a WeEkly Journal 0f Practical information, art, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES. Pennsylvania Railroad, 140 feet; total 1,295 feet. The upper floor of the bridge is 32 feet above the lower roadway, and is 48 feet wide; the roadway is 52 feet wide, and the sidewalks 8 feet each. The lower floor is 50 feet wide, acfeet wide, ac-
commodating a roadway and roadway and
two sidewalks. ono sidewalks.
On the emi. nence on th right of the picture is situated the main reser voir of the Fair mount water works; and de scending this hill to the rive side, the tour ist will pass the structures con structures conwheels and the pumps which pumps which from the river from the river and force it up
into the reserinto the reser
voir. The voir. The
wheels are wheels are
worked by water

A NEW BRIDGE IN PHILADELPHIA

The river Schuylkill, at Philadelphia, is becoming re nowned for the many handsome structures which cross it. Whatever other attractions the good city of brotherly love may boast, it certainly possesses more beautiful bridges than any other city on this continent. The Market street bridge, recently destroyed by fire, is to be replaced by one of the most solid and ornamental structures in the country. The Girard Avenue bridge, an engraving of which appeared in these Avenue bridge, an engraving of which appeared in these
columns some time ago, has attained wide celebrity; and a columns some time ago, has attained wide celebrity; and a
very excellent specimen of modern bridge architecture has very excellent specimen of modern bridge architecture has
recently been completed at Callowhill street, replacing the historic wire bridge, which was one of the earliest suspen sion bridges in this country. It is from the design of J. H Linville, Esq., C. E., President of the Keystone Bridge Company, by which corporation the bridge was erected. It con sists, as will be seen in our engraving, for which we are in debted to the Polytechnic Review, of one span only, 350 feet in length; there is a span of 80 feet over Callowhill street, five arched colonnades on the east side of 105 feet, ten on the west side of 230 feet; a bridge over 30th street of 90 feet; seven spans of plate girders, 300 feet; span over the

small birds and even chickens. It involves an artificial hawk made from a big potato and long goose and turkey feathers. The maker can exercise his imitative skill in sticking the feathers into the potato so that they resemble the spread wings and tail of the hawk. It is astonishing what a ferocious-looking bird of prey can be constructed from the above simple materials. It only remains to hang the object from a tall bent pole, and the wind will do the rest. The bird makes swoops and dashes in the most headlong and threatening manner. Even the most inquisitive of venerable hens has been known to hurry rapidly from its dangerous vicinity, while to small birds it carries unmixed dismay.

Singular Explosion

Mr. J. M. Krapp, foreman at Pioneer Tunnel, St. Louis, Cal., in commenting on our account of the explosion of a bucket of water, published on page 81 of our current volume, states that a similar accident happened in the works under his charge. Cartridges of Hercules powder are there usually stood round a bucket of hot water to thaw them out, as they cannot be exploded when frozen; and a helper put a bucket

CALLOWHILL STREET BRIDGE, PHILADELPHIA, PA
A New Mode of Hospital Disinfection
Dr. John Dougall, of Glasgow, Scotland, has recently made the important discovery that, when organic matter undergoes decomposifion in the presence of an alkali, the putrefactive process is induced, and that this takes place much more readily than when organic matter undergoes decomposition in the presence of a neutral substance; but when organic matter undergoes decomposition in the presence of an acid, the fermentative process is induced, accompanied by a not unpleasant moldy aroma and innocuous products. These conclusions Dr. John Day, of Geelong, Victoria, has been led to consider with relation to their bearing upon the outbreaks of pyœmia, erysipelas, and puerperal fever in hospitals, and he reaches the opinion that such diseases may directly be traced to the alkaline walls, alkaline ceilings and alkaline floors (the latter rendered alkaline by soap) with which the patients are environed. Such diseases hitherto, we may remark, have been considered due to ferments in the air, to bad ventilation, to uncleanliness, and even to the poisoning of walls by organic effusions; and various plans have been suggested for their prevention, silicate of soda
and aven with solid sheets of glass.
Dr.Day's plan, however; differs from any yet broached,and we take a descrip tion of it from a pamphlet for which we are in debted to him. The philosophy of the method is the generation of peroxide of hy. drogen. All sub stances which spontaneously generate this a the same time require an time require an acid reaction. On the other hand al alkalies destroy peroxide of hy
drogen, and, when added to those substances which spontane ously generate it, prevent it formation. Thus it would seem that acids are the natural al lies of peroxide of hydrogen, for they are not only simultaneous s
river just below the hill shown in the center of the illustration) by a canal.

About Scarecrows.
Now that the planting season is at hand, we have no doubt but that many a farmer will rummage through his garret to find the cast-off garments, which, stuffed with straw, are to be set up in the cornfield to warn off the marauding crow. We have never had much faith in this artifice. Crows are possessed of much more wisdom than is generally credited to them; and while an immovable bundle of rags may drive them away for a short time, we believe that eventually they discover the humbug, as we have seen the birds complacently picking up young corn almost within the shadow of as an elaborate a stuffed scarecrow as ever was erected. We, however, have heard suggested a couple of plans which are calculated to intimidate even the boldest of these birds; and as they are easily carried out, perhaps our farmer readers may make use of them. The first and best is a suspended looking glass. Take two small cheap mirrors, fasten them back to back, attach a cord to one angle, and hang them from an elastic pole. When the glass swings in the wind the sun's rays are reflected all over the field, even if it be a large one; and even the oldest and bravest of crows will depart precipitately should one of its lightning flashes fall on him. The second plan, although a terror to crows, is especially well suited to fields subjected to the inroads of

of cold water (an iron bucket, we presume) on the fire, when a violent explosion took place. It is surmised that a portion

 of the powder may have adhered to the bottom of the bucket. The former accident may have arisen from a similar cause.
Electricity as an Aid to Egg Hatching.

The Olstereinische. Landwithsehafthiche Wochenblätter states that Dr. Virson, Superintendent of the Italian experi mental silk farm at Padua, has discovered that the hatching of silkworm eggs, of suitable age, may be accelerated by a period of 10 or 12 days, and a yield of at least 40 per cent of silkworm caterpillars secured, by exposing the eggs to a current of negative electricity from a Holtz machine for a space of 8 or 10 minutes. It is suggested that the same method might perhaps prove useful in promoting the hatching of hens' eggs and in hastening the germination of various seeds.-Quarterly Journal of Science.

A Solar Phenomenon.

Mr. James Cassidy, of the United States Signal Office Milwaukee, Wis., reports the occurrence, on March 13, of a remarkable exhibition of parhelia or mock suns, lasting from $2: 30 \mathrm{P}$. м. to $3: 10 \mathrm{P}$. м. The sky was covered with a whitish haze, and the prismatic colors on one of the parhelia were well developed. The other parhelion moved away from the sun in a circular direction towards the west and continued to do so till it faded away
simultaneous sly they give it stability and act in concert with itated, bu ers and disinfectants.
In order to generate the peroxide, and at the same time to abolish the alkaline surroundings, Dr. Day proposes to rub hospital walls smooth and coat them with a varnish com posed of parafin and oil of turpentine; or they may be covered with silicate paint and then rubbed down and var nished. The floors he brushes over with equal parts of gas oline and boiled linseed oil, to which a little benzoic acid has been added, and, when dry, polishes them with a thick paste composed of beeswax and turpentine, with benzoic acid added in the proportion of 2 drachms to the pound. Boards prepared in this way, he considers permanently disinfected The gasoline, linseed oil and oil of turpentine all get im bedded in the wood and generate peroxide of hydrogen; the benzoic acid is added on account of its great power of de stroying all the forms of lower organic life, and the wax is of course used for the purpose of combining these substances and affording a polish.

An excellent sedative water for external application, for bruises or aches of any kind, is composed of ammonia 2 ozs., tincture of camphor $2 \frac{1}{2}$ drachms, common salt 2 ozs ., and water 2 pints. Mix and dissolve without heat. This is largely used in France, and is sold this country under a patent medicine name. It is an excellent liniment for cattle when strengthened by the addition of 10 drachms more
ammonia

Yrientific gmmxican.

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT
NO. BY PARK ROW, NEW YORK.
O. D. MUNN. A. \quad BEACH.

TERME
One copy, one year, postage included..
ClubRates.
Ten coples, one year, each $\$ 270$, postage included. $\begin{array}{r}\mathbf{8 3} \\ \mathbf{1 8 0} \\ 180 \\ \hline\end{array}$
r ten coples, same rate each, postage included. 32900 e subscriber then recelves the paper free of charge.
Notr.-Persons subscribing will please to give their full names, and Post Nork.- Persons subscribing wil please to give their full names, and Post
Offlee and State address, platnly written. and also state at whtch time they wish their subscriptions to commence.otherwise the paper will be sent from the recelpt of the order. In case of changing rest lence, state former ad-
dress, as well as give the new one. No changes can be msde uniess the formeraddress is given.
If any of our readers fall to receive their numbers regularly; if the direction is not platnly written; if premtums are not recelved; or if there is cault of any sort at this ofllce, we will thank our friends to send us postal ard complaints, and repeat the same, if need be, until the remedy is effect-
ed. Do not hesitate to complain. We desire to keep all matters between ourselves and patrons right and satisfactory.

VOLUME XXXIV., No. 18.[New Series.] Thirty-first Year.

NEW YORK, SATURDAY, APRIL 29, 1876.

the scientific american supplement.
No. 18.
pril 29, 1876. TABLE OF CONTENTS.

 II, LESSSNS IN MECHANICAL DRAWING. By Professor MacCord.
9 ingures.
v. TECHNOLOGY. With 7 figures.-Treatment of Anthracene Oil- - Coa
Oil vs. Gas.- Photographic Anplication of the Radiometer - Black Blae.

 VII. MEDICAL.-Singular Case in Dental Surgery.-Gelseminum in NeuVIII. PROCEEDINGS OF SOCIET
-Musical Association, London.

COMBINED RATEBS.

MUNN \& CO., PUBLISHERs,
A) ME:

Laundry Blue.

A good washing blue is made as follows: Make a solution of prussiate of potash, 2 ozs . , and another of protosulphate of iron, 1 oz ; add the second gradually to the first, until the precipitate almost ceases to fall,then strain through linen, add water, add continue the washing until the blue color begins to dissolve in it, when it may be at once dissolved in distilled
water and dried.

THE PRACTICAL EFFECTS OF PHYSICAL STRAIN Dr. B. W. Richardson, in his recent admirable work on the Diseases of Modern Life," devotes a chapter to a subject which we have repeatedly alluded, and to which, in view of the athletic competitions to occur during the Centennial, the attention, not only of those in training for such con tests, but of those who favor athletic sports in all forms may well be directed. We mean disease induced from physical strain, physical overwork in short, which too often re duces the fairest specimens of muscular humanity to abjec wrecks. Dr. Richardson brings to the consideration of this important topic a variety of new thoughts and suggestions, and these all tend to show, first that excessive physical cul ture is useless, and second, that it is hurtful. The first question which he places before us is: "Do these arts contribute to the health and vitality of a race, either collectively or in dividually: that is to say, are they necessary in order that a race may obtain the means of subsistence, and (whether necessary or unnecessary) do they contribute to the longevity and tenacity of the life of the men or race through whom or through which they are represented? He first points out that,in a nation so uncivilized as to be obliged to trust to individual force alone for its means of life, no physical culture cun be too high or too highly prized; then he shows that in a later age, when none but brute power is at man's service, the predominace of the physical over the mental faculties is still natural. But finally, removing the doctrine of necessity and separating the individual from the community, the picture is reversed. There is no evidence anywhere, he asserts, that the greater culture of the physical strength has favored the longevity of the individual or the vital tenacity of a race all the observations handed down to us by the physicians of the Greek, Roman, Arabian, and Italian schools, reinforced by the vital statistics of modern France and Prussia, point unmistakably to the fact that in each country, within its own population, the value of life is influenced to the favorable side by the reduction of physical expenditure. A most curious instance is afforded in the history of the Jewish race, in
which as a people there has never been a vestige of studied which as a people there has never been a yestige of studied turies of oppression and suffer ing, the Jewish is the first in vitality of all civilized races. Dr. Richardson gives a quantity of statistical information supporting this assertion, showing that the period of life among Jews is considerably longer than among a like num up in the term "soberness of life."
It is not difficult to find of life.
It is not dificult to ind answers to the question: "In what manner does overwork of a physical kind injure or kill?" During life the forces by which the life is manifested are balanced against time. The active animal machine must rest and recruit; time, an absolute immateriality, flows on
unceasingly, destroying as it flows silently and surely. Again, the powers or forces of the body are limited by the size and capacity of the organism. If the force put forth in a certain period be greater than that which ought to be put forth in that period, the extra force is expended at the expense of the organism itself, and, by so much as is lost in any present effort, will be so much sliortened in the future. For the body is not constituted to make up time against the slightest breath of force it has once lost.
it so, the problem of renewal of life would be solved.
Generally speaking, physical overwork injures by the destruction of those parts of the body on which the involuntary acts of life depend, namely, the muscles and nervous structures engaged in the digestion of food, the circulation of blood, and the respiration. When these organs fail, every other portion of the system dependent on these likewise suc-
cumbs. The particular characteristics of the changes in cumbs. The particular characteristics of the changes in
duced,and of the work itself which induces such changes, are by no means complicated; and such as are noted by Dr Richardson are well worth examination, since they are the results of his own matter of-fact observation.
The first disease mentioned is aneurism of the aorta, the arge blood vessel which rises from the left side of the heart to convey arterial blood to the body. Its cause is a simple mechanical result. The heart during violent exertion (as in rowing spurts), working at high pressure drives ahead a current of blood which,instead of making its course in steady circuit through the aorta, is brought back by concussion, and falls like a water hammer at the place where the semi-lunar valves prevent its return to the heart. This mechanically njures the wall of the artery, which loses its elasticity; and eventually the resilient tube becomes a passive pouch,ready to give way upon some extra exertion, to let out the conained blood and so cause instent death. In four cases, the author has found life terminated in this way.
The second injury is wearing out of the heart. This is ommon to persons who practice physical exertions, not vio ently but persistently. The right ventricle of the heart which maintains the circuit of blood through the lungs, is much thinner than the ventricle on the left side, which carries the blood over the body. If this ventricle, which drives some 18,750 lbs. of blood in twenty-four hours, be over taxed, it must necessarily weary; and as the heart not onl supplies the rest of the body but alsoitself with food, it fol lows that, if it fails to supply the body, it fails to supply itself This enfeeblement is very gradual. It begins to show itself by slight difficulties in breathing, susceptibility to fatigue, to cold and heat, to congestion of the lungs, and finally to actual rganic changes of the lungs, kidneys, or nervous centers or congestion of the venous side of the body, leading to drop ical effusion and resulting in death.
A third disease is just the reverse of the preceding, and is解 the heart becoming too powerful. Its museular
severe, an l, if the nervous power by which it is governed be ot proportionately balanced, it becomes intermittent in it work. These conditions follow closely upon boat and foo races and all fierce competitive exercises. Of the undue action of the organ, the affected person is painfully conscious the breathing is oppressed, the muscular tone decreased and end of all is premature disorganization of remoteorgans and comparatively early death.
"By skillful training," says our author in conciusion,'"it is quite true that men may be and are brought to a fine external standard; but the external development is so commonly the covering of an internal and fatal evil that I venture to affirm that there is not in England a trained professiona athlete of the age of thirty-five who has been ten years a his calling who is not disabled. He may hold on sustained by a will which cannot bend to defeat; he may win bravely then win, and only just win; then tie some new antagonist then lose and, urged by friends whose ardor is damped, retire but he will soon die. The falling off which has been ob served by patrons or admirers before actual failure means not want of skill nor stiffness of joint, but actual overworked worn-out heart and blood vessels; it means, in fact, now a race for life rather than for fame.

THE VALIDITY OF PATENTS

The inexperienced purchaser of a patent does not gener ally appreciate the importance of having its clains examined, and their validity and scope defined by some person experienced in such matters, before parting with his money. It is not unusual for the assignee, just as he is commencing the manu facture of articles under his recently purchased patent,to find that it is an infringement upon some previously issued pat ent, and that he has not only made but that he is likely to get mulcted in damages if he proceeds with his manufacture. Cases are continually coming to our knowledge wherein parties have made purchases in good faith, and paid considerable sums of money on the as surances of the patentee and a mere glance at the patent, pre suming that all that the drawing of the invention showed was protected by the claims, when, in fact, the point covered was almost infinitesimal. Another manner in which purchasers are sometimes deceived is that the claims, although broad enough and worded properly to cover the invention, contain a single element protected by some prior patent which covers the very part in the new machine which is necessary to insure its efficiency. The Howe sewing machine patent illustrates this. It protected but little that any of the manufacturers cared to use, except the one small part essential to all sewing machines; and all manufacturers had to pay Howe a royalty, and hederived from that apparently trivial item an immense income.
We therefore recommend any person who is about to pur chase a patent, or about to commence the manufacture of any article under a license, to have the patent carefully examined by a competent party, and to have a research made in the Patent Office to see what the condition of the art was when the patent was issued. He should also see that the claims are so worded as to cover all the inventor was entitled to when his patent was issued ; and it is still more es sential that he be informed whether it is an infringement, as above suggested, or not. Parties desiring to have such searches made can have them done through the Scientific American Patent Agency, by giving the date of the patent and stating the nature of the information desired.

WHAT THEY SAY ABOUT US.

We should be lacking in appreciation of a great deal of kindness did we not occasionally acknowledge a few at leas of the good wishes and compliments which our labors call forth. It would be impossible to publish all or even a tithe of our correspondents' good opinions; but the limited number which we make room for may be taken as samples indicating the drift of all. A writer, to whom Wrinkles and Recipes has been sent as a premium,says:' I do not send you clubs to be rewarded for it, but I feel it a duty to distribute the Scientific American among my fellow men, because they canno benefit themselves any better for the money, and nobody ought to be without the paper." And we, let us add, also feel it a duty, when any one kindly promotes our interests likewise, to serve his, and certainly we can do so in no better way than by presenting him with such valuable works of practical and useful information as the Science Record and he volume above named, or with so fine a work of art as " Men of Progress." Apropos of this engraving, another writer, who has received it as his premium,says: "Your beautiful engraving ' Men of Progress' came to hand: I am very grateful to you for your kindness, and I will do all in my can."
The Scientific American Supplement is likewise meetng a wonderful share of public approbation. Speaking of he excellent series of illustrated articles on mechanical drawing, now in progress of publication, one writer considers them "worth much more than the subscription price of the paper;" and he adds: " While the SUPPLEMENT is so fine, it in no way lessens the value of the Scientific American." It enhances the worth of the older journal, we might continue, because, through the large accession of space gained by its pages, we are enabled in both journals to present not only a wider range of valuable information, but to treat the same more elaborately and completely than otherwise would be practicable. One more notice, this time from our excellent ilustrated contemporary In Door and Out, and we terminate his tax on our modesty. "The Scientific American," ays the editor, "like wine, has gradually grown better and
probably exceeding the combined subscription lists of all mechanical journals in the country." (Let us interrupt to say that it is a fact that the circulation of the Scientific american and Supplement combined is unquestionably larger than that of all other mechanical journals in the world.) "We have read its pages for years, but never with greater satisfaction than the present volume No. XXXIV. To the mechanic it is really indispensable, while it is valuable to everybody.'

DEATH OF THE MILLIONAIRE MERCHANT.

