
a Weekly journal 0f practical information, art science, mechanics Chemistry, and manufactures.

NEW SYSTEM OF ILLUMINATION BY REFLECTION.
NEW SYSTEM OF ILLUMINATION BY REFLECTION. now us collect rays of radiant light or heat, two mean faces the other on the refractive refer of buitable sur Theoretically, reflection alone has an indefinite application, since recourse may be had to plane mirrors movable in all directions, the rays re flected from which may be converged on a determined point : or to concave mirrors The practical employ ment of these last is however impeded by difficulties of fabrica tion.
In the case of re fraction such as take place through the len place through the len ticular apparatus of lighthouses, for exam ple, a variety of disad vantages exist. There is a large sbsorption of light by the glass double reflection at the two surfaces of the refracting medium, dis persion due to stria and bubbles, and finally the double aberra tion of sphericity and refrangibility of the refrangibility of the spherical glasses which form the prin cipal part and ofte the entirety of the apparatus.

It will be seen, therefore, that, in or der to obtain best results, a construction is needed which will combine all the ad vantages of the re flecting system, while eliminating the capi tal difficulties in fab rication, difficulties rication, difficultie portional to dimen porional to dimen sions, and consequen y diminish the use ful effect of the reflec tor. Such is the pro
blem which, it appears, has been successfully solved by Professor Balestrieri, of Naples, by the invention of the photothermic hollow sphere collector (collecteur photo-thermique ar millaire), the principle of which we will now explain by the aid of the annexed diagrams.
A C and A B, in Fig, 2, are indefinite lines, placed at right angles, and divided from A into a certain number of equal

parts, $1,2,3,1^{\prime}, 2^{\prime}, 3^{\prime}$, etc. Take any point on the line, A B, for example 4^{\prime}, for the focus of the system, and draw therefrom the lines $4^{\prime} 1,4^{\prime} 2$, etc. These lines represent rays from focus 4^{\prime}. From 4^{\prime} on the line, A B, set off 4^{\prime} I equal to $4^{\prime} 1$, 4^{\prime} II equal to $4^{\prime} 2$. etc., and then join, by dotted lines, the points I, II, III, IV, V, with $1,2,3,4,5$, on line, A C. Then

these lines, 1 I, 2 II, etc., when the line, A C, is revolved about
A B as an axis, will describe surfaces of right cones ; and
the portions of said dotted lines comprised between the suc-

rior profiles of segments of these cones on the base.
no image, no conjugate focus. In each segment there exists a circular section which reflects the rays from the luminous focus rigorously parallel. The other points of the segment focus rigorously parallel. The other points of the segment
reflect rays slightly divergent or convergent; each of the othreflect rays slightly divergent or convergent; each of the oth-
er points of the flame likewise gives some rays parallel, the er points of the flame likewise gives some rays parallel, the rest not so; and the latter, after crossing, diverge in their turn. Thus innumer able parallel and di verging rays are pro duced, which combine to form a luminous cone, the base of which is projected in space. Thus the size of the flame is a first element of divergence, and the same is true of the seg ments: the larger they ments: the larger they are, the greater is the of arranging the segments on a plane, the may be disposed on a curve so as to collect the entire 180° of light of the anterior hemi sphere.
No lens can have an opening, A B, Fig. 5 (page 375),greater than its radius of curvature OC , on account of diff culties in fabrication and of the total angle f reflection of th glass. The angle, A CB , of this opening is but 60°. Now as th principal focus, F, of plano-convex lens, is very nearly at the ex tremity of the diame ter of the sphere, 0 F it follows that the lens cannot collect more than 30° of light. In the construction of lighthouses, this large ocal distance is arg cous intance is a se addition to that due he small collectin ngle. In collecting for example, of a flash sent metallic segments with polished surfaces. The ray of \mid meter, turning around a lamp, C (Fig. 5), 0 C +CF would be light, 41 , Fig. 3, impinges on the surface or annulet, $1 a$, at equal to 2 meters, and consequently the circumference abou the point, 1 , and will be reflected to f. Now as $41=4$ I in which the lens must travel would be $12 \cdot 56$ meters, or abou the triangle 41 I , the angle $4 \mathrm{I}=411$. Moreover the 40 feet. As the flashes must be rapidly repeated, it follows angle of incidence, $41 a \cdots$ the angle of reflection, $f 1 a^{\prime}$. that,in passing over so long a road, lenses must be multiplied, Hence the reflected ray, $f 1$, is parallel to A B. Similarly it and therefore it happens that 10 or 12 of the latter are often may be demonstrated that all the other reflected rays will be found in a single lighthouse. parallel to the same axis, and consequently the beam of reflected light will be composed of parallel rays,
Fig. 4 represents a section of an assemblage of these re flecting segments of cones, to which the inventor has given flecting segments of cones, to which the inventor has given
the name armilles (annulets), and which together compose a collector. The sphere of light emanating from the central collector.
source may be supposed to be divided into two hemispheres source may be supposed to be divided into two hemispheres
by the line, P. The rays of the anterior hemisphere are by the line, P. The rays of the anterior hemisphere are
collected and reflected by the segments, $1 a$, etc., and the collected and reflected by the segments, $1 a$, etc., and the
quantity of collected rays is indicated by the arc, w 2 . It is quantity of collected rays is indicated by the arc, $w 2 \mathrm{z}$. It is equally possible to collect and utilize the rays of the poste
rior hemisphere, and to this end is arranged the concave mirror, M, the center of curvature of which is at 0 . The rays from the luminous source, impinging upon the mirror at $r r^{\prime}$, are projected on the lines, $\mathrm{R} r^{\prime}, \mathbf{R}^{\prime} r^{\prime}$, through the spaces between the segments. Each part of said space through which the rays pass equals one half the distance, 12 ; conse quently the reflector adds to the light collected by the segments one half of all that which falls upon its surface If there the segm collect 150° of light the mirror will therefore the segments collect 150° of light, the mirror wil collect 75°, and therefore the sum 225°
portion of the luminous sphere utilized.
For lighthouses, at the present time the Fresnel lens is largely employed; but this is subject to the disadvantages already noted as peculiar to refractive apparatus. Moreover, with all lenses, no two rays are truly parallel, and the projection of the light at a distance causes a conjugate focus, which is in relation to the luminous object of which it is an enlarged image. With Professor Balestrieri's device, there is

In Professor Balestrieri's apparatus the focal point is ar bitrary, and the segments can be adjusted to suit it at any position, to give, say, a focal distance of $19 \frac{1}{2}$ inches or eve less. The circular travel would be but 5 feet, and a single

set of segments, or at most two, would replace the dozen lenticular systems, besides affording a greater simplicity and much greater economy in construction.
The apparatus, we learn from Les Mondes, from which journal we condense the present article, has been subjected (Continued on page 372.)

Srientific Amprian.

ESTABLISHED 1846

MUNN \& CO., Editors and Proprietors.
published weekly at
NO. 37 PARK ROW, NEW YORK.

o. D. MUNN.

A. E. BEACH.
terms for the scientific american.
One copy, one year, postape included.
One copy, six months, postage included

Over ten copies, same rate cach, postage included

$$
T \text { The postage ets payane, In atrance by the }
$$

criber then receeves the paper free of charge
criber then receelves the paper free of charge
Notr.-Persons subscrbhn
office and State address, plainly written. In case turl names, and Post state former ata adrosss, ass well as give the new one. No changes can be made
under unless the formeraddress is given.
A distinct paper from the Scientericific Amprican, but
and published simultaneouslv with the regular edition.
One year by TERMS
One year by mall..
SCIENTIFIC American and Supplement, to one address.
Single Coptes.

Address MUNN \& Co., 37 Park Row, N.
Subser!tions recelved and single
STF Subscriptio
the news azents.
VOLUME XXXIV., No 24. [New Series.] 1hirty-first Year
NEW YORK, SATURDAY, JUNE 10, 1876

THE SCIENTIFIC AMERICAN SUPPLEMENT. No. 24.
For the Week ending June 10, 1876 . table of contents.

Epsom Salts. Mellurium, tits History, Uses, Value, etc.-Daubrite,
New Mneal.

SI. TLECCTRICTIT, LIGHT, HEAT

VII. MEDICLNE, PHYSIOLOGY, ETC.-Small-pox Spread by D
movalof Fork rom stomach.
The Scientific American Supplement
 tout suse founs.

munn \& Co., Publishers,
 ered Ingle coples of any de
didress on recelpt of t10 cents.

Imitation Sllver on Stone and Plaster.

Take two sheets of mica, and render them perfectly white by boiling in hydrochloric acid, or by the action of fire
Wash and dry, and then bruise them to fine powder, which sift. Mix the powder with very light collodion; and with a soft camel's hair brush, put two or three layers on the object. This coating, as soon as dry', will assume and preserve the appearance of silver.

SPONTANEOUS COMBUSTION

We noted, recently, a case of spontaneous combustion due to the saturation of sawdust and shavings by boiled linseed oil. The refuse had accumulated under the floor of a car penter's shop, through cracks in which the oil had leaked, and the first intimation which the occupant of the premises had of his impending danger was a thin wreath of smoke oozing up between the boards. Instances of this kind are
exceedingly common; so common, indeed, that it may be exceedingly common; so common, indeed, that it may be
fairly believed that a very large proportion of the fires, the immediate causes of which frequently bafle all-attempts at discovery, arise from the flame thas insidionsly generated. A case lately happened within our own knowledge, where a
gentleman, who had left his house for a brief period unoccupied, returned late at night to find the building filled with smoke and his kitchen woodwork in a light blaze. Prompt measures luckily resulted in extinguishment of the fire ; and on investigation it was found that a servant had employed a closet shelf as a receptacle for old greasy dishcloths and oily rags used for cleaning furniture. The ignition of such materials, always favored by a slight warmth, was hastened by the temperature of the kitchen, and the rapid oxidation soon determined active combustion.
It has been determined by experiment that a handful of cotton waste soaked in boiled linseed oil, placed in a chamber at a temperature of 170° Fah., will take fire in less than two hours. If raw linseed oil be used, the time occupied is from four to five hours, and with rape oil about six hours.
Gallipoli oil takes about the time last mentioned, under 132° Gallipoli oil takes about the time last mentioned, under 132 Fah. Castor oil, under like circumstances, is very slow; and at the end of two days, waste saturated with it only became
a mass of charred cotton. Lard oil produces rapid combus tion in about four hours. Sperm oil, on the other hand, refuses even to cause a charring of the waste. Seal oil, of a strong fish odor not unlike sperm, has produced rapid ignition in one hundred minutes, temperatures being as las stated. The heavy oils from coal and shale, being chiefly the higher olefines, have a remarkable effect in preventing oxidation, through giving a certain protection from the air Mixtures of these oils with 20 per cent of rape oil gave no
indication of heat whatever at $170^{\circ} \mathrm{Fah}$.; and even seal oil, with its own bulk of mineral oil added to it, did not at 135 reach a temperature sufficient to char cotton.
As a general rule, it may be laid down that spontaneou
combustion of refuse, soaked with vegetable or animal oils, combustion of refuse, soaked with vegetable or animal oils,
will occur whenever the conditions are such that a tempera will occur whenever the conditions are such that a temperature of at least 175° continues for several hours. Cotton
will burst into flame; wool, on the other hand, becomes blackened mass. Equal weights of cotton and oil produce the most rapid inflammation. Combustion may be checked or stopped by the addition of mineral oil. Wherever vegetable or animal oil (other than sperm) is largely used, there fore, whether for lubricating machinery or oiling tissues, it would seem to be a safe precaution to add to it as large proportion of mineral oil as possible, if such addition ca
made without interfering with the use of the material.

WHAT IS BAD WATER

There has recently been some complaint in this city regarding the condition of the Croton water, which has appeared muddy in color, owing to its being slightly charged with organic and other substances. As the Croton is nor mally of exceptional purity and clearness, the presence of the foreign matter excites attention which would not be accorded it were we accustomed to drinking such water as is
consumed from the Thames river in England, or from the consumed from the Thames river in England, or from the
Mississippi or Monongahelarivers in thiscountry, wheremuddiness is rather the rule than the exception. In New York, however, we have the satisfaction of knowing that our water supply is undefiled. No town or factory refuse passes into it ; and therefore it is reasonably certain that such impurities as may affect it are those due to natural causes, and not to the addition of extraneous matter which may be deleterious to health. But this is not the case everywhere ; and in localities where the supply is taken from adjacent rivers and streams which pass through populous districts, any change in the water may bode its pollution to a degree which renders it unfit for human consumption; and in deed, the same result may happen without the water visibly indicating the fact, save by its effects. This trouble has been found seriously to exist in England; and for several years the subject of the river pollution, which is a necessary consequence of the closely settled country and its immense manufacturing districts, has been under examination by gov ernment commissions of scientific men.
Among other objects of the investigation has been that of determining what bad water is, or rather at what point, whether through mechanical or chemical impurities, pollu tion of the liquid may be considered as beginning. In a recent report, Professor Frankland
what a polluted liquid is as follows
(1) Every liquid which has not been submitted to pre cipitation produced by a perfect repose in reservoirs of suf ficient dimensions during a period of at least six hours ; or which, having been submitted to precipitation, contains in suspension more than 1 part by weight of dry organic matter in 100,000 parts of liquid ; or which, not having been submitted to precipitation, contains in suspension more than 3 parts by weight of dry mineral matter, or 1 part by (2) Every liquid containing in solution more than 2 parts by weight of organic carbon or 3 parts of organic nitrogen in 100,000 parts of liquid. (3) Every liquid which, inch, exhibits under daylight a distinct color. (4) Every liquid which contains in solution, in every 100,000 parts by
weight, more than 2 parts of any metal, except calcium magnesium, potassium, and sodium. (5) Every liquid which, in every 100,000 parts by weight, contains, in solution, suspension, chemical combination, or otherwise, more than 0.5 of metallic arsenic. (6) Every liquid which, after the addition of sulphuric acid, contains in every 100,000 parts by weight more than 1 part of free chlorine. (7) Every liquid which, in every 100,000 parts ly weight, contains more than 1 part of sulphur, in the state of sulphiuretted hydro en or of a soluble sulphuret. (8) Every liquid having an acidity superior to that produced by adding 2 parts by weight of hydrochloric acid to 1,000 parts of distilled water. (9) Every liquid having an alkalinity greater than that pro auced by adding 1 part by weight of caustic soda to 1,000 parts of distilled water. (10) Every liquid exhibiting on its surface a film of petroleum or hydrocarbon, or containing in suspension, in 100,000 parts, more than 0.05 of such oils.
By the aid of the above, it is easy to determine what streams are polluted and what pure; and when the feeders o the source whence the water supply is obtained are found to be thus contaminated, it becomes a question for the authorities to determine as to the necessary restrictive mea sures to prevent the continuance of the evil. Of course, tream cannot be regarded as polluting when, although con taining deleterious ingredients in a greater degree than is above laid down, it empties into a source of water supply
which is even fouler: so that the question of whether a which is even fouler: so that the question of whether a
stream is a means of pollution. and hence a pullic nuisance, is one of a relative nature, depending on individual circum stances.

A SOCIAL PERIL

The confession of the Boston belfry murderer, Piper, re veals an instance of a mental condition, the evil results of which seemingly defy any preventive measures that society can devise. It shows us that we have to face a new danger more insidious and more terrible than are magazines of dan gerous explosives located in our midst. We can recogniz ymptoms of lunacy and put the sufferer under restraint: not before, at least immediately after he has slaughtered one fellow being; but what are we to do with those who ex hibit no symptom of mental alienation, but who kill again and again for the love of killing? Unlike the lunatic who makes no effort to hide the crime, or the assassin who in his cooler moments betrays the work done in the heat of pas ion, these wretches are destitute even of a twinge of re morse, and their covering of the deed is performed with a coolness and thoroughness to which the murderer for greed r revenge is a stranger.
This man, Piper, confessed to have killed two victims, not because he was impelled to do so by any ungovernable in pulse, but for a clear motive of self-gratification; he liked to see them suffer." It appears that the very heinousnes of the crimes has caused the idea that the perpetrator was in sane, and should not have suffered the death penalty, a notion we think unfounded and fraught with great mischief to societty. There is the clearest possible distinction between the cas of Piper and of a man who kills through morbid impulse. True morbid impulse, for example, impels a man to lie in wait for and to murder the person who his diseased deliri wait for and to murder the person who his diseased deliri injury. He is perfectly aware of his wrong-doing, but is so impelled to its perpetration that he cannot avoid it. Now on the other hand, if while in a delirious state he should act according to his reason, no matter how perverted, and then strike down his victim, there is no morbid impulse ; no vould there be any, should he commit suicide to a void som maginary impending calamity. Note the distinction which is here thus closely drawn: it lies simply in the fact that the murderer is irresistibly impelled to the deed. He does it not merely because he thinks it expedient for his safety, but because he must do it
Now, in this Boston case, morbid impulse is obviously wanting, although it has been predicated on the apparent absence of motive to the crimes. Here is again an error ; for here was a motive of the strongest possible description namely, that of the love of killing; the same motive which induces a brute to slay its natural prey in infinitely greate numbers than are required for its food, and identically the ame passion which, in a less dangerous form, finds its grati fication in the combats of gladiators or the deadly fights of animals. It is as easy to imagine that such a passion migh gain an ascendency as well as the passion for drink, or any other of those which civilization endeavors to curb and re press. There is no insanity in the case, any more than ther is in that of the drunkard or the gambler whom the law ooks upon as perfectly responsible for his actions.
The vital question, however, is: How is society to protec tself against this evil? Necessity points to the prompt ex termination of those affected with the killing lust whereve detected. Reformatory measures seem unavailing ; for who can say that, by preventing a person killing his fellows for ertain time, or by submitting him to a certain treatment, lesire which has almost become an instinct will be obliter ted? In any event, while society can afford to risk the re lapses of a thief, it cannot those of a murderer, nor can it by immuring him for life, risk the possibility of future mis taken leniency in the shape of a pardon. This, however only disposes of those persons actually detected, and pre vents their subsequent crimes only. How to protect our selves, against affected persons whose murderous disposition has not actually been manifested, is a problem which mus be solved by eradicating such sources of moral contagion as we know to exist.
Despine, the celebrated French psychologist, records that, during the first empire, a soldier hanged himself in his sen-
try box ; soon after, other soldiers did the same, and, until the curious expedient of destroying all the sentry boxes was thought of, the contagion remained active. The same observer points out the epidemic character, at one period, of duelling ; and it is well known that, so frequent are suicides from particular high monuments, that especial means are there needed to prevent the crime. Despine considers this due to a moral influence. Bouchut, on the other hand, considers the mechanism of disturbance an external "miasmatic influence." Richardson, the most recent observer, thinks that the phenomena are connected with disturbance, that is, modified motion in the ethereal matter which, according to his theory, changes the living person's organism throughout its entire extent, and is the medium of communication between ourselves and the outer universe. "Through it different centers of the nervous organism can be excited by external forces as readily as they can be by direct organic injuries.'
It remains, then, to discover accurately the causes of the particular disturbance which spreads the contagion of mur der. In the Pomeroy case, the relation of the boy to his father's calling as a butcher and slaughterer gives us a possible clue to his murderous propensities; and at the same time, it may be suggested that the contagion spread by that boy's atrocities could easily have affected Piper, and perhaps others similarly disposed, and thus another argument is added to that in favor of the death penalty. From the Pomeroy case, the moral danger existing in habituating a person, and especially a child, to scenes of violent death is evident ; and without further instance, it may be laid down as a duty of society to protect its members from the effect of such scenes. This would involve stringent laws, imposing more severe penalties than now exist for prizefighting, against
wanton torture, killing and mutilation of brutes, and formaywanton torture, killing and mutilation of brutes, and formay
hem, or like assaults of a peculiarly brutal character, on the person; also measures would be needed tending to the isolation of slaughterhouses and the prevention of public access thereto. It is, furthermore, obvious that the presen publicity of the death penalty must in a measure defeat its object, since it is an open example of killing, fully suscepti ble of breeding moral contagion. Therefore, executions should be performed secretly, and the accounts now pubthe same time, such shows of murderers' and burglars' weapons as one whioh has recently disgraced a prominent thoroughfare in this city, together with that foul blot on modern journalism, the sensational sheet of criminal news, should be rigidly suppressed.
This much, and perhaps more which further considera tion may suggest, society may do. But after all, the principal measures lie in the hands of parents and instructors. It is for them to repress the first manifestations of an abnor mally destructive nature, for during early youth that nature is most clearly exhibited; and it is for them likewise to see to it that such sources of moral contagion as society tolerates shall not influence the plastic and receptive minds of those entrusted to their care.

