changeable, at least in the liquid where it is formed. It is decomposed by acids, alkalies, cyanide of potassium, and even decomposed spontaneously, the color changing to yellow. It is precipitated by insoluble cyanides ; hence when a dilute acid is added to the red solution, the dye is at once thrown down along with the cyanide of copper. If the precipitate thus obtained is treated with sulphuretted hydrogen, it is decomposed and the substance set free. 'This substance can combine with iron, like cyanogen, so as to conceal the properties of the iron. This compound is very permanent, and has lately been studied by G. Bong, who gives the following directions for its preparation:
Cyanide of potassium is added in excess to an acid solution of a copper salt until the red color at first formed has disappeared, when a ferric salt is at once added. On the addition of the iron salt, of course, a copious precipitation of Prussian blue takes place, and the liquid again turns to a dark purple-red. To separate the coloring substance from the alkaline salts in the liquid, a dilute acid is added which precipitates it and the cyanide of copper. This precipitate is combined with the Prussian blue, which also contains a considerable quantity of the coloring substance, and then treated with a boiling solution of carbonate of ammonia, in which it dissolves. As the cyanide of copper also goes into solution, it is separated by again precipitating it with an
acid and treating the precipitate with sulphuretted hydro gen. The coloring substance thus liberated now contains a certain amount of hydroferrocyanic acid, which is removed after neutralization by acetate of lead. It is now filtered, and the purification completed by precipitating with a silver salt and treating the precipitate with sulphuretted hydrogen.
This purple-colored compound crystallizes very indistinct y. To determine its composition Bong precipitated it with acetate of copper. When dried at 212° Fah., the rose-colored precipitate had the following composition: Carbo $24 \cdot 31$, nitrogen $28 \cdot 04$,hydrogen $1 \cdot 88$, iron $13 \cdot 66$, copper $17 \cdot 67$ oxygen $14 \cdot 44$. Total, $100 \cdot 00$. These numbers correspond to the formula $\mathrm{Cu}, \mathrm{FeCy}_{4}(\mathrm{HO})_{4}$.
This substance is likewise precipitated by salts of zinc, mercury, and silver. All these precipitates are pink or purple, very beautiful, and of remarkable brilliancy. They are soluble in alkalies. Iron salts yield no precipitate, no do lead salts except in the presence of ammonia, when a blue-violet precipitate is formed. When treated with sulphuretted hydrogen, these precipitates yield purple-red and acid liquids, which undergo change in the air, especially i warm, forming Prussian blue. When these liquids are eutralized with alkali, purple compounds are formed, which are permanent in the air, soluble in water, slightly so in al cohol, and insoluble in ether. Their coloring is exception ally great. These pigments will unite with ferrocyanides, and in its preparation such a compound is produced in con siderable quantity; it is likewise of a purple color, and gives a rose-colored precipitate with acetate of lead. Both alone and in this compound it is very permanent; it resists the action of sulphurous acid, concentrated and boiling al kalies, and dilute acids, but is rapidly destroyed by chlorin and nitric acid. If this pigment could be prepared cheaply enough, it would probably be used with advantage in the rts, on account of its resistance to chemical re-ag and ight, the variety of its shades, and its brilliancy. It does not color fibers directly, but can readily be fixed on them
from slightly acid solutions, if they are previously mordant from slightly acid solutio
ed with metallic oxides.

MUSICAL TELEGRAPHY IN PARIS.

It is now proposed to utilize the La Cour system of musi cal telegraphy in Paris, in connection with the project of M Bourbouze of sending telegraphic messages without wires M. Bourbouze conceived the idea, during the siege of Paris in 1870, that the river Seine might be used as a conductor, so that the beleagured city could hold communication with the provinces without the enemy suspecting the fact. Tests actually proved that the plan was feasible, but before it could be carried into practical effect, the armistice was declared, and so the device became unnecessary. M. Bourbouze has recently again brought forward his idea, and proposes to use the water in the mains and pipes of the city as a conduc tor. Every one having the necessary simple apparatus could

Fig. 1.

then learn to telegraph for himself. Each house would be a station, and any citizen could converse with friends scat. tered in all parts of the city without stirring from his own domicile To this somewhat sanguine scheme there is one fatal objection; it is that the result would be a new Babel for hundreds would telegraph simultaneously, and unless each despatch had some easily distinguishable characteristic, inextricable confusion would follow.
As stated in the beginning, it is suggested that M. La Cour's musical telegraph may furnish a means of transmitting distinguishable despatches. The invention was described recently in the Scientific American Supplement,
but the annexed engravings, which we take from $L a N a-1$ but the annexed engravings, wode of operation more clearly comprehensible.

Fig. 2.
 light to dark brown color, according to the moisture, except those containing much insoluble matters, which resemble soil, of which they probably largely consist. The physical

When the most common phenomena of acoustics are realled, for example, the transmission of a melody played by an orchestra which is perceived by an entire audience at long distances from the players, it is not easy to analyze the effect. Physics tell us that the sounds produced by each instrument have their own tonality and their distinct measure ; in other words, the notes from a violin, a flute, or a trombone correspond to different vibrations, transmitted through he atmosphere and characteristic for each note. Besides, he rhythm in the succession of notes, which makes the mea-

That a little creature, not very common in the North, could congregate, in sufficient numbers to make extensive deposits of excrement which have a commercial value, seems almost incredible; but in numerous caves, from Virginia to Texas, are found deposits of this material sometimes reaching 20,000 tuns in extent, and yearly increasing. During the war it was thought to extract niter from it for powder making ;
but though the manufacture was somewhat to extract niter from it for powder making ;
but though the manufacture was somewhat successful, the nitric acid was present in such small quantities as to render it so expensive as to be abandoned at the close of the war. The material has been used as a fertilizer to a slight extent, and is found to exert considerable influence on the crops treated. The at tention of Mr. McMurtrie, chemist to the Department of Agriculture, having been called to the matter, analyses have been made of samples collected. These are all of a similar
sure in music, produces the cadence, constituting, with the tonality and the timbre of the instruments, the ensemble of the air which affects us. The transmission is so precise that the ear, from the medley of sounds, instantly distinguishes discordant or untimely note.
Suppose now a series of three tuning forks vibrating continuously and producing, respectively, 100,300 , and 500 vi brations per second. It is easy to perceive that each fork may interrupt and establish an electric current with inter missions regulated by the number of its vibrations. If, then here be three other forks identical with the first, each se being located at an extremity of the conductor between them, he trio at one end will affect those at the other; and fur ther, if one fork be impressed with a cadence which does ot coincide with its regular vibrations, t^{t} ien its correspond ng fork will likewise emit the same discordant sounds.
The above very briefly states the principle of the inven tion, but it is sufficient to show that the indefinite multipli ation of despatches over the same conductor is feasibie, each current, moreover, being distinctly individualized. Fig. 1 represents the device for transmitting the vibra ions of the fork to the conductor. The arm, n, of the fork vibrates in contact with the platinum tongue, c, the position of which is regulated by the screw, v. A current entering l^{2} is closed, when the extremity, n, touches the plate, c and is open when contact is broken. Nothing further is needed than the opposite wire, l, connected with the fork as hown.
Fig. 2 shows how the character of an intermittent current is recognized. L L is the main line traversing the station. B C are three forks similar to those at the point of trans
 eurrent, will be thrown into vibration while the rest will main silent. This fork, B, will then touch the platinum current of the battery, U, the poles of which are respective y applied at $a b c$ and $a^{1} b^{1} c^{1}$. The local current will like wise be intermittent, according to the measure of the fork, but by reason गf the velocity of the pulsations it will mani est itself in many cases as a constant current, either by operating a chemical decomposition, or by deviating a mag netized needle, or by exciting an electro-magnet.

The New Hampshire Greenstones.

The greenstone formation of New Hampshire covers a large area in the northern part of the State, and is referred by Professer Hitchcock to the Huronian age; the rocks are enerally green, with remarkable uniformity in their com position. Yet they are inter-stratified, apparently not by olcanic eruption, as they appear to have accumulated in quiet waters.
Of the group of greenstones, the most prominent member is metamorphic dioryte, which varies in its texture in differ ent localities, some of the specimens being so coarse as to enable the crystals to be mechanically separated. A hydrous rock, metamorphic diabase, is also very common, in which chlorite is a prominent ingredient, imparting a light green color. In this rock, organic remains, such as a tabu lated coral resembling a chatetes, are found, and Mr. George W. Hawes states that there is little doubt but that it is a fragment of a rhizopod mass or foraminifer. The presence of rhizopods is additional evidence of the sedimentary ori gin of these rocks, and it suggests a source for the lime of the labradorite and other mineral constituents. Chlorite schist is also found in these greenstones; it is of a light green color, and gives off water when heated. Twelve pe cent of this mineral consists of various oxides of iron. Dolerite and argyllite are also found in the formation, the former containing: Silica 40.25 , iron oxides $15 \cdot 82$, lime $10 \cdot 31$, titanic acid $6 \cdot 53$. In the latter, silica $60 \cdot 49$, alumina $19 \cdot 35$, iron oxides $6 \cdot 46$, and magnesia $2 \cdot 89$ were found.

Bat Guano

 a dition when air-dried is excellent, both for handling and application, being finely pulverulent. The analyses fairly represent the average composition, which, according to the valuations of Professor Goessmann, the Massachusetts State Inspector of Fertilizers, adopted by the department, show them to possess a value of from $\$ 15$ to $\$ 55$ per tun for use as fertilizers. The values compare favorably with those of fish fertilizers, and even of Peruvian guano. Microscopical examination shows the material to consist largely of the hard parts of insects upon which the bats feed. MrMcMurtrie wisely concludes : "With these facts before us, we may readily recognize the importance of the development of these deposits in the South, where fertilizing mate rials are so much needed and are so costly, and especially when they may be obtained for the mere cost of removal."

Naval Items.

naval engineer corps gazette.
Chief Engineer George Sewell, Wm. G. Buehler, and Ezra J. Whittaker, Passed Assistant Engineers J. P. Kelley, H. and Assistant Engineers William Rowbotham and George Cowie, have been detached from duty and placed on waiting orders

August 9. Passed Assistant Engineer John F. Bingham's orders to the Tuscarora, North Pacific Station, have been revoked, and he has been ordered temporarily to the Navy Yard at Mare Island, Cal.

Abstract

To Remove Nitrate of Silver Stains. The following method of removing indelible ink and other silver stains, without the use of cyanide of potassium, is given by Grimm in the Polytechnisches Notizblatt: Chloride of copper is first applied to the tissue; it is next washed with hyposalphite of soda solution, and afterwards with water. It is said that this may be employed on colored woven cotton tissues. For white cottons and linens, dilute solutions of permanganate of potash and hydrochloric acid, followed by the hyposulphite of soda and clear water, is preferable. For cleaning the hands, we use iodine dissolved either in iodide of potassium or in alcohol, following by aqua ammonia.

Hypochlorite of Alumina in Bleaching.
Dr. E. Jacobsen proposes to use hypochlorite of alumina for purifying bone grease, a gentle heat being employed.
This salt is prepared by the mutual decomposition of alum This salt is prepared by the mutual decomposition of alum or sulphate of alumina and bleaching powder. A saturated solution is made of the former, and to it is added a corres bleaching is performed, not by the chloride, but by the oxygen liberated as ozone, and the coloring substances are precipitated as lakes by the alumina.

The following is said to be a Texan practice for training sheep dogs: A pup is taken from its mother before its eyes are opened, and put to a ewe to suckle. After a few times,
the ewe becomes reconciled to the pup, which follows her the ewe becomes reconciled to the pup, which follows her
like a lamb, grows up among, and remains with the flock, and no wolf, man, or strange dog can come near the sheep and the dog will bring the flock to the fold regularly at half past seven o'clock, if he is habitually fed at that hour.

