

a WeEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. XXXV. No. 5.]
INEW SERIVS.]

AEROTHERAPY.

Judging from the multiplicity of novel remedies brought before the public now, there must be an enormous increas in the ailments which afflict the human family, or else the more nervous organization arising from civilization and pro gress imagines diseases to which the more vigorous barbarians of past ages were utterly indifferent. There is an es tablishment on the Rhine where the grape cure is practised, where invalids are fed chiefly on grapes, and where the physician's advice merely changes the diet from one kind of grapes to another, according to the needs of the case. And Hans Breitmann sells us of "a beer cure man from Munich," who claimed that he was able to eradicate disease by selecwho claimed that he was able to eradicate disease by selec-
ting the quality and controlling the quantity of the nationting the quality and control
al beverage of the Teutons.
We now hear of a new course of treatment practised in Milan, Italy, wherein the patient is subjected to compressed air, and our engraving represents the mode of application. The invalid is seen seated in a comfortably furnished apartment, into which air, chemically purified and maintained at a uniform temperature, is forced by steam power and kept at a pressure somewhat above that of the open atmosphere. Dr. Carlo Forlanini is the discoverer and advocate of this treatment; and his explanation of the theory may be summarized as follows: By increasing the pressure the air is forced into the minutest passages of the lungs, and a much greater oxygenation of the blood is ensured; and obstruc tions of the lung passages, which occur in many diseases are removed sooner or later. And if the muscles which ex pand the chest are weakened, the higher tension of the air assists their action; and it remedies deficient respiration, whatever may be the cause thereof. The Doctor asserts that blood diseases, such as scrofula, can be cured by this treatment, the oxygenation being so complete as to remove all foreign matter from the blood.
The institution at Milan is stated to be elaborately arranged and furnished with every means of ascertaining the nature and extent of the disease, and for administering the air at the proper pressure for each case. If we hear shortly of any great number of cures of pulmonary complaints at
this establishment, we must add another function at the list of the capabilities of the steam engine, that of converting, not only heat into pressure, but also pressure into health.

Facts about Potato Beetles.

" The potato beetle remains in the ground all winter emerges from it in the spring in a perfect state, fully grown and ready for procreation. During the day, it remains upon the potato plant and does not fly till night, when it traverses whole fields and whole sections of country, the males in search of the females, and vice versa. The beetle does not eat, and so does no immediate harm. The eggs are laid on the under side of the leaves, in patches about an inch square and are a golden yellow color. In a few days th square, and are a golden yellow color. In a few days the young soft grubs are hatched, are ravensly hungry, have but slight hold of the foliage, and are easily knocked off. They have but slight ability to travel on the surface of the
soil, and never descend to it voluntarily, until they have soil, and never descend to it voluntarily, until they have reached the perfect slug state, when their natural instinct prompts them to seek the earth, into which they burrow, form a cocoon, and in due time emerge full-grown beetles, ready to begin a new colony. This series of changes takes place from two to four times in a season, controlled by its length, warmth, etc. In the last change they remain dor mant through the winter, merely because the temperature is too low to perfect the insects. It is therefore probable that, if they ever reach a tropical climate, their transmigra tion will be uninterrupted.
' Reasoning from these facts, we arrive at the following, which are borne out by actual experience: Any mode of destroying the beetle, practised by a farmer here and there, is only time lost, as the nightly flight of the sexes in search of each other is sure to supply local fields from the others in the neighloorhood, the sense of smell being probably the insect's guide to the nearest plant, and to the genral rendezvous. If extirpation of the beetle is determined upon, it must be general and simultaneous. The great diffi culty of accomplishing this is insuperable. Therefore let the beetle alone. Beetles, however, produce slugs, and slugs in their turn produce beetles. Slugs do not migrate,
are easily dislodged, must eat, and are therefore at our mercy in at least two ways. If they are knocked off the plants in the middle of a dry hot day, and ground into the hot soil (say by a harrow or any similar means), they perish ; and if the leaves are rendered, by any external application, unfit or theirfood, they starve.

An experience of six years has satisfied me that the slug state is the only vulnerable one, and either of the two modes of warfare indicated above is probably successful. They feed indiscriminately on all the solanacece. They are not poisonous, cannot bite or sting a human being, need not e a terror to any ; and to conquer them, it is only necessary to attack themin a calm, cool, intelligent, business-like manner."-S. R. M., in Scientific Farmer.

The Dublin Lioness.

In the report of the council of the Dublin Zoological Gardens, there is an account of the death of one of the lionesses, in which is noted a touching incident, worthy of being recorded. The large cats, when in health, have no objection to the presence of rats in their cages; on the contrary, they rather welcome them, as a relief to the monotony of existnce, which constitutes the chief trial of a wild animal in confinement. Thus it is a common sight to see half a dozen rats gnawing the bones on which the lions have dined, while the satisfied carnivores look on contentedly, giaing the poor rats an occasional wink with their sleepy eyes. In illness the case is different, for the ungrateful rats begin to nibble the toes of the lord of the forest before his death, and add considerably to his discomfort. "To save our lioness from this annoyance, we placed in her cage a fine little tan terier, who was at first received with a sulky growl ; but when the first rat appeared, and the lioness saw the little terrier toss him into the air, catching him with professional skill across the loins with a snap as he came down, she began to understand what the terrier was for. She coaxed him to her side, and each night the little terrier slept at the breast of the lioness, enfolded with her paws, and watching that his natural enemies did not disturb the rest of his mistress. The rats had a bad time duing those six weeks."

Srientific GMmericau.

HETABLISHED 1846.

MUNN \& CO., Editors and Proprietors
 PUBLISBER WEEKLY AT

NO. BY PARK ROW, NEW YORK.

O. D. MONN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN One copp, one year, postage Included....

Clubrates.
 Ten coples, one year, each 8270 , postage Included

 .827270
er ten coples, same rate each, postage included.................... 270
The postage is payable in advance by the publishers, and the sabriber then recelves the paper free of charge.
Norz.-Persons subscribing will please to give thetr full names, and Post
Office and State address, plainly written Office and State address, plainly written. In case of changing residence
state former address, as well as give the new one. No changes can be made state former address, as well as give
unless the former address is given.
A distinct paper from the Scierstipio Sapplement
and published simultaneousiv with the requiar edition
One year by mail.
TERMS.
Bingle Coptes........ ... 1
The safest way to remit is by draft, postal order, or registered letter.
Address MUNN \& Co., 37 Park Row, N.
CTV Subscriptions recelved and single coples of cither paper sold by a
VOLUME XXXV., No. 5. [New Series.] Thirty-first Year
NEW YORK, SATURDAY, JULY 29, 1876.

Contents.(Illustra, ed articles are marked with an asterisk.)	
of Scle	72 Ink, manufacture of.............. T2
	${ }_{70}$ Japan, industries, etc., of.........: ${ }^{7}$
Answers to correspondents	i6 Jetties, the south Pass............ 72
Bale wires, machine for securing*	66 Lead platees, to join 70
tery, new	${ }_{64}^{69}$
Beauty soclety,	
Birds, centenarian	
Boilers, air and coa	66 Magnetism, force of (6)........... ${ }^{76}$
Boilers, high and low pressure (7)	${ }_{76}^{76}$ Massachusetts Institute, the...... 68
onzing casting	
Building materlas, ete.,.j Japanese	7_{3} Mississtppi jettles, the............. 6^{3}
Business and person	76 Naval litems........................ 73
e, 1 mproved ${ }^{\text {* }}$	6i Opticalinvcrsion..................... 63
${ }^{\text {g }}$ (3) ${ }^{\text {a }}$	
rechnical	
Chimney cowlinmr	${ }_{71}^{69}$ Patents, oftrial
ai, etc., In Japan..	73 Plowshares chlled (1)
	Poisonous garme
Corn	69 Postal law, the obnoxious......... 65
Earth's axis, chan	${ }_{76}{ }^{\text {P2otato beeties, }}$ Racts about...... ${ }^{63}$
Electric 11 l ht on a	67 Razors, griniling (9)................. 66
Emperor's farcwell,	64 Sclentitic sermon, a............... 65
nes and boilers, smail (12	76 Scissors gage, a new.............. ${ }^{66}$
	6 Squares ad beva
Glass, har	${ }_{12}$ Stevens listitute commencemenit 69
Governor,	
Ity Instr	${ }_{6} 72$ Tide motor, the simplest......... ${ }^{66}$
Heated terms, their causes, etc...:	6_{4} W Walls, wind thro
Hot weather peril,	65 Water gr

THE SCIENTIFIC AMERICAN SUPPLEMENT

 Vol. 11., No. 31For the Week ending July 29, 1876
TABLE OF CONTENTS.

1. THE INTERNATIONAL EXHIBITION OF 1876 -Illustrations of Torpedo Warfare, 1 engraving.- The Hell Gate Operations.-Sounding Ma-
chine.-Deepening New Inlet.-Galveston Harbor Improvements. - Mill tary Bridges, 1 engraving. -Double Crane SwInging Bridge.-Netherlands Exhibit.-Printing Meteorgraph.-Machine for Ruling Glass.-As-
tronomical Exhibit.-Method of Astronomical Measurements.-The Largest Grape Vinc in the World, 1 engraving. -Portable Engines.-The shapley Engine and Boller, 2 engravings.- Steam Bollers.-The Babcock and Wilcox Boiler, 1 engraving.-American Iron and Steel Exhiluits. The Henderson Iron Process.-Watch-Making at the Centennlal, the
Mechanism in Detail.-Centennial Suggestions,-Russian Exhibits -The Norwalk Pump, 1 engraving.-The Russian Fortress Gun, a new.-Th ment of Warfare.
II. Engineering and mechanics.-New Combined Steam Engine and Vacuum Pump, 5 figures.-Surface Condenser for Steam Street Cars,
1 figure.-St. Gothard Tunnel.-Locomotive Connecting and Coupling Rods, by Joshun Ross, 10 igures. - American Cast Iron Laillway Wheels roccescs of Manufacture.- Repair of Steamer Colima's Crank Shaft at Sen, 9 figures.-Aerial Navigation.-The Gaging of
HENRy. C. E.-Utilizing the Waste Hcat of Boilers.
III. TECHNOLOGY.-Grinding and Polishing. By Josiuva Ross. No. 1, 5 tigures.-Manganese Bronze.-Ornamental Inlata Tablcs, 4 engrav-
ings.-British Frigate Hussar.-Sclence in Schools.-Imperial Celerty. Chinese Money.-Amber.-Fatty Ink Photo Printing.-Photo Plat Cleaning Solution
IV. ELECTRICITY, LIGHT, HEAT, ETC.-LIghtning Freaks.-New Galvanic Battery.-Fornation and Decomposition of Binary Compounds by
Electrictity.-Absorption of Nitrogen and Hydrogen.-Law of Dulong and Petit.
V. ASTLONOMY.-Retlector vs. Refractor.-Irregularity in the Moon's Specular Reflection of Venus.-Motion of Jupiter's Spots.-Large Sola Photographs.

The Scientific American Supplement

 Remit by postal order. Address
MUNN \& CO., Puburshers, 37 Parts Row, New York.

the emperor's farewell

A scientific gathering of unusual importance-not because of what was done, but on account of those who wer present-recently assembled at Chickering Hall, in this city. It was a special meeting of the American Geographi cal Society, called to receive three distinguished foreign gentlemen, the Emperor of Brazil, Dr. Petermann, the famous German geographer, and Dr. Berendt, the Centra American ethnologist. Despite the torrid weather, all the scientific celebrities resident in this locality were present and listened to an address on the "Centers of Ancient Civilization in Central America, and their Geographical Distribution," which really was very instructive and interest into Central America; told how, in 1869, he discovered the site of the ancient city of Centla, and there found a host of curious objects made of that imperishable material, terra cotta; and ended by an earnest plea for closer study of American archæology, and for the foundation of museums of relics of the ancient peoples which once occupied our of relics of th
own continent.
Judge Daly, the president of the society, then proceede to that which was uppermost in everybody's mind, namely the presence of Dom Pedro, and in a pleasant little speech contrived to say a great many complimentary but well de served remarks regarding the distinguished guest.
Dr. Petermann's address, which followed, embodied mainly his impressions of this country, some of which, notably that which led him to eulogise our peaceful disposition, as shown by the fact of our having "only one man of war" in the navy, were rather amusing. But the eminent gentleman fairly
The Emperor of Brazil was then elected to membership amid great applause. Dom Pedro arose, and with easy dig amid great applause. Dom Pedro arose, and with easy dig
nity advanced to the front of the platform, and spoke as nity adv
follows:
" Λ lthough sincere gratitude's voice is always silent, I will not hesitate to utter my thoughts to the American Geogra phical Society for the honor it confers on me in the presence of men so prominent in geographical science, and such indefatigable explorers of a region where man, rivaling, as it were, with nature, feels that labor is his greatest glory and
more solid base of happiness. In so solemn an occasion, howmore solid base of happiness. In so solemn an occasion, however, it is my duty to express how in my country we priz of wealth, and will secure for it-I speak as a Brazilian but without partiality-a future brilliant and useful to all nations, with which Brazil has always endeavored to main tain cordial friendship. I trust the American Geographical Society will allow me to send here a feeling adieu to all the Society will allow me to send here a feeling adieu to all the
people of the United States, who welcomed me with so people of the United States, who welcomed me with so
much kindness, and to explain to them at the same time how sorry I am that a motive, double regrettable, has not permitted my remaining longer among them, to see and ex amine as much as I desired, notwithstanding the means employed by this great nation to overwhelm time."
With these few words, Dom Pedro takes his leave of the uming gentleman, and has studied our country in a way that reflects honor upon himself and upon us. He has torn away the veil of romance which hedges about kings, and has showed us that the ceremony of royalty is an anachronism in the nineteenth century, and that true majesty, essen tially democratic, suffers nothing by contact with the peo ple. He has shown us how a great and independent ruler may be at the same time a humble and earnest student of science, as ready to receive information and knowledge from working men as from the most erudite of professors. Above all, he has shown us that the possession of education is deemed by him of loftier value than the undisputed owner hip of a crown.
The great works accomplished by Dom Pedro during his reign were known to this country, and the welcome which has been extended him has been genuine and sincere. To rance of profound respect and cordial admiration-not fo the Emperor of Brazil, but for Pedroof Alcantara. In their eyes. at least, the greatness of his station can add nothing o the respect now already secured by his qualities as a man The Emperor spent the closing days of his visit in this city inspecting the Hell Gate excavation, newspaper offices, public institutions, and other places of interest, with hi usual celerity. Together with the Empress and his suite he sailed for Liverpool on July 12.

HEATED TERMS--THEIR CAUSES AND DANGERS

At the time we write, seventeen days of exceptionally hot weather have been experienced over the Northern States The thermometer, despite a brief rainstorm within the pas wenty-four hours, the first that has visited this region during the period above named,stands at 95° in the shade. It has stood at 90° and thereabouts for more than two weeks, and in this city has touched 102°. The most intense heat yet re ported, however, has occurred at New Paltz, near Pough keepsie, N. Y., where the mercury attained the unprece dented hight of 112° in the shade.
Of course wise people have advanced innumerable theo ries relative to the cause of the present heated term. It is a fact just now that the sun spots are at their minimum, and hence the supposition that we get more heat from our lumi nary is generally favored. It should be borne in mind that the abnormally hot weather is not omnipresent the world over, and hence to believe that the sun is taking any extra-
ordinary part in its production is to assume that that orb, by some process of selection, has chosen a very small portion
of the globe as the recipient of his scorching attentions. Besides, the fewer the sun spots, the greater the evapora tive power of the sun, and hence the greater the production of rain, which depends on evaporation. Consequently, so far from the absence of sun spots tending to diminish rain, we should look to their non-existence as a reason for ex pecting increased rainfall. It is generally credited, also, hat the Gulf Stream is moving nearer our coast, and hence he climate is gradually becoming warmer. This assertion is destitute of foundation in fact; but neither this notion, nor the one preceding, nor that involving spectroscopic obervations of the sun and the discovery of immense masses of burning magnesium, etc., will ever cease to be credited as long as the daily papers find in their repetition such in eresting matter to embody in their discussions of that uni ersally interesting topic. the weather
The truth is that hot spells like the present are due to ocal causes. Direction of the wind, barometric pressure of the atmosphere, hygrometric condition of the same, when acting in concert,are amply sufficient to account for increase of temperature over a few degrees; and by consulting the published weather reports and keeping a record of barome published weather reports and keeping a record of barome-
ter and thermometer for his locality, the observer will sor and thermometer for his locality, the observer will
soon recognize the especial conditions which underlie the extreme weather in his section of the country
There are few parts of the world where so extreme temperature as 112° is ever felt. According to tables given in standard meteorological works, it appears that 100° is ex ceded besides in the United States and Canada, in Greece parts of India, Afghanistan, Persia, Cape Colony, Desert of Sahara, parts of Egypt, Arabia, and the West Indies, and in Central America. In none of these localities, however, is there so wide a thermometric range as from 15° below to 112° above zero, or 127° Fah., as is the case in this and other Northern States. It is this wide variation that cause suffering, for the reason that we never become really accli mated to our own climate, or inured to all its vicissitudes n common with all the Anglo-Saxon race, we possess the nergy which is characteristic of dwellers in the colder por tions of the globe, and this energy, intensified by American habits and peculiarities, knows no rest. Business and labor re carried on with unabated vigor, whether in the freezing cold of January or the fierce heat of July. We have no eason devoted to general relaxation, as have nations under the tropics, though our summers may be as hot as theirs, nor are we able to adapt our habits to our climate, owing to the very uncertainty of the latter. Our weather is in real ity a succession of surprises. We never know when to ex pect such visitations of heat as we are now undergoing, nor can we certainly count upon any period when excessive cold will prevail. Our "probabilities" system gives us an pproximate idea of whether to expect rain or shine with in twenty-four hours; but the boldest of weather prophets annot predict whether the coming winter will be moist and pen, or severely cold. We are subject, therefore, to sud den changes of temperature; and the natural effect of these is found in the succeeding increase in the death rate in pop ulated localities.
For the week preceding the time of writing, the number of deaths in New York city is reported at 828, showing an ncrease of 122 over the previous week. Out of the above otal, 541 represent children under five years of age; and a arge percentage of the remainder includes, first, people who have become debilitated by the heat while suffering chronic isease, and second, the direct victims of sunstroke and ex haustion. In both cases the long continued prevalence of ot weather has resulted in a weakening of vital zower nd this depreciation extends more or less over the whole community; so that when a person, even in full bodily health therwise, is strieken down, his system is in a very poor condition to repel and recover from the shock. In a greater degree is this true of invalids and small children, whose hold upon life is at best but slight. Again, as we have aid, sudden climatic changes are to be expected, and hence hot spell of the present kind may terminate by a sudden all of the mercury from 100° to 75°. We recently saw a descent of 11° produced in a less number of minutes by the springing up of a brisk easterly breeze. Now sudden mutations of temperature, especially downward, exercise a dangerous effect upon large numbers of persons, especially the aged and sickly, while even among robust people the un looked-for change is apt to cause colds, pneumonia, and ike maladies. It will be seen, therefore, that to maintai the health, whether in winter or in summer, in a climat such as ours, constant watchfulness is imperative. Thou sands yearly die, victims to lack of precaution in guarding themselves against the ailments directly due to the vacil lations of our most freaky weather.

LIVING ON FIFTEEN DOLLARS A WEEK

A correspondent expresses a high appreciation of the Sci entific American "as a paper for bosses," but submit that it would be worth much more to him and his ninety shopmates if it would only tell them how it is possible to ive decently and educate a family on fifteen dollars a week We confess that the efforts of this paper have not hither to been specially directed to the problems of domestic econ my. It has aimed, not so much to teach the art of regula ing one's household affairs, the art of spending money, as he more productive art of makingmoney, by laying before it readers the widest attainable range of information where with they may be enabled to turn their natural powers to the best advantage through the employment of newly dis covered processes, the invention and use of wealth-produc ing and labor-saving devices, and every other means by which their intelligence, skill, and productive capacity may be in
creased. And we are not prepared to admit that this is not the best way to make this paper valuable to our correspondent and the class he represents, would they read it aright, regarding the information it offers as for them, and useful to them, not less than for bosses.
Still, in view of the melancholy fact that thousands have no faculty for turning information to advantage, and will no faculty for turning information to advantage, and wind not rise from the lower ranks of manual workers, it may be
that the value of the Scientific American can :je increased that the value of the ScIENTIFIC American can se increased
by trying to tell such readers how small incomes may be made to cover the essential requirements of satisfactory living. We shall undertake the task at a venture, though seriously doubting the value of even the wisest advice to one who has come to think, as our correspondent appears to, that an in come of fifteen dollars a week is inadequate for decent living.
We have seen ioo many families living wholesomely, even generously, rearing children of fine character and liberal culture, on an income no larger than that which our correspondent complains of, to doubt for a moment the possibility of the same being done by him and by his shopmates. We know, by that most convincing of evidence, personal experience, that a large family can be reared, healthily fed, comfortably clad, fairly well elucated, and well provided for every way, on very much less than fifteen dollars a week. Indeed, we hazard the assertion that if ten thousand of our best and most useful citizens, living and dead, be taken at random, an inquiry into their early history would prove that the great majority of them were reared in families in which an income of fifteen dollars a week would have been ac counted munificent. But times have changed, it is replied, and with them the cost of living. True enough, though we are by n's means sure that the necessary cost of living well of the greater than in of the essentials of healthful and honorable living; and we
are inclined to think that in the aggregate the cost will be found to be less, that is, will require fewer hours of labor found to be less, that is, will require fewer hours of labor
to buy, than ever before. The fact that our style of living to buy, than ever before. The fact that our style of living
is vastly more complex and costly than it used to be, that a is vastly more complex and costly than it used to be, that a
larger portion of what we are apt to consider necessaries were inaccessible luxuries to our near ancestors, does not weaken the position we have taken in the least. One of the great social requirements of the present day is the recogni tion of our foolish extravagance and a readjustment of our modes of life to a more modest and more economical standard. There are even now thousands of families who have not lost the art of living wisely; and their daily experience proves that it is possible now, as never before, to reconcile est sense of the word. Food, shelter, clothing, and all the other conditions of good living, such as our grandparents throve upon, can now be had for much less labor than they throve upon, can now be had for much less labor than they
had to give for them; while the opportunities for educating had to give for them; while the opportunities for educating
a family, now within reach of the poorest laborer almost a family, now within reach of the poorest laborer almost
without cost, are such as former generations could not have without cost, are
To one that cannot accomplish all that our correspondent requires with the sum he mentions, barring, of course severe misfortune, it is useless to give advice, certainly, without knowing precisely how he is situated, what his ideal of life may be, what his tastes and habits are, what sort of a wife he has, what house rent he has to pay, and some of the other conditions which go to determine the character and requirements of his home. Without the virtues of thrift, sobriety, and a hearty effort to make the most of lars a day is any guarantee of wholesome and happy living. Of some of the simpler means by which our correspondent and others like him may help to increase the purchase power of the money they earn, and to turn to the best advantage their slender incomes, we shall speak hereafter, not theo retically but practically, dwelling chiefly on what men have done and are doing to make a laborer's income provide the necessary and often many of the higher luxuries of life. The real question is, not how it is possible to support and edu cate a family on fifteen dollars a week or less, but how thousands are doing it.