SUGGESTIONS FOR YOUNG MASTER MECHANICS.

It is a great error for a young workman to suppose, becaus he has mastered enough of his trade to be considered a good hand, and now contemplates starting for himself, that all he has to do is to hang out a sign and people will thereupon rush to employ him. Every man has got to build up two
things, first, his education, second, his business. There is no royal road to either. Because a workman has his trade edu cation, it does not at all follow that he can command trade True, he may have his reputation, and through it may ob tain employment under others with ease; but in starting for himself, he should remember this distinction: that he becomes the servant not of one or of a dozen persons, but of the whole public ; and for him to prove to the public, who knows nothing about him at first, that he is worthy of employment, takes time and patience. Now, it is usually the case wherewith to maintain himself during that period of enforced idleness which must follow before sufficient business for his support is secured by him. To expend that amount in high rent, or in tools other than those absolutely necessary, or for costly fittings to the shop, is excessively
fool-hardy and rash. He does not know how long he must wait before his period of independence will arrive, and it is therefore the commonest prudence to husband every re-
source, under the assumption that that period is a very long source, under the assumption that that period is a very long
time in the future. The best policy, then, is to take a small room, just large enough for the purpose of the work to be done, and for the workman not to attempt anything " in all its branches." We never fancied that addition to a sign on misstatement of the capabilities of its owner. Better begin with the specialty that can be done best, and then, as business increases, add on the branches. Get a reputation es tablished for doing one thing extraordinarily well, and it will go a long way toward extending a business to other affairs when the proper time arrives.
Never slight a job, no matter how small and trivial it may appear. People form estimates of ability from small things very frequently, arguing that a workman who attends to minutice carefully will be likely to produce more importaut work complete in all its parts. Besides, the favorable
impression conveyed by some little action has laid the foundation of many a man's sulsequent future.
Be satisfied with small though just profits. Because you perhaps can do a job a shade better than any one in the vicinity, do not be exorbitant. Weheard an unpublished story of the great drygoods merchant, Stewart, recently, which
is just to the point here. He said he never took advantage of the market but once, and then he had a large stock of a
very superior fabric, not elsewhere found. The temptation was strong to run up the price, and he yielded. Despite th high figures, every yard was sold, and he realized two o three hundred thousand dollars. "I thought this a good bargain at the time," he said, "but I afterwards discovered that it cost me two or three millions. I found that people said : 'Stewart has first class goods, but you've got to pay good prices for them.' It took all my efforts to dispel that impression, and I believe it affected all my future busines operations.'
We would counsel young workmen to be saving, not only of money but of brains. It is a great deal easier to spend money than to get it, and it is easier to forget than to learn We have great faith in savings' banks, when they can show a good surplus; and in this respect we would advise work ing men to avoid those institutions that offer remarkable in ducements in the way of interest, and to deposit their fund in banks which pay less but which are firmly established Thousands of New York workmen had their savings swep way recently by neglecting this precaution. Money at rea sonable interest increases wonderfully fast, and nothing can make a man feel more independent of fortune than neat sum, safely stored away, which can be drawn upon in times of emergency.
To paraphrase a well known axiom, " the price of know ledge is eternal study." The world moves. Because you mastered a subject ten years ago, it does not follow that you know all about it now. A person that expects to kee abreast with the times, and especially one engaged in a me hanical pursuit, in which improvements are constantl made, must read, or fall in the rear. Brains can be saved by reading, just as money can be by putting it in the bank. Study scientific and practical books and papers an hour a day and the accumulation of money at interest will not be near ly so rapid as the growth of your knowledge. We be-
lieve more can be learned in half an hour's intelligent study, followed by a thorough thinking over of the subject than in six hours' steady application. The study can be done out of working hours; the thinking you can do at the lath or wh
skill.

Honor your calling, and it will honor you. It is a thou sand times better to be a successful mender of pots and pans than an unsuccessful mender of peoples' bodies; better to be able to draw a straight forging than a bad brief; bette be able to compose good mortar than a poor sermon. There are plenty of examples of good workmen becoming great lawyers, and inventors, and senators, and presidents; but
very few of poor doctors, or attorneys, or clergymen transforming themselves into anything useful at all. It is a pret ty safe rule to believe that, in this world, sooner or later every man finds his proper level; it is only a question of starting low and working slowly upwards, or starting to high and coming quickly down. The one is usually grace ful, the other disgraceful ; and there is no human task half so hard as regaining a lost position, nor one in which hon est work more often fails to commend success.

DRUGGING HORSES

We have in a previous article called attention to the bar barous practice of drugging horses in order to put them into apparently good condition. The present is the time of year when this most commonly done, both by those having the animals under their care, or by dealers who find that the effects of spring weather have rendered their horses less sleek and plump, and consequently less salable. It there fore is advisable for those who own horses to see that their stable men do not administer condition powders of their own kind in the spring time be administered; and in buyin new stock, it would be as well to let bargains pend for fortnight or so, in order to afford time for observation when ever the animals show suspicious signs.
There are very excellent veterinary surgeons in this and ther cities; but the profession is ridiculously small in numerical strength, as compared to the live stock in the coun try. The last census states that the total number of sur geons is about 1,100 , and there are over $8,000,000$ horses
and mules. There is 1 skilled cattle doctor to every 7,500 horses; or if we take into consideration other live stock, ex cluding sheep and swine, the average is as 1 to every 21,655 animals. We adduce these figures simply to show the lack of educated veterinarians, which exists throughou the country, a lack which, as every one knows, is made up by pernicious and unreliable as the work of amateur dabbler at professions; and in this very fact exists the short-sighted ness of those who entrust the doctoring of valuable animals to men who are absolutely ignorant of the nature and cause of disease and of the proper scientific treatment to be adopted and even of the anatomy of the animal. If the carriage breaks down, it is sent.to a skilled workman for repairs. No one would listen to the idea of a groom attempting to replace the neat forgings. But when the horses break down, then in nine cases out of ten, the groom's supposititious knowledge
is deemed ample security against his working harm by adis deemed ample security against his working harm by ad-
ministering drenches and boluses of fearful and wonderful ingredients. An English agricultural contemporary pub lishes a letter from a country druggist, which sheds some light on this ignorant system of dosing. One man demanded condition powders" containing 4 ozs. of tartar emetic Cream of tartar was meant, and the dispenser gave tha harmess substance, otherwise the condition powders would
alled for 1 oz. of Spanish flies, a frightfully irritating oison. " Again," adds the writer, " the men somehow obtain normous quantities of sulphate of zinc (white copperas) and sugar of lead, which they afterwards dissolve in wate to use as lotions. The substances lie scattered about the stable shelves, and are carelessly mixed with chopped food or mashes, in mistake for condition powders. When we ear complaints of actual horse poisoning, we wonder how has been done. There need be no wonder. The local ruggist could in most instances throw light upon the case It is bad enough to dose sick horses by the rule of thumb; but for the drugging of well animals, there is positively no excuse; and if our societies for the prevention of cruelt animals would open a vigorous crusade against the sys em, we probably should hear less of it than we now do. It ertainly is just as cruel to cause the animal suffering by doses of cantharides or arsenic as it is to drive it when it heck is galled; and as the officers of societies are empowered by law to prohibit the one, they doubtless are equally em owered to check the other. Meanwhile we suggest to hose who possess horses that the present is an excellen time to inspect stables, and to destroy all the bottles of stuf and papers of powder sure to be found on out-of-the-wa shelves, and of the uses and nature of which a satisfactory explanation cannot be given.

THE KEELY MOTOR DECEPTION AGAI

"When it is considered that machines driven by steam rarely or never create a pressure of over 200 pounds to the quare inch, the enormous force of the Keely motor, and it mmense capacity for propulsion, can be realized. The power will be generated by a vaporizing of water mechani cally, and without the agency of heat. The expense of fuel will thus be saved. Those interested claim to have bee misunderstood in saying that a pint of water only would b needed for the propulsion of a train of cars between this cit and Philadelphia and back. They meant that if five gallon were used for an engine of 100 horse, a pint only might be ost by vaporization through the pores of the metal. Non at all might be lost. The water, after being vaporized, and passing through the various tubes and chambers, does its allotted cork upon the engine, is recondensed into its former state, and again becoming v
The foregoing we clip from a recent account of the Keely motor obtained by a Sun reporter, at the factory of Messis. Sergeant and Cullenworth in this city, where a 100 hors ower apparatus is alleged to be in process of construction The italics are ours; and in the sentence thus emphasized the claims of the deluded believers in the tricis. are reduce a point to which, sooner or later, we always considere they must come. It scarcely needs any explanation to prov hat the above is simply an assertion of the possibility of th erpetual motion ; and that after all, those engineers who have committed themselves to Keelyism stand before th world in the professionally unenviable position of upholding the actuality of that mechanical ignisfatuus
There is no simpler principle in Science than that what ver work is spent in moving a body, through a certain course in one direction, is exactly regained by letting the ody return along the same track, friction being avoided. And this is true for every case of natural law. The Keel motor, according to the above, performs two operations, on y which the water is vaporized, the vapor acting on a piston nd the other involving the work which recondenses the apor. Obviously the work (no matter what its nature may e) required to vaporize the water, acting in one direction, precisely equal to the work required to condense it, acting in he other direction, other circumstances being equal. There ore work, drained off to impel other machines, comes from othing, and the apparatus reduces itself to a self-sustaine ontinuous mechanical motive power. In simpler terms, it is the long-sought problem, exemplified in its simplest form in attempts to lift one's self over a fence by one's boot straps.
Both criticism and speculation regarding the Keely motor must here terminate ; for in this enlightened age, no thought ful person can waste time on that which is so obviously a himera, unless to contemplate the curious phase in the human mind which sets at naught the dicta of mechanics and mathematics and the admitted laws of Nature. As re ards those who have been deceived by the juggle, with it ttending fog of unknown forces etc., we can best quot rom the preface of Dirck's work on the Perpetuum Mobile The theoretical and practical engineer, unhappily led way by this substitution of prolific fancies in place of sound udgment, is the last person to be convinced by the most obvious obstacles to success in the fulfilment of his views and statements. To himself, all his opinions stand for realizable objects. We cannot avoid having some, though a very chastened, sympathy with such enthusiastic projectors, who would seem to pride themselves on the strongly expressed otion that 'genius to madness is near allied.' It is unques tonably in such cases a constitutional weakness, ill fittin its possessor for that calm, cool, reflective character which lone commands confidence and secures respect.'

How to Make Small Racks for Gears.

To cut small racks, to fit pinions made from pinion wire

 Secure the blanks, on which the teeth are to be cut, in slots cut in a mandrel of large diameter. Put the mandre in a lathe, and arrange the screw gears to cut a thread of the same pitch as the teeth in the pinion; and with a tool of the proper form, cut the teeth in the blanks. The pitch of the thread will not be appreciable if the racks have a na
the centennial exposition.
We give on the opposite page a fine engraving of a portion of the interior of the Main Building at the Centennial. The artist has also represented the procession which, headed by President Grant and the Emperor of Brazil, passed through the different edifices immediately after the opening ceremonies. The distinguished party was received by the various foreign commissioners, who, with their respective commit tees, had posted themselves in front of their departments and along the principal aisle. The three gateways, shown in the illustration, belong to Spain, Egypt, and Denmark and are the most elaborate temporary decorations which have been erected. Egypt surrounds her entire section with a low wall of wood and canvas, painted to imitate stone There is a noticeable absence of display of this kind in the departments of England and France. England, especially avoids even ornamented show cases, and presents her exhib its in plain but handsomely made cases, which do not distract the eye from the articles themselves.

the judges.

The most important event of the past week has been the organization of the board of judges. The formal ceremon took place on May 24, in the Judges' Hall, into which first marched the Centennial Commission, headed by Genera Hawley, and followed by the American judges. As the for eign judges entered all rose, and patriotic airs were per formed by the band. General Hawley then extended a wel come to the foreign members, and Mr. Goshorn delivered a brief speech relative to the duties of the Board
the united states exhibit-signal bureau
In our review last week of the general condition of affairs at the Exposition, lack of space compelled us to omit mention of the United States Building, the arrangements in which are nearer completion than in any other part of the Exhibition. Oin each side of the main portal is arranged a formidable collection of cutlery. There is a mammoth 20 inch Rodman gun, and several Dahlgren smooth bores and Parrott rifles of smaller proportions. These are mounted on their carriages and provided with all fittings and appurtenances. Inside the building one of the most interesting dis plays is that of the Signal Service Bureau. It is intended to show a signal station with all its appliances. The prin cipal instruments exhibited are as follows: Lieutenant (fib bon's barograph, or self-registering barometer is the usual siphon-shaped mercurial barometer, in the short leg of which an iron float rests upon the column of mercury. The slightest change in the level of the column makes this float rise or fall, and its motion is communicated by a cord running over a pulley to the circuit breaker of an electromagnet. The armature of the magnet communicates its motion to a pen which dots the surface of a cylinder moved slowly by clockwork, thus registering the slightest change and the exact moment of its occurrence. The paper with which the surface of the cylinder is covered is ruled to cover a space of fourteen days; and as each paper is removed, it is filed way as a permanent record of that period of time. Foreman's barograph is in its leading characteristics like the one above described, and has also an attachment which automatically prints in figures each change of one thousandth of an inch.
Hough's thermograph is a self-registering thermometer. It consists of a siphon tube, the short leg of which is expanded into a larger tube with a closed end. In this short leg is placed alcohol, which is confined there by a column of mercury in the longer leg, which is open at the top. The thermometer operates by a contraction and expansion of the spirit by cold or heat, raising the column of mercury as the spirit expands, and letting it sink as it contracts. Upon the surface of the mercury is a float, which rises and falls with the column, and, by a very delicate apparatus, operates a circuit breaker of an electromagnetic circuit. This gain, as in the case of the barograph, is made to record the changes of a revolving cylinder.
A marine barograph is constructed much like the one first described, except that the tube containing the mercury is made of iron instead of glass. It has an attachment to hang it up by, which keeps it always in a perpendicular position. Eccard's evapograph is an instrument for determining the amount of moisture in the atmosphere, and registering the result. This is determined by the rapidity with which water, exposed to the atmosphere, will evaporate. The instrument is an open cylindrical vessel filled with water, resting upon a delicate scale; as the water evaporates, the vessel is lightened and rises, the slightest change being sufficient to operate the circuit breaker of an electromagnet, which, as in other instruments, records the changes on the cylinder moved by clockwork. The motion, of course, is always upward, as evaporation continually goes on with greater or less rapidity.
Gibbon's electrical rain and snow gage records in like manner the depth of the rain or melted snow which falls in any given time. A receiver is situated on the roof of the building, the area of the upper section of which is a certain number of times as great as the base of the cylinder of the instrument, with which it is connected by a tube. Upon the water in the lower cylinder is a float, which, as it rises, communicates its motion by an electromagnet to the recording apparatus as before described.
Eccard's rain gage dispenses with the electro-magnet, the float communicating its motion by a counterpoise to the clockwork. This is a very simple and effective instrument. Gibbon's anemograph measures and records the velocity and direction of the wind. Upon the roof of the observing station, four hemispherical cups, placed vertically on horizontal arms, catch the slightest movement of the air and
cause the arms to revolve a certain number of revolutions, equaling, in the distance traveled, the distance traveled by the wind; then an electric circuit closes, and an electro nder, moving by clockwork, should there be no movemen of the magnet, will cause the pencil to make a long, straight line; with a high wind the record is frequently made, and the line is broken up into longer or shorter sections, corres ponding with the velocity of the wind. The direction is in dicated on another cylinder. There are four magnetic cir cuits, connected with the four points of the weather vane corresponding with the four points of the compass. Once in four minutes the clockwork makes a record, and tha record is made by the pen of whichever circuit the weathe vane has at the time closed. Eccard's anemograph dispenses with the electric circuit, and makes its record on the cylinder by entirely mechanical means. The weather vane, in turning, revolves the rod to which it is attached, which communicates its motion directly, or by gearing, to the pen, without the intervention of an electromagnet.
An ingenious apparatus has been constructed to provide he weather necessary to work these different instruments. It includes a shower bath to produce an artificial rainstorm, and a fan blast, which generates gales of any force, from ten to sixty miles per hour. The manner of printing the weather maps, which are sent to all parts of country, is fully illustrated -in this department.

CLARK'S COMBINED GAS AND OIL CHANDELIER.

The exorbitant price charged for gas in some large cities has resulted in a greatly increased use of oil, whieh is much the cheaper mode of illumination Various devices have been introduced to combine oil lamps with gas fixtures, so that the latter, being already in most city houses, may still be utilized and the expense of separate lamp holders saved To this class belongs the present invention, which ingeniously arranges a lamp in connection with a gas fixture, so that either gas or oil, or both, may be burned, as desired. The construction consists simply in carrying a separate gas pipe to each arm of the fixture. To each pipe is attached an oil tank, A; and these tanks communicate, by tubes supported in bulbs, to, but do not intersect, the gas pipes, with the argand burner in the middle. The gas is lit at the extremities of the arms; and the light is increased at a small cost by the oil illumination, or the gas may be unused, and only the lamp lit.

One advantage of this arrangement is that it does not compel the cutting-off of the gas, as is the case when a lamp is fitted directly over the burners; so that, while lamplight may be ordinarily employed on special occasions, when greater illumination is desired the gas burners may be ignited. The invention will doubtless be quite popular not only with consumers but also with gas companies, since it tends to prevent the return of meters and total abandonment of the gas facilities, as might otherwise follow a substitution of oil.
Patented May 9,1876, through the Scientific American Patent Agency. For further particulars regarding sale of patent, rights, etc., address the inventor, Mr. George P. Clark, P. O. Box 327, Newton, Mass.

A Metal More Fusible than Tallow
M. Lecoq de Boisbaudran, whose recent discovery of the new element gallium, and whose subsequent researches thereon we have from time to time noted, has recently, for the first time, succeeded in obtaining a grain and a half of the metal in a pure state. This has enabled him to determine the remarkable fact that gallium melts at $85 \cdot 1^{\circ} \mathrm{Fah}$. so that it liquefies when held in the hand. When solid, the
metal is hard and resistant, even to a few degrees below the melting point. It can be cut, and possesses a slight malleability. When fused, it adheres easily to glass, on which it forms a beautiful mirror, whiter than that produced by mer cury. It oxidizes but very superficially when heated to red ness in the air, and does not become volatile. The density t 59° Fah. is $4 \cdot 7$, that of water at $39 \cdot \approx^{\circ}$ Fah. being 1 .
Excepting mercury, which only becomes solid at -37.9° Fah., there is no other element which liquefies at so low a temperature as gallium. Fusible alloy, of 1 part lead, 1 part tin, and 1 part bismuth, melts at 201°, and phosphorus at $111 \cdot 5^{\circ}$. Wax and tallow have melting points respectively at 142° and 92° Fah.