NEW BOOKS AND PUBLICATIONS

The Housekeeper's Friend, a Practical Cook Book. Compiled by a Lady of Zanesville, Ohio, and Sold for the Benefit of the
Home for the Friendless. Price $\$ 1.50$. Zanesville, Ohio Hume for the Friendless. Price $\$ 1.50$. Zanesville, Ohio
Sull and Parsons, 87 Main street. New York city: Wiley $\&$ Sons, 13 Astor place.
This is a collection of recipes, selected with discretion from a great
variety of sources. It is a handy and useful volume, and is sold at a very moderate price ; so that purchasers will receive value for their monev, and
will also aid a charitable institution, the nature of which should enulist the will also aid a charitable institution,
sympathies of all classes and creeds.
The american Iron Trade in 1876 Politically, Historidally, and Statistically Considered. By James M. Swank, Secre-
tary of the American Iron and Steel Association. Philadelphia, Pa.: The American Iron and Steel Association, 265 South pha, Pa.: The
We took up this book of 200 pages, in the hope of finding some account of
improvement in the condition of the prostrate iron industry, some proba Improvement in the condition of the prostrate iron industry, some proba-
bility of its thousands of toilers receiving fair wages, and some ground for bility of its thousands of toilers receiving fair wages, and some ground for
believing that 30 years of poltical bolstering has not finally extinguished the trade. We find nothing of these things; but instead, there are 114 pages the trade. We find nothing of these things; fut instead, there are 114 pages of censure on the government of Great Britain for its conduct (n bygone
times) in dealing with hta own interests, and also for its illiberal conduct in
now admitting American manufactures duty free. We think that our pronow admitting American manufactures duty free. We think that our pro-
ducers who are now seeking a market in England will hardly concur with ducers who are now seeking a market in England
Mr. Swank and his fellow theorists in believing that every Interest it
be sacrificed to the greed of the particular ring which he represents.
Struble's Webfoot Magazine, devoted to Literature, Science and Art, Commerce, etc. Price $\$ 2$ a year. Portland, Oregon :
Wallace R. Struble. This new comer into the world of periodical literature draws on a variety
of authorities for his articles, one of which. "Suspended Antmation as a Preserving Agent,', is selected from our own pages, no credit being given for the same.
Louisiana as It Is : its Typography, Resources, etc. By Danie
Dennett. New Orleans, La: Dennett. New Orleans, La. : Eureka Press, 33 Natchez street A well empiled handlook of the chief features,
and climatic, of all parts of the State of Louisiana.

zecrat gherican aud forcign 2atents.

NEW HOUSEHOLD INVENTIONS.
Charles Guild, Piedroved DOOR LOCK.
lock having a series of vertically sliding tumblers with beveled ends, the same being adapted to coincide with a notched rib at tached to the bolt. It also relates to the construction of the
with removable interchangeable wards secured by a clamp. IMPROVED CHAIR.
Aaron Rice, Fitchburg, Mass., assignor to Walter Heywood
Chair Company, same place.-The object of this invention is to Chair Company, same place.-The object of this invention is to
improve the construction of the backs of chairs, especially those improve the construction of the backs of chairs, especially those
known in the trade as ladies' crown dining chairs and York dining known in the trade as ladies' crown dining chairs and York dining
chairs, in such a way as to make them less liable to come apart, chairs, in such a way as to make them less liable to come apart,
and thus stronger and better. It consists in an improved chair, in
which the upper ends of the back posts are connected with the which the upper ends of the back posts are connected with the
ends of the back top with a tongue and groove joint. The construction prevents the back posts and the back top from working loose and coming apart, and thus makes the chairs stronger a
more durable, without increasing the cost of manufacture.
hose attachment to wash basin connections. Daniel G. Trembley, Brooklyn, N. Y.-The object of this invention is to provide a simple means for attaching fire hose to the
wash-stand pipe or faucet, so that, in case fire breaks out in a room having water from the street main, water can be quickly applied for stopping it. The connection is perfectly made with the faucet. but it may be made with the pipe below the basin. By this attach-
ment, fires may often be prevented which would otherwise get too ment, fires may often be prevented which would otherwise get too
strong to be extinguished by the ordinary appliances before they can be brought to bear. The hose connection may be connected to the pipe below the basin.

> IMPROVED FOLDING CHAIR.

George W. Parker, Gardner, Mass.-The object of this invention is to furnish an improved chair, so constructed that it may be easily folded into a compact form for storage or transportation,
and which, when opened out for use, shall be strong and firm With this construction, in folding the chair, the arms and the seat are turned up. The front posts and the rockers are then turned up forward into position, and the chair is folded. The chair is un folded by reversing this operation.

IMPROVED PETROLEUM COOKING STOVE.
Frederick Hildebrandt, New York city.-This is a petroleum cooking stove that rests directly on the lamp, and produces the
complete consumption of the gases of combustion of the flame, by an increased supply of air, preventing the smelling of the stove and furnishes an economical cooking stove. It consists of a perforated sheet metal body resting directly on the lamp, and sup-
porting an interior chimney that is connected at the top by an inporting an interior chimney that is connected at the top by an in-
verted conical diaphragm with the body, and provided at the base verted conical diaphragm with the body, and provided at the base
with a burner-encircling cone inside of the chimney to conduct with a burner-encircling cone inside of the chimney to conduct
the air both at the inside and outside of the cone to the flame of the air both at the inside and outside of the cone to the flame of
the barner. The combustion takes place within the chimney and above the base cone, so as to draw the heat upward away from burner and lamp, keeping the body of the stove cool, and admitting the direct position of the stove over the lamp without requir ing an insulating air space or cooling water chambers.

IMPROVED LOCK FOR DOORS.
Theodore Hendricks, New York city, assignor to himself and
William E. Price, Brooklyn, N. Y.-This invention consists in proWilliam E. Price, Brooklyn, N. Y.-This invention consists in pro-
viding the split or double spring of a tubular lock with hook end that differ in length, to be applied in connection with the catch plate. The split spring is attached to the side of the bolt by a stud
and is raised by the key without raising the bolt to engage and disengage the hooks with the catch slots for fastening the bolt This spring is made in two parts, one of which has a longer hook or catch than the other, to be raised by a bit, and there is a stud on the bolt to prevent it from being raised by a key not having the
ward. Shoulders in the side of the bolt constitute forward and ward. Shoulders in the side of the bolt constitute forward and
backward stops, and act against a stud which bears against the backward stops, and act against a
side of the bolt to keep it in its place.

MPROVED WASHBOARD.
Westly Todd, wauseon, Ohio, assignor to himself and H. H. Williams,same place.-This invention furnishes a washboard which hall be so constructed that the gritty water from the soiled
lothes may run off at once, which will facilitate the washing and will produce a stroncer and more durable board than those con structed in the usual way. This washboard has on its back a zinc facing, provided with parallel corrugations, beginning at each side and meetin
said angle.
improved fireplace.
Molesworth B. King, Chicago, Ill.-This is an air-heating contrivance with a fire grate for heating upper rooms; and consists
of a fire grate, below which is an ash sifter over the ash pit for of a fire grate, below which is an ash sifter over the ash pit, for
sifting the cinders from the ashes as they fall into the pit, and having a rod extending out at the front or side of one of the joints for working it. There is a blower, in which a damper admits air to prevent the blaze from striking the enameled front of the fire-
place, and for admitting a regulated supply of air over the fire place, and for admitting a regulated supply of air over the fire
bed. A pipe admits fresh air from outside to the space under the bed. A pipe admits fresh air from outside to the space under the
fire grate, for supplying air for combustion. The inventor also fire grate, for supplying air for combustion. The inventor also
improved ironing apparatus.
Daniel Bennett, Chillicothe, Ohio--This invention consists of a eciporating iron, with contrivance for heating it by steam, which ing an extension joint, with stuffing box working correspondingly with the iron; and also of a work table having vertical and latera reciprocating movements, in combination with the reciprocating iron, to present the work to the iron. The work table is mounted on a support, which is adjustable laterally in the support by a
lever, to allow the goods to be shifted along the iron as the work lever, to allow the goods to be shifted along the iron as the work
progresses; and it is mounted thereon by springs which yield to progresses; and it is mounted thereon by springs which yield to
the inequalities of the goods, and press them up to the iron by an elastic pressure calculated to enable the iron to work easily and pass the goods uniformly.

NEW WOODWORKING AND HOUSE AND CARRIAGE BUILDING INVENTIONS.

IMPROVED WEATHER BOARDING.
Thomas Reynolds, East New York, N. Y., assignor to himself and
Jacob W. Erreger, of the same place.-This invention consists of Jacob W. Erreger, of the same place.-This invention consists of the siding, roof boarding, and other outside clapboarding of buildings, tongued and grooved in the lap to make tighter and more
efficient joints, for preventing the air from blowing in and out, and also to prevent dampness from working through. Siding has been rabbet jointed, but such joints, this inventor claims, are not sufficiently effectual for excluding damp air and strong winds; and he proposes to employ this method in roof boarding as well as siding.

IMPROVED SCROLL SAW.
Peter G. Giroud, Brooklyn, N. Y., assignor to himself and Theodore L. Jabine, of same place.-The object of this invention is to provide an improved scroll saw for sawing the minutest work in
wood, iron, and other materials, by providing a steady tension that wood, iron, and other materials, by providing a steady tension that out interfering in the least with the driving power. This is effected by a saw blade, clamped securely in such manner that it may
be putin or removed with great facility. The back of the saw blade be putin or removed with great facility. The back of the saw blad improved saw-filing machine.
Gershom Wiborn, Manistee, Mıch.-This invention consists of a carrying rod works, the said head being a solid block, with a bifur cated extension of one side forming a couple of legs, which strad-
dle the saw, and fasten the head to it by set screws, and one leg cardle the saw, and fasten the head to it by set screws, and one leg car-
ries an adjustable rod, which holds a gage, by which the position connection of the reciprocating rod-holding frame is adjustable in the head, to regulate the inclination of the file to bevel the top of bevel of the front of the tooth, so that the file may be fixed for bevel of the front of the tooth, so that the file may be fixed for
making both of these angles without changing either of its incl-
nations.
improved machine for dressing staves.
Adam Luckhaupt, Columbus, 0 .-This invention relates to a machine for manufacturing staves for beer legs and barrels of all kinds, in such a manner that the wood is cut transversely to the grain, and not in the direction of the same, the wood being readily
and without dangerinserted into the machine, and quickly cut to and without danger inserted into the machine, and quickly cut to the shape required. It consists of two series of cutters that are-
secured to shafts revolving in opposite directions, and adjusted at secured to shafts revolving in opposite directions, and adjusted at
such distance as to cut the shape of the stave. The tave issecured to the clamps, prongs, or jaws of a weighted and swinging frame that runs in arc-shaped guides, being locked in vertical position, in that runs in arc-shaped guides, being locked in vertical position, in
connection with a sliding table or guard plate, and fed to the knives by releasing the locking device, and swinging the frame in-
to horizontal position to expose the wood to the action of the to horizontal position to expose the wood to the action of the
knives. The finished stave is then released from the clamps and knives. The finished stave is then released from the clamps and
dropped, the frame being carried back to take up the next piece

f wood.

NEW AGRICULTURAL INVENTIONS

improved animal muzzles.