POISONOUS GARMENTS.--A NEW HOT WEATHER PERIL.
It has been a mooted question for a considerable period whether or not the pigments derived from aniline, itself a well known poison, are poisonous to the body when brough in close and continued contact therewith. German chem ists assert the negative; but on the other hand, numerous
cases of obvious poisoning have been so clearly traced to cases of obvious poisoning have been so clearly traced to
the wearing of garments dyed with aniline colors as to leave no dou't that, although poisoning by such substances may be a constitutional idiosyncracy in individuals, still enough persons have suffered to render clothing thus colored to be
avoid \ddagger, at least in hot weather. And this for the reason avoid sd, at least in hot weather. And this for the reason that during the heated term, when perspiration is free, the
pores of the skin are open, and the road for the absorption pores of the skin are open, and the road for the absorption
of this foreign deleterious matter is clear. Moreover, the prrspiration may act as a solvent and at the sametime as a velicle for the poison; while in addition the system is ne cessarily enfeebled by the heat, and hence is not in a condi tion successfully to resist the noxious effects.

A recent case of poisoning by an aniline dye has been brought to our notice, and will serve to indicate the nature of the danger to which we allude. We may here remark that we have heard of repeated instances of poisoning due
to coralline dye, a red pigment prepared from carbolic acid and allied to aniline; also to aniline red on cotton, notably colored undershirts and stockings having a red edge, and also to browns and yellows, in which dyestuffs picricacid may enter in its combinations. We have not hitherto heard
of, however, nor by examining authorities at hand have we been able to discover, an authenticated case of poisoning by which has come under our immediate observation.
The garments were of a light woolen material, and, having become somewhat worn, were sent to an extensive dyeing and scouring establishment in this city to be dyed a dark blue. The owner, after wearing the clothes for a few days in hot weather, observed that the blue color stained his undergarments, and in the localities of the stains he became sensible of a cutaneous eruption. The latter soon extended on a large area, which became excessively inflamed; and a pustular state followed, resulting in excruciating suffering and prostration. The case was carefully examined by several eminent physicians in this city, who pronounced it oneof the most severe attacks of poisoning that they had ever encountered, and unhesitatingly ascribed it to the dyeing of the fabric with aniline blue. Had the sufferer been a child ly malignant to prove fatal.
Perhaps the safest rule is to watch all colored goods when worn, and promptly to discard the clothes on the first appearance of the dye's discoloring the garments or person, wherever it comes in coatact.
the obnoxious postal law partially repealed
After an obstinate disagreement which has exhausted the ingenuity and patience of several conference committees, the two branches of Congress have at length agreed upon and passed a bill, which partially repeals the obnoxious postal regulation made during the closing hours of the last session. It was confidently expected that a measure which, since its enactment, has proved itself so excessively distasteful to all classes, which brought no benefit to the gov ernment service, but actually diminished receipts, and the effect of which was injurious to the public convenience would have been immediately repealed. But the needed re form has been delayed until the closing days of the session, and is now but partially effected. The old rate of one cent and is now but partially effected. The old rate of one cent
for every two ounces or fractional part thereof, for all sorts of printed matter except unsealed circulars, is restored while the present rate of one cent for each ounce is retained on unsealed circulars, on seeds and other merchandise. This is the principal change. It reduces rates on transient news papers; but the merchant who desires to send a package of samples, or the seedsman a bundle of slips or cuttings, must still pay high charges. The measure seems to us to be ingeniously framed to satisfy the most of the people, and at the same time not to interfere with the profits of the ex ress companies.
In addition to the above, several concessions, of not much intrinsic importance, but removing annoying and arbitrary estrictions, have been made. Postal cards, for instance may have the address either written, printed, or affixed ny package may have the name and address of the sender with the word "from" prefixed, on the wrapper; and the number and names of the articles in a package may be atAltogether the form to any such package.
Altogether the bill (which, as we have said, is a compromise between the Senate and House), if not what we hoped for, is an improvement over the law which it displaces. At one time an effort was made, but without success, to restore the obnoxious and expensive franking privilege, which existed so long, and was so abused by members of Congress.

OPTICAL INVERSION--AN EXTERNAL SENSE--PERCEPTION There are few phenomena in Science more complicated or which offer a wider latitude for differing opinions than those pertaining to vision; and it is a remarkable circumstance hat the sense on which our perceptive faculties most closely epend should be the one least clearly comprehended Helmholtz points out that our eyes are too opaque, that they
lack symmetry, are wanting in achromatism, and in part are totally blind. By numerous simple devices it may be physi cally proved how defective are our powers of ocular esti mation ; and finally it is demonstrable by actual experimen that the images of oljects which pass to the optic nerve are inverted, that in reality we see things upside down; and thus being led to doubt our sense, we are left in a kind of psycho logical fog, with all our preconceived notions of color, distance, and relative position sady confus below us and the earth above, or people heels upward, various hypotheses have been suggested. Of these the most commonly received, perhaps because the least definite is that which ascribes the correspondence of our sight with he actual position of visible things to "experience." I boldly asserts that in fact we do see inverted people and things, but that our experience forbids the brain to recog-
nize all objects as upside down, because it has made their inverted images the signs of their erect and true positions Another theory is that the reversal of all images is due to the crossing of the filaments of the optic nerve: so that, for example, all the filaments from the upper part of the retina go to the lower part of the optic ganglia at the base of the brain, and vice versá.
To the first theory stand opposed the imperative testimony every one's consciousness, and also the extended observa tions of Spalding and others on newly hatched chickens and ew born pigs. The chicken just out of its shell, or one fter hatching, hooded for a day or two, and then allowe to see, will instantly locate an edible seed brought near it,
seizing it accurately with its bill; and will also at once run in answer to the cluck of the hen, almost always in a direct line. Similar facts have been observed with pigs immedi ately after their birth. Thus in these animals the non-ne
cessity of experience, even for the visual measurement of distances at short range, is proved.
We have before us a pamphlet entitled "On Some Disputed Points in Physiological Optics," by Professor Henry Hartshorne, in which, among other problems, that above referred to is dealt with in a clear and striking manner. Referring to the Spalding experiments, the author says that, while analogy here only affords a probability as to what is true with regard to human sight, the probability is nevertheless with regard to human sight, the probability is nevertheless
very strong: not that correct visual impressions in all respects are congenital with man,as observation of infants does spects are congenital with man, as observation of infants does
not seem to show, but that at least the simpler elements of not seem to show, but that at least the simpler elements of
vision attend in their development the maturity of the eye as an organ, and that,among these elements, the sight of ob jects as not inverted must be one of the simplest. As regarding the hypothesis that the phenomenon may be due to hereditary transmission, he points out that experimentally acquired corrections of positive sensory impressions never go so far as to annul the perception which has to be cor rected to such an extent that the process of correction can not be ascertained by consciousness.
The second hypothesis, Professor Hartshorne disposes of by showing that it is not based on anatomical fact, that it is opposed to all the analogies of nerve distribution, and tha according to it the image must be reversed horizontally a well as vertically.
The explanation which, our author states, is generally growing in favor with physiologists is that we do not men tally regard the image upon the retina at all, but look from the retina at the object. "The local change excited in the retina must be conveyed to the optic nerve, communicated to the brain and again in an inverted direction projected out ward; through this double inversion, the projected image corresponds to the object, and we therefore say we see the object when only the projected retinal image is before the eyes." This of course leads us to the novel assi mption of an externality belonging to and inherent in all our sense perceptions. Distance of sound is apprehended, even with only one ear open to receive it. Professor Hartshorne be lieves that it is obtained by the exquisite seasibility of the orifice of the ear and parts near it, a sensibility intermediate orifice of the ear and parts near it, a sensibility intermediate
between auditory and tactile sense, "a kind of gradation ex between auditory and tactile sense, "a kind of gradation ex
isting here which, there is reason to think, has many illus trations in the partially differentiated sense organs of lowe animals." So also we judge in case of touch, of the direc tion from which anything comes, a ball, for instance, strik ing the hand by reversing as it were the central axis of pre dominance of the impressions made, which is analogous to the ocular visual axes, whose correspondence gives us single object perception in sight. In fine, Professor Hartshorn thinks that our sensorial consciousness affirms the reality and externality of the objective world, no less simply, di rectly, and positively than our reflective consciousness af firms our subjective being.

Waste Tobacco.

Tobacco is boiled at the Richmond Cavendish Company's bonded works in Liverpool. to make a wash for sheep. As much as 28 cwt . has been boiled down on the premises in a single day, and on one occasion the Mersey river authorities were put to much perplexity and trouble by the difficulty of sinking a mass of refuse which had been sent out to sea and persisted in floating back with the incoming tide. There were about 50 tuns of it, and days passed before it could be induced to disappear. The decoction of tobacco is adulterat ed with sulphate of copper, turpentine, and salt, as soon as it is cool, and the exhausted leaf partially destroyed (denicotised) with quicklime before leaving the boiling house, un der the direction of the customs. This prevents either the waste or the refuse from being used in tobacco manufactur fterwards. Each gallon of the sheep wash contains the essence of 24 ozs . of strong American leaf. The prepara tion, which is allowed to be sold free of duty, has found favor not only among breeders of sheep, but among agricul turalists and gardeners, as an effective vermin destroyer.John Dunning, in Journal of Applied Chemistry.

A Scientific Sermon.

An English contemporary tells an amusing story of a wel known scientific gentleman who, recently in a country town gave a lecture on the coöperation of animals, taking as ex amples the bee, the beaver, and the buffalo. Among the deeply interested audience no one paid closer attention than an elderly clergyman, and none at the close of the discours expressed greater gratification at the entertainment and in struction received. It was the scientist's fortune on the fol lowing Sunday to sit undir the reverend gentleman's preach ng. The good man, in his sermon, in turn grappled with the subject of the coöperation of animals; but judge of th horror of the previous lecturer when, in glowing fervor, the clergyman illustrated the wonderful works of Providenc by representing the kee, the beaver, and the buffalo as al three working together in some foreign land in harmonious ystematic combination!

Recent Meteors.

On the evening of July 8, a large meteor passed across the southern heavens, visible in Chicago and vicinity.
On the evening of July 9 , a large meteor was seen in the north, at New York and vicinity. It presented a beautiful appearance, being about four times the size of the plane Venus, with all the colors of the rainbow. It left a long and brilliant trail. A moment before it disappeared it broke in to several pieces of a bright crimson and blue color. Several
correspondents have informed us of this phenomenon, and are tendered our thanks for their letters.

IMPROVED CAR BRAKE.

Mr. William L. Hofecker, of White Haven, Pa., has invented the car brake shown in the annexed engraving. A represents a short lateral shaft that is supported on hangers, B, applied rigidly to the truck frame, between the wheels A lever arm, a, is keyed to the shaft, and connected either directly or by an intermediate shaft, b, crank, d, and condirectly or by an intermediate shaft, b, crank, d, and con-
necting rods, e, with the hand wheel and ratchet and pawl necting rods, e, with the hand wheel and ratchet and pawl
mechanism at the front and rear platforms of the car, or to mechanism at the front and rear platforms of the car, or to
steam or vacuum appliances, by which the brakes are ope rated in the customary manner. Shaft, A, carries vertically above the rail of the track an eccentric, C, keyed thereto, to which is applied, by an encircling band, the loosely sliding frame, D, that supports at its lower end the brake shoe, E. The en circling band and shoe-carrying frame are secured by fastening bolts, or in other suitable manner, around the eccentric, the brake shoe being connected by a dovetail groove and bolts to the frame, and suspended at the ends by rods, g, attached to a spring of the truck frame, by which the brake shoe is steadied and carried in upward direction. The shoe is made of suitable length with a side flange, f, extending downward along the rail head for the purpose of bearing jointly on the top and side of the same. The shoe is carried by the turning of the eccentric either toward or from the rail, being retained by its weight and the sliding band parallel to the top of the rail.
The brakes are applied by turning the operating wheel in one direction, and raised from the wheel by means of the spring, g, on releasing the hand wheel mechanism.
Patented March 7, 1876, through the Scientific American Patent Agency.

A NEW MACHINE FOR SECURING BALE WIRES.

A correspondent recently suggested that some new and simple method was necessary for securing the ends of the wires used for bands on bales of merchandize, etc., so that said ends would not slip or allow the bale to expand. Mr. Moses C. Smith, of Starkville, N. Y., has patented through the Scientific American Patent Agency, June 6, 1876, a novel device for twisting the ends of a wire band together, to form a tie aft
bundle
A, in the engraving, is the shank of the machine, to the upper end of which is swiveled a breast plate, B. The lower end of the shank, A, is widened into circular form, and is concaved upon one side to form half of the case, C, the other half of which is secured to said first half and the shank. In the case, C, is inclosed a large bevel gear wheel, D , the ends of the hub of which project through holes in the center of the case, C. The case, C, from its lower side, and the gear wheel, D, from its rim, are slotted, said slots leading into the center of the gear wheel. E is a small gear

wheel, the side of which passes in through the side of the case, C, and its teeth mesh into the teeth of the gear wheel, D. The gear wheel, E, is attached to the shaft, F, which revolves in bearings attached to the shank, A, and case, C To the upper part of the shaft, F, is attached a small bevel gear wheel, G, the teeth of which mesh into the teeth of the large bevel gear wheel, H, pivoted to the shank, A, and to which is attached a crank, I, which serves as a handle for applying power to operate the machine. To the opposite sides of the lower part of the shank, A, are attached curved arms, J, the lower ends of which are slotted in line with the
slot in the case, C, and gear wheel, D. To the shank, A, upon the opposite side from the gear wheel, H, is attached a handle, K , for convenience in holding the machine. In using the machine the wire band is passed around the bale and its lapped ends are passed into the slots in the arms, J , case, C, and wheel, D, and the crank, I, is turned four or five revolutions, which will twist the wires together, as shown in Fig. 3.
The device is shown in the engraving, Figs. 1 and 2 arranged for twisting wires that pass around the bale the short way. When the wires are passed around the bale the long way, the gear wheel, H, and handle, K, are detache

HOFECKER'S CAR BRAKE.

and moved one quarter around the shank, A, and are again attached to it.

A NEW ELECTRIC RAILWAY SIGNAL

A new railroad signal has been in use on the Boston, Lowell, and Nashua Railroad, for a short time past, which appears to solve the long sought problem of making the rails serve as conducting wires in an electrical circuit gov

erning the signal mechanism. We append an engraving of the arrangement, which certainly is exceedingly simple, and, from the testimonials of railroad engineers and others who have had direct experience in its working, a very effective irvention.
A B and CD are the rails; E is a single cell Callaud bat tery; F is the signal, the mechanical arrangement of which neel not be described. The conducting wires of the battery are secured, as shown, one to each rail, and the two rails, as here represented, may indicate a section of track, say two miles in length, each section being, however, insulated from adjoining sections. The signal at F has an electro-magnet connected to each rail by the wires, as shown. When the circuit is closed, as is normally the case, the magnet is excited, and the signal controlled thereby so as to show 'line clear." Should, however, a car or a train run upon the sec tion, then the circuit is completed by the wheels and axles, and the current taking the shortest course, will traverse through G and then return to the battery rather than go through the longer distance necessary to pass through the through the longer distance necessary to pass through the
signal. Consequently the circuit will at once be ruptured, signal. Consequently the circuit will at once be ruptured,
the magnet will cease to attract, and the signal, by mechanical means, is at once turned to "danger."
It is obvious that this must occur as long as a single car remains on the track, or when the circuit is broken by a dis placed or ruptured rail, or any other cause. Hence the device may be applied over an entire line, and will indicate the condition of every section thereof to the train about entering on the same.
The inventor, Professor Wm. Robinson, of 268 Washington street, Boston, Mass., informs us that there is no draw-ing-off of the current of the earth under the rails; nor, during his experience with the device under all conditions of rain, snow, etc., has he found any time when it became inoperative. In actual employment he has also determined that the single Callaud cell will last for 158 days; and by using two cells in connection with an ingenious device where by every train which passes over the section throws the cell in use out of action and the other into action, the lasting qualities, curious as it may appear, are greatly enhanced. The invention, by suitable mechanical arrangement, is made
applicable to switches, drawbridges, etc.

The Simplest Tide Motor
For the benefit of several correspondents who have in quired relative to means for utilizing tide power, we would sate that the simplest and probably the most effective de ice for the purpose is that in use in several flouring mills on Long Island Sound. The mill is commonly located at or near the mouth of any little arm or inlet of the main body of water, and across the inlet a short dam is erected. Th only access left for the water to run in or out of the arm is nder the mill, and there the two undershot wheels are lo cated. As the tide rises outside, the aperture is too smal to admit its entering the inlet with sufficient rapidity to kee the water level uniform. Hence there is at Hood tide a powerfu current running under the wheel inward, and at ebb tide a similar current running outward. The wheels are of course turned, as i may be flood or ebb tide, in re verse direction; but by simple mechanical gearing they are caused to drive the machinery always in the same direction There is no time when the ma chinery need not be going, as even when slack water arrives the dam is holding back a sufficient head to keep the wheels going until the tide definitely sets in or out and even then it is obvious that a very slight difference of level on one or the other side of the dam is sufficient to generate current enough to operate the wheels.
This is an old invention and a very simple one, but it appears not to be known to a great many people, who are vexing their brains over intricate systems of movable floats and gearing for accomplishing the same purpose. The mill is the nearest thing to a perpetual motion (not the perpetual motion-for that includes the idea of self-genera ted power) on earth.

Mrs. Elizabeth W NEW SCISSORS GAGE. through the Scientific American Patent Agency (May 20, 1876), a novel device for attachment to shears for cutting bias and straight trimmings. It enables the trimmings to bias and straight trimmings. It enables the trimmings to
be cut much more rapidly and accurately than in the old way be cut much more rapidly and accurately than in the old way
In the engraving, A, Fig. 1, represents a pair of shears, to In the engraving, A, Fig. 1, represents a pair of shears, to
the upper blade of which, near its pivot, is attached the end the upper blade of which, near its pivot, is attached the end
of an arm, B, which is made in two parts sliding upon each other, and clamped to each other, when adjusted, by a se screw, l^{\prime}. The inner end of the arm, B, is bent at right an gles, to form a base to rest against the blade of the shears, and has a hole formed through it to receive the screw, by which it is secured to the blade of the shears. Upon the parts of the arm, B, is formed a scale of inches and frac tions of an inch, for convenience in adjusting the grage plate C The gage, C slides upon the extension arm, B and is C The in place, when adjusted, by a clamping Bc , and secured in place, when adjusted, by a clamping screw, C^{\prime} The gage plate, C , is made in two parts, pivoted to each oth their outer ends by a pin attached to one of the said parts, and passing through a slot in the other, as shown in Fig. 2. By this construction, when the blades are closed, the two parts of the gage plate, C, are closed; and as the blades ar opened, the lower part remains upon the table, so as to serve as a stop to the goods. In using the device, the cloth is fold-

Fig. 1

Fig. 2.

ed evenly, and the gage plate, C, is adjusted to the required distance. The lower blade of the shears is then passed beneath the folded fabric, in such a position that the edge of the same may rest against the gage plate, C. The strip is then cut off by a single clip of the shears.