MOLL \& ALTHEIDE'S IMPROVED AIR PUMP

The accompanying illustration represents an improved air pump, which, the inventors claim, produces an absolute vacuum. The valves are operated by means of cams and levers, insuring a positive motion and a greater efficiency than it is

possible to secure where atmospheric pressure alone is relied on to open and close the valves. We have never seen the apparatus: but it is stated by the inventor that the perfec tion of this machine is such that it may be used by manufac turers of thermometers, barometers,sympiesometers, Geissler tubes, and other physical apparatus, to advantage. It is also said that manufacturing chemists and sugar refiners can by its use ob- tain superior productions in less time and with less expense than by excessive heat.
The apparatus consists of a cylinder placed on a platform, which is secured to two vertical standards, at the top of which a crank shaft is supported in suitable bearings. A which a crank shaft is supported in suitable bearings. A
spur wheel is keyed on one end of this shaft, which takes its spur wheel is keyed on one end of this shaft, which takes the
motion from a pinion on the shaft, which is shown at the motion from a pinion on the shaft, which is shown at the
back of the ma chine. There is a balance wheel and also a back of the ma chine. There is a balance wheel and also a
hand crank for operating the machine on this last mentioned hand crank for operating the machine on this last mentioned
shaft. A crosshead on the end of the piston rod is connected to the crank shaft by means of a connecting rod.
A cam is fixed on the end of the crank shaft (at the left hand in the engraving) which operates the induction valve by means of the rod shown near the side of the machine, which car ries a roller which engages with the cam. The lower snd of the rod just mentioned is connected with a lever which operates the induction valve, and is weighted so that, when the cam is not in contact with the roller, at the upper end of the rod, the weight will hold the valve closed.
On the other side of the machine, a cam is attached to the side of the spur wheel, which operates the eduction valve side of the spur wheel, which operates the eduction valve
through a lever carrying a roller at its upper end, and havthrough a lever carrying a roller at ing a fulcrum at the cross bar, which connects the vertiing a fulcrum at the cross bar, which connects the verti-
cal standard just above the upper end of the cylinder, and cal standard just above the upper end of the cylinder, and
is connected at the lower end with the valve. Near this le is connected at the lower end with the valve. Near this le
ver, a standard is fixed to the platform, which supports a ver, a standard is fixed to the platform, which supports
right-angled lever carrying a weight at its outer end, and a flanged roller at its inner and lower end, which bears upon the lower end of the valve-operating lever.
Atmospheric pressure is depended on to operate the valves, as they are opened by the cams, and closed by the weighted levers. By this arrangement, it is claimed that the instant of opening and closing the valves can be regulated to better advantage than when they are arranged to operate automati cally. This pump is provided with valves of new and pe culiar construction, and also an improved packing for the piston, which add to the efficiency of the machine.
Patented October 19, 1875. For further information, ad dress the inventors, C.F. Moll and J. H. Altheide, Quincy Ill.

Production of Silver in the whole world.

According to recent statistics, the production of silver in the whole world in 1800 was $\$ 35,000,000$, which rose in 1850 to $\$ 42,500,000$, in 1854 to $\$ 47,500,000$, and in 1865 to about $\$ 62,500,000$. The production of this precious metal during the year 1873 is subdivided as follows : England and its colonies, $\$ 10,000,000$; Norway,Sweden, and Denmark, $\$ 250,000$ Russia, $\$ 500,000$; Áustria, $\$ 1,620,000$; Germany, $\$ 3,000,000$; France, $\$ 2,000,000$; Spain, $\$ 2,000,000$; Sardinia, $\$ 500,000$ Mexico, $\$ 20,000,000$; Central and South America, $\$ 8,000,000$ Canada, $\$ 900,000$; the United States, $\$ 36,500,000$, which gives a total of $\$ 85,250,000$. Including the year 1873 , it is estimated that the total production of silver, since the discovery of the New World by Christopher Columbus, has been $\$ 715,000,000$, the largest source of accession, during late years, being due to the Nevada mines.

(Continued from first page.)

to minute experiment by Professor Tyndall. That scientis finds the device to be of greater efficiency, while its cost is about one quarter of that of the Fresnel apparatus of simi lar power, with which it was compared. The Italian government has also conducterl comparative experiments betwee the Balestrieri and lent an systems, in a lighthouse at Ci vita Vecchia, and the owill commission report the exceed ing superiority of the new apparatus.
It being proposed to alapt the invention to the lighting of cities, experiments were lately tried in Rome. The light was placed on the Piazza del Popolo, so as to illuminate the Corso. An oil lamp of considerably inferior power to tha used in a lighthouse of the second order was caused to throw a light by which a letter, written in fine characters, could be read at a distance of about 2,000 feet. The inventor has re cently devised a smaller apparatus which, at a distance o 224 feet, projects a beam 80 feet in diameter, the source of light being a single butterfly gas burner. This is especially adapted to the lighting of our streets and buildings with great economy of gas.

Another important application of this invention is the accumulation not merely of light but of heat rays. A lens 3.2 feet in diameter has an area of $1178 \cdot 1$ inches, and supposing this to reduce the sun's image to 0.15 inch , then the emergent light is condensed 7,854 times. Now, under the most favorable circumstances, a Fresnel lens does not transmit more than one fourth the heat it receives; hence the sun's heat is condensed but 5,236 times. It is possible, says Les Mondes, to make a Balestrieri apparatus of two three, four, or five times the size of the lens; and the calori fic effects, increasing directly as the squares of the diameters, will be four, nine, sixteen, or twenty-five times as grea as those of a lens of the above-stated size. It seems possi ble, therefore, to obtain a calorific intensity capable of redu cing even the most refractory substances.
[This is a notable example of the way in which American inventions are "re-invented" and the credit monopolized by Europeans. Substantially the same device was patented in this country, as a locomotive headlight, on July 18, 1871, by C. S. Lee and W. M. Baldwin, of Troy, N. Y., and was de scribed in the Scientific American at that time.-Eds.]

The Newly Discovered Mechanical Action of Viole

 Light.M. Paul Bert's recent investigations as to the cause of changes of color in the chameleon have led him to a dis covery of considerable importance, since it indicates a me chanical effect of light,and more especially of the violet rays, hitherto entirely unknown. He traces the changes of hue of the reptile to minute corpuscles or chromoblasts, which are located either below the dermis or at the surface of the skin, according as they are affected by certain nerves which are respectively analogous to the vaso constrictors and vaso dilatators. When the chameleon is placed half in red light and half in violet light,obtained by passing sunlight through colored glass, the portion on which the red light falls remains of the normal yellow color, while that affected by the violet light changes to a greenish black hue. This same ef fect can be produced by suitable nerve excitations and divisions,showing that the accession of color on the skin is absolutely caused by the rising of the colored corpuscles to the surface; while, when the latter remain inert the natural yellow hue of the creature continues unchanged. Hence it would appear that the colored corpuscles, like certain chemical substances, are not equally affected by all the rays of the spectrum, and that in the violet blue rays alone resides the property of mechanically moving the chromoblasts and drawing them to the surface
Similar action on contractile substances has already been noted as caused by heat and electricity; but that light should possess an exciting effect of this description is certainly remarkable.
M. Bert proposes to continue his researches to determine the influence of light on contractile matters under other circumstances, and he especially hopes to discover the reason of the favorable influence of light on the skin of children and of lymphatic persons. It seems to us he might go further and observe whether the color in the human skin, either that normally existing, as in the case of negroes, or that obtained by direct exposure to sunlight (tanning or burning), is attributable to any similar cause

There is one fact worthy of remark here about M. Bert discovery, and that is that it happens at a singularly opportune time, to be taken advantage of by those who are in clined to consider seriously the supposed influence of sun light filtered through various colored glasses on phenomen of growth and of disease. Dr. Ponza, an Italian physician has recently stated that light of certain colors has a benef cial effect on lunatics and other persons suffering under ner ous ailments; and since M. Bert has demonstrated in the chameleons the direct influence of light on a nervous sys tem, it appears not improbable that Dr. Ponza's alleged re sults may have some foundation.

Crorespmadence.

Intermittent Springs.

o the Editor of the Scientific American

J. S. O.'s assumption, on page 283, vol. 34, though theo tically plausible, will not upset the accepted theory of in termittent springs, as the following facts will show; Some years ago, while residing in a small village where a club pleasure ground was kept, I was requested to engineer a couple of drinking fountains, one situated on a hillside and the other about 20 feet below, on the main walk. I led the water by a gentle descent from the springs by the pipe,
 A, to the upper basin, from which the overflow was to be carried through the larger pipe, B, to the lower fountain. Business called me away at the time the pipe connec tions were being made; the plumber made a change in my plan, producing a comical effect. All were laughing at my fountain when I returned, and one old gentleman described his experience thus: "I was walking on the lower walk, and saw a large stream flow from the fountain; I walked up and took the cup for a drink, when it suddenly stopped. My wife came up, and we were both much surprised. I thought something had got in the pipe, and stooped down to look, when I heard a gurgling sound; and my wife and I were splashed all over with water You have played us a fine trick." I at once suspected what was the matter, and found in fact that, in tead of a perforated plate being placed at the outflow of the upper fountain, the plumber had bent it into a siphon, think ing to prevent the entrance of rubbish. I had a small hole perforated at the top, and the intermittent spring ceased The theory is that the water, falling from the crown of the siphon, when the pitch is vertical or great, rapidly carries
with it the small amount of air in the bend, the place of with it the small amount of air in
which is at once occupied by water.
george H. Henshaw.
Ste. Anne Bout de l'Isle, Canada.

Intermittent Springs

To the Editor of the Scientific American:
In your issue of April 29, J. S. O. says: " The generally accepted theory of intermittent springs is that a cavity in the earth has two water channels, one leading into it, the other out, the former being the smaller." Is this the theory I have examined at different times a number of the standard works on this subject, and I do not think that we must take into consideration so much the size of the tubes as the amount of water which flows through them. More water will flow through a long tube held vertically than through a shorter one of the same bore.
In the engraving, A is the cavity, M N a horizontal tube conducting the water into the cavity, and BCE the siphon

tube of the same size as M N, tube through which the wate flows out. If only enough water is collected, in the tube M N, to keep it constantly full, the velocity of the water as it flows through the tube, may be expressed thus $v=\sqrt{g d}$ (g representing the force of gravity, and d the diame ter of the tube). As the water flows into and fills the cavity, it also fills the shorter arm of the siphon; and because it is just as large as MN , the water will rise to the top of the siphon at C. As the siphon is now charged, the water will flow down the longer arm, increasing in velocity at every in stant, according to the laws of falling bodies, until it reaches the end at E , when it will flow through the whole siphon with a velocitv equal to $\sqrt{2 g h}$ (h being equal to the hight of
the water in the cavity above the spring, at E). Now as $2 h$, in the formula, may be very much greater than d, so may the velocity be much greater in flowing out than in flowing in ; hence, the cavity will be emptied and the watcr will stop flowing out until it is again filled, and so on. When he water first begins to flow out, l is equal to C S , but when it has fallen in A to B, h has decreased to $O S$; so, as the water falls in the cavity, the velocity of the flow constantly decreases. If the diameters of the tubes be 1 inch , and C S be 20 feet, the velocity of the flow into A will be about $1 \cdot 6$ feet in a second of time ; and that of the flow out, at first, about $35 \cdot 8$ feet.
In all intermittent springs, the velocity of the flow, as it continues, must decrease ; and as the cavity is shallow or deep, this decrease is small or great.
Canonsburgh, Pa.
James F. Ray.

ASTRONOMICAL NOTES

Observatory of Vassar College.
The computations and some of the observations in the following notes are from students in the astronomical department. The times of risings and settings of planets are pproximate, but sufficiently accurate to enable an ordinary observer to find the object mentioned
M. M.

Position of Planets for June, 1876 . Mercury.
On June 1, Mercury rises at 5 h .44 m . A. M., and sets at h 44 m . P. M. On the 30 th , Mercury rises at 3 h .36 m . A. M., and sets at 5 h .58 m . P. M.
Mercury was at its greatest elongation on May 21, but can e seen after sunset for some days later, probably through the first week of June, as it sets at a point north of that at which the sun is last seen.

Venus must be known to all who at this time olserve the western sky. It does not attain the greatest brilliancy until June 7.
Venus rises on the 1st at 7 h .26 m . A. M., and sets at 10 h . 33 m . P. M. On the 30th, Venus rises at 6 h .18 m . A. M., and ets at 8 h .36 m . P. M.

Mars.

Mars is very small. It can be found by its nearness to Venus, setting an hour later than Venus, on June 1, and at almost the same time on June 30.

Jupiter.

Jupiter is now well above the horizon in the evening, ana can be seen as soon as twilight is over. It rises on the 1 st at $5 \mathrm{~h} .56 \mathrm{~m} . \mathrm{P} . \mathrm{M}$., and sets at 3 h .42 m . of the next morning. On the 30th, Jupiter rises at 3 h .49 m . P. M., and sets at 1 h 39 m . the next morning.
The satellites of Jupiter revolve around the planet in such short periods that their changes of position can be seen in a watch of a few hours, and on almost any evening one may pass across the disk of Jupiter, making what is called a transit; or it may be hidden by passing into the shadow of Jupiter, in eclipse; or Jupiter may come between us and one of its moons, as in occultations.
These phenomena can be very nicely seen on June 15. Ac cording to the Nautical Almanac, on this evening the shadow oording to the Nautical Almanac, on this evening the shadow of the first satellite passes across the disk of Jupiter; this
cannot be seen without the use of a good telescope. At 91 . cannot be seen without the use of a good telescope. At 9 h.
26 m . (Washington time) the third satellite, which is the 26 m . (Washington time) the third satellite, which is the
largest, reappears, having been behind the planet for sevelargest, reappears, having been behind the planet the seve having been in passage across it for more than two hours, and at 12 h .6 m . the third satellite disappears by going into the shadow of Jupiter. On this evening only two of the atellites will be seen from 8 to 9.30 P . M.

Saturn.
Saturn is coming into better position. It rises on the 1st at 0 h .36 m . A. M., but on the 30 th comes above the horizon at 10 h .39 m. P. M., and sets at 9 h .25 m . the next morning. Saturn is among the small stars of Aquarius, about 2° south of the star λ.

Uranus.

Uranus is among the stars of Leo. It rises, on the 1st, at 9 h .30 m . A. M., and sets at 11 h . 35 m . P. M. On June 30, Uranus rises at 7 h .45 m . A. M., and sets at 9 h .45 m . P. M. Neptune.
Neptume cannot be seen without a good glass, and at pres ent is very unfavorably situated, as it comes to the meridian in the daytime.

Sun Spots.

The report is from April 20 to May 21, inclusive. During the past month, the surface of the sun has been remarkably free from spots. The present seems to be the minimum of the sun spot period. On May 6 a small spot appeared coming on. The observation of May 11 showed that this had divided into an elongated pair, which was followed by two very small ones. On May 11 these had disappeared, and the elongated pair had united into one, which was not seen after May 13. From that date till May 21 no spots have been found.

Dyeing Cotton Blue.

For 5 lbs. goods, dissolve 1 oz . copperas in 4 gallons of soft water. Wet the goods in warm suds, put them in the copperas water, let them remain 10 minutes. Dissolve in an other vessel 2 ozs. prussiate potash in 4 gallons soft water. Wring your goods, put into this solution, let them remain is minutes ; wring out again, now add 1 oz . oil of vitriol to the potash water, and stir well; put the goods in again and bring to a boiling point, letting them remain until you obtain the desired shade.
[For the Scientific American.]

the scertain the proper length of a connecting

 ROD.It is not often that the owner of a steam engine possesses any detail drawings of it ; and hence when it requires renewal in its various parts, taking up the wear and lost motion, with a view to keep the parts in line and as nearly as possible of the original dimensions, is left largely to the judgment of the repairing engineer. In the case of connecting rods, however, this is at times neither practicable nor desirable, for the reason that the bearings of main shafts are apt to vary in their distance from the cylinder, by reason of the wear in the bearings or brasses, which wear tends in engines in which the crank shaft is above the cylinder, to shorten the distance between the two, the jeverse being the case when the cylinder is above the crank. In horizon tal engines, this is not so appreciably felt, for the reason that the wear is not so much in the direction of the length of the piston rod. When the main bearing brasses, of either vertical or horizontal engines, have been much worn, and have had the lost motion taken up at various times, they will be found, in most instances, to have varied in their distances from the steam cylinder, which may be compensated for when taking up the lost motion of the connecting rod, by mak ing the length, from center to center of the brasses, equal to the distance from the center of the main shaft to
the center of the guide bars. the center of the guide bars.
In renewing the main shaft-bearings or the connecting rod, however, it is better to ensure that, the bore of the main shaft being in the center of the brasses, the length of the connecting rod is made such as to leave the clearance, between the piston head and the cylinder covers at the ends of the stroke, equal, and not to take it for granted that such is the case when we measure from the center of the guide bars or crosshead journal to the center of the main shaft. It will

not do to measure from the center of the crosshead journal to the center of the crank pin when the latter is at midstroke, because, when the crank pin is in that position, the crosshead does not stand in the center of its travel on the guide bars, because of the angle at which the connecting rod

Fig. 3.

stands. The piston head will, in all cases when the crank stands at the center of its stroke travel, stand nearer to the cylinder head which is nearer to the crank than it does to the opposite cylinder head, the amount of the difference being dependent upon the length of the connecting rod as com pared to the length of the engine stroke. If the connecting rod be shorter than the stroke, the greater is the difference referred to. From these considerations, it becomes neces sary to make the connecting rod of a length to ensure that the clearance shall be equal a the ends of the piston stroke, which should be done as follows Place the piston at one end of its stroke by the following process : In Fig. 1, A represent the guidebar, B the guide block, C the fly wheel, D the crank, E the eccentric, and F the center line of the connect ing rod of an engine intended to run in the direction of the arrow Giving the wheel a turn or two in the direction in which it is intended to run, we allow it to come to rest so that the motion block, B, will be at very nearly the end of its stroke on the guide bar, A, and then placing the edge of a straight edge along the end of the guide block, B, the straight edge at the same time overlapping the face of the guide bar, we mark on the face of the latter the line, 1 , which will then be quite even with the end face of the guide block. We then (after chalking it to make the marks show plainly) mark on the
face of the wheel the line, 2 , which should be true with the center of the main shaft, but which can be marked from the rim of the wheel with a pair of compass callipers, provided that rim has been trued up in the lathe. We next, with a piece of iron wire or rod, bent as shown by G, make, at some fixed point, such as shown at H, a centerpunch mark and resting one end of the scriber, G, in the fixed centerpunch mark, we scribe with the other end upon the edge of the wheel the line, 3 , as shown in the illustration. Our next operation is to move the wheel forward in the direction in which it is to run, so that the crank will move to the dead center, and the guide block will leave the line, 1 , as shown in Fig. 2; and the motion of the wheel being continued, the guide block will return to the mark, 1, the wheel being moved very slowly indeed, so that there will be no trouble to
nds of the stroke, the length of the connecting rod is th distance from the center of the crosshead journal to the cen r of the crank pin

New York city.