Rufus K. Blodgett, Morrison, Ill., assignor to himself and Heny M. Myers, of tame place.-The first of these two inventions is from sucking other animals or themselves. It consists in the them bination, with oach other, of a part provided with a knobbed arm and having a short perforated tenon upon its outer end, and a long tenon with two or more holes upon its inner end, the part provided with a knobbed arm, and having a hole or socket through its base, the open rings or links, and the plate having its uppe edge turned over. The second invention furnishes a device fo preventing calves from sucking cows, and for preventing cows
and other stock from sucking themselves or each other. It con sists of a muzzle formed of a suspended plate, hinged loops and wire spring clamp. With this construction the muzzle will prevent the animal to which it may be applied from sucking itself or an other, will allow the animal to eat and drink freely, and may be worn without pain or inconvenience.
improved cultivator plow and harrow.
Jacob Haynes, Basnettsville, w. Va.-The object of this invention is to furnish a machine for loosening up the soil and cultiva ting corn and other crops planted in hills and drills, and which
shall be simple in construction and easily guided and controlled. shall be simple in construction and easily guided and controlled The machine seems to be well adapted to the purposes for which
it is designed, but it is too compicated to admit of description it is designed, but it
without engravings.

ings.

Henry O'Neal, Concord, Tenn.-The object of thisinvention is to so constructed as to enable the planting to be done in perfec check row, without previously marking the land. The machine which appears to be well adapted to the purpose for which it is in ended, is too complicated for explanation without engravings.

IMPROVED STACK COVER.
George E. Tuck, Herbert Dorn, and JamesSteinson, Ridgway, Ia Thisinvention consists in a conical stack cover, provided with a ial is constructed in conical form, and having a rope or cord round the base, with rings on it for hitching on the stay ropes to keep the cap in place, and stay the stack against the wind. The cap may be made of waterproof material; but probably ordinary canva or loop is placed at the apex of the conical cap, so that the latte may be conveniently lifted with a rod or pole having a fork at one nd, and then dropped over the grain or hay without the trouble clmbe, by lader or
improved plow for laying off land for tobacco John Preston and Charles W. Tennis, Millford, Ky.-This invention is an improved plow for laying off land and making the hills or tobacco, cabbages, and other plants cultivated by transplant ing, so constructed as to open a furrow, roll the land, and mark the places for the hills. It consists in a wheel having diamond-shaped
blocks attached to its face, in combination with a beam or frame and the plow, and in combination with guide arms, sliding band and adjusting lever, the beam or the frame, and the plow.

IMPROVED PLOW.
Jacob Heckendorn, Ann Arbor, Mich.-In this plow, a skiver position will not be chanced by the lateral adjustment of the beam, that it will leave space for the ready escape of rubbish, that it may be adjusted to work deeper or shallower in the ground, and will hrow the rubbish into such a position that it will be covered by he furrow slice. With this construction, a skiver cuts a smooth ean groove or channel, and throws the soil and rubbish in fron nd the plow beam may be adjusted without affecting the position of the skiver and a large space will be left beneath to allow rub bish to pass off freely.

IMPROVED ANIMAL TRAP.
John H. Morris, Seward, Neb.-This invention is an improved hutesthrough which cattle are loaded upon cars, and for othe imilar uses, which shall be so constructed as to remain open except when an animal may attempt to go out, and which will again open s soon as he desists from his attempt. It consists in the combination of the hinged gate and the tilting platform, with the end or the box, and the drop gate with the main passage, provided at one or both ends with a hinged gate and a tilting platform
improved riding harrow.
Isaac N.Harris and William H. Bowne, Pavilion, Ill.-This inven ve in operation, envenient in use, easily guided and controlle and of lightdraft. The wheels revolve upon the journals of the axle. The axle is made long, so that the harrow frame may be re-
eived between the wheels. To the middle part of the axle is at ceived between the wheels. To the middle part of the axle is at-
tached a frame which consists of two side bars, connected at their tached a frame which consists of two side bars, connected at their
ends by two end bars. The tongue, to which the draft is applied, ends by two end bars. The tongue, to which the draft is applied,
by which the harrow is guided, is attached to the axle and to the front cross bar of the frame. The harrow frame is made in two parts, halves or sections, each section consisting of six, more or less, parallel cross bars, to which the teeth are attached, and to which, near the ends of their upper sides, are attached two longitudinal bars. To the forward end of the longitudinal bars of each part of the frame are attached the lower ends of two chains which
cross each other, and are hooked upon hooks attached to the midcross each other, and are hooked upon hooks attached to the mid-
dle and outer parts of the long cross barattached to the front bar of the frame, consisting of the side bars. To the rear ends of the ongitudinal bars of each part of the frame are attached the lowe ends of two chains, the upper ends of which are attached to the middle and outer parts of the axle. By this arrangement of th draf chains the parts of the harrow frame are free to adjust the of and at the same time will be kept in their proper relative posi and at
ions.

NEW MECHANICAL AND ENGINEERING INVENTIONS.

IMPROVED KEY BOARD FOR TYPE WRITER.
Philander Deming, Albany, N. Y.-The object of this invention is to improve writing machines where a stenotypic key is employed; and it consists in using a divisor bar with key board, so as
to permit the instant working of the key from any part of the board, the said bar being weighted and pivoted or spring-carried, so as to rise and fall like a key, and arranged diagonally, midway, so as to rise and fall iike a key, and arranged diagonally, midway,
around, or otherwise with respect to the keys. It is also to be
connected with the stenotypic key, either permanently or by a swing button.
improved apparatus For loading wagons.
Anderson Taylor, Fairville, Mo.-This invention relates to that
class of elevators which are used to raise heavy articles for loading class of elevators which are used to raise heavy articles for loading
wagons; and it consists in a lever supported on suitable frame work, to the shorter end of which a platform is suspended, and the longer end engages with a ratchet, the whole so arranged that red hight, when it will be retained by the ratchet.
improved grate for brick kiln.
Alfred Hall, Perth Amboy, N. J.-This invention consists in a hary dead plate and door, so arranged as to nary dead plate and door, so arranged as to be capable of being
lowered into a horizontal position when the kiln is charged, but
may be readily raised into an inclined position, so as to partially may be readily raised into an inclined position, so as to partially
close the mouth of the kiln. The advantage claimed for the invenclose the mouth of the kiln. The advantage claimed for the inven-
tion is that the fire may be readily cleaned without lowering the tion is that the fire may be readily cleaned without lowering the
grate, thus avoiding the admission of a volume of cold air, also grate, thus avoiding the admission of a volume of cold air, alsing which is inevitable when doors are used. Another advantage is that the quantity of air admitted to the kiln through and above
the grate is such as to permit the kiln to burn evenly from front to rear, effecting a saving in time and fuel, and producing brick of a uniform color and quality

IMPROVED LOCK WORK ATTACHMENT FOR CLOCK. John W. Williams, New York city.-The object of this invention
is to improve the construction of the works of striking clocks in is to improve the construction of the works of striking clocks in
such a way that the hands may be turned back to set the clock such a way that the hands may be turned back to set the clock
without injuring the works. It consists in the stop pin, attached without injuring the works. It consists in the stop pin, attache
to the frame, in combination with the lever and the cam that trip the striking mechanism. To the frame is attached a stop pin for the lever to rest acainst to prevent its forward end from being pressed inward toward a post when a cam is passing over it, and
which would prevent it from being again operated to release the striking mechanism.

MPROVED CRATE FOR SEWING MACHINE.
Andrew J. Callahan, Palmyra, Ill.-This, invention consists of a cage or crate for sewing machines and the like, constructed to be
taken apart and pqcked in compact form for return, and having taken apart and pqcked in compact form for return, and having
braces and binding screws to maintain it in the shape for containbraces and bindin
ing the machine.
mproved car coupling
William L. Nuckols, Millville, Mo.-This coupling is an improvement in the class known as automatic ; and the feature of novelty
is the means for holding the link at various angles, to adapt it to is the means for holding the link at various angles, to adapt it to
enter the drawheads of other cars of the same or different hight, and engage with a pivoted coupling pin or other equivalent device, and thus couple two cars together. The bumper heads have long tapering cavities, and a double incline is formed on or attached to
the floor thereof. The L -shaped coupling pin has trunnions and is the floor thereof. The L-shaped coupling pin has trunnions and is
held in place by dogs. When in the vertical position, thepin abuts held in place by dogs. When in the vertical position, thepin abuts
the end walls of the slots in the top portion and floor of the drawthe end walls of the slots in the top portion and floor of the draw-
heads, and is thus enabled to withstand the strain to which it is necessarily subjected by applied traction. In the rear corner of in uncoupling the cars; or a ring may be attached to it, to receive a chain or rod for uncoupling.

IMPROVED MOTIVE POWER.
Adam Graner, New Orleans, La.-This invention consists in com-
bining a driveshaft, counter shaft, and saw shaft, the latter provided with a roll arranged thereunder. The crank for turning the driving shaft by hand has a handle, to which is attached a connecting rod which, at the lower end, connects with a foot treadle,
so that the operator may work with both. It is also proposed to so that the operator may work with both. It is also proposed to
improved feed water heater and filter. Samuel A. Shoaff, Pennville, Ind.-This invention relates to a
feed water heater and filter, in which the water is first thoroughly feed water heater and filter, in which the water is first thoroughly heater, so as to deposit the lime and then convey the water to the filtering receptacle below, where the water is conducted through
the compartments without being agitated by the steam. It conthe compartments without being agitated by the steam. It con-
sists of a feed water heater arranged above a filter, the beater besists of a feed water heater arranged above a filter, the beater be-
ing made of inclined sections, with lateralsteam tubes or passages that extend alternately from one side to somedistance of the other
side, to conduct the water around the same. The water is conveyed through a connecting pipe to the filter, that is provided weyed through a connecting pipe to the filter, that is provided arated by vertical partitions having alternate openings at the top or bottom.
improved car axle box.
George W. Miltimore, Janesville, Wis.-This invention relates to improvements in that class of caraxles in which a stationary inner
and a revolutionary outer wheel, carrying axle or sleeve, are employed, so thatthe lubrication of the journal box from the oil reser voir is accomplished, to the exclusion of dust, the drip oil col-
lected, and the journal box allowed to oscillate on the stationary axle to conform itself to a true bearing throughout, according to the spring of the axle produced by the weight of the car. The ner, and the wearing out of the journal box is diminished by distributing the friction throughout the length and circumference o the box, in consequence of the oscillating motion of the journal
boxes. Improved railway Signal.
James E. McCarty, Cold Spring, N. Y.-This in proved signaling device for railroad tracks, by which the track tender or the automatic action of the train can readily set a tor pedo signal to warn the trains in either direction of the danger
ahead, and make them proceed cautiously, or stop until the cause of danger is ascertained and removed. It consists of a torpedosetting and signaling device that is operated by wire connection
with suitable ratchet and pawl devices at some distance from the danger signal, or at intermediate points, or by suitable mechan ism worked by the train itself.
improved fanning mill.
Charles Saunders, Cape Vincent, N. Y.-The chief features of
this invention are an improved feed apparatus, and arrangement this invention are an improved feed apparatus, and arrangement
of chaffing, screening, and separating shoes independently of each other, for regulating each according to its needs, and for and also of adjusting contrivances for regulating the inclination of the screens.

