

THE LAMMERGEYER OR BEARDED VULTURE

The bearded vulture, called in Germany (where it is most common) lammergeyer, is the largest and most powerful of European birds of prey; and its German name is derived from its propensity to seize and carry off young lambs, a feat for the performance of which a bird must be largely endowed with strength and audacity. The bearded vulture, when fully grown, is about 4 feet high, measuring from 9 to when fully grown, is about 4 feet high, measuring from 9 to
10 feet from tip to tip of its wings; the head and neck are 10 feet from tip to tip of its wings; the head and neck are
completely clothed with feathers, and the base of the bill is completely clothed with feathers, and the base of the bill is
hidden by projecting bristles; the bill is long, strong, hidden by projecting bristles; the bill is long, strong,
straight, and laterally compressed, with the tip curved and straight, and laterally comp
sharp; a tuft of stiff bristles sharp; a tuft of stiff bristles
projects forward like a beard projects forward like a beard
from the base of the lower from the base of the lower
mandible; the wings are long, the second and third quills being the longest and nearly equal ; the tarsi are short and covered with feathers; the anterior toes are united at the base with a membrane; and the claws, especially those of the inner especially those of the inner and hind toes, are curved. In the adult bird, the upper part of the head, the neck, and the under parts are
whitish, tinged with orange, whitish, tinged with orange,
deepest on the breast; the deepest on the breast; the
wings and tail are grayish wings and tail are grayish
black, and the back deep black, and the back deep
brown; the wing coverts are brown; the wing coverts are
dashed with orange white; he beard and the space round the eye are black, and the bill horn-colored. The bird is found also in Asia and Northern Africa.
It is by no means uncommon for the lammergeyer to frighten its prey over a precipice, and then to descend and devour the car cass. In the admirable en graving* presented here with, its strength and fero city are shown to be successfully resisted by the matern al instinct of the chamois whose pavid offspring, well aware of the besetting dan ger, crouches in timidity be hind its mother. The up ward thrust of the chamois' head, armed with short, firm, retroverted horns, has evi dently struck the marauder enly struck the mare red righted scream is almost udible as we look on his spread tail and displaced feathers.

Use of Steam Carriages
The mechanical difficulties in the application of steam as a motive power for car riages have gradually come to be appreciated; and with the somewhat more complete knowledge of the conditions and requirements, it is pro bable that the next made in the nest by skilled made in and informed mechanics, wil effect more satisfactory re sults. It is a settled conclu sion that the adhesion of the wheels, or of a pair of them sustaining half the load, is ample for the purpose of impulsion at any grades practicable for ordinary road use, only noticing that the contact or bearing of the drivers upon the ground must be positive and uniform. A four-wheeled vehicle with axles attached to a rigid body, when standing or running on the uneven-generally twisted-surface of a road, will obviously rest or have its bearing only upon three of its wheels, and this condition of three points of bearing attaches to the tram road locomotive, as well as to the common road one. Balance bars or gimbal-hung swinging axles will secure the equal distribution of weight upon drivers, or,

DOE AND FAWN ATTACKED BY A VULTURE.
ess than that which accompanied the action of wheel less than that which accompanied the action of wheels
rigidly attached to an axis that it can be surmounted or endured. The conditions of leading the tram road carriage around the curve differ altogether from those of guiding the rdinary road carriage. The tram road carriage will guide itself, with either the Bissell two-wheeled truck, or more perfectly still with the old German six-wheeled wagon arrangement (in which the axles adjust themselves radially to any line of curvature) ; while the ordinary road carriage must have the swinging axle only for a guide.
In the application of power to the steam carriage, it is apparent that the starting resistance is the most difficult to overcome ; and although many methods suggest themselves, none has yet had practical application in service in parailel
work. The utilization of the momentum of stopping may be available to help the starting of a carriage. This has already been elucidated as possible on railway trains; but in this case the gain from all the momentum lost at a stop page bears so small a proportion to the labor of the locomo tive engine as not to be worth saving. The necessity of two speeds, at least, is acknowledged; but with the gearing of the jack-in-the-box there is no great objection to double of the jack-in-the-box, there is no great objection to double speed wheels in addition. The total motive power of th engine demanded is about what is rated tho horse power of the three-cylinder engine, now made by the thousand al most, in England, and it peculiar facility for the use of the expansive force of steam at high velocities, seems to open a ray of light into the darkness where the steam carriage of the future now lays. The recognition of the fact that the interstices of a mass of coal, on a given surface, present an equal area for any size of lump, whether coarse (large) or fine, only that all the lumps or grains must be sor ted to the same size, is slow ly being made; and as our fine anthracite coal, of pea size, runs like water, it fol lows that automatic firing of the small boiler will be the finality for the purpose o the steam carriage (as well as the possible finality of the firing of marine, if not all, steam boilers). This, with suitable automatic arrange ment for feeding, will per mit the steam carriage to be run by one man alone. Only some of the salient points of the mechanism of the com ing carriage have been no ticed here ; others of nearly eaual importance present themselves, which can be dis cussed or settled in the same way, by those especially in terested.
Eventually, the steam car riage will be as distinctive as the locomotive engine, and will have its nationalities as the locomotive has, and its individuality, as the Ameri can locomotive of to-day has William Mason inscribed up on it.
The steam carriage, when in use on the public high ways or tram tracks, will be much more safe from acci dent of any kind than the ordinary vehicle or the street car. The requirement or penalty can be made as stringent, as letting all statute laws out of the question will allow the enforcement of common law; and under the impulse of such penaltiessafeguards, catchers, detensafeguards, catchors, deten contrivances of all kinds will multiply to the point that will give security to the othr traffic, quite as great as that now attendant upon the average driver and the carriage horses; while the control of the apparatus, either to start or to. stop, can be made cerainly as effective as the present ordinary carriage, however arefully driven.-Journal of the Franklin Institute.
Hardened Gypsum, boiled with stearic acid or paraffin, much resembles meerschaum. The resemblance may be much increased by coloring the mixture with solution of gamboge and dragon's blood.
A Piece of wood cut from a tree is a good electrical conductor. Let it be heated and dried, it becomes an insulator. Let it be baked to charcoal, it becomes a conductor again
Burn it to ashes, and it becomes an insulator once more.

Srientific Smericau.

GTABLISHED 1846

MUNN \& CO., Editors and Proprietors

published weekiy at

NO. 3 ' PARK ROW, NEW YORK.
o. D. MUNN.
A. e. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN
One copy, one year, postage included....
One copy, six months, postage included.
Ten coples, one year, each $\$ 2$ 70, postage included
Over ten coples, same rate each, postage included.
The postage is payable in advance by t
criber then recelves the paper free of charge.
office and State address, plainly written. In cheir full names, and Post state former address,as well as give the new one. No changes can be made unless the formeraddress is given.
A distinct paper from the Scientican Supplement.
A distinct paper from the Scientific Amrrican, b
and pubished simultaneouslv with the regular edition.
TERMS.
One year by mal
TERMS.
SIngle Coples...
The safest way to . .. Address MUNN \& Co., 57 Park Row, N. $\overline{5}$
Subscriptions recelved and single coples of either paper sold by al
VOLUME XXXIV., No 25. [New SERIEs.] 1'hirty-first Year
NEW YORK, SATURDAY, JUNE 17, 1876

THE SCIENTIFIC AMERICAN SUPPLEMENT.
No. 25.
For the Week ending June 17, 1876.
TABLE OF CONTENTS.

 37 Park Row, New York

DARWIM'S THEORY OF PANGENESIS.

Seven years ago,Mr. Charles Darwin first presented the the ory of pangenesis After continued study during the inter val, he now reaffirms the hypothesis, and once more submits it, remodeled and fortified by a host of new facts and obser vations, in the recently issued second edition of "Animals and Plants under Domestication." The doctrine of natural selection presupposes variability as a necessary characteris tic of every organism,and this theory has been substantiated by a vast aggregation of observed facts. Of this accumulation, the work above referred to forms no inconsiderable part, since it deals with observations showing the amoun and nature of the changes which animals and plants have undergone while under man's dominion, or which bear on the pheral principal of variation. It is in ordert baw that Mr. Darwin enunciates a supposition which implies that every separate part of the whole organization reproduces itself. So that ovules, spermatozoa, and pollen grains, the fertilized egg or seed, as well as buds, include and consist of a multitude of germs thrown off from each separate part or unit. This connects and serves to explain a series of phenomena otherwise isolated and inexplicable; and of these a brief analysis is necessary to the proper comprehension of this very impertant and far-reaching theory.
Reproduction may be divided into two classes, namely sexual and asexual. The latter is effected in many ways, by the formation of buds of various kinds, and by fissiparous generation, that is, by spontaneous or artificial division. Be tween the production by fissiparous generation of two or more complete individuals and the repair of even a very slight injury, there is so perfect a gradation that it is im possible to doubt that the two processes are connected; and thus the several forms of budding, fissiparous generation, the repair of injuries, and development are all essentially the results of one and the same power. From well under stood cases of parthenogenesis and a variety of other in stances, the distinction between sexual and non-sexual generation is proved to be not nearly so great as hitherto supposed, and in fact they do not essentially differ; and therefore Mr. Darwin concludes that, with the power of regrowth and development, they are parts of the same law.
A few of the more striking phenomena, coördinated under this law, may first be examined. A multitude of the lower animals and vertebrates possess the wonderful power of reproduction of amputated parts. Spallanzani cut off the legs and tail of the same salamander six times successively. Tadpoles are capable of reproducing lost members, though full grown frogs are not. A crab regains lost legs; and gasteropod mollusks, whose heads are likely to be bitten off by fishes, have the power of reproducing those important members. In the case of those animals which may be bisected and chopped to pieces, and of which every fragment will reproduce the whole,power of regrowth must be diffused throughout the whole body
It is well known that buds may be inserted into a stock, and that plants thus raised are not affected in a greater degree than can be accounted for by changed nutrition. From this every-day, though little understood, operation of grafting is deduced the very important fact that formative elements this is on blening with those of a distinct iration) are no ns is the chief characteristic of sexual generation) are no buds and cellular tissue of plants.
A marvelous series of phenomena grow out of the circum stance that in the case of plants the male element may affect in a direct manner the tissues of the mother, and with ani mals may lead to a modification of her future progeny. Gal lesio fertilized an orange flower with pollen from the lemon, and the fruit bore stripes of perfectly characterised lemon peel. Not merely is the ovule affected, but the partially de veloped tissues of a distinct species, as is exemplified in a case where an Arabian mare bore a hybrid to a quagga. Subsequent colts by an Arabian horse were more striped even than the quagga itself, and presented other marked characteristics of that animal. Another well known instance is that of a fine bred slut,which, when once crossed by a mongrel frequently thereafter bears none but tainted ofsprang, the children of a woman by her second marriage often exhibit traits peculiar to her first husband.
We next reach the question of development, which is either slight and slowly effected, as in human beings, or great and sudden, like the metamorphoses of insects. By several distinct groups of facts, Mr. Darwin is led to the belief in the independence of parts successively developed. Again, physiologists agree that the whole organism consists of a multitude of elemental parts, which are to a great ex tent independent of each other; and a most curious array of facts may be adduced to support this view. The spur of a cock, after being inserted into the ear of an ox, lived for eight years, became nine inches long, and acquired a weight of nearly fourteen ounces. The tail of a pig has been grafted into the middle of its back,and reacquired sensibility. Ollier inserted a piece of periosteum from the bone of a young dog under the skin of a rabbit, and true bone was developed. French zouave once drove a thriving trade in Paris by sell ing marvelous rhinoceros rats. He imitated the horn of the rhinocerous by grafting a freshly removed rat's tail to
the forehead of a second rat. Lastly we of a second rat.
Lastly, we meet the phenomena of variability and inheri tance. Variability is not a principle coördinate with life or reproduction, but results generally from changed conditions actof newly acquired characters are acquired by offspring. A horse becomes trained to certain paces, and the colt inherits
similar consensual movements. A retriever taught to fetch and carry will transmitits endowments to its descendants. On the whole it may be concluded that inheritance is the rule and non-inheritance the anomaly. Reversion is not a rare event, but occurs so regularly that it is evidently an essential part of the principle of inheritance. In fine, in every living creature we may feel assured that a host of long-lost characters lie, ready to be evolved under prope ong-lost ch
It is clear that, through all of these phenomena, there ma e traced a possible action of the innumerable elements com posing every organism, each possessing its own attribute and to a certain extent independent of all the others. Now remains to connect all under the law. It is universally dmitted that the units of the body increase by self-division or proliferation, retaining the same nature, and that the may ultimately become converted into the various tissue nd substances of the body. But besides this means of in rease $\mathbf{M r}$. Darwin assumes that the units throw off minut ranules which are dispersed throughout the that these, when supplied with proper nutriment, multiply by self-division, and are ultimately developed into units like those from which they were originally derived. These granules may be called gemmules. They are collected from all parts of the system, to constitute the sexual elements, an heir development in the next generation forms a new being but they are likewise capable of transmission in a dorman tate to future generations, and may there be developed Their development depends on their union with other par ially developed cells, which precede them in the regula course of growth. Gemmules are supposed to be thrown off by every unit, not only during the adult state, but during each stage of development of every organism: but not ne cessarily during the continued existence of the same unit Lastly, it is assumed that the gemmules in their dorman state have a mutual affinity for each other, leading to thei ggregation into buds or into sexual elements. Hence it i ot the reproductive organs or buds which generate new or anisms, but the units of which each individual is composed These assumptions constitute the provisional hypothesis, to which Mr. Darwin has given the name pangenesis.

ANOTHER DASTARDLY ATTACK

The Chicago Tribune says: "The wrongs of women and negroes have monopolized public attention for many years. Serious as some of them are or have been, the wrongs of boys are as bad, if not worse. For a series of years, the boys of America have been shut out, more and more com pletely with each year's advance, from the chance of learning a trade. The trade unions, with almost incredible blind ess, have adopted rules which prevent the employment of ny except a very limited number of apprentices. Thes ules forbid a master to employ an apprentice unless he employs a certain number of journeymen; and in some trades, the proportion is one boy to twenty men. The few place left vacant by apprentices becoming journeymen are soon filled. Tens of thousands of boys are thus deprived of the opportunity to become reputable and self-supporting artisans When they leave school and try to do something for them selves, they find the doors shut in their faces. Instead of becoming blacksmiths, silversmiths, carpenters, compositors cabinet makers, coachmakers, hatters, machinists, bakers, tanners, tinners, tailors, masons, shoemakers, stonecutters, plasterers, bricklayers, weavers, they have to become boot blacks, newsboys, errand boys, loafers, dead-beats, paupers hieves, etc. No one of the occupations open to them offer any education, except in a sort of cunning which is often a curse. If the members of the so-called liberal professions, the journalists, lawyers, teachers, doctors, and ministers, should successfully combine to prevent the education of boy and young men in any of their specialties, there would be universal howl of complaint. A far greater wrong is com mitted, however, when trade education is prevented. Many ore boys are affected, for one thing, and most of them must o to work at once and labor constantly in order to live they do not this, and do not steal, they must starve.
When will respectable papers, like the Chicago Tribune learn to cease such dastardly attacks as the above upon the workmen of our country and their trade societies? The workers comprise the vast majority of the population. Is not all the wealth of the country the result of their labors Do they not pay the taxes? Do they not support the govern ment, as well as their own families? If they prefer to do ll the family work in person, shall they not enjoy the priv lege? To be sure, their boys would be benefited by indus y y their mothers and sisters would be rendered more com ortable and happier if the family income were increased by he earnings of the lads. But if the fathers, who form an overn the societies, prefer to do all the work, and exclud he young fellows, it is their privilege, and the Chicago Tri une need not complain about it.
Not long ago, the legislature of this State passed a billre quiring that felons and other criminals in certain prisons should be compelled to work. It costs, say, $\$ 2$ a day to sup port each one of these rogues, which expense, as everybod knows, is paid, indirectly, out of the earnings of the work ing people. But strange to say, the moment the bill passed he Governor was waited upon by officers of trade societies, epresentatives of the working masses the voters, request ing that the bill should be vetoed. Labor, they argued, is so scarce that, if the thieves are allowed to work, we honest
people will havenothing to do. "Very well," perhaps thought the Governor, "it is your own affair. You may continue since you prefer it, to tax your earnings and distress you families, in order to support these wretches in idleness." So the bill was vetoed.

vortex atoms.

Any one who has ever witnessed a cannonade on a still day can hardly have failed to remark the great rings of smoke, which often arise from the cloud belched forth by
the guns, and float aloft for a considerable period before bethe guns, and float aloft for a considerable period before be-
coming dissipated. The same rings are produced on a small scale by smokers of tobacco, by a sudden expulsion of air from the mouth, the lips being placed in a peculiar position There is also an easy way of making them for purposes of examination, which consists in providing a box having a round aperture at one end, and its opposite extremity covered only with cloth. The bottom is sprinkled with a strong solution of ammonia, and a dish of common salt and sulph uric acid is inserted. The gases arising from the salts and acid combine in the shape of smoke, and the latter may be expelled in beautiful rings suddenly on the cloth back.
When the behavior of these rings is critically investigated, it appears that they have peculiar properties. When two impinge, they act as if made of solid elastic material, and vibrate independently after the shock; or vibrations may be produced in them by ejecting them through a square in stead of a circular hole. The circle is the position of equilibrium, and the irregularly-shaped ring vibrates about that form. Another curious result is that, if the two rings are moving in the same direction, with their centers in the same line and their planes perpendicular to that line, the pursuer contracts and moves faster, while the pursued expands and moves more slowly, so that they alternately pass through one another. If they are moving in opposite directions, under like circumstances, both expand indefinitely, and more slowly and slowly, never reaching one anoth \mathbf{r}
Now each ring or vortex contains not merely the matter in fine division forming smoke, but a certain definite proportion of smoky air, which, in virtue of the vortex motion, has be come a different substance from the surrounding air, and moves througf it very like a solid body. If there were no
such thing as fluid friction in the atmosphere, the ring would such thing as fluid friction in the atmosphere,the ring would go on moving for ever ; and not only this, but the portion of the fluid containing the smoke and marked thereby would remain precisely the same set of particles of the fluid as it moved through the rest. Consequently those thus marked by the smoke would be,by the fact of their rotation,differen tiated from the surrounding an creative power be made to any process short of
Helmholtz has shown that the properties of every vortex ring are, first, that every part of its core is essentially rotating. As a ring approaches the observer, every portion of the inner side is moving forward, and every portion of the outer side is moving backward; and if the face be placed in the path of a large ring, a sudden blast of air will be felt
flowing through the center of it. Thus the vortex ring not only involves in itself rotating elements, distinguished from other elements of the fluid, but it also is associated necessarily with other movements through the non-differentiated air, and especially a forward rapid current of air, passing through its center in the direction in which it is going. Helmholtz has further shown that such a ring is indivisible. The sharpest knife will not cutit. It wriggles around the blade and moves away. It is not that it cannot be cut, but you cannot so much as get at it so as to try to cut it.