The recent death of Mr. A. T. Stewart, the great dry goods merchant of New York city, on April 10, has called forth from a large number of people a variety of curious and often striking anecdotes relating to his early life and struggles, as well as to his habits after he had attained his enormous wealth. Perhaps not again in this generation will any one man accumulate by legitimate trade so immense a sum as he acquired; and it is a natural curiosity which prompts all to examine closely those traits, customs, and habits through which the great fortune was amassed. Mr. Ste wart was born in Belfast, Ireland, in 1803. His parents were well-to-do people, but died while he was quite young, leaving him under the care of his grandfather. He was well educated, and had begun to prepare for the ministry, when his grandfather's death caused him to change his plans, and at the age of 20 to embark for America. Here he started as a school teacher, and was pursuing that calling when he lent a small sum to a friend who desired to open a dry goods store. The friend failed, and Mr. Stewart, partly from a desire to enter trade, and partly in order to protect his investment, took charge of the store. Soon after, he returned to Ireland to obtain his patrimony, some $\$ 3,000$, and this he laid out in cotton trimmings for dresses, which were then very fashionable in New York In Bolfast he purchased the goods at some two pence sterling a pound, and afterwards sold them in this city at two shillings a pound, and this stroke of success, he always stated, convinced him "that money could be made in the dry goods business." Of Mr. Stewart's honest and rigidly fair dealing in the little store in which he began, there are abundant stories. "What do you mean by saying what you know to be untrue?" he once angrily demanded of a
clerk who was exercising all possible powers of persuasion clerk who was exercising all possible powers of persuasion
to convince a woman that the colors in a piece of calico to convince a woman that the colors in a piece of calico
would not fade. "The calico won't wash; she'll demand would not fade. "The calico won't wash; she'll demand
her money back, and she'llybe right. I don't want the goods represented for what they are not." It was this perfect honesty toward all his customers that was Mr. Stewart's most prominent characteristic, and it was his invariable custom, when questioned as to his explanation for his great success, to reply with great emphasis: "Truth, truth is the talismanic word; and if I have one earthly wish or de sire greater than another, it is that in this respect my ex . ample may be commended and followed by young men entering into business, and especially by young merchants." On this firm basis of truth and honesty he rearedhisgigan tic transactions: not by bold ventures or colossal specula tions, but through steady application, perfect organization, and minute attention to every detail. The discipline in his establishment was rigid. "Do you see all these people about here ?' he once asked of Mr. Peter Cooper, pointing to the scores of busy salesmen and ushers in his great retail store. " Well, there is'nt a man of them who is allowed theslightest discretion. Every one is taught to do precisely and simply what he has been told. He is a machine working by rote and according to rule." Haggling over prices was to him an especial abhorrence. There was but one price for everything and everybody; but on the other hand he was no believer in holding for high prices, when by lower ones he could realize promptly. An old employee of his recently could realize promptily. An old employee of his recently
told us that Mr. Stewart seemed to watch each individual told us that Mr. Stewart seemed to watch each individual
class of goods "as if his fortune depended on them only." class of goods "as if his fortune depended on them only."
If in making his rounds through either store, he noticed an If in making his rounds through either store, he noticed an
unusual quantity of any material on hand, he would quesunusual quantity of any material on hand, he would ques-
tion the salesmen closely about it ; and if he found its sales tion the salesmen closely about it; and if he found its sales
slow, he would mark down the price to such figures that its very cheapness would attract customers. It is said, moreover, that he knew the contents of his warehouses better than those in his employ; while he watched the latter much more closely than they ever imagined. If he saw too much jewelry worn, he deemed it a snspicious sign, and placed the wearer under special surveillance. "He never spoke to me but once," says an old clerk, " and then it was when I tore a piece of wrapping paper roughly across. He came and told me that I should have folded it and made even edges. People," he said, "did'nt like to get shiftless bundles." At another time, a clerk wound a package with an extra turn, of cord. Before he could cut the string, Mr. Stewart quietly took the bundle from him and unwound the extra turn, say ing: " Never waste even a piece of string; waste is always wrong."
The principles illustrated by these brief anecdotes carried him from the possession of the humble little store to that of his magnificent buildings on Broadway in New York, to
emporiums in Boston, Philadelphia, Paris, Lyons, Manches emporiums in Boston, Philadelphia, Paris, Lyons, Manchester, Berlin, Glasgow, Chemnitz, Belfast, and Nottingham, and to mills in various parts of the United States.
Gigantic as was the business he controlled, Mr. Stewart likewise managed real estate operations of sufficient magni. tude to be a life's work for an ordinary man. In New York city alone, he was the absolute owner of over one hundred pieces of improved property, free from encumbrances and valued at about ten millions of dollars. This magnificent estate included, besides his two stores, two theaters, the
Metropolitan Hotel, the Working Women's Home (an im.
mense iron building on Fourth avenue), his superb marble residence on Fifth avenue, the finest private dwelling in the country, besides dwellings and stores scattered in the most desirable quarters of the city. In Saratoga, he owned the onormous Grand Union Hotel. Probably his greatest real Island acheme was the founding of Garden City on Long to supply cheap and good homes for those unable to pay to supply cheap and good homes for those unable to pay
high New York rents. He bought a tract of land on Hemphigh New York rents. He bought a tract of land on Hemp-
stead Plains, ten miles long and one mile wide, and built a city as he would a single house. Gas and water works and city as he would a single house. Gas and water works and
a railroad to New York were begun with the foundations of the houses; and when some forty fine dwellings were complete, he offered to rent, not to sell, them at prices ranging from $\$ 1,200$ to $\$ 250$ per year, and only a few weeks before his death he contracted at one time for thirty new houses. Personally Mr. Stewart was of a retiring disposition, free rom the ostentation which might legitimately follow the possession of such vast wealth; and while philanthropic and charitable, he was inclined to temper his benevolence with prudence. Miscellaneous appeals for charity he heeded little; but on the other hand, cases recommended to him by those in whom he had confidence met bountiful attention. With seven thousand employees to control, rigid impartiality and discipline was a necessity; but outside the business connection, there were many who felt his aid in time of need and suffering. The world knows nothing of such good works, for he was the last to publish them. It is reported hat he was inclined to superstition, and was a firm believer in Baron Rothychild's maxim: " Never have anything to do with an unlucky man;" but the many anecdotes based on this are hardly reconcilable with his character. An educated man himself, he possessed an educated man's taste. He used to say that, if ever he retired from business, he would "go to school," for he loved study for its own sake, and in the midst of all his concerns he found time to keep up his knowledge of classics and the languages, and to read his fifty lines of Homer or Virgil in the morning before going to his office. He was a liberal patron of the arts, and some of the most celebrated of modern paintings are in his private galery. It was he who recently paid $\$ 60,000$ for a single picture by Meissonier, and in the same apartment are works by Rosa Bonheur, Zamacois, Gérome, and other great artists, besides statuary, the whole valued at half a million dollars. Mr. Stewart has, by his will, bequeathed the whole of his mmense property to his wife, with the exception of a number of small bequests to relatives, old employees, and servants, and the magnificent legacy of $\$ 1,000,000$ to Judge Hilton, his counsel, business manager, and adviser. No reference is made in the instrument to any appropriation of money to public purposes, save a recommendation to Mrs. Stewart to carry out such charitable undertakings as the tes tator had begun
Mr. Stewart's death is a public loss. Few men could have controlled his vast wealth so as to benefit the public as he did; for apart from the direct advantage occurring to all from his colossal business, there stands the grand example of honesty, industry, and perseverance, crowned with a re ward gigantic beyond all precedent.

animal parasites.

Professor Van Beneden, of the University of Louvain, France, has recently written an interesting little work entitled "Ani mal Parasites and Messmates,' in which he has contrived to compress a great dealof curious information regarding a subject much more extended than the reader not versed in modern pro gress of natural history would suppose. He divides the strange reatures of which he treats into three classes : first,messmates or those who join others to obtain a living or a home or pro tection; second, mutualists, or animals which live on each other without being either parasites or messmates; and third, the parasites, whose profession it is to live at the expense of their neighbors, and whose only employment consists in taking advantage of them, but prudently, so as not to en Whinger lives.
While it would be impossible here to follow the writer in he numerous distinctions which he draws among the memting these different classes, it will perhaps prove of the creatures belonging to each. There is a fish, he tells us, called the holothuria, which is a living boardinghouse for the fierasfer, an eel-like animal. The latter is lodged in the digestive tube of his companion, and, without any regard for the hospitality which he receives, seizes on his portion of all that enters. The angler or beaudroie of the Mediter ranean often harbors, in the bronchial sac, a kind of eel which is abundantly able to take care of itself, but prefers to live a life of idleness and share its host's spoils. The shark is accompanied by the pilot fish, which does not, as is often reported, exist on the leavings of his larger companion, but
on his own industry, and doubtless finds some advantage in on his own industry,
piloting his neighbor.
Another remarkable fish, the remora, literally moors it self to the body of the shark, thus converting the latter into a vehicle which carries him about without exertion on his prey wherever he may happen to be. This tenacity of the remora in attaching itself is taken advantage of by the fishermen of Mozambique Channel, in order to capture turtles and large fish. They pass through the tail of the remora a ring to which a cord is attached, and then send it in pursuit of the first passer-by which they consider worthy to be caught. The fish holds on to its prey so firmly that it only remains to haul victim and captor in by the line
There is a crab, of the family of the maide, which con eals itself in the substance of a polypidom; it is common in
the Viti Islands, in company with a gasteropod mollusc, and both of them assume the exact color of the polypidom. This is a new kind of mimicry. Another crab appropriates a sea der that it may a linging cloak to hide Remarkable marine creatures are the birgi, a kind of crustaceans which grow very large,and conceal their abdomens no longer in a shell, but in the crevices of rock. In the East Indies they remain on land, and even climb trees. They have so much strength in their pincers that it is related that one, while stretched on the branch of a tree, "raised a goat by the ears." a family of isopods are rather dan. gerous messmates, it would seem, for they cut into the walls of their host's stomach and live like Sybarites on its ontents.
The most interesting fixed messmates are the cirrhipedes, which cover the skins of whales, which they never quit after once choosing their abode. Each whale lodges a peculiar species; so that the crustacean messmate is a true flag, which indicates, in some respect, the nationality. It would not be
without interest for voyagers who are naturalists to study these living flags.
Among the mutualists may be mentioned the ticks, one generic division of which has twenty species, one of which lives on the dog, another on the cat, and another on the ox. Fishes harbor crustaceans instead of ticks, and these sometimes multiply so rapidly that they cover their post as though they took theplace of scales. The cod gives lodging to a species of very beautiful shape,which in its turn affords a resting place for a still smaller organism. In the midst of the eggs of the lobster, there lives an animal of extreme agility, which our author considers the most extraordinary, being ever subjected to the eyes of a zoölogist. "Let us," he says, "imagine a clown in a circus, with his limbs as far dislocated as possible, displaying tricks of strength and agility on a heap of monster cannon balls which he struggles to surmount: placing one foot formed like an air bubble on one ball, the other foot on another, alternately balancing and extending his body, folding his limbs on each other, or bending his body upwards like a caterpillar: and then we shall have but an imperfect idea of the attitudes which it ssumes, and which it varies incessantly."
There is no organ which is sheltered from the invasion of parasites; even in man, cysticerci have been found in the interior of the lobes of the brain, in the eyeball, in the heart, and in the substance of the bones, as well as in the spinal marrow. Each kind of worm has also its favorite place and if it has not the chance of getting there, in order to undergo its changes, it will perish rather than emigrate to a situation which is not suitable to it. One kind of worm inhabits the digestive passages; another occupies the forsa of the nose; a third, the liver or the kidneys. Each animal has its proper parasites, which can only live in animals having affinity to their peculiar host. Thus the ascaris mystax, the guest of the domestic cat, lives in different species of felis, while the fox, so nearly resembling in appearance the wolf and the dog, never entertains the tania serrata, so common to the latter animal. The same host does not always harbor the same worms in different regions of the globe. Thus the large tapeworm of man, called bothriocephalus, is found only in Russia, Poland, and Switz erland; a small tapeworm, the tania nana, is observed nowhere except in Abyssinia, and, strange to say, the natives consider their absence from the body a sign of il health; the anchylostoma is known only in the south of Europe and the north of Africa, the flaria of Medina in the east and west of Africa; and the Bilharzia, a terrible worm, has been found only in Egypt.

scientific and practical information.

he starting of the great engine at the centennial Pursuant to the terms of the contract between the Centen nial commission and the builder of the Corliss engine which is the principal motor at the Exposition, the great machine was started running on April 10. Steam was generated in four of its twenty boilers; and when a pressure of fourteen pounds was reached, everything was in readiness to open ethrottle. Director General Goshoxn stationed himsel btween the two cylinders, gave the signal, and the immense walking beams slowly began to move. The operation is uite noiseless and easy, despite the huge dimensions of the ful completion of a work creditable alike to himself and to the Exposition.

EFFECT OF THE SEASONS ON THE BODY
The curious fact has recently been pointed out by Dr. B. W. Richardson that the changes of the seasons have a potent physical influence upon the body. Some years ago, in a con vict establishment in England, a number of men were con ined amid surroundings (of clothing, room, food, etc.) prac tically the same for each individual. The medical superin tendent of the jail undertook investigations, extended over some nine years, and during which over 4,000 individuals were weighed. It was found that during the months of win ter the body wastes, the loss of weight varying in increasing ratio: that during summer, the body gains, the gain varying in an increasing ratio: and that the changes from gain to los and from loss to gain are abrupt, and take place, the first at the beginning of September, and the second at the beginning of April. This is shown in the following figures, indicating the ratio of loss or gain: Loss: January 0.14, February $0 \cdot 24$, March 0.95. Gain: April 0.03, May 0.01, June 052 July 008, August $0 \cdot 70$. Loss: September $0 \cdot 21$, October $0 \cdot 10$
November (exception) a slight gain, December $0 \cdot 03$.

IMPROVED WINDOW SCREEN.

The annexed engraving represents a wire cloth screen, which is adjustable without alteration to windows of differ ing widths. It is an efficient guard against the ingress of flies, mosquitoes, etc., is durable, and not costly. It consists of a broad band of wire cloth secured to rollers as shown.

These rollers, about which the cloth is wound so as to adapt it to the width of the window, are held in place by two brass wire clasps, arranged one on each side, and constructed as represented in the sectional view below. On large windows four such clasps would be used. The shanks of the clasps are inserted in closely fitting metal sockets, which last can be easily placed in the window casing by the aid of a gimlet or bradawl. The device is exceedingly simple and very easily adjusted.
Patented November 16, 1875 . For further particulars regarding sale of patent or portions of the same, or relative to purchase of screens, address W. D. Walbridge, 322 Dagraw street, Brooklyn, N. Y.

IMPROVED OIL CAN NOZZLE

We have occasionally directed the attention of inventors to the fact that some simple adaptation of a glass bottle, so as to render it utilizable as an oil can for sewing machines, is needed, since such a device would probably diminish the cost of the oiling apparatus, and at the same time would admit of selling the oil in the bottle from which it subsequently would be used. Mr. R. H. Hasenritter, of Herman, Gasconade county, Mo., has recently contrived a neat little arrangement for the above purpose, which seems to answer the requirements satisfactorily. The bottle itself may be made in the usual oil can shape, shown in our engraving, Fig. 1, or after any other pattern, since the means of forcing out the oil lies in the nozzle, which is easily inserted in the mouth of the vessel. The inventor simply forms, on an ordinary nozzle, a little cylinder, in which he places a piston sustained by a spiral spring, as shown in the section, Fig. 2. The bottle having been turned so that the oil will run into the nozzle, by pressing slowly down upon the piston the oil is caused to run out gradually, or by a sudden push it is made to escape in a jet or stream.

The inventor points out that the device may be used on any kind of oil can now employed in shops, and may prove an advantageoussubstitute for the usual spring bottom, which is difficult to repair when injured. By making a screw thread on the end of the tapering nozzle, it can be applied to metal vessels having different sized mouths; and thus the nozzle, being complete in itself, can be manufactured for the narketindendently of every bottle or can. To adaptit for bottles, it is of course only necessary to wind packing about bottles, it is of course only necessary to wind packing about
the screw thread so as to cause a tight fit. The inventor,
who may be addressed as above, desires to sell the patent in two parts-for glass oilers and for metal oilers, respectively. Patented February 29, 1876

Temperature Fatal to Animals.

Dr. B. W. Richardson has determined, from observation on man and various other warm-blooded animals, that the increment of heat which proves fatal is from 11° to 12° Fah above the natural temperature of the animal. In the human subject a steady elevation of temperature to $100^{\circ} \mathrm{Fah}$. in dicates fever; an elevation to 105° indicates danger; above that, great danger. At $109^{\circ}, 11^{\circ}$ above the natural tem perature $\left(98^{\circ}\right)$, the conaition is fatal.

ATCHISON'S ENGRAVING AND CHASING MACHINE.

In the accompanying engravings is represented a new ma chine for making engraved or chased groundwork on gold or plated jewelry, silver, silverplated, or washed ware. It can be applied as well to the lightest plated surface as to solid metal, and will produce beautiful matting, on gold rolled to the thickness of note paper. A perspective view of the apparatus in given in Fig. 1, and the working parts are exhibited in section in Fig. 2.

Two tool stocks, A, are arranged side by side in the hollow revolving mandrel, B, so as to slide up and down freely while being rotated. At C are levers suspended by hangers from the pulley, D, which turns the mandrel. These levers ar each connected at one end with a tool stock, and at the other embrace the cam ring, E, which is within the casing. As the pulley revolves, the tool stocks are caused to move up and

down, so that the tools, F, have a reciprocating as well as a rotary motion. The mandrel is mounted in a bearing attached to a stand, and has guide pulleys, as shown, for leading the belt from above to the horizontal pulley. The engraving tools are easily fitted into and removed from the stock, so that they may be changed in accordance with the kind of work to be executed.
The groundwork is produced on the metal with great rapidity, the tools delivering 5,335 cuts per minute, and the pidity, the toons cattended by a child. As the sale of jewelapparatus can be attended by a child. As the sale of jewel-
ry and silverware depends almost entirely upon the ornamenry and silverware depends almost entirely upon the ornamen-
tation, it need hardly be added that a machine of this description, making a very excellent imitation of handwork, is one of considerable economical value to the jeweler and plate manufacturer. We are informed that the machine produces fourteen styles of ground work, claimed to be su perior to satin, or pearl, or sand blast finish in depth, durability, and beauty. It is also adapted to wood carving, especially for panel work and for the routing of engravers

Patented through the Scientific American Patent Agency, March 14, 1876. For further particulars relative to purchase patent, address the inventor, Mr. R. R. Atchison, Room 8, 383 Washington street, Boston, Mass.

VIBERT'S IMPROVED LIFTING JACK
Mr. F. C. Vibert, of Hockanum, Connecticut, has patented (November 17, 1874) a simple form of lifting jack, which, while an efficient and useful implement, can be made and sold at a very cheap rate. The standard is of oak, and is fixed above to receive the curved cast iron handle, which is

secured by an adjustable pivot. The upper part of said handle is rounded, and takes against a similarly formed portion of the lifting step, as indicated by the dotted lines. This arrangement of parts is one well calculated to apply the leverage of the handle at great advantage, so that, light and simple as the device is, very heavy weights can readily be lifted by it. When the step has reached the summit of the standard, the extremity of the handle steps under it, as shown (the parts being broken away for the purpose), so shown (the parts being broken away for the purpose), so
tbat the handle forms a firm support for the load. For fur that the handle forms a firm support for the load. For fu
ther information, the inventor may be addressed as above.

Stencilling Materials for Painters' Use.
Stencilling is an art by which the painter can execute or namental work very quickly. The articles required in making a stencil are a sheet of well sized writing paper, a lead pencil,and a sharp penknife. Fold the paper, allowing the edge of the fold to form the center of the pattern, then draw any desired design, leaving bars to hold the parts to gether. Place the paper upon a piece of glass and cut out the figure with a penknife. The tool used is a camel's hai brush with hair not over one half inch long, bound with quill and wire on a round wooden handle. The small size re preferable. Colormixed with vinegar and sugar will be found best The pait must buite thick, and amal保 uantity only men abbed out on a dry plate before applying it to the work lacing the stencil on the panel as desired, hold it down firmly, and rub over with the brush carefully until the cu portions of the figure are well coated. Then lift off the stencil and the work is completed.

IMPROVED ADJUSTABLE PIPE TONGS

The novel feature in the improved pipe tongs herewith illustrated is the means of adjust ing the movable jaw by the use of the pivoted bar and set screw represented. The arrangement of parts will be clearly under stood from the engraving so that further description is unnecessa ry. The will perform all ry. The tongs will perform al the ordinary duties of the imple ment in gripping pipes and studs, and is especially adapted fo brass or other pipes which are liable to be injured by tongs of the usual construction. From the peculiar formation of the jaws, the present device holds the pipe without flattening or cutting it It will readily be seen that the mechanical movement governing the jaws is such that they will hold without slipping, even, it is claimed, when worn or it is
dull.
Patented through the Scientific American Patent Agency, Sep tember 25, 1875. For further information address Macdonald, Box 377, Halifax, Nova Scotia.

Messrs. Henry Disston \& Sons, of Philadelphia, Pa., once said that they would sell American saws in Sheffield, England, and they have carried out their determination by filling orders received from Sheffield for small lots, while orders from Liverpool, England, for quantities up to 100 dozen, have been filled by them. They have received an order for saws for Japan, the Japanese workmen having minutely examined the temper and quality of the steel. This order has been followed by one for 2,000 plane bits.

