a WeEkly Journal 0f practical information, art, science, mechanics, ciemistry, and manufactures.

BAND RE-SAWING MACHINE.

As a natural consequence of the practice of transporting lumber in planks or thick boards from the sawmill to the manufactory, and there converting it into forms and sizes suited to the wants of manufacturers, which was formerly done at the sawmill itself, a demand has been created for improved methods of such conversion, which should combine a maximum speed of execution with a minimum waste of material.
This work has hitherto been accomplished by circular saws or reciprocating saws. The former, however, owing to the necessary thickness of the blade, produced a waste of material not compensated for by the amount of work per formed, while the latter method, although more economi cal in the waste of material, was found unprofitable on account of its slow operation.
In the matter of re-splitting lumber, the band sawing machine seems best adapted to meet all the requirements; as its great cutting speed, and the very thin gage of saws which can be used, combine at once the saving of time or labor with the saving of lumber.
The accompanying engravings (Figs. 1 and 2) illustrate a machine of this kind recently perfected by J. A. Fay \& Co., Cincinnati, Ohio, which combines in its design and construction many improvements and features which careful study and experiment have convinced the inventors are necessary to its successful and economical operation.
The saw is carried upon two wheels five feet in diameter, placed at a short distance from each other, the upper wheel having a vertical adjustment, shown in Fig. 1, to allow for the decrease in the length of saws caused by breakage and rewelding. The wheels run in long bearings and have an outside bearing to secure additional firmness. The tension of the saw is produced by means of a weighted lever, shown in Fig. 2, in connection with the adjusting screw of the upper wheel, which compensates for any variation in the per wheel, which compensates for any variation in the
length of the saw by expansion or contraction caused by changes in temperature.
The patent roller guides, which support the back and sides of the saw above and below the lumber, are made of steel and gibbed to a supporting post. This post has a radial adjustment by which the guides will direct the saw to the center of the required cutting line. The guides can be quickly detached for the removal of the saw, and the upper guide has a vertical movement by means of hand wheel and gears to accommodate different widths of lumber.
The saw may be made to run upon any part of the peri phery of the upper wheel by means of a device for tipping the

NEW YORK, JULY 15, 1876.

Abstract

wheel out of true perpendicular, or by a radial movement of wheel out of true perpendicular, or by a radial movement of the upright column, which throws the upper wheel out of a the upright column, which throws the upper wheel out of a true parallel line with the lower one; and the saw being thus true parallel line with the lower one; and the saw being thus made to run on any desired part, there is no danger of it made to run on any d running off the wheel. unning off the wheel. The feeding mechanism, consisting of four geared rollers of large diameter, is driven by friction, so arranged that, by different movements of the regulating lever in front of the machine, the operator can instantly stop or start the feed or graduate it from fast to slow. The guiding feed rolls are adjusted by hand wheel and screw, and the pressure feed rolls are governed by a weighted lever acting on a ratche wheel by means of a pawl, and sufficient pressure may be obtained to straighten any warped boards. The feed rolls can be quickly adjusted to saw through the center or from the side of a plank, as may be desired. The driving belt is tightened by an idler, attached to a lever swung to the lower wheel shaft, and moving concentrically with the driving pulley. The bearings are all provided with oiling devices, so that the wearing parts of the machine can be kept constantly lubricated. The machine is adapted for resawing lumber 30 inches wide and under, and down to the thinnest materials that admit of re-sawing. Its working capacity is stated at from 10,000 to 15,000 feet per day, depending upon the kind and width of lumber. The saw kerf is about ${ }^{1} \frac{1}{6}$ thick; the thickness of the blade is number 19 gage. By this machine a large saving in lumber is effected : as, out of a $1+$ board, pluned on both sides, three

 \& panels are obtained. The machine is so arranged as to be at all times under perfect control of the operator.Several of these machines are in use, giving entire satisfac tion. One of them may be seen in daily operation at J. A. Fay \& Co's. space in the Centennial Exhibition, section B. 8, columns 61, 62 and 63, Machinery Hall, where they have on exhibition a large number of their labor-saving machines. For further particulars, address the manufacturers, as above.

A New Process for Making Muminating Gas.
The Revue Industrielle describes a new illuminating ga apparatus devised by MM. Kidd \& Barff, which is composed of an iron drum into which any kind of carbon is introduced Carbonized peat gives excellent results; powdered anthracite, coke and wood charcoal may also be employed. In the interior of the cylinder is established a system of circular reservoin The coal is ignited, and the heat developes steam in the tubes at a pressure corresponding to the hight of the
reservoir. A small tube conducts the steam below the fire and allows it to escape into the ash pit. The jet draws in air, and the mixture traverses the burning combustible from below upward. A series of interesting reactions then occur, the watery vapor, air, and carbon acting materially upon each other. The oxygen of the air and steam unites with the carbon to form a certain proportion of carbonic oxide, and a less quantity of carbonic acid. The hydrogen set at liberty and the nitrogen are found in the mixture when it escapes. The nitrogen alone is annoying. The quantity of carbonic acid may be greatly reduced by augmenting the hight of the layer of combustible. Carbonic oxide and hydrogen represent about 43 per cent of the mixture. A pecimen of the gas obtained from carbonized peat gives on nalysis : Carbonic oxide 28.5 , hydrogen 14.5 , nitrogen 53 , carbonic acid 4. The gas contains no sulphur, either free or combined ; and in order to use it for illuminating purposes is only necessary to remove the carbonic acid, an operation of no great difficulty. It is calculated that 1 tun of coal by his process will yield about 98,868 cubic feet of illuminating gas, or, including the nitrogen, about double this volume. The operation is continuous, and there are no retorts to charge and empty. As the coal is consumed, a lever device throws in fresh supplies in closed boxes. The residue is a mall quantity of ashes, and all the carbon appears to be mingled in the gas. The gas is remarkably pure, burns without the least odor, and produces only carbonic acid and water; hence it has no deleterious action on paint or gilding

New Applications of Salicylic Acid. It has been determined that the addition of from 0.0005 to 0.001 part of salicylic acid to cistern water clarifies the same in a remarkable manner, and that water, which ordin. arily, in the space of a month, would become foul and unfit arily, in the space of a month, would of the acid will doubtless be found of great value on board vessels making long voyages, as it has been determined that scurvy is often produced by the deterioration of water through too long sojourn in casks and tanks. The combination of salicylic acid with calcareous salts has also been noted by M. Berger to be so intimate that water, thus charged and treated, may be evaporated even to dryness without any lime deposit being formed. The acid is therefore one of the best (if not the best) preventives of steam boiler cale and incrustation; but until some cheaper way of producing it than now is practised is discovered, it can scarce. ducing it than now is practised is discove

Fig. 1.

Fig. 2.
J. A. FAY \& CO.'s BAND RE-SAWING MACHINE.

\%rcientific chmerican.

HETABLISHED 1846.
MUNN \& CO., Editors and Proprietors. PUBLISHED WERKITY $A T$ NO. BY PARK ROW, NEW YORK.

O. D. MONN.

A. e. beacil

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year., postape Included.

ver ten coples, same rate each, pootage included

Vors.-Yersons subscribing will please to glve their rull names, and Post tace and state address, platinly written. In case of changing restdence otate former adrees, as well as glv
unless the former address is g given.

A distinct paper
Scientific American Nupplement.
d published simultancously with THERMS.
One year by mall.
TERM...........
Scizntific Am
Sinkle Coples...
The
Address MUNN \& Co., 57 Park
Subscriptions recelved and single coptes of ether paper sold hy al
VOLUME XXXV., No. 3. [New Series.] Thirty-firgt Year
NEW YORK, SATURDAY. JULY 15, 1876.

Contents. (Illustrated articles are marked with an asterisk.)	
Amertcan Institute fair, the...... 34 Money box, mechanical ${ }^{*}$........ s^{4}	
Coal, comiustrion of (44)......... ${ }^{\text {d }}$ Power, cheap (40)	
Enilnes, Inclined	:1a
Engline8, the Corlise ($6,3 \mathrm{si}$.........	
nin	
Hav iork, improved (i.............	
İce, meltilig tex	
injectors, power of (42) Insects, destroying (3)	

THE SCIENTIFIC AMERICAN SUPPLEMENT. Vol. 11., No. 29.
For the Week ending July 15, 1876.
TABLE OF CONTENTS.

VII MEDICINE, HYGIENE, ETC.-(quinia for Sunatroke.-Waln
in Tubercle.
Tine scientifc American supplement
 to subscribers.
out the country.

37 Park Row. New York.

LIFE WITHOUT LIGHT.

An interesting discussion has recently taken place in the French Academy of Sciences, on the question of the influ once of solar radiation, and of the green matter in the forme tion of the immediate principles of plant organisms.
M. Boussingault considers this influence to be indispense be, and that, if the solar radiation should disappear, lif would be impossible. M. Pasteur on the other hand think that life might still continue in certain inferior plants and occasion the most complete organic growths. He cites as an example the life of the mycodermu aceti, which may take place in darkness on a liquid composed of alcohol, acetic acid, and mi
The mycodermen "ceti to which M. Pasteur alludes is a re markably curious organism, which serves as a medium be tween the oxygen of the air and a combustible body or fer mentable matter, to produce combustion or oxidation. Fer eerstation of this kind has thus a special charactar, and di cers from that set up by yeast or in other ways. The myco er smooth upon the surface of liquids while the wrine or smooth, upon the surface of liquids while the same are
undergoing acetic fermentation, and is generally formed of very minute elougated cells whose diameter varies from 0.000059 to 0.000118 inch. These cells are united in chains o in the form of curved rods. Multiplication seems to be ef fected by the transverse division of the fully developed cells, which division is preceded by a median constriction. If we allow this cryptogam todevelopitself on the surface of an organic liquid containing phosphates and nitrogenous or ganic matter, until the whole surface of the liquid is covered then if we remove the liquid without disturbing the mem brane, and substitute an equal volume of water containing 10 per cent alcohol, the plant immediately sets up a reactio tain time the conol and the ord by the great acidity of the iquid becomen slon, but we can resto it to atity quid, becomes slower, but we can resto it to activity by substituting alcoholized water again. So that, as long as the
mycoderma is supplied with suitable nutrition, it will go on and burn the alcohol; but if on the contrary we deprive it of nourishment, or in any wise diminish its vital activity, then its oxidizing action will not go so far, and the alcohol may change into acetic acid. This is the substance of one of M. Pasteur's most lrilliant investigations, among the practical
results of which is a new commercial method for the acetia results of which is a new comuercial method for the acetic cation of fermented liquids. The process consists in sowing the mycoderna aceti on the surface of liquor containing 2 per and earthy phosphates. When the surface is covered with membrane, the alcohol begins to acidify. This action being fully set up, some alcohol, wine, or beer mixed with alcoho is added every day to the liquid in small quantities; the cetification the vinegar drawn off. The membrane is collected, washed, and em ployed for a new operation.
M. Boussingault's reply to the suggestion of the mycoderma by M. Pasteur is that it is true that some parasites attain a complete development in an artificial medium containing nothing but definite and crystallized chemical compounds Still there is a great difference between this development and that of chlcrophyll in plants. The latter take all their elements from the exterior world, carbon from the atmos phere, hydrogen and oxygen from water. The parasites
ven those mentioned by M. Pasteur, take carbon in sub stances which, although of definite chenical construction, are derived from vegetable organisms. Alcohol and acetic acid have their origin in sugar, which cannot be formed save under the influence of solar radiation. The existence there fore of parasites in an obscure place, where their cellules forn immediate principles, similar to those produced in bright daylight by plants of green protoplasm, is far frou being an exception, as has been affirmed, but is rather confirmation of the necessary relation of light and vegetation Hence M. Boussingault adheres to his opinion that, if the
sun's light were quenched, not only chlorophyll plants, but also those deprived of chlorophyll, would disappea from the earth.
M Pasteur's position appears,however, to be unassuilable as might well be expected from his immense experienc and wide investigations touching the subject under dincus of synthesis,chemists starting with carbon and watery vapor can produce alcohol, acetic acid, and juany other substances capable of serving as carbonated aliment of inferior plants deprived of light. Moreover it may be conceived that, under the influence of the same, all the carbon existing at the sur face of the earth or in the interior might pass into complex organic matters, and that ulteriorly it would return to the atmospher - in the form of carbonic acid through the actions of oxidation and fermentation. It would be only when this termination was reached that all manifestation of life would be impossible without the aid of solar light.
M. Pasteur's experimental determination that oxygen and light are not essentials of life, and his having caused or ganisms te exist in an atmosphere of carbonic acid and in absolute darkness,
modern chemistry.

THE ORACLES OF ANCIENT GREECE

As the classical authors inform us, there were in ancien Greece, in different localities, so called sibyls, a kind of for tune tellers, clairvoyants, or spiritual mediums, but of a socia standing much higher than that of their successors at the present day, as they were not only recognized but maintained
by a wealthy and influential priesthood, to whom the preby a wealthy and influential priesthood, to whom the pre
sents received from the faithful helievers were a source of
enormous revenue. In our present state of society, we can scarcely form an idea of the power and influence of the priests as a separate class of society, monopolizing as they did all the profits derived from the superstitious, who wished to atone for their sins, to obtain knowledge not only of secret events, but also of the future, and to get advice as to heir action in cases of difficulty, even to be cured of various diseases ; and thus the priests monopolized, for many centuries, the functions of many professions, even that of the physicians, which Hippocrates at last succeeded in rescuing from the power of the priesthood.
These sibyls, of which the two prominent ones were the Cumæan and the Delphian, resided in gorgeous templex erected over caves, from which vapors arose which had an exhilarating und anæsthetic influence, similar to that of nitrous oxide or laughing gas, on those inhaling them. The author of a well known book, entitled "Art Magic." who for some time lived at the locality where the Cumæan sibyl once resided, states that it is one of the wildest, grandent, und most awe-inspiring gorges of the mountains around Lake Avernus, which itself is the inundated crater of an ex tinct but once mighty volcano; while the whole region around, now fertilized by the waters of the lake, bears the marks of the ravages of fire, presenting a most gloomy ppearance. The clefts in the savage rocks abound with caverns, exhaling mephitic vapors and bituminous odors. The scattered inhabitants of the surrounding district once believed that the largest grotto was the entrance to the ower world, and that the hammers of the Titans, workin in the mighty laboratories of the Plutonic realms, might be heard reverberating through the sullen air. The dark waters of Lake Avernus were supposed to communicate directly with the silent flow of the river of death, the Lethean stream, made dreadful by the apparitions of con demned spirits, who floated from the shores of the lake t he realms of eternal night. In this grotto resided the amous Cumæan sibyl; and from the exhalations, which wer more or less poisonous to birds and other small animal which came near, the weird woman appears to have derive hat fierce ecstacy in which she wrote and raved about the destiny of nations, the fate of armies, the downfall of king doms, and the decay of dynasties. Even monarchs and tatesmen often acted according to her pretended revelations, as it was supposed that the purposes of the pagan gods wer made known to her as to a counsellor and a mouthpiece. She sometimes wrote her woothsayings upon palm leaves which she laid at the entrance of the cave, suffering the winds to scatter them and bear them whither the gods directed. To the Cumean sibyls is attributed the authorship of the famous sibylline books, of which many strange sto ries are told, but of which very little is left that can be re garded as genuine. It is said that she foretold the eruptio f Vesuvius, in which Pliny perished and the cities of Her culaneum and Pompeii were destroyed. She declared of herself : "Why must I publish my song to every one? And when my spirit rests after the divine hymn, the gods com mand me to prophecy again, so that I am entirely on the tretch, and my lody is so distressed that I do not know what I say ; but the gods command me to speak." If we ubstitute in the latter expression the word spirits for gods, we have a declaration identical with those of the spirit me diums of the present day.
The aborle of the Delphian sibyl or Pythia was in strong contrast with that of the Cumæan oracle. It was situated n the delightful region of Mount Parnassus, sparkling in sunlight and fragrant with bloom. The superb temple of Apollo was built over a similar chasm as that where the cumrean sibyl held her sénncers, so that it was secured from he approach of the vulgar. On its former site certain cleft in the rock are still visible, one of which forms a dee cavern, into which travelers, by clinging to its rugged sides, aay descend as far as they dare. They then experience effects similar to those produced by nitrous oxide or laugh ing gas ; and one writer, who has explored these caverns, asserts that it is this gas that produces the effects spoken of. This, however, is, according to geological principles highly improbable; and we rather suppose it to be som bitumninous vapor, which (according to our present know ledge concerning petroleum and its derivatives, such as naphtha, ether, rhigolene, chymogene, etc.) has an effect exhilarating, hypuotic, and anæsthetic, similar to that of nitrons oxide. All the dencriptions agree that hituminous dors are exhaled from these volcanic chasms. Plutarch informs us that the most celebrated Pythia who served the Delphian oracle in the temple of Apollo was a beautiful young country girl from Libya, named Sibylla. From thi was the name sibyl derived, and it was afterwards given to ll clairvoyants of her day. Plutarch further says, concern ing the first sibyl: " Brought up by her parents in the ountry, she brought with her neither art nor experience nor any talent whatever, when whe arrived at Delphi to be he oracle of the gods;" and further, he says: "The verifica tion of her answers has filled the temple with gifts from al parts of Greece and foreign countries." How very much like the innocent young mediums of today, who are often claimed to give the most astonishing revelations from the other world without ever having had the advantages of a scientific education! The sibyls of the ancients had, how ver, the advantage of the support, assistance, and prompt ings of a class of men highly interested in their reputation the priesthood of the period; and this class not only con isted of the most educated individuals, but of men who ad the greatest opportunity of obtaining information with eld from the vulgar.
When we compare with this state of things the position

§cinutific Amprican

telligent, and none among the priesthood of the present day, we cannot help being surprised at their success and the num ber of their dupes: our surprise is chiefly at the ignorance and credulity of those who patronize such things in the nineteenth century.

cams.

There are several devices in mechanics which are im portant and even indispensable, that are used under protest. In this class we have irregular cams, at once the most useful and the most abused things in the mechanical world
There is not a loom deftly weaving its delicate designs which is not dependent on cams. Sewing. knitting, and printing machines, a host of ponderous as well as delicate machinery, depend on cams to give one movement here, and another there; yet after all a cam which is in perfect proportion in all its parts is rarely seen. It is no uncommon thing to see a lever provided with an infinitesimal friction roller which is intended to turn on a pivot four fifths its size. This little roller must fit a groove in a cam which revolves at such speed as would drive it at the rate of thousands of revolutions per minute. if it would revolve but the oil is forgotten, it heats, sticks, cuts itself and the cam ; and then comes lost motion, noise, and destruction to the machine. Perhaps a larger wheel or roller is used, for instance, on the periphery of a cam. This wheel is a mere disk, with a hole bored through the center. It is placed on a stud on a lever, and assigned to a duty as heavy as that of the shaft which carries the cam. Is it any wonder that it soon wabbles, cuts the cam, and works unsteadily?
Of course the remedy for this is obvious. The rollers should be made as large as possible, of good material and well hardened. The roller bearings should be of the proper proportion and well fitted, and provided with some means of continuous lubrication.
The cam should be smooth, without the slightest scratch or cut, and should be made as far as possible so that it will not catch dust and dirt. If any part of a machine needs cleaning often, it is a cam; yet it is not an unfrequent thing to see a
mass of gum, lint, and grit stowed awar in a cam, mass of gum, lint, and grit stowed away in a cam cutting away its usefulness.

BAROMETRIC OBSERVATIONS

In a recent issue we briefly described a simple way of keeping a barometric record, by the aid of which farmer and others might soon learn to predict weather probabilities. We believe that it is not generally realized how useful an instrument the barometer is, even in unexperienced hands for certainly were farmers thoroughly informed as to the meaning of its indications, we should hear much less of gathered crops spoiled by untimely and unforeseen rains. The ordinary mercury barometer can if properly constructed generally be relied upon to indicate approaching weather a least twelve hours ahead; and this because the transmission of pressures to a mass of air is very easy, so that the barome ter is sensible to variations therein even over long distances. For good work the simple mercury or the aneroid barometer should be obtained. Little confidence can be placed in those which have a dial and an index which points to words descriptive of the state of the weather. The necessary mechanism causes sufficient friction to prevent slight changes of pressure affecting it, and moreover the words "fair," " variable," rain," etc., convey a wrong impression of the instrument; for the barometer does not indicate by the absolute hight of the mercury, but, by its rising or falling. the kind of weather we are to expect, and this change is not shown on the index. A diminution of barometric pressure is almost always the consequence of the approach of the cen ter of one or sometimes of several rotary storms, which move and travel at a certain distance from the point of observation.
These movements are followed by changes of winds which These movements are followed by changes of winds which
carry rain. A falling barometer is therefore always indicative of changes in weather; but contrary to a general opinion, rain does not fall at the moment when the barometric column attains its lowest point. It is only a certain time after the minimum that this phenomenon is ordinarily pro nounced; and by repeated observations, based on this fact, M Giobin of lyons, France, has been enabled to prepare a serie of concise barometric laws, which he has recently published and of which we give the substance below.
If the barometer, after having been high, descends, a change of wind will probably occur twelve hours afterwards. This change will be without rain or with very little rain. When the barometer stops in its falling without descending lower before rising again, rain will come twelve hours after the stoppage. If the mercury remains low, the rain will persist, and fine weather will not come again until ten or
twelve hours after the column commences regularly to rise. twelve hours after the column commences regularly to rise.
Sometimes this interval extends to sixteen or eighteen hours. Sometimes this
If, while low, the mercury oscillates slightly up and down, bad weather will persist, with, however, occasional clearing. These alternations of rain and shine will be more pronounced as the oscillations are greater, and will follow the movements of the barometric column at shorter intervals than those noted in the law above given.
Finally, if, as often happens, the mercury, after reaching its lowest point, immediately ascends in a continuous and regular manner, rain will come inside of twelve hours after she mercury touches the minimum; but it will las

A GOOD coating for outside brickwork is made by mixing clean river sand 20 parts, litharge 2 parts, quicklime 1 part and linseed oil sutficient to form a thin paste. It is also use
eul as a cement for broken stone, drying exceeding hardly.