Again, vortex filaments existing in a continuous medium of any kind must either be endless, or else the ends must be in, the free surface of the liquid. The last condition any one can realize by drawing his teaspoon over a cup of tea and lifting it from the surface. There will be a couple of little whirlpools going round in the tea, rotating in opposite directions, the two moving forward (as do their sides which are nearest one another) in the direction in which the teaspoon was drawn. These two little eddies are simply the ends of a half vortex ring, and they are on the free surface of a liquid.
We are now in a position to understand Sir William Thomson's recent theory of vortex atoms, which Professor Tait explains in his "Recent Advances in Physical Science,"* from which we have freely drawn for the foregoing. We agency could produce a vortex ring in it, or destroy one alagency could produce a vortex ring in it, or destroy one al-
ready there. No process at our command could enable us to ready there. No process at our command could enable us to
do either; because in order to do it, fluid friction is essentially requisite. Now, by the very definition of a perfect fluid, friction does not exist in it. Sir William Thomson suggests that the Universe is filled with something which we have no right to call ordinary matter (though it must possess inertia) but which we may call a perfect fluid. In this vortex, motion once produced by creative act remains until the same power removes it, Thus, he argues, this property of rotation may be the basis of all that to our senses appeals as matter. All atoms of matter are vortex rings; and in a
perfect fluid filling all space and having no surface, there can be no ends. All vortex atom rings, therefore, must be endless, that is to say, must have their ends united together after any number of convolutions. Lastly, the indivisibilafter any number of convolutions. Lastly, the indivisibil-
ity of a ring shows that, in that sense, at least, it is literally ity of a ri
an atom.
This idea enables us to explain a great many properties of matter, but it carries with it a host of mathematical difficulties. The theory has but passed its first trials, and, being admitted as a possibility, it is left to time and the mathematicians to settle whether really it will account for everything experimentally found. If it does so, and if it, in addition, enables us to predict other phenomena, which in their turn shall be found to be experimentally verified, it will have all
the possible claim on our belief that any physical theory can ever have.

THE CENTENNIAL EXPOSITION

The attendance at the Exposition is now steadily increas ing. On Decoration Day, fully 50,000 people passed the gates, and the Main Building and Memorial Hall were, fo the first time, uncomfortably crowded. The twenty-eigh groups of judges have completed their organization, and the members are busily at work preparing their reports. The system adopted of dividing the duties, each member making his own examination of the articles submitted, in stead of requiring the exhibits to be investigated by com mittees of several judges, as has heretofore been done in other expositions, is said to work admirably, saving an immense amount of time to the commission, and, withou siderable comment has been aroused regarding alleged inju siderable comment has been aroused regarding alleged inju-
ries to the pictures committed by careless visitors, and the Austrian Commission had their gallery closed until railings around the works of art were erected. It has since been found that but two pictures were damaged, and in neithe case could the mishap be charged upon visitors, as the injuries were discovered to have occurred during transportation. Horticultural Hall, in which the display at the opening was not large, is being rapidly filled. The latest arrival is a fine selection of tree ferns from Australia. The English rhodo dendrons are now in full bloom, and present a magnificent appearance, although they show evidence of the long voyage disagreeing with them. A much handsomer display of these beautiful flowers may be seen at the present time in Llew ellyn Park, Orange, N. Y. Between the British Government and the T. A. B. fountain, a Canadian lumber merchant has erected a house built of rough lumber, just as it comes from the yard. The roof is made of huge unbarked timbers, each twenty-four inches in diameter, and the sides are composed of
boards piled to form a wall a foot thick. Inside, a monster boards piled to form a wall a foot thick. Inside, a monster
section of a pine tree is exhibited. The big Krupp cannon has at length reached the grounds, and is being placed in Machinery Hall. The pumps annexed to that building are now at work, producing a miniature Niagara for three hours
daily. The Brewers' Building is rapidly approaching com daily. The Brewers' Building is rapidly approaching comstructed betwious section of elevated railway is being con cars are built something after the Swiss cottage pattern.

he japanese bronzes and lacquered ware

we have already alluded to, as one of the most remarkable portions of the general display. The grotesqueness of Japanese art is employed in these with wonderful effect. There colored with reds, blues, and yellows, protected by the famous Japan varnish, which will withstand the hottest water Perfection of joiner work, unique ornamentation, and exquisite selection of colors are especially noticeable in the cabinets, some of which, scarcely larger than a modern mu sic box, range in price from $\$ 125$ to $\$ 1,000$. It is in the modeling and the preliminaries to the casting of the bronzes that the peculiar genius and perseverance of the Japanese
are disclosed. The models are made in wax; and in that material everything, down to the smallest feather of a bird's wing or the hair of a spider, is elaborated with scrupulous care. The wax model is then painted all over with a coating of finest sand, held together by a fireproof mucil age. The first coat is laid on with exceeding care, so as to fill every tiny interstice. So with all following coats, which
may number hundreds, until sometimes six months are conmay number hundreds, until sometimes six months are con-
sumed in the work of painting a cumulative mold three or four inches thick. When the latter is rendered sufficiently strong, the wax model inside is melted and removed. The bronze is then poured in, and the whole object completed in a single casting. The mold is subsequently removed with
care only second to that employed in its construction, leaving the bronze without a crease or flaw. From this proces emerged the magnificent incense bearer which stands at the entrance of the Japanese section. It represents a vessel surmounted by an eagle and flanked by flocks of birds. The price was $\$ 4,500$, and it was purchased for the English South Kensington Museum.
As there are no patent laws in either China or Japan, the mode of preparing the patina given to these bronzes has remained secret for ages, and has been handed down from father to son. Chemical analysis has, however, revealed the composition of the alloys, and M . Morin has discovered
that the patina of the celebrated black bronzes is due to the use of an alloy composed of 80 per cent of copper, 4 of tin, 10 of lead, 2 of zinc, 4 of iron, besides small proportions of gold, nickel, arsenic, and sulphur. Some of the bronzes analyzed show a proportion of lead varying from 10 to 20 per cent, added at the expense of the copper, and a quantity of 7 per cent of tin. Molded in thin plates, this bronze is very easily worked, and the patina appears of itself when the metal is subjected to a high temperature in a muffle furnace. It is, however, very brittle. Chemical analysis is certainly of respect the labors of the French investigators have been attended with remarkable success, and have resulted in the production of bronzes even better than those of the Japanese since they have a strength equal to that of ordinary bronze.
The process consists in preparing a ground by the action of chemicals having oxides and sulphides of copper as their bases. If different tints, black, brown, red, or green, be desired on the same object, it is sufficient to cover with a protecting varnish all portions of the surface except those to which it may be desired to give a certain hue; then when with varnish, while the other parts of the surface now exposed are subjected to the action of the chemicals, and so
on for as many tints as are required. The inlaid enamel work which is performed by oriental artists with so much skill and patience, and at the same time with such primitive ppliances, is now executed by simpler and quicker means. The object to be inlaid is entirely covered with varnish, por tions of which are removed by a graver so as to form the de sign; and thus prepared, it is subjected to the action of a galvanic bath of gold or silver, which deposits the metal in the places laid bare by the graver. Another method is, how ever, mentioned by M. Morin. After the removal of the var nish, according to the pattern made by the graver, the object is plunged into a solution of cyanide of silver. The salt is de posited on the lines from which the varnish has been re moved; the object is heated in a muffle furnace, and the metal appears on the black patina. Inlaid patterns of gold and silver may be obtained, either of their natural bright ness or with a dead surface, the latter being effected by different processes of oxidation ; so that, on the same object by making use of the protecting varnish, designs in gol and silver of various degrees of luster may be combined.

THE ENGLISH ENAMELS.

It is a notable fact that the present specimens of Japanes and Chinese enamels are fairly approximated by those exhibi ted by the Messrs. Elkington, of Birmingham, in the English section. The cloisonnée work forms an imperishable picture capable of resisting everything but intense heat and great violence, and is a material which lends itself with especial readiness to rich and harmonious coloring; while the delicate bright metallic lines bordering the cloisons form a pleasin contrast to the comparative dullness of the opaque glass.
the russian exhibit,
which two weeks ago existed only in packing boxes,now bids fair to attract remarkable interest. Portions of it will remind ne of the famous reply of Prince Demidoff, who, when a lady somewhat ostentatiously exhibited to him a set of malachite jewelry, carelessly remarked: "Yes, I have a mantle piece made of that." From the celebrated mines owned by the above dignitary, several superb malachite urns, table tops, and mantle pieces, have been sent, valued at several hundred dollars each. There is besides a pair of lapis lazuli vases in this collection, valued at $\$ 500$. The Russian ma chinery is not yet in place; but as thirty car loads arrived in a single day recently, a fine display may be anticipated.

mexico

astonishes visitors to her section by exhibiting a circular mass of pure silver weighing 4,000 lbs., and valued a $\$ 72,000$. The mineral contribution of this country is ex ceptionally good. There are some fine cannel coal and a col lection of beautiful opals and precious gems imbedded in ore. In textile manufactures, Mexico compares favorably with other nations, and exhibits cloths and cassimeres of the finest workmanship. There is a large display of medicinal plants, coffee, and tobacco, and also a valuable exhibit,showplants, coffee, and tobacco, and also a valuable exhibit,showing the many uses of the agave. The fiber of this plant
is made into rope, paper, and cloth, and its flower yields an intoxicating drink called pulque.

SWEDEN

carries off the palm for the best show of iron and steel Twenty-eight exhibitors contribute, and among them the two largest establishments in the kingdom, those of the Molota and of Sandark. Huge columns, pyramids of iron and steel bars and pipes, and great screens towering to the roof of the building, on which are arranged tires, bars, and ingots, are on every side. A very tasteful exhibit is the bow of a Viking's vessel,the mast and rigging of which are made of various forms of iron; and the ornamentation is entirely composed of the same metal, in the shape of rivets, nails, Professor Lödermann's plaster figures attract a great share of attention; and they embody admirable representa tions of the costumes and appearance of the Swedes and Laplanders. Such great care is taken to insure absolute correctness in details that, when the hand of one of the figures was broken in transit, it was supplied by a cast take from the hand of a Swedish girl in the employ of the com mission. The expressions of the countenonces and the attitudes of the figures are wonderfully natural. One of the groups represents a hunter and his family, gathered in front of a deer that has just been shot. Another admirable group is that of a Laplander,in his sledge drawn by a reindeer, who tops to chat with a fur-clad woman carrying her baby slung o her neck in a kind of trough. There are various other roups,representing bridal parties and household gatherings, equally fine. Numerous cases of matches form a prominen feature of the Swedish exhibit, for with this commodity Sweden furnishes all Europe. Some of the finest carpentry work in the Exposition is shown in two garden pavilion contributed by a Stockholm maker. A large collection of building stones illustrates the richness of the country in hese materials; and a table of red porphyry, with mosai work in many colored stones, forming a center piece,exhibits the skill and taste of the Swedish artisans using them. The woolen fabrics displayed are as good as those in the English department, and excel those contributed by Ger many. The ceramic collection contains many curious ob jects. The most striking is a porcelain stove about 12 feet high, of a delicate blue, ornamented in gold and darker blue Its price is $\$ 1,000$. There is also a peculiar kind of war made apparently of répoussée silver and porcelain. The notice of the Swedish exhibits in the Machinery and Agricul tural Halls, we are obliged to defer till another issue.

Equal parts of fine filings of zinc and tin, mixed with sufficient mercury to form a thick paste, and pulverized when partly hardened, makes an excellent amalgam for elec trical machines.

INDUSTRIAL APPLICATIONS OF CARBONIC ACID

The list of investigators of carbonic acid begins at the opening of the seventeenth century with the Dutch philosopher Van Helmont. It was then known as spiritus sylvestris, and the word spiritus, being translated literally. became geist in German and ghost and gas in English. The word gas was originally employed in connection with carbonic acid. Van Helmont recognized the identity of the gases evolved in fermentation and in the burning of lime. He also pointed out the fact that the poisonous gas in the Grotto del Cane, in Pyrmont, and that obtained from limestone by the action of Pyrmont, and that obtained from limestone by the action of acids, were the same spiritus sylvestris. As an
the crude analysis of his time, we read that he the crude analysis of his time, we read that he
burnt 62 lbs. of wood, from which he obtained burnt 62 lbs. of wood, from which he obtained
61 lbs. of ashes, which leaves a difference of 1 61 lbs. of ashes, which leaves a difference of 1
lb. for carbonic acid. Hoffmann, the next investigator, discovered that this gas reddened the blue coloring matter of litmus. The Scotch philosopher Black proved that this gas must be entirely different from air, and recognized the fact that it was an acid. The lecturer then showed the action of carbonic acid on lime water. A perfectly clear solution of the latter was at first rendered turbid and milky from the precipitation of carbonate of lime; and then, on continuing to pass the gas through it, it became clear again from the resolution of the carbonate of lime by the excess of the carbonic acid. This circumstance showed Lord Cavendish that the nic acid, could take up lime and other earths from the soil and deposit them again on evaporation of the gas. This is the origin of the troublesome boiler incrustations. It was next shown that the gas exhaled from the lungs was carbonic acid, by applying the lime water test. The lecturer showed this experiment by means of a little glass tank filled with clear lime water colored by litmus, which was placed in the lantern and reflected on the screen. On passing the breath through the solution, the color changed to red, and the turbidity arising from the pre cipitation of carbonate of lime was apparent on the screen.
The first industrial investigation of carbonic acid was made by no less a person than Dr. Priestley, the discoverer of oxygen. He resided near a brewery, and studied the gas given off there on a large scale by fermentation. His experiments were illustrated by Professor Leeds, who had a large vessel of fermenting malt liquor on the stage. A lighted match held above the liquor was instantly extinguished. The gas being very heavy, it could be scooped out with a quart measure, and poured from one vessel into another without danger of loss. After pouring it back and forth several times, a candle was extinguished by merely emptying the vessel over it. Water poured back and forth, in the atmosphere of carbonic acid contained in the large vessel of malt liquor, absorbed a sufficient quantity of the gas to become milky on the addition of lime water. Priestly thought that
the antiseptic properties of this body could be utilized by impregnating water with it, and conducted the gas made from limestone into a vessel of water by means of a leather tube.

Fig. 2.-GAS GENERATOR AND WASHER.
From this primitive device of Priestley to the beautiful and elaborate apparatus of Mr. John Matthews, of this city, which was exhibited upon the stage and is represented in Fig. 1, was indeed a giant stride. On the left is the gas generator, the construction of which will become clear by inspection of Fig. 2. From the generator, the gas passes through a smaller vessel containing water, which washes it, and is then conducted into the fountain on the right under high prescure. Fig. 2 exhibits the internal arrangement of the gas generator and washer. A mixture of sul phuric acid and water is introduced through the bung, A,
and the marble dust is poured in through B . The acid li quor passes to the bottom of the vessel; but the marble dust is arrested by a diaphragm, M, furnished with several slits, through which the marble dust is made to sift when the shaft S , is caused to revolve by turning the handle, E . At the same time the agitator, 0 , facilitates the evolution of gas by keeping the mixture constantly stirred. As soon as a pressure of 105 lbs ., indicated by the gage, L , is reached, the stop valve, G, of the fountain (Fig. 1) is opened, and the gas is made to pass into it slowly, by gradually opening the stop valve, D, of the gas washer. When enough gas has come over, the valves are closed, the pipe, F, is disconnected, and the fountain is made to revolve in its frame for about ten minutes to aid the absorption of gas by the water. It is then ready to be placedin of those artic

Numerous natural mineral waters, renowned for their cu ative properties, have been analyzed, and are now prepared artifieially and charged with carbonic acid gas. A numbe of them were tested before the audience for various consti tuents.
Another industrial application of carbonic acid is in the manufacture of aerated bread. In ordinary bread, the yeas produces a fermentation by which carbonic acid is evolved which gives to bread its spongy character. The same thing is accomplished without yeast by forcing carbonic acid gas ander pressure into the dough.
The successful extinction of fires in mines by means of arbonic acid gas has developed a new industry, that of the fre extinguishers, of which the Babcock is the most com mon. This consists of a portable cylinder, in which a charge of sulphuric acid can, at a moment's notice, b inverted into a quantity of marble dust, and the pressure developed by the resulting gas employed to project a stream of water, in case of fire. There is hardly enough gas present to be of much service as an extinguisher; the ad vantage of the apparatus lies in its convenience.「o show its action, some benzine was poured on the floor of the stage, kindled, and then pu out by a stream from a Babcock apparatus.
The lecturer next proceeded to the interest ing experiment of liquefying and solidifying carbonic acid. For the purpose of accomplish ing this, high pressure and cold are necessary The pressure was obtained from Ritchie's im proved form of Natterer's apparatus, Fig. 3 which stood on the stage, and was driven by steam power derived from the engine in the basement of the Institute. In this apparatus the gas is conducted into a bronze receiver ca pable of resisting a pressure of 200 atmospheres, and is condensed by means of a steel force pump. The receiver is surrounded by a cop per cylinder containing a mixture of ice and salt. When enough of the gas was thus lique fied, it was caused to pass through a tube termi nating in a fine rose of wire gauze and into lined woolen bag. On passing out, the cold pro duced by evaporation was so intense as to freez the liquid carbonic acid, which formed a depo sit resembling snow ; in fact, the lecturer mad a little snowball of some of it, and threw it

Fig. 1.-CARBONIC ACID GAS GENERATOR.

da water apparatuses, which are so familiar to all as to need da water apparatuses, which are so familiar to all as to need
no description. The generator and fountain just described are made extremely strong and constructed with the utmos care, not only to prevent accidents from explosions, but also to obtain a product of the utmost purity. They are lined throughout with tin, and all the connections are covered with the same metal. If the sulphuric acid came in contact with iron, hydrogen would be generated and would contaminate the gas ; if the carbonic acid liquid came in contact with

Fig. 3.-LIQUEFYING AND SOLIDIFYING CARBONIC ACID lead, it would dissolve enough to produce poisonous effects To illustrate the solution of lead by carbonic acid water, the lecturer agitated some soda water in a piece of lead pipe, and then proved the presence of lead in the water by adding sulphide of ammonium and obtaining a black precipitate. As an illustration of the immense proportions to which the soda water business has attained in this country, he estimated that no less than a hundred million glasses were consumed annually.
A large number of ingenious varieties of soda water bottles and siphons, together with the apparatus for filling the latter, were exhibited. They had been loaned for the purpose by the manufacturer, Mr. John Matthews. The filling apparatus consists of an iron frame which firmly holds the siphon in place in a favorable position for filling. When the siphon is inserted, the screen is made to slide over it to prevent accidents caused by bursting, and to keep it in plaee; the fountain valve is opened, and the treadle is pressed down with the foot, by which the siphon spout is pressed into the filling head
among the audience, with the caution not to allow it to mel in their hands, as it would blister them. Numerous experi ments were made with this substance, the most interesting of which was the freezing of mercury in a white hot plati num capsule. Water placed in the latter assumes the sphe roidal state, in which it does not really touch the vessel, be ing separated from it by a layer of steam; if now solid carbonic acid, mixed with ether, is introduced into the water, enough heat is absorbed by the evaporation of the carbonic acid
ture.
in the m
C. K ture.
Wooden Pavements made Successful in London. After a sufficient comparative trial, the contest between granite, asphalt, and wood for carriage ways has been decided in favor of the last, and the recent conclusion of the Cor poration of London may be regarded as a final confirmation of that decision. Mr. Heywood, engineer for the city, has shown that before a horse falls he may be expected to trav el on granite 132 miles, on asphalt 191 miles, and on wood 446 miles; and although between the two last material there is a trifling advantage in the cost on the side of as phalt, that is much more than counterbalanced in other ways. In easy traction and the absence of noise there is no comparison between wood and granite, and since the surface water has been kept out by means of asphalt, wood has be come one of the most durable of pavements. The rapidity with which it can be laid and the ease with which it can be repaired are not the least of its merits, while the flooring of planks, which is now laid as a superstructure, gives great elasticity, and, by distributing the weight equally over the whole pavement, adds to its power of endurance.

To Blacken Brass.---To Clarify Shellac Solutions.