BROKEN STONE ROAD-MAKING ---BLAKE'S CRUSHER.
As the present is the period of the year in which the building of new roads and the repairing of old ones are usually undertaken, the practicalinformation below given, relative to road construction and to a standard machine for the crushing of stone for that purpose, will prove of timely interest. Road coverings, says General Gillmore in his recent treatise on "Roads, Streets, and Pavements," have for their object the reduction of the force of traction to the lowtheir object the reduction of the force of traction to the low-
est practicable limit, at the least cost for construction and est practicable limit, at the least cost for construction and
maintenance. They should be composed of hard; tough, and maintenance. They should be composed of hard; tough, and durable materials, laid
foundation from which water is excluded by suitable drainage. Roads, as distinguished from paved streets, may be classified with respect to their coverings as follows: 1. Earth roads. 2. Corduroy roads. 3 Plank roads. 4. GraPlank roads. 4. Gravel roads. 5. Macadam
or all broken ston or all broken stons roads. 6. Stone subpavement with top layers of broken stons Telford). 7. Same, with the addition of
gravel. 8. Stone subgravel. 8. Stone subers of gravel. 9. Rubble stone bottom with top layers of broken stone, gravel, or both. 10. Concrete sab-pavement with top layers of broken stone, gravol, or both. With the el, or both. With the six classes into which
broken stone enters, broken stone enters,
we have only to deal; we have only to deal; a brief consideration of their relative modes of construction, we may refer to a standard machine for the crushing of stone which, for several years, has been in extensive use both in this country and abroad, namely, the Blake stone breaker, manufactured by the Blake Crusher Company, of New Haven, Conn.
As will be seen from the illustration, Fg. 2, the construction of the machine includes a massive pitman, F, which is caused to ascend and descend through the eccentric, D, on the fly wheel shaft. This motion of the pitman is applied

Fig. 2. -BLAKE'S STONE CRUSHER.-SECTIONAL VIEW.
to the toggles, G, one of which presses the movable jaw, J, toward the stationary jaw, H. The jaw, J, when the togg les relax their pressure, falls back, partly through the action of a spring, L. The stone is crushed between the jaws, to which the power is applied obviously to the best mechanical advantage. A method of locating the machine, while in use for breaking stone for road purposes, is represented in Fig. 1. It is placed with its driving engine upon a platform extending from a hillside, and is therefore easily accessible to carts loaded with the stone hewn from the quarry shown in
ground, but at a great disadvantage in the handling both before and after the crushing, while no means for an accumulation of the product is afforded. Generally, however, it is estimated that there is no way in which the machine can be so economically located and used as that above described. To the right of the platform is shown an apparatus for screening the product and separating it into two or more sizes. This is not a necessary part of the combination, and is sold separately; but in making macadamized roads it is desirable to use the screening device. The machine is con-
structed of solid castings of great strength, and such of its parts as are liable to wear out may be replaced without dif-
center to the sides. One and a half inches of good gravel forms the top layer. It is a good plan to rest the lower pavement on brushwood or fascines, especially where the soil is loose, in order to give a better support and to avoid ruts.
In localities where material cannot be obtained of suffi cient toughness for the top layer of broken stone, the road may be finished with three or four inches of gravel, surmounted by a single top layer of stone obtained elsewhere; or if this plan prove costly, a second layer of gravel alone may be used.
To secure firmness and unity of mass on soft ground, a layer of rubble stones, varying in thickness from 3 to 5 inches, and in width and length from 8 to 10 inches, is sometimes used as a foundation to the Telford pavement. When the Telford plan is not fol lowed, a good road can be made as shown in Fig. 5, in which there is a foundation of 6 or 7 inches of rub ble to 10 inches of cov ering. Where motion of the foundation seems possible,the stones may vary in thickness from 3 to 6 inches, in width or depth from 6 to 9 inches along the midd: of theroad, and inlength from 8 to 18 inch. es. Even flat cobble stones can be used, mixed in with irregula fragments, and it is better to set the stones on their edges.
Difficulty is of ten ex perienced, in wet and elastic subsoils, in keep ing a foundation of rub ble stones firm and in tact, and in preventing ficulty. The proper speed for these machines is about $200 \mid$ the stones working up and destroying the surface. A remedy
revolutions of the crank per minute. They are made of several sizes, requiring engines of 4 to 12 horse power, and their working capacity varies correspondingly from 3 to 7 cubic yards of broken stone per hour. The best size for breaking road material is one having a capacity to receive stones 8 to 9 inches thick and 14 to 15 inches wide.
Macadam roads, a sèction of the bed of which is shown in Fig. 4, are constructed of successive layers of stone broken into fragments, the largest of which should not exceed $2 \frac{1}{2}$ inches in longest diagonal dimensions. The drainage of the road bed having been provided for by side ditches and (if necessary) by suitable cross drains, an excavation is then necessary) by suitable cross drains, an excavation is then
made to the sub grade, for the reception of the materials. On made ground it is well to consolidate the bed by ramming. A layer of stone 3 inches in thickness is applied, and spread evenly with a rake. The road is then open to travel in order that it may compacted before more stone is added. This operation may be hastened by rolling, begin-
is stones working up and destroying the surface. A remed
found in the use of hydraulic concrete between the stones, as shown in Fig. 6. The largest stones are laid down side by side and firmly set. The concrete, in which the ballast should be composed of stone fragments not exceeding three quarters of an inch in longest dimensions, is well tamped in

Fig. 6.-RUBBLE STONE AND CONCRETE ROAD.
between the stones. If a thickness of 6 or 8 inches is secured in this manner by one course of stones, this will suffice, and the road may be finished in the usual manner with layers of broken stone or gravel.
The first important matter for a road contractor to consider is the requisite machinery for enabling him to fulfil his con tract; and as the popular road of the present day is one in

Fig. 3. -THE TELFORD ROAD.

ning with the light and ending with the heavy roller Ruts must be carefully raked in as fast as formed. As soon as the surface is well compacted, a second layer of stone of like thickness, with gravel or earth at the wings, is applied and rendered solid as before. The top layer is spread and consolidated in the same manner. The roller should pass over every part of the surface, perhaps a hundred times, and if the weather be dry the materials should be kept damp by sprinkling carts. Finally, a binding layer, about one inch in thickness of gravel or the finest pulverized stone, should
wich broken stone forms a great part of the material, many will be interested in knowing that the most important part of the machinery, necessary for making such roads, can be had of the Blake Crusher Company, New Haven, Conn.

The Decalcomanie Process.

The proper way to put on decalcomanie pictures, as orna ments for carriage panels, etc., is to varnish the picture arefully with the prepared varnish purchased with them, with an ornamenting pencil, being sure to get the varnish on

Fig. 4.-THE macadam road.
the background. The loads are dumped in proximity to the be spread over all. When thoronghly consolidated, the finbreaker, and the carts proceed to the spout below, as represented. There they are filled with the broken stone as it escapes from the machine, and are at once driven off to the road bed. While this arrangement avoids considerable handling, still further may be saved by placing the breaker under the platform so that the rocks may be shoveled directly into the jaws, which come on a level with the dumping floor. It is not necessary to plant the machinery close by the ledges. Any point on the route, between the quarries and the streets to be paved, where a good accessible side hill is found, convenient for the erection of the works, will be equally advantageous. The crusher can of course be worked on leve
ished road surface will not show any tendenc
form a ridge in front of a 9 or 10 tun roller.
form a ridge in front of a 9 or 10 tun roller.
The Telford road, Fig. 3 , is made with layers of broken stone resting upon a sub-pavement of stone blocks. The lower stones are set on their broadest edges lengthwise across the road, and for a 30 foot roadway are 7 inches deep. The interstices are filled with stane chips firmly wedged. The middle 18 feet is coated with 6 inches of broken stone, 4 inches being first applied and consolidated, and then the remaining 2 inches added. The paved spaces on each side of the 18 feet middle are coated also with broken stone, so as to make the whole convexity of the road 6 inches from the

Fig. 5.-ROAD wITH RUBBLE FOUNDATION.
the white paper. In a few minutes the picture will beready to place on the panel, and the paper can be removed by wet ting it. When thoroughly dry, it should be varnished like an oil painting. Be particular to purchase none of these ransfer pictures except those covered with gold leaf on the back, when they are to be applied to dark grounds.

Speaking of sunflowers, the Maryland Farmer says: For absorbing malaria, and preventing diseases caused by ma larial influences, for prime food for fowls, for a home remedy sure and safe, for founder in your horses, and for market a profitable seed to be sold for making oils, be sure to sow sunflower seed.

Cturesivondeute.

Dividing Circles

To the Editor of the Scientific American:
As there are very uncommon and odd numbers of teeth in some of the wheels of astronomical clocks, which cannot be cut by any common engire, it may be proper to show bow to divide the circumference of a circle into any given odd or even number of equal parts, so that thenumber may be laid down upon the dividing plate of a cutting engine.
There is no odd number but from which, if a certain number be subtracted, there will remain an even number, easy to be subdivided. Thus, supposing the given number of equal divisions on the circle to be divided to be 69, subtract 9 and there will remain 60 . Every circle contains 360°; therefore, as the given number of parts in the circle, which is 69 , is to 360°, so are 9 parts to the corresponding arc of the circle that will contain them; which arc, by the rule of three, will be found to be 46.95°. Therefore, by the line of chords on a common scale, or rather on a sector, set of 46.95° with your compass, in the periphery of the circle, and divide that arc or portion of the circle into 9 equal parts, and the rest of the circle into 60 ; and the whole will be divided into 69 equal parts as required. Again, suppose t is required to divide the circumference of a circle inte 83 equal parts: subtract 3 and 80 will remain. Then as 83 parts are to 360°, so, by the rule of proportion, are 3 parts to 13.01°; the small fraction may be neglected. Therefore, by the line of chords, with compasses, set off 13° in the periphery of the circle, and divide that portion or arc into 3 equal parts, and the rest of the circle into 80 . Once more Suppose it is required to divide a given circle into 365 equal parts; subtract 5 and 360 will remain. Then as 365 are to 360°, so are 5 parts to 493°. Therefore set of 4.93° in the circle, divide that space into 5 equal parts and the rest of the circle into 360 , and the whole will be divided into 365 equal parts, as was required.
I have often found this rule very useful in dividing circles into an odd number of equal parts, or wheels into odd numbers of equal sized teeth with equal spaces between them; and now I find it just as easy to divide any given circle into any odd number of equal parts as to divide into any even number. And, for this purpose, I prefer a line of chords on a sector to that on a plain scale; because the sector may be opened so as to make the radius of the line of chords upon it equal to the radius of the given circle, unless the radius of the circle extends the whole length of the sector, when it is opened so as to resemble a straight ruler or scale, and this is what very seldom happens. Any person who is used to handle the compasses and the scale or sec tor may very easily, by a little practice, take off degrees and fractional parts of a degree by his eye, from a line of chords, nearly enough to the truth for the abovementioned purpose.

Cambridge.

The Legal Horse Power of Steam Bollers. To the Editor of the Scientific American:

In your article on "Power of Steam Boilers," page 225 of your current volume, you seem to doubt the legality of my formula for horse power of steam boilers, and say that ' it is certainly not legalized."
The unit of horse power was established by James Watt, and has since been legalized all over the civilized world, differing only slightly in different countries to accommodate different units of weight and measure; it is 33,000 minute foot pounds, which is the same as 550 second foot pounds. My formula is based upon this unit, and is therefore legalized; but being transformed into power of evaporation, you do not recognize it to be the same as Watt's rule.
The power of the same volume of steam measured in the ordinary way through a steam engine will give precisely the same result as that by my formula, which has been tested on different boilers and engines by different engineers. The legalization of Watt's rule makes my formula legal, and the same rule can be expressed by a great variety of formulas. The English custom of referring equivalent evaporation from and at 212° has caused much confusion and discordance in steam engineering; but on the continent of Europe the evaporation is referred to the temperature 32° Fah., and my conviction is that the latter is the proper point of reference. Philadelphia, Pa

John W. Nystrom.
[We are still of opinion that no legal status has yet been given to Mr. Nystrom's formula for translating foot pounds into evaporation of water.-EDs.]

The Wisconsin Steam Wagon Reward

To the Editor of the Scientific American:
The Wisconsin $\$ 10,000$ reward for a steam wagon is, I think, more likely to ruin many over sanguine inventors and mechanics than give them a fortune. To overcome all the obstacles mentioned is a mechanical impossibility.
I have had considerable experience with road wagons, and have tried and seen many very ingenious combinations, but they have all proved failures except as amusing toys. All builders of road wagons that I have seen say that they had no idea of the immense power it took to run them; and ob structions like loose sand or mud make them nearly helpless, to say nothing of steep hills, stones, etc. Another great drawback is the great weight of fuel and water necessary to carry. My carriage, the total weight of which was only 550 bs., would use up 40 to 50 lbs . of water per mile. There fore I think that a locomotive, complying with that Wisconsin law and running in ruts half way up to the hub, over stumps and stones and up steep sand hills, and averaging 5
miles per hour for 200 miles, trusting to luck in getting fuel and water, would have asweet time of it. The idea is simply preposterous.
H. S. Taylor.

Derby Line, Vt.
Valve for Laboratory Use.
To the Editor of the Scientific American:
I herewith send you a drawing of a valve which is not, I believe, new, but is not well known, although it is very useful in the laboratory, and might be of service to some of your readers.
a is a glass tube with a bulb, b, blown in it; c is a short glass tube, smaller in diameter than $a ; d$ is a piece of rubber tube, a little longer than the tube, c, and of such a size as to fit tightly between the tubes, a and c; one end pro-

this end of the rubber tube a small cone-shaped piece o wood, g_{5} is slipped, with its base tight against the end of the tube, c; the end of the rubber tube is now drawn tightly over the piece of wood, g, and then tied at f. The rubber tube, d, is then cut almost off at e, the uncut portion serving as a hinge. The valve is shown open by the dotted lines at i. It will of course be understood that the rubber tube is to be drawn over the tube, c, the cone of wood put in the end, and the end tied and cut before it is put in the tube, a. When the foregoing operations are performed, the rubber tube, d, inclosing the tube, c, is run into a, until the end of tube, a, inclosing the tube, c, is run into a,
c extends a short distance into the bulb, b.
Monticello, Pa.
E. G. Acheson.

New Rule for Calculating the Power of Steam Engines.
To the Editor of the Scientific American :
I have made a rule for calculating the horse power of steam engines, by which I get rid of nearly two thirds of the figures. It is as follows: Square the diameter of the cylinder, multiply by length of stroke in inches, multiply by the number of revolutions per minute, multiply by the pressof steam, multiplyby 4 as a permanent number, off six figures to the right

Daniel Shine.
Allentown, Pa

Device for Protecting the Finished Parts of Screw-Cutting Dies.

the Editor of the scientific American:
The enclosed engraving represents a very simple and ffective method of protecting the cutting parts of a die
 while the workman is finishing it after it has been tapped. A is a thin piece of soft steel, say one sixteenth inch thick, which is placed flat upon the die, B, so that the edge projects a very little beyond the points, C. When both are held When both are held
firmly in the vise, the firmly in the vise, the
part, D, may be filed way without any danger of the file touching the points of he cutters.
Ithink the above might be classed among the useful wrinkles, and I send it, thinking it may be handy to some your many readers.
J. P. Lewis. Haydenville, Conn

Ammonia as a Cure for Rheumatism.

To the Editor of the Scientific American:

Permit me to inform your readers that caustic ammonia is no infallible cure for rheumatism. I read your paragraph on this subject on the day on which I was treated to the novel experience of acute rheumatism in my left leg. Several drops of ammonia were taken at once without effect, and similar doses a few days later. The complaint has teadily grown more aggravating since.
This rheumatic experience of mine also demolishes a popular fallacy, to which I admit I gave credence, that perfectly abstemious habits act as a prevention of such afflictions. New York city.
R. $\mathrm{d}^{\prime} \mathrm{H}$.

The Proper Time to Fell Timber.

To the Editor of the Scientific American:
Some years since, I wrote an article for your paper in which I contended that after the tree was in full leaf was the proper time to fell timber. Since then I have seen an
article stating that actual experiments made by the Prussian government had shown that the winter was the best time to fell timber. Thirty-one years ago, I was engaged in clearing up a large plantation, and building houses, stables, etc., with logs cut from the woods. I soon discovered that there was a difference in the lasting of different trees of the same kind. I also noticed that, in killing the trees to clear the land, some trees would decay much earlier than others; and that trees girdled in the early spring, just before the budding of the leaf, would rot off at the place where the tree was girdled;and that trees girdled in August would soon
decay in the sap wood and bark, but that the heart would remain sound for years. The conclusion I came to was that the presence of sap in wood caused it to decay, and that the sap left the body of the tree during the time it was making leaves, new sap wood, and bark; and thus, at the fall of the leaf, the sap went into the heart or body of the tree.
If any one will cut a green tree after the fall of the leaf, and put one end in a hot fire, he will soon see sap ooze out of the whole stick, even in the middle; but cut a stick after full leaf, and the sap will run out near the bark. All timber that lasts well has but little sap at any time; all timber that decays easily has a great deal of sap, such, for instance, as the sugar maple, elder, and sycamore. All carpenters have seen large timbers that were perfectly rotten in the middle while the outside was apparently sound. This decay must have been caused by the presence of something besides heat and moisture. As the outside was sound while the inside was decayed, this must have been sap, and nothing else.
J. H. Moore.

Userul Recipes for the Shop, the Household.
 and the Farm.

Laboratory flasks which have contained oil or fatty matter may be easily cleansed by a solution of permanganate of potassa. To remove turpentine, petroleum, photogene, tc., wash with an ounce or so of sulphuric acid and rinse with water.
The comparative value of horse feed is found by experiment to be as follows: 100 lbs . of good hay is equal in value o 59 lbs . of oats, 57 lbs . of corn, 275 lbs . of carrots, 54 lbs. of rye or barley, and 105 lbs . of wheat bran.
A recent English patent, for the production of a glazed or vitrified surface on cast metal, setsforth the coating of molds with powdered glass, furnace cinder, or enamel, which is vitrified by the heat of the molten metal when the same is poured into the molds.
A new process for making tinned iron wire consists in first immersing it in a bath of muriatic acid in which a piece of zinc is suspended. After the acid has produced a new surface on the wire, it is placed in communication with a sheet of zinc in a bath of 2 parts acetic acid in 100 parts water, to which 3 parts chloride of tin and 3 parts soda are added. The wire is allowed to remain 2 hours in this mixture after which it may be polished.
In the following will be found valuable details relative to the coloring of brass. An orange tint inclining to gold is produced by first polishing the brass and then plunging it for a few seconds in a warm neutral solution of crystallized acetate of copper. Dipping into a bath of copper, the resulting tint is a grayish green; while a beautiful violet is obtained by immersing the metal for an instant in a solution of chloride of antimony and rubbing it with a stick covered with cotton. During this operation the brass should be heated to a degree just tolerable to the touch. A moiré appearance, vastly superior to that usually seen, is produced by boiling the object in a solution of sulphate of copper. There are two methods of procuring a black lacquer on the surface of brass. The first, which is usually employed by instrument makers, consists in polishing the object with tripoli and washing it with a mixture composed of nitrate of tin 1 part, chloride of gold 2 parts. Allow this wash to of tin 1 part, chloride of gold 2 parts. Allow this wash to
remain for fifteen minutes, then wipe it off with a linen remain for fifteen minutes, then wipe it off with a linen
cloth. An excess of acid increases the intensity of the tint. In the second method, copper turnings are dissolved in nitric acid until the latter is saturated; the objects are immersed in the solution, cleaned, and subsequently heated moderately over a charcoal fire. This process must be repeated in order to produce a black color, as the first trial only gives a dark green. Finally, polish with olive oil. Much pains are taken to give objects " an English look." For this purpose, they are first heated to redness and then dipped in mersed in dilute nitric acid, thoroughly washed in water, and dried in sawdust. To effect a uniformity in the color, and dried in sawdust. To effect a uniformity in the color,
they are plunged in a bath consisting of 2 parts nitric acid and 1 part rain water, where they are suffered to remain for several minutes. Should the color not be free from spots and patches, the operations must be repeated until the desired effect is produced
Paper may be prepared for bank cheques and other documents so that any writing in ink, once made thereon, cannot be altered, without leaving plainly visible marks, by passing the sheets through a solution composed of 0.015 grain gallic acid to 1 gill distilled water.
To silver cast iron, 15 grains of nitrate of silver are dissolved in 250 grains of water, and 30 grains cyanide of potassium are added; when the solution is complete, the liquid is poured into 700 grains of water wherein 15 grains of common salt have been previously dissolved. The cast iron in tended to be silvered by this solution should, after having been well cleaned, be placed for a few minutes in a bath of nitric acid of 1.2 specific gravity just before being placed in the silvering fluid.

The base used in making artificial gems is strass, obtained by melting together 6 drachms carbonate of soda, 2 drachms burnt borax, 1 drachm saltpeter, 3 drachms minium, and $1 \frac{1}{2} \mathrm{oz}$. purest white sand. To imitate in color the following minerals, add to the strass the ingredients named in connection with each gem : Sapphire, 10 grains carbonate of co balt; opal, 10 grains oxide of cobalt, 15 grains oxide of manganese, and from 20 to 30 grains protoxide of iron ; ame thyst, 4 to 5 grains carbonate of peroxide of manganese; gold topaz, 30 grains oxide of uranium ; emerald, 20 grains protoxide of iron and 10 grains carbonate of copper.