THE CENTENNIAL EXPOSITION

Ihe formal programme of the grand ceremonies, to take place in Philadelphia on July 4, has been made public. Af ter the military parade has concluded, the literary exercises will be held on a jarge platform in rear of Independence Hall. They will include ihe reading of the Declaration of Independence from the original document, by Mr. Kichard
Henry Lee, of Virginia, grandson of the mover of the Declar ation in the Continental Congress, the singing of a hymn of welcome by Dr. O. W. Holmes, a national ode by Mr. Bay ard Taylor, and a Brazilian hymn of greeting, composed at the request of Dom Pedro. An oration by Hon. W. M. Evarts which is next in order, will be followed by the Hallelujab which is next in order, will he followed chorus and Old Hundred, chanted by the chorus and audi ence. The proceedings are as simple as those at the Centen nial Exhibition opening, and will doubtless be fully as imressive.
Dom Pedro is justifying his reputation as a most indefa igable sight-seer. He is "doing" the Exposition in a way hat leaves no doubt but that he makes himself familiar with the appearance and uses of every object to which his attention is attracted
The steady growth thus far in attendarce is the best evi ence of increasing interest in the fair. During the firs week, omitting the opening day, the average of paying visi ors was 12,210 ; at the present time the daily average over 30,000 .
The first of what it is hoped may be a series of industria excursions recently visited the Exposition. The excursion ists numbered 3,631 , and were the employees of the Singe ewing Machine Company. A number of students from th Massachusetts Institute of Technology have keen encamped nd, with their instructors, are making a careful study of the mechanical part of the show. The display of

rusbia

a Machinery Hall is gradually approaching completion. A arge partition has been erected, covered with cloth, on which are shown rolls of iron and copper; and a circula stand has been built for the exhibition of different iron and
other ores and metals. Around the base of the stand and on the lower shelves are disposed samples of iron and copper A heavy slab of the latter metal, surmounted by a beautifu mass of malachite, covers the upper portion. There are two other stands in the form of obelisks, against which are ar anged in tasteful manner a large number of forms of sheet bar, and angle iron, boiler iron, and tram and chain work Numerous stout iron bars are tied into knots without show ng the slightest flaw; and specimens of angle iron and long rails are exhibited, twisted into sharp spirals. In the north ern half of the section is a fine collection of models of ships dockyards, and workshops. There is one large model of shipyard and marine railway, showing the manner in which he largest ships are built and launched. 1 model of a dry ock is fitted with every timber and requisite piece of ma hinery, all made on an exactly reduced scale. A fine exhibi made of heavy work in iron and steel, chains with hug
inks three or four inches in thickness, steel tires for loro inks three or four inches in thickness, steel tire

the scgar apparaten,

next to the Corliss engine, may be considered as the most prominent exhibit in the Machinery Hall. The gigantic achur pan is elevated on great iron columns, the igh. Inside are four copper serpentines, and into thes steam is led. The circulating pump and the centrifugal machines are placed on the first floor. On the second tion a large receiver which receives the contents of the pan fter concentration, in the shape of a dense mass of semifluid material, a magma. This goes into the centrifugal machines, which separate the sugar from the molasses. The great vacuum pan is exhibited by Messrs. Colwell and Brother, of New York; it is γ feet in diameter, and, in a single peration of three hours in duration, can produce fifteen hogsheads of sugar.

the carriagen

are grouped in an unpretending structure of corrugated iron, immediately in rear of the Main Building. There are 430 American and 20 foreign exhibitors, and the display seems to be one of the most attractive to the general public the entire fair. Many of the vehicles embody novel appli nces, others are remarkable for beauty of tinish. Messrs. display of carriages of all kinds, exhibit two buggies for 14 lbs. These hans which weigh respectively but 132 and 214 lbs . These have a new side bar attachment, which se-
cures ease of travel. A new feature in one of the sleighs is small wire sieve on the dash to keep out drift snow. An ther novelty is the extension of the runners above the dash or a hight of five and a half feet. These are surmounted with red horse plumes. The general effect is striking and handsome. Messrs. Studebaker Brothers, of South Bend, Ind. exhibit a wagon for country roads, with the body and running gear left unstained, in order to show the workmanship, which is excellent. The body is of sugar maple, the axle of hickory, and the hubs of birch. The same firm also dis play a new wheel, the spokes of which have sloping shoul Philadelphia firms make a joint exhibit of carriage and har ness. The former is plain and handsome. The visitor is at racted to this display by the ingenious idea of attaching to the vehicle four horses, superbly carved in wood and wearing an elegant gold-mounted harness. The animals are painted gray, and so cleverly have both artist and sculptor done
their work that at a short distance the figures have been
frequently mistaken for life. Of the large American coache and carriages, it is hardly necessary to particularize any on the ground of relative superiority. Their characteristic is lightness and elegance of form, combined with the evidence
of the highest skill on the part of painters and varnishers.

the foreign vehicles

are exhibited chiefly by English, Canadian, Russian, Aus tralian, and Italian makers. Some of the English carriages, otably the drags, are objects of much curiosity to country isitors. One vehicle of this last-mentioned description is built expressly for picnic parties. It is so put together that the various portions of the carriage and fittings form tables, and the roof is fitted with an ingeniously arranged su shade. A novel phaeton is one which has recently been in troduced into England, and which looks like a Russian droshky. It is hung very low on high wheels. A very ele gant brougham, built by a London firm, has an edging of vulcanite on the cloth of the window sashes, which prevent wear. C and under springs are used in all the English carriages, and the tires of wheels and forgings are of Whit worth metal. The Italian makers are represented by two cabs, resembling the English hansom, except that the pas senger gets in from behind instead of in front. Thedriver's seat is in rear and above the door.
A curious feature of the Russian exhibit is a light trotting wagon. The running gear is hung on four small wheels nd above it rests the driver's seat, a long board covered with blue plush. A greater contrast than that afforded by his wagon, as compared with the trotting sulky in use in his country, can hardly be imagined
Canada exhibits some fine sleighs, among which is one ca pable of accommodating six people. The seats are placed in tiers, the front one being the highest and the other gradually descending. The body is hung on a double set o runners, in order to facilisate turning the vehicle. Ther are also some fine cutters, beside coaches, buggies, etc
The French eshibit, for some inexplicable reason, is loca ted in the Main Building. It includes a drag of admirable build, besides a large number of smaller carriages, all re markalle for elegance of design. The

carriage metal work

xhibited embraces specimens of axles, bolts, screws, whip sockets, springs, mountings in gold, silver, and nickel, bows, curtain attachments, etc., all arranged in handsom cases. There is one German exhibit in this section, princi pally of axles and springs. Children's carriages are als isplayed in profusion, and some are of exquisite design There is also a large collection of bicycles, among which is

DOG VELOCIPEDE

This is a curious affair, having three wheels, two large ones, etween which the rider's seat is located, and one smal guiding wheel in advance. Inside the fellies of the large wheels are broad bands of perforated metal, and the spokes re so disposed as to lie on each side of these bands, like the bars of a cage It is stated that the dogs are placed between the spokes : nd on the lands; then, by their attempts to run ahead, something like those of the squirrel in its revolving cage, the wheels are rotated and the vehicle impelled. This is the description given, but we are inclined to doubt the practicability of the arrangement.

the railway cars

re all American. The Harlan and Hollingsworth Company f Wilmington, Del., exhibit one broad and one narrow gage carriage. The broad gage car is superbly decorated with mirrors and gilding, and its interior woodwork is a marvel
of artistic workmanship. The narrow gage car is of plainer of artistic workmanship. The narrow gage car is of plainer
construction. The Jackson \& Sharpe Company display a parlor car built for the state use of the Emperor of Brazil. It is constructed in sections, so that it may be taken apart and stored in the hold of a vessel. In the front portion is a boudoir fitted up with drab moroccoseats, relieved by heavy magenta-colored fringes. The carpet is a delicate drab covered with a tasteful flower pattern, and the curtains are green and gold. The furniture consists of elegant cabinets, one for books, another to serve as a sideboard. light is obtained from small stained glass windows at the top. Adjoining the boudoir are a reading room, furnished in blue, and a writing room in crimson. Next to these is the $\leq i t t i n g$ room, plainly fitted with cane-seated walnut chairs, but having superbly inlaid woodwork.
The Pullman Car company exhibits one of its magnificent hotel cars, containing all theimprovements in the shape of
kitchens, china and linen closets, refrigerators, etc. The kitchens, china and linen closets, refrigerators, etc. The refrigerator, we notice, is a square box hung under the car. should the vehicle run of the track, will catch on the rail and prevent its going further.

the street railway car

are finished with decorations of the most elaborate descrip tion. One built by a Boston firm has a new running gear, said to reduce friction greatly, a patent attachment fur putting on a new brake shoe, and a novel arrangement for lowering and raising the pole to suit the varying size of horses. A noticeable feature of a car built by Jones \& Co. of Troy, N. Y., is the exterior coloring, which is in imitation of one of the Highland plaids, laid on in a broad loand around the body. This is done in deference to the fact of the car being intended for use in the Highland district of Boston. Messrs. Stephenson \& Co. also display some street cars, emodying many of their recently patented improvements.
The remaining contents of the carriage building wo shall describe in our next issue, in which a full account of the

A NEW MECHANICAL MONEY BOX.
A variety of curiously ingenious money boses for children have, of late, appeared in the hardware and toy stores, which, it seems to us, must tend to cause the arerave youngster to lay up immense stores of pennies, if only for the satisfaction of seeing the toy operate whenever a coin is inserted. Thete is a metal frog into whose month the penny is put, whereupon hegulps down the coin and rolls his eyes in the most astonishing manner. Another device is so con. strunted that, when the penny is dropped in the slit of the box, two or three tin horses p!oceed to race around a minialure race track; still anothar is the figure of a portly individual seated in a chair. The coin is placed in lis hand, whereupon he promptly inserts it in the slit which is located in the positicn of a coat pocket. About the most ingenious invention of the kind we have jet seen is that herewith illustrated. It was patented by Mr. C. C. Johnson, of Windsor, Vt. The penny is placed on the tray held by the miniature cashier cutside of the house and the weight is just sufficient to press down th and the weight is jus: suficient to press down th platform on which the figure stauds. The arm, in descending, strikes the pin of a locking device be neath it and frees a spindle which, operated by con cealed clockprork causes the cashier to be carried round in a circle against the door on the Jeft. which opens b+fore him so that he can enter the bank, and then closes behind him. He carries his receiver through the slot of a chute, a lip on which renoves the coin so that it drops down the chute and into the vault below. Then the cashier moves round against the other door, which opens outward and closes as he parses, and coming again to the front of the bank lee is again held by the locking device, waiting for the next contribution

Tho Fair of the American Institute
The 45th annual exhibition of the American Institute will open on the 6th of September next, at the Institure building, corner of 63d street and Third avenue, in this city. The management announce unusual preparations to accommodate exhibitors, and also the fact that a new gold medal will be awarded for articles of great merit and novelty. It is tbought that the influx of people to the Centennial will render local fairs in its vicinity exceptionally valuable for advertising purposes to exhibitors. Application for space, etc., is to be made to the General Superintendent, American Institute, New York city.

TRIMMING AND PUNCHING ROOFING SLATES.

Mr. E. R. Davis, of Detroit, Mich., has patented (Dec. 21, 1875), a new machine with which a roofing slate may be trimmed aud the nail holes punched at a single operation. In the engraving herewith given, A is the main frame, to which the cutting frame, B, is hinged. C ' are two bearers, adjustably secured, so that they can be adjusted to or from each other, according to the width of the slates to be trimmed. The bearer, C^{1}, has one side turned up, as at $C^{\text {e }}$, forming a guide flange for one side of the slate, which is laid against it. A guide is adjustably secured to the front girt between the bearers. The outer edges of the beveled ends of the bearers are flanged upwardly, and sharpened to form cutting edges, b. The cutting frame is composed of two paric 1 b. The cutting frame is composed of two part 1 lel iron bars set up edgewise, bent to form three sides of a frame, with spacer blocks the bars, which are tied by bolts through the sail spacer blocks. The cutters, EE, are adjus tably secured under the frame diagonally across its corners, so as to bring their cutting edges just outside the cutting edges of the bearers be low. F is a handle across the front edge of the cutting frame, which can thereby be lifted up or thrown forcibly down, the impact upon the front girt of the main frame being eased by rubber buffers.
To trim a slate the latter is laid on the bear ers, one edge bearing against the guide, C^{2}, and tle front end against the guide, D. The cutting frame is then thrown down, when its knives will shear $O f$ the corners of the slate in line with the cutting edges, b, of said bearers. .To punch th nuil holes in the slate at the same operation each bearer is provided withan anvil, G, longitu dinally adjustable in a slot therein, each anvil having an oval hole through it. Across the top of the cutting frame a cross beam, H, is jacked, said beum being constructed like the cutting frame of two parallel iron bars set up edgewise and may be moved forward or back by loosen ing its jack bolts. I are nail hole punches, each having a cross bank whic is inces a wing nut, l^{\prime}, which secure it in position to have the point enter the anvil hole. first passing through the slate. A spring, J, spirally coiled abou the punch, forces off the slate when the punch is raised.

Export of Cotion Fabrics and Breadstum. The exports of domestic cottons from New York to foreign ports in one week, recently, were over 1,000 packages, which bring the total, from the 1st of January, up to 31,500 pack. ages. The shipments of grain are enormous. Last week's exports were of wheat, $13,023,300$ bushels, corn, 409,546 bushels, besides a fair quantity of peas, rye, and oats. The prospect of war in Europe has stimulated the grain trade.
separating Parafin from Hydrocarbon Olls. Mr. Joseph B. Meriam, Cleveland, O., says: " Heretofor paramn has usually been removed fron hydrocarbon oils by putting the material into sacks or folds of canvas, or fold of hair cloth, etc., and then subjecting to pressure at a low temperature. The difficulty, however, in those processe was that, the heavier the pressure that was applied, the more open would the pores of the bage or sacks become, and the more readily would the paraffin pass through them, render ing it almost impracticable to make a thoroagh separation.

A NOVEL MONEY BOX.

"I have discovered that the scales of paraffin that are thus left, after thus extracting the oil by pressure at a low emperature, are separate and distinct, and, except under th application of heat, cannot be, by ordinary pressure, reduced to an impervious mass; and I make use of this property as follows, for the purpose of separating the paraffin from oils.
"I first take suitable receptacles, preferably of metal, protected by a non-conductor of heat, which receptacle have perforated bottoms. I then place over the bottom on the inside a wire gauze, screen, or cloth to prevent the scales of paraffin from falling through. I then fill in upon the said screen a quantity of parafin scales that have been separated from hydrocarbon oil by pressure under a low temperature, as above described. The hydrocarbon oil to be treated is then prepared as follows: It is first reduced to low temperature, sufficiently to chill it, and leave it in the condition termed reanulated This oil, in its chilled, ondilated chilled, granulated condition, is then put into the vat upon the
paraffin scales, and then subjected to a pressure under a low temperature, in any convenient way, as, for instance, by a

DAVIS' MACHINE FOR TRIMMING AND PUNCHING SLATES
lution in one ounce of water. The reason of the much greater activity of a hot saturated solution in developmen will be at once apparent
Pyrogallic acid, or pyrogallol, occurs in white, brilliant rystalline plates, massed together in light, cottony masses, which, by exposure to the air and light. gradually darken and, in some measure, lose their photographic activity. Col orless samples should, therefore, be selected. It may gener ally be relied on for purity. The writer was once acciden ally supplied with benzoic acid in lieu of pyrogallic, which it somewhat resembles in appearance; but the sub stituted acid will be readily detected by its aromat ic odor.
Nitric acid should be colorless, and the uppe part of the bottle containing it free from red vapor ts specific gravity is about half again as heavy a water. It is very corrosive, staining the skin yel low, and must be very carefully handled, as its cor osiveaction will giverise to very troublesome sores. The fact of its producing a yellow stain on many organic substances-a quill, for example-may serve to distinguish this acid from most others.
Sulphuric acid is a colorless, heavy liquid, having great attruction for water, and should be stored in well stoppered bottles. If kept in corked vessels it will soon become dark in co or from portions of the cork becoming decomposed and falling into it. An organic matter will cause rapid darkening, and there is most violent reaction when it is mixed with turpentine and other hydrocarbons. Its chief use in photography is in the preparation of pyroxslin and as a detergent for removing organic and alke line deposits from glass vessels.
Hydrochloric acid, when pure, is colorless, giving off white fumes on exposure to the air. It may be readily distinguished from other acids by the dense whit apor which forms on itsfumes mixing with those of ammo ia. The commercial acid is of a yellow color and contain many impurities, but is sufficiently good for the purpose of precipitating solutions of nitrate of silver. Diluted with water, it readily removes stains of the alkaline develope rom the hands and ink stains from wood or other materials. Aqua regia, or nitro-hydrochloric acid, is a mixture of on art of nitric with three or four parts of hydrochloric acid nd is used for dissolving gold in the preparation of the hloride of that metal.
Bicarbonate of soda, often purchased as carbonate of so da, is a white powder and useful for many purposes, culi nary and scientific. The quality varies considerably; tha nown as "Howard's" is considered as the best preparation, being more soluble than the common variety. It is often called carbonate of soda, an appellation only correct when pplied to the preparation known as washing soda, or thisin ts purified forms.
Morphia acetate is an alkaloid obtained frem opium, and may be purchased as a dirty white crystalline powder, which inflames like resin. It is a dangerous narcotic but useful in the preparation of dry plates with very limited keeping powers.
Alcohol, or spirit of wine, is a colorless, vola tile liquid of a strength of 56° to 60° over proof suitable for addition to the above developer, var nisher, etc. A more highly rectified quality, termed absolute alcohol, is used in the prepara tion of collodion, or for diluting the same. The only difference or probable impurity in proo spirit, rectified spirit, or absolute alcohol, is the percentage of water contained in it. A rough method (if the hydrometer be not at hand) of es timating the strength is by watching the rapidity of its evaporation. On a slip of note paper bein dipped into it and suffered to dry spontaneously if the spirit be tolerably free from adulteration evaporation will take place rapidly; but if much diluted, it will be some time before this take place.
Rectified ether is an extremely volatile, color Iess fluid, boiling at a low temperature, and no miscible with water unless mixed with spirit of wine. Spirit of ether is occasionally supplied in lieu of the rectified ether, and consists of a solu tion of ether in spirit of wine. The mixture may be readily detected by adding a few drops of spi rit of turpentine, which will cause no turbidity i the ether be pure, but will do so if it contain spirit of wine.
Methylated spirit: This should be nothing more than spirit of wine with an admixture of wood naphtha; but it is often impure from the pres ence of resinous and other matters. Methylated finish is sometimes sold for it, a preparation ut
parafin scales, which filters from it the paraffin that may be contained therein. The greater pressure applied, the more closely will the paraffin scales be pressed together, and the more perfectly will it filter the parafin from the oil that is being operated upon. In this way I am enabled to make an almost perfect separation of the paraffin from the oil, thus leaving the oil in a practically pure condition."

PHOTO-CHEMICALS

Gallic acid, obtained from nut galls, consists of small eathery crystals, nearly white, but which, however. vary in color, some samples being decidedly brown. Preference raphic purposes. It is freely soluble in hot water, but in cold about four and a half grains will form a saturated so
large percentage of resinous matters. Giood methylated pirit should, if burned in a spirit lamp, form no incrusta ion whatever round the wick tube, and should not be mor than slightly opalescent if mixed with water.
Ammonia: The sesquicarbonate of ammonia, or volatile salt, occurs in semi-transparent lumps of various sizes. Ac cess of air will cause them to be converted into another car bonate, of an opaque white, powdery character. and of less active chemical qualities. Lumps free from this powdery urface should be selected, and the vessels in which it is kept made airtight. It is a good precaution never to reduc it to powder until just before use, as in a state of fine divis ion it is more liable to become inert.-British Journal of Photography.

IMPRJVED WAGON BRAEE.

The anngsel enyravings represent a new wagon brake patentel throarh tha Sjientific amorican Patent Agency, April 25, 1376, by Mr. J. W. O'Daniel, of Cloverlale. Ind. The novel features ars foun 1 in the mechanism, and principally in the devicos which allow the le to remain undisturbed by the
oscillations of the same, as shown in Figs 1 and 2.
The joint by which the front The joint by which the front
and hind gears are coupled, so and hind gears are coupled, so that both may oscillate in turning around curves, consists in a tubular nut swiveled to the rear bar, B, of the front gear, and a rod, C, attached to the rear hounds, sliding freely in said nut. The rod is extended both before and behind the nut, so that it may move therein as the distance between the centers of the reach varies. The brake bar, H, is carried on the hounds so as to oscillate with them and the wheels. It is arranged to move forward and backward suitably for engaging and resuitably for engaging and re leasing the wheels, and is conK. Said bar connects with the K. Said bar connects with the pivot, E, by a slot, so that it can
slide to pull and push the brake, slide to pull and push the brake, and with the lever, K, by a curved slot and pin, so that it. can swing with the wheel. The lever is pivoted to an arm, 0 , fitted on the reach, and, as already sta:ed, remains at all times in the same relation to the box.