IMPROVED COMBINED LIQUID PUMP AND FUNNEL. Henry A. Guignon, Corry, Pa.-This invention is an improved of the barrel and the waste liquid returned back to the same; and it consists of a pump passing through a bung into the barrel, the
bung being recessed and connected by a pipe with a funnel and bung being recessed and connected by a pipe with a funnel and
grate for conveying the waste liquid back into the barrel. The pump may be readily detached from the bung, when desired to be used witbout the funnel, for pumping
into another, and for other purposes.
improved composition rubber for millstones. John H. Miller, Mount Union, Pa.-This improved burrmillstone
rubber consists of soft fire clay, about 9 parts; silver sand, 1 part and ground emery, 4-100 parts, prepared as follows: The fre clay and ground emery, $4-100$ parts, prepared as follows: The fire clay
is first ground; the silver sand and emery are then added, and a sufficient quantity of water to mix and prepare the mass for mold-
ing; it is molded into the form required, and dried and baked. ing ; it is molded into the form required, and dried and baked
The object is to make a rubber for smoothing and truing the face and working out the furrows of millstones that will be more effi cient a
used.
improved gas regulator.
CharlesC. Place, Somerville, Mass.-This invention is intended to furnish an improved device for attachment to a gas pipe to check
the pressure of the gas and purify it before it is allowed to pass to the burners. It consists in the combination of a T pipe, provide with the cap and the filtering box, with the lower part of a ga regulator for purifying the gas introduced into said regulator, and in the gas regulator formed by the combination with each other of
the lower part, provided with the shoulder, the middle part prothe lower part, provided with the shoulder, the middle part pro-
vided with the V-shaped ring flange to receive quicksilver, the cap, the low
justing rod.
and John car replacer.
Henry C. Hosier and John L. Watkins, Sugar Notch, Pa.-The object of this invention is to replace engines, box cars, freight
cars, etc., upon a track in cases of wreck and other accidents. A bar has the forward part made with a base something like the base of an ordinary rail, and the rear part is made without a base, so
that it may lie close to the rail, and with its rear end overlapping that it may lie close to the rail, and with its rear end overlapping
the said rail. A hook clamp is so formed as to hook over the head of said rail. A hook clamp is so formed as to hook over the head
of a rail, and have one end or arm rest upon the base of said rail. The clamp is swiveled to the end of the bar so that it may be rail of to adapt the bar to be placed upon the outer side of eithe clined or beveled off, to enable the wheels to pass upon it readily The rear part of the bar is connected with the rail by rods, the inner ends of which have hooks formed upon them, to hook upon
the head of the rail. The outer ends of the rods pass through holes the head of the rail. The outer ends of the rods pass through holes
in the bar, and have holes formed through them to receive keys in the bar, and have holes formed through them to receive keys
by which the said bar is secured in place upon the said rods. made about six feet line rails of the track. This bar is made about six feet long, has its forward end beveled off or in-
clined, and is connected with the rail by hook rods and keys. When the engine or car is entirely off the track, a latch or false frog is used. The latch is an iron bar of suitable length and
strength, the end of which are beveled strength, the ends of which are beveled off upon their upper
sides, and have U clamps attached to their lower sides. The latch is placed upon the rail diagonally. The U clamp of the oute end of the latch is hooked upon the end of a piece of rail in the
same way. In this case, the first mentioned bar should be lengthened by another piece of rail. It is not possible to give a clear the operation of this device without engravings.

NEW CHEMICAL AND MISCELLANEOUS INVENTIONS.

IMPROVED COAL BASKET
Charles Hager, Watertown, assignor to Albert H. Bullard, Lewis,
N. Y.-This invention consists in constructing a portion of end of a coal baskition consists in constructing a portion of each for a portion of the splints of which these baskets ar: now made the object being to make those parts which are subject to most the baskets are used for feeding furnaces, more durable, and it metal easier than from the wooden splints. The common basket give out in the splint parts by wear, or by burning out when the
baskets are used for feeding fires, while the other parts are still baskets are used for feeding fires, while the other parts are still
good, making a considerable amount of waste, which is avoided by this improvement, which makes the baskets as durable in thatpart s in any other.
improved mucilage holder.
Joseph Vincent Browne, New York city, assignor to himself and George W. Ross, Magog, Canada.-This is a mucilage bottle having upplying the sponge with mucilage, to use the sponge for ing it; and it consists of a cap for the cork and sponge, having vent in the top to be used for forcing the mucilage into the sponge when a large supply is wanted, by closing the vent by the finger
placed over it, or other means, and compressing air in the placed over it, or other means, and compressing air in the bottle
by quickly putting on the cap, and then opening the vent to let the air escape, when it forcessome of the mucilage along with it into the sponge. The cork has a shoulder fitting on the top of the to facilitate the removal of it for refilling the bottle. The far, and is designed to lay on the side to prevent the mucilage from draining back into the bot
from sitting upright.
improved lubricating compound
Jasper G. Upper, St. Thomas, Canada.-The object of this invendon to furnish an improved lubricator for the journals of cars, steamboats, and machinery, to keep them from heating and to cool
them when hot. It consists in the lubricator, formed of tallow, rosin, salt, sulphur, and plumbago, in certain proportionsand com
IMPROVED HALTER.
John Cronin, Boston, Mass.-This is a contrivance for making a halter for horses more simple and adjustable, and without so many vention consists of check straps, arranged in a hing. The in loop for the nose, instead of connecting with a ring at each cheek, to which the nose piece also connects, making the halter much and the nose piece will be adjusted alike for large or small horses IMPROVED DESSERT COMPOSITION.
Leopold Schepp, New York city.-The object of this invention is to prepare an article of food from cocoa nuts, to be used as a desnut drops, by which they will preserve the flavor and richness of the nut for an indefinite time without being liable to become ran-
cid and stale, as do the present cocoa nut preparations. It consists of a mixture of purified or desiccated cocoa nut and cocoa nutoil,
with the substances commonly used in the manufacture of cocoa

IMPROVED METHOD OF FILLING TEETH.
Romalders Noble, Brunswick, Ga.-Tbis invention consists of ut in the cavity and hardens readily, by a cap of fine rolled gold, whing notched or dental or headed pins, or other anchorages, Which is pressed into the filling while in a soft state, so as to be
secured when the filling hardens, and thus securely hold the cap improved sleeve button.
Thomas W. F. Smitten, Brooklyn, N. Y.-This invention consists in bending the shank of a disk sleeve button to one side, and joining to the end thereof a latch provided with a toe extending rear-
wardly beyond its pivot. The pivoted latch has a short arm beond the pivot, to act as a toe on the cuff to prevent it from swing g open, said protection being sufficiently short to allow the late to swi
out.

IMPROVED FRUIT DRYER.
Samuel W. Hope, Dover, Del.-This invention relates to a drying tor or hoisting apparatus, and communicating, by means of a opening in the partition, through which trays of fruit may be slid from one elevator on to the other, and thus passed from the firs compartment, in which the moisture is mainly eliminated from the ruit, to the second compartment, where the drying process is per ected. The invention further relates to the construction of th in the left hand compartment. Thd when the moisture has bee mainly eliminated they are slidinto the second or right hand compartment, where the drying process is carried to completion, in an atmosphere containing far less moisture than the first.
improved shoe.
Martin R. Bodkin, Jersey City, N. J.-Heretofore the practice has been to provide such shoes with a single row of buttons and a single folding flap, having a corresponding number of buttonholes,
with two rows of buttons and two folding flaps. In both cases however, the edge of the flaps is subject to rapid wear by reaso of friction with the bottom of the pants, and is also liable to b
torn in the operation of buttoning, and to be otherwise abrade orn in the operation of buttoning, and to be otherwise abraded is attached to the tongue or center piece of the shoe, and er ch of the two flaps is provided with buttonholes, and likewise so formed and attached to the shoe as to adapt it to be buttoned under or over the other flap. Hence, when the edge of one flap is worn, abraded,
or otherwise injured, it may be buttoned under the other flap, or otherwise injured, it may be buttoned under the other flap,
which, not having been subject to wear, 1 s fresh and new in ap which, no
pearance
improved harness pad
Mirom V. Lomgsworth, Delphos, O.-The object of this inven ion is to save labor and lessen the cost in making harness pads, The upper side of the pad is covered with a leather plate. Two metal plates are interposed between the saddlestrap and the leath or plate, and extend from the lower end of said plate, or from nea aid lower end, nearly to the water hook. The side edges of the plates may be bent upward at the side edges of the strap to keep
the said strap from being drawn out of place. To the lower ends the said strap from being drawn out of place. To the lower ends
of the plates are attached, or upon them are formed, loops or rings of the plates are attached, or upon them are formed, loops or ring and the straps that support the traces are connected, so that the movements of the traces cannot cause the pad to work upon an chafe the horse's back.

improved faucet

Hilar Ohnmacht and Robert Weiss, New Orleans, La.-This is an Hilar Ohnmacht and Robert Weiss, New Orleans, La.-This is an
improved faucet for beer and other barrels, by which they may be mproved faucet for beer and other barrels, by which they may be driving in of the faucets and consequent damage to the barrel heads, and the use of the casks, will be dispensed with. It consists
of a solid plug screwed into the bushing of the faucet hole, and of a solid plug screwed into the bushing of the faucet hole, and
provided with a smaller turning plug, having a curved exit chanprovided with a smaller turning plug, having a curved exit chan plug, so as to connect and disconnect the channels, and thereby cloge or open the faucet

IMPROVED HAWSER CLAMP.

William H. McGill and Frederick Bowen, Angelica, Pa.-Thisinial construction, and consists of wedge-shaped clamp pieces bind ng on the rope, and of wedge keys and pins that lock the clamp pieces in the socket. The clamp pieces are firmly locked by the wedge keys, firmly driven in between the socket and clamp pieces, and fastened by lateral pins passed through guide holes of the
sockets. The rope is thus ricidly fastened to the socket without sockets. The rope is thus rigidly fast
danger of getting detached therefrom.
improved cartridge-loading implement.
William W. Arnold, Rushville, Ind.-This invention relates to that class of instruments which are used in loading and capping metallic cartridges, and it consists of a lever combined with othe metallic cartridges, and for removing cartridges from the gun also, for remov ng the spent cap from the cartridge. The manner of using the instrument isas follows: In filling cartridges, thehead is used to force the powder and wads home. Caps are placed on he cartridge by placing the cartridge shell in a ring, putting the ap on the anvil of the cartridge, and forcing it down with the le er. After a cartridge has been discharged, it may be removed from
the gun by placing the hooks on the flange at the end of the shell and drawing it out by the ring or lever. The spent cap is remove from the cartridge shell by forcing the pin against it from the in side of the shell, the head serving as a guide, insuring its entrance at the cap aperture

NEW TEXTILE MACHINERY.

IMPROVED PAPER COP TUBES.
John McCausland, Providence, R I.-This invention consists a a new article of manufacture in the particular construction of apr, and hing a bushing of wood located in the upper end, direct y at the edges and flush with the same.

IMPROVED CARDING MACHINE.
James C. Ryan, Amesbury, Mass.-This invention consists of an attachment to carding machines, for making nubbed and clouded or imitation printed yarn, the same being intermittent feed rollers, a knife for holding back the yarn or sliver, and a wipe roll, by
which the yarn is supplied to the doffer of the carding machine which the yarn is supplied to the doffer of the carding machine,
and there combined witn the stock,forming the groundwork of the yarn. This machine will make nubbed yarn with the webs any dis ance he sliver being fed in full size when the knife is raised, and checked back and stretched when the knife is closed on the feed ferent colors, as many different colors as may be desired being em loyed, and being separated from each other by passing through
different guide eyes. For making clouded yarn, the knife will be akerent guide eyes. For making clouded ya

Gusiness and "ectsmal,

 The Charge for Insertim under this head is One Dol-lar a Line for each insertion. If the Notice exceeds Four Lines, One Dollar and a Half per Line
will be charged.