ENGINES AND LIGHTNING RODS

Our extracts from Knight's " Mechanical Dictionary,"* for this week, include some illustrations and descriptions of interesting forms of engines, and of a large number of lightning rods. Fig. 1 is a

COMPRESSED AIR ENGINE
used in the lower shaft of a mine in Scotland. The steam cylinder, C , is 15 inches in diameter and has 3 feet stroke It drives two condensing air pumps, P P, which work al ternately, one on each side of the beam center, delivering the air into the center reservoir, N N, from which it passes into the main pipe, M. The beam is connected at the other end to a crank and fly wheel, F , for the purpose of equalizing the motion. The air pumps are inverted and are worked with cross heads sliding in vertical guides, by means of side rods, from the beam. They are fitted with ball valves, of which there are three sets to each pump, each set consisting of 44 balls, two inches in diameter. The balls are confined by separate cages to a lift of half an inch. A stratum of water, supplied by a pump, W, covers the piston valves and the delivery and inlet valves, through which all the air has to pass. The water flows from the central reservoir through the small pipes, 00 , into each of the air pumps during the period of their downward stroke. Locomotives of the type shown in Fig. 2 are also driven by compressed air. In the reservoir, A, the air is compressed and is admitted to the chamber, B, where it is expanded to working pressure. The emission is regulated automatically by a plunger in a tube passing through the roof of the chamber, B. Above the plunger is a spring which yields to the normal pressure of the air in the chamber; but when, owing to the withdrawal of air to the working cylinder, the pressure in the chamber is relaxed, the spring depresses the plunger, and the connections of the latter turn a faucet valve in the pipe C, and allow the passage of air from the reservoir, A, to the chamber, B, to restore the working pressure in the latter The compressed air passes by the pipe, D, to the cylinder, E, where it acts in the manner usual with the double-acting steam engine, and exhausts into the atmosphere. F is the supply aperture through which the reservoir is charged, and G the safety valve. The piston rod, crosshead, and pitman connect in the usual way with the crank and driving shaft A curious form of rotary steam engine known as the disk engine
was invented by Captain Ericsson, and improved by Bishopp and others. In the Ericsson engine, the disk revolves, and Fig. 2.

in the Bishopp engine the disk oscillates. Ericsson's machine is shown at A B, in Fig. 3. Steam is admitted into a spherical chamber, a, by the neck, t, and opening, v, and being there prevented from passing the line, x, by the pres sure of the disk against the cone at that place, it presses

Disk-Engines.
against the upper leaf, e, which, together with the cone and disk, is thereby carried round in the direction of the arrow. When the leaf has passed the upper part of the opening, w, the steam that has been acting upon it escapes; but at the
same time, the opposite leaf has passed the top of the steam opening, v, and is carried round in a similar manner. The direct, and no valves, the action of the pistonted or reversed at any position of the piston. In Bishopp's engine, shown at A, the disk and shaft do not reverse on their axis, though the ends of the shaft describe circles as the disk "wobbles" on the lines, keeping one radius on each side in constant con tact with them respectively. An abutment is formed by a

Fig. 1.

plate, e, which divides the annular space in which the steam works, the lower portion of the disk having a radial slit which enables it to slip back and forth on the abutment late, e. The steam is admitted on one side of the abutment and exhausted on the other, the live steam pushing the disk before it, by crowding between the disk and the conical head, and causing the outer end of the arm to communicate

Fig. 4.

rotary motion to a wheel, f, to which it is connected by a universal joint.
delaporte's ammoniacal gas engine,
shown in Fig. 4, is operated by ammonia vapor; a is the boiler; d, the cylinder; and b, the tube communicating between the cylinder and boiler; c is the valve box, and x the slider, by means of which the gas is introduced alter nately above and below the piston; e is the eduction pipe and f, the condenser and dissolver. The injection water is introduced by a pipe, at the top of the condenser, f. The solution passes from f to h, from which it is withdrawn by the piston, and passes through the reservoir, k, and the tubes, u and v, by which it is returned to the boiler, a small forcing pump aiding in this operation. The water, which has been deprived by heat of its ammonia, is withdrawn from the bottom of the boiler by the lower tube, and passes into the jacket, l, where it imparts a portion of its heat to a solution in the tube, v, which is on its way to the boiler.

the mafovo

is the name given by its inventor, Captain Von Schubersky of Russia, to an adaptation of a fly wheel to accumulate reserve of force to be used at intervals when a greater power is needed. The device is shown in Fig. 5. A pair of heavy fly wheels are mounted on an independent truck, which, in railway trains, is attached in rear of the locomotive. In the

Fig. 5.

Von Schubersky's Mahovo.

intervals between the three pairs of running wheels are placed two pairs of friction wheels, resting immediately on them. In the angle between these rests the large axle of the mohovos, huge fly wheels which overhang the track. When the train moves, the running wheels impart motion to the friction wheels, and the latter transfer
this movement to the fly wheels. As the train moves from
rest, the velocity of the fly wheels is gradually accelerated until it attains a maximum corresponding to the maximum velocity of the train. If steam now be shut off, the fly wheels become a source of power, and will return a portion of the work stored up in them, so that they may be used to assist the engine in ascending grades.
We add, in Fig. 6, a large number of shapes of lightning rods,
which may be described as follows.
a has a series of points formed of spiral coils, com bined with a tubular portion, forming the tip. The conductor is a flat strip. b is a jointed tubular conductor for vessels. It is divided at the head of the lower mast, a branch leading down the shrouds on either side to the water. c is an iron rod tipped with copper, the point of which is gilded. d has a central copper slip inclosed between iron side pieces; the points of connection have interposed zinc plates. At e the iron rod is grooved to recejve a copper slip. The joints are secured by screwthreaded washers. At f the point is formed with two opposite wings. The rod, g, is composed of a single pposite coper wound spirally so as to form a tube is composed of several strands of wire laid together so as to form a rope, and having several tips. The point, i, is formed of three or more metals inclosed one within the other, the most fusible outside. j is an insulating ttachment with additional conductor points at the coupling of rod sections. k is a copper cable, composed of a central wire rope and two exterior strands laid up in opposite directions. l comprises two or more copper wire ropes intertwined with an equal number of iron rods. m is a series of metallic strips, forming a tube, are joined together. n is a metallic strip, doubled up or corrugated so as to form a tube with spiral flanges. At o the joints of the rod are coupled by pieces cross shaped in section and secured by rivets and bolts. p has four twisted rods with wire warming. At q the tubular sections are united by short pieces, slotted inside so as to form a species of bayonet joint, and held by pins. r is composed of two strips of sheet metal, riveted together at their angles and twisted spirally. The strips in s haveslots through which staples fasten them. t is connected by short pieces fastened by pins, u is an exterior cable stiffened by a spirally flanged core, and the sections of v are secured by plugs fastened by indenting the tubes into suitable depressions. At w the sectionsare coupled by an interior cylinderand a tapering plug projecting from each of its ends. At x an interior tube with

Fig. 6.

pinsholds the ends of the tubular sections together. y to $r r$ inclusive represent sections of various kinds of patented rods.

IMPROVED METHOD OF PROPELLING CANAL BOATS. We illustrate herewith a new mode of propelling canal boats, which consists mainly in mechanism for actuating a series of push bars. The device is certainly simple, and, in the opinion of the inventor, when applied to boats, will prevent any loss of power by slip and any washing away of the banks of the canal. It may easily be arranged in th ordinary boats in use.
Placed thwartships the boat, and revolving in bearings attached to the framework of the same, are two shafts having cranks at their centers. These cranks are connected by a rod A, so that the shafts may move together. To one end of the connecting bar the piston rod of a steam engine is attached. On the ends of the shafts are formed cranks, B, to the extremities of which are pivoted the push of which are pivoted the push bars, C. The lower ends of the latter are formed to take hold of the ground on the bottom of the canal and push the boat forward. The cranks, B, are so arranged that one rod on each side of the boat may be working while the others are moving forward. The weights shown at D are intended to balance the cranks and give uniformity of motion to the shafts.
Patented through the Scientific American Patent Agency, February 15, 1876. For further particulars relative to purchase of patent, address the inventor, Mr . Louis F. A. Legouge, Wheatland, Yuba county, Cal.

Brains and Brain Nutriment.

snapped, and fell about the horse's head and body. The anmal took fright, and bolted for some distance down the road, until it got entangled in the wire in such a manner that t was thrown completely over. It was with great difficulty that it could be extricated, and it was then found to be so severely injured that it would probably have to be killed. The driver had a narrow escape.
A similar accident occurred about the same time in St.
Bride street. A telegraph wire broke, and a cab driver wa
aught round the neck by the broken wire, but fortunately he was not injured.

There was once a gentleman who used to argue that the soul is seated in the pineal gland; and that there are special regions of consciousness in the brain, different parts of which have different functions, is a doctrine now establishing itself on what may be considered sufficient authority. Further investigation in this direction may avail to show what should be the remedy for an atonic or hypertrophied ideal or other function. Meanwhile we have the assurance of Mr. Frank Buckland, who has lately passed a brilliant examination on the ostrea edulis before a House of Commons

LEGOUGE'S METHOD OF PROPELLING CANAL BOATS. committee, that " brain power in those engaged in businessand literary pursuits was greatly strengthened by phosphorus conveyed in the form of oysters." This assu rance, although weighted with the statement that oyster meat costs $\$ 2.24$ per pound, cannot fail to be of immense value to all thosenot a large class-who have need of their brains. Candidates for the Indian Civil Service, Newdigate prize poem men, common ju rymen, and the holders of foreign bonds will now, no doubt, eat, who never ate before ; and city men, with whom, for their easy digestion, oysters are a favorite food, will eat the more. We cannot understand why "those engaged in business" should take precedence, in the repair of brain waste, of those engaged in literary pursuits, but can readily believe in the possibility of the proposal--a direct corollary to Mr. Buck

IMPROVED FLOOD GATE.
We illustrate herewith a novel and simple floodgate which any farmer can make from a couple of trace chains, a dozen stout staples, and a few boards. Its advantages are that it allows the water to flow past freely, and so not only obviates any danger of sediment or floating material blocking the channel, but favors the washing and deepening of the latter; it is entirely drift-proof and self-adjusting, and needs no skill to manufacture.
It consists simply of a series of boards united by the chain staples in such a way that the lower part of each may overlap the upper part of each lower board upon the up stream side. By this construction, as the water rises, the lowest board will float; and as the rising continues each board in consecutive order will be car ried up. Any floating material will strike against the smooth surface of the gate and pass beneath it, so that there can be no ob struction of the water and no consequen damming and back flow.
The gate may extend entirely across the water course, or stakes may be driven at its ends, as shown. This last construction renders it less easy for stock to push the barrier open and pass down stream. The invention has been practically tested on a large farm with excellent results.
Patented through the Scientific American Patent Agency, March 7, 1876. For further particulars, relative to sale of county and State rights, address the inventor, Dr. R. H. C. Rhea, Uniontown, Union county, Kentucky.

Il Advised Procrastination.
As matters now appear in the American section of the Centennial main building, there is going to be a repetition of the farce yearly enacted at the American Institute shows in this city. At the time of writing. beyond a floor neatly ornamented with chalked and lettered boundaries, and a few show cases, there are no signs of preparing the full exhibit promised from American exhibitors in the main structure. In Machinery Hall, more energy has been displayed, and progress is comparatively rapid; but elsewhere, it remains a disagreeable but none the less true fact that the French, English, and Spanish entries are much further advanced than those of our own country. It will be very unfortunate, not to say humiliating, if the opening day, now scarcely three weeks distant, shall find the American section a chaos of confused and badly arranged exhibits.

The Western Tanning Plant.

Messrs. Moffat Brothers, of Buffalo, N. Y., send us a letter from a Chicago firm in reference to the western tan ning plant, described by us on page 181, current volume. The firm report that they made an experiment with the plant two years ago, and distributed it to other firms, the result in every case being that there was not tannin enough in the plant to preserve the green hides from decay; and making leather was altogether out of the question. If any one can throw light on the difficulty, we shall be glad to hear from him.

Danger from street Telegraph Wires.
During the recent high winds in London, the following accident occurred in Farringdon street. Charles Holmes, a cabman, was driving a cab, and, when near the viaduct, one of the post office telegraph wires passing over the road

Another accident of the same kind in Islington was unhap pily fatal. A Brompton omnibus, after finishing its journey at about five minutes past two o'clock, pulled up as usual at the York Hotel ; and one of the horsekeepers, named William Stevens, was driving it to the stables, when a telegraph wire was blown away, and it fell round the poor fellow's neck, and nearly cut his head from his body.

Lightning.

The celebrated experiment of Benjamin Franklin, by which e demonstrated the identity of lightning and the common el ectric spark, was performed by him in June, 1752,at Philadel phia, Pa. Having made a small cross-stick kite, he covered
land's assurance-that, as we have compulsory nurture of the mind, so we must have compulsory nurture of the brain We wonder, says Iron, how much more luminous some of our most brilliant writers would have been had they but seen to a proper supply of phosphate of iron and osmazome.

The Railroads and the Centennial.

The various railroad companies whose lines lead to Phila delphia have met in convention and decided upon a reduc tion of twenty-five per cent in fares to the Centennial, and also that round trip tickets shall be issued for a period of sixty days. The Union Pacific is the only dissenting line consequently the above reduction applies on all roads and east of Omaha. From St. Louis the Cen tennial fare will be $\$ 40.50$, and from Chi
cago $\$ 33$, for the round trips; and an addi tional dollar is charged if a route viâ New York city be chosen.
For use on the Pennsylvania railroads between this city and Philadelphia, two kinds of tickets will be issued. One good for fifteen days will cost $\$ 5$ for the round trip the other is restricted to the day of issue, and is subdivided into three classes. The first class is good after 7 A. M., and costs $\$ 4$; the second, between 6 A . m. and 7 A . M., costs $\$ 3$; and the third, available fo early birds, who prefer the cool of the morning for their journey, and hence star prior to $6 \mathrm{~A} . \mathrm{M}$., costs but $\$ 2$. The first class tickets are good for express trains, which will run through from terminus to terminus in from two and a half to three hours, landing the visitor on the Centennial grounds. The second and third class trains will yield the right of way to those above mentioned, irrespective of relative hours of starting, and hence will occupy from four to five hours in the trip.
All trains, no matter whence they come

RHEA'S FLOOD GATE

with a silk handkerchief instead of paper, so that it would stand rain, attached a tail, etc. The upper end of the cross had an iron point, connected by a string to the usual kite cord, which was of hemp. To the lawer end of the cord an iron key was attached, and to that a short length of silk ribbon, as a non-conductor, by which the kite string could be safely held in the hand. On the approach of a thunderstorm he proceeded to a common near the city, and, with the assistance of his son, sent up the kite. Ere long the thunder cloud approached, the electricity came down the kite string, and Franklin, standing under a shed, received the electric sparks through his knuckles which he applied to the key, and charged his Leyden jar by putting its conductor in contact with the key. The rain then fell, which improved the conductivity of the kite cord, and the electricity appeared in increased quantity.
The news of this wonderful experiment rapidly spread over the world, and was extensively repeated. In France, Professor Romas made a kite seven feet high, with a fine wire interwoven in the string. The kite was raised five hundred and fifty feet, and is alleged to have yielded flashes of electric fire ten feet in length. In St. Petersburgh, Professor Richman, while attempting to repeat Franklin's experiment, received so heavy a charge of electricity that he fell dead. This was in 1793.

Onions given to horses in the first stage of the epizoötic curaid to be very beneficial. They cause the animal cough and sneeze and discharge freely from the mouth.

ill run into the Centennial depot of the Pennsylvania road, which is located in Elm avenue, fronting Machinery Hall.

New Plant for the Deorvard

Among the plants distributed this year from the botanic garden in Washington, says the Star, is the aralia papyri fera. This plant produces the beautiful substance known as rice paper; it has soft, downy, palmate leaves; it grows ten feet high, with a stem four inches in diameter, full of white pith like the elder; in a full grown specimen the pith is about one inch in diameter. It is divided into pieces three inches long, and by the aid of a sharp instrument is unrolled, forming the thin narrow sheets known as rice paper, great ly used by the Chinese for drawing figurts of plants and animals, and also for making artificial flowers. Until about 1850, the 'source of this substance was unknown to scientists. The Chinese on inquiry, gave very fanciful figures and de scriptions of it, illustrating the fact that then, as now, "for ways that are dark, and for tricks that are vain, the heathen Chinee is peculiar." It was first introduced from the island of Formosa to Europe, at Kent gardens, in 1853; from there it has been widely disseminated. It is almost naturalized in some parts of Australia ; in the Southern States, and perhaps Cal ifornia, it will flourish. As an outdoor ornamental foliage plant, it is well worthy of cultivation in any part of the coun try.
J. C. S., Jr., says: I take seven papers, but would rath er part with all others than with the Scientific American.

A CHINESE SCIENTIFIC JOURNAL.

There lies before us a very curious periodical. It is a pam. phlet of about thirty pages,stitched with green silk in covers of the brightest yellow. On the back, or rather the front, for the book is read backwards, there is a strip of bright pink paper,covered with hieroglyphics. The pages are each double, that is to say, instead of the print appearing on each side of the sheet, it is impressed on one side, the sheet is folded, and the free ends bound inwards, so that the edge of every leaf is a fold. The paper is of that soft India variety used here for engravers' first proofs. Finally, the characters are all Chinese and printed in vertical lines. Such is the appearance of the first Chinese scientific journal, the Chinese Scientific Magazine, a page of which the reader has before him in the annexed engraving, reproduced in facsimile
The editor, Mr. John Fryer, of Shanghai, writes us that it is his " ambition to make this magazine to China what the Scientific American is to every country where the English language is known. My aim is high, but perseverance will enable meto succeed, even if only in a small degree;" and he tells us in his prospectusthat the journal is to "serve as an introduction to the translation of scientific books al ready existing in Chinese; it will contain notes or lectures
on scientific subjects," and in brief isintended to diss eminate useful scientific and practical information throughout the country. It is published monthly at 50 cents per year and will be illustrated copiously; a specimen of the pictorial em bejlishments is here shown. We admit our in bility to read the letter press, and hence ar^{a} in the dark as to the table of contents of θ the present number; but there seems to may judge from the engravings) relating to the solar system, the circular saw, a steam hammer, and various other mechanical apparatus.
other mechanical apparatus.
It may justly be considered that the establishment of this journal-and we trust it may meet with unbounded success-marks another breach in that wall of exclusiveness with which for centuries China has encompassed herself. That country is beginning an era fraught with the deepest significance to all western nations, an era when a great people, capable of high development, undertake to arouse themselves from a lethargy of ages, and, by acquiring the knowledge which the world has learned during their long sleep, to place themselves on a level with the vastly vounger nations which have far outstripped them in civiliwhich have far outstripped them in civilization and progress. In the past the Chinese have been great engineers (as wit ness the colossal canals, cities, bridges, and temples still existent) and greater inventors, for, very many years before such things were thought of in Europe,they invented the compass, gunpowder, paper, porcelain, and printing. No people have approached them in agriculture, none have so wide a knowledge of the use and value of artificial fertilizers; for centuries past,no matter for the enrichment of the land has escaped their utilization. Moreover they are cunning, even wonderful, wo kmen, scarcely to be approached in the marvellous delicacy of their productions or for the patience with which they attack herculean tasks. In no country is education so highly prized, and among no other people does political preferment depend, as it does in China, almost wholly upon scholastic acquirements. Now all that seems wanting is the extension of that education, beyond the lore of Confucius and ancient tradition, to the world's modern progress; and the barriers to this, so long maintained, China herself is now tearing away. The very vastness of her population is the most serious obstacle to her advancement, even from the single view that the consequent cheapness of manual labor will militate against the introduction of machines for its replacement; but that this in time will be overcome, perhaps through the immense industries which it is possible to establish,or through the development of the great unworked mineral resources of the country, there is no reason to doubt. Chinese students are now all over the world studying the habits and customs of the most advanced people, in order to return and instruct their own ccuntrymen; the first railroad has recently been introduced into the country; and China is organizing a navy of modern ironclad vessels. The signs of progress are everywhere. It is scarcely within the reach of prophecy to predict that the next, if not the present, generation will feel the industrial competition of China, not alone through her emigrants here or elsewhere, but through her own people working within her own borders.

Education in China.

Wong Chin Foo, the Chinese lecturer, was present at the Teachers' Institute of Adams county, Pa., not long ago, and delivered an interesting address on the subject of education in China. He said that the first lessons inculcated in Chinese schools are obedience and reverence for parents and respect for teachers. He claimed that in no country in the world is education so general as in China, and that in no other country are intelligence and moral worth so promptly and so liberally rewarded by the government. He also alluded to the

Great Wall of China, the immense number and size of its walled cities, its palaces and works of art, its canals, and other public improvements, its wars and its civilization, its geography and history, and its systems of religion. He closed with a demonstration of the Chinese method of com putation, which was truly wonderful for rapidity and ac. curacy. By means of an ordinary abacus he performed the most difficult operations in addition and subtraction with the utmost dispatch and correctness, throwing the so called lightning calculators completely in the shade. The lecturer also described the manner and customs of his people, using good English and speaking with but a slight accent. We quote his language, as reported in Home and School; "The capitals of the different divisions of the empire are all walled cities. There are seventy-five thousand of these walled cities in China. The material in these walls is sufficient, in the aggregate, to construct a wall thirty feet high and twen ty feet thick entirely round the world, and leave brick and stone enough to build all the houses in the United States be-
stan sides. This may seem wonderful, but it is true. In China evergthing is done in a different way from what it is done in this country. The manners and customs of the people are different. In this country when a gentleman enters a parlor or drawing room, or goes into society, he is expected to remove his hat ; in ours, he is expected to keep it on. In China it is considered very rude and uncivil to go into com pany with the head uncovered. In your country, when friends

CHINESE SCIENTIFIC LITERATURE.

and acquaintances meet, they seize and shake each other by the hand; with us, when friends meet, each clasps his own hands and shakes them to his satisfaction, at the same time iving expression to his feeling , You This is altogether a habit and education, and one method is just as good as another, provided one understands it. With you, black is the prevailing color of mourning; with us, white serves the same purpose. Your young people, previous to marriage, usually spend much time cultivating each other, and trying to ascertain their mutual adaptability and congeniality; we leave the matter in the hands of our parents, who manage our matrimonial affairs in a way at once satisfactory to themselves and to us. And I am free to say you will find as much conjugal happiness among a given number of families in China as you will find in any other country of the world."

Wear of Railroad Rails.

We recently called attention to the reported fact that, on railway running north and south, the eastern rail wears out the faster. This has been attributed to the earth's ro tation. We recommended that the eastern rails and wheels should, therefore, be made stronger than the western. The Chicago Standard accuses us of making an error, as "the wheeis running on the eastern rail going south run on the western rail going north." A journal that can print such an absurdity as this only exposes its ignorance of common things.

The Origin of Our Earth.