[^0]
IMPROVED HAY ELEVATOR AND CARRIER

 Messrs. M. C. \& A. H. Smith, of Starkville, N. Y., have recently (March 7, 1876) invented a hay elevator, which is operated by attaching one end of a lifting rope to the carriage, passing it then under the load-carrying pulley, thence over a guide pulley on the carriage, as well as one on the frame, and finally under a grooved pulley journaled in a swiveled frame A variable balance weight is used with the load-carrying pulley; and the latter is hung to the carriage, raised and lowered by a swivel pulley, and moved forward to the contact stop by a cord and weight applied to the carriage. An adjustably weighted ball hung to the fork-carrying pulley balances the length of rope by which the load is raised and loweredIn the engraving, A is a movable carriage, running by top wheels on a strong track rod, B. The carriage, A, is moved along the supporting rod by a rope, C, that passes over a pulley, and is supported sufficiently to pro duce the ready motion of the carriage in one direction, until the same comes in contac with a stop frame, D, that may be adjusted by clamp screws to any point along the rod, B, so as to admit the taking up of the load at any suitable point on the rod, B.
The carriage is so constructed that the ar row or bail of a load-carrying pulley, E, is locked thereto after being elevated, and re leased by the contact with the stop frame. The load-carrying pulley, E, is hung to the carriage by a rope, E^{\prime}, which is applied to a fixed point of the carriage, A, and passes over a pulley of the same to the end of the supporting rod, then over a second pulley to the ground, and over a swivel pulley, F, to the draft bar of the horse or other power. The swivel pulley has the advantage of adjusting itself readily to the direction of strain with out clamping or wedging the hoisting and lowering rope, E^{\prime}. A bottom hook of weight, G, carries the hay fork or load.
The weight, G, is capable of being adjusted to the vary ing length of draft rope by being made in the shape of a hollow ball, that is filled with the required quantity of shot. It accelerates the carrying back of the fork pulley on the supporting rod, and of preventing any twisting or entang ling of the draft rope, so as to interfere with the regular and exact working of the locking and releasing mcchanism of the carriage.

HILL'S DIRECT-ACTING DROP HAMMER.

We illustrate herewith a new direct-acting steam drop

hammer fnr forging, forming, and welding metals, stamping sheet metals, and other similar purposes. It is self-moving and therefore requires no shafting, belting, or pulleys. The only exterior attachments needed are the pipes by which its cylinder is connected to the boiler. The mode of operation s as follows.

SMITH'S HAY ELEVATOR AND CARRIER.

The hammer is secured on the piston rod of the steam cy. linder, A. In the illustration the hammer is represented as ascending, and it continues this motion until it strikes an adjustable stud, B, on the pivoted bar, C. The latter, by a system of pivoted and counterweighted levers, connects with the treadle at the base of the machine. While steam is entering beneath the piston, and so lifting the hammer, it is obvious that the inlet valve, D, must be open, and the exhaust, E, closed. Both of these valves, by suitable levers, are connected with the bar, C. When the hammer strikes the stud, B, the latter moves the bar, C, in such a manner as to close the inlet valve, the exhaust still remaining shut. The steam under the piston now sustains the hammer. To drop the
latter the operator presses the treadle with his foot, and in so doing he opens the exhaust valve through the medium of bar, C. The steam escapes, and the hammer falls until it that bar to cause it to open the inlet port. The steam, therefore, at once catches the hammer, obviates any possible re bound, and carries it up for a new stroke.
It will be seen that by moving the treadle the operator can cause the hammer to fall at any time during its ascent, ar rest it at any time during its descent, or cause it to give light or heavy blows in rapid succession, at will. By adjust ing the upper stud up or down on the bar, C, any length of blow desired may be obtained. By removing the counter weight shown on the left, and suitably adjusting the studs the hammer can be made to continue indefinitely moving,
setting its own valves, and delivering blows with any desetting its own valves, and delivering blows with any de
gree of rapidity or force. This is a useful advantage and ree of rapidity or force. This is a useful advantage and
one which will recommend the machine for purposes of forg ing and welding.
Patented May 2, 1876, to Thomas Hill. For furtber par ticulars address the owners of the patent, Messrs. Hill \& Williams, corner 5th and Ohio street, Quincy, Ill.

IMPROVED TUBE WELL

We illustrate in the annexed engraving an ingenious device for driving tube wells. It consists in a detachable point, A against a shoulder, B, on which the end of the tube rests. Above the shoulder is a shank, C, which extends up into the tube and terminates in a tapered point. It frequently occurs, in making tube wells that difficulty is met with by the filling of the perforations made above the point for the admission of water. The object of the device we have described is to obviate this, and to allow of securing an unob structed entrance for the water, by rais ing the tube up to the conical part of the shank, after the plug has been driven to the required depth. Further, in case water is not found in sufficient quantit after the tube has been raised, it can readi ly be let down again on the plug to drive it still deeper.
The invention was patented through the Scientific American Patent Agency, April 25, 1876, by Mr. Stephen Henry, of Marsh. field, Mass.

A Beauty Society
Mr. George Dawson, in a recent lecture at Birmingham, England, said that the office of a man's house was not only to give shelter, food, and meat, but also to surround his children with those fair sights and sounds by which the sense of beauty might be developed. There we blauty might be devise were house in that town in which not a poem was read nor a song sung throughout the year, and yet people wondered why their children were vulgar. Attention to the beauty of towns was one of the most neglected duties and one of the most deserving. If a town was beau tiful, the people took pride in it, like to live in it, and were sorry to leave it In Birmingham they wanted a new society, to be called " the Beauty Society."

Remarkable Japanese Compass
Mr. Frank Buckland, in Land and Water, gives the fol owing account of a remarkable compass taken from the wreck of a junk at the entrance of Yokohama Bay, in 1874 The pilot by whom this instrument was discovered could give no information about the compass, except that it was ound on board the wreck. It is of a circular form, meas uring $13 \frac{1}{2}$ inches across, cast in bronze, and weighs 21 lbs It has a thick rim, in which two ordinary compasses are set, ne on each side.
The center of this remarkable plate-like looking object is considerably raised from the surface, and is covered with a number of raised spots or stars of various sizes, each more or less connected by lines with its neighbors. The shapes of these star-like objects are re markable; in the center there are five which are larger than the rest.
Then there is another group very like a net another group represents almost a complete cir cle of these stars; another represents a Y with the arms closed together; another a Y with the arms extended. Altogether, there are no less than two or three hundred of these elevated spots of different sizes. Running throughou the whole series are several lines radiating from a circle drawn round the center. The brass rim on which the compasses are set is divided into 360 degrees, the same as an English com pass. At every thirty degrees there is a Ja panese character.
Neither Captain Murray, to whom Mr. Buck land is indebted for the loan of the compass, nor any one to whom he has shown this curiosity at home or abroad, has any idea whateve of the meaning of the star-like bodies in the center, or for what purpose the Japanese used them, but it is quite certain that they must have been of some use to them. It is most interest ing that these rude characters should be united in the same instrument with the $\mathbf{3 6 0}$ degrees of modern civ lization. The casting of this remarkable instrument is very marvelous. An optician, who cleaned it up for Captain Murray in Glasgow, said he had never seen a finer bit of work.

The Electric Light on a Transatiantic Steamer. The French transatlantic steamer Amérique is now proided with an electric light, in order to prevent her collision with other vessels. The lantern is placed on the bow at a hight of 22 feet above the forecastle, or 42 feet above the water. The current is produced by a Gramme electric machine, revolving at the rate of from 950 to 1,000 turns per minute, and affording a light equal to 150 carcel burners. An ingenious device places the control of the light in the hands of the officer of the watch, and by this he can extinguish the illumination or renew it at will without stopping the machine. Experiment has recently proved that the most effective use of the light, as a means of warning, is to allow t to shine for ten secolds and then extinguish it for the succeeding two minutes.

NEW ELECTRIC BATTERY

M. Onimus recently exhibited to the French Academy of Sciences a new and simple battery, an engraving of which is given herewith. Instead of the usual porous vase he substitutes a diaphragm of parchment paper. The zinc cylinder, A, being enveloped in the paper, B, copper wire, C, is wound over all. The latter holds the paper against the zinc and answers for a fastening. The whole is plunged in the sulphate of copper solution, and the battery soon works re gularly. For some carbon batteries, the carbon is enveloped

in parchment paper, and around this is placed either a zinc wire or a zinc cylinder. The battery thus constructed will, when moistened, work for some hours after being removed from the exciting liquid.

The following are useful memoranda for hydraulic calculations: 1 cubic feet of water $=62 \cdot 425 \mathrm{lbs} . ; 1$ cubic inch of water $=0.03612 \mathrm{lbs} . ; 1$ gallon $=10 \mathrm{lbs}$., or 0.16 cubic foot. The pressure of water per square inch in lbs. =the head in feet multiplied by 0.4335 . Sea water $=1.027$ weight of fresh water, or 64.11 lbs . per cubic foot

Contrespoundeuce.

The Mississippi Jetties, -onLetter from Captain Eade

 To the Editor of the Scientific American:The following extract is from a private letter just re ceived from Colonel W. Milnor Roberts. Believing it to be a well merited compliment, I cannot resist the desire to ask you make it public. As Mr. Corthell lately contributed to your valuable journal one of the most complete and intelli gible descriptions of the construction of the jetties, and the principles upon which their application to the South Pass bar is based, that has yet been written*, I am sure you will cheerfully publish this handsome recognition of his ability, coming, as it does, spontaneously from one of the oldest and most eminent civil engineers in America, in praise of one who, though still young in the profession, has by hisindustry and talents largely aided in achieving the success thus far secured by the jetties.
Mr. Janes B. Eads, C. E.-Dear Sir : I have just returned from Philadelphia, from the annual convention of our socimatters here, I must take time to congratulate you upon the grand success which your assistant, Mr. Corthell, achieved before the convention in his presentation of the operations and present status of the South Pass. It was clear, suc cinct, easily intelligible to those not familiar with the place truthfulness. It had, I think, a better and more potent in fluence, in clearing away doubts which existed in the minds of many who were present, than anything ever before presented.
Facts are stubborn things. I had prepared some remarks chiefly based on the information I had received, some o Which I gladly waived in the presence of the thing itself, so
to speak, as shown to the convention by Mr. Corthell If say you could not have done it better yourself, I only say say you could not have done it better yourself, I only say
what I believe is true, and I know that you will understand
W. Mirnor Roberts. my meaning. lours, as ever, W. Milinor Roberr..
I was unable to be present at the convention, but have heard from many others who were there that Mr. Corthell's presentation of the sulject was most admirable

James B. Eads.

The Long Gas Pipe in Pennsylvania

To the Editor of the Scientific American:
In your issue of June 24, we notice an article, taken from the Americen Manufacturer, which, if left unexplained would do us both injustice; and as neither of us wishes to be an iconoclast of "tables and books on pneumatics and hydraulics," we will endeavor to give a correct statement of the experiment of passing gas through a three inch pipe, 32 miles long, from Millerstown, Butler county, to Harmersville, Allegheny county, Pa. The time was computed by watches adjusted before the experiment and compared after it. The pressure at the well before the cock was opened stood at 55 lbs .; after opening the cock, it stood at 50 lbs. throughout the day. At 32 minutes after the cock at the well was opened, we could smell the gas plainly at Harmer ville, but it would not ignite for some time after. We had fixed at the discharge end of the pipe a 300 light meter; and by reducing the size of the opening so as to deliver 50,000 cubic feet in 24 hours, as registered by the meter, the pres sure in the pipe increased to 34 lbs ., and stood at that, being a loss of 16 lbs. , delivering 50,000 cubic feet through 32 miles of three inch pipe; and by extending the same sized pipe to Pittslurgh (8 miles) the loss in pressure would equal 20 lls .: and by increasing the opening so as to reduce the pressure to equal a column of water three inches high (the delivery would equal 161.000 cubic feet in 24 hours
This you will (we think) find is "in conformity with the theories and demonstrations of scientists," and it does not ' look as though some facts would have to be changed or tables and books on pneumatics and hydraulics revised."

Robert Young, John McElroy.
Engineers of Allegheny andPittsburgh Gas Companies

The Voracity or Finlies.

To the Editor of the Scientific American:
In your issue of June 24, you give us an engraving of fish hooks, etc., found in the stomach of a cod, by Mr. Frank Buckland. Some of our southern streams contain voracious fish. An acquaintance of mine caught a catfish in a lake on the Arkansas River, near Little Rock, some few years since, from the stomach of which was taken the larger part of an ox liver, twenty-three hen's eggs, three puppies, and a and it had been digested loy the juices of the catfish's stomach and the shoe alone remained to tell the child's sad fate, or whether the child escaped the jaws of the voracious fish, los ing only its shoe in the rencontre, the evidence was not suffi ciently clear to determine. But that the above enumerated articles were found in its stomach is undeniable; and I think this is enough to establish the fact that the catfish is also voracious fish.

Robert L. Steel.
Rockingham, N. C.

To the Editor of the Scientific Ameican

It would seem that a series of wrought iron tubes, placed side by side, three fourths of an inch apart, would form a most appropriate and economical grate for every kind of steam generator, and especially for the furnaces of coal.burning locomotives, wherein the solid bars are so quickly destroyed The few roads which have used the tubular or water grate have proved it to be highly economical and satisfactory in every way, as far as I can learn: and there seems to be no
reason why it shall not eventually supersede the solid grate, everywhere and for every kind of fuel. The only care ne cessary in its use is to keep the tubes free from sedimen

If the tubes, ' T, in the engraving, are sufficiently inclined, say from one to two inches to a foot, they will not clog, i they are of proper size, unless the water spaces around the furnace with which they communicate first become clogged. If the tubes are more than three feet long, they should no have less than two inches external and one and a half inter nal diameter. If more than six feet long, I would recom hend not less than two and a half iuches external and two ches internal diameter; and if more than four feet long, hey should have a central support. An inch and a quarte screw plug, $($ ', should be placed exactly opposite one end o each tule, for the purpose of cleaning the tules in case they get foul. These plugs, in connection with the four two inch ones placed at the corners of the fire box, will afford ample opening for removing all filth which collects around the fire box and in the tubes.
There are several methods of fixing the tubes into the fire box; the besto plan, all things considered, is to screw them into the front sheet, A, of the fire box and secure the other end in a copper or composition ring, R, screwed in the rear sheet, B, Fig. 1, about three inches of the rear end of the ube having been previously turned to a nice straight fit to he inside of the ring, so that the ring may be slipped on to he tube a little further than the position it is to occupy inally, in order to facilitate the entering of the screw end of the tube, as indicated ly the dotted lines. After the tube and ring have been firmly screwed into the fire box, the corner of the ring may be set up to the tube with a steel set punch and a light hammer, to insure a steamtight junction etween tube and ring. The holes for the reception of the ubes may be cut in the sheets before the fire box is riveted together ; but the threading of the holes should be done aferward, and then it should be done with a tap having a stem ong enough to extend across the fire box and rest in the hole opposite the one being tapped, in order to insure per fect parallelism of the tubes and rings while being screwed in, without any side strain.
The holes for the reception of the tubes are sometimes arranged zigzag across the sheets, as shown in Fig. 2, in stead of in a straight line: the tules, α, at the lower angle eing movable, and not water tubes, to facilitate the clean ing out of the fire box. The Philadelphia and Reading Railroad, I think, first adopted this arrangement; some o their water grates are nine feet long. When the tubes are set in a straight line, a single movable tube will suffice for cleaning the fire box; this may be either the center one or one of the side tubes. It is desirable that these grates should be easily accessible from beneath, so that the fire man cansee the state of the fire from below and carry the poker along between the bars and dislodge the ash and cin der without disturling the fire alove. 'To this end, ther nust of course be a door at the rear end of the ash pan. Woreester Mass.
F. (i. Woodward

[For the selentific American.] illustrated at the centennial

The visitor who is interested in the methods of instruc tion adopted in this country can profitably spend a day a east in the examination of the educational exhibit at the Exposition. The writer, indeed, after a much longer study of theseexhibits, finds his examination but partially com pleted. The chief point of interest to him, however in this class, was the display made by several well known technical schools. The question as to the proper method of training engineers has excited great interest in professional circles of late, and numerous letters from your correspondents prove that information of these schools is desired by many of your readers. It is probable, therefore, that a few notes regarding the technical schools that are represented a he Exposition may not be unacceptable
the massachusetts institute of technology.
Taken as a whole, the Massachusetts educational exhibi may fairly challenge comparison with the display of any ther State, and the completeness of the exhibit is nowher better illustrated than in the technical department. Many exhibitors seen to think that they have accomplished their duty loy making an interesting display, apparently forgetting hat, if they cannot furnish printed descriptions or attend nts to give explanations, the true merits of their exhibits
will rarely be appreciated by the visitor. The Massachu
setts Institute of Techology, however, provides complete catalogues of all articles exhibited, with documents ex plaining the organization of the school and various other details of interest. The general plan of the institution is quite extended, embracing ten courses, each occupying fou years, as follows: Civil and topographical engineering, mechanical engineering, geology and mining engineering building and architecture, chemistry, metallurgy, natura history, physics, science and literature, philosophy.
How these subjects are taught is illustrated by the work of the students, consisting of theses, examination papers, drawings, models constructed by students, accounts of ex periments made by them, results of operations in the labor atories, plans and descriptions of buildings, and a good col lection of the apparatus employed in making investigations It is worthy of observation that this exhibit is not nuade up of the work of the best students only but is designed to b a fair representation of that done by the whole school. The visitor who makes a careful examination of this display visitor who makes a careful examination of this displa ments and original investigations, and that a promin place is given in most courses to the sulject of drawing. It place is given in most courses to the subject of drawing. It
is pleasing to notice, too, that the majority of the drawings resuch as are required in actual practice, less attention be ing given to ornamental horders and titles than to the rawings themselves. Enough specimens of elaborate rawing are exhibited to show that the student can do this work if required. A fine illustration of this kind is a char of the metric system, in which, however, it is to be regretted that the statement is made that all measures of the system, of length, surface, solidity, and capacity, are directly derived from the meter; for although this statement can be supported on the authority of Uniteil States law, it is none the less untrue as a scientific fact.
A hasty review of several of the theses shows exception ally careful and thorough work on the part of the students. As is natural, in discussing doultful questions, they ar As is natural, in discussing doultful questions, they are
usually decided by reference to investigations at the Insti usually decided by reference to investigations at the Insti
tute, which may not be generally regarded as possessing the authority of experiments made by other physicists; but ta ken as a whole, these theses contain much that can be read with profit by professional men and manufacturers. Occa ionally, in glancing over the pages, some may regret tha orthography was not embraced in the scientific course.
This institution opens its doors to members of the gentle ex, and it is pleasing to find an account of some thorough analytical work by one of the female graduates
The school year is about 36 weeks, and the necessary es penses, including board and tuition, vary from $\$ 500$ to $\$ 600$ er school year, according to statements in the catalogues the tuition fee being $\$ 200$ per year. There are, however everal free courses of instruction. Much of the apparatus at the Massachusetts Institute of Technology is unusually interesting; and although some of the more novel features are not exhibited at the Exposition, they are fully described and may be mentioned in a future letter
WORCESTER COUNTY FREE INSTITUTE OF INDUSITRIAL

science.

The exhibit of this school is partly in the room adjoining that of the Massachusetts Institute of Technology, in the ast gallery of the Main Building, and partly in Machinery Hall. The mechanical engineer will find much to interes him in this collection, which illustrates the results of a course of instruction, combining practical exercise in a wel quipped machine shop with the technical training requirec by the thorough mechanic. A catalogue of the exhibits drawings of the school, illustrative charts, and a compila ion of various details are of great assistance to the visitor who wishes to make a thorough examination. The Worces who wishes to make a thorough examination. The Worces founded by John Boynton, and the nachine shop was estal ished by the late Hon. Ichabod Washburn. It has also re ceived endowments from Hon. Stephen Salisbury and the State of Massachusetts. Tuition is free to all students from the county of Worcester, and also to 23 students from the State of Massachusetts, while to students from other local ities the tuition fee is $\$ 100$ per annum. The annual ex penses, other than for tuition, need not exceed $\$ 300$. The courses given embrace mechanical engineering, civil engieering, chemistry, physics, modern languages, and draw ing. In professions where practical proficiency is required, is imparted by practice. Mechanical students work for months in the machine shop before entering the class rooms, and the subsequent course extends over a period of thre years, in which 10 hours a week are devoted to practice in he machine shop for 10 months in the year, and 8 hours a ay in the month of July. For other students, the course is 3 years. The work done in the machine shop consists of machine tools, models, and the drawing tables which are so well known. 'The manufactured articles are regularly sold in competition with those made in other establishments, and are readily disposed of. So far, the shop has not been es tablished on a paying basis, the average annual excess of expenditures over profits being about $\$ 3,000$. It is, of course doubtful whether a shop conducted on this system can eve be made to pay expenses, if due regard is given to the othe instruction required by the students, but thisis a matter of minor importance. Numerous examples of the work of th students are displayed, including all their specialties; and having disregarded the request about touching the exhibits, he writer has become very favorably impressed with the general accuracy and the thoroughness of the execution In Machinery Hall, which contains lathes, grinding ma school, one of the machine lathes is driven by a belt of
twine, to illustrate the accuracy of the work. One of the most interesting exhibits of the school is the Willis appar atus for illustrating the principles of mechanism, with accounts of experiments made by students. In the case of a jack screw, it was found that the efficiency was but 23 per cent of the power applied, 77 per cent being required to overcome friction. With a crane, the efficiency was 67 per cent, and with a differential pulley, less than 32 per cent. The alvantage of deriving a knowledge of simple machines from experiment rather than from a theoretical investiga tion, in which the enormous losses that occur in practice are ignored, is obvious.
the stevens insti'tute of technology
The visitor will find this exhibit near post T, 67 , in the Main Building. It may be a matter of regret to some that so much of the display is devoted to the apparatus of the Institute and the work of its professors, and so little to what has been accomplished by the students, while the want of a catalogue or any method of gaining information will be seriously felt by the casual visitor. The exhibit is, however, of great interest, including a fine collection of the physical and mechanical apparatus of the school, much of which is unequaled, together with accounts of the results obtained by, and illustrations of the apparatus used in, the experiments of Professor Morton on Hluorescence, of Professor Mayer on sound, and of Professor Thurston on the strength of materials. There are a few drawings by students which are exceptionally fine, but they are hung rather too high to allow of a close investigation. The engineer will doubtless le much interested in the elegant drawing of the governor invented ly Professor Thurston, and equally so in the illustration of Professor MacCord's theodontoscope for testing the accuracy with which the teeth of gear wheels are cut, by observing the velocity ratio of two teeth at dif ferent points of contact. The reader of the Scientific American Supplement does not need to be assured that the Professor of Drawing at the Stevens Institute is one of the ablest instructors in the country; but it is questionable whether this school would not have done well to have made a more general exhibit of the drawings executed in ordinary course by the students.