The Bulletin Belge de la Photographie gives the following as a good and convenient method of blackening brass sur as a good and convenient method of blackening brass sur
faces for photographic purposes. The metal, having been faces for photographic purposes. The meth a clation of bi
thoroughly cleaned, is brushed over with a solution thoroughly cleaned, is brushed over with a solution of bi-
chloride of platinum, known as chemical bronze. If one or chloride of platinum, known as chemical bronze. If one or
two drops of solution of nitrate of silver be added to $\frac{1}{6}$ of two drops of solution of nitrate of silver be added to $\frac{1}{8}$ of
a cubic inch of the platinum solution, its action is considerably augmented. For clarifying solutions of shellac the same journal recommends the addition, to the varnish it is required to clear, of a quantity of powdered chalk equal to the weight of lac used. After thoroughly mixing, and heat ing to 60°, the mixture is allow to settle, when three quar ters of the bulk may be poured off perfectly clear, or, if nec essary, it may be filtered with the greatest ease.

Photo Printing Plates.

M. J. Husnik employs the following formula for the pro duction of engraved plates by means of photography. It is based upon the use of bichromatized gelatin, the necessary grain being given by chloride of calcium. The formula con sists of gelatin, 24 parts; bichromate of ammonia, 4 parts alcohol, 72 parts; chloride of calcium, 4 to 5 parts; water, 240 parts. This is spread upon glass or other suitable sup port, and, after exposure and washing, is used for the pro duction, by the galvanoplastic method, of a plate, from which the prints are pulled in the usual manner.

IMPROVED COUNTRY HOMES.

Mr. Woollett, in his book on "Villas and Cottages, or Homes for All," published by A. J. Bicknell \& Co., New York city, describes a villa of frame structure designed for erection on a stone foundation, with cellar, with heavy sill, corner posts, girts, and plates, and filled in with brick. The house being intended for a central location between other buildings, on a lot of moderate width, has a nearly symmet rical front. Individuality is given to the detail by using panels and bands, covered with cutshingles in place of clapboards, on rough boarding. The roof is also covered with boarding. The roof is also covered with shingles; and both those of the roof and band are painted in deeper tints than the main wood work. The finish of the interior is to be in
white ash and butternut. The estimated cost white ash and butternut. The estimated cost of the house is about $\$ 8,000$

A New Profession.---A Champion Speller Spelling bees, which went out of fashion here a couple of years ago, have been for several months past the subject of a furore in England. Our English cousinshave vanquished us fairly in turning these meetings into moneygetting affairs. The most we ever made was admission money at the door, and the victors the match usually proudly bore away a copl of Webster's "Dictionary." In England, howof Webster's "Dictionary. In England, how ever, halls are hired, and large money prizes are offered to the best spellers, the contestants being charged an entry fee similar to that put up by the backers of horses in a race. The man agers, of course, find their profit in these deposits. The most curious part of the whole is that the fact of the money awards being offered has given rise to a new business, that of "cham pion speller." Several people, who have a fair knowledge of orthography to begin with, have literally crammed themselves with dictionary lore, so that they are proof against the pitfalls of ordinary catch words. Thus mentally equipped, they reverse Dr. Watts' hymn, and gather money every day from every opening bee. Their gather money every day from every opening bee. Their
attainments render them easy victors; and one individual, attainments render them easy victors; and one individual,
who has reached the pinnacle of the new profession, says that he makes over a hundred dollars a week by his winnings.

NEW CUT-OFF MECHANISM.

We extract from the Bulletin du Musée the annexed engravings of a new and simple cut-off mechanism, the inven-

A MODERN VILLA RESIDENCE

 $o c^{\prime}$ is the cross piece. The higher the elevation of the $c c^{\prime}$, according as the air is, by the adjustment of the screws,tion of M. F. Wannieck, of Brünn. The engine to which it the pistons, $i i^{\prime}$, are re-enforced toward $l l^{\prime}$; so that when is represented as applied is of the horizontal type. The the valve chests are filled with steam, an excess of pressure governor travels at high speed, and its changes are trans- is always produced on the said sections, $l l^{l}$, and so that the mitted by a very simple set of levers to a. rod which rises valves left to themselves are always pushed outward by the and descends in a support attached to the cylinder and car- steam in the boxes. Thescrews, $k h^{\prime}$ (Fig. 1), permit of the rying on its lower extremities a horizontal cross piece. This regulating, at will, of the outward pressure exercised on the disposition is represented in detail in Figs. 1 and 2, in which rods, $l l^{\prime}$, and consequently of the action of the cut-off valves, allowed to escape slowly or freely from befor the pistons, $i i$. The fact should not be los sight of, in following the subjoined description, that the two valves, $c c^{\prime}$, are not imme diately connected, butnormally are subject to an outwardly pushing pressure.
On the middle of the valve rod, b, is se cured a crosshead, d (Fig. 3) which surrounds the extremities of the cut-off valve rods so as to serve as a guide for the two rectangular ends, $h h^{\prime}$. This crosshead carries two pawls, $g g^{\prime}$, which turn around axes, $f f^{\prime}$, and which, through their gravity, tend always to fall, as shown in Fig. 1. These pawls, in the forward part of their lower extremity, have notches in which the rectangular heads, $h h^{\prime}$, engage, so that the rod, b (Fig. 3), is pushed toward the right or left, according as it engages one of the other of the cut-off valve rods. The paw then falls on the head of the rod, and draws the latter in the return movement of the rod, b. We may remark here, in order to preven misunderstanding, that in Figs. 1 and 3 the heads, $h l^{\prime}$, of the cut-off valve rods are placed in a median position and represented as both engaged with the pawls, a condition which never can occur while the engine is in opera tion.
We will consider first the forward motion of the engine during a stroke, and suppose the return movement of the piston to take place from left to right. In such case, it is clear that the rod, b (Fig. 3), with its two valves, $a a^{\prime}$, will have already been pushed governor balls, the lower the piece, o o o descends, and vice |toward the eft by the eccentric up to the point where the left vers \hat{d}. The two slide valves, $a a^{\prime}$, are connected by the rod, hand valve, a, establishes communication with the exhaust, b, and are actuated by an eccentric on the shaft. On said as indicated in Fig. 4: which also shows the extreme position valves move two mutually independent cut-off valves, $c c^{\prime}$, of the valve and the point to which the pawl, g, of the fixed to two rods, $l l^{\prime}$, which traverse the valve chests, and crosshead, d, has been carried (to the left) in order to engage pass into stuffing boxes at each side. At one extremity the head, h. During the return movement, the valve, a each rod is terminated by a triangular head, $h h^{\prime}$, while at moves from left to right, and at the same time carries the the other is formed a piston, $i i^{\prime}$, movable in a finely bored left cut-off valve, c, attached to it by the pawl, g, while the cylinder. The portions of the rods situated at the sides of \mid right cut-off valve, c^{\prime}, which has not been engaged by a

WANNIECK'S CUT-OFF MECHANISM.
pawl, remains at rest in extreme position to the right, Fig 5. Fig. 6 shows the steam port still more open; the right valve, a^{\prime}, establishes communication with the condenser and the corresponding cut-off valve, c^{\prime}, is in repose. In the position which occurs immediately after (Fig. 7), the upper curved arm of the pawl, g, impinges upon the left hand ex tremity of the horizontal piece, o o^{\prime}, and the left cut-off valve is freed and returned to its extreme left hand position. The rod, b, continuing its advance, the pawl, g^{\prime}, operates in turn exactly like the pawl, g, so that one or the other of the pair is continually in play.
The general arrangement is quite simple and certain in action. When sudden variations occur in the work, the piece which carries the traverses, oo o^{\prime}, lifts or lowers instantly, and the action of the pawls is accelerated or slackened, so that, in the first case, the admission of steam is interrupted sooner, and, in the second case, it continues longr. The mechanism, as a whole, is reported to be remarkably sensitive.

Contegiondemte.

Steam Domes. Scientific American
 To the Editor of the Scientific American

That steam boilers of all kinds would be cheaper, safer, and more durable without domes, there can be no question. The question is: Can steam be supplied to the cylinders, drier and cheaper, from the top of a dome, than from a perdrier and cheaper, from the top of a dome, than from a per-
forated pipe, placed inside and close up to the crown sheet of the boiler? The perforations, of course, are to be made of the boiler ? The perforations, of course, are to be made
in the upper side, and nearly the whole length of the pipe, which extends the whole length of the boiler. Engineer who have run locomotives, both with and without domes, for from 10 to 25 years, say that they can see no practical advantage in the dome; and some of them hold that an engine is less liable to prime or throw water into the cylinders with a perforated pipe than with a dome with the throttle valve and steam pipe arranged in the usual way: for the reason that the aggregate area of the perforations far exceeds the capacity or area of the cross section of the steam pipe. Consequently, when the engine is at work, there is no rush or tendency of steam to a special point, as in case of the dome; the perforations can be made so plentifully as to exceed five or ten fold, if necessary, the capacity of pipe to conduct off the steam, the throttle valve being placed in the smoke arch end of the pipe.
The Boston and Albany company have been building the no dome type of locomotive many years in their shops in Springfield, and are still at it. Mr. Eddy, their indefatigable machinist, tells me that their first engine of this type was put on the road in April, 1851, and that this engine is still at work with the same boiler, with the exception of the fire box. Since that time he has been constantly building precisely this style of engine for the company, in connection with their extensive repairs, till now, of the 246 locomotives belonging to the company, a large portion are of the nodome type. Sarely, such an experiment, which has been so persistently and successfully carried out for a term of 25 years, ought to have some weight in deciding the dome question.
. G. Woodward.

Worcester, Mass

The Vicksburgh Cut-off.

To the Editor of the Scientific American
On page 329 of your current volume, under the title of ' The Vicksburgh Cut-Off," there appear some singular errors. One is that, the Mississippi river makes its way under the bluff of Vicksburgh by sharp deflections, east and west, nearly fifty miles from its direct course; and that boats pass up and down through the cut-off, avoiding the détour to Vicksburgh, thus saving about thirty miles of navigation.
As regards the first: The only immediate deflection is above Vicksburgh, from the bend below Young's Point, to the bluff of Vicksburgh, and it is about six miles in length ; for the river, after leaving Vicksburgh, runs direct to Hard Times, and nearly so to Natchez. As for the second: The cut-off is only about five miles from Vicksburgh, and the saving of distance to boats would not exceed ten miles at the furthest; and it would make no interference with the trade or business of Vicksburgh, which will always be of impor tance, being on the first bluff of moment below Memphis.
When in command upon the Mississippi river, I urged the fortification of Vicksburgh and Port Hudson, and commenced work upon the former in September, 1861, but was stopped by order from Richmond. General Grant's attempt at a cut-off was only abandoned after an immense amount of labor ; and the canal filled up from deposit, instead of the river working through, which showed the error arising from gnorance of the laws governing the river. But had he succeeded in making the cut-off, the operation would have been equally a failure in a military point of view.
New York city. C. G. Daflgren, of Mississippi.

Do Bees Make Honey?

To the Editor of the Scientific American:
Is it not astonishing to find that professors at this day tate that bees make honey? A good common stand of bees, having but short distance to travel, will increase their stock of honey from 1 to 2 lbs. in 12 hours fair work. What chance is there here for a digestive process? Place 3 lbs . loaf sugar sirup within easy reach of such a stand at 8 o'clock P.M.; it will all be taken up and stored away before sunrise next morning. I once thus experimented ; After feeding, to about

40 hives, 9 barrels of Cuba honey, upon examination I found no difference between that in the comb cells and that in the barrels, only the former was clearer from dirt. The honey becoming exhausted, I then fed the bees during the rest of the fall season with loaf sugar sirup. Upon examination next spring, I found the comb cells filled solidly with well grained loaf sugar, precisely like that I had dissolved to feed the bees with. Other comb cells were partly filled with Cuba honey and partly with ground loaf sugar.
South Union, Ky.
H. L. Eades.

The Grasshopper Pest

To the Editor of the Scientific Ameo ican:

In your issue of May 20, I notice some statements from the Minnesota State Commission and Professor Riley, in re gard to grasshoppers, from which I beg leave to differ. As I have had experience with the pests during two visitations in Kansas, in the years $1867-8$ and $1874-5$, I think I have right to a hearing.
As to the sack which contains the eggs being affected by moisture, I will quote an instance. In the fall of 1867, the grasshoppers deposited eggs on a dry slough on the Missour river ; early in the spring the place was overflowed, and remained under water till late in the summer of 1868 , when it dried up ; and the young hoppers came out just as lively and able-bodied as if they had been hatched under the most favorable circumstances. As to their being affected by freezing (as I have seen stated at different times), in the win ters of 1874-5 the mercury ranged as low as 28° below zero, and the ground was frozen to the depth of $2 \frac{1}{2}$ feet. But the young hopper came out as gaily and festively as if he had laid in a greenhouse all winter, though the eggs did not average an inch under ground.
With all deference for such high authorities as Professor Riley and the Minnesota State Commission, these are facts, as hundreds can testify who have studied entomology in the school of sad experience. If all crops, when sown, were as sure of a bountiful harvest as grasshopper eggs, Kansas aid societies would soon be out of business.
Louisiana, Mo
J. F. Dunwoody

THE CORPUSCULAR AND UNDULATORY THEORIES OF LIGHT---THE EXPERIMENTS OF CROOKES AND

 PLEASONTON.One of the brightest luminaries of the scientific firma ment in the seventeenth century was a believer in the cor puscular theory of light. Sir Isaac Newton thought that the sun sent out from its surface fine particles of some kind of matter, which flew with immense velocity against the retina of the eye and produced the sensation known as light and vision. The succeeding age substituted for this impro bable theory another, namely, that light is due to vibra tions in an extremely thin ether which pervades all space. So many phenomena have been explained by this latter theory, especially those in regard to the interference of light the diffraction spectrum, and Newton's rings, that the undulatory theory, notwithstanding the difficulty of conceiving of an all-pervading ether, imponderable and disobeying most of the laws of matter, has been accepted as a truth. Nay, more the length of each wave of light has been measured, as well as those of heat and actinism.
Some recent discoveries have led certain gentlemen to revive the long abandoned corpuscular theory; and of these we may mention two only, William Crookes, the discoverer of thallium and of psychic force, and General A. J. Pleasonton, of blue glass fame. The former is already known to our readers, not only by his contributions to spiritualism but by his last invention, the radiometer. The latter, illustrated in the Scientific American, p. 392, volume XXXII., he supposed to be set in motion by the impact of flying particles of light. Another physicist, however, tried the effect of floating this pretty toy in water, and found that then the arms stood still and the glass envelope revolved in an opposite direction, indicating that the motion was due to a mutual repulsion between the arms of the apparatus and the glass. This is most readily explained by supposing that he molecules of extremely rare air in the envelope are in rapid vibration, for this is supposed to be true of all gases, and that the effect of the light, or rather the heat attending it, increases this motion of the molecules, and thus either drives the arms in one direction or the glass in the opposite General Pleasonton published a little blue pamphlet in 1871, printed with blue ink on blue paper, and bound in a blue cover, to inform the world how much better blue light is for plants and animals, and how the sick, the insane, and those who have the blues could be cured by "getting blue" by his process. Recently our military blue bird has again brought his theories before the public, chiefly through the columns of a daily paper, and boldly attempt to overthrow not only the undulatory theory of light, but the laws of gravitation and many other accepted dogmas. His theory, as briefly stated, is that the particles of light moving through space generate frictional electricity, which in turn produces magnetism and heat. The sun, planets, and other heavenly bodies are magnets, a fact known to be true as regards our earth, at least
It is interesting to note a few of his curious arguments and their flimsy nature. For the attraction of gravitation, which varies as the square of the distance, he would substitute magnetism, which diminishes as the cube of the distance, and which will not only attract but repel, a phenomenon not observed among the heavenly bodies. Magnetism falls so far short of filling the rôle of gravitation that the sooner General Pleasonton abandons this theory, or modifies it to suit the facts, the better

The sun sends us light, but no heat: the heat which we eem to obtain from him being due to the friction produced y the particles of light passing through our atmosphere "The sun, in its daily course, being above the earth, if it had any calorific rays, could not send them to the earth below it." Why? Because, in our rooms, a stove does no hrow its heat down towards the floor, but only upward When this philosopher used the term up and down as re gards the relative position of sun and earth, we at first too it for pleasantry; but he seems to be in dead earnest, for he gives several illustrations of the tendency of heat to ascend. Among others, he states that a thermometer stood at 12° on the floor, 10 feet from a red hot stove, in a room used as meteorological station on Mount Washington.
"Blue glass produces heat" is another of his assertions, based on the fact that, on a bright day in March, the tempe rature of his grapery (a portion of the glass being blue) wa 110° Fah., while the temperature out of doors was 76° lower. This difference of temperature he attributes to th few panes of blue glass alternating with clear ones, and he be lieves blueglass to be a good substitute for stoves! We wonde if every florist has not observed a similar production of hea by the use of clear glass; and why do hotbeds possess such advantages, except that they act as traps for the sunbeams, allowing heat to enter and preventing its escape? The abundant ignorance of well known facts and long estab lished laws is surprising in one who attempts to overthrow the laws of Newton, and make fearful onslaught on Tyn dall.
Because Pleasonton attempts to build a wild, fantastic tructure on the corpuscular theory, and because Crookes radiometer admits of explanation on the undulatory hypo thesis, are not conclusive reasons why Newton's theory of light was wrong or ours is right; but, gentlemen ome better proof
E. J. H. New York city

A Rallway Train Lifted by the Wind.

The St. Louis and New Orleans express train was struck by a tornado soon after passing Neoga, Ill., at 5:15 P. M. May 6, 1876. Mr. W. K. Ackerman. General Auditor o the road, who was on the train, says that he first saw the smoke stack of the locomotive sailing off through the air The next instant the whole train was lifted on one side and though moving at the speed of 25 miles per hour, the cars ran some distance on the left hand trucks, the righ hand trucks being lifted into the air. Then, with a terrible shock, the cars went over to the eastward, falling clear of the track, and stopping almost instantly on striking the ground. The whole damage was done so instantaneously that no one had time to prepare for the crash, nor could it possibly have been avoided."
The passengers and employees were badly bruised, but only one, a brakeman, was dangerously injured. Mr. Ackerman had his right collar bone and left shoulder blade broken, and his wife was also badly bruised. The cars fell on the eas side of the track and lay on their sides perfectly clear of it the engine, weighing 35 tuns, was partly displaced, though the front trucks remained on the tracks. The cars wer somewhat wrecked, but not badly, most of the trucks re maining on; the track was hardly injured at all, showing how clean had been the lift which took the cars off.