The following curious experiments, recently made by a German observer, M. Sacher, may perhaps be regarded a throwing some light on the mode of origin of our earth
By mixture of water and alcohol prepare a series of spirit olutions of the following densities: $09,0.82,088,0.87$ $0.865,0.86,085,0.83$. Into a glass cylinder, or a high road beaker glass, pour first some distilled water, then spirit solutions of $0.9,089,0.88$. By careful pouring, the cylinder being held inclined, you may obtain the liquids stratified over one another without mixing. Heat the re maining less dense spirit solutions simultaneously, in beak ers over five spirit lamps, up to near the boiling point (to about 167°), and then pour them carefully, in the order of their density, on the cold spirit solution. Over a sixth spirit lamp heat 3 to 5 ozs. of spermaceti in a beaker to 194° or 212°; dip a pipette into the fused mass, allowing about $0 \cdot 25$ cubic inch to enter. Then cover the opening with your thumb, and put the pipette so far down in hot alcohol that equilibrium occurs. By slowly drawing out the pipette, with thumb removed, you can, after a little practice, cause the fused mass of spermaceti to form one or several balls, float ing in the liquid. The density of the fused spermaceti quickly diminishes with increasing temperature. The ball, there ore, does not, in each experiment, remain floating in the the density 085 ; then, in cooling, it sinks slowly to the density 087.
These fused and slowly sinking balls now afford an opportunity of observing the solidifying of a body simply left to its co hesion.

1. The balls which, through currents in the alcohol, come very near each other unite. The most frequent unions occur in the moment of solidifying.
2. When a ball comes into a spirit layer the temperature of which is under $112^{\circ} \mathrm{Fah}$ (the melting point of spermaceti), solidifica tion occurs at the surface. If this solidifica.
tion begins first at one side or above, the tion begins first at on
balls begins to rotate.
3. Frequently one observes the sudden ejection of a small mass from a ball.
4. The rind consists at first of a smooth, thin skin. With increasing thickness, how. ever, this becomes uneven.
5. The unevenness still increases, even after the rind has formed a complete sphe ical shell round the inner fused mass.
f. In the majority of balls, when the cooling does not proceed too slowly, there occurs a very remarkable phenomenon. As
soon as the rind has acquired such firmness that a wrinkling of it is no longer possible it sinks in at the thinnest part, and an
opening is formed, through which alcohol opening is formed, through which alcoho penetrates into the interior.
6. The balls now sink pretty quickly into the denser and cold spirit solutions, and one may soon take them out and examine them with a microscope. After some time however, there is a further interesting change in them.
7. The surface of the ball, after a few days, is found to have become crystalline While the elevated parts, after extraction are mostly smooth and transparent, they become later untransparent, white, and rough. If you examine this surface with a microscope of 60 magnifying power, you
find in it a striking similarity to a bare find in it a striking
8. By rotation of the fused balls, one may flatten them, and allow them to solidify during rotation.

Calla Lilies.

Mrs. Rollin Smith, of Swanton, Vt., writes to the Bur lington Free Press as follows: "Since your recent notice of my possessing a continually blooming calla, I have received several letters from different parts of the State asking me for the treatment which produces such favorable results. I use a four gallon jar, and give an eastern exposure. In the summer, I keep it wet enough so the water may stand on he top, and at all times very wet. Once a year I take the plant, shake the earth from the roots, and fill the jar with arth taken from under old sod. As soon as a blossom com mences to wither, I cut it down, never allowing a flower to die on the plant. The result is that in sixteen months I have had eighteen blossoms on the same plant, and at the presen time it has two very large full blossoms."

Suet Butter.
The Waverly Butter Company, of Charlestown, Mass. call attention to their continued operation of their patent for he manufacture of butter from suet and cream, and depreate the statements, now so common, that the artificial but ter processes have all proved failures. They are doing a arge business, with perfect satisfaction to their customers.

All interior fences should be portable and easily removed from place to place, and removed entirely and stored away when not wanted. Every farmer has long lines of fences which, for half the time, are of no use whatever.

Practical Instruction in the Art of Wood Engraving. By Charles W. A. Emerson. Price 50 cents. East Douglas, Mass. J. Batcheller.

A handy little treatise on a beautiful and useful art
Psyche, the Organ of the Cambridge Eatomological Club. Pub-
lished Monthly. Price, $\$ 1$ a year. Cambridge, Mass.: Published by the Editor.
The Metrr-Diagram.-This is a neat chart, published by Messrs. A. \&
T. W. Stanley, of New Bitain, Conn., the main object of which is to famillarize the student with the metric system of measurement. A yard measure subdivided into feet, inches, and fractions, is printed beside a meter mea-
sure, also divided, but into decimal portions. This gives at once, by mere inspection, an idea of the relations of the two systems. Besides, the chart
ind Includes various tables and explanatory notes. Publications of this kind
are both useful and needed, since it is eminently desirable that the public should become famillarized with the metric system. A treaty between
this country and the majority of all the nations in the world is now pendthis country and the majority of all the nations in the worla is now pend
ing, whereby the meter is made a standard of international measure, so Ing, whereby the meter is made a standard of international measure, so
that it is reasonably certain that, before very many years, our present clumsy system of feet and inches will have given place to tha

Inventions Patented in England by Americans.
[Compiled from the Commissioners of Patents' Journal.]
rom February 4 to March 23, 1876, inclusive.
Brerch-Loadina Cannon.--J. R. N. Owen, Ha milt.
Briok Machine, btc.-E. R. Gard, New York ctty. Car.-J. H. Small (of Buffialo, N. Y.), Glasgow, Scotland
Car Motor_-A. P. Thayer, New York city.
Cartridae, eto.-H. C. Bull, Brookign, N. Y.
Centrifugal Pump.-W. P. Andrews, Brookhaven, N. Y.
Compass.-S. Bent, St. Louis, Mo.
Diamond- Cuttina Machins, -
diamond-Curnes Machine.-H. D. Stover, New York city.
Dyeing Fabrics, etc.-J. Harley, Lowell, Mass.
Friding Furnaces.-W. C. Ford, Brooklyn, N.
Fire Alarm, etc.-W. B. Watkins, Jersey City, N
Fodinag Machink.-s. D. Tucker, New Per Folding Machink.--s. D. Tucker, New York city.
GLove Fastening. -C. R. Ferguson, Washington, heaving the Lead.-C. E. Kirtland, Milwaukee, Wis. Horseshoe Machinery.-W. M. Greenwood et al., Cincinnati, ohio Joining Knit Goods.-J. Bigelow, Boston, Mass,
Lamp Filier, Etc.-J. F. Collins, New York city.
Lamp Filler, etc.-J. F. Collins, New York city.
Lantern.-J. M. Detz, New York city.
Lantrinn.-J. m. Detz, New York city.
Lighting with Oil.-C. Godfrey, Huntin
Loom Pick.-H. McManus (of New York city), London, England.
Lubrioator.- N. Selbert, San Francisco, Cal.
Mower and reaper.-W. A. Wood, Hoostck Falls, n. Y. Ore Separator.-G. S. Redifeld et al., Chicago, Ill
Printing Metal.-L. B. Smith, New York city. Printing Metal.-L. B. Smith, New York city.
Projeotile.-H. M. Quackenbush, Herkimer, N. Proosectile.-H. M. Quarken
Prosh, Hering.-R. P. Parrott, Cold Spring, N. Y. Rotary Enaine.-T. E. Stewart, Boston, Mass.
SHIP's TABLe.-E. P. S. Andrews, Boston, Mass. SHIP's TABLE.-E. P. S. Andrews, Boston, Mass.
S.
SIDI Slide Valve indioator.-J. S. Wallace, Brettland, ohio
Solar Chronometer.-M. Wheeler, Big Rapids, Mich Solar Chronometre.-M. Wheeler, Big Rapids, Mich.
Spinning Machinery.-J. Hunter et al., Adams, Mass. Steam Valve.-E. Cope et al., Hamilton, Ohio. Steam Whistle.-C. McKiernan, Paterson, N. J.
Straw-Sewing Machink.-M. P. Carpenter, New York city. Treadle.-C. Brandtner, Reading, Pa.
Varnishing and lining Machine.-G. L. Jaeger, New York city

Wherl Skate.-S. O. Brown (of San Francisco, Cal.), London, England.
Wire-Bending Maciine.-H. W. Putnam, Bennington, vt

NEW CHEMICAL AND MISCELLANEOUS INVENTIONS.

improved belt fastening.
Thomas D. Brady, Baldwin, Pa.--In using the coupling, a certain number of holes are formed in the ends of the belt, which end then passed over pins on a wedge-shaped bar, which is dropped into place in the cavity of the said frame. As the belt is run upon the belt wheel, this bar will be drawn down to its seat, securely clamping the ends of the belt between its sides and the sides of the frame. The object in view, in addition to providing a stron and secure fastening, is to leare a surplus of perfect belting a each coupling, to provide for the shortening up by breaks, an
to leave no necessity for piecing at said preaks. IMPROVED LAMP FUNNEL
William Bodey, Galion, O.-This is simply a metal funnel for ing lamps, made of conically tapering shape, with a side slot for oil
inserting the spout of the ofl oan.

IMPROVED COMBINED dATING AND CANCELING STAMP Joseph Jay Scholfield, Salt Lake City, Utah Territory.-This in stamp and a canceling stamp made in one and the same piece, in combination with a vertically moving handle held up by a spring, which handle is provided with a laterally attached and interiorls screw-threaded tube or sleeve, which, passing down over a screw volve which being provided with a series of sharp pins, tears a volve, which, being provided with a series of sharp pins, tears a stroke, at which the postmark is made.
tool for shaping the neces of glass bottles. John L. Stewart, Elliott City, Md.-This invention relates to the which are to be closed by a stopper, having a bit upon the lowe end, which, when turned, binds against a cam ledge. The inven ion consists mainly of a pair of jaws carrying a centrally locate rod, surrounded by a loose tabular sleeve. The rod and sleeve cach carry a key-shaped bit; and as the jaws clamp the neck of the plastic glass, imparts to the rotating rod (through a cam) a longi tudinal movement, which causes the bit of the rod to form a rising and faling cam in the plastic glass, with a keyhole-shaped orifice for the bottle.

IMPROVED CHEMICAL FIRE EXTINGUISHER.
Jacob B. Van Dyne, Louisville, Ky.-This invention relates to certain improvements in that class of chemical fire extinguishers, which are stationary and provided with a standpipe running up through the different stories. It consists in devices for mixing the chemicals from any of the upper stories without descending to taneously and with the same movement by which they are mixed

IMPROVED INDEXING ROLLER.
John W. Dirhold and Henry F. Linnemeyer, St. Louis, Mo.-Tbis invention relates to a novel construction of an adjustable index the margins of the front pages of a book. It consists mainly of a radial series of type-carrying sockets combined with a central ad justing screw, having a tapering middle portion, which, when the screw is turned, projects the type sockets farther from the center and expands the roller, so as to leave a greater space between the type or accommodate a larger size of type. The said type sockets
are held in fixed position by a clamping ring with binding screws, and the device is rolled over the leaves to be printed by means of a detachable handle.

IMPROVED METHOD FOR PREPARING HAMS,
Alden B. Richardson, Dover, Del.-This invention relates to an sistsin first withdrawing the bone from the ham, and then packing the ham into a speeially constructed can, after which it is hermet ically sealed, and then cooked until it is sufficiently done to be ready for the table. The ham is thus cooked with all of its natura juices and flavors preserved; and in consequence of packing and coosed, making the ham solid and bone is witharawn is perfectly that the whole ham may be siliced through and through : and with the exception of a slight seam, the manner of preparing leaves no evidence of the former existence of a bone.
improved metallic seal.
Alphonse Friedrick, Brooklyn, N. Y.-This invention consists in the combination, with the compressible soft metal disk or button, having holes therethrough, of a loop made of lead, which is of
such low degree of tenacity that when the button is compressed such low degree of tenacity that when the button is compressed
upon its ends the connection of the button with this loop is stronger upon its ends the connection of the button with this loop is stronger
than the tensile strength of the loop, so that the latter will break than the tensile strength of
before it can be withdrawn.
improved embroiderx frame
Ernest W. Karker, College Point, N. Y.-This invention consists of a couple of parallel rollers in a vibrating frame for holding and
adjusting the canvas as the work progresses, the said roller frame adjusting the canvas as the work progresses, the said roller frame
being pivoted to a stand, which supports parallel rods below the rollers, on which a work box is fitted to slide along the frame from end to end for convenience of the operator. The roller frame is pivoted to the stand by clamping bolts and nuts, which hold the roller frame at any required inclination. The roller frame may also be used for drawing maps and the like, and is adapted
being mounted on a stand, suitable for field use by engineers.

IMPROVED SPONGE CUP.
William Robert Gratz, Baltimore, Md - The object of this invention is to provide an improved sponge cup which will not become in a sponge contained in a perforated receptacle mantained in an elevated position in a water reservoir, by means of a spring, so that, as the sponge becomes dry, its humidity may from time to time be renewed by simply depressing the sponge, which brings it in contact with the water in the reservoir.

IMPROVED TAG.
Joseph I. Donahue, Brooklyn, N. Y.--This inventor proposes a
new metal eyelet for the string, constructed of two metal disks new metal eyelet for the string, constructed of two metal disks
and fastened to the tag, one at each side. On each are tongues and fastened to the tag, one at each side. On each are tongue
struck out of the hole for the string and locked through the hole of the opposite disk, also through the tag. This makes a very sim ple and secure contrivance

IMPROVED OIL CAN
William Young, Clarkston, Mich.-This inventor attaches to an oil can a small cylinder, having a spring piston. The forcing down
of the latter drives the oil out through the nozzle of the can. IMPROVED PIANO PEDAL ATTACHMENT.
Charles F. Cheesman, San Antonio, Texas.-This consists of a stool with foot levers and connecting wires, so constructed that it
can be applied to pianos, for the use of children not large enough to work the ordinary pedals, merely by hooking the stool to the ordinary pedal support and setting the connecting rods in little sockets in the piano pedals.

IMPROVED REVOLVING FIRE ARM.
Freeman W. Hood, Norwich, Conn., assignor to the Hood Fire Arms Company, same place.-This. consists in a pivoted spring pawl of the hammer with the ratchet of the cylinder, and a paw
stopping recess of the stock, to securely lock the pawl when the stopping recess of the stock, to securely lock the pawl when the
hammer is placed in cocked position. The cylinder may be rehammer is placed in cocked position. The cylinder may be re-
versed while the hammer is dropped, and the common stop device ersed while the hammer is dropped, and the common
improved bale tie.
James S. Herron, Pensacola, Fla., and Charles R. Herron, Savan nah, Ga.-This consists of a band end with a closed L-shaped slot, ate sides, that lock into the slotted end. The notches are drawn through the L-shaped slot until they bind tightly on the bale.
improved axle grease
William Peters, Logansport, Ind.-This is a compound of black lead.

IMPROVED FEATHER RENOVATOR.
Nathan P. Chaney, Pottsdam, N. Y.-The hollow drum for holding the feathers is constructed in two parts, of which the upper machine. In the lower part is a perforated tube for introducing the steam, and a canal for carrying off the water of condensation, the canal being covered by a wire screen to prevent the feathers from falling into it. The drum also contains a revolving shaft the lower part, to which steam is admitted from a suitable boiler.
improved animal trap.
Henry F. Barnett and William Carpenter, Weston, Mo.-The nimal sees the bait upon a hook through the open front end of decoy box, and, approaching it, he enters the said box, walking
upon the tilting platform. His weight causes the back end of the platform or door to descend, and he is precipitated into a lower box, whence he cannot escape. The door returns to a horizonta position as soon as its back end is released from the weight of the animal, and the trap is reset.

IMPROVED SPIRIT LAMP.
Sylvanus S. Robinson, Holden, Mo.-This invention provides an mproved combined spirit lamp and blowpipe for the use of me chanics, chemists, and students. It consists in the particular construction and arrangement of a detachable water receptacle or vided with one or more steam pipes with small orifices, which open near one of the burners, so that the heat of a part of the burner enerates steam, which, issuing from the orifices of the stean pipes, forms a blowpipe, which directs the flame of the burner outwardly to a point or focus for convenient use

improved gas regulator.

Leander E. Fish, Washingron, D. C.--This improvement rests in the construction and arrangement of purifying pans in the base of a gas regulator for the purpose of eliminating the heavy hydrocarbons which would have a tendency to impair the sensitive ness of the regulator. The pans are formed with inwardly in
clined sides, so that each pan forms a support for the next one bove, the inclination also affording means for lifting out the pans. The improvement further consists in a tapering water sealing trough, which is made by simply attaching a single strip o metal to the perpendicular side of the tank, thus simplifying and cheapening the construction of the seal, and diminishing the hances of overflow. The regulator proper is also of an improve form, being constru
tapering water seal.

MPROVED PLANISPHERE
Paul Kuhnel, New York city.-By this device a view of both the terrestrial and celestial hemispheres is obtained, the course of the days and nights duriag the year) illustrated, and also the distance and latitudes of different places on the earth, as well as the steam ship connections of the different parts of the globe, mdicated. The invention consists of twio centrally pivoted and jointly revolving disks, provided with polar projections of the two halves of the earth on one side, and polar projections of the heavens on the other side. The ecliptic is indicated by arc-shaped grooves, along
which a movable carriage, representing the sun, traverses. A graduated scale indicates the latitude and distance of any point on the globe.

IMPROVED FIREMEN's SUITS.
John W. Ostberg, Stockholm, Sweden.-This is an air and water proof suit that covers the entire body, and is continually fiooded with water, which is introduced by pipe connection with the hood, covering the head gear or helmet of the dress. The helmet is
tightly applied to the body-covering dress, and the dress strapped to the body, air being supplied to the inside to keep out the smok by an air supply pipe and pump. The helmet is provided with ing, passing by a connecting tube to the hood that is fitted on the face mask and extended over the dress to shed the water over the same.

NEW AGRICULTURAL INVENTIONS.

improved corn planter.
John V. Reams, Midland City, Mich.-The essential features are ingenious and novel devices, for throwing the seed-dropping mechanism out of gear and raising the furrowing plows from the ground simultaneously, and also for operating the seed wheel in
dependently, when thrown out of gear with the revolving axle.

IMPROVED PLOW.

William R. Pool, Havana, Ala.-This invention consists in stock, which is combined with a forked piece, having sharp pro jections and a pair of blocks. The attachment is used with a narrow share for forming a smooth surface at bottom of furrow for
the reception of cotton seed, and the working face is provided the reception of cotton seed, and the working face is provided
with forks that embrace the standards, and are fastened thereto oy a bolt or rivet. It has also a shoulder. Small blocks press out the upper part of the furrow, that it may more conven
receive manure and corn when the same are to be inserted.

IMPROVED FENCE POST.
Eugene Powell, Delaware, O.--The upper ends of wooden blocks
inserted in the ground arenotched transversely toreceive the cross nead, which is made of wrought iron, bent to form eyes, which receive the sharpened ends of the stakes. The ends of the rails o the adjacent panels are placed alternately between the stakes an one upon the other. T
improved animal-weaning bits.
Alfred Bartlett and Alfred J. Bartlett, Jr., Toledo, Iowa.-This is an improved anti-sucking bit for calves, etc., which is not liable t ing of the same without taking the bit out of the mouth of the animal. It consists of a hollow bit, with central perforated swell, stationery end loops, and open ends. It
a wire rod through its hollow portion.

IMPROVED PLOW
Asa H. Piland, Margarettsville, N. C.-This relates to plows o that class in which detachable sweeps are employed, for the cultivation of cotton and corn in the earlier stages of its growth; and
it consists in the peculiar construction of a combined moldboard it consists in the peculiar construction of a combined moldboar
and sweep or bat wing, made in a single piece, whereby, it is claimed, the plow is enabled to stand much greater service and harder strains without requiring repairs.

IMPROVED WIRE FENCE bARB FORMER.

Rheubin H. Pooler and William T. Jones, Serena, IIl.-The object of this is to apply three-pronged barbs to the wires of wire fences. In applying the barbs, the single prong is inserted in the cavity of ing against a jaw of said pinchers. The barb and pinchers are then made to straddle the fence wire, and the pinchers are closed, which forces the parallel pre ngs across the wire in opposite directions.

NEW WOODWORKING AND HOUSE AND CARRIAGE

 BUILDING INVENTIONS.improved children's carriage
William E. Crandall, New York city.-The body of the carriage has the two frames of its top, the cover, and sashes in the frames
made severally independent and detachable to facilitate packing and transportation.
improved adjustable key guard.
James S. Wilson, Trenton, N. J.-This device includes a bar which, after the door is looked, is slipped into the keyhole beside the key and is turned partially round. Attachments of the bar are hen firmly secured to the key handle, so that it is impossible to
urn the key without first detaching the said device, and that cannot be done from the outside of the door.

NEW MECHANICAL AND ENGINEERING INVENTIONS.