The practical work of the senior class is illustrated by one of Professor Thurston's well known testing machines. By disregarding the printed request, and touching this exhibit, it will be observed that the construction is not as ac curate as in some of the machines described above. The specialty of the $\mathrm{N}^{\text {tevens }}$ Institute of Technology is thorough instruction in mechanical engineering. The course covers a period of 4 jears, the school year consisting of about 35 weeks. The annual expenses are about $\$ 500$, the tuition fe being $\$ 150$ per year.

ILLINOIS INDUSTRIAL UNIVERSITY.

The display made by this institution will be found in the south gallery of the main building, among the educational exhibits of the State of Illinois. It consists of apparatus used in the school, models made by the students, records of some of their experiments in physics and the strength of materials, and drawings. One of the models, a flight of elliptical stairs, is an exceedingly creditable production. The specimens of machine work, being enclosed in a glass case to be as well finished as those exhibited by some of the other to be as well finis
The Illinois university offers courses of instruction in ag riculture, engineering, natural science, literature and sci ence, military science, commerce, and domestic science and art, open to students of both sexes. In this instruction practice plays an important part, and there is a machine shop in which articles are manufactured for the marke The catalogue of the university, which was given to visi ors, was printed at the institution. It is perhaps only fai to say that this is not, in all respects, a first class piece o work. The complete course in any department requires years, of 36 weeks each, and the annual expenses vary from $\$ 150$ to $\$ 300$, principally for living expenses, the tuition fees being merely nominal.

university of pennsylvania.

One of the alcoves in the Pennsylvania educational build ng is devoted to the display made by this university, which consists of drawings, text books, models, apparatus, and some examples of bridge trusses and gearing made by the students. It is not intended as a representative exhibit, vis tors who are interested in the matter being referred to the university, which is located in Philadelphia, for further in formation. This university bids fair to become one of the most prominent technical schools in the country, being rich y endowed, having spacious buildings, and an unusually fine collection of apparatus. One of the most important courses, that of mechanical engineering, has not yet been established, but it is probable that it will eventually form very prominent department.
'The above is a brief description of the exhibits of some of the more prominent technical schools of the United States It will be observed that many well known schools are miss ing from the list; and it is a matter of regret that a full representation could not have been secured. The list might have been considerably extended by reference to the instruc tion in drawing and engineering, as illustrated in some of the general educational exhibits. but the limits of this letter will not permit such a wide range. The exhibits of for eign technical schools may form the subject of a future Philadelphia
Philadelphia, Pa.

Brovn, Purple, Green, and Yellow Ultramarine. A Frenchman named Guimet has patented a new process for making ultramarine of these various colors. By the substitution of selenium for the sulphur in blue ultramarine, he obtains a brown and purple ultramarine. If in a similar manner tellurium be substituted for the sulphur, he obtains a green and yellow ultramarine.
Green and violet ultramarine are not new, having been in the market for some time. The method of manufacture has been kept a secret, and it is only through the careful analyses of Dollfus and Mieg that we have an insight into thei composition. They analyzed three kinds, with the follow ing results :

Silica	Green. $37 \cdot 770$	$\begin{gathered} \text { Blue. } \\ 37 \cdot 860 \end{gathered}$	$\begin{aligned} & \text { violet. } \\ & 22.305 \end{aligned}$
Alumina	$31 \cdot 499$	24.285	12.790
Oxide of iron	$0 \cdot 181$	$0 \cdot 180$	$0 \cdot 420$
Soda.	$13 \cdot 401$	12.009	6.855
Potassa	$0 \cdot 480$	0.000	$0 \cdot 000$
Sulphuric acid.	0.693	$1 \cdot 104$	1.004
Sulphurous acid.	$0 \cdot 405$	$0 \cdot 780$	$0 \cdot 764$
Hyposulphurous acid.	0.000	0.621	1.742
Sulphide of sodium.	$8 \cdot 592$	6.582	$1 \cdot 255$
Free sulphur.	$3 \cdot 310$	$7 \cdot 929$	3-188
Gypsum.	trace	trace	$41 \cdot 814$
Water.	4.884	$4 \cdot 904$	11.537
Kaolin.	0.026	$3 \cdot 039$	4.546

aims are essentially the same, to combine thorough practicalinstruction with the advancement of true science. The steam engine, which is the type of our profession, is not a mere mechanical contrivance, but the expression of an intel lectual conception. It is, as it were, an enlargement of man's powers over nature, a continuation of his faculties Its study, therefore, when conducted in the proper spirit, is an ennobling one, and deserves to go hand in hand with cience for the amelioration of human society. I have visited this institution, and am rejoiced to see that its professors are imbued with a sense of their high vocation, which canno fail to produce the happiest results. The scientific re searches, moreover, which are here made, rank with the best that have ever been made anywhere." Mr. Reuleaux concluded with a few words of good wishes to the graduates and exhorted them to maintain the dignity of their profession. His speech, though in German, was well appreciated and elicited hearty applause. Mr. Dod, President of th Board of Trustees, then conferred upon the class the degre of Mechanical Engineer, and the exercises concluded with an impressive valedictory address by J. Mather Wallis
The theses not already mentioned were on the following subjects: "Centrifugal Pumps," Samuel B. Brewer; "De signs for an Overhead Traversing Crane," John O. Buerk "Pumping Engines," James M. Cremer ; "Suspension Cables of Brooklyn Bridge," Gustavus C. Henning; Design for a Paper Mill," Joseph Kingsland; "Design for Iron Foundery," Philip E. Raqué ; "Screw Propellers, Principles and Prac tice," Adam Riesenberger; "Apparatus for Extinguishing Fires," Eugene L. Vail ; "Principles of Car Framing," Edward B. Wall; "The American Beam Engine," J. M. Wallis ; "Construction of the Steam Hammer," Edward L Wells; "Design for a Steam Dredge," William F. Zimmer mann.

IMPROVED CHIMNEY COWL

An automatic cowl for correcting smoky chimneys and ventilating buildings has been applied successfully to some public buildings in London. The action is continuous, and there is no mechanism to get out of order. The engraving shows a vertical section of the cowl. R is a truncated por tion of tube which may beattached to the chimney pot. is also a similar portion placed over the truncated tube, R

The tubes or cones, R and S, are kept apart from each
 other by means of distance pieces, V. At the top of the tube, S, are placed a numbe of annular rings, superim posed, or perforated plates F, separated from each othe by means of distance piece or blocks, h. Bands of meta $-h^{*}$, help to hold togethe the plates. These plates, F are surmounted by a cap de signed to prevent down drafts, which is constructe as follows: G^{*} is a truncate conical cap, provided with upright supports, g^{3}, on the top of which is a fance ${ }^{*}$. a flange o ome or door, G. Another conical cap or casing, G^{2}, is placed round the cap, G^{*}, and rises above the flap or door . The outer conical casing, G^{2}, is secured to the upper most of the plates, F , by distance pieces or nuts. A free passage for the air is left between the inner and outer cas ings. Sometimes the door or dome is a fixture, but, when novable, a bent piece of metal, X , acting as a spring, closesit, after the brush or instrument used for cleaning or sweeping the chimney has been withdrawn. This dome or door, besides preventing down drafts, also prevents rain, snow, or other matters entering the chimney. The action of the ventilator is claimed to be that the constant movement of the atmosphere, passing transversely between the plates, F, withdraws all smoke, gas, and vitiated or noxious vapors.-Building Nevos.

Centenarian Birds.

It may not be generally known, says the Wexford Indepen ont, that the eagle, raven, and parrot are each centen ians. An eagle kept in Vienna died after a confinement of 114 years; and in an ancient oak still known as the raven ree, the same pair of ravens are believed to have fixed their esidence for a series of more than 90 years. Swans upon the river Thames, about whose age there can be no mistake -since they are annually marked by the Vintner's Company, inder whose keeping they have been for five centurieshave been known to survive 150 years and more. The meldy of the dying swan is mythological. Upon approach of death the bird quits the water, sits down upon the bank, lays its head upon the ground, expands its wings a trifle, and expires, uttering no sound.

Corn Cobs.

One of our city exchanges, says the Ohio Farmer, objects to using corn cobs for fuel. They are too valuable. He recommends covering them with a plaster of oil, meal, bran, etc., and feeding to cows. The plan is fully equal to that suggested by a correspondent of another paper, to keep shade trees out of pastures to prevent cows from getting lazy. One cheats the poor brutes into eating that which is unnutricious and unpalatable, and the other forces them to eat by depriving them of shelter from the hot sun: at least, that is the intention.

mPRROVED STEAM GOVERNOR.

The invention herewith illustrated is a new automatic governor for regulating the influx of steam to the engine, by the steam itself. It is set to allow steam at a given pressure to pass; should that pressure be exceeded, a lever similar to that of a safety valve is lifted, and the steam valve by suitable connection therewith is closed sufficiently to allow less steam to go to the engine, so that the pressure admitted to the cylinder is in this way maintained uniform.
Steam from the boiler is led to the rotary valve, A , in the bottom of the steamtight box, Fig. 2. In the lid of the box is a pipe in which plays a plunger attached to the lever, B, Fig. 1. The latter is pivoted at its extremity in a support, as shown, rests on another support, C , and is connected by the rod, D, to a wrist in the end of a crank, E , which is secured to the shaft of valve, A. Above and below the rod, D, on the lever, Above and blow are nuts to allow of lengthening or slortening has a int it to prevent sard also has a joint in it to prevent cramping when the lever is forced upward. F is an indicator operated by a spring and connected to the lever by a threaded rod and nut, G. This answers the double purpose of holding the lever down and to slow the steam pressure.- The pointer attached to the neck of the valve exhibits, on the scale on the side of the box, the position of the valve with
in. Steam, after passing through the device, has its exit at the pipe, H. In adjusting the apparatus, the nut, G, is first screwed down until the indicator shows the desired amoun of steam. When the pressure in the boiler reaches that point, the throttle is thrown open to its full capacity, said capacity being equal to that of the governor valve, A. As long as the steam is kept at the fixed pressure, the engine will run steady. When, however, the limit is transcended, then the pressure on the end of the lever piston will raise the lever, which in turn will rotate the valve, A, and so shut off a portion of the steam from the engine. The adjustment of valve, A, so as to cause it to close faster or slower, is effected by the wrist, which passes through a slot in the crank arm.
It will be seen that the device is independent of the mo tion of the engine, and thus, as the inventor claims, it governs the engine, instead of the engine governing the gover nor, as is usually the case
Patented May 23, 1876. For further information regarding sale of rights, etc., address the inventor, Mr. Josiah W. Clark, Iola, Allen county, Kansas.

IMPROVED HYDRAULIC ANCHOR LIFT

We illustrate herewith new mechanism for raising the anchors of spoon and other dredges by hydraulic power. To the framework of each dredge, adjacent to the anchor, a vertical metal cylinder is connected to a pump, so arranged that its power may be conveyed simultaneously to all the cylinders or to any one of them. In each cylinder is a plunger which, by water pressure, is forced upward, during which motion it gripes and lifts the anchor. re leasing the same on its downward move ment. The general construction of the device is strong and simple, and its action is mainly automatic. The engraving, Fig. 1 representsit as located at the stern of dredge and engaged in lifting the storm an chor.

A is the vertical cylinder which receives its water supply from, the donkey or other pump by the pipe, B. Inside the cylinder is the plunger, C , the head of which, with cup-shaped packing, which the water pressure it self serves to keep tight, is re presented at D, Fig. 2. The same figure shows, at E, a valve lifting upward, which is controlled by the lever, F, the end of which enters the outboard discharge pipe for the water.
At the upper extremity of the plunger rod are arms, G, having at their ends toes which press against the anchor. Surround ing the latter are straps which likewis embrace the cam piece, H. This arrange ment is such that, when the plunger is force upward, the toe and cam bind firmly and the anchor is lifted. As soon, how ever,as the plunger has reached the end of its stroke, it pulls upon the chain, I, so lifts the lever. F ; and the valve, E , being thu raised, the waterescapes from the cylinder while that still delivered from the pump passes at once overboard. The plunger can not proceed any higher; and if its single stroke has with drawn the anchor, its work is accomplished. If, however, it is neces sary to take another lift, the operator, as shown, holds the lever up by the cord, J when the plunger descends by its own weight to the bottom of its stroke. Mean while, to prevent the anchor falling back the cam, K, is thrown into action, and this,

CANAN'S HYDRAULIC ANCHOR LIFT.
ors. It is notably labor-saving, and will do much to facilitate the now difficult labor of raising anchors by friction drums and chains.

Patented May 16, 1876, by Mr. James Ca nan, of Port Colborne, Canada. For further particulars address Messrs. Burrow Chatfield \& Co., 11 to 13 St. Paul street St. Catharine's, Ontario, Canada.

The Frog.

Thus the perspiring editor of the Boston Globe discourses on the comfortable life of the frog:
" We feel impressed during these fervid days" says the writer, "that it would be nice to be a frog. So far as we know the frog never toils, and we feel quite cer tain that he doth not spin; but he goes in swimming whenever he feels like it and he has a passion that way that the and he has a passion that way that the mos Whass schoolboy can hardly emulate What could be more refreshing than to plunge to the bottom of a cool pond, whe the summer sun grows fierce and vindic tive, and there meditate on the advantages of amphibiousness? What a luxurious place would the bottom of a lake be for passing one's Fourth of July in peace and quiet! Oh! that we were a frog. And the youthful batrachian lives in a perpetua summer retreat, in sedgy streams and by purling springs, in the cool shade of the umbrageous trees and among tall grasses swept loy the pass ing breeze. And he wears no exasperating fabric of wool or cotton, nor yet of insidious and sticky linen; but with the smooth coat of green and black wherewith Nature clothed him, he can enjoy the cooling shower, or sit in his bath by the hour, with no fear of ague and no sense of seeth ing discomfort.
"Happy frog! He has no hours of labor, and he seemeth not to be oppressed with the necessity of sleeping at any se time. He can take his siesta at noonday, and his dreamy doze at early dawn, and in the cool of the evening he can sit and sing in the fullness of his joy! No mosquitoes annoy him, and he has an easy escape from pestiferous flies. As a singer he has few equals, and as a ventriloqnist he is abso lutely unsurpassed. He can so modulate and entune his voice as to baffle the efforts of the most persevering boy to find his whereabouts, and without question he has rare sport in thus playing with the feelings of his chief enemy, the small boy. 'Tis not alone in the refreshing and in vigorating element, water, that the frog has advantages of locomotion. He will leap you a hundred times his lengt locomol at a single jump. If a man could do that, what fun it would with the opportunity of a leap from the bridge on the way
with the opportunity of a leap from the bridge on the way! make one sigh for a lot like his. It is better than any corner lot in Boston. Who ever saw a frog that was lean, or tha was reduced either to beggary or the necessity of labor? His natural food swarms in his favorite haunts, eager to be swallowed. And he has no occasion to be over fastidious, for he has no sense of taste and very little of smell. It may not be generally known to the unlearned that the frog, with all his fondness for water and dampness, never drinks. To some this may seem like a disadvantage. There are degen seem like a disadi they were forced to takeal their liquid refreshment externally, would their liquid refreshment externally, woul covet the fate of that english prince who drowned in a butt of Malmsey wine; or if they were to be frogs, they would wish for bowls of punch and lakes of liquor.
" The frog suffers occasionally from the 'cussedness' of the small boy and the voracity of the Frenchman, but he has few enemies. For the most part he passes a life of serene joy, and never fails to keep cool in summer, while in winter he dreams the months away in a state of ecstatic torpidity. He has no occasion for overcoat or arctic shoes, and cares not for the range of the thermometer or the prognostications of 'Old Prob.' The rain never spoils his picnic or postpones his evening's entertainment. He has his place too in literature. Even old Homer sung of his conflict with rapacious rodents, and Aris tophanes made him a medium for wit and music in his dramas. How many a lesson has he taught the world, with Æsop as his interpreter! He is famous in song and story he is happy and jovial in his life, and above all heis forever cool. Happy frog!"

To Join Lead Plates.

The joints of lead plates may be made as follows: The edges are brought together, hammered down into a channel cut out of wood, and secured with a few tacks. The hollow is then scraped clean with a scraper, rubbed over with tallow, and a stream of hot lead is poured into it, the surface being afterwards smoothed with a red hot plumber's iron.

THE JAGUAR OR SOUTH AMERICAN TIGER. Among the many handsome and formidable creatures which are natives of the western hemisphere the jaguar is entitled to the first place for beauty, strength, and ferocity. In these particulars it rivals the royal tiger of Bengal, resembling it also in subtlety. It is occasionally seen in North America as far north as Louisiana; but the southern continent is its home. The natural history of this animal was given in de tail on page 39 of our volume XXXIV.; and we herewith publish an admirable engraving, showing a fine specimen of the race, enjoying the coolness of the shade and the river in race, enjoying the coolness of the shade and the river in one of the tropical forests. The picture was drawn by Mr. Jo seph Wolf, and engraved by the brothers Whymper ; and it first appeared in "The Life and Habits of Wild Animals," The following are the ordinary dimensions of windmil published by Messrs. Mac millan \& Co., of New York and London.

The artist has well suc ceeded in portraying the fe rocious beast in an attitud of perfect repose. But fo the blinking eyes and th curl on the tip of the tail (which has evidently jus (which has evidently jus touched the surface of th water) the animal gives n sign of life; and its watch fulness, even when at rest is the only indication of its remarkable cunning, which never allows it to be sur prised. In this state of rest, we can admire the immense muscles of the shoulders and neck, and the great size of the thighs and legs, as wel as the exceeding beauty of the coat and the configura tion of its spots. Of all the larger specimens of the trib felis, the jaguar most resem bles in countenance the do mestic cat ; and the likenes is very apparent in our en graving, the pose of the mon ster increasing the simila ity.

A terrible tragedy took place some time since, in monastery in Santa Fé, New Mexico,in which the strength and courage of the jaguar were forcibly shown. One of the brothers entered the sacristy, and found himsel face to face with a large jaguar. The beast clutched him at once, and dragged him into a corner. Th screams of the victim brought another monk to the room, whom the jaguar also despatched with promp titude ; and another comer met a similar fate. A gen tleman named Irondo at tempted to approach the sa cristy by another door, but unfortunately the jaguarhad left the room through this door, and before Mr. Irondo door, and before Mr. Irond could reach the spot he was
saluted by the cries of a saluted by the cries of a
fourth victim. The doors fourth victim. The doors were, however, finally shut upon the jaguar, and he was shot through a hole bored in one of them.
It seems to be a merciful dispensation of Nature that the most terrible quadruped are not gregarious, but hunt alone or in couples. If lions, tigers, and jaguars herded like wolves, whole provinces would be depopulated by their ravages, and man would hardly be able to hold them in any subjection. But by destroying them in detail, their numbers can be kept within bounds, and their depredations confined to their native forests and jungles.