PRACTICAL MECHANISM.

by Joshua rose.
Second Series-Number V.
Pattern making.
Of gages for drawing marking lines at any regulated dis tance from the finished edge or edges of the work, there ar several kinds ; first we have that shown in Fig. 29, which is

the kind ordinarily sold ; others have, instead of the set screw, a wedge running lengthwise, as shown in Fig. 30. A

better gage, however, than either of these is that shown in Fig. 31, in which A represents the tightening wedge, standing at a right angle to the rod of the gage. The advantage of this design is that it requires only one hand to work it,

inasmuch as the wedge may be loosened or tightened by striking it, as if it were a hammer, against anything that may happen to lay on the bench. Thus the gage may be set and adjusted with one hand, while the other is holding the work, as is of ten necessary when marking small work. The
marking point should be a piece of steel wire fitted tightly in the stem, the protruding part being ground or filed to a wedge, with the two facets slightly rounding, and whose broad faces stand at a right angle to the stem of the gage, the point or edge only projecting, sufficiently to produce a line clear enough to work by, otherwise it will not be suitable for accurate work. The mortise gage is similar to the above as regards the stem and sliding piece, but it is provided with two marking points, their distance apart being adjustable. Fig. 32 represents the gage referred to, the head screw working in brass nuts. On account of the narrowness

Flq. 32.

of the base afforded by the sliding piece on the common gage, there is not sufficient steadiness to gage to any great width, so that for widths above ten or eleven inches we must have recourse to the gage shown in Fig. 33. It is called the

Fiq 33.

panel gage; its sliding piece may be seven inches long and the stem two feet; the rabbeting at A forms a steadying base, the part of the rod about the marking point being raised to correspond with the distance from the rabbet to the stem nut. Next we have the cutting gage, shown in Fig. 34, in which a

Fig. 3 .
steel cutter takes the place of the marking point, being wedged in position. It is employed to cut thin strips of wood, that is to say, of thicknesses up to about a quarter of an inch. cutter point should be tempered to a dark straw color.
For marking off curves or large circles, we require a pair

are composed of two sliding sockets made of either wood or metal, fitted, at a sliding fit, to a staff. They are made of various designs to suit the taste of the maker, and are often made by the patternmaker himself during his term of probation; the style shown in Fig. 35 is one very easily made A A represents a staff of any desired length, composed of common pine. B and C are the two sliding sockets or holders ; the mortises in them are made to fit the thickness of the staff, but they are longer than they are wide, to admit of the fastening wedge. They may be made of some hard wood,

such as maple. The lower parts being turned and fitted with brass ferrules, a small hole is then drilled up the turned end of each, into which bradawls of large size are driven, they are then pointed on a grindstone. The wedges are made with a gib head on the small end so as to prevent them from flying out when tapped back to loosen the sliding sockets from the staff for adjustment. If maple be used for the sockets, then the wedges may be made of a dark colored wood, sandpapered and varnished two or three times, which will give them a neat appearance. Made as above described, the trammels will be light and almost everlasting; and a the materials are always at hand, the cost is a minimum,

In place of the wedge, a screw may be and sometimes is used, in which case a packing piece of either wood or sheet brass should be inserted, as shown in Fig. 36, at A, which will protect the staff from being indented by the end of the screw when the latter is tightened up.
Our next requirement is the straight edge which, for small work, is better of steel than of wood. A straight edge is a piece of stuff whose edges are straight and parallel to each other, which is necessary because they are sometimes used in conjunction with the square. A pair of straight edges, termed conjunction with the square. A pair of straight edges, termed
winding strips, are indispensable ; their use is shown in Fig. 37 , in which A is a piece of work requiring to have its edge

true, and B B are the winding strips, placed on the work as shown, so that by casting the eye along the upper edge of one strip, and leveling the head so that the edge of one strip will will be brought nearly horizontally level with the other, it will readily be perceived whether the two are level one with the other, and hence whether the face of the work is true. Winding strips are simply pieces of wood made parallel and true, and generally about two feet long, three or four inches wide, and about five eighths of an inch thick. When the edges have been made as straight as possible with the truing plane, one of these should be lightly chalked on its edge face and laid upon the other, and then moved back and forth through a distance of about one half inch. The upper one should not be pressed to the lower but allowed to lie of its own weight, otherwise it will spring to suit the outline of the lower one, or bear uponit at the points pressed by the hands. Before separating the two, take a blacklead pencil and make a mark on one side of each, so as always to be able to bring the pieces together in the same way. Then separate them and ease away the high places, continuing the truing operation until they bear all over. In placing them upon the work, be careful that they stand parallel to each other, that is to say, that the distance between them is about the same at each end, otherwise the eye will be misled in sighting them when on the work.
In Fig. 38, we have an ordinary screwdriver, the point of which should be shaped as shown at A, in Fig. 39, and not as shown at B, as is usually the case, because if the part en tering the screw head is tapered, it
 not only raises a burr on the screw head, but it is liable to slip out,even from a screw that drives easily, and much more from one that drives hard. To grind it to the shape shown at A, it should be ground on that side of the stone in which the latter is running toward you, the length of the screwdriver being at a right angle to the plane of the stone, and the handle held in one hand, while the driving end is held in the other which should be supported by the grindstone rest. If the stone is a small one, the screwdriver, while being ground in this position, should be moved a little, so that first one corner and then the other will approach the stone, so as to preven the grinding from being hollow which would weaken the screwdriver point by thinning it in the middle. Screwdrivers should be made of cast steel, and tempered at the point to a blue color
The mallets should be of hickory and of the form shown in Fig. 40, the sizes being, one $2 \frac{1}{2} \times 3 \times 5$ inches long, and another about $3 \times 3 \frac{1}{2} \times 5 \frac{1}{2}$ inches long, the handles being mor
tised and properly wedged to the head.
Of oilstones there should properly be two, one for roughing and one for finishing. Wichita or Arkansas stones are even in grain and cut well, and are the best for our purpose In addition to the large oilstone, a number of slips of oilstone are necessary, some being flat, others half round and flat, with round edges, their uses being for gouges and other ools in which the cutting edges are hollow or curved. Th will be impossible to properly set plane blace, otherwise it will be impossible to properly set plane blades, firmer and paring chisels, and other similar tools upon it. With this object in view, the workman should set small tools upon the ends, so as to prevent the stone from becoming hollow in the middle. When it becomes necessary to grind the face of the oilstone, it may be done upon the grindstone, but a better plan is to take a flat board and liberally supply it with clean sand and water, and then grind the oilstone on it by hand,
leaving the face a little rounding in its length by easing it off at each end, but leaving it flat across the face, by which means it will last longer without regrinding. There are some stones which are used with water instead of oil ; they do not cut, as a rule, very freely, but the finer grades of them will cut unusually smooth; these are the descriptions used by the Japanese workmen, who use two stones, one to rough cut, which cuts very freely, the other to finish, which seems to grip the metal firmly, rendering it easy to keep the tool at the necessary angle and level, while at the same time it cuts very finely indeed. The first is a bright yellow stone, the latter is of a green slate color,hot water being used on both

Fig. 40.
of them. Aside from those already mentioned, we have the Turkey stone, a close grained and amber-colored stone, which cuts freely or fine, according to the grade of the stone. For all ordinary parposes the Arkansas stone will suffice, and it is obtainable at almost every hardware store. The oilstone for general use should be fitted into a block of wood, having a margin outside of the stone of one half inch on each side, and about an inch at each end, the block being hollowed on the bottom face so that it will stand firmly and not rock when in use. It should also be provided with a cover to prevent dust and dirt from accumulating upon it.
Two pairs of inside and three pairs of outside callipens are necessary to the pattern maker, the smallest of each pair being large enough to take in diameter up to four inches, the largest from four up to about ten inches. The other pair of outside callipers may be large enough to use upon diame ters from ten to eighteen inches. For bores above ten inches a wire gage may be used, by bending a piece of wire as shown in Fig.41, which may be shortened by being bent more, or

Fiy. 47. lengthened by being straight ened. It is preferable to make an adjustable gage, such as
 shown in Fig. 42,in which A and B represent two sliding pieces of steel, and C and D screw and nuts. It is obvious that, when the screws are loosened sufficiently to just let the sliding pieces move by a slight tap, the gage may be extended by striking the ends, E , or either of them, their inside edges being rounded off to prevent them from burring. It is better to set them at first a little below the required size, and to perform the adjustment by opening them, so as not to require to strike the point at all. The points should, however, in any event be tem

Fig. 42.

pered to a blue. It is an excellent plan to file away the crew heads on two sides, a little, say $\frac{1}{32}$ inch, thus forming a sliding piece under each head to fit into the slot of the gage, which will prevent the screws from turning when screwed or unscrewed, and in the end save much annoyance A small machinist's square and a steel rule are also neces ary for small fine work, the wooden ones being too clumsy; he edges of the rule should be trued so that it may be used as a straight edge.

Photo Printing Bath.

M. D. Ratti, in the Revista Fotographia, gives the following as an economical printing bath, producing excellent results: Nitrate of silver, 40 parts; nitrate of ammonia, 40 parts; white sugar, 40 parts; water, 1,000 parts. The best description of paper to use with this solution is one very lightly salted, about 2 parts of salt to 1,000 of albumen being the salted, about 2 parts of salt to 1,000 of albumen being the
strength mentioned by the author ; the toning and subsequent operations are the same as those in general use. Af quent operations are the same as those in general use. Af
ter the solution has been once used, it is shaken up with ten ter the solution has been once used, it is shaken up with ten
drops of washed animal charcoal, which is allowed to remain in the bottle in order to keep it colorless. It is strengthened from time to time by the addition of a due quantity of simi lar solution, but containing two and a half times the propor tion of silver.

How to Disinfect Carriages.

The best method of disinfecting carriages is to burn one ounce of sulphur inside the carriage, the doors and windows being closely shut. and the loose cushions stood on end. The clothes should be disinfected with sulphurous acid, as in the last case; except that, if the sulphur be burnt in an ordinary room, about four ounces of sulphur should be used but if possible, the clothes should be placed in a chamber of small size, or large box, heated by gas or fire, and ex posed to a temperature of from 230° to $250^{\circ} \mathrm{Fah}$. as well as o sulphur fumes. Exposure to heat will do, with or with out the addition of sulphur. Of course nothing that will bleach must be exposed to sulphurous acid gas, unless the wners are first told that the color of the article will proba bly be destroyed,

IMPROVED CARVING AND PANELING MACHINE.

 There seems to be a growing demand among workers in wood for machinery which will effect a decrease in the waste of the raw material corresponding to its advancing cost, and enable them to utilize new methods of designing and work ing in wood in such a manner as further to lessen the expense of production.Among these new methods is that of paneling or carving moldings in the solid wood, instead of producing them se parately and then attaching them to the article being made For this purpose special machines are being constructed.
The accompanying illustration is from a machine recently brought out by J. A Fay \& Co., Cincinnati, Ohio. It is designed to produce carvings and recessed or relieved panels on the surface of lum ber, also for edge molding and ornament ing the edges of bracket and fret work etc., in a rapid and perfect manner. It is especially adapted for furniture, coffin, piano, and organ manufacturers, etc.
The machine is constructed on a hollow iron column of a form to best meet the requirements of the working parts, the neck being extended to support the cutter spindle over the center of the table. The table is adjusted to the proper hight, and regulated, to form the desired depth of molding or carving, by a hand wheel and screw. It has a sufficient movement to allow stuff four inches thick and under to be worked. The elevation of the table to bring the material in contact with th bring the material in contact with th cutter is accomplished by a notched treadle, and its depression, in order to re move the stuff, by an auxiliary treadle,
which disengages a pawl, allowing the table to fall to its original position.
The cutter is reversible in its motion and is placed in a tapered split sleeve ex tending through the spindle and fastened or released by a hand wheel at the top The reversible motion of the cutter is produced by the method of belting with a cross and straight belt, alternately shifting from a loose to the tight pulley as the nature of the work may require. The handle of the re versing lever is under the table, within easy reach of the operator, and is provided with stops to retain it in proper position.
In the operation of carving, the pattern is placed over the piece to be worked, and guided by a fixed collar attached to the spindle, or a loose collar on the shank of the cutter. Any diameter of cutter can be used without altering the size of the guide collar. There being an opening between the pattern and the piece being carved, the cutter and its working are at all times in plain view of the operator
Attached to the spindle is a fan blower, which removes all dust in the contrary direction from the operator, and keeps the surface of the work free from obstruction. The points claimed for the machine are that it is convenient, efficient, and durable, and that its comparatively low cost places it within reach of all who are in want of such a machine.
This labor-saving machine can be seen by any of our readers in daily operation at J. A. Fay \& Co.'s display at the Centennial Exposition, columns 61, 62, 63, Machinery Hall, and is not least among their very attractive exhibition.
Further particulars can be obtained from the manufacturers, as above, who, we are informed, have, in addition to their already large list of premiums, been awarded medals at the late Chilian International Exposition, for superiority of their machines over others of the class exhibited.

SOME NEW APPLICATIONS OF METALINE

In the Scientific American for January 10, 1874, we published a description of the material known as metaline, intended as a substitute for lubricating oil in machinery. Reference to that article will show how the substance is pre-

pared. It will suffice here to say that it is a solid, resembling plumbago, but not necessarily containing the same, and is composed of a large number of ingredients of widely differing natures. It is molded in the form of small plugs, of some quarter of an inch in diameter, which are inserted in shallow cavities made in the inner surface of the box or bearing.

Since the period of our previous article, the manufacturers have carried on extended experiments into the nature and adaptations of the preparation, and at the same time
have made considerable progress in successfully introducing remains to be proved. There is no doubt, however, tha
into several large establishments, notably into the woole mills of Messrs. A establishments, notably into the woolen mills of Messrs. A. T. Stewart \& Co., the sugar refinery of
Messrs. Matthiessen \& Wiechers, in Jersey City, and in vaMessrs. Matthiessen \& Wiechers, in Jersey City, and in va-
rious other localities where, we are informed, the conditions rious other localities where, we are informed, the conditions
were such as to severely test its efficacy. Two new results were such as to severely test its efficacy. Two new results
of the experimental investigations above alluded to, we illustrate in the annexed engravings.
The first application, Fig. 1, is to loose pulleys, which, as every mechanic is aware, are extremely difficult to keep lu bricated with oil, and equally difficult to keep clean. The here are a variety of circumstances under which the use o il is objectionable, sometimes dangerous, and always cost y. It is but fair to state that, in many such cases, as well s in others of general occurrence, where the work is mod ate, the results of employing metaline are such as to giv every promise of its widely extended substitution for liquid ubricants.
For further information, address the American Metaline Company, 61 Warren street, New York city

an economic fountain.

We are indebted to Mr. Etienne Gillet of 13 Barclay street, this city, for informa tion concerning a new and very ingeniou method of augmenting the jets of foun tains, devised by M. Turrettini, of Lyons, France. The principle of the invention is the same as that on which the Giffard in jector is based, and will be understood from the accompanying engraving. A is the service pipe, having a narrow end,from which a small jet is forcibly discharged into the enveloping tube, B. The effec is to draw the water already in the basin into the flaring lower portion of tube, B, and to cause it to mingle with and so aug ment the jet. A large stream is thus ob tained by a comparatively small expenditure of water, that in the basin being of course used over and over again. In or der still further to increase the size as well as beauty of the fountain, the invento adds an intermediate envelope, C, betwee A and B. The effect of the waterjet pass ing through this is to draw in air throug the pipe D, which ter tends to pray. The convert it into a mass of ter alone, volumes being equal, is accord ingly projected to a higher elevation.
Apart from the superior elegance of the fountains thus obtained, we are informed thatan economy of about three fifths the water otherwise employed is realized. This has been proved by tests on the city foun manufacturers now prepare linings or flanged bushes, of tains at Geneva, Switzerland; and in Lyons, France, the en
he form shown, of gun metal, and insert the metaline plugs of the proper size and at correct distances apart. It remains simply to fit the halves of the bushes into the pulley; and this is easily done by any machinist, without disturbing his line shafting. We have examined loose pulleys thus pre-

pared, and can state that such as we have seen run smooth ly and without heating. From testimonials exhibited to us, it further appears that, according to the opinion of actual users, the wear is practically imperceptible.
The second new application of metaline, illustrated in Fig. 2, is its employment as a packing, or, more correctly, as a lubricant and packing combined. This is prepared by spreading metaline in a pulverized state upon strips of crash, and joining the latter in ribbons of from half an inch to eight inches in width. A few turns of braided hemp or cotton packing are first driven into the stuffing box. Above this comes the metaline packing, which is wound about the piston rod, and finally another layer of hemp packing is added ton rod, and finally another layer of hemp packing is added
before inserting the gland. The metaline packing is claimed greatly to outlast ordinary packing, besides possessing the lubricating advantages of the metaline alone
For cotton spindles, a new mode of applying the material has been devised, which consists in simply inserting a tube of solid metaline in the bolster and step, the bottom of the spindle being allowed to run in a metaline plug. This adaptation, we are informed, has proved very successful, and in cotton factories, where the use of oil constantly invites con flagrations, the invention will doubtless be found of consid erable value.
For our part, we question whether metaline or any othe ike substance will ever displace oil for all kinds of machine ry, and the efficacy of the aforesaid material on railroads yet
ains at Geneva, Switzerland; and in Lyons, France, the en ineer in charge of the water works of that city states that hile on a fountain without the apparatus 33 cubic feet of it, the same supply lasted two minutes and five seconds. Mr. Gillet has brought the invention to the notice of the officials in this city, with a view to its adoption in the foun tains in our public parks. Fountains just now, however in New York are something of a luxury. The supply of water is far below the needs of the city; and we have learned to view with some complacency the empty basins and dried np spouts of a very elaborate and costly but not very artis tic granite fountain, opposite our office, knowing that, did the possible columns of glistening spray greet our eyes, there would be a waste hardly to be excused. M. Turrettini's device (if there be sufficient head of water, and we doubt if there is, in most of our parks) may possibly give us back our fountains. At all events it will be found, we think, an excellent and economical invention for cities which, unlike this metropolis, do not squander on a hideously ugly and outrageously constructed court house nearly as much mone

as would suffice to render the water supply ample for the re quirements of the city, both for the use of its million po pulation and the ornamentation of its parks and public squares.

Waterproof varnish for paper, etc., is obtained by precipitating a solution of tallow or resin soap by aluminum, iron or copper sulphate, and dissolving the precipitate in a iquid hydrocarbon, or in carbon bisulphid e

NEW WINTER-FLOWERING IRIS

This, when seen peeping through the ground in winter or early spring, reminds one of the common netted iris (i. reticu lata); but its growth is rather taller, and the fall petals are broader and more conspicuously spotted, or rather blotched. Its color is a rich bluish purple, flushed towards the base of the petals with rose pink, the markings being of the deepest purple relieved by a medial ridge or crest of gold in the center of the three external perianth segments. Its leaves are, like those of the netted iris, four-angled; and like that beautiful plant, this also belongs to the bulbous group. When seen pushing through the earth at Kew, England, in the winter of 1874, there was a little patch of snow besid the flower, and nothing could have set it off to better advantage than this, and a tuft of the vivid green poa annua, with which it was also associated. This iris is described as a native of Mount Lebanon and also of Mount Gerizim ; it was sent to Kew by M. Berberey, of La Ferriere, near Geneva, in March, 1873, who describes it as nearly related to i. reticulata, from which it differs not only in structural character, but in flowering six weeks earlier than that species. Its culture is by no means difficult. Treated like the last named species, it grows and blooms freely. Our engraving shows the size of the flower, and its color as far as can be done by an engraving. This, with its allies, i. reticulata and i. stylosa, says a correspondent of the English Garden, is well worth a place in sheltered position in warm and deep rich soils, and in every garden.

Sleep is the Best Stimulant.

The best possible thing for a man to do when he feels too weak to carry anythingthrough is to go to bed and sleep for a week if he can. This is the only recuperation of brain power, the only actual recuperation of brain force: because, during sleep, the brain is in a state of rest, in a confition to receive and appropriate particles of nutriment from the blood, which take the place of those which have been consumed or in previous labor, since the very act of thinking consumes or burns up solid particles, as every turn of the wheel or screw of the splendid steamer is the result of consumption by fire of the fuel in the furnace. The supply of consumed brain substance can only be had from the nutritive particles in the blood, which were obtained from the food eaten previously; and the brain is so constituted that it can best receive and appropriate to itself those nutritive particles during a state of rest, of quiet, and stillness of sleep. Mere stimulants supply nothing in themselves; they goad the brain and force it to a greater consumption of its substance, until that substance has been so exhausted that there is not power enough left to receive a supply, just as men are so near death by thirst and starvation that there is not power enough left to swallow anything, and all is over.