IMPROVED SOLDERING TOOL
August Goetze, Baltimore, Md.-This invention relates to an in ing cans of contion of soldering iron especially adapted to cap les of food. The invention belongs to that class of soldering iron which the copper block is attached to a hollow tube which is haft, and also made vertically adjustable thereon. The a centra ment consists in the mode of attaching the soldering blocks to the tube to insure greater strength and durability.
improved self acting grapnel.
Jean Baptiste Toselli, Paris, France.-Acco-ding to one arrange ment, this grapnel is expanded by being suddenly raised while im mersed in the water. The second arrangement, on the other hand, cases the resistance of the water is the agent by which the arms of he grapnel are caused to expand or close together without any me will be found fully described and illustrated on page 214, volume XXXI of this journal.
improved track cleaner.
Silas T. Bentley and Jacob Estep, Union, Iowa.-This invention orm car to be used for cleaning snow from railroad tracks when ver the same become blockaded by drifts. It consists in th particular construction of a derrick mounted upon a platform ca and pivoted in the center so as to turn readily to one side, with the devices operating in connection therewith. Said derrick carries a ne end a frame work in which is pivoted a scoop which may be daised and lowered by a windlass with pulleys and a cord attache o a bale on the said scoop. To the derrick above the scoop is
ivoted a frame carrying a cut-off for the scoop after it is forced to the snow bank, which cut-off divides the snow in the scoo rom that outside, and is operated through a cord, pulley, and indlass. The rear of the frame carrying the scoop is provide with a spring catch, with cord and windlass for dumping and retoring the scoop to its proper position upon its pivots.
improved railroad rail.
Samson Sutton, Lisbon, Iowa.-This is a railroad rail constructed two symmetrical rail sections joined in longitudinal direction and having a central wooden core. As the joints of the rail sec-
ions reach only half way across the rail head, the other half ons reach only hal way across the rals the other hal shrunken joint without battering, jolting, or breaking
fachine for describing and cutting regular curves, Frank A. Polsley, Jackson Court House, W. Va.-In using the olved, the edge of a wheel may describe the required curve up the face of the said cone. The paper upon which the curve is to be drawn is secured to the table, and the pencil is adjusted to rest upon it. Then, by turning the table, the point of the pencil will issubstituted which has two dovetailed grooves formed across its ace at rightangles with each other, and intersecting each other a ae center of the table. In these grooves are inserted four dove part, to receive and hold the object to be cut. The blocks are so adjusted that the cutter, while cutting the curve, may pass be tween the pins.
improved piston packing.
William W. St. John, Pisgah, Mo.-This consists of a piston packing wider on the under side than elsewhere, for the purpose of bearing the weight of the piston and piston rod, in addition to
the packing pressure, without greater wear than in the other the pact

IMPROVED WATER WHEEL.
Nelson M. Prince, Concordia, Kas.-This is a contrivance of $t w$ ates, so pivoted on opposite sides of the wheel and connected to ates work easier, and the form is such that each one makes two chutes, through which the water enters upon the wheel tangentially, giving good results.
improved boot heel and edae polishing machine. Leopold Graf, Newark, N. J.-This is a polishing machine fo nishing the edges of the heels and soles of boots and shoes, le-are operated by one and the same and driving shaft, in suc manner that both operations may be carried oo at the same time here is, beside, a simpler and better contrivance of the gear by etter action for the polishers, and a higher speed of them for iven speed of the driving shaft, an improved contrivance for mproved clamp frame for holding the shoe.
improved holder for grinding needles
Henry M. Dixon, Brooklyn, E. D., assignor to himself and Rob ert E. Dunham, Jamaica, N. Y.-This consists of a little tube with notches in the side, suitably shaped for inserting sewing machin needles, so that the points will project at the end suitably fo grinding them. The tube forms a holder, which can be he
turned uniformly, so as to grind the points round and true.

MPROVED FIRE ENGINE
Clinton W. Clapp, Wappinger's Falls, N. Y.-This consists of couple of receivers for carbonic acid gas and a steam pump, so ombined and fitted with hose and nozzle for discharging the wate off the gas through the pump, the gas can be employed as the mo ive agent for the pump, and, at the same time, the exhausting gas can be used separately or together with the water for extinuishing the fire.
improved middlings separator
Morris N. Elwell, Oneonta, N. Y.-This inventor proposes a verti-
cal draft box, in the upper part of which are a number of incline slats, for breaking and distributirg the stream of middlings and the current of air. Said slats are at the entrance of a horizonta
box, along which the particles carried over from the vertical box are carried over a hopper, into which the final separation is made by a lighter current up the spout. The middlings are fed into the the bran is discharged through a foe, and regulating sides, ai duplicate set, in which the middlings are treated gain in the same manner by air currents set in motion by another fan.

IMPROVED WATER WHEEL.
Henry Waltner, Hamilton, Ohio.-This invention consists of ing cut-off partitions, employed to utilize the dead pressure of the water. The said buckets are provided with an arm which extend inside of the periphery of the wheel and strikes a stud on the lower part of the case. This throws out the bucket so as to tak the water immediately after passing the cut-off. Among the ad ter, also under back water. It employs the whole pead of wa the wheel for the utilization of the water power, and gives the
ther advantage of the full pressure of the solid column of water of given head of water, without the necessity of an accelerate motion.

IMPROVED PUMP.
Benjamin Eby and Jacob S. Fiester, Kinzer, Pa.-To the pump barrel beneath the frost line is attached a right angled spout, oted to an arm attached to the esput, and to its innar end is a ached the lower end of the connecting rod, which is pivoted to rigger,which is pivoted to the pump barrel in such a position that when the handle is lowered, it may strike and press it downward above the frost handle is raised to work the pump, the valve plate is again raise against the spout by a spring, to prevent the entrance of air into he pump barre

IMPROVED LIFTING JACK.
David Hiltabidle, York Road, Md.-This invention relates to that lass of lifting jacks in which two lifting links are pivoted to an scillating lever upon opposite sides of is fulcrum, and are arran ed to operate alternately upon opposite sides of a double ratche nd arrangement of devices operating in connection with the inks for the purpose of releasing them from the ratchet bars.
improved propeller for boats
John W. Dolch and George Haydn, Baltimore, Md.-This invenpeller is arranged to revolve in a cylindrical channel in the botto of the boat, which channel opens into the water at both ends, an through which the water is discharged by the revolutions of th propeller to urge the boat forward. The invention consists in making the cylindrical channel with a detachable upper half Wich is fastened by means of bolts to the said lower half, the uponds of the propeller shaft are joumaled so that the propeller removable with the upper section of the channel.
grproved shingle machine
to improve th onstruction of the shingle machine known as the Evarts rotary blocks from jumping when the dogs strike them. The inventio consists in an incline formed upon the rear ends of the plates tor the stems of the dogs to slide down upon, so that the ogs may take hold of the blocks gently and without moving them rom their place
mproved rudder-indicating apparatus for vessels. Justus A. Brièbach, Clapton, England -This is a device operated untomatically by the rudder for the purpose of showing, at a dis which position of said roller, and, consequently, the direction colored glass slides in a lantern, located in the forward part of the vesse.. When the rudder is amidships, the slide carrying th olored glasses will be in its central pesition, and an equal amoun antern; but when the rudder is moved over in one or other direc ion, the slide will be raised or lowered, and a greater amount of ne or other color will be exhibited.

IMPROVED SAFETY APPARATUS FOR RAILROADS. John B. Prohias, New York city.-This invention consists of an levated rail at each side of the track and hook-shaped or groove otherwections attached to the car. In case the main rails sink atch on these side rails by the projection, and thus be prevente rom injury. The contrivance is also designed to be such that, in ars map run alto the latter being firmly supported on piles, and the wheels being uitably connected with the power.
improved machine for finishing barrels. Edmund W. Gillman, Long Island city, N. Y.-This is an apparaus for evening thestaves, pressing on the hoops, dressing off the ads, and crozing and chamfering the barrels. The barrel, havin tuss hoops, is rolled into position between the presser rings, which orward so as to press the ends of the staves strongly between th ings, to even the staves lengthwise. Pressure is next applie gainst the hoops,for pressing them on and tightening up the joint by the rings, they are dressed off true by a rotary cuttery. A gag hen runs against the ends of the staves to gage the distance of th vening, crozing, and chamfering tools from the ends, said tool being carried by a rotary cutter head.

IMPROVED GOVERNOR.
Bernard W. Johnson, Barry, Ill, assignor to himself, Joseph D Partello, and John M. Ryan, same place, and Miller T. Greenleaf uincy, Ill.-Through the lower part of the valve stem passes a cage, in which is inclosed a glass cylinder half filled with mercury. The governor is so adjusted that the cylinder may be in a horizon bout half the machinery to be driven ing at with the speed, bout in the rise of the balls tends to close the valve, and also raises the outer end of the cylinder. This causes the mercury to flow towar the inner end of said cylinder, and changes the leverage, so that the engine does not have to keep up its speed to keep the valve
losed. If, on the other hand, more machinery is thrown int ear with the engine, the balls lower, and the outer end of the cylinder is depressed, causing the mercury to flow toward the rifugal force of the balls, and bringing the engine to its prope speed quicker than the balls could do alone.

\$ustmes and sextioual.

 The Charge for Insertion under this head is One Dol-lar a Line. If the Notices exceed Four Lines, One lar a Line. If the Notices exceed Four Lines,
Dollar and a Half per Line will be charged.

Agricultural Implements and Industrial Machin-
erv for Export \& Domestic Use. R.H. Allen \& Co., N.Y. How to lay out the Teeth, of Gear Wheels. Price 50 cents. Adaress E. Lyman, C. E., New Haven, Conn.
Wanted-Inventors of Harrows and Harrow Teeth, to send samples of teeth, descriptio
for right, to "Harrow Co.," Dayton, Ohio.
Wanted-At low prices, good small 2 d hand Iron
Planers, Lathes, Drill Presses, and other Machine Tools. Send particulars to J. \&
nue, Indianapoils, Indlana.
Owners of Steam Engines-We guarantee 25 Owners of Steam Engines-We guarantee 25 per
cent extra power or an equal saving in fuel, by applying cent extra power or an equal saving in fuel, by applying
the Ransom Syphon Condenser. T. Sault, Consuliting
Engincer, General Agent, New Haven, Conn. Wanted-A first class mechanical draughtsman.
Address, with particulars, Draughtsman, Box 639 , Providence, R.
Steel and iron drop forgings all shapes, $1 / 40$ oz. to
5 lbs., far superior to malleable and steel castings. stee 5 lbs ., far superior to malleable and steel castings. Steel
sllde wrenches a spectalty. Call before purchasing else-Wanted-A man (fully competent) to erect and
take charge of a Cotton Batting and Wadding Factory. take charge of a Cotton Batting and Wadding Factory.
Addresss, with references, J. M. Ferguson, 440 Prytania
We have on hand a large lot of Machinist's Tools,
second hand, which must be sold in order to close up an second hand, which must
old partnership. For pamphlet, glving full description of each tool, address Steptoe, McFarlan \& Co., 214 West
2nd St., CincInnati, Ohio. Wind Mill Rights Cheap-One county in each
State to give for tntroducing the mill. For terms, \&c., address E. S. Smith, Good Hope, Ill.
Wanted-Address of Makers of Papier Ma
Cellings. Address J. Parmelee, Des Moines, Iowa. The French Files of Limet \& Co. have the en-
dorsement of many of the leading machine makers of America. Notice samples in Machinery Hall, Centennial
Expositlon. Homer Foot \& Co., Sole Δ gents, 22 Platt St., New York.
Wanted-The ageney of some good Engines,
Boilers, Machinist's Toois, and Wood-working Machinery; also Steam and Gasfitter's Tools, Brass Goods, \&c.
Address G. H. B., 213 North Fourth St., Pniladelphia. Adop Gor Baby Carriages-Pat'd March 14, 1876 .
Tights for Sale. Address W. E. Crandall, 569 3d avenue, New York city. See notice on page 281 .
Second Hand Machlnery-Large Stock of Iron
and Wood Working Machinery in Store at Great Bargains. Ge
New York
 For 2nd Hand Portable and Stationary Boilers
and Engines, address Junius Harris, Titusville, Pa. Corrugated Iron-Iron Buildings, Roofs, Shut-
ters, Doors, etc. Moseley Iron Bridge and Roof Comters, Doors, etc. Moseley Iron Bridge and Roof Com-
pany, office, 5 Dey St., New York. Send for circulars. Bung Machine Makers-Please send address or
circular to W. H. F., Box 773, New York clty. Bargains in new and second hand Machinery.
Send for our printed $1115 t$, No. 5 , describing 300 machines.
Forsaith \& Send for our printed 11st, No. 5, describing 30 machines.
Forsaith \& Co., Manchester, N. H.
Centennial Exhibitors, buy your Belting in PhilCentennial Exhibitors, buy your Belting in Phil-
adelphia, from C. W. Arny, 148 North 3d St., and save frelghtand trouble. Sabisfaction guaracter anght; also
Wanted-2d hand battery for Electric light
Induction Coll. Particulars to J. T. O'Connor, 151 West 41st St., New York.
Wanted-Charge of Weaving Department, Cot-
ton or Satinet, by a practical, experienced man. Ad ton or Satinet, by a practical, experienced man. Ad-
dress A. B. C., P. O. Drawer No. 5, Greenville, , H. H. Wanted-Steam Pump, about $1 / 2$ horse power, to se Kerosene for fuel. Box 1 , Andover, Mass. Wanted-To purchase the Patent of a good and
cheap Burglar Alarm, or will manufacture and pay roy cheap Burglar Alarm, or will manufacture and pay roy-
altt. Adress, with full particulars, B. H. Robb \& Co.
186 Vine St., Cinctinntl Ohto. 186 Vine St., Cinclnnati, Ohio.
Trade Marks in England.-By a recent amend-
ment of the English laws respecting Trade Marks, clt1zens of the United States may obtain protection in
Great Britain as readily as in this country, and at about the same cost. All the necessary papers prepared at
this Offlce. For further information, address Munn \& Co., 37 Park Row, New York city.
Friction Hoisting and Mining Engines.-J. S
Mundy, 7 R.R. Ave., Newark, N. J. Split-Pulleys and Split-Collars of same price,
strength, and appearance as Whole-Pulleys and wholeCollars. Yocom \& Son, Drinker St.. below 147 Nort
Second St., Philadelpha, Pa.
Gas and Water Pipe, Wrought Iron. Send for
prices to Balley, Farrell \& Co., Pittsburgh, Pa. Shingles and Heading Sa wing Machine. See ad
vertisement of Trevor \& Co.,Lock port, N.. .
File-cutting Machines. C. Vogel, Fort Lee, N. J Yacht \& Stationary Engines, Sizes 2, 4, $6 \& 8$ H.P
Best for Price. N. W. Twiss, New Haven, Conn.
Inlaying and Fret Sawing in Wood, Shell, Metal,
\&c. See Fleetwood Scroll Saw, page 188. $\$ 1,000$ for any hand sawmill equal to A. B
Solid EmeryVulcanite Wheels-The Original Solid
Emery Wheel-other kinds Initatons and inferior. Cau--ion-Our name is stamped in full on all our best Standard Belting, Packing, and Hose. Buy that only. The
pest is the cheapest. New York Betting and Packing oest is the cheapest. New York Belting
Company. 37 and 38 Park Row, New York.
Steel Castings, from one lb. to five thousand lbs. Invaluable for strength and durabillty. Circulars free.
For best Presses, Dies, and Fruit Can Tools, Bliss
\& Willams, cor. of Plymouth and Jay, Brooklyn, N. Y. For Solid Wrought-iron Beams, etc., see adver
usement. Address Union Iron Mills, Pittburgh, Pa.,
for lithograph, \&c.
Hotchkiss \& Ball, Meriden, Conn., Foundrymen
and workers of sheet metal. Fine Gray Iron Castings and workers of sheet metal. Fine Gray Iron Castings

 For Solid Emery Wheels and Machinery, send tothe Union Stone Co., Boston, Mass., for clrcular. Hydraulic Presses and Jacks, new and second
hand. Lathes ana Machnery for Polshning and Bufllig Metals. E. Lyon, 470 Grand Street, New York.
Spinning Rings of a Superior Quality-Whitins
ville Splnning Ring Co., Whitinstille, Masa

For best Bolt Cutter, at greatly reduced price
dress H. B. Brown $\&$ Co., New Haven Conn. Diamond Toolo-J. Dickinson, 64 Nassau St., N.Y Temples and Oilcans. Draper, Hopedale, Mass. Peck's Patent Drop Press. Still the best in use.
Address Milo Peck, New Haven, Conn. All Fruit-can Tools,Ferracute W'ks,Bridgeton,N.J.

A. B. can color gold by the process de-
cribed on p .363 , vol. 33 . - P. M. H. will find an nswer to his question concerning the commencement of the day on p. 401, vol. 28.-B. E. will find description of the toughened glass on p. 402,
vol. 32.-R. F. B. P. can cement straw boards to gother with marine glue. See p. 43, vol. 32.-F. B. B.
gethen
L. can make an excellent incubator by following L. can make an excellent incubator by following
the description on p.273, vol. 33.-J. S. can find a the description on p. 273, vol. 33.-J. S. can find a
good recipe for cement for glass on p. 379, vol. 31 . good recipe for cement for glass on p. 379, vol. 31.

- F. S. H. can prevent rust on his skates by the F. S. H. can prevent rust on his skates by
method given on p. 169, vol. 33.-W. F. F. can find a description of bisulphide of carbon on pp. 306 ,
368, vol. 28. The numbers are out of print.
H. \mathbf{E}. J. will find full directions for setting shafting,etc., on p. 388, vol. 31.-B. H. will find a recipe for hair
stimulant on p. 138, vol. 33.-P. F. will find mention stimulant on p. 138, vol. 33.-P. F. will find mention of a process for making gas from coal oil on p. 65 ,
vol. 32 . Coal gasis puritted by passing it through vol. 32. Coal gasis puritled by passing it through
quicklime.-C. A.W.will find directions for taking casts on p. 58, vol. 24. In molding the male human face, the beard, etc., should be well oiled to pre-
vent its adherenee to the mold.-W. H. B. will find vent its adherence to the mold.-W. H. B. will find
directions for bluing iron and steel on p. 123, vol. directions for bluing iron and steel on p. 123, vor.
31.-B. L. can make sulphate of indigo by the process given on p. 250, vol. 34.-B. P. F. will find directions for utilizing bones on p. 251, vol. 28.-D. N.
C. will find a recipe for a black enamel on iron on C. will find a recipe for a black enamel on iron on
on p . 208 , vol. 26 . - A. H. S. will find that rice glue is a good cement for making transparent cards. See p. 155, vol. 32.-J. C. S., Jr., will find a recipe
for remedying the rancidity of butter on p. 119, for remedying the rancidity of butter on p. 119,
vol. 30 -C. H. S. can raise his water by wind powvol. 30.-C. H. S. can raise his water by wind pow-
er. See p. 241, vol. 32.-J. L. W. will find a description of the R44, vol. 32.-J. L. W. Wircular ship on p. 87, vol. 32.W. E. will find a recipe for rubber cement on p.
203, vol. 30.-H. F. P. can extract silver from waste solutions by the method described on p.
249, vol.29.-W.C. M. will find directions for making carmine red ink on p. 200, vol. 30.-E. S. A. will find directions for making Professor Tyndall's respirator, which is suitable for his purpose, on p.
178, vol. $32 .-\mathrm{X}$. Y. Z. will find directions for building a windmill on p. 241, vol. 32.-R. D. T. will find a description of soluble glass on p. 315, vol. 31.E. R. will find directions for making sulphate of indigo on p. 250, vol. 34.-C. C. will find directions for making imitation rosewood on p. 154, vol. 30.J. P. will find directions for gilding on wood on p. 90, vol. 32.-F. V.D.C., G. W.D., W. K., F. W.,and
G. R. S., who ask us to recommend books on industrial and scientific subjeets, should address the booksellers who advertise in our columns, all of whom are trustworthy firms, for catalogues.
(1) J. H. B. asks: Can you tell me how A. The chucking spindle 18 made adjustable, to suit the taper.
(2) J. M. H. says: The brasses on the forually wearing out, not quite so much on one side as on the other. The brasses are hard, yet they do not heat nor cut. I have to chip and file the orasses a great deal too often for the amount of
work done. The engine works well and we make gork done. The engine works well and we mak
good time with her. A. It is probable that your
journals hare not sufficient wearing surface, or else the brasses are not made of the proper mixture of metal.
(3) G. V. B. asks: At what speed should I four emery is used with oil? A. At 320 revolution per minute.
(4) X. Y. Z. says: I am preparing a ma-
fine to split pieces of wood
feet long and θ aches in diameter by means of two axles working horizontally and connected by an axle with double erank or a fly wheel. The wood is ize and weight of fiy wheel do Ineed to work the machine by water power? A. If you make a fly wheel 3 feet in diameter, with a rim having a cross section of 12 square inches,we think it will answer. , Is there danger to the axie in such an arrange ment? A. You need apprehend no danger if you ake
(5) H. F. asks: What is the best water
proof cement, that the sun will not affect, for proof cement, that the sun will not affect, for
putting glass tiles in iron frames? A. Use a cement made of white lead ground in oil, with a much dry red lead added as will make it to the
proper consistence. Cut up some hempinto shor fibers, and mix the whole by well hammering and kneading it.
(6) J. A. L. asks: 1. How large a boat boat 18 to 20 feet long. 2. What kind of boile and engine will be best? A. Use an engine $3 x$ nches, and a hoiler 28 to 30 inches in diameter and feet high. 3. Will the man running the engin have to get papers licensing him to run her? A.
(7) S. C. H. asks: In heating a large piec of steel to temper it for cutting wood, it scales off Would itdo to put the steel in molten lead instead
of heating it in the fire? A. Yes. Heating in lead will answer excellently.
(8) R. P. asks: 1. What would be the ing from a railroad train running at the rate of 30 miles per hour, the distance from the car to the

His weight $\times\binom{$ velocity in feet per second with }{ which he strikes the ground. }