Bergen fill Minerals.

 The new tunnel of the Dela ware and Lackawanna railway, through the trap rock forma ion of Bergen Hill, opposite New York city, is now nearly completed. Mr. Edward H. Fletcher, 124 West 54th street, this city, obtained a quantity of specimens of zeolites and calcites, taken from pockets in the tunnel, at depths of 50 to 150 feet from the surface. They comprise apophyllite, prehnite, laumontite, natrolite, pectolite, stellite, stilbite, analcime, datholite, and fine varieties of calcites. Intergrouped with some of these, are also chabozite, heulandite, gmelinite, levyne, copper pyrites, iron pyrites, galena, and blende.
IMPROVED RAILWAY RAIL.

The invention herewith illustrated is an improved conti nuous rail for railways, by which it is claimed that the battering and breaking of the ends of the rail at the joints is avoided, and less wear and injury to the rolling stock produced. In the sectional view, Fig. 1, A represents two rail sections of symmetrical shape, with base flange and head, each rail resembling the section of a common rail split into halves along the longitudinal axis. The rail sections, A, are joined longitudinally and provided with interior recesses for a longitudiual wooden core, B. By laying the sections so as to break joints, battering at the end is avoided and the rails are rendered more durable. The heads of the rail sections are provided with a tongue and groove, which affords mutual support to the adjacent parts, and also prevent the inside corners of the rail heads from breaking. The compound rail thus constructed is claimed to be stiffer and stronger, and smoother throughout, whi'e the wooden center rail or core imparts a certain degree of elasticity to the same. The interior wooden rail is covered on all sides and protected against the weather, so that it may last a long time, and may be replaced when required. While twice as many fish plates will be used, they will only need to be half as long and half as thick need to be half as long and half as thick as usual, thus effecting a saving of one half the material. The same number of bolts will be required as in the old rail, but they will not need to be so heavy, as at every joint there will be the solid middle of a rail soction besides the wood to support it. The principal use of the bolts and the fish pieces will be to hold the parts together, which will not require great strength, as the base is double and stands apart, with the flanges extending outward on either side; the tops will gravitate together, and, the greater the weight upon them, the more they will press together. The inventor points out that his device effects a saving of over a solid inch of iron or steel, which will pay double the cost of extra work required in construction. Owing to the smooth ness of the road, he considers that there will be less damage
to goods in transportation, and that pleasure and safety in 'from one side on to the tinfoil, driving off the excess of travel will be increased. Less labor will also be required mercury. The glass is pressed down against the tinfoil with in keeping the road bed level. A side view is given in Fig. 2.
Patented through the Scientific American Patent Agency, February 29, 1876. For further particulars relative to the

Fig. 1.

O'DANIEL'S IMPROVED WAGON BRAKE.
manufacture and sale of this rail under a royalty,
the inventor, S. Sutton, Lisbon, Linn county, Iowa.

An Improvement in the Manafacture of Sllver

 Mirrors.At a recent meeting of the Paris Société d'Encouragement remove the M. Debray described a new method the way of preparing silver mirrors. From this address we extract the following:
Up to t

Fiq. 2

SUTTON'S IMPROVED RAILWAY RAIL.
a backing of tin amalcam. The operation still is, as follows : A sheet of tinfcil weighing 1,000 to 1,140 grains per square foot, is sprsad out perfectly smooth on a flat horizontal stone ; upon this is poured a thin layer of
mereury, and then a well polished plate of glass is shoved

It hours, the time varying with
the strength of the solution, the silvering is complete. The liquid is then allowed to run off, the mirror is washed with distilled water and dried, and finally the sitver film is protected with a coat of varnish. From 5 5 to $7 \frac{1}{8}$ grains of silver suffice for a square foot, and $1 \frac{1}{2}$ cents worth of silver is enough for a surface that would require 1,000 grains of tin and as much mercury. The great fluctuations in the price of these metals are frequently very embarrassing to large mirror factories. By the new process a mirror can be made in a few hours; while the previous method required at least 12 days, and also required more costly materials. Débray says that this silvering process has almost entirely supplanted the old mercury process. L. Lobmeyr, in his report on glass process. L. Lobmeyr, in his report on glass
at the Vienna Exposition, also states that at the Vienna Exposition, ulso states that
mercury mirrors will apparently soon go out mercury

Silver mirrors, however always have these objections, that the image is somewhat yellowish, and that the silver does not adhere so perfectly to the glass as is desirable; it of ten happens, too, that the silver film comes off in spots where it has been exposed to the direct rays of the sun; and final. ly , notwithstanding the protection of the varnish, the silver gradually blackens un. varnish, the silver gradualy blacke under the influence of sulphuretted hydrogen. The latter objection is especially noticed in exporting mirrors across the equator; the mirrors are blackened by the exhalations from the hold of the vessel, where they lie packed for months. For this reason mercurial mirrors, although they frequently suffer much from the heat in tropical countries, cannct be supplanted by silver mirmrs; although the latter are proof against injury by heat.
Even if these objections were quite overbalanced by the cheapness of manufacture and freedom from mercurial diseases, it wculd still be very desirable that they could be avoided. This has now been accomplished in a very simple manner by a Paris engineer, named lenoir, previously well known through his gas machine. The glass is silvered as before and washed, then flowed with a dilute solution of cyanide of mercury and potassium. This dissolves a portion of the silver and precipitates some mercury, which combines with the remaining silver to form an amalgam, which is much whiter and adheres more firmly to the glass than the silver. The conversion takes place instantly. The quantity of mercury taken up varies with the time that the mercury solution and silver up varies with the time that the mercury solution and silvar
are in contact; in one experiment, made by Débray, he ob. served that it did not exceed 5 or 6 per cent. The use of the solution, which is itself a very poisonons cyanogen compound, is not dangerous if very dilute; this solution has been
in use many years for electroplating, and in much more con centrated form than it is employed by Lenoir, without real injurs.
An amalgamated silver mirror does not exhibit the yellow shade of pure silver, is far loss sensitive to sulphuretted hy drogen, as two years' experience proved, and resists perfectly the action of the sun. Lenoir's process has been introduced into the mirror factory of Mangin Lesur, at Paris. Douteche Industrie Zeitung.

(harrespoudeute.

A Singular Railway Collision.
To the Editor of the Scientific American:
In your issue of July 1 you mention and illustrate a singular collision. I notice that the Graplac locates the occurrence on the Northwestern Railway. Allow me to call your attention to a remarkable coincidence.
Your engraving, with but few exceptions, represents a collision that occurred on the Falls branch of the New York Central road on the morning of September 10, 1872, between the village of Albion and the city of Rochester, $2 \frac{1}{2}$ miles from the former place. Both trains were due at Albion at 3.45 A . M. The eastern bound train was one or two minutes late; but the train from the East not having arrived, the eastern bound train started out (having the right of way) at
an unusual rate of speed. In running two miles it made up an unusual rate of speed. In running two miles it made up
two minutes. At this juncture the engineer saw through two minutes. At this juncture the engineer saw through
the for the headlight of the advancing train. He whistled down brakes and reversed his engine. Only three brakes were set. All on both trains jumped. The engineer of the eastern bound train struck on his head, which stunned him for the moment. He sprained his wrists and bruised his for the moment. He sprained his wrists and bruised his
face, but all the others alighted in safety. In an instant the face, but all the others alighted in safety. In an instant the
monsters came together, hissing and seething in each other's monsters
embrace.
Unlike sour illustration, they stood more nearly alike on the track, without smoke stack or bell. The tenders were driven under the rear of the engines, and everything that could be thrown from the engines under such a fearful concussion was yone. The boilers did not burst, but the engines appearad to be total wrecks. I understand, however, that one of them was reibuilt. Six cars left the track, and freights, and a great amount of merchandise was burnt or otherwise destroyed and stolen. The loss at the time was estimated at $\$ 200,000$, but I understand that this was considerably in excess of the fact. Photographers arrived too late for the prize. The engines were quickly separated and, when disengaged, they rolled some 16 feet down the embankment. The track at the place of accident was
smoth and straight.
Alex. D. Tytler. smoth and straigh
Albion, N. Y.

Flax in Missouri.

To the Editor of the Scientific American
I wish to call the attention of capitalists and inventors to an opening for them out here. I recently noticed along the road between Sedalia, Mo., and Parsons, Kan., that the farmnothing with the dealk or straw. Why could not this be pu to use? I always supposed that there was a great demand in this country for flax, and it looks like a great waste to let all this stand in stacks to rot or be burnt. The only reason for this that I can see is that, in thrashing out the seed, the stalks become tangled together, which may make it difficult
to hackle ; but our inventors could readily make some to hackle; but our inventors could readily make some ma-
chine to overcome this difficulty. There is about 1 tun of chine to overcome this difficulty. There is about 1 tun of
flax straw to the acre. The crop is a regularone; many thousands of acres are cultivated every year; and after the seed is thrashed out the straw could probably be bought fo a mere song.
Hannibal,
S. E. Worrell.

Hannibal, Mo.

[For the sclentinc American.] ANIMAL MECHANISM.

Most of the mechanical principles used in machinery have their illustrations in animal movements. Some are direct copies from Nature, but others were first contrived by man without his having consciously taken the hint from Nature, and afterwards found to be similarly used in animal mechanics. While this shows that man is created in the image of his Maker, in that the minds of each see truth and the applica tion of principles in the same light. it also shows that man may find it greatly to his advantage to study the mechanism of animals and its applications of force, in order to learn the best means of accomplishing his ends in the mechanic arts. This may be an improvement upon the common method of working out, from the unaided brain, principles whic Nature has used and displayed from the earliest time.
The shape and keel of a ship have their best models in in the form and fins of fishes, and in several species of
water bootles. It was formerly supposed that it was only necessary to have the bows of a ship sharp and well pro portionel; now it is found that the shape of the stern has as much to do with its onse of motion as the shape of the bow, or the way it leaves the water is as important as the way it cuts the water. Hence a boat that is made for speed is now made to taper as gradually toward the stern as toward th in the fish, the water beetle, and the bird. The pectoral and anal fins of fishes answer to the keels of ships, and the tails of both fishes and birds act as rudders. The tail of a fish, in addition, acts as the propelling power, on a principle
simailar to that of sculling a boat or of screw propellers.

Barker's reaction mill, or the force due to unbalanced pressure, is illustrated in the progressive-or rather retro-
gressive-movement of cuttle fishes, squids, and other cephalopod mollusks. They propel themselves backwards by forcibly ejecting water from an opening near the head.
The toggle joint, which is used in printing presses and in
other machinery, has a representative in most of the linge other machinery, has a representative in most of the linge
joints and in some others, of maan and inferior animals joints and in some others, of mana and inferior animals.
The pulley is used in the human body, by the cord which The pulley is used in the human body, by the cord which raises the great toe and the foot acting upon ligaments for
friction wheels in the ancle; also by the digastric muscle as it passes through a ring or loop in the muscle which is attached to the hyoid bone, serving the double purpose of raising the larynx in ewallowing and of pulling down the lower jaw. The muscle which performs the oblique rolling motion of the eye also works through a loop which serve he purpose of a pulley in changing the dir
The also those attached to the knee pan.
The three classes of lever are amply illustrated in the rarious movements of man and other animals. The support and motion of the head upon the upper part of the spinal column illustrates a lever of the first class. The third is
shown in raising the forearn by the contraction of a muscle attached a short distance below the elbow. The raising of
the body upon the toes has been culled a lever of the second the body upon the toes has been called a lever of the second class, in which the ball of the foot is the fulcrum, the muscle attached to the tendon of Achilles at the heel is the power, and the weight is applied at the base of the leg. There are principles employed in the last case. If this is a lever of the second class, the cquestion as to how much power is required o raise the weight of a man of ordinary size is an interest ngone. On this supposition, the long arm is to the short arm about $3: 2$; and if the power were applied outside of the body it would require 100 lbs . of power to raise 150 lbs . But as the power that raises the body is itself a part of the
weight to be raised, when the muscle has contracted with weight to be raised, when the muscle has contracted with
the force of $100 \mathrm{lbs}$. , its reaction presses downwards, upon the foot acting as a lever, with the force of 100 lbs . This eaction ulso has to be overcome, which adds so much to the weight of the body to be raised; and when additional force is applied to overcome the added weight, the reaction of chis would necessitate still greater force, which would again increase the weight, and so on in an indefinitely decreasing series. If the reaction occurred at the end of the lever where the power is applied, of course the two would impossible. It would be like a man's trying to lift himself over the fence by his boot straps. But as this reaction occurs one third of the distance to the fulcrum, two thirds of its force at the lever's end would counterbalance it. The result seems to be possible by demonstration of the algebraic equa tion based on the law of the lever: that the power \times th
long arm $=$ the weight \times the shortarm. Then x (the power) long arm $=$ the weight \times the short arm. Then x (the power)
$\times 3=\left(150+\frac{\circ}{8} x\right) \times 2 ;$ which gives 180 lbs. as the amount of power required to raise 150 lbs . and overcome the reaction of he force exerted. While in theory this seems reasonable enough, in practice the result is widely different. The prin ciple here involved appears the same as when a man stands upon a stiff board one third of the distance from the en and tries to lift himself by lifting up at the lever's end And this is practically impossible, whether the power be ap plied as here stated, or by means of lever and pulley ar rangements, so that the power and resistance may act verti cally.
The difficulties are not diminished if we consider the movements at this point as illustrations of a lever of the irst class. In this case we would call the attachment of the bones of the leg to the bones of the foot the fulcrum, the power at the Achilles tendon as before, and the weight
at the point where the ball of the footrests on the ground On this supposition the force of muscular on traction would tend to press down the earth; but as this is practically im movable, the result is the pushing up of the body, which is is the object most easily moved. We have a similar illus tration of this application of the lover in the rowing of a boat. This would require the application of force at a
reater disadvantage than in the former case, and conse quently a greater strainupon the muscles performing the work. But we know that raising the body on the toes is not accompanied by any painful physical exertion by the indi idual, and a closer study of the anatomy of the foot shows that the work is not done by one set of muscles alone. The tendons which beva the toes downwards are, after uniting into one, made to pass by a pulley arrangement among the
carpal bones, and are attached to a muscle in the calf of the carpal bones, and are attached to a muscle in the calf of the
leg. These tendons. being united to the end of the long arm of the lever, enable this muscle to work at an advan tage. or. in other words, so that power is gained at the ex pense of time. But it is probable that the mechanism is even more complicated than this.
The working of the muscles employed in this movement can be illustrated and their force measured by lying on one's back and placing one foot in the loop of a rope which passes over a pulley and has a weight suspended from the other end. As the foot, acting as a lever, is made to move, it will will pull the rope and raise the weight, which may be inreased till the limit of muscular power has been reached In this experiment care must be taken that no other muscles re allowed to aid in the process.
The sliding seat in rowing is one that moves forward as the hand end of the oar is advanced, causing the knees to bend or spread. This gives a longer stroke and double pur
ohase apon the weter; for not only the maseles of the arms
and trunk are brought into use, but also those of the legss This new and ingenious contrivance of mechanics, reached without the aid of Nature's suggestions, has been in use be. ore our very eyes from the beginning of man's existence and we needed but to study and apply the r. rirciples of an imal mechanism to have employed it in practical life long ago. W. W. Wagstaffe showed, in Nuture, a few months ago, that the shoulder illustrates the principle of the sliding yeat. Besides the very free motion of the ball-and-socket joint at the shoulder, there is a forward and backward move ment of six or seven inches, due to rotary motion of the clavicle upon the sternum, and also an up and down move ment of about four inches, articulating at the same point, as seen in bell ringing and weight lifting. Thisgives an additional purchase and advantage, similar to that gained br the sliding seat.
S. H . .

TURNING HARD STEEL WITHE THE THE AID OF PETROLEUM AS A LUBRICANT.
ву Јовне \boldsymbol{A} вовк.
Some experiments recently made have given the following determinations

1. That the use of either petroleum or a mixture of the same with spirits of turpentine as a lubricant for turning tools does not enable the tools to cut metal of any greater degree of hardness than can be cut by the same tool when used dry. 2. That the use of the alove-named lubricant does not en able a turning tool to cut metal of any degree of hardness or temper at a faster rate of cutting speed than can be at tained by the same tool when used dry.
2. 'That the above-named lubricant is effective, inasmuch as it will keep the cutting edge of the tool comparatively ool, and hence tend to preserve it longer than would other wise be the case, the practical difference, however, being ery slight.
3. That it is impracticable, under any of the ordinary condi tions, to properly turn steel of a hardness or degree of ten per greater than a deep purple bordering upon a blue
Below will be found the details of experiments which were conducted by me at the Freeland tool works, at 360 West 34th street, New York city.
A piece of steel $\frac{J}{8}$ inches diameter and 6 inches long was made red hotand plunged endwise into clean cold water and held submerged until quite cold. Upon inspection after mmersion, the steel was found to be white all over, evi dencing that the hardening was performed equally at all parts. One end of the steel was then made red hot and all lowed to soften, the temper being permitted to run upat will. It was then placed in the lathe and run at a speed of 10 feet per minute. The lathe tool used was an ordinary front tool, made as hard as fire and water would make it.
A cut $\frac{1}{32}$ inch deep was started at the softened end of the steel, the feed being set at 40 revolutions to an inch. The lubricant, pure crude petroleum, was freely applied from he commencement of the cut. The tool was fed along un til finally it commenced to jump, making a cracking noise, due to the excessive pressure with which the tool was forced oo its cut. As soon as the cracking began, the tool becamdulled and useless; and upon testing the tool with a smooth file, it was found that the file would cut the steel, where the tool cut ceased, the color of the metal being a deep brown. The tool was reground, and applied to the cut where it had left off at the first trial; but it refused to take the cut up any further. It was therefore reground and applied with out any lubricant whatever, the cutting speed and feed remaining the same. It took a cut of $\frac{{ }^{3} 2}{3}$ inch in depth up to the same distance as on the first trial, leaving the cut much smoother, however, than the first one. From the fact that a file would cut the steel where it showed a temper of a brown bordering upon a yellow, it was evident that the sample of steel under operation was not of the best quality ; and it was
determined to make a second trial, for which a piece of determined to make a second trial, for which a piece of
Turton's hammered round tap steel was selected, its diameer being 8 inch, and its length 6 inches. It was first hard ened as hard as fire and water would make it, and then tem pered so that the end was purple, the color running up an inch before the deep straw color was reached. The cutting speed was about 7 feet per minute. The tool was ground and applied to the steel where the color was a deep brown bordering on a purple. Crude petroleum was first applied, and by the application of considerable force the tool took a cut about $\frac{3}{32}$ inch deep, carrying it along about \ddagger inch where the steel was of a deep brown color. The corner of a smooth file was applied to the cut where it left off, and it would just cut it under severe pressure. The tool was then re-
ground and tried under application of two parts petroleum to one of spirits of turpentine, and then of equal parts of turpentine and petroleum; but the cut could not be carried along any further. The next operation was to try the same tool upon the same steel, but without any lubricant, and the result was that it took a cut $\frac{1}{32}$ inch deep, commencing and leaving off its cut at the same place, but requiring a trifle more power to force it to its cut.
The results so far obtained were not sufficiently encouraging to warrant any minute experiments, because the smal diameter and slow rate of cutting speed were the most favorable of conditions; while the rapid destruction of the cutting capabilities of the tool was such that no practically. useful effects had so far been obtained. Furthermore, the cutting, performed upon any part of the steel whose temper was greater than a blue, was neither even or woth; and was a certainty that no finishing tool could be made to stand, whatever the lubricant employed.
The next operation was to make a test upon a piecs of
length，the object being to ascertain if，by the use of petro－ leum or a mixture of petroleum and spirits of turpentine， leum or a mixture of petroleum and spirits of turpentine， steel of that degree of temper could be turned at any
faster speed than with a tool used dry．The result of the experiment was thai the difference，i_{i} any，was too slight to be of practical importance．A similar experiment upon a piece of soft steel demonstrated that，by the use of petroleum， no advantage in cutting speed was to be obtained．The cut－ ting speed employed during this experiment was 37 feet per minute．

The last experiment made was upon a piece of＇Turton＇s round hammered tap steel，tempered to a clear bright hlue along 4 inches of its length，the cutting speed emploved being 10 feet per minute．The first cut，${ }_{3} \frac{1}{2}$ inch deep，was tak n with a lubricant o ．three parts petroleum and one part spirits of turpentine，the second cut being taken dry，the re－ sult being that t．＇e tool stood a little bstter with the lubri－ cant than without．It has been known for a long time that benzine，keros ne，turpentine，or any of the light volatile oils act as lubricants for cutting tools mor：pffectively than either water or oil，their adrantages beins that they are more penetrating，and hence approach much more rasily and fraely to the cutting edge of the tool，which they there fore keep more cool．The difference in their favor is，how ever，not very great．A short time since，Thomas and Co． of the Freeland T＇ool Works，had to plane a platen for a printing press， 6 feet low 4 feet，and it was found，after one half had had a cut taken off it，that the other half was chilled so that ordinary tool steel would not touch it．Then Hob son＇s and Jes op＇s double refined steels were tried，and it was determined to throw the platen away and cast another Finally，however．a tool made of chrome steel，星 by $1 \frac{1}{4}$ ，was used，and it carried the cut across the chilled part nicely． During the last part of the cut，Mr．Thomas took a piece of rag soaked with kerosene and applied it to the tool during the back stroke of the planer，with the result that the tool retained its keenness much longer，thus agreeing with our own experiments，the cutting speed emnloyed being in this case 14 feet per minute．