PRINTING MACHINERY AT THE CENTENNIAL.

While the American firm of Hoe \& Sons is justly celebra ted for the construction of rapid printing presses, another New York establishment claims to have succeeded in producing presses which surpass all others in nicety of adjustment and perfection of work produced. The Campbell Printing Press Company's apparatus has long been used for printing the Aldine and other fine art publicationsin this city ; and the Company has erected a large and handsome building in the Centennial grounds, near Machinery Hall, in which is a completely equipped newspaper office, with editorial, comwith editorial, composing; and press ooms. The struc ure is 124 feet long by 88 feet broad, and is, as will be seen in our engraving, a very ornate affair. One of the Company's rotary printing and folding machines is here to be seen, producing an edition of the Philadelphia Evening Herald. In the Herald. In the same building is a job office contain ng ten cylinder presses, one of whichits the heliotype process. There are also six job presses, all in operation. Theother rooms are divided into business offices, waiting and reception rooms for members of the
press, correspondents, etc., together with a telegraph and post office.
A very attractive feature of the exhibit is the original printing office of Isaiah Thomas, built in Boston in 1770 It is complete, including the press upon which the first copies of the Declaration of Independence were printed east of New York (from the Antiquarian Society of Worcester), the imposing stone (from the Worcester Spy), two cases, one stand, two chases, and two composing sticks (from Tyler \& Sugrave, Boston). Many anecdotes and more than one romance are connected with the history of this old office, which will probably be rehearsed by editors and printers who visit it. Taken as a whole, the exhibit of the Campbell Press

THE IRIS XIPHION HISTRIO.

Company makes one of the largest and most interesting in dividual displays on the grounds.

Asbestos.

A curious exhibition has just been organized at the Simonetti Palace, on the Corso, in Rome. It is a display of as bestos in all the stages through which it passes, from the time that it is taken out of the bowels of the earth until it appears as a manufactured article. Asbestos is a compound of silicate of magnesia, and has the property of resisting fire. The ancients had discovered a means of weaving it and with it made napkins for meals, wicks for lamps, and winding sheets for the dead for purposes of cremation, so that the ashes of the deceased could be collected unmised
with those of the wood which had formed the funereal pyre The process of working this textile has been again discov red by the Marquis de Batrera, as well as the means of making with it incombustible paper and cardboard at a low price.
Blasting Cartridges and Powder-Making Machinery The value of an improvementor invention is by no mean proportional to the cost of the article produced. This is well illustrated in the simple little contrivance adopted by General P. A. Oliver, in making blasting cartridges for the use of miners and quarrymen. Every one who has had ex erience at the mines must have noticed the wasteful and inconvenient manner in which cartridges are prepared A miner makes his own, using about twice as much pa per, etc., as is necessary, his own time being worth from $\$ 2.50$ to $\$ 3$ a day; the cost of manufacture amounts to many times what it would if made by machinery, as ar many similar articles. When the ground is wet, he has to use soap also, to make his cartridge waterproof; even then he is very often far from successful, and loses a por tion of his powder by getting it wet.
Oliver's cartridge is made by machinery; those for dry ground have the end riveted with a copper or tinned rivet, and those for wet holes have the end formed of a double cup of tin, one setting into the other, and hold ing the paper of the cartridge between them. The car tridge is then coated with a waterproof coating, and is ready for use. They are made of various lengths, so tha the miner has rarely to cut one, and if he has, the los is, at most, but a few inches of paper. Manufacturing them on a large scale, the patentee can sell them a much less than it costs a miner to make his cartridges himself.
General Oliver,the manufacturer of this ingenious and useful article, has met with great success in the manu facture of powder by his patent machinery, having, du ring the past five years, fully established the reputation of his powder as having no superior for strength and ef fectiveness, and of his method of manufacture, for sim plicity, safety, and economy. In his mill there is never except in the drying house, more than some 50 or 70 lbs . of powder in any one place, so that, should it ignite, nothing more serious can result than the loss of a few pounds of powder. His well ordered works, near Wilkes barre, Pa ., with its beautiful machinery, is one of the most interesting establishments with which we are ac quinted and General Oliver has deserved well in devi qua 1 f a method of m not surpassed by the, bu has, for some years, ben produced almost in risk, and at a cost for plant greatly less than in ordinary powde mills. His improvements are well worthy the attention of powder manufacturers everywhere.-Engineering and Min ing Journal.

An opportunity for Inventors.
A correspondent writing from Houston, Texas, calls our ttention to the necessity of an invention which will pre vent cotton bales expanding after leaving the press. By powerful machinery the average bale is reduced to some ten inches in thickness; it is then tied, and the pressure bein relaxed, it is re moved. The bale then expands to from 14 to 16 inche in thickness, and of course occupies about twenty-five per cent more room than would be the case were it possi ble to keep it at th thickness to which the press reduces it. This augmenta tion in size obvious ly results in an enormous increas enormous increas of freight room re quired, and conse quently a large en hancement in cos of freightandhand ling. Our corres pondent, who ha had considerable practical expe rience in the sub ject, thinks that th trouble could be remedied if the iron bands with which the ball is strapped could be drawn tight enough whil the cotton is in the press. At present the tying is done by hand, and for each press five men hav to be employed Could all this be done by machinery great saving would be effected.

agricultural machinery.

Our extracts from Knight's "Mechanical Dictionary,"* this week, include a variety of plows and other cultivating apparatus.
The originator of the double plow was Lord Somerville, who, in 1799, devoted much attention to the practical details of agriculture. His plow, Fig. 1, which he termed a double Fig. 1.

furrow plow, consisted of a beam suitably bent for the attachment of two plows, one placed laterally and to the rear of the other. Another example is shown in Fig. 2, where the plows are moved vertically by levers. The axle is bent

ficne Phave.

Fig. 5.

useful in extirpating weeds under bushes, and loosening th soil around growing plants. l shows a mode of attaching the blade to the tang, m a mode of wedging it in a ferrule. n

English horse hoes, b, have a range of shares spaced like the drills, so as to work in the intervals between the rows of plants, such as wheat and turnips. Other English horse hoes, a, c, havecaster wheels in front and rear, a broad mid dle share, and two or more side shares. The rear share may be curved or flat, as shown at c and a respectively. It is

Fig. 6.

what we should call a cultivator, but there is more of it than we regard convenient. If the tool be well proportioned, and the animal hitched to it rightly, it needs no wheel. For turning at the end of a row of corn or potatoes, it is too long. A man would need 12 feet of ground to come out on to turn, and it is not necessary to withdraw so large a marginal strip of the field for such a purpose.

a share attached to the colter to turn down the top soil with its weeds and refuse. 'The latter is covered with the main furrow slice thrown over by the larger following plow. In England and in this country another form of the same plow
has been used, in which the forward portion is not merely a flange on the colter, but is a regular moldboard plow a of drilled crops into England, and were designed to diminsmaller proportions, higher than, and in front of, the main plow. This is known as the Michigan double plow (Fig. 4). It requires four horses. Fig. 5 is a double shovel plow. The shovels are placed at a short distance apart, and one a little in rear of the other. It is used for cultivating purposes. Fig. 6 exhibits a double moldboard plow. A moldboard is placed on each side of the sheth, boas to throw the soil to the right and left It is used in hilling the and left. It is used in hilling potatoes and cabbages, but not for corn, as the ro are too far apart. Two forms
Draining plows
are shown in Fig. 7. A B has three colters, two mold boards, and a share. The middle colter is vertical, and splits the soil in the middle of the furrow: the two side cutters are inclined to cut the sloping sides of the ditch; the share cuts the bottom, and the moldboards lift the soil in two slices, which are deflected laterally and delivered on the respective sides of the ditch. When it is desired to cut a trench deeper than can be effected by the ordinary mode of using the plow, the arrangement shown at C is employed. An anchor or hook, l, is inserted in the ground, and to this is secured the pulley, k. The wheel, h, is operated by the handle above, and the plow, $c d$, is thus drawn through the soil. The arrangement at $a b$ enables the operator to give the required depth to the furrow. A roller, g, resting on the ground supports the forward part of the plow.

hoes

were formerly made by forging, but now hey are more often cut out as blanks and then struck in dies. On the left of Fig. 8 are exhibited various forms adap ed to different purposes a is a hoe for to 8 are for fills, b a her . ing small ridges, c a hoe for working two sides of small plants, d a hoe for drawing a pair of parallel ridges. e is a combined hoe and rake, a very common implement, used by amateur gardeners. f has a serrated blade, g a sectional one. k, i, j, k are Dutch hoes, known as scuffle or thrust hoes, operated by pushing instead of striking or pulling. They are *Published In numbers by Messers. Hurd \& Hough-
ton, New York city.

Hoes.

Double-Moldboard Plow
Bucknall's horse hoe, b (English), has a gang of 10 shares in a frame, adjustable by a lever as to hight, and also as to angular presentation of the shares to the ground. It is in tended for hoeing wheat.
The horse hoe, at d, is designed for chopping gaps in the rows, and has a set of revolving hoes on a shaft parallel with the line of draft, and driven by beve gearing from the main axle of the ma chine. As the machine advances, the hoes chop transversely across the row of plants, making intervals therein equal to the lengths of the blades.

History of Magnetism.

The earliest references to the proper ties of the magnet occur in the annals of the Chinese nation, who used it as a means of guiding the wayfarer over the vast and trackless plains of Eastern Asia, long before it was applied to mari time purposes. To the Emperor HoangTi, who lived 2,000 years before our era is attributed the invention of a chariot, upon which stood an elevated figure pointing to the south, independently of any position of the chariot. Nearly ten centuries later, we find the learned Tche-ou-Koung presenting and teaching the use of the tchi-nânkiu, or chariot indicating the south, to some envoys from Youá-tcháng, a southern maritime province. The compass, or, as it is even now called in Chinese, tchi-nân, appears to have been first used at sea by this remarkable nation about the third century our era, durg the Tsin of our era, during the Tsin dynasty.
urope is disputed; Gilberte known its Europe is disputed, Gibertrefers its inroduction to Marco Polo about 1260, but it is probable that earlier accounts of it were brought from the East by the crusaders, an accurate description of it occurring in a poem entitled " La Bible," written by the minstrel Guiot de Provence, about the year 1190. A Latin letter ascribed to Peter Adsiger, 1269, preserved among the manuscripts of the university of Leyden, contains the following remark on the declination of the needle. "Take notice that the magnet neede: as the needle that has bee as wed by it does not point hactly to touched by it, does not poin exachy the poles, but that part of whe reckoned to point to the south declines a little to the west; and that part which looks towards the north inclines as much to the east. The exact quantity of this declination I have found, after numerous experiments, to be five degrees.'
The discovery of the dip of the needle is due to Robert Norman, a nautical in
strument maker at Wapping, near London, who is described by Gilbert as "a skillful sailor and ingenious artificer." He found that, afterbeing touched by a magnet, the needle al ways appeared heavier at its northern end; and making an instrument to determine the greatest angle formed with th horizon, he observed the inclination in 1576 to be $71^{\circ} 50^{\prime}$. In the early part of the following century, the variation
of the declination was clearly ascertained, and was attribuof the declination was clearly ascertained, and was attribu-
ted by Bond, a teacher of navigation in London, to the moted by Bond, a teacher of n
tion of two magnetic poles.
In the year 1600 was published the celebrated treatise "De Magnete," by Gilbert of Colchester, who was pro nounced by his great contemporary Galieo to be "great to a degree that might be envied."

American vs. English Cheese.

About one year ago we copied, from an Irish agricultural paper, an article in which the editor was lamenting over the loss the farmers of Ireland were experiencing from the large importation of superior American cheese. He berated the Irish farmer for allowing a deterioration in his products such as to make the home consumer prefer the American cheese to the home manufacture. Now comes the London Agricultural Gazette, containing an article from a Lancashire correspondent on the same subject, in which he gives the English cheese makers some wholesome advice.

On every hand," he says, "we hear people talking about cheese making being unprofitable, and discussing to what purpose they can turn their milk to a greater profit; and in some cases they are considering the prospects of feeding cattle in place of keeping a milking stock. This sort of ing cattle in place of keeping a milking stock. This sort of talk amongst farmers is a new thing. For several years
past cheese has fetched high prices, and such has been the past cheese has fetched high prices, and such has been the
demand that even inferior sorts could find a market at far demand that even inferior sorts could find a market at
above their relative value, the greatest loss being that of weight, the lowest qualities having to be kept to the last of the season, while the finest were often bought before they were made, so anxious were buyers to secure the few really fine. While prices kept up, farmers were very 'uppish'; they would not listen to any suggestions about improving their mode of making, and expected buyers to take the fearfully unsaleable cheese they made late in the season, a kind of stuff you could not properly call cheese. These latemakes resembled cheese in shape only; they possessed no solidity to the touch, and were in consistence more like very
stiff bookbinder's paste. They never ripened, because they stiff bookbinder's paste. They never ripened, because they
were obliged to be kept so cool, otherwise they would have were obliged to be kept so cool, otherwise they would have
swollen and become inflated like bladders; on the approach swollen and become inflated like bladders; on the approach
of heat, they cracked and became out of shape. Year after year many dairies finished up by making a certain weight of the kind of cheese I have been describing; and so long as dealers would buy them, so long were they quite indisposed to improve. I long felt sure that this state of thinges would come to an end, and that solid and firm American cheese would render such rubbishly late-made cheese unsaleable. And this has come to pass. Indeed, I feel sure that pasty, spongy, springy, late-made cheese will become unsaleable at any price. The wonder is where people have been found to eat such a salvy, pasty material ; I was once told that those who bought them consumed them in the shape of toasted cheese, and that no one could eat them in any other shape. I suppose the rich milk at the latter end of the season will, in future, be turned into butter; heretofore, farmers would
not be troubled by changing from cheesing to churning. Maknot be troubled by changing from cheesing to churning. Mak-
ing that kind of cheese was sure to become unprofitable so soon as a sufficient supply of good cheese was obtainable from America. Now, what is the lesson to be learnt from all this? What are keepers of milking stock to do? I wonder how many of them think of associating themselves in any way for trying to learn how to remedy their shortcomings. No business will be long profitable if it is based upon ignorance, or if those engaged in it will not take the trouble to march with the times. The times are changed ; consumers are no longer confined to the cheese made at home, and they will no longer be content with an inferior home-made article, be it cheese or anything else. Cheese making, like any other producing, will only be profitable when the article produced is of first class quality. If you turn out inferior or bad grain, or potatoes, or animals, they will be difficult of sale and unremunerative to the producer; and the same with cheese or butter. Farmers have been enabled to live in past days by using their hands, but they will now (like those in other occupations) have to use their brains as well. They will need to know their deficiencies, and seek to remedy them ; to discard all doings-however time-honoredthat lead to the production of inferior articles; they will need to learn to improve. They will find it only a loss of time to be grumbling, and better to start off learning; the latter is the only wise course, and the only one that will lead to permanent profit. They will need to avail themselves of every opportunity afforded them for obtaining useful infor mation, whether by information from better informed neighbors, or books, or lectures, or such societies as the National Dairyman's Association. Ignorance will land them at length in poverty; intelligence and industry are the only road that will secure profit and comfort."

Dry Plates without Collodion.

The following formula was given in the Moniteur de la Photographie for the preparation of dry plates without the use of collodion: Albumen, 125 grammes; honey, 110 grammes ; iodide of potassium, 4 grammes; bromide of potassium, 1 gramme; sea salt, 0.3 gramme. Beat the whole into a froth, let it stand for twenty-four hours, then filter. Coat a perfectly clean plate with this liquid, dry it in the drying box, and, when cold, sensitize in the usual manner,

In this formula the needful addition of water seems to have quid filters but slowly.

A Transcontinental Express Train.

As we go to press a special train is rushing across the coninent, attempting to travel from New York to San Francis co in the unprecedented time of 88 hours, or in 60 hours less time than is now occupied by regular trains. The start was made from Jersey City at 1 A. M., on June 1, three cars
being attached to a new engine, the tender of which carried being attached to a new engine, the tender of which carried 2,400 gallons of water and 136 bushels of coal. The ninety
miles between Jersey City and Philadelphia were covered in ninety-nine minutes. At 10:40 o'clock on Thursday morn ing, Pittsburgh was reached; and at 10 o'clock on the same evening, the train stopped at Chicago, having completed the distance of 907 miles in 20 hours and 57 minutes, averaging ver 43 miles per hour. The distance from New York to Pittsburgh, 439 miles, was made without changing locomoves. Both before and after reaching that city the speed of mile a minute was often attained. At $4: 15$, on the after
oon of June 2 , Willow Island, 250 miles west from noon of June 2, Willow Island, 250 miles west from Omaha,
was reached. This was the halfway station; and the total distance from New York, 1,645 miles, was accomplished in 39 hours and 12 minutes, showing an average of over 42 miles per hour.
The train reached Council Bluffs at 9:27, 39 minutes ahead
of the schedule time. It made the run from Chicago to the Missouri river in 11 hours and 15 minutes. It made one run of 79 miles in 75 minutes, and another of 45 miles in 44 min utes. This is an average of a mile, respectively, in 58 and 58.6 seconds. The fastest time made since the train left New York is stated to have been on the Chicago and NorthWestern Railway, where $2 \frac{1}{2}$ miles were run in 2 minutes, or 1 mile in 48 seconds, being at the rate of 75 miles an hour This is said to be the longest and fastestcontinuous run that has ever been made on any road in any country.

The Spectroscope a Witness in a Forgery Case. A remarkably ingenious and novel application of the spectroscope as a witness in a case of alleged forgery, now on trial in this city, was recently made by Dr. P. H. Vander Weyde. A suit was brought to recover, on a check, a larg certified the drom the certification was a forgery, and among other statements asserted that the ink used was not the same as that employed on other checks certified by the same person on the same day. Dr. Vander Weyde was called as an expert witness to determine this point, and he appeared in court armed with powerful microscope having a spectroscopic eye piece.
By carefully observing the spectrum of sunlight reflected from the surface of the paper covered with different inks, and then passed through the spectro-microscope, he previously had satisfied himself that all inks, other than black, such as Prussian blue, carmine, anilin red, etc., absorb certain parts of the solar spectrum, so that it would be a certain and easy way of recognizing the identity of the two inks to note the fact that both produced an absorption of and so blotted out exactly similar parts of the solar spectrum. This, of course, was spectrum analysis produced otherwise than by examining the incandescent vapor of the substance, an ob viously impracticable proceeding here
On the witness stand, Dr. Van der Weyde was given a variety of checks from the bank, together with the particular document on which the suit rested. The microscopic part of his instrument magnified the writing so highly that the dot on an i was sufficient for all purposes. The result was that the ink of the alleged forged signature and that of the bank's genuine writing gave exactly the same absorption spectrum, and hence were pronounced identical, and this although the check in suit had been handled and exposed to the light until the ink had faded considerably. We will soon publish a complete account of this very interesting investigation.

Growing Tuberoses

Tocultivate that tuberose, the most beautiful of all plants, ays an experienced horticulturist, put the bulbs in six inch pots, three in each, and use a mixture of equal parts turfy loam, peat, and leaf mold, and place them in a pit. Give very little water at first ; and as they commence to grow freely, ncrease it, and keep near the glass. When they begin to push up their flower spikes, they will of necessity require to be placed where they will have sufficient space for the proper development of the tall spikes. 'These will come into bloom from August to October, when they will require a temperature ranging from 60° to 70°, the latter being pre ferable.