Agricultural Implements and Industrial Machin
ery for Export and Domestic Use. R.H.Allen $\&$ Co.,N.Y. Walrus Leather, Walrus Wheels, and Polishing
Material. Greene, Tweed $\&$ Co., 18 Park Place, N. \mathbf{Y}. Bake's Belt Studs, Belting, Packing, Hose and
Manufacturers' Supplies generally. Greene, Tweed \&

,

Want to Sell Letters Patent for Rubber Shoe
Heel Supporter,or take royalty. Martin Bock,Berwick, Pa. For 2 d Hand Portable and Stationary Boalers
and Engines, address Junius Harris. Titusville, Pa. Models for Inventors. H. B. Morris, Ithaca,N.Y Wanted to Buy Patents. of Saleable Articless in
Iron or Brass. Address, with particulars, ". Star," North 8th St.. Philadelplilia, Pa
Jethro Wood.-If any of our readers cansend or or
refer us to any publication containdng a portratt of refer us to any publication containing a portralt or
Jethro Wood, the plow tnventor, we should be obliged

Yacht and Stationary Engines, sizeses 2,4, 6 and
H. P. Best for price. N. W. Twiss, New Haven, Conn

patrons.
Screw-Cutting Foot Lathes. w.e.Lewis,Cl'v’a,
, For the cheapest and best Small Portable Engine
manufa. ured. adress Peter Walrath.Chittenango, V . Hotchkiss Air Spring Forge Hammer, best in the
market. Prices low. D. Frisbie $\&$ Co., New Haven, Ct. Patent Scroll and Band Saws, best and cheapest
in use. Cordesman, Eman $₫$ Co., Cincinnati, onio. M. Shaw, Manufacturer of Insulated Wire for
galvanic and telegraph purposes, $\mathbf{x c}$.,259 W. Fr . th St., N. Y . For Sale, together or separately-Two 11 in. hy
draulc Presses; Tubular Boiler, new, built by Fletcher $\&$ Harrison; steam Engine, 25 h.p., built by woodruff
Beach; three sets. Hydraulic Pumps. Robert Dillon, 3 Searh; three sets Hydra
Burling Silp, New-Ork.
F. C. Beach \& Co.,., makers of the Tom Thumb
Telegraph and other electrical machines, have removed to 520 Water Street, New York.
Pat'd Graining Stencils-J. J. Callow,Clevel'd, 0 Lathe Dogs, Expanding Mandrels, Steel Clamps
\&c.,for Machinists. Manufactured by C. W. LeCount
Dynamo-Electric Machines for electro-plating
and other purposes. Send for illustrated circular. W. "Abbe" Bort Forging Machines and Palmer
"ower Hammers a specialty. Send for reduced price ists. S. C. Forsaith \& Co., Manchester, N. H.
400 new \& 2 d hand Machines, at low prices, fully described in printed l1sts. Send stamp, stating just what
you want. S.C. Forsaith \& Co., Manchester, N. H.
Driving Belts made to order, to accomplish work
required. Send full particulars for prices to C. W. Arny, required. Send full particulars for prict.
148 North Third St., Phlladelphia, Pa.
Celebrated John Scott Scroll and Jig Saws made
o order, of Jessup's superior cast steel, by I. Roberts, to order, of Jessup's superior cast steel, by il.
108 Hester Street, New York. Send for circular.
Scientific American-The early Volumes for
Sale-very cheap-either bound or in numbers. Address . F. R., Box 773, New York City.
Hydrant Hose, Pipes, and Couplings. Send for
prices to Bailey, Farrell \& Co., Pittsburgh, Pa. Machine-cut brass gear wheels, for models, \&c
List free. D. Gillert \& Son. 212 Chester St., Phila., Pa. "Dead Stroke" Power Hammers-recently great-
ly improved, increasing cost over 10 per cent. Prices re-
duced
 Shingles and Heading Sawing Machine. See ad-
vertisement of Trevor \& Co., Lockport, N. Y. Steel Castings, from one lb.to flive thousand lbs.
Invaluable for strength and durability. Circulars free.

For best Presses, Dies, and Fruit Can Tools, Bliss
Williams, cor. of Plymouth and Jay, Brooklyn, N. Y. For Solid Wrought-iron Beams, etc., see adver-
tisement. Address Union Iron Mills Pittsourgh, Pa., for lithograph, \&c.
Hotchkiss \& Ball, Meriden, Conn., Foundrymen to order. Job work solicited.
For Sold Emery Wheels and Machinery, se
the Union Stone Co., Boston, Mass., for circular. Hydraulic Presses and Jacks, new and second
nand. Lathes and Machinery for Polishing and Buting
Metals. E. Lyon, 470 Grand Street, New York. Diamond Tools-J. Dickinson, 64 Nassau St., N. Y. Temples and Oilcans. Draper, Hopedale, Mass.

J. R.'s observations on scarlet fever and diphtheria have been handed to a prominent phy-
sician for reply.-T. E. is informed that we do sician for reply.-T. E. is informed that we do
not know the article he mentions.-W. H. H. can not know the artcelings from rust by the means
protect his iron castin.
described on p. 169, vol. 33.-G. A. C. is informed described on p. 169, vol. 33.-G. A. C. is informed
that writing paper is glazed by rolling it under that writing paper is glazed by rolling it under
immense pressure.-J. R. will find recipes for bronzing iron on brass on p. 283, vol. 31.-J. C. G.
can raise the pitch of his tuning fork by filing it can raise the pitch of his tuning fork by filing it
shorter. It cannot be lowered without lengthshorter. It cannot be lowered without length-
ening it. - W.H. H.'s idea as to burning steam is a chimera--A. K. will find a good recipe for indel-
ible ink on p. 129, vol. 28.-C. J. C. is informed that the oxyhydrogen light will probably suit his purpose.-E. W. M. should address the Signal Service Bureau, Washington, D. C.-M. D. K. will
find a recipe for a fugitive ink on p. 267, vol. 34 . scribed on p. 11, vol. 32.-F. A. L. will find that scribed on p. 11, vol. 32.-F. A. L. Will find that
chloride of calcium will absorb the moisture in his refrigerator.-C. K. W.'s idea that machinery
runs better atnight than in the daytime is perfectruns better atnight than in the daytime is perfect-
ly absurd.-C. A. F. will find a recipe for fulminly absurd.-C. A. F. will find a recipe for fulmin-
ating powder for cartridges on p. 90, vol. 31.--B.
F.K. will find a good recipe for ink on p. 250, vol.
34.-A. C. G. will find that the proportions of an 34.-A. C. G. will find that the proportions of an
induction coil are fully described on p .344 , vol. (1) M. E. B. says: Please give me a recipe for removing stains from marble table tops, sup-
posed to be caused by lemon juice? A. If the posed to be caused by lemon juice? A. If the
stains mentioned are from lemon juice, they canstains mentioned are from lemon juice, they can-
not be removed, as the organic acids they contain not be removed, as the organic acids thy moistening the spots with benzole and covering with
hot pipe clay. If this does not remove them, it hot pipe clay. If this does not remove them, it
will be necessary to resort to mechanical means.
(2) F. G. asks: By what rule do the "Far-
mer" and "Family" almanacs give the times of mer and "Family almanacs give the times of
rising and setting of the sun? A specimen now before me gives, for example, on November 1,
sunrise, 6 h . 29 m . ; sunset, 4 h .59 m . Now assuming the time for rising to be correct, that time, taken
from 12 hours, would leave 5 h .31 m as the correct time of setting. Here is an error of 32 minutes. A. On November 1 the sun is south of the equator $14^{\circ} 33^{\prime}$, the length of the day 10 hours $30 \mathrm{~min}-$ utes; one half of this, 5 h .15 m . subtracted from 12 , would make the sun rise at 0.45 , but the sun is fast of true time 16 minutes on this day. This makes him rise at 6.29 , and set 16 minutes earlier, 4.59 ,
making the forenoon 32 minutes longer than the making the forenoon 32 minutes longer than the in which the sun is on time, April 15, June 14, Auust 31, and December 24.
Does the attraction of magnetism vary as the square or cube òf the distance? A. There are
some cases in which it varies inversely as the ube, but the attraction of terrestrial magnet(3) C. M. asks: What is the number of hreads per inch on the "society screw" of mi (4) D. H. asks: What color of paper is best to write upon, for a person having weak eyes A. Green or blue, or an intermediate color, if
there is light enough not to tax the eyes, as these there is light enough not to tax the eyes,
colors reflect very little of the heat rays.
(5) E. O. K. asks. 1. Please give me a re ipe for making a bright red mortar for pointing foundation wall? A. Take Spanish brown, dry suit. 2. Would red lead be affected by the lime? A. That you
would show.
(6) S. P. M. says: What size of paddle wheels do we need on a steamer 45 feet long, and t both ends, and draws, when loaded, from 14 to 18 inches of water. We have a 10 horse engine to run her, and plenty of power to spare. A. By
using 10 feet wheels with your present engine, you might obtain a speed equal to 7 miles an hour or you might get even better results by using feathering wheels of the same diameter as the present ones, $71 / 2$ feet.
(7) J. D. E, says: The flint glass of my tel scope is very hazy, having a scum or smoky apHow can I remedy it? A. This trouble is quite common with heavy flint glass, and the only way
to remuve it is by polishing. When it is not very to remuve it is by polishing. When it is not very on a piece of chamois leather. If this does not make a polisher about one third the diameter. of the lens. With this and a little rouge and wate the lens may be cleaned. Care should be taken to go all over the glass evenly.
(8) E.G.F.asks: Can you tell how to remove a bad echo from a schoolroom, 26×29 feet, with the room, between two doors, on a slightly raise platform. The stove is a little in front of the platform. A recitation seat runs along the sides of
the room, and between are low chairs and desks for nearly 100 scholars. There are three windows doors. Teachers complain of sare throats and tired lungs after having charge of the room a short time, of a confusion of sounds when the scholars are only moderately restless, and of the The room is so hard to teach in that a partition, an addition, or any reasonable remedy is to b tried if we can learn what will be best. A. It
probably will be found that the difficulty in this probably will be found that the difficulty in this
case arises from the bad shape of the room, it be case arises from the bad shape of the room, it be-
ing nearly square. It has been found that long ing nearly square. It has been found that long
and narrow rooms, with the speaker at one end, and narrow rooms, with the speaker at one end,
have been the best for the voice. The auditorium of the Academy of Music, which is the principal ooom of this kind. If you should partition off a small room in the corner upon each side of the platform, you might help it : say 9 feet wide and
12 feet long, triangular, with the partition you in12 feet long, triangular, with the partition you in-
sert curving outwardly towards the platform upon a radius of 13 feet
(9) F. H. N. says: In the house I live in is weell, running down from the skylight, 8 feet x light and ventilating some rooms which have no opening on the street, and which, otherwise,
would be dark and close. Now it is a great source of annoyance that all conversation on the fourth floor can be heard in the lower rooms, and vice
versa. Can you tell me of any means or med versa. Can you tell me of any means or method
that may be employed by which this may be obviated? Could it not be done by means of crossed wires, that is to say, wires crossing each other at angles of about 45° ? A. We have no information that would warrant the success of such a plan. Can you not put in a horizontal sash, and procu
means of ventilation in some other way?
(10) C. H. asks: How may I find when the the stars in the Dipper? A. The line, N S, repre-
north pole, and the lines $0-11,0-12$, etc., are 1 hour apart, and show sidereal time. A E are the
Pointers. It will be seen that the north star and