Facts and Simple Formulx for Mechanics, Farmers,

 and Engineers.Velocity of circular saws at periphery, 6,000 to 7,000 fee per minute. Rate of feed for circular saws, 15 to 60 feet per minute. Velocity of band saws, 3,500 feet per minute. Velocity of gang saws, 20 inch stroke, 120 strokes per min ute. Velocity of scroll saws, 600 to 800 strokes per minute Velocity of planing machine cutters at periphery, 4,000 to 6,000 feet per minute. Travel of work under planing ma chine. $\frac{1}{2} \sigma$ of an inch for each cut. Travel of molding machine cutters, 3,500 to 4,000 feet per minute. Travel of squaring up machine cutters, 7,000 to 8,000 feet per minute. Speed of wood carving drills, 5,000 revolutions per minute Speed of machine augers, $1 \frac{1}{2}$ inches diameter, 900 revolutions per minute. Speed of machine augers, 星 inch diameter, 1.200 revolutions per minute. Gang saws require, for 45 superfi cial feet of pine per hour, 1 horse power indicated. Circular saws, for 75 superficial feet of pine per hour, 1 horse power

indicated. In oak or hard wood, 星 of the above quantities

 equire 1 horse power indicated.The area of a safety valve should be 006 times the area of fire grate
On railway car axles, 20 pints of oil lubricate 8 journals cars for 5,000 miles, or 1 pint for 250 miles.
The following is the effective horse power for different ater motors, theoretical power being 1: Undershot water wheels, 0.35 ; Poncelet's undershot water wheel, 0.60 ; breast wheel, 0.55 ; high breast, 0.60 ; overshot wheel, $0 \cdot 68$; turbine, 0.70 ; hydraulic ram raising water, $0 \cdot 60$; water pressure en ine, 0.80 .
The following are the ordinary dimensions of windmil sails : Length of whip, 30 feet; breadth at base, 12 inches

THE SIESTA
depth at base, 9 inches ; breadth at tip, 6 inches; depth a tip, $4 \frac{1}{2}$ inches. The effective horse power is found by divid ing the product of the total area of sails in square feet and the cule of the velocity in feet per second of the wind by $1,080,000$.
Rule for speed of screws: Velocity in miles per hour $=$ pitch of screw in feet multiplied by the number of revolu ions per minute, and divided by 88.
With hydrogen gas, having a buoyancy of about $13 \cdot 3$ fee o 1 lb ., the diameter of balloons=the cube root of 25.5 times the weight to be raised, including that of the balloon itself, or the weight $=0.0392$ times the cube of the diameter.
The unit of heat is the quantity required to raise the temperature of 1 grain of water at its maximum density $1^{\circ} \mathrm{Fah}$ The absolute mechanical equivalent thereof is 772 foo grains, and the thermal equivalent of the absolute unit of work $=0.000040224$.
The proper proportion for the width or hoist of the Amer ican ensign is $1 \frac{0}{8}$ its length. The thirteen horizonta stripes should be of equal breadth and begin with the red. The blue field is 0.4 of the length of the striped portion, and is 7 stripes in depth. The 37 stars are ranged in equidistant horizontal and vertical lines
The actual horse power of pumping engines = quantity of water raised per minute in cubic feet multiplied by hight levated in feet, multiplied by 0.0023 . The indicated horse
sure of steam in er of revolutions per second \times the length of the stroke in feet by 550 .
Useful numbers for pumps: The square of the diameter multiplied by the stroke, multiplied by 0.7854 . gives capacity f the pump cylinder in cubic inches; by 0.002833 , in gallons; 0.0004545 in cubic feet ; by 0.02833 , in lbs. fresh water

Resistance in lbs. per tun on different roads, exclusive of gravity: Stone tramway, 20 ; paved roads, 33 ; macadamized roads, 44 to 67 ; gravel, 150 ; soft sandy and gravelly ground, 210.

Climbing a Standpipe

Some reparations having become necessary upon the standpipe at Spring Garden Station of the Philadelphia Water Works, among which the scraping and painting of the exterior, which had become weather-worn and rust. ed, was the most considerable task, the first step to be taken was obviously to construct a scaffold for the workmen ; and as no means had been provided for the attachment at the top of the pipe of the blocks and falls from which a scaffold should be suspended, the climbing of the pipe for this purpose was an undertaking which preceded all others. This climbing was accomplished by Mr. George Robinson (a working rigger of this city) in the following way: The standpipe itself is 127 feet of wrought iron shaft, above a square stone plinth, the shaft being about 6 feet in diameter at the bottom, and $4 d$ feet in diameter at the top (under the cap or head ornament, which projects 12 or 16 inches all round). At the foot of the plinth, a light ladder, 30 feet long, was set up, with the top to rest against the shaft. Climbing the ladder to the top, carrying a bow or ring of half an inch round iron rod, which was made to iron rod, which was made to surround the shaft loosely, with the ends about 16 inches long, turned downwards, these ends were lashed fast to each side of the ladder. Next, a piece of rope (3 inches, equal 1 inch diameter) with an eye in one end, was passed also round the shaft, and was lifted to the top of the ladder, below the ring of iron, when the plain end of the rope was drawn through the eye and made fast, so that the rope formed a lashing, and the end of the fall, passed down between the ladder and the shaft, was made fast to the lower round of the ladder, and the ladder itself then hauled up to the lashing; and with its upper end steadied by the ring of iron, was placed vertically against the side of the shaft. Another ring of half inch iron was placed around the shaft at the bottom of the ladder, which ring was also lashed to the sides of the ladder, and steadied at the bottom whenever it was attempted to lift by the lower round. The ladder being elevated as described, and held in place by making the hauling side of the fall fast to something below, another lashing like the first one was taken to the top of the ladder (in point of fact, Robinson stood upon the top of the ladder each time it was hauled up, and took with him this second rope); and this rope was then converted into a second lashing like the first one only 25 feet higher up on the shaft. A second block was hooked into this second lashing, and the end of a fall from it was taken down behind the ladder to the lower round, and made fast, while the other end was hauled tight to relieve fall number one. Lashing number one was now cast off, and taken to the top of the ladder; and by means of the second fall, the ladder, with Robinson upon it, was lifted to the second lashing. At this point the operation merely repeated itself, except that, from the reduced diameter of the shaft, it was necessary to to bring the head of the ladder up to the lashing and make new ends; to the top bow of iron (which could be bent cold), twice in the whole climbing. The bottom ring it was not found necessary to reduce in dimension. Five fleats brought Robinson to the top of the shaft; and as the top of the ladder was then hung far enough from it, he was able to pass
plates which covered the projection (a low ornamental rail ing surrounds the cap). Having reached the top, the othe attachments became easy. The man Robinson, and another rigger to handle the rope, aided by one or two men, when a pull was requiced, performed alone all the labors of the task. They came to the Spring Garden Works at about 10 A. M. and in less than two hours (before 12 M .) the column had been climbed, and the ladder was sent down.-Journal of the Franklin Institute.

NEW YORE ACADEMY OF SCIENCES.

At a recent regular weekly meeting of this society, held at 64 Madison avenue, the following papers were read: on determinations of specific gravity by the arabi ans in the xil century,
by Professor H. C. Bolton, Ph. D. In this very interesting paper, the author gave various extratts from a book written by Al-Kharzini, about the year 1121. This remarkable book, called " The Book of the Balance of Wisdom," was first translated, in part, by the Russian minister, Khanikoff, into French, and afterwords translated into English and edited by the American Oriental Society. The perfect familiarity of these ancients with the methods of determining specific gravities, and the accuracy of their results, as shown by tables given in the work, and which Dr. Bolton copied on the board, are quite surprising. Al-Kharzini tells the story of Archimedes and the crown (see page 351, volume XXXIV, Scientific American), with some slight errors and discrepancies. Dr. Bolton quoted from Vitruvius the correct version of this well known but usually distorted anecdote. It seems beyond question that Archimedes solved the problem by filling a vase to the brim with water, immersing a ball of gold, one of silver, and the crown, successively, measuring each time the quantity of water displaced, or necessary to fill the vessel after the ball was removed.
The accompanying engravings are reproduced from Al-Kharzini's book. Fig. 1 he calls the conical vessel of Abu-r-Raihan; it differs but little from the specific gravity bottle of today. Fig. 2 shows the graduations on the hydrometer of Pappus, a Greek who lived in the fourth century. It resembles a Gay-Lussac hydrometer. Fig. 3 he calles the balance of Archimedes. It has two pans, a for gold, b for silver, and c, the counterpoise. Fig. 4 represents the " balance of wisdom." It has five scale pans, two aerial and one aquatic ; a is the
means of suspension, c tongue, d two checks f, means of suspension, c tongue, d two checks, f and g air
bowls, i winged bowl, m ring to suspend the bowls, h aquabowls, i winged bowl, m ring to suspend the bowls, h aqua
tic bowl, l counterpoise. The use and design of the ladder tic bowl, l counterpoise. The use and design of the ladder
like piece at the center is unknown. He seems to have like piece at the center is unknown. He seems to have
known that the air had weight, and care was taken to measure density at a standard temperature, after careful purification. Not only does Al-Kharzini give the density of met als, alloys, and liquids, but also of soluble bodies, like tabie salt, with great accuracy. He also gives the density of mer cury, but remarks that it is not a metal, but the mother of metals, as sulphur is their father. Al-Kharzini also describes a balance for leveling land, and another for weighing time, and it is probable that temperature was likewise determined by the balance.
Professor B. N. Martin made some remarks on
a change of the earth's axis at the close of the tertiary,
referring to Mr. C. B. Warring's paper on this subject and expressing his favorable opinion of that gentleman's view of the cause of the great climatic changes in that time. Dr. Newberry dissented from Mr. Warren's opinion, and gave
his reasons for so doing, also referring to the fact that there his reasons for so doing, also referring to the fact that ther
were probably glaciers in the Permian and other periods.

On the Manufacture of Black Ink

By the term ink, we understand a liquid mixture with which we can write and draw upon paper. The qualities demanded of a good ink are that it shall flow well but not too freely from the pen,shall fix itself properly to the paper without, however, blotting or spreading, and preserve it own color permanently.
There are in existence at the present time an innumerable quantity of recipes for the manufacture of black inks, and yet we hear the general complaint either that the ink is too pale when written, and therefore injures the eyes when used continuously, or that when the writing gets old it fades or turns brown. James Stark, a Scottish chemist, has prepared about 230 kinds of black ink, and found,as he expresses it, only one to be recommended, namely, an ink made from myrobalanen.
The cause of black writing turning pale, and disappearing entirely when it gets old, is to be found in the iron it contains, in so far as the iron is changed to a higher oxide and is precipitated. Ink made with nutgalls is a special case of this kind ; it is in a continual state of decomposition; when this process is ended, the ink in a short time becomes use less. Free sulphuric acid retards this rapid and complete destruction, hence sulphate of indigo is added.
A decoction of gall nuts contains tannic acid; this com bines with protoxide of iron to form a tannate (proto-tannate of iron), which is colorless, but very greedy for oxygen, and strives to change itself into the sesquioxide salt. Finally the tannic acid changes into gallic acid, and a black protogallate of iron is formed. At last, whenall the tannic acid in the proto-tannate of iron is converted into gallic acid, it con-
inues to absorb oxygen and forms the tannate of the protoesquioxide of iron, which separates as a shiny precipitate The sediment in theink is continually growing thicker, and f course it can no longer be used.
In the manufacture of ink, any substance containing tan nin may be used in connection with the iron salts, such as galls, tannin, divi divi, myrobalanen, extract of nut shells, etc. Black inks are also made of logwood and iron salts on the one hand. and neutral chromate of potash on the other Alizarine ink consists of protoxide of iron and indigo solu tion; it generally has a bluish green color, and afterwards darkens beautifully; the more acid the ink contains, the lower this takes place. Slightly acid inks scarcely percep tibly attack steel pens, but spoil sooner, with the formation of a blue-black precipitate. They are usually and best pre pared with madder, gall nuts, indigo carmine, and acetate or pyrolignate of iron.

How the Wind goes through Brick Walls. Mr. A. Cluss, in a letter to the American Architect and Building Newos, gives a description of Professor Pettenkof r's experiment on the porosity of brick walls, as published with the "Records of the Royal Academy in Munich."

Pettenkofer caused to be erected, upon a cast iron plate, section of wall two feet high, two and a half feet long, and welve inches thick (the bricks he used were twelve inches ong). It was put up with bricks carefully laid in lime morar. After the brickwork was thoroughly seasoned, the two aces of the walls, containing five square feet each, wer plastered with a floated brown finishing coat. This being well dried, the edges were pargetted with plaster of Paris Time was again given for evaporation, when the plaster of Paris was overlaid with a coating of wax, oil, and resin. Next, metal plates with flanges turned over the edges wer cemented to both faces of the wall, firmly clamped, and screwed tight. In this manner the rims and margins of the metal plates were fitted and secured to the wall metal whole being airtight, while there the wall, the whole being airtight, while there remained thin layers of the air inside the margins, be tween the faces of the wall and the metal plates. Both metal plates had holes in their centers, o one third of an inch in diameter, and to thes short tubes were soldered. If air was impelled through the tube attached to one metal plate, it had to penetrate the wall before it could be dis charged through the tube of the opposite meta plate. The neat area of each metal plate, facin the air cushion between it and the wall, wa three and a half square feet. A lighted candle was placed directly in front of the open tube on one side, and, by blowing in the open tube on the opposite side, the air would pass through the wall, and extinguish the light, without any trouble whatever. The current of air had, of course, much more velocity in the tubes than in the wall, since the exposed area of the wall was 2,860 times larger than the area of the tubes. Assuming that a light wind of ten feet velocity per second had acted on the open tube, this ve locity, though much diminished within the po rous wall, would regain its original speed whe passing through the other tube, and no doult suffice to extinguish the light. Supposing the solid particles of bricks and mortar occupied three fourths, and the pores one fourth part of the exposed surface, the air would have moved 2 2860 or 715 times slower in the wall than in the present a selection of the best ink recipes, but only to ex-|tube, and a velocity of ten feet would have been rednced | | |
| :--- | :--- |
| present a selection of the phenomena which appear in the use of blackinks. | to about $\frac{14}{100}$ of a foot. Now, our nerves being insensible | If such a recipe is introduced in the following description to a motion in the air of one foot and over, it is clear that of its method of preparation, we only do it under the con- a motion of seventy times less speed will go on without our viction that of preparation, wo giving one theet the wishes of many of our readers by which involves the least cost.

When black ink is made in large quantities, it is well to let it become clean in large barrels and afterwards put itinto bottles and inkstands. It is believed that in this way an ar ticle is obtained which is less exposed to mold. To avoid this unpleasant feature, a small quantity of corrosive sublimate, or a few drops of carbolic acid, or some broken cloves, may be putinto the ink.
Numerous experiments have shown that no salt of iron and no iron preparation equals the proto-sulphate of iron (the green vitriol of commerce) in the manufacture of ink and also that the admixture of a salt of the sesquioxide, for nstance the nitrate or chlorides, although it improves the color of the ink at first, renders it less durable. The most permanent of the common inks are those made of gall nuts, with green vitriol and gum arabic. The proper proportions of these constituents for the production of such a durable black ink are the following: Two lbs. bruised Aleppo gall nuts are digested in 2 quarts alcohol at a temperature of 104° to 140° Fah.; when about half of the spirits has evap orated, 3 quarts water are added; it is well stirred and strained through linen cloth. To the clear solution are add d 8 ozs . glycerin and 8 ozs . of gum arabic with 1 lb . sul phate of iron dissolved in water. This mixture is thoroughly stirred from time to time for a few days, allowed to set tle, and then put into well stoppered bottles for preserva tion.
oo much sulphate of iron, as otherwise the ink soon turns yellow. An ink prepared according to these directions will resis the action of light and air at least 12 months without suffer ing the slightest change of color. If this ink could be com pletely protected against precipitation of gallate of iron we should have a perfectly permanent ink, retaining its beauty. The addition of sugar as well as of logwood decreases these properties.-Victor Soclet, in Polyteclinische Notizblatt.

ormation of Anthracite Coal.

A correspondent writes: The Supplement to the Scientific American, No. 17, April 12, contains an article from the Shenandoah Herald, giving an account of the formation of anthracite coal from apparently pure spring water in a pipe used for draining the Indian ridge shaft of the Phila delphia and Reading Coal and Iron Company. It appears this coal forms in about four months by exposure to the air, thus scattering to the winds all the geological theories that coal takes thousands of years and heavy pressure to form it. We recommend this discovery to the notice of the authors of "The Recent Origin of Man," and " Light as a Motive Power."-London Mining Journal.
being aware of it.
It will be very easy for the institutes of technology or others to repeat this, and make similar experiments with various facing materials, and observe these phenomena, of supreme importance for a clear understanding of hygienic problems met by the practising architect.

South Pass Jetties.

Captain J. B. Eads, who is building the jetties at the mouth of the Mississippi, has become involved in an unfor tunate and unnecessary dispute with Major Howell of the United States Engineers, who was, with General Humphreys, ne of the advocates of the Fort St. Philip Canal. The gran btained by Captain Eads from the government (one of the east objectionable that ever passed through Congress) stipu lates that nothing is to be paid him unless he succeeds in securing twenty feet of water through the South Pass to the Gulf within the specified time. Now, Captain Eads declares that the work is going on in the most encouraging manner, that he has already got sixteen feet, so that the largest coasting steamers have been sent to sea over the bar, on which scarcely eight feet of water could be found last year. Major Howell, on the other hand, aeclares in a published letter that there are only twelve feet of water at the South Pass, that the nucleus of a new bar exists in fron of the jetties, that a shoal is making out to this nucleus, and in short the jetties are doing no good. Against all this Captain Eads brings certificates from his engineers that Ma ior Howell's statements are unfounded, and he protests against his enterprise being embarrassed by officers having no immediate connection with the work, and has written a letter to the Secretary of War, begging that any further interference on the part of such officers be prevented, and that terference on the partof such officers be prevented, and that
instructions be issued, to the inspecting officer authorized by the Jetty Act, to furnish him directly with any information as to the result of the work he may need, and that he be oras to the result of the work he may need, and that he be or-
dered to report to the Secretary of War instead of to the Chief of Engineers. Whether this is desirable or not we do not know; but it is certainly a great mistake to allow engi neer officers in the employment of General Humphreys, who is known to have no faith in the jetty system, to write let ters to the newspapers ridiculing the experiment when the department of the service to which they belong stands in a judicial attitude to the undertaking. This, at any rate, ought to be stopped.-The Nation.
Hard Glass.-We shall never, we fear, hear an end of new methods for hardening glass. R. Mensel, of Geiersthal, uses as a tempering bath a weak solution of glycerin and mucilaginous or gummy substances, such as a decoc tion of linseed. The glass is tempered while still on the pipe, and is then put into a moderately heated oven. The inventor puts great stress on the properties of the tempering bath.

THE INDUSTRIES AND RESOURCES OF JAPAN.

We have already alluded to the magnificent display made by Japan at the Centennial, which, for completeness, even to the smallest minutice capable of affording useful inform ation relative to the industries and resources of the coun try, certainly transcends the exhibit of any other nation. This, perhaps, is due to the fact of Japan having entered into the spirit of the enterprise with a heartiness, born of natural pride in her rapid progress, and in no small mea sure owing to the knowledge that, in that progress, the people of the United States have been most nearly con cerned. Prior to the Vienna Exposition of 1873, the Japan ese had never participated in any World's Fairs, and even at the Austrian show the contributions were mainly pur chased and forwarded by the Japanese government, private individuals neither appreciating the advantages of the display nor being willing to send their goods over so long a jour ney. For the Centennial, however, a different feeling has been manifested. As early as the summer of 1874 , it was defin itely decided that Japan should participate, and at once he most thorough measures were set on foot for securing the superb collection now here. Provincial authorities were instructed to do their utmost to induce the leading manufacturers to prepare exhibits and to assist them with money and advice Those who had acquired experience a Vienna were called upon to give the benefit of it to their coun trymen. The government set an example by spending $\$ 30,000$ for its official collection, and appropriating a fur ther sum of $\$ 70,000$ in making advances to various manu facturers so as to assist them in the production of such pieces of workmanship as would do credit to Japanese ar and industry. In addition to this, the sum of $\$ 300,000$ was
sit aside for general expenses, including the cost of transs.t aside for general expenses, including the cost of trans-
port and freight; and lastly, the government charged itself port and freight; and lastly, the government charged itself
with the traveling expenses of all such exhibitors as might wish to accompany their goods to Philadelphia. Certainly no government has ever mani.ested greater liberality to ward its people in any similar enterprise; nor can such munificence be regarded otherwise than in the light of the highest of compliments to the people of the United States and their Exposition

A general description of the exhibit of Japan has already appeared in these columns. Lately, however, the Japanese Commission has issued a work, modestly termed an official catalogue, but which is really very much more, since, out of a hundred and thirty pages, thirty only are given to the list of articles, and the remainder are devoted to a series of ex cellently written descriptions of the principal resources and industries of the country. With this volume the visitor can study the entire exhibit intelligently, for he has before him the details of the manner of production of all curious and elegant articles displayed. We shall make copious ex tracts from the pages of this work, beginning with the sub ject of
mining and metallurgy.
Very little is known about the origin of mining in Japan. It is, however, a fact that several mines were being worked during the latter part of the eighth century (Japanadits, which are to be found in the metaliferous districts, adits, which are to e found in the metaliferous districts,
leave no doubt as to the fact that mining was in a flourish ing condition centuries ago.