Direct Manufacture of Soap with Salt.
If grease, fat, or rosin, which are commonly employed to make soap, are heated with an excess of common salt, ammon ia, and water, a soda soap separates, leaving chloride of ammonia in the liquor, together with the excess of ammonia and salt. This reaction is the consequence of the great solublity of ammonia soap in ammoniacal water, and the insolublity of soda soap in water containing more than $\frac{1}{2}$ per cent of salt. The ammonia at first unites with fatty acids; then the sodium in the salt exchange places with the ammonia in the soap, forming, as we said, a soda soap and chloride of and salt present in order that the reaction take place One hundred parts of grease requires 15 to 20 parts ammonia, 20 to 30 parts salt, and 200 to 300 of water, $-T, N$, White law, in Chemisches Centralblatt.

Physicing lron in Puddling.
An invention of Mr. John Haythorne, of Clifton, near Bristol, England, has for its object improved means of producing from the puddling furnace a superior quality of iron by the use of a certain composition, which is thrown into the puddling furnace while the metal is in a fluid state, before i comes to nature, and by which means the impurities still re maining in the iron are removed, and its quality improved The composition, which he has found to answer in practice according to the London Mining Journal, consists of perox de of manganese $\frac{1}{2} \mathrm{lb}$., oxide of tin, zinc, or lead $\frac{1}{4} \mathrm{lb}$., quick ime, potassa, or soda $\frac{1}{2}$ lb., saltpeter or ammonia $\frac{1}{4} \mathrm{lb}$., brick dust or calcined clay $\frac{1}{4} \mathrm{lb}=2 \mathrm{lbs}$. These are to be carefully reduced to a fine powder, and thoroughly dried. These pro portions may be modified or increased as found desirable, according to the quality of the pig iron used.

Superior Longevity of Israelites.

Dr. B. W. Richardson, of London, last month delivered a lecture on this subject. The result of his research has shown that, both on the Continent and in England, Jews possess a higher vitality than do the general community by whom they are surrounded. Tracing the causes for this greate ongevity, the lecturer said he could not attach too much im portance to the sanitary laws that obtained among the Jews, instancing those in regard to diet, cleanliness, and absti nence from strong drink. In fact, the Decalogue, from be ginning to end, is one sanitary lesson, teaching them to sub due the passions which torment the brain and distress the body.

A Good Kalsomine.

Take 4 lbs. Paris white, put in a pail, cover it with cold water, and let it stand over night; put into a tin kettle a handful of glue, cover with cold water; in the morning set the glue on the stove, and add enough warm water to make a quart, and stir until dissolved; add the glue to the Paris white, stir well, and pour in enough warm water to make pail three quarters full ; then add bluing, a little at a time stir well until it is very slightly bluish. Use a good brush go over one place in the wall until thoroughly wet; if your brush dries quickly, add more warm water, as the mixture is too thick; the brush must be kept wet. This mixture cost 38 cents.

DECISIONS OF THE COURTS.

United States Circuit Court--Southern District of New York.

NEW BOOKS AND PUBLICATIONS.
The Pacific Tourist, a New Illustrated Transcontinental Guide edited and Published by H. T. Williams 48 Beeman stre New York.
The fast train which, at the time we write, is attempting the extraordin draw renewed attention to the modern facilities for reaching the most pic turesque and beautiful portions of ournational domain. To those who con
template a trip. to San Francisco over the Union Pacifc template a trip. to San Francisco over the Union Pacifc Railread, the
above-named volume will prove of much use, as it not only embodies in formation regarding the railroads, stage routes, distances, and fares to a principal points, but it describes the wonders of Western scenery, supple menting the description with a lavish display of illustrations.
A Centennial Picture.-A large and handsomely executed Centennia ational commemorative picture has just been issued by witteman Bros 184 William Street, New York. The central portion is occupled by an eques rian portrait of Washington; the ornamental border is flled
riate legendary devices. See advertisement in another column.
zerent gmericau and forcign zutents.
NEW MECHANICAL AND ENGINEERING INVENTIONS.
IMPROVED COTTON-GIN FEEDER.
John W. Webb, Union Springs, Ala.-This is an improved machine for feeding cotton regularly to a gin, and so constructed a to allow sand and other hard substances to drop out. To this en the cotton passes over a pivoted rack, made of wood or wire IMPROVED
Thomas F. Witherbee, Port Henry, N. Y.-This consists of a par tition in the water chamber between the inlet and outlet pipes, t
compel the water for cooling the tweer to pass entirely around it. improved car coupling.
Rocco Misso and Bishop J. Warner, Macon, Miss.-This consists o a drawhead with lateral rock bar, with outside rest piece and jecting arm of the connecting drawhead to drop the pin-holding rod.

new chemical and miscelianeous inventions.

IMPROVED WIRE FENCE
Schuyler Jenks, Jefferson, Wis.-This consists in the combination, with double \mathbf{T} posts and twisted wire rails, of the wire staples and
a long vertical wire.. The staples secure the wire rails, and ar themselves fastened by the vertical wire.
improved gage for teaching penmanship. Lorenzo Dow Harvey, Sheboygan, Wis.-This is a gage made of that it may be used for measuring the length, width, slant, an pacing of letters and figures in writing.

IMPROVED SHOE.
John C.Weil, Baltimore, Md.-This consists of a secondary insole held in position by tagsor musiin secured between the outsole and insole, and pasted down. The idea is to make the shoe easier to
wear and less heating to the foot.
heater for melting wax from electrotype cases. John E. Parker, Boston, Mass.-The case is made with steamtight double walls upon its bottom, top, sides, and back, to form
steam space. The steam spaces at the top and bottom of the case are connected by pipes, to increase the heat in the interior. In the center of each lower bottom is a pan-the two being concen tric-the outer one receiving the water of condensation. Between vertical guide bars, on the inner case, wax cases are inserted edge--
wise. With this apparatus, when the shells have been removed Wise. With this apparatus, when the shells have been removed from the cases, the cases are inserted between the guide bars and the wax, as it melts off, runs down
is kept melted ready to be again used.

IMPROVED TICKET HOLDER.
Daniel Shamberger, Beckleysville, Md.-This is a slotted bolder applied by a screw pin, and securing the ticket by a clamping niently exhibited for inspection when applied to the coat or hat. IMPROVED ICE PICK
Herman F. Dernell, Athens, N. Y.-This consists of a number of Herman F. Dernell, Athens, N. Y.-This consists of a number of fastening screw bolts. By extending the recesses of the head, a cutting blade may be inserted into the head, and the tool then
used for separating the cakeswhen taken from the ice house.

IMPROVED COMPOSITION FOR CIGAR LIGHTERS.
William J. Littlefield, Philadelphia, Pa.-Small glass rods are dipped into a mixture of lime, charcoal, cascarilla bark, gum and water, until a sufficient deposit is formed to make heads. The latter are then tipped with fulminate. When lit, the head becomes a red hot coal and lasts some time, and the glass, being a nonc
heat, enables the lighters to be conveniently handled.
improved apparatus for drying hides. John Finnigan, Houston, Tex.-By the mode of drying the hides here patented, they are spread over portable frames constructed
to keep the inner surface of the hides from coming in contact with each other, to allow the air to circulate between their sides freely and to allow the rain to run off, so that bad weather will not harm them.
improved stop action for reed organs
Eugene H. Schofield, Mendota, Ill.-This consists of stop draws connected by crank shafts and connecting rods with the valves in
in such manner that the action is improved. The stop draws may be located moreflosely together in the front board, and the latte may be shortened so as not to extend beyond the keys, and thus do not obstruct t
arrangement.

IMPROVED ABDOMINAL SUPPORTER.
Cyrene Smith, New York city.-This consists of a supporter that is laced at the back, and adjusted by upper front and lower rear gussots, with elastic bands, to the condition of the abdomen. The front part is stiffened by stays, and extended to sufficient length to to take up and support, by a curved anterior pad, the weight of the abdomen, and transfer it to the hips and back.
improved slate.
Claudius Verdier, Detroit, Mich.-This consists of a school slat whose frame is arranged with a pencil receptacle at each side closed by a door. There is also a pencil-sharpening device

improved animal nose bag

Craton H. Williams, New York city.-This consists in suspending
the nose bag by knotted ends which pass over pulless on the hed the nose bag by knotted ends which pass over pulleys on the head stall, and are slipped over the check rein hook. The horse can
thus raise his nose to the top, but not outside of the bag, and is prevented from scattering and wasting his feed, while he is allowe to chew his grain without breathing directly into the bag.

IMPROVED BUTTON BOOT
Christoph Stickel, New York city.-By this construction, there is no seam uponear from a dress or pantaloon leg comes, so that will not rip, and at the same time a neatly-fitting, stylish boot wil be produced. By cutting the shoe in two pieces, it will give any additional hight and shape, thus enabling the foot to be fitted per fectly and the employment of only a half seam behind.

MPROVED BUCKLE.
Joseph M. Junkin and John Gunn, Red Oak, Iowa.-This consists in arranging a buckle tongue on a detachable shaft, and between
loose spacing tubes. The contrivance is desirable for repairing a buckle or replacing a broken one the buckle being in this case ea sily taken off from the strap.

IMPROVED WHIP SOCKET
Thomas L. Whitacre, East Rochester, Ohio, assignor to himself, invention consists of a whip socket with clamping spring and lock ing cam.

IMPROVED PEN RACK.
pen rack applied by springs to an ink bottle or stand, and having bent wire arms, forming racks for penholders.

IMPROVED LAMP BURNER
Benjamin Franklin Flint, Westfleld, Pa.-This is a device for removing the snuff of lamp wicks in a convenient manner, withou extinguishing the light and requiring the taking off of the chim by a suitable lever a spining

IMPROVED SKIRT PROTECTOR
Albert Lyons, New York, assignor to James W. Chisholm, Brooklyn, N. Y.-This is a compound skirt protector and trimming,
formed of a ply strip and an ornamental strip, connected by bind-gear the upper end. The trimming is sewed at its lower edge to the upper part of the hem of the ply strip.

IMPROVED SHADE STANDARD.
Henry F. Walton, Woodman, Wis.-This is a standard for holding shade or umbrella. It has a joint at the base for lying down flat when not required for use; also, a joint for turning the shade
around to any direction, and also a joint for shifting the shade to any desired inclination.

NEW AGRICULTURAL INVENTIONS.

IMPROVED CHURN.
William B. Nunn, Edmonton, Ky.-This invention consists in eans for securing the churn barrel in place. The upper end which enter mortises in the side cross bars of the frame. The cross bar is held down upon the end of the dasher shaft by a wedge in erted in the wide mortise above the end of the cross bar.

IMPROVED HAY ELEVATOR.

Michael M. Shellaberger, Hamilton, Mo.-When the block from which the fork is suspended rises near to the beam, it strikes the dropping roller frame and lifts the rollers out of a check to allow hoisting rope. At the same time the frame closes the retaining
aws under the hoisting block, and holds it from falling until it
rops into the check again. There is also a contrivance of a re urn cord for drawing the carriage back, so that its connectio with the carriage is by a grip of the hoisting block with the cheo rame when the block comes up to t . This connection cease when the block drops, leaving the return cord free to run back as
long as the hoisting cord does, and the horse moves back, by which ong as the hoisting cord does, and the
the slack of the return cord is avoided.
improved hay e
Hector Toofs and Clinton Toofs, Jefferson, Ind.-This consists of claw lever arranged with the carriage from which the hoisting fork descends, and with the hoisting ropes. There is a stop piece gainst which saidiot lhe load, so that it hooks under the head of nd engages the hoisting fork, to hold it while running in the barn with the load and out again, and disengages it at the moment the truck comes out to the hoisting place.

IMPROVED CORN HULLER.
George Washington Richmond, Springfield, Ill.-This relates to mprovements in corn-hulling machinery for producing hominy constructed in such a manner that the corn is fed continuous
at the top and discharged in hulled state at the bottom. Th haft with the rasp-cut hullers is revolved with great rapidit without being liable to breakage or injuring the machine

mproved grain bac

Arthur McKenna, New York city.-Thisgrain bag may be readily Alled and securely closed without sewing up the mouth. It ha itched corners or shoulders and interior mouth-closing flap and an exterio
ening device.
improved wheel cultivator.
Hazen H. Perkins, Osceola, Ill.-This is an improved riding cultinism, so arranged that the plows may be readily guided and conrolled, when at work, by the driver with his feet, and may be sup ported above the ground when passing from place to place.
improved bar for plow sifares.
Isaac N. Pyle, Decatur, Ill.-This invention consists in iron and ide, with a wide bevel to an edge along the forward edge of the bar, and a narrow bevel not to an edge along the rear edge of the
improved horse potato fori.
George C. Clark, Freehold, N. Y.-The rake head is made in two arts, which are bolted together, and in the adjacent faces ar ormed notches to receive teeth, which are thus clamped between
he parts of the said head. The teeth are bent in opposite direc ions, to keep them from longitudinal movement, and to give them omewhat the shape of a scoo
osition for doing their work.

NEW WOODWORKING AND HOUSE AND CARRIAGE BUILDING INVENTIONS.

IMPROVED VEHICLE HUB
Antonius Van Geel, Rahway, N. J.-When the spokes are driven into the socket ring, wedge rings spread the spoke ends, and pro
duce the rigid socketing of the same, the spokes being firmly held ace the rigia socketing of the same, the spokes being firmly hel onds admit the ready spreading of the same, and their elastic seat ng in the hub.
improved carriage spring fastener.
Franklin Miller, Indianola, Ill.-Thisinvention consists of a seat ock or plate and a cap plate of peculiar construction, for mount gn and securing the springs of carriages on the axis. ections, with the plate or seat block having similar bolt hole pro ections, the said projections of both plates being extended beyon faces, to prevent lateral movement of the springs.

IMPROVED WAGON BODY aND FRAME.
Isaac G. Sallee, Montgomery, Ky.-Thisis so constructed thatth body may be detached without affecting the frame, so that th
wagon may be used with a frame or a body, as may be desired.

IMPROVED HARNESS.
Charles H. Corey, San José, Cal.-These are improved winke Cays of rubber, forharness, which are so constructed that they will ot become limp an IMPROVED SASH PULLEY.
Arthur R. Watterson, San Francisco, Cal.-This invention conists in securing the shaft of a sash pulley by fins formed thereon, and fitting in correspo
one of the side plates.
improved carriage thill.
Nelson Mitchell, Ellsworth Falls, Me.-In order to improve th construction of carriage thills, so as to prevent them from being roken should the horse accidentally step upon them. This
improved rope trace.
Peter Hayden, New York city.-This is an improved device for onnecting the end of an ordinary rope trace with the hame an ole through its base, and a tapering eye screw, in combination with each other, to receive and hold the end.
improved sheet metal roof.
Charles A. Smith, Hanoverton, O., assignor to himself, Nathan A. Halderman, and Charles Chandler, of same place.-This sheet out the use of nails, screws, or rivets passing through the roo plates. Lap joints with interlocking anchor caps are placed interheets.
mproved barn door fastening
Perry A. Peer, Comstock, Mich.-This consists of a strong hook able breadth of surface, for sustaining the shocks and wear of a heavy barn door. Said hook is pivoted in a strong base, adapted to
be attached to the side of a barn, and support the hook outside of the battens of the siding so that when the door swings open it will strike the nose of the hook and swing it back, pass the hook nose, andstrike a strong arm projecting beyond the pivot. The hook is thus swung so as to engage and secure the door.
improved window shade fixture.
Charles De Quillfeldt,New York city.-A metallic cap is attached cord for rolling up the curtain winds. A metal disk for carryin centrifugal pawls is clamped against the end of the hub. The pawls are fitted on pivot studs, which are so located that, when the
pawls swing out to lock the roller, the toes touch the hub of the disk and hold them in the position for locking. These studs are
pawls and locks the roller when the motion is quick enough to
throw them out into it by centrifugal force. Said notch is so loca ted that the pawls are kept out of it by gravity when the motion is slow enough for the gravity to exceed the centrifugal force. The parts are all simple, and they are so contrived that but little labor is required in fitting them to the roller.

NEW TEXTILE MACHINERY

improved method of maiing endless woven fabrics. David Bailey, Dresden, Ohio.-Thisinvention is an improvement paper makers' and others' use. The cloths or felts are woven in different layers, with folds on the opposite sides of the loom formed by working the filling or weft in the different layers pass ing around the fabric in regular order, through the layers one af ter the other, and thus producing the endless fabric. The felts can be made in any desired length and width, and of the different qual ities required by paper makers.

NEW HOUSEHOLD ARTICLES

improved wash basin valve trap.
William W. Hurd, New York city.-This consists of a trap formed ide of a wash basin, and with an opening in its bottom, closed with valve. The object is to prevent escape of sewer gas.
improved roasting pan.
John G. Peace and John S. Wingfield, Salem, Mo.-This consists a drip pan with a closed top, for inclosing the article to be roasted, and having a water pan in the bottom, below a perforate support for the roast. The water pan is so arranged that oust th bject being to maintain an atmosphere of steam sur ounding the oast, to protect it from burning by too much heat.
improved Ironing board.
Eli O. Catt and Henry H. Harrod, Red Oak, Iowa.-This invenion consists of a board with a spring at one end, suitable for training the neck and shoulders of a shirt against, and a roller at the other end pressed against it by springs. This is contrived to the bosom tightly over the board, so as to draw it smooth and hold it with elastic tension for ironing it.
improved garbage box.
Benjamin Burling, whitehall, N, Y.-This box is formed of a case ed part of its top. The dome has an upper orifice, closed with \& screw cap. A disenfectant is put through the dome aperture, and the dome is covered with a cap to more thoroughly confine the isinfectant and prevent it from escaping into the air

IMPROVED ASH-SIFTING SHOVEL. Edward B. Neal, Wiscasset, Me.-This is an improved shovel for
sifting the ashes of furnaces,and cooking and other stoves, without the annoying and penetratingdust that is raised by the common ash
sifters. It has wire tines and side guards applied to a fastening sifters. It has wire tines and side guards applied to a fastening head and handles.

improved shutter.

Gustar Hampe and Adolf Schallert, St. Louis, Mo.-This consists of a shutter made in sections, that slide in guides of the window asing, and rorm a covered panel in front or the window sin. The ne, two, or all the sections, as desired. When the shutter is entirely opened the sections are entirely stored away back of the innermost or panel shutter, at the lower part of the window in a con venient manner.

IMPROVED SPRING EED BOTTOM.
Joseph Eckart, New York city, assignor to Louisa Eckart, of the same place.-Angle straps are attached to the base slats of a spring bed bottom, to adapt it to receive a detachable cover, the straps esigned to prevent the mattress from being worn by the springs, nd when prevent the mattress from being worn by the springs placed.
improved drum attachment to heating stoves.
Richard L. Ball, Terre Haute, Ind.-This consistsin a flange about the fire chamber, connected with tubes that pass through a top
drum, and provided with a register. Inside of the drum is a cylinder which, when clocd, throws the heat into the surface of the drum so as to prevent the direct escape of the same through the hood and pipe.

IMPROVED STOVE PIPE SUPPORTER.
James L. Loring, Dallas Center, Iowa, assignor to himself, Fortuatus Hubbard, and Judson Purinton, of the same place.-This is an improved stovepipe supporter, by which stovepipes may be
readily suspended from the ceiling or supported on the walls. It consists of a stovepipe enclrcling ring that is applied to a recessed lock having a fixed wire rod with threaded edge.
mproved washing machine.
John M. Gano, Newport, O.-This consists in an outer washtub, a lateral clothes box, and a step-shaped perforated plunger combined. The machine works in the nature of a pump, and draws the water continually through the clothes, which are squeezed at each down
stroke so as to expose them to the influence of the water drawn in by the next up stroke, and so on until the clothes are entirely by the ne
cleaned.