HARMONY AND DISCORD WITH OPTICAL STUDIES．

In the prerious lecture it was shown that all matter is en dued with energy．Hydrogen will penetrate through a po－ rou；cell；a ball suspended by a string will continue to vi brate for a long time when set in motion．The vibrations of rods and strings were illustrated in a variety of ways．＇The cessation of sound in a vacuum was shown by means of a bel under a receiver，and the conduction of sound through wood by mutfling a music box and connecting it with an æolian harp ley means of a wooden rod．
On the present occasion，we shall consider how the vibra tions thus studied may be utilized in that most glorious of all arts，music If the same note is sounded on a flute，a violin，and an accordeou，we instantly recognize to which in strument it belongs．By the same puwer the ear recognizes in an adjoining room the voice of a friend who has retarned after a long absence，although we have not yet seen his face．The impression thus conveyed is often so precise that we would be willing to swear to his identity in a court．Wie see thus that tones differ，not only in loudness and pitch，but also in quality or character．The pitch of a sound by which it sounds high or low，acute or grave，is determined by the number of vibrations in a second which the sounding bod makes．The loudness may be illustrated by means of a rod secured at one end；if we pull it back only a little and cause its end to describe a small arc，it will not move with as much force as if we bend it back considerably and let it fly with great velocity．The quality of sounds is due to the manner of vibrating．Instead of fastening the rod at one end only，it might be fastened at both，and then the manner of vibrating would be different．In a stretched string there are present a great many different vibrations，all of which combine to give us the impression of a musical note．When we look upon the restless ocean，we perceive at the same time huge billows surmounted by lesser waves，and perhaps delicate ripplets orowning the whole；in like manner musica notes are made up of waves of various sizes．
An organ pipe consists essentially of a fine edge placed in a hole；when the air passes over this edge a whistling sound like that of the wind is produced；but when a tube is placed orer it，this whistling is raised to the dignity of a musical note by the vibration of the column of air contained in the tubs．＇The same effect is produced by substituting a resona tor of proper size for the tube；a sounding box developed a mere hint or ghost of the same sound．After having dis sected an organ pipe in this way，another pipe already ad justed was taken，and it was shown that a second，higher sound could be produced in it by harder blowing．
A tuning fork may be set in vibration with a bow in such a manner as to emit no distinctly audible musical tone；when however，it is held before the mouth，which is opened a though the experimenter were about to sing the correspond ng note，the air in the mouth is set in vibration，and the ote of the tuving fork is plainly heard．The octave of this ote can be obtained in the same way．An organ tube，a re sonator，or a sounding box，brought near the tuning fork will answer the same purpose ；but they must beotuned to correspond to the fork，or，in other words，they must contain the proper volume of air．Of a number of resonators on the lecture table，only one responded to the tuning fork used．
If we olose the upper end of an organ pipe，a much graver note is produced．The mode of vibration of the air has been
changed．When the sound wave strikes the end of the tube， it developes a nodal point，because it is not free to move fur－ ther in the same direction，but is reflected back to meet the next following wave at other points．Wherever the crests of two waves or the troughs of two waves coincide，larger waves result；but where troughs and crests meet，they neu－ tralize each other and produce nodal points．The modes of vibration are characterized by the position of these noda points．With the same tube，for example，harder blowing will change the number and the position of the nodal points． What we are accustomed to call the pure，sweet，simple ton of the organ is really nothing of the sort；it is，in fact，a very complex form of vibration．To get a pure and simple note，we must take a tuning fork；hence，by analyzing the compound note of a musical instrument，we ought to be able to recompose it，by combining a number of tuning forks re presenting its components．To illustrate this the lecture mitated a violoncello note by means of a series mitated a violoncello note by means of a series of tunin
forks．
The difficulty in this experiment lies in obtaining the pro per relative intensities of the components．

Fig． 1.

 4：5
 3：4

We are not by any means dependent on the ear alone for he study of musical vibrations．They can be made apparent to the eye．If we attach a strip of paper or glass，covered with lampblack or any other fine powder，to one tuning fork and a bristle to another，we will oltain a series of compound curves by drawing the latter slowly over the blackened sur－ face．This curve in a resultant of the two vibrations．In this way very instructive diagrams are produced with tuning forks whose vibrations have certain definite relations，such as those，for example，corresponding to the ordinary musical intervals．In Fig．1，the ratio of $5: 6$ corresponds to a minor

Fig． 2.

3：5．

 $5: 8$
 3：2．士
 3：2．
 hird ；4：5 to a major third；and 3：4 to a fourth．In Fig．it the ratio of $3: 5$ is that of a sixth； $5: 8$ of a minor sixth； and $3: 2$ of a fifth．Fig． 3 exhibits the result of operating with two forks whose vibrations differ more slightly in num－ ber．It represents the beating thus produced，with its alter． nations of intensity：

Fig． 3.
24：25．133．3
MROROSN

15：16． 136.5

Another way of studying these resultant ribrations is by the aid of Tisley＇s pendulum，which consists of a marking point so arranged as to obey the motion of two pendulums swinging at right angles to each other．A variety of effects is produced by lengthening and shortening the pendulums and by varying the intensities of their motion．The result is a series of heautiful symmetrical curves represented in the accompanying engravings．Fig． 4 represents unison，

Fig． 4.

where the vibrating pendulums are of equal length．Fig． 5 represents the octave，where one pendulum is twice the ength of the other．Fig． 6 is the fourth，the ratio being three to four ；and Fig． 7 is the fifth，having the ratio of 2 to

3．It is almost，if not quite，impossible to produce two igures exactly alike with the same arrangement of the pen dulums；they will differ as much as the leaves of the same ree．Although the eye readily detects the difference be ween them，the sounds they represent are identical to the ear．

A third method of optical study is by the aid of manome－ tric flames．The vibrations from the instrument to be studied are made to act on a piece of membrane in contact with a stream of illuminating gas feeding a jet．When the gas is Fig． 6.

lighted and the instrument sounded，the tremors of the mem－ brane causs the flame to vibrate up and down．On revolving a mirror before the flame，the motions of the latter are spread out in the form of serrations differing with the tone．By having a number of such flames and membranes in connec－ ion with a series of resonators，composite sounds may be analyzed into their constituents．

Fig．${ }^{\text {i }}$

By means of these and various other apparatus too nume－ rous to describe，even a deaf person could thoroughly study musieal vi

C．F．K

Electricity an a Transmitter of Power

It is well known that the Gramme magneto－electric ma－ It is well known that the Gramme magneto－electric ma－ can also be employed in inverse manner to transform electric－ ity into mechanical force．The property may be utilized to transmit power over long distances．The motor of a factory， for example，could be connected with one machine so as to rotate the same and thus generate a current．This current， carried over distances by cables，might be communicated to another Gramme machine at the point where the power is required．The second machine，by the current，would thus be caused to revolve，and the power would be utilized as necessary．
Of course，in this double operation，there is a loss；but ac－ cording to M．Magnon，who has investigated the subject ex－ perimentally，this is even less than takes place with any ther mechanical disposition．If the waste of power equaled that involved in transmission by wire rope，long belts，and like means，it appears that the new plan has su－ perior advantages，in that it does away with a large amount of shafting，belting，etc．，and besides allows of power being transmitted over much longer distances than would be prac－ ticable by such devices．The details of M．Magnon＇s experi ments，are not given，so that we are unable to review the data on which his opinion is based．

IMPROVED PONY PLANER.

In our issue of October 31, 1874, we published an engra ving of a novel machine in which an emery wheel was used for the first time for surfacing files and sadirons, finishing anvils, nuts, gibs, keys, slide valves, straps, crossheads, and, anvils, nuts, gibs, keys, slide valves, straps, crossheads, and
in short, for accomplishing the majority of work usually in short, for accomplishing the majority surfaced on the planer, milling machine,
and shaper. The mode of operation conand shaper. The mode of operation con-
sisted in adjusting the object to be surfaced in the chuck to proper elevation, when it wascarried under the wheel. and at the same time the latter was drawn across it. This motion continued until the table carried the work out of the action of the grinder. Then, by means of suitable mechanism, the operator slightly elevated the object and caused it to run back again under the wheel. Of this machine the invention herewith illustrated is a modification. The main difference is that the planer bed, A is made to slide thal to and B on crank, B, the work being thus moved to and fro in the line of the emery wheel's: revolution, while the wheel also has a cross motion imparted to it by the crank. C. This new motion of the table corrects the inaccuracy resulting from gradual decrease in the wheel's diameter, there being a perceptible wear in the wheel, so that it grinds a long flat piece taper instead of plane, when the work slowly passes under it ; while, by this crank throw, the whole length of work is brought in contact with the wheel at each throw. The chuck, D, rests on four springs, and rises and falls vertically in planed ways. E E are adjust. able stops. When these stops have been adjusted, and the wheel no longer cuts, the work must be plane. The springs force the (chuck) work against the wheel, and yet act as safety appliances against overfriction and pressure. The whole table and bed has a vertical adjustment by the screw, F. Three belts are needed : one to the wheel mandrels, one to the suction fan, and one to the driver. The gears, G, being interchangeable, allow the proportion of speeds between the wheel shafts and the table to be altered in various ways.
The machine stands 33 inches high, and is 2 feet 8 inches each way. It will grind work 9 inches long by 5 inches wide. It is adapted to all small flat work, especially to dies of hardened steel and chilled iron, to parts of gun and pistol locks, sewing machine work, small levels, machine keys, locks, etc. Lastly, it is claimed that thousands of small parts can, by this means, be finished to a gage with greater exactness than can be done in any other way. The remaining portions of the device are similar to those in the device first alluded to above. H is the driving pulley, and I is a small suction blower used to draw away the dust from the machine.
For further information, address the Tanite Company Stroudshurg, Pa.

UMBRELLA SUPPORTER

Mrs. Eliza M. Arnold, of Houston, Texas, has invented a new parasol and umbrella supporter, of which we give a perspective view, illustrating its use.

A Δ are two rods, curved to fit upon theforwardside of and pass over the shoulders of the wearer. The lower onds of the rods, A A, are attached or hinged, as shown at a^{1}, to an
open metallic ring, B, of such a length as to pass around, or nearly around, the waist of the wearer, to be secured to a belt, E, buckled or clasped around the waist. The upper parts of the rods, A A, curve toward eachother, have a coil formed in them to give them elasticity, and are bent up ward; they are connected with or are coiled to form a sock

NEWMAN'S PONY PLANER

et to receive the handle of the parasol or umbrella. 'To the rods, A A, are attached straps, C C, to be passed around the arms or across the breast of the wearer, to keep the said rods in place. D D are elastic straps, which are attached to the frame of the parasol or umbrella, the free ends of which are provided with loops or rings to catch upon buttons, a^{2} attached to the belt, E, so that by adjusting the straps, D the parasol or umbrella may be tilted or inclined forward or backward, or to either side, as circumstances may require The device may be worn with the rods, A A, passing down in front of the shoulders, or in the rear of the shoulders, or one in front and the other in the rear of either shoulder, as desired.

A New Phase in Gold Nining.

Since the discovery of gold in talco-slate a few month ago, and the active development of a mine of that description in FI Dorado county, by the Old Hickory Gold Mining Company, a great interest in that peculiar formation has been displayed by our miners, and we will therefore give a short description of the material and its constituents.
Talco-slate, or the slaty formation of steatite, is of primary period, and is generally found in large ledges and deposits in the slate range. It is ordinarily called soapstone, and consists of silica $62 \cdot 6$, magnesia $32 \cdot 5$, water $4 \cdot 9$. It is perfectly fireproof, and of the same class as asbestos; and considering thatits hardness is only two, to seven of quartz, we dare say that the stamping or rather grinding of it can be done very easily. The company now developing the first mine of that description on this coast have 22 feet of a ledge, the assays of which run from $\$ 50$ to $\$ 200$ per tun ; and we are credibly informed that the ore, on account of its softness, will work by pan amalgamation with alkalines for $\$ 2.00$ per tun. The sulphurets contained in the ore assay $\$ 329$ per tun, and constitute about five per cent As the ledge is traceable for miles, we may shortly look for interesting developments in that quarter.-Mining and Srientific Press.

Elastic Dammar Varnish for Photographs, etc. An elastic flexible varnish for paper, which may be applied without previously sizing the article, may be prepared as follows: Crush transparent and clear pieces of dammar into small grains; introduce a convenient quantity-say forty grains-into a flask, pour on it about 6 ozs. of acetone, and expose the whole to a moderate temperature for about two weeks, frequently shaking. At the end of this time, pour off the clear saturated solution of dammarin acetone, and add, to every four parts of varnish, three parts of rather dense collodion; the two solutions are mixed by agitation, the resulting liquid allowed to settle, and preserved in well closed phials. This varnish is applied by means of a soft beaver hair pencil, in vertical lines. At the first application it will appear as if the surface of the paper were covered with a thin white skin. As soon, however, as the varnish has a thin white skin. As soon, however, as the varnish has become dry, it presents a clear
be applied in two or three layers.
This varnish retains its gloss under all conditions of weather, and remains elastic ; the latter quality adapts it especially to topographical crayon drawings and maps, as well as to photographs. - Pharmazeutisches Centralhalle.
M. C. Quesnay, of Lille, France, gives the following for producing in one printing a portrait combined with a border in any design, and in the same or two different tints. In taking the portrait, the glass is first cleaned and treated with n ethereal solution of wax; it is then collodionized, sensitized, and exposed in the usual manner. Upon the ground glass of the camera an oval is traced of the exact size the portrait is required, and between the prepared plate and the shutter of the dark slide is fixed a mask, cut to the exact size of the oval upon the focussing glass. By this means the photograph is produced with a transparent horder. After washing the negative, flow over it a fifteen grain solution of gelatin to the depth of about one twentieth of an inch, and set it aside to dry in a place free from dust. When quite dry, it is coated with ordinary transfer collodion, and strips of paper are gummed upon the borders; when the latter have become dry, the pellicular negative is detached from the glass by cutting round the edges with a sharp penknife. A second negative is then proluced of the object or surface intended to be used as the ground for the border, a mask being employed in such a manner as to leave a transparent opening in the cener, the exact size of the portrait previousy produced; the two negatives are then superimposed and printed from in the ordinary manner. If the back ground or border be required in a different tint, the print, upon removal from the frame, must be wushed thoroughly to remove free silver. With a hrush dipped in solution of hypo ulphite of soda carefully ofer the portion of soda, go carefully over the ash thoroughly After order, and again ash thoroughly. Aftar toning, the por rait. will have the usual purple or viole rown tone, while the border will be repre
 modified by cutting out the portrait from the pellicular negative, and gumming it, ogether with an open mask representing the pattern of the border, upon a piece of glass or mica, and proceeding as in the former case.

CRAFFIN'S IMPROVED HAY FORK.

Mr. David S. Chaffin, of Vinton, Iowa, has patented through he Scientific American Patent Agency (April 25, 1876) the new grappling fork represented in the annexed engraving. The apparatus is adapted for handing hay, manure, and ike materials by horse power. It also may be employed or removing stones, etc., from the bottoms of shallow ponds, and will find various other convenient utilization ponds, and w
The curved tines, A, are pivoted to each other, and upon their upper ends are formed rigid bails. To the ends of the pivot bolt is pivoted a clevis, D, to which the hoisting rope ivot bolt is pivoted a clevis, D, to which the hoisting rop ted the pivoted levers, F, the lower end of one of which is lotted to admit of the passage through of the other. The inner lever has several notches formed in it to receive the pivot bolt, so that the fork may be locked with the points of the tines close together or at any distance apart. The levers, , are geverned by ropes, H. By this construction, the weigh of the fork and load is entirely supported by the clevis, D so that the levers may be easily operated hy the trip rope to

cause the discharge. In handling mud and other fine substances, the piates, J, are easily attached to the tines, and act as shovels.

VARIOUS SPECLES OF ANT LIONS.

The neuroptera are an order of insects known by the pos session of four equal-sized membranous wings, divided into a great number of little cells, technically called areolets. The mouth is furnished with transversely movable jaws, and the females do not possess a strong or a valved ovipositor. In this order are comprised the dragon flies, May flies, termites, lace wings, and lastly, the very curious insects which form the subject of our engraving herewith given, the ant lion. The interesting period of the life of these creatures occurs during their larval state. They then appear as represented at $4 a$ in the illustration. The shape is ovoid, color a red dish gray, and the body is covered with down. They resemble flattened maggots with rather long legs and very large jaws the legs being apparently useless as organs of progression all movements being made by of this inability to pursue and of this in its prey which and capture its prey, which is
wholly composed of living inwholly composed of living insects, that Nature has provided the insect with instinct to resort to strategic means to
bring its victim within its clutches.
It is common to find in san dy fields of the old world small cavities, varying in diameter from one tenth of an inch to two and a half inches in diameter, and about three quarters deep as wide. These are the pit falls (see engraving at $4 b$) made by the ant lion, and 40) made by the ant lon, and closer examination will show the cling it in ding, as it lies in ambush, buried in the sand. To make these hollows, the creature selects a locality where there is fine sand. It begins operations by bending down the extremity of its body and then pushing or rather dragging itself backwards by the assistance of its hind legs, but more particularly by the aid of the deflexed extremity of its body; it gradually insinu ates itself into and beneath the sand, constantly throwing off the particles which falls off the particles which falls upon it or which it shovels with its jaws or legs upon suddenly jerking head, by suddenly jerking
them to the rear. It works in them to the rear. It works in a spiral, commencing at the
outer circumference of its cavity and gradually diminishing the diameter of its path until the conical pit is formed. Should a pebble be encountered the insect insinuates its head beneath it and labors until it gets the obstacle fairly balanced on its back. Then it. attempts to climb up the slope it has hollowed with its load, often unsuccessfully, for the stone easily loses equilibrium and rolls down to the bottom. But the ant lion is obstinately pertinacious and a marvel of patience besides, so that the effort is repeated again and again until the stone is finally thrown clear of the pit. Its trap constructed to its liking, the larva buries itself as already stated, spreads its jaws, and waits. Any insect, whether caterpillar, ant, spider, or fly, serves as food. so long as it is living and ac-
tive. Dead insects the ant lion
rejects and tosses out of its hole in disdain. It is rarely that any crawling insect escapes from the pit after once entering it ; its efforts to climb out are fruitless, for the particles of sand roll beneath its feet, and it gradually slides down to the bottom and into the jaws of the watcher. Should the victim, however, attempt to stop its downward progress by thrusting its claws into the sand, the ant lion converts its head into a catapult and throws up sand, which deepens its hole and renders the side steeper, and also covers the unfortunate insect with a shower of particles by which it is compelled to let go its hold. The instant the ant lion grasps its prey, its ferocity redoubles. Neither wasp nor bee can offer any successful resistance, for their captor dashes its prey again and again to the ground, and shakes it in its terrible pincers until it becomes stupefied and motionless. Then the larva quietly devours it.
Previous to assuming the pupa state, the larva forms a globular cocoon (5 and 6 in the engraving) of less than half an inch in diameter, of fine sand, glued with silken thread spun from a slender telescopic spinneret, placed at the exspon from a slender telescopic spinneret, placed at the ex-
tremity of the body. The pupa is small and lies with its
limbs folded upon its breast. When ready to assume the
perfect state, it uses its mandibles, which are quite unlike those of the larva, to gnaw a hole through the cocoon, and pushes itself partly through the aperture in which it leaves its pupa skin. The abdomen then extends to nearly three times its previous length ; and the perfect insect closely re sembles the dragon fly, save that the wings are lighter, sof er, and broader.
Various species of the perfect ant lion are represented in the engraving, for which we are indebted to La, Nature. Nos. 1 and $1 a$ is the acanthlacisis occitanica, durin flight and in repose. It is of a reddish brown color, marked with black lines. Its larva, larger than those of the ordinary species of ant lion, are also lighter in color; and instead of digging a pit they back into the sand for a short distance,
in oil with 6 gallons of water. Both maggots and flies im medintely disappeared, and the crop became exceeding large and fine. He recommends that seeds of all kinds should be nd fine. He recommends that seeds of all kind the oil before sowing, or that a certain porsprinkled with the oil before sowing, or that a certain por-
tion of paraffin oil should be poured over dry earth or sand, tion of paraffin oil should be poured over dry earth or sand,
and this prepared earth should be sown as guano. He beand this prepared earth should be sown as guano. He be-
lieves that such earth is a powerful manure as well as a lieves that such earth is a powerful manure as well as a
remedy for wire worm, grub, and all garden, field, and vinery pests. He states that grain sprinkled with the oil is quite safe from all birds as well as insect vermin. For watering green vegetahles, he recommends a mixture of 2 wineglassfuls of parattin oil and 6 gallons of rainwater, and states that this will do no injury to the plants, but that the growth succeeding its application is something wonderful, and that onions and carrots should be watered with this when one inch long. Being a when one inch long. Being a
Scotchman, he concludes by Scotchman, he concludes by adding that a glassful of whisky added the makes it more agreeable to the water, and enables it to mix more readily
We have not yet had an opportunity of repeating theseesperiments, but hope to do so, and in the meantime recommend them to the consideration those of our readers who are doing business in agricultural districts. When farmers come to seek shopkeepers for their customary supplies of oil, candles, etc., thrse experiments farmer induced to , and the No harn would be deat them. ohey fail, be one is not be injured. If they suc. ceed only partially, both shopkeeper and farmer will gainone by saving his seed, the other by finding customers for respectable quantities of paraffin oil, as such an application as this, on a practical scale, will demand large supplies. We fear, however, that on one point the correspondent of our contemporary has been more or less (probably more) self-deluded. We allude to the great manurial value of paraffin oil. Now we know that paraffin oil is simply a hydrocarbon, and that mere carbon and hydrogen are not the elements which are thus demanded. Therefore we must renounce all that the elahorate and careful investigations of Liebig and his able compeers and successors have tanght us, in order to accept the conclusions of the Dunfermline experimenter.
The other use of paraffin oil, namely, that of protecting seed and young plants from birds and vermin, is quite free from any such theoretical objection. On the contrary, it recommends itself, as the hydrocarbons are more or less potent in repelling vermin. Paraffin oil is chemically inert, and will not damage the seed; but if its flavor or the odor of its vapor is sufficiently decided to drive away the creatures that do such serious damage, it will be a farmer's friend indeed, and will thereby be sufficiently recommended without pretending to any miraculous manurial value. To test it fairly,
hus concealing themselves, so as to seize passing prey Nos. 2 and $2 a$ represent the myrmeleon formicarius, the true pit-digging ant lion. No. 4 is another species known as myrmeleon formicalynx. No. 3 is the palpares libelluloides, he larva of which takes its prey in the same manner as that of the acanthaclisis.