The system of working mines has changed but little since olden times, and consists simply in driving one or several adits from places where a vein or seam appears on the slope or top of hill; the vein is followed as far as possible, and, when necessary, lower adits are driven, until in the end it is found impossible any longer to overpower the water with the very imperfect machinery used for pumping and draining. Many mines have had to be abandoned after a longer or shorter period of prosperity, solely on this ac avoid this misfortune, and adits have been driven for the purpose of draining off the water. Thus in the lead mines of Hosokura, in the province of Rikusen, a draining adit may be seen of 8,370 feet in length; nevertheless the mine has been almost entirely abandoned, and the actual working places are at pres nt far below the level of the water
adit in question. In the mines of Udoge, where the rock is very soft, a water adit 13 feet high and 10 feet wide was commenced a few years ago. Ever since the earliest times the timbering of the adits has been known and effected with all the necessary skill; and as the wood is both abundan mensions of the adits vary greatly ; in some mines they are so narrow that it is almost impossible for a full-grown per son to pass through, and consequently children have to ef fect the transport of the mineral. The latter is usually packed child's back by means of a rope. In many places the passage becomes so low that the child has to crawl along on all fours, dragging the sack of mineral behind him. The lad ders, used for getting from one adit to another on a differen level, are simply trunks of trees with steps cut into them.
'The means employed by the miner for attacking the rock consists merely in the use of hand tools, namely, the pick, the gad, the hammer and chisel. Gunpowder has only been brought into use for blasting purposes in
The apparatus used for removing the water is composed only of small wooden hand pumps, buckets, and occasional ly of a kind of water wheel with scooping paddles, and moved by treading; the water pipes are either made of bamboo or wood. As regards the ventilation of the mines, it is often realized with more or less of perfection, by connect-
ing two adits of different levels, and in some cases by run-
ing an air channel, made of wooden planks, throughou he whole length of the adit, so as to allow the air to cir culate through the adits and this channel. In the lowes adits, however, the absence of sufficient ventilation has in
many cases caused them to be abandoned or else to be worked on a very small scale only. The lighting in the mines is either effected by torches of dried bamboo or oa wood, which latter is beaten until it becomes soft enough to burn easily; or by iron lamps in the shape of saucers with a double suspension. Sometimes the lamps consist merel f a kind of murex shell containing vegetable or fish oil The wick is made of the pitch of soft rush (juncus effusus) which is also used for wax candles and ordinary lamps.
The annual production of the mines of Japan, in gold, si ver, copper, iron, lead, tin, coal, and coal oil, was valued in 875 at $\$ 3,687,275$.
Of late years the government has made great efforts to im prove the condition of mining and metallurgy, the principa shortcomings of which are: 1 . The insufficiency of ma chinery for pumping out the water. 2. The imperfect sys tem of attacking the rock with only hand tools, which, to gether with the custom of leaving the mine to be worke entirely by contracting miners, without any system and under no control, has not only the effect of causing a grea part of the vein to be left untouched, but also in many cases the future of the mine has been endangered by the total absence of any well combined plan. 3. The imperfec ion, and consequently the expensiveness, of the processe employed for dressing, preparing, and smelting the ores Some mines, however, such as the Takashima coal mines ear Nagasaki, are now being worked according to the mod ern system and are provided with the necessary steam pow

The working of several other mines is leeing improved is he same manner, and the works are already in cours ferection at the silver and copper mines at Ikuno, Sado and Ugo. The government mining department has also commenced the construction of several high furnaces for he smelting of iron ores.
It will be observed that an excellent field is here open for improved mining inventions of all kinds.

MINERALS ORES, ETC.

The veins of gold and silver ores in Japan are generally composed of quartz, nati ve silver, silver ore (argentite and an timonial silver), containing more or less gold and iron and opper pyrites, occasionally mingled with blende and galena The most important and almost theonly iron ore worked til now is the magnetite, found either in the shape of solid masses or in that of sand. In general the magnetic ores contain from 62 to 65 per cent of metal. The magnetic and and the solid ore are the only materials used for smelt 56 iron ; however, iron glance and brown hematite, with 56 to 60 per cent of iron ore, are also found in Japan.
Copper ore is found in many places, and may be consider d as a rich ore, since it contains on an average from 10 to 15 per cent of metal. It is composed mostly of copper pyrites, together with more or less iron pyrites, and is found chiefly in clay slate. The principal mines are situated in he northern part of the island of Nippon, but ores are also found in more southern provinces, as for instance in tated, and contain 25 to 35 per cent, even up to 55 per (eent of copper.
'The lead ores which are found in Japan are mostly galen as, with 40 to 80 per cent of metal, and sometimes a small quantity of silver. 'lin ore is found in Satsuma, Suwo, and Bingo.

In later years, attention has been drawn to other minerals uch as gray antimony aud bioxide of manganese; but they re, as yet, without great importance. A cobaltiferous min eral, which is found in the shape of small pebble conglomer ates in the bed of certain rivulets, has been known for many ears. After the raw material has undergone a certain pro cess of powdering, washing, and calcining, it is used for blue porcelain paintings.

COAL ASPhALT, Pétroleum

The most important coal fields are those in the northwest of the Island of Kiushiu, in the district of Karatsu; and also in the Island of Takashima, near Nagasaki. The total yield of the Karatsu district may be estimated at 80 to 90 tuns daily, which is sold at neighboring ports at $\$ 4$ to $\$ 5$ per tun.
The working of the rich seams in the island of Taskashima, about eight miles west of Nagasaki, has been commenced on the modern system, with improved machinery. This mine actually the property of a Japanese company, is now ver rosperous, and produced 78,000 tuns in 1874. In the island f Amakusa, on the west side of Kiushiu,
und, w
As the industry of the country is being developed by the introduction of new methods and machinery, so will the de mand for mineral combustibles increase, and mining wil be effected on a much more extensive scale.
Petroleum is found in the districts to the northwest o Tokio, as, for instance, in Yechigo, Shinano, Ugo, etc. In the first of these provinces oil was discovered 300 years ago and it has always be counted among the seven wonders of ground in cortainataral combustible gas issuing from the boo pipes into theinterior of the houses and used for illumin ating purposes, as it is now used for heating the small stills for refining the crude oil. Although the presence of the oil has been known for a long time, the people of the country only began to use it forty-six years ago. Since then, no les ong 508 wells have been sunk.

bUILDing materials.

Although building stones are by no means scarce, yet they have been seldom used for houses, but mostly for foundations, temple stairs, gateways, sea walls, and battlements, which latter are sometimes of enormous extent: as for instance in Tokio and Osaka, where some granite stones f 30 feet in length by 18 feet can be seen. The battlements and walls are generally made of well dressed blocks of irregular shape, built up without the use of mortar. The chief materials used for these different purposes are granite, trachyte, and trachytetuff
All kinds of colored mixtures of sand, clay, and lime, and mineral colors, are prepared for plastering the inner walls of the houses, and a very fine black stucco is used for the ex. erior of the fireproof warehouses. In order to give the plaster more solidity and coherence, paper fibers (prepared by boiling old paper) and the gluish decoction of a fucus, called $f u$, are mingled with the powder.
chay, kaolin, silex, etc.
Minerals used for pottery of all kinds, such as clay, kaolin, silex, etc., are very abundant in Japan, and are spread over all the country. In the small town of Arita province of Hizen, the head center of the porcelain manufacture in Japan, within a very limited circuit, not half a a mile in diameter, there are found, imbedded in the rock at different places, all the materials necessary for the biscuit, for the coating of the ware bofore glazing, for the glaze, for the crreguclé, etc., the best being of such good quality that, after being powlered and decanted, it is used without any further mixture for the finest ware, the so-called egg shell porcelain. In the central part of Nippon, where granite is the principal constituent of the mountains, in the province of Owari, Yamashiro, and the island of Awajishima, opposite IIiogo, beds of petuntse, very much like the Bohemian material, are to be found. When used for porcelain, this material is mixed with silicious felspathic minerals from other places. A thorough mineralogical and chemical examination of these minerals has not yet been made, but would, no doubt, prove to be of great interest. Graphite has been discovered in Satsuma and Rikuzen; certain very pure samples have been found fit for such purposes as the manufacture of pencils; but in this case it would have to be washed and ground with an addition of clay. Whet. stones, grindstones of all qualities, are very abundant, and are in the hands of every artisan, who, on account of the sof tness of his cutting tools, is frequently obliged to have re. course to the whetstone. Garnets are used for grinding and polishing hard materials.

Navel Items.

The naval appropriation bill, which became a law on July 1, reduced the rank and file of the United States navy to 7, 500 men. To conform to this reduction, all enlistments and e-enlistments have been stopped; and since the beginning of the month more than 1,000 men have been discharged.
In consequence of the smallness of the appropriations, or ders were issued by the Department, on July 11, to suspend all work for the government which was in progress, under contract, at the various private machine shops in the Eastern and Middle States.

July 11, Past Assistant Engineer (ieorge P. Ilunt and As istant Engineer A. B. Willits, were ordered to the monitor Wyandotte. In addition to their duties on board that vessel they will have charge of the machinely of the other monitors t Norfolk, Va.
Passed Assistant Engineel 1. R. McNary and Assistant Engineer A. F. Dixon were, on the same day, ordered to the monitor Ajax, at Port Royal, S. C. They are to have charge also of the machinery of the other monitors at that station.

The tractive force of horses is as follows
Rate in miles per hour: $2 \quad 3 \quad 3 \pm 4.44$
Tractive force in lbs.: 106125104836241.

DECISIONS OF THE COURTS.

zercent American and foreign zeatents.

NEW MECHANICAL AND ENGINEERING INVENTIONS

improved combined time and combination lock. Franklin McDuffee, Rochester, N. H.- By the ehronometer locks
now in general use, no entrance can be made to the safe except at now in igeneral use, no entrance can be made to the safe except a
certain hours, however imperative the necessity, as, for instance, an approaching fire. This objection is completely obviated, as, by an approaching fire. Trisobjection is completely obviated, as, by
this invention, the proper persons arriving can open the lock at any time without waiting for the action of the clockwork to release the bolt. The objects of the invention are securcd by the following method: The tumblers, all on the same spindle and ope-
rated by one dial, are so arranged that they can be locked on two rated by one dial, are so arranged that they can be locked on two
separate combinations set by two individuals, each person being separate combinations set by two individuals, each person being
ignorant of the combinations, except his own. For instance, supwith these combinations, the cashier can set his own part of the lock without the presence of the president, and he can always unlock the lock at such hours as the clockwork permits, and at no other, and can do so without the presence of the president. He cannot be compelled to open the safe, as he cannot open it alone until the proper hour arrives, yet after that hour he can open
without help. This may be done for years without calling on the without help. This may be done for years without calling on the
president. But should the clockwork stop at any time, or should it become necessary to enter the safe at any unseasonable hour, the cashier has only to summon the president, who, using his combination in conjunction with that of the cashier, can open the lock. Neither can open at such time alone.

IMPROVED ROTARY PUMP.
Robert Burns Reynolds, Stockport, N. Y.-This consists of two
rotary pistons on parallel axes, both turning in the same dircction rotary pistons on parallel axes, both turning in the same dircction, so that they have a wiping action on each other instead of the
rolling development of one on the other, as has always been the rolling development of one on
improved raise tootil lathe.
Sylvester Bisbee, Sumner, Me.-Sliding on the main frame, in guides, is a reciprocating carriage. Mounted on one end of the carriage is a long cylinder, at the other end a short cylinder, each
of which contains eight grooves. These cylinder receive, in addiof which contains eight grooves. These cylinder receive, in addi-
tion to the reciprocating motion, a rotary turn of one eighth of a tion to the reciprocating motion, a rotary turn of one eighth of a
revolution, so as to present the empty grooves to the feeding devices, and those containing the rods and blanks to the devices for forming the teeth in proper order, said feeding and forming devices consisting, essentially, of a feed plate, setting knife, cutter head, set-back, saw, ejector, projection, and feed hook, together with the devices for turning the tenon.

> improved scale beam.

Hiram L. Grisell, Pennville, Ind.-This is a contrivance of tables With the beams and weight of a scale, for the computation of the values of fractional quantities. Example: If fifteen cents worth of an article worth twenty cents a pound is required, the
weight is moved along the beam until it arrives at fifteen on the line marked twenty at the end, when it will show twelve ounces as the required quantity.
improved portable railload track.
Manuel De M. C. Y Martinez, Havana, Cuba.-This is an arrange to put down and take up. The parts are adapted to be laid on the natural surface of the ground, and to be kept in position with but little labor and expense.

IMPROVED RAILWAY CAR TRUCK.
Georg O. Eaton. Warren, Me.-Cars frequently require to be used upon and run from a narrow to a broad gage track, and vice
versa. To enable this to be done, it has been heretofore requisite for railway companies to construct and keep on hand, at the junction of the different lines, two sets of trucks, one adapted for a was required to the ca jacked up, the trucks removed, and others substituted. The expense and loss of time incident to this method constitute serious objections to it, and to obviate them is chiefiy the purpose of this
invention. To this end, it consists, broadly stated, in making the wheels of the truck adjustable laterally or towards and from each other. The truck is therefore an improvement in that class in
which the several wheels are mounted on short independent axles For particular construction and arrangement of parts, see patent

IMPROVED COMBINATION LOCK.
Thomas McClanahan Seaton, Parsons, Kan., assignor to himself and John Adams, same place.-This invention consists in making the tumblers of a lock with points that work in the slot of
bolt, and causing the disk knob to slide in a slot of the plate. improved mechanical movement.
Charles Sandermann, Elizabethport, N. J.-This is for changing reciprocating rectilinear into continuous rotary motion, and is
applicable to revolve the shaft of screw propellers, and for othe purposes. A reciprocating carriage has hinged stops at both sides, that act on movable cam rollers, traversing on the shaft sections, with spiral twists or grooves in opposite direction, so as to produce of the cam rollers.
improved rotary engine.
Bruno Brauer, Bremerhaven, Germany, assignor to himself, Friedrich A. Schilling, Sr., and Friedrich A. Schilling, Jr., same directly on the piston shaft, allowing the use of the same with variable expansion, and the ready reversion of the engine. It is no possible to afford a clear idea of the mechanism, which embraces
several new and ingenious devices, without the aid of drawings.

improved lifting machine

August Ficht, Bellasylva, Pa.-This consists of a lifting bar toothed on opposite sides, between guide ribs, for keeping it in
gear with a couple of toothed wheels on a pair of shafts mounte on the top of a frame. Said shafts have cranks or levers to work
them, and ratchet wheels provided with pawls to retain the weight at any hight. The invention also consists of the supporting frame for the rollers, for working the lifting bar, contrived in two readily detachable parts, to facilitate the a
stump or other object to be lifted.
improved device for decomposing water for fuli. Milton W. Hazelton, Chicago, IIl.-This consists of a tight pan under the flre grate, into which an air pipe from a fan blower an a water pipe enter below holes of conical form for driving wate
spray through the holes into the flre above. The inventor supposes that, by the heat of the fire, the steam will be desiccated, and that the hydrogen can be burned as fuel. The invention may prove useful for increasing the draft of furnaees.

improved device for closing gates.

John D. Reed, Greencastle, Ind.-This consists simply of a horiantal shaft, journaled to the gate post and rotated by a descending weight attached by a cord to a drum on the shaft. On one end
of the latter is bevel gearing communicating with the gate, which thus shut when the weight descends.
improved speed regulator.
Nathaniel U. Metz, Norritonville, Pa.-This consists of a disk on he driving shaft to be regulated, carrying a pair of centrifuga disk. The friction of the latter is made to move out bake shoes Fith great force against the flange, to arrest the motion of the haft in case the belt runs off, or the engine or other power runs too fast.

IMPROVED PAPER-CUTTING MACHINE.
John P. Dunwald, New York city.-This consists mainly of a combination of the swinging and balanced cutting knifc with the
clamping mechanism of an adjustable cutting gage and of a slidclamping mechanism of an adjustable cutting gage and of a slidis not required, or when the paper is to be cut at different angles.
improved excavator.
John P. Bonnell, Elizabeth, N. J.-This is a machine which is chain of buckets, which dig the earth and carry it up to a laterally working endless discharger. The buckets are fed up to the work by the power which moves the machine along the ground. The essential part consists of a machine arranged on feeding or propellong wheels as a fulcrum, with a contrivance for elevating and lowering the buckets in advance of the fulcrum to gage the ma-
chine for grading ascending and descending inclines, also for running it into and out of the ground in using it for ditching purposes. The buckets are extended outward, at cach side, beyond the ends of the drum, over which the said chains work to cut their way in advance of the carrying wheels sufficiently wider than the
latter and their housings to enable the apparatus to run freely.

IMPROVED PROPEILER WHEEI
William S. Wootton, Scottsburg, Va.-This wheel is designed more particularly for the shallow rivers of the West, and is inten-
ded to operate either as a paddle wheel, or by grappling the botded to operate either as a paddle wheel, or by grappling the bot-
tom of the river, being provided with flukes for this latter purpose, which catch in the river bed and urge the boat along. It is instead of hawing a jecting teeth uponits periphery, which engage with and receive motion from one of the pinions of two supporting shafts, of which shafts, the one that transmits the power is stationary, and the other is movable to regulate the elevation of the wheel when em
ployed as a paddle wheel.
improved machine for making barrels.
Samuel P. Hodgen and John W. Yelton, Neosho, Mo.-This consists of a circular vertically adjusting follower, arranged over a
platform, on which the lower head of the barrel is placed to nail the staves on. The follower is hooped with a band of iron for clinching the nails driven against it, and is employed as a gage around which to set the staves, and for clinching the nails used in nailing on the hoops. The follower also hasa box securely attached in its centers, so that the rod or shaft will pass through it without biuding, and at the same time hold said follower perfectly true as it is raised or lowered.
improved packing for balanced piston valves.
David Dale, Millerstown, Pa.-This is a contrivance of radial plugs in the pistons, on which steam is caused to act to push out the packing ring, one of the said plugs acting by a wedge between acting by a stiff spring, which bears at its ends on the packing ring and distributcs the pressure upon two points.
improved feed water heater and filter.
Georg F. Jasper, Freeburg, III.-The purpose of this invention ilter for which letters patent were granted to the same inventor heretofore, under date of December 1, 1874, and June 8, 1875; and the invention consists in the arrangement of a double water box in the heating tank, in connection with the filtering receptacle be ow. The exhaust steam is allowed to act at the bottom and top mart a higher temperature to the water in the lower box than in the upper.
improved railroad gate.
Harmon Graybill, Cassville, Wis.-This is an improved railroad, farm, or other gate that extends across the track and is automatically opened and closed by the trains. It consists of swinging
lateral gate sections, thatare thrown up to the outside of the track y the depression of the bearing rails.
improved hose coupling.
Calvin L. Martin, Portland, Me.-This consists of two or more
spring catches on one section to spring over a flange on the other. spring catches on one section to spring over a flange on the other
The said catcheshave a lever and a cam rocker, by which to detac The said catches have a lever and a cam rocker, by which to detach
them from the flange readily when the hose is to be uncoupled.

NEW CHEMICAL AND MISCELLANEOUS INVENTIONS.

improved soldering iron furnace.
Edward G. Adams, Cohoes, N. Y.-This consists of a vertical fire box with a center flue and a hood, so arranged over the fire bed
that an open space is provided in the coal for the irons. The heat is thus made to pass directly against the irons, so as to warm them quickly.

IMPROVED CARBURETER.
James T. Stewart, Los Angeles, assignor to himself and James water tank, and forcing the air through a connecting pipe into a float filled with gasoline. The gasoline pan is placed into a gas holder fllled with water, that raises the pan to keep the air pipe always in the gasoline.

Composition or cement for preserving fruit, etc. Charles A. Dards, New York city.-This is a composition embeen rendered airtight by a mixture of oil and alum aronnd the fruit, vegetable, or other perishable article. The articlesare then packed into boxes, flled with sawdust, and kept in a fresh state or any length of time. The composition consists of starch, a suit citric acid, and water. itric acid, and water.

IMPROVED MECHANICAL LEDGER.
Otto Sallbach, Pittsburgh, Pa., assignor to himself and Charles ing strips, witn numerals indicating dollars and cents, which strips are moved by an adjustable friction roller and shaft, the whole being enclosed in suitable manner. The amount is kept for each customer by entering his name to a certain number on an in-
side slate, and setting the printed strips to the exact number of dollars and and setting the printed strips to the exact number of dollars and cents by setting, first, a friction wheel to move the
lower strip, and then to the upper, The amount due will then be visible through the corner glass plate and indicate to the custome he state of his account, his number and date of last purchase only being placed on the outside. When the account strips have been adjusted, the friction wheel is released from contact with the rips, so that no accidental changing of the same is possible

IMPROVED BAG HOLDER
Lealand H. Bristol,Lawrenceville, N.Y.-This invention consists combining a sliding spout with a bench strap and screw, and al o with a wedge-shaped rest, the latter serving to graduate the bag
from the spout down to the bench.

IMPROVED BOOT LACE FASTENER.
James McDonald, Campbelltown, Province of New Brunswick,
Canada, and F. A. McDonald, Durham, Province of Nova Scotia, Canada, and F. A. McDonald, Durham, Province of Nova Scotia, Canada.-This invention relates to the ready, secure, and conveni-
ent fastening of lace boot strings by means of two plates, one beint fastening of lace boot strings by means of t.wo plates, one be
ing on each side, and the string being passed through as well as between the plates, before being clamped, so that escape is almost
improved wire fence barb tool.
Homer W. Prindle, Fort Dodge, Iowa.-This is a tool for forming barbs on fence wires, having its lower end bent over to one side to form a hook, and having a slot or notch formed in its edge, close

Robert Douglass, Buctouche, Canada.-This invention consists of a spoon-shaped termination of the back portion of the fountain older, in the cavity of which is the opening for the issue of the nk, and over which the pen is attached, so as to receive the ink a saitable distance above the point. There is a cock in the ink passhut off the flow of ink at will, and at the top of the fountain is a vent to admit air, for allowing the ink to flow out properly.

IMPROVED HORSESHOE.
Charles D. Rattray and Alexander Robertson, New York city.This is an improved ice shoe attachment for horses, which may be readily and firmly applied over the common shoe and to the hoof,
so as to be used whenever required, and taken off without difficulty. It consists of an ice shoe with sharp calks that is fitted ove he common shoe, and attached to the hoof and shoe by curved outer pieces passing through theattachment, and by interior bindthe curved binding pieces.