No More Wooden Nutmegs.

At a reception recently given by the Turners' Company of London to Lieutenant Cameron, R. N., as a recognition of his services in exploring the African continent, the guest of the vening; alluding to what he saw in his travels, said: " The country of Nyangwe, I firmly believe-in fact, I am suremay be reached by the Congo; and hereafter I hope that where my steps have been we shall see a system of English trading stations for the purchase not only of ivory, for the richness of the vegetable products of the country is some thing beyond description. I have walked along for fifty or sixty yards under a grove or sixty yards under a grove
of nutmeg trees, with the whole ground covered with whole ground covered with nutmegs, and no one knew what they were worth. Be sides that, there are many other vegetable products in abundance, many differen species of cotton, and oil producing palms. Up the valley of the Congo, to a hight of 2,600 feet above the level of the sea, the coun try is crowded with oil palm and hereafter that trade alone, leaving the question of ivory altogether on on side, will be sufficient to well repay any enterprising mer so move it that the end of the guide block will come to rest |chants of England who embark in " exactly fair with line, 1 . We guide block will whe scriber rest one end in the fixed point, and with the other edge mark, on the edge face of the wheel, line 4 , which will then occupy the place that line, 3, does in our engraving. Our next duty is to find the center between the lines 3 and 4 , which we mark with a fine centerpunch mark, as shown at. 5 . And it will be readily be perceived that, if we move the wheel round so that the scriber, G, rests in the fixed center point, as shown in Fig. 4, at A, the other will be true with the centerpunch mark, 5 , and the motion block ; and hence the piston and crank will be exactly on the dead center at that end of the stroke.

IVg. 4 II

Then place the crank on its dead center, by the proces here given. On the end face of the crank, and from the cen ter of the shaft, strike a circle equal in diameter to the crank pin, as shown in Fig. 3, A representing the crank pin journal and B the circle referred to. Then take a spirit level, and place one end of it on the crank pin journal and the other end even with the circle, abovereferred to, as shown in Fig. 4, A representing the crank pin ournal, B the circle, and C the spirit level in each case position I being for a vertical and position II for a horizontal engine; and presuming the engine to be leveled true, the rank will be on its dead cen ter when the bubble of the spirit level stands true; if however, the bore of the cyl-
inder is not quite leyel, place inder is not quite leyel, place bore and properly adjust it parallel with the bore of the cylinder, and then mark on the face of the spirit level a line xactly even with the center of the bubble, or else two lines just even with the two ends of the bubble; and set the crank so that, when the spirit level is applied to the crank pin and the circle, the bubble will standin the same position as it did when in the bore of the cylinder, and the crank will stand on its dead center. It bered that, in the case of the vertical cylinder, the spirit level must be applied in the cylin der as shown in Fig. 5, in which A represents the crank pin, the circle, C in each case the spirit level, D the engine ylinder, and E the center line of the cylinder, it being obvious that it would be useless to apply the spirit level in any and pistrative to the crank, in the cylinder. The crank and piston being thus placed in position at correspondin
chants of England who embark in it."
"' What do our readers," says the London Grocer, " think of this? We join with them in hoping that Lieuterant Cam eron's discovery will turn out to be quite true. It would be ruel for him to deceive us on so vital a point, as cheap nut megs-such as the public understand by cheapness-have been looked for in vain ever since they were first imported and we are convinced that in this, as in numberless othe cases, it is the supply alone that creates the demand. Give as cheap, sound nutmegs, and the consumption of them will rapidly increase, and limed, worm-eaten, or wooden nut megs of Yankee celebrity, will gradually become as rare as they are now comparatively common. It-is, therefore, to be hoped that the hint thrown out by Lieutenant Cameron with reference to the enterprising merchants of Engıand will be adopted, and that new and profitable channels of trade will be speedily opened up with tnat secluded corner of the globe."

A Remarkable Surgical operation

About two years ago, a waiter in a Parisian restaurant undertook to imitate the feats of the Chinese sword swallow ers, by introducing a fork, handle. foremost, into his throat taking care to hold the tines in his teeth The attempt was successful, and a repetition was demanded by the loungers in the saloon. The man complied; but while the fork was in his œsophagus,one of his comrades made an ill timed joke, the performer grinned, let go the fork with his teeth, and down it went. The pain was intense. A physician was summoned, who managed to seize the forls with a forceps; but just as who managed to seize the fork with a forceps; but just as
he was drawing it up, the patient was seized with convul he was drawing it up, the patient was seized with convul
sive coughing, the doctor was compelled to relax his hold, sive coughing, the doctor was compelled to relax his hold,
and the fork slipped down all the way to the stomach. The symptoms of asphyxia at once disappeared, and the man suf ered no inconvenience for about two weeks. At the end of hat time, however, severe gastric affections manifeste themselves, and the patient was sent to a hospital, where he has since, until last month, remained suffering great agony In the month of October last, it was decided by the hospi tal physicians to practise the extraordinary operation of gas trotomy, that is, to cut directly into the stomach and extract the obstacle. It wds at first attempted to determine adherences of the viscera from out, inwards, by means of caustics : but this not succeeding, a triangular zone, wherein no essential organs were included, was selected as the point of perforation. In April the incision was made, the layers of tissue being dissected away one after another. The of tissue being dissected away one after another. The
envelope of the stomach was attained, cut, and a piece envelope of the stomach was attained, cut, and a piece
removed. The stomach itself was then opened, and pincers introduced; and after a few attempts, the fork was grasped and withdrawn. The wound was closed, and is now nearly healed, the patient suffering only from a slight stomachic istula, already in process of obliteration. The fork was per ectly black, but otherwise unchanged.

Turbines.

In 1854, Emile Geyelin made a wheel at Saltillo, Mexico which was a double turbine (that is, a turbine receiving wa er between two movable wheels on the same shaft, which counterbalanced each other, and avoided the necessity of re sisting the thrust fronı the head of water), for 160 feet fall producing 125 horse power, and turning at a speed of 1,850 revolutions per hour. This double turbine, though only 11 inches in diameter, propels a cotton mill of 10,000 spindles

Restoration of Faded Writing.-Moisten the paper a little with water, and brush over it a solution of sulph-hydric mmonia. Since most inks contain iron, it is easy to under tand that there will be formed sulphide of iron, which is bland

IMPROVED TURBINE WHEEL

The object of the invention herewith illustrated is to overcome the well known defect of the turbine, namely, a di minished percentage of power when less than full gate is used. To this end, the wheel is made adjustable, and may, without variation of its assigned proportions, by a combined inner and outer gate, have its capacity altered in accordance with the changes of the gates and chutes, and with regard to the power required or modifications in the head. This is claimed to be accomplished without loss in coefficient of useful effect. Fig. 1 represents the wheel complete, and Fig. 2 is a section, showing the inner gate broken away and partly open.
To the crown plate, A, which is cast on the hub, are bolted the annular plates, B, to the lower of which are attached a series of partitions, C, Fig. 2, which form the curved channels or bucket spaces. The casing con sists of a dome, as shown in Fig. 1, suppor ted on a curb whose bottom flange rests on the foundation and supports the spider, D Fig. 2. An adjustable step rests on the center of the spider and forms the lower bearing of the main shaft. The upper flange, E , of the curb is indented, and, inclining downward outwardly, forms the bottom of the chutes. From the edge to the vertical part of the curb extend a series of slots, corresponding in shape to the chute guides, F, and through which the said guides move freely in a vertical direction (dotted lines) when the ates are elevated or dopressed. The dome gates are elevated or dis ill. The dome is secured to the curb by pilars, and its bo tom edge is beveled inward to repel any ob stacles that may collect on the upper side of the gate rim. The outer gate eonsists of a vertical ring, with a small flange at the top and an indented rim, G, below, having a nar row flange projecting slightly inward unde the inner gate: This flange and the edge of the curb beneath it form the shutting surface of the outer gate. The width of the small upper flange is proportioned so that the pres sure of water under it may counterbalance the weight of the gate and its appendages. It slides on the inner surface of the dome and s packed watertight The rim forms the is pack warms the upper surface at the the, and into the chutes and permit sediment to be carried off.
The inner gate, H , is connected by a per forated plate to the hub. Its bottom is mad with slots corresponding to the partitions, C, not fitting watertight, however, but having clearance enough to admit water above the plate.
At I is a screw rod, supported in a frame as shown, and operated by the hand wheel.
This fits into a corresponding female screw in the hub, and is attached to a spider from which depend rods, secured to the flange of the outer gate. To the hub of the spider, by a ball and socket connection, is attached a rod, J, which passes within the tubularshaft, and is secured to the hub to which is attached the plate of the inner gate, I. The rotation of the hand wheel thus elevates or depresses both gatessimultaneously ; and the ball and socket connection permits the inner

ate to rotate with the water wheel, while the movement of he outer gate is only vertical.
The impact side of each partition, C , is curved inward to a distance somewhat greater than the width of the chutes, and extends thence so as to form a smooth, continuous surface throughoutits whole length. The convex side forms a thin edge with the concave side, and curves inward on a different center from the latter. A recess or offset is then produced, and the remainder of the partition is a thin-edged plate. The ecess prevents the discharging current from coming in conact with the curved side of the partition after pasing the act annular point, so that the issuing liquid vein passes clear of
the wall of the succeeding bucket, and does not retard the

WALTONS TURBINE WATER WHEEL.

The shallow grooves, shown cut in the tops of the part tions, C, permit water to pass from one bucket into anothe over the diaphragm, to balance the pressure from below, and keep it equipoised at any elevation in the bucket. The bolt heads, by which the upper plate, B, is fastened to the crown plate, form stops, which prevent the diaphragm from coming into contact with said plate. and preserve more or less space and water passage at all times in the upper part of the bucket.
It will be observed that this arrangement constitutes a device which operates both outer and inner gates, which enlarge and diminish alike the chute and bucket spaces simultaneously, while the wheel is in motion or at rest. The wheel is thus kept properly proportioned and the inlet current maintained constantly at the same angle. The result, as already stated, is the full percentage of power at all elevations of the gate.
Patented July 14, 1874. For further information, address the inventor, Silas Walton, Moorestown, Burlington county, the in
N. J.

IMPROVED BALANCED SLIDE VALVE.
We illustrate herewith an improved balanced slide valve

formed of two valves working on opposite sides of the steam ports. These are held in place by bolts and springs, and are balanced through the equal pressure of steam on all sides.

The principal advantages claimed are that there is very sligh The principal advantages claimed are that there is very sligh
pressure of the valves on their seats, and that, through there pressure of the valves on their seats, and that, through there
being double steam and exhaust ports, the steam acts more being double steam and exhaust ports, the steam acts more
rapidly on the piston, and is exhausted more rapidly, with ess back pressure.
A perspective view, with the chest broken away to show the valve, is given in Fig. 1. Fig 2 is a vertical section and Fig. 3 a plan view, the cover being removed. The steam ports, A, lead into the passages, B, Fig. 2, at each end of the cylinder. Each passage, therefore, has a double port. The exhaust ports, C, lead into a common ex haust, D. The two slide valves are con structed in the usual manner and are con nected by bolts, as exhibited in Fig. 1, said bolts passing through projections on the valves and supports, E. Upon each bolt is a spring to permit the valves to open and discharge condensed water from the cylinder, thus preventing the bursting of the latter. As shown in Fig. 2, steam is entering on the right hand side.
The valve obviously is little subject to wear. It is especially adapted for engines he motion of which it is desirable frequent ly to reverse, as locomotives and hoisters, since the engineer is afforded control of the machine without requiring steam to be shut off. The valves and ports, being parts of the steam chest, are easily detached, and thus may be readily and economically repaired Patented April 7, 1874 For further in formation Aptive to 1874 forther in formation relative to sale of address Messrs. Wisner \& Strong ry, etc., add
Pittston, Pa.

Sinking of an Hotel into the Earth.
The St. Louis Journal relates the follow ing occurrence, that happened in that city on May 12: "Considerable excitement was created in East St Louis, yesterday morn ing, on the discovery that Belleville House a two-story frame building, just south ofthe Pittsburgh Railroad and Coal Company' dike, near the southern limits of the city, dike, near the city, had disappearedin the quicksand. The cir curres follows: The house which is used as is used as a hotel, was built on piles, and bu a few days before showed evidences of an inclination to sink into the earth. On Thurs day night it sunk about two feet; but the proprietor, Mr. F. Decker, not apprehending anything serious, paid very little attention to the matter. On Friday night, the guest went to bed as usual; but at a late hour the clerk, Mr. George Huebner, discovered tha the premises were getting rather unsettled, and gave the alarm. Before the inmate could realize what was poing on the build ing had sunk forty-eight feet, carrying with it ten persons. After considerable difficulty they were all rescued, badly frightened but not hurt. The back water from the rive soon surrounded the place where the house stood, and would very probably have carried it away if the gable end, all that is visible, had not been securely fastened to terra firma. Mr. Decker's loss on the building is about $\$ 6,000$, and on furniture about $\$ 1,090$. The house was recently purchased

Fiy. 2

by the present proprietor; and in all probability it entirely disappeared last night, as very little of it was visible at a late hour."

Powder for Producing Ozone.

In order to produce artificial ozone, Mr. Lender makes use of equal parts of peroxide of manganese, permanganate of potash, and oxalicacid. When this mixture is placed in con tact with water, ozone is quickly generated. For a room of medium size two spoonfuls of this powder, placed on a dish medium size two spoonfuls of this powder, placed on a dish
and occasionally diluted with water, would be sufficient. The ozone developes itself; it disinfects the surrounding air without producing cough
especially gratifying, and accordingly the eyelids were caused to sprout and grow, generating, not an eyelid plant but the tea plant, in the leaves of which may yet be traced the lids and eyelashes of the pious hermit. While this tradition may not be strictly true, it perhaps is as veracious as any other Chinese fable accounting for the origin of tea: cup cheers but not inebriates, history is altogether silent On king the the made the dry the first day of February last, there existed in stock in Eng- of the marsh ledum (ledum palustre), indigenous to North land alone $105,100,000$ lbs. of Chinese tea, representing America, Abyssinian tea or chaat, Tasmanian tea, or the a value of nearly $\$ 40,000,000$. The quantity exported from dried leaves of various myrtacea, found in large quantities China to the United States, for the year ending June, 1874, in Australia. Faham tea is the leaves of a fragrant orchid was $49,831,800$ lbs., representing a value of $\$ 21,212,334$. found in Mauritius; Appalachian, Oswego, Mountain, and New These figures are sufficient to indicate the enormous com- Jersey teas are all from plants found in the United States.

THE CULTURE AND PREPARATION OF TEA IN SIKKIM, INDIA.

Sloe and strawberry tea are perhaps the best substitutes for the Chinese production. There are also Mexican tea, a Brazil ian tea-the aromatic capitâo da matto-a Santa Fé tea, Indian tea, Toolsie tea; beside tea made from the leaves of scores of other plants, however, unlike the above, have never come even into a limited use.
In the face of gigantic statistics relating to its consumption, and of the great profusion with which Nature has provided the herbs suitable for the beverage, it is a little start ling to find that tea is, after all, a poison, one capable of producing functional nervous disarrangements when taken in excess. It exerts an astringent action; and. by the presence in it of an organic substance, theine, it exercises its special influence. "In poverty-stricken districts," says - Dr. Richardson, in '"Diseases of Modern Life," "' among the women who take tea at every meal, an extremely nervous semihysterical condition from the action of tea is all but universal. In London and other fashionable centers, in which the custom of tea-drinking in the afternoon has lately been revived under the old name of 'the drum' (kettledrum is the society name for these social parties in the United States), these same nervous symptoms have been developed in the richer classes of society, who, unfortunately, too of ten seek to counteract the mischief by resorting to alcoholic stimulants. "The maladies caused by tea are deficiency of saliva, destruction of taste for food, biliousness, nausea, nervousness (of tenextreme), and nightmare whenever sleep is obtained." A formidable indictment, truly, for the harmless looking and fragrant contents of one's tea caddy. It is more pleasant to contemplate the reverse of the picture, and agree with a Chinese writer that "drinking it tends to clear a way all impurities, drives off drowsiness, removes or prevents headache," or with Dr. Edward Smith in his recent work on Foods, in which he says that the beverage stimulates respiration, and "powerfully promotes the assimilation and transformation of other foods."
To enter into all the varied details of tea culture would be far to transcend our present limits. An excellent idea, however, of a tea farm will be obtained from the large engraving given herewith, which is taken from photographs of new plantations near Dargeeling, in British Sikkim, India. Tea flourishes best on mountain slopes where there is plenty of rain, but where the water does not stagnate about the roots of the plant, and where the annual mean temperature varies from 68° to 76°. These conditions are fulfilled especially in those parts of Sikkim which are situated from 2,000 to 4,000 feet above the sea, and the tea produced is of exceptionally fine flavor. The tea seed is planted by drills in what are termed nurseries; and when the plant has grown to be 3 or 4 inches in hight, it is transplanted finally from the middle of March up to November, when the cold sea son has begun, and cultivation commences. The leaves are son has begun, and cultivation commences. The leaves are
then rolled into a form called a dullah; and after these have fermented and turned brown, they are broken up and placed in a bamboo vessel over a s'arp, clear, charcoal fire until roasted. The tea then passes to women, who pick out all red leaves and stalks. It then goes to the sifter, who separates the different kinds of tea. After this it is again returned to another set of women, who fan out all chaffy leaves by shaking it up in a round shell bamboo basket. The tea is then heated over a slow fire, and finally packed for transportation. No. 1 of our engravings is a general view of the plantation; 2 represents the leaves being weighed; 3 shows the hands employed in plucking the leaf. In 4, the leaves are being rolled; in 5, they are represented in large baskets. withering in the sun ; 6 shows the rerolling operation by machine; 7 , withering in the factory; and 8 , a machine for sortchine; 7 , withering in
ing the various kinds.
Few articles of commerce are more adulterated than tea The London Times, in 1873, published some interesting revelations on this subject, and once stated that, "out of twen ty samples, nineteen were found to be adulterated with plumbago, lie tea, iron filings, and sand. Since tea naturally contains a large quantity of tannin, there are thus brought together the two chief constituents which enter in to the composition of ink, and by appropriate treatment a bottle of good ink actually was made from the tea in ques tion." The London Medical Examiner, of recent date, very fully examines the various adulterations of the Chinese leaf, and says that these, for the most part, consist in redrying and refiring exhausted leaves. It is quite impossible to tell to what extent this is done, as the leaves can be made to look as good as new, and can be mixed with fresh ones without much chance of detection. Another method, practised in Canton, is the production of scented and green teas from the leaves of other plants. Whole chops of tea, con-
sisting of 1,000 packages each, and called Canton sisting of 1,000 packages each, and called Canton gunpowder tea, have been exported, composed entirely of rose leaves painted green. The facing powder used in these
cases is Prussian blue and sulphate of lime or gypsum. Wilcases is Prussian blue and sulphate of lime or gypsum. Willow leaves are frequently employed as adulterants; and an
ingenious fraud, capable of deceiving even experienced tea ingenious fraud, capable of deceiving even experienced tea
dealers, is perpetrated by boiling rice and dropping the conjee or rice water into tea dust. This done, it is impossible to tell the quality of the article until the liquor is distilled from it.
A wreck brings a great and profitable harvest to tea dryers. Several years ago, the steamerSt. Petersburgh was lost with a cargo of tea, and after being immersed for sixty days the
chests were regained. The tea was rather salty to the taste; chests were regained. The tea was rather salty to the taste;
but as many thousand barrels full were obtained, it is probabut as many thousand barrels full were obtained, it is pro
ble that it was all revamped and sold to the retail trade.