the next to the last star in the handle of the Dipper are on opposite sides of the poles, so that
when a plumb line will bisect both, they indicate the true meridian very nearly. They now pass
(11) W. W. L. says : About four years made an upright refrigerator; but not liking e metallic taste which a metal lining gives to ood, I left it unlined, but very foolishly varearly every article of food placed in it tastes of the varnish. I have tried scraping and scrubbing the wood, but the smell and taste of varnish still remain. Will a coating of shellac remedy it?
if not, what will? A. Coat the interior evenly with melted paraffin. It should be applied rapidy with a good
(12) W. C. A. says: The inclosed drawing ill show you four 12 inch gear wheels working 2 inch. The cord at the right runs off a drum 4
ind nches in diameter. What amount of weight will be required to lift the 1 lb . at the left, and
 or the amount of weight required to move them
A. Disregarding friction, the power and weight re to each other in the inverse ratio of the dis ances passed over by each in the same time. 2 there any rule for calculating the power of coil
springs? A. The power of a coiled spring is the product of the force with which it tends to unwind multiplied by the distance passed over by wind m
the po
time.
(13) A. I. asks: Can you recommend with
certainty of success some inexpensive formula certainty of success some inexpensive formula barrel of new cider, add $1 / 2$ part sugar and weeks in cool place, then rack off into a wel washed cask or barrel, and add from 1 to 2 dozen whites of eggs; let stand another two weeks,and then rack off into another barrel. Add en whisky, stirring well, then bottle. Thi callons of whisky, stirring well, then bottle. Ther. What do you mean by $1 / 2$ part sugar? A. The rethat the proportion of sugar should have been tated more definitely as about $31 / 2 \mathrm{lbs}$. to the barrel. If the liquid is bottled, the bottle contain-
ing it should frst be placed with loosened stoping it should flrst be placed with loosened stophould then be gradually raised to about $180^{\circ} \mathrm{Fah}$ and the
(14) F. B. L. asks : What can I put fruit up in so as to preserve it in its natural form an
color? I want to carry the fruit round as samples . Try a weak solution of good carbolic acid in
(15) J. H. G. asks : 1. How may I distin guish pure rubber? A. Pure rubber is of a dark, semi-transparent nature, quite elastic, but easily
indented with the teeth; in hot water it swells up and becomes quite plastic. 2. How is rubber dis solved in a liquid, and how long does it take
A. When plastic it should be placed in the solv ant; hot naphtha or benzole is preferred, the solv ber having been previously cut into as smal shreds as possible. In this condition it swells up very considerably and partially dissolves in a few hours. In order to obtain a rubber cement, the solution, together with the softened pasty mas, which should be well stirred and kneaded durin the operation, may be evaporated down o
water bath, until of the proper consistence
(16) Mrs. W. C. A. asks: 1. Is there any from a well which has not been used using wat year? A. If the water contans any notable quantity of organic matter,there is. 2.Is there any way to purify the water if it is not fit to use? A.
One of the best remedies is to keep the water unning for some time before attempting to use it. The addition to the water of a quantity of finely crushed, well burnt charcoal would also
advisable under the above circumstances. (17) W. R. B. says: I have some vine charcoal in a barrel but it does sand and Would you advise anything in preference to charcoal filter? A. Try the following: Warm some finely crushed charcoal or bone black,throw this into the vinegar and stir occasionally for about 24 hours; then draw off the vinegar, mix and filter through a bag of fine linen.
(18) A. B asks: Please give me-a recive for making a polish for wooden turned work, to be
used on the work while in the lathe? A. Try a ased on the work while in the lathe? A. Try a
mixture of boiled oil and turpentine, well rubbed mixture of boiled oil and turpentine, well rubbed
in with pieces of rag. 2. Is there any other in with pieces of rag. 2. Is there any other
method of bluing iron orsteel than by heating it ? A. Dissolve 4 ozs. hyposulphite of soda in $11 \frac{1}{2}$ A. Dissolve 4 ozs. hyposulphite of soda in
pints of water, and then add a solution of 1 oz.
and acetate of lead in 1 oz . water. Place your articles
in the solution, and heat to the boiling point. Your articles, if of ron or steel, will be blued. (19) A. B. says: We have two engines, 7
inches bore and of 12 inches stroke, attached to one shaft. They have reversible link motion, and are each provided with the ordinary slide valve. They make 175 revolutions per minute with a
pressure of steam of 85 lbs. to the square inch. One of the engines has too much lead when on either center. We have tried several plans to shorten the stroke of the valve, but without any
success. Will you please give us some informasuccess. Will you please give us some informa-
tion? A. Xou must take the lead off your valve by setting the eccentric back
(20) W. B. a.sks: 1. Can charcoal be ob. tained in a liquid form for commercial purposess?
$\begin{array}{ll}\text { A. There is no solvent for charcoal. } & \text { 2. How can }\end{array}$ A. There is no solvent for charcoal. 2. How can
oils be filtered through charcoal, and the oil residuum remaining in the charcoal be extracted and saved? A. Digest the charcoal with the adhering oil in bisulphide of carbon. The oil may
be recovered by distilling off the volatile bisulbe recovered by distilling off the volatile bisul-
phide in a suitable retort, at a gentle temperature
(21) J. C. ask: I have an iron pipe convey ing water from a cistern for culinary and other
purposes. The water becomes so highly impregpurposes. The water becomes so highly impreg-
nated with iron as to render it quite unpalatable. A. Add a little clean lime water (experience
will teach you the proper quantiry) and flter will teach you the proper quan
through a sand and charcoal tub.
(22) J, S. F. asks: How is the lime water mentioned on p. 7 , vol. 34 , prepared? A. Digest a
quantity of good quiclume in quantity of good quicklime in pure water for
some hours, with occasional shaking; allow to settle and draw off the clear transparent liquid
without disturbing the residue. It should be kept whor from contact with the air when not in use.
In steam or vapor baths, how is the
handled so that the heat does not affect the perhandied so that the heat does not affect the per-
son? A. The steam simply imparts its heat and a portion of its moisture to the air by actual contact.
t.

1. Mountains water here (among the San Fernando contain small quantities of petrcleum, others alkali, others sulphur, iron, and alkali. The ground
over which the latter springs run, and boards with which the water comes in contact, become heavily coated with a bright yellow substance like rust ; while on the surface of the surrounding soil, a thick white coat of alkali forms. Can
anything be done to such water to make it fit to drink? ble under the circumstances. well 8 or 10 feet deep, by the side of a now dry stream, has no bad taste, but the water makes the excrements alm s.st black, and causes diarrucea.
What does the water contain, and what is the What does the water contain, and what is the yellow substance mentioned? A. It is probably ue to the largequanctity hydrogen it contains. The deposit probably con
ists chiefly of the hydrated sesquioxide of iron
(23) A. H. says: In what should I boil cide color or taste ? would an iron or copper kettle A. It would be better to use a tin vessel or one cast iron, porcelain-lined. The vegetable acid corrode both iron and copper.
(24) F. D. H. asks: Are the connecting rods of the locomotive at the Centennial, built by apprentices, of the character shown in Fig. 1, p. 490
SCIENTIFIC AMERICAN SuPPLEMENT, that is, with imple eyes, without means provided for takin ? A. No.
(25) C. W. S. asks: What will remov deeply set tea stains from an oak table? A. Try little ether and alcohol.
(26) A. F. G. says: 1. I have 500 lbs . leaf obacco, of such a bright color that cigars made
with it find no acceptance. What ingredient hould I use to make a compound with which to give the cigars a deeper color? A.We understand that in similar cases it is a practice of some man ufacturers to make an extract of the stems and ther waste of the leaf by boiling the same in wy evanaration until a very strong liquid is tained. To thisis added the various essential ob tc., the precise nature of which is strictly kep rom the public as a "trade secret." The leave to be colored are then dipped in the preparation and dried until of the required shade. 2. I hav which I would like to Pennsylvania tobacco to Which I would like to give the aroma of Havan Havana tobacco that the Pennsylvania leaf can be darkened with, that would give the tobacco a Havana taste? A. Various means similar to that given above are constantly employed, with vary ing success to impart to baser leaves the peculia ared to give to the public the precise methods. (27) N. says:I use a copying ink pencil of the quickest and easiest mode of copying let ters written by this pencil without using a press A. Try thin paper moistened with a little dilute gum water and alcohol.
(28) E. C. B. says: I frequently have to he stanch which have fallen into the sea,an them in soda water and then soaking in oil, bu all to no use; for after 2 or 3 months the rust will
reappear as bad as ever. Will you please tell me the best remedy? A. Try a littlevery dilutesul phuric acid. After removal from the acid, wash
quickly and cover with warm pipe clay for a time
The working parts should be polished perfectly The working parts should be polished perfectly (29) W. C. W.asks: What process or pre paration will prevent strips of lead from black ng of varnish or melted paraffin.
(30) B. \& B. say: We wish to build a large brick factory, 50×100 feet, four stories high, an wish the three upper stories to be damp or sweat Build hollow walls laid up in a good cement mor Bur.
(31) J. Mc'T. asks: 1. Will concrete do for a cellar wall and foundation for a frame build-
ing? A. Yes. 2. Will common lime do to mix it ith, or will it . Will common lime do to mix with, or will it require
A. Pure cement is best.

COMMUNICATIONS RECEIVED.

 The Editor of the Scirnitiric American acriginal papers and contributions upon the following subjects:On Newspaper Subscriptions. By J. H. On Marine Propulsion. ByR. F E. W

On a Body in Hollow On a Body in a Hollow Sphere. By J. W.
On the Material Theory of Light. By G. L. B Also inquiries and answers from the following : J. C. W.-J. G. A.-W. D.-U. R. D. - J. S. - W. M.
G. C.-C.S.-S. P. F. F.-C.

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appear should repeat them. If not then published, hie declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be
published here. All sūch questions, when initials published here. All such questions, when initial, as it would fill half of our paper to print them all but we generally take pleasure in answering briefly by mail, if the writer's address is given.
Hundreds of inquiries analogous to the following are sent: "Who makes marbleized slate? Whose is the best steam-heating apparatus? Who sells
the most accurate barometers? Why do not makers of agricultural implements advertise in the Scientific American?" All` such personal inquiries are printed, as will be observed, in the column of "Business and Personal," which is he shat for that purpose, subject to enn. Almost any desired the head of that colway be expeditiously obtained.

[OFFICIAL

INDEX OF INVENTIONS
Letters Patent of the United States
Granted in the Week Ending
July 25, 1876
and each bearing that date. A complete copy of any patent in the annexed list,
including both the specifications and drawings, will be
furnished from this office for one dollar. In ordering, furnished from this office for one dollar. In ordering,
please"state the number and date of the patent desired, please state the number and date of the patent desired,
and remit to Munn \&Co., 37 Park Row, New York city.