An Agricultural Application of Parafin Oil.
A correspondent of the Dunfermline Journal tells us that he has tried a number of experiments, extending over a course of years, which satisfy him that paraffin oil is something more than a substitute for the best guano. His garden having been overrun with rats and mice, he had to sow double quantity of peas and beans, and sometimes to sow these twice over. Last year he sowed 22 lbs of beans and bs. of peas without any manure, tut he previously soake the seeds for a short time in paraffin oil. None were touched every pea and bean germinated, and the crop was enormous. Formerly his onions were annually attacked by maggots, and his turnips by flies; but during the last eight years he
watered between the rows with a mixture of 2 ozs. of paraf-
a portion of a field should be sown with the prepared seed, and further fortified by sprinkling it with the dry earth or sand which-to coin a term -has been paraffined, while the other half of the same field is planted in the usual way, both halves having been equally dressed with ordinary manure. If the paraffin repels the vermin, the unprotected half will probably be rather worse than usual, as it would become an asylum for the refugees, and thus the contrast between the two halves would be instructively hightened.-The London Grocer.

Rhubarb.

Lieutenant Colonel Prejevalsky, the Russian traveler who recently performed a journey into the interior of Mongolia. refers to the medicinal rhubarb grown in that province, whence it finds its way all over the world. He gives a full description of the plant, the soil in which it grows, the time and manner of gathering it, and the trade itself in rhubarb. It costs on the spot 2 or 3 cents per lb., and in the town of Si-ning, the chief market for rhubarb, 12 cents per lb. It is the opinion of Colonel Prejevalsky that there would be no difficulty in cultivating and acclimatizing it in Siberia.

ICE MACHNERY.
As an appropriate subject for the present hot weather, we sele t from Mr. E. H. Knight's "Mechanical Dictionary,"* the annexed engravings and following description of icemachinery. The apparatus illustrated depends upon the vaporization of water, ether. ammonia, benzole, etc., which, in assuming the vaporous form, change sensible heat into latent, extracting it from the reservoir of water, the contents of which are thereby congealed.

The Parisian restaurants have decanters (curafonsfrappés) filled with water frozen by placing them in shallow tanks of sea water, each of which is provided with a copper reservoir connected with a receiver filled with ether. The air is exhausted from the reservoirs by an air pump worked by steam, vaporizing the ether and reducing the temperature of the sea water and that in the decanters below the freezing point. The water in the decanters usually remains liquid until stirred with a glass rod, when it immediately congeals. Edmond Carrés sulphuric acid freezing apparatus is upon this principle (shown at 1, Fig. 1), and is also used to make the carcufons frappés so frequently seen in Paris. It consists of a large ves sel, resembling the boiler of a steam engine, which is designed to contain the concentrated sulphuric acid; of an air pump with tube connections to be adapted to the wide mouths of the rarufions, and of a mechanism ly which the lever of the air pump is made to keep the acid in continual agitation. The great volume of the acid renders the loss of absorptive power by dilution very slow, and the constant agitation prevents the formation of a superficial dilute stratum, which would interfere materially with the success.
In 1, Fig. 1, a is the reservoir of sulphuric acid; f, a carrufou of water connected hy the tube, r. with the apparatus, and having a stopcock at l. p is the harrel of the pump, and h its lever, which alsn agitates the oscillator. nhown in dotted lines.
Ferdinand Carrés intermittent appara tus, 2, Fig. 1, has a boiler containing the ammonia, connecting by the pipe, $r r$, with the refrigerator, t, which has a well in which is a pan containing the water, z, to be frozen. The boiler, k, is placed over a portable furnace, and the apparatus purged of air, which is driven by the evolved gas out at the stopcock, m, This being closed, and the refrigerator immersed in a tank of cool water, the temperature of the aqua ammonia is raised to 230° or $240^{\circ} \mathrm{Fah}$., at which heat the ammonia is expelled and is con densed in a liquid form in the refrige. rator, t. The boiler, k, being now removed from the furnace and placed in the water bath, the temperature of the water in the boiler will falland the power of the water to dissol ve ammonia will be restored. The gas will be rapidly

Fig. 2.

rises in a sinuous course alternately around the edge of on
tray and through a central hole in the next, and so on. Thi condenses and carries back the watery vapor which accom panies the gas.
The gas passes by tube, i, to the liquefier, j, passing through a box, k, and a series of zigzag and spiral tubes in a bath of cold water constantly renewed from reservoir, z, which also supplies other parts of the apparatus. The tubes terminate in another box, k^{\prime}, and the ammonia is by this time in a l quid state under the pressure of 10 atmospheres, which is constantly maintained in the boiler. In the liquid state the ammonia passes by the pipe, l, to the efflux regulator, m, which is the dividing barrier between the part of the machine in which a regular pressure of 10 atmospheres is main tained and the following part where the pressure does no exceed $1 \frac{1}{2}$ atmospheres. The regulating devic. is a floating up which opens or closes a hole of influx
The liquid passes from the regulator, m. by pipe,,\ldots, to the

ARRE: :CE-VAKIN: MaChine:
has been brought from the bottom of the boiler, a, and partially fills the cylinder, u. From this water the ammonia has been nearly exhausted, and it therefore greedily absorhs the gas ejected into $1 t$ by pipe, t. On the left of vessel u, is a water level indicator. Within the vessel, u, is a worm which receives water by pipe, a^{\prime}, from the elevaworm which receives water by pipe, a^{\prime}, from the eleva-
ted reservoir, z; after passing to the bottom of the spiral, ted reservoir, z; after passing to the bottom of the spiral,
the pipe curves upward and then (marked b) descends nearly the pipe curves upward and then (marked b) descend
to the bottom of the vessel, y, where it discharges.
The water from the boiler, a, passes by pipes, 10 v , to the coolers, $x y$, before reaching the vessel, u, where it re-ab corbs ammonia. Between the boiler, u, and the vessel, u the water is cooled so as to fit it for absorbing gas more free 1y. The pressure in the boiler is sufficient to expel it when the stopcock, x, is opened. The vensel, x, is formed of two concentric cylinders, between which are two spiral tube formed of the pipe, v, continued, and these s pirals are im mersed in a liquid which fills the annular space between the cylinders, and is the reconstituted ammo niacal solution on its way from the absorber, u, to the boiler, a. From x, the water in the spiral is conveyed in the pipe, oo, still continued in a single spiral ascending in the vessel, y, and continued further in a pipe, v, alongside of the ab. sorber, u, into which it discharges intos sieve, c, and from which it descends in a shower.
The exhausted solution from the loviler ", flows freely, as has been said, from the boiler, by pipe, ne, to the absorber II. passing the coolers, $x y$, as describer but it requires some power to force the reconstituted solution back from the al sorber, u, throug'l the pipe, f, to th boiler. This power is a pump, g^{\prime}, driven by a steam engine or other motor, and taking the saturated solution from the absolber by pipe. h^{\prime}, and dischary ing it. by pipe, i^{\prime}, into the vessel. r. whence it passes by pipe, f, to the dome above the boiler, as described previons ly. Gas finding its way into the pump is discharged into the upper part of " $e^{\prime \prime}$ is a pipe leading to the envelop ing tube, o, whence water is conducted by f^{\prime} for the use of ice vessels, r. An the water passes through o it is cooled by the ascending vapors of ammonia.
In starting the machine, it is first blown through to expel the air. The air escaping from the vessel, u, passes ly pipe, c, to the purger, d, and passes be neath the surface of the water therein which retains any escaping anmonia. Fig. 2 is an
ice plane
for shaving off fragments of ice for cool ing drinks. It consists simply of a coupl of plane knives inserted in a board, over which the ice is drawn. The shavings fall through the apertures beside the blades and into the vessel placed below for their reception. An interesting device, which we may here add, since it is connected with the subject of ice, is an ICE LOCOMOTIVE
or traction engine, for running on ice (Fig. 3). It was constructed by the Messrs. Neilson, of Glasgow. Scotlund, and employed for carrying passengers

Fig. 3.

Ice-Lncrmotive.
re-dissolved, reducing the pressure, as the liquid ammonia will evaporate with corresponding rapidity, drawing for its latent heat upon the sensible heat of the water to be frozen. The result will be the complete evaporation of the liquefied ammonia and the restoration of an aqueous solution, in the boiler, of the original strength. Between the ice pan and the well is a body of alcohol, which will not freeze, but will act as a conductor. During the refrigeration, the vessel, t, has a non-conducting envelope.
Ferdinand Carré's continuous process, shown in the three other views in Fig. 1, depends also for its efficacy upon the evaporation of liquid ammonia. a is the boiler, exposed to the heat of the furnace, $b ; \boldsymbol{i}$ is an indicator to show the level of the liquid; i is a tube conducting gas to the liquefier, j; the vert:cll pipe above the branch, i, leads to a safety valve, and any escaping gas passes by pipe, c, to the water tank, ϵ^{\prime},
where it is absorbed. f is a tube which brings back to the where it is absorbed. f is a tube which brings back to the boiler saturated solution of ammonia from the absorbing apparatus, $u u$; this solution passes downward; trickling through the perforated trays, g, while the ascending gas Prablished io nambers by Mease. Hard \& Houghton, New York ctty.
distributor, p, the pipe, n, being wound spirally around the tube, t, through which the vaporized ammonia is returning
from the refrigerator, $q q$, the vapors serving to reduce the from the refrigerator, $q q$, the vapors serving to reduce the
temperature of the liquid in n before it reaches the refrige rator.
The refrigerator itself consists of a number of zigzag or spiral tubes-in the apparatus here represented, six in allimmersed in a tank constructed of non-conducting sub ply of the liquid ammonia from the distributor. The small tubes conveying this supply are shown at p. The vessels, r. to be refrigerated are sustained on a carriage, which is slid back and forth by the same power that, works the pump, g^{\prime}, back and forth by the same power that, works the pump, 9°,
by which the re-saturated solution of ammonia is returned to the boiler. The space in the tank surrounding the zig zags and the water vessels, r, is filled with an uncongelable liquid, such as alcohol or a solution of chloride of calcium. The ammonia in the zigzags, q, discharges in a vaporized form into the collector, 8 , and passes through the tube, t, to the cylinder, u, where it extends nearly to the bottom of
and freight between St. Petersburg and Cronstadt, Russia It has two driving wheels, each 5 feet in diameter and stud ded with spikes. The front part rests on a sledge, which is swiveled and may be turned by the wheel which has an endless screw, working a pinion that turns a segment rack attached to the sledgebody. The cylinders are 10 inches in diameter and of 22 inches stroke. The weight of the engine is 12 tuns, and it is said to have attained a speed of 18 miles per hour on the ice.

Mineral Manures for Potato Blight

Just now, when chemical fertilizers are creating so much attention, it is of interest to note that Mr. Charles T. Hayward, of England, as we learn from the Journal of Hor iculture, has apparently succeeded in preventing potato blight, by supplying the mineral elemeuts of potato plant ood to his garden, which had previously been well dressed with nitrogenous manures. He claims to have secured a better crop, the tubers more even in size, smooth skinned, and free frow dipease ; while the market gardeners abou him suffered 'jeary lesses from the potato dipease

NEW AGRICULTURAL INVENTIONS.

mproved anmal. trap.
William Wallace, Tarrytown, N. Y.-The stationary and mova le Jaws are pivoted together, and extend above the pivot a su table distance to be closed quickly by a strong string. The sta
tionary jaw has an extension forming a stake, by which the trap may be set up in the ground ; also an arm on which the trip for setting and springing the trap is pivoted. The other jaw has catch for hooking the trip. A lever, on the upper end of whic the trip is formed, extends downward to the point where the jaw are to gripe the animal, and carriesa yoke to be set in the runway,
so as to be moved by the animals in attempting to pass under it.
cover for thrasming machine tumbling rods.
william R. Wilcox, Sterling Center, Minn.-This cover for th tumbling rodsof thrashing machines will allow the knuckle join
to be oiled without removing the cover.
improved land roller.
Fredus B. Hadley, Monterey, Ill.-This consists of an improve land roller, made hollow, and provided with ribs or Hanges
the inner surface of its shell and the heavy inner cylinder.

> IMPROVED GRAIN SEPAIATOI

David E. Fisher, Patterson, Ohio.-For operating or shaking th screen shoe, a differentially ribbed and pecentrically mounted r
volvink cam is employed.
mproved weaning bit.
Philip Heak, 'roledo, lowa.--This consists in the hollow bit hav ing a V bend formedin its middle part,and perforated with a num-
ber of holes, and provided with the rigid arms. The rigid attach er of holes, and provided with the rigid arms. The rigl attach mouth and getting into such a position as not to be effective.

mpROVED Plow.

Kobert Cassidy, Thomas R. Lamb, and Chauncey L. Vaughan cloit, Kan.-This :mproved plow is without side draft, and of ighter draft than ordinary plows, and may be readily adjusted to run deeper or shallower in the ground, and to take more or less he cutting edgeat right angles with the land slide. It is combine rith a slotted standard, curved inwardly to briny the plow heam nearly orer the center of the share
impioved wheel phow
william A. Ruddick, Carthage, Mo.-This :mprovement consist of an A frame mounted on the plow beqm transversely with a cas larger wheel at the end of one of the bars of the frume, and a tongue connected with the base of the frame. Wheels are contrived for raising and lowering at will to adjust the plow for furrows of different depths, and for carrying the plow above the ground.

IMPROVED PLOW
David H. Jarrard, Talladega, Ala.-This plow is so constructed that the plow standard may bc adjusted to give any desired pitch which will support the wing of the plow plate to prevent it from being bent or broken.
mproved mowing machine.
Charles B. Martyn, Waupun, Wis.-This improves the construc tion of reapers and mowers in such a way as to convert the long and unequal stroke of the connecting bar into two short
strokes of the sickle with a motion of uniform velocity.
improved butter worker.
Charles Plyer, Hempstead, N. Y.-This invention consists of concave dish with raised center, to which a swinging lever, of a
shape corresponding to the dish, is swiveled. This is to be worken shape corresponding to the dish, is swiveled.
all around the dish for cutting up the butter.
mproved grain header.
Charles K. Myers and John W. Irwin, Pekin, III., assignors to S.id Myers and Peter Weyrick, sime place.- 'The object here is to improve the construction of grain headers, so that the reel may be moved farther from and closer to the cutter bar automatically
as the cutter bar is raised or lowered to operate upon taller or as the cutter bar is raised or lowered to operate upon taller or
shorter grain. The device includes five new mechanical construc shorter
tions.

new textile machinery.

mecifanism for operating take-vi hollers for knit ting machines
Ira Tompkins and Albert Tompkins, Troy, N. Y.-This consists of the tension spring employed to regulate the tension of the cloth interposed between the crank rod and the rod for working th take-up pawl lever. It is so arranged that when the machine doe not deliver cloth for any reason, as when not making stitches, the spring will compress and allow the crank rod to work its regula
course, while the pawl lever will be held by the tension of the cloth until the cloth is delivered from the machine again.
mproved selvage geard for looms.
John H. Mills, Lisburn, Pa.-This is a wire finger, with a spring lever fitted to a little block, to be so attached to the loom temple that the finger projects down past the selvage at the point where said finger until it arrives at the box at the other side. The ree then strikes the spring lever, and raises the finger out of the loo after the shutter enters the box. The guard moves along with the temple relatively to the cloth, so that it is always in the right po-
sition. There is a guard on each side for cach selvage. The object is t, make the selvage more uniform and regular than it is ordina ly made.

MPROVED HOSE GMODS.
Henry G. Hubburd, Mlddletown,Conn., assignorto Kussell Manu facturing Company, of same place.-The invention consists in an improved hose goods, having one or more selvages upon one cdge in forming the seam.

NEW CHEMICAL AND MISCELLANEOUS INVENTIONS.

miproved reed organ stop action.
Henry Smith, Gananoque, assignor to himself, Joseph George pivoted to the key board, and connected to the stop, and so ranged as to act directly on the valve or mute, making a simpl and cheap contrivance.
mproved inhaler.
George L. Crosby, Hannibal, Mo.-This invention consists in combining a glass stopper, having an acid receptacle and air pas
sages, with a grooved stopper and tubes. From the acid recepta cle the fumes are drawn down through a tube into the liquid in the body of the inh
improved fadcet.
Patrick Skelly, New York city.-This relates to improvements in faucets for barrels of all kinds, that a tight seating of the stopcock without leakage, and a superior and readily applied coupling with the liquid-coavcying pipe, are obtained.

mproted soar frame

Daniel Whitaker, Boston, Mass.-This soap frame can be convefrmly connected thanothers of its class. The base of the frame is made in three parts, sccured to each other by transverse screw bolts, whereby they are adapted to enter grooves in the base of rame, and are attached thereto by hooks and staples. The end ortions of the frame bave clamping bars attached, whereby ends vertical, and to the sides, in such a manner as to hosides; and lastly, the side portions of the frame are provided with trussike braces, wherehy they are prevented from buckling, warping,
miproved end fastening for suspenders.
John H. Murfcy, New York city.-A clip of sheet metal is contrived for fastening one or two ends to the buckle, hoop, loop, or therdeviee, for connecting the end to the principalstrap. The said contrivance is such that the clip can be made by stamping or
punching it out at one blow of a press, and can be fastened on the strap without sewing, riveting, or other means required to puncture or slit the end.
mprofed hatiness clamp
James McCormick, Glidden, Iowa.-This consists of rubber-faced metalplates for attachinent to the jaws of harness makers' sewing clamps, to hold the leathor to be sewn without injury to it, and, at the sume time, tirmls. The said plates are constructed with a
roove in the face side, which receives the rubber facing, and bolds it without other fastenings.

> MPROVED ELAPORATING PAN

Sydney S. Connor, Amite City, La.-This consists in an improvement in evaporating pans by providing them with detachable par-
titions having angle bars to inake tight connection with thi bottom.
imploined pedal attachment for cabinet ohganis. Benjamin L. Boomer, Campello, Mass.-This is a contrivance for coning up the opening in the front of the case for the pedals, and
fastening and unfastening the panel which closes it by the desk The object is to make a better and neater appearance. and protect the instrument from dust, mice, etc.
mproved stopper for ships henning gear.
John W. Knight, New York city.-The object of this invention is ope or buntline by which it is drawn up; and it consists of a the per attached to the mast or any part of the rigging by which the rope is held, so that it will hang loosely over the sail, and so that impioved metal toy.
William A. Harwood, Brooklyn, N. Y.-This improvenient in toy orses consists of a contrivance of the support by which the horse is mounted on the wheels, so us to be elevated and to make a . It consigts of han is a light support, and at the same time stiffen the metal.