Three words as to making tea by way of conclu sion, and these are: Don't boil it ; to do so is a barbarism. Theine in tea, like caffein in coffee, is a volatile princi
ple which boiling drives off, leaving only a decoction of the
bitter astringent residue, for which we know no better name than liquid headache generator. It is a strong stomach that can withstand more than a pint of the simmered abomination, sold in most restaurants under the name of tea Tea well made is fragrant, aromatic, and exceedingly gratefu to the taste; tea badly made has a flavor like boiled brooms. The rule for making good tea is first to scald the teapot put in the tea, pour on fiercely boiling water, cover tightly, and if green tea, serve immediately, or if black tea, stand
near a fire for five minutes. Certainly no rule could be simpler than this; and yet in the average household, there is none for which the lrish handmaid entertains a more pro found contempt.

NEW METHOD FOR THE DETECTION OF NICKEL IN THE PRESENCE OF COBALT.

sCHOOL OF MI. yore CITY.

In October, 1875, I began comparative experiments upon various nickel and cobalt salts, in hopes of detecting some characteristic difference, which would serve for qualita tive purposes. I was soon surprised at the intimate rela tionship existing between these elements ; and although I was not led to believe that nickel and cobalt were one and the same element, as has been thought by some chemists, yet I will unhesitatingly state that a search for qualitative and quantitative methods for these metals has been as great a source of annoyance to chemists as was the discovery of
these elements in an ore by any of the old German miners, who attributed their occurrence to the evil spirits Kobold and Nick.
The literature upon these metals alone would fill volumes; yet all that is known in regard to this subject has not yet been made public, since the metallurgical treatment of nickel and cobalt ores is kept in the greatest secrecy. Long before I had completed my researches into the literature of the
subject, and before I had performed the various qualitaive reactions suggested, I was overwhelmed with the mag. nitude of the undertaking. My investigations have, how ver, Yed to the discovery of a new and yet undescribed salt of nickel, eminently characteristic of this element. Its formation could, I think, be more advantageously applied upon a metallurgical scale than in thequalitative laboratory. The qualitative method which I suggest, which has been be stated as follows. R Rchool of Mines forsinita by hy drochloric acid and hydrosulphuric acid as usual ; then add ammonium chloride, ammonic hydrate, and ammonium sulphide; the precipitate may contain aluminic and chromic hydroxides, also zinc, manganese, iron, nickel, and cobalt sulphides. Treat the precipitate with dilute hydrochloric acid, and gently warm; all the metals will be dissolved as chlorides, except the nickel and cobalt sulphides, which will remain as a more or less granular black residue. In order to insure the complete removal of the other metals, especially iron, which would interfere with the subsequent proceedings, it will generally be found advisable to wash the black residue several times with warm dilute hydrochloric acid. The residue is next tested in a borax bead. f it is brown, the student may safely conclude the absence f cobalt, and orily the presence of nickel.
Since, however, the beginner in qualitative analysis frequently mistakes a dark residue of iron sulphide, which often occurs at this point, mechanically enclosed in the sepaated sulphur, for a residue which contains nickel or cobalt sulphide, it is generally advisable to recommend that, in case a brown bead is obtained, to dissolve a small portion of the residue in dilute aqua regia, and test for iron by the addi tion of potassium ferrocyanide. In case iron has been found, the remaining residue is to be digested several times with
dilute hydrochloric acid, until no reaction for iron is obtained or the residue completely dissolved. If a blue bead has been obtained, indicative of cobalt, then nickel is to be ooked for in the following manner
(a) Dissolve the black residue in as small a quantity of concentrated nitric acid as possible; evaporate almost to dryhess (this step should not be overlooked, since the next step taken is the addition of ammonia, which would have to be least partially expelled). (b) Add ammonic hydrate until the nickel and cobalt hydroxides are dissolved. (c) Add glycerin, $\frac{1}{10}$ or $\frac{1}{1}$. of the volume of the liquid upon which quired a purple or rose tint. (d) Filter. (e) Add pon has ac quired a purple or rose tint. (d) Filter. (e) Add potassium erricyanide in slight excess, and heat to boiling for a few minutes; a light red precipitate, or a white flocculent pre cipitate, which soon settles, indicates nickel. If the am
monia be quite strong, or if considerable has been added, boil several minutes. A few drops of dilute hydrochlor acid will shorten the operation; but its use is not to be recommended in a qualitative laboratory, since the students re too apt to continue adding the acid till acid reaction ensues. n which case the cobalt will be precipitated. Even a large mount of cobalt, treated as above, remains perfectly clear When potassium ferricyanide is added (e), the solution ac quires a beautiful red tint, similar to the coloration pro salt. When this red tint is very intense, it is very advisable o dilute the solution slightly, in order that the analyst may easily see through the liquid; and then, on heating, in cas nickel is present, a cloudiness will occur at the top of th test tube, which soon spreads through the entire liquid; and
then, on heating still further, distinct floccules will make their appearanee, which settle readily, having no tendency
to adhere to the sides of the test tube. In case nickel is not esent, the liquid clears up considerably.
I have been greatly aided in studying the chemical changes that take place by Professors Gibbs and Genth's "Rosearches upon the Ammonia-Cobalt Bases," from which take the following: "An ammoniacal solution of chlorid or cobalt (also nitrate?) absorbs oxygen readily from the air, becomes at first brown, and then gradually passe through various shades of color to a deep red." This solu tion " leaves upon the filter a quantity of hydrate of sesqui oxide of cobalt, which is sometimes alnost inappreciable, sometimes in comparatively large amounts." The glycerin, I think, plays no important part until the addition of the potassium ferricyanide. Since, however, a large number of samples of glycerin contain some lime, which can easily be detected with the spectroscope, and also since the ammonic hydrate invariably contains some ammonium carbonate there will be a slight precipitate of calcium carbonate, after the addition of the glycerin and the application of heat. We see, therefore, from the above that the filtration (d) has a two fold object: First, the removal of $\mathrm{Co}_{2}(\mathrm{HO})_{\varepsilon}$, and second, the removal of $\mathrm{Ca} \mathrm{CO}_{3}$
The facility with which alkaline solutions of many of the metallic protoxides, say Professors Gibbs and Genth, ab sorb oxygen from the air attracted the attention of chemists at an early period. The proto-salts of iron, manganese and cobalt are particularly remarkable in this respect. The object; then, of the boiling (c) is twofold: 1. The separation of $\mathrm{Ca} \mathrm{CO}_{3}$. 2. The formation of purpero-cobalt.

The salts of purpero-cobalt are often found among the direct products of the oxidation of ammoniacal solutions of cobalt. They are often formed from the salts of roseo-cobalt by heating or by boiling, or with strong acids, the cobalt passing, as we conceive, from one modification to another. The salts of purpero-cobalt are distinguished by a fine violet red or purple color, which is common to nearly all of them, and which is very different from the comparatively dull red of the salts of roseo-cobalt."-Researches upon the Ammonia-Cobalt Bases.
Professor Gibbs' explanation of the action of ammonia on a protoxide of cobalt may be briefly stated as follows: "The protoxide is converted into sesquioxide of cobalt, which, at the instant of its formation, unites with a certain number of equivalents of ammonia, so as to form an integral portion. The new base partakes. in some measure, of the propertics of the alkalies, the peculiar character of the salts of cobalt being wanting."
There are various other elements that form compounds analogous to the ammonia-colalt bases. For example, Claus oltained ammonia-rhodium and ammonia-iridium, bases corresponding to roseo-cobalt, and, like this, triacid bases. Professors Gibbs and Genth say : "We have made many experiment in this direction, without, as yet, interesting results. Iron and manganese promised to afford similar classes of compounds; yet, in their behavior towards ammonia and oxygen, the proto-salts of these metals exhibit no analogy to those of cobalt. With chromium, the case may be different; but we cannot as yet pronounce, with certainty, on this
point. Experiments with nickel failed entirely, and yielded ammonia salts of the protoxide.
In regard to the precipitation of cobalt with potassium nitrite, Dr. Fleitman says (American Chemist, November, 1875, page 193): "In the case when less than 1 part cobalt by $\mathrm{K} \mathrm{NO}_{3}$ is by no means accurate." Professor Wolcott Gibls says, in regard to this subject: "The complete precipitation requires 48 hours, and rarely succeeds, unless in experienced hands."-Chemical Neurs, March 17, 1865, also Amercan Journal of Science and Arts, January, 1865.
I have found, when the amount of cobalt is large, that 48 hours is not long enough. Yet this method of separating cobalt from nickel is the one upon which very great stress is laid by nearly all the writers on chemistry. It is the one placed in the hands of beginners in the science of chemistry. No one, however, seems to raise a cry of objection except the poor tortured qualitative student, who finds, at the expiration of the 48 hours, that something is wrong; no yellow precipitate has formed ; and even if a yellow precipitate has formed, in the filtrate, when evaporated to dryness and the cobalt blue looms up, beautiful in itself, but most agatifua ting to behold at this stage of his expended patience!

The French Exposition of 1878 .
A law has has been passed by the French Legislature, decreeing the opening of an International Exposition in Paris, on May 1, 1878, and the continuance of the same to October 31, of the same year. A commission has been appointed to make preliminary preparations; and of this, a sub-committee under M. Viollet-le-Duc, the celebrated French architect, was charged with the devising of a project for the grand buildings. M. Viollet-le-Duc's committee has reported as follows:

Your sub-commission thought that it was necessary to have the covered space amount to $2,255,000$ square feet in the Champ de Mars, and that it was proper to adopt rectilinear dispositions of the inclosure, forming a compact whole which might be easily divided off according to the nature of the products exhibited in one direction and according to the nationality of the exhibitors in the other, a sort of Pythagorean table, upon which, on following one direction, a range of similar products might be inspected, while on taking an opposite direction to the first the nationalities would show their different merchandise. In the middle of this vast building are to be arranged saloons to receive an exposition of objects of art submitted by masters in every coun-
try, of models and of drawings of art more especially relating to industry, and perhaps a retrospective exposition. This principal building, which will occupy the middle part of the Champ de Mars, will be joined to the other buildings of the Exposition, by means of a large covered gallery that will cross the quays and the bridge of Jena at some distance above the ground, so as to allow free circulation to foot passengers and carriages to pass under it. This gallery will be bordered by spaces reserved to exhibitors whose works have a mixed character, such as objects fit for teaching, for libraries, and for typographers. This vast gallery will serve as the center, while buildings, disposed in an amphitheater on the Trocadero, will contain exhibitions of agriculture, horticulture, the training of domestic animals, the products of agriculture and mineral exploitation, and engines relating to the navigation of rivers and seas. These buildings on the Trocadero will occupy a surface covering 512,500 square feet, with intermediate courts and gardens. On the summit of the Trocadero and in covered communication with the gallery, there will be a great saloon erected, able to hold 10,000 persons, comprising the tribunes, and which will be intended for concerts, for testing the musical instruments, for public réunions, and for the solemnities of the opening and the distribution of prizes. Between the Military School on one side and the quay on the other and the buildings of the Champ de Mars, gardens will be planted, and will contain cafés and restaurants, none of which will be suffered to exist under any pretext within the inclosure itself of the palace. The rectilinear disposition of the roofs in plan and section for the palace of the Champ de Mars will have the advantage of maling an conical structure and of allow advanthe buildings to down in the same way, as well as to be used afterwards for down in the same way, as well as to be used afterwards fo other purposes, so that the sale of the materials after the close of the Exposition will be easy and profitable. These constructions shnuld be.in iron, filled in with bricks and masonry. As to the buildings of the Trocadero, they could in most cases be built in timber, as also the gallery of communication. This gallery, well constructed, should be a fine architectural work of an original aspect, particularly at its passage over the bridge, where it could partly be arranged with trusses, leaving the arches completely independent.

The beautifuloutlines of the Trocadero give us a reaso for erecting picturesque buildings, which will be crowned by the grand saloon, from the top of the platform of which visi tors will enjoy a ravishing panorama."

AN OLD PROBLEM

In a recent letter a correspondent asked for an explanation of the method of drawing a circle tangent to any three given circles. Intending to refer him to some good treatise on practical geometry, we examined the principal ones, and found that they contained no mention of this question. On making further investigation, we ascertained that it was a celebrated problem among the ancient geometers, and was

subsequently solved by Vieta, and later by Sir Isaac Newton It is contained in some foreign works on geometry, and a solution is given in Hutton's "Mathematical Recreations," which seems, however, to be incorrect. It is probable, therefore, that the solution is not generally accessible; and as the problem is unusually interesting and instructive, we lay it before our readers, in as simple a form as possible. The problem itself may be of little importance, but the principles upon which its solution depends are of general utility in geometrical constructions.
The construction in question is one of a class in which the solution is best obtained by indirect methods, changing the nature of the problem by successive steps in order to simplify it. As it is not at once evident what those steps should be, it will be advantageous to make the supposition that the problem has been solved, and see if some conditions can be obtained which may be fulfilled by construction. If such conditions can be discovered, it will, of course be easy to make the required construction. It may be added that this method is of general application to all intricate geometrical problems.
Referring to Fig. 1, the three given circles have their cen ters at A, B, C, with radii, $\mathrm{A} a, \mathrm{~B} b, \mathrm{C} c$. Suppose that D, the center of the required tangent circle, is known; it is evident that this will also be the center of a circle with radius, DF, passing through the center, A, of the smallest circle, and tangent to two circles with centers at B and C, and radii, BE, CF Hence, by the use of these auxiliarv circles, the prob
em can be changed into another in which it is required to struction is the same for all cases; so that, in the remainde draw a circle through a given point, and tangent to two given of the explanation, reference is made to Fig. 1. circles. Suppose this to be done, and draw the line, GHN tangent to the two auxiliary circles; draw also the line, CBG through the centers of the auxiliary circles, the line, GEF through the points of tangency of these circles with the re quired circle, the line, GAL, through the center of the small circle, and the radius, $\mathrm{B} e$. Then, from the principles of geometry, we obtain the relations :

$$
\frac{\mathrm{GC}}{\mathrm{~GB}}=\frac{\mathrm{GF}}{\mathrm{Ge}}=\frac{\mathrm{GF} \times \mathrm{GE}}{\mathrm{G} e \times \mathrm{GE}}=\frac{\mathrm{GL} \times \mathrm{GA}}{(\mathrm{GH})^{2}}
$$

From these conditions we can find a point, L, in the circumference of the required circle. so that, if the circle is drawn through the points, L and A, and tangent to one of the aux iliary circles, it will also be tangent to the other; hence the original problem can be reduced to the case in which it is re quired to draw a circle through two given points, and tan gent to a given circle. Suppose the circle with radius, CF, is the given circle, and that the required construction is made Through the point of contact, F, draw the straight lines, LFN and AF ; at N, draw a tangent, NM, to the given circle, produce the line, LA, to its intersection with the tangent at M ; and from L , draw the tangent, LO, to the given circle Then we will have the relations:

$$
\frac{\mathrm{LA}}{\mathrm{LF}}=\frac{\mathrm{LN}}{\mathrm{LM}}, \text { or } \mathrm{LA} \times \mathrm{LM}=\mathrm{LF} \times \mathrm{LN}=(\mathrm{LO})^{2}
$$

From, these conditions, we can find the point of intersection

M, the point of tangency, N, and the point of contact, F, so that the original problem is finally reduced to the simple one of finding the center of a circle which shall pass through three given points, A, L, F. The reader may find it profitable to verify the geometrical principles which have been stated above. We now pass to the method of making the construction, having shown the principles involved. All the auxiliary constructions are given in the figure, except such a simple one as the bisection of a line; but it has not been thought necessary to explain the methods of making them, as they will be found in an elementary text book. The reader will find it inst
We have given the three circles in full lines, with center at A, B, and C. It is evident that the problem admits of several solutions, as the tangent circle may touch the given circles externally, internally, or some of them internally and some externally. Several of these cases are illustrated in
Figs. 2, 3, and 4. In any case, the first thing to do is to Figs. 2, 3, and 4. In any case, the first thing to do is to draw two auxiliary circles, whose centers are coincident with the centers of the two larger circles, and whose radii are such that a circle drawn from the same center as the required tangent circle, and passing through the center of the smallest of the given circles, will be tangent to the auxiliary circles. In Fig. 1, where the given circles touch the tan gent circle externally, the radii of the auxiliary circles are the radii of the larger circles, each diminished by the radius of the smallest; and the method of drawing the auxiliary cir

cles for different cases is illustrated in the other figures. In whatever maaner the tangent circle is drawn, after the aux
iliary circles are properly proportioned, the rest of the con

Having drawn the auxiliary circles, with radii BE, CF, draw IH, tangent to both circles, and producethis tangent to its intersection with a line, CBG, drawn through the center of the auxiliary circles. From G, the point of intersection draw a straight line through A, the smallest of the given circles, and prolong it, indefinitely. Next find the length o HK, the side of a square whose area is to the area of the square constructed upon GH as the line, GI; is to the line, GH. Then, considering GA to be one side of a rectangle whose area is equal to the square constructed upon HK, find the other side, GL; and the point, L , so determined, will be a point of the circle whose center we wish to find. We have now reached that part of the problem in which it is required to draw a circle through the points, L and A, and tangent to the circle whose radius is CF. Produce the line, LG, indef initely; and from L, draw a tangent, LO, to the given circle. Find LM, the second side of a rectangle of which LA is the other side, and whose area is equal to the square construc ted upon LO. From M, so determined, draw a tangent, MN to the given circle, and connect the point of tangency, N with the point, L. F, the point in which this last line cut the given circle, is the point of contact of the given and re quired circles; so that it only remains to find D , the center of a circle passing through the points, A, L, and F.
We have been greatly interested in bringing the above problem to its present shape, in which it can be readily illustrated by a single figure, and many of our reader may be equally interested in repeating the construction. It will be necessary to use great care in all the steps, in order to secure satisfactory results. As it is not improbable that there are other solutions known to some of our readers, we may add that we will be glad to hear from any of them who think they can improve upon the method explained above.

Cleaning Silver Watch Dials.

Take about a teaspoonful of saltpeter and mix it with about two dessert spoonfuls of finely powdered charcoal willow coal is the best. Let these be ground together with a little water on a piece of slate, with the blade of a knife then by the aid of a camel's hair pencil, spread a portion of the mixture evenly over the surface of the dial, which the mixture evenly over the surface of the dial, which
must then be laid on a piece of charcoal; and with a blowpipe and the clear flame of a lamp or gas jet, it mus be made just red hot, and kept so till the wet powder has eased to fly about; it must then be thrown from the char oal, hot as it is, into a mixture of sulphuric acid and wate in the proportion of about one fluid ounce of acid to three half pints of water) ; it will then have a snow-white appearance, and must be washed with brush and soap in clean soft water and put into fine sawdust, or, what is better, rose wood raspings, till quite dry.

New Drawing instrument

The Hartford Curve Scribe Company has recently exhibi ted to us an ingenious instrument for drawing curves and scroll ornaments, for use of designers, wood carvers, etc. It consists of an attachment to the ordinary compasses, in which is a small wheel, the periphery of which rests on the paper in place of the pen or pencil point. So long as the plane of the wheel is at right angles to its axis, it describes a complete circle when the compasses are turned; but the slightest inclination from that angle causes the line drawn to curve out or in, according to the direction and degree in to curve out or in, according to the direction and degree in
which it is moved from the right angle. It is an efficient inwhich it is moved from the right angle. It is an efficient in-
strument for its purpose, and will be found a great help to strument for its purpose, and will be found a great help to
pattern makers and designers. See advertisement on anothpattern m
er page.