Air brake and signal, G. Westinghouse,
Anchor, R. M. Robinson..........
Arch, hollow tile, F. J. Kennedy
Bag holder, J Mulder
Bag holder, G. M. \& J. Hobinson.
Bale hoop iron, W. B. Hayden.
Bale tie, J. H. Snyder
Bale tie, J. H. Snyder.
Base ball, w. B. Carr.
Basin, wash, H. Berke
Bath, wepurator, W. Curran
Bed bottom, spring, B. H. . Otis
Bed spring, J. Reardon
Bed tead, H. B Coyle
Bedstead, sofa, S. Graves...
Bell, call, Bradley \& Stratto
Beill, call, Bradiey \& Stratton
Bird cage, Λ. Heinz.
Blotter, paper cutter, etc., T. L. Montgomery
Bobbin, T. Mayor.................
Bobbin, T. Mayor.
Books, gathering signaturcs of, E.D. Averell....
Boots and shoes, D J. Rogers.
Boot heel stiffener, J. L. Hatch
Boot, rubber, Hayward \& Burlingam
Boots, uniting uppers and soles of, G. McKay........................
Bosom pad, A. W. Thomas
Bottle attachment, Hoard \& Bastine.
Bottling machine, water, G. Wenker
Bouquet holder, G w. Tucker.
Box, packing, S. C. Cary.
Brick, fire, J R. Thomas.
Bridle bit attachment, T. M. Allen
Brush, J. S. White...............
Buckle, harness, B. F. Frazier
Bung extractor, F. Mayr.
Burner and surgical instrument, C. A. Paquelin
Bustlc, A. W. Thomas............
Butter package, M. W. Spaulding
Butter tub, J. E. Higgins
Can, meat, J. Lundgren.
Can, milk, J. Smiley....
Cans, making metallic, F. Marque
Car axle lubricator, J. D. Clute...
Car coupling, L. P. Bailey
Car coupling, W. N. Hutchinson
Car coupling, J. Maloy
ar for railways, sliding, J. Westcott.. Car seals, machine for mak
Car wheel, J. W. Emerton.
Car wheel, A. S. Levake...
Car window, w. L. Everit.
Car window, Car window, A. B. Pullman...
Carbureter, McMillen \& Mino
Carpet stretcher, L. W. Rivers...
Carriage top bow iron, G. H. Ely
Carriage top bow iron, G. H. Ely
Cartridges, tec., tool for capping,
Chair, folding, J. E. Wakefield Chair, folding, J. E. Wakefield
Chimney, metallic, P. S. Smout Churn, Patterson \& Williams
Churn, S. B. Robison...
Clock, F. Kroeber...
Clothes dryer, C. E. Ball..
Clothes dryer, D. J. Clark.
Clothes dryer, R. A. \& F D. Winter
Clothes pin, G. W. Newbegin...
Clothes pounder, C. A. Dodge
Cooking utensil, A. Arfvidson
ooking utensil, F. Myers..
Corn husker, hand, J. Peters
Corpse cooler, Truesdell \& Townsend. Corset, J. D. Banfield.
cotton chopper, T. C. Burnham. otton feeder, cheaner, G. F. Colquitt Cultivator, O. Kugler..
Cultivator, D. F. Vickery
Cultivator, sulky, S. A. Buchanan
Cultivator, wheel, W. N. Riddle
Curry comb, W. E. Lewience
Curtain fixture, N. Campbeth.
Curtain fixture, F. A. Vredenburgh.
Curtains, suspending, D. Calhoun
Curtains, suspending,
Cutter head, M. Buck.
Dental flask, W, E. Buckman.
Derrick, field, J. Q. Grịnncll.
Desk, school, C. J. Higgins..
Dock block, F. S. Burr...
Driils, etc., twist, G. B. Cubberley
Dren
Earth-boriag machine,
Elevator, T. K. Austin.
Elevator
Elevator bucket, H. A. Duc. Jr........
Elevator, passenger, C. H.
Engine for compressing air, C. Moore
Engine, cut-off gear, F. Douglas......
Engine valve motion, S. H. Wheeler. Engine valve regulator, H.
Envelopes, J. Chapman...
Fan, automatic L E Hack Renner. Felly plate, S. Sneden
Fence, portable, E. F. Bunn. Fence post, H. Reynolds....
Fence post, I. L. Sherman
Fence wire, barbed, G. W. Allen...
Fifth wheel platform, A. H. Beaci.
Filter, funnel, Paul \& Ramer........
Fire arm, breech-loading, c. Foeh Fire arm, breech-loading,
Fire escape, T. McClunie.
Fire kindler, R. C. Lewis
Flower stand self-watering devi
Forge, smith's, D. Ebbinghaus.
Furnace, R. L. Walker
Furnace, gas-burning, R. S. Robertson, Jr
GalvanizIng machine, G. R. Acheson.
Garbage receptacle, A. Schmitt
Gas, matter for making, S. Green
Gas faucet, W. A. Wales.
Gas retort cap, J. Balmor
Gas shade holder, Dodson \& Macquee
Gas stove, J. A. Frey...
Gate, farm, R. Whitlock
Gates, hanging, E. Shopbell.......
Generator, steam, w. E. Haxton.
Glass-meiting po
Glove, J. Peters
Governor, w. A. Hatha way
Grain binder, J. O. Schuster
Grain binder, E. R. Whitney
Grain cradle fingers, shaping,
Grinding ring, H. Packer.
Grinding rollers, machine for, J. M. Poole (r)
Harvester, corn, E. Atkinson.
Harvester elevator, E. McFad
Hasp and latch, N. S. Minniss. Hatchets, etc., welding heads on, H.C. Reynolds
Hay for fuel, etc., twisting, J. S. Foster
Heater trough D. M. Cabbell
Hinge, for trunk trays, J.
Hiser
Hinge, trunk, J. Heiser..............
Hitching device, Craine \& Gaylord
Hog cholera, remedy for, W. J. Wo
Hook, snap, N. E. Cissna....
Hook, snap, L. W. Timmens
Hook, snap, L. W. Timmens.............
Horse-power machine, chain, Ellis et al.
Horses, detaching, J. K. Craig................
Horse-fastening attachment, W. B. White
Horseshoe nail, P. Wineman
Hose conncetion, H . Kessle
Hydrant, H. E. Clover (r)....
Ice implement, A. E. Hanford
Insect powder gun or ejector, c. T. Jewett.
Ironing apparatus, R. H. Gardner (r).......
Ironing board, E. Albert.......
Ironing board, C. H. F. Kruse
Kiln, brick, w. s. Colwell....
Kinn, brick, W. S. Colwell...........................
Kilns, furnace for brick, W. S. Colwell.....
Knife and screw driver, puity, c. C. Bartlett.
Knitting machine. M. Marshall
Knitting machine stop, Williams \& Irons
Knob spindles, fastening for, H. W. Trcfethen
Lamp, J. H. Irwin.
Lamp, blast, R. Lavender..
Lamp, miner's. J. C. Moore
Lamp, street, J. s. Woods............
Lapping machine, Schofield \& Wilde
Lard, etc., from coolers, drawing, D. Pinger
Latch, gate, s. O. Hall..
Latch, gate, C. J. Waliis
Latch, knob, C. S. Jenning
Limekin, Farrell \& Lien
Line fastener, C. Hoag
Lock and latch, H. R. Towne..
Lock, combination, I. D. Sibley
Look, combination,
Look, combination, J. H.
Lock, latch, D. K. Miller

Lock, seal, G. B. Phillips .. Lock, time, Overmyer

 Locks, time a attachment \& for, J. L. Hall......Locks, time attachment for, Hall \& Gr Locks, time attachment for, Hall \& Gross......... Locomotives, condenser for, H. Hughes.
Loom, S. T. Thomas
Loom, S. T. Thomas.
Magnet, electro, R. E. House
Mandrel, expanding, S. P. M. Tasker. Mandrel, expanding, S. P. M. Tas
Meat chopper, N. A. Olsson
Mill, grinding, E. \& D. Míoore...
Mill, grinding, J. A. Moore
MIII, grinding, F, steimmig
Millstones, stafling and dressing, Sewell e
Molding plastic material, W. H. Smith.
Nail-plate cutter, G. P. Clapp.
Nuts, manufacture of, J. Sutter
Nuts, manufacture of, J. Sutter..........
Oi cloth, saturated felted, C. A. Sitzle
Ores, nickel, treating, Mason et
oven, hot blast, w. Crossley
Packing, deep well, F. Martin (
Pail and tub ear, G. W. Stark ..
Pail and tub ear, G. W. Stark
Pail, milk, N. McKusick
Pantaloons, shaping, C. H. P. Kruse
Paper boxes, cylindrical, H. Kellogg
Paper boxes, cylindrical, H. Kell
Paper cop tube, J. McCausland..
Paving block, H. E. Merrill................
Photographic picture case, T. F. Adams
Photographs, vignetting, L. D. Judkins
Piano, violin, G. Greiner
Pinchers, wire fence barb, C. Kennedy
Pipemounting, tobacco, J. J. Lang Planing and sawing lumber, W. H. Parcher....
Planing feed and pressure roller, Brown Planing feed and pressure roller, Brown et al.
Plow, gang,
Pockets for garments, safety, R. Phillipson.
Postage stamp, P. H. Vander Weyde...........
Powder can and cartridge case, P. A. Oliver.
Powder can and cartridge case, P.
Press, horse power, Z. B. Sims.....
Press, hydraulic, Hyatt \& Crane
Press, lard, P. Pemberton.........
Pulley block, J. \& C. J. Herweg.
Pump, S. S. Robinson....
Pump, pitcher, S. L. Bignall...........................
Railway drawbar and buffer, N. B. Eccleston.
Railwayfrog, D. W. Payne..
Railway frog, T. E. Vickers.
Railway rail, street, C. T. Hopkins.
Railway rails, machine for slitting Railway rails, machine for slitting, J. Reese. Rake, R. P. Walker............ Rake, lawn, C. Hertzig....
Range, T. A. Carrintion.
Range, т. A. Carrington....
Range, heater, C. A. Smith
Range, heater, C. A. Smith.
Register, J. A. Sternberg.
Rein hor
Rein holder, J. W. Miller'.......
Ring blanks, forming metal, J.
Roof, battened, c. W. Sykes...
Sash fastener, C. w. Salade.
Sash fastener, C. W. Saladee.......
Saw-sharpening machine, M. Covel
Sales, weighing, H. Willard.
Scaop and sieve, L. Kelim
Screwdriver, A. Stoner
Screwdriver, A. Stoner...............
Screws, cutting ntcks in,. . J. Sloan..
Separator, grain, w. Holladay...........
Sewing machine binder, J. Van Leun
Sewing machine binder, J. an Leunen.
Sewing machine, glove, Gullrandsen et a
Sewing machine spinner, J. E. Snapp.
Shackle, hand, A. P. Baldwin..........
Shafts, divided collar for, J. Yocom, J
Shooting
Sifter, ash, J. E. Eastlack.
Slelgh, Erickson
Soap, s. Strunz.
Spinning frame and twister, T. Mayor
Spinning machinery
Spinning machinery, ring, T. Mayor
Spoke-setting machine, A. F. Flint.
Spoon and fork, L. S. White.
Stables, releasing device for, A. Chapman. Stamp, perforating and canceling, C. Armstrong.
Steamer, culinary, L. c. Light.......
Steamer, culinary, L. C. Light..
Still, steam, A. F. w. Neynabe
Still, steam, A. F. W. Neynaber.........
Stone-sawing macline, w. C. Huffman..
Stool, adjustable, T. Mille
Stove, C. R. Sipes
Stove covering, A. J. J.
Stove, gas, J. A. Frey
Stove, heating, Little \& Nat
Stuen
Stov, heating, Little \& Nation......
Stump extractor, Burroughs \& Story
Tackle block
Tackle block, Simpson \& Pope.
Tank, oli, J. M. Bean...............
Telegraphs, R. E. House. $180,089,0$
Telegraph, fire alarm, H. W. Spang
Telegraph, fire alarm, H. W. Spang
Telegraph sounder, R. E. House...
Telegraph wires. joining, R. E. House
Telegraph code, R. E. House
Telegraph symbols, measurin
Thimble, G. H. Finger...
Thimbere, G. K. F. Whasting...... Warn
Tobacco pipe mounting, J. J.
Tobacco pipe mounting, J. J. Lan
Tool handle socket, C. A. Hardy...