$64 \cdot 4$
Now if you can find through what distance this re sistance is overcome, by the compression of the work in foot lbs., divided by this distance in feet will be the striking force in lbs. $\quad 2$. If 2 men of the same weight jumped from the same hight, could one strike the ground with less force than
the other? If so, why? A. From the above answer, you will see that if one jumped harder anthe other, or if he or the ground on which he jumped were more compressible, there might be some difference in the striking forces, which would, wever, be sufficiently severe in any event.
(9) F. P. asks: How can I make the cores or the steam ways for an engine $11 / 2 \times 3$ inches? I have used 1 part clay and 1 part molder's sand,
but it falls to pieces. A.Strengthen the cores with wires.
(10) F. E. H. asks: How do you measure a safety valve? I measure it as follows: I hang the valve rests, the lever and valve showing where the of 20 lbs . Then I measure the bottom of the valve, which is conical, the bottom being of the size of the pipe on which it is placed. It was 4 inches in diameter, and the weight on the end of the lever was 50 lbs. The lever is 24 inches long in all, the short end being 4 inches from the fulcrum. calculate as follows: $4 \times 4=16 \times 0 \cdot 7854=12 \cdot 5664$ long, short end 4 inches : $24+4=6 \times 50 \mathrm{lbs}=300 \mathrm{lbs}+$ 20 lbs . for lever and valve $=320$ lbs. $320+12 \cdot 5664=$ $25^{\circ} 4+$ lbs. steam. Am I right? A. If the valve fits perfectly tight, it is proper to measure the lower diameter; but if it leaks, the steam acts on an area corresponding to the larger diameter. You seem to have made a mistake in your calculation. The
weight of the valve and lever acts at their common center of gravity, which can be found by balancing the lever on a knife edge.
(11) F. 'P. asks: Can stereoscopic views be that they can be shown and explained to a company of spectators? A. Yes. It can be done by

ture being an ordinary magic lantern at A,the piclight coming from at B and the objective at . The the picture and passes through the objective, and the image is form
from it in front.
(12) J. D. G. says: I have an upright vessel containing 10 gallons, with a watertight piston on
the top. What weight would berequired on the A. If you mean a pressure of 40 lbs . per square inch, it would be necessary to have a weight quing the diameter of the valumn of water having the diameter of the vessel, and a hight of
about 93 feet. To find approximately the weight of such a column of water, multiply the cross
(13) J. L. and others.-In the United Sta arine engineers are licensed by the governmen inspectors, after passing satisfactory examination
on the principles, management, and repair of

team machinery

(14) G. A. B. asks : I am going to put up a puntain, and I have no water supply but a well.
propse to put a tank on a shed which is 24 feet high and 60 feet from the proposed location of the fountain. 1. Is it practicable? A. Yes. 2. Would
40 gallon tank give as much force as a 100 gallon 40 gallon tank give as much force as a 100 gallon
ne? A. Yes, if of the same hight. 3. What size of pipe would be suitable? A. Use a $3 / 4$ inch pipe. . Which would be the best, lead or iron? A. Iron
pipe coated with tar and laid $31 /$ feet in the pipe coated with tar and laid
ground. 5. About how high would it play through a $1 / 8:$:nch hole? A. Not very high. 5. What would you advise me to do? A. To provide a much
larger tank and set it much higher, so that your larger tank and set it much higher, so that your
fountain may play higher and the supply of water last longer.
(15) T. S. O. asks: Are the finest fret saws
tamped or filed out? A. Stamped.-J. E. E., of ${ }^{\text {Pa. }}{ }_{(16}$
(16) C. S. says: I have put a burglar alarm a house; it has been in use 3 months and works well, but in one place where the 6 wires run they he wires run through a brick wath occurs where cause ? A. It is caused by the electricity which fiows across the moisture on the wall and destroys
(17) A. B. asks: How much silk-covered copper wire and what number of wire do I wan o wind on a soft iron core 3 inches long by $3 / 8 \mathrm{di}$
meter, to lift the greatest weight? A. Use 100 fee No. 14 copper wire.
(18) E. C. T. asks: 1. If a circular saw, 10 inches in diameter, must run 3,000 revolutions per inches in diamotwre, how fast must saws 6 and work? A. A 10 inch saw should run at 3,600 rev law 7,300; half the above sped will answer and saw 7,300 ; balf the above speed will answer, and
the saws do good work. 2. Is it possible to get
sufficient speed to run a 4 or 6 inch circular saw,
with two pulleys, the driving pulley of 20 inches with two pulleys, the driving pulley of 20 inches
diameter and $11 / 4$ inches face, weighing 20 lbs., driven by a foot treadle? A. We do not think you can get speed enough unless you use gears, or
use an intermediate shaft between treadle and use an intermediate shaft between treadle and pulley, to increase the speed. 3. Can I successfully the abovenamed 20 inch pulley, and this pulley to the smaller one by friction,effectively and without slipping? A.We should think so, if well constructed. 4. Should both pulleys be faced with leather or rubber, or only one, and which one? A. Either will answer. Rubber makes an excellent friction face. Thelarge wheel may be faced with rubber or leqther, and the small one should be wood or iron.
5. What should diameter of smaller pulley be? A. About 2 or $21 / 2$ inches diameter will answer for the small wheel.
(19) J. D. L. says:The following is, I believe, new solution of the well known Pythagorean
ause of a right angled triangle is equal to the sum

angle, A B C, prolong B A to D, making A D equal
to B C; prolong B C to E, making CE equal to A B, and complete the square. Erect a square on
A C. Then we have (A B+A $\mathbf{D}^{12}=$ ares of square. But this area is composed of the area of the four triangles (which, having the sides equal, each to each, are equal to each other) and the larger square

\qquad (20) L. K. asks : 1 have a box made of black walnut. Some parts of it are nicely covered with
a fine coat of copper. How is it put on? A. By a fine coat of copper. How is it put on? A. By
first covering the box with wax, then with black lead, and then depositing by the regular electrotype process.
(21) G. E. Y. asks: What is the difference water in a boiler, at from 10 to 50 lbs. per square inch? A. In ordinary practice, there is probably only a difference of a few degrees in the two temperatures: but by depriving the water of air, and heating it gradually, the temperature of the temperature of the steam.
(22) W. M. says : A girder has the load uni-
 form and top flange with sectional area
uniform, the lower flange being a parabola whose vertex is
at A. Should the
sectional area of stant, or increase towards P? A. Constant, if you uniform strength. (23) F. W. S. says: I am using hydrant waer for brewing purposes; but it is contaminated by mud and organic matter. Can I get rid of the good form for a filter ? A. Your plan is an admir-

able one, and, we think,willanswer all the require
ments of the case. The columns of sand and ments of the case. The columns of sand and
charcoal should be about 10 feet high and about 5 feet in diameter. Use well washed gravel and only perfectly carbonized charcoal. If the latter provision is not carefully attended to, the water
may become still more contaminated by contact with become still more
(24) J. H. T. asks: I wish to make a relay for a short telegraph line. I have about 6 ozs. No.
22 silk-covered wire. Will you please tell me of what size and length the iron core should be to et the bestresults, the current being very weak A. About $1 / 2$ inch wide by 5 inches long. 2 han it does a more wire to magnetize a $1 / 2$ inch one with the same current ? A. Yes.
(25)
(25) W. W. asks: Is there anything in the orm of a one half balance wheel applied to the shaft of a sawmill? A. The half balance for a
sawmill shaft is old. It is a very common way of counterbalancing the weight of gate and pitman
E., of Pa
(26) J. D. W. asks : Do thermostats made of brass and steel last or act well for a considerable
ime? A. If properly constructed they do.
(27) J. F. R. says : I am building an icebox suspended in a grate. There is an air chamber inch es wide all round it. Is ventilation necessary? A. A certain amount of ventilation is necessary. We would suggest an opening 3 inches in diameter upon one side at the bottom, and a like opening upon the opposi te side at the top, these openings
should be covered with wire cloth. The openings should be covered with wire cloth. The openings
should communicate with the interior and not with the 2 inch space.
(28) D. P. W. asks: If a tuba mirabilis stop in an organ be weighted 18 inches water gage presa steam gage? A. About 0.65 lb . per square inch
(29) A. C. C. asks: Does the friction increase with the diameter of the journal, the weight and the velocity remaining oonstant? A. Under these ircumstance the friction would
(30) J. E. D. asks: 1. Will quicksilver re move the lead from gun barrels? A. Yes, but the are coved, and in are covered, and the percentage of arsenic with method unsuccessful. 2. If so, how can the lead be separated from the quicksilver so that the latter can be used again? A. Heat the alloy in a suitable iron retort, the beak of which, or its connection, must dipbeneath the surface of a quantity of water. The mercury will distil over and main behind.
(31) J. S. O. says: The generally accepted theory of intermittent springs is that a cavity in the earth has two water channels, one leading in-
to it, the other out, the former being the smaller, to it, the other out, the former being the smaller, of an intermittent spring. Let A be the outlet, 2

inches in diameter, and B the inlet. If water flows in through this channel, it will rise to the level, C and instead of filling the channel, A, which is ne steady stream as long as water flows in at B. any one give another theory to take the place of the long accepted but evidently incorrect one? A. In accounts of several intermittent springs which we have seen, it is stated that the water first issues with great velocity, and runs for some time with a continually decreasing velocity. It would nor be dificuit, therefore, to believe that the cavsupply being sometimes greater than the discharge and sometimes less. Perhaps some of our readers have devoted more attention to the subject than we have, and will send us their views.
(32) W. F.T. asks: 1 Howhigh will an hydraulic ram raise water? A. In general, it should the ram works. 2. If I attempt to raise all the water that runs from my spring with an hydraulic ram, what proportion of the water will the ram
raise? A. It mas raise from $1 / 8$ to amount. 3. Can an hydraulic ram of any size be made to work, or is there a limit to the size at which it can be made to operate successfully? A As a general thing, the size of a ram is approximately fixed by the conditions under which it has
to work. You will find the whole matter fully explained on p. 259, vol. 31 .
(33) B. W. S. says: The head of a horse rake, being green when manufactured, has warped
in drying. How can I remedy the defect? A. in drying. How can I remedy the defect? A. the proper position, you may give it the original the pr
(34) M. W. H. asks: At what angle should a rifle be held to throw a ball to the greatest dis-
tance over level ground? A. A general value tance over level ground? A. A general value
would be difficult to ascertain. In practice, the angle will probably be between 30° and 40°.
Can a horse do more work walking at 30 or at 60
yards per minute, in both cases pulling his best for yards per minute, in both cases pulling his best for the space of one minute? A. He could probably do more, for a short time, at the greater speed. grooved and matched 2 inch oak plank, of 10 feet hight and 8 feet diameter, sustain, being bound with nine $1 / 4 \times 2$ inches iron hoops? A. Between 30 and 40 lbs. per square inch.
(35) R. H.-If, as we understand you, the thrashing machine runs with sufficient steadiness at present, we do not see that any advantage
would be derived by using a heavier cylinder.
(36) C. W. C. asks: I. Is a screw steamer of 1,000 horse power, faster or slowerthan a sid wheeler of the same power? A. In still wate the screw would have no great advantage; but in the case of adverse winds and heavy seas, its suIs a two-bladed screw more powerful than on with more blades, other things being equal? A Experiments seem to show that screws with two blades are not as efficient as those having three o four, other things being equal
(37) I. J. H. asks: Can I cover steel-pointed poles with any preparation that will prevent thei attracting lightning? I want to use those I have
to make a garden fence, but am half afraid to do to make a garden fence, but am half afraid to do
so. A. Metals do not attract lightning. The idea so. A. Metals do not attract lightn
that they do is a popular delusion.
(38) F. A. S. asks: Can you inform me wha ls the best contrivance for grinding
lathe? A. A revolving emery wheel.
(39) F.N. W. asks: In connecting a tank in
the top of a building with the standpipe from the pump, will there be any difference in the pressure on the pipe whether it be connected at the is kept full, there will be no difference. This also swers S. F.'s plumbing question.
(40) S. C. says: I offer the following as an easy method of dividing circles. In a given circle (Fig. 1) divide the diameter, A B, into as many
equal parts as you wish the figure to have sides;

ercet the perpendicular ; $\mathbf{O H} \mathrm{H}$, divide the radius into 4 equal parts, and set off 3 of these parts from \mathbf{Y} to \mathbf{H}; draw lines from \mathbf{H} to each division on
diameter, and produce them to cut the circumferdiameter, and produce them to cut the circumfer-
ence. Join any two of the points by a chord, and ence. Join any two of the points by a chord, and
it will be the side of required polygon. When the polygon is to have an even number of sides, divide polygoner in half the number and draw from H
diameter through each division. Join any two points-where they cut the circumference, and the chord so drawn will be the side. To do the same (Fig. 2) when each side is to be a definite length : Divide

quotient from 150°, the remainder will be the $u m$ and B, one inch or whatever length you wish for a side apart make the angles, O A B or O B A, each
equal to half the angle of the polygon; from O as a center, with O A or O B as radius, describea circle which place A B continually.
(41) M D. asks: Can you inform me what colors or combinations of ingredients I must use
to produce a silver color, like silver leaf, on produce a silver color, like silver lear, on
leather? A. Try the bisulphide of tin. Apply with a hot iron.
(42) W. C. asks: Will dry steam, taken from a generator, at 100 lbs. pressure, passinginto water in a closed boiler, the blow-off valve being
set at 80 lbs. , evaporate that water,or will the steam rom generator condense and increase the quan tity in closed boiler? A. After the water is
heated up to the temperature due to the pressure, heated up to the temperature due to the pressure
the steam would merely escape through the blowthe steam
off valve.
(43) S. S. H. says: 1. I have a window, the the splap. which is circular,and the inside casing is on out a board to bend around it, and make the marks across it so that I can saw-kerf it? A. We presume you have reference to the splayed soffit of your jamb instead of the casing. Let A B be the width and splay of the jamb, and CD a line
drawn through the middle of the window, at right

angles to the direction of the wall. Prolong A B to intersect C D at D. With D A for radius, draw BE. With $G H$ for radius, draw the semicircle HC A. Make H I and A I each equal to H A and from I, through A and through H, draw the lines, I J and IK. Make A F equal to J K, and join F and D. Then A FE E B will be the shape of the sof-
fit required. 2. What is a trannom? nt required. 2. What is a tranzom? Is it what is
called the fanlight over the door, or is it the rail called the fanlight over the door, or is it the
across the head of the door? A. The latter.
(44) F. S. B. asks: Please give me a recipe or cleaning white rubber coats. A. Try rubbing to remain too long in contact with the rubber You fail to state with what the material has be come stained.
(45) I. H. W., of Ouchy, Switzerland, says Why is it that many (perhaps all) liquids will pe colate more rapidly through two than one thick ness of filtering paper? My theory is that, wit one thickness, the paper, becoming saturated, ad heres to the funnel sides, and checks the circula
tion of air, whereas, when two thicknesses ar used, a circulation is established between the pa pers themselves. Am I correct? A. Yes.
(46) C. F. M. asks: What is the strongest and best kind of alkali for bleaching oil? A. Use water.
(47) M. asks: What is a good plan for com pressing air on a small scale? A. Try a small air pump or bellows.
(48) W. B. W. asks: Whatacid will do to bite figures, etc., in mica? A. Try a mi
strong sulphuric and hydrofluoric acid.
(49) W. L. asks: In casting gun metal or hard brass upon a smooth iron surface, or chill, what is the best coating or parting to put on the iron in order that the gun metal may form a smooth surface in close contact to the iron, with-
outany blow holes? A. Use plumbago for a partout any blow holes?
ing and dry the mold.

Mnfrrals, btc.-Specimens have been r eived from the following correspondents, an sxamined, with the results stated
F. W. R.-It is decomposed granite, and the - H. A. B. Jr.-You are mistaken in supposing the specimen is an ore. It is composed of quartz, mica, and the black portion of hornblende, which is a silicate of alumina, lime, etc , and some oxide of iron.-A. W. S.-No. 1 is silex, alumina, and a mall percentage of hydrated oxide of iron. No. and oxide of iron. No. 4 is silicate of alumina with oxide of iron. The percentage is so small that they are not to be considered as iron ores.-
T. L.-No. 1 is graphite (black lead). No. 2 is T. L.--No. 1 is graphite (black lead). No. 2 is
mostly iron pyrites, but you should send a larger piece and have it assayed.-G. C. R.-It is the American holly (ilex opaca). The deep green fohageis less glossy than that of the E. B. It The discovery is of the greatest interest and value.-B. M. R.-It is a small fragment of fossil, with clay and oxide of iron.-G. S. M.-It consists mesqly of silex with silicates of lime, magnesia,

COMMUNICATJONS RECEIVED.
The Editor of the Schentivic American ac
mowledges, with much pleasure, the receipt of original papers and contributions upon the following subjects:
On Footprints in the Carboniferous Sandstone By J. L.G.
On a Day's Work. By E. L
On Saving Lifa
On Saving Life. By M. P.
On Supply and Demand. By W. L.
On the Newfoundland Railway. By H. A.C. On Machinery and Labor. By W. P.
On Type-Setting Machines. By T. E. A
Also inquiries and answers from the following J. P. S.-P.D.-A. H. L.-W. T. H.-R. L.D.-B. B.
-F.H. W.-O.N.S.-B. B.-W. A. ;R.-W. S. T.-
W. E.F.-H.-W.S. G.

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appeas
should repeat them. If not then published, they should repeat them. If not then published, they
may conclude that, for good reasons, the Editor may conclude that, for good reasons, the Editor
declines them. The address of the writer should declines them. be given.
alw
Enquiries relating to patents, or to the patentability of inventions, asesignments, etc., will not be published here. All such questions, when initials only are given, are thrown into the waste basket,
as it would fill half of our paper to print them all; as it would fll half of our paper to print them all; but we generally take pleasure in answering briefly
by mail, if the writer's address is given. mail, if the writer's address is given
are sent: "Who makes toughened glass? Who sells machinery for manufacturing starch? Who sells incubators \% Who sells hydraulic rams? Who makes the machines used in the manufac ture of friction matches?" All such personal inquiries are printed, as will be observed, In the col-
umn of "Business and Personal," which is specially umn of "Bet apart for that purpose, subject to the charge mentioned at the head of that column. Almost a y desired linformation can in thils way be exteditiously obtained.

[OFFICIAL.]

INDEX OF INVENTIONS
Granted in the Week Ending March 28, 1876,

A complete copy of any patent in the annexed list, cluding both the specification and drawings, will be please state the number and date of the patent desired and remit to Munn \& Co., 37 Park Row. New York city.
Animal poke, H. Ames
nnanclator, ele vator. J. R. Creighton
Annunctator, pneumatic, D. Morris
Annunclator, pneuma
Anvilbed, A. Hitchco
Apr n J. Malonzo...

Armpit shield, H. D.
Auger, W. H. C. Smith
Auger, earth.
Auger, earth, O. Rus
Bale tie, W. Carson
Bale tie, W. Carson
Bale tie, J. Thayer
Bale tie, J. Thayer......
Barrel washer, A. Zoller.........
Bed bottrip pan for, D. M. Haig
Bed bitht \& Hupfeld.
Bed bottom, spring, s. P. Hamilton
Bed bottom, spring, Smidt \& Hupfell
Bee hive, A. McQueen......
Belt fastening, A.D. Power.
Belt gearing, C. Underwood.
Belting, J. Neumann
Billiard register,
Billiard register, J. F. Miller
Bllliard table, H. Pottin.

Boiler Injector, steam, w. T. Messinger....
Boliers. furnace for steam, J. Q. C. Searle.
Bolt
Bolt blanks, machine for
Book, scrap, B. J. Beck.
Boot and shoe, A. Burke.
Boot and shoe,
Boot and shoe, R. S. Manning.....................
Boot-burnishing machine, G. E. Burgess.
Boot heels, finishing C.
Boot heels, finishing, C. E. Ramlose........
Boot-nailing machine, McKay \& Fairfield
Boot and shoe seam, C. F. Glan ville..
Breakwater, J. G. Bruggeman Breakwater, J. G. Bruggeman
Bronzing machine, F. J. Emmerich. Buckle. reversible, Wallace, Fu
Buckle, harness, w. G. Bunker. Bung extractor, w. Heinle. Burial cases, etc., preserving, A.
Burner reflector, gas, w. H. R. Toye Burner refilector, gas, W. H. R. Toye.
Can-filing apparatus, Merrill \& Soule Can-filing apparatus, Merrill \& S Sule.
Canalboats, propelling, Dolch \& Haydn Canister, E. Norton.
Car axle journal box,
Car axle journal box, w. M.
Car brake, Bennett \& Gangwer Car brake, Bennett \& Gangwer
Car coupling, G. W. Burnett... Car couplng, G. W. Burnett.
Car coupling, J. H. Lands.. Car coupling, D. J. Martin...
Car coupling, R. D. Thomson Car coupling, R. R. D. Thomson.....
Car coupling. B. W. Thurman. Car pusher, C. A. R. L. Verginius.
Car truck and wheel, P. Banning. Carpet, C A. Read..................
Carpet stretcher, w. s. Hamlin....
Carriage, child 's, C. H. Wentworth Carriage, child's, C, H. Wentworth..................
Carriage rug and pocket, combined, J. Milwain. Carriage top, E. Marsh
Carriage top, folding
Carriage top, folding, C. W. Blackman Carriages, ventilating, E. Marsh
Cartridge, metallic, J. Merwin.
Cartrige, metanic, J. Merwin.........
Cartrige shells, loading, c. w. Parks
Cartrige, shot, T. Wilkingon
Cartridge shelis, loading, c. W. Pa
Cartridge, shot, T. Wilkinson
Chair fan, rocking, L. A. Winters. Chair fan, rocking, L. A.
Chair, opera, W. Hyland...
Chair, tilting, A. s. Cushing..............
Chill for mold boards, G. K. Smith.
Churn, w. H. Conver..
Churn, R. Evans.......
Churn, R. Evans.........
Churn, E. W. Snephard
Clasp, Church and Eames
Clocks, lighting alarm, F .
Clothes pin, S. W. Derham.
Clothes pin, J. H. Marshall.
Clothes pin, J. H. Marshall.....
Clothes pounder, F. G. Clarke.
Clutch device, Wheeler and Hous
Coal hod, N. Hawkins
Coffee pot, M. H. Curtis..
Cooker, steam, F. J. Shinn
Cooorer and strainer, milk,
Cooler, 1quuld, J. Do wning
Cooier, milk, J. B. Marquis
Cotton batting, folding, C. H. Prescott

Cows, stock for milk, J. Pag
Culttvator, A. B. Reeves....
Culttvator, L. P. Thompson..
Curtain fixture, M. Haughey.
Curtain fixture, M. Ha
Damper, G. Merrill...
Dental rubber dam pusch, Rix and Smith
Dlamond-cutting machine, H. D. Stover.
Dlamonds, etc., polishing, H. D.
Dttching machine, F. L. Delfer
Ditching machine, F. L. D
Door hanger, R. L. Glenn
Drip pan for barrels, D. M. Haight..
Electric machine, T. W. Livingston.
Elevator bucket, o. W. Clark (r)...
Elevator, hydraulic . W.
Elevator, hydraulic, c. W. Baldwin (r.........
Engines, expansion joint for, H. M. Durph
Equalizer, draft,C. C. Hewitt.
Equalizer, draft, A. Meharry...
Fan, K. Robison.
Fare register, H. Pottin
Feather renovator. A. Carbonow........
Fence, portable. Cuykendall and Kellogg.
Filter, B. Schieffelin..
Fire arm, breech-lo
Fire arm, breech-loading, w.............
Fire arm, revolving .
Fire arm, revolving, E. T. Starr...
Flock-cutting knife, w. H. Swan.
Forge, portable, J. Jayliss ..
Fork, carving, R. Richmond
Fork, potato, R. W. Trussel
Fork, weft
Fork, weft, C. H. Warfil
Frut crate, S. Hughes.
Frurt jar, J. Haines..
Furnace
Furnace for pulverulent fuel, M. Perret..........
Furnace her heat regulatior, A. C. Norc
Furniture tip Lloy
Furniture tip, Lloyd and Coogan
Game apparatus, C. Oberly...................
Gas, making, Weber, Herzog, and Schuessle
Gas generator, carbonic actd, H. W. Dopp
Gas generator, carbonic acid, H. W. Do
Gas lighter, Faloon and Iseminger.....
Gas lighter, Faloon and Iseminger...
Gas purifier and regulator, L. E. Flsh.
Gas regulator, M. Toulmin......
Gate, automatic, W. A. Baker.