IMPROVED RUBBER BOOT.
James A. Bates, South Abingdon, Mass.-This invention consist of a rubber boot provided with a leather counter, applied over the lining of the same.
improved method of labeling mineral specimens, Charles W. Cannon, Helena, Montana Ter.-Plaster of Paris is mixed with water to the consistence of thick cream, and applied the specimens in sufficient quantity to form a space large
enough to receive the desired inscription. The specimens are then jarred to cause the cement to set with a smooth surface. After th is usent has set and become sufficiently dry, a small pointed brus

NEW WOODWORKING AND HOUSE AND CARRIAGE

BUILDING INVENTIONS.

IMPROVED STATION INDICATOR
Charles M. Sexton, Aurora, Ill., assignor to himself and Orlando . Wormwood, of same place.- This consists of a polygonal roller, that carries the slotted name boards on raised ribs or lugs near the end. The lugs and slots of the boards are alternately set at greate
or less distance from the ends of the roller to take up the boards in egular manner. The roller is revolved by a loose pulley and paw actuated by a connecting band and spring.

NEW HOUSEHOLD INVENTIONS.

device for heating air for furnace Charles Thonger, Courtright, Canada.-The object of thisinven ating the air supplied to the waste heat of a boiler furnace for ion. As applied to a locomotive boiler, the smoke passes through he boiler flues to the smoke box, as usual,thence back in a casing terminate in a breeching, from which the smoke escapes in vertical tubes, which form the smoke pipe, and are surrounded by casing, down which the air for feeding the furnace passes to the casing on the boiler containing the smoke pipes, and to a jacket a rear. Thence it passes along the boiler to the ash pit.
imploved gas burner.
Victor Zeis, New York city.-This consists of a carbonizing and pessel of regulating attachment for gas burners, made of a hollow essen of copper, with a socket to attach to the fixture. A gas tube here is a burner at the top, and a tube extending from it nearly to the bottom. A bell-mouthed tube extends from a point nea he top of the burner down through the cap into the carbing it to escend and mix with the hydrocarbon vapor before passing through the perforations of the pipe leading to the burner.
mproved air cooler.
William E. Richardson, Buffalo, N. Y.-This consists of a pan or tube to contain ice, arranged in a surrounding case of non-conducting material. There is a space between the two, into which cold air from within the pan may pass through openings in the des in the bottom of the latter, and also from a coil of pipe en ering the pan from outside, and discharging into said space. From for cooling. It is adapted to many purposes for which low temerature is required, effecting a great saving of ice. The invento claims that he can cool a room 40×40 feet and 10 feet high, with about $1,500 \mathrm{lbs}$. ice per twenty-four hours.

MPROVED IRONING APPARATUS．
James Ashton and Rheuben H．Metz，Kent，Ill．－Ihis consists of rollers，on which the cloths to be ironed are rolled，together with a table，on which the rollers are laid，and a heavy plate lying on the rollers，and having a forward and backward motion length－ the rolling plate are provided with chambers，in which teaters and be placed．

IMPROVED DROP CHANDELIER．
Henry Prescott，Keystone，0．－This chandelier may be readily raised and lowere，ans set to any tub ore is a groved ex－ connected with the connecting pipe section of the chandelier by a spiral coil of rubber hose，and a spiral spring．The extension rod may be readily set to any length by a set screw．

IMPROVED DOOR CHECK．

James H．Swift，Evansville，Ind．－This consists in attaching to the door frame an arc bar having a series of bolt holes，and so ar－
ranged as to pass through a slot of the bolt case．The spring bolt is connected by bell cranks and wires to a knob，so that，by turn ing the knob，the bolt will be pulled out of the bar，to allow the door to swing．
mproved burglar alarm．
John S．Mace，Chillicothe，O．－This invention belongs to that class of burglar alarms in which an alarm is sounded upon a bell by a hammer，set in motion by a clock spring and spur gear by the
opening of the door or window to which it may be applied．The opening of the door or window to which it may be applied．The ment of a pivoted stop rod with slide spring，and locking devices whereby the alarm is rendered more reliable in its operation，and readily set and adjusted either to give an alarm or not，as may be desired．
mproved cooking apparatus．
Mrs．John M．Goldsmith，Great Mills，Md．－This invention con－ sists of a rectangular frame to be inserted in the oven of a cooking stove．In the frame are pivoted several spits，below which，on the
bottom of the oven and within the base of the frame，rests a large pan．Above the spits the frame is arranged to hold one or more dripping pans，provided with small tubes in their bottoms for the cooking below，and thence into thall，drop by from which it may be returned to the ble，be removed and a coffee roaster，broiler，or other cooking utensil be substituted

MPROVED WARDROBE HOOK．
James E．Bryan，Humboldt，Kan．－This invention consists of a wardrobe hook so constructed that it will neither stretch nor tear readily detached，without the necessity of raising them vertically， as required in the ordinary construction，in order to free the pro－
jecting end of the hook．The bar from which the garments are jecting end of the hook．The bar from which the garments are which presses upon the suspending bar，is curved in the opposite direction．
improved thumb latch for doors．
Henry C．Hill，Norristown，Pa．－The thumb lever is pivoted to lugs on the fulcrum plate，which is attached to the door，and the lowerpart of which is so formed as to fit over the upper end of the upper lug piece of the handle，so that they both may be secured
by the same screw．The handle is made with a bend or offset，to by the same screw．The handle is made with a bend or offset，to
enable it to be placed suficiently near the edge of the door to ope enable it to be placed suficicntly near the edge of the door to ope－
rate the latch，and leave space for the hand between the handle rate the latch，and
and the door casing．
improved washing machine．
Thomas McC．Wilson，Venice，Pa．－This washing machine is so constructed that the space between the stationary rubber and the
movable rubber may be regulated as desired，and that the mov－ able rubber can be conveniently raised out of the way，when de sired，to give convenient access to the interior of the suds box． IMPROVED SMOKE BELL FOR GASALIER
John Fox，New York city．－This invention consists of a bell－
shaped body，with exit tubes radiating from the upper part，th shaped body，with exit tubes radiating from the upper part，the stem of the smoke bell being insulated from the part of the gasa－ with a non－conductor of heat．

IMPROVED MUSIC REPOSITORY
Jerome C．Ward，Hillsdale，Mich．－This is a stand in which sheet music and music books may be conveniently stored away below the piano，and readily be taken out for use．Vertical rods extend from the lower to the upper shelves，and prevent the books in the on the shelves．
improved weather strip．
S．Adam Rankin，Mulberry，Mo．－This strip is so constructed a to be raised by its own weight to a level with the lower edge of th threshold when the door is closed．

IMPROVED SASH HOLDER
Joseph R．Payson，Chicago，Ill．－This device is claimed to lock indow sashes securely in position when closed，or，when opened in the wind；to support them when not balanced by weights or otherwise；to be applicable without notching or defacing the cas ing or sash；double acting，to prevent the sash from being raise per or lower sash，or to either the right or left hand：adjustable that it will act upon the sash whether orosely or closely fitted解列，and when not in use can be withdrawn entirely with r rub against the casing．
impioved heating dium．
Joseph R．Wieand，Allentown，Pa．－This consists of a heater， made of one or more sections connected by pipes that admit eithe horseshoe－shaped partition forming flues．
improved sasi balance．
William Cooper，Strathroy，Canada．－This is an improved device or attachment to a window，to enable the sashes to be raised o escends by its own weight，and may be secured in any desired po－ sition．It is raised by turning a crank to wind up cords．The two sashes may also be raised and lowered together
improved stair rod．
George W．Hill，Brooklyn，N．Y．－In applying the device，the od is placed in the angle between the project and the upright board，with the points of the pieces entering the fits into the angle between the top of one step and the upright
board of the other．The two rods are then held apart by spring board of the other．The two rods are then held apart by spring
devices．

IMPROVED WASHING MACHINE．
Joseph Gramelspacher，Jasper，Ind．－This consists of elastic rub－ ng fingers，of cotton or other like fibrous material，fitted so as to bbing fom the surface，in combination with a stationary concave the tub，to afford an auxiliary hand rubbing bed，for to the top of in rubbing out things which cannot be as well treated by the cyl in rub
inder．

IMPROVED KNOB FOR VESSEL LID．
Charles Goldthwait，South Weymouth，Mass．－This serves to in ulate the heat，and admit the ready handling of the cover with shank encircling tube of suitable sheet metal，that is soldered by an exterior base fiange to the lid．The shank of the knob is made somewhat shorter than the tube to produce a small insula ting air space between the lid and knob．

IMPROVED LAMP BURNER．
Jacob Engle，Jr．，Sharon Springs，N．Y．－The wick tube and the Jas tube is extended sufficiently above the base of the burner to enable the outside case to be elongated downward from the flame
to serve the function of a chimney，to regulate the air current，so to serve the function of a chimney，to regulate the air current，so
that when it comes up to the flame it will be steady and strong，in－ that when it comes up to the tlame it will be steady and
creasing the combustion and the illuminating powers．
improved sash fastener．
Peter Meyer，Iowa City，Iowa．－This relates to such improve－ ments in the sash fastener，for which letters patent have been gran ed to same inventor under date of June 22,1875 ，that the same may more strongly and reliably attached to the sash．and retain it a atch，that swings on a suitable pin of a metal case attached to th sash，and is automatically forced by a spring against the locking pins of the window frame，so that the hole of the spring latc ocks the sash at any desired hight．

MPROVED COFFEE POT．
Christian Vanderbeek，Rock Falls，Ill．－This is an improvement in the class of coffee pots or machines composed of two parts or ound con and adapted to be ted ation manner that the asses from one pot or receptacle into the other．The invention elates particularly to providing the inner cylinder or receptacle ith strainers of diffcrent degrees of fineness．
MPROVED FASTENER FOR THE MEETING RAILS OF SASIIES Joseph R．Payson，Chicago，Ill．－This improves the construction of the window sash lock for which letters patent were granted to ing opened from the outside of thewindow，and to draw the sashes together more firmly．The locking arm is pivoted at or nearly at an angle of 45° with the length of the meeting rails of the sash，an ecured by suitable fastening devices．

IMPROVED LAMP BUIRNER．
James Curzon，Darien，Conn．－This invention relates to lamp having four wicks in a circle；and it consists of the wick tubes ar ranged radially to the center of the circle from top to bottom，with two ratchets at right angles to and crossing each other for work－ ing them，instead of the parallel arrangement of the tubes at the ion also consists of a secondary bottom to the burner for screw－ packing of non－conducting material to protect the lamp from the heat．

IMPROVED ASI SIFTER．
Numa J．Felix，New York city．－This consists of a hinged and ocked screen arranged in the upper part of a sliding box，from drawer，while the coal is dropped by swinging the gate over to the other side into an adjoining drawer，on the release of the screen，
which is locked again to the box by the swinging back of the gate． IMPROVED TABLE LE． 1 F SUPPOR＇T
James Pleukharp and Samuel M．Shilling，Columbus，0．－This is n improved table leaf support that holds the leaf firmly in place nd raises it always to the same level without straining the hinges o as to render repairs necessary．When the leaf is folded，it is als arm with side notches，hinged to the leaf，and locking to a recessed guide hasp attached to the table．
mproved ciristmas tree bíacket
August Dahler，New York city．－This is an improved bracket for ame bracket，so as to balance each other．The device consists asymmetrically bent band with central spring part，and with cand holders at both ends．
improved winduw bhade mixture．
John E．Dohen，Brooklyn，N．Y．－In the lower end of the shade placed a bar of sufficient weight to hold it straight and to unrol when released．The upper end of the shade is placed in a longi－ he said groove．The key has a longitudinal groove formed in it nder side to fit upon a tongue of the roller in the bottom of it
croove．It is held in place，clamping the end of the shade，by roove．It is held in place，clamping the end of the shade，by two which，opposite the edges of the key，are formed slots for the edge of the shade to pass through．To the caps are attached pivot which work in brackets attached to the window casing．

IMPROVED DOOR CHECK．
Thomas Hill，Portland，Me．－This invention has for its object to which shall be adapted to allow the same to be opened more or les and at the same time secure them against the ingress of partie from without．To this end，the inventor employs a notched and which is attacked to the door，the arrangement being such that th head of the bolt works in the slot of the bar．

IMPROVED BED LOUNGE
Ferdinand Braun，New York city．－This consists of a lounge with olding seat section，provided with a swinging sideboard，that is extended at the ends to form the supporting legs．The sideboard when folded back，securely to the back of the lounge．The lounge is readily changed to a bed，and vice versa，in an easy and conver
nient manner，by swinging out or folding the parts described．

MPROVED COFFEE POT
George w．Hubbard，Windsor，Vt．－This consists of an inverted unnel，in combination with a filtering cup，to cause the water low up and filter down through the cofee．And said funnel has a om of the filter in order that the water，after passing dow be made to flow upward at this place，leaving its sediment on th top of the funnel at its junction with the curb．The tube by which to water is conducted up into the filtering cup is perforated so as
to delter upon the coffee in jets．

Theodore G．IMPROVED WEATHER STRIP．
a groove in the bretten of a door，to be is a weather strip hreshold automatically when the door，closes by cosed down on the oor jamb，and having springs to raise it．It consists of a strip sus o thrust the strip down by endwise movement of the rod，which is caused by contact of the end of the rod with the jamb．It als onsists of an adjustable screw stud in the jamb，to be screwed out and in to regulate the movement of the strip，so as to insure its clos ing properly．It also consists of a novel arrangement of the
springs，and also of the manner of supporting and grinding the prings，and
striking rod．
improved ash sifter．
John H．Raymond，Syracuse，N．Y．－This invention consists in an swinging cover of arch form，and having lateral end flanges When the cover is closed over the drum the same is revolved，so that the ashes are separated from the coal particles and dropped to he bottom of the receptacle．

IMPROVED bABY TENDER．

Thomas Shaw，Morris，Ill．－This is a device to hold a baby and allow him to jump，swing，and walk，without danger of falling．It is a kind of swing or seat for the child，suspended at the extremity
of a horizontal bar．The child＇s feet rest upon the floor，so that he may jump orswing hime cha

NEW AGRICULTURAL INVENTIONS．

improved fence．
Ambrose E．Balliet，Limestoneville， Pa ．－This invention consist in a portable fence，formed of the horizontal boards，halved a their ends，the cross bars and pins arranged so that the pins pas outer side of the cross bar，and are attached to the ends of the boards of the other panel．

IMPROVED HARVESTER．

Joseph Miller，South Bend，Ind．－This invention is an improve ment in the class of reapers which are provided with a traveling n to a binder＇s table or into a receptacle from which it may be emoved by hand or discharged by any suitable mechanical means． he improvement relates to mounting the reel upon a sleeve whic elation to the cutter bar；to they which the whereby the reel is adapted to be adjusted while revolving；to the arrangement of a endless traveling rake carrying chains；to providing certain link of said chain with lateral fianges to adapt them for attachment he toothed rake bars；to the arrangement of the driving wheel hich mesh with and thus communicate motion from the drivin wheel to the pinion of the supplementary driving shaft；to the manner of stringing the beveled and shouldered cutter plates up on a wire cable，and to the construction of the driving pulley． improved bag holder．
Isaac E．Shumaker and John S．Moorhead，Kellersburg，Pa．－ his consists of a sliding bag－holding frame，that is adjustable to during filling by a hoisting double lever mechanism．

IMPROVED SULKY PLOW．
John W．Grimes，Appleton City，Mo．－This invention is an im－ provement in the class of sulky plows in which the plow proper is suspended from the wheeled frame in such manner as adapts it to be raised and lowered at will，for the purpose of changing the depth of furrow，or for holding the plow entirely off the ground ment relates particularly to the construction and arrangement of parts whereby the plow beam is held steady while in use，adapte to be raised and lowered bodily，by means of a single lever，while in operation，and also without changing the horizontal position o angle of the plow beam，and whereby the draft is applied in direct line with the plow beam whatever be its adjustment．

IMPROVED PLOW．
Joseph Shickel，Bridgewater，Va．－This invention consists in onnecting a moldboard and plow point by a projection on the fioner，and a countersink on opposite sides of the latter，in add on to the ordinary clamping bolt，thus enabing the point to be

> improved tile-Laying mole plow.

Stephen H．Reynolds，Hillsborough，Ind．－This relates to the con－ truction and arrangement of a lever for laying and adjusting pitch of the furrow tube and regulating the depth of the furrow． thch of the fursw thee and regulatig the depth of the furrow
improved sulky plow and cultivator．
Eli W．Russell and John N．Russell，Ashley，Mo．－This machine may be readily adjusted for use as a plow or as a cultivator．The eral movement upon said axle．By adjusting the collar，the plow may be adjusted to cut a wider or a narrower furrow，as may be desired．

IMPROVED PLOW．
Francis R．Bell，Marshall，Texas．－This improves the construc－ ion of a moldboard for which letters patent were granted to the same inventor May 18， 1875 ，to make it more effective in preventing the black lands of Texas，and other sticky and waxy soils，from
adhering to it．The invention consists in a wooden moldboard faced upon its rear side with metal，having a recess between it and said metallic facing，and perforated with numerous small holes． improved portable fence．
Tilmon A．H．Cameron，Petra，Mo．－This invention is a portable rence，designed to form a yard or enclosure for stock．It is com－ posed of sections or panels，which are hinged together，mounted on
casters，wheels，and provided with braces for holding the panels in casters，wheels，and provided with braces for holding the panels in the desired relative position．The fence is thus adapted to be
readily shifted from one part of a field to another，and to be adjusted in a hollow square or other form，according to the nature
 ing self－adjusting and folded together with the panels．
improved self－discharging manure spreader． Thos．A．McDonald，Durham，Nova Scotia，Canada．－This consists of a wagon for transporting manure and spreading it broacast or traveling belt，or apron，supported upon polygonal shafts，one of which is geared with，and derives motion from，the rear axle．The may be provided with a spring clutch mechanism，by which it may be thrown into and out of gear with the endless apron at the
will of the driver，in order to thus regulate the discharge of the manure．The means immediately employed to throw the clutch out of engagement are pivoted levers，operated by connecting
ods and a lever under control of the driver．The manure is dis－ charged from the end of the wagon by the endless apron，and bro－ ken up or pulverized by a toothed roller．
A. Yes; the Leyden Jar is used for this purpose on to see through a fog? A. No. The electric ight, however, can be advantageously employed nis fogs. (6) F. E. B. says: What is the horizonta
orce of terrestrial magnetism for New York, in magnetic measure? I have worked it out (by formula given in Kohlrausch's "Physical Meas
urement") by the galvanometer, and make it $2: 33$ and desire to know whether this is correct, and here is much difference between New Yor go or San Francisco. It is a question of some values by a given galvanometer would vary in proportion at different places. For instance, the 188 , or nearly half what I make it. rausch's table is hardly applicable to this hemi shere. Measurements made lastsummer at New port made the horizontal force for that point, approximately, $1 \cdot 65$ in the meter-second system. We
have just learned, also, that recent determinaions at Philadelphia (measurements made thi You can probably get full information from the Coast Survey Bureau.
(7) A. H. asks: What is the difference be oiler with and a high pressure boiler? A. called a low pressure boiler. With a pressur above that figure, it is called a high pressure
(8) I. M. II. says: Please give me the re ipe for applying nitrate of copper to small cast ing (to represent a bronze) with the battery? A
Brown bronzing of various shades may be obtained by coating the object with copper and then proceding in one of the following ways: (1)
Ifoisten with water, to a wineglass of which five or six drops of nitric acid are added, allow it to ary, and then heat till the desired shade is ob ainca. (a) hob h and cover, whin inely ed hematite orc): heat till nearly red (3) Darke shades may be obtained by mixing the peroxide of iron with black lead,ground to a fine paste with spirits of wine. The copper is to be brushed well. warmel and polishell with a cloth which contains alitle beeswax, and all excess of this removed tained by first bronzing to a deep color and the iightening the projecting parts by touching with acce of leather moistened with ammonia.
(9) E. A. McG. asks: 1. How are razors ground and polished? $\boldsymbol{\Lambda}$. Razors are first ground
an grindstones, and then polished on emer wheels and buff wheels with crocus. 2. Is a rubLeather is better than rubber
(10) P. S. says: I have made a Rhumkorff coil, with 163 feet No. 20 plain coppor wire for the primary, which I insulated by winding with cot
ton twine, insulating each succeeding layer. For the secondary, I put on $1 / 31 \mathrm{lb}$. No. 35 cotton-covered copper wire. I have insulated the secondary rrom the primary coil with oiled linen. The core 4 inch in diameter. I get only a little shock fron it, and no spark. Must the fine wire be wound regulariy and even, ilke thread on a spool ? A
The lensth of secondary is hardly sufficient t give a spark of any size, but you should get a fai spark with proper battery power. The wire o higter.
(11) J. S. F. says: In your issuc of June 3,
Mr. Rose calls the tool illustrated on p. 357 . vol 34, a bevel square. Is not a sliding bevel the cor rect name? Is there such a thing as a bevel
square? A. When the blade stands square, the square A. When the blade stands square, the
tool is a square; when otherwise, it is a b bevel. What is black coffec? Λ. Black coffee is a ver built a model engine of the four cylinder pattern; but thinking it o no use, I took it apart and destroyed all but the cylinders. The cylinders were 2×3 inches, wit reversible link motion. All the machinery wa entirely ought of sight, with no joints except was upright, 18×38 inches, with 151 My bones inches long. My intention was to put it into tcam carriage. Would it do for this purpose A. The machinery would probably answer, if the boiler isstrong enough for a high steam pres
(13) H. N. asks: 1. What does a buff con sist of, and how is it made? A. Buff wheels ar made of wood covered with leather, or of solid leathor, such as walrus hide. wheess are some-
times made of loose disks of cloth or rag. 2. Is there any secrct about polishing tinware? A the purpose, if used with some dry polishing ima terial and run at a high speed.
(14) E. S. N. says: 1. We wish to carry team 1.500 feet to run a 13 inch cylinder. Is a inch pipe large enough? The piston will run at
about 400 feet per minute. A. A 3 inch pipe will probably do, though a 6 inch one would be better 2. It is proposed to return the exhaust steam in or 51/2 inch pipe, surrouuding the 3 inch stea ing some non-conducting material. I say that the exhaust steam will necessarily have a lower tem perature than the live steam, notwithstanding its protection, and will therefore condense the live steam. I tell them to put them both in the sam box, but keep them separate. , wou pleas sive your op,ion? h. Your new is correct. considered in balancing the valve? A. The area largely upon its shape, size, and fit to its seat.
(15) C. M. N. asks: Is a bent magnet, with part of core, more apt to hold its magnetism af trais current of electricity is broken than traight core ma
ounder. A. No.
(16) F. A. (query No. 42, July 15) is in ormed that the ordinary lifting injectors, of Na tho 20 feet perpendicularly.