IMPROVED BKEECI-LOADING FIRE ARM.
Ira M. Earle, Guilford Center, Vt.-This consists of a hammer contrived to explode the cartridge and close the breech at the
instant, the said hammer moving as the radius of a circle, and orming, with the housing, arcs of concentric circles, in such manner that it bears at all times the same relative position to the solid housing, which supports it in its rear, and sustains the shock of the explosion. The bammer cannot explode the cartridge till it is in position to close the brecch. The invention also consists of the shell extractor, so arranged that it is operated by slight extening or contioce.
mproved counter stiffener for boots and nilues. George W. Simpson, Federalsburg, Md.-This consists in a skelton counter or back stay made of spring steel, and consisting of bent inward to adapt it to be applied to boots and shoes. Its object is to prevent boots and shoes from being run over at the heel.
improved fish trad.
James McRoberts, Toledo, Iowa.-This is an improved trap for atching fish at the outlet of lakes and ponds, and in other places so constructed as to prevent the escape of the fish within the trap when another fish is entering, and to
improved artificial flowers.
Mrs. Eliza F. Penles, Brooklyn, N. Y.-This consists of flowers, leaves, and other articles cut of layers of rattan pith or othe wooden strips, wound in continuousstrands or coils and cemented tmproved passenger register.
William Mehan, Hoboken, N. J.-In the doorway of a car is pivoted a vertical shaft to which a turnstile is attached. In the floo of the car beneath one side of the stile is placed a weighted plat orm, of such a size that the passenger cannot step over it. A set wheel of said register through the space of one tooth at each de pression of the platiorm.
miphoved hetrick box.
France lersche, New York city.-This consists of a letter box
 ings in the doors of the adjoining boxes below.
impioved bale tie.
Boall Hempstead, Little Rock, Ark.-This improvement consists in a buckle slotted at one end so as to allow the bale band to be fastened thereto by simply bending it around the same, thereby economizing bands ; and having at the other a button upon the
under side, having two extensions, one of which is larger than the under side, having two extensions, one of which is larger than the
other, which button is adapted to pass through a slot in the other other, which button is adapted to pass through a slot in the other
ond of the bale band and thus secure the band around the bale. The button may occupy any position with respect to the the bale. and the arrangement is such that to loosen the band the buckle must be brought to a position that the strain of the band will not naturally allow it to assume, thus insuring a secure fastening.
mplioved falcer ittachment.
Harry L. Sadler, Brooklyn, N. Y.-This invention consiste of a interior tube, naving recesses, and a wooden closing plug. The plug tube has interior projections, that are cng4ged by lugs of a hollow and threaded key that screws into the bushing and carries in a socket with wooden lining, the faucet, opening or closing the I keg by the insertion or withdrewal of the faucet key.

IMPROVED FIBHING ROD REEL.
$\begin{gathered}\text { Charles L. Noe, Bergen Point, N. J.-This consists of a brake for } \\ \text { stopping the overrun of the line after the lead has fallen into the }\end{gathered}$ stopping the overrun of the line after the lead has fallen into the
water. It is composed of a plate fixed on a joint, so as to be borne on the spool by a spring, and having a thumb lever, by which to
improved process of restoring crape, laces, etc. Aaron Joseph Shriver, Baltimore, Md.-This invention relates to a novel process of cleaning and restoring rumpled and faded crape, fabric in a specially prepared solution consisting of alcohol, a suitable dye stuff, and shellac, and afterwards subjecting the material to the action of stcam, which brings out the color of the dye and crimps the fiber, the shellac serving to hold the flber in
its crimped form, so as to present the original texture of the fabits crimped for
ric when new.
improved combined stereoscope and graphoscope. James Lee, New Brighton, N. Y-When the lens holder is raised into an erect position it is caught and held by a spring catch, and is thus not liable to fall back and mar the instrument or break the lenses. Wings or side shields are employed to keep the light from
the eyes when using the instrument. Said wings may be closed against the lens holder.

miPROVED tUG buckle.

Herbert C. Ward, Willmar, Minn.-When the draft strain comes npon the buckle the bail slips forward, and the tug is clamped be frame, thus relieving the tongue from the most of thedraft strain. The principal usc of the tonguc is to prevent the tug from slipping when the draft strain is being applied, and to prevent the said tug from working loose.
metiod of utilizing the leatier of card clothing.
Frank E. Brummit, Walpole, Mass.-This inventor takes the old card clothing as it now comes from the mills and is thrown away, removes the teeth, and gums the leather with gum tragacanth. He
then resets the leather with new teeth, pricsing the holes in the opposite way to the first setting, so that they will not go in the rection. The gum fills the old holes, and in some measure restores the leather to the original condition for receiving and holding the teeth.
ankle supports for skates and improved skates. Julius Drucklieb, Jersey City Hights, N. J.-The first invention consists of an outwardly curved supporting rod that is applied to a socket pivoted to the side of the runner. The supporting rod accomplished skater a support for the lower muscles, so that he can hold out longer and practice with less fatigue. The second mavention relates to : uch improvements in skates that the same shoe. A sct screw allows the adjustment of the skate to any size of heel, while a swinging lever produces, by being carried up until retained by a stop lug, on the runner, the tight attachment of the skate to the boot heel, releasing the same when the lever is lowered and the griping of its sharp edge is discontinued. The
front part of the boot or shoe is connected to the skate byan adfront part of the b
justable toe holder.
mproved cartridae.
Albert Hall, New York city.-This relates to improvements in the construction of paper cartridge shells, by which the same are considerably stiffened, and the anvil rigidly and strongly secured
in position in the shell. The invention consists of a diametrical in position in the shell. The invention consists of a diametrical securely by a paper shell and metallic cap piece.
improved shoe fastening.
William J. Vitt, New York city.-The flap is fastened to the upper by a number of tubular clips applied to the shoe. The clips of the fiap and upper are arranged to alternate with each other, and clip. The string is then passed through all the clips, the upper cnd giving readily for the opening of the flap in putting on or taking ofr the shoe. The end of the string is applicd to and rigidly rc hole or eyelct of the upper to the inside to be wound around the ankle.

NEW HOUSEHOLD INVENTIONS.

MPROVED SASII FASTENER.
Thomas Hill, Portland, Me.-The invention relates to a fastener gether in any adjustment. The fastener consists of a notched and slotted plate, secured to the side bar of the upper sash, and a button or catch pivoted to the top of the lower sash, the arrangement
being such that the catch works in the slot of the plate, and engabeing such that the catch works in the slot of the plate, and enga-
ges the notches thereof to hold the sash at the desired hight.

improved washing machine

Franzis M. Hellstrom, Lawrence, Kan.-The rubbing surface of
the suds box is formed by attaching half-round strips of wood at their ends to strips of zinc. The movable rubber is formed by at taching half-round strips of wood to the curved edges of seymen tal disks. When the levers are arranged in a vertical position thei ends rest against cleats attached to disks of the movable rubber
against which they are locked by catches, so that the rubber will be operated by operating the levers.
improved knife-scouring machines.
Herbert Symonds, Troy, N. Y.-In this device the polishing powder is fed downward to the polishing pads from the
There is also a new mechanical construction of the pads.

IMPROVED BOLT.

Francis Robinson and John F. Ferris, Trenton, N. J.-This consists of a bolt that slides and turns in a barrel by means of an in
clined elliptical collar of the bolt bearing on the correspondingly beveled end of the barrel. The bolt is retained in locked position by a shoulder or scat of the handle.

IMPROVED CARPET STRETCHER.
Joseph S. Ingham, Knoxville, Pa. - This is an ingenious combination of lever and pulley for drawing the edges of carpets out taut. IMPROVED DOOR BELL.
James M. Hinchey, Philadelphia, Pa.-This consists of a bell me rings the bell on a release of the pull, by the action of the spring and transmitting gear wheels.
improved heating attachment for stoves.
Lars M. Madson, Daneville, Dak. Ter.-This is an improved heating attachment to cooking and heating stoves, by which the hea the chimney. It consists of a sectional pipe, made of jointed el bows at surtabie inelination,
adjustable brace standard.

new mechanical and engineering inventions.

IMPROVED PROJECTILE

James M. Pollard, New Orleans, La.-Thisinvention consists in a projectile having a central cylindrical portion, with ends symmetrically tapered to a conical or paraboloidal form, the rear end
of the projectile being upset or molded with a raised circumferof tial projectile being upset or molded with a raised al portion, and has a convex end. The double paraboloidal form adapts the projectile to the least resistance from the air, while the raise bur
impioved feathering paddle wheels.
John H. Clow, Orange, Wis.-Certain improvenents are made in that class of paddle wheels designed for the propulsion of boats in feather or move edgewise in rising from the water so as not to carry dead water. The invention consists mainly in the particular construction of a locking bolt, arranged to be operated by a lever and cam, and located in the central part of the wheel so as to en gage with the middie part of the padile, and lock or relcase the me at the proper time
mproved portable derrick.
Shirwood Y. Reams, Belleville, Texas.-This consists of an ad justable crane mounted on a truck plitform, having an overhead
frame for the support of the upper end of the crane post, and braces for staying the frame. The crane can thus be turnci around to overhang the sides. The whole is a simple apparatus, which may be moved readily from place to place by hnnd or by horse power.

IMPROVED WINDMILL.
James Ward, Winnemucea, Nev.-This consists of an upright
whecl with spirally curved floats, in connection with a corwhecl with spirally curved floats, in connection with a cor
responding number of fixed and hinged and weighted shutters, of responding number of fixed and hinged and weighted shutters, of
which the latter are regulated by weights ancl a connecting govcrning string.

IMPROVED AUGER HANDLE.
Jamcs Magers, Gervais, Oregon.-By suitablc construction, a auger is in use, and at the same time allows the bit to be readily detached and attached when desired.

IMPROVED SAW SET
Henry Itskin and John Gregg, Rockfield, Ind.-This is a set to be used with the hammer. It has a wedgc-shaped notch in the end, and a gage to regulate the position from the side of the saw, so ing the end of the tool, the same as an upsetting gage, the tootb will be set by bending it laterally. There is also an upsetting notch in the tool to adapt it for both kinds of teeth.
improved nut lock.
Samucl Henry, Chenoa, IIl.-This improved nut lock is formed of curved plate, having its ends curved upward, and havingnotches with inclined sides and straight bottom formed in said ends, to

IMPROVED TIRE UPSETTER.
Ebenezer B. Rose, Goshen, assignor to himself and George M beated, placed upon plates, and clamped against toothed blocks by eccentrics. Then one plate and its toothed block and eccentric are forced forward, shrinking the iron.
improved machine for making wedges.
John Lennerton, Truro, N. S.-The first part of this invention with four cutters revolving cylinders fixed upon a shaft furnished to the required thickness and taper. The second part consists of two other revolving cylinders, similar to the urst pair, so arranged upon the same shaft as to cut the wedge to the required width. combined and arranged as to cut the wedge to the required length and working in conjunction with the other parts.
improved timing attachment for watches. Thaddeus Ackley, Warren, Ohio.-A spiralspring is arranged beinto contact with the spurred catch at the instant when the leve releases the disk-lifting spring. The spurred catch engagos the grooved disk at any position, so as to instantly turn the same with the arbor, and move thereby the second whecl. By pulling out the controning lever the disk is detached from the spurred catch, and thereby the second hand stopped, the lever being pushed in at the
moment when the timing is to begin, so that the second hand moves until, by pulling out the lever, it is stopped again, so that the time taken up by the race is indicated in reliable and conve nient manner.
mproved mechanical movement.
Miner G. Mosher, Wichita, Kas.-This is an improved device for
anverting a reciprocating into a rotary motion which has no converting a reciprocating into a rotary motion which has no
dead po nts. It mainly con sists in the combination of a U fork, provided with two pairs of hook pawls, with the wheel provided Thith the bolts; and in the combination of the three three-armed o and with the two sets of hook pawls.
improved steering propeller.
Flavius J. Ashburn, West Union, W. Va.-This consists of pro-
peller blades arranged horizontally on and hinged to vertical crank shaftssuspended from a horizontally revolving frame above the water; and connected by their cranks to the crank of a shaft in
the center of the c irrying frame, and around which they swing. the center of the cirrying frame, and around which they swing.
All the paddles thus face in the same direction, so that in the for All the paddles thus face in the same direction, so that in the for-
ward motion they turn upon a hinge and work edgewise, and in ward motion they turn upon a hinge and work edgewise, and in
the back motion they work broadsidc against the water to propel the boat. This invention also consists of a stationary crank around which the bucket swings, made to be turned in either way, and pro vided with means for turning it, which may work either by th engine or by the pilot wheel, whereby the direction in which the paddles act is changed at will to reverse the motion of the hoat and to utilize the propeller for steering it.
mproved metiod of anNealing plow mold boards. Eli H. Babcock and John C. Whiting, Canandaigua, N. Y.-Th billed of thistings to be cooled without warping or being strained, and thus keep them in exactly the required shape. It consists in emoving the castigs from the chills as soon as they are coo nough to be hanaled, placing them in lis diminishing heat.

imROVED CAR TRUCK SHIFTING APPARATUS

Robert H. Ramsey, Cobourg, Canada.-This invention consists of couple of trucks on each side of the track on which is the car whose trucks are to be shifted, carrying a beam extending across depressed portion of the main track, down which the trucks to be removed run, and detach from the car, while the latter runs on the beam carried by the side trucks, which run at the same time on level tracks. The trucks to be connected are run up the grade, and thus brought into connection with the car.

John La Blanc and Xavier St. Pierre, San Francisco, Cal.-This onsists of a sliding guard plate operated by a crank pin, sliding in suard plate. suard plate
imploved automatic car brake.
Ira Robbins, Hughesville, Pa.-This invention relates to an improved construction of car brake, designcd to apply or remove the
brakes automatically, or by hand, as may be desired. It consists brakes automatically, or by hand, as may be desired. It consists
chiefly in the arrangement of a bellows operated continuously by the car wheels, which is employed for relcasing the brakes by act ing upon a tripping rod when the cars stop; in the mechanism operating in connection with said bellows; and in devices for auto-
matically applying the brakes by the impact or concussion of the erating
maticallis.
cars.
improved car coupling.
Nicholas Darrow, Hempstead, Texas.-The cars arc arranged with spring buffers, of which the buffers of one car have side of the adjoining car are fitted. The guッrd plates guide and assist in the coupling of the cars, and also prevent the cars from swinging too much from one side of the track to the other.

IMPROVED NUT LOCK.

Isaac Van Kuran, Omaha, Neb.-This consists of a washer of
teel over a cavity in the fish plate, and surrounding the bolt, so that the pressure on the boit on the fish plate is transinitted to th surface of the plate surrounding the cavity by the washer. This allows of any required amount of pressure, and at the same time
affordsa spring with sufficient reactionary power a affordsa spring ati times to prevent it from becoming slack, so as to work of unscrew.

IMPROVED CAR COUPLING.
Jacob F. Rochm, Hiawatha, Kan. - When the drawheads approach for coupling, the spring-supported linkss enter the mouth of the
corresponding cavitics at opposite sidec of the drawheads, strike against the pins, so as to throw them back and push them in up Ward direction on the guides, to allow the pissage of the links. When the links have entered beyond the pins, lever handles are
thrown forward, and the pins dropped by the concussion of the drawheads, so as to couple the links.
improved metallic girder.
John L. Nostrand, Brooklyn, E. D., N. Y.-In the neck of the head or tlange is formed a ongitudinal groove or channel, to re ceive the edge of the web, where it is securcd in place by bolts or
rivets. By this construction, beams of a greater strength can be made by using the saune quantity of iron, or of an oqual strength by using a less quantity of iron, and also, the strain is transferred
from the rivets to the shoulders of the heads, against which the from the rivets to the shoulders of the heads, against which the dges of the web rest.
improved watchmen's tine detecter.
Jacob H. Massey, Allentown, Pa.-This is a watchman's time detccter, which is applicable to a building for inside and outsid
use. It consists of a dial with concentric circles, revolved by use. It consists of a dial with concentric circles, revolved by a
clock train; and operated by a suitable spring-marking deviee in connection with a pull from the inside or outside of the building The marking device is set for each day by a crank shaft engaging a rack of the marker.
improved leatier- stretching maciine.
William Coupe, South Attleborough, Mass.-This is an improved machine for stretching leather for belts and other usos, so constructed as to stretch the leather evenly when varying in thickness,
and which may be readily adjusted to stretch the leather to any and which may
improved vibrating propeller.
John Forgic, Sr., and John B. Forgic, Jr., Hicksville, N. Y.-This winention consists of carrying padales in the form of the slats of a the water as the frames swing backward and forward. The said frames arc pivoted at the upper cnd,in such manner that the lower end works parallel with the engincrod, to which it is connected, t be worked by the steam power applied directly to the rod.
improved double-acting force punp.
George W. Hooper, Greeno, Me.-In using the pump, as the pison moves downward, a vacuum is formed above it, and the water nd passes into the upper part of the cylinder. At the same time he water in the lower part of the cylinder is forced out, opening nothcr valve, and passes into the pump tube and out through it penings and valves, and passes into the lower part of the cylinder At the same time, the water above the piston is forced into the pump tube.
John E. Giles, Hazleton, Pa.-The crank pin which works the valve is carricd in a block in a slotted disk which slides along the
disk for shifting the valves, and to the opposite side of the axis for disk for shifting the valves, and to the opposite side of the axis for
reversing, and is worked by a sleeve on the shaft of the disk to reversing, and is worked by a sleceve on the shaft of the disk to
which the shafting lever is connected. The disk is geared by a toothed rim with a whecl on the crank shaft (which gears are eccentric), by which the irregularities of the crank are overcome. For a lap valve, the slot in the disk for carrying the crank pin is
arranged out of the center of the line of the axis of the disk to just ranged out of the center of the line of the axis of the disk to ju
improved barrel for watch springs.
Sherman D. Johnson, East Haddam, Conn.-This invention consists of the combination of the mainspring barrel by suitable pawls motion independent of the rim on the breaking of the spring. improved car brake.
Jacob Blanshan, Le Fever Falls, N. Y. This relates to brakes on opposite sides of wheels, the object being to relicve the axles of the to nne side only. improved starpening machine.
George W. Ingersoll and Harvey L. Fisher, Toledo, Iowa.-This is a new tool-holding device, whereby any cutting tool may be
sharpened at an exact bevel without help, as onc hand can turn the stonc and the other guide the tool against the same. By rolling a gage rod, gouges may be ground with the same bevel in superior manner. It is readily adapted to any sizc of grinding stone.
improved furnace for burning sawdust,tan bark, etc Frederic T. Kidder, Claremont, N. I.-This invention consists in
using feeders under or in the bottom of the mass of the fine fuel, with which the stove is filled. The said feeders are pieces of wood extending from the frent at the draft inlet along the stove to the back, and which, being ignited at the front end, burn slowly, togethe with the sawdust or tan bark immediately around them, while charcoal, and prepares it for burning as it falls down to the fire n case the fine material is very wet, perforated pipes are placed ome of thy in the same, a little above the wood pieces, to conduct by passing from the tubes up through the fuel.

gutuiness and zersomal.

 The Charve for Insertim unter this head is One Dolceeds Frur Lines, One Doluar and a Half per Linewoll be charoed.
 For Bolt Forging Mnchines and Power Ham-
mers, address s. C Forsaith \& © o... Manchester, N. H. For Salo-Valuable Patent, in whole or part, for
Anti-Freczling Fire IIydrant. Apply lowt. Smeaton, Milwaukee, Wis.
 elther of the retail
York and brooklyn.
Telescoposen and Equatorial Stands-Manufac-
turced by John Byrnc, 121 East Fourth St., Ncw York. Hydrant Hose, Pipos, and Couplings. Sors.
prices to Balles, Farrcl $\&$ Co., Pittsburbl, Pa.
 For 2d Hand Portable and Stationary Boilers
 Best Bolt-Pulleys,
Best Bolt-Pulleys-A. B. Cook \& Co., Erie, Pa. Centennial Exhibition, Philadelphia.-Examine
the Allcen Governors, Machinery Hall, D. 9 , Par. 71.

 duced over 20 per cent. Hull \& Belden Co., Danbury,Ct.
Dirivin Betts made to orrer, to accomplish work
reaured required. Send full partculars for pric
14 S Nortu Third St.. Pniladelpha, Pa.
Power \& Foot Presses \& all Fruit-can Tools. Fer-
racute Wks., Brigeton, N.J. $\&$. 27 , Mchy. Hall, Cent'1] The French Files of Limet \& Co. have the en-
dorsenent of many of the leasilug machine makers of

Shingles and Heading Sawing Machine. Seo ad-
vertiseueut of Trevor © Co., Lockport, N. Y.
 Caution -Our name te stamped in trill on anil our best
Standard Belting, Packsin, and Hose. Buy that only.
 lag Coupaly, 87 and 3 Fark
Hotehkiss Air Spring Forge Hammer, best in the
market
1rices low.
D. Frible $\&$ Co., New Haven, Ct. Patent Scroll and Band Saws, best and cheapest
in use. Cordesman. Egan \& Co.. CInclunati, ohlo.