Glass, rolling plate, Cassidy, Ford,
Grain scourer, brush, H. A. Barnar
Grater, nutmeg s. w. Gear.
Hame tug and buckle, G. W. Haslam.
Hammer, tack, w. C. Avery..............
Hammers, die for making,H. W. Kip.
Harness, J. Fischer....
Harniess pad, E. F Beck
Haruess pad, E. F Beck
Harvester, A. Hart, Jr
Harvester, cotton, W.
Harvester, cotton, W. H. Pe......k.
Harvester dropper, J. A. Coulter
Harvester dropper, J. A. Coulter.
Harvester rake, H. J. Silvernale
Harvester rake, H. J. Silver
Heater and purfifer, water., J.
Hook, mousing, N. E. Johnsen. Winton.....
Hook, mousing, N. E. Johnsen........
Hoop poles, spltting, G. B. Selden...
Horse-hitching device.
Hoop poles, splitting, G. B. Selden....
Horse-hitching device, A. E. Francis.
Horse-hitching device, A. E
Horse power, w. Deering (r)
Horseshoe, H. Gourdiler.....

Ice machine, T. L. Rankin.......... Illuminating device, L. B. Grimith.

Insect powder package, Gerard and Jaquith
Jack, lifting. D. Hiltabldle. Jack, lifting. D. Hiltabidle Journal for machinery, E. Bo
Key fastener, A. W. Sperry.. Ladder, fireman's, A. Willis Ladder, step, G. King..........
Lamp, spirit, S. s. Robinson.
Laatern, signal, G. J. Cave.........................
Lead traps and bends, , making, T. F. Stevenso
Leather-skiving machine, E. B. Stimpson Lock, reversible, E. A. Kimb

ocket, A. W. Pherson

Match splint, G. Hargreaves
leat, preserving, H. Mége...
Mill, grinding, s. P. Webber
Mill, grinding and grist, W. Sp otion, transmitting rotary, Bignall et al...
Mowing machine, W. H. Seymour.
at lock, A. W. Burlingame
Nut lock, O. P. Cobb.
Organ case, G. Cook
Organ reed, L. K. Fuller..
Organ valve, reed, H. K. White........
Oven doors, hinge for
Overalls, G. R. Eager
Paddle wheel, F. W. Bard well
Pail, dinner, J. H. Sullivan..................
Pantaloons, pressing, W. H. Patterson
Paper bag, waterproof, A. S. Dennison
Paper basket, A. A. Wheee
Paper box, H. R. Heyl
Paper box, H. R. Heyl..............
Paper box, C. A. and A. S. Whedo
Paper boxes, etc., forming staples in, H.R.He
Paper for boxes, etc., cutting, H. R. Heyl..
Pavement, N. Cross........ Mc........... Perambulator handle, G. W. Marble Pianoforte frame, C. F. Chickering. Pianolld automatic prop, D. P. Ramsdell Pierfor ocean traffic, H. O. Haughton.

Pipe, smoking, r. s. Manning Pipes, making curved lead, G. W. Wicks Plasterer's hair. package of
Plow, R. A. J. Armstrong
Plow, corn, L. Mille
Pneumatic signals, A.Chambers,
Pocket book and belt, M. Simon. Press for domestic use Pess, rotary, canceling, T. and M. Leavit Privy seat, B. Tanner.
Pump, H. C. Hart
Pump, acld siphon,
Pump and fire eng, ne, E. Rhodes
uzzle, educational, E. Steiger.
Pyrotechnic signal. E. F. Linton
Quadrant, J. T. Bustin.
Radiator, steam, J. O. Cope.
Rail way frogs, guard rail forea and Croon
解 way ralls, drilling, C. D. Holcomb
Railway rails, making, J. Reese....
Rallway signal, Catersol: and Brotz
Railway switch, C. W. Jones
Railway train brake, J. D. Butler
Railway wheel, A.
Rake, G. Hawley.
ake, horse hay, B. Owen
Rake tooth fastening. J. Blackwoo
Refrigerating process. S. D. Lount
Refrigerator, J. H. Wickes.
Rheumatism remedy, J. F. N. De F. Wedde
Roof, C. M. Warren....
Roof, slate and shingle, C. M. Warren
Roofs, battening for, E. M.
Roofng tile, C. M. Warren...
Safe, tireproof,
anding machine, J. H. Bake
Sash balance. W. E. Fac
Saw, E. M. Boynton....
aw. C. Disston (r)...
Saw handle, E. M. Boynton
Sawing machine, w. s. Saunders.
Sawing machine, circular, J. T. Ba
cales, weighing, S. S. Hitchcock.
Screw-cutting die, J. F. C. Rider
Seaming machine, Wilison et al.
Settee, T. S. Scott..............
Sewing machine, J. A. House
Sewing machine caster, Selmen \& Myers
Sewing machine treadle, W. H. Ste
Shaping machine guard, M. Hansen
Sheep shears, Brown \& Fulton Shoe fastening, C. Mayreis.... ... Shutter and door fastener, T. B. Rogers, Jr
Sign plate, J. Cæsar
Skate, W. H. McDonald

Skirt supporter, C. S. Chaffee..

Stamp cancel feed device, F. Myers
teel, etc., compressing, G. W. Billing
Stereotype mold, S. Deaumont, Jr
stitch ripper, G. St. Georg
Table, froning, Z. M. Hibbard
Thill coupling, T. J. Jone
Thill coupling, Q. Rice
Thimble, S. J. Ladd
Tire-upsetting machine, J. H. Koch
Tobacco, curing, J. R. Opitz..

Reference Book For Inventors and Mechanics,

Brainard Milling Machines and atyize

$\mathbf{W}^{\mathrm{ITHERFRF}, \text { RUGG } \& \text { RICHARDSON, Man- }}$

D0 YOU Male or female Send your add

It Pays to Adveritise

Every bustness man admits the necessity of a dverthe

 do it advantageously, and in the most effective manner,
to derive the greatest benefit for their money. As a
rute rule, it is the best economy to advertise what one bas to
sell or wishes to purchase, in papers having the larges
circulation among the class of persons likely to be incrrculation among the class of persons likely to be in
terested in the article. Parties having Manufacturing
Establishments to sell or lease, or who wish Estimates Estanishments to seli or lease, or who wish Estimates
made for Constructing Bridges, Dams, Iron Bulldings,
Furiaces, Heating Apparatus, Steam Engines, Boilers, Wood and Iron Working Machinery, Agricultural Im-
plements, or Contracts for Engineering Works of all Inds, will ind that it pays to advertise in the SCIE
The value of the SCIENTIFIC AMERICAN as an ad-
vertising medium cannot be over-estimated. It goes into all the machine and workshops in the country, an
is taken at the princlpal libraries and reading rooms the United States and Europe,
We invite the attention of
their business known, to the annexed rates:
 Business and Personal... 1.00 a line. . INSERTION Engravings may head advertisements at the same rate
per line, by measurement, as the letter-press. Adverterisents must be received at the pubication
arly as Friday morning to a ppearin next 1 ssue.
If anything is wanted in the mechanical line, advertis or it in the SCIENTIFIC AMERICAN.

The Supplement.

Next to the SCIENTIFIC AMMERICAN, the SCIENculation of any paper of its class published. The SUP TIFIC AMERICAN, and has a large circulation othe Terms for advertising are very low, as follows: Back Page, tinted Cover....35c. a line. $\left.\left.\} \begin{array}{c}\text { EACH } \\ \text { Inside Page..................25c.a a line. }\end{array}\right\} \begin{array}{l}\text { Insertion }\end{array}\right)$ Discount for large space, and to quarterly advertise

[^0]HOISTHARG BIEGTNE \$250 Ao

 ENGINEs AND Bomers, Pulleys,Shafting and Hangers specialty.

O1HE Machimery. OTIS, BROS. CE.

Brass Goods.

Having bought the " DETROIT NOVELTY WORKS,
we are desirous of renting for a term of years the Bras

SHAFTSPULLEYS.HANGERS
COUPLINGS ETC.
by

OPIUM $=$ W $=$ zew

WHIPPLE'S
Patent Door Knob.

L

SCLEICE RECORI For 1376.

This work is just fresh from the press, and al alled; and the publishers are now ready to receive The Scr
SCIENCE Record for this year-the fifth of great number of engravings, illustrating new dis-

THE Volume for 1876 embraces the most Interesting
THE

AL AND HDUSEHOLD ECONOMY,
ERIA MEDICA, THERAPEVTICS, HYGIENK
URAL HISTORY AND ZUOLOGY GEOGGRAPHYY MINERALOGY

Every person who desires to be well Informed concorn.
Eve the Prose
 everv Housenold and Library discount to the trade.
Hrice domenely Bound. Libera dis. Sent, post-paid, on recelpt ot price. All the preceding volumes of ScIence Record
 volumes comprise a library of information whic every student or man of science should preserve.

MUNN \& CO., PUBlishers,
B7 Park Row
Park Row,
New Yort city

TRATE ENEINE.

$3=$
 cular.
HERMAN \&
RODY M'F'G. Co.,
Dayton,
TO ELECTRO-PLAATERS, JEWELERS,

$\$ 5$ to $\$ 20 \begin{aligned} & \text { per day at home. Samples worth } \\ & \text { tree. Stinson \& }\end{aligned}$

Wall St. Caricatures.

AMATEUR WORKERS

Pareanil Fancy Wools
Beautiful Designs. Send 3 c stamp for our new and enlarged Cata
price ilit (3 d edition just issued) to
GEO. W. READ \& CO.,

Bollinger's Patent Turbine WATER WHEELS Mill MacD Minery.

Water Elevators.

Drictron) forsexps.

FRICTION HOISTING ENGINES.

I MPRRTANT FORALL Corporation And

 H. W. JOHNS, 87 Maiden Lane, N.Y.,

PUNCHING

 $\mathrm{D}^{\mathrm{REDELING} \text { AND Ditching Machinerr }}$

PATENT SCROLL SAWS.

STEEL CASTINGS.

PIANLG NATCHINGMACHNESZAC
BENTHL, MARESDANT \& CO.
HAMILTON, OHIO.
FINETOOIS

F OR SECOND HAND MACHINERY-A Aply to s. c.

8Model Engines. Comptings

Pond's Tools.

ENGINE LATHES, RLANERS, DR
Send for Catague DAVNEROND
LCIUCS W. POND Worcester, Monss.

HACBETART,
IRON \& WOOD WORKING MACHINERY OF EVERY DESCRIPTION.
Cold Rolled Shafting.

GEORGE PLACE

VINYEGAR HOW MADE IN

blake's patent Heges tone and Ore Breaker

PILESS.
$\$ 12$ d day at home $\begin{gathered}\text { Agents manced. Outat and } \\ \text { terma }\end{gathered}$

patent

Planing and Matching

Crude Gutta Percha

and
For Inventors and the Trade, made int

 The TOLL-QATEI Pryzo

sample send for for Pamphet and

[^1]TITIIII+J WROUGHT
BEAMS \& GIRDERS

 CELEBRATED FOOT LATHES.

R. A. Vervalen's Brick Machines,

FOREIGN PATENTS

THE CENTENNIAL.

There is no doubt that our Centennial Exposi-
tion will attract to our shores multitudes of representative people from all parts of the world, and they will take home with them many of our best factures.
An unusual opportunity will be offered for sellbeen secured on good American inventions in the come. tained abroad prices will lose ats are oblikely to occur again, if they do not avail themselves of the opportunity of securing their inventions in foreign countries at once, so as to have
their patents ready to negotiate the coming sumtheir patents ready to negotiate the coming sum-
mer. For cost of patents in the different countries and pamphlet containing full information. Address MUNN \&
37 Park Row, New York.
Branch Office, cor. Fand 7th Sts.,

Mand \& Co's. Patent Offices.

Established 1846.

Che Oldest Agency for Soliciting Patents in the United States.

TWENT Y-NINE YEARS' EXPERIENCE
MORE PATENTS have been secured through this agency, at home and abroad, than through any other in They employ as their assistants a corps of the most experienced men as examiners, specification writers, and
draftsmen that can be found, many of whom have been selected from the ranks of the Patent Offlce.
SIXTY THOUSAND inventors have availed themselves of Munn \& Co.'s services in examining their inMUNN \& CO., in connection with the publication of the Soirentific Amerions, continue to examine inventions,
confer with inventors, prepare drawings, specifications. and assignments,attend to filing applications in the Patent Office, step while pending before the examiner. This is done through their branch offlice, corner F and 7th streets, Washington. They also prepare and file caveats, procure design patents, trademarks, and reissues, attend to reiected cases (prepared by the inventor or otherattorneys), procure copy-
rights, attend to interferences, give written oplnions on matters of infringement, furnish copies of patents, and, in fact, attend to every branch of patent business both in thi
and in foreign countries.
all inventions pate ail inventions patented through this Agency, with the name
and residence of the patentee. Patents are of ten sold, in part or whole, to persons attracted to the invention by suclu
notice
Patents obtained in Canada, England, France, Belgium, Germany, Russia, Prussia, Spain, Portugal, the British
Colonies, and all other countries where Clonies, and all other countries where patents are
granted at prices greatly reduced from former rates. Send for pamphlet pertaining specially to foreign patents which states the cost, time granted, and the requirement for each country
Persons desiring any patent ssued from 1836 to Novem ber 26,1867 , can be supplied with official copies at a rea-
sonable cost, the price depending upon the extent of draw ings and length of specifications.
Any patent issued since November 27, 1867, st which and specifications,may be bad by remitting to this office *1 A copy of the claims of any patent issued since 1836 will be furnished tor $\$ 1$.
When ordering coptes, please to remit for the same as above, and state name of patentee, title date or patent.
obtaining United States patents sent free. A handsonuely Dound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every patentee and mechanic, and is a useful handbook of reterence for ev MUNN \& CO.,
Publishers SCIENTIFIC AMERICAN
37 Park Row, N. Y.
corner \mathbf{F} and \boldsymbol{y} th Streets,
branof Officz

IT PAYS

any bmart man who wishes to make \$2,000 a year on a

 THE LATEST IMPROVED

MACIIINJETY For Manufacturing SPOKES, HANDLES, AND HUBS,
Address J. GLEASON, cor. 2d \& Dlamond Sts., Phila GOUMBIA BOILER PRESERVER THE ONLY PREVENTIVE OF INGRRSTALAR I RON BRIDGE BUILDING-A scription, with dimensions, working drawings, an Hitheetives of Girard Avenue, Brorge, Philiadelphita, $P^{\text {Pand }}$ cents. Contalned in No. 1,2 and 4 of SCIENTFIC
AMERIAA SUP PLEMENT, io cents per copy. To be
had at tis ofice, and of all news agents.

The Standard-Best Stock-Finest Finish manufaoturbd ontix by D. ARTHUR BROWN \& CO, Fisherville, N.H

Truelng Emery Wheels, Grindstones, Hardened Ste and Paper Calender Rollers Drilling, Planing, Moulding
and Sawing Stone. J. DICEINSON, 64 Nassau St., N.

POPE'S
RIFLE AIR PISTOL

Harvard Pocket cigarette roller, \$1
of prite. Sent
of
TO.

Positive transmission
Tת Friction Runs Fast or Slow Tension. \quad on all size wheels.
Stretching. \quad Runs Perpendicularly
Noiseless in service. IV Stretching. Runs Perpendicu
For carrying Buckets and Attachments it has no equal.
a Profitable Substitute for Belting, Shafting, Gears and Ropes.
Adapted to all kinds of Machinery. Finds various uses in Mills, Mines, \&c. are Plans for any purpose furnished on application.
EVNART MIANUFACTURING CO.
J. C. COONLEY, Prest, 1 A. A. POPE, Sec'y, $\begin{gathered}\text { B. B. TUTTLE, Treas. } \\ \text { No. } 116 \text { Lake Street, }\end{gathered}$ Le. Platt \& Elmore Sts. 7 Broadway, Room

Mill FurnishingWorks

Portland and Keene's Cement.

はcansbog Do Your Own Printing

 PORTLAND CEMENT

 To Roofers, Builders,\& Property Owners

 DITCHING AND EXCAVATION

 SCIENTIFIC AMERICAN, the most popolar sienntific paper in the world

THIRTY-FIRST YEAR.

VOLUME XXXIV.-NEW SERIES. The publishers of the SCIENTIFIC AMERICAN beg to announce that on the first day of January, 18r, a new volume combenced. It wil continu tents of the new volume more attractive and use ful than any of its predecessors

To the Mechanic and Manufacturer No person engaged in any of the mechanical pur suits should think of dong six to ten engravings of new machines and inven tions which cannot be found in any other publica tion.
The SCIENTIFIC AMERICAN is devoted to the interests of Popular Science. the Mechanic Arts, and the industrial pursuits generally; and it is val uable and instructive not only in the Worksho and Manufactory, but also in the Household, the Library, and the Reading Room. Each volume contains hundreds of Notes, Recipes, and Suggestions, and Advice, by Practical Writers, for WorkTERMS OF SUBSCRIPTIONS...-POSTAGE

PAID BY US.
$\begin{array}{ll}\text { One copy Scientific American, one year.... } \$ 3.20 \\ \text { One copy Scientific American, six months.. } & 1.60\end{array}$ One copy Scientific American,three months 1.00 One copy Scientific American and one eopy Scientific American Supplement, both One copy of Scientific American for on噱 of Progress" 10.00 andone copy Science Record for 1876.... 5.20 Remit by postal order, draft, or express. ost and drafts payable to

MUNN \& CO. EYPARE ROW, NEW YORK.
The "Scientific American" is printed with

Todd \& Rafferty MachineCo.
The celeprated dreen Fictukers or

ROOTSFOICEE BLAST BLOWERR FIRST PREMIUN AWARDED AT PARIS \&VIENNA. THOUSANDS IN USE BOTH IN THIS COUNTRY \& EUROPE. SPEED ONLYIOOTO250 REV. PER MIN SAVES HALE ${ }_{\text {the }}$ POWER use er FAN P.H:\&FM.ROOTS MFRS.CONNERSVILLE IND. American Vehicles Wanted in Germany.

Machinist's Tools.
 HARTFORD STEAM BOILER
Inspection \& Insurance COMPANY.
W. B. FRANKLIII, V. Pres't. J. M. ALLERI, Pres't J. B. PIERCE, Sec' T .

YOUR GARDEN.

 Quinn's Money int the Gardes
Barry's Frut Garden
 FULLER's GRAPE CULTURIS
Grigory on Squasirs....................
RIvRr's Miniatur frit Garden HRNDERSON's Practionl Florioulture
Ros's Marua on Culture of Smale
Fruits.al You will find all the above very useful and valuable as the trated Cataiogne of their Rural Bookg (free toapplicants)
ORANGE JUDD COMPANY, 245 Broad way, New York

R OGERS' TANNATE OF SODA BOILER
 A ${ }^{2}$ These are the best
and most economical
goods; impervious to

co. Send for sam.
ples to B. E. HALE
\&CO., 56 and 58 Park
Place, New York.

[^0]: Munn $\boldsymbol{\&}$ Co.,

[^1]: eagle foot lathes,

 Planing \& Matching,