The East River Bridge

The question of continuing work on the East river bridge will shortly be argued before the United States Circuit Court in this city. A lessee of one of the United States bouded warehouses, situated on the river side above the piers of the bridge, has presented a petition for an injunc tion, restraining the Mayors of New York and Brooklyn, the bridge company, and others interested from building the bridge " over the East River at the hight of 135 feet above mean high water, or at any other hight that shall obstruct, impair, or injuriously modify the navigation of said river." The petitioner declares that the structure would irreparably injure his business.

NEW CHEMICAL AND MISCELLANEOUS INVENTIONS

IMPROVED SCRAPER.

Prosper Coupal, St. Anne, Ill., assignor to himself and Joseph Dalpay, of same place.-While the scraper is being loaded, the handles are held in the ordinary position. When the scraper is to be
unloaded the handles are raised, which causes the forward edge of unloaded the handles are raised, which causes the forward edge of rods to push back a catch plate which releases the rear edge of the bottom, and allows said bottom to revolve, discharging the load. As the bottom revolves, the handles are lowered, which brings the catch plate forward to receive and hold the rear edge of the bottom as it completes the half revolution, and, at the same time, the forward parts of th
improved frame for exhibiting dress goods Lewis H. Springer, Claremont, Minn.-This is a base socket with an upright standard, carrying a curved cross beam with bent-up any part thereof, so as to shade and expose the goods to the best possible advantage.
improved glove fastener.
William Hassall, New York city.-This consists of two plates, and having a ring passed through the said slots.

IMPROVED COUPON CUTTER.
Salem M. Schafer, New York city.-This consists of a shears with ngle blade contrived to cut two sides of a right angle at one and bond in one operation, instead of two, as required in the use of common shears.
mPROVED AUTOMATIC FAN
Ervin G. Gollner and Emil Fretz, Dallas, Tex.-This consists of a fan attached to the pendulum of a clock mechanism. The penduum is provided with pawls, in combination with the scape wheel,
n such a manner as to give a quick strong movement to the fan. IMPROVED BRICK KILN
John W. Brown, Milton, Vt.-The construction here is such that, by fully opening flues, the moisture and steam can be quickly expelled, and then, by closing the said flues less or more, the heat,dur-
ing the process of burning, may be controlled as may be desired. improved platform scale
Austin W. Comstock, Mount Pleasant, lowa.-This is a new and ngenious mechanical device, which furnishes an apparatus easily adjusted, strong, durable, and not likely to get out of order. It IMPROVED SHEARS
Henry Dornburgh, Olmsteadville, N. Y.-This consists of a bar for the support of the pivot, sustained on one of the blades outside of the other blade, so that the pivot has a bearing at each end. The
strain is thus applied in the middle, in such a manner that, in contrain is thus applied in the middle, in such a manner that, in coning laterally along the edges, as they do when the pivot goes through one blade and screws into the other.

IMPROVED OIL TANK.
John C. Chadwick, Baltimore, Md.-This invention relates to an improved construction of oil cans for grocersand other retailers of oil, which can is adapted to receive the contents of one or more
barrels, and affords greater facilities for cleaning out the tank, by reason of a hinged segmental cover upon the rear upper portion of
the can, and by reason also of the detachable character of the hood improved pencil attachment to slates. William E. Thomas, Ford's Store, Md.-This invention is a tube,
open at its ends, to receive the pencil, and hinged to a rod attached o one of the bars of the slate frame, which latter is recessed to accommodate the tube. When the pencil is required for use, the tube is turned out of the recess, but otherwise the pencil is retained in
the tube by reason of the ends of the latter abutting the end wall of the recess.
automatic air vent attachment for bungs. James Talley, Jr., Kansas City, Mo.-The invention relates to an and a bung provided with a recess or cavity in its top portion to adapt it to protect the upper projecting end of the vent tube, the two being permanently attached, thus forming a combined bung and vent.
mproved shoe fastening.
John M. Cayce, Franklyn, Tenn.-This latchet is formed essentially of two metal plates, one of which is hook-shaped, to adapt t to catch up a button attached to the opposite flap, while the other is pivoted to the hook, and so constructed that, when adjusted in a certain position, it will prev
disengaged from the button.

MPROVED PAPER JEWELRY
Frederick W. Seidewitz, Baltimore, Md.-The object of this in ention is to provide a cheap form of jeweiry ewblems and badges for temporary use, which, while presenting to the eye all of the
appearance of the precious metals, are of very cheap production. It consists in ornamental devices embossed and stamped out from thin, gilded paper, and provided with a pin fastened in a flbrous disk, which is cemented to the back of the design.
improved method of roasting coffee
Joseph B. Underwood, Fayetteville, N. C.-The object of this invention is to improve the quality of roasted coffee, and to obviate,
to a great extent, the loss in weight; and it consists in a method of oasting coffee, whereby the volatile products are utilized by being conveyed to a closed communicating chamber for cooling the cof-
fee, wherein the said fiavoring and aromatic exhalations are restored fee,wherein the said flavoring and aromatic exhalations are restored rendered less susceptible to the damaging effects of the atmosphere.
improved plug tobacco box
Benjamin F. Jaques, Petersburg, Va.-The box is so constructed y inspected without the necessity of removing them. The box is ly inspected without the necessity of removing them. The box is
rectangular and preferably oblong in shape, having flanged sides and open ends, one of which latter is hinged or removable. The tobacco is exposed to view the whole length of the box, and also at its ends, and the cover may be readily removed to allow insertion
or removal of the tobacco. apparatus for heating and mixing oleaginous seeds. William M. Force, Newark, N.J.-This is an apparatus for mixing oleaginous seeds, so that the seeds, crushed or otherwise, are prop-
erly heated, mixed, and tempered for the expression of the oil.
The invention consists of a series of spirally arranged revolving stirrer pipes that are supplied with steam from a central upright
improved tiller holder attachment for vessels. William E. Thomas, Ford's Store, Md.-In this attachment a single block is fixed to the forward end of the tiller and a double
block near its middle, the shears in the latter being situated side by side, transversely. On each side of the rudder, single blocks are lashed to staples on the deck. A rope attached to a staple, fixed to the tiller, below the double block, runs, successively, through one
of the blocks on the deck, the double block, (around the sheave on of the blocks on the deck, the double block, (around the sheave on
the same side), the single block at the forward end of the tiller, the the same side), the single block at the forward end of the tiller, the
double block (around the opposite sheave), and the opposite bloce double block (around the opposite sheave), and the opposite bloce
on the deck; its end, then passing forward, is belayed to a cleat or pin on the tiller. By turning a set screw in the block on the for ward end of the tiller, pressure is applied to the rope and the tiller fixed in any desired position.
improved bee hive.
Christopher Ellis, Level Land, S. C.-The object of this invention is mainly the production of a hive adapted for the application of active and efficient means of preventing the ravages of the moth,
without, at the same time, destroying or injuring the bees. To this end, the hive is provided with a broad chamber or box, which is separate and preferably detachable, and a perforated metal plate is applied to an opening formed in the bottom board. The moth egg
or young worm is destroyed by pouring hot water between the contiguous sides of the hive and the brood chamber, the perforated plate allowing the water to escape from the hive without drowning the bees, or otherwise injuring them. The invention likewise em-
bodies certain other features of construction and arrangement of parts whereby advantages are attained in hiving, handling, and parts whereby ad
transporting bees.
process for separating wool from mixed fabrics. Dr. Joseph Wilkins, Baltimore, Md.-This invention relates to an
improved process for separating wool fiber from its admixture with improved process for separating wool fiber from its admixture with
cotton for the purpose of utilizing the wool mixed with cotton in old rags. The improvement consists in the use with any of the pounds, from which it may be liberated by the action of the other acids, which chromic acid, by reason of its aminity for the albumen of the wool, prevents the injurious action of the more active acids,
and, while permitting the elimination of the cotton by the well and, while permitting the elimination of the cotton by the well known action of the
same upon the wool.

MPROVED BEER TAP.
George C. Drinen, Brooklyn, N. Y.-The novel feature in this tap consists in making the valve cylinder independent of the bush, and movable without detach
improved ice cream freezer.
David J. Rogers, Bardstown, Ky.-This invention consists of a handle with three holes to fit over the square end of the dasher middle of the handle, a projection on the latter strikes upon a pro midaion on the upright sleeve of the can cover, and prevents the dasher from revolving independently of the can, which does not happen when the end of the shaft fits in either of the other holes.
On the edge of the can cover is a curved catch, which, in conjuncOn the edge of the can cover is a curved catch, which, in conjunc-
tion with a hinged stop on the cross bar of the tub for the freezing tion with a hinged stop on the cross bar of the tub for the
material, allows the can to rotate but in one direction.

NEW WOODWORKING AND HOUSE AND CARRIAGE BUILDING INVENTIONS.

improved device for greasing axles
Alfred G. Curtis, Ottawa, Ill.-This invention relates to an imaxles, and it consists in a filling tube and a plunger fitting therein which, together, are employed for charging a longitudinal reservoir in the skein with grease, the said reservoir running the entire length of the skein and opening through a slot upon the surface of the skein, by means of which construction the axle is rendered self-greasiog unt refiled without taking off the wheel

IMPROVED FOUR-WHEELED VEHICLE
William Buckeridge, Port Huron, Mich.-This invention is an improvement in the class of four-wheeled vehicles provided with a jointed reach to facilitate turning within narrow limits. The front any supplementary device, and the body of the wagon is pivoted tion front axle, and supported on the rear axle by means of fricturned to the right or left
improved arch bar for fire places
Isaac McCown Wickersham, Harrodsburg, Ky.-The ordinary support for the brick arch of chimney fire places is a fiat iron bar, this-apart from the total lack of ornamental design or configura-tion-is the liability of obstruction to the passage of smoke by reason of the thickness of the brick arch or wall resting on the bar
To obviate this objection, and also secure certain other advan ta obviate this objection, and also secure certain other al inventor employs an arch bar formed of a vertical front
tage plate, having a horizontal top flange to support the brick wall and of a baok plate, projecting upward and inward from the lower edge of the front plate, at an angle of about 45°, for the pur
pose of directing the smoke.

NEW HOUSEHOLD INVENTIONS.

mproved washboard.
John S. Washburn, Jersey City, N. J.-This consists of a series of round bars, around which a strip of wood is passed and fastened crack, and thus will not cut nor tear the clothes.
improved hanging shelves.
Richard St. Leger Brodrick Chinnery, Kankakee, Ill.-These are just it to the breadth of the place where they are to be hung. improved chair and lounge.
James W. Barnes, Navasota, Texas.-This invention relates to eertain improvements in invalid chairs, designed more particularly or curvature of the spine. It consists mainly in the attachments to and adjustments for the back of a chair; the first of which consists of adjustible and detachable and horn-shaped supports, which are adapted to fit beneath the armpits and sustain the weight of the back of the chair to facilitate the getting out of and into the of the back of the chair to facilitate the getting out of and into the same MPROVED STOVE KNOb.
Ralph Strickland, Albany, N. Y.-This invention consists of a
knob made of a shell of thin metal filled with plaster of Paris or knob made of a shell of thin metal filled with plaster of Paris or other suitable non-conducting material. The shell is in two parts, serving to attach the cap to the body, and the knob to the stove door, by means of a nut on the inside of the latter.

IMPROVED BED LOUNGE
William E. Buser, Chillicothe, Ohio.-The lounge has a removabl top and a hinged adjustable bottom, which latter may be raised or
lowered at will. The said bottom is supported upon its hinges when raised to a horizontal position, and the hinges lie flat when the bot tom is lowered. The head of the lounge is also hinged, and may be adjusted in position to correspond with the bottom.
mproved hot air globe and shade holder. Leander E. Fish, Washington, D. C.-Thisinvention is designed to impart steadiness to the flame of argand gas burners which are ners which are exposed to drafts of air, as street lamps and out door lights. The invention consists in the application of an oute globe or cylindrical chimney to the chimney proper, which outer globe is drawn inward at the bottom to form, with its holding de vice, a closed hot-air chamber around the chimney proper, so tha the air which feeds the flame is compelled to pass down the annu lar space between the two chimneys, or the chimney proper and
the globe, before it reaches the flame, whereby the air is fed to the flame hot, which is an advantage, and the flame is completely protected from flickering or blowing-out even, even when exposed t device for holding invention also further consists in the clamping connection, and also in the construction and arrangement of a shade holder attached to the same globe-holding devices.

IMPROVED SHUTTER FASTENER.
Joshua E. Brooks, Baltimore, Md.-Thisinvention consists of two Joshua E. Brooks, Baltimore, Md.-Thisinvention consists of two
tumbler latches in a metallic box inserted in the window sill, and which are pressed by pivoted springs against a spear-headed catch,
fixed to the shutter. The tumbler latches are connected by a rod which pivots in oppoite leased from the spear-headed catch by the aid of a handle which passes up from one of the latches, through a curved slot in the me

STOPPER FOR WASH bASIN OVERFLOW OPENINGS.
Ezra Webb, New York city.-This is a plate provided with a num ber of small projections to enter the holes in the overflow opening
in the side of the wash basin. The object is to prevent the outflow of sewer gas at that point. The object is to prevent the outflow

NEW AGRICULTURAL INVENTIONS.

IMPROVED CLOD CRUSHER.
John M. Crockett, Dallas, Texas.-This implement consists of two series of flat parallel bars, which are curved or bent t wice, and at of one series are at such points as bring them out of alignment with those of the others; and hence, when a clod escapes being crushed by a bar of one series, it will ordinarily pass laterally un der the next bar, and thus be subjected a second time to a crushing
action. The clods are thus broken up, and the land leveled. The action. The clods are thus broken up, and the land leve
implement is light, cheap, strong, durable, and effective.

NEW MECHANICAL AND ENGINEERING INVENTIONS

MPROVED PERPETUAL AUTOMATIC CALENDAR ATTACHMENT OR TIME PIECES.

Miner H. Paddock, East Clarkson, N. Y.-The calendar, with its
attachment, is arranged for the days, weeks, and months, with inattachment, is arranged for the days, weeks, and months, with indicating hands for each, and, while being practically automatic, is
also perpetual : that is to say, the mechanism is such as to compenalso perpetual : that is to say, the mechanism is such as to compen-
sate for the irregular number of days occurring in the different sate for the irregular number of days occurring in the difer of 31
months, by a system of skipping, whereby a single day whel on subdivisions is made to indicate, successively and in proper order the different number of days $(28,30$, or 31$)$ as they occur in the successive months of the year.
improved water coll steam generator.
Benjamin S. Benson, Baltimore, Md.-This invention relates to a novel construction of steam generator adapted to be also used a drical coil of pipes to that class of generators in which a cylinber, to generate the steam; and it consists in the construction and arrangement of the coils, which are made to project at one polnt beyond the containing shell, and are provided, upon the outside of
the shell, with peculiarly constructed elbow joints the ready removal of the deflector or worn-out sections of the coil, and also give easy access to the pipes for cleaning out the same.
The invention also consists in the peculiar construction and arrangemention also consists in the peculiar construction and ar er for the with the coils of a thermostat or automatic relief chaporated by the generator.
Spring power and treadle for sewing machines.
James H. Morley, Holyoke, Mass.-This is a combination of foot
power and spring power. One of the treadles works the machine power and spring power. One of the treadles works the machine ing it up.

mproved rotary engine.

John R. Peters, Dover, N. J.-This consists of plain flanges at tached to the hub and extending out as far as the pistons move
with stationary packing rings pressing on the edges of the flanges and against the case. This is claimed to prevent the radial end wear of the pistons by the packing rings and the loss of steam through the necessary clearance between the inside edges of th circumference of the flanges and the case. The invention als consists of compound pistons, consisting of two or more plates in each groove in the hub, the ends and tops of which may be so
formed as to prevent serrated edges, and constitute with densed steam what is called water packing.
improved roller gage for sawmills.
Aaron Reppard, Savannah, Ga.-An adjustable roller guide is lever and ancole for setting it for boards of any thickness Said roller is located just in advance of the saw, so that, by setting the log against it, every board will be gaged exactly alike as to thicklog against it, every board winn be gaged exacty ahice as to on the
ness. The roller gage is mounted in a bracket, whin slides
bed piece, and the lever is connected to it by a link, and to the bed bed piece, and the l
piece by a bracket.

IMPROVED TYPE WRITER
Philander Deming, Albany, N. Y.-The object of this invention is to so improve the type writer that it may be made available in an effame in copying common writing may be considerably increased
same The invention consists of a double escapement in connection with the rack bar of the carriage of the printing cylinder, the escapement being operated by an anv
connection with the space key.
boiler feed water heater and regulator.
Frank W. Keys, New York city.-This consists of a couple of tanks, with water supply and boiler connections, a a w with valve mechanism, by which they are alternately opened to exhaust and
fill. They are in communication with the boiler, the pressure being balanced. The invention also consists of another tank in connec ters the others, and also to receive the exhaust steam for heating the water.

Gusintss and extyonal.

The Charge for Insertion under this head is One Dol-

 ceeds Four Lines, one Dolar and a Half per Line will be charged.Agricultural Implements and Industrial Machin-
ery for Export and Domestic Use. R.H.Allen $\&$ Co.. N. Y. For Bolt Forging Machines and Power HamOwners of Steam Engines-We guarantee 25 per
cent extra power or an equal saving In fuel, by applying cent extrin
the Ransom Syphon Condenser. T. Sault, by Consulting Engineer, General A gent, New Haven, Conn.
ForSale or Royalty-Cotton Stalk Puller, patentRuber Hyrant Hose, Hose Pipes and Coup-
Hings, best tuality. Send for Prices to Bailey, Farrell

Wanted-Situation as Supt. or Foreman of Ma-
chine Works or shop, by Machintst of 22 years ' experi-
 duced over 20 per cent. Hull \& Belden Co., Danbury, Ct. Driving Belts made to order, to accomplish work 148 North Third St.. Philladelphia, Pa.
Power \& Foot Presses \& all, Fruit-can Tools. Fer-
racute Wks., Bridgeton, N.J. © C. 22, Mchy. Hall, Cent'l. Johnson's Universal Lathe Chuck-A warded the
highest Premium by the Franklin Institute of Phila., for "Durabilty, Firmness, and adaptation to variety of
work." Lambertvile Iron Works, Lambertville, N. J. Metallic Letters and Figures to put on Patterns
of Castings, all sizes. H. W. Knight, Seneca Falls, N. Y . Wanted-A means of Waterproofing Manilla Pa-
per at a cost not exceeding 2 or 4 cents a ib. Address Chas R. Chute, Minneapolls, Minn
We beg to call the attention of our readers to the
advertisement of Geo. W. Read \& Co... $\mathrm{No.200}$ Lewis st.
 Safety and Economy-Eclipse Sectional Steam
Boiler. First Class references. Lambervtitie rin Works

Woman's Shoes-Patent for Sale, either whole
or State Rlights. Address C. Steckel, 99 Allen St., N.Y. To Umbrella \& \& Parasol Makers -Improvement
in IIandes for Sale. Address N. P. Fassett. Elmira, N. \mathbf{Y}. Water Wells-Wanted deseriptive eirculara, best
apparatus for boring or driving, and best terms to agent Enginc Builders and Mill Furnishers, send
culars or Card to Benson Brothers, Centralla, Ill.