COMMUNICATIONS RECEIVED.

The Eidtor of the Scirniticic American ac original papers and contributionsupon the follow-

On
On Locusts. By
On Meteors. By E. B.
Also inquiries and answers from the following:

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear may conclude that, for good reasons, the Editor declines them.
Enquiries relating to patents, or to the patenta-
bility of inventions, assignments, etc., will not be jublished here. All such questions, when initial only are given, are thrown into the waste basket is it would fill half of our paper to print them all by mail, if the writer's address is given. Hundreds of inquiries analogoustothe followin hgs? who who makes phosphor-bronze cast hines for molding paper boxes from pulp Who sells artifcial tobacco leaves ?" All such
personal inquiries are printed, as will be obpersonal inquiries are printed, as wil be ob,
erved, in the column of "Business and Personal," which is specially set apart for that purpose ubject to the charge mentioned at the head o hat column. Almost any desired information can
comparall

INDEX OF INVENTIONS

Granted in the Wnited States June 27, 1876,

AND EACH BEARING THAT DATE.

A complete copy of any patent in the annexed list urnished from this offlce for one dollar In ordertng please state the number and date of the patent desired
nod remit to Munn \&CO., 37 Park Row, New York city

Air spring, w. Wells
larm, burglar, J. F. Glililiand
xle set and gage, w. C. Cartoon
Bag fastener, A. Rihn............................
Bag holder, B. B. Gurley
Bag holder, S. C. Pyles.
Bag, traveling, T. A. Dennis

Bed bottom, L. Brirk.............
Belaying pin, J. w. Norcross
Bird cage, Λ. B. Hendryx.....
Block frame, J. W. Norcro

Soot horn tip, Prusha \& Cook.........
Boring machine, metal, J. w. wilbraha
Bottle-capping machine, w. Pitt
ottle mold, glass, Pease \& Tester
Box-nalling machine, F. Rochow
rick machine, J. Dalzell.
Brush, J. E. \& C. R. E.
Bucket car, J. F. Donkln
Bucket ear, M. Saulson
Burial case, Colby \& Drew \ldots.............
Butter package or tuh, c. w. Grannis.
Button fastening, D. Heaton (r)
Button-hole machine attachment,
Can for packing meat, G. Brougham
J. Sullivan
an nozzle, G. H. Couts, Jie for Gllber
Canal boats, propelling, H.
Car axle box, T. L. Buckley
Car brake, P. Hughes.
Car brake shoe, G. F. E.E......
Car coupling, G. J. Crikelait
Car coupling, Hiltz \& Provost..
Car coupling, J. W. Buckingham
Car couping, M. B. Ogden.
Car coupling, W. N. Huteh
Car mover, J. W. Raynor.
Car replacer, Hoster
Cars, compressed air holder for. J. Griscom
Cars, ventilation of, Hall et al.
Carpet lining, J. L. Kendall
Carriage axle, w. H. Ward
Carriage, child 's, r. W. Whit
Chalins, strectching, \mathbf{c}. Hall (r)
Chair, convertible
Chair, convertible, C. Vandyeck
hair, folding, P. Born..........
Chair, shearing, J. A. Boa
Chimney cap, J. E. Auld.
ligar mold, F. c. Miller .
Clevis, spring,

Clew thimble, J. Dunn ..
Clipping machine,
Clothes dryer, H. F. Green......
Clothes dryer, G. A. Wright, Sr
Clothes pin, G. C. Eastma
Coal hod, w. S. Patin
Coal hod, w. S. Potwin.
Coal-mining machine, A.
Coffee pot, w. H. Sherwood..
Coffee roaster, N. Ljungberg.
Cooker, steam, H. E. Fuller.
Cooler, beer, w. W.erle
Cooler, milk, Eaton \&
Cooler, milk, T. King
Corn shew, J. J. Barnes
Cotton opener, beater, etc., R. Kitson.
Crape, laces, etc., restoring,
Culinary vessel. F. Schifferic
Culinary vessel. F. Schiffer
cultivator, D. C. Ba
Cultivator, S. Purdy
Cultivator, G. W. Rhode........
Curry comb, C. E. L. Holmes
Curtain cord tightener,
Dental plugger, \mathbf{C}. King.
Dental tools, making, Bonav
Desk, G. Range...........
Desk,, wall, T. Cogswell (r).
Dish and bottle wasser
Door check, W. J. Clar
Door check, T. Hill
Double tree hook, J. Parker
Drain hopper, J. D. Picrec................
Drain or sewer trap, w. D. Stewart
Electric machine, magneto-, J. B. Fuller
levator and carrier, H. W. Foutz.......
Enameling wrought iron, J. C. Whiting
Engines, Ink for stcam, W. H. Gliman.
Engine valve, direct-acting, Goose et cil
Envelope, J. Rogers
Evaporating pan, T. McQuiston.
Eyelet-setting instrument, H. Dinnit
Fauct, Booth \& Hall...
Feed rack, A. W. Humphrey
Fence wire, barbed
Fence wire, barbed, N. Clark
Fire pot lining, J. Zlegler.
Flambeau, English \& Laass.
Flour, manufacture of. J. Mills......
Food for stock, steaming, R. Dalley Frutt fry stock, H. G. H. Hulbu
Frutt Jar, D. E. Stevens..
Fut
Furnace and steam boiler, Ash \& Walk
Furnace blast, c. Plagge..............
Furnace for steam boilers, J.
Furnace grate, Dodge \& Coles
Furnace grate, J. Reynolds....
Furnace, heating, P. Martin.
Gas apparatus, W. \& R. H. Sm
Gas apparatus, W. \& R. H. Snith.
Gas, manufacturing, M. H. Stron
Gas purifying tray, T. P. Mc Garvie
Gas retort IId, etc., J. Rick
Gate, au oug omattichme, P. Sames. Mc.
Gate, farm. A. Brinkerhoff
GIrder, compound, A. Hay.
Grain binder, J. Garrara...

Harness, D. S. Carrick....
Harness, G. H. Van Sice.
Harness liame, L. P. Brow
Harrow and pulverizer, T.
Harvester, R. Emerson.....
Harvester
 Harvester reel support, J.
Hinge, table, , H. Cuter.
Hook, snap, G. D. Nosher.
Hoose pipes, making, G. M. Fuller...
Ice-shaving apparatus, w. C. Salmo
Ice-shaving apparatus, W. C. Salmon......
Indicator and sped recorder. . F. Kettell
Ingots and plates, making, H. McDonald Ingots and plates, making, H. McDonald..
Ironing apparatus, C. Mackh............. Ironing apparatus,
Jelly glass top, J. Dalzell.....
Journal bearing, c. \mathbf{c}. $\mathbf{H o y t}$ Journal bearing, C. c. Hoyt.......................
Knife-scouring machne, R. (paulang......
Knitting machinc needle bar, etc., w. H. Abel
Lamp chimney, E. Honerjaeger
Lamp chimney, E. Honerjaege
Lamp cxtInguisher, M. Wagner.
Lamp wick attachment, H. Rauschousan.
Lamp match hox, J. Dalzell..............
Lathe, double reversille, J. H. Wison..
Liniment for rheumatism,
Lock, seal, J. Sweeney..
Locomotive draft regulator, J. M. Foss............................ 17
Log track, J. N. russell........

Lubricator, D. Jenkins.
Mail bag, F. J. Fectnthel
Match safe, H. Kinsley...............................
Measure and pump, Iluid, w. H. \& W. J. Clark..
Seasure and raduated, E. L. Witte.......
Seasurc,
Mechancical movenenent, w. D. Westman.............
Millstones, laying out furrows in, G. T. Smilh.
Mold for plllars, Glbby \& Goldsmith.
Music stand, J. A. Rand.
vall and spike, E. Bless.
Naills, making, Cerf et al....................
Nursing bottle valve, A. M. \& H. Knapp..
encil protector and knife, F. A. Coombs........ 179,
hotograph burnisher, L. D. B. Shaw.......... 179
hotograph burnisher, L. D. Br Shaw.............. 199,2

Plipe-bending mandrel, M. L. Orum. Plating machine, R . B. Norment, Jr.

low and cultivator, comblned, c. Frank
Plow, gang, Button \& Lundy..
Plow sheld and cleaner, A. T. Martin ollishing machine \mathbf{H}. M. Dubot Portmanteau and strap, D. S. Mathews Potato crulls, making, A. HeriIng. Pess, hydraulic cotton, ress, power, B. G. Martin Pulley block, J. We
Prell
ump, R. E. Mills...
Radiator, steam, W. P.
Rall joint, J. D. Smith.
Rallway ralls to plates, reducing,
Razor, c. Beck....................
Reaping self-rake, E. H. cuinton
Reaping self-rake, E. H. Clinton
Rolling shect or plate metal, J. Q. Everson Roonng, plastic, L. Plcrce.
Sash cord fastener, A. J. Chas
Sash fastener, w. G. Brown
Sash fastener, T. Hill
Sah holder, J. Gallaher
saw mandle, wrosscut, \mathbf{H}.
awmill, circular, O. I......... Jenks
Seal, metallic, E. J. Brooks..
Seal, metallic, M. W. DeWoir
Seeding machine, W. G. Barnes
Seeding machine, M. L. Gorham eparator, graln, W. H. Asbury. Separator, grain, H. A. Barnard. hips, etc., constructing, J. A. D. Folger. Skate, c. G. C. Smpson. skate, J. A. Whelpley......
Slate, drawing, c. L. Slade Soap compound, T. H. Startzman plike drawer, A. J. Conway... talk cutter, Page \& Hoffman Stampling, die for, H. Martyn. Stove leg fastener J. Ziegler额 Stove polish, Curfew \& Hal Streets, substructure of, M. A. Burnham uspender end, Schirmer \& Betts Table, c. Schmid................ Tag fastener, W. B. M Tank, oil, S. Webste Thill coupling, Glllesple \& Spris. Tobacco, liquids in, Smith \& Mes Tobacco extract, s. Krackowizer........ \mathbf{r}) Tongs, plpe, A. H. Jarecki. Tool handles, Hardy \& Stayner. Toy money bank, W. M. Kirchne Trap, animal, Kramer
Tree protector, G. W. Grader..........
Trunk corner clamp, J. W. C. Haskell Twine cutter, w. Haddenhors
Wagon body, B. Rankin
Washing machine, E. Coope
Washnng machine, T. Mulr.
Watch case spring, c. O. Farclot...........
Watch chain swivels, making, J. F. Harris
Water cut off, c. O. Wilson,..............
Well borer, artesian, J. A. Woodhouse Well tubes etc., inscrting, J. T. Sher Weilis, brick forwailing, A. Moore
Wells, stirrup for oll, w. J. Lewis Whecl tyre, W. H. Balley
Whecibarrow, J. A. Garve
Windmills, D, Halladay........
Windmill, T. J. M. F Windmill, T. J. \& M. F. Ingels
Windmill, c. H. Miller........ Window shade roller, E. E. J. Jolinston. DESIGNS PATENTED.

Conn.
9,351.-Carpets.-E. Dantel, Paris, France. 9,352.-Statuary, etc.-J. W. Figke, Nem York clty
$9,353 .-$ Fountans.-J. W. Figke, New 9,S33.-Fountains.-J. W. Figke, New York city.
9,354.-Cofrin Hook.-G. S. Graves, Bainbridge, N.
 9,s57.-Printers' Bracket.-S. Simons, Chicago, Ill.
9,955.-Nerdie Stand,ert.-E. C. . Swindlcr,Magnolia, 9,359.- Photoaraphic Mount.-I. W. Taber, etc., San 9,360.-FAN.-B. Walker, NlagaraFalls, N. Y. [A copy of any one of the above patents may be had by
emitting one dollar to MUNN\& Co., 37 Park Row, New SCHEDULE OF PATENT FEES. On each Caveat.....
On tiling each application for a Patent (17 years) on Issuing each original Patent. On appeal to Cominers-in-Chie? On application for Retssu On filing a Disclaimer. On application for Design (3 and years On application for Design (714 years)

THE VALIDITY OF PATENTS

The inexperienced purchaser of a patent does not generally appreciate the importance of having defined by somined, and their validity and scope ters, before parting with his money. It is not unthe manufacture of articles under commencing
purchased patent, to ind thatitisan infringemen
upon some previously issued patent, and that h upon some previously issued patent, and that he
has not only made a worthless investment, but that he is likely to aet mulcted in damages if he proceeds with his manufacture. Cases are continually coming to our knowledge wherein partie have made purchases in good faith, and paid con-
siderable sums of money on the assurances of th patentee and a mere glance at the patent, pre uming that all that the drawing of the inventio thowed was protected by the claims, when, in fac
the covered was almost infinitesimal. An other manner in which purchasers are sometime deceived is that the claims, although broad enough and worded properly to cover the invention, con tain a single element protected by some prio patent, which covers the very part in the new machine which is necessary to insure its efficiency
The Howe sewing machine patent illustrates this t protected but little that any of the manufacurers cared to use, except the one small part acture to all sewing machines; and all manu ved from to pay Howe a royalty, and he de ense income
We therefore recommend any person who is mence the manufacture of any article under cense, to have the patent carefully examined y a competent party, and to have a researc made in the Patent Office to see what the condHe should art was when the patent was issued as to cover all the inventor was entitled to when his patent was issued; and it is still more essen ment, as above suggested, or not. Parties desiring o have such searches made can have them done hrough the Scientific American Patent Agency, by giving the date of the patent and stating the information, address

37 Park Row,
gaututisements.
Inside Page, each insertion - - 75 cents a line
Back Page, each insertion -- 81.00 a line. Back Page, each insertion --- 81.00 a ine.
Engraving may head adicertisements at the same rate
per line, oy measerement.

Lehigh Emery Wheels.

 W ANTED-Manufacturers to manufacture Files, our Double-Toothed Reversed Angle Diamond
 CENTENNIAL MILLSS

Harrison's Standard Flouring and Grinding Mills Excel all others in Machinery Hall in the quantity and
quastityor tiourand meal produced and are hhead or the
age. Prices 50 per cent below and otherd marker. and others are invited to examine their pecuEDW ARD HARRISON W ARD HARRISON,
Pots 59, , Sec. E, No. 8,
Machinery Hall, Pulladelphia, Pa.
Pond's Tools.
ENGINE LATHES, PLANERS, DRILLS, \&c LUCIUS W. POND worceater, Mass. S. GUITERMAN, Export and Commission Mer-

 ET Send for Pamphlet and
 STEAM ENGINES FOR SALE.

 THE \rightarrow BEST COIDPWNS $4=2$

FRIETION CLUTCHES

At Centennial Exhbltion, Machinery Hall, D. 9,66

Lathes, Planers, Shapers. Drills,

NANT

TED Men io traper and dell godition

NEW DEPARTUR E F Hitiss

GFO. W, READ \& CO., AND VENEER CUTTIING MILL

Hard-Wood Lumber AND CHOICE FIGURED VENEERS. The LARGEST STOCK : The GREATEST

N. F. BURNHAM'S Water Wheel

P. BLAISDEIL \& CO.

W. F. \& John barnes

 KFORD, EAGLEFOOT LATHES,

COLD ROLLED SHAFTING

FOISREVERSIBLE Thnap imile durphe and foritie Ren

$\mathbf{M}^{\text {ACCIVERYY OF }}$ Improved styles For

 25 FANCT.

sparitab croto

$W^{\text {ater supply for towns and vil }}$

ter

n Stock, and for Sale by william sellers \& co.,

 BLAKE'S PATENT Stone and Ore Breaker

 How to make spiral springs. by How To MAKE sprail spisge By

Wood-Working Machinery,

gavertisements.

Back Page-

 ver line, by measurement, as the letter press. Aadearly as Frıday morning to appear in next tseuce. Still Another Reduction.

Waltham Watches

At lower prices than ever before。
OUR REDUCED PRICE-LIST NOW READY

We continue to send single Watches by Express to any place, no matter howremote, with bill to collect on delivery, with privilege to the purchaser to open the
package and examine the Watch before paying, and with no obligation to take it unless it is perfectly satisfactory.
\qquad
\qquad

HOWARD \& CO.

No. 222 Fifth Avenue, New York. TRON BRIDGE BUILDING-A complete de-

DOWN TO \$8.00.

$\underset{\text { IMPORTER, MANUFACTURER, AND DEALER }}{\text { Win }}$
Railway, Machinists', and En gineers' Supplies.
\qquad

Mements

[ESTABLISHED 1846.]
Mnna \& Co.s Patent Ofices.

 $\frac{1}{4}$

TO INV ENTORS

and manufacturers

SCHLENKER'S
Bolt Cutters. HE BEST AND CHEAPEST MADE. HOWARD IRON WORKS, © Send for Catalogue. Buffalo, N.

 $\mathbf{R}_{\text {SCALE }}^{\text {OGRES PRYNETTEE }}$ OF SODA BOLLER

'He UNion heon mills, filusuigh, Pu

 Planing \& Matching.

Todd \& Rafferty Machine Co.

MACHINERY, IRON \& WOOD WORETNGG MACHWIERY
OF EVERY DESCRIPTION. OF EVERY DESCRIPTION.
Cold Rolled Shafting. HANGERS, PULLEYS, COUPLINGS, BELTING, \&c.
\&C. Send for Illustrated Catalogue and Price List.
G E O R G E P L A C E, GEORGEPLACE,
General A Agent for the TANITE CO.'S SOLID EMERY
WHEELS AND EMERY ORINDING MACHINERY

The Scientific Americall

 REFERENCE BOOKA Bound Book of 144 Pages, for 25 c.

 MUNN \& CO., Publishers, cientific American Offce.

WHIPPLE'S

Patent Door Knob.

 Diamond Solid Emery Wheels.

Portland and Keene's Cement.

Diamonds ${ }^{3}$ Carbon

THE HEALD \& SISCO

Patent Centrifugal Pumps.

 NEWSPAPER FILE.

 MUNN \& CO.,

The Tanite Co.,
STROUDSBURG, PA. EMERY WHEELS\&GRINDERS

Machinists' Tools.

 NEW HAVEN MANUFACTUHiNG, Cow Haven, coni:

PORTLANDCEMENT

 THE CENTENNAL INTRRNATIONAL EX-

 HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.

Mill Furnishing Works

M(0) (is
 of ter

SCIENTIFIC AMERICAN, FOR 1876, THE MOST POPULAB 8CIENTIFIC PAPER IN THE WORLD.
THIRTY-FIRST YEAR.

VOLUME XXXV.-NEW SERIES

The publishers of the SCIENTIFIC AMERICAN beg to announce that on the first day of July,
1878, a new volume commenced. It will continue to be the aim of the publishers to render the contents of the new volume more attractive and use ul than any of its predecessors.

To the Mechanic and Manufacturer
No person engaged in any of the mechanical pur suits should think of doing without the SCIEN ix to American. Every number contains from ons which cannot be found in any other publica The SCIENTIFIC AMERICAN is devoted to the nterests of Popular Science, the Mechanic Arts, Manufactures,Inventions, Agriculture,Commerce and the industrial pursuits generally; and it is val aable and instructive not only in the Workshop and Manufactory, but also in the Household, the Library, and the Reading Room. Each volume tions and Advice, by Practical Writers, for Working Men and Employers, in all the various arts.
TERMS OF SUBSCRIPTION - POSTAGE PAID BY US.
One copy Scientific American, one year .. $\$ 320$ $\begin{array}{ll}\text { One copy Scientiflc American, six months. } & 1.60 \\ \text { One copy Scientific American,three months } \\ 1.00\end{array}$ One copy Scientiffc American and one copy

Scientific American Supplement, both for one year, post-paid.
The Scientific American supplement A weekly paper, uniform in size with the scien-
tific American, but a distinct publication. It contains working drawings of engineering works, and elaborate treatises onevery and Mechanics, by eminent writers, at home and abroad. An illustrated cover protects the handsomely printed sheets. Price, $\$ 5.00$ per annum Single copies 10 cents.
Address all letters and make all Post Office orersand drafts payablo

MUNNN \& CC
37 PARK ROW, NEW ORK.

[^0]: An ordinary boiler furnace requires 300 cubic feet of air for the consumption of each lb. of coal. From 13 to 20 lbs . of coal may be consumed per superficial foot of fire grate. Three quarters of a foot of fire grate are required to evapor ate a cubic foot of water.