 Steol Castings, from one lb.to five thousand libs.
Invaluable tor strensto aud durublity. Circulars free. Pitteburgh Steel Castiug Co., Pittsbu
For best Presses, Dles, and Fruit Can Tools, Bliss, For Solid Wrought-iron Beams, etc., see adver--
usement. Address Unlon Iron Mills, Pltssuurgh, Pa., tor Ithograph. \&c.
Hoteludss \& R Rall, Meriden, Conn, Foundrymen
and workers of sbeet metal. FIne Gray Iron Castings
For. Solid Emery Wheels and Machinery, send
the Union Stone Co., Bboton, Mass., for circular. Hydrautic Presses and Jacks, new and second
uand Latuen and saculury for folsiling and Bumlug Spinning rinins of a Suprorior Quality.-Whitting-
vile Spining ilng co., whilusville, Muss.
Diamond Tools-J. Dickinson, 64 Nassau St., N. Y. Temples and Oilcans. Draper, Hopedale, Mase

Thedest (0nyins
II. M will ind, on reference, that the den ufrice described on p. 72 , vol. 34 , is a good one--
F. J. S. is in informed that there is no formula for the horis power of a boiler. Δ mple boiler power
for your congine is always to be rccommended.for your cngine is always to be rccommended.-
A. L. F. should usc marine glue for fansening
eloth or paporto wood. Sce p. 43 , vol. $32 .-$. W .
 ${ }^{\text {top }}$, vol. 31. -H. S. can calculate the speed of his pulleys on p. 356 , vol. 34 . He should temper his
 his Bunsen battery as described on p. 233 , vol. 34 . -A. A. can temper his mill picks by the procoss
deseribee on p. 100 , vol. $25 .-$ w. D. Y. can calculate the ifting power of hydrogen by the formu-
la given on p .74 , vol. 31 . -W . H. S. can prevent rust on iron and stecl by the method described on
 gnd a deseription of lighting ras by clecetricity on
p. 4, vol 29 . G . W. B. will finda recipe for a black

 ting li.uid on p. 21, vol. 31.-G. B. M. A. A. J. W.,
J. C., J. McC., D. R. P., K. J., L. . ., and others
who ask us to recommend books on industrial and
, who ask us to rccommend books on industrial and
scientific subjects, should address the booksellers scientift subjects, should adaross the booksoliers
who advertise in our columus, all of whom are
trustworthy fims, for catalogues.
(1) E. J. D. says: I use large quantities of water oor irrigation; and at prescnt 1 ralse it by Wind mill and pump, but it is very uncertain, as
the wid givesout fust when it is wanted. Can I
compress air coough with my windmill for a atwo
horso power engino? A. We think you would find
it more satisfactory and cheaper to pump the It more satisfactory and cheaper to pump the
water by means of the windmill, and store it in water by means of the wind inil, and store ines air by means of the windmill, for the purpose of
driving an engine. But the air receivers would need to bo larger and more expensive than the water tank.
(2) P. H. S. asks: 1. How cun I granulate soft solder to about the size of common shot? A.
Melt the solder and pour it in a thin stream from some hight into a vessel of cold water. 2. Does common half hard brass wire in the coil suffer a lossof strength by being expos
The loss, if any, is very slight.
(3) R. T. S. asks. 1. What remedy can I use to destroy the insects which infest the rose bushes? A. Tobacco water. 2. How can I pre-
vent weeds from growing? By hoeing or pulling them up.
(4) A. says: I have been trying to make have heated the ammonia for a few moments, the water from the wash bottle comes in to the
chemical flask. How can I remedy it? A. Place chemical fiasic. How can 1 remedy itt? A. Place
pure nitrate of ammonia in a capacious flask, pro-
vided vided with a suitable perforated stopper, through
which a piece of glass tubing beat at right angles just passes. This is to be connected by means of rubber tubing with an empty bottle, fitted in a similar manner to the ordinary wash bottle, with the exception that neither of the tubes must extend to the bottom of the bottle ; they should be cut off just on the inner side of the stop-
per. This will serve for condensing the greater part of the moisture that comes over, and at
the same time prevent the retreat of the liguid into the hot flask on the removul of the source of heat; it is well to keep this bottle immersed in cold water during the operation. The purifying
bottle may consist of a tall, slender (dry) wash bottle, filled with coarsely broken lumps of proto-
sulphate of iron (copperas). The inlet tube of the sulphate of iron (copperas). The inlet tube of the
purifier must extend quite to the bottom of the vessel, so as to force the gas to pass through the entire column of copperas. When the evolution
of gas ceases, the reservoir should immediately be of gas ceame, the reservoir. shouldin immediately be
disconnected from the purititer and the stopper redisconnected from the purifier and the stopper re--
moved from the gencrating flask, befare the heat is removed. If these latter precautions be observed, there will be no dange
(5) A. L'E. says: Please give me a good
rceipe for removing paint stains from white shiits. A. Moiston with benzole and cover on
both sides with warm pipe clay. Place under pressure for severalhours, and repeatif necessary You should have stated, if possible, what kind of paint produced the stain, to enable us to properly
answer the question
(6) S. H. D. a-ks : Are the engines of Mr Corliss at the Centennial exhibition connected on
one shaft atright angles? A. Yes.
(7) H. W. arks: What liquid must I add 34? I I hive tried theliquid given in the same num3t? 1 h.ve tried the liquid given in the same num-
ber with the result that it will not harcon or burn. recipes for coltored bes made by mixture of isinglass (pure gelatin) $1 / 2$ oz., camphor $1 / 2$ oz., and al-
cobol $\$ / 4$ oz. Make into balls of the requisite size, roll in gunpowder, and dry in the sun.
(8) W. L. S. Fays: The packing hix around the stem of the slide valve on my engi ie
has got stuck fast with old tallow and perhapsiron rust, so that I cannot move it either way, and the
box needs new packing. How can I loosen it with box needs new packing. How can Hoosen it with
out taking off the steam chest? The box is of the usual form, set up by two bolts. A. Try driving wedges behind the fiange.
(9) W. II. W. a.sks: What can I add to an When dissolved in water or spirits, it turns to a bruwn color. A. Try the addition of a smanl
quantity of sulphate of copper to the liguor ; and quantity of sulphate of copper to the liquor ; and
after dyeing, pass between warm copper rollers.
(10) J. R. C. asks: Is there any known simple and cheap method or process for forming, dis-
olving, and retaining in perfect solution the rotocarbonate of iron, in a common minera ountain? A. The protocarbonate of iron is by
no means a rare salt. It difsolves as completely as bicarbon tre in in carbonicic acid water. Lorpletele quan tities of the pure carbonate are employed in the
preparation of artificial mincral waters. On expreparation of artifficial mincral waters. On ex
posure to the air the iron is finally deposited as an posure to the air,the iron is inally depost
echery depositof the hydrated peroxide.
(11) J. A. W. asks: A friend und myself
nave had an argument about a vacuum. ave had an argument about a vacuum. My
riend states that, if we take a cylinder that will tand an external pressure of 25 lbs. to the square nch, we can collapse it with an air pump tha
is strong enough for the work. I claim that
and 15 lbs. per square inch is the limit. Who is right? A. The atmospheric pressure upon each square neh of surface equals 15 lbs., so that a boilerea
pable of resisting this pressure would not col pable of resisting this pressure would not
apse under the circumstances you mention
(12) B. F. G. aske: How is pyrolignate of
on or iron liquor made? A . It is obtained by dissolving scrap iron in pyroligneous acid (crude wood vinegar) and
(13) R. W. C. asks: Is there any way to cicar the smoke from a mine with a 100 feet per pendicular shaft, and about the same length of
horizontal tunnel at the bottom? A. The usual
way is to whaft.
(14) R. W. asks: Can you inform me how Wash several times in dilute solutions of carbo nate of soda and soap, rinse thoroughly in clea water, and bleach with sulphurous acid.
(15) J. S. asks: I cannnt get a fine line on
tracing cloth. Please tell me how to workitand and
how to color plans on tracing cloth. A. Use traing cloth with one side glazed. The other side adead flish, and the cloth will take as fine an ink the brush only on the glazed surface. and apply o the back or dead flished side, and the color will show through. Do not get the brush too wet
with color, and you will succeed. with color, and you will succeed.
(16) H. S. J. says: We are using three boilers for stcam heating, and we find a great deal unconsumed mater al is wasted with the ashes. We usc Illinois soft coal on grate bars with $1 \frac{1}{1 / 6}$
inch openings. A. Decrease the width of openinch openings. A. Decrea
ings as much as possible.
(17) A. E. asks: Wnen cold water is sud. plates, ss in the case of many boiler explosions does it become decomposed into hydrogen or oxygen, or is it mercly converted into steam ? A. It
is not at once converted int hydrogen. A small is not at once converted into hydrogen. A small portion of it is converted into steam of a high tension, which buoys up the remaining wate
prevents actual contact with the hot iron.
(18) C. W. J. says: Home made potash soap with us will not keep. It has a tendency to
spoil, and in a short time it smells badly spoil, and in a short time it smells badly. We
therefore do not put up at a melting we wish. Please inform me what will preserve such soap from this tendency. A. The trouble is
probably due to the fact that the conversion probably due to the fact that the conversion of the fat into soap is not complete, either from
an insuficiency of the alkail, or that the boiling is not continued long enough.
(19) H. P. J. asks: will you give me the proportions of the smallest steamboat that can be built for practical working, to make 10 miles per
hour in tillwwater?
A. Probably it could bemade as short as 25 feet. See p. 155, vol. 29 .
(20) W. A. H. asks: 1. Is there any metalrhigher a point of fusion? A. We do not kno of such a metal or alloy. 2. What would be the amount of wear upon smail steel dies used for
stamping lead A.This could best be determined tamping lead
(21) W. O'H. says: If you take two vessels equal size, flll one with water and the other 19 full of very fnely sifted coal ashes, you will find
that all the water in onc vessel can be poured into the vessel containing the ashes without any overflow; also that all the ashes in one vessel may be slowly transposed into the vessel containing the
water without the latter overtlowing. Do the water without the latter overflowing. Do the
facts prove that $\frac{1}{2} 0$ of the body of ashes is comfacts prove that $\frac{1}{20}$ of the body of ashes is com-
posed of air cells? A. If you place the same quantity of water in a tube, having about a quar the top of theliquid, and finally add the quantity of a hes mentioned. You will find that every grain of ashes introduced will cause a corresponding displacement of the surface mark.
(22) E. C. N. askst: 1. In two water tanks
of the same dimensions, the temperature of both of the same dimensions, the temperature of both alike, in which will a 10 lbs . cake of ice last the longer, the one in which the ice is cut in small picce? A. Other conditions being the same, the ice in the tank containing the fragments will melt the quicker. 2. Why? A. Because it exposes a
rger surface of contact with the water.
(23) F. J. asks: Will an engine 18×3 inchhave sufficient power to run a screw-cutting es have
lathe of
A. No.
$\underset{\text { (24) N. W. W. Hasks: How can I soften }}{\text { castings of }}$ small castings of gray iron, so as to drill them with twist drills? They are chilled in cooling.
\mathbf{A}. If you use carbolic acid with your drills, you eed not soften the iron.
(25) G. E. H. asks: 1. What is a pitman rod? A. A pitman has a reciprocating motion at each end. 2. Is the connecting rod of an engine
a pitman rod? A. A connecting rod performs a rotary motion at one end.
(26) T. F. M. asks: Please give me a rule ine. A. There are no known rules applicable to the horse power of rotary engines.
(27) G. E. B. asks: Please give me a recipe or making a face on a fine polishing wheel for
teel and iron. A. Use a leather-faced wooden heel and Vienna lime.
(28) R. C. M. asks: How can I set black carbons in steel cutters, and fasten them immovably? A. Make holes a triffe larger than the car hem with a small set and hammer.
(29) S. A. B. says: How can I make a nire smooth finish on the barrels of cannon stoves?
A. Use Albany or Waterford sand, or a facing A. Use Albany or Waterford sand, or a facing
sand composed of 1 part of coal dust to 8 or 10 of Albany sand.
(30) H. H. says: Please give me a recipe for a cleansing composition or mixture that could best heated in lead and, after being hardened in water, will still be bright. A. We k
(31) H. M. A. asks: 1. C. n you tell me how to make a cheap and simple battery, or a mag-
a. You can construct gravity battery, one of the cheapest forms, in the following manner: Place a copper disk at the bottom of a jar filled to within one or two inches of
the top with water; dissolve a little sulphate of inc in the water and suspend a zinc disk from the top of the jar. The wire leading from the
copper disk should be covered with gutta percha. A handful ofsulphate of copper crystale dronped
in is sufficient to put the battery in action. Any
desired strength of current can be obtained by
properly regulating the number and size of the properly regulating the number and size of the
elements. 2. In Mr. M. Alfred Niaudet's machine, nlustrated on the first page of your SUPPLEMENT,
No. 9 , what size and how long should the iron for No. 9, what size and how long should the iron for
the electro-magncts be? A. They can be made of almost any dimensions desired; from $11 / 2$ to 2 of almost any dimensions desired; from $11 / 2$ to 2
inches long and $1 / 2$ inch in diameter will be
found convenient. 3. What ized wireshuld found convenient. 3. What sized wire should they be wound with? A. No. 23 will answer for cur-
rents capable of overcoming considerable resistrents capable of overcoming considerable resist-
ance. The size is varied to suit particular reance. The size is varied to suit particular re-
quirements. 4. What should the wire be covered with? A. Silk is best, though cotton will do. 5. What should the radial connecting picces be made
of A. Brass or copper. 6. Is quantity, or high tension and small quantity, better for shocking purposes? A. High tension currents are best for (32) O. A. W
(32) O. A. W. asks: Is there any substance that, when rubbed on a person's hand, will enable
him to hold hot iron and molten lead without being burnt? A. Yes, water.
How can I prepare phosphorus so that it will, when rubbed on a person's hands, remain luminous for 10 or 15 minutes? A. Make the solution
(33) D. G. asks: Does the piston of an inclined engine cause less friction on the cylinder
than that of a horizontal engine? A. There is no practical difference.
(34) V. W. asks: Do you know of some
cheap substance that can be molten and put in around the box in a hub to fasten it after ithas been trued? Glue would do if there were some way of solidifying it. A. Red lead mixed with
your glue will solidify and harden, and will probyour glue will solinify and
ably answer your purpose.
(35) S. B. says: It has been asserted that traces of the poison may be discovered after the traccs of the poison may be discovered after the
liquor emerges from the distilling process. I applicd to Dr. J. R. Nichols, Boston, and he stated that he had never in a single instance found a trace of strychnine in whisky, and that "it is a
vulgar notion to suppose that it is ever used by vistillers." Is he not right? A. There is no bet-
dition ter authority on the subject than Dr. Nichols. If, after examining so many samples, he failed to degard to the matter are undoubtedly well founded.
(36) E. B. asks: How can I produce chloride of sulphur? A. Chloride of sulphur is prepared by passing chlorine gas over sulphur heated
to about 257° to 266° Fah. The product is rectified y distillation.
(37) J. J. says: 1. A friend says that the Corliss engine is always a high pressure engine.
He is wrong. 2. Also, that it is not used on any large steam vessels. A. He is right. 3. Also, that A. He is wrong.
(38) H. J. S. says: I have a glass cylinder
fitted with crank, ind a silk pad, for an electrical machine. How can I complete the apparatus? A. Mount a tin conductor of two or three inches in diameter, with rounded ends, on a glass rod, and place it in front of the large cylinder. The conductor must be provided with projecting pointsto collect the electricity. Then make a leather
cushion, stuff with horsehair, and attach it to the cushion, stuff with horsehair, and attach it to the
board mentioned. Attach also, to the upper part of the cushion, a piece of silk which may be long enough to nearly reach the projecting points on the conductor. Better buy the required amalgam
for the cushion from an electrical instrument for the
maker.
(39) X.asks: What is the strength of a curpile, supposing the difference of themo-electric pile, supposing the difference of temperatures
between the electrodes to be about 100°, compared with that from a Bunsen pile? A. The value of the current depends upon the resistance in circuit. If this is small, 100 bismuth-antimony pairs may be made to give a current e
dinary Bunsen element.
(40) R. R. arks: Which is the cheapest, steam or water, to raisc a load of one tun through a shaft 100 or 200 feet deep? A. Water power, if
convenicntly at hand, would be the cheaper moconv
tor.
(41) C. M. B. asks: 1. Please give me the
(le for finding the angle for the teeth of a worm gear, the diameter at pitch line and pitch of screw being given. A. You will find it explained in Rankine's "Machinery and Mill Work." 2.Where should a crowned pulley be measured, in the cen-
ter or on the edge of rim? A. In the center, for ter or on the edge of rim? A. In the center, for
determining velocity ratio. 3. Is a cathead that determining velocity ratio. 3. Is a cathead that
part of a sliding or self-feeding boring bar to part of a sliding or self-fecding boring bar
which the cutters are fastencd, or is it a piece of cast or wrought iron pipe with setting, trued up by means of the set screws, and then held in the jaws of a back rest? A. So far as we know, the term has no meaning that is generally agreed upon. We would be pleased to hea from
(42) F A
(42) F.A. asks: How far will an injector for feeding water to steam boilers draw water per
pendicularly? Do you know of any injector pendicularly? Do you know of any injector
which will draw twenty feet? A. An ordinary lifting injector will raise water from 6 to 8 fect lifting injector will raise water from
It might be possible to make one lift 20 feet.
(43) M. asks: Why is it that a carriage with arge whecls draws easicr than one with smal
whecls? Is it a question of leverage or friction whechs? Is it a questh? A. Both.
or bothen
(44) L D. M. asks: Is the effect of falling water calculated by the effectthateach cubicfoot
would have, falling the given distance? A. Yes. At what temperature does the combustion o Why does amalgamation protect zinc when
ullone in acid and not when with copper? A. The
 the impuritites of commorecial zinc, which cause
local a cition on its surface when placecd in acid local ac
water.
(4:) (i. E. asks: Is the old ship log in useat present, or is therc any new improvement for
measuring a ship's speed? A. 1 is istill used, but many vessels carry in addition patent logs, which register the speed continuously by the action of a small propellcr on gearing which moves indexes.
(46) A. E. D. says, in reply to (C. S., who ordinary welding: Be sure that your bellows is in proportion to the work, and that your tweer is se set the iron so as to make the scarfs a little thicker than is usual in welding with stone coal; and place the iron considerably higher, say from two to fourinches above the tweer and considerably in advance, making sure that the blast passes through a thick mattress of incandescent coals,
but never striking the iron. The bulk of charcoal must of course be greater than if it were stone
coal. (4i) W. H. l' suys, in reply to A. P. Mc(.'s
query as to centilation of a schoolhouse: I would query as to ventilation of a schoolhouse : I would suggest the placing of a part of the heating sur-
face in chambers, in the basement, into which chambers fresh air from out of doors should be introduced, that it may be slightly warmed. ventilated, and brought into the room near the ceiling. In the floor should be registers of suitable size, connected with air ducts, leading to chimneys or to a central shaft, which should be
strongly heated to produce a powerful current at strongly heated to produce a powerful current at
all times. These chimneys, or the central snaft all times. These chimncys, or the arranged that they meay beated at all times, whether heat is needed in the building the firesh air free to tow in to take its place. A We are aware that the system of ventilation which you propose is the one more generally rocominended, where a plan has to be chosen at the inquestion is now provided with a heating apparatus which warms by direct radiation, and which the trustees would no doubt wish to alter as little as possible, provided a reasonable degrec of ventilation could thereby be obtained; and it was in view
of this state of things that our suggestions were madc. However, the theory that the more vitianot found to be always correct of the room in those who have had the experience of entering an upper gallery in a crowded church can testify; but where the air has remained undisturbed for some time, and is of even temperature, the bad air, being the heaviest, will no doubt lie upon the thoor. In the case in question, the air that has re-
maincd longest in the room will be the warmest, the lightest, and the most vitiated, and conse quently should pass of at the ceiling. Where the heating is done by indirect radiation the conditions are different and call for different treatment.
(18) R. P. (. says, in reply to J. S., who
asks how to make a raw hide perfectly transparasks how to make a raw hide perfectly transpar-
ent: Take a green hide (a dried one will not do) ent: Take a green hide (a dricd one will not do) W.l.h it, flesh it well, put it in hot water until the it on a beam, remove the hair, and put it in cold water. Do not let the water be too hot; try it with a small piece of hide. If it shrinks, add a little cold water. If a printed card is covered with such bide it can be seen as plainly as through gla.ss. When dry, varnish.
(19) J. V. II. N. Says. in reoly to correspondents who are troubled with Canada thistles Tective is to wait until the thistlesare in full bloom and before the seeds werefar enough advanced to ripen, and then now them down with a scythe which always ended the curse. The reason for this is that the stalk becomes hollow after the plant blossoms, and after the stalk is cutit fills with water, which rots the roots; and the seeds
not being old enough to ripen, the vitality ends. There may be a few plants which have not blos somed, and which thercfore will not rot but sprout again, which will require cutting again
when they get in bloom; and as they are all cut at once, they will grow and blossom at the sam time, so that the second cutting will tinish them have cleaned a feld, tiat was so full of them that by this method.
(50) J. C. W. saye, in reply to H. B., who compounded yearly, $\$ 2,000$ is of the of int value of 120 monthly payments of $\$ 40$: Fist find the present worth of the monthly payments for one year at simple interest: suppose it 10 per cent, which is $\$ 455^{\circ} 64+$. Then get the present worth of
an annuity of the $\$ 455 \cdot 67$ for 10 years at 10 per an annuity of the $\$ 455.67$ for 10 years at 10 per worth $\$ 2828 \cdot 77$, making an error of $\$ 828 \cdot 77$, which shows that the rate of interest must be more than
10 per cent. Then call it 20 per cent, and work it the same way, making the amount or present worth only $\$ 1902 \cdot 49$. Then by double position, work out the problem and find the rate of inrule will give a corrct answer, but it is a long operation.
(51) To D. N. G., of N. J., and many other correspondents: We know of nothing but poison of some kind that will kill potato bugs; and there is nothing less objectionable, that is effectual, than Paris green. Two tablespoonfuls of good Paris green, mixed with a pail of water and ap-
plied to the potato vine (early in the morning, beore the inscet hides away under the leares to avoid the sun) by sprinkling with a garden syringe or a whisk broom, will relieve you of your trouble. If the bugs appear on your tomato or instead of using any exterminatiog powder.

Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined, with the results stated:
A. C. R.-These are the green and blue carboates of copper.-A. A.-The magnesium could no. be extracted proitably from your rock.-J.
F - It is silicate of alumina (clay) colored by oxide of iron. It is not injurious to the boiler, but its presence in the water is unfortunate, as by its caking upon the surfaces of the iron, and its nonconducting property, a larger consumption of water. An analysis of the water is not necessary as this sediment reveals the nature of its impurities. The formation might in great part be prevented by filtration, before its introduction into he boiler.-N. W. D.-No. 1 is a tragment of
quartz rock. No. \boldsymbol{z} is also quartz.-G. B. C.-It is quartz rock. No. \boldsymbol{Z} is also quartz.-G. B. C.-It is decomposed granite.-D. D. N.-The small piece taining tin. Send us a larger specimen.-J. C. G. -It is not of natural origin; but in what manner this impure iron was formed, we cannot say.-w. .-True smalt consists of finely crushed cobalt glass. The samples you send are not smalt, but appear to be sand covered by means of some geltramarine and organic pigments-W. E N- Ut iron ore, but is too poor to work.-G. W. McE.They are iron pyrites, sulphide of iron.-S. K. H.

- No. 1 contains mica and hornblende. No. 2 is compact sulphate of lime. No. 3 contains malachite (groen carbonate of copper) and coppe per.-J. P. G.-No. 1 is titaniferous inon ore No 2 is hornblende and mica schist. No 3 is granite No. 4 is trap rock. No. 5 is granite. No. 6 is chalcopyrite in quartzoze rock. No. 7 is garnetiferous

COMMONICATIONS RECEIVED.
The Editor of the Scientivic American acoriginal papers and contributionsupon the follow ing subjects:
On the Age of the World. By E. O. L. On Steam Pleasure Wag
On Fish Tanks. By A.
On Fish Tanks. By A.s.
On a Memorial of the Centennial. By R. P. D. On a Cause of Fire. By J.
On Skylights. By A. B.H.
On the Bessemer Saloon. By A. K
On the Bessemer Saloon. By A.
On Grain Testers. By E. L. W.
On Reading Rooms. By J. O. C.
On Reading Rooms. By J. O.C.
On the Kentucky MeatShower. By A. M. E. Also inquiries and answors from the following :
D. S. B.-W. M. F.-W. L. S.-S. B. L.-T. G. R.-
D. K.-E. D. C. -W. J. D.-J. F. H.-C.J. McA.-

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fall to appear
should repeat them. If not then published, they should repcat them. If not then published, they may conclude that, for good reasons, the Editor
deelines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be
published here. All such questions, when initial only are given, are thrown into the waste basket, as it would fill half of our paper to print them all but we generally take pleasure in answering briefly Hundreds of inquiries anall iss is given.
are sent: "Who sells small engines and boilers, and what do they cost? Who makes spiral springs Whose is the cheapest air pump? Who sells boxwood for engravers' use: Why do not makers of agricultural machinery advertise in the Screntific American:" All such personal inquirlesare printand Personal," which is specially set apart for that purposo, subject to the charge mentioned at the head of that column. Almost any desired information can in this way be expeditiously ob tained.
[OFFICIAL]
INDEX OF INVENTIONS
Letters Patent of the United States June 13, 1876,
AND EACH BEARING THAT DATE.
A complete copy of any patent in the annexed list, ncluding both the spectications and drawings, will be
urnished from this ottlec for one dollar. In ordering, urnished from this otilice for one domar. In ordering , please state the number and date of the patent desired,
and remit to Munn \&Co., 37 Park Row, New York clty. Alarm and extinguisher, tre, Nevins \& simith.... 178,660 Alarm, portable burglar, X. W. Palmer
Alarm recorder, electric: tire, Annunclator, eiectrical, c. w. Holtzer Auker, earth, D. N. Root
Baby tender, T. Shaw
Baby tender, T. Shaw....
Baby walker, N. Nelson
Bag holder, Brown \& Colbert...
Baggage seal, J. L. Harley
Bale tte, B. K. Fowler.....
Bale te, A. A. Goldsmith
Bale tte, , . Hempsted
Bale tie, S. Palmate
Bed bottom spring, S. Holman...
Bed bottom spring, w. P. Rhee
Bed bottom spring, S. H. Reeve
Bee feeder, w. E. Hamilton.
Bee hive, Elliott \& Lucas.
Belt. voltalc,
Blackboard rubber, H Burrington.
Blind stop, J. L. Crawford.
Boiler, circulating tubular, G. S. Faulkner
Boller, steam washing, A. S. Herr
Boller, steam washing, A. s. Herr.........
Bonds, canceling machinefor, J. L. Harle

Boots, etc., driving nalls in, S. Harris. Booty, etc., making, C. W. Collyer.......
Bottle, smelling and perfume, H. Warne Bottle stopper fastening, E. Drehe
Bottles, molding A. R. Weber Bottles, molding, A. R. Weher
Bracket, wall, C. W. Latham... Broom machitne, Walrath \& Bronson (r)..
Brush-making machine, J. M. Plckering. Burial apparatus, L. H. Shula Burner, lamp, J. Curzon
Burnor, lamp, J. Engle, Butter package, W. B. Whitte
Button, fastening, R. W. Wust Hut Button fastening, A. T. Perrine................
Calendar and adding machine, W. Broomail
Can, Can, heating and cooling willk, M. Downey Can, refrigerating. J, G. Gimmy
Can, sheet metal, A. A. Cuevalle Can, sheet metal, J. F. Merrill.............
Can, etc, valve for varush, D. T. Crockett. Car axle box, J. M. Brosius Car coupling, J. Davenpor
Car coupling, R. Loomis...
Car coupling, c. L. Storrs.
Car coupling, s. Ustlck.
Car coupling, w. L. Yohn.

Cars, drawbar for rallway, W
Carpet stretcher, E. w. Bullar Carrlage bolts, making,
Cartrldge, w. s. smoot. Cartridge case, S. W. Wood. Chatr, folding, G. McAleer....
Claalr, folding, w. C. Ovenden Chairs, recliuing, T. M. Brintnall. .17,............ Chairr, rocking, J. J. Powers
Chandelter, Carter \& Browne Chandeller, A. Lang.
Chill, C. A. willon.
Chill, C. A. Willson...
Christmas tree bracket, A. Dainler
Churn power, c. W. Patton.... Clamp, tloor, G. (. S. Shaw....
Clod crusher, P. T. B. Smith Cloth cutting machine. P. C. Gerard Clothes pins, making, J. W. Millet.
Cock, stop, s. P. Brower............
Cotree mill, T. Strowbrige (r) Cotiln, F. H. Hill.
Comb, J. W. Flestischmann.
Cooker, feed, M. H. Beach

cooker, feed, Olmstead \& Wi Cooker, stcam, N. Jewett

Corset, G. S. Bracher
Corset, H. I. May
Corsets, eyclet springs for, G. s. Bracher.
Cultivator, w. Wright........ Cult tivator and seed planter, Spradley et ct
Cultivator beams, bending, s. E . Drake Curtain tixture, J. Collins Curthinon, upholostery, M. Elbert.
Damper, Λ. H. . $^{\text {Vorr }}$ Damper, Λ. . H. Norris.....
D.ce caster, G. K. MacInt Dlgging potatoes, etc., H.A. McLaughilin Door plate attachment, Young, Ree
Drying waring apparel. I. Braun (r
Duster, feather, J. L. Little (r).... Elbow machline, C. II. Amann Elevator, E. R. . . $\begin{aligned} & \text { ohnson } \\ & \text { Elevator, G. W. Reld... }\end{aligned}$. Elevator, hay, E. L. Church.......
Elevator, hydraulc, H. E. Bathrick Elevator, screw, II. W. Laifert
Engine valve, direct acting, w. H. MeFi
Engine valve , eur, H. J. Belirens..
Express call, Hingwalt \& Lamprey. Farrier's buttress, , oordon \& Sleepe Fence, $\boldsymbol{\Lambda}$. E. B.llett
Fence, metallic, Walker, Devoc \& Young.
Fence. portable, C. Rettz Fence, portable, C. Reltz
Fence post, Clark...
Fence wire, L. B. King, Jr....
Fence wire, barbed, w. G.
Fence wire, barbed, A. C. Decker.......................
Fertilizer and krain distributer, E. M. Willams.
Filterfor ilter for cisterns, J. M. Grove.. Fire arn, breech-loading, J. A. Heckenbach
Fire arm cartridg ejector Fire arm cartridge ejector, s. W. Wood.
Fire place, reversible, A. M. Ferguson Fire shield, w. Murray...........
Flag, design for, w. . Duff
Flue cap fastening, McMillen \& Rydman. Fog signal, E. E. Mann
Fork, horse hay, E. T Fork, horse hay, E. T. Stoughton..............
Fuel, decomposing water for, M. W. Hazclto Fuuling machine, C. P.' Cooldig. W....
Funnel and measure, F. H. Winston Furnace, tire-lieai ing. Studebaker \& Hinds Furnace, water chill, Davis \& Roberts
Furnace straw feeder, F. X. Fischer. Gas apparatus, portable, J. S. Thoman...
Gas cock and valve, C. A. Gerdencir... Gas titters' hooks, makin. W. . . Butler
Gas retorts, ofl feeding, J. Barbour...... Gas retorts, oll feeding, J. Glass, tempering, H. O'Vell......... Glove, w. F. Foster.
Grain binder
Grain binder, J. Garrard..
Grain binder, s. D. Locke
Grain, raking aud bindink, A. S. Harding (r)
Grate bar, W. T. Bate
Grubber, . Howe
Guns, recoll check for
Hame, L. Corr
Hanc, L. Carr......
Harrow, w. Taylor
Harrow, Tracy and Plat
Harvester, S. D. Locke
Harvester finger har, C. W. \& W. W. Marsh...
Harvester binder's stand, c. W. \& W. W. Mars
Harvester binder's stand, c. W. \& W. W. Ma
Harvester raising devtce c. w. Marsh et al.
Hat body, wire, A. Freshiticld............... Hat-pressing machine, M. A. Cumin Heater, J. E. Gridley....
Heater, sad Iron, R. Reld
Heating apparatus. c. Ezard
Heating apparatus, J. P. Gill Heel-polishing machine, R. F. Burns
Hinge. gate, Walker \& Devoe...........
Hinge. gate, Walker \& Devoe.... ...
Hog cholera, re nedy tor, W. J. Gal
Hook, button, H, s. Hurlbut........

gadvertisements.
Inside Page, each insertion -- -75 cents a line.
Back Page, ench insertion -- 81.00 a line. Back Page, ench insertion -- - 81.00 a line.
Engravings may head advertisements at the same rate
per Une, by measurement, as the letter press a per une, by measurement, as the letter press. Adver-
tisements must be received at publication afice ax parly u* Friday morning to appear in next issue.

置

 BPILEPSY OR FITS

COLDROLLED SHATTING

The fact that this sharting has 75 per cent greater

①) CTMNKET

 $\$ 5$ to \$20

\mathbb{I}W. F.

 ,

BOOKS
STEAM EN OINES STEAM BOILERS
ARMSTRONG.-The Construction and Manage-
 BAKER.-The Mathematical Theory of the Steam
 BURGH. - Practical Rules for the Proportions of
 poses. By N. P. Burgh. 12mo, cota................
BOURNE.-Hecent Improvements in the Steam
 CLARK-AA Elementary Treatiseon Steam $\&$ the Steam Engine , stationary and Rortable. By D. K. KInear
Clark C.E.E. With numerous iluatration, 12mo...81.75 $\underset{\text { EAMPIN--A Practical Treatise }}{\text { EA Mechanical }}$

 COLBURN.-The Locomotive Engine. Including
a deacription of ita structure, rulce for estimating itis caparinititer. of illat itruct iure,
SARDNER.- A Rudinentary Treatise on the

 MAIANND BROWN.................................... MAIN AND BROWN.-The Indicator and Dyna-

 Papers. One vol., 12m0, cloth.....................1..50
NORRIS.-A Hand-book for Locomotive Engl-
 PRRCTOR.-A Pocket-book of Useful Tables and

 sters

 WILSON.-A Treatise on Steam Boilers: Their
 Wwo The above or any of our books sent by mall, rree

HENRY CAREY BAARD \& CO.
INDUGTBIAL PUBLIBRRS, BOOEBELLERE AND IMORTRRG,
810 WALNUT STREET, Philadelphia.

 STEAM ENGINES FOR SALE.

NEW
 BOOK

 Hophysis fitiur finatan nod

 spare the croton \& save the cost.
Driven or Tlube Wells

 H Ow TO MAKE SpIRAL SPRINGS. By

Planing and Matching

 M $_{\text {achinery or rimproved strles foin }}$ Ho

Whiladelphia, and 79 Lberty Sts $\&$ CO., rice lists and pamphlets on application.

BLARE'S PATENT Stone and Ore Breaker

A DVERTISERSDESIRING ro REACH CoON-

 TO ELECTROPLATERPSEGEELERS, AND

 Gandinar's Path Coatring \& Sguaring Attachmant

R. a. STATE \& CO., Springfield, Ohio.

 WOOD, TABER \& MORSE, Eaton, Madison Co., N. Y. \rightarrow Steam Engines, Aritin $p \begin{gathered}\text { Portable, Stationary, } \\ \text { and Agricultural. }\end{gathered}$ and Agricultural.

 CR 816 ONLY FOR THE CENTENNAL

Factories tol et,at Haverstraw,n.f. Speon Hudgon River.-Two large Brick Factories re,

Wood-Working Machinery,
 aill

HOISTVERS IBLE MNGTE
 - ITE' sAfery hoistiva
 NO

Pond's Tools.
kngine lathes, planers, drills, \&o.
 DO YOU Male or Female. Send your add MONEY WANT Notanain
Lathes, Planers, Shapers, Drills,
 -

send for Pamber and

P. BIAISDELT \& CO..

SOLID WEALTH! $\$ 600,000 \mathrm{IN}$ GIFTS!
A FORTUNE FOR ONLY $\$ 12$. THE KENTUCKY CASH DISTRIBUTION COMPANY
 THURSDAY, AUGUST 31, 1876,
$\$ 600,000$!
Thos. P. Porter, Ex-Gov. Ky., Gen’ Manager.
POSITIVELY NO POSTPONEMENT: One Grand Jabh Gif8100,000

\qquad

RACING BOAT STOCK

SPANISH \& WHITE CEDAR.
 Ber and veneers, mahogant, satinwood
 $\mathrm{F}^{\mathrm{OR} \text { SALE-9x12 in. Woodruf } \& \text { Beach, } 11 \times 36}$
 M ANUFACTURERS AND PATENTEES hav-

advertisisments.

FUREIKA LATHE, \$9.

WITH FOOT POWER, 815. EUREKA M'F'G CO.,

Planing \& Matching.

TMMENTS
 [ESTABLISHED 1846.]

Mnan \& Co.'s Patent Offices.
The Oldest Agency for Soliciting Patents in the United states.
thirty tears' EXPERIENCE.
$\underset{\text { agency, at home and abroad, than through any other in }}{\text { MORE PATENTS }}$ agency, at
the world.
They employ as their assistants a corps of the most experienced men as examiners, specification writers, and draitsmen that can be found, many of whom
selected from the ranks of the Patent Ofllce.
Selected from the ranks of the Patent omice. selves of Munn \& Co.'s services in examining their inventions and procuring their patents.
MUNN \& CO., in connection with He SCIENTIFIC AMERICAN, continue tublication of ventions, confer with inventors, prepare dramingse, ipe-
ciftcations, and assignmente, attend to fling applications in the Patent Offle, paytng the government fees, and Watch each case step by step while pending before the ex-
aminer. TuIs is done through their branch offce, corner
F and 7 th streets, Washington. They also prepare and file caveate, procure design patents, trademarks, and re1seues, attend to rejected cases (prepared by the inventor
or other attorneys), procure copyrights, attend to interferences, give written opinions on matters of infringement, furnish coples of patents, and, in fact, attend to
every branch of patent business both in this and in forelgn countries. CAN of all inventions maten the SCIENTIFIC AMERIthe name and residence of the patentee. Patents are often sold, in part or whole, to persons attracted to the in-
vention by such notice. Patentsobtained in Canada, England, France, Belgium,
Germany, Russia, Prussia, Spain, Portugal, the British Colonies, and all other countries where patents are granted, at prices greatly reduced from former rates.
Send for pamphlet pertainingspecially to foreign patents Send for pamphlet pertainingspecially to foreign patents,
which states the cost, time granted, and the requirements or each coyutry.

Copies of Patents

Persons desiring any patent isued from 1835 to Novem-
er 26, 1867, can be supplied mith ber 20, 1867, can be supplied with offlial coples at readrawingsand length of specifications.
Any patent issued since November 27, 1867, at which time the Patent Offlce commenced printing the drawings
and specifications, may be had by remitting to this office 81.
be furnished for 81 .
When ordering coples, please to remit forthe same as bove, and state name of patentee, title of invention and date of patent.
ubtaining United States patents sent free. A handsomely bound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every
patentee and mechanic, and is a useful handbook of refparence for everybody. Price 25 cents, malled free.

Address MUNE \& CO.,
Publishers SCIENTIFIC AMERICAN,
Brarcb Op
agton, D. C.

Diamond Solid Rmery Wheds.

THITHTWROUGHT BEAMS \& GIRONES

THE UNION IRON MILLS, Pittsburgh, Pa. The artention on Engineers and A Arhitectr 18 called
to our improved Wrought-Ironn Bems and Grders
entat

W. C. DUYCKINCK,

Railway, Machinists', and Engineers' Supplies. 50 and 52 JOHN STREET,
THASKELL'S THREE CYLINDER PUMP H ASKELLS THREE CYLINDER PUMP-
Hill outw or Power. Cheaper than a Seam Pump.

DOWN TO \$8.00

 THE HEALD\& SISCO Patent Centrifugal Pumps.

Todd \& Rafferty Machine Co.

MACHINERY

iron a wood working machinery OF EVERY DESCRIPTION.
Cold Rolled Shafting.
Havarrs, pulges copplivas beling, ec.
GEORGE PLACE
 121 Chambers \& 103 Reade Sts., N. Y. Cits. IRON BRIDGE BUILDING-A complete ded
 N. WURNHAM'S

Water ${ }^{1874}{ }^{\text {rubbine }}$ Wheel

 B TRARDSS' PATENT UNVIVERSALECCEN

 COMPRESED ATR MOTIVE FowEr-For

The Scientific American REFERENCE BOOK

A Bound Book of 144 Pages, for 25 c.

3. The Patent Lawa of the unted su

 \%. Aueametry, as A ppled to toractral Purposes. With

 10

 MUNN \& CO., Publishers, scientifc American Oflice,
$3 \boldsymbol{y}$
Park Row, New York
PORTLANDCEMENT

 meenanical purpose9, Also, Dianond Toing, Saws, and
T HE CENTENNIAL INTERNATIONAL EX HIIITIIN OF 1876. - The full History and Progress
of the Exhbtition.

EAGIEFOOTLATHES,

WHIPPLE'S
Patent Door Knob.

NEWSPAPEER FILE.

 Seadoreas

The Tanite Co.,

 STROUDSBURG, PA. EMERY WHEELS\&GRINDERSCichac or mestern heal oqartirs

号Niagara SteamPumpWorks Charles b. hardick 23Adams Street
BROOKLYN, N. Y.
Machinists' Tools.
Easthes Planers, Drills, \&ec.
,
COVERING

 HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY.
 J. B. PILRCL Sen'

Min Furnishing Works Maw widuaw wiwaw wiw Mruste

or tee

SCIENTIFIC AMERICAN, FOR 1896. THE MOST POPULAB BCIENTIFIC PAPER IN THE WORLD
THIRTY-FIRST YEAR.

VOLUME XXXV.-NEW SERIES.

The publishers of the SCIFNTIFIC AMERICAN beg to announce that on the first day of July, to be the aim of the publishers to render the contents of the new volume more attractive and useful than any of its predecessors.

To the Mechanic and Manufacturer.
No person engaged in any of the mechanical pur-
suits should think of doing without the ScresTIFIC AMERICAN. Every number contains fram ix to ten engravings of new machines and invenThe SCIENTIFIC A MERICAN is devoted to the nterests of Popular Science, the Mechanic Arts, Manufactures, Inventions, Agriculture,Commerce and the industrial pursuits generally; and it is valuable and instructive not only in the Workshop and Manufactory, but also in the Hound containg hundreds of Notes, Receipts, and Sugges. tions and Advice, by Practical Writers, for Working Men and Employers, in all the various arts. TERMS OF SUBSCRIPTION - POSTAGB PAID BY US.
One copy Scientific American, one year .. $\$ 320$ $\begin{array}{ll}\text { One copy Scientific American, six months. } & 1.60 \\ \text { One copy Scientific American,three months } & 1.00\end{array}$ One copy Scientific American and one copy
Scientiflo American Supplement, both

Scientiflo American Supplement, both
for one year, post-paid.................. 7.00 A weekly paper, uniform in size with theScienTHFIC American, but a distinct publication. It contains workng drawings of engineering works, and elaborate treatses onevery branch of Science abroad. An illustrated cover protects the hand somely printed sheets. Price, $\$ 5.00$ per annum Single copies 10 cents.
Remit by postal order, draft, or express.
Address all letters and make all Post Office or-
MUUNNN \& CO. 37 PARK ROW, NEW YORK