 Lawn Mowers for Hand, Pony, or Horse-Prices
reduced. Largest stock in the city. A. B. Cohu, 197
Wanted $-25,000$ Ibs. 2 nd hand light T rail. E. B.
Seeley, Bowling Green, For Sale-Complete outfit of machinery for the
manurature of cotton waste, cost $\$ 82,200$. Price $\$ 700$.

The Photo-Engraving Co. have been obliged to
remove from 62 Cortlandt St to a larger building at 67 Park Place. Their Relief Plates for Newspaper, Book and Catalogue Allustrations are rapidiy taking the place
of wooc cuts and are unnurpassed. See advertisement
in another colun of
For the best Patent Self-Opening Gates for Car-
riages, In any Style of Wood or Iron, address Cottom \& ., Dayton, Ohio.
 stating just
ter. N. H.
Split-Pulleys and Split-Collars of same price,
strenyth, and appearance as whole-Pulless and Whole-

The Bastet Magnetic Engine for running Sewng
Machnes. Lathes. Pumps, organ, or any light Machn-
 The French Files of Limet \& Co. have the endorsement of many or the leading machine makers or
America. Notice esampes in Machnery
partment French Department, Centennial Exposition. Ho
Sole Agents, 22 Platt St., New York.
First class Amoskeag Steam Fire Engine for
Sale, 2 hand, 81,200 . Forsaith \& Co., Manchester, N.H. Trade Marks in England,-By a recent amend-
ment of the English laws respecting Trade Marks, citi-
 the same cost. All the necessary papers prepared at
thtis Oitice. For further Information address Munn \& Co.. 37 Park Row, New York city.
Singiles and Heading Sawing Machine. See ad-
vertisement of Trevor $\&$ Co., Lockport, $\mathrm{N} . \mathrm{Y}$. For Sale-Sturtevant No. 7 Hot Blast Apparatus,
\&too. Forsaith \& Co., Manchester, N. H. Solid Emery Vulcanite Wheels-The Solid Orig-
nal Emery Wheel-other kinds imitations and inferior. Caution--Our name is stamped in funl on ond our rest
Standard Belting, Packing, and Hose. Buy that only. Standard Betting, Packing, and Hose. Buy that only.
The best is the cleapest. New York Belting and Packing Company, 37 and 38 Park Pow, New York.
Steel Castings, from one lib.to five thousand Ibs.
Invaluabe for strength and durabilty. Circulars free. For best Presses, Dies, and Fruit Can Tools, Biss For Solid Wrought-iron Beams, eto., see adver--
tisement. Address Union Iron Mill, Pittsurgh, Pa., Hotchkiss \& Ball, Meriden, Conn, Foundrymen
and workers of sheet metal. Fine Gray Iron Castings to order. Job work sollictect.
For Solid Emery . Wheels and Machinery, send to
the Union Stone Co., Boston, Mass., for circular. the Union Stone Co., Boston, Mass., for circular.
For Sale-2 Hunneman Hand Fire Engines with
Hose Carriage, second hand, 5% in. cyinder, 15 in. stroke.
 Metalis. E. Lyon, 470 Grand Street, New York.
Spinning Rings of a Superior ueality.-.
ville spinitins.

For best Bolt Cutter, at greatly reduced prices,
address
D. B. Brown Diamond Tools-J. Dickinson,64 Nassau St., N. Y
Temples and Oilcans. Draper, Hopedale, Mass Hand Fire Engines, Lift and Force Pumps for
Are and all other purposes. Address Rumsey $\&$ Co., Seneca Falls, N. Y.. U.S.A.
See Boults Saneling, Moulding, and Dovetailing
Machine at Centennial, B. 8-55. send for pamphlet and Machine at Centennial, B. 8-55. Send for pamphlet and
sample of work. B. C. Mach'y Co., Battle Creek, Mich.

R. R. will find directions for tempering rock drills on p. 202 , vol 31.-R. N. will find directions
for calculating the strength of boilers on pp. 116, for calculating the strength of boilers on pp. 116,
165 , vol. 28.-J. C. N. will find a description of the speed indicator for railway trains on p. 271, vol.
 and others, whoask us to recommend books on in dustrial and scientifc subjects, should address the
booksellers who advertise in our columns, all of booksellers who advertise in our colums, all
whom are trustworthy firms, for catalogues.
(1) A. C. H. asks: What is the best ce One of the best cements for this purpose is a solution of glue in warm dilute glycerin.
(2) F. B. says: Our schoolhouse is 30×50
eet on the ground, with only one floor. The ground is clayey and hard to drain. The frost
groises it tery baly. Is it practicable to set it on raises it every bady. Is it practicable to set it on
iron posts in such a way that the frost will not iron posts in such a way that the frost will not
move it? A. Under each post of the building, place a timber post of good size, extending into the ground about five feet, and foot it upon the
middle of a mudsill, of the same size and cight middle of a mudsill, of the same size and cigh
feet long, laid horizontally. Secure the foot of the post to the sill by an iron clevis bolted through the post, and provide a timber brace upon either
side, from the post to the end of the mudsil. In filling in the trench, let the filling around the post be of large stone. If you are willing to take stil greater precautions, you can lay another mudsill,
at right angles to the one above described, to each post, and brace it in the same manner.
(3) E. P. R. says: I have a roof 16×24 It leaks badly. Is there anything that can be ap plied so the shingles that will make a perfect roof?
A. The roof (about $11 /$ inches to the foot) is too A. The roof (about $11 /$ inches to the foot) is too
flat. Elevate it so as to give a pitch of 6 inches to tat. Elevate it so as to give a pitch of 6 inches t
the foot, and then ordinary repairs will make it ight.
(4) B. J. M says: I want something to elevate as much as 1, tuns freight about 20 reet,
that one man can hande. A. A differential pulhey may be obtained from any machinists' sup plies store.
(5) A. P. McC. asks: How can we ventilate coils of pipe around the sides of rooms. The building is of brick; and there are 20 rooms, each about $30 x$ x0 freet. A. Without plans of your build
ing we cannot answer yqu specifically ; but we ir upon the coils of heating pipe, in such a man ner as not to create drafts, and its discharge at the ceiling on the opposite side of the room.
(6) G. J. B. says: A roof leaks; it is of
calvanized iron, and has been on several years When I purchased the house, I was advised to
cover the iron with two or three coats of a mixure of coal tar, Portland cement, and lime, an did so, at a cost of $\$ 50$. I find, however, that the
cement and lime get washed away, and that the cure is only partial. The iron is very good except The iron is probably in large sheets, without th proper allowance for contraction and expansion
and this has opened the joints. A good roofe and this has opened the joints. A good roofe
should be able to scrape all those places bare and sleand be able to scrape and solder them tight, if the iron is not to
cles bare nuch rusted away. In this way it might be mad to put on a new tin roof in small sheets.
(7) II. asks: 1. If the Rumford method cannot be applied to show how much more light is refiector placed behind an artificial light than distance without the reflector, then by what process can the question be determined? A. Th
best way to find the utilizing power of mirrors is first to determine the loss of light by made, then its size, its curvature, and the surface section of the bundle of parallel rays. 2. Is the following a correct rule to ascertain what propor-
tion of light from a spherical source (a round tion of light from a spherical source e a round
charcoal set aglow, for instance) will fall upon a urement of a sizere "Compute meter is twice the distance of the page from the flame, and the proportion which a page of a given size bears to the entire surface of the sphere will be the proportion
of the whole amount of light falling upon the page, provided the page is held at right angles
to the rays of light " If the rule is as stated, to what extent should it be modifled when applied to a flat flame? A. The rule is correct, and need not be modified for flat flames, as such flames give the same amount of light in alld directions, either from the edges or from the flat surface: flames being
perfectly transparent for the light of other flames, perfectly transparent for the light of other flames,
and every part of a flame transparent for every er part of the same.
(8) H. asks: 1. With two lamps, which are proved by the Rumford or any like method to can the Rumford method be applied to test the utilizing power of concave mirrors by placing one
of the lamps before a concave mirror, in its prin cipal focus, and then varying the distance of the
two lights from the screen until the shat two lights from the screen until the shadows are
sensibly equal in density? A. The method pro posed could not give correct results, as the reflection from a concave mirror introduces complex
circumstances, which make the comparison with a simple lamp impracticable. 2. Will the law of inverse squares apply to determining how many lamps, at the same distance, would be required to
equal the amount of light thrown upon the screen equal the amount of light thrown upon the screen by the lamp placed before the reflector? A. As
soon as you place the lights in the focus of a consaon as mou pace the tou make the reflected rays parallel,
caver and the law of inverse squares is no more applice point. 3. Will a test with the lights at any distance from the screen indicate with accuracy the relative utilizing power of the reflector, no
matter what the distances? A. In order to determatter what the distances? A. In order to deter-
mine correctly the relative utilizing power of remine correctly the relative utilizing power of re-
flecting surfaces. the only correct method is to method be applied to make the same test? The ordinary photometric method is the best for the tests in question, provided concave refiectors are excluded.
(9) J. G. C. afks: 1. Is any form of gal-
vanic battery patentable? A. Yes, any new and useful form. 2. Can carbon plates for batteries be made out of plumbago? A. Yes. 3. Which isthe wood is the best. 4. Will oiling or polishing im pair its insulating properties? A. No.
(10) I. E. T. asks: 1. Does the conducting the arca of its cross section? A. Thelatter. 2. Is here any gain in increasing the conducting powe
of a rod, without increasing the number of
Dints? points? A. Yes, up to a certain point. 3. Is copper any cheaper for lightning rods than iron?
A. No. 4. Why are iron wires so extensively A. No. 4. Why are iron wires so extensively
used for telegraph lines?
A. Because they are stronger
(11) J. F. A. says: Please let me know the that they will not crack, twist, or bend in hardening. A. Cool them off between two flat grating of cast iron, having small surfaces of contact.
(12) G. W. C. says: I was running a loco ad a solid gage of water in the boiler; bu the crown and flue sheets sprang from the sides, and her flues were collapsed. She was carrying 135 lbs . pressure at the time. She had been know before; and she would show water at the bottom cock, with a good injector at work all the time. contend that the water getting low so often weakened the boiler, which, carrying a heavy pressure of steam, could not stand any longer. I also
think that, if she had not been running at the think that, if she had not been running at the
time, the boiler would have exploded; but as she was pulling a train, a strong draft passed throug A. The boiler was, no doubt, weakened from the wide range of temperature, and therefore of expansion and contraction, which necessarily folquire to stand still on the road to fill up. Under ofh conditions, the destruction of the strengt draft through the flues resisting the pressure i erroneous.
(13) J. M. M. says: I turned a paper cal n plied an emery wheel to finish with; but befor the wheel had gone across the face of the roll, the roll ran out of true about $\frac{3}{64}$ inch. The lathe
center ran true, the wheel post was firm, and everything else about the lathe was right. Why ing the roll, the shaft was sprung ; and in turnin the paper off, the shaft sprung back, thus throw ing the roll out of true. A. Your theory is proba bly a correct one.
(14) II K. S. asks: 1. Would even a good of lightning, such as would shiver a good size tree to pieces? A. Yes. 2. What would you con sider agoodrod. A. An iron rod half an inch iameter.
(15) P. C. C. asks: I have a rotary steam engine running at 4,000 revolutions per minute
The piston is $1 \times 11 / 4$ inches. I hold 100 lbs. pressure on piston of engine. How many horse power has this engine? A. The horse power of rotary en gives varies too much to admit of calculation, a
remark which applies equally to consumption of team, and hence to size of boiler.
(16) R. D. W. says: We are having some
rouble in making a quarter twist belt run. We trouble in making a quarter twist belt run. We all right; but now we wish to change to a 6 inch eather belt, which will not run anywhere with the pullcys in the same position as the rubber
belt. Is the trouble with the shafting? A. Since your rubber belt ran properly, the shafts must be right; hence a wider leather belt will remove your difficulty.
(17) I. H. S. says: I have had lightning
rods placed on my house this spring, but I am doubtful if they have been properly put on o not. They are galvanized, are run up a bout four
feet above the chimneys, one on each end of the house, and run along the ridge of the roof, joining in the center, thence down the roof on to a
back kitchen, when another branch joins on from the kitchen chimney,andall run down to about $41 / 2$ feet in the ground, which the person who put only about 8 or 10 feetabove the level of Lake St. Louis. I would like to know if it is proper to done, and merely fastened on with tacks and strips of zinc. Is a galvanized conductor as good as a
of
copper one? A. Iron has only about one fifth the conducting power of copper. The value of the
rod depends upon its sizc. If it has a diameter of half an inch, it will answer. There ought to be nd a hever four and a half feet is not sufficient for a ground. You
should dig down until you reach water, then dig several lateral trenches, say 10 feet in length, lay down in them iron bars or rods, the largerthe better, and connect all your rods to them. Your rods should be welded together so as to leave no bad
joints. There is no objection to nailing the rods joints. There is no objection
to the woodwork or shingles.
(18) F. E. N. says: Has not atmospheric electricity small quantity with great intensity?
A. Atmospheric electricity may possess both A. Atmospheric electricity may
great quantity and great intensity.
(19) I. V. R. says: In No. 17, vol. 1, of your
SUPPLEMENT I noticed an article in relation to the SUPPLEMENT I noticed an article in relation to the a very fline six inch coil mademostly from instruc tions which you have from time to time published in the Scientific American, and upon which I tried the following experiment without any result : I attached one end of a copper wire to the ondary poles of the coil; and the spark remained in every respect as before. Judging from the ar
ticle above referred to, I should have obtained a licle above referred to, I should have obtained a lengthening and strengthening of the spark. Did the two ends of your induction coil wires togethcr to get a spark.
(20) W. D. E. asks: 1. How powerful a battery would it require to light 100 gas jets at an average distance of 100 feet from the battery?
A. Use 100 cells of the gravity battery, or 75 cells Leclanché. 2. What would be the original costof battery, and what the cost of keeping in opera-
tion? A. The cost would be about $\$ 150$. The cost of maintenance would be small.
(21) A. N. H. says: I have erected a private insulated) 800 feet in length, having a sounder and relay at each extremity, and wish to connect another set about midway, without local battery. I have applied five cells of Daniell's battery at one
end of line, and one cell Watt's battery (electroend of line, and one cell watt's battery (electro-
plating) at the other ; but I do not get as strong a plating) at the other; but I do not get as strong
current to operate instruments as I desire. How many cells should operate said line? A. A greate number of cells will be required to work a line 800 if a wire is used to complete the circuit. 2. If place different kinds of batteries in the circuit,
having unequal dynamical power, will they not unitedly give a steady electrical force, in what
ever juxtaposition the cells are placed in line o battery, provided the anodes and cathodes ar properly arranged? A. You can use differen kinds of battery cells upon one wire without dificulty. 3. Please give a definite idea of one ohm f electrical resistance, or actual power of said trical resistance. A. An ohm is equal to the elec ity of No. 8 iron wire
(22) J. R. C. says: I have read of a tele two messages at the same time,over the same wire without either message interfering with the othe Can you help me 10 find out the particulars of the experiments above referred to? A. The Western Union Company are extensively using apparatus by which four messages are simultaneously
mitted over one wire. See p. 151, vol. 33 .
(23) G. L. B. asks: What can I put on a
bass plate so that the fingers and the damp air rass plate so that the fingers and
will not tarnish it? A. Try lacquer
(24) C. S. P. asks: What shape of station ary cutter should I use to turn wood in a lathe, so lip on the top face with a keen edge, will ant your purpose.
(25) G. A.
(25) G. A. M. asks: Can a person in a very
deep well see stars in the daytime? A. Yes deep well see stars in the daytime? A. Yes, it
the atmosphere is clear. 2. If so, why? A. Be cause the light reflected from the surrounding
objects on the earth is cut off, and there is not ight enough reflected from a column of clear air of the size of the well, to obliterate the light of the larger stars.
On Thursday in America, what day is it in Europe ? A. It will be Thursday also, at any time before about 6 o'clock P. M., Washington civil night.
(26)
(26) J. B. says: I cannot give my crayon drawings a fine finish, and wish to know what pa-
per is best. A. We believe your trouble is in the per is best. A. We believe your trouble is in the
paper. To make smooth drawings, the paper paper. To make smooth drawings, the paper
should have a close body with a very fine tooth. Bold effects (to be examined only
may be made on the coarser paper
$\left(2^{7}\right) \mathrm{V} . \mathrm{M} . \mathrm{D}$. asks: Is cow hair used for
any purposes other than for plaster? A. Yes; it is made up into clo ths.
(28) A. L. L. says: 1 . What is gelatin of glue. 2. What is the process by which the fish are made? A. By stamping from sheets that have already been rolled to the proper thickness.
(29) J. F. \& J. G. say : What causes hair to turn gray in young persons? A. It may be con-
genitai or accidental, depending upon some constitutional peculiarity in the organization of the
individual ; causes which have been observed to individual ; causes which have been observed to Grief and terror have been known to cause it, varying in time from a few hours to years. Bichat
says: "The different passions of the mind have a remarkable influence over the internal structure of the hair; often, in a short period of time, grief effects changes in its color, bleaching the
hair, probably by means of absorption of the fluids contained in its tissues." The treatment is to re-
move the causes of the debility existing in the phosphoric acid, and especially chalye nutritive power prevails) by means of preparations of iron and arsenic, and to stimulate the skin locally by abundant brushing and some gentle stimulant, such as same time
(30) H. L. H. says: What will make a cheap jet composition, such as is used for making
cheap jet ornaments, which can be worked at the heat of an ordinary fire? A. We believe the ma terials that have been employed for this purpose are pure asphalt, plumbago or animal charcoal, and gutta percha.
(31) J. S. W. says: I have t wo rain water can any solution be introduced in the cisterne. which will correct it? A. Try the remedy recommended to I. E. S., on this page.
(33) W. F. 13. asks: O.1 1 . 268 , vol. 33 , you give a formula for writing ink. What is the best
process by which to prepare this ink? A. Digest process by which to prepare this ink? A. Digest
the crushed galls with a portion of the water (hot) for about 48 hours. Then add by degrees the sul phate of iron in a flue powder, with constant agi tation until completely dissolved. When this is effected, gradually add the sulphate of indigo,
with continued agitation, and allow to cool. Dissolve the gum in the remaining portion of the vater (cold), add this solution to the former, stir
well, and allow to stand in closed vessels for seveal weeks. Finally, filter through a bag of fine muslin, and bottle. The ink improves by age.
(33) S . W. asks: Will carbonic cid gas njure the color of fabrics of silk, cotton, an
wool, and rust metals? A. No; but in the pre ence of moisture and carbonic acid, some of the metals rust very rapidly.
(34) J. E. S. says: I have a rain water cis tern 12 feet deep; it holds water well, and, so far ion. The water at this time of year becomes pu tion. The water at this time of year becomes pu-
trified, having a slimy look and taste: it emits a scent and has the taste of water in which there are Try the addition of a buouhel or two of well burn charcoal in coarse powder.
(35) J. S. s sy 4 : I am ueing raw beef hides to get a beautiful color, but do not get it perfect How can I get the hide perfectly transparent, to have the yellow show through? Λ. This is impo sisible.
(36) B. S. C. asks: Is there any chemica process that will turn the hair gray? A. Frequent washing of the hair with a diluted mixture of strong nitric and muriatic acids will accomplisi this result. The proportions should be about part of nitric and 3 parts hydrochloric acids, and
20 or 30 parts warm water. The nitric acid will tain the flesh slightly yellow, but this is not permanent.
(37) C. B. M. asks: IIow can I mak ${ }_{\text {a }}$ asbesfeet underground? A. Asbestos is waterproof and is not liable to decay or rot under either of the conditions mentioned.
(38) W. S. M. says: I have seen a small blood tester, with a ball at one end and a giass cyl-
nder at the other. In this cylinder, there is lemon-colored liquid with a little glass figure (hollow) in it. If the blood is very warm and fever keeps the figure up. Please explain this, and thi keeps the figure up. Please explain this. A. The is filled with the ethereal vapor, the air having been completely expelled. The boiling point of ether being very low, the heat of the hand is sufficient, under these circumstances, to cause ebulition; and the increased tension thereby caused in the bulb grasped in the hand causes the liquid o move from bulb into cylinder.
(39) J. M. S. asks: 1. What are the pro portions of elements in champagne? A. Analysis of genuine champagne, of specific gravity $10: 341$
at 60° Fah., gives the following: Absolute alcohol $\cdot 95$ sugar $10 \cdot 63$, total acidity 0.52 , potash $0 \cdot 05$, wuter 8.85 ; total, 100. 2. How are liquids clarified? A. As a general rule, heat to about 170° Fah., filter, and bottle.
(40) C. J. D. a-ks: Which can be seen the
further, a white or red light? A. A white one. (41) W. S. (i. says : 1. Your recipe for marine glue gives 1 lb . glue to 2quarts skimmed milk.
I find the following difficulties: 1 . Small white pecks throurh it after cooling. 2. It molds if ex posed to the air. 3. It dries or sets very slowly, using the best white glue, and as fresh skimmed milk as I could obtain. Can you help me? A Filter the milk just before using, and add a little alcohol or spirits of wine. 2. What is acid chromate of lime? A. It is a combination of lime with two equivalents of chromic acid. 3. When a recipe calls for parts, and there are liquids and Theyare parts by weight.
(43) J. B. asks: Is there any alloy which melts at about $1,030^{\circ}$, suitable for the cylinder of gether $41 / \frac{1}{2} \mathrm{lbs}$. tin, and $1 / 2 \mathrm{lb}$. each bismuth, antimony, and lead.
(43) J. S. asks: Please descrive the process hides are received fresh from the slaughterhouse, they are washed, if water be abundant, and the horns are removed. Dried or salted hides are soaked in water for 10 or 14 days, with occasional friction; and in some cases a kind of fulling mill is used to produce the soft, supple condition which is necessary for the working. After the washing,
side, to get rid of the flesh and fatty matters. The
next operation is to get rid of the hair and scarf skin, for which purpose the hides are put into troughs or pits containing a mixture of lime and water, of three or four different strengths in the different pits. They are left for a day or two in the weakest, and then transferred to the others in
succession, until, in the course of two or three succession, until, in the course of two or three
weeks, depending upon the texture of the hide and the state of the atmosphere, the lime has dissolved the hair sheath, and combined with the fat of the hide to form an insoluble soap. During the operation the hides are handled, or removed from the pits, and allowed to drain in a heap for several hours every day, in order to equal
ize the action of the lime. When the hair and ize the action of the lime. When the hair and
epidermis yield to the touch, the skins are taten out and scraped upon a cylindrical table with suitable knife, called the unhairing knife. The emaining flesh and fat are then completely re moved from the flesh side of the skin; they ar