IMPROVED DESK.
Henry M. Elbreg, Greenfield, Ind.-This writing desk consists of case having hinged doors, revolving cylindrical racks, stationary for supporting the same

IMPROVED CURTAIN CORD FIXTURE.
Horace Resley, Cumberland, Mu.-This invention relates to means whereby a curtain roll cord may be regulated and adjusted to hold the curtain at different elcvations, in a quick, easy, and ef-
fective manner. It consists in passing the cord around a pulley or fective manner. It consists in passing the cord around a pulley or
grooved cap on the upper end of a side-notched rod, bar, or plate, grooved cap on the upper end of a side-notched rod, bar, or plate,
which has astop or handle at bottom and slides in an obliquely arranged keeper whenever turnec slightly out of its perpendicular ranged ke

mproved bake pan.

John Gilbert, Newark, N.J.-Thispan has straight sides and ends and scalloped cornérs. It is struzk up out of sheet metal at one operation, and may thus be made more readily and at less expense than when made in the old way.

IMPROVED DOOR AND TINDOW FASTENER
John H. Daniels, New York city.-This is compnsed of a wedge between a bottom and top plate, the latter being jointed to the forfrom between the plates, the top one will drop and free the door to let it close or open. The bottom plate bas a stud for pressing into the floor to prevent it from sliding.

Busimess and extomal.

The Charye for Insertion under this head is One Dol-
lar a Line for each insertion. If the Notice oxceeds Four Lines, one Dollar and a Half per Line will be charged.

Agricultural Implements and Industrial Machin-
ery for Export and Domestic Use. R.H.Allen © Co...N.Y.
 Best Belt-Pulleys-A. B. Cook \& Co., Erie, Pa. Wanted-A good Feather Renovator. Address-
giving price-Thompson \AA Co. 84 Wood St., Pittsburghh.Pa. Steam Enizes-25 per cent. extra power, or an
equal saving in in tuel guaranteed, by applying the R.s. Con Centennial Exhibition, Philadelphia.-Examine
the Allen Governors, Machinery Hall, D. 9, Par. 71. Machine-cut brass gear wheels, for models, $\&$ ge.
List free. D. Gilbert \& Son, 212 Chester St., Phila., Pa. Situation Wanted by a practical Rubber Manu-
facturer; understands using old Rubber, and can get up Horse Nail Machines-Wanted correspondence Horse Nail Mathines-Wanted correspondence
with Manufacturers of Horse Nail Machines, for purpose
of purchasing. . . W. Briton. 18th Ward, Cleveland, o. 400 new and 2nd hand Machine Tools, Wood
Working Machines. Pump, Water wheels, Enines,

 Rubber Hydrant Hose, Hose Pipes and Coup-
ling, best tualty. Send for Prices to Bailicy, Farrell
$\&$ Co., Pittsburgh, Pa. Wanted-Situation as Supt. or Foreman of Ma-
chine Works or shop, by Machints of 2 years "Dead Stroke" Power Hammers-recently great-
yimproved, increasing cost over 10 per cent. P Prices re
 ${ }_{18}$ North Third St. Philadelpha, Pa.
Power \& Foot Presses $\&$ all, Fruit-can Tools. Fer-
racute Wks., Bridgeton, N J. $\&$ C. 27 , Mchy. Hall, Cent'1. Johnson's Universal Lathe Chuck-A Warded the
highess Premum by he rrankinin Institute of Phita, for
n.D ".D.Drability, Firmness, and adaptation to variety of
work.." Lambertville Iron Works, Lambertville, N. J. Artesian Wells-Contractors for Boring Will ad-
dress Joln Y. Gill, Mayor of Fayetteville, Tenn. as Chities Engiring an American (posted on Engines) 400 new and 2nd hand, Machine Tools, Wood
Working Machines, Pumps, Water Wheols Engines, Boilers, \&c., for Sale. See frrst column, page 397
Safeyt and Economy
Soctilise Sectional Stea Boiler. Frirst Class
Lambertville, N.J.
Woman's Shoes-Patent for Sale, either whole
or State Rights. Address C. Steckel, 1999 Allen St., N.Y. Engine Builders and Mill Furnishers, send
culars or Card to Benson Brothers, Centralia, Ill.
 The Photo-Engraving Co. have been obliged to
remove from 62 Cortlandt tt. to a larger building at 67为 and Catalogue Illustrations are rapplaly taking the place
of Wood Cuts and are unsurpassed. See advertisement

For the best Patent Self-Opening Gates for Car-
rlages, in any Style of Wood or Iron, address Cottom \& riages, in any Style
Coo. Dayton, ohio.
SDlit-Pulleys and Split-Collars of same price,
strength, and appearance as Whole-Pulleys and WholeCollars. Yocom \& Son, Drinker St., below 147 North
Second St., Phlladelphia, $\xrightarrow{400 \text { new and 2nd hand Machine Tools, Wood }}$

The Bastet Magnetic Engine for running Sewing
 with stamp, 1,113 Chestnut st., Pliliadelphia, Pa.
The French Files of Limet $\&$ Co. have the en
 America. Notice samples in Machinery
partenent, Centennial Exposition. Ho
sole Agents, 22 Platt st., New York.
Trade Marks in England.-By a reeent amend-
ment of the English laws respecting Trade Marks, citiens of the United States may obtain protection in
Great Britain as readily as in this country, and at abou the same cost. All the necessary papers prepared at
this office. For further information address Munn \&
Shingles and Heading Sawing Machine. See ad
vertisement of Trevor $\&$ Co., Lockport, N. \mathbf{Y}. Solid Emery Vulcanite Wheels-The Solid Orig-Caution.- Our name is stamped in full on anl our best
Standard Betlng, Packing, and Hose. Buy hat only.
That oses. The best is the cheapest. New York Beting
ing Company, 37 and 88 Park Row, New York.
Steel Castings, from one lb.to five thousand lbs.
Invaluable for strength and durabilty. Circulars free.
pittubur Stel
 For Solid Wrought-iron Beams, etc., see adver-
tisement. Address Union Iron Mills, Pittsburgh, Pa., or lithograph, \&c.
Hotchkiss \& Ball, Meriden, Conn., Foundrymen
nd workers of sheet metal. Fine Gray Iron Castings and order. Job work solicitied.
For Solid Emery Wheels and Machinery, send to the Union Stone Co., Boston, Mass., for circular.
Hydraulic Presses and Jacks, new and secon Land. Lathes and Machinery for Poilshing a Spinning Rings of a Superior Quality.-Whitins-
ville Spinning Ring Co., Whitinsville, Mass. Rotary Fire or Supply Pumps, belted, two styles
ouilt-One, plain, 8125 ; the other, with water gase, satety ralve, and air chamber, 8175. Capacity, 10 to 500 gals. pe.
minute. Mfr'rs, S. C. Forsaith \& Co., Manchester. N.H
For best Bolt Cutter, at \&reatly reduecal prices,
ddress H. B. Brown © Co., New Haven, Conn.
Diamond Tools-J. Dickinson, 64 Nassau St., No \mathbf{Y}

Hotakise ir Sprin Forre Hotchkiss Air Spring Forge Hammer, best in the
narket. Prices 1 ow. D. Frisbie \& Co., New Haven, ct. Patent Scroll and Band Saws, best and chea.
n use. Cordesman, Ekan \& Co.. Cincinnati. Ohio.

R. G. S. will find directions for turning cast iron on p. 364, vol. 31.-W. H. S. is informed
that we cannot recommend an incrustation preventive unless we know the nature of the impurities in the water-M. will find a description of
dynamite on p. 212, vol. 33.-C. H. M. will find full directions for making rubber stamps on p. 156, moisture in the air by using an hygrometer. See
p. 116 , vol. $33 .-W$. S. will find directions for ebor izing wood on p. 50 , vol. $33 .-$ F. C. will find direc tions for making baking powders on p. 123, yol. 31-- J. A. will find a recipe for black paint, suita-
ble for
iron smoke stacks, on p. 379, vol. $31 .-\mathrm{J} . \mathrm{E}$. be friliron smoke stacks, on p. 379, vol. 31-J. E .
C. will find directions for tinning iron castings on p. 362, vol. 31.-J. . . K. Will find directions for transferring prints on p. 138, vol. 30.-G. R. W. can
calculate the power of his steam engine by the
and formula and table given on p. 33, vol. 33. For for mula for safety valves, see p. 107, vol. 31-J. J. B.
will find on p. 187, vel. 3_{n}^{2} directions for making described on p . 27 vol. $30, \mathrm{G}$. ula for safety valves on p. 330 , vol. 32 .-J. H. Z. should use aquarium cement for making his fisk
tank. See p. 80, vol. 31. This also answers W. H -A. A. H. will find directions for gilding pictur frames on p. 347, vol. 31.-G. w. B. can prepare soluble glass for painting outdoor work by fol-
lowing the directions on p. 15 , vol.
13.-C. M. . . on p. 10, vol. 27.-J. P. A. will find directions for casehardening malleable iron on p. 69, vol. 31.-J H. will find directions for making paste blacking on p. 139, vol. 31.-F. L. can galvanize his shingle
nails by following the directions on p. 346 , vol. 31 .
 ind on p. 58 , vol. 24, directions for making plaste molds.-J. C. M. should use marine glue to ce ment leather to pasteboard. See p. 42. vol. 32--
G. M. B. will find an answer to his query as to a motionless point on the circumference of a ve-
hicle wheel in motion on p. 298, vol. 31 - $-\mathbf{W}$. $\mathbf{~ H . ~}$ hicle wheel in motion on p. 298, vol. 31.-W. H. F
should use coal tar from gas works for his con should use coal tar from gas
crete walks. See p. 185, vol. 33 .
(1) F. B. L. says: How can I make automa of which you speak in a recent issue? I use a lamp for heating, with a water radiator. A. A rrange a metal tube, which by its expansion and con-
traction will act upon the pinion of the lamp, raising or depressing its wick so as to increase o diminish the heat within the desired range. Some
of the automatic dampers to heating apparatue of the automatic dampers to heating apparatu
are constructed on a similar principle; but they act upon the supply of air and not upon the supply of fuel, as this would in this case.
(2) G. I. J. says: 1. Please give me a re
cine for cleaning smoky walls and ceilings. Wash with water and sponge, and scrape the walls etc, with a dull-edged scraping knife, carefully in such a manner as not to break the surface
then apply a coat of sizing consisting of hot wathen apply a coat of sizing consisting of hot wa-
ter into which sufficient glue has been dissolved to thicken it; when this is dry, apply two coats of first is dry. 2. What is a good substitute for Hrst is dry. 2. . What is a good substintee fo
whitewash for indoor use A. Use kalsomine See p. 337, vol. 34.
(3) H. H. F. says: In your issue of April coal filter. How many gallons of ordinary rive water would such an apparatus filter per hour? A. This question can probably best be answered
by our frrst correspondent, who furnished us with by our first correspondent, ,eno tornised
the sketch of the filter referred to. If he has the the sketch of the filter referred to. If he has the
filter in operation, he will be able to determine this point by actual experiment. Will he do so,
(4) F. S. S. asks: Is there such a carpenter's tool asa saw gage, consisting of a narrow thi the hand saw, each end turning edgewise? The gage strip should be raised or lowered to suit the
depth to which the saw is required to cut. depth to which the saw is required to cut.
Yes; thereare such appliances already in use.
(5) D. C. P. and many others.-Rubber
eelts are, we think, in most cases superior to leather ones; the point, however, is a disputed
(6) R. N. Y. asks: Is there any kind of cement that can be used for closing up small crack water is put on the fifoor, will not get softt? A. II
our foor is of wood, a cement of white lead and asphalt might answer the purpose; if of stone or like material,
best manufacture.
(7) E. L. says: Water sometimes collects in my cellar tor he depth of 2 or 3 feet, and rethe house is so level that there is no chance of draining by ditching; neither will the water run
away from the house if pumped out of the cellar. away from the house if pumped out of the cellar
What can I do to prevent the trouble? Shall I ig up the bottom of the cellar when it gets dry sones and cover over with water lime, and plas-
ter the sides of the wall with the same? Do you think the water will press up the bottom and come into the cellar after such treatment? A. I our water lime is a good cement, it may succee
Mis small stones, gravel, and sand together, and
solid mass when dry; lay this over the bottom
the cellar to 3 or more inches deep, and plaster coat of the cement and sand over the top of this (8) J. M. H. asks: Is there not an error i Professor Young's lecture, published on p. 245, vibrating in a mine 500 feet below the surface A. Professor Young's statement is perfectly cor-
rect, depending on the curious theore, frrs proved by Newton, that a body in a hollow spher cal shell is attracted equally in all directions, no
matter where the body is placed. Thus a body at

A, B, or C would be in perfect equilibrium, if the
shell be of equal density. Therefore, if the earth were a sphere of equal density, a pendulum ca ried to the depth of 500 feet would vibrate radius 500 feet shorter than that of the eartb,"
(9) C. A. B. asks: 1. What is the best ma terial for a horse stable fioor? I want something
which will not absorb moisture. A. Brick set in Fhich will not absorb moisture. A. Brick set in . Is the material made from gas tar and called asphalt as good as asphalt taken from the earth A. No.
(10) R. M. says: I want sometimes to keep the heat from my stove away from my boiler
Can I do this by putting a pipe between the stove and the boiler, with a damper accessible from the outside ? A. Run a coil of iron pipe around th inside of your stove near the top, and connec
one end of it with the bottom of the boiler and one end of it with the bottom of the boiler an
the other end with the top. Also, a little way rom the side of the boiler provide an uprigh branches. Place a cock on each branch near the boiler and one on the upright pipe; by means of
these cocks you can make the hot water circuthese cocks you can make the hot water circu late through the boiler or through the uprigh
pipe in place of the boiler; in the latter case the pipe in place of the boiler; in the later case the
upright pipe must extend above the upper branch nd be open at the end to discharge
(11) C. C. W. asks: 1 . If a bell weighing 1b. were made into a flat piece, of the same thickas in the former shape? A. No. 2. Why? A. Be
cause the bell does not vibrate as a whole, but wause the bell does not vibrate as a whole, bu ides.
(12) J. T. asks: You recently published recipe for making a cement to mend glass and other articles, with chrome cement, made of a so lution of acia chromate of lime. Please give di-
rections for making the solution. A. The acid or bichromate of lime is obtained as a by-product in the manufacture of bichromate of potassa. The
chrome ore is decomposed by roasting it, in a fine powder, intimately mixed with chalk. The roast d mass is then ground with water, and sulphuric acid added till the liquid has an acid reaction, in
which case the bichromate of lime is formed and remains in solution. The salt is purified by crys
(13) A. B. asks: Is there a process by which
now of any.
(14) J. H. C. says: You state that, by the
(14) J. H. C. says: You state that, by the cohol is distilled, it loses its empyreumatic odor
and taste. A friend says that you cannot get up and taste. A friend says that you cannot get up he steam, that alcohol boils at 1788° Fah., that al the alcohol would pass over at 186°, that all th
water would pass over in vapor at ${ }^{2} 12^{\circ}$, the temperature could not be raised to 215° with out confining the steam, and that there would not be any wood spirit in brandy, spirit of wine, or
lcohol to pass over. Please explain cohol distils over at a temperature of 173° Fah nd when the distillation is complete, by simply pyreumatic oils that have been retained by the soap are expelled, and it is thus revivified for sub-
(15) P. J. M. asks: What can be put into quantity of good litharge.
(16) F. C. W. asks: How can I petrify dry me to hight A. Subject the wood for some time to a high steam pressure for several hours
and then introduce a a strong aqueous solution of chloride of calcium, and continue the pressure
for some time longer; finally place in a large ves for some time longer; finally place in a large ves
sel, and cover with a strong solution of water lass (silicate of soda), made by boiling the sili-
(17)
(17) W. B. S. says: I find that, in your issue of January 16,1875 , you say that ofl in whic ning property. J.E. E., of Pa., says it will. which side is the weight of experience? $\begin{aligned} & \text { A. The }\end{aligned}$ oil doess not lose any of its orizinal qualities if
kept at a standard speciftc gravity, and freefrom kept at a st
impurities.
(18) C. G. W. asks: To what percentage is ordinarily pure air vitiated by being breathed once? A. The air which has passed through the no means deprived of its oxygen; it usually con-
rains about4 per cent only of carbonic acid. Th ng expiration has not proceeded further than the arger ramifications of the bronchia
(19) J. E. R. asks: Can lard be adulterated with sulphate of zinc? I hear that this can be done, and that the poisonous effect can be re-
moved, and that the lard will then hold 20 or 25 per cent of water. A. This method of adulteration is somewhat unusual. If you suspect any sample send it to us, and we will be happy to examine it or you.
(20) C. T. McM. says: 1. I see in your an ines given as $2 \times 10,10 \times 24$, etc, the stroke being rom two to five times the bore. Could you no the most power for the least steam by havin troke? A. No. 2 How much power would an engine, 3 inchesstroke $x 4$ bore, have, and wher hould it cut off to work most economically? The question is too indefinite to admit of a spec fic answer. 3. How large a boiler would such an
engine need? A. Make it 2 feet in diameter and 31/2 feet high.
(21) J. L. R. says: We have a steam cylin im that has been cracked by fire just behind th im which holds the head on. The crack extend
half way round the cylinder. Now could it be losed by rods extending through both head hus drawing both heads together? A. Put (22) J. asts: How can I make a varnis that will stick to wood, resist the action of brine, dry quickly, and be durable and incapable of im parting a flavor to anything that may come in
contact with it? A. Try the following: Melt to gether in an iron vessel equal parts of commo pitch and gutta percha. This may be employed or kept liquid under water.
(23) T. C. Jr. asks: How much more wate will a pipe 2 inches in diameter run in an hou the cross section of a 1 inch pipe, and a propor tionate delivery, other circumstances being sim
(24) D. K. says: In reply to P. M. H. A. K. who asked how many horse power it will take to un a 60 inch circular saw through a 2 feet log of
hemlock or oak, your answer was " ordinarily bout 20 horse power to every 1 inch of saw." W ave a mill in which the saw runs two revoution more power to run this saw with a specifled amount of feed than it would to run one connect ed directly on to theshaft of the engine? A. Yes J. E. E., of Pa.

Minerals, etc.-Specimens have been re ceived from the following correspondents,an examined, with the results stated:
J. W. F.- No. 1 is red hematite. No. 2 is oxid divided silicate o
the boiler.-H.A.B The china cement consists of pure (bleached) shellac; but it probably contains some resin.-H M. H.-We should be happy to see a specimen o white stamping powder in question.whtertis the plant from your description.-A. H. R. \& H L.-It contains sulphide of antimony, sulphur, nitrate of strontium, nitrate of potash, and gun-
powder. The pyrotechnic recipes given on p. 235, ol. 32 , are standard representations.
R. F. J. says: I have in my possession a icle of yolk in it. When I had half shelled it noticing the peculiar odor, I cut it and found it of a uniform very light yellow throughout. Can
any one explain this ?-A. H. H. asks: How can I ny one explain this ?-A. H. H.asks. How can ng with rubber stamps? How can I make indel ble ink for the same purpose?

COMMUNICATIONS RECEIVED.