Toy marbe rake, Gurny, Piper \& Wal
Trap, animal, Bates \& Borgersrode...
Umbrella, cane, c. W. Carson
Vehicle propeller, T. H. Neal.
Vehicle propeller, T. H. Neal............
Vessels, raising sunken, E. . Tassey
V.
Vessels, raising sunken, E. E. Tassey...
Washing machine, J. H. \& J. H. Harnly
Washing
Washing machine, B. J. Murray.
Washing machine, W. H. Tutt.
Washing machine, w. H. willis
Washing machne, A. B. Wroth.
Watch escapement, F. H. Voigt.
Water whecl, T. J. Alcott (r)...
Weather strip, E.C. Under wood.
Weather strip, w. P. Widdifield.
W.
Weeding implement, D. N. For
Whifletree connection, Ingersoll \& Fisher.
Wool-washing machine, Pendleton \& Proctor..
Wrench, B. F. Joslyn.
Wringer, J. W. Hall.
Wringer rolls, with rubber coveri.................
y arn, spooling,. . B. Bancroft..................
Yeast comple d. B. Bancroft.................... 180,
DESIGNS PATENTED.

den, Conn.
$9,408 .-$ Carpets.-J. Hamer, Duteness county, N. Y.
9,409-CArriage Chips.-M. Seward, New Haven, Conn.
9,410.-Trimaing.-L. Sutro, New Tork city.
[A copy of any one of the above patents may be had by
remitting one dollar to MONX \& Co., 37 Park Row, New

SCHEDULE OF PATENT FEE

$\$ 10$
$\$ 25$
 On filing each application for a
on issuing each original Patent. .
On appeal to Examiners-in-Chief.....
On appeal to Commissioner of Patent
n appeal to Commissionu
On application for Reissu
On fling a Disclaimer.
On an application for Design 31/2 yea
On application for Design (7 years).
the validity of patents.
The inexperienced purchaser of a patent does ot generally appreciate the importance of having its claims examined, and their validity and scope defingd by some person experienced in such mat
ters, before parting with his money. It is not un sual for the assignee just as he is commencin the manufacture of articles under his recently purchased patent, to find thatitis an infringemen upon some previously issued patent, and that he has not only made a worthless investment, but that he is likely to get mulcted in damages if he tinually coming to our knowledge wherein partie have made purchases in good faith, and paid considerable sums of money on the assurances of the patentee and a mere glance at the patent, pre aming that all that the drawing of the invention nowed was protected by the claims, when, in fact the point covered was almost infinitesimal. An deceived is that the claims, although broad enoug and worded properly to cover the invention, contain a single element protected by some prior patent, which covers the very part in the new machine which isnecessary to insure its efficiency The Howe sewing machine patent illustrates th; turers cared to use, except the one small part essential to all sewing machines; and all manufacturers had to pay Howe a royalty, and he de rived from that apparently trivial item an immense income.
We therefore recommend any person who is about to purchase a patent, or about to comlicense to have the patent carefully examined by a competent party, and to have a researe made in the Patent Office to see what the condition of the art was when the patent was issued
He should also see that the claims are so worded He should also see that the claims are so worded
as to cover all the inventor was entitled to whe his patent was issued; and it is still more essen ment, as above suggested, or not. Parties desiring to have such searches made can have them done through the Scientific American Patent Agency, by giving the date of the patent and stating the information, address MUNN \& CO

37 Park Row, New Yor

Qaltertisements.

GALLAHUE'S

Little Giant Engine.

 WATRD - Io Mantatatur some patanted

Steel Castings,

 A practical engineer \& draughts-

SECTIONAL STEAM BOILER PATENTS.-

Planing \& Matching.
 Wood-Working Machinery,

Stone Channeling

 Quarrying Machine,

WARDWELL PATENT FOR CUTTING STONE INTO VARIOUS SIZES AND DIMENSIONS IN ALL KINDS OF QUEAR STONE CUTTER CO., RUTLAND, VT
SOLE PROPRIETORS AND MANUFACTURERS.

 TIDN CLUTCHES क्र
DELEVATORS
W.MASON\&CO.PROVR.I.
A
RACING BOAT STOCK. SPANISH \& WHITE CEDAR.
 rosewood, walnut, \&c.

R. .. STATE \& CO., Springfild, Ohio

THEUNION IRON MILLS, Pitsourgh, Pai-

 Model Engines.

EAGLE FOOT LATHES,

NEW METHOD OF ENGRAVING.

 eular. Please say where you phr itito-en aravina Co., 67 Park Place, New York.
 Jibibl.
filled
phia, Ca.
T Hib centeninl interational ex

NEW DEPARTURE Nover

, ind

DROP PRESSES, MIDDLETOWN, CONN.
S FREW PROPELLEERS, THEIR SHAFTSSAND By Hamlton W. Pendred, M. E. An

CENTENNIAL MILLS. Harrison's Standard Flouring and Grinding Mills

Driven or Tube Wells

The fact that this sparting has f7 per cent greate

Horitive inigitive

ORWICH University Scientific and Milltary School,
Northiteld, Vt. Address Prof. CHARLES DOLE.

0 IF ${ }^{\prime \prime}$ Safety Hoisining

$\mathbf{M}^{\text {Amakinery of mproved tride For }}$

THE BT BEST

GOLDPMISS

Pond's Tools.
ENGINE LATHES, PLANERS, DRILLS, \& Send for Catalogue. DAVID W. POND,
LUCIUS W. POND, Worcester, Mass.
S. GUITERMAN, Export and Commission Mer

aw Send for Pamphlet an
Sample of work.
Improved Solid Stel Cite all Kroved Solid Steel Cutters for
mands of Variety Moulders
made the order, and warranted
by the by the MACHINERY CO;
B. C. Battle Creek, Mich.
P. BLAISDELL \& CO., Manufacturersof the Blaisisell Patens Upright Drill ard
other first-class Machinist's Tools.
 Stubs' Files,Tools \& Steel

SHAFTS PULLEYS.HANGERS COUPLINGSETC.

Stock, and for Sale by
william sellers \& co.,

BLAKE'S PATENT Stone and Ore Breaker Crushesall hard and Brittle Bubstances to
any required size. Also any kind of
SToveror Rods and or CoNRET, \&c.
Address BLAKE CRUSHER CO.,

FOR SALE-One second hand No. X Cotton,
 Fin SALE-One second hand Bone Crusher F OR SALE-A Valuable Patent, in whole or

7RHATENTS

[ESTABLISHED 1846.]
Mnna \& Co.'s Patent Oficess.

Abstract

The Oldest Agency tor Soliciting Patents in the United States. thirty feará experience. MORE PATENTS bave been secured through this gency, at home and abroad, than through any other in he world. They emp They employ as their assistants a corps of the most ex- perienced men as examiners, specitcation writers and draftsmen that can be found, many of whom have been selected from the ranks of the Patent Offlce. SIXTY THOUSAND inventors have avalied them- selves of Munn \& Co.'s services in examining their inventlons and procuring their patents. MUNN \& CO., in connection with the publication of the SCIENTIFIC AMERICAN, continue to examine inventions, confer with inventors, prepare drawings, spen the Patent offlice, paying the government fees, and watch each case step by step whille pending before the ex- aminer. Thas Is done through their branch ofllce, corner file caveats, procure design patents, trademarks, and ressues, attend to rejected cases (prepared by the inventor rerences, glve written optnions on matters of infringement, furnish coples of patents, and, in fact, attend to every branch of patent business both in this and in for elgn countries. CAN of all intice is made in the SCIENTIFIC AMER CAN of all Inventions paten ted through this agency, with the name and restdence of the patentee. Patents are ofvention by such notice. Patents obtained in Canada, England, France,Belgiom, Germany, Russia, Prussia, spain, Portugal, the British granted, at prices greatly reduced from former rates. send for pamphlet pertaining spectally to forelgnpatents which states the cost,time granted, and the requiremente reach Persons desiring Copies of Patents er 26,1867 , can be supplied with ofllclal coples at rea sonable cost, the price depending up drawings and length of specifications me the Patent Office commenced printing the drawing and spe fice $\$ 1$.

\section*{a copy} be furnished for $\$ 1$. When ordering coples, please to remit for the same as and date of patent. A pamphlet containing the lawa somely bound Reference Book, gilt edges, contains 1 , pages and many engravings and tables important to every patentee and mechanic, and is a useful handbook of r

MUNN \& CO., Pubilishers SC ENTIFIC AMERICAN, Bbance Off ngton, D. C. F and 7th streets. Wask

SCHLENKER'S Bolt Cutters. BESTAND CEEAPESTMADE.
HOWARD IRON WORRK,
BuIalo, N. Diamond Solid Emert Wheels.

To Engineers-A Valuable Investment.

non-combistible steam boiler \& Pipe

WITH "AILR SPACE, IMPROVEMIENT Saves 10 to 20 per cent. CHALMMRRS SPENCE CO.
Foot E. ${ }^{\text {th }}$ St. N . Y.; 12202 N . 2nd St., St. Louls, Mo.

WHIPPLE'S

Patent Door Knob.

NE WSPAPER FILE.

 ${ }^{\text {erederanes }}$

MUNN \& \& Cois
SOLID WEALTH
$\$ 600,000$ IN GIFTS! A FORTUNE FOR ONLY \$12.

THE K $\overline{E N T U C K Y}$
CASH DISTRIBUTION COMPANY
 THURSDAY, AUGUST 31, 1876,

$\$ 600,000$!

Thos. P. Porter, Ex-Gov. Ky.. Gen’ Manager
POSITIVELY NO POSTPONEMENT:

The scientific Americall RHFFRFANGFBDOK
A Bound Book of 144 Pages, for 25 .

 piled from the last Census.
Trabe of Cties having over 10,000 inhabitants-Com-
piled from the last Census.

 $7_{\mathrm{in}}^{\text {Hiseomentry, as } A \text { pplued to practical Purposes. Wth }}$

The Tanite Co.,

STROUDSBURG, PA. EMERY WHEELS \& GRINDERS Machinists' Tools.

PORTLANDCEIENT

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.
 J. B. PIERCE, Sec' J .

Mill FurnishingWorks

Mivevel

of teie

SCIENTIFIC AMERICAN, THE MOST POPULAR SCIENTIFIC PAPER IN THE WORLD.
THIRTY-FIRST YEAR.

VOLUME XXXV.-NEW SERIES.

The publishers of the SCIENTIFIC AMERICAN beg to announce that on the first day of July, to be the aim of the publishers to render the contents of the new volume more attractive and useful than any of its predecessors.

To the Mechanic and Manufacturer.
No person engaged in any of the mechanical pursults should think of doing without the SCIENsix to ten engravings of number contains irom tions which cannot befound in any other publica-
The SCIENTIFIC AMERICAN is devoted to the interests of Popular Science, the Mechanic Arts, Manufactures,Inventions, Agriculare, uable and instructive not only in the Workshop and Manufactory, but also in the Household, the Library, and the Reading Room. Each volume contains hundreds of Notes, Receipts, and Sugges ing Men and Employers, in all the various arts TERMS OF SUBSCRIPTION … POSTAGE PAID BY US.
One copy Scientific American, one year .. $\$ 320$ One copy Scientific American, six months. 1.60 One copy Scientific American and one copy Scientific American Supplement, both for one year, post-paid. \qquad
The Scientific American Supplement. A weekly paper, uniform in size with the Scientific American, but a distinct publieation. It contains working drawings of engineering works, and elaborate treatises on every branch of Science and Mechanics, by eminent writers, at home and mom. printed sheets. Price $\$ 5.00$ per annum Singlé copies 10 cents.
Remit by postal order, draft, or express. Address all letters and make all Post Office or-
nd drafts payable to
MUNN \& CO