ning.

(44) F. D. says: I have attempted to coar rood coating of plumbargo; but when I lower the into the copper solution, the greater part of the the plumbago comes off. Please describe a reme dy. A. When you have coated the figures with fine even covering of plumbago, gently heat the urface.
 ceived from the following correspondents, an amined, with the results stated
A.J.W.-No. 1 is quartz rock with silicate of al-
umina. No, 2 is quartzite with oxide of iron. No. 3 carbonate of cópper. No. 4 is clay and decom posed in ca. No. 5 is quartz with clay and oxid
of iron. No. 6 is quartz, iron, and lead, no -M. M. S.-It is probably a variety of web resem bling that of the spider. If it could be collected in any considerable quantity, there would be little difficulty in soon making a narket for it.-R. L It is a varicty of steatite, a kind of soapstone - N. W. E.-No. 1 is a silicious clay containing mall percentage of lime and magnesia. No. 2 ha softer rock to be of use. No. 3 is a basalt. It contains some iron, but it could not be profitably extracted.

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American ac nowledges, with moch pleasure, the receipt of ing subjects:
On Baling Cotton. By J. G. T
On the Financial Problem. By J. S.
On Ventilation. By w. M.
Also inquiries and answers from the following:
J. J.-J. H. R.-A. P. B.-J. McB.-F. W. S.-J. K.
J. . W. W.-W. B. A.-B. L. - J. B. D. - J. M. - M. B.

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appear nay conclude them. If not then published, they declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patenta publist of inventions, assignments, etc., will not b only are given, are thrown into the waste basket, as it would fill half of our paper to print them all but we generally take pleasure in answering briefly by mail, if the writer's address is given.
Hundreds of inquiries analogous to the following are sent: "Who sells bicycle wheels? Who sell elescope eyepieces? Whose is the best student mounted? Who makes the best chronometer.i":" All such personal inquiries are printed, as will be observed, in the column of "Business and Personal," which is specially set apart for that purpose subject to the charge mentioned at the head of that column. Almostany desired information can in this way be expeditiously obtained.
[OFFICIAL]
INDEX OF INVENTIONS
Letters Patent of the United States were In the Week Ending. May 9, 1876,

D EACH BEARING THAT DATE.

hose marked (r) are relssued patents.]

A complete copy of any patent in the annexed hist, furnished from this office for onc dollar. In ordering. please state the number and date of the patent desired,
and remit to Munn \&Co., 37 Park Row, New York city.

Abdominal supporter, M. A. Wilson.
Anchor tripper, R. C. Sturges.
Axle lubricator, A. G. Curtis.
Bag, grain, A. McKenna.........
Bags, clip for traveling, w. Roemer
Bale tie machine, P. K. Dederick
Bale tie warre, P. K. Dederick..
Basin valve trap, wash, W. W. H
Bal
Bath tub, portable, A. Seligsberg.
Battery, galvanic, Brunclle
Bit stock, E. M. Boynton..
Boat, A. Pitman
Bobbin winder, J. Schoffeld.
Boiler, agricultural, J. W. D.
Boiler, agricultural, J. W. Dougal.
Boiler, steam, J. G, and J. H. Tho
Boilers, supplying feed water to, W. E. Russell
Boot edges, polishing, R. F. Burns
Boot tacking machine, ,
Boot, button, C. Stickel.
Bottle, nursing, S. A. Whitney

Bread cutter, J. B. S. W Broller, C. N. Knapp... Buckle, Junkin Gunn Buckle, Junkin \& Gunn Buckle, w. Leser......

Bulletin board, Crandall \& Taylo Bung air vent attachment, J. Talley Burner, gas, A. W. Dinsmore
Burner, gas, S. C. Salisbury. Burner, gas, S.
Batton, J. Kea
Canister, J. J. M. Curran
Car coupling, Brown, Martin, Car coupling, , Halsted.
Car lamp, Hicks \& Smith (r) Cars, propelling. J. W. D. Eckles..
Carlonizing fron or steel, s. W. Y Carbonizing iron or
Carbureter, I. Cook.
Carbureter, W. S. \& G. H. Deeds
Carriage spring, W. H. Richer

Carriage thill, N. Mitchell.

Cartridge shells, punching heads of, A. C. Hobbs, Cartridge shells, drawing, A. C. Hobbs....177,066,

 Cattle from stalls, detaching, H. S. Nefl Chair, J. W. Barnes........................... Churn, W. B. Nunn..
Cigar lighter cumposition, w. J. Littlefield

Clocks, starting pendulum, E. A. Lourdele
Coach, pad tree, L. O. Smith...
Cock, stop, H. Watkeys.
Coffee pot, J. Lundgren
Coffec pot, S Theobald..
Cottln, J. Giilbert.
Cottin, artificial stone, T.............. Collars, pasting the ends of, E. Ca
Cooker, fceil, Rogers \& winters Coop, folding, c. c. Allen. Corn huller, G. w. Richmond................ otton gin fecder, I. F. Brown Crueibles, preparing, J.Irwin
Cultivator, w. Louden...........
cultivator, wheel, H. H. Perkins Cutivator, whieel, H. H. Perki
Cury comb, w. E. La wrence. ental plugeger, Echmond \& Warner. Dish drainer, v. Chandler. Door and window fastener, J. H. Danicls Drafting implement, W. A. Lorenz.....
Drawing, stop motion, etc., E. Boyden Drop lifter, F. Sew
Drop light, H. Iden
Drying apparatus, s. Davis.
Electric apparatus, Electric apparatus,1. L. Pulverinacher............................. Elevator, hay, M. M. Shellaberge
Elevator, hay, II. \& C. Toofs.... Elevators, safety clutch for, w. s. Smith
Engine valve Engine valve gear, stcam. G. H. Corllss Equalizer, draft, J. F. Dongghue
Fan, automatic. J. A. Williams .. an, automatic. J. A. Williams .
Feed box, w. M. \& J. J. Walton File, w. T. Nicholson
File blanks, stripping, w. T. Nicholson... 17T, ori1,
File file blanks, stripping, w. T. Nicholson... 177,083, Files, cutting, W. T. Nicholson........
Filter, reversible faucet, M. S. Clark
Fire bres s. Fire bricks, S. P. Harbison.................
Fireplace arch bar, I. M. Wickersham. Fireplace arch bar, I. M. Wickers
Flat Iron stove lid, G. R. Moore. Frk, horse hay, J. L. Saunders...........
Furnace, housc-hcating, Peterson \& Irwin Furnace, regenerator, F. H. Eichbaum. Gage, water, J. Nicholas
Garbazc box, 13. Burling Gas making, w. H. Tuppe Gate, slidinn, s. E. Damiel.
dearing, frictional, M. Cay Gencrator, sectional stcam, B. De......... Glass melting furnace, E. Jones....
Classware, making, A. A. Adams...
Grinding , Grinding machine, roll, G. (avit (r) Gypsum, treating, c. T. Tomkins.......
Hammer, spring power, R. F. Livermo lammer, spring powe
Iarness, C. H. Corcy
Iarrow, P. J. Jacoly

Harventer, J. H. Elward

Harvester, J. J. Piggott
Hats, blocking, II. V. Snow
Health lifi, H. U. Johnson
Hoc, drying J. Finniga
Hoc, G. Wright.
Holdback, w. P. White
Hoof parer, Burroughs \& Carrothers
Hook, button, S. M. Broughe
Hook, button, S. M. Brougham.............
Horseshoe nails, tinishing, , w. W. Goodrich
Horse pipe adjustable nozzle, T. Haley
Hose Ice pick, H. F. Dernell
Injector, W. B. Mack..
Inkstank, J. Oesterling
nvalids, supporting rest for, P. T. Clement
Ironing board, Catt \& Harrod....
Ironing hoard, folding, J. Ra
Jar lifter, C. E. Glllespic
Journal and coupling, T. Weaver
Kettle und cooking apparatus, B. Temple.
Kiln, brick, F. F. Ingersoll
Knit milttens, making. W.
n's, I. H. Corbin
Lamp, C. E. Ball..............
Lantern, J. M. Barnet, Striedinger
Last block fastening, H. J. Pratt
Last block Pastenng, H. J.
Leather, punching, Rickey et
Lock, hasp, E. s. Young....
Lock, hasp, E. S. Young.....
Looms, protection rod for, G. Hetheringto
Measure, liquidi, J. D. Muller.
Measure, liquid, J. D. Muller................
Middlings, purifying, etc., R. L. Downton
Mill staff, Dale \& Eastell.....
Mine hoist, safety, N. Libotte
Mine hoist, safety, N. Libote
Mosquito net, S. P. Whitcomb
Motor, water, I. F. Good..
Ores, drying and roasting,
Ore-concentrating table, J. U. Tolles.
Organ stop action, E.
Oven, w. H. Teeling
Oyster opener, Lum \& Sanford..........................
Painter's wheel horse, A. D. Osgoo
Pant er 's wheel horse,
Pan, bake, J. Gllbert..

Bduertisements.

 as 8 riday morrung to to appara in n nexit isesule

Lathes, Planers, Shapers, Drills,

June io, i876.|

to order. Samples and pricelist sentfree.

Beautiful Designs.
 GEO. W. READ \& CO.
$\begin{aligned} & 186 \text { to } 200 \text { Lewis St., foot 5th and 6th Sts., E.R., N. } \mathrm{Y}\end{aligned}$
PROPOSALS FOR THE PURCHASE OR CONPROPOSANGOR TEE PURCHAEEDR CO

FFRE TRIP

Practical Hand-Books

 Roper's Hand-Book STEAM FIRE ENGINES,

 LPHIA.
 THE Bigelow Enpine,

 - B. BIGELOW \& CO., (JVEN AWAY for25 cts. -5 Views Centennial. Pocket
Gamekeener. Vanishing Card, Frog Puzle
Whistle. J. AIREY, 306 Ninth St., Jersey Czty, Magic

MACHINERY

IRON \& WOOD WORKING MACHINERY Cold Rolled Shafting. \&c. Send for Illustrated Catalogue and Price List. GEORGE PLACE
 ${ }^{12}$ Chambers\& 103 Reade stce. . . . Y. Ctts. Comprsse Air Morive pow er- For

HOISTIMRG RIBLE BNGINE

 TRMEMiNint -

 Herrmann \& Herchel-
rode M'fog. Co RODE M'F'G. Co.,
Dayton, Ohio. CELEBRATED FOOT LATHES V1 PATENT SCROLL SA.WS. Our specialty is Scroll and Band Saws. Over $300 \mathrm{Ma}-$
clines in use.

ROSES

 Mry nosmio Machinery. Planing and Matching

 Sole manufacturer,
Engines and bollers, ulleys, Shafting, and Hangers

Pond's Tools.

ENGINE LATHES, PLANERS, DRILLS, © C .

 Send for Catalogue. DAVID w. POND,LUCUS W. POND, Worcester, Mass. DO YOU Male or Female. Send your adMONET $\begin{aligned} & \text { Wress and get something that will bring } \\ & \text { Iou in in honorauly over sition a month sure. } \\ & \text { New-York. Union, } 173 \text { Greenwich St., }\end{aligned}$

Water Elevators.

 PATENT DOUBLE ECCENTRIC CORNICE BRAXE.
nati, 0 . Send for Cor Crulars.

A	

STEEL CASTINGS.

 To हiLectro

gatuertisements.

${ }_{8}^{81000 \text { hine }}$
ver ine, oy measururement, as the teteter preses. Ad. Ad

 FOR LEASE

Portland and Keene's Cement.

MIREROPE

REYNOLDS \& CO.,

 L EHGGH UNIVERSITTV. -TUTHION FREE:-

TMPATENTS

[ESTABLISHED 1846.]
Munl \& Co.'s Patent Offices.

The;Oldest Agency for Solicitingl Patents in the

THIRTY YEARS' EXPERIENCE.

MORE PATENTS have been secured through thi agency, at h
the world.
They employ as their assistants a corps of the most ex perienced men as examiners, specification writers, an draftsmen that can be found, many of who
selected from the ranks of the Patent Office.
SIXTY THOUSAND inventors have. availed themselves of Munn \& Co.'s services in examining their in
ventions and procuring their patents. MUNN \& CO., in connection with the publication o
the SCIENTIFIC AMERICAN, continue to examine inventions, confer with inventors, prepare drawings, spe-
cifications, and assignments, attend to filing applications cifications, and assignments, attend to flling applications
in the Patent Office, paying the government fees, and watch each case step py step while pending before the ex-
aminer. This is done through their branch office, corne F and 7 th streets, Washington. They also prepare and file caveats, procure design patents, trademarks, and reissues, attend to rejected cases (prepared by the invento
or other attorneys), procure copyrights, attend to inter or other attorneys), procure copyrights, attend to inter
ferences, give written opinions on matters of infringe
ment, furnish coples of patents, and, in fact, attend to every branch of patent business both in this and in for elgn countries.
A special notice is made in the SCIENTIFIC AMERI-
CAN of all inventions the name and residence of the patentee. Patents are often sold, in part or who
vention by such notice
Patents obtained in Canada, England, France, Belgium,
Germany, Russia, Prussia, Spain, Portugal, the Britis Colonies, and all other countries where patents ar granted, at prices greatly reduced from former rates,
Send for pamphlet pertaining specially to forelge patents Send for pamphlet pertaining specially to foreign patents,
which states the cost, time granted, and the requirements for each country.

Persons desiring Copies of Patents.
ber 26, 1867, can be supplied with oft R36 to Novemsonable cost, the price depending
drawings and length of specifications.
Any patent issued since November 27, 1867, at which time the Patent onse commenced printing the drawings and specifications, may be had by remitting to this of
fice $\$ 1$. A copy of the clail
be furnished for $\$ 1$.
When ordering copies, please to remit for the same as and date of patent. a pamphlet contain
obtaining United States patents sent free. A hand-
somely bound Reference Book somely bound Reference Book, gilt edges, contains 140
pages and many engravings and tables important to every pages and many engravings and tables important to every
patentee and mechanic, and is a useful handbook of reference for everybody. Price 25 cents, mailed free

Publishers SCIENTIFIC.,

HAND BLOWER.
FOR ALL KINDS OF BLACKSMITHING.

DOES MORE AND BETTERWORK, SAVES BOOM, LABOR, AND COAL, AND LASTS TEN TIMES LONGER THAN BELLOWS.
P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.
S. S. TOWNSEND, Gen'I Ag't, 31 Liberty St., NEW YORK.
 Steel Trube Cleaner.
 Adopted by U. S, Navy. For sale by dealers. Send for
Circular.
NON-COMBUSTIBLE STEAM BOILER \& PIPE

WYTH "AIR SPACE, IMPROVEMENT

To Roofers, Bailders, \& Property Owners

WHIPPLE'S
Patent Door Knob.

Mr MATERTALS. MS

Mill Furnishing Worlss

Todd \& Rafferty Machine $\mathbf{C o}$. manufacturers of

Niagara SteamPumpWorks harles b. hardick,

B Thardus patern UNiversal eccen

THE UNIIN IRON MILLS, Pittsburgh, Pa.

 NEWSPEARECR FILE.

$\left\lvert\, \begin{aligned} & \text { ROR } \\ & \text { ROE } \\ & \text { LIATEST } \\ & \text { IMPR0VED }\end{aligned}\right.$ MACHINERY

Brayton Ready Motor.
 Penna. Ready Motor Co.,

Machinists’ Tools.
 NEW HAVEN MANUFAGTHiNG Co
 Do Your Own Printing!

 One copy Scientific American, one year.... $\$ 3.20$
One copy Scientific American, six month. Onecopy Scientific American, six monthree months
1.00 One copy Scientific American and one copy
Scientific American Supplement, both

Scientific American Supplement, both
for one year, post-paid............... 7.00
The Scientific American Supplement A weekly paper, uniform in size with the SCIENTIFIC AMERICAN, but a distinct publication. It
contains working drawings of engineering works, and elaborate treatises on every branch of Science and Mechanics, by eminent writers, at home and abroad. An illustrated cover protects the hand-
somely printed sheets. Price, $\$ 5.00$ per annum. somely printed sheets. Price, $\$ 5.00$ per an
Single copies 10 cents. Single copies 10 cents.
Remit by postal order, draft, or express.
Address all letters and make all Post Offi Address anl letters and make all Post Office or