The Editor of the SCIENTIFIC AMERICAN ac original papers and contributionsupon the following subjects
On Railroad Fares to Philadelphia. By F. C
On the Time Lost by the Stars. By J. H.
On the Extraction of Gold. By J. T.
Also inquiries and answers from the following:
J. W. H.-O. W.-J. A. H.-H. M. W.-J. R.-J.L.H
-J. A. K. E. - M. - E. E.R.-R. T. S. - G. U. D. - J.J
-A.G.H.

HINTS TO CORRESPONDENTS

Correspondents whose inquiries fail to appea may conclude that, for grod reasons, the Edito eclines them. The address of the writer shoul always be given
tilityines relating to patents, or to the patenta ublished here. All such questions, when initial only are given, are thrown into the waste baske it would fill half of our paper to print them all but we generally take pleasure in answering briefiy Hundreds of inquiries analogous to the following re sent: "Who makes machines for spinning
curled horsehair? Who sells hand punches and hears suitable for cutting out plowshares an moldboards? Who sells machinery for preparin tearin candles? Who sells manganese?" Al uch personal inquiries are printed, as will be observed, in the column of "Business and Person," which is specially set apart for that purpose abject to the charge mentioned at the head o in this way be expeditiously obtained.

ficial]	
DEX OF INVENTIO	Ha
X	Hay
	но
anted in the Week Ending.	${ }_{\text {Hoi }}$
May 16, 1876,	Hors
AND EACH BEARING THAT DATE. [Those marked (r) are reissued patents.]	Horseshoes, bending, W. Hose nozzle, Curtis et al
A complete copy of any patent in the annexed list,	Hydraulic
Including both the spectications and drawings, will	Ironing machine, M
furnished from this otitice for one dollar. In orde please state the number and date of the patent dest	Jack, wagon, E.
please state the number and date of the patent desired,	Jap
Abdominal supporter, F. H. Sale 177,569	Lamp, s. s. Newton...
	Lamp, D. L. Westoott
Alarm signal, audible, N. J. Holmes............ 177,398	Lamp wick trimmer, C.
Alloy, ant-I-Incrustation, 0. Holden.............. 177,513	Lantern, R. W.
	Lat
	Leath
	Let
	Locomotive, W. Mas
	Loom, G. Crompto
${ }_{\text {Barrel }}$ headings, cutting, v.	Loom let-off motion, B.
Bed lounge, F. Braun177,462	Loom picker ch
Be	Lubricating compound. T. H. La P
	Ma
	Measure, hi
B	Mes
Bot	Mil
${ }^{\text {Bookcase, revolving, }}$ J. Da	
Book cove	Mo
	Mor
	Mot
Bouquet holder, J. Whiteford........................ 177,365	Netting, s
B	
Be	
B	
	Nut lock, A. Walton
${ }^{\text {Br }}$	B. M
Bridge, safety, L. B. Frazee 177,493	Or
ler, F. O.	
suckee, Minor \& Graniss........................	Ov
Sucke, tug,	
Burning, gas, J. M. Clark 177,322	Pa
Burning sawdust, etc., R. Hodson................ 177,509	Pap
Butter package, Van Skelline et al.............. 177,593	Pen
tton fastening	
suton 100p, S. Wales........................... 17.429	
cas	Planter, distributer, M.
	Planter, seed, C. H. Cronk...
Can faucel and funnel, on, F. Ochs................ $17,47,31$	Planter check row dev
Car doors, etc., fastening for, w. F. F. Beasiey 177,368	
Car, stedging,	Plo
Car starter, H. schreiner 177,429	${ }_{\text {Plo }}$
, starter, A. Whittemore....... 177,64	Po
Cars, sarety device for freight, J. Davenport.... 117,382	Press, baling, J. H.
Carret, w. wallace (r)	Press, cotton, J. H. snyde
	em
Chairs, coupling for	Pump, G. R. McCr
Chest, meal, E. G. Bu	Pump and blower, ro
Churn, J. Christe 177,375	Pun
Curn, 1	Punch, registering, J. B. Fro
Clamp, picture frame, A. wieting.a............. 17\%,605	Ra
clock case, S. S. H. Penley	
Clock key, F. H	
Clod crusher, J. M. Crockett.................... 177,45	Regu
Cloth-napping machine, M. H. Whitcomb......... 177,602	Retor
clothes pounder, Prinde	Rolling, metals H . W
Coitee roasting, J. B. Underwood................17,592	Rolling me
	Rol
Cooler, water, C. B. Hutchins 177,335	
Cork fastener for bottles, E. D. Weatherbee...... 177,599	Roll
Culttvator, G. Barcafar.............. 177,317	$\xrightarrow{\text { Salver }}$
cutter body, J. shire.......................... 177,	
Derrick, portable, s. Y. Reams.................. 177,559	Sash rastere, ${ }^{\text {Sash }}$
Desk, school, D. I I Stagg........................ 177,583	
	Ill head block
Digger, potato, Hobson \& Beymer................. 177,333	Saw set, Itskin \& Gregg.
Door securer, H. W. Ross.	Saw swage, C. Adams..
Doors, observation tube	${ }_{\text {Saw }}^{\text {Saw }}$
Drill foo sowing and plan	saw tooth, insertib) scales, beam. JJ.
Dyelig yarn in skelns, W. McAluster............. 177,345	
	Scraper, B. S. Selph......t. Screw tap, S . W. Martin
Elevator, hay, L. W. \& W. G. Miller 177,348	Seat, school, J. Peard.
Engine governor, steam, J.	vice, S .
Engine, steam, N. P. Stevens.	Sewing m
Engine governor for air pump, G. H. Corliss,..... 177 , 17	Sewing machine tri
Equalizer, draft, A. E. Manchester.............. 177,342	Sewing machine tuc
Fabrics, separating wool from, J. Wrikins........ 177,6	Shackle, w. H. L
Fare register, Blackburn \& Woodside (r)........ $\quad 7,120$	Shaft coupling, u1
Fare register and indicator, Kort \& Atwell 177,523	Shaft, flexible, Fo
Fashion chart, M. Landenberger, Jr............. 177,5	Sheep rack, D. P. Johnson
Faucet, J. O. Waddell........................... 177,46	Sheet metal pipe joint, J. C
Faucet, measuring, A. S. Libby.................. 177,528	Shoe fastenin
Fence-bullding machine,	Shutter fa
Fence post, A. Faillor........................... 177,3,	Siphon, mud, L. King
Fence post, H. N. Houghton..................... 17\%,31	Skate, parior, c. W. S
Fence post, G. W. Leonard...................... 177,	Slate,
Fire apparatus, Gêrard \& Tur	Sno
Fire screen, J. A. Pomeroy....................... 177,314.	Soan
Fishng rod reel, C. L. Noe 177,544	Soapstone
Fork and rake, E. L. Gebhardt................... 177,	Spectacle
Fork, carving, A. H. North...................... 177,514.	Spokes, th
Furnace and boiler setting, T. R.	
Furnace, steel heating, W. Swindell.............. 177,	
rnaces, etc., heating air for boller, H. Swindell	Stair rod
Furnace hydrocarbon injector, M.	Stamp hand,
Gaiter, congress, C. D. Bigelow................. 1777455	Steam trap, J. C. Ger
Gas and other pipes, A. Strecker................... 177,586	Stench trap draw screw, J. A. L Sterescope and graphoscope, J.
Gas, washing anc absorbing, E. Soivay............ 177,1 ,	Stereoscope and rraphosco
e, automatic	Stove,
e, farm, E. Y	Stove
${ }^{\text {Glassware, forming joint in, in d. . Ripley } ~} 177$,	
Glove fastening	
Grain header, Myers \& Irwin 177,542	
177,464	
177,386	Ta
rrow-seeding attachment, w. J. Covington.	

$\underset{\substack{177,45 \\ 177,45 \\ 177,36}}{ }$

 ,292.-HARNEss ORNAMENTs.-W.s.

sChedule of patent fees.
On each Caveat.......
On each Trade mark.

On 1suung each original Patent.,
On appeal to Examiners-In-Chief
on
On appeat to Examiners-1n-Chie
on appeat comminsione of
on a application for Reissue......
On nling a Disclaimer.
On
on an

Adtextisments.
Inside Page, each insertion --- $\mathbf{7 5}$ cents a line.
Back Page, each insertion -- $\mathbf{8 1 . 0 0}$ a line.

\mathbf{W} ANTED-QUANT, COMICAL, OR GRO-

 MPr maved cement pipe MACHINEY

 ment. JACKSON \& TYLER, 16 German St., Balti-
more, Md.

 Lathes, Planers, Shapers, Drills,

Founded by Mathew Carey, 1785.

Bincsiaioxaramuls
 Now Ready, New Revised Editlons.
 Catalogue of Practical And SCIENTIFIC Bo KS pubished by Henry Carey Baird \& Co. 8vo., 96 pages. Catalogue of a chotece collection of Practical, Scientrici, and Eco List of books on Stram and tre Steam Engine, MEchanics, Machinery, and Encinering. 4to. A Catalogueof Books on Dreing, Calico PrintList of Books and Pamphlets on the CURReNCY,
 HENRY CAREY bAIRD \& CO., 810 Walnut street, phladelpha.

Planing \& Matching.
 TO ELECTROMPLATERS JEWELERS, AND

HANGERS, PULEYS, COUPLINGS, BELTING, \&e. GEORGE PLACE General A Aen for the TANITE CO's SOLID EMERY
WHEELS AND EMERY GRINDING MACHINERY

 IIIIUN II IIII!

As a rule, it pays best to advertise what one has to sel
or wishes to purchase, in papers having the largest cir culation among the class of persons 11 ikely to to be interested nents to sell or lease, or who wish Estimates made for Constructing Bridges, Dams, Iron Bulldings, Furnaces,
Heating Apparatus, steam Engines, Boilers, Wood and Iron Workping Machinery, Agriciturual Implements, or
Irantracts for Engineering works of all kinds, will tind ontracts for Engineering Works of all kinds, will find
that tit pays to advertise in the SCIENTIFIC AMERI CaN.
the value of the Scientific american as an ad vertising medtum cannot be over-estimated. It goes
nto all the machine and workshops in the country, and it taken at the prinncipal lubraries and reading rooms in The SCIENTIFIC AMERICAN and SCIENTIFIC than all other papers of their kind in the world comSned; and at no period since the commencement of the been as large as at the present time.
The actual
Issue of the The actual Isue of the SCIENTIFIC AMERICAN is
47,500 per week, and of the SCIENTIFIC AMERICAN SUPPLEMENT, 15,000, making the combined If anything is wanted in the mech
for it in the SCIENTIFIC AMERICAN.
If one has a patent or machinery to sell, advertise in If one has a patent or machinery to sell, advertise in
the SCIENTIFIC AMEICAN.
If any one is exhibiting at the Centennial, it will pay For rates, see the first column be found

The Supplement.

Next to the SCIENTIFIC AMERICAN, the SCIEN-
TIFIC AMERICAN SUPPLEMENT has the largest circulation of any paper of its class published. The SUP TIFIC AMERICAN, and has a large circulation other han among the subscribers of the regular edition The $\left.\begin{array}{l}\text { Back Page, tinted cover35c. a line } \\ \text { Inside page250. a line }\end{array}\right\} \begin{gathered}\text { EACH } \\ \text { Insertion. }\end{gathered}$ Discount for large space, and to quarterly advertisers. Munn \& Co.,

37 Park Row, New York

June if, i876.

BARGAINS IN MACHINERY.
We offer the following for saie, the new Machines betng marked (N), all others being second
MIACHINE TOOLS

$\stackrel{p}{p}$

 Sut w. FORSATH \& CO.,
Sachints \& General Machine Dealers,

W ANED-Some responishe Bras Founder

 For ALL KINDS OF MACHINERT- APply to MACHINISTS'S'TOULS.

P. BIATSDITI \& CO.

 STEAM ENGINES FOR SALE

 Practical Hand-Books

Roper's Fland-Bools

STEAM FIRE ENGINES,
 The only book of the rind ever pubilighed in tht country.

 ${ }_{\text {reithadelpha }}$
COMPRESSED AIR MOTIVE POWER.-For

\section*{| spariven or Tube Wellis |
| :--- |
| Driver |}

BLAKE'S PATENT Stone and Ore Breaker

WOOD, TABER \& MORSE, Eaton, Madison Co., N.'Y. STEAM ENGINES, Portable, Stationary and Agricultural.
Hundreds in ise in Shops, rrint
Hon

 stockize cot
ing
application.

CENTNNNTAL BOOK OF BIOGRAPHY

The glory of America 18 her great men. Every

REV:ER S IBLE
FOISTING GNGINE

 CTTALOAGU
ROCKFORD,
WINNEBAGO
M ACHINERY OF IMPROVED STYLES FOR
 R

Planing and Matching

(1 S' SAFETY Hoisting

 Solis Manvencturre,
Engines and bollers, Pulleys,Shafting, and Hangers specialty.

$\$ 5$ to $\$ 20 \begin{aligned} & \text { per day at home. samples worth *1 } \\ & \text { free. Sinsson \& Co., Portiand, Me. }\end{aligned}$
VIMFEGAR HOW MADE IN

gaduertisements.

 Portland and Keene's Cement.

WARDWELL PATENT,
FOR CUTTING STONE INTO VARIOUS SIZES
AND DIMENSIONS IN ALL KINDS OF AND DIME
steam stone cutter co., rutland, vt. Sole proprietors and manuracturers.

Midents

[ESTABLISHED 1846.]
Mnun \& Co.'s Patent Ofices.
The Oldest Agency for Soliciting Patents in the thinty fears' EXPERIENCE. MORE PATENTS have been secured through this agency, at
The world.
They employ as their assistants a corps of the most exdraftsmen that can be found, many of whom have been selected from the ranks of the Patent Offlce.
SIXTY THOUSAND inventors have availed themventions and procuring their patents.
MUNN \& CO., in connection with the publication o the SCIENTIFIC. AMERICAN, continue to examine inventions, confer with inventors, prepare drawings, spen the Patent offlce, paying the government fees, and Watch each case step by step whille pending before the ex-
aminer. This is done through their branch offlce, corner F and 7th streets, Washington. They also prepare and
fle caveats, procure design patents, trademarks, and refile caveats, procure design patents, trademarks, and re
Issues, attend to rejected cases (prepared by the invento or other attorneys), procure copyrights, attend to interferences, give written opinions on matters of infringe ment, furnish coples of patents, and, in fact, attend to elgn countries. A spectal notice is made in the SCIENTIFIC AMERI-
CAN of all inventions patented through this agency, wit CAN of all inventions patented through this agency, wit
the name and residence of the patentee. PPatents are of ven sold, in part or whe
Patentsobtained in Canada, England, France,Belgium, Germany, Russia, Prussia, Spain, Portugal, the British Colonies, and all other countries where patents are Send for pamphlet pertaining specially to foreign patents which states the cost,time granted, and the requirement for each country.
Persons desiring any pat of Patents.
ber 26,1867 , can be supplied with offlcial coples avem sonable cost, the price depending upon the extent of drawings and length of speciffcations.
Any patent fissued since Novembe
Any patent issued since November 27,1867 , at which
time the Patent office commenced printing the drawing and specifications, may be had by remitting to this of fice $\$ 1$.
A copy of the clal
be furnished for $\$ 1$
When ordering coples, please to remit for the same as and date of patent.
A pamphlet containing the laws and fulldirections fo somely bound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every patentee and mechanic, and is a useful handbook of ref

Address MUNF \& CO.
Publishers SCIENTIFIC AMERICAN,
Brance
ggton. D. C
 COVBRING
writ Airs sta
 Ion Bridge bulidivg-A complete de

 P. 0 . E. mox. 484 .
 $\mathbf{R}_{\text {SCALE }}^{\text {OGERS }}$ PANENTETE OF SODA BOLLER

FOR LEASE,

GEO. W. READ \& CO. AND SENEER BAND SAW ${ }^{\text {Al }}$
Hard-Wood Lumber and choice figured veneers. The LARGEST strock: The Gireates

 Todd \& Rafferty Machine Co.

Niagara SteamPumpWorks Chartes b. HARDit 23Adams Stres BROOKLYN, N.
$\mathbf{B}^{\text {OGARARDS' PATENT UNTVERSAL EGCEN }}$
 Thich ore easily made. With three engravings of the toons

NEWSPAPER FILE.

every one
Address
MUNN \& CO.,
Publishers SCIEN

Mill FurnishingWVorlss

W. C. DUYCKINCK,

Railway, Machinists', and En gineers' Supplies.

Diamonds carton

THE HEALD \& SISCO Patent Centrifugal Pumps.

Patent Door Knob.

Machinists' Tools.

NEW HAVEN MANUFACTURING CO.

T ELOCIPEDE CARRIAGES, OF LIGHT CON

EAGLE FOOTLATHES,
5

The Tanite Co.,
 STROUDSBURG, PA. EMERY WHEELS \& GRINDERS
 SCREW PROPELLERS, THEIR SHAFTS AND
 PORTLANDCEMENT
 HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.
 J. B. PIERCE, Sec'y.

FOREIGN PATENTS

THE CENTENNIAL.

There ts no doubt thatour Centenial Exposition will from all parts of the world, and they will take home with
them many of our best improvements to introduce into their own manufactures.
their own manufactures.
An unusual opportunity will be offered for selling to An unasual opportanty win be of erea for seling. to
these people such foreign patents as have been secured on
good American inventions in the respective countries good, American inventions in the
from which these visitors come.
At the reduced prices for which patents are obtaine abroad, our people will lose a chance not likely to occur again, if they do not avail themselves of the opportunity of securing their inventions in forelgn countries at once so as to have their
coming summer.
For cost of patents in the different countries and the
conditions on which they are granted, send for pamphle containing full information.
MUNN \& CO.,
$\begin{gathered}\text { M2 Park Row, New Y }\end{gathered}$,

Bravce Washing inton, \mathbf{D}.

Muly

SCIENTIFIC AMERICAN, FOR 1876 THE MOST POPULAR SCEENTIFIC PAFER IN THE WORLD.

THIRTY-FIRST YEAR

VOLUME XXXIV.-NEW SERIES

The publishers of the SCIENTIFIC AMERICAN beg to announce that on the first day of January, 1876, a new volume commenced. It will continue tents of the new yolume mere attractive and use ful than any of its predecessiors.

To the Mechanic and Manufacturer.
No person engaged in any of the mechanical pursuite should think of doing without the Scien tific American. Every number contains from six to ten engravings of new machines and inven-
tions which cannot be found in any other publica tions which cannot be found in any other publica
tion.
The SCIENTIFIC AMERICAN is devoted to the interests of Popular Science, the Mechanic Arts,
Manufactures,Inventions, Agriculture, Commerce and the industrial pursuits generally; and it is val uable and instructive not only in the Workshop and Manufactory, but also in the Household, the Library, and the Reading Room. Each volume tions and Advice by Practical Writers, for Work ing Men and Employers, in all the various arts. TERMS OF SUBSCRIPTION - POSTAGE PAID BY US.
One copy Scientific American, one year.... $\$ 3.20$
One copy Scientific American, six months. $\begin{array}{ll}\text { One copy Scientific American, six months. } & 1.60 \\ & \end{array}$ One copy Scientific American and one copy

Scientiflc American supplement, both
for one year, post-paid............... 7.00
The Scientific American Supplement A weekly paper, uniform in size with the ScIENTIFIC AMERICAN, but a distinct publication. It contains working drawings of engineering works,
and elaborate treatises on every branch of Science and Mechanics, by eminent writers, at home and abroad. An illustrated cover protects the handsomely printed sheets. Price, $\$ 5.00$ per annum Single copies 10 cents.
Remit by postal order, draft, or express. Address all letters and make all Post Office or

MUN NTN \& \& CO.

